

 PXI-8461-2

https://www.apexwaves.com/modular-systems/national-instruments/pxi-can-interface-series/PXI-8461-2?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pxi-can-interface-series/PXI-8461-2?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/pxi-can-interface-series/PXI-8461-2?aw_referrer=pdf

DeviceNet

NI-DNET
TM

 User Manual

NI-DNET User Manual

June 2012

370375F-01

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information,

support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Technical Support and Professional Services appendix. To comment

on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter

the Info Code feedback.

© 1998–2012 National Instruments. All rights reserved.

 Important Information

Warranty
The CAN/DeviceNet Hardware is warranted against defects in materials and workmanship for a period of one year from the date of shipment,
as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective
during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in
materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments
will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects
during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

• Notices are located in the <National Instruments>_Legal Information and <National Instruments> directories.

• EULAs are located in the <National Instruments>\Shared\MDF\EULAs directory.

• Review <National Instruments>_Legal Information.txt for more information on including legal information in installers built with
NI products.

Trademarks
CVI, LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National
Instruments Corporation. Refer to the Trademark Information at ni.com/trademarks for other National Instruments trademarks.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United
States and other countries. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance
policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY

UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments v NI-DNET User Manual

Contents

About This Manual
How to Use the Manual Set ... ix

Conventions ...x

Related Documentation..x

Chapter 1
NI-DNET Software Overview

Installation and Configuration ...1-1

Measurement & Automation Explorer (MAX) ...1-1

Verify Installation of Your DeviceNet Hardware ...1-2

Configure DeviceNet Port...1-2

Change Protocol ..1-3

LabVIEW Real-Time (RT) Configuration ..1-3

Tools ..1-4

Configurator ..1-4

Analyzer ..1-4

NI I/O Trace ..1-5

NI-DNET Objects ..1-5

Interface Object ...1-6

Explicit Messaging Object ..1-6

I/O Object ..1-6

Example...1-7

Using NI-CAN with NI-DNET..1-7

Chapter 2
NI-DNET Hardware Overview

Types of Hardware...2-1

Differences Between CAN Kits and DeviceNet Kits ..2-2

Chapter 3
Developing Your Application

Accessing NI-DNET from your Programming Environment..3-1

LabVIEW ..3-1

LabWindows/CVI..3-2

Microsoft Visual Basic ..3-2

Microsoft C/C++ ...3-3

Contents

NI-DNET User Manual vi ni.com

Borland C/C++.. 3-3

Other Programming Languages .. 3-4

Programming Model for NI-DNET Applications ... 3-6

Step 1. Open Objects... 3-8

Step 2. Start Communication .. 3-8

Step 3. Run Your DeviceNet Application... 3-9

Addition of Slave Connections after Communication Start 3-10

Step 4. Stop Communication .. 3-10

Step 5. Close Objects .. 3-10

Multiple Applications on the Same Interface.. 3-10

Checking Status in LabVIEW ... 3-11

Checking Status in C, C++, and Visual Basic ... 3-12

Chapter 4
NI-DNET Programming Techniques

Configuring I/O Connections .. 4-1

Expected Packet Rate.. 4-1

Strobed I/O ... 4-2

Polled I/O.. 4-3

Cyclic I/O ... 4-6

Change-of-State (COS) I/O .. 4-7

Automatic EPR Feature .. 4-7

Using I/O Data in Your Application ... 4-8

Accessing I/O Members in LabVIEW .. 4-10

Accessing I/O Members in C .. 4-11

Using Explicit Messaging Services ... 4-12

Get and Set Attributes in a Remote DeviceNet Device 4-13

Other Explicit Messaging Services ... 4-14

Handling Multiple Devices.. 4-15

Configuration .. 4-15

Object Handles .. 4-16

Main Loop... 4-16

Appendix A
DeviceNet Overview

History of DeviceNet... A-1

Physical Characteristics of DeviceNet .. A-2

General Object Modeling Concepts .. A-2

Object Modeling in the DeviceNet Specification.. A-4

Explicit Messaging Connections ... A-5

I/O Connections... A-7

Assembly Objects.. A-12

Contents

© National Instruments vii NI-DNET User Manual

Appendix B
Cabling Requirements

Connector Pinouts..B-1

Power Supply Information for the DeviceNet Ports ..B-3

Cable Specifications ..B-6

Cable Lengths ..B-6

Maximum Number of Devices ..B-6

Cable Termination ...B-7

Cabling Example..B-8

Appendix C
Troubleshooting and Common Questions

Troubleshooting with the Measurement & Automation Explorer (MAX)C-1

Troubleshooting Self Test Failures..C-2

Common Questions..C-3

Appendix D
Hardware Specifications

Appendix E
Technical Support and Professional Services

Glossary

Index

© National Instruments ix NI-DNET User Manual

About This Manual

This manual describes the basics of DeviceNet and explains how to

develop an application program, including reference to examples. The

user manual also contains hardware information.

How to Use the Manual Set

Use the installation guide to install and configure your DeviceNet hardware

and the NI-DNET software.

Use this NI-DNET User Manual to learn the basics of DeviceNet and how

to develop an application program. The user manual also contains

information on DeviceNet hardware.

Use the NI-DNET Programmer Reference Manual for specific information

about each NI-DNET function and object.

First-Time

NI-DNET Users

Experienced

NI-DNET Users

NI-DNET

Programmer

Reference Manual

Function

and Object

Descriptions

Installation Guide

(CD Sleeve)

Software and

Hardware

Installation

NI-DNET

User Manual
Application

Development

and Examples

About This Manual

NI-DNET User Manual x ni.com

Conventions

The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence Options»Settings»General directs you to

pull down the Options menu, select the Settings item, and select General

from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such

as menu items and dialog box options. Bold text also denotes parameter

names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction

to a key concept. Italic text also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of disk drives, paths, directories,

programs, subprograms, subroutines, device names, functions, operations,

variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value

that you must supply.

Related Documentation

The following documents contain information that you might find helpful

as you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of

Digital Information—Controller Area Network (CAN) for High-Speed

Communication

• DeviceNet Specification, Version 2.0, Open DeviceNet Vendor

Association

• CompactPCI Specification, Revision 2.0, PCI Industrial Computers

Manufacturers Group

• PXI Hardware Specification, Revision 2.1, National Instruments

Corporation

About This Manual

© National Instruments xi NI-DNET User Manual

• PXI Software Specification, Revision 2.1, National Instruments

Corporation

• LabVIEW online reference

• ODVA website, www.odva.org

• Microsoft Win32 Software Development Kit (SDK) online help

© National Instruments 1-1 NI-DNET User Manual

1
NI-DNET Software Overview

The DeviceNet software provided with National Instruments DeviceNet

hardware is called NI-DNET. This section provides an overview of the

NI-DNET software.

Installation and Configuration

Measurement & Automation Explorer (MAX)
Measurement & Automation Explorer (MAX) provides access to all of

your National Instruments products. Like other NI software products,

NI-DNET uses MAX as the centralized location for all configuration

and tools.

To launch MAX, select the Measurement & Automation shortcut on

your desktop, or within your Windows Programs menu under National

Instruments»Measurement & Automation.

For information about the NI-DNET software within MAX, consult the

MAX online help. A reference is in the MAX Help menu under

Help Topics»NI-DNET.

View help for items in the MAX Configuration tree by using the built-in

MAX help pane. If this help pane is not shown on the far right, select the

Show/Hide button in the upper right.

View help for a dialog box by selecting the Help button in the window.

The following sections provide an overview of some common tasks you

can perform within MAX.

Chapter 1 NI-DNET Software Overview

NI-DNET User Manual 1-2 ni.com

Verify Installation of Your DeviceNet Hardware
Within the Devices & Interfaces branch of the MAX Configuration tree,

NI DeviceNet cards are listed along with other hardware in the local

computer system, as shown in Figure 1-1.

Figure 1-1. NI-DNET Cards Listed in MAX

Note Each card’s name uses the word CAN, because the Controller Area Network is the

communication protocol upon which DeviceNet is built.

If your NI DeviceNet hardware is not listed here, MAX is not configured

to search for new devices on startup. To search for the new hardware,

press <F5>.

To verify installation of your DeviceNet hardware, right-click the

DeviceNet card, then select Self-test. If the self-test passes, the card icon

shows a checkmark. If the self-test fails, the card icon shows an X mark,

and the Test Status in the right pane describes the problem. Refer to

Appendix C, Troubleshooting and Common Questions, for information

about resolving hardware installation problems.

Configure DeviceNet Port
The physical port of each DeviceNet card is listed under the card’s name.

To configure software properties, right-click the port and select

Properties.

Chapter 1 NI-DNET Software Overview

© National Instruments 1-3 NI-DNET User Manual

In the Properties dialog, you assign an interface name to the port, such as

DNET0 or DNET1. The interface name identifies the physical port within

NI-DNET APIs.

Change Protocol
To change the default protocol for the DeviceNet (CAN) card, right-click

the card and select Protocol. In this dialog you can select either DeviceNet

for NI-DNET (default), or CAN for NI-CAN. For more information, refer

to the section Using NI-CAN with NI-DNET.

LabVIEW Real-Time (RT) Configuration
LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming

with the power of real-time systems. When you use a National Instruments

PXI controller as a LabVIEW RT system, you can install a PXI DeviceNet

card and use the NI-DNET APIs to develop real-time applications. For

example, you can control a network of DeviceNet devices as a master, and

write your control algorithm in LabVIEW.

When you install the NI-DNET software, the installer checks for the

presence of the LabVIEW RT module. If LabVIEW RT exists, the

NI-DNET installer copies components for LabVIEW RT to your

Windows system. As with any other NI product for LabVIEW RT, you then

download the NI-DNET and NI-CAN software to your LabVIEW RT

system using the Remote Systems branch in MAX. For more information,

refer to the LabVIEW RT documentation.

After you have installed your PXI DeviceNet cards and downloaded the

NI-DNET software to your LabVIEW RT system, you need to verify

the installation. Within the Tools menu in MAX, select NI-DNET»

RT Hardware Configuration. The RT Hardware Configuration tool

provides features similar to Devices & Interfaces on your local system.

Use the RT Hardware Configuration tool to self-test the DeviceNet cards

and assign an interface name to each physical DeviceNet port.

Chapter 1 NI-DNET Software Overview

NI-DNET User Manual 1-4 ni.com

Tools
NI-DNET provides tools that you can launch from MAX.

Configurator
The Configurator is a powerful configuration tool with Electronic Data

Sheet (EDS) support. (EDS is a file on disk that contains configuration data

for specific device types. Each DeviceNet device has its own EDS file,

which is available from the device manufacturer.) The Configurator can

search a DeviceNet network to determine information about connected

devices, load the related EDS files automatically, read and write the device

parameters, and change a device MAC ID.

The Configurator helps you with the NI-DNET development by providing:

• The device list and each device’s MAC ID, which are useful for

the NI-DNET ncOpenDnetIntf, ncOpenDnetExplMsg, and

ncOpenDnetIO functions.

• Each device’s parameter list. You must import the device EDS file to

get the parameter list. You can also get each parameter’s ClassID/

InstanceID/AttributeID and type information, which are useful for

the NI-DNET ncGetDnetAttribute, ncSetDnetAttribute,

ncConvertFromDnetRead, and ncConvertForDnetWrite

functions.

• Each device’s supported I/O connection and related help

information. You must import the device EDS file to get the help

information, which is useful for the NI-DNET ncOpenDnetIO,

ncConvertFromDnetRead, and ncConvertForDnetWrite

functions.

To launch the Configurator, right-click the DeviceNet interface (such as

DNET0) in MAX and select Configurator.

Analyzer
The Analyzer monitors the DeviceNet network and interprets the captured

CAN messages according to the DeviceNet protocol. It displays the

messages together with their parameters. You can display certain types

of messages using powerful filters and find options. You also can get

the message statistics in the Analyzer. The Analyzer is useful for

troubleshooting and analysis of DeviceNet networks and systems.

To launch the Analyzer, right-click the DeviceNet interface (such as

DNET0) in MAX and select Analyzer.

Chapter 1 NI-DNET Software Overview

© National Instruments 1-5 NI-DNET User Manual

NI I/O Trace
This tool monitors function calls to the NI-DNET APIs. This tool helps in

debugging programming problems in your application. To launch this tool,

open the Software branch of the MAX Configuration tree, right-click

NI I/O Trace, and select Launch NI I/O Trace.

NI-DNET Objects

The NI-DNET software, like the DeviceNet Specification, uses

object-oriented concepts to represent components in the DeviceNet system

(for more information about object-oriented concepts in the DeviceNet

Specification, refer to Appendix A, DeviceNet Overview). However,

whereas in the DeviceNet Specification objects represent a multitude

of components in DeviceNet devices, NI-DNET objects represent

components of the Windows device driver software. The NI-DNET device

driver objects do not correspond directly to objects contained in remote

devices. To facilitate access to the DeviceNet network, the NI-DNET

objects provide a more concise representation of various objects defined

in the DeviceNet Specification.

Much like any other object-oriented system, NI-DNET device driver

objects use the concepts of class, instance, attribute, and service to describe

their features. The NI-DNET device driver software provides three classes

of objects: Interface Objects, Explicit Messaging Objects, and I/O Objects.

You can open an instance of an NI-DNET object using one of the three

open functions (ncOpenDnetExplMsg, ncOpenDnetIntf, or

ncOpenDnetIO). The services for an NI-DNET object are accomplished

using the NI-DNET functions, which can be called directly from your

programming environment (such as Microsoft C/C++ or LabVIEW). The

essential attributes of an NI-DNET object are initialized using its open

function; you can access other attributes using ncGetDriverAttr or

ncSetDriverAttr. The attributes of NI-DNET device driver objects are

called driver attributes, to differentiate them from actual attributes in

remote DeviceNet devices.

For complete information on each NI-DNET object, including its driver

attributes and supported functions (services), refer to your NI-DNET

Programmer Reference Manual.

Chapter 1 NI-DNET Software Overview

NI-DNET User Manual 1-6 ni.com

Interface Object
The Interface Object represents a DeviceNet interface (physical DeviceNet

port on your DeviceNet board). Since this interface acts as a device on the

DeviceNet network much like any other device, it is configured with its

own MAC ID and baud rate.

Use the Interface Object to do the following:

• Configure NI-DNET settings that apply to the entire interface

• Start and stop communication for all NI-DNET objects associated with

the interface

Explicit Messaging Object
The Explicit Messaging Object represents an explicit messaging

connection to a remote DeviceNet device (physical device attached to

your interface by a DeviceNet cable). Since only one explicit messaging

connection is created for a given device, the Explicit Messaging Object is

also used for features that apply to the device as a whole.

Use the Explicit Messaging Object to do the following:

• Execute the DeviceNet Get Attribute Single service on the remote

device (ncGetDnetAttribute)

• Execute the DeviceNet Set Attribute Single service on the remote

device (ncSetDnetAttribute)

• Send any other explicit message request to the remote device and

receive the associated explicit message response

(ncWriteDnetExplMsg, ncReadDnetExplMsg)

• Configure NI-DNET settings that apply to the entire remote device

I/O Object
The I/O Object represents an I/O connection to a remote DeviceNet device

(physical device attached to your interface by a DeviceNet cable). The

I/O Object usually represents I/O communication as a master with a remote

slave device, but it can also be used for I/O communication as a slave.

