

 PCI-CAN

https://www.apexwaves.com/modular-systems/national-instruments/pci-can-interfaces/PCI-CAN?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pci-can-interfaces/PCI-CAN?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pci-can-interfaces/PCI-CAN?aw_referrer=pdf

NI-CAN™ User Manual
for Windows 95 and

Windows NT

NI-CAN User Manual for Windows 95/Windows NT

November 1997 Edition

Part Number 321370B-01

© Copyright 1996, 1997 National Instruments Corporation. All rights reserved.

Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422

BBS United Kingdom: 01635 551422

BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248

Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,

Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,

Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635,

Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70,

Switzerland 056 200 51 51, Taiwan 02 377 1200, United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action
against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part,
without the prior written consent of National Instruments Corporation.

Trademarks

CVI™, LabVIEW™, and NI-CAN™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all traditional
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent serious injury
or death should always continue to be used when National Instruments products are being used. National Instruments
products are NOT intended to be a substitute for any form of established process, procedure, or equipment used to
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v NI-CAN User Manual for Windows 95/Windows NT

Contents

About This Manual
How to Use the Manual Set .. ix

Organization of This Manual .. x

Conventions Used in This Manual.. xi

Related Documentation... xii

Customer Communication .. xii

Chapter 1
Introduction

CAN Overview ... 1-1

History and Usage of CAN... 1-1

CAN Identifiers and Message Priority ... 1-2

CAN Frames... 1-3

Start of Frame (SOF).. 1-3

Arbitration ID... 1-4

Remote Transmit Request (RTR) .. 1-4

Identifier Extension (IDE) ... 1-4

Data Length Code (DLC)... 1-4

Data Bytes .. 1-4

Cyclic Redundancy Check (CRC) ... 1-4

Acknowledgment Bit (ACK) ... 1-5

End of Frame.. 1-5

CAN Error Detection and Confinement ... 1-5

Error Detection... 1-5

Bit Error ... 1-6

Stuff Error.. 1-6

CRC Error.. 1-6

Form Error ... 1-6

Acknowledgment Error ... 1-6

Error Confinement ... 1-6

Error Active State .. 1-7

Error Passive State... 1-7

Bus Off State ... 1-8

NI-CAN Software Overview .. 1-8

Independent Design .. 1-8

Contents

NI-CAN User Manual for Windows 95/Windows NT vi © National Instruments Corporation

Object-Oriented Design ... 1-9

NI-CAN Object Hierarchy ... 1-9

NI-CAN Software Components ... 1-12

NI-CAN Driver and Utilities ... 1-12

Firmware Image Files .. 1-13

Language Interface Files.. 1-13

Application Examples.. 1-13

Interaction of Software Components with Your Application.......... 1-14

Chapter 2
Developing Your Application

Choosing Your Programming Method ... 2-1

Choosing a Method to Access the NI-CAN Software 2-1

G Language (LabVIEW) Function Library 2-1

C/C++ Language Interfaces... 2-1

Direct Entry Access ... 2-2

Choosing Which NI-CAN Objects to Use ... 2-4

Using CAN Network Interface Objects... 2-4

Using CAN Objects ... 2-5

Programming Model for NI-CAN Applications... 2-7

Step 1. Configure Objects.. 2-9

Step 2. Open Objects ... 2-9

Step 3. Start Communication... 2-9

Step 4. Communicate Using Objects ... 2-10

Step 4a. Wait for Available Data 2-10

Step 4b. Read Data ... 2-10

Step 5. Close Objects.. 2-11

Checking Status of Function Calls ... 2-11

NI-CAN Status Format .. 2-11

Error and Warning Indicators (Severity) ... 2-11

Code... 2-12

Qualifier... 2-12

Checking Status in LabVIEW.. 2-12

Checking Status in C.. 2-13

Chapter 3
NI-CAN Programming Techniques

Using Queues.. 3-1

State Transitions... 3-1

Empty Queues .. 3-2

Full Queues .. 3-2

Contents

© National Instruments Corporation vii NI-CAN User Manual for Windows 95/Windows NT

Disabling Queues.. 3-2

Using the CAN Network Interface Object with CAN Objects 3-3

Detecting State Changes ... 3-5

Chapter 4
Application Examples

Example 1: Using CAN Objects .. 4-1

Example 2: Simple CAN Bus Analyzer ... 4-4

Example 3: Interactive CAN Example ... 4-7

Chapter 5
NI-CAN
Configuration Utility

Overview...5-1

Starting the NI-CAN Configuration Utility in Windows 95... 5-2

Starting the NI-CAN Configuration Utility in Windows NT 5-2

Configuring Objects with the NI-CAN Configuration Utility...................................... 5-4

Select the Port... 5-5

Select the CAN Network Interface Object Name... 5-5

Specify the Configuration Attributes.. 5-5

Configure the CAN Objects ... 5-6

Select the CAN Object ... 5-6

Add CAN Object Configurations... 5-7

Remove CAN Object Configurations .. 5-7

Specify the Configuration Attributes ... 5-7

Exit the CAN Object Setting Dialog Box .. 5-8

Complete the Configuration ... 5-8

Appendix A
Uninstalling the Hardware and Software

Appendix B
Windows 95: Troubleshooting and Common Questions

Appendix C
Windows NT: Troubleshooting and Common Questions

Contents

NI-CAN User Manual for Windows 95/Windows NT viii © National Instruments Corporation

Appendix D
Customer Communication

 Glossary

Index

Figures
Figure 1-1. Example of CAN Arbitration .. 1-3

Figure 1-2. Standard and Extended Frame Formats... 1-3

Figure 1-3. Simple CAN Device Network Application ... 1-10

Figure 1-4. Applying NI-CAN Objects to the Example in Figure 1-3..................... 1-11

Figure 1-5. Interaction of NI-CAN Software Components...................................... 1-14

Figure 2-1. General Program Steps Using NI-CAN Functions................................ 2-8

Figure 2-2. Status Format... 2-11

Figure 3-1. Flowchart for CAN Frame Reception ... 3-4

Figure 4-1. Program Flowchart for Example 1 .. 4-4

Figure 4-2. Program Flowchart for Example 2 .. 4-6

Figure 4-3. Program Flowchart for Example 3 .. 4-9

Figure 5-1. NI-CAN Settings Dialog Box for an AT-CAN/2.................................. 5-4

Figure 5-2. CAN Object Configuration Dialog Box.. 5-6

Figure A-1. Selecting an Interface to Remove from Windows 95............................ A-2

Figure A-2. Add/Remove Programs Properties Dialog Box..................................... A-3

Figure A-3. NI-CAN Uninstallation Results... A-4

Figure B-1. CAN Interface That Is Not Working Properly B-2

Tables
Table 2-1. Determining Severity of Status ... 2-12

© National Instruments Corporation ix NI-CAN User Manual for Windows 95/Windows NT

About

This

Manual

This manual describes the features of the NI-CAN software for Win32,

the 32-bit programming environment of Windows 95 and Windows NT.

The NI-CAN software for Windows 95 is meant to be used with

Windows 95. The NI-CAN software for Windows NT is meant to be

used with Windows NT version 3.51 or higher. This manual assumes

that you are already familiar with the Windows system you are using.

How to Use the Manual Set

Use the getting started manual to install and configure your CAN

hardware and the NI-CAN software for Windows 95 or Windows NT.

Use this NI-CAN User Manual for Windows 95 and Windows NT to

learn the basics of CAN and how to develop an application program.

The user manual also contains detailed examples.

Novice
Users

Experienced
Users

NI-CAN Programmer
Reference Manual

for Win32

Function
and Object

Descriptions

Getting Started
Manual

Installation and
Configuration

NI-CAN
User Manual

for Windows 95
and Windows NT

Application
Development
and Examples

About This Manual

NI-CAN User Manual for Windows 95/Windows NT x © National Instruments Corporation

Use the NI-CAN Programmer Reference Manual for Win32 for specific

information about each NI-CAN function and object, such as format,

parameters, and possible errors.

Organization of This Manual

This manual is organized as follows:

• Chapter 1, Introduction, gives an overview of CAN and the

NI-CAN software.

• Chapter 2, Developing Your Application, explains how to develop

an application program using the NI-CAN functions.

• Chapter 3, NI-CAN Programming Techniques, describes

techniques for using the NI-CAN functions in your application.

• Chapter 4, Application Examples, describes the sample

applications provided with your NI-CAN software.

• Chapter 5, NI-CAN Configuration Utility, describes the NI-CAN

Configuration utility you can use to configure the objects of the

NI-CAN software.

• Appendix A, Uninstalling the Hardware and Software, describes

how to uninstall the CAN hardware and the NI-CAN software from

Windows 95 and Windows NT.

• Appendix B, Windows 95: Troubleshooting and Common

Questions, describes how to troubleshoot problems with the

NI-CAN software for Windows 95 and answers some common

questions.

• Appendix C, Windows NT: Troubleshooting and Common

Questions, describes how to troubleshoot problems with the

NI-CAN software for Windows NT and answers some common

questions.

• Appendix D, Customer Communication, contains forms you can

use to request help from National Instruments or to comment on our

products and manuals.

• The Glossary contains an alphabetical list and description of terms

used in this manual, including abbreviations, acronyms, metric

prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in

this manual, including the page where you can find each one.

About This Manual

© National Instruments Corporation xi NI-CAN User Manual for Windows 95/Windows NT

Conventions Used in This Manual

The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard (for example,

<option>). Angle brackets containing numbers separated by an ellipsis

represent a range of values associated with a bit or signal name (for

example, DBIO<3..0>).

- A hyphen between two or more key names enclosed in angle brackets

denotes that you should simultaneously press the named keys–for

example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box

options to a final action. The sequence File»Page Setup»Options»

Substitute Fonts directs you to pull down the File menu, select the

Page Setup item, select Options, and finally select the Substitute Fonts

options from the last dialog box.

This icon to the left of bold italicized text denotes a note, which alerts

you to important information.

bold Bold text denotes the names of menus, menu items, parameters, dialog

box, dialog box buttons or options, icons, windows, Windows 95 tabs,

or LEDs.

bold italic Bold italic text denotes a note, caution, or warning.

italic Italic text denotes emphasis, a cross reference, or an introduction to a

key concept. This font also denotes text from which you supply the

appropriate word or value, as in Windows 3.x.

monospace Text in this font denotes text or characters that should literally enter

from the keyboard, sections of code, programming examples, and

syntax examples. This font is also used for the proper names of disk

drives, paths, directories, programs, subprograms, subroutines, device

names, functions, operations, variables, filenames and extensions, and

for statements and comments taken from programs.

The Glossary lists abbreviations, acronyms, metric prefixes,

mnemonics, symbols, and terms.

About This Manual

NI-CAN User Manual for Windows 95/Windows NT xii © National Instruments Corporation

Related Documentation

The following documents contain information that you may find helpful

as you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of

Digital Information—Controller Area Network (CAN) for

High-Speed Communication

• CAN Specification Version 2.0, 1991, Robert Bosch Gmbh.,

Postfach 500, D-7000 Stuttgart 1

• LabVIEW Online Reference

• Win32 Software Development Kit (SDK) online help

Customer Communication

National Instruments wants to receive your comments on our products

and manuals. We are interested in the applications you develop with our

products, and we want to help if you have problems with them. To make

it easy for you to contact us, this manual contains comment and

configuration forms for you to complete. These forms are in

Appendix D, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 NI-CAN User Manual for Windows 95/Windows NT

Chapter

1Introduction

This chapter gives an overview of CAN and the NI-CAN software.

CAN Overview

History and Usage of CAN
In the past few decades, the need for improvements in automotive

technology has led to increased usage of electronic control systems for

functions such as engine timing, anti-lock brake systems, and

distributorless ignition. With conventional wiring, data is exchanged in

these systems using dedicated signal lines. As the complexity and

number of devices has increased, usage of dedicated signal lines has

become increasingly difficult and expensive.

To overcome the limitations of conventional automotive wiring, Bosch

developed the Controller Area Network (CAN) in the mid-1980s. Using

CAN, devices (controllers, sensors, and actuators) are connected on a

common serial bus. This network of devices can be thought of as a

scaled down, real-time, low cost version of networks used to connect

personal computers. Any device on a CAN network can communicate

with any other device using a common pair of wires.

As CAN implementations increased in the automotive industry, CAN

was standardized internationally as ISO 11898, and CAN chips were

created by major semiconductor manufacturers such as Intel, Motorola,

and Phillips. With these developments, many manufacturers of

industrial automation equipment began to consider CAN for usage in

industrial applications. Comparison of the requirements for automotive

and industrial device networks showed many similarities, including the

transition away from dedicated signal lines, low cost, resistance to

harsh environments, and high real-time capabilities.

Because of these similarities, CAN became widely used in industrial

applications such as textile machinery, packaging machines, and

production line equipment such as photoelectric sensors and motion

controllers. By the mid-1990s, CAN was specified as the basis of many

Chapter 1 Introduction

NI-CAN User Manual for Windows 95/Windows NT 1-2 © National Instruments Corporation

industrial device networking protocols, including DeviceNet,

CANopen, and Smart Distributed System (SDS).

With its growing popularity in automotive and industrial applications,

CAN has been increasingly used in a wide variety of diverse

applications. Usage in systems such as agricultural equipment, nautical

machinery, medical apparatus, semiconductor manufacturing

equipment, and machine tools testify to the incredible versatility of

CAN.

CAN Identifiers and Message Priority
When a CAN device transmits data onto the network, an identifier that

is unique throughout the network precedes the data. The identifier

defines not only the content of the data, but also the priority. A CAN

identifier, along with its associated data, is often referred to as a CAN

Object.

When a device transmits a message onto the CAN network, all other

devices on the network receive that message. Each receiving device

performs an acceptance test on the identifier to determine if the message

is relevant to it. If the received identifier is not relevant to the device

(such as RPM received by an air conditioning controller), the device

ignores the message.

When more than one CAN device transmits a message simultaneously,

the identifier is used as a priority to determine which device gains

access to the network. The lower the numerical value of the identifier,

the higher its priority.

Figure 1-1 shows two CAN devices attempting to transmit messages,

one using identifier 647 hex, and the other using identifier 6FF hex. As

each device transmits the 11 bits of its identifier, it examines the

network to determine if a higher-priority identifier is being transmitted

simultaneously. If an identifier collision is detected, the losing

device(s) immediately cease transmission, and wait for the

higher-priority message to complete before automatically retrying.

Because the highest priority identifier continues its transmission

without interruption, this scheme is referred to as non-destructive

bitwise arbitration, and CAN's identifier is often referred to as an

arbitration ID. This ability to resolve collisions and continue with

high-priority transmissions is one feature that makes CAN ideal for

real-time applications.

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-CAN User Manual for Windows 95/Windows NT

Figure 1-1. Example of CAN Arbitration

CAN Frames
In a CAN network, the messages transferred across the network are

called frames. The CAN protocol supports two frame formats as defined

in the Bosch version 2.0 specifications, the essential difference being in

the length of the arbitration ID. In the standard frame format (also

known as 2.0A), the length of the ID is 11 bits. In the extended frame

format (also known as 2.0B), the length of the ID is 29 bits. The ISO

11898 specification supports only the standard frame format. Figure 1-2

shows the essential fields of the standard and extended frame formats,

and the following sections describe each field.

Figure 1-2. Standard and Extended Frame Formats

Start of Frame (SOF)
Start of Frame is a single bit (0) that marks the beginning of a CAN

frame.

