COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

Bridging the gap between the manufacturer and your legacy test system.

(9)

1-800-915-6216

www.apexwaves.com

sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote

PCI-4461

SPECIFICATIONS NI 4461/4462

204.8 kS/s, 2-Input/2-Output or 4-Input Sound and Vibration Device/Module

This document lists specifications for the NI PCI/PXI-4461 and NI PCI/PXI-4462 (NI 4461/4462) Dynamic Signal Acquisition (DSA) devices. These specifications are typical at 25 °C unless otherwise stated. The operating range for the PXI-4461/4462 is 0 to 55 °C, and the operating range for the PCI-4461/4462 is 0 to 50 °C. All accuracies listed are valid for up to one year from the time of the device external calibration. All specifications are subject to change without notice. Visit ni.com/manuals for the most current specifications and product documentation.

Caution The inputs of this sensitive test and measurement product are not protected for electromagnetic interference for functional reasons. As a result, this product may experience reduced measurement accuracy or other temporary performance degradation when cables are attached in an environment with electromagnetic interference present. Refer to the Declaration of Conformity (DoC) for this product for details of the standards applied to assess electromagnetic compatibility performance. To obtain the DoC, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Terminology

Maximum and *minimum* specifications characterize the warranted performance of the instrument within the recommended calibration interval and under the stated operating conditions. These specifications are subject to production verification or guaranteed by design.

Typical specifications are specifications met by the majority of the instruments within the recommended calibration interval and under the stated operating conditions, based on measurements taken during production verification and/or engineering development. The performance of the instrument is not warranted.

Supplemental specifications describe the basic function and attributes of the instrument established by design and are not subject to production verification. They provide information that is relevant for the adequate use of the instrument that is not included in the previous definitions.

All performance specifications are *typical* unless otherwise noted. These specifications are valid within the full operating temperature range. Accuracy specifications are valid within ± 5 °C of the self calibration or over the full operating range as specifically noted.

Analog Input

This section lists the NI 4461/4462 analog input (AI) specifications.

Input Characteristics

nannels
2
4
Differential or pseudodifferential (50 Ω between negative input and chassis ground), each channel independently software selectable
AC or DC, each channel independently software selectable
24 bits
Delta-sigma
1 kS/s to 204.8 kS/s in 181.9 µS/s increments,
$128f_{\mathrm{s}}$
$64f_{ m s}$
$32f_{ m s}$

Input Signal Range

Gain (dB)	Full-Scale Range (V _{pk})*
30	±0.316
20	±1.00
10	±3.16
0	±10.0
-10	±31.6
-20	±42.4
* Each input channel gain is independently software selectable.	

Sample Clock Timebase Rate

Ratio between sample rate (f_s) and sample clock timebase rate

	Sample Clock Timebase Rate		
Sample Rate (f _s)	Low-Frequency Alias Rejection Enabled (Default)	Low-Frequency Alias Rejection Disabled	
$1.0 \text{ kS/s} \le f_{\text{s}} \le 1.6 \text{ kS/s}$	16,384 f _s	512 f _s	
$1.6 \text{ kS/s} < f_{\text{s}} \le 3.2 \text{ kS/s}$	$8{,}192f_{\mathrm{s}}$		
$3.2 \text{ kS/s} < f_{\text{s}} \le 6.4 \text{ kS/s}$	4,096 f _s		
$6.4 \text{ kS/s} < f_{\text{s}} \le 12.8 \text{ kS/s}$	2,048 f _s		
12.8 kS/s $< f_s \le 25.6$ kS/s	$1,024 f_{\rm s}$		
$25.6 \text{ kS/s} < f_{\text{s}} \le 51.2 \text{ kS/s}$	512 f _s		
$51.2 \text{ kS/s} < f_{\text{s}} \le 102.4 \text{ kS/s}$	256 f _s	256 f _s	
$102.4 \text{ kS/s} < f_{\text{s}} \le 204.8 \text{ kS/s}$	$128 f_{\rm s}$	$128f_{\rm s}$	

FIFO buffer size	2,047 samples
Data transfers	Direct memory access (DMA)