The I/O Object supports as many master/slave I/O connections as currently

allowed by the DeviceNet Specification. This means that you can use

polled, strobed, and COS/cyclic I/O connections simultaneously for a given

device. As specified by the DeviceNet Specification, only one master/slave

I/O connection of a given type can be used for each device (MAC ID). For

example, you cannot open two polled I/O connections for the same device.

Chapter 1 NI-DNET Software Overview

© National Instruments 1-7 NI-DNET User Manual

Use the I/O Object to do the following:

• Read data from the most recent message received on the

I/O connection (ncReadDnetIO)

• Write data for the next message produced on the I/O connection

(ncWriteDnetIO)

Example
Figure 1-2 shows an example of how NI-DNET objects can be used to

communicate on a DeviceNet network. This example shows three

DeviceNet devices. The first device (at MAC ID 1) is the National

Instruments DeviceNet interface. The second device (at MAC ID 5) uses

NI-DNET to access a polled and a COS I/O connection simultaneously.

The third device (at MAC ID 8) uses NI-DNET to access an explicit

messaging connection and a strobed I/O connection.

Figure 1-2. NI-DNET Objects for a Network of Three Devices

Using NI-CAN with NI-DNET

Controller Area Network (CAN) is the low-level protocol used for

DeviceNet communications. In addition to the NI-DNET functions, your

National Instruments DeviceNet hardware can also be used for low-level

access to CAN messages using the NI-CAN software. NI-CAN is intended

primarily for applications that require direct access to CAN messages, such

as test applications for automotive (non-DeviceNet) networks. When

Your National Instruments

DeviceNet Interface

Interface Object

Interface MAC ID = 1

Baud Rate = 500K

Access to device at

MAC ID 5

I/O Object

Device MAC ID = 5

Connection Type = COS

I/O Object

Device MAC ID = 5

Connection Type = Poll

Access to device at

MAC ID 8

Explicit Messaging

Object

Device MAC ID = 8

I/O Object

Device MAC ID = 8

Connection Type = Strobe

Chapter 1 NI-DNET Software Overview

NI-DNET User Manual 1-8 ni.com

connecting to a DeviceNet network, the NI-CAN capabilities are useful for

the following applications:

• Low-level monitoring of CAN messages to determine conformance to

DeviceNet specifications

• Implementation of sections of the DeviceNet Specification yourself,

such as custom configuration tools

NI-CAN uses the same software infrastructure as NI-DNET, so both APIs

can be used with the same CAN card. The general rule is that each CAN

card can only be used for one API at a time.

Use of NI-DNET is restricted to port 1 (top port) of Series 1 CAN cards.

For more information on hardware provided in CAN kits, refer to

Chapter 2, NI-DNET Hardware Overview.

You can view each CAN card in MAX with either DeviceNet or CAN

features. To change the view of a CAN card in MAX, right-click the card

and select Protocol. In this dialog you can select either DeviceNet for

NI-DNET (default), or CAN for NI-CAN. When the CAN protocol is

selected, you can access CAN tools in MAX, such as the Bus Monitor tool

that displays CAN messages in their raw form.

In order to develop NI-CAN applications, you must install NI-CAN

components such as documentation and examples. The NI-CAN software

components are available within the NI-DNET installer.

Launch the setup.exe program for the NI-DNET installer in the same

manner as your original installation (CD or ni.com download). Within

the installer, select both NI-DNET and NI-CAN components in the

feature tree.

When you right-click a port in MAX and select Properties, the resulting

Interface selection uses the syntax CANx or DNETx based on your protocol

selection. Regardless of which protocol is selected, the number x is the only

relevant identifier with respect to NI-CAN and NI-DNET functions. For

example, if you select DNET0 as an interface in MAX, you can run an

NI-DNET application that uses DNET0, then you can run an NI-CAN

application that uses CAN0. Both applications refer to the same port,

and can run at different times, but not simultaneously.

© National Instruments 2-1 NI-DNET User Manual

2
NI-DNET Hardware Overview

Types of Hardware

The National Instruments DeviceNet hardware includes the PCI-CAN,

PXI-8461, and PCMCIA-CAN.

The PCI-CAN is software configurable and compliant with the PCI Local

Bus Specification. It features the National Instruments MITE bus interface

chip that connects the card to the PCI I/O bus. With a PCI-CAN, you can

make your PC-compatible computer with PCI Local Bus slots

communicate with and control DeviceNet devices.

The PXI-8461 is software configurable and compliant with the PXI

Specification and CompactPCI Specification. It features the National

Instruments MITE bus interface chip that connects the card to the PXI or

CompactPCI I/O bus. With a PXI-8461 card, you can make your PXI or

CompactPCI chassis communicate with and control DeviceNet devices.

PCMCIA-CAN hardware is a 16-bit, Type II PC Card that is software

configurable and compliant with the PCMCIA standards for 16-bit PC

cards. With a PCMCIA-CAN card, you can make your PC-compatible

notebook with PCMCIA slots communicate with and control DeviceNet

devices.

The PCI-CAN, PXI-8461, or PCMCIA-CAN in your DeviceNet kit is fully

compliant with the DeviceNet Specification.

All of the DeviceNet hardware uses the Intel 386EX embedded processor

to implement time-critical features provided by the NI-DNET software.

The cards communicate with the NI-DNET driver through on-board shared

memory and an interrupt.

The DeviceNet physical communication link protocol is based on the

Controller Area Network (CAN) protocol. The physical layers of the

PCI-CAN, PXI-8461, and PCMCIA-CAN fully conform to the DeviceNet

physical layer requirements. The physical layer is optically isolated to

500 V and is powered from the DeviceNet bus power supply. DeviceNet

interfacing is accomplished using the Intel 82527 CAN controller chip.

Chapter 2 NI-DNET Hardware Overview

NI-DNET User Manual 2-2 ni.com

For more information on the DeviceNet physical layer and cables used

to connect to your DeviceNet devices, refer to Appendix B, Cabling

Requirements.

For connection to the network, the PCI-CAN, PXI-8461, and

PCMCIA-CAN for DeviceNet provide combicon-style pluggable screw

terminals, as required by the DeviceNet Specification.

Differences Between CAN Kits and DeviceNet Kits

National Instruments provides hardware/software kits for both CAN and

DeviceNet. Since the CAN kits apply to a broad range of applications such

as automotive testing, the hardware in those kits offers a wide variety

of options. To ensure that the hardware product operates properly on a

DeviceNet network, we recommend that you purchase DeviceNet kits only.

The card provided in your DeviceNet kit can be used with both NI-DNET

and NI-CAN software.

Hardware in CAN kits is referenced as Series 2. Hardware in DeviceNet

kits is referenced as Series 1. Series 2 CAN cards cannot be used with the

NI-DNET software (NI-CAN only). The features of Series 2 CAN cards

are specifically designed for CAN applications, and provide no distinct

advantages for DeviceNet. For more information on Series 2 hardware,

refer to the hardware overview in the NI-CAN Hardware and Software

Manual.

Hardware in CAN kits offers 1-port and 2-port variants. NI-DNET operates

on one port only. If you use NI-DNET on a 2-port Series 1 CAN card, only

the top port can be used.

Hardware in CAN kits offer special transceivers (physical layer) such as

Low-Speed/Fault-Tolerant (LS) and Single-Wire (SW). Hardware in CAN

kits also offer the option to power the transceiver from the card, not the

network. These transceivers cannot be used with DeviceNet. Only

High-Speed (HS) transceivers comply with the DeviceNet specification.

Hardware in CAN kits use the DB-9 D-SUB connector. Hardware in

DeviceNet kits use the combicon-style connector from the DeviceNet

specification.

© National Instruments 3-1 NI-DNET User Manual

3
Developing Your Application

This chapter explains how to develop an application using the NI-DNET

functions.

Accessing NI-DNET from your Programming
Environment

Applications can access the NI-DNET driver software by using either

LabVIEW, LabWindows™/CVI™, Microsoft Visual C/C++,

Borland C/C++, or Visual Basic. If you are using any other development

environment, you must access the DNET library directly. Each of these

language interface techniques is summarized below.

LabVIEW
For applications written in LabVIEW, NI-DNET provides a complete

function library, front panel controls, and examples.

NI-DNET functions and controls are available in the LabVIEW palettes. In

LabVIEW 7.1 or later, the NI-DNET palette is located within the top-level

NI Measurements palette. In earlier LabVIEW versions, the NI-DNET

palette is located at the top-level.

The reference for each NI-DNET function is provided in the NI-DNET

Programmer Reference Manual. To access the reference for a function

from within LabVIEW, press <Ctrl-H> to open the help window, click

on the NI-DNET function, and then follow the link.

The NI-DNET software includes a full set of examples for LabVIEW.

These examples teach basic NI-DNET programming as well as advanced

topics. The example help describes each example and includes a link you

can use to open the VI. The NI-DNET example help is in Help»Find

Examples»Hardware Input and Output»DeviceNet.

Chapter 3 Developing Your Application

NI-DNET User Manual 3-2 ni.com

LabWindows/CVI
Within LabWindows/CVI, the NI-DNET function panel is located in

Library»NI-DNET. Like other LabWindows/CVI function panels, the

NI-DNET function panel provides help for each function and the ability to

generate code.

The reference for each NI-DNET function is provided in the NI-DNET

Programmer Reference Manual. You can access reference for each

function directly from within the function panel.

The header file for NI-DNET is nidnet.h. The library for NI-DNET is

nidnet.lib.

The NI-DNET software includes a full set of examples for

LabWindows/CVI. The NI-DNET examples are installed in the

LabWindows/CVI directory under samples\nidnet. Each example

provides a complete LabWindows/CVI project (.prj file). A description

of each example is provided in comments at the top of the .c file.

When you compile your LabWindows/CVI application for NI-DNET,

it is automatically linked with nidnet.lib, the link library for

LabWindows/CVI. When NI-DNET is installed, the installation program

checks to see which compatible C compiler you are using with

LabWindows/CVI (Microsoft or Borland), and copies an appropriate

nidnet.lib for that compiler.

Microsoft Visual Basic
To create an NI-DNET application in Visual Basic, add the nidnet.bas

file to your project. This allows you to call any NI-DNET function file from

your code.

The nidnet.bas file is located in the MS Visual Basic folder of the

NI-DNET folder. The typical path to this folder is \Program Files\

National Instruments\NI-DNET\MS Visual Basic.

The reference for each NI-DNET function is provided in the NI-DNET

Programmer Reference Manual, which you can open from Start»

All Programs»National Instruments»NI-DNET.

You can find examples for Visual Basic in the examples subfolder of the

MS Visual Basic folder. Each example is in a separate folder. A .vbp

file with the same name as the example opens the Visual Basic project.

A description of the example is located in a Help form within the project.

Chapter 3 Developing Your Application

© National Instruments 3-3 NI-DNET User Manual

Microsoft C/C++
The NI-DNET software supports Microsoft Visual C/C++ version 6.

The header file and library for Visual C/C++ 6 are in the MS Visual C

folder of the NI-DNET folder. The typical path to this folder is \Program

Files\National Instruments\NI-DNET\MS Visual C. To use

NI-DNET, include the nidnet.h header file in your code, then link with

the nidnetms.lib library file.

For C applications (files with a.c extension), include the header file by

adding a #include to the beginning of your code, as in:

#include "nidnet.h"

For C++ applications (files with .cpp extension), define _cplusplus

before including the header, such as:

#define _cplusplus

#include "nidnet.h"

The _cplusplus define enables the transition from C++ to the C language

NI-DNET functions.

The reference for each NI-DNET function is provided in the NI-DNET

Programmer Reference Manual, which you can open from Start»All

Programs»National Instruments»NI-DNET. You can find examples for

Visual C++ in the examples subfolder of the MS Visual C folder. Each

example is in a separate folder. A .c file with the same name as the

example contains a description the example in comments at the top of the

code. At the command prompt, after setting MSVC environment variables

(such as with MS vcvars32.bat), you can build each example using a

command such as:

cl –I.. singin.c ..\nidnetms.lib

Borland C/C++
The NI-DNET software supports Borland C/C++ version 5 or later.

The header file and library for Borland C/C++ are in the Borland C folder

of the NI-DNET folder. The typical path to this folder is \Program

Files\National Instruments\NI-DNET\Borland C.

To use NI-DNET, include the nidnet.h header file in your code, then link

with the nidnetbo.lib library file.

Chapter 3 Developing Your Application

NI-DNET User Manual 3-4 ni.com

For C applications (files with .c extension), include the header file by

adding a #include to the beginning of your code, like this:

#include "nidnet.h"

For C++ applications (files with .cpp extension), define _cplusplus

before including the header, such as:

#define _cplusplus

#include "nidnet.h"

The _cplusplus define enables the transition from C++ to the C language

NI-DNET functions.

The reference for each NI-DNET function is provided in the NI-DNET

Programmer Reference Manual, which you can open from Start»All

Programs»National Instruments»NI-DNET.

You can find examples for Visual C++ in the examples subfolder of the

Borland C folder. Each example is in a separate folder. A .c file with the

same name as the example contains a description the example in comments

at the top of the code.

Other Programming Languages
You can directly access NI-DNET from any programming environment

that allows you to request addresses of functions that a dynamic link library

(DLL) exports. The functions used to access a DLL in this manner are

provided by the Microsoft Win32 functions of Windows. Using these

Microsoft Win32 functions to access a DLL is often referred to as direct

entry. To use direct entry with NI-DNET, complete the following steps:

1. Load the NI-DNET DLL, nican.dll.

The following C language code fragment illustrates how to call the

Win32 LoadLibrary function and check for an error.

#include <windows.h>

#include "nidnet.h"

HINSTANCE NidnetLib = NULL;

NidnetLib=LoadLibrary("nican.dll");

if (NidnetLib == NULL) {

 return FALSE; /*Error*/

}

Chapter 3 Developing Your Application

© National Instruments 3-5 NI-DNET User Manual

2. Get the addresses for the NI-DNET DLL functions you will use.

Your application must use the Win32 GetProcAddress function to

get the addresses of the NI-DNET functions your application needs.

For each NI-DNET function used by your application, you must define

a direct entry prototype. For the prototypes for each function exported

by nican.dll, refer to the NI-DNET Programmer Reference Manual.