S

S

Device B Loses Arbitration

Device A Wins Arbitration and Proceeds

Device A
ID = 11001000111 (647 hex)

Device B
ID = 11011111111 (6FF hex)

S= Start Frame Bit

Standard Frame Format

Extended Frame Format

S

O

F

R

T

R

I

D

E

A

C

K

11-Bit
Arbitration ID DLC 0-8 Data bytes 15-Bit CRC End of Frame

S

O

F

I

D

E

R

T

R

High 11 Bits
of Arbitration ID

Low 18 Bits
of Arbitration ID DLC 0-8 Data bytes

A

C

K
15-Bit CRC End of Frame

Chapter 1 Introduction

NI-CAN User Manual for Windows 95/Windows NT 1-4 © National Instruments Corporation

Arbitration ID
The arbitration ID fields contain the identifier for a CAN frame. The

standard format has one 11-bit field, and the extended format has two

fields, which are 11 and 18 bits in length. In both formats, bits of the

arbitration ID are transmitted from high to low order.

Remote Transmit Request (RTR)
The Remote Transmit Request bit is dominant (0) for data frames, and

recessive (1) for remote frames. Data frames are the fundamental means

of data transfer on a CAN network, and are used to transmit data from

one device to one or more receivers. A device transmits a remote frame

in order to request transmission of a data frame for the given arbitration

ID. The remote frame is used to request data from its source device,

rather than waiting for the data source to transmit the data on its own.

Identifier Extension (IDE)
The Identifier Extension bit differentiates standard frames from

extended frames. Because the IDE bit is dominant (0) for standard

frames and recessive (1) for extended frames, standard frames are

always higher priority than extended frames.

Data Length Code (DLC)
The Data Length Code is a 4-bit field that indicates the number of data

bytes in a data frame. In a remote frame, the Data Length Code indicates

the number of data bytes in the requested data frame. Valid Data Length

Codes range from 0 to 8.

Data Bytes
For data frames, this field contains from 0 to 8 data bytes. Remote CAN

frames always contain zero data bytes.

Cyclic Redundancy Check (CRC)
The 15-bit Cyclic Redundancy Check detects bit errors in frames. The

transmitter calculates the CRC based on the preceding bits of the frame,

and all receivers recalculate it for comparison. If the CRC calculated by

a receiver differs from the CRC in the frame, the receiver detects an

error.

Chapter 1 Introduction

© National Instruments Corporation 1-5 NI-CAN User Manual for Windows 95/Windows NT

Acknowledgment Bit (ACK)
All receivers use the Acknowledgment Bit to acknowledge successful

reception of the frame. The ACK bit is transmitted recessive (1), and is

overwritten as dominant (0) by all devices that receive the frame

successfully. The receivers acknowledge correct frames regardless of

the acceptance test performed on the arbitration ID. If the transmitter of

the frame detects no acknowledgment, it could mean that the receivers

detected an error (such as a CRC error), the ACK bit was corrupted, or

there are no receivers (for example, only one device on the network). In

such cases, the transmitter automatically retransmits the frame.

End of Frame
Each frame ends with a sequence of recessive bits. After the required

number of recessive bits, the CAN bus is idle, and the next frame

transmission can begin.

CAN Error Detection and Confinement
One of the most important and useful features of CAN is its high

reliability, even in extremely noisy environments. CAN provides a

variety of mechanisms to detect errors in frames. This error detection is

used to retransmit the frame until it is received successfully. CAN also

provides an error confinement mechanism used to remove a

malfunctioning device from the CAN network when a high percentage

of its frames result in errors. This error confinement prevents

malfunctioning devices from disturbing the overall network traffic.

Error Detection
Whenever any CAN device detects an error in a frame, that device

transmits a special sequence of bits called an error flag. This error flag

is normally detected by the device transmitting the invalid frame, which

then retransmits to correct the error. The retransmission starts over from

the start of frame, and thus arbitration with other devices is again

possible.

CAN devices detect the following errors, which are described in the

following sections:

• Bit error

• Stuff error

• CRC error

Chapter 1 Introduction

NI-CAN User Manual for Windows 95/Windows NT 1-6 © National Instruments Corporation

• Form error

• Acknowledgment error

Bit Error

During frame transmissions, a CAN device monitors the bus on a

bit-by-bit basis. If the bit level monitored is different from the

transmitted bit, a bit error is detected. This bit error check applies only

to the Data Length Code, Data Bytes, and Cyclic Redundancy Check

fields of the transmitted frame.

Stuff Error

Whenever a transmitting device detects five consecutive bits of equal

value, it automatically inserts a complemented bit into the transmitted

bit stream. This stuff bit is automatically removed by all receiving

devices. The bit stuffing scheme is used to guarantee enough edges in

the bit stream to maintain synchronization within a frame.

A stuff error occurs whenever six consecutive bits of equal value are

detected on the bus.

CRC Error

A CRC error is detected by a receiving device whenever the calculated

CRC differs from the actual CRC in the frame.

Form Error

A form error occurs when a violation of the fundamental CAN frame

encoding is detected. For example, if a CAN device begins transmitting

the Start Of Frame bit for a new frame before the End Of Frame

sequence completes for a previous frame (does not wait for bus idle), a

form error is detected.

Acknowledgment Error

An acknowledgment error is detected by a transmitting device

whenever it does not detect a dominant Acknowledgment Bit (ACK).

Error Confinement
To provide for error confinement, each CAN device must implement a

transmit error counter and a receive error counter. The transmit error

counter is incremented when errors are detected for transmitted frames,

Chapter 1 Introduction

© National Instruments Corporation 1-7 NI-CAN User Manual for Windows 95/Windows NT

and decremented when a frame is transmitted successfully. The receive

error counter is used for received frames in much the same way. The

error counters are increased more for errors than they are decreased for

successful reception/transmission. This ensures that the error counters

will generally increase when a certain ratio of frames (roughly 1/8)

encounter errors. By maintaining the error counters in this manner, the

CAN protocol can generally distinguish temporary errors (such as those

caused by external noise) from permanent failures (such as a broken

cable). For complete information on the rules used to

increment/decrement the error counters, refer to the CAN specification

(ISO 11898).

With regard to error confinement, each CAN device may be in one of

three states: error active, error passive, and bus off.

Error Active State

When a CAN device is powered on, it begins in the error active state. A

device in error active state can normally take part in communication,

and transmits an active error flag when an error is detected. This active

error flag (sequence of dominant 0 bits) causes the current frame

transmission to abort, resulting in a subsequent retransmission. A CAN

device remains in the error active state as long as the transmit and

receive error counters are both below 128. In a normally functioning

network of CAN devices, all devices are in the error active state.

Error Passive State

If either the transmit error counter or the receive error counter

increments above 127, the CAN device transitions into the error passive

state. A device in error passive state can still take part in

communication, but transmits a passive error flag when an error is

detected. This passive error flag (sequence of recessive 1 bits) generally

does not abort frames transmitted by other devices. Since passive error

flags are not able to prevail over any activity on the bus line, they are

noticed only when the error passive device is transmitting a frame.

Thus, if an error passive device detects a receive error on a frame which

is received successfully by other devices, the frame is not retransmitted.

One special rule to keep in mind is that when an error passive device

detects an acknowledgment error, it does not increment its transmit

error counter. Thus, if a CAN network consists of only one device

(for instance, if you do not connect a cable to your National Instruments

CAN interface), and that device attempts to transmit a frame, it

Chapter 1 Introduction

NI-CAN User Manual for Windows 95/Windows NT 1-8 © National Instruments Corporation

retransmits continuously but never goes into bus off state (although it

eventually reaches error passive state).

Bus Off State

If the transmit error counter increments above 255, the CAN device

transitions into the bus off state. A device in the bus off state does not

transmit or receive any frames, and thus cannot have any influence on

the bus. The bus off state is used to disable a malfunctioning CAN

device which frequently transmits invalid frames, so that the device

does not adversely impact other devices on the network. When a CAN

device has transitioned to bus off, it can only be placed back into error

active state (with both counters reset to zero) by manual intervention.

For sensor/actuator types of devices, this often involves powering the

device off then on. For NI-CAN network interfaces, communication can

be started again using a function such as ncAction.

NI-CAN Software Overview

Independent Design
The NI-CAN Application Programming Interface (API), like most

National Instruments APIs, is largely independent of operating system

and programming language. You can use NI-CAN in a wide variety of

programming environments, including LabVIEW and C programming

environments such as LabWindows/CVI. Applications written for

NI-CAN are also portable across different operating systems, such as

Windows 95 and Windows NT.

In addition to being independent of operating system and programming

language, NI-CAN is designed to be largely independent of a specific

device network protocol. Device network independence means that

where possible, terminology specific to CAN alone is avoided so that

the API can be expanded later to support higher level protocols based

on CAN. Examples of such protocols include DeviceNet, Smart

Distributed System (SDS), and CANopen. Device network

independence largely applies to terminology such as function names,

and in no way limits access to the CAN network. For example, the

function provided to read data from a CAN frame is called ncRead, as

opposed to a name specific to CAN, such as ncReadCanFrame.

Chapter 1 Introduction

© National Instruments Corporation 1-9 NI-CAN User Manual for Windows 95/Windows NT

Object-Oriented Design
NI-CAN often uses object-oriented terminology and concepts.

Object-oriented terminology provides an excellent model for describing

device networks in terms that are easy to understand.

In object-oriented terminology, the term class describes a classification

of an object, and the term instance refers to a specific instance of that

object. The term object is generally used as a synonym for instance. For

example, NI-CAN defines a class called the CAN Network Interface

Object, which encapsulates any network interface port on a National

Instruments CAN hardware product. Specific instances of the CAN

Network Interface Object are referenced with names like CAN0 and

CAN1. Each instance of a particular class has attributes that define its

externally visible qualities, as well as methods that are used to perform

actions. For example, each instance of the CAN Network Interface

Object has an attribute for the baud rate (bits per second) used for

communication, as well as a method used to transmit CAN frames onto

the network.

For more information on object-oriented and CAN terminology, refer to

the Glossary.

NI-CAN Object Hierarchy
The basic model of the NI-CAN software architecture is a hierarchical

collection of objects (instances), each of which has attributes and

methods. The hierarchy shows relationships between various objects. In

general, a given object in the hierarchy has an “is used to access”

relationship with all objects above it in the hierarchy.

As an example, consider a CAN device network in which the network

interface of a host computer is physically connected to two devices, a

pushbutton and an LED, as shown in Figure 1-3.

Chapter 1 Introduction

NI-CAN User Manual for Windows 95/Windows NT 1-10 © National Instruments Corporation

Figure 1-3. Simple CAN Device Network Application

The pushbutton device transmits the state of the button in a CAN data

frame with standard arbitration ID 13. The frame data consists of a

single byte—zero if the button is off, one if the button is on. In order for

an NI-CAN application to obtain the current state of the pushbutton, it

transmits a CAN remote frame with standard arbitration ID 13. The

pushbutton device responds to this remote transmission request by

transmitting the button state in its CAN data frame.

The LED device expects to obtain the state of the LED from a CAN data

frame with standard arbitration ID 5. It expects the frame data to consist

of a single byte—zero to turn the light off, one to turn the light on.

Figure 1-4 shows how NI-CAN objects encapsulate access to this CAN

device network. The ovals in Figure 1-4 indicate NI-CAN objects, and

the dotted lines indicate what each object encapsulates.

Network
Interface

User
Application

LED
Device

Pushbutton
Device

Arbitration ID 5
Data Frame

Arbitration ID 13
Data Frame

Arbitration ID 13
Remote Frame

Chapter 1 Introduction

© National Instruments Corporation 1-11 NI-CAN User Manual for Windows 95/Windows NT

Figure 1-4. Applying NI-CAN Objects to the Example in Figure 1-3

The CAN Network Interface Object encapsulates the entire CAN

network interface. Its attributes are used to configure settings that apply

to the network interface as a whole. For example, the CAN Network

Interface Object contains an attribute you can use to set the baud rate

that the network interface hardware uses for communication. You can

also use the CAN Network Interface Object to communicate on the

CAN device network. For example, you can use the write function to

transmit a CAN remote frame to the pushbutton device, then use the

read function to retrieve the resulting CAN data frame. Because the

CAN Network Interface Object provides direct access to the network

interface, the write and read functions require all information about the

CAN frame to be specified, including arbitration ID, whether the frame

is a CAN data frame or a CAN remote frame, the number of data bytes,

and the frame data (assuming a CAN data frame).

The CAN Object encapsulates a specific arbitration ID, along with its

data. In addition to providing the ability to transmit and receive frames

Network
Interface

User
Application

LED
Device

Pushbutton
Device

Arbitration ID 5
Data Frame

Arbitration ID 13
Data Frame

Arbitration ID 13
Remote Frame

CAN Network
Interface Object

CAN Object
for Arbitration

ID 5

CAN Object
for Arbitration

ID 13

Chapter 1 Introduction

NI-CAN User Manual for Windows 95/Windows NT 1-12 © National Instruments Corporation

for a specific arbitration ID, CAN Objects also provide various forms

of background access. For example, you can configure a CAN Object

for arbitration ID 13 (the pushbutton) to automatically transmit a CAN

remote frame every 500 ms, and to store the data of the resulting CAN

data frame for later retrieval. After the CAN Object is configured in this

manner, you can use the read function to obtain a single data byte that

holds the most recent state of the pushbutton.

NI-CAN Software Components
The following section highlights important components of the NI-CAN

software for Windows 95 and Windows NT, and describes the function

of each component.

NI-CAN Driver and Utilities

• A documentation file, readme.txt, contains important

information about the NI-CAN software and a description of any

new features. Before you use the software, read this file for the

most recent information.

• A 32-bit, multitasking aware device driver is used to interface with

National Instruments CAN hardware. Under Windows 95, this is a

dynamically loadable, Plug and Play aware virtual device driver

(VxD). Under Windows NT, this is a native Windows NT kernel

driver.

• A Win32 dynamic link library, nican.dll, acts as the interface

between all Windows 95 and Windows NT CAN applications and

the NI-CAN device driver.

• The NI-CAN Configuration utility is used to modify the

configuration of the NI-CAN software. Under Windows 95, this

utility is integrated into the Windows 95 Device Manager. Under

Windows NT, this utility is a control panel application.

• The NI-CAN Diagnostic utility is used to verify that the CAN

hardware and software have been installed properly.

Chapter 1 Introduction

© National Instruments Corporation 1-13 NI-CAN User Manual for Windows 95/Windows NT

Firmware Image Files
All National Instruments CAN hardware products contain an on-board

microprocessor. This microprocessor is used so that all time-critical

aspects of the NI-CAN software can be executed separately from your

Windows 95 or Windows NT application. The firmware image which

runs on the on-board microprocessor, nican.nfw, is loaded and

executed automatically when your NI-CAN application starts up.

Language Interface Files

• A documentation file, readme.txt, contains information about

the NI-CAN language interface files.

• A 32-bit C language include file, nican.h, contains NI-CAN

function prototypes, host data types, and various predefined

constants.

• A 32-bit C language interface file, nicanmsc.lib, is used by

Microsoft C/C++ applications to access the NI-CAN DLL.

• A 32-bit C language interface file, nicanbor.lib, is used by

Borland C/C++ (5.0 or greater) applications to access the NI-CAN

DLL.

• A 32-bit C language interface file, nicancvm.lib, is used by

LabWindows/CVI applications to access the NI-CAN DLL.

• NI-CAN function panels for LabWindows/CVI (nican.fp) enable

you to develop a CAN application with LabWindows/CVI.

• A 32-bit G function library, nican.llb, is used by LabVIEW

applications to access the NI-CAN DLL.

Application Examples
The NI-CAN software includes three sample applications. For a

detailed description of the sample application files, refer to Chapter 4,

Application Examples.

Chapter 1 Introduction

NI-CAN User Manual for Windows 95/Windows NT 1-14 © National Instruments Corporation

Interaction of Software Components with Your
Application
Figure 1-5 shows the interaction between your application and the

NI-CAN software components.

