

 AT-MIO-16D

https://www.apexwaves.com/modular-systems/national-instruments/at-series/AT-MIO-16D?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/at-series/AT-MIO-16D?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/at-series/AT-MIO-16D?aw_referrer=pdf

LabWindows/CVI
Standard Libraries
Reference Manual
Standard Libraries Reference Manual

February 1998 Edition

Part Number 320682D-01

Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1994, 1998 National Instruments Corporation. All rights reserved.

 Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks

CVI™, natinst.com™, National Instruments™, NI-488™, NI-488.2™, NI-488.2M™, NI-DAQ™, the CVI logo, the
National Instruments logo, and The Software is the Instrument™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v Standard Libraries Reference Manual

Contents

About This Manual
Organization of This Manual .. xxv
Conventions Used in This Manual.. xxvii
LabWindows/CVI Documentation Set ... xxviii
Related Documentation... xxviii
Customer Communication .. xxix

Chapter 1
ANSI C Library

Low-Level I/O Functions.. 1-2
Standard Language Additions...1-3
Character Processing... 1-6
String Processing .. 1-6
Input/Output Facilities .. 1-6
File I/O Functions Set errno..1-7
Mathematical Functions.. 1-7
Time and Date Functions .. 1-7

Configuring the DST Rules String ...1-8
Modifying the DST Rules String..1-8

Suppressing Daylight Savings Time ..1-9
Starting Year in Daylight Savings Time ..1-9

Control Functions ... 1-9
ANSI C Library Function Reference ..1-11

fdopen ... 1-12

Chapter 2
Formatting and I/O Library

Formatting and I/O Library Function Overview... 2-1
Formatting and I/O Library Function Panels.. 2-1
Class and Subclass Descriptions .. 2-3
String Manipulation Functions ... 2-3
Special Nature of the Formatting and Scanning Functions2-3

Formatting and I/O Library Function Reference .. 2-4
ArrayToFile .. 2-5
CloseFile... 2-8
CompareBytes .. 2-9
CompareStrings .. 2-11
CopyBytes .. 2-13

Contents

Standard Libraries Reference Manual vi © National Instruments Corporation

CopyString ... 2-14
FileToArray.. 2-15
FillBytes ... 2-18
FindPattern ... 2-19
Fmt ... 2-21
FmtFile ... 2-23
FmtOut ... 2-24
GetFileInfo ... 2-25
GetFmtErrNdx ... 2-26
GetFmtIOError... 2-27
GetFmtIOErrorString ... 2-28
NumFmtdBytes .. 2-29
OpenFile... 2-30
ReadFile ... 2-32
ReadLine .. 2-34
Scan.. 2-36
ScanFile.. 2-38
ScanIn... 2-40
SetFilePtr.. 2-42
StringLength... 2-44
StringLowerCase.. 2-45
StringUpperCase .. 2-46
WriteFile .. 2-47
WriteLine ... 2-49

Using the Formatting and Scanning Functions .. 2-50
Introductory Formatting and Scanning Examples ... 2-50
Formatting Functions ... 2-51

Formatting Functions—Format String .. 2-51
Formatting Modifiers... 2-54
Fmt, FmtFile, FmtOut—Asterisks (*) Instead of

Constants in Format Specifiers ... 2-61
Fmt, FmtFile, FmtOut—Literals in the Format String 2-61

Scanning Functions .. 2-62
Scanning Functions—Format String ... 2-62
Scanning Modifiers.. 2-66
Scan, ScanFile, ScanIn—Asterisks (*) Instead of

Constants in Format Specifiers ... 2-74
Scan, ScanFile, ScanIn—Literals in the Format String................... 2-75

Formatting and I/O Library Programming Examples .. 2-75
Fmt/FmtFile/FmtOut Examples in C ... 2-76

Integer to String ... 2-76
Short Integer to String ... 2-77
Real to String in Floating-Point Notation.. 2-78

Contents

© National Instruments Corporation vii Standard Libraries Reference Manual

Real to String in Scientific Notation ..2-78
Integer and Real to String with Literals ...2-79
Two Integers to ASCII File with Error Checking............................2-79
Real Array to ASCII File in Columns and

with Comma Separators .. 2-79
Integer Array to Binary File, Assuming a Fixed Number

of Elements.. 2-80
Real Array to Binary File, Assuming a Fixed Number

of Elements.. 2-80
Real Array to Binary File, Assuming a Variable Number

of Elements.. 2-81
Variable Portion of a Real Array to a Binary File2-81
Concatenating Two Strings.. 2-82
Appending to a String .. 2-83
Creating an Array of Filenames ... 2-84
Writing a Line That Contains an Integer with Literals

to the Standard Output .. 2-84
Writing to the Standard Output without a Linefeed

or Carriage Return... 2-84
Scan/ScanFile/ScanIn Examples in C .. 2-85

String to Integer ... 2-85
String to Short Integer.. 2-86
String to Real ... 2-86
String to Integer and Real .. 2-87
String to String ... 2-88
String to Integer and String.. 2-89
String to Real, Skipping over Non-Numeric Characters

in the String ... 2-89
String to Real, after Finding a Semicolon in the String2-90
String to Real, after Finding a Substring in the String.....................2-90
String with Comma-Separated ASCII Numbers to Real Array2-91
Scanning Strings That Are Not Null-Terminated2-91
Integer Array to Real Array ... 2-92
Integer Array to Real Array with Byte Swapping............................2-92
Integer Array That Contains 1-Byte Integers to Real Array............2-92
Strings That Contain Binary Integers to Integer Array....................2-93
Strings That Contain an IEEE-Format Real Number

to a Real Variable.. 2-93
ASCII File to Two Integers with Error Checking............................2-94
ASCII File with Comma-Separated Numbers to Real Array,

with Number of Elements at Beginning of File2-94
Binary File to Integer Array, Assuming a Fixed Number

of Elements.. 2-95

Contents

Standard Libraries Reference Manual viii © National Instruments Corporation

Binary File to Real Array, Assuming a Fixed Number
of Elements ... 2-95

Binary File to Real Array, Assuming a Variable Number
of Elements ... 2-95

Reading an Integer from the Standard Input.................................... 2-96
Reading a String from the Standard Input 2-96
Reading a Line from the Standard Input ... 2-97

Chapter 3
Analysis Library

Analysis Library Function Overview ... 3-1
Analysis Library Function Panels .. 3-1
Class and Subclass Descriptions .. 3-3

Hints for Using Analysis Function Panels....................................... 3-4
Reporting Analysis Errors.. 3-4

Analysis Library Function Reference... 3-4
Abs1D .. 3-5
Add1D.. 3-6
Add2D.. 3-7
Clear1D .. 3-8
Copy1D .. 3-9
CxAdd .. 3-10
CxAdd1D ... 3-11
CxDiv ... 3-12
CxDiv1D .. 3-13
CxLinEv1D .. 3-14
CxMul .. 3-16
CxMul1D ... 3-17
CxRecip.. 3-18
CxSub... 3-19
CxSub1D.. 3-20
Determinant.. 3-21
Div1D... 3-22
Div2D... 3-23
DotProduct ... 3-24
GetAnalysisErrorString.. 3-25
Histogram... 3-26
InvMatrix ... 3-28
LinEv1D... 3-29
LinEv2D... 3-30
MatrixMul .. 3-31
MaxMin1D... 3-33

Contents

© National Instruments Corporation ix Standard Libraries Reference Manual

MaxMin2D ... 3-34
Mean ... 3-36
Mul1D... 3-37
Mul2D... 3-38
Neg1D... 3-39
Set1D .. 3-40
Sort ... 3-41
StdDev .. 3-42
Sub1D... 3-43
Sub2D... 3-44
Subset1D... 3-45
ToPolar ... 3-46
ToPolar1D .. 3-47
ToRect .. 3-48
ToRect1D ... 3-49
Transpose.. 3-50

Error Conditions ... 3-51

Chapter 4
GPIB/GPIB-488.2 Library

GPIB Library Function Overview .. 4-1
GPIB Functions Library Function Panels... 4-1
Class and Subclass Descriptions .. 4-4

GPIB Library Concepts .. 4-5
GPIB Libraries and the GPIB Dynamic Link Library/Device Driver............4-5
Guidelines and Restrictions for Using the GPIB Libraries4-6
Device and Board Functions .. 4-6
Automatic Serial Polling .. 4-7

Autopolling Compatibility ... 4-8
Hardware Interrupts and Autopolling... 4-8
Read and Write Termination .. 4-8
Timeouts ... 4-9
Global Variables for the GPIB Library .. 4-9
Multithreading under Windows 95/NT .. 4-9
Notification of SRQ and Other GPIB Events under Windows4-10

Synchronous Callbacks .. 4-10
Asynchronous Callbacks.. 4-10
Driver Version Requirements .. 4-10

GPIB Function Reference ... 4-11
CloseDev .. 4-12
CloseInstrDevs ... 4-13
ibInstallCallback... 4-14

Contents

Standard Libraries Reference Manual x © National Instruments Corporation

iblock.. 4-17
ibnotify ... 4-18
ibunlock.. 4-22
OpenDev .. 4-23
ThreadIbcnt .. 4-24
ThreadIbcntl ... 4-25
ThreadIberr... 4-26
ThreadIbsta... 4-29

Chapter 5
RS-232 Library

RS-232 Library Function Overview... 5-1
RS-232 Library Function Panels.. 5-1
Class Descriptions.. 5-2
Using RS-485... 5-2
Reporting RS-232 Errors ... 5-3
XModem File Transfer Functions.. 5-3
Troubleshooting ... 5-3
RS-232 Cable Information ... 5-4
Handshaking... 5-6

Software Handshaking... 5-7
Hardware Handshaking ... 5-7

Multithreading under Windows 95/NT.. 5-8
RS-232 Library Function Reference .. 5-9

CloseCom... 5-10
ComBreak .. 5-11
ComFromFile ... 5-12
ComRd ... 5-14
ComRdByte.. 5-16
ComRdTerm... 5-17
ComSetEscape ... 5-19
ComToFile ... 5-21
ComWrt.. 5-23
ComWrtByte .. 5-25
FlushInQ... 5-26
FlushOutQ.. 5-27
GetComStat .. 5-28
GetInQLen ... 5-30
GetOutQLen... 5-31
GetRS232ErrorString... 5-32
InstallComCallback.. 5-33
OpenCom ... 5-37

Contents

© National Instruments Corporation xi Standard Libraries Reference Manual

OpenComConfig... 5-39
ReturnRS232Err ... 5-42
SetComTime... 5-43
SetCTSMode .. 5-44
SetXMode... 5-46
XModemConfig.. 5-47
XModemReceive.. 5-49
XModemSend... 5-51

Error Conditions ... 5-52

Chapter 6
DDE Library

DDE Library Function Overview ... 6-1
DDE Library Function Panels .. 6-1
DDE Clients and Servers.. 6-2
DDE Callback Function ... 6-2
DDE Links.. 6-4
DDE Library Example Using Microsoft Excel and LabWindows/CVI.........6-5
Multithreading under Windows 95/NT .. 6-6

DDE Library Function Reference... 6-6
AdviseDDEDataReady... 6-7
BroadcastDDEDataReady .. 6-10
ClientDDEExecute ... 6-12
ClientDDERead.. 6-13
ClientDDEWrite ... 6-15
ConnectToDDEServer.. 6-17
DisconnectFromDDEServer... 6-20
GetDDEErrorString.. 6-21
RegisterDDEServer .. 6-22
ServerDDEWrite .. 6-25
SetUpDDEHotLink .. 6-27
SetUpDDEWarmLink .. 6-28
TerminateDDELink.. 6-29
UnregisterDDEServer... 6-30

Error Conditions ... 6-31

Chapter 7
TCP Library

TCP Library Function Overview ..7-1
TCP Library Function Panels ...7-1
TCP Clients and Servers...7-2

Contents

Standard Libraries Reference Manual xii © National Instruments Corporation

TCP Callback Function.. 7-3
Multithreading under Windows 95/NT.. 7-4

TCP Library Function Reference ... 7-4
ClientTCPRead .. 7-5
ClientTCPWrite ... 7-6
ConnectToTCPServer .. 7-7
DisconnectFromTCPServer ... 7-9
DisconnectTCPClient... 7-10
GetHostTCPSocketHandle... 7-11
GetTCPErrorString .. 7-12
GetTCPHostAddr... 7-13
GetTCPHostName ... 7-14
GetTCPPeerAddr ... 7-15
GetTCPPeerName.. 7-16
GetTCPSystemErrorString... 7-17
RegisterTCPServer... 7-18
ServerTCPRead.. 7-20
ServerTCPWrite... 7-21
SetTCPDisconnectMode.. 7-22
UnregisterTCPServer ... 7-24

Error Conditions ... 7-25

Chapter 8
Utility Library

Utility Library Function Overview... 8-1
Class Descriptions.. 8-5

Utility Library Function Reference .. 8-5
Beep ... 8-6
Breakpoint .. 8-7
CheckForDuplicateAppInstance .. 8-8
CloseCVIRTE .. 8-10
Cls .. 8-11
CopyFile... 8-12
CVILowLevelSupportDriverLoaded ... 8-14
CVIRTEHasBeenDetached.. 8-16
DateStr ... 8-18
Delay .. 8-19
DeleteDir .. 8-20
DeleteFile ... 8-21
DisableBreakOnLibraryErrors ... 8-22
DisableInterrupts.. 8-23
DisableTaskSwitching ... 8-24

Contents

© National Instruments Corporation xiii Standard Libraries Reference Manual

EnableBreakOnLibraryErrors... 8-27
EnableInterrupts ... 8-28
EnableTaskSwitching ... 8-29
ExecutableHasTerminated.. 8-30
GetBreakOnLibraryErrors.. 8-31
GetBreakOnProtectionErrors ... 8-32
GetCurrentPlatform .. 8-33
GetCVIVersion... 8-34
GetDir ... 8-35
GetDrive ... 8-36
GetExternalModuleAddr .. 8-37
GetFileAttrs .. 8-40
GetFileDate... 8-42
GetFileSize ... 8-44
GetFileTime.. 8-46
GetFirstFile... 8-48
GetFullPathFromProject... 8-51
GetInterruptState .. 8-53
GetKey.. 8-54
GetModuleDir... 8-56
GetNextFile .. 8-58
GetPersistentVariable ... 8-59
GetProjectDir.. 8-60
GetStdioPort ... 8-62
GetStdioWindowOptions ... 8-63
GetStdioWindowPosition ... 8-64
GetStdioWindowSize ... 8-65
GetStdioWindowVisibility ... 8-66
GetSystemDate ... 8-67
GetSystemTime .. 8-68
GetWindowDisplaySetting... 8-69
InitCVIRTE .. 8-70
inp ... 8-72
inpw .. 8-73
InStandaloneExecutable ... 8-74
KeyHit .. 8-75
LaunchExecutable .. 8-77
LaunchExecutableEx.. 8-80
LoadExternalModule.. 8-83
LoadExternalModuleEx ... 8-88
MakeDir.. 8-90
MakePathname ... 8-91
MapPhysicalMemory ... 8-92

Contents

Standard Libraries Reference Manual xiv © National Instruments Corporation

outp... 8-95
outpw.. 8-96
ReadFromPhysicalMemory ... 8-97
ReadFromPhysicalMemoryEx ... 8-99
ReleaseExternalModule ... 8-101
RenameFile .. 8-103
RetireExecutableHandle... 8-105
RoundRealToNearestInteger.. 8-106
RunExternalModule ... 8-107
SetBreakOnLibraryErrors .. 8-109
SetBreakOnProtectionErrors.. 8-111
SetDir ... 8-113
SetDrive ... 8-114
SetFileAttrs .. 8-115
SetFileDate... 8-117
SetFileTime.. 8-118
SetPersistentVariable ... 8-120
SetStdioPort ... 8-121
SetStdioWindowOptions.. 8-123
SetStdioWindowPosition ... 8-125
SetStdioWindowSize ... 8-127
SetStdioWindowVisibility ... 8-128
SetSystemDate ... 8-129
SetSystemTime .. 8-130
SplitPath ... 8-131
SyncWait .. 8-133
SystemHelp .. 8-134
TerminateExecutable ... 8-137
Timer.. 8-138
TimeStr... 8-139
TruncateRealNumber ... 8-140
UnloadExternalModule .. 8-141
UnMapPhysicalMemory .. 8-142
WriteToPhysicalMemory... 8-143
WriteToPhysicalMemoryEx .. 8-145

Chapter 9
X Property Library

X Property Library Overview... 9-1
X Property Library Function Panels .. 9-1
X Interclient Communication... 9-2
Property Handles and Types .. 9-3

Contents

© National Instruments Corporation xv Standard Libraries Reference Manual

Communicating with Local Applications... 9-3
Hidden Window.. 9-3
Property Callback Functions .. 9-4
Error Codes... 9-4
Using the Library Outside of LabWindows/CVI ...9-5

X Property Library Function Reference ... 9-5
ConnectToXDisplay ... 9-6
CreateXProperty ... 9-8
CreateXPropType ... 9-10
DestroyXProperty... 9-13
DestroyXPropType... 9-14
DisconnectFromXDisplay .. 9-15
GetXPropErrorString.. 9-16
GetXPropertyName .. 9-17
GetXPropertyType ... 9-18
GetXPropTypeName .. 9-19
GetXPropTypeSize... 9-20
GetXPropTypeUnit... 9-21
GetXWindowPropertyItem... 9-23
GetXWindowPropertyValue .. 9-26
InstallXPropertyCallback ... 9-30
PutXWindowPropertyItem... 9-33
PutXWindowPropertyValue... 9-35
RemoveXWindowProperty .. 9-38
UninstallXPropertyCallback... 9-40

Chapter 10
Easy I/O for DAQ Library

Easy I/O for DAQ Library Function Overview ..10-1
Advantages of Using the Easy I/O for DAQ Library10-1
Limitations of Using the Easy I/O for DAQ Library10-2
Easy I/O for DAQ Library Function Panels ...10-2
Class Descriptions ..10-3
Device Numbers ... 10-4
Channel String for Analog Input Functions ...10-4
Command Strings ...10-5
Channel String for Analog Output Functions...10-6
Valid Counters for the Counter/Timer Functions...10-7

Easy I/O for DAQ Function Reference...10-7
AIAcquireTriggeredWaveforms...10-8
AIAcquireWaveforms ..10-14
AICheckAcquisition ...10-17

Contents

Standard Libraries Reference Manual xvi © National Instruments Corporation

AIClearAcquisition .. 10-18
AIReadAcquisition... 10-19
AISampleChannel .. 10-21
AISampleChannels... 10-23
AIStartAcquisition ... 10-25
AOClearWaveforms... 10-27
AOGenerateWaveforms... 10-28
AOUpdateChannel ... 10-30
AOUpdateChannels ... 10-31
ContinuousPulseGenConfig... 10-32
CounterEventOrTimeConfig.. 10-35
CounterMeasureFrequency .. 10-39
CounterRead... 10-43
CounterStart ... 10-44
CounterStop ... 10-45
DelayedPulseGenConfig .. 10-46
FrequencyDividerConfig ... 10-49
GetAILimitsOfChannel.. 10-53
GetChannelIndices ... 10-55
GetChannelNameFromIndex ... 10-57
GetDAQErrorString ... 10-58
GetNumChannels ... 10-59
GroupByChannel ... 10-60
ICounterControl ... 10-61
PlotLastAIWaveformsPopup ... 10-63
PulseWidthOrPeriodMeasConfig... 10-64
ReadFromDigitalLine .. 10-67
ReadFromDigitalPort ... 10-69
SetEasyIOMultitaskingMode... 10-71
WriteToDigitalLine.. 10-72
WriteToDigitalPort .. 10-74

Error Conditions ... 10-76

Chapter 11
ActiveX Automation Library

ActiveX Automation Library Function Overview ... 11-1
Variants and Safe Arrays ... 11-2
Events are Not Supported .. 11-2
ActiveX Automation Library Function Panels .. 11-2
Class Descriptions.. 11-7
Using Input Variant Parameters ... 11-8

Contents

© National Instruments Corporation xvii Standard Libraries Reference Manual

Using Output Variant Parameters... 11-8
Variants Marked as Empty by Retrieval Functions11-9

Data Types for Variants, Safe Arrays, and Properties....................................11-9
Handling Dynamic Memory Variants Hold ... 11-11

ActiveX Automation Library Function Reference ... 11-11
CA_Array1DToSafeArray ... 11-12
CA_Array2DToSafeArray ... 11-13
CA_BSTRGetCString .. 11-15
CA_BSTRGetCStringBuf .. 11-16
CA_BSTRGetCStringLen .. 11-17
CA_CreateObjectByClassId... 11-18
CA_CreateObjectByProgId.. 11-20
CA_CreateObjHandleFromIDispatch .. 11-22
CA_CStringToBSTR.. 11-23
CA_DefaultValueVariant ... 11-24
CA_DiscardObjHandle... 11-25
CA_DisplayErrorInfo ... 11-26
CA_FreeMemory.. 11-27
CA_FreeUnusedServers ... 11-28
CA_GetActiveObjectByClassId... 11-29
CA_GetActiveObjectByProgId.. 11-31
CA_GetAutomationErrorString ... 11-33
CA_GetDispatchFromObjHandle .. 11-34
CA_GetLocale.. 11-35
CA_InvokeHelper... 11-36
CA_InvokeHelperV.. 11-41
CA_LoadObjectFromFile... 11-42
CA_LoadObjectFromFileByClassId .. 11-44
CA_LoadObjectFromFileByProgId ... 11-46
CA_MethodInvoke ... 11-48
CA_MethodInvokeV .. 11-50
CA_PropertyGet ... 11-51
CA_PropertySet.. 11-53
CA_PropertySetByRef ... 11-55
CA_PropertySetByRefV .. 11-57
CA_PropertySetV... 11-58
CA_SafeArrayDestroy ... 11-59
CA_SafeArrayGet1DSize... 11-60
CA_SafeArrayGet2DSize... 11-61
CA_SafeArrayGetNumDims.. 11-62
CA_SafeArrayTo1DArray ... 11-63
CA_SafeArrayTo1DArrayBuf ... 11-66
CA_SafeArrayTo2DArray ... 11-69

Contents

Standard Libraries Reference Manual xviii © National Instruments Corporation

CA_SafeArrayTo2DArrayBuf ... 11-72
CA_SetLocale .. 11-75
CA_VariantBool .. 11-77
CA_VariantBSTR .. 11-78
CA_VariantClear ... 11-79
CA_VariantConvertToType... 11-80
CA_VariantCopy ... 11-82
CA_VariantCurrency ... 11-83
CA_VariantDate... 11-84
CA_VariantDispatch.. 11-85
CA_VariantDouble .. 11-86
CA_VariantEmpty ... 11-87
CA_VariantError.. 11-88
CA_VariantFloat .. 11-89
CA_VariantGet1DArray .. 11-90
CA_VariantGet1DArrayBuf .. 11-93
CA_VariantGet1DArraySize ... 11-96
CA_VariantGet2DArray .. 11-97
CA_VariantGet2DArrayBuf .. 11-100
CA_VariantGet2DArraySize ... 11-103
CA_VariantGetArrayNumDims .. 11-104
CA_VariantGetBool... 11-105
CA_VariantGetBoolPtr .. 11-106
CA_VariantGetBSTR .. 11-107
CA_VariantGetBSTRPtr.. 11-108
CA_VariantGetCString.. 11-109
CA_VariantGetCStringBuf.. 11-110
CA_VariantGetCStringLen.. 11-111
CA_VariantGetCurrency ... 11-112
CA_VariantGetCurrencyPtr... 11-113
CA_VariantGetDate... 11-114
CA_VariantGetDatePtr .. 11-115
CA_VariantGetDispatch .. 11-116
CA_VariantGetDispatchPtr ... 11-117
CA_VariantGetDouble... 11-118
CA_VariantGetDoublePtr .. 11-119
CA_VariantGetError .. 11-120
CA_VariantGetErrorPtr ... 11-121
CA_VariantGetFloat .. 11-122
CA_VariantGetFloatPtr ... 11-123
CA_VariantGetInt .. 11-124
CA_VariantGetIntPtr ... 11-125
CA_VariantGetIUnknown ... 11-126

Contents

© National Instruments Corporation xix Standard Libraries Reference Manual

CA_VariantGetIUnknownPtr ... 11-127
CA_VariantGetLong .. 11-128
CA_VariantGetLongPtr.. 11-129
CA_VariantGetObjHandle ... 11-130
CA_VariantGetSafeArray .. 11-131
CA_VariantGetSafeArrayPtr.. 11-133
CA_VariantGetShort .. 11-135
CA_VariantGetShortPtr ... 11-136
CA_VariantGetType... 11-137
CA_VariantGetUChar .. 11-138
CA_VariantGetUCharPtr ... 11-139
CA_VariantGetVariantPtr .. 11-140
CA_VariantHasArray ... 11-141
CA_VariantHasBool... 11-142
CA_VariantHasBSTR .. 11-143
CA_VariantHasCString.. 11-144
CA_VariantHasCurrency ... 11-145
CA_VariantHasDate... 11-146
CA_VariantHasDispatch .. 11-147
CA_VariantHasDouble... 11-148
CA_VariantHasError .. 11-149
CA_VariantHasFloat .. 11-150
CA_VariantHasInt.. 11-151
CA_VariantHasIUnknown ... 11-152
CA_VariantHasLong.. 11-153
CA_VariantHasNull ... 11-154
CA_VariantHasObjHandle... 11-155
CA_VariantHasPtr.. 11-156
CA_VariantHasShort.. 11-157
CA_VariantHasUChar.. 11-158
CA_VariantInt .. 11-159
CA_VariantIsEmpty ... 11-160
CA_VariantIUnknown ... 11-161
CA_VariantLong .. 11-162
CA_VariantNULL.. 11-163
CA_VariantSet1DArray ... 11-164
CA_VariantSet2DArray ... 11-166
CA_VariantSetBool.. 11-168
CA_VariantSetBoolPtr ... 11-169
CA_VariantSetBSTR ... 11-170
CA_VariantSetBSTRPtr... 11-171
CA_VariantSetCString ... 11-172
CA_VariantSetCurrency... 11-173

Contents

Standard Libraries Reference Manual xx © National Instruments Corporation

CA_VariantSetCurrencyPtr ... 11-174
CA_VariantSetDate ... 11-175
CA_VariantSetDatePtr... 11-176
CA_VariantSetDispatch... 11-177
CA_VariantSetDispatchPtr .. 11-178
CA_VariantSetDouble ... 11-179
CA_VariantSetDoublePtr... 11-180
CA_VariantSetEmpty .. 11-181
CA_VariantSetError... 11-182
CA_VariantSetErrorPtr .. 11-183
CA_VariantSetFloat... 11-184
CA_VariantSetFloatPtr .. 11-185
CA_VariantSetInt... 11-186
CA_VariantSetIntPtr .. 11-187
CA_VariantSetIUnknown.. 11-188
CA_VariantSetIUnknownPtr ... 11-189
CA_VariantSetLong... 11-190
CA_VariantSetLongPtr .. 11-191
CA_VariantSetNULL .. 11-192
CA_VariantSetSafeArray... 11-193
CA_VariantSetSafeArrayPtr .. 11-194
CA_VariantSetShort .. 11-195
CA_VariantSetShortPtr.. 11-196
CA_VariantSetUChar .. 11-197
CA_VariantSetUCharPtr.. 11-198
CA_VariantSetVariantPtr .. 11-199
CA_VariantShort ... 11-200
CA_VariantUChar ... 11-201

Error Conditions ... 11-202

Appendix A
Customer Communication

Glossary

Index

Contents

© National Instruments Corporation xxi Standard Libraries Reference Manual

Figures
Figure 10-1. One Cycle of a Waveform.. 10-11
Figure 10-2. Converting a Signal at Periodic Intervals...10-12
Figure 10-3. Resulting Waveform That Resembles Original Waveform10-12
Figure 10-4. OUT Pin Pulses .. 10-52

Tables
Table 1-1. ANSI C Standard Library Classes.. 1-1
Table 1-2. C Locale Information Values ... 1-3
Table 1-3. p_sign_posn and n_sign_posn Values.. 1-5
Table 1-4. Error Codes for the system Function under Windows1-10

Table 2-1. Functions in the Formatting and I/O Library Function Tree................2-2
Table 2-2. Codes That Specify formatcode ... 2-53
Table 2-3. Formatting Integer Modifiers (%i, %d, %x, %o, %c)2-55
Table 2-4. Formatting Floating-Point Modifiers (%f) ...2-57
Table 2-5. Formatting String Modifiers (%s) .. 2-59
Table 2-6. Codes That Specify formatcode ... 2-64
Table 2-7. Scanning Integer Modifiers (%i, %d, %x, %o, %c).............................2-67
Table 2-8. Scanning Floating-Point Modifiers (%f) ..2-69
Table 2-9. Scanning String Modifiers (%s) ... 2-71

Table 3-1. Functions in the Analysis Library Function Tree.................................3-1
Table 3-2. Analysis Library Error Codes... 3-51

Table 4-1. Functions in the GPIB/GPIB-488.2 Library Function Tree4-1

Table 5-1. Functions in the RS-232 Library Function Tree5-1
Table 5-2. PC Cable Configuration ... 5-4
Table 5-3. DTE to DCE Cable Configuration ... 5-5
Table 5-4. PC to DTE Cable Configuration .. 5-5
Table 5-5. Bit Definitions for the GetComStat Function.......................................5-28
Table 5-6. Valid Event Bits and Descriptions ... 5-35
Table 5-7. Syntax for Opening Ports ... 5-37
Table 5-8. Syntax for Opening Ports ... 5-40
Table 5-9. Valid Mode Values... 5-45
Table 5-10. RS-232 Library Error Codes .. 5-52

Table 6-1. Functions in the DDE Library Function Tree6-1
Table 6-2. DDE Transaction Types (xType) ... 6-4
Table 6-3. DDE Library Error Codes .. 6-31

Contents

Standard Libraries Reference Manual xxii © National Instruments Corporation

Table 7-1. Functions in the TCP Library Function Tree 7-1
Table 7-2. TCP Transaction Types (xType).. 7-3
Table 7-3. TCP Library Error Codes... 7-25

Table 8-1. Functions in the Utility Library Function Tree.................................... 8-2
Table 8-2. Functions That Require Low-Level Driver.. 8-14
Table 8-3. Example Keystrokes and GetKey Return Values 8-54
Table 8-4. Valid windowState Values... 8-81

Table 9-1. Functions in the X Property Library Function Tree............................. 9-1
Table 9-2. Predefined Property Types... 9-3

Table 10-1. Functions in the Easy I/O for DAQ Library Function Tree................. 10-2
Table 10-2. Valid Counters ... 10-7
Table 10-3. Trigger Types... 10-10
Table 10-4. Definition of Am9513: Counter+1... 10-36
Table 10-5. Valid Internal Timebase Frequencies .. 10-37
Table 10-6. Adjacent Counters.. 10-39
Table 10-7. Valid Internal Timebase Frequencies .. 10-51
Table 10-8. Valid Internal Timebase Frequencies .. 10-65
Table 10-9. Easy I/O for DAQ Library Error Codes... 10-76

Table 11-1. Functions in the ActiveX Automation Library Function Tree............. 11-3
Table 11-2. Fundamental Data Types for Variants, Safe Arrays, and Properties ... 11-9
Table 11-3. Data Types Modifiers for Variants, Safe Arrays, and Properties 11-10
Table 11-4. operation Parameter Values ... 11-37
Table 11-5. Return Type Values ... 11-38
Table 11-6. Parameter Count Values .. 11-38
Table 11-7. Parameter Types Values .. 11-39
Table 11-8. Parameter Values ... 11-39
Table 11-9. Return Values... 11-40
Table 11-10. Data Types and Functions to Free Each Element for

CA_SafeArrayTo1DArray .. 11-64
Table 11-11. Data Types and Functions to Free

Each CA_SafeArrayTo1DArrayBuf Element................................... 11-67
Table 11-12. Data Types and Functions to Free Each Element for

CA_SafeArrayTo2DArray .. 11-71
Table 11-13. Data Types and Functions to Free Each Element for

CA_SafeArrayTo2DArrayBuf .. 11-74
Table 11-14. Data Types and Functions to Free the Converted Value 11-81
Table 11-15. Data Types and Functions to Free Each Element for

CA_VariantGet1DArray ... 11-91

Contents

© National Instruments Corporation xxiii Standard Libraries Reference Manual

Table 11-16. Data Types and Functions to Free Each Element for
CA_VariantGet1DArrayBuf..11-95

Table 11-17. Data Types and Functions to Free Each Element for
CA_VariantGet2DArray..11-99

Table 11-18. Data Types and Functions to Free Each Element for
CA_VariantGet2DArrayBuf..11-102

Table 11-19. ActiveX Automation Library Error Codes...11-202

© National Instruments Corporation xxv Standard Libraries Reference Manual

About This Manual

The LabWindows/CVI Standard Libraries Reference Manual contains
information about the LabWindows/CVI standard libraries: the Graphics
Library, the Analysis Library, the Formatting and I/O Library, the GPIB
Library, the GPIB-488.2 Library, the RS-232 Library, the Utility Library,
and the system libraries. The LabWindows/CVI Standard Libraries

Reference Manual is intended for LabWindows/CVI users who have
already completed the Getting Started with LabWindows/CVI tutorial and
are familiar with the LabWindows/CVI User Manual. To use this manual
effectively, you should be familiar with LabWindows/CVI and Windows
fundamentals.

Organization of This Manual

The LabWindows/CVI Standard Libraries Reference Manual is organized
as follows:

• Chapter 1, ANSI C Library, describes the ANSI C Standard Library as
implemented in LabWindows/CVI.

• Chapter 2, Formatting and I/O Library, describes the functions in the
LabWindows/CVI Formatting and I/O Library and contains many
examples of how to use them. The Formatting and I/O Library

Function Overview section contains general information about the
Formatting and I/O Library functions and panels. The Formatting and

I/O Library Function Reference section contains an alphabetical list of
the function descriptions.

• Chapter 3, Analysis Library, describes the functions in the
LabWindows/CVI Analysis Library. The Analysis Library Function

Overview section contains general information about the Analysis
Library functions and panels. The Analysis Library Function

Reference section contains an alphabetical list of the function
descriptions.

• Chapter 4, GPIB/GPIB-488.2 Library, describes the functions in the
LabWindows/CVI GPIB Library. The GPIB Library Function

Overview section contains general information about the GPIB Library
functions and panels, the GPIB DLL, and guidelines and restrictions
you should know when using the GPIB Library. The GPIB Function

Reference section contains an alphabetical list of descriptions for the
Device Manager functions, the callback installation functions, and the
functions for returning the thread-specific status variables. Refer to

About This Manual

Standard Libraries Reference Manual xxvi © National Instruments Corporation

your NI-488.2 or NI-488.2M function reference for detailed
descriptions of the NI-488 and NI-488.2 functions.

• Chapter 5, RS-232 Library, describes the functions in the
LabWindows/CVI RS-232 Library. The RS-232 Library Function

Overview section contains general information about the RS-232
Library functions and panels. The RS-232 Library Function Reference
section contains an alphabetical list of function descriptions.

• Chapter 6, DDE Library, describes the functions in the
LabWindows/CVI DDE (Dynamic Data Exchange) Library. The DDE

Library Function Overview section contains general information about
the DDE Library functions and panels. The DDE Library Function

Reference section contains an alphabetical list of function descriptions.
This library is available for LabWindows/CVI for Windows only.

• Chapter 7, TCP Library, describes the functions in the
LabWindows/CVI TCP (Transmission Control Protocol) Library. The
TCP Library Function Overview section contains general information
about the TCP Library functions and panels. The TCP Library

Function Reference section contains an alphabetical list of
function descriptions.

• Chapter 8, Utility Library, describes the functions in the
LabWindows/CVI Utility Library. The Utility Library contains
functions that do not fit into any of the other LabWindows/CVI
libraries. The Utility Library Function Overview section contains
general information about the Utility Library functions and panels.
The Utility Library Function Reference section contains an
alphabetical list of function descriptions.

• Chapter 9, X Property Library, describes the functions in the
Lab/Windows CVI X Property Library. The X Property Library
contains functions that read and write properties to and from
X Windows. The X Property Library Overview section contains
general information about the X Property Library functions and
panels. The X Property Library Function Reference section contains
an alphabetical list of function descriptions.

• Chapter 10, Easy I/O for DAQ Library, describes the functions in the
Easy I/O for DAQ Library. The Easy I/O for DAQ Library Function

Overview section contains general information about the functions and
guidelines and restrictions you should know when using the Easy I/O
for DAQ Library. The Easy I/O for DAQ Function Reference section
contains an alphabetical list of function descriptions.

• Chapter 11, ActiveX Automation Library, describes the functions in the
ActiveX Automation Library. The ActiveX Automation Library

About This Manual

© National Instruments Corporation xxvii Standard Libraries Reference Manual

Function Overview section contains general information about the
functions as well as guidelines and restrictions you should know when
using the ActiveX Automation Library. The ActiveX Automation

Library Function Reference section contains an alphabetical list of
function descriptions.

• Appendix A, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard—for example,
<shift>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options» Substitute

Fonts directs you to pull down the File menu, select the Page Setup item,
select Options, and finally select the Substitute Fonts options from the
last dialog box.

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

This icon to the left of bold italicized text denotes a caution, which advises
you of precautions to take to avoid injury, data loss, or a system crash.

bold Bold text denotes the names of menus, menu items, parameters, or dialog
box buttons.

bold italic Bold italic text denotes a note or caution.

!

About This Manual

Standard Libraries Reference Manual xxviii © National Instruments Corporation

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text from which you supply the
appropriate word or value.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, functions, filenames and extensions,
and for statements and comments taken from programs.

monospace italic Italic text in this font denotes that you must enter the appropriate words or
values in the place of these items.

paths Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard 488.1-1987
and the ANSI/IEEE Standard 488.2-1992, respectively, which define
the GPIB.

LabWindows/CVI Documentation Set

For a detailed discussion of the best way to use the LabWindows/CVI
documentation set, refer to the section Using the LabWindows/CVI

Documentation Set in Chapter 1, Introduction to LabWindows/CVI of
Getting Started with LabWindows/CVI.

Related Documentation

The following documents contain information that you might find helpful
as you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface

for Programmable Instrumentation.

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats,

Protocols, and Common Commands.

• Harbison, Samuel P., and Guy L. Steele, Jr., C: A Reference Manual,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1995.

About This Manual

© National Instruments Corporation xxix Standard Libraries Reference Manual

• Nye, Adrian. Xlib Programming Manual. Sebastopol, CA: O’Reilly &
Associates, 1994.

• Gettys, James, and Robert W. Scheifler. Xlib—C Language

X Interface, MIT X Consortium Standard. Cambridge, MA:
X Consortium, 1994.

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in the appendix, Customer

Communication, at the end of this manual.

© National Instruments Corporation 1-1 Standard Libraries Reference Manual

1
ANSI C Library

This chapter describes the ANSI C Standard Library as implemented in LabWindows/CVI, as
shown in Table 1-1.

Note When you link your executable or DLL with an external compiler, you are using

the ANSI C library of the external compiler.

Table 1-1. ANSI C Standard Library Classes

Class Header File

Character Handling
Character Testing
Character Case Mapping

<ctype.h>

Date and Time
Time Operations
Time Conversion
Time Formatting

<time.h>

Localization <locale.h>

Mathematics
Trigonometric Functions
Hyperbolic Functions
Exp and Log Functions
Power Functions

<math.h>

Nonlocal Jumping <setjmp.h>

Signal Handling <signal.h>

Chapter 1 ANSI C Library

Standard Libraries Reference Manual 1-2 © National Instruments Corporation

Low-Level I/O Functions

Under UNIX, you can use the low-level I/O functions such as open, sopen, read, and write
from the system library by including system header files in your program. Under Windows,
you can use these functions by including cvi\include\ansi\lowlvlio.h in your
program. LabWindows/CVI provides function panels for these functions.

Input/Output
Open/Close
Read/Write/Flush
Line Input/Output
Character Input/Output
Formatted Input/Output
Buffer Control
File Positioning
File System Operations
Error Handling

<stdio.h>

General Utilities
String to Arithmetic Expression
Random Number Generation
Memory Management
Searching and Sorting
Integer Arithmetic
Multibyte Character Sets
Program Termination
Environment

<stdlib.h>

String Handling
Byte Operations
String Operations
String Searching
Collation Functions
Miscellaneous

<string.h>

Low-Level I/O <lowlvlio.h>

Table 1-1. ANSI C Standard Library Classes (Continued)

Class Header File

Chapter 1 ANSI C Library

© National Instruments Corporation 1-3 Standard Libraries Reference Manual

Standard Language Additions

LabWindows/CVI does not support extended character sets that require more than 8 bits per
character. As a result, the wide character type wchar_t is identical to the single-byte char
type. LabWindows/CVI accepts wide character constants that you specify with the L prefix
(as in L'ab'), but only the first character is significant. Furthermore, library functions that
use the wchar_t type operate only on 8-bit characters.

LabWindows/CVI supports variable argument functions using the ANSI C macros, with one
exception: None of the unspecified arguments can have a struct type. As a result, you should
never use the macro va_arg (ap, type) when type is a structure.

Note LabWindows/CVI does not warn you about this error.

Under UNIX, LabWindows/CVI implements only the C locale as defined by the ANSI C
standard. The native locale, which is specified by the empty string, "", is also the C locale.
Table 1-2 shows the locale information values for the C locale.

Table 1-2. C Locale Information Values

Name Type

C locale

Value Description

decimal_point char * "." Decimal point character for
non-monetary values.

thousands_sep char * "" Non-monetary digit group
separator character or
characters.

grouping char * "" Non-monetary digit groupings.

int_curr_symbol char * "" Three-character international
currency symbol, plus the
character to separate the
international symbol from the
monetary quantity.

currency_symbol char * "" Local currency symbol for the
current locale.

mon_decimal_point char * "" Decimal point character for
monetary values.

mon_thousands_sep char * "" Monetary digit group separator
character or characters.

Chapter 1 ANSI C Library

Standard Libraries Reference Manual 1-4 © National Instruments Corporation

mon_grouping char * "" Monetary digit groupings.

positive_sign char * "" Sign character or characters for
non-negative monetary
quantities.

negative_sign char * "" Sign character or characters for
negative monetary quantities.

int_frac_digits char CHAR_MAX Digits appear to the right of the
decimal point for international
monetary formats.

frac_digits char CHAR_MAX Digits appear to the right of the
decimal point for formats other
than international monetary
formats.

p_cs_precedes char CHAR_MAX 1 if currency_symbol
precedes non-negative monetary
values; 0 if it follows.

p_sep_by_space char CHAR_MAX 1 if a space separates
currency_symbol from
non-negative monetary values;
0 otherwise.

n_cs_precedes char CHAR_MAX Like p_cs_precedes, for
negative values.

n_sep_by_space char CHAR_MAX Like p_sep_by_space, for
negative values.

p_sign_posn char CHAR_MAX Positioning of positive_sign
for a non-negative monetary
quantity, then its
currency_symbol.

n_sign_posn char CHAR_MAX Positioning of negative_sign
for a negative monetary
quantity, then its
currency_symbol.

Table 1-2. C Locale Information Values (Continued)

Name Type

C locale

Value Description

Chapter 1 ANSI C Library

© National Instruments Corporation 1-5 Standard Libraries Reference Manual

Under Windows, LabWindows/CVI implements the default locale by using the appropriate
system settings. Under Windows 95/NT, you can access the system settings by using the
Regional Settings applet in the Control Panel. Under Windows 3.1, use the International
applet in the Control Panel. Anything not mentioned in this section behaves the same under
the default locale as specified in the C locale.

For the LC_NUMERIC locale:

• decimal_point maps to the value of sDecimal.

• thousands_sep maps to the value of sThousand.

For the LC_MONETARY locale:

• currency_symbol maps to the value of sCurrency.

• mon_decimal_point maps to the value of sDecimal.

• mon_thousands_sep maps to the value of sThousand.

• frac_digits maps to the value of iCurrDigits.

• int_frac_digits maps to the value of iCurrDigits.

• LabWindows/CVI sets p_cs_precedes and n_cs_precedes to 1 if iCurrency
equals 0 or 2, otherwise it sets them to 0.

• LabWindows/CVI sets p_sep_by_space and n_sep_by_space to 0 if iCurrency
equals 0 or 1, otherwise they are set to 0.

• iNegCurr determines the value of p_sign_posn and n_sign_posn as shown in
Table 1-3.

For the LC_CTYPE locale:

• isalnum maps to the Windows function isCharAlphaNumeric.

• isalpha maps to the Windows function isCharAlpha.

• islower maps to the Windows function isCharLower.

Table 1-3. p_sign_posn and n_sign_posn Values

Value of iNegCurr

Value of p_sign_posn

and n_sign_posn

0, 4 0

1, 5, 8, 9 1

3, 7, 10 2

6 3

2 4

Chapter 1 ANSI C Library

Standard Libraries Reference Manual 1-6 © National Instruments Corporation

• isupper maps to the Windows function isCharUpper.

• tolower maps to the Windows function AnsiLower.

• toupper maps to the Windows function AnsiUpper.

For the LC_TIME locale:

• strftime uses the following items from the win.ini file for the appropriate format
specifiers: sTime, iTime, s1159, s2359, iTLZero, sShortDate, and sLongDate.

• The names of the weekdays and the names of the months match the language version of
LabWindows/CVI.

For the LC_COLLATE locale, strcoll maps to the Windows function lstrcmp.

Because LabWindows/CVI does not support extended character sets that require more than
one byte per character, a multibyte character in LabWindows/CVI is actually a single-byte
character. Likewise, a multibyte sequence is a sequence of single-byte characters. Because a
multibyte character is the same as a wide character, the multibyte conversion functions do
little more than return their inputs as outputs.

Character Processing

LabWindows/CVI implements all the ANSI C character processing facilities as both macros
and functions. When you run a program in LabWindows/CVI with the debugging level set to
Standard or Extended, LabWindows/CVI uses the function versions of the character
processing facilities. By using the function versions, LabWindows/CVI can perform run-time
user protection on the arguments you pass to the functions.

String Processing

Under UNIX, strcoll is equivalent to strcmp, and the LC_COLLATE locale does not affect
its behavior. Under Windows, strcoll is equivalent to the Windows function lstrcmp. For
both platforms, strxfrm performs a string copy using strncpy and returns the length of its
second argument.

Input/Output Facilities

rename fails if the target file already exists. Under Windows, rename fails if the source and
target files are on different disk drives. Under UNIX, rename fails if the source and target
files are on different file systems.

fgetpos and ftell set errno to EFILPOS on error.

Chapter 1 ANSI C Library

© National Instruments Corporation 1-7 Standard Libraries Reference Manual

File I/O Functions Set errno

The ANSI C file I/O functions and the low-level I/O functions set the errno global variable
to indicate specific error conditions. The possible values of errno are declared in
cvi\include\ansi\errno.h. A base set of values exists that is common to all platforms,
and additional values are specific to particular platforms.

Under Windows 3.1, errno gives very limited information. LabWindows/CVI sets errno to
EIO if the operating system returns an error.

Under Windows 95/NT, you can call the Windows SDK GetLastError function to obtain
system specific information when LabWindows/CVI sets errno to one of the following
values:

EACCES
EBADF
EIO
ENOENT
ENOSPC

Mathematical Functions

The macro HUGE_VAL defined in the header math.h and the macros FLT_EPSILON,
FLT_MAX, FLT_MIN, DBL_EPSILON, DBL_MAX, DBL_MIN, LDBL_EPSILON, LDBL_MAX, and
DBL_MIN defined in the header float.h all refer to variables. Consequently, you cannot use
these macros in places where constant expressions are required, such as in global
initializations.

Time and Date Functions

time returns the number of seconds since Jan. 1, 1990.

mktime and localtime require time zone information to produce correct results.
LabWindows/CVI obtains time zone information from the environment variable TZ, if it
exists. The value of this variable should have the format AAA[S]HH[:MM]BBB, where
optional items are in square brackets.

The AAA and BBB fields specify the names of the standard and daylight savings time (DST)
zones, respectively, such as EST for Eastern Standard Time and EDT for Eastern Daylight
Time. The optional sign field S indicates whether the local time zone is to the west (+) or to
the east (-) of UTC (Greenwich Mean Time). The hour field HH and the optional minutes field
:MM specify the number of hours and minutes from UTC. For example, the string EST05EDT
specifies the time zone information for the eastern part of the United States.

Chapter 1 ANSI C Library

Standard Libraries Reference Manual 1-8 © National Instruments Corporation

Configuring the DST Rules String
gmtime, localtime, and mktime make corrections for daylight savings time. By default the
DST rules string in cvi\bin\cvimsgs.txt specifies the rules to determine when daylight
savings time begins and ends. LabWindows/CVI does, however, honor the Windows 95/NT
time zone information when it indicates that your region does not observe daylight savings
time. You can override both the DST rules string in cvimsgs.txt and the Windows 95/NT
time zone information by entering a modified DST rules string in the LabWindows/CVI
configuration options.

In general, a DST rules string contains one or more rules, each beginning with a colon
followed by a year in parentheses. The year indicates the first year to which the rule applies.
You must put the rules for the more recent years first.

The following is the default value of the DST rules string:

":(1986)040102+0:110102-0:(1967)040102-0:110102-0"

The default string contains two rules. The first rule applies to years 1986 and later. The second
rule applies to years 1967 to 1985.

Each rule consists of a set of descriptors that indicate when to switch between standard and
daylight savings time. LabWindows/CVI assumes each year begins in standard time. Each
descriptor follows the format MMDDHH+/-Wd. The MM portion identifies a month, where 01
indicates January. The DD portion indicates the day of the month. The month and day together
serve as a reference point for the latter portion of the descriptor. The Wd portion is a day of the
week, with 0 indicating Sunday, 1 indicating Monday, and so on. The minus sign (–) or plus
sign (+) indicates whether the day of the week is the one before (–) or after (+) the month and
day the MMDD portion describes. The HH portion indicates the hour of the day. Thus, 040102+0
indicates the first Sunday in April, and 110102-0 indicates the last Sunday in October.

The default DST rules string states that for the years from 1986 to the present, DST begins
at 2 a.m. on the first Sunday in April and ends at 2 a.m. on the last Sunday in October. For the
years from 1967 to 1985, DST began at 2 a.m. on the last Sunday in March, and ended
at 2 a.m. on the last Sunday in October.

Modifying the DST Rules String
If you want to make a change to the DST rules string, you can add an entry to the
configuration options for LabWindows/CVI. Set the entry name to DSTRules and set the
entry value to the modified DST rules string.

For instructions on how to set configuration options for the LabWindows/CVI development
environment, refer to the How to Set the Configuration Options section in Chapter 1,
Configuring LabWindows/CVI, of the LabWindows/CVI User Manual. For instructions on
how to set configuration options for the LabWindows/CVI Run-time Engine, refer to the

Chapter 1 ANSI C Library

© National Instruments Corporation 1-9 Standard Libraries Reference Manual

Configuring the Run-Time Engine section in Chapter 7, Creating and Distributing Standalone

Executables and DLLs, of the LabWindows/CVI Programmer Reference Manual.

LabWindows/CVI does not honor the DST rules string in the configuration options of
executables or DLLs you build by selecting Build»Instrument Driver Support Only in the
Project window. The instrument driver support run-time library does not contain code to read
the LabWindows/CVI configuration options. To modify the DST rules string, you must do so
in msgrtn.txt. Refer to the Configuring the Run-Time Engine section in Chapter 7,
Creating and Distributing Standalone Executables and DLLs, of the LabWindows/CVI

Programmer Reference Manual.

Suppressing Daylight Savings Time
You can suppress daylight savings time by modifying the DST rules string to the following:

":(1990)010102+0:010102-0"

Starting Year in Daylight Savings Time
If you start the year in daylight savings time, use the following as the first descriptor in
the rule:

"010100-0"

Control Functions

The assert macro that LabWindows/CVI defines does not print diagnostics to the standard
error stream when the debugging level is anything other than None. Instead, when the value
of its argument evaluates to zero, LabWindows/CVI displays a dialog box with a message that
contains the file name, line number, and expression that caused the assert to fail.

Under UNIX, system passes the specified command to the Bourne shell (sh) as input, as if
the current process were performing a wait(2V) system call to wait until the shell
terminated. LabWindows/CVI does not invoke callbacks while the command executes.

Under Windows, the executable can be an MS-DOS or Windows executable, including
*.exe, *.com, *.bat, and *.pif files. The function does not return until the command
terminates. The LabWindows/CVI runtime engine ignores user keyboard and mouse events
until the command exits. Callbacks for asynchronous events, such as idle events, Windows
messages, VXI interrupts, PostDeferredCall calls, and DAQ events are called while the
command is executing.

If you need to execute a command built into command.com, such as copy, dir, and others,
you can call system with the command command.com /C DosCommand args, where
DosCommand is the shell command you want to execute. Refer to your DOS documentation

Chapter 1 ANSI C Library

Standard Libraries Reference Manual 1-10 © National Instruments Corporation

for more help with command.com. DOS executables (.exe, .com, and .bat files) use the
settings in _default.pif in your Windows directory when they run. You can change the
priority, display options, and more by editing _default.pif or by creating another .pif
file. Refer to your Microsoft Windows documentation for help on creating and editing
.pif files.

If you pass a NULL pointer to the system function, LabWindows/CVI returns a nonzero value
only if a command processor is available. Under UNIX, if the argument is not a NULL pointer,
the program returns a zero. Under Windows, if the argument is not a NULL pointer, the
program returns zero if the program was successfully started; otherwise it returns one of the
error codes in Table 1-4.

Table 1-4. Error Codes for the system Function under Windows

Error Code Description

-1 System was out of memory, executable file was corrupt, or relocations were
invalid.

-3 File was not found.

-4 Path was not found.

-6 Attempt was made to dynamically link to a task, or there was a sharing or
network protection error occurred.

-7 Library required separate data segments for each task.

-9 There was insufficient memory to start the application.

-11 Windows version was incorrect.

-12 Executable file was invalid. Either it was not a Windows application or the
.exe image contained an error.

-13 Application was designed for a different operating system.

-14 Application was designed for MS-DOS 4.0.

-15 Type of executable file was unknown.

-16 Attempt made to load a real-mode application developed for an earlier
Windows version.

-17 Attempt was made to load a second instance of an executable file
containing multiple data segments that were not marked read only.

-20 Attempt was made to load a compressed executable file. You must
decompress the file before you can load it.

Chapter 1 ANSI C Library

© National Instruments Corporation 1-11 Standard Libraries Reference Manual

The LabWindows/CVI environment does not use the argument you pass to exit. Under
UNIX, standalone executables that LabWindows/CVI creates return the value of the argument
you pass to exit.

The UNIX version of LabWindows/CVI works with all the ANSI C signals and the signals
UNIX supports.

ANSI C Library Function Reference

For ANSI C function descriptions, consult a reference work such as C: A Reference Manual,
which is listed in the Related Documentation section of About This Manual. Also, you can
use LabWindows/CVI function panel help. The following function description is an extension
of the ANSI C function set.

-21 Dynamic-link library (DLL) file was invalid. One of the DLLs required to
run this application was corrupt.

-22 Application requires Windows 32-bit extensions.

-23 Could not find toolhelp.dll, or toolhelp.dll is corrupted.

-24 Could not allocate a GetProcUserDefinedHandle.

Table 1-4. Error Codes for the system Function under Windows

Error Code Description

Chapter 1 ANSI C Library

Standard Libraries Reference Manual 1-12 © National Instruments Corporation

fdopen

FILE *fp = fdopen (int fileHandle, char *mode);

Note Only the Windows version of LabWindows/CVI supports fdopen.

Purpose
Creates a buffered I/O stream from a file handle, and returns a pointer to the stream. You can
use the return value just as if you had obtained it from fopen.

You can obtain a file handle from one of the following functions:

Parameters

Input

Return Value

Return Code

Parameter Discussion
mode is the same as the mode parameter to fopen.

You should use a mode value that is consistent with the mode in which you originally opened
the file. If you use write capabilities that were not enabled when the file handle was originally
opened, the call to fdopen succeeds, but any attempt to write fails. For instance, if you
originally opened the file for reading only, you can pass "rw" to fdopen, but any call to
fwrite fails.

open (low-level I/O)

sopen (low-level I/O)

Name Type Description

fileHandle integer File handle that open or sopen returns.

mode string Specifies the read/write, binary/text, and
append modes.

Name Type Description

fp FILE * Pointer to a buffered I/O file stream.

Code Description

NULL (0) Failure. More specific information is in errno.

© National Instruments Corporation 2-1 Standard Libraries Reference Manual

2
Formatting and I/O Library

This chapter describes the functions in the LabWindows/CVI Formatting and I/O Library and
contains many examples of how to use them. The Formatting and I/O Library contains
functions that input and output data to files and manipulate the format of data in a program.

The Formatting and I/O Library Function Overview section contains general information
about the Formatting and I/O Library functions and panels. Because the Formatting and
I/O Library differs in many respects from the other LabWindows/CVI libraries, it is very
important to read the overview before you read the other sections of this chapter.

The Formatting and I/O Library Function Reference section contains an alphabetical list of
function descriptions. This section can help you determine the syntax of the file I/O and string
manipulation functions.

The Using the Formatting and Scanning Functions section describes in detail this special
class of functions. Although the function reference section lists these functions, their
versatility and complex nature require a more complete discussion.

The final section, Formatting and I/O Library Programming Examples, contains many
examples of program code that call Formatting and I/O Library functions. Most of the
examples use the formatting and scanning functions.

Formatting and I/O Library Function Overview

This section contains general information necessary for understanding the Formatting and
I/O Library functions and panels.

Formatting and I/O Library Function Panels
The Formatting and I/O Library function panels are grouped in the tree structure in Table 2-1
according to the types of operations they perform.

The first- and second-level headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings are the names of individual function panels. Refer to the Formatting and

I/O Library Function Reference section later in this chapter for more information.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Function Overview

Standard Libraries Reference Manual 2-2 © National Instruments Corporation

Table 2-1. Functions in the Formatting and I/O Library Function Tree

Class/Panel Name Function Name
File I/O

Open File OpenFile
Close File CloseFile
Read from File ReadFile
Write to File WriteFile
Array to File ArrayToFile
File to Array FileToArray
Get File Information GetFileInfo
Set File Pointer SetFilePtr

String Manipulation
Get String Length StringLength
String to Lowercase StringLowerCase
String to Uppercase StringUpperCase
Fill Bytes FillBytes
Copy Bytes CopyBytes
Copy String CopyString
Compare Bytes CompareBytes
Compare Strings CompareStrings
Find Pattern FindPattern
Read Line ReadLine
Write Line WriteLine

Data Formatting
Formatting Functions

Fmt to Memory (Sample Panel) Fmt
Fmt to File (Sample Panel) FmtFile
Fmt to Stdout (Sample Panel) FmtOut

Scanning Functions
Scan from Mem (Sample Panel) Scan
Scan from File (Sample Panel) ScanFile
Scan from Stdin (Sample Panel) ScanIn

Status Functions
Get # Formatted Bytes NumFmtdBytes
Get Format Index Error GetFmtErrNdx

Get I/O Error GetFmtIOError
Get I/O Error String GetFmtIOErrorString

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Function Overview

© National Instruments Corporation 2-3 Standard Libraries Reference Manual

Class and Subclass Descriptions

• The File I/O function panels open, close, read, write, and obtain information about files.

• The String Manipulation function panels manipulate strings and character buffers.

• The Data Formatting function panels perform intricate formatting operations with a
single function call.

– Formatting Functions, a subclass of Data Formatting, contains function panels that
combine and format one or more source items into a single target item.

– Scanning Functions, a subclass of Data Formatting, contains function panels that
transform a single source item into several target items.

– Status Functions, a subclass of Data Formatting, contains function panels that return
information about the success or failure of a formatting or scanning call.

The online help for each panel contains specific information about operating each
function panel.

String Manipulation Functions
The functions in the String Manipulation class perform common operations such as copying
one string to another, comparing two strings, or finding the occurrence of a string in a
character buffer. These functions are similar in purpose to the standard C string functions.

Special Nature of the Formatting and Scanning Functions
The formatting and scanning functions are different in nature from the other functions in the
LabWindows/CVI libraries. With few exceptions, each LabWindows/CVI library function
has a fixed number of parameters, and each parameter has a definite data type. Each
formatting and scanning function, however, takes a variable number of parameters, and the
parameters can be of various data types. This difference is necessary to give the formatting
and scanning functions versatility.

For instance, a single Scan function call performs disparate operations, such as the following:

• Find the two numeric values in the string "header: 45, -1.03e-2" and place the first
value in an integer variable and the second value in a real variable.

• Take the elements from an integer array, swap the high and low bytes in each element,
and place the resulting values in a real array.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Function Reference

Standard Libraries Reference Manual 2-4 © National Instruments Corporation

To perform these operations, each formatting and scanning function takes a format string as
one of its parameters. In effect, a format string is a mini-program that tells the formatting and
scanning functions how to transform the input arguments to the output arguments. For
conciseness, format strings are constructed using single-character codes. The Using the

Formatting and Scanning Functions section later in this chapter describes these codes
in detail.

You might find the formatting and scanning functions more difficult to learn than other
LabWindows/CVI functions. To help you in this learning process, read the discussions in the
Formatting and I/O Library Programming Examples section at the end of this chapter.

Formatting and I/O Library Function Reference

This section describes each function in the LabWindows/CVI Formatting and I/O Library in
alphabetical order.

Chapter 2 Formatting and I/O Library — ArrayToFile

© National Instruments Corporation 2-5 Standard Libraries Reference Manual

ArrayToFile

int status = ArrayToFile (char *fileName, void *array, int dataType,
int numberOfElements, int numberOfGroups,
int arrayDataOrder, int fileLayout,
int colSepStyle, int fieldWidth,
int fileType, int fileAction);

Purpose
Saves an array to a file using various formatting options. The function handles creating,
opening, writing, and closing the file. You can use FileToArray to read back the file into
an array.

Parameters

Input

Return Value

Name Type Description

fileName string File pathname.

array void * Numeric array.

dataType integer Array element data type.

numberOfElements integer Number of elements in the array.

numberOfGroups integer Number of groups in the array.

arrayDataOrder integer How to order groups in the file.

fileLayout integer Direction to write groups in the file.

colSepStyle integer How to separate data on one line.

fieldWidth integer Constant width between columns.

fileType integer ASCII/binary mode.

fileAction integer File pointer reposition location.

Name Type Description

status integer Indicates success/failure.

Chapter 2 Formatting and I/O Library — ArrayToFile

Standard Libraries Reference Manual 2-6 © National Instruments Corporation

Return Codes

Parameter Discussion
fileName can be an absolute pathname or a relative file name. If you use a relative file name,
ArrayToFile creates the file relative to the current working directory.

dataType must be one of the following:

• VAL_CHAR

• VAL_SHORT_INTEGER

• VAL_INTEGER

• VAL_FLOAT

• VAL_DOUBLE

• VAL_UNSIGNED_SHORT_INTEGER

• VAL_UNSIGNED_INTEGER

• VAL_UNSIGNED_CHAR

Code Description

 0 Success.

-1 Error attempting to open file.