The following code fragment illustrates how to get the addresses of the

ncOpenDnetIO, ncCloseObject, and ncReadDnetIO functions.

static NCTYPE_STATUS (_NCFUNC_ *PncOpenDnetIO)

(NCTYPE_STRING ObjName,

NCTYPE_OBJH_P ObjHandlePtr);

static NCTYPE_STATUS (_NCFUNC_ *PncCloseObject)

(NCTYPE_OBJH ObjHandle);

static NCTYPE_STATUS (_NCFUNC_ *PncReadDnetIO)

(NCTYPE_OBJH ObjHandle, NCTYPE_UINT32 SizeofData,

NCTYPE_ANY_P Data);

PncOpenDnetIO = (NCTYPE_STATUS (_NCFUNC_ *)

(NCTYPE_STRING, NCTYPE_OBJH_P))

GetProcAddress(NidnetLib,

(LPCSTR)"ncOpenDnetIO");

PncCloseObject = (NCTYPE_STATUS (_NCFUNC_ *)

(NCTYPE_OBJH))

GetProcAddress(NidnetLib,

(LPCSTR)"ncCloseObject");

PncRead = (NCTYPE_STATUS (_NCFUNC_ *)

(NCTYPE_OBJH, NCTYPE_UINT32, NCTYPE_ANY_P))

GetProcAddress(NidnetLib,

(LPCSTR)"ncReadDnetIO");

If GetProcAddress fails, it returns a NULL pointer. The following

code fragment illustrates how to verify that none of the calls to

GetProcAddress failed.

if ((PncOpenDnetIO == NULL) ||

(PncCloseObject == NULL) ||

(PncReadDnetIO == NULL)) {

FreeLibrary(NidnetLib);

printf("GetProcAddress failed");

}

Chapter 3 Developing Your Application

NI-DNET User Manual 3-6 ni.com

3. Configure your application to de-reference the pointer to call an

NI-DNET function, as illustrated by the following code.

NCTYPE_STATUS status;

NCTYPE_OBJH MyObjh;

status = (*PncOpenDnetIO) ("DNET0", &MyObjh);

if (status < 0) {

 printf("ncOpenDnetIO failed");

}

4. Free nican.dll.

Before exiting your application, you need to free nican.dll with the

following command.

FreeLibrary(NidnetLib);

Programming Model for NI-DNET Applications

The following steps provide an overview of how to use the NI-DNET

functions in your application. The steps are shown in Figure 3-1 in

flowchart form. The NI-DNET functions are described in detail in the

NI-DNET Programmer Reference Manual.

Chapter 3 Developing Your Application

© National Instruments 3-7 NI-DNET User Manual

Figure 3-1. General Programming Steps for an NI-DNET Application

1. Open Interface object

2. Open all I/O and Explicit Messaging (EM)

objects required for your application

3. Call ncSetDriverAttr, if needed

Start communication

Your DeviceNet Application:

• Write output data

• Wait for available input data

• Read input data

• Get or Set DeviceNet Attribute

• Open/Close any new I/O or EM

connection if the interface PollMode

is not equal to NC_POLL_AUTO

Stop communication

Yes

No

1. Close I/O and EM objects.

2. Close the Interface object.

Start

End

Finished?

Chapter 3 Developing Your Application

NI-DNET User Manual 3-8 ni.com

Step 1. Open Objects
Before you use an NI-DNET object in your application, you must configure

and open it using either ncOpenDnetIntf, ncOpenDnetExplMsg, or

ncOpenDnetIO. These open functions return a handle for use in all

subsequent NI-DNET calls for that object.

The ncOpenDnetIntf function configures and opens an Interface Object.

Your NI-DNET application uses this Interface Object to start and stop

communication. The Interface Object must be the first NI-DNET object

opened by your application.

The ncOpenDnetExplMsg function configures and opens an Explicit

Messaging Object, and the ncOpenDnetIO function configures and opens

an I/O Object.

Step 2. Start Communication
Start communication to initialize DeviceNet connections to remote

devices. Use the Interface Object to call the ncOperateDnetIntf

function with the Opcode parameter set to Start.

The following optional steps can be done before you start communication:

• For an I/O Object, if it is not acceptable to send output data of all zeros,

call ncWriteDnetIO to provide valid output values for the initial

transmission.

• For an I/O Object, if your application is multitasking, call the

ncCreateNotification function with the DesiredState

parameter set to Read Available. This notifies your application

when new input data is received from the remote device.

• For any NI-DNET object, if any of the Driver attributes needs to be

changed, call ncSetDriverAttr with the attribute Id and attribute

value. The ncSetDriverAttr function cannot be called after the

communication has started.

Chapter 3 Developing Your Application

© National Instruments 3-9 NI-DNET User Manual

Step 3. Run Your DeviceNet Application
After you open your NI-DNET objects and start communication, you are

ready to interact with the DeviceNet network.

Complete the following steps with an I/O Object:

1. Call the ncWriteDnetIO function to write output data for subsequent

transmission on the DeviceNet network.

2. Call the ncWaitForState function with the DesiredState

parameter set to Read Available. This function waits for output

data to be transmitted and for new input data to be received. If your

application is multitasking, you might have other tasks to do in

your application while you wait for new input data. If so, use the

ncCreateNotification function instead of ncWaitForState

(refer to Step 2. Start Communication).

3. Call the ncReadDnetIO function to read input data received from the

DeviceNet network.

4. Loop back to step 1 as needed.

Complete the following steps with an Explicit Messaging Object:

1. Call the ncWaitForState function with the DesiredState

parameter set to Established. This ensures that the explicit message

connection is established before you send the first explicit message

request.

2. To get an attribute from a remote DeviceNet device, call the

ncGetDnetAttribute function.

3. To set the value of an attribute in a remote DeviceNet device, call the

ncSetDnetAttribute function.

4. To invoke other explicit message services in a remote DeviceNet

device, use the ncWriteDnetExplMsg function to write the service

request, the ncWaitForState function to wait for the service

response, and the ncReadDnetExplMsg function to read the service

response.

5. Loop back to step 2 as needed.

Chapter 3 Developing Your Application

NI-DNET User Manual 3-10 ni.com

Addition of Slave Connections after
Communication Start
If you need to add I/O and Explicit Messaging connections after

the communication on the network has started, you can call

ncOpenDnetExplMsg and ncOpenDnetIO as long as the Interface

Object’s poll mode had been configured to NC_POLL_SCAN (Scanned)

or NC_POLL_INDIV (Individual). Since the Automatic poll mode

(NC_POLL_AUTO) calculates the expected packet rate (EPR) based on the

estimated network bandwidth, all the I/O connections have to be opened

before you start the communication if the Automatic mode is selected. The

EPR restrictions due to different values of the PollMode parameter still

apply to the I/O objects. For details on these requirements, refer to

ncOpenDnetIO and ncOpenDnetIntf function descriptions in the

NI-DNET Programmer Reference Manual.

Step 4. Stop Communication
Before you exit your application, stop communication to shut down

DeviceNet connections to remote devices. Use the Interface Object to

call the ncOperateDnetIntf function with the Opcode parameter set

to Stop.

Step 5. Close Objects
Before you exit your application, close all NI-DNET objects using the

ncCloseObject function.

Multiple Applications on the Same Interface

The NI-DNET software allows multiple NI-DNET applications to use the

same interface object simultaneously, as long as the interface configuration

remains the same. For example, you can run both the SingleDevice

example and Configurator on DNET0 as long as the Interface MacId,

BaudRate, and PollMode parameters are the same in both applications

(Configurator uses a PollMode of Automatic). Similarly, you can open

up two copies of the SingleDevice example and communicate with two

different devices as if it were through a single application. These same rules

apply to the I/O Object and the Explicit Messaging Object.

As long as all the configuration attributes are the same, any object can

be opened multiple times. You can enable only one notification or wait

(through the ncCreateNotification or ncWaitForState functions)

for an object, no matter how many handles you have opened for that

Chapter 3 Developing Your Application

© National Instruments 3-11 NI-DNET User Manual

particular object. For example, if you are running two copies of the

SingleDevice example on the same interface with the same connection

types, the notification triggers in only one application at a time.

The synchronization of events and the protection of the object I/O data is

the responsibility of the application developer. Similarly, the application

performance might change based on the number of objects open and the

frequency of API calls made in each application. For example, several calls

to ncGetDnetAttribute in one application might slow down another

application running on the same interface.

To ensure proper clean up of all the objects, each open call to an object

should be matched by a close call to the same object, and each call to

ncOperateDnetIntf with NC_OP_START code should be matched by

a call to the same function with NC_OP_STOP code.

If you use two different applications on the same interface and open I/O

connections to different devices, you must set PollMode to either

Scanned or Individual. You cannot use PollMode of Automatic,

because that requires all I/O connections to be open prior to the first start

of communication.

Checking Status in LabVIEW

For applications written in LabVIEW, status checking is handled

automatically. For all NI-DNET functions, the lower left and right

terminals provide status information using LabVIEW Error Clusters.

LabVIEW Error Clusters are designed so that status information flows

from one function to the next, and function execution stops when an error

occurs. For more information, refer to the Error Handling section in the

LabVIEW online reference.

Within your LabVIEW block diagram, you wire the Error in and

Error out terminals of NI-DNET functions together in succession.

When an error is detected in an NI-DNET function (status field true),

all NI-DNET functions wired together are skipped except for

ncCloseObject. The ncCloseObject function executes regardless

of whether an error occurred, thus ensuring that all NI-DNET objects are

closed properly when execution stops due to an error. Depending on how

you want to handle errors, you can wire the Error in and Error out

terminals together per-object (group a single open/close pair), per-device

(group together Explicit Messaging and I/O Objects for a given device), or

per-network (group all functions for a given interface).

Chapter 3 Developing Your Application

NI-DNET User Manual 3-12 ni.com

As with any other LabVIEW error cluster, you can view error descriptions

using built-in LabVIEW features such as Explain Error in the Help menu,

or the Simple Error Handler VI in your diagram.

Checking Status in C, C++, and Visual Basic

Each C language NI-DNET function returns a value that indicates the status

of the function call. This status value is zero for success, greater than zero

for a warning, and less than zero for an error.

After every call to an NI-DNET function, your program should check to see

if the return status is nonzero. If so, call the ncStatusToString function

to obtain an ASCII string which describes the error/warning. You can then

use standard C function, such as printf, to display this ASCII string.

Your application code should check the status returned from every

NI-DNET function. If an error is detected, you should close all NI-DNET

handles, then exit the application. If a warning is detected, you can display

a message for debugging purposes, or simply ignore the warning.

For more information on status checking, refer to the ncStatusToString

function in the NI-DNET Programmer Reference Manual.

© National Instruments 4-1 NI-DNET User Manual

4
NI-DNET Programming
Techniques

This chapter describes various techniques to help you program your

NI-DNET application. The techniques include configuration of

I/O connection timing, using I/O data (assemblies), using explicit

messaging, and handling multiple devices.

Configuring I/O Connections

This section provides information on how I/O connections relate to one

another and how your configuration of I/O connection timing can affect the

overall performance of your DeviceNet system. The various types of

I/O connections provided by DeviceNet are described in Chapter 1,

NI-DNET Software Overview.

In a master/slave DeviceNet I/O system, the master determines the timing

of all I/O communication. Within your NI-DNET application, the

ncOpenDnetIO function configures the timing for I/O connections in

which your application communicates as master. As you read this section,

you might want to refer to the description of the ncOpenDnetIO function

in the NI-DNET Programmer Reference Manual.

Expected Packet Rate
Each DeviceNet I/O connection contains an attribute called the expected

packet rate, which specifies the expected rate (in milliseconds) of

messages (packets) for the I/O connection. For NI-DNET, you use the

ExpPacketRate parameter of the ncOpenDnetIO function to configure

the expected packet rate.

After you start communication, the embedded microprocessor on your

National Instruments DeviceNet interface transmits messages at the

ExpPacketRate. This means that after the I/O connection is configured,

your NI-DNET application does not need to be concerned with the timing

of messages on the DeviceNet network.

Chapter 4 NI-DNET Programming Techniques

NI-DNET User Manual 4-2 ni.com

When you select an ExpPacketRate for an I/O connection, you must

consider all I/O connections in your system. For example, although you

might be able to configure an ExpPacketRate of 3 ms for a single

I/O connection, you cannot configure a 3 ms ExpPacketRate for 40 I/O

connections because DeviceNet’s bandwidth capabilities cannot support

40 messages in a 3 ms time frame.

The following sections describe how to evaluate system considerations so

that you can configure valid values for ExpPacketRate.

Strobed I/O
For strobed I/O connections, the master broadcasts a single strobe

command message to all strobed slaves. Since all strobed I/O connections

transfer data at the rate of this single strobe command message, the

ExpPacketRate of each strobed I/O connection must be set to the

same value.

The common ExpPacketRate for all strobed I/O connections should

provide enough time for the strobe command and each strobed slave’s

response. You must also allow time for other I/O messages and explicit

messages to occur in the ExpPacketRate time frame. If you do not know

the time needed, let NI-DNET calculate a safe value for you (refer to the

section Automatic EPR Feature later in this chapter).

Figure 4-1 shows a timing example for four strobed devices at MAC ID 9,

11, 12, and 13. Notice that since MAC ID 11 is slow to respond, the

ExpPacketRate is set to 20 ms to provide additional safety margin for

other messages.

Figure 4-1. Strobed I/O Timing Example

S
tr

o
b

e
 C

o
m

m
a

n
d

S
tr

o
b

e
 C

o
m

m
a

n
d

S
tr

o
b

e
 R

e
s
p

o
n

s
e

 9

S
tr

o
b

e
R

e
s
p

o
n

s
e

 1
3

S
tr

o
b

e
 R

e
s
p

o
n

s
e

 1
2

S
tr

o
b

e
 R

e
s
p

o
n

s
e

 1
1

0 ms 5 ms 10 ms 20 ms15 ms

Chapter 4 NI-DNET Programming Techniques

© National Instruments 4-3 NI-DNET User Manual

Polled I/O
Polled I/O connections use a separate poll command and response message

for each device.

The overall scheme that NI-DNET uses to time polled I/O connections

is determined by the PollMode parameter of ncOpenDnetIntf. This

PollMode parameter applies to all polled I/O connections (all calls to

ncOpenDnetIO with ConnectionType of Poll).

The following sections describe different schemes you can use for

polled I/O.

Scanned Polling

You can set the ExpPacketRate of each polled I/O connection to the same

value used for all strobed I/O. Using a common ExpPacketRate for all

strobed and polled I/O is referred to as scanned I/O. Scanned I/O is also

referred to as scanned polling with respect to polled I/O connections. When

you use scanned I/O, NI-DNET transmits all strobe and poll command

messages onto the network in quick succession.

Scanned I/O is a simple, efficient way to handle I/O connections that

require similar response rates. With scanned I/O, the master knows that all

strobe and poll commands go out at the same time. Therefore, the master

does not need to manage individual timers, thus optimizing processing

overhead. Scanned I/O also provides overall consistency. If a given

DeviceNet system uses only scanned I/O, you know that all higher level

control algorithms can execute at the single common strobe/poll

ExpPacketRate.

The common ExpPacketRate for all strobed and polled I/O connections

should provide enough time for all strobe/poll commands and each slave’s

response. You must also allow time for other I/O messages and explicit

messages to occur in the ExpPacketRate time frame.

NI-DNET provides two different methods you can use to configure

scanned I/O:

• If you set the PollMode parameter of ncOpenDnetIntf to

Automatic, NI-DNET automatically calculates a valid common

ExpPacketRate value for each strobed and polled I/O connection.

When you use this scheme, you do not need to specify a valid

ExpPacketRate when you open your strobed/polled I/O connections.

For more information, refer to the Automatic EPR Feature section later

in this chapter.

Chapter 4 NI-DNET Programming Techniques

NI-DNET User Manual 4-4 ni.com

• If you set the PollMode parameter of ncOpenDnetIntf to Scanned,

to configure scanned I/O you must specify the exact same

ExpPacketRate when you open each of your strobed/polled

I/O connections. Using this scheme, you must determine a valid

ExpPacketRate for your DeviceNet system.