Figure 1-5. Interaction of NI-CAN Software Components

nican.dll

User Mode

Kernel Mode

NI-CAN Device Driver

CAN Hardware

nican.nfw

NI-CAN Language Interface

Your Application

© National Instruments Corporation 2-1 NI-CAN User Manual for Windows 95/Windows NT

Chapter

2Developing Your Application

This chapter explains how to develop an application program using the

NI-CAN functions.

Choosing Your Programming Method

Choosing a Method to Access the NI-CAN Software
Applications can access the NI-CAN dynamic link library (nican.dll)

either by using an NI-CAN language interface or by direct entry access.

G Language (LabVIEW) Function Library
For applications written in LabVIEW (4.0 or higher) or BridgeVIEW,

the NI-CAN function library for G (nican.llb) provides a LabVIEW

function to access each NI-CAN function easily.

You can add NI-CAN functions and controls to your LabVIEW palettes

by selecting Select Palette Set from the LabVIEW Edit menu, then

selecting nican_view. The NI-CAN functions can then be found in

your LabVIEW Functions palette, for placement into your diagram. The

NI-CAN controls can be found in your LabVIEW Controls palette, for

placement into your front panel.

For a description of how each NI-CAN function in LabVIEW maps to

the corresponding C language NI-CAN function, refer to the NI-CAN

Programmer Reference Manual for Win32.

C/C++ Language Interfaces
You can use an NI-CAN C language interface if your application is

written in Microsoft Visual C/C++ (2.0 or higher), Borland C/C++ (5.0

or higher), or LabWindows/CVI (4.0 or higher) with Microsoft C. For

other C/C++ compilers, you must access nican.dll directly.

To use a C/C++ language interface, include the nican.h header file in

your code, then link the appropriate NI-CAN language interface file

Chapter 2 Developing Your Application

NI-CAN User Manual for Windows 95/Windows NT 2-2 © National Instruments Corporation

with your application. You can then call the NI-CAN functions without

any extra effort.

For C applications (files with .c extension), include nican.h by

adding the following line to the beginning of your code:

#include "nican.h"

For C++ applications (files with .cpp extension), include nican.h by

adding the following lines to the beginning of your code:

#define _cplusplus

#include "nican.h"

The _cplusplus define allows nican.h to properly handle the

transition from C++ to the C language NI-CAN functions.

For Microsoft Visual C++, link your application with the NI-CAN

language interface for Microsoft C/C++, nicanmsc.lib.

For Borland C/C++ (5.0 or higher), link your application with the

NI-CAN language interface for Borland C/C++, nicanbor.lib. For

Borland C/C++ 4.5, you must use direct entry access for NI-CAN.

For using LabWindows/CVI with Microsoft C, link your application

with the NI-CAN language interface for LabWindows/CVI and

Microsoft C, nicancvm.lib.

For detailed information on how to compile and link your NI-CAN

application, refer to the readme.txt file in the NI-CAN examples

directory.

Direct Entry Access
You can directly access nican.dll from any programming

environment that allows you to request addresses of functions that a

DLL exports.

To use direct entry access, you must first load nican.dll. The

following C language code fragment illustrates how to call the Win32

LoadLibrary function and check for an error:

#include <windows.h>
#include "nican.h"

HINSTANCE NicanLib = NULL;

Chapter 2 Developing Your Application

© National Instruments Corporation 2-3 NI-CAN User Manual for Windows 95/Windows NT

NicanLib=LoadLibrary("nican.dll");
if (NicanLib == NULL) {
 return FALSE;
}

Next, your application must use the Win32 GetProcAddress function

to get the addresses of the NI-CAN functions your application needs to

use. For each NI-CAN function used by your application, you must

define a direct entry prototype. For the prototypes for each function

exported by nican.dll, refer to the NI-CAN Programmer Reference

Manual for Win32. The following code fragment illustrates how to get

the addresses of the ncOpenObject, ncCloseObject, and ncRead

functions:

static NCTYPE_STATUS (_NCFUNC_ *PncOpenObject)
(NCTYPE_STRING ObjName,
NCTYPE_OBJH_P ObjHandlePtr);

static NCTYPE_STATUS (_NCFUNC_ *PncCloseObject)
(NCTYPE_OBJH ObjHandle);

static NCTYPE_STATUS (_NCFUNC_ *PncRead)
(NCTYPE_OBJH ObjHandle, NCTYPE_UINT32 DataSize,
NCTYPE_ANY_P DataPtr);

PncOpenObject = (NCTYPE_STATUS (_NCFUNC_ *)
(NCTYPE_STRING, NCTYPE_OBJH_P))
GetProcAddress(NicanLib, (LPCSTR)"ncOpenObject");

PncCloseObject = (NCTYPE_STATUS (_NCFUNC_ *)

(NCTYPE_OBJH))
GetProcAddress(NicanLib, (LPCSTR)"ncCloseObject");

PncRead = (NCTYPE_STATUS (_NCFUNC_ *)
(NCTYPE_OBJH, NCTYPE_UINT32, NCTYPE_ANY_P))
GetProcAddress(NicanLib, (LPCSTR)"ncRead");

If GetProcAddress fails, it returns a NULL pointer. The following

code fragment illustrates how to verify that none of the calls to

GetProcAddress failed:

if ((PncOpenObject == NULL) ||
(PncCloseObject == NULL) ||
(PncRead == NULL)) {

FreeLibrary(NicanLib);
printf("GetProcAddress failed");

}

Chapter 2 Developing Your Application

NI-CAN User Manual for Windows 95/Windows NT 2-4 © National Instruments Corporation

Your application needs to de-reference the pointer to access an NI-CAN

function, as illustrated by the following code:

NCTYPE_STATUS status;
NCTYPE_OBJH MyObjh;

status = (*PncOpenObject) ("CAN0", &MyObjh);
if (status < 0) {
 printf("ncOpenObject failed");
}

Before exiting your application, you need to free nican.dll with the

following command:

FreeLibrary(NicanLib);

For more information on direct entry, refer to the Win32 SDK (Software

Development Kit) online help.

Choosing Which NI-CAN Objects to Use
An application written for NI-CAN communicates on the network by

using various objects. Which NI-CAN objects to use depends largely on

the needs of your application. The following sections discuss the

objects provided by NI-CAN, and reasons why you might use each class

of object.

Using CAN Network Interface Objects
The CAN Network Interface Object encapsulates a physical interface to

a CAN network, usually a CAN port on an AT or PCI interface.

You use the CAN Network Interface Object to read and write complete

CAN frames. As a CAN frame arrives from over the network, it can be

placed into the read queue of the CAN Network Interface Object. You

can retrieve CAN frames from this read queue using the ncRead

function. For CAN Network Interface Objects, the ncRead function

provides a timestamp of when the frame was received, the arbitration

ID of the frame, the type of frame (data or remote), the data length, and

the data bytes. You can also use the CAN Network Interface Object to

write CAN frames using the ncWrite function.

Chapter 2 Developing Your Application

© National Instruments Corporation 2-5 NI-CAN User Manual for Windows 95/Windows NT

Some possible uses for the CAN Network Interface Object include the

following:

• You can use the read queue to log all CAN frames transferred

across the network. This log is useful when you need to view

preceding CAN traffic in order to verify that all CAN devices are

functioning properly.

• You can use the write queue to transmit a sequence of CAN frames

in quick succession. This is useful for applications in which you

need to simulate a specific sequence of CAN frames in order to

verify proper device operation.

• You can read and write CAN frames for access to configuration

settings within a device. Because such settings generally are not

accessed during normal device operation, a dedicated CAN Object

is not appropriate.

• For higher level protocols based on CAN, you can use sequences of

write/read transactions to initialize communication with a device.

In these protocols, specific sequences of CAN frames often need to

be exchanged before you can access the data from a device. In such

cases, you can use the CAN Network Interface Object to set up

communication, then use CAN Objects for actual data transfer with

the device.

In general, you use CAN Network Interface Objects for situations in

which you need to transfer arbitrary CAN frames.

Using CAN Objects
When a network frame is transmitted on a CAN based network, it

always begins with what is called the arbitration ID. This arbitration ID

is primarily used for collision resolution when more than one frame is

transmitted simultaneously, but you can also use it as a simple

mechanism to identify data. The CAN Object encapsulates a specific

CAN arbitration ID and its associated data.

Every CAN Object is always associated with a specific CAN Network

Interface Object, used to identify the physical interface on which the

CAN Object is located. Your application can use multiple CAN Objects

in conjunction with their associated CAN Network Interface Object.

The CAN Object provides high level access to a specific arbitration ID.

You can configure each CAN Object for different forms of background

access. For example, you can configure a CAN Object to transmit a data

frame every 100 milliseconds, or to periodically poll for data by

Chapter 2 Developing Your Application

NI-CAN User Manual for Windows 95/Windows NT 2-6 © National Instruments Corporation

transmitting a remote frame and receiving the data frame response. The

arbitration ID, direction of data transfer, data length, and when data

transfer occurs (periodic or unsolicited) are all preconfigured for the

CAN Object. When you have configured and opened the CAN Object,

data transfer is handled in the background using read and write queues.

For example, if the CAN Object periodically polls for data, the NI-CAN

driver automatically handles the periodic transmission of remote

frames, and stores incoming data in the read queue of the CAN Object

for later retrieval by the ncRead function. For CAN Objects that receive

data frames, the ncRead function provides a timestamp of when the data

frame arrived, and the data bytes of the frame. For CAN Objects that

transmit data frames, the ncWrite function provides the outgoing data

bytes.

Some possible uses for CAN Objects include the following:

• You can configure a CAN Object to periodically transmit a data

frame for a specific arbitration ID. The CAN Object transmits the

same data bytes repetitively until different data is provided using

ncWrite. This configuration is useful for simulation of a device

that periodically transmits its data, such as simulation of an

automotive sensor. This configuration is also useful for devices that

expect to periodically receive data for a particular arbitration ID in

order to respond with data using a different arbitration ID, such as

a device containing analog inputs and outputs.

• You can configure a CAN Object to watch for unsolicited data

frames received for its arbitration ID, then store that data in the

CAN Object's read queue. A watchdog timeout is provided to

ensure that incoming data is received periodically. This

configuration is useful when you want to apply a timeout to data

received for a specific arbitration ID and store that data in a

dedicated queue. If you do not need to apply a timeout for a given

arbitration ID, it is often preferable to use the CAN Network

Interface Object to receive that data.

• You can configure a CAN Object to periodically poll for data by

transmitting a remote frame and receiving the data frame response.

This configuration is useful for communication with devices that

require a remote frame in order to transmit their data.

• You can configure a CAN Object to transmit a data frame whenever

it receives a remote frame for its arbitration ID. You can use this

configuration to simulate a device which responds to remote

frames.

Chapter 2 Developing Your Application

© National Instruments Corporation 2-7 NI-CAN User Manual for Windows 95/Windows NT

In general, you use CAN Objects for data transfer for a specific

arbitration ID, especially when that data transfer needs to occur

periodically.

Programming Model for NI-CAN Applications

The following steps demonstrate how to use the NI-CAN functions in

your application. The steps are shown in Figure 2-1 in flowchart form.

Chapter 2 Developing Your Application

NI-CAN User Manual for Windows 95/Windows NT 2-8 © National Instruments Corporation

Figure 2-1. General Program Steps Using NI-CAN Functions

START

END

Communicate Using Objects
• Wait for Data Available
 (ncWaitForState,
 ncCreateNotification)
• Read Data (ncRead)
• Write Data (ncwrite)
and so on

Configure Object

Yes

Are All
Objects Configured?

No

Open Object (ncOpenObject)

Yes

Are All
Objects Open?

Start Communication (ncAction)

No

Close Object (ncCloseObject)

Are All
Objects Closed?

No

Yes

Yes

Finished
CAN Programming?

No

Chapter 2 Developing Your Application

© National Instruments Corporation 2-9 NI-CAN User Manual for Windows 95/Windows NT

Step 1. Configure Objects
Prior to opening the objects used in your application, you must

configure the objects with their initial attribute settings. You can

configure the objects in one of two ways:

• You can use the NI-CAN Configuration utility to define your

objects and specify their configuration attributes. This method is

often preferable, because it does not require configuration to be

handled within your application itself. Also, the NI-CAN

Configuration utility provides online help that describes each of the

configuration attributes.

• Each object can be configured within your application by calling

the ncConfig function. This function takes the name of the object

to configure, along with a list of configuration attribute settings.

Step 2. Open Objects
You must call the ncOpenObject function to open each object you use

within your application.

The ncOpenObject function returns a handle for use in all subsequent

NI-CAN calls for that object. When you are using the G language

(LabVIEW) function library, this handle is passed through the upper

left and right terminals of each NI-CAN function used after the open.

Step 3. Start Communication
You must start communication on the CAN network before you can use

your objects to transfer data.

If you configured your CAN Network Interface Object to start on open,

then that object and all of its higher level CAN Objects are started

automatically by the ncOpenObject function, so nothing special is

required for this step.

If you disabled the start-on-open attribute, then when your application

is ready to start communication, use the CAN Network Interface Object

to call the ncAction function with the Opcode parameter set to

NC_OP_START. This call is often useful when you want to use ncWrite

to place outgoing data in write queues prior to starting communication.

If you want to reset the CAN hardware completely to clear a pending

Error Passive state, you can use the CAN Network Interface Object to

Chapter 2 Developing Your Application

NI-CAN User Manual for Windows 95/Windows NT 2-10 © National Instruments Corporation

call the ncAction function with the Opcode parameter set to

NC_OP_RESET. This reset must be done prior to starting communication.

Step 4. Communicate Using Objects
After you open your objects and start communication, you are ready to

transfer data on the CAN network. The manner in which data is

transferred depends on the configuration of the objects you are using.

For this example, assume that you are communicating with a CAN

device that periodically transmits a data frame. To receive this data,

assume that a CAN Object is configured to watch for data frames

received for its arbitration ID and store that data in its read queue.

Step 4a. Wait for Available Data

To wait for the arrival of a data frame from the device, you can call

ncWaitForState with the DesiredState parameter set to

NC_ST_READ_AVAIL. The NC_ST_READ_AVAIL state tells you that data

for the CAN Object has been received from the network and placed into

the object's read queue. Another way to wait for the

NC_ST_READ_AVAIL state is to call the ncCreateNotification

function so you receive a callback when the state occurs. For more

information on ncWaitForState and ncCreateNotification, refer

to the NI-CAN Programmer Reference Manual for Win32.

When receiving data from the device, if your only requirement is to

obtain the most recent data, you are not required to wait for the

NC_ST_READ_AVAIL state. If this is the case, you can set the read queue

length of the CAN Object to zero during configuration, so that it only

holds the most recent data bytes. Then you can use the ncRead function

as needed to obtain the most recent data bytes received.

Step 4b. Read Data

Read the data bytes using ncRead. For CAN Objects that receive data

frames, ncRead returns a timestamp of when the data was received,

followed by the actual data bytes (the number of which you configured

in Step 1).

Steps 4a and 4b should be repeated for each data value you want to read

from the CAN device.

Chapter 2 Developing Your Application

© National Instruments Corporation 2-11 NI-CAN User Manual for Windows 95/Windows NT

Step 5. Close Objects
When you are finished accessing the CAN devices, close all objects

using the ncCloseObject function before you exit your application.

Checking Status of Function Calls

Each NI-CAN function returns a value that indicates the status of the

function call. Your application should check this status after each

NI-CAN function call. The following sections describe the NI-CAN

status, and how you can check it in your application.

NI-CAN Status Format
To provide the maximum amount of information, the status returned by

NI-CAN functions is encoded as a signed 32-bit integer. The format of

this integer is shown in Figure 2-2.

Figure 2-2. Status Format

Error and Warning Indicators (Severity)
The error and warning bits ensure that all NI-CAN errors generate a

negative status, and all NI-CAN warnings generate a positive status.