Input Common-Mode Range

		Configuration	
Gain (dB)	Input	Differential (V _{pk})*	Pseudodifferential (V _{pk})*
≥0	Positive input (+)	±12	±12
	Negative input (-)	±12	±10
<0	Positive input (+)	±42.4	±42.4
	Negative input (-)	±42.4	±10
* Voltages wit	th respect to chassis gro	und	

Input Overvoltage Protection

Differential configuration	$\pm 42.4 \ V_{pk}^{l}$	
Pseudodifferential configuration		
Positive terminal	$\pm 42.4~V_{pk}$	
Negative terminal (shield)	$\pm 10.0~V_{pk}$	

Transfer Characteristics

Al Offset (Residual DC)

Gain (dB)	DC-Coupled Offset*,†, Max, T _{cal} ‡ ±5 °C (±mV)	DC-Coupled Offset [*] , Max, Over Operating Temperature Range (±mV)
30	0.1	1
20	0.2	2
10	0.5	3
0	0.7	7
-10	5	30
-20	7	70

^{*} Source impedance $\leq 50 \ \Omega$.

Al Gain Amplitude Accuracy

1 kHz input tone $T_{cal} \pm 5 \, ^{\circ}\text{C} \qquad \qquad \pm 0.03 \, \text{dB max}$ $(T_{cal} = \text{ambient temperature at which last self calibration was performed.})$ (Listed accuracy is valid 24 hours following a self calibration.) $\text{Over operating temperature range} \qquad \pm 0.2 \, \text{dB max}$

[†]Listed offset is valid 24 hours following a self calibration.

 $^{^{\}ddagger}$ T_{cal} = ambient temperature at which last self calibration was performed.

¹ With respect to chassis ground.

^{4 |} ni.com | NI 4461/4462 Specifications

Amplifier Characteristics

Input Impedance

Input Impedance	Differential Configuration	Pseudodifferential Configuration
Between positive input and chassis ground	1 MΩ 217 pF	1 MΩ 217 pF
Between negative input and chassis ground	1 MΩ 229 pF	50 Ω

Common-Mode Rejection Ratio (CMRR)

Gain (dB)	DC-Coupled CMRR (dBc)*,†	AC-Coupled CMRR (dBc) ^{†,‡}
30	105	70
20	101	
10	90	
0	80	
-20, -10	60	65

^{* ≤ 1} kHz

Dynamic Characteristics

Specification	Low-Frequency Alias Rejection Enabled (Default)	Low-Frequency Alias Rejection Disabled
Alias-free bandwidth (BW) (passband)	DC to 0.4 f _s	DC to $0.4535 f_{\rm s}$
Alias rejection, minimum	104 dBc	120 dBc

[†] Differential configuration

^{‡ 50} or 60 Hz

Specification	Low-Frequency Alias Rejection Enabled (Default)	Low-Frequency Alias Rejection Disabled
Alias rejection by frequency	Input frequency $> 0.6 f_s$	$0.5465 f_{\rm s}$ < input frequency < 127.4535 $f_{\rm s}$, where 1.0 kS/s $\leq f_{\rm s} \leq$ 51.2 kS/s
		$0.5465 f_{\rm s}$ < input frequency < $63.4535 f_{\rm s}$, where $51.2 \text{ kS/s} < f_{\rm s} \le 102.4 \text{ kS/s}$
		$0.5465 f_{\rm s}$ < input frequency < $31.4535 f_{\rm s}$, where $102.4 \text{ kS/s} < f_{\rm s} \le 204.8 \text{ kS/s}$
-3 dB BW	$0.484 f_{\rm s}$	$0.491 f_{\rm s}$

Figure 1. NI 4461/4462 Digital Filter Input Frequency Response with Low-Frequency Alias Rejection Enabled

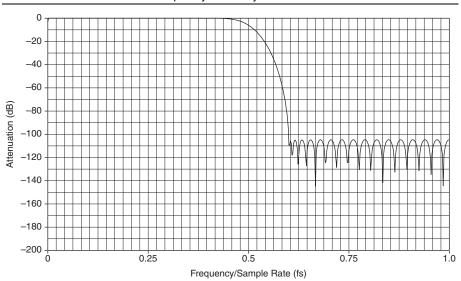
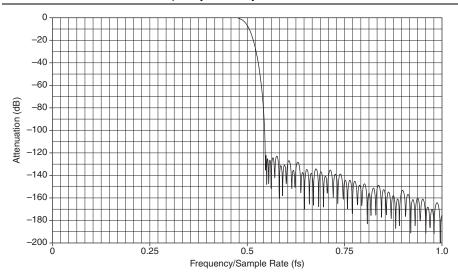