Figure 4-2 shows a scanned polling example for four polled devices at

MAC ID 14, 17, 20, and 30. The shaded areas indicate other message

traffic, such as the strobed I/O messages shown in Figure 4-1.

Figure 4-2. Scanned Polling Timing Example

Background Polling

Scanned polling can be less efficient when used with devices with

significantly different response times or devices with significantly different

rates of physical measurement. In the example above (Figure 4-2), consider

what would happen if device 14 took 52 ms to respond and device 20 took

38 ms to respond. In this case, even though device 17 and device 30

respond well within 20 ms, the common ExpPacketRate would need to

be at least 52 ms. This situation can often be avoided using a special case

of scanned polling called background polling.

To configure background polling, you first set the PollMode parameter of

ncOpenDnetIntf to Scanned. Then for each polled I/O connection you

configure (ncOpenDnetIO with ConnectionType set to Poll), you must

set ExpPacketRate to either a foreground rate or a background rate. The

foreground poll rate is the same as the common ExpPacketRate used for

all strobed I/O. Devices in this group generally respond quickly to poll

commands or have data that changes relatively quickly. The background

poll rate must be an exact multiple of the foreground poll rate. Devices in

this group generally respond slowly to poll commands or have data that

changes relatively slowly (such as temperature).

Background polling provides many of the same advantages as scanned

polling. The handling of only two groups optimizes performance. Also,

P
o

ll
C

m
d

 1
4

P
o

ll
C

m
d

 2
0

P
o

ll
C

m
d

 3
0

P
o

ll
R

e
s
p

o
n

s
e

 3
0

P
o

ll
R

e
s
p

o
n

s
e

 1
7

P
o

ll
R

e
s
p

o
n

s
e

 1
4

P
o

ll
R

e
s
p

o
n

s
e

 2
0

P
o

ll
C

m
d

 1
7

0 ms 5 ms 10 ms 20 ms15 ms

Chapter 4 NI-DNET Programming Techniques

© National Instruments 4-5 NI-DNET User Manual

background polling maintains overall network consistency because

NI-DNET evenly disperses all background poll commands among multiple

foreground cycles. In other words, all background poll commands are not

sent in quick succession and thus do not generate quick bursts of traffic on

the network.

Figure 4-3 shows a background polling example which resolves the

problem discussed previously. Devices at MAC ID 17 and 30 are

foreground polled every 20 ms (as before). Devices at MAC ID 14 and 20

are background polled every 60 ms (3 times the 20 ms foreground rate).

The shaded areas indicate other message traffic.

Figure 4-3. Background Polling Timing Example

Individual Polling

When the underlying response rates of all polled I/O devices do not fit into

two clear groups, background polling can still be inefficient. For example,

assume you have four different polled I/O sensors capable of updating

measured input at 10 ms, 35 ms, 100 ms, and 700 ms respectively. Each

device responds to its poll command within 1 ms but measures data at a

different rate (such as a pushbutton for 10 ms and a temperature sensor for

700 ms). You could group these into a foreground rate of 10 ms and a

background rate of 700 ms, but then much DeviceNet bandwidth would be

wasted polling the 35 ms and 100 ms devices at the foreground rate. For

this situation, the individual polling scheme is most appropriate.

To configure individual polling, first set the PollMode parameter of

ncOpenDnetIntf to Individual. Then for each polled I/O connection

you configure (ncOpenDnetIO with ConnectionType set to Poll), you

must set ExpPacketRate to the rate desired for that device. Unlike the

scanned polling or background polling scheme, each poll command is no

longer associated with the strobe command’s rate, but instead is solely

based on its ExpPacketRate.

P
o

ll
C

m
d

 1
7

P
o

ll
C

m
d

 3
0

B
k
d

 P
o

ll
C

m
d

 1
4

P
o

ll
R

e
s
p

o
n

s
e

 3
0

P
o

ll
R

e
s
p

o
n

s
e

 1
7

P
o

ll
C

m
d

 1
7

P
o

ll
C

m
d

 3
0

B
k
d

 P
o

ll
C

m
d

 2
0

P
o

ll
R

e
s
p

o
n

s
e

 3
0

P
o

ll
R

e
s
p

o
n

s
e

 1
7

P
o

ll
C

m
d

 1
7

P
o

ll
C

m
d

 3
0

P
o

ll
R

e
s
p

o
n

s
e

 3
0

P
o

ll
R

e
s
p

o
n

s
e

 1
7

B
k
d

 P
o

ll
R

e
s
p

o
n

s
e

 1
4

B
k
d

 P
o

ll
R

e
s
p

o
n

s
e

 2
0

P
o

ll
C

m
d

 1
7

P
o

ll
C

m
d

 3
0

B
lk

 P
o

ll
C

m
d

 1
4

0 ms 20 ms 40 ms 60 ms

Chapter 4 NI-DNET Programming Techniques

NI-DNET User Manual 4-6 ni.com

Since the poll commands are not synchronized for individual polling, they

can often be scattered relatively randomly. They can be evenly interspersed

for a while, then suddenly occur in bursts of back-to-back messages.

Because of this inconsistency, you should use smaller MAC IDs for smaller

ExpPacketRate values. Since smaller MAC IDs in DeviceNet usually

gain access to the network before larger MAC IDs, this helps to ensure that

smaller rates can be maintained during bursts of increased traffic.

Figure 4-4 shows an individual polling example: MAC ID 3 is polled

every 10 ms, MAC ID 10 every 35 ms, MAC ID 12 every 100 ms, and

MAC ID 13 every 700 ms. Only the poll commands are shown (not poll

responses or other messages).

Figure 4-4. Individual Polling Timing Example

Cyclic I/O
Cyclic I/O connections essentially use the same timing scheme as

individually polled I/O connections. Each cyclic I/O connection sends

its data at the configured ExpPacketRate. The main difference is that

cyclic I/O data is transferred from slave to master, rather than from master

to slave.

In the DeviceNet Specification, a poll command message is exactly the

same as a cyclic output message (master to slave data). Since cyclic data

from master to slave can be handled using individual polling, cyclic I/O

connections are more commonly used for input data from slave to master.

For NI-DNET, this means that for cyclic I/O connections, ncOpenDnetIO

is normally called with InputLength nonzero and OutputLength zero.

Just as for individually polled I/O, you should use smaller MAC IDs for

smaller cyclic I/O ExpPacketRate values. Doing so ensures that cyclic

I/O traffic is prioritized properly.

P
o

ll
C

m
d

 3

P
o

ll
C

m
d

 1
0

P
o

ll
C

m
d

 3

P
o

ll
C

m
d

 3

P
o

ll
C

m
d

 3

P
o

ll
C

m
d

 1
3

P
o

ll
C

m
d

 3

P
o

ll
C

m
d

 3

P
o

ll
C

m
d

 3

P
o

ll
C

m
d

 1
0

P
o

ll
C

m
d

 3

P
o

ll
C

m
d

 1
2

P
o

ll
C

m
d

 3

P
o

ll
C

m
d

 1
0

0 ms 20 ms 40 ms 80 ms60 ms

Chapter 4 NI-DNET Programming Techniques

© National Instruments 4-7 NI-DNET User Manual

Change-of-State (COS) I/O
Change-of-State I/O connections use the same timing scheme as cyclic I/O

connections, but in addition to the ExpPacketRate, COS I/O sends data

to the master whenever a change is detected.

For COS I/O, the cyclic transmission is used solely to verify that the

I/O connection still exists, so the ExpPacketRate is typically set to a large

value, such as 10,000 (10 seconds). Given such a large ExpPacketRate,

the main performance concerns for COS I/O are an appropriate MAC ID,

and if needed, a nonzero InhibitTimer.

In many cases, a given COS I/O device cannot detect data changes very

quickly. If a COS device is capable of detecting quickly changing data,

there is a chance that it could transmit many COS messages back-to-back,

precluding other I/O messages and thus dramatically impairing overall

DeviceNet performance. This problem is demonstrated in Figure 4-5.

Figure 4-5. Congestion Due to Back-to-Back COS I/O

This problem can be prevented if you increase the MAC ID of the

frequently changing COS I/O device. If the COS device has a higher

MAC ID than other devices, it cannot preclude their I/O messages.

You can also prevent back-to-back COS I/O messages if you set the

InhibitTimer driver attribute using ncSetDriverAttr. After

transmitting COS data, the I/O connection must wait InhibitTimer

before it can transmit COS data again. A reasonable value for

InhibitTimer would be the smallest ExpPacketRate of an

I/O connection with a larger MAC ID than the COS I/O device.

Automatic EPR Feature
For cyclic I/O connections, a valid ExpPacketRate is required for

your call to ncOpenDnetIO. For COS I/O connections, a nonzero

ExpPacketRate is recommended for your call to ncOpenDnetIO but

can be set to a large value.

COS I/O

Back to Back

COS I/O Data

Changing Frequently

0 ms 5 ms 10 ms 20 ms15 ms

Some of the

Other I/O May

Have Timed Out

Chapter 4 NI-DNET Programming Techniques

NI-DNET User Manual 4-8 ni.com

For strobed and polled I/O connections, determination of a valid

ExpPacketRate can be somewhat complex. If you have trouble

estimating an ExpPacketRate value for strobed/polled I/O, set the

PollMode parameter of your initial call to ncOpenDnetIntf to

Automatic. When you use this automatic EPR feature, the

ExpPacketRate parameter of ncOpenDnetIO is ignored for

strobed/polled I/O (ConnectionType of Strobe or Poll), and NI-DNET

calculates a safe EPR value for you. This automatic EPR is the same for all

strobed and polled I/O connections (scanned I/O).

After you start communication, you can use the ncGetDriverAttr

function to determine the value calculated for ExpPacketRate. From that

value, you can then experiment with other ExpPacketRate configurations

using PollMode of Scanned or Individual.

The following information is used by NI-DNET to calculate a safe EPR:

• NI-DNET assumes that it is the only master in your DeviceNet system.

• The BaudRate parameter of ncOpenDnetIntf determines the time

taken for each message.

• The InputLength and OutputLength parameters of each

ncOpenDnetIO determine the time needed for each I/O message.

• NI-DNET assumes that each strobed/polled I/O device can respond to

its command within 2 ms.

• NI-DNET sets aside a fixed amount of time for explicit messages. This

time depends on the baud rate.

Using I/O Data in Your Application

Appendix A, DeviceNet Overview, explains that the data transferred to and

from a DeviceNet device on an I/O connection is usually processed by an

Assembly Object within the slave device. Input assemblies represent the

data received by NI-DNET from a remote device, and output assemblies

represent data that NI-DNET transmits to a remote device.

To use a device’s I/O data within your application, you need to understand

the contents of its input and output assemblies. You can find this

information in the following places:

• Printed documentation provided by the device’s vendor.

• If the device conforms to a standard device profile, the I/O assemblies

are defined within the DeviceNet Specification.

Chapter 4 NI-DNET Programming Techniques

© National Instruments 4-9 NI-DNET User Manual

• Some device vendors provide comments about I/O assemblies in an

Electronic Data Sheet (EDS). The EDS file is a text file whose format

is defined by the DeviceNet Specification.

• Ask the device’s vendor if they have filled out a DeviceNet

compliance statement. This form is located at the front of the

DeviceNet Specification, and it provides information about the device,

including its I/O assemblies.

After you open an NI-DNET I/O Object and start communication, you use

the ncWriteDnetIO function to write an output assembly for a device and

the ncReadDnetIO function to read an input assembly received from a

remote device. Both of these functions access the entire assembly as an

array of bytes.

In most cases, the array of bytes for an input or output assembly contains

more than one value. In DeviceNet terminology, an individual data value

within an I/O assembly is referred to as a member.

Documentation for the members of an input or output assembly includes

the position of each member in the assembly (often shown as a table with

byte/bit offsets) and a listing of the attribute in the device that each member

represents (often shown as class, instance, and attribute identifiers). For

standard device profiles, the I/O assemblies are documented in the device

profile’s specification, and the actual attributes are documented in the

individual object specifications. Attribute documentation includes the

attribute’s DeviceNet data type and a complete explanation of its meaning.

As an example of I/O assembly documentation, consider the standard

AC Drive device profile. For this device profile, the DeviceNet

Specification defines an output assembly called Basic Speed Control

Output (Assembly Object instance 20). This output assembly is used to

start/stop forward motion at a given speed and to reset faults in the device.

The bytes of this output assembly are shown in Figure 4-6, and the attribute

mapping is shown in Table 4-1.

Figure 4-6. AC Drive Output Assembly, Instance 20

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 Fault Reset 0 Run Fwd

1 0 0 0 0 0 0 0 0

2 Speed Reference (Low Byte)

3 Speed Reference (High Byte)

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 Fault Reset 0 Run Fwd

1 0 0 0 0 0 0 0 0

2 Speed Reference (Low Byte)

3 Speed Reference (High Byte)

Chapter 4 NI-DNET Programming Techniques

NI-DNET User Manual 4-10 ni.com

By consulting the specifications for the Control Supervisor object and the

AC/DC Drive object, you can determine that the DeviceNet data type for

Run Fwd and Fault Reset is BOOL (boolean), and the DeviceNet data type

for Speed Reference is INT (16-bit signed integer).

Accessing I/O Members in LabVIEW
Many fundamental differences exist between the encoding of a DeviceNet

data type and its equivalent data type in LabVIEW. For example, for a

32-bit integer, the DeviceNet DINT data type uses Intel byte ordering

(lowest byte first), and the equivalent LabVIEW I32 data type uses

Motorola byte ordering (highest byte first).

To make it easier for you to avoid these data type issues in your

LabVIEW application, NI-DNET provides two functions to convert

between LabVIEW data types and DeviceNet data types:

ncConvertForDnetWrite and ncConvertFromDnetRead. These

functions are used to access individual members of an I/O assembly using

normal LabVIEW controls and indicators.

The following steps show an example of how you can use

ncConvertForDnetWrite to access the Basic Speed Control Output

Assembly described in the previous section:

1. Use the NI-DNET palette to place ncConvertForDnetWrite into

your diagram.

2. Right-click on the DnetData in terminal and select Create

Constant, then initialize the first 4 bytes of the array to zero.

3. Right-click on the DnetType terminal and select Create Constant,

then select BOOL from the enumeration.

Table 4-1. Attribute Mapping for Basic Speed Control Output Assembly

Member

Name

Class

Name Class ID Instance ID

Attribute

Name Attribute ID

Run

Fwd

Control

Supervisor

29 hex 1 Run1 3

Fault

Reset

Control

Supervisor

29 hex 1 FaultRst 12

Speed

Reference

AC/DC

Drive

2A hex 1 SpeedRef 8

Chapter 4 NI-DNET Programming Techniques

© National Instruments 4-11 NI-DNET User Manual

4. Right-click on the ByteOffset terminal and select Create Constant,

then enter 0 as the byte offset.

5. Right-click on the 8[TF] in terminal and select Create Control. In

the front panel control that appears, you can use the button at index 0

to control Run Fwd and the button at index 2 to control Fault Reset.

6. Using the NI-DNET palette, place ncConvertForDnetWrite into

your diagram.

7. Wire the DnetData out terminal from the previous Convert into the

DnetData in terminal of this Convert.