The error bit is set when a function does not perform the expected

behavior, resulting in a negative status. The warning bit is set when the

function performed as expected, but a condition has arisen which may

require your attention. If no error or warning occurs, the entire status is

set to zero to indicate success. Table 2-1 summarizes the behavior of

NI-CAN status.

31 30 29–16 15–0

Error Warning Qualifier Code

Chapter 2 Developing Your Application

NI-CAN User Manual for Windows 95/Windows NT 2-12 © National Instruments Corporation

Code
The code bits indicate the primary status code used for warning or

errors.

Qualifier
The qualifier bits hold a qualifier for the warning or error code. It is

specific to individual values for the code field, and provides additional

information useful for detailed debugging. For example, if the status

code indicates an invalid function parameter, the qualifier holds a

number that indicates the exact parameter that is invalid (one for the

first parameter, two for the second, and so on). If no qualifier exists, this

field has the value NC_QUAL_NONE (0).

For descriptions of the NI-CAN status codes and their qualifiers, refer

to Appendix B, Status Codes and Qualifiers, in the NI-CAN

Programmer Reference Manual for Win32.

Checking Status in LabVIEW
For applications written in G (LabVIEW), status checking is basically

handled automatically. For all of the NI-CAN functions, the lower left

and right terminals provide status information using LabVIEW Error

Clusters. LabVIEW Error Clusters are designed so that status

information flows from one function to the next, and function execution

stops when an error occurs. For more information, refer to the Error

Handling section in the LabVIEW Online Reference.

In NI-CAN's implementation of Error Clusters, the status parameter

is set to true when an error occurs, and is set to false when a warning or

success occurs. The code parameter of the Error Cluster contains the

Table 2-1. Determining Severity of Status

Status Result

Negative Error. Function did not perform expected behavior.

Zero Success. Function completed successfully.

Positive Warning. Function performed as expected, but a

condition arose that may require your attention.

Chapter 2 Developing Your Application

© National Instruments Corporation 2-13 NI-CAN User Manual for Windows 95/Windows NT

code and qualifier fields of the NI-CAN status. If the code parameter of

the Error Cluster is not zero, then a warning or error was detected. When

the status parameter is true, the source parameter of the Error Cluster

provides the name of the NI-CAN function in which the error occurred.

Within your LabVIEW Block Diagram, wire the Error in and Error
out terminals of all NI-CAN functions together in succession. When an

error is detected in any NI-CAN function (status parameter true), all

subsequent NI-CAN functions are skipped except for ncClose. The

ncClose function executes regardless of whether the incoming status

is true or false. This ensures that all NI-CAN objects are closed properly

when execution stops due to an error.

When a warning occurs in an NI-CAN function, execution proceeds

normally. To detect suspected warnings in your application, you can

write code in your Block Diagram to examine the code parameter, or

you can use the Probe Data tool on an Error out terminal during

execution.

For each NI-CAN function, you can find numeric values for the

returned status code and qualifier in the online description of the

function, which you can access in the Block Diagram by selecting the

function and typing <Ctrl-H>.

Checking Status in C
For applications written in C or C++, you should define a function to

handle NI-CAN warnings and errors. When this function detects an

error, it closes all open objects, then exits the application. When this

function detects a warning, it can display a warning message or simply

ignore the warning. If the function has the following prototype:

void CheckStat(NCTYPE_STATUS stat, char *msg);

then your application invokes it as follows:

if (status != 0)
 CheckStat(status, "NI-CAN error or warning");

For an example implementation of the CheckStat function, refer to the

C language examples in the NI-CAN examples directory.

When accessing the NI-CAN code and qualifier within your

application, you should use the constants defined in nican.h. These

Chapter 2 Developing Your Application

NI-CAN User Manual for Windows 95/Windows NT 2-14 © National Instruments Corporation

constants have the same names as described in the NI-CAN Programmer

Reference Manual for Win32. For example, to check for a timeout, you

would use code such as the following:

if (NC_STATCODE(status) == NC_ERR_TIMEOUT)
 printf("NI-CAN timeout");

© National Instruments Corporation 3-1 NI-CAN User Manual for Windows 95/Windows NT

Chapter

3NI-CAN Programming
Techniques

This chapter describes techniques for using the NI-CAN functions in

your application.

For more detailed information about each NI-CAN function, refer to the

NI-CAN Programmer Reference Manual for Win32.

Using Queues

To maintain an ordered history of data transfers, NI-CAN supports the

use of queues, also known as FIFO (first-in-first-out) buffers. The basic

behavior of such queues is common to all NI-CAN objects.

There are two basic types of NI-CAN queues: the read queue and the

write queue. NI-CAN uses the read queue to store incoming network

data items in the order they arrive. You access the read queue using

ncRead to obtain the data. NI-CAN uses the write queue to transmit

network frames one at a time using the network interface hardware. You

access the write queue using ncWrite to store network data items for

transmission.

State Transitions
The NC_ST_READ_AVAIL state transitions from false to true when

NI-CAN places a new data item into an empty read queue, and remains

true until you read the last data item from the queue and the queue is

empty.

The NC_ST_WRITE_SUCCESS state transitions from false to true when

the write queue is empty and NI-CAN has successfully transmitted the

last data item onto the network. The NC_ST_WRITE_SUCCESS state

remains true until you write another data item into the write queue.

Chapter 3 NI-CAN Programming Techniques

NI-CAN User Manual for Windows 95/Windows NT 3-2 © National Instruments Corporation

Empty Queues
For both read and write queues, the behavior for reading an empty

queue is similar. When you read an empty queue, the previous data item

is returned again. For example, if you call ncRead when

NC_ST_READ_AVAIL is false, the data from the previous call to ncRead

is returned again, along with the NC_ERR_OLD_DATA warning. If no data

item has yet arrived for the read queue, a default data item is returned,

which consists of all zeros. You should generally wait for

NC_ST_READ_AVAIL prior to the first call to ncRead.

Full Queues
For both read and write queues, the behavior for writing a full queue is

similar. When you write a full queue, NI-CAN returns the

NC_ERR_OVERFLOW status codes. For example, if you write too many

data items to a write queue, the ncWrite function eventually returns the

overflow error.

Disabling Queues
If you do not need a complete history of all data items, you may prefer

to disable the read queue and/or write queue by setting its length to zero.

Using zero length queues generally saves memory, and often results in

better performance. When a new data item arrives for a zero length

queue, it overwrites the previous item without indicating an overflow.

The NC_ST_READ_AVAIL and NC_ST_WRITE_SUCCESS states still

behave as usual, but you can ignore them if you want only the most

recent data. For example, when NI-CAN writes a new data item to the

read buffer, the NC_ST_READ_AVAIL state becomes true until the data

item is read. If you only want the most recent data, you can ignore the

NC_ST_READ_AVAIL state, as well as the NC_ERR_OLD_DATA warning

returned by ncRead.

Chapter 3 NI-CAN Programming Techniques

© National Instruments Corporation 3-3 NI-CAN User Manual for Windows 95/Windows NT

Using the CAN Network Interface Object
with CAN Objects

For many applications, it is desirable to use a CAN Network Interface

Object in conjunction with higher level CAN Objects. For example,

many CAN devices require a specific sequence of CAN frames to

initialize for data transfer. For such devices, you can use the CAN

Network Interface Object to transmit and receive frames required for

initialization, then use CAN Objects for data transfer (such as

transmitting a periodic request for data). For more information on the

different uses of NI-CAN objects, refer to the Choosing Which NI-CAN

Objects to Use section in Chapter 2, Developing Your Application.

When one or more CAN Objects are open, the CAN Network Interface

Object cannot receive frames which would normally be handled by the

CAN Objects. The flowchart in Figure 3-1 shows the steps performed

by NI-CAN when a CAN frame is received.

Chapter 3 NI-CAN Programming Techniques

NI-CAN User Manual for Windows 95/Windows NT 3-4 © National Instruments Corporation

Figure 3-1. Flowchart for CAN Frame Reception

Yes

No

Arbitration ID

Handled by an Open

CAN Object?

No

Yes

Standard Extended

Data
Frame?

Standard or
Extended Frame?

No

Standard

Comparator Disabled

(NC_CAN_ARBID_NONE)?

No

Extended

Comparator Disabled

(NC_CAN_ARBID_NONE)?

Masked

Arbitration ID

Equal to Standard

Comparator

Masked

Arbitration ID

Equal to Extended

Comparator

Yes

Yes

Yes

Frame Received

Place Frame Into Read Queue of
CAN Network Interface Object

CAN Object Uses Frame

CAN Network Interface Object

Frame Ignored

Frame Ignored

Apply Extended MaskApply Standard Mask

NoNo
Frame Ignored

Frame Ignored

Frame Ignored

Chapter 3 NI-CAN Programming Techniques

© National Instruments Corporation 3-5 NI-CAN User Manual for Windows 95/Windows NT

The decisions in Figure 3-1 are generally performed by the on-board

CAN communications controller chip. Nevertheless, if you intend to

use CAN Objects as the sole means of receiving CAN frames, it is best

to disable all frame reception in the CAN Network Interface Object by

setting the comparator attributes to NC_CAN_ARBID_NONE. By doing

this, the CAN communications controller chip is best able to filter out

all incoming frames except those handled by CAN Objects.

Detecting State Changes

You can detect state changes for an object using one of the following

schemes:

• Call ncGetAttribute to get the NC_ATTR_STATE attribute.

• Call ncWaitForState to wait for one or more states to occur.

• Use ncCreateNotification to register a callback for one or more

states.

Use the ncGetAttribute function when you need to determine the

current state of an object. For example, if you want to determine

whether a background error has occurred for an object, you can use

ncGetAttribute to obtain the state and check for NC_ST_ERROR.

Use the ncWaitForState function when your application must wait for

a specific state before proceeding. For example, if you call ncWrite to

write a frame, and your application cannot proceed until the frame is

successfully transmitted, you can call ncWaitForState to wait for

NC_ST_WRITE_SUCCESS.

Use the ncCreateNotification function when your application must

handle a specific state, but can perform other processing while waiting

for that state to occur. The ncCreateNotification function registers

a callback function, which is invoked when the desired state occurs. For

example, a callback function for NC_ST_READ_AVAIL can call ncRead

and place the resulting data in a buffer. Your application can then

perform any tasks desired, and process the CAN data only as needed.

© National Instruments Corporation 4-1 NI-CAN User Manual for Windows 95/Windows NT

Chapter

4Application Examples

This chapter describes the sample applications provided with your

NI-CAN software.

The examples in this chapter are designed to illustrate basic NI-CAN

programming, as well as specific concepts and techniques that can help

you write your own applications. The description of each example

includes the programmer's task, a program flowchart, and numbered

steps that correspond to the numbered blocks on the flowchart.

The following example programs are included with your NI-CAN

software:

• obj2obj.c is the C source code file for Example 1. obj2obj.vi
is the LabVIEW source code file for Example 1. In this example,

one CAN Object is used to periodically transmit data to another

CAN Object.

• simpanlz.c is the C source file for Example 2. This example

illustrates a simple CAN bus analyzer using the CAN Network

Interface Object. It also demonstrates usage of the

ncCreateNotification function.

• interact.vi is the LabVIEW source code file for Example 3. In

this example, one CAN Network Interface Object and one CAN

Object are used to transmit and receive CAN frames interactively.

Example 1: Using CAN Objects

This example focuses on the basics of using CAN Objects.

An automotive test engineer is trying to test a variety of CAN devices.

One of the CAN devices is a speed display. This display expects to

receive the current speed of the vehicle in a CAN frame every 100

milliseconds, so that the driver of the vehicle can be continuously

updated. Another CAN device is a speed sensor (speedometer), which

measures the speed of the vehicle and transmits it in a CAN frame every

100 milliseconds.

Chapter 4 Application Examples

NI-CAN User Manual for Windows 95/Windows NT 4-2 © National Instruments Corporation

To use NI-CAN to test the speed display, the engineer uses a CAN

Object to simulate the role of the speed sensor. This CAN Object is

configured to transmit a simulated speed every 100 milliseconds. By

using the CAN Object to transmit different speeds, the test engineer can

verify that the speed display always shows the correct speed.

To use NI-CAN to test the speed sensor, the engineer uses a CAN

Object to simulate the role of the speed display. This CAN Object is

configured to receive speeds from the sensor and display them. By

using this CAN Object to receive and display different speeds, the test

engineer can connect the speed sensor to a real engine, then verify that

the speeds it transmits are correct.

To learn the basics of CAN Object usage prior to testing the actual

devices, the test engineer writes a simple example to implement both

CAN Objects. To do this, he uses a two port CAN interface, such as the

AT-CAN/2. He connects the top port of the card to the bottom port

using a cable. One port plays the role of the simulated speed display,

and the other port plays the role of the simulated speed sensor.

Example 1 configures one CAN Object to receive data, and configures

another CAN Object to transmit data. Both CAN Objects use arbitration

ID 5. The data is transmitted every second, so the test engineer can view

each period's data as well as its timestamp. Once the engineer completes

the example, he can change it for testing of each device by using one

CAN Object at a time.

The following steps correspond to the program flow chart in Figure 4-1.

1. The application calls ncConfig to configure the CAN Network

Interface Objects for both ports (CAN0 and CAN1). Normally, this

configuration would be handled using the NI-CAN Configuration

utility, but ncConfig is used instead to keep the example

self-contained.

2. The application calls ncConfig to configure the CAN Objects for

both ports (CAN0::STD5 and CAN1::STD5). Once again, such

configuration would normally be handled using the NI-CAN

Configuration utility.

3. The application calls ncOpenObject to open the two CAN Objects.

4. The application calls ncWrite for CAN1::STD5. This call starts the

periodic transmission of data. For this example, the same data is

transmitted every period.

Chapter 4 Application Examples

© National Instruments Corporation 4-3 NI-CAN User Manual for Windows 95/Windows NT

5. The application calls ncWaitForState for CAN1::STD5 in order to

wait for the NC_ST_WRITE_SUCCESS state. This state is set when

the first CAN frame is successfully transmitted to the other CAN

Object.

6. The application calls ncWaitForState for CAN0::STD5 in order to

wait for the NC_ST_READ_AVAIL state. This state is set when a

CAN frame is received from the other CAN Object.

7. The application calls ncRead to read data for CAN0::STD5. The

data contains the value written in step 4, as well as a timestamp of

when the value arrived.

8. The application loops back to step 6 for a total of 10 periods. Each

period, step 6 waits one second before the next data value is

received.

9. When all 10 loops complete, both CAN Objects are closed using

ncCloseObject.

Chapter 4 Application Examples

NI-CAN User Manual for Windows 95/Windows NT 4-4 © National Instruments Corporation

Figure 4-1. Program Flowchart for Example 1

Example 2: Simple CAN Bus Analyzer

This example focuses on usage of the ncCreateNotification

function within the C programming language. It illustrates a simple

CAN bus analyzer using the CAN Network Interface Object.

An automotive test engineer is writing a diagnostic utility for use in

service bays. This utility is used to diagnose problems with car models

that use CAN as their in-vehicle network. The utility monitors the car's

Yes

No

1

2

3

4

5

6

7

8

9

Finished Ten
Periods?

Configure CAN Objects

Configure CAN Network
Interface Objects

Write Data to be Transmitted
Periodically from CAN1::STD5

Wait for First Transmission
to Complete

Wait for Reception of Periodic
Data on CAN0::STD5

Close CAN Objects

Read Data from CAN0::STD5

Open CAN Objects

ncConfig

ncConfig

ncOpenObject

ncWrite

ncWaitForState

ncWaitForState

ncRead

ncCloseObject

Chapter 4 Application Examples

© National Instruments Corporation 4-5 NI-CAN User Manual for Windows 95/Windows NT

CAN network traffic to test for defective devices, incorrect sensor data,

and so on.

In developing the utility, the test engineer wants two threads. One

thread receives data from the CAN network and places it into a buffer.