-2 Error attempting to close file.

-3 An I/O error occurred.

-4 Invalid dataType parameter.

-5 Invalid numberOfElements parameter.

-6 Invalid numberOfGroups parameter.

-7 Invalid arrayDataOrder parameter.

-8 Invalid fileLayout parameter.

-9 Invalid fileType parameter.

-10 Invalid colSepStyle parameter.

-11 Invalid fieldWidth parameter.

-12 Invalid fileAction parameter.

Chapter 2 Formatting and I/O Library — ArrayToFile

© National Instruments Corporation 2-7 Standard Libraries Reference Manual

If you save the array data in ASCII format, you can divide the array data into groups.
ArrayToFile can write groups as columns or rows. numberOfGroups specifies the number
of groups into which to divide the array data. If you do not want to divide your data into
groups, use 1.

If you divide your array data into groups, arrayDataOrder specifies how the data is ordered
in the array. The two choices are as follows:

• VAL_GROUPS_TOGETHER—ArrayToFile assumes that the elements of each data group
are stored consecutively in the data array.

• VAL_DATA_MULTIPLEXED—ArrayToFile assumes that the first elements of all data
group are stored together, followed by the second elements and so on.

If you save the array data in ASCII format, fileLayout specifies how the data appears in the
file. The two choices are as follows.

• VAL_GROUPS_AS_COLUMNS

• VAL_GROUPS_AS_ROWS

If you have only one group, use VAL_GROUPS_AS_COLUMNS to write each array element on
a separate line.

If you tell ArrayToFile to write multiple values on each line, colSepStyle specifies how to
separate the values. The choices are as follows:

• VAL_CONST_WIDTH—constant field width for each column

• VAL_SEP_BY_COMMA—values followed by commas, except last value on line

• VAL_SEP_BY_TAB—values separated by tabs

If you specify a colSepStyle of VAL_CONST_WIDTH, fieldWidth specifies the width of
the columns.

fileType specifies whether to create the file in ASCII or binary format. The choices are
as follows:

• VAL_ASCII

• VAL_BINARY

fileAction specifies the location in the file to begin writing data if the named file already
exists. The choices are as follows:

• VAL_TRUNCATE—Positions the file pointer to the beginning of the file and deletes its
prior contents.

• VAL_APPEND—All write operations append data to file.

• VAL_OPEN_AS_IS—Positions the file pointer at the beginning of the file but does not
affect the prior file contents.

Chapter 2 Formatting and I/O Library — CloseFile

Standard Libraries Reference Manual 2-8 © National Instruments Corporation

CloseFile

int status = CloseFile (int fileHandle);

Purpose
Closes the file associated with fileHandle. You can obtain a file handle by calling OpenFile.

Parameter

Input

Return Value

Return Codes

Name Type Description

fileHandle integer File handle.

Name Type Description

status integer Result of the close file operation.

Code Description

-1 Bad file handle.

 0 Success.

Chapter 2 Formatting and I/O Library — CompareBytes

© National Instruments Corporation 2-9 Standard Libraries Reference Manual

CompareBytes

int result = CompareBytes (char *buffer#1, int buffer#1Index, char *buffer#2,
int buffer#2Index, int numberOfBytes,
int caseSensitive);

Purpose
Compares the numberOfBytes that start at position buffer#1Index of buffer#1 to the
numberOfBytes that start at position buffer#2Index of buffer#2.

Parameters

Input

Return Value

Return Codes

Name Type Description

buffer#1 string String 1.

buffer#1Index integer Starting position in buffer#1.

buffer#2 string String 2.

buffer#2Index integer Starting position in buffer#2.

numberOfBytes integer Number of bytes to compare.

caseSensitive integer Case-sensitivity mode.

Name Type Description

result integer Result of the compare operation.

Code Description

-1 Bytes from buffer#1 less than bytes from buffer#2.

 0 Bytes from buffer#1 identical to bytes from buffer#2.

 1 Bytes from buffer#1 greater than bytes from buffer#2.

Chapter 2 Formatting and I/O Library — CompareBytes

Standard Libraries Reference Manual 2-10 © National Instruments Corporation

Parameter Discussion
buffer#1Index and buffer#2Index are zero-based.

If caseSensitive is zero, CompareBytes compares alphabetic characters without regard to
case. If caseSensitive is non-zero, CompareBytes considers alphabetic characters equal only
if they have the same case.

The function returns an integer value that indicates the lexicographic relationship between the
two sets of bytes.

Chapter 2 Formatting and I/O Library — CompareStrings

© National Instruments Corporation 2-11 Standard Libraries Reference Manual

CompareStrings

int result = CompareStrings (char *string#1, int string#1Index,
 char *string#2, int string#2Index,
 int caseSensitive);

Purpose
Compares the null-terminated string that starts at position string#1Index of string#1 to the
null-terminated string that starts at position string#2Index of string#2. string#1Index and
string#2Index are zero-based.

Parameters

Input

Return Value

Return Code

Name Type Description

string#1 string String 1.

string#1Index integer Starting position in string#1.

string#2 string String 2.

string#2Index integer Starting position in string#2.

caseSensitive integer Case-sensitivity mode.

Name Type Description

result integer Result of the compare operation.

Code Description

-1 Bytes from string#1 less than bytes from string#2.

 0 Bytes from string#1 identical to bytes from string#2.

 1 Bytes from string#1 greater than bytes from string#2.

Chapter 2 Formatting and I/O Library — CompareStrings

Standard Libraries Reference Manual 2-12 © National Instruments Corporation

Parameter Discussion
If caseSensitive is zero, CompareStrings compares alphabetic characters without regard to
case. If caseSensitive is non-zero, CompareStrings considers alphabetic characters equal
only if they have the same case.

The function returns an integer value that indicates the lexicographic relationship between the
two strings.

Chapter 2 Formatting and I/O Library — CopyBytes

© National Instruments Corporation 2-13 Standard Libraries Reference Manual

CopyBytes

void CopyBytes (char targetBuffer[], int targetIndex, char *sourceBuffer,
int sourceIndex, int numberOfBytes);

Purpose
Copies the numberOfBytes bytes that start at position sourceIndex of sourceBuffer to
position targetIndex of targetBuffer.

Parameters

Input

Output

Return Value
None.

Parameter Discussion
sourceIndex and targetIndex are zero-based.

You can use CopyBytes even when sourceBuffer and targetBuffer overlap.

Name Type Description

targetIndex integer Starting position in targetBuffer.

sourceBuffer string Source buffer.

sourceIndex integer Starting position in sourceBuffer.

numberOfBytes integer Number of bytes to copy.

Name Type Description

targetBuffer string Destination buffer.

Chapter 2 Formatting and I/O Library — CopyString

Standard Libraries Reference Manual 2-14 © National Instruments Corporation

CopyString

void CopyString (char targetString[], int targetIndex, char *sourceString,
int sourceIndex, int maximum#Bytes);

Purpose
Copies the string that starts at position sourceIndex of sourceString to position targetIndex
of targetString. CopyString stops copying when it encounters an ASCII NUL byte or
maximum#Bytes bytes. CopyString appends an ASCII NUL if no ASCII NUL was copied.

Parameters

Input

Output

Return Value
None.

Parameter Discussion
sourceIndex and targetIndex are zero-based. If you want to use maximum#Bytes to prevent
writing beyond the end of targetString, make sure to allow room for the ASCII NUL. For
example, if maximum#Bytes is 40, the destination buffer should contain at least 41 bytes.

If you do not want to specify a maximum number of bytes to copy, use -1 for
maximum#Bytes.

You can use CopyString when sourceString and targetString overlap.

Note The value of maximum#Bytes must not exceed one less than the number of bytes

in the target variable.

Name Type Description

targetIndex integer Starting position in targetString.

sourceString string Source buffer.

sourceIndex integer Starting position in sourceString.

maximum#Bytes integer Number of bytes to copy, excluding the
ASCII NUL.

Name Type Description

targetString string Destination buffer.

Chapter 2 Formatting and I/O Library — FileToArray

© National Instruments Corporation 2-15 Standard Libraries Reference Manual

FileToArray

int status = FileToArray (char *fileName, void *array, int dataType,
int numberOfElements, int numberOfGroups,
int arrayDataOrder, int fileLayout,
int fileType);

Purpose
Reads data from a file into an array. You can use FileToArray with files you create using
the ArrayToFile function. FileToArray handles creating, opening, reading, and closing
the file.

Parameters

Input

Output

Return Value

Name Type Description

fileName string File pathname.

dataType integer Array element data type.

numberOfElements integer Number of elements in the array.

numberOfGroups integer Number of groups in the array.

arrayDataOrder integer How to order groups in the file.

fileLayout integer Direction to write groups in the file.

fileType integer ASCII/binary mode.

Name Type Description

array void* Numeric array.

Name Type Description

status integer Indicates success or failure.

Chapter 2 Formatting and I/O Library — FileToArray

Standard Libraries Reference Manual 2-16 © National Instruments Corporation

Return Codes

Parameter Discussion
fileName can be an absolute pathname or a relative file name. If you use a relative file name,
FileToArray locates the file relative to the current working directory.

dataType must be one of the following:

• VAL_CHAR

• VAL_SHORT_INTEGER

• VAL_INTEGER

• VAL_FLOAT

• VAL_DOUBLE

• VAL_UNSIGNED_SHORT_INTEGER

• VAL_UNSIGNED_INTEGER

• VAL_UNSIGNED_CHAR

numberOfGroups specifies the number of groups into which the data in the file is divided.
FileToArray can read columns or rows as groups. If you do not want to read your data as
groups, use 1. This parameter applies only if the file type is ASCII.

Code Description

 0 Success.

-1 Error attempting to open the file.

-2 Error attempting to close the file.

-3 An I/O error occurred.

-4 Invalid dataType parameter.

-5 Invalid numberOfElements parameter.

-6 Invalid numberOfGroups parameter.

-7 Invalid arrayDataOrder parameter.

-8 Invalid fileLayout parameter.

-9 Invalid fileType parameter.

Chapter 2 Formatting and I/O Library — FileToArray

© National Instruments Corporation 2-17 Standard Libraries Reference Manual

If you divide your data into groups, arrayDataOrder specifies how to store the data in the
array. The two choices are as follows:

• VAL_GROUPS_TOGETHER—FileToArray stores all elements from one data group
followed by all elements from the next data group.

• VAL_DATA_MULTIPLEXED—FileToArray stores the first elements of all data groups
consecutively, followed by the second elements from each group and so on.

If the file is in ASCII format, fileLayout specifies how the data appears in the file. The two
choices are as follows:

• VAL_GROUPS_AS_COLUMNS

• VAL_GROUPS_AS_ROWS

If there is only one group, VAL_GROUPS_AS_COLUMNS specifies that each value in the file is
on a separate line.

fileType specifies whether the file is in ASCII or binary format. The choices are as follows.

• VAL_ASCII

• VAL_BINARY

Chapter 2 Formatting and I/O Library — FillBytes

Standard Libraries Reference Manual 2-18 © National Instruments Corporation

FillBytes

void FillBytes (char buffer[], int startingIndex, int numberOfBytes,
int value);

Purpose
Sets the numberOfBytes bytes that start at position startingIndex of buffer to the value in
the lower byte of value. startingIndex is zero-based.

Parameters

Input

Return Value
None.

Name Type Description

buffer string Destination buffer.

startingIndex integer Starting position in buffer.

numberOfBytes integer Number of bytes to fill.

value integer Value to place in bytes.

Chapter 2 Formatting and I/O Library — FindPattern

© National Instruments Corporation 2-19 Standard Libraries Reference Manual

FindPattern

int ndx = FindPattern (char *buffer, int startingIndex, int numberOfBytes,
char *pattern, int caseSensitive,
int startFromRight);

Purpose
Searches a character buffer for a pattern of bytes. The string pattern specifies the pattern
of bytes.

Parameters

Input

Return Value

Return Code

Parameter Discussion
The buffer searched is the set of numberOfBytes bytes that starts at position startingIndex
of buffer. If numberOfBytes is -1, the buffer searched is the set of bytes that starts at
position startingIndex of buffer up to the first ASCII NUL. startingIndex is zero-based.

If caseSensitive is zero, FindPattern compares alphabetic characters without regard to
case. If caseSensitive is non-zero, FindPattern considers alphabetic characters equal only

Name Type Description

buffer string Buffer to search.

startingIndex integer Starting position in buffer.

numberOfBytes integer Number of bytes to search.

pattern string Pattern to search for.

caseSensitive integer Case-sensitivity mode.

startFromRight integer Direction of search.

Name Type Description

ndx integer Index in buffer where FindPattern finds
the pattern.

Code Description

-1 Pattern not found.

Chapter 2 Formatting and I/O Library — FindPattern

Standard Libraries Reference Manual 2-20 © National Instruments Corporation

if they have the same case. If startFromRight is zero, FindPattern finds the occurrence
farthest to the left of the pattern in the buffer. If startFromRight is nonzero, FindPattern
finds the occurrence farthest to the right of the pattern in the buffer.

If FindPattern finds the pattern, pattern returns the index relative to the beginning of
buffer, where it found the first byte of the pattern. If FindPattern does not find the pattern,
pattern returns -1.

The following example returns 4, which is the index of the second of the three occurrences of
ab in the string 1ab2ab3ab4. FindPattern skips the first occurrence because
startingIndex is 3. Of the two remaining occurrences, FindPattern finds the farthest to the
left because startFromRight is zero:

ndx = FindPattern ("1ab2ab3ab4", 3, -1, "AB", 0, 0);

On the other hand, the following line returns 7, which is the index of the last occurrence of
ab because startFromRight is nonzero:

ndx = FindPattern ("1ab2ab3ab4", 3, -1, "AB", 0, 1);

Chapter 2 Formatting and I/O Library — Fmt

© National Instruments Corporation 2-21 Standard Libraries Reference Manual

Fmt

int n = Fmt (void *target, char *formatString, source1,...,sourcen);

Purpose
Formats the source1,..., sourcen arguments according to descriptions in the formatString
argument.

Parameters

Input

Output

Return Value

Return Code

Name Type Description

formatString string Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.source1,...,sourcen Types must

match
formatString
contents.

Name Type Description

target Type must match
formatString
contents.

Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.

Name Type Description

n integer Number of source format specifiers
satisfied.

Code Description

-1 Format string error.

Chapter 2 Formatting and I/O Library — Fmt

Standard Libraries Reference Manual 2-22 © National Instruments Corporation

Using This Function
Fmt places the result of the formatting into the target argument, which you must pass by
reference. The return value indicates how many source format specifiers were satisfied, or -1
if the format string is invalid. The Using the Formatting and Scanning Functions section later
in this chapter includes a complete discussion of Fmt.

Chapter 2 Formatting and I/O Library — FmtFile

© National Instruments Corporation 2-23 Standard Libraries Reference Manual

FmtFile

int n = FmtFile (int fileHandle, char *formatString, source1,...,sourcen);

Purpose
Formats the source1,..., sourcen arguments according to descriptions in the formatString
argument. FmtFile writes the result of the formatting into the file that corresponds to the
fileHandle argument, which you obtain by calling the LabWindows/CVI function OpenFile.

Parameters

Input

Return Value

Return Codes

Using This Function
The return value indicates how many source format specifiers were satisfied: -1 if the format
string is invalid, or -2 if an I/O error occurs. The Using the Formatting and Scanning

Functions section later in this chapter includes a complete discussion of FmtFile.

Name Type Description

fileHandle integer File handle.

formatString string Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.

source1,...,sourcen Types must
match
formatString
contents

Name Type Description

n integer Number of source format specifiers
satisfied.

Code Description

-1 Format string error

-2 I/O error.

Chapter 2 Formatting and I/O Library — FmtOut

Standard Libraries Reference Manual 2-24 © National Instruments Corporation

FmtOut

int n = FmtOut (char *formatString, source1,...,sourcen);

Purpose
Formats the source1,...,sourcen arguments according to descriptions in the formatString
argument. FmtOut writes the result of the formatting to the Standard I/O window.

Parameters

Input

Return Value

Return Codes

Using This Function
The return value indicates how many source format specifiers were satisfied: -1 if the format
string is invalid, or -2 if an I/O error occurs. The Using the Formatting and Scanning

Functions section later in this chapter includes a complete discussion of FmtOut.

Name Type Description

formatString string Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.source1,...,sourcen Types must

match
formatString
contents.

Name Type Description

n integer Number of source format specifiers
satisfied.

Code Description

-1 Format string error.

-2 I/O error.

Chapter 2 Formatting and I/O Library — GetFileInfo

© National Instruments Corporation 2-25 Standard Libraries Reference Manual

GetFileInfo

int status = GetFileInfo (char *fileName, long *fileSize);

Purpose
Verifies whether a file exists. Returns an integer value of zero if no file exists and 1 if file
exists. fileSize is a long variable that contains the file size in bytes or zero if no file exists.

Parameters

Input

Return Value

Return Codes

Example
/* Check for presence of file A:\DATA\TEST1.DAT.*/
/* Print its size if file exists or message that states file does not
exist. */
int n;
long size;
n = GetFileInfo("a:\\data\\test1.dat",&size);
if (n == 0)

FmtOut("File does not exist.");
else

FmtOut("File size = %i[b4]",size);

Name Type Description

fileName string Pathname of the file to check.

fileSize long File size or zero.

Name Type Description

status integer Indicates whether the file exists.

Code Description

 1 File exists.

 0 File does not exist.

-1 Maximum number of files already open.

Chapter 2 Formatting and I/O Library — GetFmtErrNdx

Standard Libraries Reference Manual 2-26 © National Instruments Corporation

GetFmtErrNdx

int n = GetFmtErrNdx (void);

Purpose
Returns the zero-based index into the format string where an error occurred in the last
formatting or scanning call.

Parameters
None.

Return Value

Return Code

Using This Function
If the format string of the preceding call contains an error, such as an invalid format or an
inappropriate modifier, the return value indicates the position within the format string,
beginning with position zero, where the error was found. The function can report only one
error per call, even if several errors exist within the string.

Example
int i, n;
Scan ("1234", "%s>%d", &i);
n = GetFmtErrNdx ();
/* n will have the value -1, indicating that */
/* no error exists in the format string. */

Name Type Description

n integer Position of error in format string.

Code Description

-1 No error.

Chapter 2 Formatting and I/O Library — GetFmtIOError

© National Instruments Corporation 2-27 Standard Libraries Reference Manual

GetFmtIOError

int status = GetFmtIOError (void);

Purpose
This function returns specific I/O information for the last call to a Formatting and I/O function
that performs file I/O. If the last function was successful, GetFmtIOError returns zero
(no error). If the last function that performs I/O encountered an I/O error, GetFmtIOError
returns a nonzero value.

Parameters
None.

Return Value

Return Codes

Name Type Description

status integer Indicates success or failure of last function
that performed file I/O.

String Code Description

FmtIONoErr 0 No error.

FmtIONoFileErr 1 File not found.

FmtIOGenErr 2 General I/O error.

FmtIOBadHandleErr 3 Invalid file handle.

FmtIOInsuffMemErr 4 Not enough memory.

FmtIOFileExistsErr 5 File already exists.

FmtIOAccessErr 6 Permission denied.

FmtIOInvalArgErr 7 Invalid argument.

FmtIOMaxFilesErr 8 Maximum number of files open.

FmtIODiskFullErr 9 Disk is full.

FmtIONameTooLongErr 10 Filename is too long.

Chapter 2 Formatting and I/O Library — GetFmtIOErrorString

Standard Libraries Reference Manual 2-28 © National Instruments Corporation

GetFmtIOErrorString

char *message = GetFmtIOErrorString (int errorNum);

Purpose
Converts the error number GetFmtIOError returns into a meaningful error message.

Parameter

Input

Return Value

Name Type Description

errorNum integer Error code you obtain from
GetFmtIOError.

Name Type Description

message string Explanation of error.

Chapter 2 Formatting and I/O Library — NumFmtdBytes

© National Instruments Corporation 2-29 Standard Libraries Reference Manual

NumFmtdBytes

int n = NumFmtdBytes (void);

Purpose
Returns the number of bytes formatted or scanned by the previous formatting or scanning call.

Parameters
None.

Return Value

Using This Function
If the previous call was a formatting call, NumFmtdBytes returns the number of bytes placed
into the target. If the previous call was a scanning call, NumFmtdBytes returns the number of
bytes scanned from the source. The return value is undefined if there are no preceding
formatting or scanning calls.

Example
double f; int n;
Scan ("3.1416", "%s>%f", &f);
n = NumFmtdBytes ();
/* n will have the value 6, indicating that */
/* 6 bytes were scanned from the source string. */

Name Type Description

n integer Number of bytes formatted or scanned.

Chapter 2 Formatting and I/O Library — OpenFile

Standard Libraries Reference Manual 2-30 © National Instruments Corporation

OpenFile

int handle = OpenFile (char *fileName, int read/writeMode, int action,
int fileType);

Purpose
Opens a file for input and/or output.

Parameters

Input

Return Value

Return Code

Parameter Discussion
fileName is a pathname that specifies the file to open. If the read/writeMode argument is
write or read/write, OpenFile creates the file if it does not already exist. Use GetFileInfo
to determine whether a file already exists. OpenFile creates files with full read and write
permissions.

read/writeMode specifies how to open the file:

• VAL_READ_WRITE—Open file for reading and writing.

• VAL_READ_ONLY—Open file for reading only.

• VAL_WRITE_ONLY—Open file for writing only.

Name Type Description

fileName string Pathname.

read/writeMode integer Read/write mode.

action integer File pointer reposition location.

fileType integer ASCII/binary mode.

Name Type Description

handle integer File handle to be used in subsequent
ReadFile/WriteFile calls.

Code Description

-1 Function failed, unable to open file, or bad argument to
function.

Chapter 2 Formatting and I/O Library — OpenFile

© National Instruments Corporation 2-31 Standard Libraries Reference Manual

action specifies whether to delete the old contents of the file and whether to force the file
pointer to the end of the file before each write operation. action is meaningful only if
read/writeMode is VAL_READ_WRITE or VAL_WRITE_ONLY. After you perform read
operations, the file pointer points to the byte that follows the last byte read. action values are
as follows:

• VAL_TRUNCATE—Truncate file; delete its old contents and position the file pointer at the
beginning of the file.

• VAL_APPEND—Do not truncate file; append all write operations to end of file.

• VAL_OPEN_AS_IS—Do not truncate file; position the file pointer at the beginning of
the file.

fileType specifies whether to treat the file as ASCII or binary. When you perform I/O on a file
in binary mode, carriage returns (CR) and linefeeds (LF) receive no special treatment. When
you open the file in ASCII mode, CR LF combination translates to LF when reading, and LF
translates to CR LF when writing. fileType values are as follows:

• VAL_BINARY—binary

• VAL_ASCII—ASCII

Chapter 2 Formatting and I/O Library — ReadFile

Standard Libraries Reference Manual 2-32 © National Instruments Corporation

ReadFile

int n = ReadFile (int fileHandle, char buffer[], int count);

Purpose
Reads up to count bytes of data from a file or the Standard Input into buffer. Reading starts
at the current position of the file pointer. When ReadFile completes, the file pointer points
to the next unread character in the file.

Parameters

Input

Output

Return Value

Return Codes

Parameter Discussion
To read from a file, first call OpenFile to obtain a fileHandle. To read from the Standard
Input, pass 0 for fileHandle. buffer is the buffer into which you read data. You must allocate
space for this buffer before you call this function. count specifies the number of bytes to read.
count must not be greater than buffer size.

Name Type Description

fileHandle integer File handle.

count integer Number of bytes to read.

Name Type Description

buffer string Input buffer.

Name Type Description

n integer Number of bytes read.

Code Description

-1 Error, possibly a bad handle.

 0 Tried to read past end-of-file.

Chapter 2 Formatting and I/O Library — ReadFile

© National Instruments Corporation 2-33 Standard Libraries Reference Manual

Using This Function
The return value can be less than the number of bytes requested if ReadFile reaches the end
of the file before the byte count is satisfied. If you open the file in ASCII mode, ReadFile
counts each CR LF combination read as one character, because the pair is translated into LF
when ReadFile stores it in the buffer.

Note ReadFile does not terminate the buffer with an ASCII NUL.

Chapter 2 Formatting and I/O Library — ReadLine

Standard Libraries Reference Manual 2-34 © National Instruments Corporation

ReadLine

int n = ReadLine (int fileHandle, char lineBuffer[],int maximum#Bytes);

Purpose
Reads bytes from a file until it encounters a linefeed.

Parameters

Input

Output

Return Value

Return Codes

Name Type Description

fileHandle integer File handle.

maximum#Bytes integer Maximum number of bytes to read into
line, excluding the ASCII NUL.

Name Type Description

lineBuffer string Input buffer.

Name Type Description

n integer Number of bytes read, excluding linefeed.

Code Description

-2 End of file.

-1 I/O error.

Chapter 2 Formatting and I/O Library — ReadLine

© National Instruments Corporation 2-35 Standard Libraries Reference Manual

Parameter Discussion
ReadLine places up to maximum#Bytes bytes, excluding LF, into lineBuffer and appends
an ASCII NUL to lineBuffer. If there are more than maximum#Bytes bytes before LF,
ReadLine discards the extra bytes.

Call OpenFile to obtain fileHandle. You should open the file in ASCII mode so that
ReadLine treats a CR LF combination as LF. If fileHandle is zero, ReadLine reads the line
from the Standard Input.

lineBuffer is a character buffer that should be large enough to contain maximum#Bytes
bytes plus an ASCII NUL.

ReadLine returns the number of bytes read from the file, including discarded bytes, but
excluding LF. Hence, the return value exceeds maximum#Bytes if bytes are discarded.

If ReadLine reads no bytes because it has already reached the end of the file, it returns -2.
If an I/O error occurs, ReadLine returns -1.

Chapter 2 Formatting and I/O Library — Scan

Standard Libraries Reference Manual 2-36 © National Instruments Corporation

Scan

int n = Scan (void *source, char *formatString, targetptr1,...,targetptrn);

Purpose
Scans a single source item in memory and breaks it into component parts according to format
specifiers found in a formatString. Scan then places the components into the target
parameters.

Parameters

Input

Output

Return Value

Return Code

Name Type Description

source string Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.formatString Types must

match
formatString
contents.

Name Type Description

targetptr1,...,

targetptrn

Types must
match
formatString
contents.

Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.

Name Type Description

n integer Number of target format specifiers
satisfied.

Code Description

-1 Format string error.

Chapter 2 Formatting and I/O Library — Scan

© National Instruments Corporation 2-37 Standard Libraries Reference Manual

Using This Function
The return value indicates how many target format specifiers were satisfied or -1 if the format
string is invalid. The Using the Formatting and Scanning Functions section later in this
chapter includes a complete discussion of Scan.

Chapter 2 Formatting and I/O Library — ScanFile

Standard Libraries Reference Manual 2-38 © National Instruments Corporation

ScanFile

int n = ScanFile (int fileHandle, char *formatString,
targetptr1,...,targetptrn);

Purpose
Performs the same basic operation as the Scan function, except that ScanFile reads the
source data from the file you specify in the fileHandle argument. You obtain fileHandle by
calling the LabWindows/CVI function OpenFile.

Parameters

Input

Output

Return Value

Return Codes

Name Type Description

fileHandle integer Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.

formatString Types must
match
formatString
contents.

Name Type Description

targetptr1,...,

targetptrn

Types must
match
formatString
contents.

Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.

Name Type Description

n integer Number of target format specifiers
satisfied.

Code Description

-1 Format string error.

-2 I/O error.

Chapter 2 Formatting and I/O Library — ScanFile

© National Instruments Corporation 2-39 Standard Libraries Reference Manual

Using This Function
The amount of data ScanFile reads from the file depends on the amount needed to fulfill the
target format specifiers in the format string. The return value indicates how many target
format specifiers were satisfied; -1 if the format string is invalid or -2 if an I/O error occurs.
The Using the Formatting and Scanning Functions section later in this chapter includes a
complete discussion of ScanFile.

Chapter 2 Formatting and I/O Library — ScanIn

Standard Libraries Reference Manual 2-40 © National Instruments Corporation

ScanIn

int n = ScanIn (char *formatString, targetptr1,...,targetptrn);

Purpose
Performs the same basic operation as ScanFile, except that ScanIn obtains the source data
from the Standard Input.

Parameters

Input

Output

Return Value

Return Codes

Name Type Description

formatString string Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.

Name Type Description

targetptr1,...,

targetptrn

Types must
match
formatString
contents.

Refer to the Using the Formatting and

Scanning Functions section later in this
chapter.

Name Type Description

n integer Number of target format specifiers
satisfied.

Code Description

-1 Format string error.

-2 I/O error.

Chapter 2 Formatting and I/O Library — ScanIn

© National Instruments Corporation 2-41 Standard Libraries Reference Manual

Using This Function
ScanIn requires no argument for the source item. The return value indicates how many target
format specifiers were satisfied; -1 if the format string is invalid or -2 if an I/O error occurs.
The Using the Formatting and Scanning Functions section later in this chapter includes a
complete discussion of ScanIn.

Chapter 2 Formatting and I/O Library — SetFilePtr

Standard Libraries Reference Manual 2-42 © National Instruments Corporation

SetFilePtr

long position = SetFilePtr (int fileHandle, long offset, int origin);

Purpose
Moves the file pointer for the file specified by fileHandle to a location that is offset bytes
from origin. Returns the offset of the new file pointer position from the beginning of the file.

Parameters

Input

Output

Return Value

Return Code

Parameter Discussion
The valid values of origin are as follows:

• 0 = beginning of file

• 1 = current position of file pointer

• 2 = end of file

Name Type Description

fileHandle integer File handle you obtain from OpenFile.

offset long integer Number of bytes from origin to position of
file pointer.

Name Type Description

origin integer Position in file from which to base offset.

Name Type Description

position long integer Offset of the new file pointer position from
the beginning of the file.

Code Description

-1 An invalid file handle, an invalid origin value, or an offset value
that is before the beginning of the file.

Chapter 2 Formatting and I/O Library — SetFilePtr

© National Instruments Corporation 2-43 Standard Libraries Reference Manual

Using This Function
You can use SetFilePtr to obtain the file size by setting offset to 0 and origin to 2. In this
case, the return value indicates the file size, and the file pointer points to at the end of the file.

You can position the file pointer beyond the end of the file. Intermediate bytes, bytes between
the old end of file and the new end of file, contain values that might vary. An attempt to
position the file pointer before the beginning of the file causes the function to return an error.

If the file is a device that does not support random access, such as the Standard Input, the
function returns a value that might vary.

Example
/* Open or create the file c:\TEST.DAT, move 10 bytes into the file,

and write a string to the file. */
/* Note: Use \\ in pathname in C instead of \. */
int handle, result;
long position;
handle = OpenFile("c:\\TEST.DAT", 0, 2, 1);
if (handle == -1){

FmtOut("error opening file");
exit(1);

}
position = SetFilePtr(handle, 10L, 0);
if (position == 10){

result = WriteFile(handle, "Hello, World!", 13);
if (result == -1)

FmtOut("error writing to file");
}
else

FmtOut("error positioning file pointer");
CloseFile(handle);

Chapter 2 Formatting and I/O Library — StringLength

Standard Libraries Reference Manual 2-44 © National Instruments Corporation

StringLength

int n = StringLength (char *string);

Purpose
Returns the number of bytes in the string before the first ASCII NUL.

Parameter

Input

Return Value

Example
char s[100];
int nbytes;
nbytes = StringLength (s);

Name Type Description

string string Null-terminated string.

Name Type Description

n integer Number of bytes in string before
ASCII NUL.

Chapter 2 Formatting and I/O Library — StringLowerCase

© National Instruments Corporation 2-45 Standard Libraries Reference Manual

StringLowerCase

void StringLowerCase (char string[]);

Purpose
Converts all uppercase alphabetic characters in the null-terminated string to lowercase.

Parameter

Input/Output

Return Value
None.

Name Type Description

string string String to convert to lowercase.

Chapter 2 Formatting and I/O Library — StringUpperCase

Standard Libraries Reference Manual 2-46 © National Instruments Corporation

StringUpperCase

void StringUpperCase (char string[]);

Purpose
Converts all lowercase alphabetic characters in the null-terminated string to uppercase.

Parameter

Input/Output

Return Value
None.

Name Type Description

string string String to convert to uppercase.

Chapter 2 Formatting and I/O Library — WriteFile

© National Instruments Corporation 2-47 Standard Libraries Reference Manual

WriteFile

int n = WriteFile (int fileHandle, char *buffer, unsigned int count);

Purpose
Writes up to count bytes of data from buffer to a file or to the Standard Output. WriteFile
starts writing at the current position of the file pointer. When WriteFile completes, it
increments the file pointer by the number of bytes written.

Parameters

Input

Return Value

Return Code

Parameter Discussion
To write data to a file, first call OpenFile to obtain a fileHandle. To write to the Standard
Output, pass 1 for fileHandle.

buffer is the buffer from which to write data.

count specifies the number of bytes to write. The count parameter overrides the buffer size
in determining the number of bytes to write. Buffers that contain embedded ASCII NUL bytes
are written in full. count must not be greater than buffer size.

Name Type Description

fileHandle integer File handle.

buffer string Data buffer.

count integer Number of bytes to write.

Name Type Description

n integer Number of bytes written to the file.

Code Description

-1 Error. An error can indicate a bad file handle, an attempt to
access a protected file, an attempt to write to a file opened as
read only, or no more space left on disk.

Chapter 2 Formatting and I/O Library — WriteFile

Standard Libraries Reference Manual 2-48 © National Instruments Corporation

Using This Function
For files you open in ASCII mode, WriteFile replaces each LF character with a CR LF
combination in the output. The return value does not include the CR characters WriteFile
inserts before the LF characters.

Chapter 2 Formatting and I/O Library — WriteLine

© National Instruments Corporation 2-49 Standard Libraries Reference Manual

WriteLine

int n = WriteLine (int fileHandle, char *lineBuffer,int numberOfBytes);

Purpose
Writes numberOfBytes bytes from lineBuffer to a file and then writes a linefeed to the file.

Parameters

Input

Return Value

Return Code

Parameter Discussion
If numberOfBytes is -1, WriteLine writes only the bytes in lineBuffer before the first
ASCII NUL, followed by LF.

Call OpenFile to obtain a fileHandle. You should open the file in ASCII mode so that
WriteLine writes CR before LF. If fileHandle is 1, WriteLine writes the line to the
Standard Output.

Using This Function
WriteLine returns the number of bytes written to the file, excluding LF. If an I/O error
occurs, WriteLine returns -1.

Name Type Description

fileHandle integer File handle.

lineBuffer string Data buffer.

numberOfBytes integer Number of bytes to write.

Name Type Description

n integer Number of bytes written, including
linefeed.

Code Description

-1 I/O error.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-50 © National Instruments Corporation

Using the Formatting and Scanning Functions

You use data formatting functions to translate or reformat data items into other forms. Typical
uses might be to translate between data stored on external files and the internal forms the
program can manipulate, or to reformat a foreign binary representation into one on which the
program can operate.

Three subclasses of data formatting functions exist in the LabWindows/CVI Formatting and
I/O Library:

• Formatting functions

• Scanning functions

• Status functions

You use formatting functions to combine and format one or more source items into a single
target item, and you use scanning functions to break apart a single source item into several
target items. The status functions return information regarding the success or failure of the
formatting or scanning functions.

Introductory Formatting and Scanning Examples
To introduce you to the formatting and scanning functions, consider the following examples.

Convert the integer value 23 to its ASCII representation and place the contents in a
string variable:

char a[5];
int b,n;
b = 23;
n = Fmt (a, "%s<%i", b);

After the Fmt call, a contains the string 23.

In this example, a is the target argument, b is the source argument, and the string %s<%i is
the format string. The Fmt call uses the format string to determine how to convert the source
argument into the target argument.

With Scan, you can convert the string 23 to an integer:

char *a;
a = "23";
n = Scan (a$, "%s>%i", b%);

After the Scan call, b = 23.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-51 Standard Libraries Reference Manual

In this example, a is the source argument, b is the target argument, and %s>%i is the format
string. In both the formatting and the scanning functions, the format string defines the variable
types of the source and target arguments and the method by which the source arguments are
transformed into the target arguments.

Formatting Functions
The following information is a brief description of the three formatting functions:

• n = Fmt (target, formatstring, source1, ..., sourcen);

The Fmt function formats the source1, ..., sourcen arguments according to
descriptions in the formatstring argument. Fmt places the result of the formatting into
the target argument.

• n = FmtFile (handle, formatstring, source1, ..., sourcen);

The FmtFile function formats the source1, ..., sourcen arguments according to
descriptions in the formatstring argument. FmtFile writes the result of the
formatting into the file corresponding to the handle argument.

• n = FmtOut (formatstring, source1, ..., sourcen);

The FmtOut function formats the source1, ..., sourcen arguments according to
descriptions in the formatstring argument. FmtOut writes the result of the formatting
to the Standard Output.

Each of these formatting functions returns the number of source format specifiers satisfied.
If an error exists in the format string, the functions return -1.

The formatting functions format and combine multiple source items into a single target item.
The only difference in the workings of the three functions is the location of the target data.
For Fmt, the target is a data item in memory that you pass to the function by reference. You
must pass the target parameter for Fmt by reference. For FmtFile, the target is a file whose
handle you pass as the first argument. Call OpenFile to obtain a file handle. For FmtOut, the
target is the Standard Output, typically the display. FmtOut omits the target argument present
in the other two functions. Except for these differences, the following descriptions apply to
all the formatting functions.

Formatting Functions—Format String
Consider the following formatting function:

n = Fmt(target, formatstring, source1, ..., sourcen);

where formatstring contains the information to transform the source arguments to the
target argument.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-52 © National Instruments Corporation

Format strings for all the formatting functions are of the form:

"target_spec < source_specs_and_literals"

where target_spec is a format specifier that describes the nature of the target data item, and
source_specs_and_literals is a sequence of format specifiers and literal characters that
indicate how to combine the source material into the target.

Examples of format strings for the formatting functions are as follows:

"%s < RANGE %i"

"%s < %s; %i"

The character '<' serves as a visual reminder of the direction of the data transformation from
the sources to the target and separates the single target format specifier from the source format
specifiers and literals. You can omit the target format specifier, in which case the functions
assume a %s string format. If you omit the target format specifier, you can omit the
'<' character or retain it for clarity.

Notice that the target format specifier is located to the left of the '<' symbol, just as the target
parameter is located to the left of the format string. Likewise, the source format specifiers are
located to the right of the '<' symbol, just as the source parameters are located to the right of
the format string.

Format specifiers describe the inputs and outputs of data transformations. Each format
specifier has the following form:

% [rep] formatcode [[modifiers]]

The character '%' introduces all format specifiers. rep indicates how many times the format
repeats with respect to the arguments. formatcode is a code character that indicates the
nature of the data items you want to format. modifiers is an optional bracket-enclosed
sequence of codes that further describe the data format.

Examples of format specifiers are as follows:

%s %100f %i[b2u]

Note rep is not allowed when formatcode is s (string).

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-53 Standard Libraries Reference Manual

formatcode is specified with one of the following codes in Table 2-2.

Table 2-2. Codes That Specify formatcode

formatcode Meaning Description

s String As a source or target specifier, this indicates that the
corresponding parameter is a character string. As a
target specifier, this can mean that numeric source
parameters become converted into an ASCII form for
inclusion in the target string. Refer to the individual
numeric formats, such as %i and %f, for details of these
conversions. s is the default if no target specifier exists.
The functions do not work on arrays of strings. For
example, %10s is not a valid format string.

Note: When the functions fill in a target string, they
always place an ASCII NUL in the string after the
last byte.

i Integer This source or target specifier indicates that the
corresponding parameter is an integer or, if rep is
present, an integer array. The function performs
conversions to ASCII digits when converting to or
from the string format %s. A modifier is available to
specify the radix to use in such a conversion. The
default is decimal.

x Integer
(hexadecimal)

This source or target specifier indicates that the
corresponding parameter is an integer or, if rep is
present, an integer array. The function performs
conversions to ASCII hexadecimal digits
(0123456789abcdef) when converting to or from the
string format %s.

o Integer (octal) This source or target specifier indicates that the
corresponding parameter is an integer or, if rep is
present, an integer array. The function performs
conversions to ASCII octal digits (01234567) when
converting to or from the string format %s.

d Integer
(decimal)

This format specifier is identical to %i and is included
for compatibility with the C printf family of
functions.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-54 © National Instruments Corporation

Formatting Modifiers
modifiers are optional codes you use to describe the nature of the source or target data. If
you use them, you must enclose the modifiers in square brackets and place them immediately
after the format code they modify. If one format specifier requires more than one modifier,
enclose all modifiers in the same set of brackets.

A different set of modifiers exists for each possible format specifier as shown in Table 2-3,
Table 2-4, and Table 2-5.

f Real number This source or target specifier indicates that the
corresponding parameter is a real number or, if rep is
present, a real array. The functions perform
conversions to ASCII when converting to or from the
string format %s.

c Character This source or target specifier indicates that the
corresponding parameter is an integer with one
significant byte or, if rep is present, an array of 1-byte
integers. The functions do not perform conversion to
ASCII when converting to or from the string format
%s. The functions copy directly to or from the string.

Table 2-2. Codes That Specify formatcode (Continued)

formatcode Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-55 Standard Libraries Reference Manual

Table 2-3. Formatting Integer Modifiers (%i, %d, %x, %o, %c)

Modifier Meaning Description

bn Specify length The b integer modifier specifies the length of the
integer argument, or the length of an individual integer
array element, in bytes. The default length is 4 bytes;
therefore, simple 4-byte integers do not need this
modifier. The modifier b2 represents short integers.
The modifier b1 represents single-byte integers.

in Specify array
offset

The i integer modifier specifies an offset within an
integer array argument. It indicates the location within
the array where processing begins. n is the zero-based
index of the first element to process. Thus, %10d[i2]
applied to a source integer array processes the
10 integer values from the third–12th elements of the
array. The i modifier is valid only if rep is present. If
you use the i modifier with the z modifier, n is in
terms of bytes.

z Treat string as
integer array

The z integer modifier indicates that the data type of
the corresponding argument is a string. Nevertheless,
the functions treat the data in the string as an integer
array. The z modifier is valid only if rep is present.

rn Specify radix The r integer modifier specifies the radix of the
integer argument, which is important if the functions
convert the integer into string format. Legal radixes
are 8 (octal), 10 (decimal, the default), 16
(hexadecimal), and 256 (a special radix that represents
single 8-bit ASCII characters).

wn Specify string
size

The w integer modifier specifies the exact number of
bytes in which to store a string representation of the
integer argument, in the event that the functions
convert the integer to a string format. You can enter
any non-negative value here. If n is less than the
number of digits required to represent the integer, the
functions insert an asterisk (*) into the string to
signify an overflow. The default for n is zero, which
indicates that the integer can occupy whatever space is
necessary.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-56 © National Instruments Corporation

When using the Fmt function to transfer raw instrument data to or from a C integer
or integer array, you must use the o modifier on the buffer that contains the raw
instrument data. Do not use the o modifier on the buffer that contains the C integer
or integer array. LabWindows/CVI determines the byte ordering of the buffer
without the o modifier based on the architecture on which your program is running.

For example, if your GPIB instrument sends 2-byte binary data in Intel byte order,
your code should appear as follows:

short int instr_buf[100];
short int prog_buf[100];
status = ibrd (ud, instr_buf, 200);
Fmt (prog_buf, "%100d<%100d[b2o01]", instr_buf);

If, instead, your GPIB instrument sends two-byte binary data in Motorola byte order,
Fmt should appear as follows:

Fmt (prog_buf, "%100d<%100d[b2o10]", prog_buf);

pc Specify padding The p integer modifier specifies a padding character c,
which fills the space to the left of an integer in the
event it does not require the entire width you specify
with the wn modifier. The default padding character is
a blank.

s Specify as two’s
complement

The s integer modifier indicates that the functions
consider the integer argument a signed two’s
complement number. This is the default interpretation
of integers, so the functions do not require the
s modifier.

u Specify as
unsigned

The u integer modifier indicates that the functions
consider the integer an unsigned integer.

onnnn Specify byte
ordering

You use the o integer modifier to describe the byte
ordering of raw data so that LabWindows/CVI can
map it to the byte order appropriate for the Intel (PC)
or Motorola (SPARCstation) architecture. The
number of n’s must be equal to the byte size of the
integer argument as specified by the bn modifier,
which must precede the o modifier. In the case of a
four-byte integer, o0123 indicates that the bytes are in
ascending order of precedence (Intel style), and
o3210 indicates that the bytes are in descending order
of precedence (Motorola style).

Table 2-3. Formatting Integer Modifiers (%i, %d, %x, %o, %c) (Continued)

Modifier Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-57 Standard Libraries Reference Manual

In either case, you use the o modifier only on the buffer that contains the raw data
from the instrument (instr_buf). LabWindows/CVI ensures that the program
buffer (prog_buf) is in the proper byte order for the host processor.

Note When you use both the bn and on modifiers on an integer specifier, the bn

modifier must be first.

Table 2-4. Formatting Floating-Point Modifiers (%f)

Modifier Meaning Description

bn Specify length The b floating-point modifier specifies the length of
the floating-point argument, or the length of an
individual array element, in bytes. The default length
is 8 bytes; therefore, double-precision values do not
need this modifier. Single-precision, floating-point
values are indicated by b4. The only valid values for
n are 8 and 4.

in Specify array offset The i floating-point modifier specifies an offset
within a floating-point array argument. It indicates the
location within the array where processing begins. n
is the zero-based index of the first element to process.
Thus, %10f[i2] applied to a source floating-point
array processes the 10 floating-point values from the
third–12th elements of the array. The i modifier is
valid only if rep is present. If you use the i modifier
with the z modifier, n is in terms of bytes.

z Treat string as
floating-point array

The z floating-point modifier indicates that the data
type of the corresponding argument is a string.
Nevertheless, the functions treat the data in the string
as a floating-point array. The z modifier is valid only
if rep is present.

wn Specify string size The w floating-point modifier specifies the exact
number of bytes in which to store a string
representation of the floating-point argument, in the
event that the functions convert the value to a string
format. You can enter any non-negative value here. If
n is less than the number of digits required to
represent the floating-point number, the functions
insert an asterisk (*) into the string to signify an
overflow. The default for n is zero, which indicates
that the value can occupy whatever space is necessary.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-58 © National Instruments Corporation

pn Specify precision The p floating-point modifier specifies the number of
digits to the right of the decimal point in a string
representation of the floating-point number. You can
lose significant digits by attempting to conform to the
precision specification. If you omit the pn modifier,
the default value is p6.

en Specify as scientific
notation

The e floating-point modifier instructs the functions
to convert a value to string format in scientific
notation. If you omit the en modifier, the functions
use the floating-point notation. n is optional and
specifies the number of digits in the exponent. For
example, %f[e2] formats 10.0 as 1.0e+01. If you
omit n, the functions use a default of three.

Note: The functions can represent the value in
scientific notation even when the e modifier is absent.
This occurs when the absolute value of the argument
is greater than 1.0e40 or less than 1.0e-40, or when
the absolute value of the argument is greater than
1.0e20 or less than 1.0e-4 and neither the p modifier
nor the w modifier is present.

f Specify as
floating-point
notation

The f floating-point modifier instructs the functions
to convert a value to string format in floating-point
notation. This is the default.

t Truncate The t floating-point modifier indicates that in
floating-point to integer transformations, the
functions truncate instead of round the floating-point
value. This is the default.

r Round The r floating-point modifier indicates that in
floating-point to integer transformations, the
functions round instead of truncate the floating-point
value. The default method is truncation.

Table 2-4. Formatting Floating-Point Modifiers (%f) (Continued)

Modifier Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-59 Standard Libraries Reference Manual

Table 2-5. Formatting String Modifiers (%s)

Modifier Meaning Description

in Specify array
offset

The i string modifier specifies an offset within a string.
It indicates the location within the string where
processing begins. n is the zero-based index of the first
byte to process. Thus, %s[i2] applied to a target string
begins placing data in the third byte of the string.

a Append When applied to a target format specifier, the a string
modifier specifies that all formatted data be appended to
the target string, beginning at the first occurrence of an
ASCII NUL in the target string.

wn Specify string size When applied to a source format specifier, the w string
modifier specifies the maximum number of bytes to
consume from the string argument. You can enter any
non-negative value here. The default is zero, which
indicates that the entire string should be consumed.

When modifying a target format specifier, the w string
modifier specifies the exact number of bytes to store in
the string, excluding the terminating ASCII NUL. If n is
zero or omitted, the functions store as many bytes as the
sources call for. When n is greater than the number of
bytes available from the source, the remaining bytes are
filled with ASCII NULs if you use the q modifier or
blanks if you do not use the q modifier.

When you use the w string modifier in conjunction with
the a string modifier, n indicates the number of bytes to
append to the string excluding the terminating
ASCII NUL.

q Append NULs When applied to a target string in conjunction with the
w string modifier, the q string modifier specifies that
unfilled bytes at the end of the target string be set to
ASCII NULs instead of blanks.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-60 © National Instruments Corporation

tn Terminate on
character

When applied to a source string, the t string modifier
specifies that the source string terminates on the first
occurrence of the character n, where n is the ASCII
value of the character. Thus, %s[t44] stops the reading
of the source string on an ASCII comma. Using
%s[t44] and the source string Hello, World! as an
example, the functions place Hello into the target.
More than one t modifier can occur in the same
specifier, in which case the string terminates when any
of the terminators occur. If no t modifier exists, reading
of the source string stops on an ASCII NUL. This
modifier has no effect when you apply it to the target
specifier.

t- Terminate when
full

This is similar to tn except that it specifies that there are
no terminating characters. Reading of the source string
terminates when the target is full or when the functions
have read the number of bytes specified with the
w modifier.

t# Terminate on
number

This is equivalent to repeating the t modifier with the
ASCII values of the characters +, -, and 0–9. It instructs
the functions to stop the reading of the source string on
occurrence of a numeric expression. If you use %s[t#]
with the source string ab567, the functions place ab in
the target.

Table 2-5. Formatting String Modifiers (%s) (Continued)

Modifier Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-61 Standard Libraries Reference Manual

Fmt, FmtFile, FmtOut—Asterisks (*) Instead of Constants
in Format Specifiers
Often, a format specifier requires one or more integer values. The format specifier for an
integer array, for example, requires the number of elements (rep). You can use constants for
these integer values in format specifiers. Also, you can specify an integer value using an
argument in the argument list. When you use this method, substitute an asterisk (*) for the
constant in the format specifier.

Use the asterisk in the following format specifier elements:

When you use one or more asterisks instead of constants in a target specifier, the arguments
that correspond to the asterisks must appear after the format string in the same order as the
corresponding asterisks appear in the format specifier.

When you use one or more asterisks instead of constants in a source specifier, the arguments
that correspond to the asterisks must precede the source argument and must be in the same
order as the corresponding asterisks in the format specifier.

Fmt, FmtFile, FmtOut—Literals in the Format String
Literal characters that appear in a formatting function format string indicate that the literal
characters are to be combined with the source parameters in the appropriate positions. They
do not correspond to any source parameters but are copied directly into the target item.

Because the left side of the < symbol must be a single format specifier, literal characters must
be on the right side of the symbol. Literals on the left side or more than one format specifier
on the left side result in a -1 error, indicating a faulty format string. You then can use
GetFmtErrNdx to determine exactly where the error lies in the format string.

The characters %, [,], <, and > have special meaning in the format strings. To specify that these
characters be taken literally, precede them with %.

rep For integer or floating-point arrays

in For integer or floating-point arrays, or strings

wn For any format specifier

pn For floating-point specifiers only

en For floating-point specifiers only

rn For integer specifiers only

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-62 © National Instruments Corporation

Scanning Functions
The following information is a brief description of the three scanning functions.

• n = Scan (source, formatstring, targetptr1, ..., targetptrn);

Scan inspects the source argument and applies transformations to it according to
descriptions in the formatstring argument. Scan places the results of the
transformations into the targetptr1 ... targetptrn arguments.

• n = ScanFile (handle, formatstring, targetptr1, ..., targetptrn);

ScanFile reads data from the file that corresponds to the handle argument and applies
transformations to it according to descriptions in the formatstring argument.
ScanFile places the results of the transformations into the
targetptr1 ... targetptrn arguments.

• n = ScanIn (formatstring, targetptr1, ..., targetptrn);

ScanIn reads data from the Standard Input and applies transformations to it according
to descriptions in the formatstring argument. ScanIn places the results of the
transformations into the targetptr1 ... targetptrn arguments.

Each of these scanning functions returns the number of target format specifiers satisfied. If
an error exists in the format string, the functions return -1.

The scanning functions break apart a source item into component parts and store the parts into
parameters passed to the function. The only difference among the three functions is the
location of the source data. For Scan, the source item is a data item in memory that you pass
to the function. For ScanFile, the source item is a file, whose handle you pass as the first
argument. Call OpenFile to obtain a file handle. For ScanIn, the function takes the source
from the Standard Input, typically the keyboard, and omits the source argument present in the
other two functions.

You must pass all target parameters for Scan by reference.

Scanning Functions—Format String
Consider the following scanning function:

n = Scan(source, formatstring, targetptr1, ..., targetptrn);

where formatstring contains the information to transform the source argument to the
targetptr arguments.

Format strings for the scanning functions follow the form:

"source_spec > target_specs_and_literals"

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-63 Standard Libraries Reference Manual

where source_spec is a format specifier that describes the nature of the source parameter
and target_specs_and_literals is a sequence of format specifiers and literal characters
that indicate how to divide and reformat the source argument into the desired target.

Examples of format strings for the scanning functions are as follows:

"%s > %i"

"%s > %20f[w10x]"

The character '>' serves as a visual reminder of the direction of the data transformation and
separates the single source format specifier from the target format specifiers and literals. You
can omit the source format specifier, in which case the functions assume a %s string format.
If you omit the source format specifier, you can omit the '>' character or retain it for clarity.

Notice that the source format specifier is located to the left of the '>' symbol, just as the source
parameter is located to the left of the format string. Likewise, the target format specifiers are
located to the right of the '>' symbol, just as the target parameters are located to the right of
the format string.

Format specifiers describe the inputs and outputs of data transformations. Each format
specifier is of the following form:

% [rep] formatcode [[modifiers]]

The character % introduces all format specifiers. rep indicates how many times the format
repeats with respect to the arguments. formatcode is a code character that indicates the
nature of the data items the functions format. modifiers is an optional bracket-enclosed
sequence of codes that further describe the data format.

Examples of format specifiers are a follows:

%s[t59] %100i[z] %f

Note rep is not allowed when formatcode is s or l (string).

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-64 © National Instruments Corporation

formatcode is specified with one of the following codes in Table 2-6:

Table 2-6. Codes That Specify formatcode

formatcode Meaning Description

s String As a source or target specifier, this indicates that the
corresponding parameter is a character string. As a
source specifier, the number of bytes of the source
parameter that the functions consume depends on the
target specifier. If the target specifier is %s, the
functions consume bytes until they encounter a
termination character. Refer to the t modifier for
strings for more information on termination characters.
If the target specifier is one of the numeric formats, the
functions consume bytes as long as the bytes
correspond to the pattern for the particular numeric
item the functions are converting. The functions skip
leading spaces and tabs unless you use the y modifier.

Note: When the functions fill in a target string, they
always place an ASCII NUL in the string after the
last byte.

l String This is allowed only as a source specifier. It is the same
as the %s specifier, except that the function consumes
bytes from the source argument only until it encounters
a linefeed. You can modify with c, as in %l[c], to tell
the functions to use a comma as the target string
terminator in place of white space characters.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-65 Standard Libraries Reference Manual

i Integer This source or target specifier indicates that the
corresponding parameter is an integer or, if rep is
present, an integer array. As a source specifier in
conversions to string formats, the functions convert the
integer into digits of the specified radix. The default is
decimal. As a target specifier in conversions from
string format, the functions consume bytes of the
source parameter as long as they match the pattern of
integer ASCII numbers in the appropriate radix or until
the functions encounter the end of the string. The
functions convert the scanned characters to integer
values and place them into the corresponding target
parameter, which is an integer array or integer you pass
by reference.

The pattern for integer ASCII numbers consists of an
optional sign (+ or -), followed by a series of one or
more digits in the appropriate radix. The decimal digits
are 01234 56789. The octal digits are 01234567. The
hexadecimal digits are 0123456789ABCDEFabcdef.

x Integer
(hexadecimal)

This specifier indicates a %i format with
hexadecimal radix.

o Integer (octal) This specifier indicates a %i format with octal radix.

d Integer
(decimal)

This specifier is identical to %i and is included for
compatibility with the C scanf family of functions.

Table 2-6. Codes That Specify formatcode (Continued)

formatcode Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-66 © National Instruments Corporation

Scanning Modifiers
modifiers are optional codes you use to describe the nature of the source or target data. If
you use them, you must enclose the modifiers in square brackets and place them immediately
after the format code they modify. If one format specifier requires more than one modifier,
enclose all modifiers in the same set of brackets.

f Real number As a source or target specifier, this indicates that the
corresponding parameter is a real number, or if rep is
present, a real array. As a source specifier in
conversions to string formats, the functions convert the
floating-point value into ASCII form. As a target
specifier in conversions from string format, the
function consumes bytes of the source parameter as
long as they match the pattern of floating-point ASCII
numbers or until the functions encounter the end of the
string. The functions convert the scanned characters to
a floating-point value and place them into the
corresponding floating-point or floating-point array
target parameter.

The pattern for floating-point ASCII numbers is an
optional sign (+ or -), a series of one or more decimal
digits that can contain a decimal point, and an optional
exponent that consists of an E or e followed by an
optionally signed decimal integer value.

c Character As a source specifier, this indicates that the source
parameter is an integer with one significant byte or, if
rep is present, an array of 1-byte integers. As a target
specifier, this indicates that the functions consume a
byte of the source parameter and place the scanned
character directly into the corresponding target
parameter, which is an integer you pass by reference.

Table 2-6. Codes That Specify formatcode (Continued)

formatcode Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-67 Standard Libraries Reference Manual

A different set of modifiers exists for each possible format specifier as shown in Table 2-7,
Table 2-8, and Table 2-9.

Table 2-7. Scanning Integer Modifiers (%i, %d, %x, %o, %c)

Modifier Meaning Description

bn Specify length The b integer modifier specifies in bytes the length of the
integer argument or the length of an individual integer
array element. The default length is 4 bytes; therefore,
simple 4-byte integers do not need this modifier. The
modifier b2 represents short integers. The modifier b1
represents single-byte integers.

in Specify array
offset

Use the i integer modifier to specify an offset within an
integer array argument. It indicates the location within
the array where processing begins. n is the zero-based
index of the first element to process. Thus, %10d[i2]
applied to a source integer array processes the 10 integer
values from the third–12th elements of the array. The
i modifier is valid only if rep is present. If you use the
i modifier with the z modifier, n is in terms of bytes.

z Treat string as
integer array

The z integer modifier indicates that the data type of the
corresponding argument is a string. Nevertheless, the
functions treat the data in the string as an integer array.
The z modifier is valid only if rep is present.

rn Specify radix The r integer modifier specifies the radix of the integer
argument, which is important if the functions convert the
integer from a string format. Legal radixes are 8 (octal),
10 (decimal, the default), 16 (hexadecimal), and 256
(a special radix that represents single 8-bit ASCII
characters).

wn Specify string
size

The w integer modifier specifies the exact number of
bytes occupied by a string representation of the integer
argument, in the event that the functions convert the
integer from a string format. You can enter any
non-negative value here. If n is less than the number of
digits required to represent the integer, the functions
insert an asterisk (*) into the string to signify an
overflow. The default for n is zero, which indicates that
the integer can occupy as much room as necessary.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-68 © National Instruments Corporation

When using the Scan function to transfer raw instrument data to or from a C integer
or integer array, you must use the o modifier on the buffer that contains the raw
instrument data. Do not use the o modifier on the buffer that contains the C integer
or integer array. LabWindows/CVI determines the byte ordering of the buffer
without the o modifier based on the architecture on which your program is running.

s Specify as two’s
complement

The s integer modifier indicates that the functions
consider the integer argument a signed two’s
complement number. This is the default interpretation of
integers, so the functions do not require the s modifier.

u Specify as
non-negative

The u integer modifier indicates that the functions
consider the integer to be a non-negative integer.

x Discard
terminator

The x integer causes the functions to discard the
character that terminated the numeric data. In this way,
the functions can skip the terminator characters when
reading lists of numeric input. Thus, %3i[x] reads three
integer numbers, disregarding the terminator character
that appears after each one. You can use this specifier to
scan the string 3, 7, -32.

d Discard data When applied to a target specifier, the d integer modifier
indicates that no target argument exists to correspond to
the target specifier. The data the functions would place in
the target argument is discarded instead. The count the
functions return includes the target specifier even if you
use the d modifier.

onnnn Specify byte
ordering

You use the o integer modifier to describe the byte
ordering of raw data so that LabWindows/CVI can map
it to the byte order appropriate for the Intel (PC) or
Motorola (SPARCstation) architecture. The number of
n’s must be equal to the byte size of the integer argument
as specified by the bn modifier, which must precede the
o modifier. In the case of a four-byte integer, o0123
indicates that the bytes are in ascending order of
precedence (Intel style), and o3210 indicates that the
bytes are in descending order of precedence
(Motorola style).

Table 2-7. Scanning Integer Modifiers (%i, %d, %x, %o, %c) (Continued)

Modifier Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-69 Standard Libraries Reference Manual

For example, if your GPIB instrument sends 2-byte binary data in Intel-byte order,
your code should appear as follows:

short int instr_buf[100];
short int prog_buf[100];
status = ibrd (ud, instr_buf, 200);
Scan (instr_buf, "%100d[b2o01]>%100d", prog_buf);

If, instead, your GPIB instrument sends 2-byte binary data in Motorola-byte order,
Scan should appear as follows:

Scan (instr_buf, "%100d[b2o10]>%100d", prog_buf);

In either case, you use the o modifier only on the buffer that contains the raw data
from the instrument (instr_buf). LabWindows/CVI ensures that the program
buffer (prog_buf) is in the proper byte order for the host processor.

Note When you use both the bn and on modifiers on an integer specifier, the

bn modifier must be first.

Table 2-8. Scanning Floating-Point Modifiers (%f)

Modifier Meaning Description

bn Specify
length

The b floating-point modifier specifies the length of the
floating-point argument, or the length of an individual
array element, in bytes. The default length is 8 bytes;
therefore, double-precision values do not need this
modifier. Single-precision floating-point values are
indicated by b4. The only valid values for n are 8 and 4.

in Specify array
offset

The i floating-point modifier specifies an offset within a
floating-point array argument. It indicates the location
within the array where processing begins. n is the
zero-based index of the first element to process. Thus,
%10f[i2] applied to a source floating-point array
processes the 10 floating-point values from the third–12th
elements of the array. The i modifier is valid only if rep
is present. If you use the i modifier with the z modifier,
n is in terms of bytes.