Figure 2. NI 4461/4462 Digital Filter Input Frequency Response with Low-Frequency Alias Rejection Disabled

AC coupling

-3 dB cutoff frequency	3.4 Hz
------------------------	--------

-0.1 dB cutoff frequency 22.6 Hz

Figure 3. Magnitude Response of AC Coupling Circuit (1 Hz to 1 kHz)

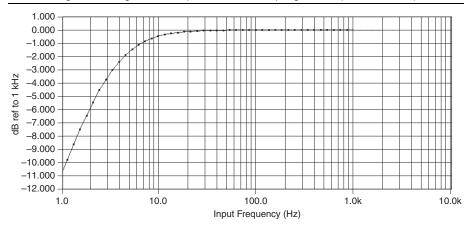
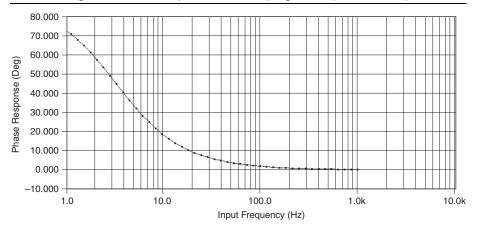



Figure 4. Phase Response of AC Coupling Circuit (1 Hz to 1 kHz)

ADC Filter Delay

Low-Frequency Alias Rejection Enabled (Default)		Low-Frequency Alias Rejection Disabled
Sample Rate (kS/s)	Filter Delay (Samples)	Filter Delay (Samples)
$1.0 \le f_{\rm s} \le 1.6$	32.96875	63
$1.6 < f_s \le 3.2$	33.9375	
$3.2 < f_s \le 6.4$	35.875	
$6.4 < f_{\rm s} \le 12.8$	39.75	
$12.8 < f_{\rm s} \le 25.6$	47.5	
$25.6 < f_{\rm s} \le 204.8$	63	

Al Flatness

	DC-Coupled Flatness* (dB), Max (Typical)		
Gain (dB)	20 Hz to 20 kHz	20 Hz to 45 kHz	20 Hz to 92.2 kHz
0, 10, 20, 30	±0.006 (±0.003)	±0.03 (±0.02)	±0.1 (±0.08)
-20, -10	±0.2 (±0.1)	±0.6 (±0.33)	±1 (±0.55)
*F H # # C004010/			

^{*} For all attenuation settings, measurements relative to 1 kHz, at an update rate of 204.8 kS/s.

Al Interchannel Gain Mismatch

	DC-Coupled Mismatch (dB)*		AC-Coupled Mismatch (dB)*
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz	20 Hz
30	0.004	0.008	0.004
0, 10, 20	0.003	0.003	
-20, -10	0.04	0.25	0.006
* Identical channel configurations			

Al Interchannel Phase Mismatch

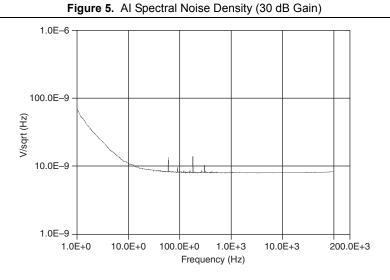
	DC-Coupled Mismatch (deg)*		AC-Coupled Mismatch (deg)*
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz	20 Hz
30	0.10	0.60	0.08
20	0.04	0.15	
0, 10	0.015	0.08	
-20, -10	0.7	1	
* Identical channel configurations			

Note All gain and phase mismatch specifications are for the same device and are not applicable between different NI 4461/4462 devices.