The other thread processes the data in the buffer in order to check for

erroneous network traffic.

The following steps correspond to the program flowchart in Figure 4-2.

1. The application calls ncConfig to configure the CAN Network

Interface Object used for bus analysis (CAN0). The masks and

comparators are configured such that all CAN data frames are

received. Normally, this configuration would be handled using the

NI-CAN Configuration utility, but ncConfig is used instead to

keep the example self-contained.

2. The application calls ncOpenObject to open the CAN Network

Interface Object.

3. The application calls ncCreateNotification to create the

notification thread, which is used to receive frames into the buffer.

This is done by registering a callback function for the

NC_ST_READ_AVAIL state. After creating the notification thread,

the main thread proceeds to step 7.

4. The notification thread remains idle until its callback function is

invoked by the NI-CAN driver.

5. If the callback function detects the NC_ST_READ_AVAIL state,

ncRead is called to read the frame, and the frame is placed into the

buffer for processing by the main thread.

6. If the callback function detects a timeout or error, it indicates the

problem to the main thread, then proceeds to step 9. If no timeout

or error is detected, the callback function re-enables the

notification and returns to step 4 (idle).

7. If the main thread detects a new frame in the buffer (placed there

by the notification thread in step 5), it processes the frame. For this

example, processing the frame merely entails printing it to the

screen.

8. If the main thread does not detect a timeout or error, it loops back

to step 7 to wait for more frames.

Chapter 4 Application Examples

NI-CAN User Manual for Windows 95/Windows NT 4-6 © National Instruments Corporation

9. If a timeout or error occurs, the main thread prints it to the screen.

The timeout occurs if no frame is received within 30 seconds.

10. The application calls ncCloseObject to close the CAN Network

Interface Object.

Figure 4-2. Program Flowchart for Example 2

Yes

No

No

1

2

3

8

10

Timeout/
Error Detected?

Open CAN Network
Interface Object

7
If Frame Detected in Buffer,

Process It

5

4

If Frame Available, Read
Frame and Place It into Buffer

Configure CAN Network
Interface Object

Yes

Callback
Invoked?

No

6

Yes

Timeout/
Error Detected?

Close CAN Network
Interface Object

9
Print Message for

Timeout/Error

Create Notification Thread

ncConfig

ncOpenObject

ncCreateNotification

ncRead

ncCloseObject

Chapter 4 Application Examples

© National Instruments Corporation 4-7 NI-CAN User Manual for Windows 95/Windows NT

Example 3: Interactive CAN Example

This example provides an overview of how the features of NI-CAN are

used within LabVIEW. It provides a LabVIEW front panel that you can

use to interact with CAN devices and to learn the basic operation of

NI-CAN.

The interact.vi front panel provides CAN Network Interface and

Baud Rate controls, which are used to specify the CAN interface to use

(such as CAN0), as well as the communication baud rate (such as

125000). All frames received are displayed in an array of Received

Frames. If you want to transmit a specific frame, you can enter the

desired Arbitration Id, Is Remote flag (off means CAN data

frame), Data Length, and Data bytes, then select WRITE to transmit.

The interact.vi front panel also supports an optional CAN Object

configured as Transmit Data Periodically. Before running the example,

select Configure Periodic Transmit to use this object, and also select

the Arbitration Id, Data Length, and Period to configure. While

the example is running, you can use the Periodic Transmit Data control

to update the data transmitted each period.

For more information on how to use the front panel of interact.vi,

scroll up to the help text located above the front panel controls.

If you do not have a CAN device with which to experiment using

interact.vi, but you have a two-port CAN interface (such as the

PCI-CAN/2), you can use two copies of interact.vi to experiment.

Save a separate copy of the example (such as interact2.vi), then run

one copy on one port (such as CAN0) and the other copy on the other port

(such as CAN1).

The following steps correspond to the program flowchart in Figure 4-3.

1. The application calls ncConfig to configure the CAN Network

Interface Object. The name of the object and its baud rate are

obtained from front panel controls.

2. The application calls ncOpenObject to open the CAN Network

Interface Object.

3. If Configure Periodic Transmit is checked, the application calls

ncConfig to configure the CAN Object. The name of the object is

obtained using the front panel arbitration ID. The data length and

period are also obtained from front panel controls.

Chapter 4 Application Examples

NI-CAN User Manual for Windows 95/Windows NT 4-8 © National Instruments Corporation

4. If Configure Periodic Transmit is checked, the application calls

ncOpenObject to open the CAN Object.

5. If the WRITE button has been selected, the front panel arbitration

ID, remote/data flag, data length, and data are used to call ncWrite

for the CAN Network Interface Object.

6. The ncRead function is called for the CAN Network Interface

Object, to see if a CAN frame has been received. If ncRead returns

a code of zero (success) in its error out cluster, the received CAN

frame is inserted into the Received Frames array.

7. If Configure Periodic Transmit is checked, the application calls

ncWrite for the CAN Object in order to update the data used for

periodic transmissions.

8. If no NI-CAN error has occurred and the Stop button has not been

selected, the application loops back to Step 5.

9. The application calls ncCloseObject to close the CAN Network

Interface Object, then calls ncCloseObject to close the CAN

Object.

Chapter 4 Application Examples

© National Instruments Corporation 4-9 NI-CAN User Manual for Windows 95/Windows NT

Figure 4-3. Program Flowchart for Example 3

1

2
Open CAN Network

Interface Object

Configure CAN Network
Interface Object

ncConfig

ncOpenObject

Yes

No

No

3

Configure Periodic
Transmit?

Configure CAN Object

ncConfig

Yes

Write
Selected?

ncWrite

4 Open CAN Object

ncOpenObject

5

Write to CAN Network
Interface Object

Read from CAN Network
Interface Object6

Yes

No

No

No

Read
Successful?

8

Insert Frame into Array

Yes

Configure Periodic
Transmit?

ncWrite

7 Write to CAN Object

Yes

NI-CAN Error
or Stop Button?

ncCloseObject

9 Close Objects

ncRead

© National Instruments Corporation 5-1 NI-CAN User Manual for Windows 95/Windows NT

Chapter

5NI-CAN
Configuration Utility

This chapter describes the NI-CAN Configuration utility you can use to

configure the objects of the NI-CAN software.

Overview

The Windows 95 NI-CAN Configuration utility is integrated into the

Windows 95 Device Manager. The Windows NT NI-CAN

Configuration utility is integrated into the Windows NT Control Panel.

You can use the NI-CAN Configuration utility to view or modify the

configuration of NI-CAN objects. For each CAN interface in your

system, you can use the NI-CAN Configuration utility to configure each

CAN port as a CAN Network Interface Object. For example, you can

configure the two ports of an AT-CAN/2 as CAN0 and CAN1, and you can

initialize configuration attributes such as baud rate. For each CAN

Network Interface Object, you can use the NI-CAN Configuration

utility to create and modify CAN Objects. The online help includes all

of the information that you need to properly configure the objects of the

NI-CAN software.

The NI-CAN Configuration utility provides an easy mechanism for

configuring the objects used by your application. By configuring

objects with the NI-CAN Configuration utility, your application can

open the objects and begin using them. If you do not want your

application to rely on the NI-CAN Configuration utility, it must call the

ncConfig function for every object you use. The ncConfig function

specifies values for all of an object's configuration attributes. The

configuration attributes you specify using ncConfig override any

configuration attributes you have specified using the NI-CAN

Configuration utility. For more information on ncConfig, refer to the

NI-CAN Programmer Reference Manual for Win32.

Chapter 5 NI-CAN Configuration Utility

NI-CAN User Manual for Windows 95/Windows NT 5-2 © National Instruments Corporation

Starting the NI-CAN Configuration Utility in Windows 95

To start the NI-CAN Configuration utility on Windows 95, follow these

steps.

1. Double-click the System icon in the Control Panel, which can be

opened from the Settings selection of the Start menu.

2. Select the Device Manager tab in the System Properties dialog

box that appears.

3. Click the View devices by type button at the top of the Device

Manager tab, and double-click the National Instruments CAN

Interfaces icon.

4. In the list of installed interfaces immediately below National

Instruments CAN Interfaces, double-click on the particular

interface type you want to configure. If you have only one National

Instruments CAN interface in your computer, only one interface

type appears in the list. If an exclamation point or an X appears next

to the interface, there is a problem, and you should refer to the

Problem Shown in Device Manager section of Appendix B,

Windows 95: Troubleshooting and Common Questions, to resolve

your problem before you continue. Use the Resources tab to

provide information about the hardware resources assigned to the

CAN interface, and use the Settings tab to configure the objects for

the CAN interface. For information on using the Settings tab to

configure your objects, refer to Configuring Objects with the

NI-CAN Configuration Utility, later in this chapter.

Starting the NI-CAN Configuration Utility in Windows NT

To start the NI-CAN Configuration utility on Windows NT, open your

Windows NT Control Panel, and double-click the NI-CAN

Configuration icon.

Because you can use the NI-CAN Configuration utility to modify the

configuration of the NI-CAN kernel drivers, you must be logged on to

Windows NT as the Administrator to make any changes. If you start

the NI-CAN Configuration utility without Administrator privileges,

it runs in read-only mode; you can view the settings, but you cannot

make changes.

The main dialog box of the NI-CAN Configuration utility for

Windows NT contains a list of all National Instruments CAN interfaces

Chapter 5 NI-CAN Configuration Utility

© National Instruments Corporation 5-3 NI-CAN User Manual for Windows 95/Windows NT

in your computer. For each CAN interface, the Resources button opens

a dialog box you can use to specify hardware resources for the CAN

interface, and the Settings button opens a dialog box you can use to

configure the objects for the CAN interface. For information on using

the Settings tab to configure your objects, refer to Configuring Objects

with the NI-CAN Configuration Utility, later in this chapter.

Note: Because the current version of Windows NT is not fully Plug and Play, you

must specify valid hardware resources for the CAN interface using the

Resources button before using your National Instruments CAN interface with

Windows NT. For information on verifying proper resource assignment, refer

to the manual Getting Started with Your CAN Hardware and the NI-CAN

Software for Windows NT.

After you have finished configuring your CAN interfaces, click on the

OK button to close the dialog box.

Chapter 5 NI-CAN Configuration Utility

NI-CAN User Manual for Windows 95/Windows NT 5-4 © National Instruments Corporation

Configuring Objects with the NI-CAN Configuration
Utility

Figure 5-1 shows the Settings dialog box for an AT-CAN/2. The dialog

box shown is for Windows 95, but the Windows NT dialog box is

similar.

Figure 5-1. NI-CAN Settings Dialog Box for an AT-CAN/2

Hardware information appears at the top of the dialog box, so you can

differentiate the selected CAN interface from others of the same type.

For example, the ISA PnP Serial Number is provided for the AT-CAN.

This serial number is printed physically on the interface board, and you

can use it to distinguish multiple AT-CAN interfaces installed in the

same computer.

To access online help for the NI-CAN Configuration utility, right-click

the mouse anywhere on the Settings tab, and select Full Help from the

Chapter 5 NI-CAN Configuration Utility

© National Instruments Corporation 5-5 NI-CAN User Manual for Windows 95/Windows NT

pop-up menu that appears. Alternately, you can select What’s This?

from the pop-up menu to see context-sensitive help for the item you

have clicked on.

Select the Port
For two-port CAN interfaces such as the AT-CAN/2, a list box at the

top of the Settings tab allows you to select which port to configure. This

port number is printed physically next to the CAN connectors on the

back of the interface card, with Port 1 as the top port, and Port 2 as the

bottom port. For one-port CAN interfaces such as the AT-CAN, the list

box always lists Port 1.

Select the CAN Network Interface Object Name
After you have selected the port to configure, use the Name drop-down

box to select the name of the CAN Network Interface Object (CAN0,

CAN1, and so on). Your application uses the CAN Network Interface

Object name as a logical reference to the port. You must assign a CAN

Network Interface Object name for each port of every National

Instruments CAN interface in your computer.

In the Name drop-down box, a small X appears after each name that has

already been assigned to a physical port. This indication should assist

you in assigning a unique name to each port in your system.

Specify the Configuration Attributes
Use the controls in the Attributes section to specify the configuration

attributes for the CAN Network Interface Object. The attribute settings

are associated with the physical port, and thus remain the same even if

you decide to change the Name of the port. A control is provided for

each configuration attribute of the CAN Network Interface Object.

Within the Attributes section, you can use the Default button to

initialize the attribute controls with acceptable default values.

If you need help with a particular control, click on the question mark

near the upper right corner of the dialog box, then click on the control

in question to view the context-sensitive online help. Alternately, you

can right-click the mouse on the control, and then select What’s This?

from the pop-up menu that appears.

Chapter 5 NI-CAN Configuration Utility

NI-CAN User Manual for Windows 95/Windows NT 5-6 © National Instruments Corporation

Configure the CAN Objects
Selecting the Configure CAN Objects... button opens a dialog box you

can use to configure the CAN Objects for the selected port. Figure 5-2

shows the CAN Object Configuration dialog box for Windows 95.

The Windows NT dialog box is similar.

Figure 5-2. CAN Object Configuration Dialog Box

If you need help on a particular control in this dialog box, right-click

the mouse on the control, and then select What’s This? from the pop-up

menu that appears.

Select the CAN Object
Use the CAN Object list box to select the CAN Object you want to

configure. The list box lists all existing CAN Objects. The names are

the same as those used with NI-CAN, with the arbitration ID of the

CAN Object shown in decimal format (STD5, XTD12004, and so on). If

an alias has been assigned for a CAN Object, the alias is listed after the

name of the NI-CAN Object.

Chapter 5 NI-CAN Configuration Utility

© National Instruments Corporation 5-7 NI-CAN User Manual for Windows 95/Windows NT

Add CAN Object Configurations
When you want to add a new CAN Object configuration, click on the

New button to enable the controls in the New CAN Object section.

Use the Arb ID control to enter the decimal arbitration ID for the new

CAN Object. Use the Extended check box to specify whether the

arbitration ID is standard (unchecked) or extended (checked).

You can use the optional Alias control in the New CAN Object section

to enter a user-defined alias for the CAN Object. You can use this alias

with calls to ncOpenObject as a substitute for the complete object

name. For example, if you add a CAN Object with arbitration ID 5 to

the port named CAN0, then enter an alias MotorSpeed, you can open the

name #MotorSpeed instead of the complete name CAN0::STD5. For

more information on user-defined aliases, refer to the description of

ncOpenObject in Chapter 2, NI-CAN Functions, in the NI-CAN

Programmer Reference Manual for Win32.

After entering the arbitration ID, click on the Add button to add the

CAN Object to the list. You may then specify the attributes for the CAN

Object. To cancel the addition of the new CAN Object, click on the

Cancel button.

Remove CAN Object Configurations
If you want to remove a CAN Object configuration, select the object

from the CAN Objects list, then click on the Remove button.

Specify the Configuration Attributes
After adding a new CAN Object or selecting an existing CAN Object,

you can use the controls in the Attributes section to specify the

configuration attributes for the CAN Object.

Within the Attributes section you can use the Default button to

initialize the attribute controls with acceptable default values.

If you need help with a particular control, click on the question mark

near the upper right corner of the dialog box, then click on the control

in question to view the context-sensitive online help. Alternately, you

can right-click the mouse on the control, and then select What’s This?

from the pop-up menu that appears.

Chapter 5 NI-CAN Configuration Utility

NI-CAN User Manual for Windows 95/Windows NT 5-8 © National Instruments Corporation

Exit the CAN Object Setting Dialog Box
When you are finished configuring the CAN Objects, click OK to close

the dialog box and save any changes you have made, or click Cancel to

close the dialog box without saving any changes you have made.

After selecting OK or Cancel, you are returned to the Settings tab so

you can complete the configuration for the CAN interface.