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-70 © National Instruments Corporation

z Treat string as
floating point

The z floating-point modifier indicates that the data type
of the corresponding argument is a string. Nevertheless,
the functions treat the data in the string as a floating-point
array. The z modifier is valid only if rep is present.

wn Specify string
size

The w floating-point modifier specifies the exact number
of bytes occupied by a string representation of the
floating-point argument, in the event that the functions
convert the value from a string format. You can enter any
non-negative value here. If n is less than the number of
digits required to represent the floating-point number, the
functions insert an asterisk (*) into the string to signify an
overflow. The default for n is zero, which indicates that
the value can occupy whatever space is necessary.

pn Specify
precision

The p floating-point modifier specifies the number of
digits to the right of the decimal point in a string
representation of the floating-point number. You can lose
significant digits by attempting to conform to the
precision specification. If you omit the pn modifier, the
default is p6. The p modifier is valid for sources only.

en Specify as
scientific
notation

The e floating-point modifier indicates that the string
representation of the floating-point value is in scientific
notation. If you omit the modifier, the functions use
non-scientific notation. n is optional and specifies the
number of digits to use in the exponent. For example,
%f[e2] causes the functions to format 10.0 as 1.0e+01.
If you omit n, the functions use a default of three. The
e modifier is valid for sources only.

f Specify as
floating point

The f floating-point modifier indicates that the string
representation of the floating-point value is not in
scientific notation. This is the default even when the
f modifier is absent.

Table 2-8. Scanning Floating-Point Modifiers (%f) (Continued)

Modifier Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-71 Standard Libraries Reference Manual

x Discard
terminator

The x floating-point modifier causes the functions to
discard the character that terminated the numeric data. In
this way, the functions can skip terminator characters
when reading lists of numeric input. Thus, %3f[x] reads
three floating-point numbers, disregarding the terminator
character that appears after each one. You can use this
specifier to scan the string 3.5, 7.6, -32.4.

d Discard data When applied to a target specifier, the d modifier
indicates no target argument exists to correspond to the
target specifier. The data the functions would place in the
target argument is discarded instead. The count the
functions return includes the target specifier even if you
use the d modifier.

Table 2-9. Scanning String Modifiers (%s)

Modifier Meaning Description

in Specify array
offset

The i string modifier specifies an offset within a string. It
indicates the location within the string where processing
begins. n is the zero-based index of the first byte to
process. Thus, %s[i2] applied to a target string begins
placing data in the third byte of the string.

a Append When applied to a target format specifier, the a string
modifier specifies that all formatted data be appended to
the target string, beginning at the first occurrence of an
ASCII NUL in the target string.

Table 2-8. Scanning Floating-Point Modifiers (%f) (Continued)

Modifier Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-72 © National Instruments Corporation

wn Specify string
size

When applied to a source format specifier, the w string
modifier specifies the maximum number of bytes from
the source string to use for filling the target arguments.
You can enter any non-negative value here. The default is
zero, which indicates that the entire string can be used. In
this case, the ScanFile and ScanIn functions consume
the entire source string even if the w modifier restricts the
number of bytes used to fill in the target arguments.

When modifying a target format specifier, the w modifier
specifies the exact number of bytes to store in the string,
excluding the terminating ASCII NUL. If n is zero or
omitted, the functions store as many bytes as are called
for by the sources. When n is greater than the number of
bytes available from the source, the remaining bytes are
filled with ASCII NULs if you use the q modifier or
blanks if you do not use the q modifier.

When you use the w modifier in conjunction with the
a modifier, n indicates the number of bytes to append to
the string excluding the terminating ASCII NUL.

q Append NULs When applied to a target string in conjunction with the
w string modifier, the q string modifier specifies that the
functions set unfilled bytes at the end of the target string
to ASCII NULs instead of blanks.

y Append with
spacing

When the source is a string and you apply the y modifier
to a target string format specifier, the functions fill the
target string with bytes from the source string without
skipping leading spaces or tabs.

Table 2-9. Scanning String Modifiers (%s) (Continued)

Modifier Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

© National Instruments Corporation 2-73 Standard Libraries Reference Manual

tn Terminate on
character

When applied to a source string, the t modifier specifies
that the source string terminates on the first occurrence of
the character n, where n is the ASCII value of the
character. Thus, %s[t44] stops the reading of the source
string on an ASCII comma. More than one t modifier can
occur in the same specifier, in which case the string
terminates when any of the terminators occur. If no
t modifier exists, the functions stop reading the source
string on an ASCII NUL.

When applied to a target string that the functions fill from
a source string, the t modifier specifies that the functions
stop filling the target on the first occurrence of the
character n, where n is the ASCII value of the character.
Thus, %s[t59] causes the functions to stop reading the
source string on an ASCII semicolon. More than one
t modifier can occur in the same specifier, in which case
the functions stop filling the target when any of the
terminators occur. If no t modifier exists, the functions
stop filling the target on any whitespace character.

t- Terminate
when full

This is similar to tn except that it specifies that there are
no terminating characters. When applied to a source
string, t- specifies that the functions stop reading the
source string when all the targets are full or when the
functions have read the number of bytes you specify with
the w modifier. When applied to a target string,
t- specifies that the functions stop filling the target string
when the source is exhausted or when the functions have
placed into the target the number of bytes you specify
with the w modifier.

t# Terminate on
number

This is equivalent to repeating the t modifier with the
ASCII values of the characters +, -, and 0–9. When
applied to a source (target), it specifies that the functions
stop reading the source string, or filling the target string,
upon occurrence of a numeric expression. If you use
%s>%s[t#]%d with the source string "ab567", the
functions place "ab" in the first target and the integer
567 in the second target.

Table 2-9. Scanning String Modifiers (%s) (Continued)

Modifier Meaning Description

Chapter 2 Formatting and I/O Library — Using the Formatting and Scanning Functions

Standard Libraries Reference Manual 2-74 © National Instruments Corporation

Scan, ScanFile, ScanIn—Asterisks (*) Instead of Constants
in Format Specifiers
Often, a format specifier requires one or more integer values. The format specifier for an
integer array, for example, requires the number of elements (rep). You can use constants for
these integer values in format specifiers. You can also specify an integer value using an
argument in the argument list. When you use this method, substitute an asterisk (*) for the
constant in the format specifier

Use the asterisk in the following format specifier elements:

When you use one or more asterisks instead of constants in a source specifier, the arguments
that correspond to the asterisks must appear after the format string in the same order as the
corresponding asterisks appear in the format specifier.

When you use one or more asterisks instead of constants in a target specifier, the arguments
that correspond to the asterisks must precede the target argument and must be in the same
order as the corresponding asterisks in the format specifier.

x Discard
terminator

When applied to a target string, the x modifier specifies
that the functions discard the terminating character before
the next target is filled in. Using
%s>%s[xt59]%s[xt59] with the source string
"abc;XYZ;", the functions place "abc" in the first
target and "XYZ" in the second target.

d Discard data When applied to a target specifier, the d modifier
indicates that no target argument corresponds to the target
specifier. The data that the functions otherwise place in
the target argument is discarded instead. The count the
functions return includes the target specifier even if you
use the d modifier.

rep For integer or floating-point arrays

in For integer or floating-point arrays, or strings

wn For any format specifier

pn For floating-point specifiers only

en For floating-point specifiers only

rn For integer specifiers only

Table 2-9. Scanning String Modifiers (%s) (Continued)

Modifier Meaning Description

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-75 Standard Libraries Reference Manual

Scan, ScanFile, ScanIn—Literals in the Format String
Literal characters that appear in a scanning function format string indicate that the functions
expect the literal characters in the source parameter. The functions do not store them in any
target parameter but skip over them when encountered. If a literal character you specify in the
format string fails to appear in the source in the expected position, the scanning function
returns without processing the target specifiers that appear to the right of the unmatched
literal. The scanning functions return the number of target parameters the input actually
fulfilled. NumFmtdBytes returns the number of bytes consumed from the source parameter.

Because the left side of the > symbol must be a single format specifier, literal characters, if
present, must be on the right side of the symbol. Literals on the left side, or more than one
format specifier on the left side, result in a -1 error, indicating a faulty format string. If you
receive this error, you can use GetFmtErrNdx to determine exactly where in the format string
the error lies.

The characters %, [,], <, and > have special meaning in the format strings. To specify that these
characters be taken literally, precede them with %.

Formatting and I/O Library Programming Examples

This section contains examples of program code that use the Formatting and I/O Library
functions. The formatting and scanning functions are the basis of most of the examples.

The Fmt/FmtFile/FmtOut examples are logically organized as shown:

Integer to string
Short integer to string
Real to string in floating-point notation
Real to string in scientific notation
Integer and real to string with literals
Two integers to ASCII file with error checking
Real array to ASCII file in columns and with comma separators
Integer array to binary file, assuming a fixed number of elements
Real array to binary file, assuming a fixed number of elements
Real array to binary file, assuming a variable number of elements
Variable portion of a real array to a binary file
Concatenating two strings
Appending to a string
Creating an array of filenames
Writing a line that contains an integer with literals to the standard output
Writing to the standard output without a linefeed or carriage return

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-76 © National Instruments Corporation

The Scan/ScanFile/ScanIn examples are logically organized as shown:

String to integer
String to short integer
String to real
String to integer and real
String to string
String to integer and string
String to real, skipping over non-numeric characters in the string
String to real, after finding a semicolon in the string
String to real, after finding a substring in the string
String with comma-separated ASCII numbers to real array
Scanning strings that are not null-terminated
Integer array to real array
Integer array to real array with byte swapping
Integer array that contains 1-byte integers to real array
Strings that contain binary integers to integer array
Strings that contain an IEEE-format real number to a real variable
ASCII file to two integers with error checking
ASCII file with comma-separated numbers to real array, with the number of elements at the

beginning of file
Binary file to integer array, assuming a fixed number of elements
Binary file to real array, assuming a fixed number of elements
Binary file to real array, assuming a variable number of elements
Reading an integer from the standard input
Reading a string from the standard input
Reading a line from the standard input

Fmt/FmtFile/FmtOut Examples in C
This section contains examples of program code that use Fmt, FmtFile, and FmtOut from
the Formatting and I/O Library. To eliminate redundancy, error checking on I/O operations
has been omitted from all the examples in this section except the Two Integers to ASCII File

with Error Checking example.

Integer to String
char buf[10];
int a;
a = 16;
Fmt (buf, "%s<%i", a); /* result: "16" */
a = 16;
Fmt (buf, "%s<%x", a); /* result: "10" */
a = 16;

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-77 Standard Libraries Reference Manual

Fmt (buf, "%s<%o", a); /* result: "20" */
a = -1;
Fmt (buf, "%s<%i", a); /* result: "-1" */
a = -1;
Fmt (buf, "%s<%i[u]", a); /* result: "4294967295" */
a = 1234;
Fmt (buf, "%s<%i[w6]", a); /* result: " 1234" */
a = 1234;
Fmt (buf, "%s<%i[w6p0]", a); /* result: "001234" */
a = 1234;
Fmt (buf, "%s<%i[w2]", a); /* result: "*4" */

The results shown are the contents of buf after each call to Fmt. The last call demonstrates
what occurs when the w modifier specifies a width that is too small.

Short Integer to String
char buf[20];
short a;
a = 12345;
Fmt (buf, "%s<%i[b2]", a); /* result: "12345" */
a = -1;
Fmt (buf, "%s<%i[b2]", a); /* result: "-1" */
a = -1;
Fmt (buf, "%s<%i[b2u]", a); /* result: "65535" */
a = 12345;
Fmt (buf, "%s<%i[b2w7]", a); /* result: " 12345" */
a = 12345;
Fmt (buf, "%s<%i[b2w7p0]", a); /* result: "0012345" */
a = 12345;
Fmt (buf, "%s<%i[b2w4]", a); /* result: "*345" */

The results shown are the contents of buf after each call to Fmt. The last call demonstrates
what occurs when the w modifier specifies a width that is too small.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-78 © National Instruments Corporation

Real to String in Floating-Point Notation
char buf[30];
double x;
x = 12.3456789;
Fmt (buf, "%s<%f", x); /* result: "12.345679" */
x = 12.3456789;
Fmt (buf, "%s<%f[p2]", x); /* result: "12.35" */
x = 12.3456789;
Fmt (buf, "%s<%f[p10]", x); /* result: "12.3456789000" */
x = 12.345;
Fmt (buf, "%s<%f", x); /* result: "12.345" */
x = 12.345;
Fmt (buf, "%s<%f[p0]", x); /* result: "12" */
x = 12.345;
Fmt (buf, "%s<%f[p6]", x); /* result: "12.345000" */
x = -12.345;
Fmt (buf, "%s<%f[w12]", x); /* result: " -12.345" */
x = -12.3456789;
Fmt (buf, "%s<%f[w6]", x); /* result: "-12.3*" */
x = 0.00000012;
Fmt (buf, "%s<%f[p8]", x); /* result: "0.00000012" */
x = 0.00000012;
Fmt (buf, "%s<%f", x); /* result: "1.2e-007" */
x = 4.5e050;
Fmt (buf, "%s<%f", x); /* result: "4.5e050" */

The results shown are the contents of buf after each call to Fmt. The last two calls
demonstrate that Fmt sometimes forces very large and very small values into scientific
notation even when the e modifier is absent.

Real to String in Scientific Notation
char buf[20];
double x;
x = 12.3456789;
Fmt (buf, "%s<%f[e]", x); /* result: "1.234568e+001" */
x = 12.3456789;
Fmt (buf, "%s<%f[ep2]", x); /* result: "1.23e+001" */
x = 12.3456789;
Fmt (buf, "%s<%f[e2p2]", x); /* result: "1.23e+01" */
x = 12.345;
Fmt (buf, "%s<%f[e]", x); /* result: "1.2345e+001" */
x = 12.345;
Fmt (buf, "%s<%f[ep2w12]", x); /* result: " 1.23e+001" */

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-79 Standard Libraries Reference Manual

x = 12.345;
Fmt (buf, "%s<%f[ep2w6]", x); /* result: "1.23e*" */

The results shown are the contents of buf after each call to Fmt. The last call demonstrates
what occurs when the w modifier specifies a width that is too small.

Integer and Real to String with Literals
char buf[20];
int f, r;
double v;
f = 4;
r = 3;
v = 1.2;
Fmt (buf, "%s<F%iR%i; V%f;", f, r, v);

After the Fmt call, buf contains "F4R3; V1.2;".

Two Integers to ASCII File with Error Checking
int a, b, n, file_handle;
a = 12;
b = 456;
file_handle = OpenFile ("FILE.DAT", 2, 0, 1);
if (file_handle < 0) {

FmtOut ("Error opening file\n");
exit (1);

}
n = FmtFile (file_handle, "%s<%i %i", a, b);
if (n != 2) {

FmtOut ("Error writing file\n");
exit (1);

}
CloseFile (file_handle);

OpenFile opens the file FILE.DAT as an ASCII file for writing only. If OpenFile succeeds,
it returns a file handle with a positive integer value. FmtFile writes the ASCII representation
of two integer values to the file. If FmtFile succeeds, it returns 2 because the format string
contains two source specifiers.

Real Array to ASCII File in Columns and with Comma Separators
double x[100];
int file_handle, i;
file_handle = OpenFile ("FILE.DAT", 2, 0, 1);

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-80 © National Instruments Corporation

for (i=0; i < 100; i++) {
FmtFile (file_handle, "%s<%f[w15],", x[i]);
if ((i % 5) == 4)

WriteFile (file_handle, "\n", 1);
}
CloseFile (file_handle);

The FmtFile call writes the ASCII representation of a real array element to the file, followed
by a comma. The w modifier specifies that the number be right-justified in a 15-character field.
The WriteFile call writes a linefeed to the file after every fifth call to FmtFile. Because
the file is opened in ASCII mode, FmtFile automatically writes the linefeed as a
linefeed/carriage return combination.

Note If the format string is "%s[w15]<%f,", FmtFile left-justifies the number and the

comma together in a 15-character field.

Integer Array to Binary File, Assuming a Fixed Number
of Elements
int readings[100];
int file_handle, nbytes;
file_handle = OpenFile ("FILE.DAT", 2, 0, 0);
FmtFile (file_handle, "%100i<%100i", readings);
nbytes = NumFmtdBytes ();
CloseFile (file_handle);

The FmtFile call writes all 100 elements of the readings integer array to a file in binary
form. If the FmtFile call succeeds, nbytes = 200 (100 integers, 2 bytes per integer).

Real Array to Binary File, Assuming a Fixed Number of Elements
double waveform[100];
int file_handle, nbytes;
file_handle = OpenFile ("FILE.DAT", 2, 0, 0);
FmtFile (file_handle, "%100f<%100f", waveform);
nbytes = NumFmtdBytes ();
CloseFile (file_handle);

The FmtFile call writes all 100 elements of the waveform real array to a file in binary form.
If the FmtFile call succeeds, nbytes = 800 (100 integers, 8 bytes per real number).

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-81 Standard Libraries Reference Manual

Real Array to Binary File, Assuming a Variable Number
of Elements
void StoreArray (double x[], int count, char filename[])
{

int file_handle;
file_handle = OpenFile (filename, 2, 0, 0);
FmtFile (file_handle, "%*f<%*f", count, count, x);
CloseFile (file_handle);

}

This example shows how you can use a function to write an array of real numbers to a binary
file. The function parameters are a real array, the number of elements to be written, and the
filename.

The FmtFile call writes the first count elements of x to a file in binary form. FmtFile
matches the two asterisks (*) in the format string to count. For instance, if count is 100, the
format string is equivalent to %100f<%100f.

Variable Portion of a Real Array to a Binary File
void StoreSubArray (double x[], int start, int count, char filename[])
{

int file_handle;
file_handle = OpenFile (filename, 2, 0, 0);
FmtFile (file_handle, "%*f<%*f[i*]", count, count, start, x);
CloseFile (file_handle);

}

This example is an extension of the previous example. The function writes a variable number
of elements of a real array to a file. Instead of beginning at the first element of the array, you
pass a starting index to the function.

The FmtFile call writes count elements of x, starting from x[start], to a file in binary
form. FmtFile matches the first two asterisks (*) in the format string to count. FmtFile
matches the third asterisk to start. For instance, if count is 100 and start is 30, the format
string is equivalent to %100f<%100f[i30]. Because the i modifier specifies a zero-based
index into the real array, FmtFile writes the array elements from x[30] through x[129] to
the file.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-82 © National Instruments Corporation

Concatenating Two Strings
char buf[30];
int wave_type, signal_output;
char *wave_str, *signal_str;
int nbytes;
wave_type = 1;
signal_output = 0;
switch (wave_type) {

case 0:
wave_str = "SINE;"
break;

case 1:
wave_str = "SQUARE;"
break;

case 2:
wave_str = "TRIANGLE;"
break;

}
switch (signal_output) {

case 0:
signal_str = "OUTPUT OFF;"
break;

case 1:
signal_str = "OUTPUT ON;"
break;

}
Fmt (buf, "%s<%s%s", wave_str, signal_str);
nbytes = NumFmtdBytes ();

The two switch constructs assign constant strings to the string variables wave_str and
signal_str. The Fmt call concatenates the contents of wave_str and signal_str into
buf. After the call, buf contains "SQUARE;OUTPUT OFF;". NumFmtdBytes returns the
number of bytes in the concatenated string.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-83 Standard Libraries Reference Manual

Appending to a String
char buf[30];
int wave_type, signal_output;
int nbytes;
switch (wave_type) {

case 0:
Fmt (buf, "%s<SINE;");
break;

case 1:
Fmt (buf, "%s<SQUARE;");
break;

case 2:
Fmt (buf, "%s<TRIANGLE;");
break;

}
switch (signal_output) {

case 0:
Fmt (buf, "%s[a]<OUTPUT OFF;");
break;

case 1:
Fmt (buf, "%s[a]<OUTPUT ON;");
break;

}
nbytes = StringLength (buf);

This example shows how to append characters to a string without writing over the existing
contents of the string. The first switch construct writes one of three strings into buf. The
second switch construct appends one of two strings to the string already in buf. After the
call, buf contains "SQUARE;OUTPUT OFF;". Notice that the a modifier applies to the target
specifier.

StringLength returns the number of bytes in the resulting string. In this case, Fmt uses
StringLength instead of NumFmtdBytes, because NumFmtdBytes returns only the
number of bytes appended.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-84 © National Instruments Corporation

Creating an Array of Filenames
char *fname_array[4];
int i;
for (i=0; i < 4; i++){

frame_array[i] = malloc(14);
Fmt (fname_array[i], "%s<FILE%i[w4p0].DAT", i);

}

To allocate the space for each filename in the array, you must assign a separate constant string
to each array element. Use Fmt to format each filename. The resulting filenames are
FILE0000.DAT, FILE0001.DAT, FILE0002.DAT, and FILE0003.DAT.

Writing a Line That Contains an Integer with Literals
to the Standard Output
int a, b;
a = 12;
b = 34;
FmtOut ("%s<A = %i\n", a);
FmtOut ("%s<B = %i\n", b);

In this example, the output is as follows:

A = 12
B = 34

Writing to the Standard Output without a Linefeed
or Carriage Return
char *s;
int b;
double c;
a = "One";
FmtOut ("%s<%s", a);
b = 2;
FmtOut ("%s<%i", b);
c = 3.4;
FmtOut ("%s<%f", c);

This example demonstrates how to write to the Standard Output without a linefeed or carriage
return by omitting the '\n' from the format string. The output in this example is as follows:

One 2 3.4

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-85 Standard Libraries Reference Manual

The following code produces the same output:

a = "One";
b = 2;
c = 3.4;
FmtOut ("%s<%s %i %f", a, b, c);

Scan/ScanFile/ScanIn Examples in C
This section contains examples of program code that use Scan, ScanFile, and ScanIn from
the Formatting and I/O Library. To eliminate redundancy, the examples include no error
checking on I/O operations in this section except for the ASCII File to Two Integers with

Error Checking example.

String to Integer
char *s;
int a, n;
s = "32";
n = Scan (s, "%s>%i", &a); /* result: a = 32, n = 1 */
s = "-32";
n = Scan (s, "%s>%i", &a); /* result: a = -32, n = 1 */
s = " +32";
n = Scan (s, "%s>%i", &a); /* result: a = 32, n = 1 */
s = "x32";
n = Scan (s, "%s>%i", &a); /* result: a = ??, n = 0 */

When locating an integer in a string, Scan skips over white space characters such as spaces,
tabs, linefeeds, and carriage returns. If Scan finds a non-numeric character other than a white
space character, +, or - before the first numeric character, the Scan call fails. Thus, Scan fails
on the x in x32; it leaves the value unmodified in a and returns zero, indicating that no target
specifiers were satisfied.

s = "032";
n = Scan (s, "%s>%i", &a); /* result: a = 32, n = 1 */
s = "32a";
n = Scan (s, "%s>%i", &a); /* result: a = 32, n = 1 */
s = "32";
n = Scan (s, "%s>%o", &a); /* result: a = 26, n = 1 */
s = "32";
n = Scan (s, "%s>%x", &a); /* result: a = 50, n = 1 */

When you use the %i specifier, Scan interprets numeric characters as decimal, even when
they might appear to be octal (as in 032) or hexadecimal (as in 32a). When you use the
%o specifier, Scan always interprets the numeric characters (01234567) as octal. When you

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-86 © National Instruments Corporation

use the %x specifier, Scan always interprets the numeric characters (0123456789abcdef) as
hexadecimal.

s = "32x1";
n = Scan (s, "%s>%i", &a); /* result: a = 32, n = 1 */

Scan considers the occurrence of a non-numeric character (such as the x in 32x1) to mark
the end of the integer.

s = "32567";
n = Scan (s, "%s>%i[w3]", &a); /* result: a = 325, n = 1 */

The w3 modifier specifies that the function only scans the first 3 bytes of the string.

String to Short Integer
char *s;
short a;
int n;
s = "9999";
n = Scan (s, "%s>%i[b2]", &a); /* result: a = 9999, n = 1 */
s = "23417";
n = Scan (s, "%s>%o[b2]", &a); /* result: a = 9999, n = 1 */
s = "ffff";
n = Scan (s, "%s>%x[b2]", &a); /* result: a = 65535, n = 1 */

Scan extracts short integers from strings in the same way it extracts integers. The only
differences are that you must use the b2 modifier and specify the target argument as a short
integer. Refer to the String to Integer example earlier in this section for more information on
using Scan to extract integers and short integers from strings.

String to Real
char *s;
double x;
int n;
s = "12.3";
n = Scan (s, "%s>%f", &x); /* result: x = 12.3, n = 1 */
s = "-1.23e+1";
n = Scan (s, "%s>%f", &x); /* result: x = -1.23, n = 1 */
s = "1.23e-1";
n = Scan (s, "%s>%f", &x); /* result: x = 0.123, n = 1 */

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-87 Standard Libraries Reference Manual

When locating a real number in a string, Scan accepts either floating-point notation or
scientific notation.

s = " 12.3";
n = Scan (s, "%s>%f", &x); /* result: x = 12.3, n = 1 */
s = "p12.3";
n = Scan (s, "%s>%f", &x); /* result: x = ????, n = 0 */

When locating a real number in a string, Scan skips over white space characters. If Scan finds
a non-numeric character other than a white space character, +, or - before the first numeric
character, the Scan call fails. Thus, Scan fails on the p in p12.3; it leaves the value in x
unmodified and returns zero, indicating that no target specifiers were satisfied.

s = "12.3m";
n = Scan (s, "%s>%f", &x); /* result: x = 12.3, n = 1 */
s = "12.3.4";
n = Scan (s, "%s>%f", &x); /* result: x = 12.3, n = 1 */
s = "1.23e";
n = Scan (s, "%s>%f", &x); /* result: x = ????, n = 0 */

Scan considers the occurrence of a non-numeric character (such as the m in 12.3m) to mark
the end of the real number. A second decimal point also marks the end of the number.
However, Scan fails on "1.23e" because the value of the exponent is missing.

s = "1.2345";
n = Scan (s, "%s>%f[w4]", &x); /* result: x = 1.23, n = 1 */

The w4 modifier specifies that the function scans only the first 4 bytes of the string.

String to Integer and Real
char *s;
int a, n;
double x;
s = "32 1.23";
n = Scan (s, "%s>%i%f", &a, &x);

/* result: a = 32, x = 1.23, n = 2 */
s = "32, 1.23";
n = Scan (s, "%s>%i[x]%f", &a, &x);

/* result: a = 32, x = 1.23, n = 2 */
s = "32, 1.23";
n = Scan (s, "%s>%i%f", &a, &x);

/* result: a = 32, x = ????, n = 1 */

After each of the first two calls to Scan, a = 32, x = 1.23, and n = 2, indicating that two target
specifiers were satisfied. In the second call, Scan uses the x modifier is used to discard the
separating comma.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-88 © National Instruments Corporation

In the third call, a comma separator appears after the integer, but the x modifier is absent.
Consequently, Scan fails when attempting to find the real number. x remains unmodified, and
n = 1, indicating that only one target specifier was satisfied.

String to String
char *s;
char buf[10];
int n;
s = " abc ";
n = Scan (s, "%s>%s", buf); /* result: buf = "abc" */
s = " abc ";
n = Scan (s, "%s>%s[y]", buf); /* result: buf = " abc" */

When extracting a substring from a string, Scan skips leading spaces and tabs unless the
y modifier is present.

s = "a b c; d";
n = Scan (s, "%s>%s", buf); /* result: buf = "a" */
s = "a b c; d";
n = Scan (s, "%s>%s[t59]", buf); /* result: buf = "a b c" */

When Scan extracts a substring from a string and the t modifier is absent, Scan considers
the substring to be terminated by a white space character. To include embedded white space
in the target string, use the t modifier to change the target string termination character. In the
second call to Scan, [t59] changes the termination character to a semicolon (ASCII 59).

s = " abcdefghijklmnop";
n = Scan (s, "%s>%s[w9]", buf); /* result: buf = "abcdefghi" */
s = " abc";
n = Scan (s, "%s>%s[w9]", buf); /* result: buf = "abc "*/
s = " abc";
n = Scan (s, "%s>%s[w9q]", buf); /* result: buf = "abc" */

The w modifier can be used to prevent Scan from writing beyond the end of a target string.
The width specified does not include the ASCII NUL that Scan places at the end of the target
string. Therefore, the width you specify should be at least one less than the width of the target
character buffer.

When you use the w modifier and the string extracted is smaller than the width specified, Scan
fills the remaining bytes in the target string with blanks. However, if you also use the
q modifier, ASCII NULs fill the remaining bytes.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-89 Standard Libraries Reference Manual

String to Integer and String
char *s;
char buf[10];
int a, n;
s = "32abc";
n = Scan (s, "%s>%i%s", &a, buf);

/* result: a = 32, buf = "abc", n = 2 */
s = "32abc";
n = Scan (s, "%s>%i %s", &a, buf);

/* result: a = 32, buf = ?????, n = 1 */

After the first call to Scan, a = 32, buf = "abc", and n = 2. Notice there are no spaces in the
format string between the two target specifiers. In the second call, there is a space between %i
and %s. Consequently, Scan expects a space to occur in s immediately after the integer.
Because there is no space in s, Scan fails at that point. It leaves buf unmodified and returns 1,
indicating that only one target specifier is satisfied.

Note Do not put spaces between specifiers in Scan, ScanFile, or ScanIn

format strings.

String to Real, Skipping over Non-Numeric Characters
in the String
char *s;
double x;
int n;
s = "VOLTS = 1.2";
n = Scan (s, "%s>%s[dt#]%f", &x); /* result: x = 1.2, n = 2 */
s = "VOLTS = 1.2";
n = Scan (s, "%s[i8]>%f", &x); /* result: x = 1.2, n = 1 */
s = "VOLTS = 1.2";
n = Scan (s, "%s>VOLTS = %f", &x); /* result: x = 1.2, n = 1 */

The three different format strings represent different methods for skipping over non-numeric
characters. In the first call, the format string contains two target specifiers. In the first specifier
(%s[dt#]), the t# modifier instructs Scan to read bytes from s until it encounters a number.
The d modifier tells Scan to discard the bytes because no argument corresponds to the
specifier. When the Scan call succeeds, it returns 2, indicating that two target specifiers were
satisfied, even though only one target argument exists.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-90 © National Instruments Corporation

In the second call, the source specifier %s[i8] instructs Scan to ignore the first 8 bytes of s.
This method works only if the location of the number within s is always the same.

In the third call, the format string contains the non-numeric characters literally. This method
works only if the non-numeric characters in s are always the same.

String to Real, after Finding a Semicolon in the String
char *s;
double x;
int n;
s = "TIME 12:45:00; 7.34";
n = Scan (s, "%s>%s[xdt59]%f", &x); /* result: x = 7.34, n = 2 */

Some programmable instruments return strings that contain headers that contain both numeric
and non-numeric data and are terminated by a particular character, such as a semicolon. This
example shows how you can skip such a header.

The format string contains two target specifiers. In the first specifier (%s[xdt#]), the
t# modifier instructs Scan to read bytes from s until it encounters a number. The d modifier
indicates that Scan must discard the bytes because no argument corresponds to the specifier.
The x modifier indicates that the semicolon should also be discarded.

When the Scan call succeeds, it returns 2, indicating that two target specifiers were satisfied,
even though only one target argument exists.

String to Real, after Finding a Substring in the String
char *s;
double x;
int index, n;
s = "HEADER: R5 D6; DATA 3.71E+2";
index = FindPattern (s, 0, -1, "DATA", 0, 0) + 4;
n = Scan (s, "%s[i*]>%f", index, &x);

/* result: x = 371.0, n = 1 */

This example is similar to the previous one except that the portion of the string to skip is
terminated by a substring (DATA) rather than by a single character. FindPattern finds the
index where DATA begins in s. You add four to the index so that it points to the first byte after
DATA. You then pass the index to Scan and match it with the asterisk (*) in the format string.

In this example, FindPattern returns 15, and index is 19. When you match index to the
asterisk in the format string in the Scan call, Scan interprets the format string as
%s[i19]>%f. The i19 indicates that Scan should ignore the first 19 bytes of s. Scan then

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-91 Standard Libraries Reference Manual

extracts the real number from the remaining string, 3.71E+2, and assigns it to x. Scan
returns 1, indicating that one target specifier is satisfied.

String with Comma-Separated ASCII Numbers to Real Array
char *s;
int n;
double a[5]; /* 5 8-byte real numbers */
s = "12.3, 45, 6.5, -1.3E-2, 4";
n = Scan (s, "%s>%5f[x]", a);

/* result: a[0] = 12.3, a[1] = 45.0, a[2] = 6.5, */
/* a[3] = -0.013, a[4] = 4.0, n = 1*/

The x modifier causes Scan to discard the comma separators.

Scan considers an array target to be satisfied when at least one element of the array is filled
in. If the source string in this example were 12.3, only the first element of a would be
filled in, the other elements would remain unmodified, and Scan would return 1.

Scanning Strings That Are Not Null-Terminated
int bd;
double x;
char s[20];
ibrd (bd, s, 15);
Scan (s, "%s[w*]>%f", ibcnt, &x);

All the previous examples assume that s is a null-terminated string. However, when reading
data from programmable instruments using the GPIB and RS-232 Library functions, the data
transferred is not null-terminated. This example uses ibrd to read up to 15 bytes from a GPIB
instrument. The global variable ibcnt contains the actual number of bytes transferred. Scan
uses the value in ibcnt in conjunction with the w modifier to specify the width of the
source string.

For example, if ibcnt is 12, the format string is interpreted as %s[w12]>%f, causing Scan
to use only the first 12 bytes of s.

The following example is an alternative method for handling strings that are not
null-terminated:

int bd;
double x;
char s[20];
ibrd (bd, s, 15);
s[15] = 0; /* ASCII NUL is 0 */

Scan (s, "%s>%f", &x);

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-92 © National Instruments Corporation

This code shows how to insert an ASCII NUL at the end of the transferred bytes. After the
assignment, s is null-terminated.

Integer Array to Real Array
int ivals[100];
double dvals[100];
Scan (ivals, "%100i>%100f", dvals);

Scan converts each integer in ivals to a real number and writes it into dvals.

Integer Array to Real Array with Byte Swapping
int ivals[100];
double dvals[100];
Scan (ivals, "%100i[o10]>%100f", dvals);

For each integer in ivals, Scan byte-swaps it, converts it to a real number, and writes it
into dvals.

Byte swapping is useful when a programmable instrument sends back 2-byte integers with the
high byte first, followed by the low byte. When Scan reads this data into an integer array, the
placement of the bytes is such that Scan interprets the high byte as the low byte. The
o10 modifier specifies that Scan interprets the bytes in the opposite order.

Integer Array That Contains 1-Byte Integers to Real Array
int ivals[50]; /* 100 1-byte integers */
double dvals[100]; /* 100 8-byte real numbers */
Scan (ivals, "%100i[b1]>%100f", dvals);
Scan (ivals, "%100i[b1u]>%100f", dvals);

Sometimes, Scan uses each element in an integer array to store two 1-byte integers. This
example shows how to unpack the 1-byte integers and store them in a real array. The b1
indicates that each binary integer is only 1 byte long.

The first call to Scan treats the 1-byte integers as signed values, from –128 to +127. The
second call includes a u in the format string, which causes Scan to treat the 1-byte integers
as unsigned values, from 0 to 255.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-93 Standard Libraries Reference Manual

Strings That Contain Binary Integers to Integer Array
char s[400]; /* string containing 100 4-byte

 integers */
int ivals[100]; /* 100 4-byte integers */
Scan (s, "%100i[z]>%100i", ivals);
Scan (s, "%97i[zi6]>%97i", ivals);

Sometimes Scan reads data from a programmable instrument into a character buffer even
though it contains binary data. This example shows how to treat a character buffer as an
integer array. The format string in each Scan call specifies that the source s contains an array
of 100 integers. The z modifier indicates that the source is actually a character buffer.

In some cases, the integer data might not start at the beginning of the character buffer. For
instance, the data in the buffer can begin with an ASCII header. In the second call to Scan,
the i6 modifier indicates that Scan should ignore the first 6 bytes of s.

Note When you use the i modifier in conjunction with a character buffer, the number

that follows the i specifies the number of bytes within the buffer to ignore. This is

true even when the z modifier is also present. On the other hand, when you use

the i modifier in conjunction with an array variable, the number that follows the

i indicates the number of array elements to ignore.

Strings That Contain an IEEE-Format Real Number
to a Real Variable
char s[100];
double x;
Scan (s, "%1f[z]>%f", &x);
Scan (s, "%1f[zi5]>%f", &x);

This example is similar to the previous example except that s contains a single binary real
number (in IEEE format) rather than an array of binary integers. The format string in each
Scan call indicates that Scan treats the source s as a one-element array of real numbers. The
z modifier indicates that the source is actually a character buffer. The repetition count of 1 in
the format string is required; otherwise, Scan does not accept the z modifier.

The first call to Scan assumes that the real number is at the beginning of s. The second call
assumes that the real number starts at the sixth byte of s. The i5 modifier causes Scan to
ignore the first 5 bytes of s.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-94 © National Instruments Corporation

ASCII File to Two Integers with Error Checking
int file_handle, n, a, b;
file_handle = OpenFile ("FILE.DAT", 1, 2, 1);
if (file_handle < 0) {

FmtOut ("Error opening file\n");
exit (1);

}
n = ScanFile (file_handle, "%s>%i%i", &a, &b);
if (n != 2) {

FmtOut ("Error reading file\n");
exit (1);

}
CloseFile (file_handle);

OpenFile opens the file FILE.DAT as an ASCII file for reading only. If OpenFile succeeds
in opening the file, it returns a file handle with a positive integer value. ScanFile reads the
ASCII representation of two integer values from the file. If ScanFile succeeds, it returns 2,
indicating that two target specifiers were satisfied.

ASCII File with Comma-Separated Numbers to Real Array,
with Number of Elements at Beginning of File
double values[1000];
int file_handle, count;
file_handle = OpenFile ("FILE.DAT", 1, 2, 1);
ScanFile (file_handle, "%s>%i", &count);
if (count > 1000) {

FmtOut ("Count too large\n");
exit(1);

}
ScanFile (file_handle, "%s>%*f[x]", count, values);
CloseFile (file_handle);

The first ScanFile call reads the number of elements into the integer variable count. If the
value in count exceeds the number of elements in the real array values, ScanFile reports
an error. Otherwise, the second ScanFile call matches count to the asterisk (*) in the format
string. It then reads the correct number of elements into values. The x modifier causes
ScanFile to discard the comma separators.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-95 Standard Libraries Reference Manual

Binary File to Integer Array, Assuming a Fixed Number
of Elements
int readings[100];
int file_handle, nbytes;
file_handle = OpenFile ("FILE.DAT", 1, 2, 0);
ScanFile (file_handle, "%100i>%100i", readings);
nbytes = NumFmtdBytes ();
CloseFile (file_handle);

The ScanFile call reads 100 integers from a binary file and stores them in the integer array
readings. If the ScanFile call is successful, nbytes = 400 (100 integers, 4 bytes
per integer).

Binary File to Real Array, Assuming a Fixed Number of Elements
double waveform[100];
int file_handle, nbytes;
file_handle = OpenFile ("FILE.DAT", 1, 2, 0);
ScanFile (file_handle, "%100f>%100f", waveform);
nbytes = NumFmtdBytes ();
CloseFile (file_handle);

The ScanFile call reads 100 real numbers from a binary file and stores them in the real array
waveform. If the ScanFile call is successful, nbytes = 800 (100 integers, 8 bytes per
real number).

Binary File to Real Array, Assuming a Variable Number
of Elements
void StoreArray (double x[], int count, char filename[])
{

int file_handle;
file_handle = OpenFile (filename, 1, 2, 0);
ScanFile (file_handle, "%*f>%*f", count, count, x);
CloseFile (file_handle);

}

This example shows how you can use a subroutine to read an array of real numbers from a
binary file. The subroutine takes as parameters a real array, the number of elements to be read,
and the filename.

The ScanFile call reads the first count elements of x from a binary file. ScanFile matches
the two asterisks (*) in the format string to count. For instance, if count is 100, the format
string is equivalent to %100f>100f.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

Standard Libraries Reference Manual 2-96 © National Instruments Corporation

Reading an Integer from the Standard Input
int n, num_readings;
n = 0;
while (n != 1) {

FmtOut ("Enter number of readings: ");
n = ScanIn ("%l>%i", &num_readings);

}

This example shows how to get user input from the keyboard. The FmtOut call writes the
prompt string to the screen without a linefeed or carriage return. The ScanIn call attempts to
read an integer value from the keyboard and place it in num_readings. If ScanIn succeeds,
it returns 1, and FmtOut exits the loop. Otherwise, FmtOut repeats the prompt string.

The format string in the ScanIn call contains a source specifier of %l. This has two
consequences. First, ScanIn returns whenever the user presses <Enter>, even if the input line
is empty. This allows the prompt string to repeat at the beginning of each line until the user
enters an integer value. Second, ScanIn discards any characters entered after the
integer value.

Reading a String from the Standard Input
char filename[41];
int n;
n = 0;
while (n != 1) {

FmtOut ("Enter file name: ");
n = ScanIn ("%l>%s[w40q]", filename);

}

This example is similar to the previous example except that ScanIn reads a string from the
keyboard instead of an integer. The w modifier prevents ScanIn from writing beyond the end
of filename. Notice that the width specified is one less than the size of filename. This
allows room for the ASCII NUL that ScanIn appends at the end of filename. The
q modifier causes ScanIn to fill any unused bytes at the end of filename with ASCII NULs.
Without the q modifier, all unused bytes are filled with spaces, except for the ASCII NUL at
the end.

The call to ScanIn in this example skips over leading spaces and tabs and terminates the
string on an embedded space. For other options, refer to the String to String example earlier
in this section.

Chapter 2 Formatting and I/O Library — Formatting and I/O Library Programming Examples

© National Instruments Corporation 2-97 Standard Libraries Reference Manual

Reading a Line from the Standard Input
char buf[81];
nbytes = ReadLine (0, buf, 80);

The previous two examples show how to read single items from the keyboard. When you are
prompted to enter several items on one line, it is often easier to read the entire line into a buffer
before parsing it. You can do this using ReadLine.

The first parameter to ReadLine is a file handle. In this case, the file handle is zero, which is
the handle reserved for the Standard Input. The other two parameters are a buffer and the
maximum number of bytes to place in the buffer. ReadLine always appends an ASCII NUL
at the end of the bytes read. Thus, the maximum number of bytes passed to ReadLine must
be one less than the size of the buffer.

ReadLine transfers every character from the input line to the buffer, including leading
spaces, embedded spaces, and trailing spaces, until ReadLine transfers the maximum
number of bytes (for example, 80). ReadLine discards any remaining characters at the end
of the line. ReadLine never transfers the linefeed to the buffer.

ReadLine returns the number of bytes read, including the bytes discarded but excluding the
linefeed.

© National Instruments Corporation 3-1 Standard Libraries Reference Manual

3
Analysis Library

This chapter describes the functions in the LabWindows/CVI Analysis Library. The Analysis

Library Function Overview section contains general information about the Analysis Library
functions and panels. The Analysis Library Function Reference section contains an
alphabetical list of the function descriptions.

Analysis Library Function Overview

The Analysis Library includes functions for 1D and 2D array manipulation, complex
operations, matrix operations, and statistics. This section contains general information about
the Analysis Library functions and panels.

Analysis Library Function Panels
The Analysis Library function panels are grouped in the tree structure in Table 3-1 according
to the types of operations they perform.

The first- and second-level headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings are the names of individual function panels. Each analysis function panel
generates one analysis function call.

.

Table 3-1. Functions in the Analysis Library Function Tree

Class/Panel Name Function Name
Array Operations

1D Operations
Clear Array Clear1D
Set Array Set1D
Copy Array Copy1D
1D Array Addition Add1D
1D Array Subtraction Sub1D
1D Array Multiplication Mul1D
1D Array Division Div1D
1D Absolute Value Abs1D
1D Negative Value Neg1D
1D Linear Evaluation LinEv1D
1D Maximum & Minimum MaxMin1D

Chapter 3 Analysis Library — Analysis Library Function Overview

Standard Libraries Reference Manual 3-2 © National Instruments Corporation

Array Operations (continued)
1D Operations (continued)

1D Array Subset Subset1D
1D Sort Array Sort

2D Operations
2D Array Addition Add2D
2D Array Subtraction Sub2D
2D Array Multiplication Mul2D
2D Array Division Div2D
2D Linear Evaluation LinEv2D
2D Maximum & Minimum MaxMin2D

Complex Operations
Complex Numbers

Complex Addition CxAdd
Complex Subtraction CxSub
Complex Multiplication CxMul
Complex Division CxDiv
Complex Reciprocal CxRecip
Rectangular to Polar ToPolar
Polar to Rectangular ToRect

1D Complex Operations
1D Complex Addition CxAdd1D
1D Complex Subtraction CxSub1D
1D Complex Multiplication CxMul1D
1D Complex Division CxDiv1D
1D Complex Linear Evaluation CxLinEv1D
1D Rectangular to Polar ToPolar1D
1D Polar to Rectangular ToRect1D

Statistics
Mean Mean
Standard Deviation StdDev
Histogram Histogram

Vector & Matrix Algebra
Dot Product DotProduct
Transpose Transpose
Determinant Determinant
Invert Matrix InvMatrix
Multiply Matrix MatrixMul

Get Error String GetAnalysisErrorString

Table 3-1. Functions in the Analysis Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 3 Analysis Library — Analysis Library Function Overview

© National Instruments Corporation 3-3 Standard Libraries Reference Manual

Class and Subclass Descriptions

• The Array Operations function panels perform arithmetic operations on 1D and
2D arrays.

– 1D Operations, a subclass of Array Operations, contains function panels that
perform 1D array arithmetic.

– 2D Operations, a subclass of Array Operations, contains function panels that
perform 2D array arithmetic.

• The Complex Operations function panels perform complex arithmetic operations. The
Complex Operations function panels can operate on complex scalars or 1D arrays. The
functions process the real and imaginary parts of complex numbers separately.

– Complex Numbers, a subclass of Complex Operations, contains function panels that
perform scalar complex arithmetic.

– 1D Complex Operations, a subclass of Complex Operations, contains function
panels that perform complex arithmetic on 1D complex arrays.

• The Statistics function panels perform basic statistics functions.

• The Vector & Matrix Algebra function panels perform vector and matrix operations.
Vectors and matrices are represented by 1D and 2D arrays, respectively.

• The Array Utilities function panels copy, initialize, and clear arrays.

• Miscellaneous is a class of function panels for miscellaneous Analysis Library functions.

The online help with each panel contains specific information about using each
function panel.

Chapter 3 Analysis Library — Analysis Library Function Reference

Standard Libraries Reference Manual 3-4 © National Instruments Corporation

Hints for Using Analysis Function Panels
With the analysis function panels, you can manipulate scalars and arrays of data interactively.
You might find it helpful to use the Analysis Library function panels in conjunction with the
User Interface Library function panels to view the results of analysis routines. When using the
Analysis Library function panels, remember the following:

• The computer on which you run LabWindows/CVI affects the processing speed of the
analysis functions. A numeric coprocessor, especially, increases the speed of
floating-point computations. If you are using an Analysis Library function panel and
nothing seems to happen for an unusually long time, remember the constraints of your
hardware.

• Many analysis routines for arrays run in place. That is, the functions can store the input
and output data in the same array. This point is important to keep in mind when you
process large amounts of data. Large double-precision arrays consume a lot of memory.
If the results you want do not require that you keep the original array or intermediate
arrays of data, perform analysis operations in place where possible.

• The Interactive window maintains a record of generated code. If you forget to keep the
code from a function panel, you can cut and paste code between the Interactive and
Program windows.

The online help with each panel contains specific information about operating each
function panel.

Reporting Analysis Errors
The functions in the Analysis Library return status information through a return value.

If the return value status is zero after an Analysis Library function call, the function properly
executed with no errors. Otherwise, the functions set status to the appropriate error value.
Table 3-2 at the end of this chapter lists error messages that correspond to the possible
status values.

Analysis Library Function Reference

This section describes each function in the LabWindows/CVI Analysis Library in
alphabetical order.

Chapter 3 Analysis Library — Abs1D

© National Instruments Corporation 3-5 Standard Libraries Reference Manual

Abs1D

int status = Abs1D (double x[], int n, double y[]);

Purpose
Finds the absolute value of the x input array. Abs1D can perform the operation in place; that
is, x and y can be the same array.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

y double-precision array Absolute value of input array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — Add1D

Standard Libraries Reference Manual 3-6 © National Instruments Corporation

Add1D

int status = Add1D (double x[], double y[], int n, double z[]);

Purpose
Adds 1D arrays. Add1D obtains the ith element of the output array using the following
formula:

Add1D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array Input array.

y double-precision array Input array.

n integer Number of elements to add.

Name Type Description

z double-precision array Result array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zi xi yi+=

Chapter 3 Analysis Library — Add2D

© National Instruments Corporation 3-7 Standard Libraries Reference Manual

Add2D

int status = Add2D (void *x, void *y, int n, int m, void *z);

Purpose
Adds 2D arrays. Add2D obtains the (i, j)th element of the output array using the following
formula:

Add2D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision
2D array

Input array.

y double-precision
2D array

Input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

z double-precision
2D array

Result array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zi j, xi j, yi j,+=

Chapter 3 Analysis Library — Clear1D

Standard Libraries Reference Manual 3-8 © National Instruments Corporation

Clear1D

int status = Clear1D (double x[], int n);

Purpose
Sets the elements of the x array to 0.0.

Parameters

Input

Output

Return Value

Name Type Description

n integer Number of elements in x.

Name Type Description

x double-precision array Cleared array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — Copy1D

© National Instruments Corporation 3-9 Standard Libraries Reference Manual

Copy1D

int status = Copy1D (double x, int n, double y[]);

Purpose
Copies the elements of the x array. Use Copy1D to duplicate arrays for in place operations.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

Name Type Description

y double-precision array Duplicated array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — CxAdd

Standard Libraries Reference Manual 3-10 © National Instruments Corporation

CxAdd

int status = CxAdd (double xr, double xi, double yr, double yi, double *zr,
double *zi);

Purpose
Adds two complex numbers, x and y. CxAdd obtains the resulting complex number, z, using
the following formulas:

Parameters

Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

zr double-precision pointer Real part of z.

zi double-precision pointer Imaginary part of z.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zr xr yr+=

zi xi yi+=

Chapter 3 Analysis Library — CxAdd1D

© National Instruments Corporation 3-11 Standard Libraries Reference Manual

CxAdd1D

int status = CxAdd1D (double xr[], double xi[], double yr[], double yi[],
int n, double zr[], double zi[]);

Purpose
Adds two 1D complex arrays, x and y. CxAdd1D obtains the ith element of the resulting
complex array, z, using the following formulas:

CxAdd1D can perform the operations in place; that is, the input and output complex arrays can
be the same.

Parameters

Input

Output

Return Value

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

n integer Number of elements.

Name Type Description

zr double-precision array Real part of z.

zi double-precision array Imaginary part of z.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zri xri yri+=

zii xii yii+=

Chapter 3 Analysis Library — CxDiv

Standard Libraries Reference Manual 3-12 © National Instruments Corporation

CxDiv

int status = CxDiv (double xr, double xi, double yr, double yi, double *zr,
double *zi);

Purpose
Divides two complex numbers, x and y. CxDiv obtains the resulting complex number, z, using
the following formulas:

Parameters

Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

zr double-precision Real part of z.

zi double-precision Imaginary part of z.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zr
xr yr xi yi×+×()

yr
2

yi
2

+
---=

zi
xi yr× xr yi×–()

yr
2

yi
2

+
---=

Chapter 3 Analysis Library — CxDiv1D

© National Instruments Corporation 3-13 Standard Libraries Reference Manual

CxDiv1D

int status = CxDiv1D (double xr[], double xi[], double yr[], double yi[],
int n, double zr[], double zi[]);

Purpose
Divides two 1D complex arrays, x and y. CxDiv1D obtains the ith element of the resulting
complex array, z, using the following formulas:

zr can be in place with xr; zi can be in place with xi.

Parameters

Input

Output

Return Value

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

n integer Number of elements.

Name Type Description

zr double-precision array Real part of z.

zi double-precision array Imaginary part of z.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zri

xri yri× xii yii×+()

yri

2
yii

2
+

---=

zii

xii yri× xri yii×–()

yri

2
yii

2
+

---=

Chapter 3 Analysis Library — CxLinEv1D

Standard Libraries Reference Manual 3-14 © National Instruments Corporation

CxLinEv1D

int status = CxLinEv1D (double xr[], double xi[], int n, double ar,
double ai, double br, double bi, double yr[],
double yi[]);

Purpose
Performs a complex linear evaluation of a 1D complex array, x and y. CxLinEv1D obtains the
ith element of the resulting complex array, z, using the following formulas:

CxLinEv1D can perform the operations in place; that is, the input and output complex arrays
can be the same.

Parameters

Input

Output

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

n integer Number of elements.

ar double-precision Real part of a.

ai double-precision Imaginary part of a.

br double-precision Real part of b.

bi double-precision Imaginary part of b.

Name Type Description

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

yri ar xri× ai xii br+×–=

yii ar xii× ai xri bi+×+=

Chapter 3 Analysis Library — CxLinEv1D

© National Instruments Corporation 3-15 Standard Libraries Reference Manual

Return Value

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — CxMul

Standard Libraries Reference Manual 3-16 © National Instruments Corporation

CxMul

int status = CxMul (double xr, double xi, double yr, double yi, double *zr,
double *zi);

Purpose
Multiplies two complex numbers, x and y. CxMul obtains the resulting complex number, z,
using the following formulas:

Parameters

Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

zr double-precision Real part of z.

zi double-precision Imaginary part of z.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zr xr yr× xi yi×–=

zi xr yi× xi yr×+=

Chapter 3 Analysis Library — CxMul1D

© National Instruments Corporation 3-17 Standard Libraries Reference Manual

CxMul1D

int status = CxMul1D (double xr[], double xi[], double yr[], double yi[],
int n, double zr[], double zi[]);

Purpose
Multiplies two 1D complex arrays, x and y. CxMul1D obtains the ith element of the resulting
complex array, z, using the following formulas:

CxMul1D can perform the operations in place; that is, the input and output complex arrays can
be the same.

Parameters

Input

Output

Return Value

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

n integer Number of elements.

Name Type Description

zr double-precision array Real part of z.

zi double-precision array Imaginary part of z.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zri xri yri× xii yii×–=

zii xri yii× xii yri×+=

Chapter 3 Analysis Library — CxRecip

Standard Libraries Reference Manual 3-18 © National Instruments Corporation

CxRecip

int status = CxRecip (double xr, double xi, double *yr, double *yi);

Purpose
Finds the reciprocal of a complex number, x. CxRecip obtains the resulting complex
number, y, using the following formulas:

Parameters

Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

Name Type Description

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

status integer Refer to Table 3-2 for error codes.

yr
xr

xr
2

xi
2

+
---------------------=

yi
xi–

xr
2

xi
2

+
---------------------=

Chapter 3 Analysis Library — CxSub

© National Instruments Corporation 3-19 Standard Libraries Reference Manual

CxSub

int status = CxSub (double xr, double xi, double yr, double yi, double *zr,
double *zi);

Purpose
Subtracts two complex numbers, x and y. The resulting complex number, z, is obtained using
the following formulas:

Parameters

Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

zr double-precision Real part of z.

zi double-precision Imaginary part of z.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zr xr yr–=

zi xi yi–=

Chapter 3 Analysis Library — CxSub1D

Standard Libraries Reference Manual 3-20 © National Instruments Corporation

CxSub1D

int status = CxSub1D (double xr[], double xi[], double yr[], double yi[],
int n, double zr[], double zi[]);

Purpose
Subtracts two 1D complex arrays, x and y. CxSub1D obtains the ith element of the resulting
complex array, z, using the formulas:

CxSub1D can perform the operations in place; that is, the input and output complex arrays can
be the same.

Parameters

Input

Output

Return Value

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

n integer Number of elements.

Name Type Description

zr double-precision array Real part of z.

zi double-precision array Imaginary part of z.

Name Type Description

status integer Refer toTable 3-2 for error codes.

zri xri yri–=

zii xii yii–=

Chapter 3 Analysis Library — Determinant

© National Instruments Corporation 3-21 Standard Libraries Reference Manual

Determinant

int status = Determinant (void *x, int n, double *det);

Purpose
Finds the determinant of an n-by-n 2D input matrix.

Parameters

Input

Output

Note The input matrix must be an n-by-n square matrix.

Return Value

Name Type Description

x double-precision
2D array

Input matrix.

n integer Dimension size of input matrix.

Name Type Description

det double-precision Determinant.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — Div1D

Standard Libraries Reference Manual 3-22 © National Instruments Corporation

Div1D

int status = Div1D (double x[], double y[], int n, double z[]);

Purpose
Divides two 1D arrays, x and y. Div1D obtains the ith element of the output array, z, using the
following formula:

Div1D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array x input array.

y double-precision array y input array.

n integer Number of elements to divide.

Name Type Description

z double-precision array Result array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zi

xi

yi

----=

Chapter 3 Analysis Library — Div2D

© National Instruments Corporation 3-23 Standard Libraries Reference Manual

Div2D

int status = Div2D (void *x, void *y, int n, int m, void *z);

Purpose
Divides two 2D arrays. Div2D obtains the (i, j)th element of the output array using the
following formula:

Div2D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision
2D array

x input array.

y double-precision
2D array

y input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

z double-precision
2D array

Result array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zi j,
xi j,

yi j,
-------=

Chapter 3 Analysis Library — DotProduct

Standard Libraries Reference Manual 3-24 © National Instruments Corporation

DotProduct

int status = DotProduct (double x[], double y, int n, double *dotProd);

Purpose
Calculates the dot product of the x and y input arrays. DotProduct obtains the dot product
using the following formula:

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array x input vector.

y double-precision array y input vector.

n integer Number of elements.

Name Type Description

dotProd double-precision Dot product.

Name Type Description

status integer Refer to Table 3-2 for error codes.

dotProd x y• xi yi×
i 0=

n 1–

∑= =

Chapter 3 Analysis Library — GetAnalysisErrorString

© National Instruments Corporation 3-25 Standard Libraries Reference Manual

GetAnalysisErrorString

char *message = GetAnalysisErrorString (int errorNum)

Purpose
Converts the error number an Analysis Library function returns into a meaningful
error message.

Parameter

Input

Return Value

Name Type Description

errorNum integer Status an Analysis Library function returns.

Name Type Description

message string Explanation of error.

Chapter 3 Analysis Library — Histogram

Standard Libraries Reference Manual 3-26 © National Instruments Corporation

Histogram

int status = Histogram (double inputArray[], int numberOfElements,
double base, double top, int histogramArray[],
double axisArray[], int intervals);

Purpose
Calculates the histogram of the inputArray. If the input sequence is

the Histogram: h(X) of X for eight intervals is

Notice that the histogram of the input sequence X is a function of X.

The function obtains Histogram: h(X) as follows: Histogram scans the input sequence X to
determine the range of values in it. Then the function establishes the interval width, ,
according to the specified number of intervals,

Let represent the output sequence X because the histogram is a function of X. The function
evaluates elements of using

 for

Histogram defines the ith interval to be the range of values from up to but
not including

 for

and defines the function yi(x) to be

where max is the maximum value found in the input sequence X

min is the minimum value found in the input sequence X

m is the specified number of intervals

X 0 1 3 3 4 4 4 5 5 8, , , , , , , , ,{ }=

h x() h0 h1 h2 h3 h4 h5 h6 h7, , , , , , ,{ } 1 1 0 2 3 2 0 1, , , , , , ,{ }= =

∆x

∆x
max min–

m
--------------------------=

χ
χ

χ i min 0.5 ∆x i ∆x×+×+= i 0 1 2 … m 1–, , , ,=

∆i χ i 0.5 ∆x×–
χ i 0.5 ∆x×+

∆i χ[i 0.5 ∆x : χ i 0.5 ∆x)×+×–= i 0 1 2 … m 1–, , , ,=

yi x() 1 if x union of ∆i∈
0 elsewhere

=

Chapter 3 Analysis Library — Histogram

© National Instruments Corporation 3-27 Standard Libraries Reference Manual

Histogram has unity value if the value of x falls within the specified interval. Otherwise it is
zero. Notice that the interval is centered about , and its width is .

The last interval, , is defined as . In other words, if
a value equals max, it is counted as belonging to the last interval.

Finally, Histogram evaluates the histogram sequence h using

 for

Histogram obtains the histogram by counting the number of times the elements in the input
array fall in the ith interval.

Parameters

Input

Output

Return Value

where hi represents the elements of the output sequence Histogram: h(X)

n is the number of elements in the input sequence X

Name Type Description

inputArray double-precision array Input array.

numberOfElements integer Number of elements in inputArray.

base double-precision Lower range.

top double-precision Upper range.

intervals integer Number of intervals.

Name Type Description

histogramArray integer array Histogram of inputArray.

axisArray double-precision array Histogram axis array; contains the
midpoint values of the intervals.

Name Type Description

status integer Refer to Table 3-2 for error codes.

∆i χ i ∆x

∆m 1– χm i– 0.5 ∆x : χm i– 0.5 ∆x×+×–[]

hi yi xj()
j 0=

n 1–

∑= i 0 1 2 … m 1–, , , ,=

Chapter 3 Analysis Library — InvMatrix

Standard Libraries Reference Manual 3-28 © National Instruments Corporation

InvMatrix

int status = InvMatrix (void *x, int n, void *y);

Purpose
Finds the inverse matrix of an input matrix. InvMatrix can perform the operation in place;
that is, x and y can be the same matrices.

Parameters

Input

Output

Note The input matrix must be an n-by-n square matrix.

Return Value

Name Type Description

x double-precision
2D array

Input matrix.

n integer Dimension size of matrix.

Name Type Description

y double-precision
2D array

Inverse matrix.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — LinEv1D

© National Instruments Corporation 3-29 Standard Libraries Reference Manual

LinEv1D

int status = LinEv1D (double x[], int n, double a, double b, double y[]);

Purpose
Performs a linear evaluation of a 1D array, x. LinEv1D obtains the ith element of the output
array, y, using the formula:

LinEv1D can perform the operation in place; that is, x and y can be the same array.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements.

a double-precision Multiplicative constant.

b double-precision Additive constant.

Name Type Description

y double-precision array Linearly evaluated array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

yi a xi b+×=

Chapter 3 Analysis Library — LinEv2D

Standard Libraries Reference Manual 3-30 © National Instruments Corporation

LinEv2D

int status = LinEv2D (void *x, int n, int m, double a, double b, void *y);

Purpose
Performs a linear evaluation of a 2D array, x. LinEv2D obtains the (i, j)th element of the output
array, y, using the formula:

LinEv2D can perform the operation in place; that is, x and y can be the same array.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision
2D array

Input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

a double-precision Multiplicative constant.

b double-precision Additive constant.

Name Type Description

y double-precision
2D array

Linearly evaluated array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

yi j, a xi j, b+×=

Chapter 3 Analysis Library — MatrixMul

© National Instruments Corporation 3-31 Standard Libraries Reference Manual

MatrixMul

int status = MatrixMul (void *X, void *Y, int n, int k, int m, void *Z);

Purpose
Multiplies two 2D input matrices, X and Y. MatrixMul obtains the (i, j)th element of the
output matrix, Z, using the formula:

Parameters

Input

Output

Return Value

Name Type Description

X double-precision
2D array

X input matrix.

Y double-precision
2D array

Y input matrix.

n integer First dimension of X.

k integer Second dimension of X; first dimension
of Y.

m integer Second dimension of Y.

