Test Equipment Display Types

Displaying readings on an analog scale, where the digital characters are printed on the scale in the different locations that the pointer swings is not an issue. But, putting digits on a digital readout where different digits must share the same location, is more difficult. Three ways have been used: the solid character, the dot matrix, and the bar segments. The solid character can be the most pleasing way of displaying digits, but it is problematic since they must all share the same space. This was the way the servo wheels worked, and electrically, it was done with Nixie tubes. These used ten transparent in-line wafers enclosed in neon gas. Each wafer had electrodes in the shape of numerals, which glowed when the wafer was electrified. Although the unused wafers were still discernible while one wafer glowed, it was tolerable. The Nixie tube was used for years and can still be found on special equipment. However, this method is costly and the tubes are fragile.

Continue reading “Test Equipment Display Types”

Sampling Oscilloscopes

Sampling is the taking of a specimen, or a part, to illustrate the whole. For example, when a ship’s cargo of sugar must be checked for the amount (%) of water in the sugar, specimens of the sugar are taken from various places in the ship. The more specimens are taken, the more information is available about the quality of the cargo overall. It is evident that to be 100% sure about the condition of the cargo, all the sugar present in the ship would have to be checked; however, this is not possible.

Continue reading “Sampling Oscilloscopes”

Research, Design, and Prototyping: SDR Design

SIGINT’s (Signals Intelligence) current operational environment often requires rapid development of waveforms, protocols, and devices to dependably function in different environments. The best solutions for such functions are Software Defined Radios (SDR), which are the principal solution to prototype wireless communication systems leading to better solutions quickly. NI has adequately identified the following requirements to fulfill client needs and specifications:

Continue reading “Research, Design, and Prototyping: SDR Design”

Fiber Optics

Fiber optics use hair-like glass fibers to cany modulated light to transmit signals over distances. Light signal systems use simpler equipment, less energy, and are less prone to interference. The glass fiber has a clear core to carry the light and a cladding that is highly reflective, as well as a protective coating. Light beamed into the core is reflected from side to side to keep it moving down the core. An electronic signal, such as a telephone signal, is converted to a light beam by a light generator, which can be a light-emitting diode (LED) or a laser diode. The light is transmitted down the fiber through various optical connectors, jumpers, patch panels, etc., and is picked up at the receiving end by a photodetector that converts it back to an electronic signal. Long cable runs use weld-like splices. Clear optical continuity is needed for light transmission.

Continue reading “Fiber Optics”

Insulation and Dielectric Testers

A dielectric is an insulating material, but it is an insulating material that has been manufactured with certain electrical characteristics to interact with other electrical characteristics of a component to give the component its ratings. The insulating material between the plates of a capacitor is a dielectric. It helps determine the capacitance value and must resist voltage breakdown at the rated voltage of the capacitor.

Continue reading “Insulation and Dielectric Testers”

Power Meters

Calculating Power

If you wish to find power dissipated in an electrical load, measure any two of the three basic electrical quantities- current, voltage, and resistance. For example, you will recall that power can be calculated by multiplying voltage by current: P = VI. Therefore, if you use a voltmeter to measure the voltage across a load, and a current meter to measure the current flowing through the load, insert these values into the power equation. Similarly, you can measure current through the load and the resistance of the load, and then calculate power with: P = 12 R. Or you can measure the voltage across the load and use the equation: p = y2; R.

Continue reading “Power Meters”

Digital Meters

Input circuits allow the input voltage to be stepped down by the ranging circuits, which could be a switch or automatic circuits. The ranging circuits also select the proper pulse stream from the clock and divider circuits. The test voltage is amplified and integrated with the gate pulse to produce a ramp voltage that will pass a selected sample of pulses. The number of pulses passed is related to the test voltage. These are shaped and counted, and then decoded to drive the seven-segment displays.

Continue reading “Digital Meters”