8. Right-click on the DnetType terminal and select Create Constant,

then select INT from the enumeration.

9. Right-click on the ByteOffset terminal and select Create Constant,

then enter 2 as the byte offset.

10. Right-click on the I32/I16/I8 in terminal and select Create

Control. You can use the front panel control that appears to change

Speed Reference.

11. Using the NI-DNET palette, place ncWriteDnetIO into your

diagram.

12. Wire the DnetData out terminal from the previous Convert into the

Data terminal of ncWriteDnetIO.

For more information on the ncConvertForDnetWrite and

ncConvertFromDnetRead functions, refer to the NI-DNET Programmer

Reference Manual. For information on LabVIEW data types and their

equivalent DeviceNet data types, refer to Chapter 1, NI-DNET Data Types,

in the NI-DNET Programmer Reference Manual.

Accessing I/O Members in C
Since DeviceNet data types are very similar to C language data types,

individual I/O members can be accessed in a straightforward manner. You

can use the standard C language pointer manipulations to convert between

C language data types and DeviceNet data types.

Chapter 4 NI-DNET Programming Techniques

NI-DNET User Manual 4-12 ni.com

The following steps show an example of how standard C language can be

used to access the Basic Speed Control Output Assembly described in the

previous section.

1. Declare an array of 4 bytes, as in the following.

NCTYPE_UINT8OutputAsm[4];

2. Initialize the array to all zero.

for (I = 0; I < 4; I++)

OutputAsm [I] = 0;

3. Assume you have two boolean variables, RunFwd and ResetFault,

of type NCTYPE_BOOL. For LabWindows/CVI, these variables could

be accessed from front panel buttons. The following code inserts these

boolean variables into OutputAsm.

if (RunFwd)

OutputAsm [0] |= 0x01;

if (FaultReset)

OutputAsm [0] |= 0x04;

4. Assume you have an integer variable SpeedRef of type

NCTYPE_INT16. For LabWindows/CVI, this variable could be

accessed from a front panel control. The following code inserts this

integer variable into OutputAsm.

*(NCTYPE_INT16 *)(&(OutputAsm[2])) = SpeedRef;

5. Write the output assembly to the remote device.

status = ncWriteDnetIO(objh, sizeof(OutputAsm),

OutputAsm);

For information on NI-DNET’s C language data types and their equivalent

DeviceNet data types, refer to Chapter 1, NI-DNET Data Types, of the

NI-DNET Programmer Reference Manual.

Using Explicit Messaging Services

The NI-DNET Explicit Messaging Object represents an explicit messaging

connection to a remote DeviceNet device. You use ncOpenDnetExplMsg

to configure and open an NI-DNET Explicit Messaging Object.

The following sections describe how to use the Explicit Messaging Object.

Chapter 4 NI-DNET Programming Techniques

© National Instruments 4-13 NI-DNET User Manual

Get and Set Attributes in a Remote DeviceNet Device
The two most commonly used DeviceNet explicit messages are the Get

Attribute Single service and the Set Attribute Single service. These services

are used to get or set the value of an attribute contained in a remote device.

The easiest way to execute the Get Attribute Single service on a remote

device is to use the NI-DNET ncGetDnetAttribute function. The

easiest way to execute the Set Attribute Single service on a remote device

is to use the NI-DNET ncSetDnetAttribute function.

For a given attribute of a DeviceNet device, you need the following

information to use the ncGetDnetAttribute or ncSetDnetAttribute

function:

• The class and instance identifiers for the object in which the attribute

is located

• The attribute identifier

• The attribute’s DeviceNet data type

You can normally find this information from the object specifications

contained in the DeviceNet Specification, but many DeviceNet device

vendors also provide this information in the device’s documentation.

For the C programming language, the attribute’s DeviceNet data type

determines the corresponding NI-DNET data type you use to declare a

variable for the attribute’s value. For example, if the attribute’s DeviceNet

data type is INT (16-bit signed integer), you should declare a C language

variable of type NCTYPE_INT16, then pass the address of that variable

as the Attr parameter of the ncGetDnetAttribute or

ncSetDnetAttribute function.

For LabVIEW, the attribute’s DeviceNet data type determines

the corresponding LabVIEW data type to use with the

ncConvertForDnetWrite or ncConvertFromDnetRead functions. The

ncConvertFromDnetRead function converts a DeviceNet attribute read

using ncGetDnetAttribute into an appropriate LabVIEW data type. The

ncConvertForDnetWrite function converts a LabVIEW data type into an

appropriate DeviceNet attribute to write using ncSetDnetAttribute. For

more information on these LabVIEW conversion functions, refer to the

Using I/O Data in Your Application section.

Chapter 4 NI-DNET Programming Techniques

NI-DNET User Manual 4-14 ni.com

Other Explicit Messaging Services
To execute services other than Get Attribute Single and Set Attribute Single,

use the following sequence of function calls: ncWriteDnetExplMsg,

ncWaitForState, ncReadDnetExplMsg. The ncWriteDnetExplMsg

function sends an explicit message request to a remote DeviceNet device.

The ncWaitForState function waits for the explicit message response,

and the ncReadDnetExplMsg function reads that response.

Use ncWriteDnetExplMsg for such DeviceNet services as Reset, Save,

Restore, Get Attributes All, and Set Attributes All. Although the DeviceNet

Specification defines the overall format of these services, in most cases

their meaning and service data are object-specific or vendor-specific.

Unless your device requires such services and documents them in detail,

you probably do not need them for your application.

You need the following information to use the ncWriteDnetExplMsg and

ncReadDnetExplMsg functions for a given explicit messaging service:

• The class and instance identifiers for the object to which the service

will be directed.

• The service code used to identify the service.

• The length and format of service request and response data. Some of

data formats are defined by the service’s overall specification (such as

in Appendix G, DeviceNet Explicit Services, in the DeviceNet

Specification manual), but many data formats are object-specific or

vendor-specific. For example, for the Reset service, Appendix G

defines the service’s code for use with any object, but its actual data

format is defined in the specification for the Identity Object.

• The error codes that can be returned in the service response. Error

codes that are common to all services can be found in Appendix H,

DeviceNet Error Codes, in the DeviceNet Specification manual, but

many error codes are specific to the service, object, or vendor.

As with the ncGetDnetAttribute and ncSetDnetAttribute

functions, the service data formats for the request and response are

specified in terms of DeviceNet data types. These DeviceNet data types are

converted to/from the data types of your programming environment (C or

LabVIEW) as discussed in previous sections.

Chapter 4 NI-DNET Programming Techniques

© National Instruments 4-15 NI-DNET User Manual

Handling Multiple Devices

This section describes techniques you can use to efficiently implement an

application that communicates with a large number of DeviceNet devices.

In such an application, there might be only one call to ncOpenDnetIntf

(only one network), but there are usually multiple calls to ncOpenDnetIO

(and possibly ncOpenDnetExplMsg).

Configuration
If the configuration parameters used with ncOpenDnetIO tend to change

over time, you might want to organize them in data structures instead of

using constants.

For the C programming language, you can declare a structure typedef to

store the parameters of ncOpenDnetIO, similar to the following:

typedef struct {

NCTYPE_UINT32DeviceMacId;

NCTYPE_CONN_TYPEConnectionType;

NCTYPE_UINT32InputLength;

NCTYPE_UINT32OutputLength;

NCTYPE_UINT32ExpPacketRate;

} OpenDnetIO_Struct;

For LabVIEW, a cluster that contains these parameters is already defined

for use with ncOpenDnetIO.

You can use this structure/cluster to declare an array that contains

one entry for each call you make to ncOpenDnetIO. In LabVIEW and

LabWindows/CVI, you can use front panel controls to index through this

array and update configurations as needed.

In your code, write a For loop to index through the array and call

ncOpenDnetIO once for each array entry. This simplifies your code

because it does not contain a long list of sequential open calls, but instead

all open calls are combined into a concise loop.

Chapter 4 NI-DNET Programming Techniques

NI-DNET User Manual 4-16 ni.com

Object Handles
If you use an array to store configuration parameters for ncOpenDnetIO,

you can use this same scheme to store the ObjHandle returned by

ncOpenDnetIO. Within the For loop used for ncOpenDnetIO, you can store

the resulting ObjHandle into an array of object handles. Throughout your

code, you can index into this array to obtain the appropriate object handle.

Using an array of object handles is particularly useful in the LabVIEW

programming environment because it eliminates confusing routing of

individual object handle wires.

For applications with only a few object handles, another useful technique

for LabVIEW is to store each object handle in an indicator, then create a

local variable for each call that uses the handle. To create the indicator,

right-click on the ObjHandle out terminal and select Create Indicator.

To create a local variable, right-click on the indicator, select Create»Local

Variable, right-click on the local variable, and select Change To Read

Local. For more information on local variables, refer to the LabVIEW

online reference.

Main Loop
If your application essentially accesses all DeviceNet input/output data as

a single image, you would normally wait for read data to become available

on one of the input connections (such as a strobed I/O connection), read all

input data, execute your application code, then write all output data. The

wait is important because it helps to synchronize your application with the

overall DeviceNet network traffic.

In single-loop applications such as this, you normally set the PollMode

parameter of ncOpenDnetIntf to Automatic or Scanned so that all poll

command messages are sent out in quick succession.

Within a single-loop application, error handling is often done for the entire

application as a whole. In the C programming language, this means that

when an error is detected with any NI-DNET object, you display the error

and exit the application. In LabVIEW, this means that you wire all error

clusters of NI-DNET VIs together.

If your application uses different control code for different DeviceNet

devices, you might want to split your application into multiple tasks. You

can easily write a multitasking application by creating a notification for

the NI-DNET Read Avail state. This notification occurs when either

input data is available (to synchronize your code with each device’s

Chapter 4 NI-DNET Programming Techniques

© National Instruments 4-17 NI-DNET User Manual

I/O messages), or an error occurs. In the C programming language, you

create this notification callback using the ncCreateNotification

function. In LabVIEW, you use the ncWaitForState function.

In multiple-loop applications such as this, you normally set the PollMode

parameter of ncOpenDnetIntf to Individual so that each poll

command message can be sent out at its own individual rate.

Within a multiple-loop application, error handling is done separately for

each task. In the C programming language, this means that when an error

is detected, you handle it for the appropriate task, but you do not exit the

application. In LabVIEW, this means that you only wire the error clusters

of NI-DNET VIs that apply to each task, and thus you write different

sub-diagrams that are not wired together in any way.

© National Instruments A-1 NI-DNET User Manual

A
DeviceNet Overview

This appendix gives an overview of DeviceNet.

History of DeviceNet

The Controller Area Network (CAN) was developed in the early 1980s by

Bosch, a leading automotive equipment supplier. CAN was developed to

overcome the limitations of conventional automotive wiring harnesses.

CAN connects devices such as engine controllers, anti-lock brake

controllers, and various sensors and actuators on a common serial bus.

By using a common pair of signal wires, any device on a CAN network can

communicate with any other device.

As CAN implementations became widespread throughout the automotive

industry, CAN was standardized internationally as ISO 11898, and major

semiconductor manufacturers such as Intel, Motorola, and Philips began

producing CAN chips. With these developments, many manufacturers of

industrial automation equipment began to consider other applications of

CAN technology. Automotive and industrial device networks showed

many similarities, including the transition away from dedicated signal

lines, low cost, resistance to harsh environments, and excellent real-time

capabilities.

In response to these similarities, Allen-Bradley developed DeviceNet, an

industrial networking protocol based on CAN. DeviceNet built on CAN’s

communication facilities to provide higher-level features which allow

industrial devices from different vendors to operate on the same network.

Soon after DeviceNet was developed, Allen-Bradley transferred the

specification to an independent organization called the Open DeviceNet

Vendor’s Association (ODVA). ODVA formally manages the DeviceNet

Specification and provides services to facilitate development of DeviceNet

devices and tools by various vendors. Due in large part to the efforts of

ODVA, hundreds of different vendors now provide DeviceNet products for

a wide range of applications.

Appendix A DeviceNet Overview

NI-DNET User Manual A-2 ni.com

Physical Characteristics of DeviceNet

The following list summarizes the physical characteristics of DeviceNet.

• Trunkline-dropline cabling—main trunk cable with a drop cable for

each device

• Selectable baud rates of 125 K, 250 K, and 500 K

• Support for up to 64 devices—each device identifies itself using a

MAC ID (Media Access Control Identifier) from 0–63

• Device removal/insertion without severing the network

• Simultaneous support for both network-powered and self-powered

devices

• Various connector styles

For complete information on how to connect your National Instruments

hardware onto the DeviceNet network, refer to your getting started manual.

General Object Modeling Concepts

The DeviceNet Specification uses object-oriented modeling to describe

the behavior of different components in a device, how those components

relate to one another, and how network communication takes place. The

following paragraphs briefly describe object-oriented modeling and how

these concepts are used within the DeviceNet Specification.

Table A-1. DeviceNet Baud Rates and Wiring Lengths

Baud

Rate

Trunk

Length

Drop Length

Maximum

Drop Length

Cumulative

125 Kb/s 500 m (1640 ft) 6 m (20 ft) 156 m (512 ft)

250 Kb/s 250 m (820 ft) 6 m (20 ft) 78 m (256 ft)

500 Kb/s 100 m (328 ft) 6 m (20 ft) 39 m (128 ft)

Appendix A DeviceNet Overview

© National Instruments A-3 NI-DNET User Manual

In object-oriented terminology, a classification of components with similar

qualities is called a class. For example, different classes of geometric

shapes could include squares, circles, and triangles. Figure A-1 shows

various classes and instances of geometric shapes.

Figure A-1. Classes of Geometric Shapes

All squares belong to the same class because they all have similar qualities,

such as four equal sides. The term instance refers to a specific instance of

a given class. For example, a blue square of four inches per side would be

one instance of the class square, and a red square of five inches per side

would be another instance. The term object is often used as a synonym for

the term instance, although in some contexts it might also refer to a class.

Each class defines a set of attributes which represent its externally visible

characteristics. The set of attributes defined by a class is common to all

instances within that class. For the class square, attributes could include

length of each side and color. For the class circle, attributes could include

radius and color. Each class also defines a set of services (or methods)

which is used to perform an operation on an instance. For the class square,

services could include resize, rotate, or change color.

1 2 3

Class Square

1 2

Class Triangle Class Circle

1 2 3 4

Appendix A DeviceNet Overview

NI-DNET User Manual A-4 ni.com

Object Modeling in the DeviceNet Specification

Figure A-2 illustrates the object modeling used within the DeviceNet

Specification.

Figure A-2. Object Modeling Used in DeviceNet Specification

Every DeviceNet device contains at least one instance (instance one) of

the Identity Object. The Identity Object instance defines attributes which

describe the device, including the device’s vendor, product name, and serial

number. The Identity Object also defines services which apply to the entire

device. For example, if you use the Reset service on instance one of the

Identity Object, the device resets to its power on state.

Application

Object(s)

I/O
Explicit

Messaging

Connection

Objects

DeviceNet Network

Parameter

Object Identity

Object

Message

Router

Assembly

Object

DeviceNet

Object

Appendix A DeviceNet Overview

© National Instruments A-5 NI-DNET User Manual

Another class of object contained in every DeviceNet device is the

Connection Object. Each instance of the Connection Object represents a

communication path to one or more devices. Attributes of each Connection

Object instance include the maximum number of bytes produced on the

connection, the maximum number of bytes consumed, and the expected

rate at which data is transferred.