Name Type Description

Z double-precision
2D array

Output matrix.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Zi j, xi p, yp j,×
p 0=

k 1–

∑=

Chapter 3 Analysis Library — MatrixMul

Standard Libraries Reference Manual 3-32 © National Instruments Corporation

Parameter Discussion
Confirm that the array sizes are correct. You must meet the following array sizes:

• X must be n by k.

• Y must be k by m.

• Z must be n by m.

Example
/* Multiply two matrices. Note: A x B - B x A, in general. */
double x[10][20], y[20][15], z[10][15];
int n, k, m;
n = 10;
k = 20;
m = 15;
MatrixMul (x, y, n, k, m, z);

Chapter 3 Analysis Library — MaxMin1D

© National Instruments Corporation 3-33 Standard Libraries Reference Manual

MaxMin1D

int status = MaxMin1D (double x[], int n, double *max, int *imax, double *min,
int *imin);

Purpose
Finds the maximum and minimum values in the input array and the respective indices of the
first occurrence of the maximum and minimum values.

Parameters

Input

Output

Return Value

Example
/* Generate an array with random and find the maximum and minimum
values. */
double x[20], y[20];
double max, min;
int n, imax, imin;
n = 20;
Uniform (n, 17, x);
MaxMin1D (x, n, &max, &imax, &min, &imin);

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

max double-precision Maximum value.

imax integer Index of max in x array.

min double-precision Minimum value.

imin integer Index of min in x array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — MaxMin2D

Standard Libraries Reference Manual 3-34 © National Instruments Corporation

MaxMin2D

int status = MaxMin2D (void *X, int n, int m, double *max, int *imax,
int *jmax, double *min, int *imin, int *jmin);

Purpose
Finds the maximum and the minimum values in the 2D input array and the respective indices
of the first occurrence of the maximum and minimum values. MaxMin2D scans the X array
by rows.

Parameters

Input

Output

Return Value

Name Type Description

X double-precision
2D array

Input array.

n integer Number of elements in first dimension of X.

m integer Number of elements in second dimension
of X.

Name Type Description

max double-precision Maximum value.

imax integer Index of max in X array (first dimension).

jmax integer Index of max in X array (second
dimension).

min double-precision Minimum value.

imin integer Index of min in X array (first dimension).

jmin integer Index of min in X array (second
dimension).

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — MaxMin2D

© National Instruments Corporation 3-35 Standard Libraries Reference Manual

Example
/* This example finds the maximum and minimum values as well as their
location within the array. */
double x[5][10], max, min;
int n, m, imax, jmax, imin, jmin;
n = 5;
m = 10;
MaxMin2D (x, n, m, &max, &imax, &jmax, &min, &imin, &jmin);

Chapter 3 Analysis Library — Mean

Standard Libraries Reference Manual 3-36 © National Instruments Corporation

Mean

int status = Mean (double x[], int n, double *meanval);

Purpose
Calculates the mean, or average, value of the input array. Mean calculates the mean using the
following formula:

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

Name Type Description

meanval double-precision Mean value.

Name Type Description

status integer Refer to Table 3-2 for error codes.

meanval

xi

i 0=

n 1–

∑
n

-------------=

Chapter 3 Analysis Library — Mul1D

© National Instruments Corporation 3-37 Standard Libraries Reference Manual

Mul1D

int status = Mul1D (double x[], double y[], int n, double z[]);

Purpose
Multiplies two 1D arrays. Mul1D obtains the ith element of the output array using the
following formula:

Mul1D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array x input array.

y double-precision array y input array.

n integer Number of elements to multiply.

Name Type Description

z double-precision array Result array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zi xi yi×=

Chapter 3 Analysis Library — Mul2D

Standard Libraries Reference Manual 3-38 © National Instruments Corporation

Mul2D

int status = Mul2D (void *X, void *Y, int n, int m, void *Z);

Purpose
Multiplies two 2D arrays, X and Y. Mul2D obtains the (i, j)th element of the output array, Z,
using the following formula:

Mul2D can perform the operation in place; that is, Z can be the same array as either X or Y.

Parameters

Input

Output

Return Value

Name Type Description

X double-precision
2D array

X input array.

Y double-precision
2D array

Y input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

Z double-precision
2D array

Result array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zi j, xi j, yi j,+=

Chapter 3 Analysis Library — Neg1D

© National Instruments Corporation 3-39 Standard Libraries Reference Manual

Neg1D

int status = Neg1D (double x[], int n, double y[]);

Purpose
Negates the elements of the input array. Neg1D can perform the operation in place; that is,
x and y can be the same array.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

y double-precision array Negated values of the x input array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — Set1D

Standard Libraries Reference Manual 3-40 © National Instruments Corporation

Set1D

int status = Set1D (double x[], int n, double a);

Purpose
Sets the elements of the x array to a constant value.

Parameters

Input

Output

Return Value

Name Type Description

n integer Number of elements in x.

a double-precision Constant value.

Name Type Description

x double-precision array Result array; set to the value of a.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — Sort

© National Instruments Corporation 3-41 Standard Libraries Reference Manual

Sort

int status = Sort (double x[], int n, int direction, double y[]);

Purpose
Sorts the x input array in ascending or descending order. Sort can perform the operation in
place; that is, x and y can be the same array.

Parameters

Input

Output

Return Value

Example
/* Generate a random array of numbers and sort them in ascending
order. */
double x[200], y[200];
int n;
int dir;
n = 200;
dir = 0;
Uniform (n, 17, x);
Sort (x, n, dir, y);

Name Type Description

x double-precision array Input array.

n integer Number of elements to sort.

direction integer 0 = ascending
nonzero = descending

Name Type Description

y double-precision array Sorted array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — StdDev

Standard Libraries Reference Manual 3-42 © National Instruments Corporation

StdDev

int status = StdDev (double x[], int n, double *meanval, double *sDev);

Purpose
Calculates the standard deviation and the mean, or average, values of the input array. StdDev
uses the following formulas to find the mean and the standard deviation:

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

Name Type Description

meanval double-precision Mean value.

sDev double-precision Standard deviation.

Name Type Description

status integer Refer to Table 3-2 for error codes.

meanval

xi

i 0=

n 1–

∑
n

-------------=

sDev

xi meanval–()2

i 0=

n 1–

∑
n

--=

Chapter 3 Analysis Library — Sub1D

© National Instruments Corporation 3-43 Standard Libraries Reference Manual

Sub1D

int status = Sub1D (double x[], double y[], int n, double z[]);

Purpose
Subtracts two 1D arrays. Sub1D can obtain the ith element of the output array using the
following formula:

Sub1D can perform the operation in place; that is, z can be either x or y.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array x input array.

y double-precision array y input array.

n integer Number of elements to subtract.

Name Type Description

z double-precision array Result array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zi xi yi–=

Chapter 3 Analysis Library — Sub2D

Standard Libraries Reference Manual 3-44 © National Instruments Corporation

Sub2D

int status = Sub2D (void *X, void *Y, int n, int m, void *Z);

Purpose
Subtracts two 2D arrays. Sub2D obtains the (i, j)th element of the output array using the
formula:

Sub2D can perform the operation in place; that is, Z can be either X or Y.

Parameters

Input

Output

Return Value

Name Type Description

X double-precision
2D array

X input array.

Y double-precision
2D array

Y input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

Z double-precision
2D array

Result array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

zi j, xi j, yi j,–=

Chapter 3 Analysis Library — Subset1D

© National Instruments Corporation 3-45 Standard Libraries Reference Manual

Subset1D

int status = Subset1D (double x[], int n, int index, int length, double y[]);

Purpose
Extracts a subset of the input array. The output array contains the number of elements you
specify by the length. Subset1D starts copying from x to y at the index element of x.

Parameters

Input

Output

Return Value

Example
/* The following example generates y = {0.0, 1.0, 2.0, 3.0}. */
double x[11], y[4], first, last;
int n, index, length;
n = 11;
index = 5;
length = 4;
first = -5.0;
last = 5.0;
Ramp (n, first, last, x);
Subset1D (x, n, index, length, y);

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

index integer Initial index for the subset.

length integer Number of elements to copy to the subset.

Name Type Description

y double-precision array Subset array.

Name Type Description

status integer Refer to Table 3-2 for error codes.

Chapter 3 Analysis Library — ToPolar

Standard Libraries Reference Manual 3-46 © National Instruments Corporation

ToPolar

int status = ToPolar (double x, double y, double *mag, double *phase);

Purpose
Converts the rectangular coordinates (x, y) to polar coordinates (mag, phase). ToPolar
obtains the polar coordinates using the following formulas:

The phase value is in the range .

Parameters

Input

Output

Return Value

Example
/* Convert the rectangular coordinates to polar coordinates. */
double x, y, mag, phase;
x = 1.5;
y = -2.5;
ToPolar (x, y, &mag, &phase);

Name Type Description

x double-precision x coordinate.

y double-precision y coordinate.

Name Type Description

mag double-precision Magnitude.

phase double-precision Phase, in radians.

Name Type Description

status integer Refer to Table 3-2 for error codes.

mag x
2

y
2

+=

phase arc
y

x
--

 tan=

π : π–[]

Chapter 3 Analysis Library — ToPolar1D

© National Instruments Corporation 3-47 Standard Libraries Reference Manual

ToPolar1D

int status = ToPolar1D (double x[], double y[], int n, double mag[],
double phase[]);

Purpose
Converts the set of rectangular coordinate points (x, y) to a set of polar coordinate points
(mag, phase). ToPolar1D obtains the ith element of the polar coordinate set using the
following formulas:

The phase value is in the range .

ToPolar1D can perform the operations in place; that is, x and mag, and y and phase, can be
the same arrays, respectively.

Parameters

Input

Output

Return Value

Name Type Description

x double-precision array x coordinate.

y double-precision array y coordinate.

n integer Number of elements.

Name Type Description

mag double-precision array Magnitude.

phase double-precision array Phase, in radians.

Name Type Description

status integer Refer to Table 3-2 for error codes.

magi xi

2
yi

2
+=

phasei arc
yi

xi

 tan=

π : π–[]

Chapter 3 Analysis Library — ToRect

Standard Libraries Reference Manual 3-48 © National Instruments Corporation

ToRect

int status = ToRect (double mag, double phase, double *x, double *y);

Purpose
Converts the polar coordinates (mag, phase) to rectangular coordinates (x, y). ToRect
obtains the rectangular coordinates using the following formulas:

Parameters

Input

Output

Return Value

Name Type Description

mag double-precision Magnitude.

phase double-precision Phase, in radians.

Name Type Description

x double-precision x coordinate.

y double-precision y coordinate.

Name Type Description

status integer Refer to Table 3-2 for error codes.

x mag phase()cos×=

y mag phase()sin×=

Chapter 3 Analysis Library — ToRect1D

© National Instruments Corporation 3-49 Standard Libraries Reference Manual

ToRect1D

int status = ToRect1D (double mag[], double phase[], int n, double x[],
double y[]);

Purpose
Converts the set of polar coordinate points (mag, phase) to a set of rectangular coordinate
points (x, y). ToRect1D obtains the ith element of the rectangular set using the following
formulas:

ToRect1D can perform the operations in place; that is, x and mag, and y and phase, can be
the same arrays, respectively.

Parameters

Input

Output

Return Value

Name Type Description

mag double-precision array Magnitude.

phase double-precision array Phase, in radians.

n integer Number of elements.

Name Type Description

x double-precision array x coordinate.

y double-precision array y coordinate.

Name Type Description

status integer Refer to Table 3-2 for error codes.

xi magi phasei()cos×=

yi magi phasei()sin×=

Chapter 3 Analysis Library — Transpose

Standard Libraries Reference Manual 3-50 © National Instruments Corporation

Transpose

int status = Transpose (void *x, int n, int m, void *y);

Purpose
Finds the transpose of a 2D input matrix. Transpose obtains the (i, j)th element of the
resulting matrix using the following formula:

Parameters

Input

Output

Note If the input matrix has n-by-m dimensions, the output matrix must have m-by-n

dimensions.

Return Value

Name Type Description

x double-precision
2D array

Input matrix.

n integer Size of first dimension.

m integer Size of second dimension.

Name Type Description

y double-precision
2D array

Transpose matrix.

Name Type Description

status integer Refer to Table 3-2 for error codes.

yi j, xj i,=

Chapter 3 Analysis Library — Error Conditions

© National Instruments Corporation 3-51 Standard Libraries Reference Manual

Error Conditions

If an error condition occurs during a call to any of the functions in the Analysis Library, the
status return value contains the error code. This code is a value that specifies the type of error
that occurred. Table 3-2 shows the currently defined error codes and the associated meanings.

Table 3-2. Analysis Library Error Codes

Symbolic Name Code Error Message

BaseGETopAnlysErr -20101 Base must be less than Top.

DivByZeroAnlysErr -20060 Divide by zero error.

IndexLengthAnlysErr -20018 The following condition must be
met:

.

NoAnlysErr 0 No error; the call was successful.

OutOfMemAnlysErr -20001 There is not enough space left to
perform the specified routine.

SamplesGEZeroAnlysErr -20004 The number of samples must be
greater than or equal to zero.

SamplesGTZeroAnlysErr -20003 The number of samples must be
greater than zero.

SingularMatrixAnlysErr -20041 The input matrix is singular. The
system of equations cannot be
solved.

0 index length+() samples<≤

© National Instruments Corporation 4-1 Standard Libraries Reference Manual

4
GPIB/GPIB-488.2 Library

This chapter describes the functions in the LabWindows/CVI GPIB Library. The GPIB

Library Function Overview section contains general information about the GPIB Library
functions and panels, the GPIB DLL, and guidelines and restrictions you should know when
using the GPIB Library. The GPIB Function Reference section contains an alphabetical list
of descriptions for the Device Manager functions, the callback installation functions, and the
functions for returning the thread-specific status variables. Refer to your NI-488.2 or
NI-488.2M function reference for detailed descriptions of the NI-488 and NI-488.2 functions.

GPIB Library Function Overview

This section describes the functions in the LabWindows/CVI GPIB Library. These functions
are arranged alphabetically according to their names in C. For detailed function descriptions,
refer to the NI-488.2 function reference manual that accompanied your GPIB interface.

GPIB Functions Library Function Panels
The GPIB Functions Library function panels are grouped in the tree structure in Table 4-1
according to the types of operations they perform.

The first- and second-level headings in the function tree are names of the function classes.
Function classes are groups of related function panels. The third-level headings are the names
of individual function panels. Each GPIB function panel generates a GPIB function call.

Table 4-1. Functions in the GPIB/GPIB-488.2 Library Function Tree

Class/Panel Name Function Name
Open/Close

Open Device OpenDev
Close Device CloseDev
Close Instrument Devices CloseInstrDevs
Find Board/Device ibfind
Find Unused Device ibdev
Offline/Online ibonl

Configuration
Change Primary Address ibpad
Change Secondary Address ibsad
Change Access Board ibbna
Change Time Out Limit ibtmo

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Library Function Overview

Standard Libraries Reference Manual 4-2 © National Instruments Corporation

Configuration (continued)
Set EOS Character ibeos
Enable/Disable END ibeot
Enable/Disable DMA ibdma
System Control ibrsc
Change Config Parameter ibconfig
Get Config Parameter ibask

I/O
Read ibrd
Read Asynchronously ibrda
Read to File ibrdf
Write ibwrt
Write Asynchronously ibwrta
Write from File ibwrtf
Stop Asynchronous I/O ibstop

Device Control
Get Serial Poll Byte ibrsp
Clear Device ibclr
Trigger device ibtrg
Check for Listeners ibln
Wait for Event (Dev) ibwait
Go to Local (Dev) ibloc
Parallel Poll Cfg (Dev) ibppc
Pass Control ibpct

Bus Control
Send Interface Clear ibsic
Become Active Controller ibcac
Go to Standby ibgts
Set/Clear Remote Enable ibsre
Send Commands ibcmd
Send Commands (Async) ibcmda
Parallel Poll ibrpp
Read Control Lines iblines

Board Control
Wait for Board Event ibwait
Dequeue Board Event ibevent
Set UNIX Signal Request ibsgnal
Go to Local Mode ibloc
Parallel Poll Configuration ibppc
Request Service ibrsv
Set/Clear IST ibist
Write to Board Key ibwrtkey
Read from Board Key ibrdkey

Table 4-1. Functions in the GPIB/GPIB-488.2 Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Library Function Overview

© National Instruments Corporation 4-3 Standard Libraries Reference Manual

Callbacks (Windows only)
Install Synchronous Callback ibInstallCallback
Install Asynchronous Callback ibnotify

Locking (GPIB-ENET Only)
Lock iblock
Unlock ibunlock

Thread-Specific Status
Get Ibsta for Thread ThreadIbsta
Get Iberr for Thread ThreadIberr
Get Ibcnt for Thread ThreadIbcnt
Get Ibcntl for Thread ThreadIbcntl

GPIB-488.2 Functions
Device I/O

Send Send
Send to Multiple Device SendList
Receive Receive

Trigger and Clear
Trigger Device Trigger
Trigger Multiple Devices TriggerList
Clear Device DevClear
Clear Multiple Devices DevClearList

SRQ and Serial Polls
Test SRQ Line TestSRQ
Wait for SRQ WaitSRQ
Find Requesting Device FindRQS
Read Status Byte ReadStatusByte
Serial Poll All Devices AllSpoll

Parallel Polls
Parallel Poll PPoll
Parallel Poll Config PPollConfig
Parallel Poll Unconfig PPollUnconfig

Remote/Local
Enable Remote Operation EnableRemote
Enable Local Operation EnableLocal
Set Remote with Lockout SetRWLS
Send Local Lockout SendLLO

System Control
Reset System ResetSys
Send Interface Clear SendlFC
Conduct Self-Tests TestSys
Find All Listeners FinsLstn
Pass Control PassControl

Low-Level I/O
Send Commands SendCmds
Setup for Sending SendSetup

Table 4-1. Functions in the GPIB/GPIB-488.2 Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Library Function Overview

Standard Libraries Reference Manual 4-4 © National Instruments Corporation

Class and Subclass Descriptions

• The Open/Close function panels open and close GPIB interfaces and devices.

• The Configuration function panels alter configuration parameters you set during
installation of the GPIB handler or during the execution of previous program statements.

• The I/O function panels read and write data over the GPIB. You can use these functions
at the board or the device level.

• The Device Control function panels provide high-level, commonly-used GPIB services
for instrument control applications.

• The Bus Control function panels provide low-level control of the GPIB bus.

• The Board Control function panels provide low-level control of the GPIB interface.
Normally, you use these functions when the GPIB interface is not Controller-In-Charge.

• The Callbacks function panels install callback functions to invoke when certain GPIB
events occur. The functions in this class are available only under Windows. Under UNIX,
you can use the ibsgnl function.

• The Locking function panels allow you to control simultaneous access to the
GPIB-ENET from multiple applications or computers.

• The Thread-Specific Status function panels return the value of the thread-specific GPIB
status variables for the current thread. The functions in this class are necessary only for
multithreaded applications. They are available only on Windows 95/NT.

• The GPIB 488.2 Functions function panels directly adhere to the IEEE-488.2 standard
for communicating with and controlling GPIB devices.

– The Device I/O function panels read data from and write data to devices on
the GPIB.

– The Trigger and Clear function panels trigger and clear GPIB devices.

– The SRQ and Serial Polls function panels handle service requests and perform
serial polls.

– The Parallel Polls function panels conduct parallel polls and configure devices to
respond to them.

– The Remote/Local function panels enable and disable operation of devices remotely
through the GPIB or locally through the front panel of the device.

GPIB-488.2 Functions (continued)
Low-Level I/O (continued)

Send Data Bytes SendDataBytes
Setup for Receiving ReceiveSetup
Receive Response Message RcvRespMsg

Table 4-1. Functions in the GPIB/GPIB-488.2 Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Library Concepts

© National Instruments Corporation 4-5 Standard Libraries Reference Manual

– The System Control function panels perform system-wide functions, obtain
system-wide status information, and pass system control to other devices.

– The Low-Level I/O function panels perform I/O functions at a lower-level than the
function panels in the other classes.

The online help with each panel contains specific information about operating each
function panel.

GPIB Library Concepts

This section contains general information about the GPIB Library, the GPIB device driver,
guidelines and restrictions you should know when using the GPIB Library, and descriptions
of the types of GPIB functions the GPIB Library contains.

GPIB Libraries and the GPIB Dynamic Link Library/Device Driver
LabWindows/CVI for Windows uses the National Instruments standard GPIB DLL for
Windows. LabWindows/CVI for Sun uses the standard Sun Solaris-installed GPIB device
drivers. These drivers are packaged with your GPIB interface and are not included with
LabWindows/CVI. LabWindows/CVI does not require any special procedures for installing
and using the device driver. Follow the directions outlined in your interface documentation.

You can use a software utility called ibconf, included with your GPIB software, to specify
configuration parameters for devices on the GPIB. If your device has special configuration
parameters, such as a secondary address or a special termination character, you can specify
these using ibconf. When you use the LabWindows/CVI GPIB Library function panels,
parameters you specified using ibconf are still in effect. You can modify configuration
parameters directly from one of the LabWindows/CVI configuration function panels or from
your program.

If you use a LabWindows/CVI Instrument Driver module, you do not need to make any
changes using ibconf. The module takes into account any special configuration
requirements for the instrument. If special parameters must be specified, the module sets them
programmatically.

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Library Concepts

Standard Libraries Reference Manual 4-6 © National Instruments Corporation

Guidelines and Restrictions for Using the GPIB Libraries
Follow these guidelines when using the GPIB Libraries:

• Before performing any other operations, open the device. You must use OpenDev,
ibfind, or ibdev. Instrument modules must use OpenDev. When you open a device, an
integer value that represents a device descriptor is returned. All subsequent operations
that involve a particular device require that you specify this device descriptor.

• If you use OpenDev, you should use CloseDev to close the device at the end of the
program.

• Each GPIB Library function panel has three global controls labeled Status, Error, and
Count. These controls show the values of the GPIB status (ibsta), error (iberr), and
byte count (ibcntl) variables.

– The Status control displays in hexadecimal format. The help information for Status
explains the meaning of each bit in the status word. If the most significant bit is set,
a GPIB error has occurred.

– When an error occurs, the Error control displays an error number. The help
information for Error describes the type of error associated with each error number.

– Count displays the number of bytes transferred over the GPIB during the most recent
bus transfer.

Note When writing instrument modules, you must use the Device Manager functions

(OpenDev and CloseDev) instead of ibfind or ibdev. You also must use the

Device Manager functions in application programs that make calls to instrument

modules. The Device Manager functions allow instrument modules to open

devices without specific device names, thereby preventing device name conflicts.

They also help the LabWindows/CVI interactive program ensure that devices are

closed when no longer needed.

Device and Board Functions
Device functions are high-level functions that execute command sequences to handle bus
management operations required for operations such as reading from and writing to devices
or polling them for status. Device functions access a specific device and handle the addressing
and bus management protocol for that device. You do not need to know any GPIB protocol or
bus management details. A descriptor of the accessed device is one of the arguments of the
function.

In contrast, board functions are low-level functions that perform rudimentary GPIB
operations. They are necessary because high-level functions might not always meet the
requirements of applications. In such cases, low-level functions offer the flexibility to meet
your application needs.

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Library Concepts

© National Instruments Corporation 4-7 Standard Libraries Reference Manual

Board functions access the GPIB interface directly and require you to configure the
addressing and bus management protocol for the bus. A descriptor of the accessed board is
one of the arguments of the function.

Automatic Serial Polling
Automatic Serial Polling relieves you of the burden of sorting out occurrences of SRQ and
obtaining status bytes from devices. To enable Automatic Serial Polling, (or autopolling), use
the configuration utility ibconf or the configuration function ibconfig. If you enable
autopolling, the handler automatically conducts serial polls when SRQ is asserted.

As part of the autopoll procedure, the handler stores each positive serial poll response in a
queue associated with each device. A positive response has the RQS or hex 40 bit set in the
device status byte. The handler stores the positive responses in a queue because some devices
can send multiple positive status bytes before your program can act on them. When the
handler receives a positive response from a device, the handler sets the RQS bit of the status
word (ibsta). The polling continues until the device unasserts SRQ or the handler detects an
error condition.

If the handler cannot locate the device that requests service because no known device
responds positively to the poll, or if SRQ is stuck in the asserted state because of a faulty
instrument or cable, a GPIB system error exists that interferes with the proper evaluation of
the RQS bit in the status words of devices. The handler reports the ESRQ error to you when
you issue an ibwait call with the RQS bit included in the wait mask. Aside from the
difficulty ESRQ causes in waiting for RQS, the error has no detrimental effects on other GPIB
operations.

If you call the serial poll function ibrsp and have received one or more responses previously
through the automatic serial poll feature, the ibrsp function returns the first queued
response. Other responses are read in FIFO (first-in-first-out) fashion. If the RQS bit of the
status word is not set when you call ibrsp, the function conducts a serial poll and returns
whatever response it receives.

If your application requires that requests for service be noticed, call the ibrsp function
whenever the RQS bit appears in the status word. The serial poll response queue of a device
can overflow with old status bytes when you neglect to call ibrsp. ibrsp returns the error
condition ESTB when status bytes are discarded because the queue is full. If your application
has no interest in SRQ or status bytes, you can ignore the occurrence of the automatic polls.

Note If the RQS bit of the device status word remains set after you call ibrsp, the

response byte queue has at least one more response byte remaining. You should

continue to call ibrsp until RQS clears.

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Library Concepts

Standard Libraries Reference Manual 4-8 © National Instruments Corporation

Autopolling Compatibility
You cannot detect the SRQI bit in device status words (ibsta) if you enable autopolling. The
goal of autopolling is to remove the SRQ from the IEEE 488 bus, thus preventing visibility of
the SRQI bit in status words for board calls and device calls. If you choose to look for SRQI
in your program, you must disable autopolling.

Board functions also are incompatible with autopolling. The handler disables autopolling
whenever you make a board call and re-enables it at the end of a subsequent device call.

Hardware Interrupts and Autopolling
If you disable the interrupts of the GPIB interface using ibconf or the ibconfig function,
the handler detects SRQ only during calls to the handler, and autopolling can occur only at
the following events:

• During a device ibwait for RQS

• Immediately after a device function completes and prepares to return to the application
program.

If you enable hardware interrupts, the handler can respond to SRQI interrupts and perform
autopolling even when the handler is not performing a function. However, the handler does
not conduct an autopoll if any of the following conditions exist:

• The last GPIB call was a board call. The handler reinstates autopolling after a subsequent
device call.

• GPIB I/O is in progress. In particular, during asynchronous GPIB I/O, autopolling does
not occur until the asynchronous I/O completes.

• The stuck SRQ condition exists.

• You disabled autopolling by using ibconf or ibconfig.

Read and Write Termination
The IEEE 488 specification defines two methods of identifying the last byte of
device-dependent (data) messages. The two methods permit a talker to send data messages of
any length without the listener(s) knowing in advance the number of bytes in the transmission.
The two methods are as follows:

• END message. The talker asserts the EOI (End Or Identify) signal simultaneously with
transmission of the last data byte. By design, the listener stops reading when it detects a
data message accompanied by EOI, regardless of the value of the byte.

• End of String (EOS) character. The talker uses a special character at the end of its data
string. You can configure the listener to stop receiving data when it detects that character.
You can use either a 7-bit ASCII character or a full 8-bit binary byte.

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Library Concepts

© National Instruments Corporation 4-9 Standard Libraries Reference Manual

You can use these methods individually or in combination. However, you must properly
configure the listener to unambiguously detect the end of a transmission.

Using the ibconf configuration program, you can accommodate all permissible forms of
read and write termination. You can change the default configuration settings for read and
write termination at run time using ibeos and ibeot. In accordance with the
IEEE 488 specification, you cannot force the handler to ignore END on read operations.

Timeouts
A timeout mechanism regulates the GPIB routines that transfer command sequences or data
messages. All I/O must complete within the timeout period to avoid a timeout error. The
handler uses a default timeout period of 10 seconds. You can change the default timeout value
with ibconf. In addition, you can use the function ibtmo to programmatically alter the
timeout period.

Regardless of the I/O and wait timeout period, GPIB enforces a much shorter timeout for
reading responses to serial polls. This shorter timeout period takes effect whenever you
conduct a serial poll. Because devices normally respond quickly to polls, you do not need to
wait the relatively lengthy I/O timeout period for a nonresponsive device.

Global Variables for the GPIB Library
The GPIB Library and the GPIB-488.2 Library use the following global variables:

• Status Word (ibsta)

• Error (ibcnt, ibcntl)

These variables update after each NI-488 or NI-488.2 routine to reflect the status of the device
or board just accessed. Refer to your NI-488.2 user manual for detailed information on the
GPIB global variables.

Multithreading under Windows 95/NT
If you use multithreading in a standalone executable, you can call GPIB functions from more
than one thread at the same time under Windows 95/NT. To be truly multithreaded safe, you
must use one of the following versions of the NI-488.2M driver:

• For Windows 95: Version 1.1 or later

• For Windows NT: Version 1.2 or later

Although previous versions of the drivers support multithreading, they do not support
ThreadIbsta, ThreadIberr, ThreadIbcnt, or ThreadIbcntl. You need these functions
to obtain thread-specific status values when calling GPIB functions from more than one
thread. The global status variables ibsta, iberr, ibcnt, and ibcntl are not reliable in this
case because the GPIB Library maintains them on a per process basis.

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Library Concepts

Standard Libraries Reference Manual 4-10 © National Instruments Corporation

Notification of SRQ and Other GPIB Events under Windows

Synchronous Callbacks
Under Windows 3.1, you can use ibInstallCallback to specify a function to call when an
SRQ is asserted on the GPIB or when an asynchronous I/O operation completes. It is a
board-level function only.

If you use Windows 95/NT, you can use ibInstallCallback to specify functions to invoke
on the occurrence of any board-level or device-level condition on which you can wait
using ibwait.

Callback functions you install with ibInstallCallback are synchronous callbacks; that is,
LabWindows/CVI can invoke them only when it processes events. LabWindows/CVI
processes events when you call ProcessSystemEvents or GetUserEvent or when
RunUserInterface is active and you are not in a callback function. Consequently, the
latency between the occurrence of the GPIB event and the invocation of the callback can be
large. On the other hand, you are not restricted in what you can do in the callback function.

Asynchronous Callbacks
If you use Windows 95/NT, you can use ibnotify to install asynchronous callbacks.
LabWindows/CVI can call your asynchronous callbacks at any time with respect to the rest
of your program. Consequently, the latency between the occurrence of the GPIB event and the
invocation of the callback is smaller than with synchronous callbacks, but you are restricted
in what you can do in the callback function. Refer to the ibnotify function description later
in this chapter for more details.

Driver Version Requirements
If you use Windows NT, you must have version 1.2 or later of the NI-488.2M driver to use
ibInstallCallback and ibnotify.

If you use Windows 95, you must have version 1.1 or later of the NI-488.2M driver to use
ibInstallCallback and ibnotify.

If you use Windows 3.1, you can use the limited version of ibInstallCallback, but you
cannot use ibnotify.

Chapter 4 GPIB/GPIB-488.2 Library — GPIB Function Reference

© National Instruments Corporation 4-11 Standard Libraries Reference Manual

GPIB Function Reference

The software reference manual you receive with your GPIB interface describes most of the
functions in the GPIB/GPIB-488.2 Library. This section contains descriptions, in alphabetical
order, only for the Device Manager functions, the callback installation functions, and the
functions for returning the thread-specific status variables.

Note ResetDevs is not available in LabWindows/CVI. This function was available in a

previous LabWindows version.

Chapter 4 GPIB/GPIB-488.2 Library — CloseDev

Standard Libraries Reference Manual 4-12 © National Instruments Corporation

CloseDev

int result = CloseDev (int Device);

Purpose
Closes a device.

Parameter

Input

Return Value

Return Codes

Using This Function
Takes a device offline. CloseDev first calls ibloc and then calls ibonl with a value of zero.
Device is the device descriptor you obtain when you open the device with OpenDev. If
CloseDev cannot find the device descriptor in its table, it returns a -1. You should use
CloseDev only in conjunction with OpenDev. Never call CloseDev with a device descriptor
you obtain by calling ibfind.

Name Type Description

Device integer The device to close.

Name Type Description

result integer Result of the close device operation.

Code Description

-1 Error—cannot find device.

 0 Success.

Chapter 4 GPIB/GPIB-488.2 Library — CloseInstrDevs

© National Instruments Corporation 4-13 Standard Libraries Reference Manual

CloseInstrDevs

int result = CloseInstrDevs (char *instrumentPrefix);

Purpose
Closes all devices associated with an instrument module.

Parameter

Input

Return Value

Return Code

Using This Function
instrumentPrefix specifies the prefix of the instrument module to close. CloseInstrDevs
always returns zero. You should use CloseInstrDevs only in conjunction with OpenDev.

Name Type Description

instrumentPrefix string Must be null-terminated.

Name Type Description

result integer Result of the close instrument devices
operation.

Code Description

0 Success.

Chapter 4 GPIB/GPIB-488.2 Library — ibInstallCallback

Standard Libraries Reference Manual 4-14 © National Instruments Corporation

ibInstallCallback

int status = ibInstallCallback (int boardOrDevice, int eventMask,
GPIBCallbackPtr callbackFunction,
void *callbackData)

Note ibInstallCallback is available only under Windows. Under UNIX, use

ibsgnl. Under Windows 3.1, the data type of the return value and the first two

parameters is short rather than int. ibInstallCallback does not work with

GPIB-ENET.

Purpose
Allows you to install a synchronous callback function for a specified interface or device. If
you want to install an asynchronous callback, use ibnotify instead.

The callback function is called when any of the GPIB events you specify in eventMask have
occurred on the interface or device, but only while you allow the system to process events.
The system can process events when you call ProcessSystemEvents or GetUserEvent,
or when you call RunUserInterface and none of your callback functions are currently
active. The callbacks are called “synchronous” because you can invoke them only in the
context of normal event processing.

Unlike asynchronous callbacks, no restrictions exist on what you can do in a synchronous
callback. On the other hand, the latency between the occurrence of a GPIB event and the
invocation of the callback function is greater and more unbounded with synchronous
callbacks than with asynchronous callbacks.

You can install only one callback function for each interface or device. Each call to
ibInstallCallback for the same interface or device supersedes the previous call.

To disable callbacks for an interface or device, pass 0 for eventMask.

To use ibInstallCallback under Windows 95/NT, you must have one of the following
versions of the NI-488.2M driver:

• For Windows 95: Version 1.1 or later

• For Windows NT: Version 1.2 or later

If you use Windows 3.1, you must pass a board index for the first parameter, and you can use
only SRQI or CMPL for eventMask.

Chapter 4 GPIB/GPIB-488.2 Library — ibInstallCallback

© National Instruments Corporation 4-15 Standard Libraries Reference Manual

Parameters

Input

Return Value

Parameter Discussion

eventMask

You specify the conditions upon which LabWindows/CVI invokes the callback function as
bits in eventMask. The bits correspond to the bits of the ibsta status word. This value
reflects a sum of one or more events. If any one of the conditions occur, the callback is called.

If, when you install the callback, one of the bits you set in the mask is already TRUE,
LabWindows/CVI invokes the callback immediately. For example, if you pass CMPL as the
eventMask, and ibwait would currently return a status word with CMPL set,
LabWindows/CVI calls the callback immediately.

Name Type Description

boardOrDevice integer
(short integer on
Windows 3.1)

Board index, or board or device
descriptor you obtain from OpenDev,
ibfind, or ibdev. (Under
Windows 3.1, must be a board index).

eventMask integer
(short integer on
Windows 3.1)

Specifies the events upon which the
callback function is called. Pass 0 to
disable callbacks. Refer to the following
Parameter Discussion.

callbackFunction GPIBCallbackPtr Name of the user function to call when
the specified events occur. Refer to the
following Parameter Discussion.

callbackData void pointer Pointer to a user-defined, 4-byte value to
pass to the callback function.

Name Type Description

status integer (short
integer on
Windows 3.1)

Same value as the ibsta status
variable. Refer to your NI-488.2 or
NI-488.2M user manual for a
description of the values of ibsta.

Chapter 4 GPIB/GPIB-488.2 Library — ibInstallCallback

Standard Libraries Reference Manual 4-16 © National Instruments Corporation

If you use Windows 95/NT, the following mask bits are valid:

• At the board level, you can specify any of the status word bits that you can specify in the
waitMask parameter to ibwait for a board, other than ERR. This includes SRQI, END,
CMPL, TIMO, CIC, and others.

• At the device level, you can specify any of the status word bits that you can specify in the
waitMask parameter to ibwait for a device, other than ERR. This includes RQS, END,
CMPL, and TIMO.

If you use Windows 3.1, the only valid mask bits are SRQI or CMPL but not both.

SRQI, RQS, and Auto Serial Polling

If you want to install a callback for the SRQI (board-level) event, you must disable
autopolling. You can disable autopolling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 0);

If you want to install a callback for the RQS (device-level) event, you must enable autopolling
for the board. You can enable autopolling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 1);

callbackFunction

The callback function must have the following form:

void CallbackFunctionName (int boardOrDevice, int mask,
void *callbackData);

mask and callbackData are the same values you pass to ibInstallCallback.

If invoked because of an SRQI or RQS condition, the callback function must call ibrsp to
read the status byte. For an SRQI (board-level) condition, calling the ibrsp function is
necessary to cause the requesting device to turn off the SRQ line.

char statusByte;
ibrsp (device, &statusByte);

If invoked because of a completed asynchronous I/O operation that ibrda, ibwrta, or
ibcmda started, the callback function must make the following call:

ibwait (boardOrDevice, TIMO | CMPL);

The ibcnt and ibcntl status variables are not updated until you call ibwait.

See Also
ibnotify

Chapter 4 GPIB/GPIB-488.2 Library — iblock

© National Instruments Corporation 4-17 Standard Libraries Reference Manual

iblock

int status = iblock (int boardDevice);

Purpose
Blocks other processes from accessing the specified GPIB-ENET board or device. You can
release the lock by calling ibunlock with the same board or device descriptor.

By default, a process returns an ELCK (21) error when it attempts to use a board or device
locked by another process. You can cause your process to block instead of returning an error
by making the following function call:

ibconfig (boardOrDevice, IbcBlockIfLocked, 1);

There is no timeout on the process that remains in a blocked state.

In general, you should use iblock to gain critical access to a GPIB-ENET board or device
when multiple processes might be accessing it at the same time. When the GPIB-ENET is
locked, the GPIB driver guarantees that subsequent calls you make to the GPIB-ENET are
completed without interruption.

Parameters

Input

Return Value

See Also
ibunlock

Name Type Description

boardDevice integer Device descriptor you obtain from
OpenDev, ibfind, or ibdev.

Name Type Description

status integer Indicates whether the function succeeded.

Chapter 4 GPIB/GPIB-488.2 Library — ibnotify

Standard Libraries Reference Manual 4-18 © National Instruments Corporation

ibnotify

int status = ibnotify (int boardOrDevice, int eventMask,
GpibNotifyCallback_t callbackFunction,
void *callbackData);

Note ibnotify is available only under Windows 95/NT. Under UNIX, use ibsgnl.

ibnotify does not work with GPIB-ENET.

Purpose
Allows you to install an asynchronous callback function for a specified board or device. If you
want to install a synchronous callback, use ibInstallCallback instead.

LabWindows/CVI calls the callback function when any of the GPIB events you specify in
eventMask occur on the specified interface or device. LabWindows/CVI can call
asynchronous callbacks at any time while your program is running. You do not have to allow
the system to process events. Because of this, you are restricted in what you can do in the
callback. Refer to the following Restrictions on Operations in Asynchronous Callbacks
discussion.

You can install only one callback function for each interface or device. Each call to ibnotify
for the same interface or device supersedes the previous call.

To disable callbacks for a interface or device, pass 0 for eventMask.

Chapter 4 GPIB/GPIB-488.2 Library — ibnotify

© National Instruments Corporation 4-19 Standard Libraries Reference Manual

Parameters

Input

Return Value

Parameter Discussion

eventMask

You specify the conditions upon which LabWindows/CVI invokes the callback function as
bits in eventMask. The bits correspond to the bits of the ibsta status word. This value
reflects a sum of one or more events. If any one of the conditions occur, the callback is called.

If, when you install the callback, one of the bits you set in the mask is already TRUE,
LabWindows/CVI invokes the callback immediately. For example, if you pass CMPL as the
eventMask, and ibwait would currently return a status word with CMPL set,
LabWindows/CVI calls the callback immediately.

Name Type Description

boardOrDevice integer Board index, or board or device
descriptor you obtain from OpenDev,
ibfind, or ibdev.

eventMask integer Specifies the events upon which the
callback function is called. Pass 0 to
disable callbacks. Refer to the
Parameter Discussion.

callbackFunction GpibNotifyCallback_t Name of the function
LabWindows/CVI calls when the
specified events occur. Refer to the
Parameter Discussion.

callbackData void pointer Pointer to a user-defined, 4-byte
value to pass to the callback function.

Name Type Description

status integer Same value as the ibsta status
variable. Refer to your NI-488.2M
user manual for a description of the
values of ibsta.

Chapter 4 GPIB/GPIB-488.2 Library — ibnotify

Standard Libraries Reference Manual 4-20 © National Instruments Corporation

At the board level, you can specify any of the status word bits that you can specify in the
waitMask parameter to ibwait for a board, other than ERR. This includes SRQI, END,
CMPL, TIMO, CIC, and others.

At the device level, you can specify any of the status word bits that you can specify in the
waitMask parameter to ibwait for a device, other than ERR. This includes RQS, END,
CMPL, and TIMO.

SRQI, RQS, and Auto Serial Polling

If you want to install a callback for the SRQI (board-level) event, you must disable
autopolling. You can disable autopolling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 0);

If you want to install a callback for the RQS (device-level) event, you must enable autopolling
for the board. You can enable autopolling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 1);

callbackFunction

The callback function must have the following form:

void __stdcall CallbackFunctionName (int boardOrDevice, int sta,
int err, long cntl, void *callbackData);

callbackData is the same callbackData value you pass to ibInstallCallback. sta, err,
and cntl contain the information that you normally obtain using the ibsta, iberr, and
ibcntl global variables or ThreadIbsta, ThreadIberr, and ThreadIbcntl. The global
variables and thread status functions return undefined values within the callback function. So
you must use sta, err and cntl instead.

The value you return from the callback function is very important. It is the event mask that is
used to rearm the callback. Returning 0 disarms the callback; that is, it is not called again until
you make another call to ibnotify. If you return an event mask different than the one you
originally passed to ibnotify, ibnotify uses the new event mask. Normally, you want to
return the same event mask that you originally passed to ibnotify.

If you return an invalid event mask or if there is an operating system error in rearming the
callback, the callback is called with the sta set to ERR, err set to EDVR, and cntl set to
IBNOTIFY_REARM_FAILED.

Caution Because the callback can be called as the result of a rearming error, you should

always check the value of the sta parameter to make sure that one of the requested

events has in fact occurred.

!

Chapter 4 GPIB/GPIB-488.2 Library — ibnotify

© National Instruments Corporation 4-21 Standard Libraries Reference Manual

If invoked because of an SRQI or RQS condition, the callback function should call ibrsp to
read the status byte. For an SRQI (board-level) condition, calling ibrsp is necessary to cause
the requesting device to turn off the SRQ line.

char statusByte;
ibrsp (device, &statusByte);

If invoked because of a completed asynchronous I/O operation that ibrda, ibwrta, or
ibcmda started, the callback function must make the following call:

ibwait (boardOrDevice, TIMO | CMPL);

The ibcnt and ibcntl status variables are not updated until you call ibwait.

Restrictions on Operations in Asynchronous Callbacks
LabWindows/CVI can call callbacks you install with ibnotify at any time with respect to
the rest of your program. You do not have to allow the system to process events. Because of
this, you are restricted in what you can do in the callback. You can do the following:

• Call any GPIB function, except ibnotify or ibInstallCallback.

• Manipulate global variables, but only if you know that the callback has not been called
at a point when the main part of your program is modifying or interrogating the same
global variables.

• In a standalone executable, you can use any of the other LabWindows/CVI libraries,
subject to the multithreading restrictions described in the documentation for each library.

• When running in the LabWindows/CVI development environment, you can use the other
LabWindows/CVI libraries only in the following ways:

– Call the User Interface Library PostDeferredCall function, which schedules a
different callback function for synchronous invocation.

– Call ANSI C functions such as strcpy and sprintf, which have no side effects
and affect only the arguments you pass in. You cannot call printf or file I/O
functions.

– Call malloc, calloc, realloc, or free.

If you need to perform operations that fall outside these restrictions, do the following:

1. Perform the time-critical operations in the asynchronous callback and call
PostDeferredCall to schedule a synchronous callback.

2. In the synchronous callback, perform the other operations.

See Also
ibInstallCallback

Chapter 4 GPIB/GPIB-488.2 Library — ibunlock

Standard Libraries Reference Manual 4-22 © National Instruments Corporation

ibunlock

int status = ibunlock (int boardDevice);

Purpose
Releases a lock on a GPIB-ENET board or device. Refer to the iblock function for more
information. In general, you should release your lock on a GPIB-ENET connection
immediately after you make your critical access.

Parameters

Input

Return Value

See Also
ibunlock

Name Type Description

boardDevice integer Device descriptor you obtain from
OpenDev, ibfind, or ibdev.

Name Type Description

status integer Indicates whether the function succeeded.

Chapter 4 GPIB/GPIB-488.2 Library — OpenDev

© National Instruments Corporation 4-23 Standard Libraries Reference Manual

OpenDev

int bd = OpenDev (char *deviceName, char *instrumentPrefix);

Purpose
Opens a GPIB device.

Parameters

Input

Return Value

Return Code

Parameter Discussion
deviceName is a string that specifies a device name that appears in the ibconf device table.
If deviceName is not "", OpenDev acts identically to ibfind. If deviceName is "",
OpenDev acts identically to ibdev by opening the first available unopened device.

instrumentPrefix is a string that specifies the instrument prefix associated with the
instrument module. The instrument prefix must be identical to the prefix you enter when
creating the function tree for the instrument module. If the instrument module has no prefix
or you are not using OpenDev in an instrument module, pass the string "" for
instrumentPrefix.

Using This Function
OpenDev attempts to find an unused device in the GPIB handler device table and open the
device. If successful, OpenDev returns a device descriptor. Otherwise, it returns a negative
number.

Name Type Description

deviceName string Must be null-terminated.

instrumentPrefix string Must be null-terminated.

Name Type Description

bd integer Result of the open device operation.

Code Description

-1 Device table is full, or no more devices are available.

Chapter 4 GPIB/GPIB-488.2 Library — ThreadIbcnt

Standard Libraries Reference Manual 4-24 © National Instruments Corporation

ThreadIbcnt

int threadSpecificCount = ThreadIbcnt (void);

Note ThreadIbnct is available only under Windows 95/NT.

Purpose
Returns the value of the thread-specific ibcnt variable for the current thread.

The global variables ibsta, iberr, ibcnt, and ibcntl are maintained on a process-specific
rather than a thread-specific basis. If you call GPIB functions in more than one thread, the
values in these global variables are not always reliable.

Status variables analogous to ibsta, iberr, ibcnt, and ibcntl are maintained for each
thread. ThreadIbcnt returns the value of the thread-specific ibcnt variable.

If you do not use multiple threads, ThreadIbcnt returns a value identical to the value of the
ibcnt global variable.

Parameters
None.

Return Value

See Also
ThreadIbsta, ThreadIberr, ThreadIbcntl

Name Type Description

threadSpecificCount integer Number of bytes actually transferred by
the most recent GPIB read, write, or
command operation for the current thread
of execution. If an error occurred loading
the GPIB DLL, ThreadIbcnt returns a
Windows error code.

Chapter 4 GPIB/GPIB-488.2 Library — ThreadIbcntl

© National Instruments Corporation 4-25 Standard Libraries Reference Manual

ThreadIbcntl

long threadSpecificCount = ThreadIbcntl (void);

Note ThreadIbcntl is available only under Windows 95/NT.

Purpose
Returns the value of the thread-specific ibcntl variable for the current thread.

The global variables ibsta, iberr, ibcnt, and ibcntl are maintained on a process-specific
rather than a thread-specific basis. If you call GPIB functions in more than one thread, the
values in these global variables are not always reliable.

Status variables analogous to ibsta, iberr, ibcnt, and ibcntl are maintained for each
thread. ThreadIbcntl returns the value of the thread-specific ibcntl variable.

If you do not use multiple threads, ThreadIbcntl returns a value identical to the value of
the ibcntl global variable.

Parameters
None.

Return Value

See Also
ThreadIbsta, ThreadIberr, ThreadIbcnt

Name Type Description

threadSpecificCount long integer Number of bytes actually transferred by
the most recent GPIB read, write, or
command operation for the current thread
of execution. If an error occurred loading
the GPIB DLL, ThreadIbcntl returns a
Windows error code.

Chapter 4 GPIB/GPIB-488.2 Library — ThreadIberr

Standard Libraries Reference Manual 4-26 © National Instruments Corporation

ThreadIberr

int threadSpecificError = ThreadIberr (void);

Note ThreadIberr is available only under Windows 95/NT.

Purpose
Returns the value of the thread-specific iberr variable for the current thread.

The global variables ibsta, iberr, ibcnt, and ibcntl are maintained on a process-specific
rather than a thread-specific basis. If you call GPIB functions in more than one thread, the
values in these global variables are not always reliable.

Status variables analogous to ibsta, iberr, ibcnt, and ibcntl are maintained for each
thread. ThreadIberr returns the value of the thread-specific iberr variable.

If you do not use multiple threads, ThreadIberr returns a value identical to the value of the
iberr global variable.

Parameters
None.

Return Value

Return Codes

Name Type Description

threadSpecificError integer Most recent GPIB error code for the
current thread of execution. The value is
meaningful only when ThreadIbsta
returns a value with the ERR bit set.

Defined Constant Value Description

EDVR 0 Operating system error. ThreadIbcntl
returns the system-specific error code.

ECIC 1 Function requires GPIB-PC to be
Controller-In-Charge (CIC).

ENOL 2 No listener on write function.

EADR 3 GPIB-PC addressed incorrectly.

EARG 4 Invalid function call argument.

Chapter 4 GPIB/GPIB-488.2 Library — ThreadIberr

© National Instruments Corporation 4-27 Standard Libraries Reference Manual

ESAC 5 GPIB-PC not system controller as
required.

EABO 6 I/O operation aborted.

ENEB 7 Non-existent GPIB-PC interface.

EDMA 8 Virtual DMA device error.

EOIP 10 I/O started before previous operation
completed.

ECAP 11 Unsupported feature.

EFSO 12 File system error.

EBUS 14 Command error during device call.

ESTB 15 Serial poll status byte lost.

ESRQ 16 SRQ stuck in the asserted state.

ETAB 20 Device list error during a FindLstn or
FindRQS call.

ELCK 21 Address or board is locked.

ELNK 200 The GPIB library was not linked. Dummy
functions were linked instead.

EDLL 201 Error loading gpib-32.dll.
ThreadIbcntl returns the Windows
error code.

EFNF 203 Unable to find the function in
gpib-32.dll. ThreadIbcntl returns
the Windows error code.

EGLB 205 Unable to find globals in gpib-32.dll.
ThreadIbcntl returns the Windows
error code.

ENNI 206 Not a National Instruments
gpib-32.dll.

EMTX 207 Unable to acquire mutex for loading DLL.
ThreadIbcntl returns the Windows
error code.

Defined Constant Value Description

Chapter 4 GPIB/GPIB-488.2 Library — ThreadIberr

Standard Libraries Reference Manual 4-28 © National Instruments Corporation

See Also
ThreadIbsta, ThreadIbcnt, ThreadIbcntl

EMSG 210 Unable to register callback function
with Windows.

ECTB 211 The callback table is full.

Defined Constant Value Description

Chapter 4 GPIB/GPIB-488.2 Library — ThreadIbsta

© National Instruments Corporation 4-29 Standard Libraries Reference Manual

ThreadIbsta

int threadSpecificStatus = ThreadIbsta (void);

Note ThreadIbsta is available only under Windows 95/NT.

Purpose
Returns the value of the thread-specific ibsta variable for the current thread.

The global variables ibsta, iberr, ibcnt, and ibcntl are maintained on a process-specific
rather than a thread-specific basis. If you call GPIB functions in more than one thread, the
values in these global variables are not always reliable.

Status variables analogous to ibsta, iberr, ibcnt, and ibcntl are maintained for each
thread. ThreadIbsta returns the value of the thread-specific ibsta variable.

If you do not use multiple threads, ThreadIbsta returns a value identical to the value of the
ibsta global variable.

Parameters
None.

Return Value

Return Codes
The return value is a sum of the following bits.

Name Type Description

threadSpecificStatus integer Status value for the current thread of
execution. The status value describes the
state of the GPIB and the result of the most
recent GPIB function call in the thread.
Any value with the ERR bit set indicates an
error. Call ThreadIberr for a specific
error code.

Defined Constant Hex Value Description

ERR 8000 GPIB error.

END 2000 END or EOS detected.

SRQI 1000 SRQ is on.

Chapter 4 GPIB/GPIB-488.2 Library — ThreadIbsta

Standard Libraries Reference Manual 4-30 © National Instruments Corporation

See Also
ThreadIberr, ThreadIbcnt, ThreadIbcntl

RQS 800 Device requesting service.

CMPL 100 I/O completed.

LOK 80 GPIB-PC in lockout state.

REM 40 GPIB-PC in remote state.

CIC 20 GPIB-PC is Controller-In-Charge.

ATN 10 Attention is asserted.

TACS 8 GPIB-PC is talker.

LACS 4 GPIB-PC is listener.

DTAS 2 GPIB-PC in device trigger state.

DCAS 1 GPIB-PC in device clear state.

Defined Constant Hex Value Description

© National Instruments Corporation 5-1 Standard Libraries Reference Manual

5
RS-232 Library

This chapter describes the functions in the LabWindows/CVI RS-232 Library. The RS-232

Library Function Overview section contains general information about the RS-232 Library
functions and panels. The RS-232 Library Function Reference section contains an
alphabetical list of function descriptions.

In order to use the RS-232 Library under UNIX, your UNIX kernel must support
asynchronous I/O functions, for example, aioread and aiowrite. You can enable this by
building your UNIX kernel as Generic instead of Generic Small.

RS-232 Library Function Overview

This section contains general information about the RS-232 Library functions and panels. The
RS-232 Library also can be used with a National Instruments RS-485 serial board.

RS-232 Library Function Panels
The RS-232 Library function panels are grouped in the tree structure in Table 5-1 according
to the types of operations they perform.

The first- and second-level headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings are the names of individual function panels. Each RS-232 function panel
generates one or more RS-232 function calls.

Table 5-1. Functions in the RS-232 Library Function Tree

Class/Panel Name Function Name
Open/Close

Open COM and Configure OpenComConfig
Close COM CloseCom
Open COM—Current State OpenCom

Input/Output
Read Buffer ComRd
Read Terminated Buffer ComRdTerm
Read Byte ComRdByte
Read To File ComToFile
Write Buffer ComWrt
Write Byte ComWrtByte
Write From File ComFromFile

Chapter 5 RS-232 Library — RS-232 Library Function Overview

Standard Libraries Reference Manual 5-2 © National Instruments Corporation

Class Descriptions

• The Open/Close function panels open, close, and configure a COM port.

• The Input/Output function panels read from and write to a COM port.

• The XModem function panels transfer files using the XModem protocol.

• The Control function panels set the timeout limit, set communication modes, flush the
I/O queues, and send the break signal.

• The Status function panels return the COM port status and the length of the I/O queues.

• The Callbacks function panel installs callback functions for COM events.

The online help with each panel contains specific information about operating each
function panel.

Using RS-485
You can use all the functions in the RS-232 Library with the National Instruments
RS-485 AT-Serial board. ComSetEscape allows you to control the transceiver mode of
the board.

XModem
XModem Send File XModemSend
XModem Receive File XModemReceive
XModem Configure XModemConfig

Control
Set Timeout Limit SetComTime
Set XON/XOFF Mode SetXMode
Set CTS Mode SetCTSMode
Flush Input Queue FlushInQ
Flush Output Queue FlushOutQ
Send Break Signal ComBreak
Set Escape Code ComSetEscape

Status
Get COM Status GetComStat
Get Input Queue Length GetInQLen
Get Output Queue Length GetOutQLen
Return RS-232 Error ReturnRS232Err
Get Error String GetRS232ErrorString

Callbacks
Install COM Callback InstallComCallback

Table 5-1. Functions in the RS-232 Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 5 RS-232 Library — RS-232 Library Function Overview

© National Instruments Corporation 5-3 Standard Libraries Reference Manual

Reporting RS-232 Errors
The functions in the RS-232 Library return negative values when an error occurs. In addition,
the global variable rs232err is updated after each function call to the RS-232 Library. If the
function executes properly, it sets rs232err to zero. Otherwise, it sets rs232err to the same
error code that it returns.

When an aynchronous write operation fails, the function sets rs232err to an error code
unless it already contains a negative value. ReturnRS232Error returns the same value as
rs232err except that it keeps track of separate error codes for each thread in your
application. In a multithreaded application on Windows 95/NT, use ReturnRS232Error
rather than rs232err.

GetRS232ErrorString translates each possible error code into a meaningful error string.

Table 5-10 at the end of this chapter lists the possible error conditions that can occur when
you use the RS-232 Library functions.

XModem File Transfer Functions
With the XModem functions, you can transfer files using a data transfer protocol. The
protocol uses a generally accepted technique for serial file transfers with error-checking. The
XModem functions transfer packets that contain data from the files plus error-checking and
synchronization information.

You do not need to understand the protocol to use the functions. To transfer a file, open the
COM port, use XModemSend on the sender side of the transfer or XModemReceive on the
receiver side of the transfer, and then close the COM port. The XModem functions handle all
aspects of the transfer protocol.

You can treat the XModem functions as higher-level functions that perform a more precisely
defined task than the functions ComToFile and ComFromFile. Use ComToFile and
ComFromFile if you need finer control over the file operations. Remember that the XModem
functions calculate the checksum and retransmit when they detect an error, whereas
ComToFile and ComFromFile do not do so.

Troubleshooting
Establishing communication between two RS-232 devices can be difficult because of the
many different possible configurations. When using this library, you must know the device
requirements, such as baud rate, parity, number of data bits, and number of stop bits. These
configurations must match between the two parties of communication.

If you encounter difficulty in establishing initial communication with the device, refer to an
elementary RS-232 communications handbook for information about cable requirements and

Chapter 5 RS-232 Library — RS-232 Library Function Overview

Standard Libraries Reference Manual 5-4 © National Instruments Corporation

general RS-232 communication. Refer also to the RS-232 Cable Information section later in
this chapter.

You must call OpenCom or OpenComConfig to open a COM port before using any of the
other functions.

If the program writes data to the output queue and then immediately closes the COM port, the
data in the queue might be lost if LabWindows/CVI did not have time to send it over the port.
To guarantee that all bytes are written before the port closes, monitor the length of the output
queue with GetOutQLen. When the output queue length becomes zero, it is safe to close
the port.

If XModemReceive fails to complete properly, verify that the input queue length is greater
than or equal to the packet size. Refer to OpenComConfig and XModemConfig for more
information.

If the receiver appears to lose data the sender transmits, the input queue of the receiver might
be overflowing. This means that the library does not empty the input queue of the receiver as
quickly as data is coming in. You can solve this problem using handshaking, provided both
devices offer the same handshaking support. Refer to the Handshaking section of this chapter
for more information.

If an XModem file transfer with a large packet size and a low baud rate fails, you might need
to increase the wait period. Ten seconds is sufficient for most transfers.

RS-232 Cable Information
An RS-232 cable consists of wires, or lines, that join two connectors. The connectors plug
into the serial ports of each device to form a communications link over which data and control
signals flow. Each serial port consists of numbered pins that have the meanings shown in
Table 5-2.

Table 5-2. PC Cable Configuration

Pin Meaning

2 TxD—Transmit Data *

3 RxD—Receive Data

4 RTS—Request to Send *

5 CTS—Clear to Send

6 DSR—Data Set Ready

Chapter 5 RS-232 Library — RS-232 Library Function Overview

© National Instruments Corporation 5-5 Standard Libraries Reference Manual

The items with an asterisk (*) indicate the lines that the PC drives. All other items indicate
the lines the PC monitors.

The type of all serial devices is either Data Communication Equipment (DCE) or Data
Transmission Equipment (DTE). IBM-compatible PCs are DTE type devices. The difference
between the two types is in the meaning assigned to the pins. A DCE device reverses the
meaning of pins 2 and 3, 4 and 5, and 6 and 20. In the simplest scenario, a DTE device attaches
to a DCE device, such as a modem. Table 5-3 shows the cable required to connect a PC
(or DTE) to a DCE device.

You need a different cable for the PC to talk to a DTE device because both devices transmit
data over pin 2. A null modem cable connects a PC to a DTE. Table 5-4 shows the
configuration of a null modem cable.

20 DTR—Data Terminal Ready *

7 Common

Table 5-3. DTE to DCE Cable Configuration

(PC)

Connect pins

as indicated: (Device)

TxD* 2_____________2 RxD

RxD 3_____________3 TxD*

RTS* 4_____________4 CTS

CTS 5_____________5 RTS*

DSR 6_____________6 DTR

DTR* 20___________20 DSR*

common 7_____________7 common

Table 5-4. PC to DTE Cable Configuration

(PC)

Connect pins

as indicated: (Device)

TxD* 2_____________3 RxD

RxD 3_____________2 TxD*

Table 5-2. PC Cable Configuration (Continued)

Pin Meaning

Chapter 5 RS-232 Library — RS-232 Library Function Overview

Standard Libraries Reference Manual 5-6 © National Instruments Corporation

For more information on the meaning of DTE and DCE, refer to a reference book on RS-232
communication.

In the simplest case, a serial cable needs lines 2, 3, and 7 for basic communication to take
place. Hardware handshaking and modem control can require other lines, depending on your
application. Refer to the Hardware Handshaking section later in this chapter for more
information about using the lines 4, 5, 6, and 20.

Another area that requires special attention is the gender of the connectors of your serial
cable. The serial cable plugs into sockets in the PC and the serial device, just as a lamp cord
plugs into a wall socket. Both the connector and the socket can be male, with pins (like a lamp
plug), or female, with holes (like an outlet). If your serial cable connector and PC socket are
the same gender, you cannot plug the cable into the socket. You can change this by attaching
a small device called a gender changer to your cable. One type of gender changer converts a
female connector to a male connector, and the other type converts a male connector to a
female connector.

The size of the connector on your serial cable also can differ from the size of the socket. Most
serial ports require a 25-pin connector. However, some serial ports require a 9-pin connector.
To resolve this incompatibility, you must either change the connector on your serial cable or
attach a small device that converts from a 25-pin connector to a 9-pin connector.

Handshaking
A common error condition in RS-232 communications is that the receiver appears to lose data
the sender transmits. This condition typically results because the receiver cannot empty its
input queue quickly enough.