Complete the Configuration
When you have finished using the NI-CAN Configuration utility, click

OK to close the dialog box and saves any changes you have made, or

click Cancel to close the dialog box without saving any changes you

have made.

© National Instruments Corporation A-1 NI-CAN User Manual for Windows 95/Windows NT

Appendix

AUninstalling the Hardware
and Software

This appendix describes how to uninstall the CAN hardware and the

NI-CAN software from Windows 95 and Windows NT.

Uninstalling the CAN Hardware from Windows 95

Before physically removing the CAN hardware from the computer, you

must remove the hardware information from the Windows 95 Device

Manager.

To remove the hardware information from Windows 95, double-click

the System icon in the Control Panel, which you can open from the

Settings selection of the Start menu. Select the Device Manager tab in

the System Properties dialog box that appears, click the View devices

by type button at the top of the Device Manager tab, and double-click

on the National Instruments CAN Interfaces icon.

To remove an interface, select it from the list of interfaces under

National Instruments CAN Interfaces as shown in Figure A-1, and

click the Remove button.

Appendix A Uninstalling the Hardware and Software

NI-CAN User Manual for Windows 95/Windows NT A-2 © National Instruments Corporation

Figure A-1. Selecting an Interface to Remove from Windows 95

After you remove the appropriate CAN interface information from the

Device Manager, you should shut down Windows 95, power off your

computer, and physically remove the CAN interfaces.

Uninstalling the CAN Hardware from Windows NT

Because the current version of Windows NT does not maintain

hardware information for the CAN interfaces, you need only to

physically remove the CAN interfaces from your computer. Power off

your computer, and physically remove the CAN interfaces.

Appendix A Uninstalling the Hardware and Software

© National Instruments Corporation A-3 NI-CAN User Manual for Windows 95/Windows NT

Uninstalling the NI-CAN Software from Windows 95 or
Windows NT

Before uninstalling the NI-CAN software, you should remove all CAN

interface hardware from your computer.

Complete the following steps to remove the NI-CAN software.

1. Run the Add/Remove Programs applet from the Control Panel. A

dialog box similar to the one in Figure A-2 appears. This dialog box

lists the software available for removal.

Figure A-2. Add/Remove Programs Properties Dialog Box

Appendix A Uninstalling the Hardware and Software

NI-CAN User Manual for Windows 95/Windows NT A-4 © National Instruments Corporation

2. Select the NI-CAN software you want to remove, and click the

Add/Remove... button. The uninstall program runs and removes all

folders, utilities, device drivers, DLLs, and registry entries

associated with the NI-CAN software. Figure A-3 shows the results

of a successful uninstallation.

Figure A-3. NI-CAN Uninstallation Results

The uninstall program removes only items that the installation program

installed. If you add anything to a directory that was created by the

installation program, the uninstall program does not delete that

directory, because the directory is not empty after the uninstallation.

You will need to remove any remaining components yourself.

After the uninstall program completes, select OK, then restart your

computer.

If you want to reinstall the hardware and software, refer to the getting

started manual.

© National Instruments Corporation B-1 NI-CAN User Manual for Windows 95/Windows NT

Appendix

B
Windows 95:
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot problems with the

NI-CAN software for Windows 95 and answers some common

questions.

Troubleshooting Windows 95 Device Manager
Problems

The Windows 95 Device Manager contains configuration information

for all of the CAN hardware it is aware of that is installed in your

system. To start the Windows 95 Device Manager, double-click on the

System icon under Start»Settings»Control Panel. In the System

Properties box that appears, select the Device Manager tab and click

the View devices by type radio button at the top of the tab.

If there is no National Instruments CAN Interfaces item and you are

certain you have a CAN interface installed, refer to the No National

Instruments CAN Interfaces section of this appendix.

If the National Instruments CAN Interfaces item exists, but the CAN

interface you are looking for is not listed there, refer to the Missing CAN

Interface section of this appendix.

If the CAN interface you are looking for is listed, but has a circled X or

exclamation mark (!) over its icon, refer to the Problem Shown in

Device Manager section of this appendix.

No National Instruments CAN Interfaces
If you are certain you have a Plug and Play CAN interface installed, but

no National Instruments CAN Interfaces item appears in the Device

Manager, the interface is probably incorrectly listed under Other

Devices. Double-click on the Other Devices item in the Device Manager

and, one by one, remove each National Instruments CAN interface

listed there by selecting its name and then clicking the Remove button.

After all of the National Instruments CAN interfaces have been

removed from Other Devices, click the Refresh button. At this point,

Appendix B Windows 95: Troubleshooting and Common Questions

NI-CAN User Manual for Windows 95/Windows NT B-2 © National Instruments Corporation

the system rescans the installed hardware, and the CAN interface should

show up under National Instruments CAN Interfaces without any

problems. If the problem persists, contact National Instruments.

Missing CAN Interface
If the National Instruments CAN Interfaces item exists, but the CAN

interface you are looking for is not listed there, the CAN interface is not

properly installed. For National Instruments CAN hardware, this

problem indicates that the interface is not physically present in the

system.

Problem Shown in Device Manager
If a CAN interface is not working properly, its icon has a circled X or

exclamation mark (!) overlaid on it, as shown in Figure B-1.

Figure B-1. CAN Interface That Is Not Working Properly

This problem can occur for several reasons. If you encounter this

problem, the Device Manager should list an error code that indicates

why the problem occurred. To see the error code for a particular

interface, select the name of the interface and click on the Properties

button to go to the General tab for that CAN interface. The Device

Status section of the General tab shows the error code. Locate the error

code in the following list to find out why your CAN interface is not

working properly:

• Code 8: The NI-CAN software was incompletely installed. To

solve this problem, reinstall the NI-CAN software for Windows 95.

• Code 9: Windows 95 had a problem reading information from the

CAN interface. Contact National Instruments for assistance.

• Code 12: The CAN interface was not assigned a physical memory

range. If your computer does not have 8 KB of available memory,

Windows 95 might configure your CAN interface without a

physical memory assignment. The NI-CAN software for

Appendix B Windows 95: Troubleshooting and Common Questions

© National Instruments Corporation B-3 NI-CAN User Manual for Windows 95/Windows NT

Windows 95 cannot function without 8 KB of physical memory.

Another way to verify this problem is to look at the Resource

settings list on the Resources tab to verify that the CAN interface

was not assigned a Memory Range. To solve this problem, free up

an 8 KB Memory Range (such as D0000 to D1FFF hex) that is

being used by another device in the system.

• Code 15: The CAN interface was not assigned an Interrupt Request

level. If your computer does not have any available Interrupt

Request levels, Windows 95 might configure your CAN interface

without an Interrupt Request level. The NI-CAN software for

Windows 95 cannot function without an Interrupt Request level.

Another way to verify this problem is to look at the Resource

settings list on the Resources tab to verify that the CAN interface

was not assigned an Interrupt Request level. To solve this problem,

free up an Interrupt Request level that is being used by another

device in the system.

• Code 22: The CAN interface is disabled. To enable the CAN

interface, check the appropriate configuration checkbox in the

Device Usage section of the General tab.

• Code 24: The CAN interface is not present, or the Device Manager

is unaware that the CAN interface is present. To solve this problem,

select the interface in the Device Manager, and click on the Remove

button. Next, click the Refresh button. At this point, the system

rescans the installed hardware, and the CAN interface should show

up without any problems. If the problem persists, contact National

Instruments.

• Code 27: Windows 95 was unable to assign the CAN interface any

resources. To solve this problem, free up system resources by

disabling other unnecessary hardware so that enough resources are

available for the CAN interface. The resources required for a single

CAN interface are an Interrupt Request level and an 8 KB physical

Memory Range (such as D0000 to D1FFF hex).

Appendix B Windows 95: Troubleshooting and Common Questions

NI-CAN User Manual for Windows 95/Windows NT B-4 © National Instruments Corporation

Troubleshooting Diagnostic Utility Failures

The following sections explain common error messages generated by

the NI-CAN Diagnostic utility.

Memory Resource Conflict
This error occurs if the memory resource assigned to a CAN interface

conflicts with the memory resources being used by other devices in the

system. Resource conflicts typically occur when your system contains

legacy boards that use resources that have not been reserved properly

with the Device Manager. If a resource conflict exists, write down the

memory resource that caused the conflict and refer to the Microsoft

Windows 95 User’s Guide for instructions on how to use the Device

Manager to reserve memory resources for legacy boards. After the

conflict has been resolved, run the NI-CAN Diagnostic utility again.

Interrupt Resource Conflict
This error occurs if the interrupt resource assigned to a CAN interface

conflicts with the interrupt resources being used by other devices in the

system. Resource conflicts typically occur when your system contains

legacy boards that use resources that have not been reserved properly

with the Device Manager. If a resource conflict exists, write down the

interrupt resource that caused the conflict and refer to the Microsoft

Windows 95 User’s Guide for instructions on how to use the Device

Manager to reserve interrupt resources for legacy boards. After the

conflict has been resolved, run the NI-CAN Diagnostic utility again.

NI-CAN Software Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects that it is

unable to communicate correctly with the CAN hardware using the

installed NI-CAN software. If you get this error, shut down your

computer, restart it, and run the NI-CAN Diagnostic utility again. If the

problem persists, try reinstalling the NI-CAN software for Windows 95.

Missing CAN Interface
If a National Instruments CAN interface is physically installed in your

system, but is not listed in the NI-CAN Diagnostic utility, check the

Windows 95 Device Manager to see if Windows 95 has detected the

hardware. For more information, refer to the Troubleshooting

Appendix B Windows 95: Troubleshooting and Common Questions

© National Instruments Corporation B-5 NI-CAN User Manual for Windows 95/Windows NT

Windows 95 Device Manager Problems section, earlier in this

appendix.

CAN Hardware Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects a defect in

the CAN hardware. If you get this error, write down the numeric code

shown with the error, and contact National Instruments. Depending on

the cause of the hardware failure, National Instruments may need to

upgrade your CAN interface.

Common Questions

What do I do if my CAN hardware is listed in the Windows 95

Device Manager with a circled X or exclamation point (!) overlaid

on it?

Refer to the Problem Shown in Device Manager section of this appendix

for specific information about what might cause this problem. If you

have already completed the troubleshooting steps, fill out the forms in

Appendix D, Customer Communication, and contact National

Instruments.

How can I determine which type of CAN hardware I have installed?

Run the NI-CAN Configuration utility. To run the utility, select

Start»Settings»Control Panel»System. Select the Device Manager tab

in the System Properties dialog box. Click on the View devices by type

radio button at the top of the sheet. If any CAN hardware is correctly

installed, a National Instruments CAN Interfaces icon appears in the

list of device types. Double-click this icon to see a list of installed CAN

hardware.

How can I determine which version of the NI-CAN software I have

installed?

Run the NI-CAN Diagnostic utility. To run the utility, select the

Diagnostic item under Start»Programs»NI-CAN Software for

Windows 95. The NI-CAN Diagnostic utility displays information

about the version of the NI-CAN software currently installed.

Appendix B Windows 95: Troubleshooting and Common Questions

NI-CAN User Manual for Windows 95/Windows NT B-6 © National Instruments Corporation

Which CAN interfaces does the NI-CAN software for Windows 95

support?

The NI-CAN software for Windows 95 supports the AT-CAN,

AT-CAN/2, PCI-CAN, PCI-CAN/2, PCMCIA-CAN, and

PCMCIA-CAN/2.

What do I do if the NI-CAN Diagnostic utility fails with an error?

Refer to the Troubleshooting Diagnostic Utility Failures section of this

appendix for specific information about what might cause the NI-CAN

Diagnostic utility to fail. If you have already completed the

troubleshooting steps, fill out the forms in Appendix D, Customer

Communication, and contact National Instruments.

How many CAN interfaces can I configure for use with my NI-CAN

software for Windows 95?

The NI-CAN software for Windows 95 can be configured to

communicate with up to 10 CAN interfaces.

Are interrupts required for the NI-CAN software for Windows 95?

Yes, one interrupt per interface is required.

How do I use an NI-CAN language interface?

For information about using NI-CAN language interfaces, refer to

Chapter 2, Developing Your Application.

How do I use NI-CAN from within LabVIEW?

For information about using NI-CAN from within LabVIEW, refer to

Chapter 2, Developing Your Application.

Why does the uninstall program leave some components installed?

The uninstall program removes only items that the installation program

installed. If you add anything to a directory that was created by the

installation program, the uninstall program does not delete that

directory, because the directory is not empty after the uninstallation.

You will need to remove any remaining components yourself.

Appendix B Windows 95: Troubleshooting and Common Questions

© National Instruments Corporation B-7 NI-CAN User Manual for Windows 95/Windows NT

What information should I have before I call National Instruments?

When you call National Instruments, you should have all of the

information filled out on the Hardware and Software Configuration

Form in the Customer Communication appendix of your getting started

manual.

© National Instruments Corporation C-1 NI-CAN User Manual for Windows 95/Windows NT

Appendix

C
Windows NT:
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot problems with the

NI-CAN software for Windows NT and answers some common

questions.

Missing CAN Interface in the NI-CAN
Configuration Utility

The NI-CAN Configuration utility contains configuration information

for all of the CAN hardware it is aware of that is installed in your

system. To start the NI-CAN Configuration utility, double-click on the

NI-CAN Configuration icon under Start»Settings»Control Panel.

If the CAN interface you are looking for is not listed under National

Instruments CAN Interfaces, the CAN interface is not properly

installed. For National Instruments CAN hardware, this problem

indicates that the interface is not physically present in the system. If the

interface is firmly plugged into its slot and the problem persists, contact

National Instruments.

Troubleshooting Diagnostic Utility Failures

The following sections explain common error messages generated by

the NI-CAN Diagnostic utility.

No Resources Assigned
This error occurs if you have not assigned resources to the CAN

interface. Refer to Chapter 2, Installation and Configuration, in the

Getting Started with Your CAN Hardware and the NI-CAN Software for

Windows NT manual for information on assigning memory and interrupt

resources to the CAN interface.

Appendix C Windows NT: Troubleshooting and Common Questions

NI-CAN User Manual for Windows 95/Windows NT C-2 © National Instruments Corporation

Memory Resource Conflict
This error occurs if the memory resource assigned to a CAN interface

conflicts with the memory resources being used by other devices in the

system. Resource conflicts typically occur when your system contains

legacy boards that use the resources you assigned using the NI-CAN

Configuration utility. If a resource conflict exists, use the Resources

button in the NI-CAN Configuration utility to assign a different

memory resource to the CAN interface. After the conflict has been

resolved, run the NI-CAN Diagnostic utility again.

Interrupt Resource Conflict
This error occurs if the interrupt resource assigned to a CAN interface

conflicts with the interrupt resources being used by other devices in the

system. Resource conflicts typically occur when your system contains

legacy boards that use the resources you assigned using the NI-CAN

Configuration utility. If a resource conflict exists, use the Resources

button in the NI-CAN Configuration utility to assign a different

interrupt resource to the CAN interface. After the conflict has been

resolved, run the NI-CAN Diagnostic utility again.

NI-CAN Software Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects that it is

unable to communicate correctly with the CAN hardware using the

installed NI-CAN software. If you get this error, shut down your

computer, restart it, and run the NI-CAN Diagnostic utility again. If the

problem persists, try reinstalling the NI-CAN software for

Windows NT.

Missing CAN Interface
If a National Instruments CAN interface is physically installed in your

system, but is not listed in the NI-CAN Diagnostic utility, check to see

if the NI-CAN Configuration utility has detected the hardware. For

more information, refer to the Missing CAN Interface in the NI-CAN

Configuration Utility section, earlier in this appendix.

Appendix C Windows NT: Troubleshooting and Common Questions

© National Instruments Corporation C-3 NI-CAN User Manual for Windows 95/Windows NT

CAN Hardware Problem Encountered
This error occurs if the NI-CAN Diagnostic utility detects a defect in

the CAN hardware. If you get this error, write down the numeric code

shown with the error, and contact National Instruments. Depending on

the cause of the hardware failure, National Instruments may need to

upgrade your CAN interface.