Al Phase Linearity

	Linearity (deg)	
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz
0, 10, 20, 30	±0.01	±0.03
-20, -10	±0.10	±1

Al Idle Channel Noise


	Idle Channel Noise*,†	
Sample Rate (kS/s)	dBV _{rms}	μV_{rms}
$1.0 \text{ kS/s} \le f_{s} \le 51.2 \text{ kS/s}$	-118 dBV _{rms}	$1.3~\mu V_{rms}$
$51.2 \text{ kS/s} < f_{s} \le 102.4 \text{ kS/s}$	-115 dBV _{rms}	$1.8~\mu V_{rms}$
$102.4 \text{ kS/s} < f_{\rm s} \le 204.8 \text{ kS/s}$	-111 dBV _{rms}	$2.8~\mu V_{rms}$

^{*} Source impedance $\leq 50 \Omega$

Al Spectral Noise Density

AI spectral noise density (with Enhanced Alias

^{† 30} dB gain

Al Dynamic Range

Gain	Dynamic Range (dBFS)*, Min (Typical)		
Setting (dB)	1 kS/s \leq $f_{\rm s}$ \leq 51.2 k S/s	51.2 kS/s < f _s ≤ 102.4 kS/s	102.4 kS/s < f _s ≤ 204.8 kS/s
30	103 (105)	100 (102)	96 (98)
20	111 (113)	108 (110)	104 (106)
10	114 (117)	111 (114)	106 (110)
0	116 (118)	113 (114)	107 (110)
-10	107 (108)	104 (105)	101 (102)
-20	105 (107)	102 (104)	98 (101)
* 1 kHz input tone, -60 dBFS input amplitude			

Al Spurious Free Dynamic Range (SFDR)

Gain Setting (dB)	SFDR (dBc)*, †, ‡
30	106
0, 10, 20	108
-20, -10	110

 $^{^*}f_{\rm s}=204.8~{\rm kS/s}$ † 1 kHz input tone, input amplitude is the lesser of -1 dBFS or 8.91 V_{pk}. ‡ Measurement includes all harmonics.

Figure 6. SFDR 51.2 kS/s (-1 dBFS, 0 dB Gain, 1 kHz Sine Wave Input)

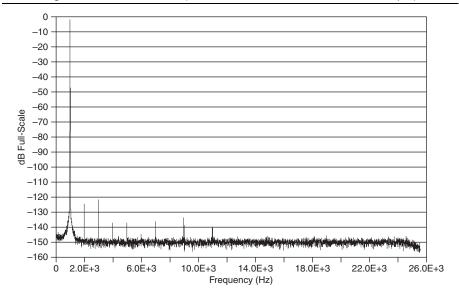


Figure 7. SFDR 102.4 kS/s (-1 dBFS, 0 dB Gain, 1 kHz Sine Wave Input)

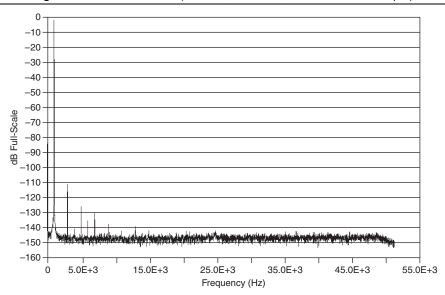
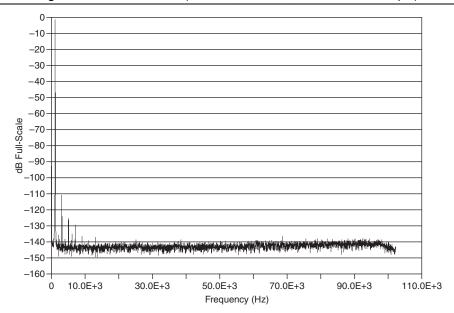
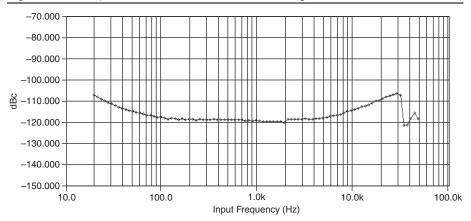



Figure 8. SFDR 204.8 kS/s (-1 dBFS, 0 dB Gain, 1 kHz Sine Wave Input)

Al Total Harmonic Distortion (THD), Balanced Source

	THD (dBc)*, †	
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz
30	-100	-97
20	-109	-106
0, 10	-107	-104
-10	-108	-107
-20	-107	-106

 $^{^*}f_s = 204.8 \text{ kS/s}, 92.8 \text{ kHz BW}, differential configuration}$


AI THD, Unbalanced Source

	THD (dBc)*,†	
Gain (dB)	20 Hz to 20 kHz 20 Hz to 92.2 kHz	
30	-100	-93
20	-106	-94