Handshaking prevents overflow of the input queue that occurs when the receiver cannot
empty its input queue as quickly as the sender is able to fill it. The RS-232 Library has two
types of handshaking: software handshaking and hardware handshaking. You should enable

RTS* 4_____________5 CTS

CTS 5_____________4 RTS*

DSR 6____________20 DTR

DTR* 20____________6 DSR*

common 7_____________7 common

Table 5-4. PC to DTE Cable Configuration (Continued)

(PC)

Connect pins

as indicated: (Device)

Chapter 5 RS-232 Library — RS-232 Library Function Overview

© National Instruments Corporation 5-7 Standard Libraries Reference Manual

one or the other if you want to ensure that your application program synchronizes its data
transfers with other serial devices that perform handshaking.

Software Handshaking
SetXMode enables software handshaking. You can use software handshaking to transfer
ASCII data or text to or from a serial device that also uses software handshaking. The RS-232
Library performs software handshaking by sending and monitoring incoming data for special
data bytes (XON and XOFF, or decimal 17 and 19). These bytes indicate whether the receiver
is ready to receive data.

Do not enable software handshaking when you transmit binary data because the special
XON/XOFF characters can occur as part of the data stream and the receiver can mistake them
as control codes. However, you can enable hardware handshaking regardless of the type of
data you transfer.

Software Handshaking requires no special cable configuration.

Hardware Handshaking
SetCTSMode enables hardware handshaking. For hardware handshaking to work, two
conditions must exist. First, the serial devices must follow the same or similar hardware
handshake protocols; they must use the same lines for the handshake and assign the same
meanings to those lines. Second, the serial cable that connects the two devices must include
the lines required to support the protocol. Because no single well-defined hardware
handshake protocol exists, you must resolve any differences between the LabWindows/CVI
hardware handshake protocol and the one your device uses.

Most serial devices primarily rely on the CTS and RTS lines to perform hardware
handshaking and use the DTR line to signal its online presence to the other device. Some
serial devices also use the DTR line for hardware handshaking, similar to the CTS line.
SetCTSMode has two different modes to handle either case.

SetCTSMode employs the following line behaviors for each mode:

Note Under UNIX, changes to the DTR line have no effect on the communication port.

LWRS_HWHANDSHAKE_OFF

The library raises the RTS and DTR lines when opening the port and lowers them when
closing the port. The library sends data out the port regardless of the status of CTS.

Note Under Windows, you can use ComSetEscape to change the state of the RTS and

DTR lines.

Chapter 5 RS-232 Library — RS-232 Library Function Overview

Standard Libraries Reference Manual 5-8 © National Instruments Corporation

LWRS_HWHANDSHAKE_CTS_RTS

• When the PC is the receiver:

– If the port is opened, the library raises RTS and DTR.

– If the input queue of the port is nearly full, the library lowers RTS.

– If the input queue of the port is nearly empty, the library raises RTS.

– If the port is closed, the library lowers RTS and DTR.

• When the PC is the sender, the RS-232 library must detect that its CTS line is high before
it sends data out the port.

LWRS_HWHANDSHAKE_CTS_RTS_DTR

• When the PC is the receiver:

– If the port is opened, the library raises RTS and DTR.

– If the input queue of the port is nearly full, the library lowers RTS and DTR.

– If the input queue of the port is nearly empty, the library raises RTS and DTR.

– If the port is closed, the library lowers RTS and DTR.

• When the PC is the sender, the RS-232 library must detect that its CTS line is high before
it sends data out the port.

Note The only difference between LWRS_HWHANDSHAKE_CTS_RTS and

LWRS_HWHANDSHAKE_CTS_RTS_DTR is the behavior of the DTR line.

If the handshaking mechanism of your device uses the CTS and RTS lines, refer to Table 5-3
and Table 5-4 in the previous RS-232 Cable Information section for information on how to
configure your cable. Your cable can omit the connection between pins 6 and 20 if your device
does not monitor DSR when it sends data. Notice that the RTS pin of the receiver translates
to the CTS pin of the sender and that the DSR pin of the receiver translates to the DTR pin of
the sender.

If you want to use hardware handshaking but your device uses a different hardware handshake
protocol than the ones described here, you can build a cable that overcomes the differences.
You can construct a cable to serve your special needs by referencing the pin description in
Table 5-2 in the previous RS-232 Cable Information section.

Multithreading under Windows 95/NT
Under Windows 95/NT, you can call RS-232 Library functions from different threads in the
same process, even if the functions operate on the same port. The following limitations apply:

• Do not use the rs232err global variable in a multithreaded application. Use
ReturnRS232Err instead.

• Do not call XModemReceive or ComToFile from two threads at the same time if the
target file in both calls is the Standard Output.

Chapter 5 RS-232 Library — RS-232 Library Function Reference

© National Instruments Corporation 5-9 Standard Libraries Reference Manual

RS-232 Library Function Reference

This section describes each function in the LabWindows/CVI RS-232 Library in
alphabetical order.

Chapter 5 RS-232 Library — CloseCom

Standard Libraries Reference Manual 5-10 © National Instruments Corporation

CloseCom

int result = CloseCom (int COMPort);

Purpose
Closes a COM port.

Parameter

Input

Return Value

Parameter Discussion
CloseCom does nothing if the port is not open.

Name Type Description

COMPort integer Range 1–1,000.

Name Type Description

result integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — ComBreak

© National Instruments Corporation 5-11 Standard Libraries Reference Manual

ComBreak

int result = ComBreak (int COMPort, int breakTimeMsec);

Purpose
Generates a break signal.

Parameters

Input

Return Value

Using This Function
ComBreak generates a break signal for the number of milliseconds you indicate or for 250 ms
if the breakTimeMsec parameter is zero. For most applications, 250 ms is adequate.

A break signal is the transmission of a special character on the communication line for a
period longer than the transmission time for one character and its framing bits. You can use a
break signal to convey any special condition as long as the sender and receiver agree on the
meaning.

ComBreak returns an error if you have not opened the port or if you pass an invalid
parameter value.

Name Type Description

COMPort integer Range 1–1,000.

breakTimeMsec integer Range 1–255, or 0 to select 250.

Name Type Description

result integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — ComFromFile

Standard Libraries Reference Manual 5-12 © National Instruments Corporation

ComFromFile

int nbytes = ComFromFile (int COMPort, int fileHandle, int count,
int terminationByte);

Purpose
Reads from the specified file and writes to the output queue of a COM port.

Parameters

Input

Return Values

Parameter Discussion
ComFromFile reads count bytes from the file unless it encounters terminationByte, reaches
EOF, or encounters an error. ComFromFile returns the number of bytes it writes successfully
to the output queue. ComFromFile returns immediately after it places all bytes in the output
queue, not when it sends all bytes out the COM port.

If count is zero, ComFromFile terminates on terminationByte, EOF, or error.

If terminationByte is -1, ComFromFile ignores it, and ComFromFile terminates on count
bytes written, EOF, or error. If terminationByte is not -1, ComFromFile stops reading from
the file when it encounters terminationByte. It does not write terminationByte to the output
queue. If terminationByte is CR or LF, ComFromFile treats CR-LF and LF-CR combinations
just as ComRdTerm does.

If count is 0 and terminationByte is –1, ComFromFile terminates on EOF or error.

Name Type Description

COMPort integer Range 1–1,000.

fileHandle integer File handle you obtain from OpenFile.

count integer If 0, ComFromFile ignores this value.

terminationByte integer If -1, ComFromFile ignores this value.

Name Type Description

nbytes integer Number of bytes written to the output
queue.
<0 = error; refer to Table 5-10 for error
codes

Chapter 5 RS-232 Library — ComFromFile

© National Instruments Corporation 5-13 Standard Libraries Reference Manual

Using This Function
ComFromFile times out whenever the library does not write any bytes from the output queue
to the COM port during an entire timeout period. This can occur if you enable XON/XOFF,
the device sends an XOFF character without sending the follow-on XON character, and the
output queue is full. It also can occur if you enable hardware handshaking and the CTS line
is not asserted. On a timeout, ComFromFile returns the number of bytes actually read from
the COM port and sets rs232err to -99. You can set the timeout period by
calling SetComTime.

To guarantee that ComFromFile removes all bytes from the output queue before it closes the
port, call GetOutQLen to determine the number of bytes left in the output queue. If you close
the port before ComFromFile sends every byte, you lose the bytes left in the queue.

ComFromFile returns an error code if you have not opened the port, if you pass an invalid
parameter value, or if a file read error occurs.

Chapter 5 RS-232 Library — ComRd

Standard Libraries Reference Manual 5-14 © National Instruments Corporation

ComRd

int nbytes = ComRd (int COMPort, char buffer[], int count);

Purpose
Reads count bytes from the input queue of the port you specify and stores them in buffer.
Returns on timeout or when count bytes have been read. Returns an integer value that
indicates the number of bytes read from queue.

Parameters

Input

Output

Return Value

Using This Function
ComRd times out whenever the input queue remains empty for an entire timeout period. On a
timeout, ComRd returns the number of bytes actually written and sets rs232err to -99. You
can set the timeout period by calling SetComTime.

ComRd returns an error code if you have not opened the port or if you pass an invalid
parameter value.

Name Type Description

COMPort integer Range 1–1,000.

count integer 0 value takes no bytes from queue.

Name Type Description

buffer string Buffer in which to store the data.

Name Type Description

nbytes integer Number of bytes read from the input queue.
<0 = error; refer to Table 5-10 for error
codes

Chapter 5 RS-232 Library — ComRd

© National Instruments Corporation 5-15 Standard Libraries Reference Manual

Example
/* Read 100 bytes from input queue of COM1 into buf.*/
int n;
char buf[100];
.
.
.
n = ComRd (1, buf, 100);
if (n != 100)

/* Timeout or error occurred before read completed. */;

Chapter 5 RS-232 Library — ComRdByte

Standard Libraries Reference Manual 5-16 © National Instruments Corporation

ComRdByte

int byte = ComRdByte (int COMPort);

Purpose
Reads a byte from the input queue of the port you specify. Returns an integer whose low-order
byte contains the byte read. Returns on timeout, when the byte is read, or when an error
occurs. If an error or a timeout occurs, ComRdByte returns a negative error code. Refer to
Table 5-10 at the end of this chapter for error codes. This is the only case in which the
high-order byte of the return value is nonzero.

Parameter

Input

Return Value

Using This Function
ComRdByte times out whenever the input queue remains empty for an entire timeout
period. On a timeout, ComRdByte returns -99. You can set the timeout period by
calling SetComTime.

ComRdByte returns an error code if you have not opened the port, if you pass an invalid
parameter value, or if a timeout occurs.

Name Type Description

COMPort integer Range 1–1,000.

Name Type Description

byte integer Low order byte contains the byte read.
<0 = error; refer to Table 5-10 for error
codes

Chapter 5 RS-232 Library — ComRdTerm

© National Instruments Corporation 5-17 Standard Libraries Reference Manual

ComRdTerm

int nbytes = ComRdTerm (int COMPort, char buffer[], int count,
int terminationByte);

Purpose
Reads from the input queue until terminationByte occurs in buffer, count is met, or a
timeout occurs. Returns integer value that indicates the number of bytes read from the queue.

Parameters

Input

Output

Return Value

Using This Function
ComRdTerm times out whenever the input queue remains empty during an entire timeout
period. This occurs when no data has been received during one timeout period. On a timeout,
ComRdTerm returns the number of bytes read and sets rs232err to -99. You can set the
timeout period by calling SetComTime.

If the read terminates on the termination byte, ComRdTerm neither writes the byte to the buffer
nor includes it in count.

Name Type Description

COMPort integer Range 1–1,000.

count integer If 0, ComRdTerm removes no bytes from
queue.

terminationByte integer Low byte contains the numeric equivalent
of the terminating character.

Name Type Description

buffer string Buffer in which to store the data.

Name Type Description

nbytes integer Number of bytes read from the input
queue.
<0 = error; refer to Table 5-10 for error
codes

Chapter 5 RS-232 Library — ComRdTerm

Standard Libraries Reference Manual 5-18 © National Instruments Corporation

If the termination character is a carriage return (CR or decimal 13) or a linefeed (LF or
decimal 10), the function handles it as follows:

• If terminationByte = CR, and if the character immediately following CR is LF,
ComRdTerm discards the LF in addition to the CR.

• If terminationByte = LF, and if the character immediately following LF is CR,
ComRdTerm discards the CR in addition to the LF.

ComRdTerm includes in the return count only the bytes placed in buffer. If ComRdTerm
discards CR or LF because it follows an LF or CR, the function does not count it toward
satisfying count.

ComRdTerm returns an error if you have not opened the port or you pass an invalid
parameter value.

Chapter 5 RS-232 Library — ComSetEscape

© National Instruments Corporation 5-19 Standard Libraries Reference Manual

ComSetEscape

int result = ComSetEscape (int COMPort, int escapeCode);

Purpose
Directs a COM port to carry out an extended function such as clearing or setting the RTS
signal line or setting the transceiver mode for RS-485. The serial device driver defines the
extended functions.

Not all device drivers support all escape codes. ComSetEscape returns Unknown System
Error (-1) when the device driver does not support a particular escape code.

Parameters

Input

Return Value

Parameter Discussion
You can use the following values for escape code:

CLRDTR—Clears the DTR (data-terminal-ready) signal.

CLRRTS—Clears the RTS (request-to-send) signal.

GETMAXCOM—Returns the maximum COM port identifier the system supports. This value
ranges from 0x00 to 0x7F, such that 0x00 corresponds to COM1, 0x01 to COM2, 0x02 to
COM3, and so on.

SETDTR—Sends the DTR signal.

SETRTS—Sends the RTS signal.

SETXOFF—Causes the port to act as if it has received an XOFF character.

SETXON—Causes the port to act as if it has received an XON character.

Name Type Description

COMPort integer Range 1–1,000.

escapeCode integer Specifies the escape code of the extended
function.

Name Type Description

result integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — ComSetEscape

Standard Libraries Reference Manual 5-20 © National Instruments Corporation

You can use the following values only with the National Instruments RS-485 serial driver:

WIRE_4—Sets the transceiver to four-wire mode.

WIRE_2_ECHO—Sets the transceiver to two-wire DTR controlled with echo mode.

WIRE_2_CTRL—Sets the transceiver to two-wire DTR controlled without echo.

WIRE_2_AUTO—Sets the transceiver to two-wire auto TXRDY controlled mode.

Chapter 5 RS-232 Library — ComToFile

© National Instruments Corporation 5-21 Standard Libraries Reference Manual

ComToFile

int nbytes = ComToFile (int COMPort, int fileHandle, int count,
int terminationByte);

Purpose
Reads from the input queue of a COM port and writes the data to a file. Returns the number
of bytes successfully written to the file. ComToFile reads bytes from the input queue until it
satisfies count, encounters terminationByte, a timeout occurs, or an error occurs.

Parameters

Input

Return Value

Parameter Discussion
If count is zero, ComToFile ignores it and terminates on terminationByte or error.

If terminationByte is -1, ComToFile ignores it and terminates on count bytes read or an
error. If terminationByte is valid, the function stops when it encounters a byte that has the
value of terminationByte; ComToFile removes the termination byte from the input queue
and does not write it to the file. If terminationByte is CR or LF, ComToFile treats CR LF and
LF CR combinations just as ComRdTerm does. If count is 0 and terminationByte is –1,
ComToFile terminates on error or timeout.

Name Type Description

COMPort integer Range 1–1,000.

fileHandle integer File handle you obtain from OpenFile.

count integer If 0, ComToFile ignores this value.

terminationByte integer If -1, ComToFile ignores this value.

Name Type Description

nbytes integer Number of bytes written to the file.
<0 = error; refer to Table 5-10 for error
codes

Chapter 5 RS-232 Library — ComToFile

Standard Libraries Reference Manual 5-22 © National Instruments Corporation

Using This Function
ComToFile times out whenever the input queue remains empty for an entire timeout period.
On a timeout, ComToFile returns the number of bytes actually written to the COM port and
sets rs232err to -99. You can set the timeout period by calling SetComTime.

ComToFile returns an error code if you have not opened the port, if you pass an invalid
parameter value, or if a file write error occurs.

Chapter 5 RS-232 Library — ComWrt

© National Instruments Corporation 5-23 Standard Libraries Reference Manual

ComWrt

int nbytes = ComWrt (int COMPort, char buffer[], int count);

Purpose
Writes count bytes to the output queue of the port you specify. Returns an integer value that
indicates the number of bytes placed in the queue. Returns immediately without waiting for
the bytes to be sent out of the serial port.

Parameters

Input

Return Values

Using This Function
ComWrt times out whenever the library does not write any bytes from the output queue to the
COM port during an entire timeout period. This can occur if you enable XON/XOFF, the
device sends an XOFF character without sending the follow-on XON character, and the
output queue is full. It also can occur if you enable hardware handshaking and the CTS line
is not asserted. On a timeout, ComWrt returns the number of bytes actually written and sets
rs232err to -99.

ComWrt sends bytes from the output queue to the serial device under interrupt control without
program intervention. If you close the port before all bytes are sent, you lose the bytes that
remain in the queue. To guarantee that all bytes are removed from the output queue before you
close the port, call GetOutQLen. GetOutQLen returns the number of bytes that remain in the
output queue.

Name Type Description

COMPort integer Range 1–1,000.

buffer string Buffer that contains data to write or the
actual string.

count integer 0 value places no bytes in queue.

Name Type Description

nbytes integer Number of bytes placed in the output
queue.
<0 = error; refer to Table 5-10 for error
codes

Chapter 5 RS-232 Library — ComWrt

Standard Libraries Reference Manual 5-24 © National Instruments Corporation

ComWrt returns an error if you have not opened the port or if you pass an invalid
parameter value.

Example
/* Place the string "Hello, world!" in the output queue of */
/* COM2 and check if operation was successful. */
if (ComWrt (2, "Hello, World!", 13) != 13)
/* Operation was unsuccessful. */;

or

char buf[100];
Fmt(buf,"%s","Hello, World!");
if (ComWrt (2, buf, 13) != 13)
/* Operation was unsuccessful. */;

Chapter 5 RS-232 Library — ComWrtByte

© National Instruments Corporation 5-25 Standard Libraries Reference Manual

ComWrtByte

int status = ComWrtByte (int COMPort, int byte);

Purpose
Writes a byte to the output queue of a COM port. The byte written is the low-order byte of the
integer. Returns a 1 to indicate the operation is successful or a negative error code to indicate
the operation failed. Returns immediately without waiting for the byte to be transmitted out
through the serial port.

Parameters

Input

Return Values

Parameter Discussion
ComWrtByte times out whenever the library does not write any bytes from the output queue
to the COM port during an entire timeout period. This can occur if you enable XON/XOFF,
the device sends an XOFF character without sending the follow-on XON character, and the
output queue is full. It also can occur if you enable hardware handshaking and the CTS line
is not asserted. On a timeout, ComWrtByte returns 0 and sets rs232err to -99.

ComWrtByte sends bytes from the output queue to the serial device under interrupt control
without program intervention. If you close the port before all bytes are sent, you lose the bytes
left in the queue. To guarantee that all bytes are removed from the output queue before you
close the port, call GetOutQLen. GetOutQLen returns the number of bytes left in the
output queue.

ComWrtByte returns an error if you have not opened the port or if you pass an invalid
parameter value.

Name Type Description

COMPort integer Range 1–1,000.

byte integer Only the low-order byte is significant.

Name Type Description

status integer Result of the write operation.
<0 = error; refer to Table 5-10 for
error codes
0 = a timeout occurred
1 = one byte placed in the output queue

Chapter 5 RS-232 Library — FlushInQ

Standard Libraries Reference Manual 5-26 © National Instruments Corporation

FlushInQ

int status = FlushInQ (int COMPort);

Purpose
Removes all characters from the input queue of a COM port.

Parameter

Input

Return Value

Using This Function
You can use FlushInQ to flush a flawed transmission in preparation for
re-transmission. It alleviates the need to read bytes into a buffer to empty the queue. If the
queue is already empty, FlushInQ does nothing.

FlushInQ returns a negative error code if you have not opened the port of if you pass an
invalid value for COMPort.

Name Type Description

COMPort integer Range 1–1,000.

Name Type Description

status integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — FlushOutQ

© National Instruments Corporation 5-27 Standard Libraries Reference Manual

FlushOutQ

int status = FlushOutQ (int COMPort);

Purpose
Removes all characters from the output queue of a COM port.

Parameter

Input

Return Value

Using This Function
FlushOutQ returns an error if you have not opened the port of if you pass an invalid value
for COMPort.

Name Type Description

COMPort integer Range 1–1,000.

Name Type Description

status integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — GetComStat

Standard Libraries Reference Manual 5-28 © National Instruments Corporation

GetComStat

int status = GetComStat (int COMPort);

Purpose
Returns information about the status of a COM port. The library accumulates COM port
conditions until you call GetComStat.

Parameter

Input

Return Values

Using This Function
Table 5-5 lists definitions of specific bits in the return value. Several bits can indicate the
presence of more than one condition.

Name Type Description

COMPort integer Range 1–1,000.

Name Type Description

status integer Bits indicate COM port status.
<0 = error; refer to Table 5-10 for error
codes

Table 5-5. Bit Definitions for the GetComStat Function

Hex

Value Mnemonic Description

0001 INPUT LOST Input queue filled and input characters lost; you did not
remove characters fast enough.

0002 ASYNCH ERROR Problem determining number of characters in input
queue. This is an internal error and normally should not
occur.

0010 PARITY Parity error detected.

0020 OVERRUN Overrun error detected; a character was received before
the receiver data register was emptied.

0040 FRAMING Framing error detected; stop bits were not received when
expected.

Chapter 5 RS-232 Library — GetComStat

© National Instruments Corporation 5-29 Standard Libraries Reference Manual

.

Notice the ambiguity in this status information. If an error occurs on the indicated port, your
application program knows that one or more bytes are invalid. Your program cannot
determine from the status word which byte read is invalid.

GetComStat returns a negative error code if you have not opened the port of if you pass an
invalid value for COMPort.

0080 BREAK Break signal detected.

1000 REMOTE XOFF XOFF character received. If you enabled XON/XOFF, no
characters are removed from the output queue and sent to
the other device until that device sends an XON character.
Refer to SetXMode.

4000 LOCAL XOFF XOFF character sent to the other device. If you enabled
XON/XOFF, XOFF is transmitted when the input queue
is 50%, 75%, and 90% full. If the other device is sensitive
to XON/XOFF protocol, it transmits no more characters
until it receives an XON character. You use this process
to avoid the INPUT LOST error.

Table 5-5. Bit Definitions for the GetComStat Function (Continued)

Hex

Value Mnemonic Description

Chapter 5 RS-232 Library — GetInQLen

Standard Libraries Reference Manual 5-30 © National Instruments Corporation

GetInQLen

int len = GetInQLen (int COMPort);

Purpose
Returns the number of characters in the input queue of a COM port. GetInQLen does not
change the input queue.

Parameter

Input

Return Value

Parameter Discussion
GetInQLen returns an error if you have not opened the port of if you pass an invalid value
for COMPort.

Name Type Description

COMPort integer Range 1–1,000.

Name Type Description

len integer Number of characters in the input queue.

Chapter 5 RS-232 Library — GetOutQLen

© National Instruments Corporation 5-31 Standard Libraries Reference Manual

GetOutQLen

int len = GetOutQLen (int COMPort);

Note Only the Windows versions of LabWindows/CVI support GetOutQLen.

Purpose
Returns the number of characters in the output queue of a COM port.

Parameter

Input

Return Value

Using This Function
You can use GetOutQLen to ensure the output queue empties before you close the port. This
function has no effect on the output queue.

GetOutQLen returns an error if you have not opened the port of if you pass an invalid value
for COMPort.

Name Type Description

COMPort integer Range 1–1,000.

Name Type Description

len integer Number of characters in the output queue.

Chapter 5 RS-232 Library — GetRS232ErrorString

Standard Libraries Reference Manual 5-32 © National Instruments Corporation

GetRS232ErrorString

char *message = GetRS232ErrorString (int errorNum);

Purpose
Converts the error number an RS-232 Library function returns into a meaningful
error message.

If errorNum is -1 (Unknown System Error) and you are running under Windows 95/NT,
GetRS232ErrorString calls the Windows SDK GetLastError function and translates
the return value to a Windows message string.

Parameter

Input

Return Value

Name Type Description

errorNum integer Error code an RS-232 function returns.

Name Type Description

message string Explanation of error.

Chapter 5 RS-232 Library — InstallComCallback

© National Instruments Corporation 5-33 Standard Libraries Reference Manual

InstallComCallback

int status = InstallComCallback (int COMPort, int eventMask, int notifyCount,
int eventCharacter, ComCallbackPtr callbackPtr,
void *callbackData);

Note Only the Windows version of LabWindows/CVI supports InstallComCallback.

Purpose
Allows you to install a callback function for a particular COM port. The callback function is
called whenever any of the events you specify in eventMask occur on the COM port and you
allow the system to process events. The system can process events in the following situations:

• You call RunUserInterface and none of your callback functions is currently
executing.

• You call GetUserEvent.

• You call ProcessSystemEvents.

You can install only one callback function for each COM port. Each call to this function for
the same COM port supersedes the previous call.

To disable callbacks for a board or device, pass 0 for the eventMask and/or
callbackFunction.

Note The callback function can receive more than one event at a time. When using this

function at higher baud rates, the library might miss some LWRS_RXCHAR events.

Use LWRS_RECEIVE or LWRS_RXFLAG instead.

Note Once the LWRS_RECEIVE event occurs, it does not occur again until the input

queue falls below and then rises back above notifyCount bytes.

Chapter 5 RS-232 Library — InstallComCallback

Standard Libraries Reference Manual 5-34 © National Instruments Corporation

Parameters

Input

Return Value

Parameter Discussion
The callback function must have the following form:

void CallbackFunctionName (int COMPort, int eventMask,
void *callbackData);

eventMask and callbackData are the same values you pass to InstallComCallback. You
can use callbackData as a pointer to a data object you want to access in the callback function.
In this way, you do not have to declare the data object as a global variable.

Name Type Description

COMPort integer Range 1–1,000.

eventMask integer Events upon which the callback function is
called. Refer to the following Parameter

Discussion for a list of valid events. If you
want to disable callbacks, pass 0.

notifyCount integer Minimum number of bytes the input queue
must contain before it sends the
LWRS_RECEIVE event to the callback
function.
Valid range = 0 to size of input queue

eventCharacter integer Specifies the character or byte value that
triggers the LWRS_RXFLAG event.
Valid range = 0 to 255

callbackPtr ComCallbackPtr Name of the user function that processes
the event callback.

callbackData void * A 4-byte value the library passes to the
callback function.

Name Type Description

status integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — InstallComCallback

© National Instruments Corporation 5-35 Standard Libraries Reference Manual

You specify the events using bits in eventMask, and you can specify multiple event bits.
Table 5-6 lists valid event bits.

Table 5-6. Valid Event Bits and Descriptions

Bit Hex Value

COM Port

Event Constant Name Description

0 0x0001 Any character
received.

LWRS_RXCHAR Set when a character is
received and placed in the
input queue.

1 0x0002 Received
certain
character.

LWRS_RXFLAG Set when the event character
is received and placed in the
input queue. The event
character is specified in
eventCharacter.

2 0x0004 Transmit queue
empty.

LWRS_TXEMPTY Set when the last character in
the output queue is sent.

3 0x0008 CTS changed
state.

LWRS_CTS Set when the CTS
(clear-to-send) line
changes state.

4 0x0010 DSR changed
state.

LWRS_DSR Set when the DSR
(data-set-ready) line
changes state.

5 0x0020 RLSD changed
state.

LWRS_RLSD Set when the RLSD
(receive-line-signal-detect)
line changes state.

6 0x0040 BREAK
received.

LWRS_BREAK Set when a break is detected
on input.

7 0x0080 Line status error
occurred.

LWRS_ERR Set when a line-status error
occurs. Line-status errors are
CE_FRAME, CE_OVERRUN,
and CE_RXPARITY.

Chapter 5 RS-232 Library — InstallComCallback

Standard Libraries Reference Manual 5-36 © National Instruments Corporation

Example
notifyCount = 50; /* Wait for at least 50 bytes in queue. */
eventChar = 13; /* Wait for LF. */
eventMask = LWRS_RXFLAG | LWRS_TXEMPTY | LWRS_RECEIVE;
InstallComCallback (comport, eventMask, notifyCount,
 eventChar, ComCallback, NULL);
.
.
.
/* Callback Function */
void ComCallback(int portNo, int evnetMask, void *data)
{

if (eventMask & LWRS_RXFLAG)
printf("Received specified character\n");

if (eventMask & LWRS_TXEMPTY)
printf("Transmit queue now empty\n");

if (eventMask & LWRS_RECEIVE)
printf("50 or more bytes in input queue\n");

}

8 0x0100 Ring signal
detected.

LWRS_RING Set to indicate that a ring
indicator was detected.

15 0x8000 notifyCount
bytes in input
queue.

LWRS_RECEIVE Set to detect when at least
notifyCount bytes are in the
input queue. Once this event
has occurred, it does not
trigger again until the input
queue falls below and then
rises back above
notifyCount bytes.

Table 5-6. Valid Event Bits and Descriptions (Continued)

Bit Hex Value

COM Port

Event Constant Name Description

Chapter 5 RS-232 Library — OpenCom

© National Instruments Corporation 5-37 Standard Libraries Reference Manual

OpenCom

int result = OpenCom (int COMPort, char deviceName[]);

Purpose
Opens a COM port using the default settings for the port parameters. If you want to set port
settings, call OpenComConfig instead.

Parameters

Input

Return Value

Parameter Discussion
deviceName is the name of the COM port in ASCII string format; for example, "COM1" for
COM port 1 under Windows using com.drv and "/dev/ttya" for COM port 1 under UNIX
using the Zilog 8530 SCC serial comm driver.

If you pass a NULL pointer or an empty string for deviceName, the library uses the following
device names depending on the COM port number you specify. Table 5-7 shows the syntax
for opening ports one through four. You can follow this model exemplified in the table to open
higher-numbered ports.

Name Type Description

COMPort integer Range 1–1,000.

deviceName string Name of the COM port.

Name Type Description

result integer Refer to Table 5-10 for error codes.

Table 5-7. Syntax for Opening Ports

Port Number deviceName under Windows deviceName under UNIX

1 "COM1" "/dev/ttya"

2 "COM2" "/dev/ttyb"

3 "COM3" "/dev/ttys1"

4 "COM4" "/dev/ttys2"

Chapter 5 RS-232 Library — OpenCom

Standard Libraries Reference Manual 5-38 © National Instruments Corporation

Using This Function
OpenCom uses 512 bytes of the buffer for the input queue, and 512 bytes for the output.
OpenCom assumes the default baud rate, parity, stop bits, data bits, port address, and
handshake mode established through the COM port configuration of the operating system.
The timeout for I/O operations is 5 seconds. Refer to SetXMode, SetCTSMode,
SetComTime, and OpenComConfig if you want to change these defaults.

If the specified port is already open, OpenCom closes the port and then opens it again.

Chapter 5 RS-232 Library — OpenComConfig

© National Instruments Corporation 5-39 Standard Libraries Reference Manual

OpenComConfig

int result = OpenComConfig (int COMPort, char deviceName[], long baudRate,
int parity, int dataBits, int stopBits,
int inputQueueSize, int outputQueueSize);

Purpose
Opens a COM port and sets port parameters. If inputQueueSize or outputQueueSize is
between 1 and 29, OpenComConfig forces it to 30.

Parameters

Input

Name Type Description

COMPort integer Range 1–1,000.

deviceName string Name of the COM port.

baudRate long 110, 150, 300, 600, 1,200, 2,400, 4,800,
9,600, 14,400, 19,200, 28,800, 38,400,
56,000, 57,600, 115,200, 128,000, or
256,000

SPARCstations do not support 14,400,
28,800, 56,000, 57,600, 115,200, 128,000,
and 256,000. PCs do not support 150.
Some PC serial drivers do not support
115,200, 128,000, and 256,000.

parity integer 0 = no parity
1 = odd parity
2 = even parity
3 = mark parity
4 = space parity

dataBits integer 5, 6, 7, or 8

stopBits integer 1 or 2

inputQueueSize integer 0 selects 512. Refer to the following
Parameter Discussion.

outputQueueSize integer 0 selects 512. Refer to the following
Parameter Discussion.

Chapter 5 RS-232 Library — OpenComConfig

Standard Libraries Reference Manual 5-40 © National Instruments Corporation

Return Value

Parameter Discussion
deviceName is the name of the COM port in ASCII string format; for example, "COM1" for
COM port 1 under Windows using comm.drv and "/dev/ttya" for COM port 1 under
UNIX using the Zilog 8530 SCC serial comm driver.

If you pass a NULL pointer or an empty string for deviceName, the library uses the following
device names depending on the COM port number you specify. Table 5-8 shows the syntax
for opening ports one through four. You can follow this model to open higher-numbered ports.

Under UNIX, OpenComConfig ignores inputQueueSize and outputQueueSize. The serial
driver determines the queue size.

Under Windows, if you specify 0 for inputQueueSize or outputQueueSize,
OpenComConfig uses 512. If you specify a value between 0 and 30, OpenComConfig
uses 30. Under Windows 95/NT, there is no maximum limitation on the queue size.
Under Windows 3.1, the maximum queue size is 65,535. However, some serial drivers
have a maximum of 32,767 and give undefined behavior when you use a larger queue size.
National Instruments recommends that you use a queue size no greater than 32,767.

If you pass an odd number for inputQueueSize under Windows NT, LabWindows/CVI
rounds it to the next highest even number. The Microsoft serial driver for Windows NT
requires an even number for the input queue size.

On all Windows platforms, LabWindows/CVI passes inputQueueSize to the Windows serial
driver, which might use a different number. For example, the Windows NT serial driver
imposes a minimum input queue size of 4096.

Name Type Description

result integer Refer to Table 5-10 for error codes.

Table 5-8. Syntax for Opening Ports

Port Number deviceName on Windows deviceName on UNIX

1 "COM1" "/dev/ttya"

2 "COM2" "/dev/ttyb"

3 "COM3" "/dev/ttys1"

4 "COM4" "/dev/ttys2"

Chapter 5 RS-232 Library — OpenComConfig

© National Instruments Corporation 5-41 Standard Libraries Reference Manual

Under Windows 3.1, the baudRate value can range from 0 to 0xffff. The COM driver
interprets values below 0xff00 literally. Values from 0xff00 to 0xffff are codes the
particular COM driver defines to represent rates higher than 0xfeff.

Under Windows 95/NT, the comm driver interprets all baudRate values literally.

Using This Function
OpenComConfig disables XON/XOFF mode and CTS hardware handshaking. The default
timeout for I/O operations is 5 seconds. Refer to the SetXMode, SetCTSMode, and
SetComTime function descriptions if you want to change these defaults.

If the specified port is already open, OpenComConfig closes the port and then opens it again.
Refer to the CloseCom function description for more information.

Chapter 5 RS-232 Library — ReturnRS232Err

Standard Libraries Reference Manual 5-42 © National Instruments Corporation

ReturnRS232Err

int status = ReturnRS232Err (void);

Purpose
Returns the error code from the most recent function call in the current thread. If the most
recent function call was successful, ReturnRS232Err returns zero.

Note If the most recent function call was successful but an asyncrhonous write

operation failed, ReturnRS232Err returns the error code from the asynchronous

operation. If you want to make sure that a particular function call succeeded, use

the return value from that function call.

ReturnRS232Err is multithread safe. Using the rs232err global variable is not
multithread safe.

If this function returns -1 and you are running under Windows 95/NT, you can call
GetRS232ErrorString to obtain a Windows system message.

Parameters
None.

Return Value

Name Type Description

status integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — SetComTime

© National Instruments Corporation 5-43 Standard Libraries Reference Manual

SetComTime

int result = SetComTime (int COMPort, double timeoutSeconds);

Purpose
Sets timeout limit for input/output operations.

Parameters

Input

Return Value

Using This Function
SetComTime sets the timeout parameters for all read and write operations. The default value
of timeoutSeconds is 5 seconds.

For an RS-232 read operation, timeoutSeconds specifies the time the library allows from the
start of the transfer to the arrival of the first byte. It also specifies the time the library allows
to elapse between the arrival of any two consecutive bytes. An RS-232 read operation waits
for at least the amount of time you specify for the next incoming byte before it returns a
timeout error.

For an RS-232 write operation, timeoutSeconds specifies the time the library allows before
the first byte is transferred to the output queue. It also specifies the time the library allows
between the transfer of any two consecutive bytes to the output queue. The transfer of bytes
to the output queue can stall if the output queue is full and hardware or software handshaking
is held off. If the holdoff is not resolved within the timeout period, the RS-232 write operation
returns a timeout error.

If timeoutSeconds is zero, it disables timeouts, and the read or write functions wait
indefinitely for the operation to complete.

SetComTime returns an error if you have not opened the port or if you pass an invalid
parameter value.

Name Type Description

COMPort integer Range 1–1,000.

timeoutSeconds double-precision Timeout period for all read/write
functions.

Name Type Description

result integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — SetCTSMode

Standard Libraries Reference Manual 5-44 © National Instruments Corporation

SetCTSMode

int result = SetCTSMode (int COMPort, int mode);

Purpose
Enables or disables hardware handshaking as described in the Hardware Handshaking
section of the RS-232 Library Function Overview section at the beginning of this chapter.

Parameters

Input

Return Value

Name Type Description

COMPort integer Range 1–1,000.

mode integer 0 to disable hardware handshaking;
nonzero to enable hardware handshaking.
Refer to the following Parameter

Discussion.

Name Type Description

result integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — SetCTSMode

© National Instruments Corporation 5-45 Standard Libraries Reference Manual

Parameter Discussion
Table 5-9 shows the valid values for mode.

Using This Function
By default, hardware handshaking is not used.

SetCTSMode returns an error if you have not opened the port or if you pass an invalid
parameter value.

Table 5-9. Valid Mode Values

Value Defined Constant Description

0 LWRS_HWHANDSHAKE_OFF Hardware handshaking is disabled.
The library ignores the CTS line, and
raises the RTS and DTR lines the entire
time the port is open.

1 LWRS_HWHANDSHAKE_CTS_RTS_DTR Hardware handshaking is enabled. The
library monitors the CTS line and uses
the RTS and DTR lines for
handshaking.

2 LWRS_HWHANDSHAKE_CTS_RTS Hardware handshaking is enabled. The
library monitors the CTS line, uses the
RTS for handshaking, and raises the
DTR line the entire time the port
is open.

Chapter 5 RS-232 Library — SetXMode

Standard Libraries Reference Manual 5-46 © National Instruments Corporation

SetXMode

int result = SetXMode (int COMPort, int mode);

Purpose
Enables or disables software handshaking by enabling or disabling XON/XOFF sensitivity on
transmission and reception of data.

Parameters

Input

Return Value

Using This Function
By default, XON/XOFF sensitivity is disabled. Refer to the Software Handshaking section of
the RS-232 Library Function Overview section at the beginning of this chapter for more
information.

SetXMode returns an error if you have not opened the port of if you pass an invalid
parameter value.

Name Type Description

COMPort integer Range 1–1,000.

mode integer 0 to disable; nonzero to enable.

Name Type Description

result integer Refer to Table 5-10 for error codes.

Chapter 5 RS-232 Library — XModemConfig

© National Instruments Corporation 5-47 Standard Libraries Reference Manual

XModemConfig

int result = XModemConfig (int COMPort, double startDelay,
int maximum#ofRetries, double waitPeriod,
int packetSize);

Purpose
Sets the XModem configuration parameters for a COM port.

Parameters

Input

Return Values

Parameter Discussion
XModemSend and XModemReceive use the baud rate and the input/output queue sizes you
specify when you call OpenComConfig. They ignore the data bits, the parity, and the stop bits
settings of OpenComConfig and always use 8 bits, no parity, and one stop bit. Instead of using
the timeout value you set by calling SetComTime, XModem functions use a 1-second timeout
between data bytes.

A zero input for any parameter except COMPort sets the parameter to its default value.

startDelay sets the timing for the initial connection between the two communication parties.
When a LabWindows/CVI program assumes the role of receiver, startDelay specifies the
interval, in seconds, during which to send the initial negative acknowledgment character to
the transmitter. XModemConfig sends that character every startDelay seconds, up to
maximum#ofRetries times. When a LabWindows/CVI program assumes the role of

Name Type Description

COMPort integer Range 1–1,000.

startDelay double-precision 0.0 selects the default value 10.0 seconds.

maximum#ofRetries integer 0 selects the default value 10.

waitPeriod double-precision 0.0 selects the default value 10.0 seconds.
National Instruments recommends >5.0.

packetSize integer 0 selects the default value 128.

Name Type Description

result integer Refer to Table 5-10 for error codes.
0 = success

Chapter 5 RS-232 Library — XModemConfig

Standard Libraries Reference Manual 5-48 © National Instruments Corporation

transmitter, startDelay specifies the interval, in seconds, during which the transmitter waits
for the initial negative acknowledgment. The transmitter waits up to

seconds. The default value of startDelay is 10.0.

maximum#ofRetries sets the maximum number of times the transmitter retries sending a
packet to the receiver on the occurrence of an error condition. The default value of
maximum#ofRetries is 10.

waitPeriod sets the period of time between the transfers of two packets. When a
LabWindows/CVI program assumes the role of transmitter, it waits for up to waitPeriod
seconds for an acknowledgment before it re-sends the current packet. When
LabWindows/CVI plays the role of receiver, it waits for up to waitPeriod seconds for the next
packet after it sends out an acknowledgment for the current packet. If it does not receive the
next packet within delayPeriod seconds, it re-sends the acknowledgment and waits again, up
to maximum#ofRetries times. The default value of waitPeriod is 10.0.

packetSize sets the packet size in bytes. The value must be less than or equal to the input and
output queue sizes. The standard XModem protocol defines packet sizes as 128 or 1,024. If
you use any other size, make sure the two communication parties understand each other. The
default value of packetSize is 128.

Using This Function
For transfers with a large packet size and a low baud rate, a large delay period is
recommended.

startDelay maximum#ofRetries×

Chapter 5 RS-232 Library — XModemReceive

© National Instruments Corporation 5-49 Standard Libraries Reference Manual

XModemReceive

int result = XModemReceive (int COMPort, char fileName[]);

Purpose
Receives packets of information over a COM port and writes the packets to a file.

Parameters

Input

Return Value

Using This Function
XModemReceive uses the XModem file transfer protocol. The transmitter also must follow
this protocol for this function to work properly.

The Xmodem protocol requires that the sender and receiver agree on the error checking
protocol. The sender and receiver negotiate this agreement at the beginning of the transfer,
which can cause a significant delay. XModemReceive tries
times to negotiate a CRC error check transfer. If there is no response, it tries to negotiate a
check sum transfer up to times.

XModemReceive opens the file in binary mode and does not treat carriage returns and
linefeeds as special characters. The function writes them to the RS-232 line untouched.

If the size of the file being sent is not an even multiple of the packet size, the file received is
padded with ASCII NUL (0) bytes. For example, if the file being sent contains only the string
HELLO, the file written to disk contains the letters HELLO followed by
NUL bytes. If the packet size is 128, the file contains the five letters in HELLO and
123 NUL bytes.

Name Type Description

COMPort integer Range 1–1,000.

fileName string Contains the pathname.

Name Type Description

result integer Refer to Table 5-10 for error codes.
0 = success

maximum#ofTries 1+() 2⁄

maximum#ofTries 1–() 2⁄

packet size 5–()

Chapter 5 RS-232 Library — XModemReceive

Standard Libraries Reference Manual 5-50 © National Instruments Corporation

The standard XModem protocol supports only 128 and 1,024 as packet sizes. The sender
sends an SOH ASCII character (0x01) to indicate that the packet size is 128 or an STX ASCII
character (0x02) to indicate that the packet size is 1,024. LabWindows/CVI attempts to
support any packet size. As a receiver, when LabWindows/CVI receives an STX character
from the sender, it switches to 1,024 packet size regardless of what you specify. When it
receives an SOH character from the sender, it uses the packet size you specify. You can
specify the packet size by calling XModemConfig.

For transfers with a large packet size and a low baud rate, National Instruments recommends
a large delay period.

Example
/* Receive the file c:\test\data from COM1. */
/* NOTE: use \\ in pathname in C instead of \. */
int n;
OpenComConfig(1, "", 9600, 1, 8, 1, 256, 256);
n = XModemReceive (1, "c:\\test\\data");
if (n != 0)

FmtOut ("Error %d in receiving file",rs232err);
else

FmtOut ("File successfully received.");

Chapter 5 RS-232 Library — XModemSend

© National Instruments Corporation 5-51 Standard Libraries Reference Manual

XModemSend

int result = XModemSend (int COMPort, char fileName[]);

Purpose
Reads data from a file and sends it in packets over a COM port.

Parameters

Input

Return Values

Using This Function
XModemSend opens the file in binary mode and does not treat carriage returns and linefeeds
as special characters. The function sends them to the receiver untouched.

XModemSend uses the XModem file transfer protocol. The receiver also must follow this
protocol for this function to work properly.

If the size of the file being sent is not an even multiple of the packet size, the last packet is
padded with ASCII NUL (0) bytes. For example, if the file being sent contains only the string
HELLO and the packet size is 128, the packet of data sent contains the letters HELLO followed
by 123 NUL bytes.

The standard XModem protocol supports only 128 and 1,024 as packet sizes. The sender
sends an SOH ASCII character (0x01) to indicate that the packet size is 128 or an STX ASCII
character (0x02) to indicate that the packet size is 1,024. LabWindows/CVI attempts to
support any packet size. As a sender, LabWindows/CVI sends an STX character when you
specify packet size as 1,024. For any other packet size, it sends an SOH character. You can
specify the packet size by calling XModemConfig.

For transfers with a large packet size and a low baud rate, National Instruments recommends
a large delay period.

Name Type Description

COMPort integer Range 1–1,000.

fileName string Contains the pathname.

Name Type Description

result integer Refer to Table 5-10 for error codes.
0 = success

packet size 5–()

Chapter 5 RS-232 Library — Error Conditions

Standard Libraries Reference Manual 5-52 © National Instruments Corporation

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI
RS-232 Library, the function returns an error code. This code is a negative value that specifies
the type of error that occurred.

You can call ReturnRS232Err to obtain the error code, either zero or negative, from the most
recent function call in the current thread. If the most recent call was successful but an
asynchronous write operation failed, ReturnRS232Err returns the error code from the
asynchronous operation. To make sure that a particular function call succeeded, use the return
value from that function call.

The rs232err global variable is the error code from the most recent function call or failed
asynchronous write operation in your application, regardless of thread. In multithreaded
applications, use ReturnRS232Err rather than rs232err.

Table 5-10 lists the currently defined error codes and their meanings.

Table 5-10. RS-232 Library Error Codes

Code Error Message

-1 Unknown system error. Refer to the following discussion.

-2 Invalid port number.

-3 Port is not open.

-4 Unknown I/O error.

-5 Unexpected internal error.

-6 No serial port found.

-7 Cannot open port.

-11 Memory allocation error in creating buffers.

 -12 Unable to allocate system resources.

-13 Invalid parameter.

-14 Invalid baud rate.

-24 Invalid parity.

-34 Illegal number of data bits.

-44 Illegal number of stop bits.

Chapter 5 RS-232 Library — Error Conditions

© National Instruments Corporation 5-53 Standard Libraries Reference Manual

-90 Bad file handle.

-91 Error in performing file I/O.

-94 Invalid count; must be greater than or equal to 0.

-97 Invalid interrupt level.

-99 I/O operation timed out.

-104 Value must be between 0 and 255.

-114 Requested input queue size must be 0 or greater.

-124 Requested output queue size must be 0 or greater.

-151 General I/O error.

-152 Buffer parameter is NULL.

-257 Packet was sent, but no acknowledgment was received.

-258 Packet not sent within retry limit.

-259 Packet not received within retry limit.

-260 End of transmission character encountered when start of
data character expected.

-261 Packet number could not be read.

-262 Packet number inconsistency.

-263 Packet data could not be read.

-264 Checksum could not be read.

-265 Checksum received did not match computed checksum.

-269 Packet size exceeds input queue size.

-300 Error opening file.

-301 Error reading file.

-302 Did not receive the initial negative acknowledgment
character.

-303 Did not receive acknowledgment after the end of
transmission character was sent.

Table 5-10. RS-232 Library Error Codes (Continued)

Code Error Message

Chapter 5 RS-232 Library — Error Conditions

Standard Libraries Reference Manual 5-54 © National Instruments Corporation

Errors above 200 occur only on XModem function calls. The library records errors
261 through 265 when the maximum number of retries has been exhausted in trying to
receive an XModem function packet.

For error code -1 (UnknownSystemError) on Windows 95/NT, call the
GetRS232ErrorString function to obtain a specific Window message string.

-304 Error while writing to file.

-305 Did not receive either a start of data or end of transmission
character when expected.

-402 Transfer was canceled because the CAN ASCII character
was received.

-503 Invalid start delay.

-504 Invalid maximum number of retries.

-505 Invalid wait period.

-506 Invalid packet size.

-507 Unable to read Cyclical Redundancy Check.

-508 Cyclical Redundancy Check error.

Table 5-10. RS-232 Library Error Codes (Continued)

Code Error Message

© National Instruments Corporation 6-1 Standard Libraries Reference Manual

6
DDE Library

This chapter describes the functions in the LabWindows/CVI DDE (Dynamic Data
Exchange) Library. The DDE Library Function Overview section contains general
information about the DDE Library functions and panels. The DDE Library Function

Reference section contains an alphabetical list of function descriptions. This library is
available for LabWindows/CVI for Windows only.

DDE Library Function Overview

The DDE Library includes functions specifically for Windows DDE support. This section
contains general information about the DDE Library functions and panels.

DDE Library Function Panels
The DDE Library function are grouped in the tree structure in Table 6-1 according to the types
of operations they perform.

The first- and second-level headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings are the names of individual function panels. Each DDE function panel
generates one or more DDE function calls.

Table 6-1. Functions in the DDE Library Function Tree

Class/Panel Name Function Name
Server Functions

Register DDE Server RegisterDDEServer
Server DDE Write ServerDDEWrite
Advise DDE Data Ready AdviseDDEDataReady
Broadcast DDE Data Ready BroadcastDDEDataReady
Unregister DDE Server UnregisterDDEServer

Client Functions
Connect to DDE Server ConnectToDDEServer
Client DDE Read ClientDDERead
Client DDE Write ClientDDEWrite
Client DDE Execute ClientDDEExecute
Set Up DDE Hot Link SetUpDDEHotLink
Set Up DDE Warm Link SetUpDDEWarmLink
Terminate DDE Link TerminateDDELink

Chapter 6 DDE Library — DDE Library Function Overview

Standard Libraries Reference Manual 6-2 © National Instruments Corporation

The online help with each panel contains specific information about operating each
function panel.

DDE Clients and Servers
Interprocess communication with DDE involves a client and a server in each DDE
conversation. A DDE server can execute commands another application sends, and send and
receive information to and from a client application under Windows. A DDE client can send
commands to a server application to execute and can request data from a server application.

With the LabWindows/CVI DDE Library, you can write programs that act as a DDE client or
server. Refer to the DDE Library Example Using Microsoft Excel and LabWindows/CVI
section later in this chapter for information on how to use the DDE Library functions.

To connect to a DDE server from a LabWindows/CVI program, you must know some
information about the application to which you want to connect. All DDE server applications
have a name and a topic that defines the connection. For example, you can connect to
Microsoft Excel in two ways with the ConnectToDDEServer function. If you want Excel to
perform tasks, such as opening worksheets and creating charts when you send commands,
you should specify excel as the server name and system as the topic name in the call to the
ConnectToDDEServer function. However, if you want to send data to an Excel spreadsheet,
you should specify excel as the server name and the filename of the worksheet that is already
loaded in Excel as the topic name.

If your program acts as a DDE server, to which other Windows applications will send and
receive commands and data, you need to call RegisterDDEServer in your program.
RegisterDDEServer establishes your program as a valid DDE server so that other
applications can connect to it and exchange information. The server callback function is then
invoked as discussed in the following section.

DDE Callback Function
Callback functions provide the mechanism for sending and receiving data to and from other
applications through DDE. Similar to the method in which a callback function responds to
user interface events from your User Interface Library objects, a DDE callback function
responds to incoming DDE information.

Client Functions (continued)
Disconnect from DDE Server DisconnectFromDDEServer

Get Error String GetDDEErrorString

Table 6-1. Functions in the DDE Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 6 DDE Library — DDE Library Function Overview

© National Instruments Corporation 6-3 Standard Libraries Reference Manual

A callback function in a client application can respond to only two types of DDE messages:
DDE_DISCONNECT and DDE_DATAREADY. If you set up a warm link or hot link, also called an
advisory loop, the callback function you specify in ConnectToDDEServer is called with the
DDE_DATAREADY message whenever the data values change in the server application.

A DDE callback function used in a server application can be triggered in a number of ways.
Whenever a client application attempts to connect to your server program or requests
information from your program, the callback function in your program is executed to process
the request. The parameter prototypes for the DDE callback functions in LabWindows/CVI
are defined as follows:

int CallbackFunction (int handle, char *topicName, char *itemName,
int xType, int dataFmt, int dataSize,
void *dataPtr, void *callbackData);

Parameters

Input

Note The value of the dataSize parameter is greater than or equal to the actual size of

the data. You should encode more exact size information in your data.

Name Type Description

handle integer Conversation handle that uniquely
identifies the client-server connection.

topicName char pointer Server application that triggers the
callback.

itemName char pointer Data item within the server application that
triggers the callback. Exception: When
xType is DDE_EXECUTE, itemName
represents the command string from the
client program.

xType integer Transaction type; refer to Table 6-2 in the
following Transaction Types section.

dataFmt integer Format of the data being transmitted.

dataSize integer Number of bytes in the data. Might
actually be greater than the number of
bytes transmitted. You should encode size
information in your data.

dataPtr void pointer Points to the transmitted data.

callbackData void pointer User-defined data value.

Chapter 6 DDE Library — DDE Library Function Overview

Standard Libraries Reference Manual 6-4 © National Instruments Corporation

Return Value
The callback function should return 1 to indicate success or 0 to indicate failure or rejection
of the requested action.

Transaction Types
Table 6-2 lists all the DDE transaction types, xType, that can trigger a callback function.

Refer to the description for RegisterDDEServer and ConnectToDDEServer for more
information about the DDE callback function.

DDE Links
You need a DDE data link whenever a client program needs to know about changes to the
value of a particular data item in the server application. You can establish a DDE data link in
LabWindows/CVI by calling SetUpDDEWarmLink or SetUpDDEHotLink. Whenever the
data value changes, the client callback function is invoked with the DDE_DATAREADY
message, and the data is available in the dataPtr parameter.

Within one client-server connection, multiple data links can exist, each applying to a different
data item. For example, you can establish a link between your LabWindows/CVI program and
a particular cell in Excel. You specify the data item to which the link applies in the itemName
parameter to SetUpDDEWarmLink or SetUpDDEHotLink.

Table 6-2. DDE Transaction Types (xType)

xType Server Client When?

DDE_CONNECT Y N When a new client requests a
connection.

DDE_DISCONNECT Y Y When conversation partner
quits.

DDE_DATAREADY Y Y When conversation partner
sends data.

DDE_REQUESTDATA Y N When client requests data.

DDE_ADVISELOOP Y N When client requests advisory
loop.

DDE_ADVISESTOP Y N When client terminates request
for advisory loop.

DDE_EXECUTE Y N When client requests execution
of a command.

Chapter 6 DDE Library — DDE Library Function Overview

© National Instruments Corporation 6-5 Standard Libraries Reference Manual

As defined in Windows, warm and hot links differ in that under a warm link, the client is
merely alerted when the data value changes, and under a hot link, the data is actually sent.

LabWindows/CVI makes no distinction between warm links and hot links. In both cases, your
client application receives the data through the client callback function when the data value
changes. If a warm link is in effect, LabWindows/CVI requests and receives the data from the
server before the callback function is called. SetUpDDEWarmLink and SetUpDDEHotLink
are provided because some DDE server applications offer only one type of link.

DDE Library Example Using Microsoft Excel and LabWindows/CVI
LabWindows/CVI includes a sample program called ddedemo.prj that uses DDE to send
data to Microsoft Excel. The example program is located in the samples\dde directory. The
following discussion outlines the process required to open an Excel worksheet file, send data
over DDE, and set up a DDE link with one of the cells in the worksheet from a
LabWindows/CVI program.

Start Excel and load the worksheet file called lwcvi.xls. The sample program performs the
following operations:

1. Connects to the Microsoft Excel worksheet as a client.

ConnectToDDEServer, with excel as the server name and lwcvi.xls as the topic
name, establishes a connection with the worksheet. The client callback function
ClientCallback identifies the function that processes the DDE transactions this
particular conversation generates.

2. Establishes a DDE warm link with a particular cell in the Excel worksheet.

SetUpDDEWarmLink, with the cell address R5C2 as the item name, establishes a DDE
link with the cell in the worksheet. Thereafter, whenever the value of cell B5—row 5,
column 2—changes, Excel sends information to LabWindows/CVI by invoking the
clientCallback function.

3. Sends data to the Excel worksheet from LabWindows/CVI.

The program formats the data as a string and sends it to Excel using ClientDDEWrite
with the Excel cell region R1C2:R50C2 as the item name and a character array that
contains 50 elements as the buffer pointer.

4. The callback function responds to DDE transactions from the Excel worksheet.

The callback function automatically returns the following information:

handle—Conversation that triggered the callback. One callback function can process
multiple DDE conversations.

item name—Cell(s) involved.

topic name—Excel system or Excel file.

transaction type—Either DDE_DATAREADY or DDE_DISCONNECT.

Chapter 6 DDE Library — DDE Library Function Reference

Standard Libraries Reference Manual 6-6 © National Instruments Corporation

data format—CF_TEXT in this case.

data size—Number of bytes in the data.

data pointer—Pointer to the data.

callback data—User defined; NULL in this case.

When the callback function receives the DDE_DATAREADY transaction, it updates a
numeric display by passing the data pointer value to a numeric control on the .uir file.
When the DDE event is DDE_DISCONNECT, DisconnectFromDDEServer ends the
DDE conversation.

Multithreading under Windows 95/NT
Although it is safe to use DDE Library functions in a multithreaded executable, you must
observe a few restrictions. The following restrictions stem from limitations in the Windows
implementation of DDE:

• After you call RegisterDDEServer to register your program as a server, you must
make all subsequent function calls that apply to the server in the same thread in which
you called RegisterDDEServer.

• After you call ConnectToDDEServer to create a client connection, you must make all
subsequent functions calls that apply to the connection in the same thread in which you
called ConnectToDDEServer.

DDE Library Function Reference

This section describes each function in the LabWindows/CVI DDE Library in
alphabetical order.

Chapter 6 DDE Library — AdviseDDEDataReady

© National Instruments Corporation 6-7 Standard Libraries Reference Manual

AdviseDDEDataReady

int nbytes = AdviseDDEDataReady (unsigned int conversationHandle,
char itemName[], unsigned int dataFormat,
void *dataPointer, unsigned int dataSize,
unsigned int timeout);

Purpose
This server function writes data to a DDE client application. Call AdviseDDEDataReady in
your server program only when the value of a data item changes and a warm or hot link has
been established for the data item.

Parameters

Input

Return Value

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, an Excel cell name.

dataFormat unsigned integer Valid data format; for example, CF_TEXT.

dataPointer void pointer Pointer to buffer that holds data.

dataSize unsigned integer Number of bytes in data. Must be 0 if
dataPointer is NULL. Limited to 64 KB
under Windows 3.1 and Windows 95.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

nbytes integer Number of bytes written to the client.
<0 = error; refer to Table 6-3 for error
codes

Chapter 6 DDE Library — AdviseDDEDataReady

Standard Libraries Reference Manual 6-8 © National Instruments Corporation

Parameter Discussion
dataFormat must be a valid data format Windows recognizes. Windows supports the
following valid data formats:

Refer to Microsoft programmer’s documentation for Windows for an in-depth discussion of
DDE programming and the meaning of each data format type.

Using This Function
AdviseDDEDataReady allows your program, acting as a DDE server, to send data to a client
that has a hot or warm link.

When a client sets up a hot or warm link, your server callback function receives a
DDE_ADVISELOOP message for a particular data object that corresponds to itemName. When
the hot or warm link is terminated, your server callback function receives a
DDE_ADVISESTOP message for the data object.

During the period when the hot or warm link is in effect, your server program is responsible
for notifying the client whenever the value of the data object changes. When the data object
value changes, you can call AdviseDDEDataReady or BroadcastDDEDataReady.

AdviseDDEDataReady differs from BroadcastDDEDataReady in that you specify a
particular conversation with a client. AdviseDDEDataReady sends the data only to the client
you specify with conversationHandle, even if other clients have hot or warm links to the
same item. AdviseDDEDataReady sends the data without invoking your server callback
function. However, if other clients have warm links to the same item, the function notifies
them all that new data is available. If the clients request the new data, the DDE_REQUESTDATA
message invokes your server callback function. If you do not want to send the data to those
other clients, you must write your server callback function so that it does not call
ServerDDEWrite in this case.

If you pass NULL (0) as dataPointer and 0 as dataSize, AdviseDDEDataReady sends no
data to the client you specify with conversationHandle. Instead, the function notifies all
clients with warm links to the item. If the clients request the new data, the
DDE_REQUESTDATA message invokes your server callback function, and you can use
ServerDDEWrite to send the data in response.

CF_TEXT CF_PALETTE

CF_BITMAP CF_PENDATA

CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY

CF_TIFF CF_DSPTEXT

CF_OEMTEXT CF_DSPBITMAP

CF_DIB CF_DSPMETAFILEPICT

Chapter 6 DDE Library — AdviseDDEDataReady

© National Instruments Corporation 6-9 Standard Libraries Reference Manual

If successful, AdviseDDEDataReady returns the number of bytes sent. Otherwise,
AdviseDDEDataReady returns a negative error code. Refer to Table 6-3 at the end of this
chapter for error codes.

Note Your program should not call AdviseDDEDataReady in a tight loop because the

iterations compete with user interface events for the CPU time. You should use

AdviseDDEDataReady sparingly, and only when the value of the hot- or

warm-linked data object changes. In cases when the server returns large data

objects, your program should call AdviseDDEDataReady only when the user

interface is not busy.

See Also
RegisterDDEServer, SetUpDDEHotLink, SetUpDDEWarmLink,
BroadcastDDEDataReady

Chapter 6 DDE Library — BroadcastDDEDataReady

Standard Libraries Reference Manual 6-10 © National Instruments Corporation

BroadcastDDEDataReady

int nbytes = BroadcastDDEDataReady (char serverName[], char topicName[],
char itemName[], unsigned int dataFormat,
void *dataPointer, unsigned int dataSize)

Purpose
This server function sends data to all clients that have set up hot or warm links on topicName
and itemName.

Parameters

Input

Return Value

Parameter Discussion
serverName, topicName, and itemName must be strings of length from 1 to 255. You can
use them without regard to case.