Common Questions

How can I determine which type of CAN hardware I have installed?

Run the NI-CAN Configuration utility. To run the utility, select

Start»Settings»Control Panel»NI-CAN Configuration. If any CAN

hardware is correctly installed, it is listed under National Instruments

CAN Interfaces.

How can I determine which version of the NI-CAN software I have

installed?

Run the NI-CAN Diagnostic utility. To run the utility, select the

Diagnostic item under Start»Programs»NI-CAN Software for

Windows NT. The NI-CAN Diagnostic utility displays information

about the version of the NI-CAN software currently installed.

Which CAN interfaces does the NI-CAN software for Windows NT

support?

The NI-CAN software for Windows NT supports the PCI-CAN,

PCI-CAN/2, PCMCIA-CAN, and PCMCIA-CAN/2.

What do I do if the NI-CAN Diagnostic utility fails with an error?

Refer to the Troubleshooting Diagnostic Utility Failures section of this

appendix for specific information about what might cause the NI-CAN

Diagnostic utility to fail. If you have already completed the

troubleshooting steps, fill out the forms in Appendix D, Customer

Communication, and contact National Instruments.

How many CAN interfaces can I configure for use with my NI-CAN

software for Windows NT?

The NI-CAN software for Windows NT can be configured to

communicate with up to 10 CAN interfaces.

Appendix C Windows NT: Troubleshooting and Common Questions

NI-CAN User Manual for Windows 95/Windows NT C-4 © National Instruments Corporation

Are interrupts required for the NI-CAN software for Windows NT?

Yes, one interrupt per card is required.

How do I use an NI-CAN language interface?

For information about using NI-CAN language interfaces, refer to

Chapter 2, Developing Your Application.

How do I use NI-CAN from within LabVIEW?

For information about using NI-CAN from within LabVIEW, refer to

Chapter 2, Developing Your Application.

Why does the uninstall program leave some components installed?

The uninstall program removes only items that the installation program

installed. If you add anything to a directory that was created by the

installation program, the uninstall program does not delete that

directory, because the directory is not empty after the uninstallation.

You will need to remove any remaining components yourself.

What information should I have before I call National Instruments?

When you call National Instruments, you should have all of the

information filled out on the Hardware and Software Configuration

Form in the Customer Communication appendix of your getting started

manual.

© National Instruments Corporation D-1 NI-CAN User Manual for Windows 95/Windows NT

Appendix

DCustomer Communication

For your convenience, this appendix contains forms to help you gather the information necessary to

help us solve your technical problems and a form you can use to comment on the product

documentation. When you contact us, we need the information on the Technical Support Form and the

configuration form, if your manual contains one, about your system configuration to answer your

questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to

quickly provide the information you need. Our electronic services include a bulletin board service,

an FTP site, a Fax-on-Demand system, and e-mail support. If you have a hardware or software

problem, first try the electronic support systems. If the information available on these systems

does not answer your questions, we offer fax and telephone support through our technical support

centers, which are staffed by applications engineers.

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files

and documents to answer most common customer questions. From these sites, you can also download

the latest instrument drivers, updates, and example programs. For recorded instructions on how to use

the bulletin board and FTP services and for BBS automated information, call (512) 795-6990. You can

access these services at:

United States: (512) 794-5422

Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use your

Internet address, such as joesmith@anywhere.com, as your password. The support files and

documents are located in the /support directories.

Bulletin Board Support

FTP Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide

range of technical information. You can access Fax-on-Demand from a touch-tone telephone at

(512) 418-1111.

You can submit technical support questions to the applications engineering team through e-mail at the

Internet address listed below. Remember to include your name, address, and phone number so we can

contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical

support number for your country. If there is no National Instruments office in your country, contact the

source from which you purchased your software to obtain support.

Telephone Fax

Australia 03 9879 5166 03 9879 6277

Austria 0662 45 79 90 0 0662 45 79 90 19

Belgium 02 757 00 20 02 757 03 11

Brazil 011 288 3336 011 288 8528

Canada (Ontario) 905 785 0085 905 785 0086

Canada (Quebec) 514 694 8521 514 694 4399

Denmark 45 76 26 00 45 76 26 02

Finland 09 725 725 11 09 725 725 55

France 01 48 14 24 24 01 48 14 24 14

Germany 089 741 31 30 089 714 60 35

Hong Kong 2645 3186 2686 8505

Israel 03 6120092 03 6120095

Italy 02 413091 02 41309215

Japan 03 5472 2970 03 5472 2977

Korea 02 596 7456 02 596 7455

Mexico 5 520 2635 5 520 3282

Netherlands 0348 433466 0348 430673

Norway 32 84 84 00 32 84 86 00

Singapore 2265886 2265887

Spain 91 640 0085 91 640 0533

Sweden 08 730 49 70 08 730 43 70

Switzerland 056 200 51 51 056 200 51 55

Taiwan 02 377 1200 02 737 4644

United Kingdom 01635 523545 01635 523154

United States 512 795 8248 512 794 5678

Fax-on-Demand Support

E-Mail Support (currently U.S. only)

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use

the completed copy of this form as a reference for your current configuration. Completing this form

accurately before contacting National Instruments for technical support helps our applications

engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,

include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___)___________________ Phone (___) _______________________________________

Computer brand ________________ Model ________________ Processor___________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter __________________________

Mouse ___yes ___no Other adapters installed _______________________________________

Hard disk capacity _____MB Brand ___

Instruments used ___

National Instruments hardware product model __________ Revision ______________________

Configuration ___

National Instruments software product ____________________________ Version ____________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem:__

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.

This information helps us provide quality products to meet your needs.

Title: NI-CAN™ User Manual for Windows 95 and Windows NT

Edition Date: November 1997

Part Number: 321370B-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

Phone (___)__________________________ Fax (___) ________________________________

Mail to: Technical Publications Fax to: Technical Publications

National Instruments Corporation National Instruments Corporation

6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039

© National Instruments Corporation G-1 NI-CAN User Manual for Windows 95/Windows NT

 Glossary

A

action See method.

actuator A device that uses electrical, mechanical, or other signals to change the

value of an external, real-world variable. In the context of device

networks, actuators are devices that receive their primary data value

from over the network; examples include valves and motor starters.

Also known as final control element.

Application A collection of functions used by a user application to access hardware.

Programming Within NI-CAN, you use API functions to make calls into the NI-CAN

Interface (API) driver.

arbitration ID An 11- or 29-bit ID transmitted as the first field of a CAN frame. The

arbitration ID determines the priority of the frame, and is normally used

to identify the data transmitted in the frame.

attribute The externally visible qualities of an object; for example, an instance

Mary of class Human could have the attributes Sex and Age, with the

values Female and 31. Also known as property.

Prefix Meanings Value

n- nano- 10–9

m- milli- 10–3

k- kilo- 103

M- mega- 106

Glossary

NI-CAN User Manual for Windows 95/Windows NT G-2 © National Instruments Corporation

B

b Bits.

bus off A CAN node goes into the bus off state when its transmit error counter

increments above 255. The node does not participate in network traffic,

because it assumes that a defect exists that must be corrected.

C

CAN Controller Area Network.

CAN data frame Frame used to transmit the actual data of a CAN Object. The RTR bit is

clear, and the data length indicates the number of data bytes in the

frame.

CAN frame In addition to fields used for error detection/correction, a CAN frame

consists of an arbitration ID, an Identifier Extension, SOF and EOF bits,

the RTR bit, a four-bit Data Length Code, and zero to eight bytes of

data.

CAN Network Within NI-CAN, an object that encapsulates a CAN network interface

Interface Object on the host computer.

CAN Object A CAN identifier, along with its associated data.

CAN remote frame Frame used to request data for a CAN Object from a remote node; the

RTR bit is set, and the data length indicates the amount of data desired

(but no data bytes are included).

class A set of objects that share a common structure and a common behavior.

connection An association between two or more nodes on a network that describes

when and how data is transferred.

controller A device that receives data from sensors and sends data to actuators in

order to hold one or more external, real-world variables at a certain

level or condition. A thermostat is a simple example of a controller.

Glossary

© National Instruments Corporation G-3 NI-CAN User Manual for Windows 95/Windows NT

D

device See node.

device network Multi-drop digital communication network for sensors, actuators, and

controllers.

DLL Dynamic link library.

DMA Direct memory access.

E

error active A CAN node is in error active state when both the receive and transmit

error counters are below 128.

error counters Every CAN node keeps a count of how many receive and transmit errors

have occurred. The rules for how these counters are incremented and

decremented are defined by the CAN protocol specification.

error passive A CAN node is in error passive state when one or both of its error

counters increment above 127. This state is a warning that a

communication problem exists, but the node is still participating in

network traffic.

extended arbitration ID A 29-bit arbitration ID. Frames that use extended IDs are often referred

to as CAN 2.0 Part B (the specification that defines them).

F

FCC Federal Communications Commission.

frame A unit of information transferred across a network from one node to

another; the protocol defines the meaning of the bit fields within a

frame. Also known as packet.

H

hex Hexadecimal.

Hz Hertz.

Glossary

NI-CAN User Manual for Windows 95/Windows NT G-4 © National Instruments Corporation

I

instance An abstraction of a specific real-world thing; for example, Mary is an

instance of the class Human. Also known as object.

ISO International Standards Organization.

K

KB Kilobytes of memory.

L

local Within NI-CAN, anything that exists on the same host (personal

computer) as the NI-CAN driver.

M

MB Megabytes of memory.

method An action performed on an instance to affect its behavior; the externally

visible code of an object. Within NI-CAN, you use NI-CAN functions

to execute methods for objects. Also known as service, operation, and

action.

minimum interval For a given connection, the minimum amount of time between

subsequent attempts to transmit frames on the connection. Some

protocols use minimum intervals to guarantee a certain level of overall

network performance.

multi-drop A physical connection in which multiple devices communicate with one

another along a single cable.

N

network interface A node’s physical connection onto a network.

Glossary

© National Instruments Corporation G-5 NI-CAN User Manual for Windows 95/Windows NT

NI-CAN driver Device driver and/or firmware that implement all the specifics of a

CAN network interface. Within NI-CAN, this software implements the

CAN Network Interface Object as well as all objects above it in the

object hierarchy.

node A physical assembly, linked to a communication line (cable), capable

of communicating across the network according to a protocol

specification. Also known as device.

notification Within NI-CAN, an operating system mechanism that the NI-CAN

driver uses to communicate events to your application. You can think

of a notification of as an API function, but in the opposite direction.

O

object See instance.

object-oriented A software design methodology in which classes, instances, attributes,

and methods are used to hide all of the details of a software entity that

do not contribute to its essential characteristics.

P

peer-to-peer Network connection in which data is transmitted from the source to its

destination(s) without need for an explicit request. Although data

transfer is generally unidirectional, the protocol often uses low level

acknowledgments and error detection to ensure successful delivery.

periodic Connections that transfer data on the network at a specific rate.

polled Request/response connection in which a request for data is sent to a

device, and the device sends back a response with the desired value.

protocol A formal set of conventions or rules for the exchange of information

among nodes of a given network.

R

RAM Random-access memory.

remote Within NI-CAN, anything that exists in another node of the device

network (not on the same host as the NI-CAN driver).

Glossary

NI-CAN User Manual for Windows 95/Windows NT G-6 © National Instruments Corporation

Remote Transmission This bit follows the arbitration ID in a frame, and indicates whether the

Request (RTR) bit frame is the actual data of the CAN Object (CAN data frame), or

whether the frame is a request for the data (CAN remote frame).

request/response Network connection in which a request is transmitted to one or more

destination nodes, and those nodes send a response back to the

requesting node. In industrial applications, the responding (slave)

device is usually a sensor or actuator, and the requesting (master)

device is usually a controller. Also known as master/slave.

resource Hardware settings used by National Instruments CAN hardware,

including an interrupt request level (IRQ) and an 8 KB physical

memory range (such as D0000 to D1FFF hex).

S

s Seconds.

sensor A device that measures electrical, mechanical, or other signals from an

external, real-world variable; in the context of device networks, sensors

are devices that send their primary data value onto the network;

examples include temperature sensors and presence sensors. Also

known as transmitter.

standard arbitration ID An 11-bit arbitration ID. Frames that use standard IDs are often referred

to as CAN 2.0 Part A; standard IDs are by far the most commonly used.

U

unsolicited Connections that transmit data on the network sporadically based on an

external event. Also known as nonperiodic, sporadic, and event driven.

W

watchdog timeout A timeout associated with a connection that expects to receive network

data at a specific rate. If data is not received before the watchdog

timeout expires, the connection is normally stopped. You can use

watchdog timeouts to verify that the remote node is still operational.

© National Instruments Corporation I-1 NI-CAN User Manual for Windows 95/Windows NT

Index

A
Acknowledgment Bit (ACK) field, 1-5

acknowledgment error, 1-6

application development. See programming.

application examples

interactive LabVIEW front panel, 4-7 to 4-9

simple CAN bus analyzer, 4-4 to 4-6

using CAN Objects, 4-1 to 4-4

arbitration

example of CAN arbitration (figure), 1-3

non-destructive bitwise, 1-2

arbitration ID

definition, 1-2

using CAN Objects, 2-5 to 2-6

Arbitration ID field, 1-4

attributes

definition, 1-9

specifying configuration attributes,

5-5 to 5-6

B
bit error, 1-6

bulletin board support, D-1

bus off state, 1-8

C
C/C++ languages

accessing NI-CAN software, 2-1 to 2-2

status checking, 2-13 to 2-14

CAN. See also NI-CAN.

arbitration, 1-2 to 1-3

error confinement, 1-6 to 1-8

error detection, 1-5 to 1-6

history and usage, 1-1 to 1-2

CAN frames

definition, 1-3

fields

Acknowledgment Bit (ACK), 1-5

Arbitration ID, 1-4

Cyclic Redundancy Check (CRC), 1-4

Data Bytes, 1-4

Data Length Code (DLC), 1-4

End of Frame, 1-5

essential fields (figure), 1-3

Identifier Extension (IDE), 1-4

Remote Transmit Request (RTR), 1-4

Start of Frame (SOF), 1-3

reading and writing, 2-5

standard and extended formats (figure), 1-3

CAN hardware

determining type installed

Windows 95, B-5

Windows NT, C-3

problem encountered

Windows 95, B-5

Windows NT, C-3

uninstalling

Windows 95, A-1 to A-2

Windows NT, A-2

CAN identifiers, 1-2

CAN Interfaces. See also missing CAN

Interfaces.

interfaces supported by NI-CAN software

Windows 95, B-6

Index

NI-CAN User Manual for Windows 95/Windows NT I-2 © National Instruments Corporation

Windows NT, C-3

number of configurable interfaces

Windows 95, B-6

Windows NT, C-3

CAN Network Interface Objects, 2-4 to 2-5

application examples

interactive interface, 4-7 to 4-9

simple CAN bus analyzer, 4-4 to 4-6

communication

starting, 2-9 to 2-10

using objects, 2-10

possible uses, 2-5

selecting name in NI-CAN Configuration

utility, 5-5

using with CAN Objects, 3-3 to 3-5

flowchart for CAN frame

reception, 3-4

CAN Objects

application examples, 4-1 to 4-4

choosing NI-CAN objects, 2-4 to 2-7

CAN Network Interface Objects,

2-4 to 2-5

CAN objects, 2-5 to 2-7

closing, 2-11

configuration, 5-6 to 5-8

adding configurations, 5-7

exiting CAN Object dialog box, 5-8

methods for, 2-9

removing configurations, 5-7

selecting CAN Object, 5-6

specifying attributes, 5-7

definition, 1-2

NI-CAN object hierarchy, 1-9 to 1-12

opening, 2-9

using, 2-5 to 2-7

CAN software. See NI-CAN software.