 $^{^{\}dagger}$ Input amplitude is the lesser of -1 dBFS or 8.91 $V_{pk}.$

	THD (dBc)*, †	
Gain (dB)	20 Hz to 20 kHz	20 Hz to 92.2 kHz
10	-105	-92
0	-97	-87
-10	-90	-88
-20	-91	-89

Figure 9. AI THD (Balanced Source with Differential Configuration, 204.8 kS/s, 0 dB Gain)

Al THD Plus Noise (THD+N), Balanced Source

	THD+N (dBc)*	
Gain (dB)	51.2 kS/s 20 Hz to 20 kHz [†]	204.8 kS/s 20 Hz to 92.2 kHz [‡]
30	-103	-94
20	-107	-95
10	-108	-96
0	-107	-96

 $^{^*}f_{\rm s}$ = 204.8 kS/s, 92.8 kHz BW † Input amplitude is the lesser of -1 dBFS or 8.91 V_{pk}.

	THD+N (dBc)* 51.2 kS/s 204.8 kS/s 20 Hz to 20 kHz† 20 Hz to 92.2 kHz‡	
Gain (dB)		
-10	-96	-91
-20	-94	-88

 $^{^{\}ast}$ Input amplitude is the lesser of -1 dBFS or 8.91 $V_{pk},$ differential configuration.

Al THD+N, Unbalanced Source

	THD+N (dBc)*	
Gain (dB)	51.2 kS/s 20 Hz to 20 kHz [†]	204.8 kS/s 20 Hz to 92.2 kHz [‡]
30	-103	-91
20	-107	-93
10	-108	-91
0	-104	-87
-10	-94	-86
-20	-93	-86

 $^{^{*}}$ Input amplitude is the lesser of -1 dBFS or 8.91 V_{pk} .

Al Intermodulation Distortion (IMD)

Gain (dB)	IMD (dBc)*
20, 30	-109
10	-107
0	-104
-20, -10	-111
* CCIF 14 kHz + 15 kHz, each tone amplitude is the lesser of -6 dBFS or 5 V _{pk} .	

^{† 23.2} kHz measurement BW

^{‡ 92.8} kHz measurement BW

^{† 23.2} kHz measurement BW

^{‡ 92.8} kHz measurement BW

Crosstalk, Input Channel Separation

	Crosstalk for Adjacent (Nonadjacent) Channels (dBc)*.†	
Gain (dB)	1 kHz Signal 92.2 kHz	
30	-130 (-140)	-110 (-124)
0, 10, 20	-138 (-145)	-110 (-124)
-20, -10	-96 (-124)	-60 (-108)

Source impedance $\leq 50 \Omega$

Onboard Calibration Reference

DC level	5.000 V ±2.5 mV
Temperature coefficient	±5 ppm/°C max
Long-term stability	$\pm 15 \text{ ppm} / \sqrt{1,000 \text{ hr}}$

Integrated Electronic Piezoelectric (IEPE)

Current	0 mA, 4 mA $\pm 15\%$, or 10 mA $\pm 15\%$, each channel independently software selectable	
Compliance	24 V min	

Note Use the following equation to make sure that your configuration meets the IEPE compliance voltage range.

$$V_{common-mode} + V_{bias} + V_{full-scale}$$
 must be 0 to 24 V,

where $V_{common-mode}$ is the common-mode voltage seen by the input channel,

 V_{bias} is the DC bias voltage of the sensor, and

 $V_{full-scale}$ is the AC full-scale voltage of the sensor.

Channel input impedance

 $<300 \text{ pA}/\sqrt{\text{Hz}}$ Current noise

 $^{^{\}dagger}$ Input amplitude is the lesser of -1 dBFS or 8.91 V_{nk} .

Transducer Electronic Data Sheet (TEDS) Support

Supports Transducer Electronic Data	
Sheet (TEDS) according to the IEEE 1451 Standard	Class Lall modula inputs
IEEE 1431 Standard	. Class I, all module inputs

Note For more information about TEDS, go to ni.com/info and enter the Info Code rdteds.

Analog Output (NI 4461 Only)

This section lists the NI 4461 analog output (AO) specifications.