In Figure A-2, the term Application Object(s) refers to objects within the

device which are used to perform its fundamental behavior. For example,

within a photoelectric sensor, an instance of the Presence Sensing object

(an Application Object) represents the physical photoelectric sensor

hardware. Within a position controller device, an instance of the Position

Controller object (an Application Object) is provided for every axis (motor)

which can be controlled using the device.

For more information on the classes, instances, attributes, and services

provided by DeviceNet, refer to the DeviceNet Specification. You can find

additional information on the specific classes and instances supported by a

given device in the documentation that came with the device.

Although the NI-DNET driver software provides object instances which

are used to access the DeviceNet network, these objects do not correspond

directly to the objects defined by the DeviceNet Specification, and the

NI-DNET functions do not directly correspond to the services defined by

DeviceNet. To facilitate access to your DeviceNet network, the features

provided by the NI-DNET driver are a simplification of the objects and

services defined in the DeviceNet Specification.

Explicit Messaging Connections

Each device on the DeviceNet network supports at least one explicit

messaging connection. Explicit messaging connections provide a

general-purpose communication path used to execute services on a

particular object in a device.

For a given explicit messaging connection between two DeviceNet devices,

the device requesting execution of the service is called the client, and the

device to which the service request is directed is called the server. Your

NI-DNET software can be used as an explicit messaging client with any

number of DeviceNet server devices.

Using an explicit messaging connection, the client device sends an explicit

message request to the server device. This request indicates the service to

perform and the object to which the service is directed. When the server

Appendix A DeviceNet Overview

NI-DNET User Manual A-6 ni.com

receives the explicit message request, it executes the service and sends an

explicit message response to the client device. If the service executed

successfully, this response contains information requested by the client.

The MAC ID (address) of the explicit message client and server is

contained in the header of the DeviceNet explicit messages.

The following tables describe the general format of DeviceNet explicit

message requests and responses as they appear on the DeviceNet network.

The DeviceNet Specification defines a set of services supported in a

common way by different devices. These common services include Reset,

Save, Restore, Get Attribute Single, and Set Attribute Single.

Table A-2. Explicit Message Request

Field Description

Service Code This number identifies the service requested by the client. The DeviceNet

Specification defines valid service codes.

Class ID This number identifies the class to which the service is directed. The DeviceNet

Specification defines valid class IDs.

Instance ID This number identifies the instance to which the service is directed. If the instance

ID is zero, the service is directed to the entire class. If the instance ID is one or

greater, the service is directed to a specific instance within the class.

Service Data Data bytes specific to the Service Code. The number and format of these data

bytes is defined by the specification for the service.

Table A-3. Explicit Message Response

Field Description

Service Code This number indicates success or failure for execution of the service. If this

number is the same as the Service Code of the request, the service executed

successfully. If this number is 14 hex, the service failed to execute due to an error.

Service Data If the service executed successfully, this field contains data bytes which are

specific to the Service Code. The number and format of these data bytes are

defined by the specification for the service.

If the service failed to execute, the first byte of Service Data contains a General

Error Code which describes the error, and the second byte contains an Additional

Error Code which qualifies the error. The DeviceNet Specification defines valid

values for the General Error Code and Additional Error Code.

Appendix A DeviceNet Overview

© National Instruments A-7 NI-DNET User Manual

The Get Attribute Single service obtains the value of a specific attribute

within a device’s object, and the Set Attribute Single service sets the value

of an attribute. These Get and Set services are the most commonly used

explicit messaging services. Since these two services are used often,

NI-DNET provides functions for these services: ncGetDnetAttribute

and ncSetDnetAttribute.

Other services defined by DeviceNet are used less often. For these services,

NI-DNET provides general purpose functions to send an explicit message

request (ncWriteDnetExplMsg) and receive an explicit message

response (ncReadDnetExplMsg). These NI-DNET functions use

parameters which are similar to the explicit message request/response

listed above. For more information on DeviceNet common services other

than Get/Set Attribute Single, refer to the DeviceNet Specification.

I/O Connections

In addition to explicit messaging connections, DeviceNet devices provide

another type of Connection Object called an I/O connection.

I/O connections provide a communication path for the exchange of

physical input/output (sensor/actuator) data as well as other

control-oriented data. I/O connections are useful for transferring data at

regular intervals.

Since many DeviceNet devices do not begin their normal operation until an

I/O connection is established, explicit messaging is often used for

configuration and initialization. For example, for a device with an analog

input, the I/O connection is normally used to read the analog input

measurement, and explicit messages are used for configuration such as

setting the measurement range and units (such as –10 to +10 V versus

4 to 20 mA).

The DeviceNet Specification defines two types of I/O connections:

master/slave and peer-to-peer. In master/slave I/O connections, a master

device uses an I/O connection to communicate with one or more slave

devices, and those slave devices can only communicate with the master and

not one another. In peer-to-peer I/O connections, each device on the

network can communicate as a peer, and communication paths between

peer devices are established as needed. The NI-DNET software currently

supports only master/slave I/O connections because the procedure used to

establish these I/O connections is more well defined. For this reason,

almost all existing DeviceNet devices only implement master/slave

I/O connections.

Appendix A DeviceNet Overview

NI-DNET User Manual A-8 ni.com

The DeviceNet Specification defines four types of master/slave

I/O connections: polled, bit strobed, change-of-state (COS), and cyclic.

A slave device can support at most one polled, one strobed, and one COS

or cyclic connection (COS and cyclic connections cannot be used

simultaneously).

Polled I/O
The polled I/O connection uses a request/response scheme for each device.

The master sends a poll command (request) message to the slave device

with any amount of output data. The slave then sends a poll response

message back to the master with any amount of input data. The poll

command/response messages are handled individually for each slave which

supports polled I/O connections. Polled I/O is typically used for devices

which provide both input and output data, such as position controllers and

modular I/O devices.

Figure A-3 shows an example of four polled slave devices.

Figure A-3. Polled I/O Example

Master

MAC ID = 1

Slave

MAC ID = 9

Slave

MAC ID = 11

Slave

MAC ID = 12

Slave

MAC ID = 13

12 Byte Poll Command

5 Byte Poll

Response

2 Byte Poll

Command

20 Byte Poll

Command

3 Byte Poll

Response

6 Byte Poll Response

15 Byte Poll Response

5 Byte Poll Command

Output data

Input data

Appendix A DeviceNet Overview

© National Instruments A-9 NI-DNET User Manual

Bit Strobed I/O
The (bit) strobed I/O connection is designed to move small amounts of

input data from the slave to its master. Strobed I/O is typically used for

simple sensors, such as photoelectric sensors and limit switches.

Strobed I/O is also called bit strobed I/O since the master sends a 64-bit

(8-byte) message containing a single bit of output data for each strobed

slave. This strobe command (request) message is received by all slave

devices simultaneously and can be used to trigger simultaneous

measurements (such as to take multiple photoelectric readings

simultaneously).

When a strobed slave receives the strobe command, it uses the output data

bit that corresponds to its own MAC ID (for example, the slave with

MAC ID 5 uses bit 5). Regardless of the value of its output bit, each

strobed slave responds to the command message by sending an individual

strobe message back to the master. The slave’s strobe response contains

from 0 to 8 bytes of input data.

Figure A-4 shows an example of four strobed slave devices.

Figure A-4. Strobed I/O Example

Master

MAC ID = 1

Slave

MAC ID = 9

Slave

MAC ID = 11

Slave

MAC ID = 12

Slave

MAC ID = 13

6 Byte Strobe

Response

2 Byte Strobe

Response

1 Byte Strobe Response4 Byte Strobe Response

0 1 2 9 10 11 12 13 61 62 63

8 Byte Strobe Command

Used

by 9

Used

by 11

Used

by 12

Used

by 13

Output data

Input data

Appendix A DeviceNet Overview

NI-DNET User Manual A-10 ni.com

Change-of-State and Cyclic I/O
The change-of-state (COS) and cyclic I/O connections both use the same

underlying communication mechanisms. Both transmit data at a fixed

interval called the expected packet rate (EPR). Since COS and cyclic

I/O connections use the same messaging on the DeviceNet network, they

are often referred to as a single I/O connection called COS/cyclic I/O.

The cyclic I/O connection enables a slave device to send input data to its

master at the configured EPR interval. You normally configure the EPR to

be consistent with the rate at which the device measures its physical input

sensors. For example, if a temperature sensor can take a measurement at

most once every 500 ms, you would configure the cyclic I/O connection’s

EPR as 500 ms. Cyclic I/O can be configured to send output data from

master to slave, but this configuration is seldom used since it is essentially

the same as polled I/O. Cyclic I/O messages can contain any amount

of data.

The COS I/O connection enables a slave device to send input data to its

master when a change is detected on its physical inputs. In addition to

sending input data when a change is detected, the COS slave also sends

its input data at a slower EPR interval that lets the master know it is still

functioning. COS I/O is typically used for devices with physical inputs that

can change frequently but can have the same input value for a long time.

For example, if a pushbutton device supports COS I/O, you might

configure its EPR as 3 seconds since the device sends a message

immediately if a button is pressed. COS I/O can be configured to send

output data from master to slave. Although master-to-slave COS output is

seldom used, it can be useful for things like front-panel pushbuttons which

are sent to a slave’s discrete outputs (such as LEDs and simple motors).

COS I/O messages can contain any amount of data.

When using COS/cyclic I/O connections, you can configure the device that

receives data to send an acknowledgment so that the transmitting device

can verify that the data was received successfully. For example, if you

configure slave-to-master COS I/O (input length nonzero), the master

sends an acknowledgment to the slave each time it receives an input

message. Since the acknowledgment message is used for verification

only, it does not contain data. If this verification can be handled using

other means (such as using strobed I/O to verify device status), the

acknowledgment message can be suppressed. For information on how to

suppress COS/cyclic acknowledgments using NI-DNET, refer to the

description of the I/O Object in the NI-DNET Programmer Reference

Manual.

Appendix A DeviceNet Overview

© National Instruments A-11 NI-DNET User Manual

Since COS and cyclic I/O use the same messages on the DeviceNet

network, they cannot be used simultaneously for a given slave device.

Also, polled I/O uses the same messages on the DeviceNet network as

master-to-slave output messages of COS/cyclic I/O. This means that a slave

device can use slave-to-master COS/cyclic I/O simultaneously with

polled I/O, but not master-to-slave COS/cyclic I/O.

Figure A-5 shows an example of four COS/cyclic I/O connections.

Figure A-5. COS/Cyclic I/O Example

Master

MAC ID = 1

Slave

MAC ID = 9

Slave

MAC ID = 11

Slave

MAC ID = 12

Slave

MAC ID = 13

COS ACK to Slave

6 Byte COS

to Slave

EPR = 400 ms,

no ACK

4 Byte COS to Master

EPR = 200 ms

2 Byte Cyclic to Master

EPR = 500 ms, no ACK

Cyclic ACK

to Master

12 Byte Cyclic

to Slave

EPR = 100 ms

Output data

Input data

Appendix A DeviceNet Overview

NI-DNET User Manual A-12 ni.com

Assembly Objects

One of the more important objects in the DeviceNet Specification is

the Assembly Object. There are two types of Assembly Object: input

assemblies and output assemblies. Assembly objects act like a switchboard,

routing incoming and outgoing data to its proper location within the device.

Output assemblies receive an output message from an I/O connection and

distribute its contents to multiple attributes within the slave. Input

assemblies gather multiple attributes within the slave for transmission on an

I/O connection.

Figure A-6 shows the operation of input and output assemblies.

Figure A-6. Input and Output Assemblies

As a more specific example, consider a DeviceNet photoelectric sensor

(photoeye) or a limit switch. These devices contain a single instance of a

class called the Presence Sensing object. This instance has attributes for

the Output Signal (on/off) and Diagnostic Status (good/fault). These

two attributes are often routed through a single input assembly consisting

of a single byte.

Attributes

Instance

Attributes

Instance

Attributes

Instance

Output Assembly, Associated

with an Output Message

Such as a Poll Command

Input Assembly, Associated

with an Input Message

Such as a Poll Response

Appendix A DeviceNet Overview

© National Instruments A-13 NI-DNET User Manual

Figure A-7 shows an example of a Presence Sensing instance and its input

assembly.

Figure A-7. Input Assembly for Photoeye or Limit Switch

As you can see, to use the data bytes contained in I/O messages, it is

important to know the format of a device’s internal input and output

assemblies.

Device Profiles
To provide interoperability for devices of the same type, the DeviceNet

Specification defines various device profiles. The goal behind device

profiles is that for a given type of device, such as a photoelectric sensor, it

should be relatively straightforward to replace a sensor from one vendor

with a sensor from another vendor.

All devices which conform to a given profile must do the following:

• Exhibit the same behavior

• Use the same object model (certain instances are required)

• Contain the same input and output assemblies

• Contain the same set of configurable attributes

In addition to required features, most device profiles define a variety of

optional features. When an optional feature is supported by a vendor, it

must be supported as defined by the DeviceNet Specification. Device

profiles also allow for vendor-specific features.

0 0 0

Operate Mode, BOOL

0 0 0

7Bit 6 5 1 04 3 2

Diagnostic, BOOL

Off Delay, UINT

On Delay, UINT

Output, BOOL

Attributes

Presence Sensor Instance 1

One byte input assembly,

often returned as a strobe

response or COS input message.

Appendix A DeviceNet Overview

NI-DNET User Manual A-14 ni.com

The DeviceNet Specification provides device profiles for such devices as

photoelectric sensors, limit switches, motor starters, position controllers,

and mass-flow controllers.

Open DeviceNet Vendors Association (ODVA)
This chapter provides only a short summary of DeviceNet. For additional

information, such as a list of DeviceNet products and how to purchase the

DeviceNet Specification, refer to the ODVA Web site at www.odva.org.

© National Instruments B-1 NI-DNET User Manual

B
Cabling Requirements

This appendix describes the cabling requirements for the hardware.

Cables should be constructed to meet these requirements as well as the

requirements of DeviceNet. DeviceNet cabling requirements can be found

in the DeviceNet Specification.

Connector Pinouts

The PCI-CAN, PXI-8461, and the PCMCIA-CAN bus-powered cable

each have a Combicon-style pluggable screw terminal connector. The

PCMCIA-CAN bus-powered cable also has a DB-9 D-SUB connector.

The 5-pin Combicon-style pluggable screw terminal follows the pinout

required by the DeviceNet Specification. Figure B-1 shows the pinout for

this connector.

Figure B-1. Pinout for 5-Pin Combicon-Style Pluggable Screw Terminal

CAN_H and CAN_L are signal lines that carry the data on the DeviceNet

network. These signals should be connected using twisted-pair cable.

The V+ and V– signals supply power to the DeviceNet physical layer. Refer

to Power Supply Information for the DeviceNet Ports for more information.

Shield is for the cable shield, which must be connected.