Name Type Description

serverName string Identifies the server from which to send
the data.

topicName string Identifies the topic with which the data is
associated.

itemName string Identifies the item with which the data is
associated.

dataFormat unsigned integer Valid data format; for example, CF_TEXT.

dataPointer void pointer Pointer to buffer that holds data.

dataSize unsigned integer Number of bytes in data. Limited to 64 KB
on Windows 3.1 and Windows 95.

Name Type Description

nbytes integer Number of bytes written to the client.
<0 = error; refer to Table 6-3 for error
codes

Chapter 6 DDE Library — BroadcastDDEDataReady

© National Instruments Corporation 6-11 Standard Libraries Reference Manual

Using This Function
BroadcastDDEDataReady allows your program, acting as a DDE server, to send data to all
clients that have hot or warm links on the topic and item you specify.

When a client sets up a hot or warm link, your server callback function receives a
DDE_ADVISELOOP message for a particular data object that corresponds to itemName. When
the hot or warm link is terminated, your server callback function receives a
DDE_ADVISESTOP message for the data object.

During the period when the hot or warm link is in effect, your server program is responsible
for notifying the client whenever the value of the data object changes. When the data object
value changes, your server program should call BroadcastDDEDataReady or
AdviseDDEDataReady.

BroadcastDDEDataReady differs from AdviseDDEDataReady in that it is not restricted to
a particular client. BroadcastDDEDataReady sends the data automatically to all clients with
hot links to the item. BroadcastDDEDataReady notifies all clients with warm links to the
item. For each warm-linked client that requests the data, the DDE_REQUESTDATA message
invokes your server callback function. You must call ServerDDEWrite in the callback to
send the data.

When successful, BroadcastDDEDataReady returns the number of bytes sent. Otherwise,
BroadcastDDEDataReady returns a negative error code. Refer to Table 6-3 at the end of this
chapter for error codes.

Note Your program should not call BroadcastDDEDataReady in a tight loop because

the iterations compete with user interface events for the CPU time. You should use

BroadcastDDEDataReady sparingly and only when the value of the hot- or

warm-linked data object changes. In cases when the server returns large data

objects, your program should call BroadcastDDEDataReady only when the user

interface is not busy.

See Also
RegisterDDEServer, SetUpDDEHotLink, SetUpDDEWarmLink,
AdviseDDEDataReady

Chapter 6 DDE Library — ClientDDEExecute

Standard Libraries Reference Manual 6-12 © National Instruments Corporation

ClientDDEExecute

int status = ClientDDEExecute (unsigned int conversationHandle,
char commandString[], unsigned int timeout);

Purpose
This client function sends a command for a DDE server application to execute.

Parameters

Input

Return Value

Parameter Discussion
commandString represents a valid command sequence for the server application to execute.
Refer to the command function reference manual for the application to which you are
connecting for more information on the commands supported.

See Also
ConnectToDDEServer, ClientDDERead, ClientDDEWrite

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

commandString string Command for the server application
to execute.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

status integer Refer to Table 6-3 for error codes.

Chapter 6 DDE Library — ClientDDERead

© National Instruments Corporation 6-13 Standard Libraries Reference Manual

ClientDDERead

int nbytes = ClientDDERead (unsigned int conversationHandle,
char itemName[], unsigned int dataFormat,
void *dataBuffer, unsigned int dataSize,
unsigned int timeout);

Purpose
This client function reads data from a DDE server application.

Parameters

Input

Output

Return Value

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, an Excel cell name.

dataFormat unsigned integer Valid data format; for example, CF_TEXT.

dataSize unsigned integer Number of bytes to read. Limited to 64 KB
under Windows 3.1 and Windows 95.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

dataBuffer void pointer Buffer in which to receive data.

Name Type Description

nbytes integer Number of bytes read from the server.
<0 = error; refer to Table 6-3 for error
codes

Chapter 6 DDE Library — ClientDDERead

Standard Libraries Reference Manual 6-14 © National Instruments Corporation

Parameter Discussion
dataFormat must be a valid data format Windows recognizes. Windows supports the
following data types:

Refer to Microsoft programmer’s documentation for Windows for an in-depth discussion of
DDE programming and the meaning of each data format type.

status returns a positive number that represents the number of bytes that were successfully
read. A negative number is an error code.

See Also
ConnectToDDEServer, ClientDDEWrite

CF_TEXT CF_PALETTE

CF_BITMAP CF_PENDATA

CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY

CF_TIFF CF_DSPTEXT

CF_OEMTEXT CF_DSPBITMAP

CF_DIB CF_DSPMETAFILEPICT

Chapter 6 DDE Library — ClientDDEWrite

© National Instruments Corporation 6-15 Standard Libraries Reference Manual

ClientDDEWrite

int nbytes = ClientDDEWrite (unsigned int conversationHandle,
char itemName[], unsigned int dataFormat,
void *dataPointer, unsigned int dataSize,
unsigned int timeout);

Purpose
This client function writes data to a DDE server application.

Parameters

Input

Return Value

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, an Excel cell name.

dataFormat unsigned integer Valid data format; for example, CF_TEXT.

dataPointer void pointer Buffer that holds data.

dataSize unsigned integer Number of bytes to write. Limited to
64 KB under Windows 3.1 and
Windows 95.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

nbytes integer Number of bytes written to the server.
<0 = error; refer to Table 6-3 for error
codes

Chapter 6 DDE Library — ClientDDEWrite

Standard Libraries Reference Manual 6-16 © National Instruments Corporation

Parameter Discussion
dataFormat must be a valid data format Windows recognizes. Windows supports the
following valid data formats:

Refer to Microsoft programmer’s documentation for Windows for an in-depth discussion of
DDE programming and the meaning of each data format type.

status returns a positive number that represents the number of bytes that were successfully
read. A negative number is an error code.

See Also
ConnectToDDEServer, ClientDDERead

CF_TEXT CF_PALETTE

CF_BITMAP CF_PENDATA

CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY

CF_TIFF CF_DSPTEXT

CF_OEMTEXT CF_DSPBITMAP

CF_DIB CF_DSPMETAFILEPICT

Chapter 6 DDE Library — ConnectToDDEServer

© National Instruments Corporation 6-17 Standard Libraries Reference Manual

ConnectToDDEServer

int status = ConnectToDDEServer (unsigned int *conversationHandle,
char serverName[], char topicName[],
ddeFuncPtr clientCallbackFunction,
void *callbackData);

Purpose
Establishes a connection, or conversation, between your program and a named server on a
topic name you specify.

Parameters

Input

Output

Return Value

Parameter Discussion
conversationHandle returns an integer value that uniquely represents a conversation between
a server and a client.

serverName and topicName must be strings of length from 1 to 255. You can use them
without regard to case.

Name Type Description

serverName string Name of the server application.

topicName string Specifies the type of conversation with
the server.

clientCallbackFunction DDE function
pointer

Pointer to the callback function that
processes messages for the client.

callbackData void pointer User-defined data.

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

Name Type Description

status integer Refer to Table 6-3 for error codes.

Chapter 6 DDE Library — ConnectToDDEServer

Standard Libraries Reference Manual 6-18 © National Instruments Corporation

Each server application defines its own set of valid topic names. Refer to the command
function reference manual for the server application. A client and a server can have multiple
connections as long as they are under different topic names.

clientCallbackFunction is the name of a callback function to which the DDE Library sends
messages from the server.

The callback function must be of the following form:

int (*ddeFuncPtr) (int handle, char *topicName, char *itemName,
int xType, int dataFmt, int dataSize,
void *dataPtr, void *callbackData);

xType specifies the type of message the server sends.

clientCallbackFunction can receive only two transaction types: DDE_DISCONNECT and
DDE_DATAREADY.

DDE_DISCONNECT—Received when a server requests the termination of a connection or
when Windows terminates the connection because of an internal error.

DDE_DATAREADY—Received when you have already set up a hot or warm link by calling
SetUpDDEHotLink or SetUpDDEWarmLink and the server notifies you that new data is
available. If the server program uses the LabWindows/CVI DDE Library, it notifies you by
calling AdviseDDEDataReady or BroadcastDDEDataReady. The callback receives the
data in dataPtr. topicName, itemName, dataFmt, dataSize, and dataPtr contain
significant data. The server to which you are connecting assigns its own meaning to
topicName. itemName can specify an object to which the data refers. For example, in Excel,
the item name specifies a cell. dataFmt is one of the Windows-defined data types, for
example, CF_TEXT. dataSize specifies the number of bytes in the data dataPtr points to.

Note The dataSize value is the value LabWindows/CVI receives from Windows. This

value can be larger than the actual number of bytes the client writes.

Note Return TRUE from the callback function if it can process the message

successfully. Otherwise, return FALSE. The callback function should be short and

return as soon as possible.

callbackData is a 4-byte value the DDE Library passes to the callback function each time the
DDE Library invokes the callback for the same client.

Chapter 6 DDE Library — ConnectToDDEServer

© National Instruments Corporation 6-19 Standard Libraries Reference Manual

It is your responsibility to define the meaning of the callback data. For example, you can use
the callback data as a pointer to a data object that you need to access in the callback function.
In this way, you do not need to declare the data object as a global variable.

If you do not want to use the callback data, you can pass zero.

Note In the case of DDE_DISCONNECT, the value of callbackData is undefined.

See Also
DisconnectFromDDEServer, RegisterDDEServer

Chapter 6 DDE Library — DisconnectFromDDEServer

Standard Libraries Reference Manual 6-20 © National Instruments Corporation

DisconnectFromDDEServer

int status = DisconnectFromDDEServer (unsigned int conversationHandle);

Purpose
Disconnects your client program from a server application.

Parameter

Input

Return Value

Note DisconnectFromDDEServer ends only the client-server conversation that

conversationHandle identifies. Multiple, concurrent conversations can exist

between a client and a server.

See Also
ConnectToDDEServer, RegisterDDEServer

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

Name Type Description

status integer Refer to Table 6-3 for error codes.

Chapter 6 DDE Library — GetDDEErrorString

© National Instruments Corporation 6-21 Standard Libraries Reference Manual

GetDDEErrorString

char *message = GetDDEErrorString (int errorNum)

Purpose
Converts the error number that a DDE Library function returns into a meaningful
error message.

Parameter

Input

Return Value

Name Type Description

errorNum integer Error code a DDE function returns.

Name Type Description

message string Explanation of error.

Chapter 6 DDE Library — RegisterDDEServer

Standard Libraries Reference Manual 6-22 © National Instruments Corporation

RegisterDDEServer

int status = RegisterDDEServer (char serverName[],
ddeFuncPtr serverCallbackFunction,
void *callbackData);

Purpose
Registers your program as a valid DDE server, allowing other Windows applications to
connect to it for interprocess communication.

Parameters

Input

Return Value

Parameter Discussion
serverName must be a string of length from 1 to 255. You can use it without regard to case.

serverCallbackFunction is the name of a callback function that the DDE Library calls to
process client requests.

The callback function must be of the following form:

int (*ddeFuncPtr) (int handle, char *topicName, char *itemName,
int xType, int dataFmt, int dataSize,
void *dataPtr, void *callbackData);

xType specifies the type of request the client sent. serverCallbackFunction can receive the
following transaction types:

DDE_CONNECT—Received when a client requests a connection. topicName specifies the
connection topic. The server defines the set of valid topic names and uses them in different
ways. For example, Excel uses the topic name to specify the file the client asks to operate on.

Name Type Description

serverName string Name of the server.

serverCallbackFunction DDE function
pointer

Pointer to the callback function that
processes messages for the server.

callbackData void pointer Pointer to the user data.

Name Type Description

status integer Refer to Table 6-3 for error codes.

Chapter 6 DDE Library — RegisterDDEServer

© National Instruments Corporation 6-23 Standard Libraries Reference Manual

A client can have multiple connections to the same server as long as a different topic name
exists for each connection.

DDE_DISCONNECT—Received when a client requests the termination of a connection or when
Windows terminates the connection because of an internal error.

DDE_DATAREADY—Received when the client sends data through DDE to the server.
topicName, itemName, dataFmt, dataSize, and dataPtr contain significant data.
itemName can specify an object to which the data refers. For example, in Excel, the item
name specifies a cell. dataFmt is one of the Windows-defined data types, for
example, CF_TEXT. dataSize specifies the number of bytes in the data dataPtr points to.

Note The dataSize value is the value LabWindows/CVI receives from Windows. This

value can be larger than the actual number of bytes the client writes.

DDE_REQUEST—Received when the client requests that you send data to it through DDE.
itemName can specify an object to which the data refers. For example, in Excel, the item
name specifies a cell. dataFmt is one of the Windows-defined data types, for
example, CF_TEXT.

DDE_ADVISELOOP—Received when the client requests a hot or warm link, or advisory loop,
on a specific item. When a hot or warm link is in effect, the server is supposed to notify the
client whenever the item you specify changes value. The server notifies the client of the
change in value by calling AdviseDDEDataReady or BroadcastDDEDataReady.
itemName and dataFmt contain significant values. itemName can specify an object to
which the data item refers. For example, in Excel, the item name specifies a cell. dataFmt is
one of the Windows-defined data types, for example, CF_TEXT.

DDE_ADVISESTOP—Received when the client requests the termination of an advisory loop.
itemName contains the same value that the client used to set up the advisory loop.

DDE_EXECUTE—Received when the client requests the execution of a command. itemName
contains the command string. The server defines the set of valid command strings. For
example, Excel uses "[Save()]" to save a file.

Using This Function
RegisterDDEServer registers your program as a DDE server with the name you specify.
Clients that attempt to connect to your program must use the specified name. Thereafter,
RegisterDDEServer routes all client requests through the serverCallbackFunction
you specify.

You can register your program as a DDE server multiple times as long as you specify different
server names.

Chapter 6 DDE Library — RegisterDDEServer

Standard Libraries Reference Manual 6-24 © National Instruments Corporation

Note Return TRUE from the callback function if the request is successful. Otherwise,

return FALSE. The callback function should be short and should return as soon

as possible.

callbackData is a 4-byte value the DDE Library passes to the callback function each time the
DDE Library invokes the callback for the same server.

It is your responsibility to define the meaning of the callback data. The following examples
show you how you can use the callback data:

• You can register your program as a DDE server multiple times under different names. For
instance, you can use the same callback function for all the server instances by using the
callback data to differentiate between them.

• You can use the callback data as a pointer to a data object that you need to access in the
callback function. In this way, you do not need to declare the data object as a
global variable.

If you do not want to use the callback data, you can pass zero.

Note In the case of DDE_DISCONNECT, the value of callbackData is undefined.

See Also
ConnectToDDEServer, UnregisterDDEServer

Chapter 6 DDE Library — ServerDDEWrite

© National Instruments Corporation 6-25 Standard Libraries Reference Manual

ServerDDEWrite

int nbytes = ServerDDEWrite (unsigned int conversationHandle,
char itemName[], unsigned int dataFormat,
void *dataPointer, unsigned int dataSize,
unsigned int timeout);

Purpose
Writes data to a DDE client application when the client requests data.

Parameters

Input

Return Value

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, an Excel cell name.

dataFormat unsigned integer Valid data format; for example, CF_TEXT.

dataPointer void pointer Buffer that holds data.

dataSize unsigned integer Number of bytes to write. Limited to
64 KB under Windows 3.1 and
Windows 95.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

nbytes integer Number of bytes written to the server.
<0 = error; refer to Table 6-3 for error
codes

Chapter 6 DDE Library — ServerDDEWrite

Standard Libraries Reference Manual 6-26 © National Instruments Corporation

Parameter Discussion
dataFormat must be a valid data format Windows recognizes. Windows supports the
following valid data formats:

Refer to Microsoft programmer’s documentation for Windows for an in-depth discussion of
DDE programming and the meaning of each data format type.

Using This Function
ServerDDEWrite allows your program, acting as a DDE server, to send data to a client. You
should call this function only when your serverCallbackFunction receives a

DDE_REQUESTDATA transaction.

If you call the function at any other time, ServerDDEWrite stores the data until the client
requests it. If you call the function multiple times on the same conversation before the client
requests the data, ServerDDEWrite appends each new data set to the buffer that contains the
stored data.

If the client has a hot or warm link and you need to send data other than in response to a
DDE_REQUESTDATA transaction, use AdviseDDEDataReady or
BroadcastDDEDataReady.

If successful, ServerDDEWrite returns the number of bytes written. Otherwise,
ServerDDEWrite returns a negative error code.

See Also
RegisterDDEServer, AdviseDDEDataReady

CF_TEXT CF_PALETTE

CF_BITMAP CF_PENDATA

CF_METAFILEPICT CF_RIFF

CF_SYLK CF_WAVE

CF_DIF CF_OWNERDISPLAY

CF_TIFF CF_DSPTEXT

CF_OEMTEXT CF_DSPBITMAP

CF_DIB CF_DSPMETAFILEPICT

Chapter 6 DDE Library — SetUpDDEHotLink

© National Instruments Corporation 6-27 Standard Libraries Reference Manual

SetUpDDEHotLink

int status = SetUpDDEHotLink (unsigned int conversationHandle,
char itemName[], unsigned int dataFormat,
unsigned int timeout);

Purpose
This client function sets up a hot link, or advisory loop, between the client and the server.
SetUpDDEHotLink returns zero for success and a negative error code for failure.

Parameters

Input

Return Value

Parameter Discussion
itemName identifies the information in the server application to which the DDE link applies.
For example, the item name can represent an Excel range of cells by using the range
description R1C1:R10C10.

Note To the client, LabWindows/CVI does not distinguish between a hot link and a

warm link. For both types of links, the DDE Library calls the client callback

function with a transaction type of DDE_DATAREADY when the data item changes

at the server site. The new data is available in the dataPtr parameter of the

callback function. LabWindows/CVI has two different functions for setting up a

warm link or hot link in case some applications accept only one or the other kind

of link.

See Also
RegisterDDEServer, SetUpDDEWarmLink

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, an Excel cell name.

dataFormat unsigned integer Valid data format; for example, CF_TEXT.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

status integer Refer to Table 6-3 for error codes.

Chapter 6 DDE Library — SetUpDDEWarmLink

Standard Libraries Reference Manual 6-28 © National Instruments Corporation

SetUpDDEWarmLink

int status = SetUpDDEWarmLink (unsigned int conversationHandle,
char itemName[], unsigned int dataFormat,
unsigned int timeout);

Purpose
This client function sets up a warm link, or advisory loop, between the client and the server.
SetUpDDEWarmLink returns zero for success and a negative error code for failure.

Parameters

Input

Return Value

Parameter Discussion
itemName identifies the information in the server application to which the DDE link applies.
For example, the item name can represent an Excel range of cells by using the range
description R1C1:R10C10.

Note To the client, LabWindows/CVI does not distinguish between a hot link and a

warm link. For both types of links, the DDE Library calls the client callback

function with a transaction type of DDE_DATAREADY when the data item changes

at the server site. The new data is available in the dataPtr parameter of the

callback function. LabWindows/CVI has two different functions for setting up a

warm link or hot link in case some applications accept only one or the other kind

of link.

See Also
RegisterDDEServer, SetUpDDEHotLink

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, an Excel cell name.

dataFormat unsigned integer Valid data format; for example, CF_TEXT.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

status integer Refer to Table 6-3 for error codes.

Chapter 6 DDE Library — TerminateDDELink

© National Instruments Corporation 6-29 Standard Libraries Reference Manual

TerminateDDELink

int status = TerminateDDELink (unsigned int conversationHandle,
char itemName[], unsigned int dataFormat,
unsigned int timeout);

Purpose
Lets your program, acting as a DDE client, terminate an advisory loop you previously
established with the server through SetUpDDEWarmLink or SetUpDDEHotLink.

TerminateDDELink returns zero for success or a negative error code for failure.

Parameters

Input

Return Value

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

itemName string Uniquely identifies the output item; for
example, an Excel cell name.

dataFormat unsigned integer Valid data format; for example, CF_TEXT.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

status integer Refer to Table 6-3 for error codes.

Chapter 6 DDE Library — UnregisterDDEServer

Standard Libraries Reference Manual 6-30 © National Instruments Corporation

UnregisterDDEServer

int status = UnregisterDDEServer (char serverName[]);

Purpose
Unregisters your application program as a DDE server.

Parameter

Input

Return Value

See Also
RegisterDDEServer

Name Type Description

serverName string Name of the server.

Name Type Description

status integer Refer to Table 6-3 for error codes.

Chapter 6 DDE Library — Error Conditions

© National Instruments Corporation 6-31 Standard Libraries Reference Manual

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI
DDE Library, the status return value contains the error code. This code is a nonzero value that
specifies the type of error that occurred. Error codes are negative numbers. Table 6-3 lists the
currently defined error codes and the associated meanings.

Table 6-3. DDE Library Error Codes

Code Error Message

 0 kDDE_NoError

-1 -kDDE_UnableToRegisterService

-2 -kDDE_ExistingServer

-3 -kDDE_FailedToConnect

-4 -kDDE_ServerNotRegistered

-5 -kDDE_TooManyConversations

-9 -kDDE_InvalidParameter

-10 -kDDE_OutOfMemory

-12 -kDDE_NoConnectionEstablished

-13 -kDDE_NotThreadOfServer

-14 -kDDE_NotThreadOfClient

-16 -kDDE_AdvAckTimeOut

-17 -kDDE_Busy

-18 -kDDE_DataAckTimeOut

-19 -kDDE_DllNotInitialized

-20 -kDDE_DllUsage

-21 -kDDE_ExecAckTimeOut

-22 -kDDE_DataMismatch

-23 -kDDE_LowMemory

-24 -kDDE_MemoryError

-25 -kDDE_NotProcessed

-26 -kDDE_NoConvEstablished

Chapter 6 DDE Library — Error Conditions

Standard Libraries Reference Manual 6-32 © National Instruments Corporation

Note Error codes -16 to -33 correspond to native Windows DDE error codes that start

from 0x4000.

-27 -kDDE_PokeAckTimeOut

-28 -kDDE_PostMsgFailed

-30 -kDDE_ServerDied

-31 -kDDE_SysError

-32 -kDDE_UnadvAckTimeOut

-33 -kDDE_UnfoundQueueId

Table 6-3. DDE Library Error Codes (Continued)

Code Error Message

© National Instruments Corporation 7-1 Standard Libraries Reference Manual

7
TCP Library

This chapter describes the functions in the LabWindows/CVI TCP (Transmission Control
Protocol) Library. The TCP Library Function Overview section contains general information
about the TCP Library functions and panels. The TCP Library Function Reference section
contains an alphabetical list of function descriptions.

To use this library under Windows, you must have a version of winsock.dll. The DLL
comes with the program that drives the network card.

TCP Library Function Overview

This section contains general information about the TCP Library functions and network
communication using TCP. TCP Library functions provide a platform-independent interface
to the reliable, connection-oriented, byte-stream, network communication protocol.

TCP Library Function Panels
The TCP Library function panels are grouped in the tree structure in Table 7-1 according to
the types of operations they perform.

The first- and second-level headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings are the names of individual function panels. Each TCP Library function
panel generates one TCP Library function call.

Table 7-1. Functions in the TCP Library Function Tree

Class/Panel Name Function Name
Server Functions

Register TCP Server RegisterTCPServer
Server TCP Read ServerTCPRead
Server TCP Write ServerTCPWrite
Unregister TCP Server UnregisterTCPServer
Disconnect TCP Client DisconnectTCPClient

Client Functions
Connect to TCP Server ConnectToTCPServer
Client TCP Read ClientTCPRead
Client TCP Write ClientTCPWrite
Disconnect from TCP Server DisconnectFromTCPServer

Chapter 7 TCP Library — TCP Library Function Overview

Standard Libraries Reference Manual 7-2 © National Instruments Corporation

The online help with each panel contains specific information about operating each
function panel.

TCP Clients and Servers
Network communication using the TCP Library involves a client and a server in each
connection. A TCP server can send and receive information to and from a client application
through a network. A TCP client can send and request data to and from a server application.
Once registered, a server waits for clients to request connection to it. A client, however, can
request connection only to a pre-existing server.

With the LabWindows/CVI TCP Library, you can write programs to act as a TCP client or
server. Under Windows, you cannot run both a server and a client on the same computer. The
procedure for writing a program using TCP is similar to the procedure you follow for using
DDE. Refer to the sample program discussion in Chapter 6, DDE Library. Two additional
sample programs, tcpserv.prj and tcpclnt.prj, provide some guidelines on structuring
your TCP programs as a server or a client. These programs are provided as templates only and
require modification for operation on your computer.

To connect to a TCP server from a LabWindows/CVI program, you must have some
information about the application to which you would like to connect. All TCP server
applications must run on a specified host, which has a known host name, for example,
aaa.bbb.ccc, or a known IP address, for example, 123.456.78.90, associated with it. In
addition, each server has a unique port number on the host computer. These two pieces of
information identify different servers on the same computer or on different computers. Before
any client program can connect to a server, it must know the host name and server
port number.

If you want your program to act as a TCP server, you must call RegisterTCPServer in your
program. RegisterTCPServer establishes your program as the server associated with a port
number on the local host. Client applications can connect to your program by using the port
number associated with the server and either the host name or the IP address of the computer

Support Functions
Get Host IP Address GetTCPHostAddr
Get Host Machine Name GetTCPHostName
Get Peer IP Address GetTCPPeerAddr
Get Peer Machine Name GetTCPPeerName
Get System Socket Handle GetHostTCPSocketHandle
Set Disconnect Mode SetTCPDisconnectMode

Get Error String GetTCPErrorString
Get System Error String GetTCPSystemErrorString

Table 7-1. Functions in the TCP Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 7 TCP Library — TCP Library Function Overview

© National Instruments Corporation 7-3 Standard Libraries Reference Manual

on which the server application is currently running. The TCP Library calls your server
callback function whenever the conversation partner requests communication.

TCP Callback Function
Callback functions provide the mechanism for receiving notification of connection,
connection termination, and data availability. Similar to the method in which a callback
function responds to user interface events from your User Interface Library object files, a TCP
callback function responds to incoming TCP messages and information.

A callback function can respond to three types of TCP messages: TCP_CONNECT,
TCP_DISCONNECT, and TCP_DATAREADY.

If your program acts as a TCP server, client applications can trigger your TCP callback
function in a number of ways. Whenever a client application attempts to connect to your
server program or requests information from your program, the TCP Library invokes your
callback function to process the request.

The parameter prototype for the TCP callback function in LabWindows/CVI is defined
as follows:

int CallbackFunction (int handle, int xType, int errCode,
void *callbackData);

Table 7-2 lists the TCP transaction types, xType, that can trigger a callback function.

Refer to RegisterTCPServer and ConnectToTCPServer for more information about the
TCP callback function.

where handle represents the conversation handle

xType represents the transaction type; refer to Table 7-2 in this section

errCode for TCP_DISCONNECT is negative if the connection terminates
because of an error

callbackData is a user-defined data value

Table 7-2. TCP Transaction Types (xType)

xType Server Client When?

TCP_CONNECT Y N When a new client requests
connection.

TCP_DISCONNECT Y Y When conversation partner quits.

TCP_DATAREADY Y Y When conversation partner
sends data.

Chapter 7 TCP Library — TCP Library Function Reference

Standard Libraries Reference Manual 7-4 © National Instruments Corporation

Multithreading under Windows 95/NT
It is safe to use TCP Library in a multithreaded executable. No restrictions exist.

TCP Library Function Reference

This section describes each function in the LabWindows/CVI TCP Library in
alphabetical order.

Chapter 7 TCP Library — ClientTCPRead

© National Instruments Corporation 7-5 Standard Libraries Reference Manual

ClientTCPRead

int nbytes = ClientTCPRead (unsigned int conversationHandle,
void *dataBuffer, unsigned int dataSize,
unsigned int timeout);

Purpose
Reads data from a TCP server application.

Parameters

Input

Return Value

See Also
ConnectToTCPServer, ClientTCPWrite

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

dataBuffer void pointer Buffer in which to receive data.

dataSize unsigned integer Maximum number of bytes to read.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

nbytes integer Number of bytes read from the server.
<0 = error; refer to Table 7-3 for error
codes

Chapter 7 TCP Library — ClientTCPWrite

Standard Libraries Reference Manual 7-6 © National Instruments Corporation

ClientTCPWrite

int nbytes = ClientTCPWrite (unsigned int conversationHandle,
void *dataPointer, int dataSize,
unsigned int timeout);

Purpose
Writes data to a TCP server application.

Parameters

Input

Return Value

See Also
ConnectToTCPServer, ClientTCPRead

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

dataPointer void pointer Buffer that holds data.

dataSize unsigned integer Number of bytes to write.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

nbytes integer Number of bytes written to the server.
<0 = error; refer to Table 7-3 for error
codes

Chapter 7 TCP Library — ConnectToTCPServer

© National Instruments Corporation 7-7 Standard Libraries Reference Manual

ConnectToTCPServer

int status = ConnectToTCPServer (unsigned int *conversationHandle,
unsigned int portNumber, char *serverHostName,
tcpFuncPtr clientCallbackFunction,
void *callbackData, unsigned int timeout);

Purpose
Establishes a conversation between your program and a pre-existing server. Your program
becomes a client.

Parameters

Input

Output

Return Value

Name Type Description

portNumber unsigned integer Uniquely identifies a server on a single
computer.

serverHostName string Host name or IP address of the server
computer; for example, aaa.bbb.ccc
or 123.456.78.90.

clientCallbackFunction TCP function
pointer

Pointer to the callback function that
processes messages for the client.

callbackData void pointer User-defined data.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — ConnectToTCPServer

Standard Libraries Reference Manual 7-8 © National Instruments Corporation

Parameter Discussion
clientCallbackFunction is the name of the function the TCP Library calls to process
messages your program receives as a TCP client.

The callback function must be of the following form:

int (*tcpFuncPtr) (int handle, int xType, int errCode,
void *callbackData);

xType specifies the type of message the server sends. The client callback function can receive
the following transaction types:

TCP_DISCONNECT

TCP_DATAREADY

Use errCode only when the transaction type is TCP_DISCONNECT.

TCP_DISCONNECT—Received when a server requests the termination of a connection or
when a connection terminates because of an error. If the connection terminates because of an
error, the errCode parameter contains a negative error code. Refer to Table 7-3 at the end of
this chapter for the list of error codes.

TCP_DATATREADY—Received when the server sends data through TCP to the client. Your
program, acting as the client, calls ClientTCPRead to obtain the data.

Note Return TRUE for the client callback function if it can process the message

successfully. Otherwise, return FALSE. The callback function should be short

and should return as soon as possible.

callbackData is a 4-byte value the TCP Library passes to the callback function each time the
TCP Library invokes the callback for the same client.

It is your responsibility to define the meaning of the callback data. One way to use
callbackData is as a pointer to a data object that you need to access in the callback function.
By doing this, you can avoid declaring the data object as a global variable.

If you do not want to use callbackData, you can pass zero.

See Also
RegisterTCPServer, DisconnectFromTCPServer

Chapter 7 TCP Library — DisconnectFromTCPServer

© National Instruments Corporation 7-9 Standard Libraries Reference Manual

DisconnectFromTCPServer

int status = DisconnectFromTCPServer (unsigned int conversationHandle);

Purpose
Disconnects your client program from a server application.

Parameter

Input

Return Value

Note DisconnectFromTCPServer terminates only the connection

conversationHandle identifies. There can be more than one conversation between

a client and a server.

See Also
ConnectToTCPServer, RegisterTCPServer, SetTCPDisconnectMode

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — DisconnectTCPClient

Standard Libraries Reference Manual 7-10 © National Instruments Corporation

DisconnectTCPClient

int status = DisconnectTCPClient (unsigned int conversationHandle);

Purpose
This TCP server function terminates a connection with a client.

Parameter

Input

Return Value

Note DisconnectTCPClient terminates only the connection conversationHandle

identifies. There can be more than one conversation between a client and a server.

See Also
RegisterTCPServer, SetTCPDisconnectMode

Name Type Description

conversationHandle unsigned integer Uniquely identifies the connection.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — GetHostTCPSocketHandle

© National Instruments Corporation 7-11 Standard Libraries Reference Manual

GetHostTCPSocketHandle

int status = GetHostTCPSocketHandle (unsigned int connectionHandle,
int systemSocket);

Purpose
Obtains the system socket handle that corresponds to a TCP Library connection.

Parameters

Input

Output

Return Value

Name Type Description

connectionHandle unsigned integer TCP Library conversation handle you
obtain from ConnectToTCPServer or
receive in a server callback as the handle
parameter of a TCP_DISCONNECT
message.

Name Type Description

systemSocket unsigned integer System socket handle for the connection
connectionHandle identifies.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — GetTCPErrorString

Standard Libraries Reference Manual 7-12 © National Instruments Corporation

GetTCPErrorString

char *message = GetTCPErrorString (int errorNum);

Purpose
Converts the error number a TCP Library function returns into a meaningful error message.

Parameter

Input

Return Value

See Also
GetTCPSystemErrorString

Name Type Description

errorNum integer Status value a TCP function returns.

Name Type Description

message string Explanation of error.

Chapter 7 TCP Library — GetTCPHostAddr

© National Instruments Corporation 7-13 Standard Libraries Reference Manual

GetTCPHostAddr

int status = GetTCPHostAddr (char buffer[], int bufferSize);

Purpose
Obtains the IP address of the computer on which your program is currently running.

Parameters

Input

Output

Parameter Discussion

GetTCPHostAddr fills in buffer with the IP address of your computer. The IP address is in
the dot format, as in "130.164.1.1".

Return Value

Name Type Description

bufferSize integer Number of bytes in buffer, including space
for the ASCII NUL byte.

Name Type Description

buffer character array Buffer GetTCPHostAddr fills with the
IP address of the computer your program is
currently running on.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — GetTCPHostName

Standard Libraries Reference Manual 7-14 © National Instruments Corporation

GetTCPHostName

int status = GetTCPHostName (char buffer[], int bufferSize);

Purpose
Obtains the name of the computer on which your program is currently running.

Parameters

Input

Output

Return Value

Name Type Description

bufferSize integer Number of bytes in buffer, including space
for the ASCII NUL byte.

Name Type Description

buffer character array Buffer GetTCPHostName fills with the
name of the computer your program is
currently running on.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — GetTCPPeerAddr

© National Instruments Corporation 7-15 Standard Libraries Reference Manual

GetTCPPeerAddr

int status = GetTCPPeerAddr (unsigned int connectionHandle,
char buffer[], int bufferSize);

Purpose
Obtains the IP address of the computer on which a remote client or server is currently running.

Parameters

Input

Output

Return Value

Parameter Discussion
GetTCPPeerAddr fills in buffer with the IP address of the remote client or server computer.
The IP address is in the dot format, as in "130.164.1.1".

Name Type Description

connectionHandle unsigned integer TCP Library conversation handle you
obtain from ConnectToTCPServer or
receive in a server callback as the handle
parameter of a TCP_CONNECT message.

bufferSize integer Number of bytes in buffer, including space
for the ASCII NUL byte.

Name Type Description

buffer character array Buffer GetTCPPeerAddr fills with the
IP address of the computer the remote
client or server program is currently
running on.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — GetTCPPeerName

Standard Libraries Reference Manual 7-16 © National Instruments Corporation

GetTCPPeerName

int status = GetTCPPeerName (unsigned int connectionHandle,
 char buffer[], int bufferSize);

Purpose
Obtains the name of the computer on which a remote client or server is currently running.

Parameters

Input

Output

Return Value

Name Type Description

connectionHandle unsigned integer TCP Library conversation handle you
obtain from ConnectToTCPServer or
receive in a server callback as the handle
parameter of a TCP_CONNECT message.

bufferSize integer Number of bytes in buffer, including space
for the ASCII NUL byte.

Name Type Description

buffer character array Buffer GetTCPPeerName fills with the
name of the computer the remote client or
server program is currently running on.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — GetTCPSystemErrorString

© National Instruments Corporation 7-17 Standard Libraries Reference Manual

GetTCPSystemErrorString

char *errorMsgString = GetTCPSystemErrorString (void);

Note Only the Windows versions of LabWindows/CVI support

GetTCPSystemErrorString.

Purpose
Obtains a system message that describes the error that caused a TCP Library function to fail.
The messages GetTCPSystemErrorString returns are sometimes more descriptive than
the error codes the TCP Library functions return.

To obtain the correct system error message, you must call GetTCPSystemErrorString
immediately after you call the TCP Library function that failed.

Parameters
None.

Return Value

See Also
GetTCPErrorString

Name Type Description

errorMsgString string System error message string.

Chapter 7 TCP Library — RegisterTCPServer

Standard Libraries Reference Manual 7-18 © National Instruments Corporation

RegisterTCPServer

int status = RegisterTCPServer (unsigned int portNumber,
tcpFuncPtr serverCallbackFunction,
void *callbackData);

Purpose
Registers your program as a valid TCP server and allows other applications to connect to it
for network communication.

Parameters

Input

Return Value

Parameter Discussion
serverCallbackFunction is the name of the function the TCP Library calls to process
client requests.

The callback function must be of the following form:

int (*tcpFuncPtr) (int handle, int xType, int errCode,
void *callbackData);

xType specifies the type of message the server sends. The server callback function can receive
the following transaction types:

TCP_CONNECT—Received when a client requests a connection.

TCP_DISCONNECT—Received when a client requests the termination of a connection or when
a connection terminates because of an error. If the connection terminates because of an error,

Name Type Description

portNumber unsigned integer Uniquely identifies a server on a single
computer.

serverCallbackFunction TCP function
pointer

Pointer to the callback function that
processes messages for the server.

callbackData void pointer Pointer to the user data.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — RegisterTCPServer

© National Instruments Corporation 7-19 Standard Libraries Reference Manual

the errCode parameter contains a negative error code. Refer to Table 7-3 at the end of this
chapter for error codes.

TCP_DATATREADY—Received when the client sends data through TCP to the server. Your
program, acting as the server, calls ServerTCPRead to obtain the data.

Use errCode only when the transaction type is TCP_DISCONNECT.

Note Return TRUE for the server callback function if the request is successful.

Otherwise, return FALSE. Server callbacks should be short and should return as

soon as possible.

callbackData is a 4-byte value the TCP Library passes to the callback function each time the
TCP Library invokes the callback for the same server.

It is your responsibility to define the meaning of the callback data. The following examples
show you how you can use the callback data:

• You can register your program as a TCP server multiple times under different port
numbers. You can use the same callback function for all the server instances by using the
callback data to differentiate between them.

• You can use the callback data as a pointer to a data object that you need to access in the
callback function. By doing this, you can avoid declaring the data object as a
global variable.

If you do not want to use the callback data, you can pass zero.

See Also
ConnectToTCPServer, UnregisterTCPServer

Chapter 7 TCP Library — ServerTCPRead

Standard Libraries Reference Manual 7-20 © National Instruments Corporation

ServerTCPRead

int nbytes = ServerTCPRead (unsigned int conversationHandle,
void *dataBuffer, unsigned int dataSize,
unsigned int timeout);

Purpose
Reads data from a TCP client application.

Parameters

Input

Return Value

See Also
RegisterTCPServer, ServerTCPWrite

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

dataBuffer void pointer Buffer in which to receive data.

dataSize unsigned integer Number of bytes to read.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

nbytes integer Number of bytes read from the client.
<0 = error; refer to Table 7-3 for error
codes

Chapter 7 TCP Library — ServerTCPWrite

© National Instruments Corporation 7-21 Standard Libraries Reference Manual

ServerTCPWrite

int nbytes = ServerTCPWrite (unsigned int conversationHandle,
void *dataPointer, unsigned int dataSize,
unsigned int timeout);

Purpose
Writes data to a TCP client application.

Parameters

Input

Return Value

See Also
RegisterTCPServer, ServerTCPRead

Name Type Description

conversationHandle unsigned integer Uniquely identifies the conversation.

dataPointer void pointer Buffer that holds data.

dataSize unsigned integer Number of bytes to write.

timeout unsigned integer Timeout in milliseconds.

Name Type Description

nbytes integer Number of bytes written to the client.
<0 = error; refer to Table 7-3 for error
codes

Chapter 7 TCP Library — SetTCPDisconnectMode

Standard Libraries Reference Manual 7-22 © National Instruments Corporation

SetTCPDisconnectMode

int status = SetTCPDisconnectMode (unsigned int conversationHandle,
 int disconnectMode);

Purpose
Tells the TCP Library whether to close the local conversation handle when a remote client or
server terminates a connection. There are two modes: auto disconnect and manual disconnect.

In the auto disconnect mode (TCP_DISCONNECT_AUTO), the TCP Library closes the local
conversation handle after it invokes your client or server callback with the TCP_DISCONNECT
message. If, however, the library invokes the TCP_DISCONNNECT message while your
program is already nested in a ServerTCPRead or ClientTCPRead call on the same
conversation handle, the library does not close the conversation handle until the
ServerTCPRead or ClientTCPRead function completes.

In the manual disconnect mode (TCP_DISCONNECT_MANUAL), the TCP Library never closes
the local conversation handle automatically. You must call DisconnectFromTCPServer or
DisconnectTCPClient to close the conversation handle. This method allows you to read
data from the connection after you receive a TCP_DISCONNECT for the connection. You
should close the handle to the connection after you have read all the data.

If you do not call SetTCPDisconnectMode, the TCP Library uses the auto
disconnect method.

Parameters

Input

Name Type Description

conversationHandle unsigned integer TCP Library conversation handle you
obtain from ConnectToTCPServer or
receive in a server callback as the handle
parameter of a TCP_CONNECT message.

disconnectMode integer Tells the TCP Library whether to close the
conversation handle automatically. Use
TCP_DISCONNECT_AUTO or
TCP_DISCONNECT_MANUAL.

Chapter 7 TCP Library — SetTCPDisconnectMode

© National Instruments Corporation 7-23 Standard Libraries Reference Manual

Return Value

See Also
DisconnectFromTCPServer, DisconnectTCPClient

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — UnregisterTCPServer

Standard Libraries Reference Manual 7-24 © National Instruments Corporation

UnregisterTCPServer

int status = UnregisterTCPServer (unsigned int portNumber);

Purpose
Unregisters your server application program as a TCP server.

Parameter

Input

Return Value

See Also
RegisterTCPServer

Name Type Description

portNumber unsigned integer Uniquely identifies a server on a single
computer.

Name Type Description

status integer Refer to Table 7-3 for error codes.

Chapter 7 TCP Library — Error Conditions

© National Instruments Corporation 7-25 Standard Libraries Reference Manual

Error Conditions

If an error condition occurs during a call to any of the functions in the LabWindows/CVI
TCP Library, the status return value contains the error code. This code is a nonzero value that
specifies the type of error that occurred. Error codes are negative numbers. Table 7-3 lists the
currently defined error codes and the associated meanings.

Table 7-3. TCP Library Error Codes

Code Error Message

 0 kTCP_NoError

-1 -kTCP_UnableToRegisterService

-2 -kTCP_UnableToEstablishConnection

-3 -kTCP_ExistingServer

-4 -kTCP_FailedToConnect

-5 -kTCP_ServerNotRegistered

-6 -kTCP_TooManyConnections

-7 -kTCP_ReadFailed

-8 -kTCP_WriteFailed

-9 -kTCP_InvalidParameter

-10 -kTCP_OutOfMemory

-11 -kTCP_TimeOutErr

-12 -kTCP_NoConnectionEstablished

-13 -kTCP_GeneralIOErr

-14 -kTCP_ConnectionClosed

-15 -kTCP_UnableToLoadWinsockDLL

-16 -kTCP_IncorrectWinsockDLLVersion

-17 -kTCP_NetworkSubsystemNotReady

-18 -kTCP_ConnectionsStillOpen

© National Instruments Corporation 8-1 Standard Libraries Reference Manual

8
Utility Library

This chapter describes the functions in the LabWindows/CVI Utility Library. The Utility
Library contains functions that do not fit into any of the other LabWindows/CVI libraries. The
Utility Library Function Overview section contains general information about the Utility
Library functions and panels. The Utility Library Function Reference section contains an
alphabetical list of function descriptions.

Utility Library Function Overview

The Utility Library function panels are grouped in the tree structure in Table 8-1 according to
the type of operations they perform.

The first- and second-level headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings are the names of individual function panels.

The following shows the structure of the ActiveX Automation Library function tree.

Timer/Wait
Date/Time
Keyboard
File Utilities
Directory Utilities
External Modules
Port I/O
Standard Input/Output Window
Run-Time Error Reporting

Old-Style Functions
Interrupts
Physical Memory Access
Persistent Variable
Task Switching
Launching Executables

Extended Functions
Miscellaneous

Chapter 8 Utility Library — Utility Library Function Overview

Standard Libraries Reference Manual 8-2 © National Instruments Corporation

Table 8-1. Functions in the Utility Library Function Tree

Class/Panel Name Function Name
Timer/Wait

Timer Timer
Delay Delay
Synchronized Wait SyncWait

Date/Time
Date in ASCII Format DateStr
Time in ASCII Format TimeStr
Get System Date GetSystemDate
Set System Date SetSystemDate
Get System Time GetSystemTime
Set System Time SetSystemTime

Keyboard
Key Hit? KeyHit
Get a Keystroke GetKey

File Utilities
Delete File DeleteFile
Rename File RenameFile
Copy File CopyFile
Get File Size GetFileSize
Get File Date GetFileDate
Set File Date SetFileDate
Get File Time GetFileTime
Set File Time SetFileTime
Get File Attributes GetFileAttrs
Set File Attributes SetFileAttrs
Get First File GetFirstFile
Get Next File GetNextFile
Make Pathname MakePathname
Split Path SplitPath

Directory Utilities
Get Directory GetDir
Get Project Directory GetProjectDir
Get Module Directory GetModuleDir
Get Full Path from Project GetFullPathFromProject
Set Directory SetDir
Make Directory MakeDir
Delete Directory DeleteDir
Get Drive GetDrive
Set Drive SetDrive

External Modules
Load External Module LoadExternalModule
Load External Module Ex LoadExternalModuleEx
Run External Module RunExternalModule
Get External Module Address GetExternalModuleAddr

Chapter 8 Utility Library — Utility Library Function Overview

© National Instruments Corporation 8-3 Standard Libraries Reference Manual

External Modules (continued)
Unload External Module UnloadExternalModule
Release External Module ReleaseExternalModule

Port I/O
Input Byte from Port inp
Input Word from Port inpw
Output Byte to Port outp
Output Word to Port outpw

Standard Input/Output Window
Clear Screen Cls
Get Stdio Window Options GetStdioWindowOptions
Set Stdio Window Options SetStdioWindowOptions
Get Stdio Window Position GetStdioWindowPosition
Set Stdio Window Position SetStdioWindowPosition
Get Stdio Window Size GetStdioWindowSize
Set Stdio Window Size SetStdioWindowSize
Get Stdio Window Visibility GetStdioWindowVisibility
Set Stdio Window Visibility SetStdioWindowVisibility
Get Stdio Port GetStdioPort
Set Stdio Port SetStdioPort

Run-Time Error Reporting
Set Break on Library Errors SetBreakOnLibraryErrors
Get Break on Library Errors GetBreakOnLibraryErrors
Set Break on Protection Errors SetBreakOnProtectionErrors
Get Break on Protection Errors GetBreakOnProtectionErrors
Old-Style Functions

Enable Break on Library Errors DisableBreakOnLibraryErrors
Disable Break on Library Errors EnableBreakOnLibraryErrors

Interrupts
Disable Interrupts DisableInterrupts
Enable Interrupts EnableInterrupts
Get Interrupt State GetInterruptState

Physical Memory Access
Read from Physical Memory ReadFromPhysicalMemory
Read from Physical Memory Ex ReadFromPhysicalMemoryEx
Write to Physical Memory WriteToPhysicalMemory
Write to Physical Memory Ex WriteToPhysicalMemoryEx
Map Physical Memory MapPhysicalMemory
Unmap Physical Memory UnMapPhysicalMemory

Persistent Variable
Set Persistent Variable SetPersistentVariable
Get Persistent Variable GetPersistentVariable

Task Switching
Disable Task Switching DisableTaskSwitching
Enable Task Switching EnableTaskSwitching

Table 8-1. Functions in the Utility Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 8 Utility Library — Utility Library Function Overview

Standard Libraries Reference Manual 8-4 © National Instruments Corporation

Launching Executables
Launch Executable LaunchExecutable
Extended Functions

Launch Executable Extended LaunchExecutableEx
Has Executable Terminated? ExecutableHasTerminated
Terminate Executable TerminateExecutable
Retire Executable Handle RetireExecutableHandle

Miscellaneous
System Help SystemHelp
Get CVI Version GetCVIVersion
Get Current Platform GetCurrentPlatform
In Standalone Executable? InStandaloneExecutable
Run-Time Engine Detached? CVIRTEHasBeenDetached
Initialize CVI Run-Time Engine InitCVIRTE
Close CVI Run-Time Engine CloseCVIRTE
Low-Level Support Driver Loaded CVILowLevelSupportDriverLoaded
Beep Beep
Breakpoint Breakpoint
Round Real to Nearest Integer RoundRealToNearestInteger
Truncate Real Number TruncateRealNumber
Get Window Display Setting GetWindowDisplaySetting
Check for Duplicate Instance CheckForDuplicateAppInstance

Table 8-1. Functions in the Utility Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 8 Utility Library — Utility Library Function Reference

© National Instruments Corporation 8-5 Standard Libraries Reference Manual

Class Descriptions

• Timer/Wait functions use the system timer, including functions that wait on a timed basis.

• Date/Time functions return the date or time in ASCII or integer formats and set the date
or time.

• Keyboard functions provide access to user keystrokes.

• File Utilities functions manipulate files.

• Directory Utilities functions manipulate directories and disk drives.

• External Modules functions load, execute, and unload files that contain compiled code.

• Port I/O functions read and write data from I/O ports; available only under Windows.

• Standard Input/Output Window functions control various attributes of the Standard
Input/Output window.

• Run-Time Error Reporting functions enable and disable the features that break execution
when certain types of errors occur.

• Interrupts functions disable and enable the occurrence of interrupts.

• Physical Memory Access functions read and write data from and to physical memory
addresses; supported only under Windows.

• Persistent Variable functions store and retrieve an integer value across multiple builds
and executions of a project in the LabWindows/CVI development environment.

• Task Switching functions control whether a user can switch to another task when running
your program under Windows.

• Launching Executables functions start another executable, check whether it is still
running, and terminate it.

• Miscellaneous functions perform a variety of operations that do not fit into any of the
other function classes.

The online help with each panel contains specific information about operating each
function panel.

Utility Library Function Reference

This section describes each of the functions in the LabWindows/CVI Utility Library in
alphabetical order.

Chapter 8 Utility Library — Beep

Standard Libraries Reference Manual 8-6 © National Instruments Corporation

Beep

void Beep (void);

Purpose
Sounds the speaker.

Parameters
None.

Return Value
None.

Chapter 8 Utility Library — Breakpoint

© National Instruments Corporation 8-7 Standard Libraries Reference Manual

Breakpoint

void Breakpoint (void);

Purpose
Suspends program operation. While the program is suspended, you can inspect or modify
variables and use many other features of the LabWindows/CVI interactive program.

Calling Breakpoint with the debugging level set to None or from a compiled module has
no effect.

Parameters
None.

Return Value
None.

Chapter 8 Utility Library — CheckForDuplicateAppInstance

Standard Libraries Reference Manual 8-8 © National Instruments Corporation

CheckForDuplicateAppInstance

int status = CheckForDuplicateAppInstance (int activateOtherInstance,
int *thereIsAnotherInstance);

Purpose
Determines if another copy of the same executable is running, but only if the other copy has
already called this function. You can pass ACTIVATE_OTHER_INSTANCE in
activateOtherInstance to bring the other copy to the front.

Use CheckForDuplicateAppInstance to prevent two instances of your application from
running at the same time.

Note Only the Windows 95/NT versions of LabWindows/CVI support

CheckForDuplicateAppInstance

For other platforms, CheckForDuplicateAppInstance always returns -1.

Parameters

Input

Output

Return Value

Name Type Description

activateOtherInstance integer Specifies whether to bring the other
application instance to the front. Valid
values are
ACTIVATE_OTHER_INSTANCE or
DO_NOT_ACTIVATE_OTHER_INSTANCE

Name Type Description

thereIsAnotherInstance integer 1 if another instance of this executable
exists; otherwise, 0. If
CheckForDuplicateAppInstance
returns an error code, this variable is
always set to zero.

Name Type Description

status integer Indicates whether the function
succeeded.

Chapter 8 Utility Library — CheckForDuplicateAppInstance

© National Instruments Corporation 8-9 Standard Libraries Reference Manual

Return Codes

Example
#include <cvirte.h>
int main (int argc, char *argv[])
{

int thereIsAnother;
if (InitCVIRTE (0, argv, 0) == 0)

return -1; /* out of memory */
if (CheckForDuplicateAppInstance (ACTIVATE_OTHER_INSTANCE,

&thereIsAnother) < 0)
return -1; /* out of memory, or not Win 95/NT */

if (thereIsAnother)
return 0; /* prevent duplicate instance */

return 0;
}

Code Description

 0 Success.

-1 You are running on a platform other than Windows 95/NT.

-2 Could not allocate system resources needed to check for a
duplicate application instance.

Chapter 8 Utility Library — CloseCVIRTE

Standard Libraries Reference Manual 8-10 © National Instruments Corporation

CloseCVIRTE

void CloseCVIRTE (void);

Purpose
Releases memory that InitCVIRTE allocated in the LabWindows/CVI Run-time Engine for
a particular DLL.

If you call InitCVIRTE from DllMain, you also should call CloseCVIRTE from DllMain.
You should call it in response to the DLL_PROCESS_DETACH message just before you return
from DllMain.

Parameters
None.

Return Value
None.

Chapter 8 Utility Library — Cls

© National Instruments Corporation 8-11 Standard Libraries Reference Manual

Cls

void Cls (void);

Purpose
Clears the Standard I/O window.

Parameters
None.

Return Value
None.

Chapter 8 Utility Library — CopyFile

Standard Libraries Reference Manual 8-12 © National Instruments Corporation

CopyFile

int result = CopyFile (char sourceFileName[], char targetFileName[]);

Purpose
Copies the contents of an existing file to another file.

Parameters

Input

Return Value

Return Codes

Name Type Description

sourceFileName string File to copy.

targetFileName string Copy of the original file.

Name Type Description

result integer Result of the copy operation.

Code Description

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path for either of the filenames.

-6 Access denied.

-7 Specified path is a directory, not a file.

-8 Disk is full.

Chapter 8 Utility Library — CopyFile

© National Instruments Corporation 8-13 Standard Libraries Reference Manual

Parameter Discussion
sourceFileName and targetFileName can contain wildcard characters '?' and '*'. If
sourceFileName has wildcards, CopyFile copies all matching files. If targetFileName has
wildcards, the function matches it to sourceFileName. If the target file is a directory,
CopyFile copies the existing file or group of files into the directory.

sourceFileName also can be the empty string "", in which case CopyFile copies the file
found by the most recent call to GetFirstFile or GetNextFile.

Chapter 8 Utility Library — CVILowLevelSupportDriverLoaded

Standard Libraries Reference Manual 8-14 © National Instruments Corporation

CVILowLevelSupportDriverLoaded

int loaded = CVILowLevelSupportDriverLoaded (void);

Note Only the Windows 95/NT versions of LabWindows/CVI support

CVILowLevelSupportDriverLoaded.

Purpose
Returns an indication of whether the LabWindows/CVI low-level support driver was loaded
at startup. Table 8-2 lists Utility Library functions that require the LabWindows/CVI
low-level driver.

Note Most of these functions do not return an error if the low-level support driver is not

loaded. To make sure your calls to these functions can execute correctly, call

CVILowLevelSupportDriverLoaded at the beginning of your program.

Both the LabWindows/CVI development environment and run-time engine automatically
load the low-level support driver at startup if it is on disk. The low-level support driver ships
with LabWindows/CVI. The Create Distribution Kit command in the Project window gives
you an option to include it with your standalone executables or DLLs.

Table 8-2. Functions That Require Low-Level Driver

Function Platforms

inp Windows NT

inpw Windows NT

outp Windows NT

outpw Windows NT

ReadFromPhysicalMemory Windows 95/NT

ReadFromPhysicalMemoryEx Windows 95/NT

WriteToPhysicalMemory Windows 95/NT

WriteToPhysicalMemoryEx Windows 95/NT

MapPhysicalMemory Windows 95/NT

UnMapPhysicalMemory Windows 95/NT

DisableInterrupts Windows 95

EnableInterrupts Windows 95

DisableTaskSwitching Windows 95

Chapter 8 Utility Library — CVILowLevelSupportDriverLoaded

© National Instruments Corporation 8-15 Standard Libraries Reference Manual

Parameters
None.

Return Value

Return Codes

Name Type Description

loaded integer Indicates whether the LabWindows/CVI
low-level support driver was loaded
at startup.

Code Description

1 Low-level support driver was loaded at startup.

0 Low-level support driver was not loaded at startup.

Chapter 8 Utility Library — CVIRTEHasBeenDetached

Standard Libraries Reference Manual 8-16 © National Instruments Corporation

CVIRTEHasBeenDetached

int hasBeenDetached = CVIRTEHasBeenDetached (void);

Note Only the Windows 95/NT versions of LabWindows/CVI support

CVIRTEHasBeenDetached.

Purpose
Indicates whether Windows 95/NT has detached the LabWindows CVI Run-time Engine
from your standalone executable process. The operating system detaches the run-time engine
from a process in the following cases:

• The process terminates.

• The process dynamically unloads a DLL that uses the run-time engine, and the process
does not directly link to the run-time engine.

You might need to use CVIRTEHasBeenDetached if you call LabWindows/CVI library
functions in response to a PROCESS_DETACH message in the DllMain function of a DLL. In
some cases, Windows 95/NT sends a PROCESS_DETACH message to the LabWindows/CVI
Run-time Engine before it sends a PROCESS_DETACH message to your DLL. When the
LabWindows/CVI Run-time Engine receives a PROCESS_DETACH message, it releases all the
system resources it has acquired. When, in response to the PROCESS_DETACH message, your
DLL calls LabWindows/CVI library functions that assume the system resources are still
present, a general protection fault occurs.

A similar problem can occur when you call the atexit function in a DLL to register a routine
for the ANSI C library to execute when your DLL unloads. The ANSI C library calls your
routine when the DLL receives a PROCESS_DETACH message. This can occur after the
LabWindows/CVI Run-time Engine receives a PROCESS_DETACH message. If your
registered function calls LabWindows/CVI library functions that assume the system resources
are still present, a general protection fault occurs.

To prevent such problems, call LabWindows/CVI functions from the PROCESS_DETACH code
and registered functions in your DLL only if CVIRTEHasBeenDetached returns 0.

Note CVIRTEHasBeenDetached always returns 0 when you call it in the

LabWindows/CVI development environment or on platforms other than

Windows 95/NT.

Parameters
None.

Chapter 8 Utility Library — CVIRTEHasBeenDetached

© National Instruments Corporation 8-17 Standard Libraries Reference Manual

Return Value

Example:
int myPanel = 0;
static void CleanupPanels (void)
{

if (! CVIRTEHasBeenDetached())
if (myPanel > 0)

DiscardPanel(myPanel);
}
int CreatePanel (void)
{

if ((myPanel = LoadPanel (0, “my.uir”, MY_PANEL) < 0)
return 0;

atexit (CleanupPanels)
return 1;

}

Name Type Description

hasBeenDetached integer 1 = The run-time engine has already
received the PROCESS_DETACH
message. Do not call LabWindows/CVI
library functions.
0 = The run-time engine has not yet
received a PROCESS_DETACH message.
You can safely call LabWindows/CVI
library functions.

Chapter 8 Utility Library — DateStr

Standard Libraries Reference Manual 8-18 © National Instruments Corporation

DateStr

char *s = DateStr (void);

Purpose
Returns a 10-character string in the form MM-DD-YYYY, where MM is the month, DD is the
day, and YYYY is the year.

Parameters
None.

Return Value

Name Type Description

s 10-character string Date in MM-DD-YYYY format.

Chapter 8 Utility Library — Delay

© National Instruments Corporation 8-19 Standard Libraries Reference Manual

Delay

void Delay (double numberOfSeconds);

Purpose
Waits the number of seconds numberOfSeconds indicates. The resolution under Windows is
normally 1 ms. If, however, you set the useDefaultTimer configuration option to True, the
resolution is 55 ms.

The resolution on Sun Solaris is 1 ms.

Parameter

Input

Return Value
None.

Name Type Description

numberOfSeconds double-precision Number of seconds to wait.

Chapter 8 Utility Library — DeleteDir

Standard Libraries Reference Manual 8-20 © National Instruments Corporation

DeleteDir

int result = DeleteDir (char directoryName[]);

Purpose
Deletes an existing directory.

Parameter

Input

Return Value

Return Codes

Name Type Description

directoryName string Name of directory to delete.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 Directory not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-6 Access denied, or directory not empty.

-7 Path is a file, not a directory.

Chapter 8 Utility Library — DeleteFile

© National Instruments Corporation 8-21 Standard Libraries Reference Manual

DeleteFile

int result = DeleteFile (char fileName[]);

Purpose
Deletes an existing file from disk.

Parameter

Input

Return Value

Return Codes

Parameter Discussion
fileName can contain wildcard characters '?' and '*', in which case DeleteFile deletes all
matching files.

fileName also can be the empty string "", in which case DeleteFile deletes the file found
by the most recent call to GetFirstFile or GetNextFile.

Name Type Description

fileName string File to delete.

Name Type Description

result integer Result of the delete operation.

Code Description

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path; for example, c:filename in Windows.

-6 Access denied.

-7 Specified path is a directory, not a file.

Chapter 8 Utility Library — DisableBreakOnLibraryErrors

Standard Libraries Reference Manual 8-22 © National Instruments Corporation

DisableBreakOnLibraryErrors

void DisableBreakOnLibraryErrors (void);

Purpose
DisableBreakOnLibraryErrors directs LabWindows/CVI not to display a run-time error
dialog box when a National Instruments library function reports an error.

In general, you should use the Break on Library Errors checkbox in the Run Options
command of the Project window to disable this option. However, you can use this function in
conjunction with EnableBreakOnLibraryErrors to temporarily suppress the Break on
Library Errors feature around a segment of code. DisableBreakOnLibraryErrors does
not affect the state of the Break on Library Errors checkbox in the Run Options command of
the Project window.

Note SetBreakOnLibraryErrors obsoletes DisableBreakOnLibraryErrors.

Parameters
None.

Return Value
None.

Chapter 8 Utility Library — DisableInterrupts

© National Instruments Corporation 8-23 Standard Libraries Reference Manual

DisableInterrupts

void DisableInterrupts (void);

Purpose
Uses the CLI instruction to turn off all maskable 80x86 interrupts under Windows 3.1 and
Windows 95. Under UNIX, DisableInterrupts uses sigblock to block all
blockable signals.

Note Under Windows 95, DisableInterrupts requires the LabWindows/CVI

low-level support driver. LabWindows/CVI loads the driver at startup if it is on

disk. You can check whether LabWindows/CVI loaded the driver at startup by

calling CVILowLevelSupportDriverLoaded.

Note Under Windows NT, EnableInterrupts and DisableInterrupts have no

effect. Interrupts are always enabled while your program is running at the user

level, as opposed to the kernel level.

Parameters
None.

Return Value
None.