CANopen protocol, 1-8

checking status of function calls. See status of

function calls, checking.

class, definition, 1-9

closing objects, 2-11

common questions. See troubleshooting and

common questions.

communicating with CAN network

starting, 2-9 to 2-10

using objects, 2-10

configuring objects. See also NI-CAN

Configuration utility.

calling ncConfig function, 2-9

using NI-CAN Configuration utility, 2-9

Controller Area Network. See CAN; NI-CAN.

CRC (Cyclic Redundancy Check) field, 1-4

CRC error, 1-6

customer communication, xii, D-1 to D-2

Cyclic Redundancy Check (CRC) field, 1-4

D
Data Bytes field, 1-4

Data Length Code (DLC) field, 1-4

device network independence, of NI-CAN

software, 1-8

DeviceNet protocol, 1-8

direct entry access to NI-CAN software,

2-2 to 2-4

DLC (Data Length Code) field, 1-4

documentation

conventions used in manual, xi

how to use manual set, xi-x

organization of manual, x

related documentation, xii

drivers, NI-CAN, 1-12

E
e-mail support, D-2

electronic support services, D-1 to D-2

End of Frame field, 1-5

error confinement, 1-6 to 1-8

bus off state, 1-8

Index

© National Instruments Corporation I-3 NI-CAN User Manual for Windows 95/Windows NT

error active state, 1-7

error passive state, 1-7 to 1-8

error detection, 1-5 to 1-6

acknowledgment error, 1-6

bit error, 1-6

CRC error, 1-6

form error, 1-6

stuff error, 1-6

error/warning indicators (severity),

2-11 to 2-12. See also NI-CAN status

format.

F
fax and telephone support, D-2

Fax-on-Demand support, D-2

firmware image files, 1-13

form error, 1-6

frames. See CAN frames.

FTP support, D-1

function calls, checking. See status of function

calls, checking.

G
G language function library, 2-1

GetProcAddress function, 2-3

I
Identifier Extension (IDE) field, 1-4

instance, definition, 1-9

interactive front panel application example,

4-7 to 4-9

interrupt requirements

Windows 95, B-6

Windows NT, C-4

interrupt resource conflict

Windows 95, B-4

Windows NT, C-2

ISO 11898 standard, 1-1

L
LabVIEW

G language function library, 2-1

interactive front panel application

example, 4-7 to 4-9

status checking, 2-12 to 2-13

language interface files, 1-13

M
manual. See documentation.

memory resource conflict

Windows 95, B-4

Windows NT, C-2

methods, definition, 1-9

missing CAN Interfaces

Windows 95

no National Instruments CAN

Interface, B-1 to B-2

not listed in NI-CAN Diagnostic

utility, B-4 to B-5

physically absent interface, B-2

Windows NT

NI-CAN Configuration utility, C-1

not listed in NI-CAN Diagnostic

Utility, C-2

N
National Instruments CAN interfaces. See

CAN Interfaces; missing CAN Interfaces.

ncAction function, 2-9, 2-10

ncConfig function, 2-9

ncCreateNotification function, 2-10, 3-5

NC_ERR_OLD_DATA status code, 3-2

NC_ERR_OVERFLOW status code, 3-2

ncGetAttribute function, 3-5

ncOpenObject function, 2-9

ncRead function, 2-10

NC_ST_READ_AVAIL state, 3-1 to 3-2

Index

NI-CAN User Manual for Windows 95/Windows NT I-4 © National Instruments Corporation

NC_ST_WRITE_SUCCESS state, 3-1 to 3-2

ncWaitForState function, 2-10, 3-5

NI-CAN Configuration utility, 5-1 to 5-8

accessing online help, 5-4 to 5-5

CAN Network Interface Object name,

selecting, 5-5

CAN Object configuration, 5-6 to 5-8

adding configurations, 5-7

exiting CAN Object dialog box, 5-8

removing configurations, 5-7

selecting CAN Object, 5-6

specifying attributes, 5-7

completing configuration, 5-8

configuration attributes, specifying, 5-5

missing CAN Interface, in

Windows NT, C-1

overview, 1-12, 5-1

port selection, 5-5

Settings dialog box (figure), 5-4

starting

Windows 95, 5-2

Windows NT, 5-2 to 5-3

NI-CAN Diagnostic utility

failures

Windows 95, B-4 to B-5

Windows NT, C-1 to C-3

purpose, 1-12

NI-CAN object hierarchy, 1-9 to 1-12

applying NI-CAN objects (figure), 1-11

simple CAN device network application

(figure), 1-10

NI-CAN software. See also programming.

components, 1-12 to 1-14

driver and utilities, 1-12

firmware image files, 1-13

interaction with your application

(figure), 1-14

language interface files, 1-13

determining version installed

Windows 95, B-5

Windows NT, C-3

independent design, 1-8

object hierarchy, 1-9 to 1-12

applying NI-CAN objects

(figure), 1-11

simple CAN device network

application (figure), 1-10

object-oriented design, 1-9

problem encountered. See also

troubleshooting and common

questions.

Windows 95, B-4

Windows NT, C-2

uninstalling, A-2 to A-4

some components left

installed, B-6, C-4

NI-CAN status format, 2-11 to 2-12

code, 2-12

determining severity of status

(table), 2-12

error/warning indicators (severity),

2-11 to 2-12

illustration, 2-11

qualifier, 2-12

no resources assigned error,

Windows NT, C-1

non-destructive bitwise arbitration, 1-2

O
obj2obj.c source code, 4-1

object hierarchy, in NI-CAN software,

1-9 to 1-12

applying NI-CAN objects (figure), 1-11

simple CAN device network application

(figure), 1-10

object-oriented design, of NI-CAN

software, 1-9

objects. See also CAN Objects.

synonymous with instance, 1-9

opening objects, 2-9

Index

© National Instruments Corporation I-5 NI-CAN User Manual for Windows 95/Windows NT

operating system independence, of NI-CAN

software, 1-8

P
port selection, 5-5

problem solving. See troubleshooting and

common questions.

programming

accessing NI-CAN software, 2-1 to 2-4

C/C++ language interfaces,

2-1 to 2-2

direct entry access, 2-2 to 2-4

G language function library, 2-1

application examples

interactive LabVIEW front panel,

4-7 to 4-9

simple CAN bus analyzer, 4-4 to 4-6

using CAN Objects, 4-1 to 4-4

CAN Network Interface Object, using

with CAN Objects, 3-3 to 3-5

checking status of function calls,

2-11 to 2-14

C and C++, 2-13 to 2-14

LabVIEW, 2-12 to 2-13

NI-CAN status format, 2-11 to 2-12

code, 2-12

error/warning indicators

(severity), 2-11 to 2-12

qualifier, 2-12

choosing NI-CAN objects, 2-4 to 2-7

CAN Network Interface Objects,

2-4 to 2-5

CAN objects, 2-5 to 2-7

detecting state changes, 3-5

interaction of NI-CAN software with your

application (figure), 1-14

model for NI-CAN applications,

2-7 to 2-11

closing objects, 2-11

communicating using objects, 2-10

configuring objects, 2-9

general program steps (figure), 2-8

opening objects, 2-9

reading data, 2-10

starting communication, 2-9 to 2-10

queues, 3-1 to 3-2

disabling queues, 3-2

empty queues, 3-2

full queues, 3-2

state transitions, 3-1

Q
questions. See troubleshooting and common

questions.

queues, 3-1 to 3-2

disabling queues, 3-2

empty queues, 3-2

full queues, 3-2

read and write queues, 3-1

state transitions, 3-1

R
reading data, 2-10

Remote Transmit Request (RTR) field, 1-4

S
Settings dialog box (figure), 5-4

simpanlz.c source code, 4-1

Smart Distributed System (SDS), 1-8

SOF (Start of Frame) field, 1-3

standard for CAN, 1-1

Start of Frame (SOF) field, 1-3

state changes, detecting, 3-5

state transitions, queues, 3-1

status of function calls, checking, 2-11 to 2-14

C and C++, 2-13 to 2-14

LabVIEW, 2-12 to 2-13

Index

NI-CAN User Manual for Windows 95/Windows NT I-6 © National Instruments Corporation

NI-CAN status format, 2-11 to 2-12

code, 2-12

error/warning indicators (severity),

2-11 to 2-12

qualifier, 2-12

stuff error, 1-6

T
technical support, D-1 to D-2

telephone and fax support, D-2

troubleshooting and common questions

Windows 95, B-1 to B-7

CAN hardware problem

encountered, B-5

common questions, B-5 to B-7

interrupt resource conflict, B-4

memory resource conflict, B-4

missing CAN Interface, B-1 to B-2,

B-4 to B-5

NI-CAN Diagnostic utility failures,

B-4 to B-5

NI-CAN software problem

encountered, B-4

problem shown in Device Manager,

B-2 to B-3

Windows 95 Device Manager,

B-1 to B-3

Windows NT, C-1 to C-4

CAN hardware problem

encountered, C-3

common questions, C-3 to C-4

interrupt resource conflict, C-2

memory resource conflict, C-2

missing CAN interface, C-2

missing CAN Interface in NI-CAN

Configuration utility, C-1

NI-CAN Diagnostic utility failures,

C-1 to C-3

NI-CAN software problem

encountered, C-2

no resources assigned, C-1

U
uninstalling

CAN hardware

Windows 95, A-1 to A-2

Windows NT, A-2

NI-CAN software

some components left

installed, B-6, C-4

Windows 95 or Windows NT,

A-2 to A-4

utilities. See NI-CAN Configuration utility;

NI-CAN Diagnostic utility.

W
waiting for available data, 2-10

Windows 95

NI-CAN driver and utilities, 1-12

starting NI-CAN Configuration

utility, 5-2

troubleshooting and common questions,

B-1 to B-3

CAN hardware problem

encountered, B-5

common questions, B-5 to B-7

interrupt resource conflict, B-4

memory resource conflict, B-4

missing CAN Interface, B-1B-2,

B-4 to B-5

NI-CAN Diagnostic utility failures,

B-4 to B-5

NI-CAN software problem

encountered, B-4

problem shown in Device Manager,

B-2 to B-3

uninstalling

CAN hardware, A-1 to A-2

CAN software, A-2 to A-4, B-6

Index

© National Instruments Corporation I-7 NI-CAN User Manual for Windows 95/Windows NT

Windows NT

NI-CAN driver and utilities, 1-12

starting NI-CAN Configuration utility,

5-2 to 5-3

troubleshooting and common questions,

C-1 to C-4

CAN hardware problem

encountered, C-3

common questions, C-3 to C-4

interrupt resource conflict, C-2

memory resource conflict, C-2

missing CAN interface, C-2

missing CAN Interface in NI-CAN

Configuration utility, C-1

NI-CAN Diagnostic utility failures,

C-1 to C-3

NI-CAN software problem

encountered, C-2

no resources assigned, C-1

uninstalling

CAN hardware, A-2

CAN software, A-2 to A-4, C-4

	NI-CAN™ User Manual for Windows 95 and Windows NT
	Support
	Internet
	Bulletin Board
	Fax-on-Demand
	 Telephone (USA)
	International Offices
	Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	Warning

	Contents
	About This Manual
	How to Use the Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	CAN Overview
	History and Usage of CAN
	CAN Identifiers and Message Priority
	CAN Frames
	Start of Frame (SOF)
	Arbitration ID
	Remote Transmit Request (RTR)
	Identifier Extension (IDE)
	Data Length Code (DLC)
	Data Bytes
	Cyclic Redundancy Check (CRC)
	Acknowledgment Bit (ACK)
	End of Frame

	CAN Error Detection and Confinement
	Error Detection
	Error Confinement

	NI-CAN Software Overview
	Independent Design
	Object-Oriented Design
	NI-CAN Object Hierarchy
	NI-CAN Software Components
	NI-CAN Driver and Utilities
	Firmware Image Files
	Language Interface Files
	Application Examples
	Interaction of Software Components with Your Appli...

	Chapter 2 Developing Your Application
	Choosing Your Programming Method
	Choosing a Method to Access the NI-CAN Software
	G Language (LabVIEW) Function Library
	C/C++ Language Interfaces
	Direct Entry Access

	Choosing Which NI-CAN Objects to Use
	Using CAN Network Interface Objects
	Using CAN Objects

	Programming Model for NI-CAN Applications
	Step 1. Configure Objects
	Step 2. Open Objects
	Step 3. Start Communication
	Step 4. Communicate Using Objects
	Step 5. Close Objects

	Checking Status of Function Calls
	NI-CAN Status Format
	Error and Warning Indicators (Severity)
	Code
	Qualifier

	Checking Status in LabVIEW
	Checking Status in C

	Chapter 3 NI-CAN Programming Techniques
	Using Queues
	State Transitions
	Empty Queues
	Full Queues
	Disabling Queues

	Using the CAN Network Interface Object with�CAN�Ob...
	Detecting State Changes

	Chapter 4 Application Examples
	Example 1: Using CAN Objects
	Example 2: Simple CAN Bus Analyzer
	Example 3: Interactive CAN Example

	Chapter 5 NI-CAN Configuration Utility
	Overview
	Starting the NI-CAN Configuration Utility in Windo...
	Starting the NI-CAN Configuration Utility in Windo...
	Configuring Objects with the NI-CAN Configuration ...
	Select the Port
	Select the CAN Network Interface Object Name
	Specify the Configuration Attributes
	Configure the CAN Objects
	Select the CAN Object
	Add CAN Object Configurations
	Remove CAN Object Configurations
	Specify the Configuration Attributes
	Exit the CAN Object Setting Dialog Box

	Complete the Configuration

	Appendix A Uninstalling the Hardware and Software
	Uninstalling the CAN Hardware from Windows 95
	Uninstalling the CAN Hardware from Windows NT
	Uninstalling the NI-CAN Software from Windows 95 o...

	Appendix B Windows 95: Troubleshooting and Common Questions
	Troubleshooting Windows�95 Device Manager Problems...
	No National Instruments CAN Interfaces
	Missing CAN Interface
	Problem Shown in Device Manager

	Troubleshooting Diagnostic Utility Failures
	Memory Resource Conflict
	Interrupt Resource Conflict
	NI-CAN Software Problem Encountered
	Missing CAN Interface
	CAN Hardware Problem Encountered

	Common Questions

	Appendix C Windows NT: Troubleshooting and Common Questions
	Missing CAN Interface in the NI-CAN Configuration�...
	Troubleshooting Diagnostic Utility Failures
	No Resources Assigned
	Memory Resource Conflict
	Interrupt Resource Conflict
	NI-CAN Software Problem Encountered
	Missing CAN Interface
	CAN Hardware Problem Encountered

	Common Questions

	Appendix D Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. Example of CAN Arbitration
	Figure 1-2. Standard and Extended Frame Formats
	Figure 1-3. Simple CAN Device Network Application
	Figure 1-4. Applying NI-CAN Objects to the Example...
	Figure 1-5. Interaction of NI-CAN Software Compone...
	Figure 2-1. General Program Steps Using NI-CAN Fun...
	Figure 2-2. Status Format
	Figure 3-1. Flowchart for CAN Frame Reception
	Figure 4-1. Program Flowchart for Example 1
	Figure 4-2. Program Flowchart for Example 2
	Figure 4-3. Program Flowchart for Example 3
	Figure 5-1. NI-CAN Settings Dialog Box for an AT-C...
	Figure 5-2. CAN Object Configuration Dialog Box
	Figure A-1. Selecting an Interface to Remove from ...
	Figure A-2. Add/Remove Programs Properties Dialog ...
	Figure A-3. NI-CAN Uninstallation Results
	Figure B-1. CAN Interface That Is Not Working Prop...

	Table
	Table 2-1. Determining Severity of Status