Output Characteristics

Number of output channels	2, simultaneously sampled
Output configuration	Differential or pseudodifferential (50 Ω to chassis ground on shield), each channel independently software selectable
DAC resolution	24 bits
DAC type	Delta-sigma
Update rates (f_s)	1 kS/s to 204.8 kS/s in 181.9 $\mu\text{S/s}$ increments, maximum
DAC modulator oversample rate	
$1.0 \text{ kS/s} \le f_{\text{s}} \le 1.6 \text{ kS/s}$	$8{,}192f_{\rm s}$
$1.6 \text{ kS/s} < f_{\text{s}} \le 3.2 \text{ kS/s}$	$4,096 f_{\rm s}$
$3.2 \text{ kS/s} < f_{\text{s}} \le 6.4 \text{ kS/s}$	$2,048 f_{ m s}$
$6.4 \text{ kS/s} < f_{\text{s}} \le 12.8 \text{ kS/s}$	$1,024 f_{\rm s}$
$12.8 \text{ kS/s} < f_{\rm s} \le 25.6 \text{ kS/s}$	512 f _s
$25.6 \text{ kS/s} < f_{\text{s}} \le 51.2 \text{ kS/s}$	$256f_{\mathrm{s}}$
$51.2 \text{ kS/s} < f_s \le 102.4 \text{ kS/s}$	128 f _s
$102.4 \text{ kS/s} < f_{\text{s}} \le 204.8 \text{ kS/s}$	$64f_{ m s}$
FIFO buffer size	1,023 samples
Data transfers	DMA

Output Signal Range

Attenuation (dB)	Full-Scale Range (V _{pk})*
40	±0.1
20	±1.0
0 ±10.0	
* Each output channel range is independently software selectable.	

Transfer Characteristics

AO Offset (Residual DC)

Attenuation (dB)	Maximum Offset*, T _{cal} ± 5 °C†(±mV)	Maximum Offset, Over Operating Temperature Range (±mV)
20, 40	1	2
0	1	10

^{*} Listed offset is valid 24 hours following a self calibration.

AO Gain Amplitude Accuracy

Specifications valid at any attenuation setting with a 1 kHz output signal.

 $T_{cal} \pm 5 \,^{\circ}C$ $\pm 0.04 \, dB \, max$

 $(T_{cal} = ambient temperature at which last self calibration was performed.)$

(Listed accuracy is valid 24 hours following a self calibration.)

Over operating temperature

range..... $\pm 0.1 \text{ dB max}$

Output Characteristics

Output coupling	DC
Short circuit protection	Indefinite protection between positive and negative
Minimum working load	600 Ω

[†] T_{cal} = ambient temperature at which last self calibration was performed.

Output Impedance

Output Impedance	Differential Configuration	Pseudodifferential Configuration
Between positive output and chassis ground	2.4 kΩ	70 Ω
Between negative output and chassis ground	2.4 kΩ	50 Ω
Between positive and negative outputs	22 Ω	22 Ω

Dynamic Characteristics

Image rejection	75 dB min < 768 kHz, 66 dB min > 768 kHz
-3 dB BW	$0.487 f_{\rm s}$

Table 1. DAC filter delay (samples)

Sample Rate (kS/s)	Interpolation Factor	Filter Delay (Samples)
$1.0 \le f_{\rm s} \le 1.6$	128	36.6
$1.6 < f_{\rm s} \le 3.2$	64	36.8
$3.2 < f_s \le 6.4$	32	37.4
$6.4 < f_{\rm s} \le 12.8$	16	38.5
$12.8 < f_{\rm s} \le 25.6$	8	40.8
$25.6 < f_s \le 51.2$	4	43.2
$51.2 < f_s \le 102.4$	2	48.0
$102.4 < f_{\rm s} \le 204.8$	1	32.0

AO Flatness

For all attenuation settings, measurements relative to 1 kHz, at an update rate of 204.8 kS/s		
20 Hz to 20 kHz	±0.008 dB max	
20 Hz to 92.1 kHz	±0.1 dB max	

AO Idle Channel Noise

	Maximum Idle Channel Noise					
	102.5 kS/s (30 kHz BW)		204.8 kS/s (80 kHz BW)		204.8 kS/s (500 kHz BW)	
Attenuation (dB)	dB V _{rms}	μV_{rms}	dB V _{rms}	μV_{rms}	dB V _{rms}	μV_{rms}
40	-106	5	-101	9	-87	45
20	-106	5	-101	9	-86	50
0	-96	16	-93	23	-73	224
* Noise equivalent bandwidth						