See Also
CVILowLevelSupportDriverLoaded

Chapter 8 Utility Library — DisableTaskSwitching

Standard Libraries Reference Manual 8-24 © National Instruments Corporation

DisableTaskSwitching

void DisableTaskSwitching (void);

Note Only the Windows versions of LabWindows/CVI support

DisableTaskSwitching.

Purpose
Prevents the user from using one of the following Windows features to switch another task:

• The <Alt-Tab>, <Alt-Esc>, or <Ctrl-Esc> key combination under Windows 3.1 or
Windows 95.

• The Switch To item in the system menu under Windows 3.1.

DisableTaskSwitching affects the behavior of these keys only while LabWindows/CVI
or a LabWindows/CVI standalone executable is the active application under Windows.

If you configure Windows 95 to hide the taskbar, DisableTaskSwitching also prevents the
user from using the mouse to bring the taskbar back up.

DisableTaskSwitching has no effect in Windows NT. Refer to the Alternatives under

Windows NT section in this function description for instructions on how to achieve the
desired effect.

Note Under Windows 95, DisableTaskSwitching requires the LabWindows/CVI

low-level support driver. LabWindows/CVI loads the driver at startup if it is on

disk. You can check whether LabWindows/CVI loaded the driver at startup by

calling CVILowLevelSupportDriverLoaded.

Parameters
None.

Return Value
None.

See Also
CVILowLevelSupportDriverLoaded

Disabling the Task List
DisableTaskSwitching does not prevent the user from clicking on the desktop to get the
task list under Windows 3.1 or from clicking on the taskbar under Windows 95. You can
prevent the user from clicking on the desktop by forcing your window to cover the
entire screen.

Chapter 8 Utility Library — DisableTaskSwitching

© National Instruments Corporation 8-25 Standard Libraries Reference Manual

Forcing Window to Cover Entire Screen
You can force your window to cover the entire screen by making the following calls to
functions in the User Interface Library.

SetPanelAttribute (panel, ATTR_SIZABLE, FALSE);
SetPanelAttribute (panel, ATTR_CAN_MINIMIZE, FALSE);
SetPanelAttribute (panel, ATTR_CAN_MAXIMIZE, FALSE);
SetPanelAttribute (panel, ATTR_SYSTEM_MENU_VISIBLE, FALSE);
SetPanelAttribute (panel, ATTR_MOVABLE, FALSE);
SetPanelAttribute (panel, ATTR_WINDOW_ZOOM, VAL_MAXIMIZE);

In these calls, panel is the panel handle for your top-level window. These calls work under
Windows 3.1, Windows 95, and Windows NT.

Alternatives under Windows 3.1
Under Windows 3.1, you can prevent the user accessing the task list by disabling the Task
Manager. You can do this by changing the following line in your system.ini [boot]
section from:

taskman.exe = taskman.exe

to:

taskman.exe =

Forcing your window to cover the entire screen or disabling the Task Manager does not
prevent the user from task switching using the <Alt-Tab> and <Alt-Esc> key combinations.
You also must call DisableTaskSwitching to disable the <Alt-Tab> and <Alt-Esc> key
combinations. As an alternative to calling DisableTaskSwitching, you can arrange for
Windows to open your standalone application in place of the Program Manager when
Windows boots. You can do this by changing the following line in your
system.ini [boot] section from:

shell = progman.exe

to:

shell = full-path-of-your-executable

Alternatives under Windows 95
Under Windows 95, you can arrange for your standalone application to appear in place of the
desktop when Windows boots.

You can do this by changing the following line in your system.ini [boot] section from:

shell = Explorer.exe

to:

shell = full-path-of-your-executable

Chapter 8 Utility Library — DisableTaskSwitching

Standard Libraries Reference Manual 8-26 © National Instruments Corporation

Alternatives under Windows NT
Under Windows NT, you can achieve the same results as DisableTaskSwitching by
arranging for your LabWindows/CVI application to be brought up in place of the Program
Manager and by disabling the Task Manager. You can do this by making the following
changes to the registry entry for the key name:

KEY_LOCAL_MACHINE\Software\Microsoft\Windows NT
\CurrentVersion\Winlogon

• Change the value for shell to the pathname of your application executable.

• Add a value with the name taskman. Set the data to an empty string.

Preventing Interference with Real-Time Processing
Under Windows, many user actions can interfere with real-time processing. The following
actions suspend the processing of events:

• Moving and sizing top-level windows

• Bringing down the System menu

• Pressing the <Alt-Tab> key combination

You can prevent these user actions from interfering with event processing by:

• Calling DisableTaskSwitching or using the alternative this section mentions for
Windows NT.

• Making all your top-level panels non-movable and non-sizable.

• Not using the Standard I/O Window in your final application.

• Making the following calls if you use any of the built-in pop-ups in the User
Interface Library:

SetSystemPopupsAttribute (ATTR_MOVABLE, 0);
SetSystemPopupsAttribute (ATTR_SYSTEM_MENU_VISIBLE, 0);

An alternative approach is available on Windows 95/NT. You can enable timer control
callbacks while the user presses <Alt-Tab>, pulls down the System menu, or, in some cases,
moves or sizes a window. You can do this by using the following function call:

SetSystemAttribute (ATTR_ALLOW_UNSAFE_TIMER_EVENTS, 1);

This alternative approach is incomplete and can be unsafe. Refer to the discussion on Unsafe

Timer Events in the Using the System Attributes section of Chapter 3, Programming with the

User Interface Library, of the LabWindows/CVI User Interface Reference Manual.

See Also
EnableTaskSwitching

Chapter 8 Utility Library — EnableBreakOnLibraryErrors

© National Instruments Corporation 8-27 Standard Libraries Reference Manual

EnableBreakOnLibraryErrors

void EnableBreakOnLibraryErrors (void);

Purpose
EnableBreakOnLibraryErrors directs LabWindows/CVI to display a run-time error
dialog box when a National Instruments library function reports an error. If you disable
debugging, EnableBreakOnLibraryErrors has no effect.

In general, you should check the Break on Library Errors checkbox in the Run Options
command of the Project window to enable this feature. However, you can use
EnableBreakOnLibraryErrors in conjunction with DisableBreakOnLibraryErrors
to temporarily suppress the Break on Library Errors feature around a segment of code.
EnableBreakOnLibraryErrors does not affect the state of the Break on Library Errors
checkbox.

Note SetBreakOnLibraryErrors obsoletes EnableBreakOnLibraryErrors.

Parameters
None.

Return Value
None.

Chapter 8 Utility Library — EnableInterrupts

Standard Libraries Reference Manual 8-28 © National Instruments Corporation

EnableInterrupts

void EnableInterrupts (void);

Purpose
Uses the STI instruction to turn on all maskable 80x86 interrupts under Windows 3.1 and
Windows 95. Under UNIX, EnableInterrupts reverses the effect of the last call to
DisableInterrupts. It restores the signal processing state to the condition prior to the
DisableInterrupts call.

Note Under Windows 95, EnableInterrupts requires the LabWindows/CVI low-level

support driver. LabWindows/CVI loads the driver at startup if it is on disk. You can

check whether LabWindows/CVI loaded the driver at startup by calling

CVILowLevelSupportDriverLoaded.

Note Under Windows NT, EnableInterrupts and DisableInterrupts have no

effect. Interrupts are always enabled while your program is running at the user

level, as opposed to the kernel level.

Parameters
None.

Return Value
None.

See Also
CVILowLevelSupportDriverLoaded

Chapter 8 Utility Library — EnableTaskSwitching

© National Instruments Corporation 8-29 Standard Libraries Reference Manual

EnableTaskSwitching

void EnableTaskSwitching (void);

Note Only the Windows versions of LabWindows/CVI support

EnableTaskSwitching.

Purpose
Lets the user switch to another task by using the <Alt-Tab>, <Alt-Esc>, and <Ctrl-Esc> key
combinations, and the Switch To item in the Control/System menu.
EnableTaskSwitching affects the behavior of these keys only while LabWindows/CVI or
a LabWindows/CVI standalone executable is the active application.

Parameters
None.

Return Value
None.

See Also
DisableTaskSwitching

Chapter 8 Utility Library — ExecutableHasTerminated

Standard Libraries Reference Manual 8-30 © National Instruments Corporation

ExecutableHasTerminated

int status = ExecutableHasTerminated (int executableHandle);

Purpose
Determines whether an application you started with LaunchExecutableEx has terminated.

Parameter

Input

Return Value

Return Codes

Note If you launch a LabWindows/CVI executable under Windows 3.x, the launched

executable process terminates itself after it launches a copy of the

LabWindows/CVI Run-time Engine. ExecutableHasTerminated then always

returns 1 because it cannot track the process identification for the second

run-time engine. Refer to LaunchExecutableEx for more information.

Name Type Description

executableHandle integer Executable handle you obtain from
LaunchExecutableEx.

Name Type Description

status integer Result of the operation.

Code Description

-1 Handle is invalid.

 0 Executable is still running.

 1 Executable has been terminated.

Chapter 8 Utility Library — GetBreakOnLibraryErrors

© National Instruments Corporation 8-31 Standard Libraries Reference Manual

GetBreakOnLibraryErrors

int state = GetBreakOnLibraryErrors (void);

Purpose
Returns the state of the Break on Library Errors option. It returns a 1 if you enable the Break
on Library Errors option. If you disable debugging, GetBreakOnLibraryErrors always
returns 0.

You can change the state of the Break on Library Errors option interactively using the Run

Options command of the Project window. You can change the state of the Break on Library
Errors option programmatically using SetBreakOnLibraryErrors.

Parameters
None.

Return Value

Return Codes

See Also
SetBreakOnLibraryErrors

Name Type Description

state integer Current state of the Break on Library
Errors option.

Code Description

1 Break on Library Errors option is enabled.

0 Break on Library Errors option is disabled or debugging is
disabled.

Chapter 8 Utility Library — GetBreakOnProtectionErrors

Standard Libraries Reference Manual 8-32 © National Instruments Corporation

GetBreakOnProtectionErrors

int state = GetBreakOnProtectionErrors (void);

Purpose
Returns the state of the Break on Protection Errors feature. It returns a 1 if you enable the
option. If you disable debugging GetBreakOnProtectionErrors always returns 0.

For more information, refer to SetBreakOnProtectionErrors.

Parameters
None.

Return Value

Return Codes

See Also
SetBreakOnProtectionErrors

Name Type Description

state integer Current state of the Break on Protection
Errors option.

Code Description

1 Break on Protection Errors option is enabled.

0 Break on Protection Errors option is disabled or debugging is
disabled.

Chapter 8 Utility Library — GetCurrentPlatform

© National Instruments Corporation 8-33 Standard Libraries Reference Manual

GetCurrentPlatform

int platformCode = GetCurrentPlatform (void);

Purpose
Returns a code that represents the operating system under which a project or standalone
executable is running.

Do not confuse the return value of GetCurrentPlatform with the predefined macros such
as _NI_mswin_, _NI_unix_, and others, which specify the platform on which you compile
a source file.

GetCurrentPlatform is useful when you have a program that can run under multiple
operating systems but must take different actions on the different systems. For example,
consider a standalone executable that can run under Sun Solaris 2 and Windows 95/ NT. If the
program must behave differently on the two platforms, you can use GetCurrentPlatform
to determine the platform at run time.

Parameters
None.

Return Value

Return Codes

Note GetCurrentPlatform returns kPlatformWin16 when you call it from a

program that is running under Windows 95 but that was built using

LabWindows/CVI for Windows 3.1.

Name Type Description

platformCode integer Indicates the current operating system.

Message Code Platform

kPlatformWin16 1 Windows 3.1

kPlatformWin95 2 Windows 95

kPlatformWinnt 3 Windows NT

kPlatformSunos4 4 Sun Solaris 1

kPlatformSunos5 5 Sun Solaris 2

kPlatformHPUX9 6 HP-UX 9.x

kPlatformHPUX10 7 HP-UX 10.x

Chapter 8 Utility Library — GetCVIVersion

Standard Libraries Reference Manual 8-34 © National Instruments Corporation

GetCVIVersion

int versionNum = GetCVIVersion (void);

Purpose
Returns the version of LabWindows/CVI you are running. In a standalone executable, this
tells you which version of the LabWindows/CVI Run-time Libraries you are using.

The value is in the form Nnn, where the N.nn is the version number the About
LabWindows/CVI dialog box shows.

For example, for LabWindows/CVI version 5.0, GetCVIVersion returns 500. For
version 4.0.1, it returns 401. The values always increase with each new version of
LabWindows/CVI.

Do not confuse the return value of GetCVIVersion with the predefined macro _CVI_, which
specifies the version of LabWindows/CVI in which you compile the source file that contains
the macro.

Parameters
None.

Return Value

Return Code

Name Type Description

versionNum integer Version number of LabWindows/CVI or
the Run-time Libraries.

Code Description

Nnn Where N.nn is the LabWindows/CVI version.

Chapter 8 Utility Library — GetDir

© National Instruments Corporation 8-35 Standard Libraries Reference Manual

GetDir

int result = GetDir (char currentDirectory[]);

Purpose
Gets the current working directory on the default drive.

Parameter

Output

Return Value

Return Codes

Parameter Discussion
currentDirectory must be at least MAX_PATHNAME_LEN bytes long.

Name Type Description

currentDirectory string Current directory.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

Chapter 8 Utility Library — GetDrive

Standard Libraries Reference Manual 8-36 © National Instruments Corporation

GetDrive

int result = GetDrive (int *currentDriveNumber, int *numberOfDrives);

Note Only the Windows versions of LabWindows/CVI support GetDrive.

Purpose
Gets the current default drive number and the total number of logical drives in the system.

Parameters

Output

Return Value

Return Codes

Parameter Discussion
The mapping between the drive number and the logical drive letter is 0 = A, 1 = B, and so on.

The total number of logical drives includes floppy-disk drives, hard-disk drives, RAM disks,
and networked drives.

Name Type Description

currentDriveNumber integer Current default drive number.

numberOfDrives integer Number of logical drives.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 Current directory is on a network drive that is not mapped to a
local drive. currentDriveNumber is set correctly, but
numberOfDrives is set to -1.

-3 General I/O error occurred.

-4 Insufficient memory to complete the operation.

-6 Access denied.

Chapter 8 Utility Library — GetExternalModuleAddr

© National Instruments Corporation 8-37 Standard Libraries Reference Manual

GetExternalModuleAddr

void *address = GetExternalModuleAddr (char name[], int moduleID,
int *status);

Purpose
Obtains the address of an identifier in a module you loaded using LoadExternalModule or
LoadExternalModuleEx.

Parameters

Input

Output

Return Value

Name Type Description

name string Name of the identifier.

moduleID integer ID of the loaded module.

Name Type Description

status integer Zero or error code.

Name Type Description

address void pointer Address of the identifier.

Chapter 8 Utility Library — GetExternalModuleAddr

Standard Libraries Reference Manual 8-38 © National Instruments Corporation

Return Codes

Parameter Discussion
moduleID is the value LoadExternalModule returns.

name is the name of the identifier, the address of which you obtain from the external module.
The identifier must be a variable or function name defined globally in the external module.

status is zero if the function is a success or a negative error code if it fails.

If GetExternalModuleAddr succeeds, it returns the address of the variable or function in
the module. If GetExternalModuleAddr fails, it returns NULL.

If the return value is the address of a function that has a calling convention different from the
default calling convention, you must include the calling convention in the declaration of the
function pointer. For example, if the function is declared in the external module as

int __stdcall SetADouble (double d);

and the default calling convention is __cdecl, you should declare the function pointer as

int (__stdcall * SetADouble_FnPtr)(double d) = NULL;.

Select Options»Compiler Options in the Project window to determine the default calling
convention.

Code Description

 0 Success.

 -1 Out of memory.

 -4 Invalid file format.

 -5 Undefined references.

 -8 Cannot open file.

 -9 Invalid module ID.

-10 Identifier not defined globally in the module.

-25 DLL initialization failed, for example, DLL file not found.

Chapter 8 Utility Library — GetExternalModuleAddr

© National Instruments Corporation 8-39 Standard Libraries Reference Manual

Example
void (*funcPtr) (char buf[], double dval, int *ival);
int module_id;
int status;
char buf[100];
double dval;
int ival;
char *pathname;
char *funcname;
pathname = "EXTMOD.OBJ";
funcname = "my_function";
module_id = LoadExternalModule (pathname);
if (module_id < 0)

FmtOut ("Unable to load %s\n", pathname);
else

{
funcPtr = GetExternalModuleAddr (module_id, funcname, &status);
if (funcPtr == NULL)

FmtOut ("Could not get address of %s\n", funcname);
else

(*funcPtr) (buf, dval, &ival);
}

Chapter 8 Utility Library — GetFileAttrs

Standard Libraries Reference Manual 8-40 © National Instruments Corporation

GetFileAttrs

int result = GetFileAttrs (char fileName[], int *read-only, int *system,
int *hidden, int *archive);

Note Only the Windows versions of LabWindows/CVI support GetFileAttrs.

Purpose
Gets the read-only, system, hidden, and archive attributes of a file.

The read-only attribute makes it impossible to write to the file or create a file with the
same name.

The system attribute and hidden attribute both prevent the file from appearing in a directory
list and exclude it from normal searches.

The operating system sets the archive attribute whenever you modify the file. The DOS
backup command clears the archive attribute.

Parameters

Input

Output

Return Value

Name Type Description

fileName string File to get the attributes of.

Name Type Description

read-only integer Read-only attribute.

system integer System attribute.

hidden integer Hidden attribute.

archive integer Archive attribute.

Name Type Description

result integer Result of the operation.

Chapter 8 Utility Library — GetFileAttrs

© National Instruments Corporation 8-41 Standard Libraries Reference Manual

Return Codes

Parameter Discussion
Each attribute parameter contains one of the following values:

fileName can be the empty string "", in which case GetFileAttrs returns the attributes of
the file that the most recent call to GetFirstFile or GetNextFile found.

Example
/* Get the attributes of WAVEFORM.DAT. */
int read_only, system, hidden, archive;
GetFileAttrs ("WAVEFORM.DAT",&read_only,&system,&hidden,&archive);
if (read_only)

FmtOut("WAVEFORM.DAT is a read-only file!");

Code Description

 0 Success.

 1 Specified file is a directory.

-1 File not found.

0—attribute is not set

1—attribute is set

Chapter 8 Utility Library — GetFileDate

Standard Libraries Reference Manual 8-42 © National Instruments Corporation

GetFileDate

int result = GetFileDate (char fileName[], int *month, int *day, int *year);

Purpose
Gets the date of a file.

Parameters

Input

Output

Return Value

Return Codes

Name Type Description

fileName string File to get the date of.

Name Type Description

month integer Month; 1–12.

day integer Day of month; 1–31.

year integer Year; 1980–2099.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path, for example, c:filename in Windows.

-6 Access denied.

Chapter 8 Utility Library — GetFileDate

© National Instruments Corporation 8-43 Standard Libraries Reference Manual

Parameter Discussion
fileName can be the empty string "", in which case GetFileDate returns the date of the file
that the most recent call to GetFirstFile or GetNextFile found.

Example
/* Get the date of WAVEFORM.DAT. */
int month, day, year;
GetFileDate ("WAVEFORM.DAT", &month, &day, &year);

Chapter 8 Utility Library — GetFileSize

Standard Libraries Reference Manual 8-44 © National Instruments Corporation

GetFileSize

int result = GetFileSize (char fileName[], long *fileSize);

Purpose
Returns the size of a file.

Parameters

Input

Output

Return Value

Return Codes

Name Type Description

fileName string Name of the file.

Name Type Description

fileSize long Size of the file in bytes.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete the operation.

-5 Invalid path; for example, c:filename in Windows.

-6 Access denied.

Chapter 8 Utility Library — GetFileSize

© National Instruments Corporation 8-45 Standard Libraries Reference Manual

Parameter Discussion
fileName can be the empty string "", in which case GetFileSize returns the size of the file
that the most recent call to GetFirstFile or GetNextFile found.

Example
/* Get the size of WAVEFORM.DAT. */
long size;
if (GetFileSize ("WAVEFORM.DAT",&size) == 0)

FmtOut("The size of WAVEFORM.DAT is %i[b4]",size);

Chapter 8 Utility Library — GetFileTime

Standard Libraries Reference Manual 8-46 © National Instruments Corporation

GetFileTime

int result = GetFileTime (char fileName[], int *hours, int *minutes,
int *seconds);

Purpose
Gets the time of a file.

Parameters

Input

Output

Return Value

Return Codes

Name Type Description

fileName string File to get the date of.

Name Type Description

hours integer Hours; 0–23.

minutes integer Minutes; 0–59.

seconds integer Seconds; 0–58, odd values are rounded
down.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete the operation.

-5 Invalid path; for example, c:filename in Windows.

-6 Access denied.

Chapter 8 Utility Library — GetFileTime

© National Instruments Corporation 8-47 Standard Libraries Reference Manual

Parameter Discussion
fileName can be the empty string "", in which case GetFileTime returns the time of the file
the most recent call to GetFirstFile or GetNextFile found.

Example
/* Get the time of WAVEFORM.DAT. */
int hours, minutes, seconds;
GetFileTime ("WAVEFORM.DAT", &hours, &minutes, &seconds);

Chapter 8 Utility Library — GetFirstFile

Standard Libraries Reference Manual 8-48 © National Instruments Corporation

GetFirstFile

int result = GetFirstFile (char searchPath[], int normal, int read-only,
int system, int hidden, int archive,
int directory, char fileName[]);

Purpose
Conducts a search for files with specified attributes and returns the first matching file. Call
GetNextFile to get the names of other matching files.

If you select multiple attributes, a match occurs on the first file for which one or more of the
specified attributes are set and that matches the pattern in searchPath. The search attributes
are normal, read-only, system, hidden, archive, and directory.

Under UNIX, GetFirstFile honors only the directory attribute. If you pass 1 for the
directory attribute, only directories match. If you pass 0 for the directory attribute, only
non-directories match.

Under Windows, GetFirstFile honors all the attributes. The normal attribute specifies
files with no attributes set or with only the archive bit set. The archive attribute specifies files
that have been modified because they were last backed up using the DOS backup command.
The read-only attribute specifies files that are protected from modification or overwriting.
The system and hidden attributes specify files that normally do not appear in a directory
listing. The directory attribute specifies directories.

If you use only the normal attribute, GetFirstFile can return any file that is not read only,
not a system file, not hidden, and not a directory. Normal files can have the archive attribute
on or off.

If you specify the read-only attribute, GetFirstFile can return any file that is read only
unless the file is a system, or hidden, file and you did not specify the system, or hidden
attribute.

If you specify the system attribute, GetFirstFile can return any system file unless the file
is also a hidden file and you did not specify the hidden attribute. If you do not specify the
system attribute, a system file cannot match regardless of its other attributes.

If you specify the hidden attribute, GetFirstFile can return any hidden file unless the file
is also a system file and you did not specify the system attribute. If you do not specify the
hidden attribute, a hidden file cannot match regardless of its other attributes.

If you use more than one attribute, the effect is additive. GetFirstFile returns any file that
meets only one of the attributes you specify regardless of the additional attributes you specify.

Chapter 8 Utility Library — GetFirstFile

© National Instruments Corporation 8-49 Standard Libraries Reference Manual

Parameters

Input

Output

Return Value

Return Codes

Name Type Description

searchPath string Path to search.

normal integer Normal attribute.

read-only integer Read-only attribute.

system integer System attribute.

hidden integer Hidden attribute.

archive integer Archive attribute.

directory integer Directory attribute.

Name Type Description

fileName string First file found.

Name Type Description

result integer Result of search.

Code Description

 0 Success.

-1 No files found that match criteria.

-3 General I/O error occurred.

-4 Insufficient memory to complete the operation.

-5 Invalid path, for example, c:filename in Windows.

-6 Access denied.

Chapter 8 Utility Library — GetFirstFile

Standard Libraries Reference Manual 8-50 © National Instruments Corporation

Parameter Discussion
searchPath can contain the wildcard characters '*' and '?'.

Each attribute parameter can have one of the following values:

fileName contains the basename and extension of the first matching file and must be at least
MAX_FILENAME_LEN characters in length.

0— do not search for files with the attribute

1— search for files with the attribute

Chapter 8 Utility Library — GetFullPathFromProject

© National Instruments Corporation 8-51 Standard Libraries Reference Manual

GetFullPathFromProject

int result = GetFullPathFromProject (char fileName[], char fullPathName[]);

Purpose
Gets the full pathname for the file you specify, if the file is in the currently loaded project.

Parameters

Input

Output

Return Value

Return Codes

Parameter Discussion
fileName is the name of a file that is in the currently loaded project. The name must be a
simple filename and should not contain any directory paths. For example, file.c is a simple
filename, whereas dir\file.c is not.

fullPathName must be at least MAX_PATHNAME_LEN bytes long.

Using This Function
GetFullPathFromProject is useful when your program needs to access a file in the
project and you do not know what directory the file is in.

Name Type Description

fileName string Name of the file in the project.

Name Type Description

fullPathName string Full pathname of the file.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 File is not in the project.

Chapter 8 Utility Library — GetFullPathFromProject

Standard Libraries Reference Manual 8-52 © National Instruments Corporation

Example
char *fileName;
char fullPath[MAX_PATHNAME_LEN];
fileName = "myfile.c";
if (GetFullPathFromProject (fileName, fullPath) < 0)

FmtOut ("File %s is not in the project\n", fileName);

Note LabWindows/CVI does not report run-time errors for

GetFullPathFromProject.

Chapter 8 Utility Library — GetInterruptState

© National Instruments Corporation 8-53 Standard Libraries Reference Manual

GetInterruptState

int interruptstate = GetInterruptState (void);

Note Only the Windows versions of LabWindows/CVI support GetInterruptState.

Purpose
Returns the state of the interrupt bit of the 80x86 CPU status flag.

Under Windows NT, GetInterruptState always returns 1. Interrupts are always enabled
while your program is running at the user level, as opposed to the kernel level.

Parameters
None.

Return Value

Name Type Description

interruptstate integer Interrupt bit of 80x86 CPU status flag.

Chapter 8 Utility Library — GetKey

Standard Libraries Reference Manual 8-54 © National Instruments Corporation

GetKey

int k = GetKey (void);

Purpose
Waits for the user to press a key and returns the key code as an integer value.

Note GetKey detects keystrokes only in the Standard I/O window. It does not detect

keystrokes in windows you create with the User Interface Library or in the console

window in a Windows Console Application.

Parameters
None.

Return Value

Using This Function
The values GetKey returns are the same as the key values the User Interface Library uses.
Refer to userint.h. Table 8-3 shows examples of keystrokes and the values GetKey returns
for them.

Note GetKey returns -1 if you are running under UNIX and have done one of

the following:

• Selected Options»Environment»Use hosts system’s Standard Input/Output

in the Project window

• Called SetStdioPort to set the port to HOST_SYSTEM_STDIO

Name Type Description

k integer Key code.

Table 8-3. Example Keystrokes and GetKey Return Values

Keystroke Return Value

 'b'

<Ctrl-b> (VAL_MENUKEY_MODIFIER | 'B')

<F4> VAL_F4_VKEY

<Shift-F4> (VAL_SHIFT_MODIFIER |
VAL_F4_VKEY)

Chapter 8 Utility Library — GetKey

© National Instruments Corporation 8-55 Standard Libraries Reference Manual

Example
/* Give the user a chance to quit the program. */
int k;
FmtOut ("Enter 'q' to quit, any other key to continue");
k = GetKey ();
if ((k == 0x0051) || (k == 0x0071)) /* q or Q */

exit (0);

Chapter 8 Utility Library — GetModuleDir

Standard Libraries Reference Manual 8-56 © National Instruments Corporation

GetModuleDir

int result = GetModuleDir (void *moduleHandle, char directoryPathname[]);

Note Only the Windows 95/NT versions of LabWindows/CVI support GetModuleDir.

Purpose
Obtains the name of the directory of the DLL module you specify.

GetModuleDir is useful when you distribute a DLL and its related files to multiple users who
might place them in different directories. If your DLL needs to access a file that is in the same
directory as the DLL, you can use GetModuleDir and MakePathname to construct the full
pathname.

If the moduleHandle you specify is zero, GetModuleDir returns the same result as
GetProjectDir.

Parameters

Input

Output

Return Value

Name Type Description

moduleHandle void pointer Module handle of DLL, or zero for the
project.

Name Type Description

directoryPathname string Directory of the module.

Name Type Description

result integer Result of the operation.

Chapter 8 Utility Library — GetModuleDir

© National Instruments Corporation 8-57 Standard Libraries Reference Manual

Return Codes

Parameter Discussion
directoryPathname must be at least MAX_PATHNAME_LEN bytes long.

If you want to obtain the directory name of the DLL in which the call to GetModuleDir
resides, then pass __CVIUserHInst as the moduleHandle. You can pass any valid Windows
module handle. If you pass 0 for the moduleHandle, GetModuleDir obtains the directory
of the project or standalone executable.

Code Description

 0 Success.

-1 Current project has no pathname; that is, it is untitled.

-2 There is no current project.

-3 Out of memory.

-4 Operating system is unable to determine the module directory;
moduleHandle is probably invalid.

Chapter 8 Utility Library — GetNextFile

Standard Libraries Reference Manual 8-58 © National Instruments Corporation

GetNextFile

int result = GetNextFile (char fileName[]);

Purpose
Gets the next file found in the search that GetFirstFile starts.

Parameter

Output

Return Value

Return Codes

Parameter Discussion
fileName contains the basename and extension of the next matching file and must be at least
MAX_FILENAME_LEN characters in length.

Name Type Description

fileName string Next file found.

Name Type Description

result integer Result of the search.

Code Description

 0 Success.

-1 No more files found that match criteria.

-2 GetFirstFile must initiate search.

Chapter 8 Utility Library — GetPersistentVariable

© National Instruments Corporation 8-59 Standard Libraries Reference Manual

GetPersistentVariable

void GetPersistentVariable (int *value);

Purpose
Returns the value SetPersistentVariable sets. However, if you unloaded the project
since you last called SetPersistentVariable, the function returns zero.

In a standalone executable, GetPersistentVariable returns zero if you have not called
SetPersistentVariable since the start of execution.

Parameter

Output

Return Value
None.

Name Type Description

value integer Current value of the persistent variable.

Chapter 8 Utility Library — GetProjectDir

Standard Libraries Reference Manual 8-60 © National Instruments Corporation

GetProjectDir

int result = GetProjectDir (char directoryName[]);

Purpose
Gets the name of the directory that contains the currently loaded project file.

Parameter

Output

Return Value

Return Codes

Parameter Discussion
directoryName must be at least MAX_PATHNAME_LEN bytes long.

Using This Function
GetProjectDir is useful when you distribute a project and its related files to multiple users
who might place them in a different directory on each computer. If your program needs to
access a file that is in the same directory as the project, you can use GetProjectDir and
MakePathname to construct the full pathname.

Name Type Description

directoryName string Directory of project.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 Current project has no pathname; it is untitled.

Chapter 8 Utility Library — GetProjectDir

© National Instruments Corporation 8-61 Standard Libraries Reference Manual

Example
/* Get the name of the directory that contains myfile. */
char *fileName;
char projectDir[MAX_PATHNAME_LEN];
char fullPath[MAX_PATHNAME_LEN];
fileName = "myfile";
if (GetProjectDir (projectDir) < 0)

FmtOut ("Project is untitled\n");
else

MakePathname (projectDir, fileName, fullPath);

Chapter 8 Utility Library — GetStdioPort

Standard Libraries Reference Manual 8-62 © National Instruments Corporation

GetStdioPort

void GetStdioPort (int *stdioPort);

Note Only the UNIX versions of LabWindows/CVI support GetStdioPort.

Purpose
Gets a value that indicates the current destination for data you write to the Standard Output
and the source of data you read from the Standard Input.

The Standard I/O port can be either the LabWindows/CVI Standard Input/Output window or
the Standard Input/Output of the host system.

Parameter

Output

Return Value
None.

Name Type Description

stdioPort integer 0 = LabWindows/CVI Standard
Input/Output window

1 = Standard Input/Output of host
system

Chapter 8 Utility Library — GetStdioWindowOptions

© National Instruments Corporation 8-63 Standard Libraries Reference Manual

GetStdioWindowOptions

void GetStdioWindowOptions (int *maxNumLines, int *bringToFrontWhenModified,
int *showLineNumbers);

Purpose
Gets the current value of the following Standard Input/Output window options:

• Maximum number of lines

• Bring to front when modified

• Show line numbers

Parameters

Output

Return Value
None.

Parameter Discussion
If you do not want to obtain any of these values, you can pass NULL.

Name Type Description

maxNumLines integer Maximum number of lines you can
store in the Standard Input/Output
window. If this amount is
exceeded, lines are discarded from
the top.

bringToFrontWhenModified integer Indicates whether to bring the
Standard Input/Output window to
the front each time you add a string
or character.
1 = Yes
0 = No

showLineNumbers integer Indicates whether to show line
numbers in the Standard
Input/Output window.
1 = Yes
0 = No

Chapter 8 Utility Library — GetStdioWindowPosition

Standard Libraries Reference Manual 8-64 © National Instruments Corporation

GetStdioWindowPosition

void GetStdioWindowPosition (int *top, int *left);

Purpose
Gets the current position, in pixels, of the client area of the Standard Input/Output window
relative to the upper left corner of the screen. The client area begins under the title bar and to
the right of the frame.

Parameters

Output

Return Value
None.

Name Type Description

top integer Current distance, in pixels, from the top
of client area of the Standard
Input/Output window to the top of
the screen.

left integer Current distance, in pixels, from the left
edge of the client area of the Standard
Input/Output window to the left edge of
the screen.

Chapter 8 Utility Library — GetStdioWindowSize

© National Instruments Corporation 8-65 Standard Libraries Reference Manual

GetStdioWindowSize

void GetStdioWindowSize (int *height, int *width);

Purpose
Gets the height and width, in pixels, of the client area of the Standard Input/Output window.
The client area excludes the frame and the title bar.

Parameters

Output

Return Value
None.

Name Type Description

height integer Current height, in pixels, of the client
area of the Standard Input/Output
window.

width integer Current width, in pixels, of the client
area of the Standard Input/Output
window.

Chapter 8 Utility Library — GetStdioWindowVisibility

Standard Libraries Reference Manual 8-66 © National Instruments Corporation

GetStdioWindowVisibility

void GetStdioWindowVisibility (int *visible);

Purpose
Indicates whether the Standard Input/Output window is currently visible. If the window is
minimized into an icon, GetStdioWindowVisibility considers the window to be not
visible. If the you cannot see the window merely because its position is off the screen,
GetStdioWindowVisibility considers the window to be visible.

Parameters

Output

Return Value
None.

Name Type Description

visible integer 1 = Standard I/O window is visible

0 = Standard I/O window is not visible

Chapter 8 Utility Library — GetSystemDate

© National Instruments Corporation 8-67 Standard Libraries Reference Manual

GetSystemDate

int status = GetSystemDate (int *month, int *day, int *year);

Note Only the Windows versions of LabWindows/CVI support GetSystemDate.

Purpose
Obtains the system date in numeric format.

Parameters

Output

Return Value

Return Codes

Name Type Description

month integer Month; 1–12.

day integer Day of the month; 1–31.

year integer Year; under Windows 3.1, the year is
limited to the values 1980–2099.

Name Type Description

status integer Success or failure.

Code Description

 0 Success.

-1 Operating system reported failure.

Chapter 8 Utility Library — GetSystemTime

Standard Libraries Reference Manual 8-68 © National Instruments Corporation

GetSystemTime

int status = GetSystemTime(int *hours, int *minutes, int *seconds);

Note Only the Windows versions of LabWindows/CVI support GetSystemTime.

Purpose
Obtains the system time in numeric format.

Parameters

Output

Return Value

Return Codes

Name Type Description

hours integer Hours; 0–23.

minutes integer Minutes; 0–59.

seconds integer Seconds; 0–59.

Name Type Description

status integer Success or failure.

Code Description

 0 Success.

-1 Operating system reported failure.

Chapter 8 Utility Library — GetWindowDisplaySetting

© National Instruments Corporation 8-69 Standard Libraries Reference Manual

GetWindowDisplaySetting

void GetWindowDisplaySetting (int *visible, int *zoomState);

Note Only the Windows versions of LabWindows/CVI support

GetWindowDisplaySetting.

Purpose
Indicates how the user of your application wants the initial application window to display. The
values GetWindowDisplaySetting returns reflect the display options the user sets for the
program in Program Manager and other Windows shells.

Parameters

Output

Return Value
None.

Example
If you want to honor the user’s display options, put the following code where you display your
initial panel:

int showWindow, zoomState;
GetWindowDisplaySetting (&showWindow, &zoomState);
/* Load panel or create panel. */
if (showWindow){

SetPanelAttribute (panel, ATTR_WINDOW_ZOOM, zoomState);
SetPanelAttribute (panel, ATTR_VISIBLE, 1);

}

Name Type Description

visible integer 0 = hide window
1 = display window

zoomState integer ATTR_NO_ZOOM = normal display
ATTR_MINIMIZE
ATTR_MAXIMIZE

Chapter 8 Utility Library — InitCVIRTE

Standard Libraries Reference Manual 8-70 © National Instruments Corporation

InitCVIRTE

int status = InitCVIRTE (void *hInstance, char *argv[], void *reserved);

Purpose
Performs initialization of the LabWindows/CVI Run-time Engine. You need InitCVIRTE
only in executables or DLLs that you link using an external compiler. Otherwise, the function
is harmless.

Parameters

Input

Return Value

Name Type Description

hInstance void pointer 0 if called from main.
hInstance if called from WinMain, first
parameter.
hInstDLL if called from DllMain,
first parameter.

argv string array argv if called from main, second
parameter. Otherwise, 0.

reserved void pointer Reserved for future use. Pass 0.

Name Type Description

status integer 1 = success
0 = failure, probably out of memory

Chapter 8 Utility Library — InitCVIRTE

© National Instruments Corporation 8-71 Standard Libraries Reference Manual

Using this Function
You should call InitCVIRTE in your main, WinMain, or DllMain function. Which of these
three functions you use determines the parameter values you pass to InitCVIRTE. The
following examples show how to use InitCVIRTE in each case:

int main (int argc, char *argv[])
{

if (InitCVIRTE (0, argv, 0) == 0)
return -1; /* out of memory */

/* your other code */
return 0;

}
int __stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpszCmdLine, int nCmdShow)
{

if (InitCVIRTE (hInstance, 0, 0) == 0)
return -1; /* out of memory */

/* your other code */
return 0;

}
int __stdcall DllMain (void *hinstDLL, int fdwReason, void

*lpvReserved)
{

if (fdwReason == DLL_PROCESS_ATTACH)
{
if (InitCVIRTE (hinstDLL, 0, 0) == 0)

return 0; /* out of memory */
 /* your other ATTACH code */
 }

else if (fdwReason == DLL_PROCESS_DETACH)
{
/* your other DETACH code */
CloseCVIRTE ();
}

return 1;
}

Note The prototypes for InitCVIRTE and CloseCVIRTE are in cvirte.h, which is

included by utility.h.

Chapter 8 Utility Library — inp

Standard Libraries Reference Manual 8-72 © National Instruments Corporation

inp

char byteRead = inp (int portNumber);

Note Only the Windows versions of LabWindows/CVI support inp.

Purpose
Reads a byte from a port.

Note Under Windows NT, inp requires the LabWindows/CVI low-level support driver.

LabWindows/CVI loads the driver at startup if it is on disk. You can check whether

LabWindows/CVI loaded the driver at startup by calling

CVILowLevelSupportDriverLoaded.

Parameter

Input

Return Value

See Also
CVILowLevelSupportDriverLoaded

Name Type Description

portNumber integer Port

Name Type Description

byteRead char Byte read from the port.

Chapter 8 Utility Library — inpw

© National Instruments Corporation 8-73 Standard Libraries Reference Manual

inpw

short wordRead = inpw (int portNumber);

Note Only the Windows versions of LabWindows/CVI support inpw.

Purpose
Reads a word from a port.

Note Under Windows NT, inpw requires the LabWindows/CVI low-level support driver.

LabWindows/CVI loads the driver at startup if it is on disk. You can check whether

LabWindows/CVI loaded the driver at startup by calling

CVILowLevelSupportDriverLoaded.

Parameter

Input

Return Value

See Also
CVILowLevelSupportDriverLoaded

Name Type Description

portNumber integer Port.

Name Type Description

wordRead short Word read from the port.

Chapter 8 Utility Library — InStandaloneExecutable

Standard Libraries Reference Manual 8-74 © National Instruments Corporation

InStandaloneExecutable

int standalone = InStandaloneExecutable(void);

Purpose
Returns a nonzero value if your program is currently running as a standalone executable. If
your program is currently running under the LabWindows/CVI development environment,
InStandaloneExecutable returns zero.

Parameters
None.

Return Value

Name Type Description

standalone integer 1 = program is currently running as a
standalone executable
0 = program is currently running under
LabWindows/CVI

Chapter 8 Utility Library — KeyHit

© National Instruments Corporation 8-75 Standard Libraries Reference Manual

KeyHit

int result = KeyHit (void);

Purpose
Indicates whether the user has pressed a key on the keyboard.

Note KeyHit detects keystrokes only in the Standard I/O window. It does not detect

keystrokes in windows you create with the User Interface Library or in the console

window in a Windows console application.

Parameters
None.

Return Value

Return Codes

Using This Function
KeyHit returns 1 if a keystroke is available in the keyboard buffer; 0 otherwise. After a
keystroke is available, you should make a call to GetKey to flush the keyboard buffer.
Otherwise, KeyHit continues to return 1.

Note KeyHit always returns 0 if you are running under UNIX and have done one of

the following:

• Selected Options»Environment»Use Host System’s Standard Input/Output

in the Project window

• Called SetStdioPort to set the port to HOST_SYSTEM_STDIO

Name Type Description

result integer Indicates if a key has been pressed.

Code Description

0 Key has not been pressed.

1 Key has been pressed.

Chapter 8 Utility Library — KeyHit

Standard Libraries Reference Manual 8-76 © National Instruments Corporation

Example
/* Flush any pending keystrokes. */
while (KeyHit())

GetKey();
/* Perform loop indefinitely until the user presses key. */
while (!KeyHit()) {
}

Chapter 8 Utility Library — LaunchExecutable

© National Instruments Corporation 8-77 Standard Libraries Reference Manual

LaunchExecutable

int result = LaunchExecutable (char fileName[]);

Purpose
Starts running a program and returns without waiting for it to exit. The program must be an
actual executable; that is, you cannot launch commands intrinsic to a command interpreter.

Under Windows the executable can be either a DOS or Windows executable, including
*.exe, *.com, *.bat, and *.pif files.

If you need to execute a command built into command.com such as copy, dir, and others,
you can call LaunchExecutable with the command

command.com /C DosCommand args

where DosCommand is the shell command you want to execute. For example, the following
command string copies file.tmp from the temp directory to the tmp directory:

command.com /C copy c:\\temp\\file.tmp c:\\tmp

Note If you want to monitor whether the launched executable has terminated, use

LaunchExecutableEx.

Parameter

Input

Return Value

Name Type Description

fileName string Pathname of executable file and
arguments.

Name Type Description

result integer Result of the operation.

Chapter 8 Utility Library — LaunchExecutable

Standard Libraries Reference Manual 8-78 © National Instruments Corporation

Return Codes under UNIX

Return Codes under Windows

Code Description

 0 Command successfully started.

-1 Launching the executable would exceed the operating system
limit on the total number of processes under execution or the
total number of processes per user.

-2 Insufficient swap space for the new process.

-3 vfork failed for unknown reason.

-4 Search permission is denied for a directory listed in the path
prefix of the new process image file, the new process image file
denies execution permission, or the new process image file is
not a regular file.

-5 The length of the pathname or filename or an element of the
environment variable PATH prefixed to a filename exceeds
PATH_MAX, or a pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNC is in effect for that file. Refer to the
man page for pathconf(2V).

-6 One or more components of the pathname of the new process
image file do not exist.

-7 A component of the path prefix of the new process image file
is not a directory.

-8 Number of bytes that the new process-image-argument list and
the environment list use is greater than ARG_MAX bytes. Refer
to the man page for sysconf(2V).

-9 New process image file has the appropriate access permission
but is not in the proper format.

Code Description

 0 Command was successfully started.

 -1 System was out of memory, executable file was corrupt, or
relocations were invalid.

 -3 File was not found.

 -4 Path was not found.

Chapter 8 Utility Library — LaunchExecutable

© National Instruments Corporation 8-79 Standard Libraries Reference Manual

Parameter Discussion
fileName is the program to run.

If the program is not in one of the directories specified in the PATH environment variable, you
must specify the full path. The path can include arguments to pass to the program.

Under Windows, if the program is a .pif, .bat, or .com file, you must include the extension
in the pathname. For example, under Windows, the following command string launches the
Edit program with the file file.dat:

c:\\dos\\edit.com c:\\file.dat

See Also
LaunchExecutableEx

 -6 Attempt was made to dynamically link to a task, or there was a
sharing or network-protection error.

 -7 Library required separate data segments for each task.

 -9 There was insufficient memory to start the application.

-11 Windows version was incorrect.

-12 Executable file was invalid. Either it was not a Windows
application or there was an error in the .exe image.

-13 Application was designed for a different operating system.

-14 Application was designed for MS-DOS 4.0.

-15 Type of executable file was unknown.

-16 You made an attempt to load a real-mode application developed
for an earlier version of Windows.

-17 You made an attempt to load a second instance of an executable
file that contains multiple data segments that were not marked
read only.

-20 Attempt was made to load a compressed executable file. You
must decompress the file before you can load it.

-21 DLL file was invalid. One of the DLLs required to run this
application was corrupt.

-22 Application requires Windows 32-bit extensions.

Code Description

Chapter 8 Utility Library — LaunchExecutableEx

Standard Libraries Reference Manual 8-80 © National Instruments Corporation

LaunchExecutableEx

int result = LaunchExecutableEx (char *fileName, int windowState,
int *handle);

Purpose
Performs the same operation as LaunchExecutable with the following extended features:

• Under Windows, you can specify how the Windows application displays.

• LaunchExecutableEx returns a handle to the executable that can show whether the
executable is still running and also can terminate the executable.

Parameters

Input

Output

Return Value

Return Codes

Name Type Description

fileName string Pathname of executable file and
arguments.

windowState integer Specifies how to show a Windows
program. Ignored under UNIX.

Name Type Description

handle integer Handle that represents the executable
launched.

Name Type Description

result integer Result of the operation.

Code Description

0 Success.

(nonzero value) Failure, refer to LaunchExecutable.

Chapter 8 Utility Library — LaunchExecutableEx

© National Instruments Corporation 8-81 Standard Libraries Reference Manual

Parameter Discussion
Table 8-4 shows valid values for windowState.

You can pass the handle you obtain from LaunchExecutableEx to
ExecutableHasTerminated and TerminateExecutable. When you no longer need the
handle, you must call RetireExecutableHandle. If you do not want to obtain a handle,
you can pass NULL for the handle parameter.

When you launch several processes with LaunchExecutableEx but do not call
RetireExecutableHandle on them, you might reach the limit for the maximum number
of processes the system imposes. This happens even if the processes terminate; the program
does not recognize that the processes have terminated until you call
RetireExecutableHandle.

Checking Termination of LabWindows/CVI Executables under Windows 3.1
If you launch another LabWindows/CVI executable under Windows 3.1, the launched
executable process terminates itself after launching a copy of the LabWindows/CVI Run-time
Engine. ExecutableHasTerminated then always returns 1 because it cannot track the
process identification for the second run-time engine. This behavior can also occur with
non-LabWindows/CVI executables.

You can work around this problem when launching LabWindows/CVI runtime executables by
executing the run-time engine directly and passing it the pathname of the executable, as
shown in the following example:

c:\cvi\cvirt5.exe c:\test\myapp.exe

The pathname of the run-time engine might not be c:\cvi\cvirt5.exe. You can determine
the pathname of the run-time engine by looking at the cvirt5 section in win.ini. If the
run-time executable was made with a different version of CVI, look in the cvirtnn section
for that version.

Table 8-4. Valid windowState Values

Value Application window behavior

LE_HIDE hidden

LE_SHOWNORMAL shown normally and activated

LE_SHOWMINIMIZED displayed as an icon and activated

LE_SHOWMAXIMIZED displayed as a maximized window and activated

LE_SHOWNA shown normally but not activated

LE_SHOWMINNOACTIVE shown as an icon but not activated

Chapter 8 Utility Library — LaunchExecutableEx

Standard Libraries Reference Manual 8-82 © National Instruments Corporation

If you need to pass arguments to your application, create a file that contains the arguments
and pass the pathname of that file as the second argument to the run-time engine, as shown in
the following example:

c:\cvi\cvirt5.exe c:\test\myapp.exe myargs

The file that contains the arguments must be in the same directory as the executable. The first
three characters in the file that contains the arguments must be "CVI" in uppercase, as in the
following example:

CVI arg1 arg2 arg3

The run-time engine deletes the file that contains the arguments after reading it.

See Also
ExecutableHasTerminated, TerminateExecutable, RetireExecutableHandle

Chapter 8 Utility Library — LoadExternalModule

© National Instruments Corporation 8-83 Standard Libraries Reference Manual

LoadExternalModule

int module_id = LoadExternalModule (char pathName[]);

Purpose
Loads a file that contains one or more object modules.

Parameter

Input

Return Value

Return Codes

Name Type Description

pathName string Relative or absolute pathname of the
module to load.

Name Type Description

module_id integer ID of the loaded module.

Code Description

 -1 Out of memory.

 -2 File not found.

 -4 Invalid file format.

 -6 Invalid pathname.

 -7 Unknown file extension.

 -8 Cannot open file.

-11 .pth file open error.

-12 .pth file read error.

-13 .pth file invalid contents.

-14 DLL header file contains a static function prototype.

-15 DLL function has an unsupported argument type.

-16 DLL has a variable argument function.

-17 DLL header contains a function without a proper prototype.

Chapter 8 Utility Library — LoadExternalModule

Standard Libraries Reference Manual 8-84 © National Instruments Corporation

Parameter Discussion
LoadExternalModule loads an external object module file. You do not need to list the file
in your project or load it as an instrument module.

Under Windows 3.1, the file can be an object file (.obj), a library file (.lib), or a dynamic
link library (.dll). You must compile object and library modules with the Watcom C
compiler for Windows or with the LabWindows/CVI compiler.

Under Windows 95/NT, the file can be an object file (.obj), a library file (.lib), or a DLL
import library (.lib). You cannot load a DLL directly. You can compile object and library
modules with LabWindows/CVI or with an external compiler.

Under UNIX, the file can be an object file (.o) or a statically linked library (.a).

All files must conform to the rules for loadable compiled modules in the LabWindows/CVI

Programmer Reference Manual.

-18 DLL function has an unsupported return type.

-19 DLL function argument or return type is a function pointer.

-20 Function in the DLL header file was not found in the DLL.

-21 Could not load the DLL.

-22 Could not find the DLL header file.

-23 Could not load the DLL header file; out of memory or the file
is corrupted.

-24 Syntax error in the DLL header file.

-25 DLL initialization function failed.

-26 Module already loaded with different calling module handle.
Refer to LoadExternalModuleEx.

-27 Invalid calling module handle. Refer to
LoadExternalModuleEx.

-28 Module you loaded in Borland mode within the
LabWindows/CVI development environment contains
uninitialized global variables that are also defined in
other modules.

Code Description

Chapter 8 Utility Library — LoadExternalModule

© National Instruments Corporation 8-85 Standard Libraries Reference Manual

By loading external object modules, you can execute code that is not in your project and not
in a loaded instrument module. You can load the external modules only when you need them
and unload them when you no longer need them.

After you load a module, you can execute its code in one of two ways:

• You can obtain pointers to functions in the module by calling
GetExternalModuleAddr. Then, you can call the module functions through the
function pointers.

• You can call RunExternalModule. This requires that the module contain a function
with a pre-defined name and prototype. The function serves as the entry point to the
module. Refer to RunExternalModule for more information.

You can use LoadExternalModule on a source file (.c) that is part of the current project or
on a source file that you load as the program for an instrument module. This allows you to
develop your module in source code form and test it using the LabWindows/CVI debugging
capabilities. After you finish testing your module and compile it into an external object or
library file, you must change the pathname in the call to LoadExternalModule in your
application source code. You do not have to make any other modifications to load the module.

Avoid calling LoadExternalModule on a file in the project when you plan to link your
program in an external compiler. The LabWindows/CVI Utility Library does not know the
locations of symbols in executables or DLLs linked in external compilers. You can provide
this information by using the Other Symbols section of the External Compiler Support
dialog box in the Build menu of the LabWindows/CVI Project window to create an object
module that contains a table of symbols you want to find using GetExternalModuleAddr.
If you use this method, you should pass the empty string "" to LoadExternalModule for
the module pathname.

If successful, LoadExternalModule returns an integer module ID that you can later pass to
RunExternalModule, GetExternalModuleAddr, and UnloadExternalModule. If
unsuccessful, LoadExternalModule returns a negative error code.

Resolving External References from Object and Static Library Files
on Windows 95/NT

An important difference exists between loading an object or static library module and loading
a DLL through an import library. DLLs are prelinked; that is, when you load a DLL, the loader
does not need to resolve any external references. Object and static library modules, on the
other hand, have unresolved external references. LoadExternalModule resolves them using
symbols defined in the project or exported by object, static library, or import library modules
that you have already loaded using LoadExternalModule. This is true even when you call
LoadExternalModule in a DLL. LoadExternalModule does not use symbols in a DLL
to resolve external references unless the DLL exports those symbols.

Chapter 8 Utility Library — LoadExternalModule

Standard Libraries Reference Manual 8-86 © National Instruments Corporation

When you load an object or library module from a DLL, you might want to resolve external
references in the object or library module through global symbols the DLL does not export.
If you want to do this, you must call LoadExternalModuleEx rather than
LoadExternalModule.

Using This Function
pathname can be a relative or absolute pathname. If it is a simple filename, such as
module.obj, LoadExternalModule takes the following steps to find the file:

1. It first looks for the file in the project list.

2. It then looks for the file in the directory that contains the currently loaded project.

3. Under Windows 3.1, if the file is not found and its extension is .dll,
LoadExternalModule searches for the file in the directories Windows searches to
find DLLs.

If it is a relative pathname with one or more directory paths (such as dir\module.obj),
LoadExternalModule creates an absolute pathname by appending the relative pathname to
the directory that contains the currently loaded project.

If the pathname is for a DLL import library, LoadExternalModule finds the DLL using the
DLL name embedded in the import library and the standard Windows DLL search algorithm.

See Also
LoadExternalModuleEx, GetExternalModuleAddr, RunExternalModule,
UnloadExternalModule, ReleaseExternalModule

Chapter 8 Utility Library — LoadExternalModule

© National Instruments Corporation 8-87 Standard Libraries Reference Manual

Example
void (*funcPtr) (char buf[], double dval, int *ival);
int module_id;
int status;
char buf[100];
double dval;
int ival;
char *pathname;
char *funcname;
pathname = "EXTMOD.OBJ";
funcname = "my_function";
module_id = LoadExternalModule (pathname);
if (module_id < 0)

FmtOut ("Unable to load %s\n", pathname);
else {

funcPtr = GetExternalModuleAddr (module_id, funcname, &status);
if (funcPtr == NULL)

FmtOut ("Could not get address of %s\n", funcname);
else

(*funcPtr) (buf, dval, &ival);
}

Chapter 8 Utility Library — LoadExternalModuleEx

Standard Libraries Reference Manual 8-88 © National Instruments Corporation

LoadExternalModuleEx

int moduleId = LoadExternalModuleEx (char pathName[],
void *callingModuleHandle);

Purpose
Loads a file that contains one or more object modules. It is similar to LoadExternalModule
except that under Windows 95/NT, you can resolve external references in object and library
modules you load in a DLL by using symbols the DLL does not export. On platforms other
than Windows 95/NT, LoadExternalModuleEx works exactly like
LoadExternalModule.

Parameters

Input

Return Value

Return Codes
Same as the return codes for LoadExternalModule.

Using this Function
Refer to the function help for LoadExternalModule for more information on this function.

If you call LoadExternalModule on an object or library module, LoadExternalModule
resolves external references using symbols defined in the project or exported by object,
library, or DLL import library modules that you have already loaded using
LoadExternalModuleEx or LoadExternalModule. This is true even if you call
LoadExternalModule in a DLL.

Name Type Description

pathName string Relative or absolute pathname of the
module to load.

callingModuleHandle void pointer Usually, the module handle of the
calling DLL. You can use
__CVIUserHInst. Zero indicates the
project or executable.

Name Type Description

moduleId integer ID of the loaded module.

Chapter 8 Utility Library — LoadExternalModuleEx

© National Instruments Corporation 8-89 Standard Libraries Reference Manual

You might want to load an object or library module in a DLL and have the module link back
to symbols that you defined in, but did not export from, the DLL. You can do this using
LoadExternalModuleEx. You must specify the module handle of the DLL as
callingModuleHandle. You can do so by using the LabWindows/CVI
pre-defined variable __CVIUserHInst.

LoadExternalModuleEx first searches the global DLL symbols to resolve external
references. LoadExternalModuleEx resolves any remaining unresolved references by
searching the symbols defined in the project or exported by object, library, or import library
modules that you have already loaded using LoadExternalModule or
LoadExternalModuleEx.

LoadExternalModuleEx expects the DLL to contain a table of symbols to use to resolve
references. If you create the DLL in LabWindows/CVI, the table is included automatically. If
you create the DLL using an external compiler, you must arrange for the table to be included
in the DLL. You can do this by creating an include file that includes all the symbols that the
table must contain. You can then use the External Compiler Support command in the Build
menu of the Project window to create an object file that contains the table. You must include
the object file in the external compiler project you use to create the DLL.

LoadExternalModuleEx acts identically to LoadExternalModule in the following cases:

• You pass zero for callingModuleHandle.

• You pass __CVIUserHInst for callingModuleHandle, but you call the function from a
file that is in the project or your executable, rather than in a DLL.

• You are not running under Windows 95/NT.

You cannot load the same external module using two different calling module handles. The
function reports an error if you attempt to load an external module when you have already
loaded it under a different module handle.

Chapter 8 Utility Library — MakeDir

Standard Libraries Reference Manual 8-90 © National Instruments Corporation

MakeDir

int result = MakeDir (char directoryName[]);

Purpose
Creates a new directory with the name you specify.

Note You can create only one directory at a time.

Parameter

Input

Return Value

Return Codes

Example
/* Make a new directory named \DATA\WAVEFORM on drive C */
/* assuming that C:\DATA does not exist */
MakeDir ("C:\\DATA");
MakeDir ("C:\\DATA\\WAVEFORM");

Name Type Description

directoryName string New directory name.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 One of the path components not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete the operation.

-5 Invalid path; for example, c:filename in Windows.

-6 Access denied.

-8 Disk is full.

-9 Directory or file already exists with same pathname.

Chapter 8 Utility Library — MakePathname

© National Instruments Corporation 8-91 Standard Libraries Reference Manual

MakePathname

void MakePathname (char directoryName[], char fileName[], char pathName[]);

Purpose
Constructs a pathname from a directory path and a filename. The subroutine ensures that a
backslash separates the directory path and the filename.

Parameters

Input

Output

Return Value
None.

Parameter Discussion
pathName must be at least MAX_PATHNAME_LEN bytes long. If MakePathname constructs a
pathname that exceeds that size, it fills in pathName with an empty string instead.

Example
char dirname[MAX_PATHNAME_LEN];
char pathname[MAX_PATHNAME_LEN];
GetProjectDir (dirname);
MakePathname (dirname, "FILE.DAT", pathname);

Name Type Description

directoryName string Directory path.

fileName string Base filename and extension.

Name Type Description

pathName string Pathname

Chapter 8 Utility Library — MapPhysicalMemory

Standard Libraries Reference Manual 8-92 © National Instruments Corporation

MapPhysicalMemory

int status = MapPhysicalMemory (unsigned int physAddress,
unsigned int numBytes, void *ptrToMappedAddr,
int *mapHandle);

Note Only the Windows 95/NT versions of LabWindows/CVI support

MapPhysicalMemory.

Purpose
Maps a physical address to a pointer that you can use in your program like any other C pointer.
For example, you can read or write an area of physical memory by incrementing the pointer
after each access.

In cases where you cannot transfer all your data at once, MapPhysicalMemory provides
better performance than ReadPhysicalMemory or WritePhysicalMemory. There is a
significant performance penalty to mapping and unmapping physical memory. If you call
ReadPhysicalMemory or WritePhysicalMemory on each access, you are mapping and
unmapping the memory each time.

When you no longer need the pointer, call UnMapPhysicalMemory on the handle
mapHandle returns.

Note Under Windows 95/NT, MapPhysicalMemory requires the LabWindows/CVI

low-level support driver. LabWindows/CVI loads the driver at startup if it is on

disk. You can check whether LabWindows/CVI loaded the driver at startup by

calling CVILowLevelSupportDriverLoaded.

Parameters

Input

Name Type Description

physAddress unsigned integer Physical address to map into user
memory.

numBytes unsigned integer Number of bytes of physical memory
to map.

Chapter 8 Utility Library — MapPhysicalMemory

© National Instruments Corporation 8-93 Standard Libraries Reference Manual

Output

Return Value

Return Codes

Parameter Discussion
No restrictions exist on the value of physAddress. It can be below or above 1 MB.

Note MapPhysicalMemory does not check the validity of the physical address.

Example
int physAddr = 0xB000;
int numBytes = 0x1000;
int *physMemPtr;
int mapHandle;
int data, i;

if (! MapPhysicalMemory (physAddr, numBytes, &physMemPtr,
 &mapHandle))

{
/* report error */
}

Name Type Description

ptrToMappedAddr any type of pointer Contains the mapped physical address.
Pass a pointer by reference as this
parameter.

mapHandle integer Contains the handle that you pass to the
UnMapPhysicalMemory function to
unmap the physical memory.

Name Type Description

status integer Indicates whether the function
succeeded.

Code Description

1 Success.

0 numBytes is 0, memory allocation failed, the operating system
reported an error, or the low-level support driver is not loaded.

Chapter 8 Utility Library — MapPhysicalMemory

Standard Libraries Reference Manual 8-94 © National Instruments Corporation

else
{
for (i=0; i < numBytes/sizeof(int); i++)

{
/* <determine data to write> */
*physMemPtr++ = data;
}

UnMapPhysicalMemory (mapHandle);
}

See Also
UnMapPhysicalMemory, CVILowLevelSupportDriverLoaded

Chapter 8 Utility Library — outp

© National Instruments Corporation 8-95 Standard Libraries Reference Manual

outp

char byteWritten = outp(int portNumber, char byteToWrite);

Note Only the Windows versions of LabWindows/CVI support outp.

Purpose
Writes a byte to a port.

Note Under Windows NT, outp requires the LabWindows/CVI low-level support driver.

LabWindows/CVI loads the driver at startup if it is on disk. You can check whether

LabWindows/CVI loaded the driver at startup by calling

CVILowLevelSupportDriverLoaded.

Parameters

Input

Return Value

See Also
CVILowLevelSupportDriverLoaded

Name Type Description

portNumber integer Port.

byteToWrite char Byte to write.

Name Type Description

byteWritten char Byte that you wrote.