1 V–
2 CAN_L

3 Shield
4 CAN_H

5 V+

5
4

3

1

2

Appendix B Cabling Requirements

NI-DNET User Manual B-2 ni.com

Figure B-2 shows the end of a PCMCIA-CAN bus-powered cable. The

arrow points to pin 1 of the 5-pin screw terminal block. All of the signals

on the 5-pin Combicon-style pluggable screw terminal are connected

directly to the corresponding pins on the 9-pin D-SUB following the pinout

in Figure B-3.

Figure B-2. PCMCIA-CAN Bus-Powered Cable

The 9-pin D-SUB follows the pinout recommended by CiA Draft

Standard 102. Figure B-3 shows the pinout for this connector.

Figure B-3. Pinout for 9-Pin D-SUB Connector

J2

J1

V-
C_L

SH
C_H

V+

1
2

3
4

5

6
7

8
9

No Connection

CAN_L

V–

No Connection

Optional Ground (V–)

CAN_H

No Connection

V+
Shield

Appendix B Cabling Requirements

© National Instruments B-3 NI-DNET User Manual

Power Supply Information for the DeviceNet Ports

The bus must supply power to each DeviceNet port. The bus power supply

should be a DC power supply with an output of 10 V to 30 V. The

DeviceNet physical layer is powered from the bus using the V+ and V–

lines.

The power requirements for the DeviceNet port are shown in Table B-1.

You should take these requirements into account when determining the

requirements of the bus power supply for the system.

For the PCI-CAN, a jumper controls the source of power for the DeviceNet

physical layer. The location of this jumper is shown in Figure B-4.

Figure B-4. PCI-CAN Power Source Jumper

Table B-1. Power Requirements for the DeviceNet Physical Layer

for Bus-Powered Versions

Characteristic Specification

Voltage Requirement V+ 10 to 30 VDC

Current Requirement 40 mA typical

100 mA maximum

1 Power Supply Jumper J6
2 Product Name

3 Serial Number
4 Assembly Number

1 2

3

4

Appendix B Cabling Requirements

NI-DNET User Manual B-4 ni.com

The PCI-CAN is shipped with this jumper set in the EXT position. In this

position, the physical layer is powered from the bus (the V+ and V– pins

on the Combicon connector). The jumper must be in this position for the

DeviceNet interface to be compliant with the DeviceNet Specification.

If the DeviceNet interface is being used in a system where bus power is not

available, the jumper may be set in the INT position. In this position, the

physical layer is powered by the host computer. The physical layer is

still optically isolated. But under the settings, the PCI-CAN card is not

compliant with the DeviceNet specification. Figure B-5 shows how to

configure your jumpers for internal or external power supplies.

Figure B-5. Power Source Jumpers

INT EXT

a. Internal Power Mode

INT EXT

b. External Power Mode

(DeviceNet)

12 23 13

Appendix B Cabling Requirements

© National Instruments B-5 NI-DNET User Manual

For port one of the PXI-8461, power is configured with jumper J5. The

location of this jumper is shown in Figure B-6.

Figure B-6. PXI-8461 Parts Locator Diagram

Connecting pins 1 and 2 of a jumper configures the PXI-8461 physical

layer to be powered externally (from the bus cable power). In this

configuration, the power must be supplied on the V+ and V– pins on the

port connector. The jumper must be in this position for the DeviceNet

interface to be compliant with the DeviceNet Specification.

Connecting pins 2 and 3 of a jumper configures the PXI-8461 physical

layer to be powered internally (from the board). In this configuration, the

V– signal serves as the reference ground for the isolated signals.

The PCMCIA-CAN is shipped with the bus power version of the

PCMCIA-CAN cable. An internally-powered version of the

PCMCIA-CAN cable can be ordered from National Instruments.

1 Power Supply Jumper J6
2 Power Supply Jumper J5

3 Assembly Number
4 Product Name

5 Serial Number

2

1

3 4

5

Appendix B Cabling Requirements

NI-DNET User Manual B-6 ni.com

Cable Specifications

Cables should meet the requirements of the DeviceNet cable specification.

DeviceNet cabling requirements can be found in the DeviceNet

Specification.

Belden cable (3084A) meets all of those requirements and should be

suitable for most applications.

Cable Lengths

The allowable cable length is affected by the characteristics of the cabling

and the desired bit transmission rates. Detailed cable length requirements

can be found in the DeviceNet Specification.

Table B-2 lists the DeviceNet cable length specifications.

Maximum Number of Devices

The maximum number of devices that you can connect to a DeviceNet port

depends on the electrical characteristics of the devices on the network. If

all of the devices on the network meet the DeviceNet specifications,

64 devices may be connected to the network.

Table B-2. DeviceNet Cable Length Specifications

Baud Rate Trunk Length

Drop Length

Maximum

Drop Length

Cumulative

500 kb/s 100 m (328 ft) 6 m (20 ft) 39 m (128 ft)

250 kb/s 250 m (820 ft) 6 m (20 ft) 78 m (256 ft)

125 kb/s 500 m (1640 ft) 6 m (20 ft) 156 m (512 ft)

Appendix B Cabling Requirements

© National Instruments B-7 NI-DNET User Manual

Cable Termination

The pair of signal wires (CAN_H and CAN_L) constitutes a transmission

line. If the transmission line is not terminated, each signal change on the

line causes reflections that may cause communication failures.

Because communication flows both ways on the DeviceNet bus, DeviceNet

requires that both ends of the cable be terminated. However, this

requirement does not mean that every device should have a termination

resistor. If multiple devices are placed along the cable, only the devices on

the ends of the cable should have termination resistors. Refer to Figure B-7

for an example of where termination resistors should be placed in a system

with more than two devices.

Figure B-7. Termination Resistor Placement

The termination resistors on a cable should match the nominal impedance

of the cable. DeviceNet requires a cable with a nominal impedance of

120 Ω; therefore, a 120 Ω resistor should be used at each end of the cable.

Each termination resistor should each be capable of dissipating at least

0.25 W of power.

120 Ω 120 Ω

CAN_H

CAN_L

DeviceNet
Device

DeviceNet
Device

DeviceNet
Device

DeviceNet
Device

Appendix B Cabling Requirements

NI-DNET User Manual B-8 ni.com

Cabling Example

Figure B-8 shows an example of a cable to connect two DeviceNet devices.

Figure B-8. Cabling Example

9-Pin

D-Sub

9-Pin

D-Sub

CAN_H

CAN_L

Shield

V+

V+

V–

V–

5-Pin

Combicon

5-Pin

Combicon

Pin 7Pin 4 Pin 7 Pin 4

Pin 2 Pin 2

Pin 5 Pin 3

Pin 9 Pin 5

Pin 3 Pin 1

Pin 2Pin 2

Pin 5Pin 3

Pin 9Pin 5

Pin 3Pin 1

120 Ω 120 Ω

Power

Connector

© National Instruments C-1 NI-DNET User Manual

C
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot problems with the NI-DNET

software and answers some common questions.

Troubleshooting with the Measurement & Automation
Explorer (MAX)

MAX contains configuration information for all CAN (DeviceNet)

hardware installed on your system. To start MAX, double-click on the

Measurement & Automation icon on your desktop. Your CAN cards are

listed in the left pane (Configuration) under Devices and Interfaces»

NI-CAN Devices.

You can test your CAN cards by choosing Tools»NI-CAN»Test all Local

NI-CAN Cards from the menu, or you can right-click on a CAN card and

choose Self Test. If the Self Test fails, refer to the Troubleshooting Self Test

Failures section of this appendix.

Missing CAN Card
If you have a CAN card installed, but no CAN card appears in the

configuration section of MAX under Devices and Interfaces, you need to

search for hardware changes by pressing <F5> or choosing the Refresh

option from the View menu in MAX.

If the CAN card still doesn’t show up, you may have a resource conflict in

the Windows Device Manager. Refer to the documentation for your

Windows operating system for instructions on how to resolve the problem

using the Device Manager.

Appendix C Troubleshooting and Common Questions

NI-DNET User Manual C-2 ni.com

Troubleshooting Self Test Failures

The following topics explain common error messages generated by the Self

Test in MAX.

Application In Use
This error occurs if you are running an application that is using the

CAN card. The self test aborts to avoid adversely affecting your

application. Before running the self test, exit all applications that use

NI-DNET or NI-CAN. If you are using LabVIEW, you may need to exit

LabVIEW to unload the NI-DNET driver.

Memory Resource Conflict
This error occurs if the memory resource assigned to a CAN card conflicts

with the memory resources being used by other devices in the system.

Resource conflicts typically occur when your system contains legacy

boards that use resources not properly reserved with the Device Manager.

If a resource conflict exists, write down the memory resource that caused

the conflict and refer to the documentation for your Windows operating

system for instructions on how to use the Device Manager to reserve

memory resources for legacy boards. After the conflict has been resolved,

run the Self Test again.

Interrupt Resource Conflict
This error occurs if the interrupt resource assigned to a CAN card conflicts

with the interrupt resources being used by other devices in the system.

Resource conflicts typically occur when your system contains legacy

boards that use resources not properly reserved with the Device Manager.

If a resource conflict exists, write down the interrupt resource that caused

the conflict and refer to the documentation for your Windows operating

system for instructions on how to use the Device Manager to reserve

interrupt resources for legacy boards. After the conflict has been resolved,

run the Self Test again.

NI-CAN Software Problem Encountered
This error occurs if the Self Test detects that it is unable to communicate

correctly with the CAN hardware using the installed NI-CAN or NI-DNET

software. If you get this error, shut down your computer, restart it, and run

the Self Test again.

Appendix C Troubleshooting and Common Questions

© National Instruments C-3 NI-DNET User Manual

If the error continues after restart, uninstall NI-CAN (and NI-DNET) and

then reinstall.

NI-CAN Hardware Problem Encountered
This error occurs if the Self Test detects a defect in the CAN hardware. If

you get this error, write down the numeric code shown with the error and

contact National Instruments.

Common Questions

How can I determine which version of the NI-DNET software is

installed on my system?

Within MAX, open the Software branch and select NI-DNET. The version

is displayed in the right pane of MAX.

How many CAN cards can I configure for use with my NI-DNET

software?

The NI-DNET software can be configured to communicate with up to

32 CAN cards on all supported operating systems.

Which CAN hardware for DeviceNet does the NI-DNET software

support?

The NI-DNET software for supports Port 1, Series 1, High-Speed (HS)

cards. Although you can use 2-port CAN cards, only the top port can be

used with NI-DNET. For more information, refer to Chapter 2, NI-DNET

Hardware Overview.

Does NI-DNET support 2-port CAN cards?

Refer to the previous question.

Are interrupts required for the NI-CAN cards?

Yes, one interrupt per card is required. However, PCI and PXI CAN cards

can share interrupts with other devices in the system.

Does the CAN card provide power to the CAN bus?

No. To provide power to the CAN bus, you need an external power supply.

Appendix C Troubleshooting and Common Questions

NI-DNET User Manual C-4 ni.com

Can I use multiple PCMCIA cards in one computer?

Yes, but make sure there are enough free resources available. Unlike PCI

or PXI CAN cards, PCMCIA CAN cards cannot share resources, such as

IRQs, with other devices.

Why are some components left after the NI-DNET software is

uninstalled?

The uninstall program removes only items that the installation program

installed. If you add anything to a directory that was created by the

installation program, the uninstall program does not delete that directory,

because the directory is not empty after the uninstallation. You must

remove any remaining components yourself.

© National Instruments D-1 NI-DNET User Manual

D
Hardware Specifications

This appendix describes the physical characteristics of the DeviceNet

hardware, along with the recommended operating conditions.

PCI-CAN Series
Dimensions... 10.67 × 17.46 cm

(4.2 × 6.9 in.)

Power requirement +5 VDC, 775 mA typical

I/O connector.. 5-pin Combicon-style pluggable

DeviceNet screw terminal

(high-speed CAN only)

Operating environment

Ambient temperature 0 to 55 °C

Relative humidity............................ 10 to 90%, noncondensing

Storage environment

Ambient temperature –20 to 70 °C

Relative humidity............................ 5 to 90%, noncondensing

PCMCIA-CAN Series
Dimensions... 8.56 × 5.40 × 0.5 cm

(3.4 × 2.1 × 0.4 in.)

Power requirement 500 mA typical

I/O connector.. Cable with 9-pin D-SUB and

pluggable screw terminal for

each port

Operating environment

Ambient temperature 0 to 55 °C

Relative humidity............................ 10 to 90%, noncondensing

Appendix D Hardware Specifications

NI-DNET User Manual D-2 ni.com

Storage environment

Ambient temperature–20 to 70 °C

Relative humidity5 to 90%, noncondensing

PXI-CAN Series
Dimensions ...16.0 × 10.0 cm

(6.3 × 3.9 in.)

Power requirement..................................+5 VDC, 775 mA typical

I/O connector ..9-pin D-SUB for each port

(standard)

or

5-pin Combicon-style pluggable

DeviceNet screw terminal

(high-speed CAN only)

Operating environment

Ambient temperature0 to 55 °C

Relative humidity10 to 90%, noncondensing

Storage environment

Ambient temperature–20 to 70 °C

Relative humidity5 to 95%, noncondensing

(Tested in accordance with

IEC 60068-2-1, IEC-60068-2-2,

IEC-60068-2-56.)

Functional Shock30 g peak, half-sine, 11 ms pulse

(Tested in accordance with

IEC 60068-2-27. Test profile

developed in accordance with

MIL-T-28800E.)

Random Vibration

Operating ...5 to 500 Hz, 0.3 grms

Nonoperating5 to 500 Hz, 2.4 grms

(Tested in accordance with

IEC 60068-2-64. Nonoperating

test profile developed in

accordance with MIL-T-28800E

and MIL-STD-810E

Method 514.)

Appendix D Hardware Specifications

© National Instruments D-3 NI-DNET User Manual

Port Characteristics
Bus power .. 0 to 30 V, 40 mA typical,

100 mA maximum

CAN-H, CAN-L..................................... –8 to +18 V, DC or peak, CATI

Safety
This product meets the requirements of the following standards of safety

for electrical equipment for measurement, control, and laboratory use:

• IEC 61010-1, EN 61010-1

• UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online

Product Certification section.

Electromagnetic Compatibility
This product meets the requirements of the following EMC standards for

electrical equipment for measurement, control, and laboratory use:

• EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity 1

• EN 55011 (CISPR 11): Group 1, Class A emissions

• AS/NZS CISPR 11: Group 1, Class A emissions

• FCC 47 CFR Part 15B: Class A emissions

• ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the Online

Product Certification section.

Note For EMC compliance, operate this device with shielded cabling.

CE Compliance
This product meets the essential requirements of applicable European

Directives as follows:

• 2006/95/EC; Low-Voltage Directive (safety)

• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Appendix D Hardware Specifications

NI-DNET User Manual D-4 ni.com

Online Product Certification
To obtain product certifications and the Declaration of Conformity (DoC)

for this product, visit ni.com/certification, search by model number

or product line, and click the appropriate link in the Certification column.

Environmental Management
NI is committed to designing and manufacturing products in an

environmentally responsible manner. NI recognizes that eliminating

certain hazardous substances from our products is beneficial to the

environment and to NI customers.

For additional environmental information, refer to the NI and the

Environment Web page at ni.com/environment. This page contains the

environmental regulations and directives with which NI complies, as well

as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of their life cycle, all products must be sent to a WEEE recycling

center. For more information about WEEE recycling centers and National Instruments

WEEE initiatives, visit ni.com/environment/weee.htm.

