Test Equipment Display Types

Displaying readings on an analog scale, where the digital characters are printed on the scale in the different locations that the pointer swings is not an issue. But, putting digits on a digital readout where different digits must share the same location, is more difficult. Three ways have been used: the solid character, the dot matrix, and the bar segments. The solid character can be the most pleasing way of displaying digits, but it is problematic since they must all share the same space. This was the way the servo wheels worked, and electrically, it was done with Nixie tubes. These used ten transparent in-line wafers enclosed in neon gas. Each wafer had electrodes in the shape of numerals, which glowed when the wafer was electrified. Although the unused wafers were still discernible while one wafer glowed, it was tolerable. The Nixie tube was used for years and can still be found on special equipment. However, this method is costly and the tubes are fragile.

Continue reading “Test Equipment Display Types”

Fiber Optics

Fiber optics use hair-like glass fibers to cany modulated light to transmit signals over distances. Light signal systems use simpler equipment, less energy, and are less prone to interference. The glass fiber has a clear core to carry the light and a cladding that is highly reflective, as well as a protective coating. Light beamed into the core is reflected from side to side to keep it moving down the core. An electronic signal, such as a telephone signal, is converted to a light beam by a light generator, which can be a light-emitting diode (LED) or a laser diode. The light is transmitted down the fiber through various optical connectors, jumpers, patch panels, etc., and is picked up at the receiving end by a photodetector that converts it back to an electronic signal. Long cable runs use weld-like splices. Clear optical continuity is needed for light transmission.

Continue reading “Fiber Optics”