AO Dynamic Range

	Minimum Dynamic Range (dBFS)*		
Attenuation (dB)	102.5 kS/s (30 kHz BW) [†]	204.8 kS/s (80 kHz BW) [†]	204.8 kS/s (500 kHz BW) [†]
40	83	78	64
20	103	98	83
0	113	110	90

^{* 1} kHz output frequency, -60 dBFS output amplitude

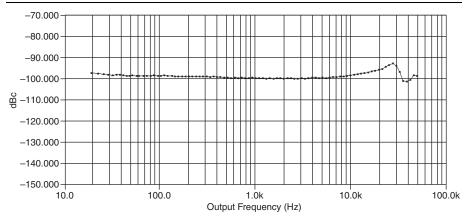
AO Spurious Free Dynamic Range (SFDR)

Attenuation (dB)	SFDR (dBc)*, †, ‡
40	87
20	94
0	98

 $f_s = 204.8 \text{ kS/s}$

[†] Noise equivalent bandwidth

^{† 1} kHz output frequency, -1 dBFS output amplitude


[‡] Measurement includes all harmonics.

AO THD

	THD (dBc) [*]		
Attenuation (dB)	102.5 kS/s 20 Hz to 20 kHz [†]	204.8 kS/s 20 Hz to 20 kHz [‡]	204.8 kS/s 20 Hz to 92.1 kHz‡
40	-99	-92	-92
20	-98	-95	-93
0	-97	-94	-83

^{* -1} dBFS output amplitude

Figure 10. AO THD (204.8 kS/s, 0 dB Gain, 65,536 Samples, 92.8 kHz Measurement BW)

AO THD+N

	THD+N (dBc)*		
Attenuation (dB)	102.5 kS/s 20 Hz to 20 kHz [†]	204.8 kS/s 20 Hz to 80 kHz‡	204.8 kS/s 20 Hz to 92.1 kHz**
40	-83	-76	-63
20	-98	-92	-79
0	-97	-86	-68

^{* -1} dBFS output amplitude

^{† 30} kHz measurement BW

^{‡ 92.8} kHz measurement BW

^{† 30} kHz measurement BW

^{‡ 80} kHz measurement BW

^{** 500} kHz measurement BW

AO Intermodulation Distortion (IMD)

Attenuation (dB)	IMD (dBc) [⋆]	
40	-99	
20	-104	
0	-104	
* CCIF 14 kHz + 15 kHz, each tone amplitude is -6 dBFS.		

Crosstalk, Output to Input Channel Separation

	Crosstalk (dBc)*,†		
Gain (dB)	1 kHz Signal	92.1 kHz	
30	-151	-118	
20	-150	-118	
10	-144	-115	
0	-137	-111	
-20, -10	-87	-51	

^{*} Source impedance $\leq 50 \Omega$

Crosstalk, Output Channel Separation

All attenuation settings (0, 20, and 40 dB)

1 kHz signal	No measurable crosstalk
92.1 kHz signal	-110 dBc

AO Interchannel Gain Mismatch

All attenuation settings		
20 Hz to 92.1 kHz	0.03 dB	

 $^{^{\}dagger}$ Output amplitude is the lesser of -1 dBFS or 8.91 $V_{pk}.$

AO Interchannel Phase Mismatch

All attenuation settings		
20 Hz to 20 kHz	0.1°	
20 Hz to 92.1 kHz	0.2°	

Note All gain and phase mismatch specifications are for the same device and are not applicable between different NI 4461/4462 devices.

AO Phase Linearity

	Linearity (deg)	
Attenuation (dB)	20 Hz to 20 kHz	20 Hz to 92.1 kHz
0	±0.1	±1.7
20	± 0.1	±1.6
40	±0.1	±1.8

Power Off and Power Loss Behavior

When the NI 4461 is powered off or loses power, the output channels assume a high-impedance state. The outputs of the NI 4461 drop to 0.0 V in approximately 8 µs. The following illustrates the typical behavior of an NI 4461 generating 10 V when powered off or when the device loses power.