RoHS

National Instruments (RoHS)
National Instruments RoHS ni.com/environment/rohs_china

(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

© National Instruments E-1 NI-DNET User Manual

E
Technical Support and
Professional Services

Log in to your National Instruments ni.com User Profile to get

personalized access to your services. Visit the following sections of

ni.com for technical support and professional services:

• Support—Technical support at ni.com/support includes the

following resources:

– Self-Help Technical Resources—For answers and solutions,

visit ni.com/support for software drivers and updates,

a searchable KnowledgeBase, product manuals, step-by-step

troubleshooting wizards, thousands of example programs,

tutorials, application notes, instrument drivers, and so on.

Registered users also receive access to the NI Discussion Forums

at ni.com/forums. NI Applications Engineers make sure every

question submitted online receives an answer.

– Standard Service Program Membership—This program

entitles members to direct access to NI Applications Engineers

via phone and email for one-to-one technical support, as well as

exclusive access to eLearning training modules at ni.com/

elearning. All customers automatically receive a one-year

membership in the Standard Service Program (SSP) with the

purchase of most software products and bundles including

NI Developer Suite. NI also offers flexible extended contract

options that guarantee your SSP benefits are available without

interruption for as long as you need them. Visit ni.com/ssp for

more information.

For information about other technical support options in your

area, visit ni.com/services, or contact your local office at

ni.com/contact.

• Training and Certification—Visit ni.com/training for training

and certification program information. You can also register for

instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, National Instruments

Appendix E Technical Support and Professional Services

NI-DNET User Manual E-2 ni.com

Alliance Partner members can help. To learn more, call your local

NI office or visit ni.com/alliance.

You also can visit the Worldwide Offices section of ni.com/niglobal

to access the branch office Web sites, which provide up-to-date contact

information, support phone numbers, email addresses, and current events.

© National Instruments G-1 NI-DNET User Manual

Glossary

Symbol Prefix Value

m milli 10–3

k kilo 103

A

A amperes

AC alternating current

actuator A device that uses electrical, mechanical, or other signals to change

the value of an external, real-world variable. In the context of device

networks, actuators are devices that receive their primary data value from

over the network; examples include valves and motor starters. Also known

as final control element.

ANSI American National Standards Institute

Application

Programming Interface

(API)

A collection of functions used by a user application to access hardware.

Within NI-DNET, you use API functions to make calls into the NI-DNET

driver.

ASCII American Standard Code for Information Exchange

Assembly Object Objects in DeviceNet devices which route I/O message contents to/from

individual attributes in the device.

attribute The externally visible qualities of an object; for example, an instance

square of class Geometric Shapes could have the attributes length of sides

and color, with the values 4 in. and blue.

automatic polling A polled I/O mode in which NI-DNET automatically determines an

appropriate scanned polling rate for your DeviceNet system.

Glossary

NI-DNET User Manual G-2 ni.com

B

b Bits

background polling A polled I/O communication scheme in which all polled slaves are grouped

into two different communication rates: a foreground rate and a slower

background rate.

bit strobed I/O Master/slave I/O connection in which the master broadcasts a single strobe

command to all strobed slaves then receives a strobe response from each

strobed slave.

C

CAN Controller Area Network

change-of-state I/O Master/slave I/O connection which is similar to cyclic I/O but data can be

sent when a change in the data is detected.

class A classification of things with similar qualities.

client In explicit messaging connections, the client is the device requesting

execution of the service.

common services Services defined by the DeviceNet specification such that they are largely

interoperable.

connection An association between two or more devices on a network that describes

when and how data is transferred.

controller A device that receives data from sensors and sends data to actuators to hold

one or more external, real-world variables at a certain level or condition.

A thermostat is a simple example of a controller.

COS I/O See change-of-state I/O.

cyclic I/O Master/slave I/O connection in which the slave (or master) sends data at a

fixed interval.

Glossary

© National Instruments G-3 NI-DNET User Manual

D

DC direct current

device A physical assembly, linked to a communication line (cable), capable of

communicating across the network according to a protocol specification.

device network Multi-drop digital communication network for sensors, actuators, and

controllers.

device profiles DeviceNet specifications which provide interoperability for devices of the

same type.

direct entry Microsoft Win 32 functions used to directly access the functions of a

Dynamic Link Library (DLL).

DLL Dynamic Link Library

driver attributes Attributes of the NI-DNET driver software.

E

EDS Electronic Data Sheet. Text file that describes DeviceNet device features

electronically.

expected packet rate The rate (in milliseconds) at which a DeviceNet connection is expected to

transfer its data.

Explicit messaging

connection

General-purpose connection used for executing services on a particular

object in a DeviceNet device.

F

FCC Federal Communications Commission

ft feet

FTP File transfer protocol

Glossary

NI-DNET User Manual G-4 ni.com

H

hex Hexadecimal

Hz Hertz

I

I/O connection Connection used for exchange of physical input/output (sensor/activator)

data, as well as other control-oriented data.

in. inches

individual polling A polled I/O communication scheme in which each polled slave

communicates at its own individual rate.

instance A specific instance of a given class. For example, a blue square of 4 inches

per side would be one instance of the class Squares.

ISO International Standards Organization

K

KB Kilobytes of memory

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench

LED light-emitting diode

local Within NI-DNET, anything that exists on the same host (personal

computer) as the NI-DNET driver.

M

m meter

MAC ID Media access control layer identifier. In DeviceNet, a device’s MAC ID

represents its address on the DeviceNet network.

Glossary

© National Instruments G-5 NI-DNET User Manual

master/slave DeviceNet communication scheme in which a master device allocates

connections to one or more slave devices, and those slave devices can only

communicate with the master and not one another.

MB Megabytes of memory

member Individual data value within a DeviceNet I/O Assembly.

method See service.

multi-drop A physical connection in which multiple devices communicate with one

another along a single cable.

N

network interface A device’s physical connection onto a network.

network management

utility

Utility used to manage configuration of DeviceNet devices.

network who A search of a DeviceNet network to determine information about its

devices.

NI-DNET driver Device driver and/or firmware that implement all the specifics of a

National Instruments DeviceNet interface.

notification Within NI-DNET, an operating system mechanism that the NI-DNET

driver uses to communicate events to your application. You can think of a

notification of as an API function, but in the opposite direction.

O

object See instance.

object-oriented A software design methodology in which classes, instances, attributes, and

methods are used to hide all of the details of a software entity that do not

contribute to its essential characteristics.

ODVA Open DeviceNet Vendor’s Association

Glossary

NI-DNET User Manual G-6 ni.com

P

PC personal computer

peer-to-peer DeviceNet communication scheme in which each device communicates as

a peer and connections are established among devices as needed.

PLC Programmable Logic Controller

polled I/O Master/slave I/O connection in which the master sends a poll command to

a slave, then receives a poll response from that slave.

protocol A formal set of conventions or rules for the exchange of information among

devices of a given network.

R

RAM Random-access memory

remote Within NI-DNET, anything that exists in another device of the device

network (not on the same host as the NI-DNET driver).

resource Hardware settings used by National Instruments DeviceNet hardware,

including an interrupt request level (IRQ) and an 8 KB physical memory

range (such as D0000 to D1FFF hex).

S

s seconds

scanned polling A polled I/O communication scheme in which all poll commands are sent

out at the same rate, in quick succession.

sensor A device that measures electrical, mechanical, or other signals from an

external, real-world variable; in the context of device networks, sensors are

devices that send their primary data value onto the network; examples

include temperature sensors and presence sensors. Also known as

transmitter.

server In explicit messaging connections, the server is the device to which the

service is directed.

Glossary

© National Instruments G-7 NI-DNET User Manual

service An action performed on an instance to affect its behavior; the externally

visible code of an object. Within NI-DNET, you use NI-DNET functions

to execute services for objects. Also known as method and operation.

strobed I/O See bit strobed I/O.

V

V volts

VI Virtual Instrument

VxD Virtual device driver

© National Instruments I-1 NI-DNET User Manual

Index

A
Analyzer, 1-4

C
change protocol, 1-3

common questions, C-3

and troubleshooting, C-1

components left after NI-CAN software

uninstall, C-4

determining NI-CAN software version, C-3

how many CAN interfaces can be

configured, C-3

interrupts required for NI-CAN cards, C-3

NI-CAN card and power to CAN bus, C-3

troubleshooting with MAX, C-1

using multiple PCMCIA cards, C-4

Configurator, 1-4

configure DNET port, 1-2

conventions used in the manual, x

D
diagnostic tools (NI resources), E-1

documentation

conventions, x

how to use manual set, ix

NI resources, E-1

related conventions, x

drivers (NI resources), E-1

E
error message

interrupt resource conflict,

troubleshooting, C-2

memory resource conflict, C-2

NI-CAN hardware problem

encountered, C-3

NI-CAN software problem

encountered, C-2

examples (NI resources), E-1

H
help, technical support, E-1

I
installation and configuration

NI-DNET cards listed in MAX (figure), 1-2

verifying through MAX, 1-2

change protocol, 1-3

configure DNET port, 1-2

instrument drivers (NI resources), E-1

interrupt resource conflict, troubleshooting, C-2

K
KnowledgeBase, E-1

L
LabVIEW Real-Time (RT)

software configuration, 1-3

tools, 1-4

M
MAX

NI-DNET cards listed in MAX (figure), 1-2

tools launched from, 1-4

Measurement & Automation Explorer (MAX).

See MAX

Index

NI-DNET User Manual I-2 ni.com

memory resource conflict,

troubleshooting, C-2

missing CAN card, troubleshooting, C-1

N
National Instruments support

and services, E-1

NI I/O Trace, 1-5

NI-CAN hardware problem encountered,

troubleshooting, C-3

NI-CAN software problem encountered,

troubleshooting, C-2

NI-DNET, verify hardware installation in

MAX (figure), 1-2

P
PCI-CAN series board, specifications, D-1

PCMCIA-CAN series card,

specifications, D-1

port characteristics, D-3

programming examples (NI resources), E-1

PXI-8461

parts locator diagram (figure), B-5

port characteristics, D-3

R
related documentation, x

S
self-test failures, troubleshooting, C-2

software

LabVIEW Real-Time (RT)

tools, 1-4

LabVIEW Real-Time (RT),

configuration, 1-3

NI resources, E-1

specifications

PCI-CAN series board, D-1

PCMCIA-CAN series card, D-1

support, technical, E-1

T
technical support, E-1

training and certification (NI resources), E-1

troubleshooting

and common questions, C-1

interrupt resource conflict, C-2

memory resource conflict, C-2

missing CAN card, C-1

NI-CAN software problem

encountered, C-2, C-3

self-test failures, C-2

with MAX, C-1

troubleshooting (NI resources), E-1

W
Web resources, E-1

	NI-DNET User Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	How to Use the Manual Set
	Conventions
	Related Documentation

	Chapter 1 NI-DNET Software Overview
	Installation and Configuration
	Measurement & Automation Explorer (MAX)
	Verify Installation of Your DeviceNet Hardware
	Figure 1-1. NI-DNET Cards Listed in MAX
	Configure DeviceNet Port
	Change Protocol

	LabVIEW Real-Time (RT) Configuration
	Tools
	Configurator
	Analyzer
	NI I/O Trace

	NI-DNET Objects
	Interface Object
	Explicit Messaging Object
	I/O Object
	Example
	Figure 1-2. NI-DNET Objects for a Network of Three Devices

	Using NI-CAN with NI-DNET

	Chapter 2 NI-DNET Hardware Overview
	Types of Hardware
	Differences Between CAN Kits and DeviceNet Kits

	Chapter 3 Developing Your Application
	Accessing NI-DNET from your Programming Environment
	LabVIEW
	LabWindows/CVI
	Microsoft Visual Basic
	Microsoft C/C++
	Borland C/C++
	Other Programming Languages

	Programming Model for NI-DNET Applications
	Figure 3-1. General Programming Steps for an NI-DNET Application
	Step 1. Open Objects
	Step 2. Start Communication
	Step 3. Run Your DeviceNet Application
	Addition of Slave Connections after Communication Start

	Step 4. Stop Communication
	Step 5. Close Objects

	Multiple Applications on the Same Interface
	Checking Status in LabVIEW
	Checking Status in C, C++, and Visual Basic

	Chapter 4 NI-DNET Programming Techniques
	Configuring I/O Connections
	Expected Packet Rate
	Strobed I/O
	Figure 4-1. Strobed I/O Timing Example
	Polled I/O
	Figure 4-2. Scanned Polling Timing Example
	Figure 4-3. Background Polling Timing Example
	Figure 4-4. Individual Polling Timing Example
	Cyclic I/O
	Change-of-State (COS) I/O
	Figure 4-5. Congestion Due to Back-to-Back COS I/O

	Automatic EPR Feature

	Using I/O Data in Your Application
	Figure 4-6. AC Drive Output Assembly, Instance 20
	Table 4-1. Attribute Mapping for Basic Speed Control Output Assembly
	Accessing I/O Members in LabVIEW
	Accessing I/O Members in C

	Using Explicit Messaging Services
	Get and Set Attributes in a Remote DeviceNet Device
	Other Explicit Messaging Services

	Handling Multiple Devices
	Configuration
	Object Handles
	Main Loop

	Appendix A DeviceNet Overview
	History of DeviceNet
	Physical Characteristics of DeviceNet
	Table A-1. DeviceNet Baud Rates and Wiring Lengths

	General Object Modeling Concepts
	Figure A-1. Classes of Geometric Shapes

	Object Modeling in the DeviceNet Specification
	Figure A-2. Object Modeling Used in DeviceNet Specification

	Explicit Messaging Connections
	Table A-2. Explicit Message Request
	Table A-3. Explicit Message Response

	I/O Connections
	Figure A-3. Polled I/O Example
	Figure A-4. Strobed I/O Example
	Figure A-5. COS/Cyclic I/O Example

	Assembly Objects
	Figure A-6. Input and Output Assemblies
	Figure A-7. Input Assembly for Photoeye or Limit Switch

	Appendix B Cabling Requirements
	Connector Pinouts
	Figure B-1. Pinout for 5-Pin Combicon-Style Pluggable Screw Terminal
	Figure B-2. PCMCIA-CAN Bus-Powered Cable
	Figure B-3. Pinout for 9-Pin D-SUB Connector

	Power Supply Information for the DeviceNet Ports
	Table B-1. Power Requirements for the DeviceNet Physical Layer for Bus-Powered Versions
	Figure B-4. PCI-CAN Power Source Jumper
	Figure B-5. Power Source Jumpers
	Figure B-6. PXI-8461 Parts Locator Diagram

	Cable Specifications
	Cable Lengths
	Table B-2. DeviceNet Cable Length Specifications

	Maximum Number of Devices
	Cable Termination
	Figure B-7. Termination Resistor Placement

	Cabling Example
	Figure B-8. Cabling Example

	Appendix C Troubleshooting and Common Questions
	Troubleshooting with the Measurement & Automation Explorer (MAX)
	Troubleshooting Self Test Failures
	Common Questions

	Appendix D Hardware Specifications
	Appendix E Technical Support and Professional Services
	Glossary
	A
	B-C
	D-F
	H-M
	N-O
	P-S
	V

	Index
	A-M
	N-W