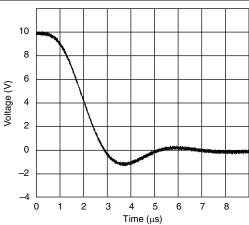


Figure 11. Power Off and Power Loss Behavior

Frequency Timebase Characteristics

nternal timebase	
Accuracy	±20 ppm, over operating temperature range
Aging	8 ppm in first year; 5 ppm max/year after first year
External timebase	Equal to accuracy of external timebase

Triggers

alog trigger		
Purpose	Start trigger	
Source		
NI 4461	AI0 or AI1	
NI 4462	AI0, AI1, AI2, or AI3	
Level	Full scale, programmable	
Slope	Positive (rising) or negative (falling), software selectable	
Resolution	24 bits	
Hysteresis	Programmable	
gital Trigger		
Purpose	Start or reference trigger	
Source	PFI0, PXI_Trig<06>	
Compatibility	Transistor-transistor logic (5V TTL)	
Polarity	Rising or falling edge	
Minimum pulse width	10 ns	

General Specifications

This section lists general specification information for the NI 4461/4462.

Bus Interface

PCI or PXI	3.3 V or 5 V signal environment	
DMA channels		
NI 4461	2, analog input and analog output	
NI 4462	1, analog input	

Synchronization

PXI	
CLK_10	Multiple, full chassis
PXI_STAR Up to 14 devices per chassis	
PCI	
RTSI	Up to 3 devices across ribbon cable

Power Requirements

Voltage	NI PXI-4461	NI PCI-4461	NI PXI-4462	NI PCI-4462
+5 V	990 mA	2,200 mA	990 mA	1,900 mA
+3.3 V	1,430 mA	1,750 mA	1,750 mA	2,300 mA
+12 V	170 mA	40 mA	130 mA	100 mA
-12 V	110 mA	40 mA	70 mA	40 mA

Physical

Dimensions (not including connector	rs)
PCI	17.5 cm \times 9.9 cm (6.9 in. \times 3.9 in.) PCI slot
PXI	16 cm \times 10 cm (6.3 in. \times 3.9 in.) 3U CompactPCI slot
Analog I/O connectors	BNC female
Digital trigger connector	SMB male

Weight

PCI	226.8 g (8.0 oz)
PXI	241 g (8.5 oz)
Measurement Category ¹	I

Caution Do *not* use the NI 4461/4462 for connections to signals or for measurements within Categories II, III, or IV.

Environmental

Operating Environment

PXI-4461/4462	0 to 55 °C
	(Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
PCI-4461/4462	0 to 50 °C (Tested in accordance with IEC 60068-2-1
	and IEC 60068-2-2.)
Relative humidity range	10 to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)
Altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	2

Storage Environment

Ambient temperature range	-20 to 70 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	5 to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

¹ Measurement Category is also referred to as Installation Category.

Shock and Vibration (PXI Only)

Operational shock	30 g peak, half-sine, 11 ms pulse
	(Tested in accordance with IEC 60068-2-27.
	Test profile developed in accordance with
	MIL-PRF-28800F.)
Random vibration	
Operating	5 to 500 Hz, $0.3~g_{rms}$
Nonoperating	5 to 500 Hz, 2.4 g _{rms}
	(Tested in accordance with IEC 60068-2-64.
	Nonoperating test profile exceeds the
	requirements of MIL-PRF-28800F, Class 3.)

Calibration

gain and offset corrections relative to high-precision internal reference.
Recommended whenever ambient temperature differs from T_{cal} by more than ± 5 °C. T_{cal} = ambient temperature at which the last calibration was performed. Listed accuracies are valid for 30 days following a self calibration.
1 year
15 minutes

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326 (IEC 61326): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the Online Product Certification section.

Note For EMC compliance, operate this product according to the documentation.

CE Compliance (€

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Worldwide Support and Services

The National Instruments website is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for NI Factory Installation Services, repairs, extended warranty, and other services.

Visit ni.com/register to register your National Instruments product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world. For telephone support in the United States, create your service request at ni.com/support or dial 1 866 ASK MYNI (275 6964). For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

Information is subject to change without notice. Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Helpo Patents in your software, the patents.txt file on your media, or the National Instruments Patents Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2004-2019 National Instruments. All rights reserved.

373770K-01 Aug14