Chapter 8 Utility Library — outpw

Standard Libraries Reference Manual 8-96 © National Instruments Corporation

outpw

short wordWritten = outpw (short portNumber, int wordToWrite);

Note Only the Windows versions of LabWindows/CVI support outpw.

Purpose
Writes a word to a port.

Note Under Windows NT, outpw requires the LabWindows/CVI low-level support

driver. LabWindows/CVI loads the driver at startup if it is on disk. You can check

whether LabWindows/CVI loaded the driver at startup by calling

CVILowLevelSupportDriverLoaded.

Parameters

Input

Return Value

See Also
CVILowLevelSupportDriverLoaded

Name Type Description

portNumber integer Port.

wordToWrite short Word to write.

Name Type Description

wordWritten short Word that you wrote.

Chapter 8 Utility Library — ReadFromPhysicalMemory

© National Instruments Corporation 8-97 Standard Libraries Reference Manual

ReadFromPhysicalMemory

int status = ReadFromPhysicalMemory (unsigned int physicalAddress,
void *destinationBuffer,
unsigned int numberOfBytes);

Note Only the Windows versions of LabWindows/CVI support

ReadFromPhysicalMemory.

Purpose
Copies the contents of a region of physical memory into destinationBuffer.
ReadFromPhysicalMemory does not check whether the memory actually exists. If the
memory does not exist, ReadFromPhysicalMemory returns the success value but does not
read data.

Note Under Windows 95/NT, ReadFromPhysicalMemory requires the

LabWindows/CVI low-level support driver. LabWindows/CVI loads the driver at

startup if it is on disk. You can check whether LabWindows/CVI loaded the driver

at startup by calling CVILowLevelSupportDriverLoaded.

Parameters

Input

Return Value

Name Type Description

physicalAddress unsigned integer Physical address to read from. No
restrictions exists on the address; it can
be below or above 1 MB.

destinationBuffer void pointer Buffer into which to copy the physical
memory.

numberOfBytes unsigned integer Number of bytes to copy from physical
memory.

Name Type Description

status integer Indicates whether the function
succeeded.

Chapter 8 Utility Library — ReadFromPhysicalMemory

Standard Libraries Reference Manual 8-98 © National Instruments Corporation

Return Codes

See Also
ReadFromPhysicalMemoryEx, MapPhysicalMemory,
CVILowLevelSupportDriverLoaded

Code Description

1 Success.

0 Operating system reported failure, or low-level support driver
not loaded.

Chapter 8 Utility Library — ReadFromPhysicalMemoryEx

© National Instruments Corporation 8-99 Standard Libraries Reference Manual

ReadFromPhysicalMemoryEx

int status = ReadFromPhysicalMemoryEx (unsigned int physicalAddress,
void *destinationBuffer,
unsigned int numberOfBytes, int bytesAtATime);

Note Only the Windows versions of LabWindows/CVI support

ReadFromPhysicalMemoryEx.

Purpose
Copies the contents of a region of physical memory into the buffer you specify. It can copy
the data in units of 1, 2, or 4 bytes at a time. ReadFromPhysicalMemoryEx does not check
whether the memory actually exists. If the memory does not exist,
ReadFromPhysicalMemoryEx returns the success value but does not read data.

Note Under Windows 95/NT, ReadFromPhysicalMemoryEx requires the

LabWindows/CVI low-level support driver. LabWindows/CVI loads the driver at

startup if it is on disk. You can check whether LabWindows/CVI loaded the driver

at startup by calling CVILowLevelSupportDriverLoaded.

Parameters

Input

Return Value

Name Type Description

physicalAddress unsigned integer Physical address to read from. No
restrictions exist on the address; it can
be above or below 1 MB.

destinationBuffer void pointer Buffer into which to copy the physical
memory.

numberOfBytes unsigned integer Number of bytes to copy from physical
memory.

bytesAtATime integer Unit size in which to copy the data; Can
be 1, 2, or 4 bytes.

Name Type Description

status integer Indicates whether the function
succeeded.

Chapter 8 Utility Library — ReadFromPhysicalMemoryEx

Standard Libraries Reference Manual 8-100 © National Instruments Corporation

Return Codes

Parameter Discussion
numberOfBytes must be a multiple of bytesAtATime.

See Also
MapPhysicalMemory, CVILowLevelSupportDriverLoaded

Code Description

 1 Success.

 0 Operating system reported failure, low-level support driver not
loaded, numberOfBytes is not a multiple of bytesAtATime,
or invalid value for bytesAtATime.

Chapter 8 Utility Library — ReleaseExternalModule

© National Instruments Corporation 8-101 Standard Libraries Reference Manual

ReleaseExternalModule

int status = ReleaseExternalModule (int moduleID);

Purpose
Decreases the reference count for a module you load using LoadExternalModule or
LoadExternalModuleEx.

When you call LoadExternalModule successfully on a module, the module reference count
increments by one. When you call ReleaseExternalModule, the module reference count
decrements by one.

If the reference count decreases to zero, the module ID is invalidated and you cannot access
the module through GetExternalModuleAddr or RunExternalModule. If, in addition,
the module file is not in the project and not loaded as an instrument,
ReleaseExternalModule removes the external module from memory.

If you want to unload the module regardless of the reference count, call
UnloadExternalModule rather than ReleaseExternalModule. Use
ReleaseExternalModule when multiple calls might have been made to
LoadExternalModule on the same module and you do not want to unload the module in
case other parts of the application still use it.

Parameter

Input

Return Value

Name Type Description

moduleID integer Module ID you obtain from
LoadExternalModule or
LoadExternalModuleEx.

Name Type Description

status integer Indicates the result of the operation.

Chapter 8 Utility Library — ReleaseExternalModule

Standard Libraries Reference Manual 8-102 © National Instruments Corporation

Return Codes

Code Description

> 0 Success, but the module was not unloaded. The value indicates
the number of remaining references.

 0 Success, and the module was unloaded.

 -5 Module cannot be unloaded because another external module
that is currently loaded references it.

 -9 Invalid module ID.

Chapter 8 Utility Library — RenameFile

© National Instruments Corporation 8-103 Standard Libraries Reference Manual

RenameFile

int result = RenameFile (char existingFileName[], char newFileName[]);

Purpose
Renames an existing file.

Parameters

Input

Return Value

Return Codes

Name Type Description

existingFileName string Existing filename.

newFileName string New filename.

Name Type Description

result integer Result of rename operation.

Code Description

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete the operation.

-5 Invalid path, for either of the filenames.

-6 Access denied.

-7 Specified existing path is a directory, not a file.

-8 Disk is full.

-9 New file already exists.

Chapter 8 Utility Library — RenameFile

Standard Libraries Reference Manual 8-104 © National Instruments Corporation

Parameter Discussion
existingFileName and newFileName can contain DOS wildcard characters '?' and '*'.
If existingFileName has wildcards, RenameFile renames all matching files. If
newFileName has wildcards, RenameFile matches it to existingFileName.

existingFileName can be the empty string "", in which case RenameFile renames the file
that the most recent call to GetFirstFile or GetNextFile found.

Under Windows, if the arguments to RenameFile specify files on different disk drives,
RenameFile copies the source to the target and then deletes the source file.

Under UNIX, if the arguments to RenameFile specify files on different file systems,
RenameFile copies the source to the target and then deletes the source file.

Chapter 8 Utility Library — RetireExecutableHandle

© National Instruments Corporation 8-105 Standard Libraries Reference Manual

RetireExecutableHandle

int status = RetireExecutableHandle (int executableHandle);

Purpose
Informs the LabWindows/CVI Utility Library that you no longer intend to use the handle you
acquired from LaunchExecutableEx. When you call RetireExecutableHandle, the
LabWindows/CVI Utility Library can reuse the memory allocated to keep track of the state
of the executable.

When you launch several processes with LaunchExecutableEx but do not call
RetireExecutableHandle on them, you might reach the limit for the maximum number
of processes the system imposes. This happens even if the processes terminate; the program
does not recognize that the processes have terminated until you call
RetireExecutableHandle.

Parameter

Input

Return Value

Name Type Description

executableHandle integer Executable handle you obtain from
LaunchExecutableEx.
-1 = handle is invalid
 0 = success

Name Type Description

status integer Result of the operation.

Chapter 8 Utility Library — RoundRealToNearestInteger

Standard Libraries Reference Manual 8-106 © National Instruments Corporation

RoundRealToNearestInteger

long n = RoundRealToNearestInteger (double inputRealNumber);

Purpose
Rounds its floating-point argument and returns the result as a long integer. A value with a
fractional part of exactly 0.5 is rounded to the nearest even number.

Parameter

Input

Return Value

Example
long n;
n = round (1.2); /* result: 1L */
n = round (1.8); /* result: 2L */
n = round (1.5); /* result: 2L */
n = round (0.5); /* result: 0L */
n = round (-1.2); /* result: -1L */
n = round (-1.8); /* result: -2L */
n = round (-1.5); /* result: -2L */
n = round (-0.5); /* result: 0L */

Name Type Description

inputRealNumber double-precision Real number to round.

Name Type Description

n long Result of the rounding operation.

Chapter 8 Utility Library — RunExternalModule

© National Instruments Corporation 8-107 Standard Libraries Reference Manual

RunExternalModule

int result = RunExternalModule (int moduleID, char *buffer);

Purpose
Calls the pre-defined entry point function in an external module. Refer to
LoadExternalModule.

Parameters

Input

Return Value

Return Codes

Parameter Discussion
moduleID is the value LoadExternalModule returns. buffer is a character array in which
you can pass information to and from the module.

Name Type Description

moduleID integer ID of loaded module.

buffer string Parameter buffer.

Name Type Description

result integer Indicates the result of the operation.

Code Description

 0 Success.

-1 Out of memory.

-3 Entry point is undefined.

-4 Invalid file format.

-5 Undefined references.

-8 Cannot open file.

-9 Invalid module ID.

Chapter 8 Utility Library — RunExternalModule

Standard Libraries Reference Manual 8-108 © National Instruments Corporation

RunExternalModule requires that the module define the following function:

void _xxx_entry_point (char [])

where xxx is the base name of the file, in lowercase. For example, if the pathname of the file is

C:\LW\PROGRAMS\TEST01.OBJ,

the name of the entry point must be

_test01_entry_point.

Example
int module_id;
int status;
char *pathname;
pathname = "EXTMOD.OBJ";
module_id = LoadExternalModule (pathname);
if (module_id <0)

FmtOut ("Unable to load %s\n", pathname);
else {

RunExternalModule (module_id, "");
UnloadExternalModule (module_id);

}

Chapter 8 Utility Library — SetBreakOnLibraryErrors

© National Instruments Corporation 8-109 Standard Libraries Reference Manual

SetBreakOnLibraryErrors

int oldState = SetBreakOnLibraryErrors (int newState);

Purpose
When you enable debugging and a National Instruments library function reports an error,
LabWindows/CVI can display a runtime error dialog box and suspend execution. You can use
SetBreakOnLibraryErrors to enable or disable this feature.

In general, it is best to use the Break on Library Errors checkbox in the Run Options
command of the Project window to enable or disable this feature. You should use this function
only when you want to temporarily disable the Break on Library Errors feature around a
segment of code.

SetBreakOnLibraryErrors does not affect the state of the Break on Library Errors
checkbox in the Run Options command of the Project window.

If you disable debugging, SetBreakOnLibraryErrors has no effect. LabWindows/CVI
never reports run-time errors when you disable debugging.

Parameter

Input

Return Value

Return Codes

Name Type Description

newState integer Pass a nonzero value to enable. Pass
zero to disable.

Name Type Description

oldState integer Previous state of the Break on Library
Errors feature.

Code Description

1 Previously enabled.

0 Previously disabled, or debugging is disabled.

Chapter 8 Utility Library — SetBreakOnLibraryErrors

Standard Libraries Reference Manual 8-110 © National Instruments Corporation

Example
int oldValue;
oldValue = SetBreakOnLibraryErrors (0);
/* Function calls that may legitimately return errors. */
SetBreakOnLibraryErrors (oldValue);

See Also
GetBreakOnLibraryErrors

Chapter 8 Utility Library — SetBreakOnProtectionErrors

© National Instruments Corporation 8-111 Standard Libraries Reference Manual

SetBreakOnProtectionErrors

int oldState = SetBreakOnProtectionErrors (int newState);

Purpose
If you enable debugging, LabWindows/CVI uses information it gathers from compiling your
source code to make extensive run-time checks to protect your program. When it encounters
a protection error at run-time, LabWindows/CVI displays a dialog box and
suspends execution.

Examples of protection errors include:

• Dereferencing an invalid pointer value in source code.

• Attempting, in source code, to read or write beyond the end of an array.

• Making a function call, in source code, in which an array is smaller than the
function expects.

• Performing pointer arithmetic in source code which generates an invalid address.

You can use SetBreakOnProtectionErrors to prevent LabWindows/CVI from
displaying the dialog box and suspending execution when it encounters a protection error. In
general, it is better not to disable the Break on Protection Errors feature. Nevertheless, you
might want to disable it temporarily around a line of code for which LabWindows/CVI
erroneously reports a protection error.

If you disable debugging, SetBreakOnProtectionErrors has no effect.
LabWindows/CVI never reports run-time errors when you disable debugging.

Note If an invalid memory access generates a processor exception, LabWindows/CVI

reports the error and terminates your program regardless of the debugging level

or the state of the Break on Protection Errors feature.

Parameter

Input

Name Type Description

newState integer Pass a nonzero value to enable. Pass
zero to disable.

Chapter 8 Utility Library — SetBreakOnProtectionErrors

Standard Libraries Reference Manual 8-112 © National Instruments Corporation

Return Value

Return Codes

Example
int oldValue;
oldValue = SetBreakOnProtectionErrors (0);
/* Statement that erroneously reports an error */
SetBreakOnProtectionErrors (oldValue);

See Also
GetBreakOnProtectionErrors

Name Type Description

oldState integer Previous state of the Break on
Protection Errors feature.

Code Description

1 Previously enabled.

0 Previously disabled, or debugging is disabled.

Chapter 8 Utility Library — SetDir

© National Instruments Corporation 8-113 Standard Libraries Reference Manual

SetDir

int result = SetDir (char directoryName[]);

Purpose
Sets the current working directory to the directory you specify. Under Windows 3.1, SetDir
can change the current working directory on any drive; however, it does not change the default
drive. To change the default drive, use SetDrive.

Parameter

Input

Return Value

Return Codes

Parameter Discussion
Under Windows 3.1, directoryName must not contain a drive letter.

Name Type Description

directoryName string New current working directory.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 Specified directory not found or out of memory.

Chapter 8 Utility Library — SetDrive

Standard Libraries Reference Manual 8-114 © National Instruments Corporation

SetDrive

int result = SetDrive (int driveNumber);

Note Only the Windows versions of LabWindows/CVI support SetDrive.

Purpose
Sets the current default drive.

Parameter

Input

Return Value

Return Codes

Using This Function
The mapping between the drive number and the logical drive letter is 0 = A, 1 = B,
and so on.

Name Type Description

driveNumber integer New drive number; 0–25.

Name Type Description

result integer Result of the operation.

Code Description

 0 Success.

-1 Invalid drive number.

Chapter 8 Utility Library — SetFileAttrs

© National Instruments Corporation 8-115 Standard Libraries Reference Manual

SetFileAttrs

int result = SetFileAttrs (char fileName[], int read-only, int system,
int hidden, int archive);

Note Only the Windows versions of LabWindows/CVI support SetFileAttrs.

Purpose
Sets the read-only, system, hidden and archive attributes of a file.

The read-only attribute protects a file from being overwritten and prevents the creation of a
file with the same name.

The system attribute and hidden attribute both prevent the file from appearing in a directory
list and exclude it from normal searches.

The operating system sets the archive attribute whenever you modify the file. The DOS
backup command clears it.

Parameters

Input

Return Value

Return Codes

Name Type Description

fileName string File to set the attributes of.

read-only integer Read-only attribute.

system integer System attribute.

hidden integer Hidden attribute.

archive integer Archive attribute.

Name Type Description

result return value Result of the operation.

Code Description

 0 Success.

-1 File not found, or attribute cannot be changed.

Chapter 8 Utility Library — SetFileAttrs

Standard Libraries Reference Manual 8-116 © National Instruments Corporation

Parameter Discussion
Each attribute parameter can have one of the following values:

 0 = clears the attribute

 1 = sets the attribute

-1 = leaves the attribute unchanged

fileName can be the empty string "", in which case SetFileAttrs sets the attributes of the
file that the most recent call to GetFirstFile or GetNextFile found.

Chapter 8 Utility Library — SetFileDate

© National Instruments Corporation 8-117 Standard Libraries Reference Manual

SetFileDate

int status = SetFileDate (char fileName[], int month, int day, int year);

Purpose
Sets the date of a file.

Parameters

Input

Return Value

Return Codes

Parameter Discussion
fileName can be the empty string "", in which case SetFileAttrs sets the date of the file
that the most recent call to GetFirstFile or GetNextFile found.

Name Type Description

fileName string File to set the attributes of.

month integer Month; 1–12

day integer Day of month, 1–31

year integer Year; 1980–2099

Name Type Description

status integer Result of the operation.

Code Description

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete the operation.

-5 Invalid date or invalid path; for example, c:filename
in Windows.

-6 Access denied.

Chapter 8 Utility Library — SetFileTime

Standard Libraries Reference Manual 8-118 © National Instruments Corporation

SetFileTime

int result = SetFileTime (char fileName[], int hours, int minutes,
int seconds);

Purpose
Sets the time of a file.

Parameters

Input

Return Value

Return Codes

Name Type Description

fileName string File to set the time of.

hours integer Hours; 0–23

minutes integer Minutes; 0–59

seconds integer Seconds; 0–58, odd values are
rounded down.

Name Type Description

result integer Result of operation.

Code Description

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete the operation.

-5 Invalid time, or invalid path; for example, c:filename
in Windows.

-6 Access denied.

Chapter 8 Utility Library — SetFileTime

© National Instruments Corporation 8-119 Standard Libraries Reference Manual

Parameter Discussion
fileName can be the empty string "", in which case SetFileTime sets the time of the file
that the most recent call to GetFirstFile or GetNextFile found.

If you enter an odd number for the seconds parameter, the operating system rounds the value
down to an even number.

Chapter 8 Utility Library — SetPersistentVariable

Standard Libraries Reference Manual 8-120 © National Instruments Corporation

SetPersistentVariable

void SetPersistentVariable (int value);

Purpose
Lets you store an integer value across multiple builds and executions of your project in the
LabWindows/CVI development environment. When you unload a project or load a new
project, SetPersistentVariable resets the value to zero.

SetPersistentVariable is useful when your program performs an action, such as setting
up your instruments, that takes a long time and that you do not want to repeat each time you
run your program. LabWindows/CVI initializes global variables in your program each time
you run your project. Therefore, you cannot use them to indicate that you have already taken
the action once.

To get around this problem, LabWindows/CVI maintains an integer variable across multiple
builds and executions of your project. SetPersistentVariable sets the value of that
variable. To retrieve the variable value, call GetPersistentVariable().

Parameter

Input

Return Value
None.

Name Type Description

value integer Value to assign to the persistent
variable.

Chapter 8 Utility Library — SetStdioPort

© National Instruments Corporation 8-121 Standard Libraries Reference Manual

SetStdioPort

int status = SetStdioPort (int stdioPort);

Note Only the UNIX versions of LabWindows/CVI support SetStdioPort.

Purpose
Sets the current destination for data written to the Standard Output and the source of data read
from Standard Input.

You can specify either the LabWindows/CVI Standard Input/Output window or the Standard
Input/Output of the host system.

Parameter

Input

Return Value

Return Codes

Name Type Description

stdioPort integer CVI_STDIO_WINDOW (0) =
LabWindows/CVI Standard
Input/Output window
HOST_SYSTEM_STDIO (1) = host
system's Standard Input/Output

Name Type Description

status integer Indicates whether the function
succeeded.

Code Description

 0 Success.

-2 Destination was not a valid range.

Chapter 8 Utility Library — SetStdioPort

Standard Libraries Reference Manual 8-122 © National Instruments Corporation

Parameter Discussion
In a standalone executable, the default value for stdioPort is CVI_STDIO_WINDOW.

In the LabWindows/CVI development system, the default value for stdioPort is the current
state of the Use Host System’s Standard Input/Output option in the Environment dialog box
of the Project window. The value you set using SetStdioPort is reflected the next time you
open the Environment dialog box.

Chapter 8 Utility Library — SetStdioWindowOptions

© National Instruments Corporation 8-123 Standard Libraries Reference Manual

SetStdioWindowOptions

int status = SetStdioWindowOptions (int maxNumLines,
int bringToFrontWhenModified,
int showLineNumbers);

Purpose
Sets the current value of the following Standard Input/Output window options:

• Maximum number of lines

• Bring to front when modified

• Show line numbers

Parameters

Input

Return Value

Name Type Description

maxNumLines integer Maximum number of lines you can
store in the Standard Input/Output
window. If this amount is exceeded,
lines are discarded from the top.
Valid range = 100 to 1,000,000

bringToFrontWhenModified integer Indicates whether to bring the
Standard Input/Output window to the
front each time you add a string or
character to it.
1 = Yes
0 = No

showLineNumbers integer Indicates whether to show line
numbers in the Standard
Input/Output window.
1 = Yes
0 = No

Name Type Description

status integer Indicates whether the function
succeeded.

Chapter 8 Utility Library — SetStdioWindowOptions

Standard Libraries Reference Manual 8-124 © National Instruments Corporation

Return Codes

Parameter Discussion
In an executable, the default value of maxNumLines is 10,000. In the LabWindows/CVI
development system, the default value is the value of the Maximum Number of Lines in
Standard Input/Output Window control in the Environment dialog box of the Project window.
The value you set using SetStdioWindowOptions is reflected the next time you bring up
the Environment dialog box.

In an executable, the default value of bringToFrontWhenModified is 1. In the
LabWindows/CVI development system, the default value is the state of the Bring Standard
Input/Output Window to Front When Modified checkbox in the Environment dialog box of
the Project window. The value you set using SetStdioWindowOptions is reflected the next
time you bring up the Environment dialog box.

In an executable, the default value of showLineNumbers is 0. In the LabWindows/CVI
development system, the default value is the current state you set by selecting
View»Line Numbers in the Standard Input/Output Window. The value you set using
SetStdioWindowOptions is reflected the next time you bring up the View menu.

Code Description

 0 Success.

-1 Maximum number of lines is not within the valid
range.

Chapter 8 Utility Library — SetStdioWindowPosition

© National Instruments Corporation 8-125 Standard Libraries Reference Manual

SetStdioWindowPosition

int status = SetStdioWindowPosition (int top, int left);

Purpose
Sets the current position, in pixels, of the client area of the Standard Input/Output window
relative to the upper left corner of the screen. The client area begins under the title bar and to
the right of the frame.

Parameters

Input

Return Value

Return Codes

Name Type Description

top integer Distance, in pixels, of the top of client
area of the Standard Input/Output
window relative to the top of the screen.

Valid range = VAL_AUTO_CENTER;
-16,000 to +16,000

left integer Distance, in pixels, of the left edge of
client area of the Standard Input/Output
window relative to the left edge of the
screen.

Valid range = VAL_AUTO_CENTER;
-16,000 to +16,000

Name Type Description

status integer Indicates whether the function
succeeded.

Code Description

 0 Success.

-1 top is not within the valid range.

-2 left is not within the valid range.

Chapter 8 Utility Library — SetStdioWindowPosition

Standard Libraries Reference Manual 8-126 © National Instruments Corporation

Parameter Discussion
To vertically center the Standard Input/Output window client area within the area of the
screen, pass VAL_AUTO_CENTER as the top parameter.

To horizontally center the Standard Input/Output window client area within the area of the
screen, pass VAL_AUTO_CENTER as the left parameter.

Chapter 8 Utility Library — SetStdioWindowSize

© National Instruments Corporation 8-127 Standard Libraries Reference Manual

SetStdioWindowSize

int status = SetStdioWindowSize (int height, int width);

Purpose
Sets the height and width, in pixels, of the client area of the Standard Input/Output window.
The client area excludes the frame and the title bar.

Parameters

Input

Return Value

Return Codes

Name Type Description

height integer Height, in pixels, of the client area of the
Standard Input/Output window.

Valid range = 0 to 16,000

width integer Width, in pixels, of the client area of the
Standard Input/Output window.

Valid range = 0 to 16,000

Name Type Description

status integer Indicates whether the function
succeeded.

Code Description

 0 Success.

-1 height is not within the valid range.

-2 width is not within the valid range.

-3 You must call this function from the main thread of your
program.

Chapter 8 Utility Library — SetStdioWindowVisibility

Standard Libraries Reference Manual 8-128 © National Instruments Corporation

SetStdioWindowVisibility

void SetStdioWindowVisibility (int visible);

Purpose
Brings to the front or hides the Standard Input/Output window.

Parameter

Input

Return Value
None.

Name Type Description

visible integer 1 = bring to front
0 = hide

Chapter 8 Utility Library — SetSystemDate

© National Instruments Corporation 8-129 Standard Libraries Reference Manual

SetSystemDate

int status = SetSystemDate (int month, int day, int year);

Note Only the Windows versions of LabWindows/CVI support SetSystemDate. Under

Windows NT, you must have system administrator status to use this function.

Purpose
Sets the system date.

Parameters

Input

Return Value

Return Codes

Name Type Description

month integer Month; 1–12.

day integer Day of month; 1–31.

year integer Year; under Windows 3.1, the year is
limited to the values 1980–2099.

Name Type Description

status integer Success or failure.

Code Description

 0 Success.

-1 Operating system reported failure, probably because of an
invalid parameter.

Chapter 8 Utility Library — SetSystemTime

Standard Libraries Reference Manual 8-130 © National Instruments Corporation

SetSystemTime

int status = SetSystemTime(int hours, int minutes, int seconds);

Note Only the Windows versions of LabWindows/CVI support SetSystemTime. Under

Windows NT, you must have system administrator status to use this function.

Purpose
Sets the system time.

Parameters

Input

Return Value

Return Codes

Name Type Description

hours integer Hours; 0–23.

minutes integer Minutes; 0–59.

seconds integer Seconds; 0–58. Odd values are
rounded down.

Name Type Description

status integer Success or failure.

Code Description

 0 Success.

-1 Operating system reported failure, probably because of an
invalid parameter.

Chapter 8 Utility Library — SplitPath

© National Instruments Corporation 8-131 Standard Libraries Reference Manual

SplitPath

void SplitPath (char pathName[], char driveName[], char directoryName[],
char fileName[]);

Purpose
Splits a pathname into the drive name, the directory name, and the filename.

Parameters

Input

Output

Return Value
None.

Parameter Discussion
driveName, directoryName, and fileName can each be NULL. If not NULL, they must be
buffers of the following size or greater:

On operating systems without drive names (such as UNIX), SplitPath always fills
driveName with the empty string.

Example
char pathName[MAX_PATHNAME_LEN];
char driveName[MAX_DRIVENAME_LEN];
char dirName[MAX_DIRNAME_LEN];
char fileName[MAX_FILENAME_LEN];

Name Type Description

pathName string Pathname to split.

Name Type Description

driveName string Drive name.

directoryName string Full directory path, ending with
directory separator character.

fileName string Simple filename.

driveName MAX_DRIVENAME_LEN

directoryName MAX_DIRNAME_LEN

fileName MAX_FILENAME_LEN

Chapter 8 Utility Library — SplitPath

Standard Libraries Reference Manual 8-132 © National Instruments Corporation

SplitPath (pathName, driveName, dirName, fileName);
/* If pathName contains

c:\cvi\samples\apps\update.c
then

driveName contains "c:"

dirName contains "\cvi\samples\apps\"

fileName contains "update.c"

If pathName is
\\computer\share\dirname\foo.c

then
drive name is ""
directory name is "\\computer\share\dirname\"
filename is "foo.c" */

Chapter 8 Utility Library — SyncWait

© National Instruments Corporation 8-133 Standard Libraries Reference Manual

SyncWait

void SyncWait (double beginTime, double interval);

Purpose
Waits until interval seconds elapse since beginTime.

Parameters

Input

Return Value
None.

Parameter Discussion
beginTime must be a value Timer returns.

The resolution on Windows is normally 1 ms. If, however, you set the useDefaultTimer
configuration option to True, the resolution is 55 ms.

The resolution on Sun Solaris is 1 ms.

Name Type Description

beginTime double-precision Value Timer returns.

interval double-precision Number of seconds to wait after
beginTime.

Chapter 8 Utility Library — SystemHelp

Standard Libraries Reference Manual 8-134 © National Instruments Corporation

SystemHelp

int status = SystemHelp (char helpFile[], unsigned int command,
unsigned long additionalLongData,
char additionalStringData[]);

Purpose
Under Windows, starts Windows Help, winhelp.exe, on a help file you specify. You can
pass optional data that indicates the nature of the help you want to display.

For information about creating help files, refer to the Microsoft Windows programming
documentation, which is not included with LabWindows/CVI.

Under UNIX, SystemHelp starts the HyperHelp help viewer on the help file you specify.

Note Although you may use the HyperHelp viewer that comes with LabWindows/CVI,

you may not distribute it in an application you build unless you purchase a license

from Bristol Technology, Inc.

Parameters

Input

Return Value

Name Type Description

helpFile string Points to a string that contains the name
of the help file you want to display.

command unsigned integer Specifies the type of help you want
to display.

additionalLongData unsigned long
integer

Depends on the command parameter as
described in the following Parameter

Discussion.

additionalStringData string Depends on the command parameter as
described in the following Parameter

Discussion.

Name Type Description

status integer Nonzero on success; zero on failure.

Chapter 8 Utility Library — SystemHelp

© National Instruments Corporation 8-135 Standard Libraries Reference Manual

Parameter Discussion
helpFile contains the pathname of the file you want to display. The pathname can be followed
by an angle bracket (>) and the name of a secondary window if you want the topic to appear
in a secondary window rather than in the primary window. The [WINDOWS] section of the help
project (.hpj) file must define the name of the secondary window.

command can be one of the following values:

HELP_COMMAND—Executes a help macro or macro string. In this case, additionalStringData
is the help macro to execute.

HELP_CONTENTS—Displays the help contents topic as defined by the contents option in the
[OPTIONS] section of the .hpj file. HELP_CONTENTS is for backward compatibility. New
programs should provide a .cnt file and use the HELP_FINDER command.

HELP_CONTEXT—Displays help for a particular topic identified by a context number that has
been defined in the [MAP] section of the .hpj file. In this case, additionalLongData is the
context number of the topic.

HELP_CONTEXTPOPUP—Displays in a pop-up window a particular help topic identified by a
context number that has been defined in the [MAP] section of the .hpj file.
HELP_CONTEXTPOPUP does not display the main help window. In this case,
additionalLongData is the context number of the topic.

HELP_FINDER—Displays the Help Topics dialog box.

HELP_HELPONHELP—Displays the contents topic of the Using Help file if it is available.

HELP_KEY—Displays the topic in the keyword list that matches the keyword passed in the
additionalStringData parameter if one exact match exists. Under Windows 3.1, if more than
one match exists, HELP_KEY displays the first topic found. If no match exists HELP_KEY
displays an error message. Under Windows 95/NT, if more than one match exists, HELP_KEY
displays the Topics Found dialog box.

HELP_PARTIALKEY—Displays the topic found in the keyword list that matches the keyword
passed in the additionalStringData parameter if one exact match exists.

Under Windows 3.1, if more than one match exists, HELP_PARTIALKEY displays the Search
dialog box with the topics listed in the Go To list box. If no match exists, HELP_PARTIALKEY
displays the Search dialog box. If you want to bring up just the Search dialog box without
passing a keyword, pass an empty string ("").

Under Windows 95/NT, if more than one match exists, HELP_PARTIALKEY displays the
Topics Found dialog box. If you want to display the Index without passing a keyword, pass
an empty string ("").

Chapter 8 Utility Library — SystemHelp

Standard Libraries Reference Manual 8-136 © National Instruments Corporation

HELP_POPUPID—Displays in a pop-up window the topic identified by a context string.
HELP_POPUPID does not display the main help window.

HELP_QUIT—Closes the help file. HELP_QUIT has no effect if another executable opens the
help file.

HELP_SETCONTENTS—Determines which Contents topic help appears when the user
chooses the Contents button in a help window if the help file does not have an associated .cnt
file. If a help file has two or more Contents topics, you must assign one as the default. Call
SystemHelp with command set to HELP_SETCONTENTS and the additionalLongData
parameter specifying the corresponding context identifier.

Chapter 8 Utility Library — TerminateExecutable

© National Instruments Corporation 8-137 Standard Libraries Reference Manual

TerminateExecutable

int status = TerminateExecutable (int executableHandle);

Purpose
Terminates an executable if it has not already terminated.

Windows 3.1 terminates an executable by sending close messages to each window in the
application. If the application does not honor the close messages, the application does not
terminate. TerminateExecutable gives up control for a limited time to give the application
an opportunity to process the close messages. This time period should be sufficient for all
applications. When you must allow more time, your program can call
ProcessSystemEvents in a loop, as shown in the following example.

Example for Windows 3.1
#define TIME_LIMIT 5.0 /* number of seconds */
double startTime;
startTime = Timer ();
TerminateExecutable (handle);
while (!ExecutableHasTerminated(handle)

&& (Timer()-startTime > TIME_LIMIT))
ProcessSystemEvents();

Parameter

Input

Return Value

Return Codes

Name Type Description

executableHandle integer Executable handle acquired from
LaunchExecutableEx.

Name Type Description

status integer Result of the operation.

Code Description

-1 Handle is invalid.

 0 Handle is valid. To determine if the function actually
terminated the executable, use ExecutableHasTerminated.

Chapter 8 Utility Library — Timer

Standard Libraries Reference Manual 8-138 © National Instruments Corporation

Timer

double t = Timer (void);

Purpose
Returns the number of seconds that have elapsed since the first call to Timer, Delay, or
SyncWait or the first operation on a timer control. The value is never reset to zero except
when you restart your program. The resolution on Windows is normally 1 ms. If, however,
you set the useDefaultTimer configuration option to True, the resolution is 55 ms.

The resolution on Sun Solaris is 1 ms.

Parameters
None.

Return Value

Name Type Description

t double-precision Number of seconds since the first call
to Timer.

Chapter 8 Utility Library — TimeStr

© National Instruments Corporation 8-139 Standard Libraries Reference Manual

TimeStr

char *s = TimeStr (void);

Purpose
Returns an 8-character string in the form HH:MM:SS, where HH is the hour, MM is in
minutes, and SS is in seconds.

Parameters
None.

Return Value

Name Type Description

s 8-character string Time in HH:MM:SS format.

Chapter 8 Utility Library — TruncateRealNumber

Standard Libraries Reference Manual 8-140 © National Instruments Corporation

TruncateRealNumber

double y = TruncateRealNumber (double inputRealNumber);

Purpose
Truncates the fractional part of inputRealNumber and returns the result as a real number.

Parameter

Input

Return Value

Name Type Description

inputRealNumber double-precision Real number to truncate.

Name Type Description

y double-precision Value of inputRealNumber without its
fractional part.

Chapter 8 Utility Library — UnloadExternalModule

© National Instruments Corporation 8-141 Standard Libraries Reference Manual

UnloadExternalModule

int status_id = UnloadExternalModule (int moduleID);

Purpose
Unloads an external module file you loaded using LoadExternalModule.

Parameter

Output

Return Value

Return Codes

Parameter Discussion
moduleID is the value LoadExternalModule returns, or -1. If moduleID is -1,
LabWindows/CVI unloads all external modules.

Example
int module_id;
int status;
char *pathname;
pathname = "PROG.OBJ";
module_id = LoadExternalModule (pathname);
if (module_id <0)

FmtOut ("Unable to load %s\n", pathname);
else {

RunExternalModule (module_id, "");
UnloadExternalModule (module_id);

}

Name Type Description

moduleID integer ID of loaded module.

Name Type Description

status_id integer Indicates the result of the operation.

Code Description

 0 Success.

-9 Failure because of an invalid module_id.

Chapter 8 Utility Library — UnMapPhysicalMemory

Standard Libraries Reference Manual 8-142 © National Instruments Corporation

UnMapPhysicalMemory

int status = UnMapPhysicalMemory (int mapHandle);

Note Only the Windows 95/NT versions of LabWindows/CVI support
UnMapPhysicalMemory.

Purpose
Unmaps an address that you mapped using MapPhysicalMemory. You do not pass the
address to this function. Instead, you pass the handle that MapPhysicalMemory returned.

Note Under Windows 95/NT, UnMapPhysicalMemory requires the LabWindows/CVI

low-level support driver. LabWindows/CVI loads the driver at startup if it is on

disk. You can check whether LabWindows/CVI loaded the driver at startup by

calling CVILowLevelSupportDriverLoaded.

Parameters

Input

Return Value

Return Codes

See Also
CVILowLevelSupportDriverLoaded

Name Type Description

mapHandle integer Handle MapPhysicalMemory returns.

Name Type Description

status integer Indicates whether the function
succeeded.

Code Description

1 Success.

0 mapHandle is not valid, the operating system reported an error,
or the low-level support driver is not loaded.

Chapter 8 Utility Library — WriteToPhysicalMemory

© National Instruments Corporation 8-143 Standard Libraries Reference Manual

WriteToPhysicalMemory

int status = WriteToPhysicalMemory (unsigned int physicalAddress,
void *sourceBuffer, unsigned int numberOfBytes);

Note Only the Windows versions of LabWindows/CVI support

WriteToPhysicalMemory.

Purpose
Copies the contents of destinationBuffer into a region of physical memory.
WriteToPhysicalMemory does not check whether the memory actually exists. If the
memory does not exist, WriteToPhysicalMemory returns the success value but does not
read any data.

Note Under Windows 95/NT, WriteToPhysicalMemory requires the

LabWindows/CVI low-level support driver. LabWindows/CVI loads the driver at

startup if it is on disk. You can check whether LabWindows/CVI loaded the driver

at startup by calling CVILowLevelSupportDriverLoaded.

Parameters

Input

Return Value

Name Type Description

physicalAddress unsigned integer Physical address to write to. No
restrictions exist on the address; it can
be below or above 1 MB.

sourceBuffer void pointer Buffer from which to copy the physical
memory.

numberOfBytes unsigned integer Number of bytes to copy to physical
memory.

Name Type Description

status integer Indicates whether the function
succeeded.

Chapter 8 Utility Library — WriteToPhysicalMemory

Standard Libraries Reference Manual 8-144 © National Instruments Corporation

Return Codes

See Also
WriteToPhysicalMemoryEx, MapPhysicalMemory,
CVILowLevelSupportDriverLoaded

Code Description

1 Success.

0 Operating system reported failure, or low-level support driver
not loaded.

Chapter 8 Utility Library — WriteToPhysicalMemoryEx

© National Instruments Corporation 8-145 Standard Libraries Reference Manual

WriteToPhysicalMemoryEx

int status = WriteToPhysicalMemoryEx (unsigned int physicalAddress,
void *sourceBuffer, unsigned int numberOfBytes,
int bytesAtATime);

Note Only the Windows versions of LabWindows/CVI support

WriteToPhysicalMemoryEx.

Purpose
Copies the contents of the buffer you specify to a region of physical memory. It can copy the
data in units of 1, 2, or 4 bytes at a time. WriteToPhysicalMemoryEx does not check
whether the memory actually exists. If the memory does not exist,
WriteToPhysicalMemoryEx returns the success value but does not read any data.

Note Under Windows 95/NT, WriteToPhysicalMemoryEx requires the

LabWindows/CVI low-level support driver. LabWindows/CVI loads the driver at

startup if it is on disk. You can check whether LabWindows/CVI loaded the driver

at startup by calling CVILowLevelSupportDriverLoaded.

Parameters

Input

Return Value

Name Type Description

physicalAddress unsigned integer Physical address to write to. No
restrictions exist on the address; it can
be above or below 1 MB.

sourceBuffer void pointer Buffer from which to copy the physical
memory.

numberOfBytes unsigned integer Number of bytes to copy to physical
memory.

bytesAtATime integer Unit size in which to copy the data; can
be 1, 2, or 4 bytes.

Name Type Description

status integer Indicates whether the function
succeeded.

Chapter 8 Utility Library — WriteToPhysicalMemoryEx

Standard Libraries Reference Manual 8-146 © National Instruments Corporation

Return Codes

Parameter Discussion
numberOfBytes must be a multiple of bytesAtATime.

See Also

MapPhysicalMemory, CVILowLevelSupportDriverLoaded

Code Description

 1 Success.

 0 Operating system reported failure, low-level support driver not
loaded, numberOfBytes is not a multiple of bytesAtATime,
or invalid value for bytesAtATime.

© National Instruments Corporation 9-1 Standard Libraries Reference Manual

9
X Property Library

This chapter describes the functions in the Lab/Windows CVI X Property Library. The
X Property Library contains functions that read and write properties to and from X Windows.
The X Property Library Overview section contains general information about the X Property
Library functions and panels. The X Property Library Function Reference section contains an
alphabetical list of function descriptions.

These functions provide a mechanism for communication among X clients. This library
provides capabilities similar to those available in the TCP Library, but differs from the
TCP Library in the following significant ways:

• It conforms to a conventional method for X interclient communication.

• It works between any X clients that are connected to the same display and does not
require any particular underlying communication protocol such as TCP.

• It provides a method for sharing data among X clients without explicit point-to-point
connections between them.

X Property Library Overview

The X Property Library is available only in the UNIX versions of LabWindows/CVI. This
section contains general information about the X Property Library functions and panels.

X Property Library Function Panels
The X Property Library function panels are grouped in the tree structure in Table 9-1
according to the types of operations they perform.

The first- and second-level headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings are the names of individual function panels. Each X Property Library
function panel generates an X Property Library function call.

Table 9-1. Functions in the X Property Library Function Tree

Class/Panel Name Function Name
Accessing Remote Hosts

Connect to X Server ConnectToXDisplay
Disconnect from X Server DisconnectFromXDisplay

Chapter 9 X Property Library — X Property Library Overview

Standard Libraries Reference Manual 9-2 © National Instruments Corporation

The online help with each panel contains specific information about operating each
function panel.

X Interclient Communication
X applications often use X properties to communicate with each other. Properties are
essentially tagged data associated with a window. Applications communicate by reading and
writing properties to and from windows. In addition, an X application can request that the
X server notify it whenever a specific property value changes on a window.

The X applications that need to communicate with each other must first connect to the same
X display. Then they must agree upon the names and types of properties and the X window
IDs that they use to transfer the data. Although it is a simple matter to agree upon the names
and types of properties in advance, the X applications cannot know the window IDs in
advance because they are different for each invocation of the program. There must be a
mechanism for transferring the window IDs from one client to another. A client usually
accomplishes this by placing a property that contains the window ID on the root window,
which is a window that all clients can access. The window ID refers to the window that
contains the data for transfer to other clients. The other clients read this property from the root
window to determine where to access the data.

Managing Property Types
Create New Property Type CreateXPropType
Get Property Type Name GetXPropTypeName
Get Property Type Size GetXPropTypeSize
Get Property Type Unit GetXPropTypeUnit
Destroy Property Type DestroyXPropType

Managing Property Information
Create New Property CreateXProperty
Get Property Name GetXPropertyName
Get Property Type GetXPropertyType
Destroy Property DestroyXProperty

Accessing Window Properties
Get Single Window Property Item GetXWindowPropertyItem
Put Single Window Property Item PutXWindowPropertyItem
Get Window Property Value GetXWindowPropertyValue
Put Window Property Value PutXWindowPropertyValue
Remove Window Property RemoveXWindowProperty

Handling Property Events
Install Property Callback InstallXPropertyCallback
Uninstall Property Callback UninstallXPropertyCallback

Get Error String GetXPropErrorString

Table 9-1. Functions in the X Property Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 9 X Property Library — X Property Library Overview

© National Instruments Corporation 9-3 Standard Libraries Reference Manual

With the LabWindows/CVI X Property Library functions, you can connect to X displays and
obtain the root window ID, read and write properties on windows, and monitor when specific
properties change.

Property Handles and Types
Before you can read or write properties on windows, you must create the property and its type.
CreateXProperty takes a property name and a property type and returns a property handle
you can use to access properties on windows. The property type, which CreateXPropType
creates, contains the attributes that determine how data for the property are stored and
retrieved. More specifically, these attributes are the size and unit. The size is the number of
bytes in a single property item. The unit is the number of bytes in the basic entities that make
up a property item. Refer to CreateXPropType for more information on the meanings of the
size and unit attributes.

Table 9-2 lists the three predefined property types that you do not have to create. These types
are useful for defining properties to store X window IDs, integers, and strings.

Communicating with Local Applications
You can use the function ConnectToXDisplay to connect to any X server on a network.
However, if your program communicates only with other applications connected to the same
display as LabWindows/CVI, you do not need to connect to the display using
ConnectToXDisplay. Instead, use the global variable CVIXDisplay, which is a pointer to
the X display that LabWindows/CVI uses. The variable CVIXRootWindow contains the
X window ID of the root window of the display that LabWindows/CVI uses.

Hidden Window
Before you can read or write property data, you need the X window IDs of the windows that
store the properties.

One option is to always use the root window ID for attaching properties. The variable
CVIXRootWindow holds the root window ID for the local display. To get the root window ID
for a remote display, call ConnectToXDisplay. This approach has disadvantages. First, if
your program adds a property to the root window and does not delete it, the property remains

Table 9-2. Predefined Property Types

Property Type Name Size/Unit

WINDOW_X_PROP_TYPE "WINDOW" sizeof(WindowX)

INTEGER_X_PROP_TYPE "INTEGER" sizeof(int)

STRING_X_PROP_TYPE "STRING" sizeof(char)

Chapter 9 X Property Library — X Property Library Overview

Standard Libraries Reference Manual 9-4 © National Instruments Corporation

there indefinitely. Second, because only one root window exists, conflicts might arise when
multiple applications attempt to access the same properties.

To overcome those disadvantages, LabWindows/CVI provides a hidden window. Before it
runs your program, LabWindows/CVI creates a window that never displays. The variable
CVIXHiddenWindow holds the X window ID for the hidden window. This window ID is
always available to your program for reading and writing properties. When your program
terminates, LabWindows/CVI removes the window and all its properties.

Property Callback Functions
You can use the X Property Library to instruct LabWindows/CVI to notify your program
whenever there is a change to a property/set of properties on a window/set of windows.
InstallPropertyCallback registers a function that LabWindows/CVI calls whenever
any of the specified properties changes. The callback function must have the type
PropertyCallbackTypeX as defined in xproplib.h. LabWindows/CVI passes the
X display, window, and property that changed to the callback function. The state parameter
of the callback function can be NewValueX, if the property value changed, or DeleteX, if the
property was deleted. UninstallPropertyCallback disables the callback function.

Error Codes
PropLibXErrType is the data type of all return values in the X Property Library functions.
PropLibXErrType is an enumerated (enum)type that contains descriptive constant names
and numeric values for the errors. PropLibXErrType and its enumerated values are all
integers. All error values are negative numbers.

The function descriptions in the following section include detailed descriptions of these
error types.

Chapter 9 X Property Library — X Property Library Function Reference

© National Instruments Corporation 9-5 Standard Libraries Reference Manual

Using the Library Outside of LabWindows/CVI
You can use the LabWindows/CVI X Property Library in applications developed outside of
LabWindows/CVI. By linking your program with the library file libxprop.a in the
misc/lib directory of the LabWindows/CVI installation directory, you can use all the
X Property Library functions in your program. You cannot use the libxprop.a library
within LabWindows/CVI. The following two functions are available only outside of
LabWindows/CVI:

• void _InitXPropertyLib(DisplayPtrX cviDisplay, WindowX rootWindow,
WindowX hiddenWindow)

This function sets the global variables CVIXDisplay, CVIXRootWindow, and
CVIXHiddenWindow of the X Property Library.

• void HandlePropertyNotifyEvent(EventPtrX event)

This function calls the functions that you installed as property callbacks. You should call
this function whenever you receive an XPropertyNotify event. The event must be a
valid XPropertyEvent.

X Property Library Function Reference

This section describes each function in the LabWindows/CVI X Property Library in
alphabetical order.

Chapter 9 X Property Library — ConnectToXDisplay

Standard Libraries Reference Manual 9-6 © National Instruments Corporation

ConnectToXDisplay

PropLibXErrType status = ConnectToXDisplay (const char *displayName,
DisplayPtrX *display, WindowX *rootWindow);

Purpose
Connects to a remote X server.

Use ConnectToXDisplay to access an X server on a remote computer. This function returns
a display pointer and the root window, which you can use to read and write properties on the
root window of the remote X server.

If you want to communicate only with applications that use the same display as your
application, you do not need this function. Instead, use the global variables CVIXDisplay
and CVIXRootWindow, which contain the display and root window of the X server
LabWindows/CVI uses.

Parameters

Input

Output

Name Type Description

displayName string Determines the X server connection
and which communication domain
to use.

Name Type Description

display DisplayPtrX Pointer to the display of the remote
X server. Use this value as the
argument to other library functions to
communicate with the remote
X server.

rootWindow WindowX Root window of the remote X server.
Use this value as the parameter to
other library functions to access
properties on the root window of the
remote X server.

Chapter 9 X Property Library — ConnectToXDisplay

© National Instruments Corporation 9-7 Standard Libraries Reference Manual

Return Values

Parameter Discussion
Valid values for displayName include any valid arguments to the Xlib function
XOpenDisplay. The format is hostname:server or hostname:server.screen, where:

• hostname specifies the name of the host computer to which the display is
physically connected.

• server specifies the number of the server, usually 0, on its host computer.

• screen specifies the number of the default screen, usually 0, on the server.

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface, MIT

X Consortium Standard for more information about XOpenDisplay DefaultRootWindow.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to one or more
parameters.

TooManyConnectionsXErr -6 Program has already made
the maximum number of
connections that the constant
MAX_X_DISPLAYS defines.
Use DisconnectFromXDisplay
to allow more connections.

CannotConnectXErr -7 Connection could not be made to
the X server. This happens for a
number of reasons, including an
invalid display name, a network
problem, or a security problem.

Chapter 9 X Property Library — CreateXProperty

Standard Libraries Reference Manual 9-8 © National Instruments Corporation

CreateXProperty

PropLibXErrType status = CreateXProperty (const char *propertyName,
PropTypeHandleX propertyType,
PropertyHandleX *property);

Purpose
Creates X property information.

Use this function to define the attributes of the properties that you read and write on
X windows. You must create properties with CreateXProperty before you can access them
on X windows.

Each property has a unique name and a type, created by CreateXPropType, that you cannot
change except by destroying the property and recreating it.

Note You can create a maximum of 256 different properties.

Parameters

Input

Output

Name Type Description

propertyName string Name of the property. Each property
name is unique and has a type that
you cannot change after you create
the property.

propertyType PropTypeHandleX Type of the property. This value
must be a predefined type or a value
CreateXPropType returns.

Name Type Description

property PropertyHandleX Handle to the property information
created. Use this value as the
parameter to other library functions
to access the property on X windows.

Chapter 9 X Property Library — CreateXProperty

© National Instruments Corporation 9-9 Standard Libraries Reference Manual

Return Values

Parameter Discussion
CreateXProperty sets the propertyType of the property the first time you write a property
to a window. When you access a property on a window on which the property already exists,
its type must match this value for the access to succeed.

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface,

MIT X Consortium Standard for more information about XInternAtom.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to one or more
parameters.

InvalidPropTypeXErr -5 propertyType argument is not a
valid property type. This value
must be one of the predefined
property types, or must be a value
CreateXPropType returns.

DupPropertyXErr -8 Property with the same
propertyName but with a different
propertyType already exists.

InsuffMemXErr -19 Insufficient memory to store
the property information, or
256 properties already exist.

Chapter 9 X Property Library — CreateXPropType

Standard Libraries Reference Manual 9-10 © National Instruments Corporation

CreateXPropType

PropLibXErrType status = CreateXPropType (const char *typeName,
unsigned int size, unsigned int unit,
PropTypeHandleX *propertyType);

Purpose
Creates an X property type. You can use this function to define the attributes of the properties
that you read and write on X windows. You must create property types with this function
before you can create properties.

Each property type has a unique name and set of attributes that you cannot change except by
destroying the property and recreating it.

Refer to Table 9-2 in the Property Handles and Types section of the X Property Library

Overview section of this chapter for the three predefined property types, which you do not
need to create using CreateXPropType.

Note You can create a maximum of 64 different property types.

Parameters

Input

Output

Name Type Description

typeName string Name of the property type. Each
property type name is unique and has
one set of attributes that you cannot
change after you create the
property type.

size unsigned integer Number of bytes in a single
property item.

unit unsigned integer Number of bytes in the basic units that
make up a property item.

Name Type Description

propertyType PropTypeHandleX Property type created. Use this
value as the type parameter to
CreateXProperty to create
properties.

Chapter 9 X Property Library — CreateXPropType

© National Instruments Corporation 9-11 Standard Libraries Reference Manual

Return Values

Parameter Discussion
Usually, you can use the expression sizeof(type) for the size parameter, where type is the
data type you use to store the property value. This value must be a multiple of the unit
argument.

unit specifies how the X server views the property item, for example, as an array of 1-byte,
2-byte or 4-byte objects. unit is necessary to perform simple byte swapping between different
types of computers. Refer to the following notes for more information.

If the property item consists of a single object, such as an integer or a character, the unit
should be the size of the object. An exception is the double type, for which the default unit
should be 4 bytes.

If the property item is a structure or array that contains a number of smaller objects, then the
unit should be the number of bytes in the smaller objects.

Note If you are communicating with a remote X server on a computer that uses different

byte ordering than your application, CreateXPropType uses the unit you specify

to perform the byte swapping. However, LabWindows/CVI cannot properly

perform byte swapping for structures that contain different-sized members or for

the double type. For these special cases, use a unit of one and explicitly perform

byte swapping where you need to.

Note The LabWindows/CVI X Property Library specifies units in the number of bytes

as opposed to bits. Thus, the format values of 8, 16, and 32 that Xlib functions use

correspond to units of 1, 2, and 4, respectively, in the functions of the

LabWindows/CVI X Property Library.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to one or more
parameters; size argument is 0; unit is
not 1, 2, or 4; or size is not a multiple
of unit.

DupPropTypeXErr -9 Property type with the same typeName
but with a different size or unit

already exists.

InsuffMemXErr -19 Insufficient memory to store the
property information or 64 property
types already exist.

Chapter 9 X Property Library — CreateXPropType

Standard Libraries Reference Manual 9-12 © National Instruments Corporation

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface,

MIT X Consortium Standard for more information about XInternAtom.

Chapter 9 X Property Library — DestroyXProperty

© National Instruments Corporation 9-13 Standard Libraries Reference Manual

DestroyXProperty

PropLibXErrType status = DestroyXProperty (PropertyHandleX property);

Purpose
Destroys X property information. You can use DestroyXProperty when you no longer
need to access a property. This function frees memory that CreateXProperty allocates. The
property handle cannot be used after you call DestroyXProperty.

LabWindows/CVI destroys all property information when the program terminates.

Note You cannot destroy properties for which callbacks are installed. You must first call

UninstallXPropertyCallback on the callbacks.

Parameter

Input

Return Values

Name Type Description

property PropertyHandleX Handle to the property information to
destroy. This value must be one of the
predefined property types or must be
a value CreateXPropType returns.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidPropertyXErr -4 property argument is not a valid
property. This argument must be the
value CreateXProperty returns.

PropertyInUseXErr -10 A property callback was installed
with InstallPropertyCallback
for this property. It is not possible
to destroy properties for which
callbacks are installed.

Chapter 9 X Property Library — DestroyXPropType

Standard Libraries Reference Manual 9-14 © National Instruments Corporation

DestroyXPropType

PropLibXErrType status = DestroyXPropType (PropTypeHandleX propertyType);

Purpose
Destroys X property type. You can use DestroyXPropType when you no longer need a
property type. This function frees memory that CreateXPropType allocates. The property
type cannot be used after you call DestroyXPropType.

LabWindows/CVI destroys all property types when the program terminates.

Note You cannot destroy property types if there are properties that use them. You must

first call DestroyXProperty on the properties.

Parameter

Input

Return Values

Name Type Description

propertyType PropertyHandleX Handle of the property type to
destroy. This value must be one of the
predefined property types or must be
a value CreateXPropType returns.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidPropTypeXErr -5 propertyType argument is not a
valid property type. This value
must be one of the predefined
property types, or must be a value
CreateXPropType returns.

PropTypeInUseXErr -11 A property that CreateXProperty
created has this property type. It is
not possible to destroy property types
if there are properties that use them.

Chapter 9 X Property Library — DisconnectFromXDisplay

© National Instruments Corporation 9-15 Standard Libraries Reference Manual

DisconnectFromXDisplay

PropLibXErrType status = DisconnectFromXDisplay (DisplayPtrX display);

Purpose
Disconnects from a remote X server. You can use DisconnectFromXDisplay to end access
to a remote X server you connected to using ConnectToXDisplay. After you call
DisconnectFromXDisplay, you can no longer access the remote X server.

Parameter

Input

Return Values

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface, MIT

X Consortium Standard for more information about XCloseDisplay.

Name Type Description

display DisplayPtrX A pointer to the display of the remote
X server to disconnect. You must obtain
the pointer from ConnectToXDisplay.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to the parameter.

InvalidDisplayXErr -2 display argument is not a valid display.
You must obtain a display pointer from
ConnectToXDisplay.

Chapter 9 X Property Library — GetXPropErrorString

Standard Libraries Reference Manual 9-16 © National Instruments Corporation

GetXPropErrorString

char *message = GetXPropErrorString (PropLibXErrType errorNum);

Purpose
Converts the error number an X Property Library function returns into a meaningful
error message.

Parameter

Input

Return Value

Name Type Description

errorNum PropLibXErrType Status that an X Property Library
function returns.

Name Type Description

message string Explanation of error.

Chapter 9 X Property Library — GetXPropertyName

© National Instruments Corporation 9-17 Standard Libraries Reference Manual

GetXPropertyName

PropLibXErrType status = GetXPropertyName (PropertyHandleX property,
char **propertyName);

Purpose
Gets a property name. This function returns a pointer to the name associated with the
property handle.

Parameters

Input

Output

Caution The propertyName pointer points to memory allocated by CreateXProperty.

You must not attempt to free this pointer or to change its contents.

Return Values

Name Type Description

property PropertyHandleX Property handle for which to obtain
the name. You must obtain this
handle from CreateXProperty.

Name Type Description

propertyName character pointer Pointer to the property name.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to the name
parameter.

InvalidPropertyXErr -4 property argument is not a
valid property handle. You must
obtain a property handle from
CreateXProperty.

!

Chapter 9 X Property Library — GetXPropertyType

Standard Libraries Reference Manual 9-18 © National Instruments Corporation

GetXPropertyType

PropLibXErrType status = GetXPropertyType (PropertyHandleX property,
PropTypeHandleX *propertyType);

Purpose
Gets the type of a property.

This function returns a pointer to the type associated with the property handle.

Parameters

Input

Output

Return Values

Name Type Description

property PropertyHandleX Property handle for which to obtain
the type. You must obtain this handle
from CreateXProperty.

Name Type Description

propertyType PropTypeHandleX Property type. Use
GetXPropTypeName,
GetXPropTypeSize, and
GetXPropTypeUnit to get more
information about the property type.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to the parameter.

InvalidPropertyXErr -4 property argument is not a valid
property handle. You must
obtain a property handle from
CreateXProperty.

Chapter 9 X Property Library — GetXPropTypeName

© National Instruments Corporation 9-19 Standard Libraries Reference Manual

GetXPropTypeName

PropLibXErrType status = GetXPropTypeName(PropTypeHandleX propertyType,
char **typeName);

Purpose
Gets a property type name. This function returns the name associated with the property type.

Parameters

Input

Output

Caution The typeName pointer points to memory CreateXPropType allocates. You must

not attempt to free this pointer or to change its contents.

Return Values

See Also
CreateXPropType

Name Type Description

propertyType PropTypeHandleX Handle to property type for which to
obtain the name. This value must be
one of the predefined property types
or a handle you obtain from
CreateXPropType.

Name Type Description

typeName character pointer Property type name.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to the parameter.

InvalidPropTypeXErr -5 propertyType argument is not a
valid property type. You must use one
of the predefined property types or
obtain a property handle from
CreateXPropType.

!

Chapter 9 X Property Library — GetXPropTypeSize

Standard Libraries Reference Manual 9-20 © National Instruments Corporation

GetXPropTypeSize

PropLibXErrType status = GetXPropTypeSize (PropTypeHandleX propertyType,
unsigned int *size);

Purpose
Gets a property type size. This function returns the size associated with the property type.

Parameters

Input

Output

Return Values

See Also
CreateXPropType

Name Type Description

propertyType PropTypeHandleX Handle to property type for which to
obtain the size. This value must be
one of the predefined property types
or a handle you obtain from
CreateXPropType.

Name Type Description

size unsigned integer Size associated with the property
type. The size is the number of bytes
in a single property item.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to the parameter.

InvalidPropTypeXErr -5 propertyType argument is not a
valid property type. You must use one
of the predefined property types or
obtain a property handle from
CreateXPropType.

Chapter 9 X Property Library — GetXPropTypeUnit

© National Instruments Corporation 9-21 Standard Libraries Reference Manual

GetXPropTypeUnit

PropLibXErrType status = GetXPropTypeUnit (PropTypeHandleX propertyType,
unsigned int *unit);

Purpose
Gets a property type unit.

GetXPropTypeUnit returns the unit associated with the property type.

Parameters

Input

Output

Name Type Description

propertyType PropTypeHandleX Handle to property type for which to
obtain the unit. This value must be
one of the predefined property types
or a handle you obtain from
CreateXPropType.

Name Type Description

unit unsigned integer unit associated with the property
type. The unit is the number of bytes
(1, 2 or 4) in the basic objects that
make up a property item.

Chapter 9 X Property Library — GetXPropTypeUnit

Standard Libraries Reference Manual 9-22 © National Instruments Corporation

Return Values

See Also
CreateXPropType

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to the parameter.

InvalidPropTypeXErr -5 propertyType argument is not a
valid property type. You must use one
of the predefined property types or
obtain a property handle from
CreateXPropType.

Chapter 9 X Property Library — GetXWindowPropertyItem

© National Instruments Corporation 9-23 Standard Libraries Reference Manual

GetXWindowPropertyItem

PropLibXErrType status = GetXWindowPropertyItem (DisplayPtrX display,
WindowX window, PropertyHandleX property,
void *propertyItem);

Purpose
Gets a single property item from a window.

GetXWindowPropertyItem obtains the value of the specified property on the window and
copies a single item into the supplied buffer. When more than one item exists in the property
value, GetXWindowPropertyItem obtains only the first one. This function does not change
the property value.

If the property does not exist on the window, GetXWindowPropertyItem reports the
MissingPropertyXErr error.

Use GetXWindowPropertyValue to get multiple property items.

Parameters

Input

Output

Name Type Description

display DisplayPtrX Pointer to the display of the
X server to which the window
belongs.

window WindowX Window from which to obtain the
property item.

property PropertyHandleX Handle of the property to obtain.
You must obtain this handle from
CreateXProperty.

Name Type Description

propertyItem generic pointer Property item obtained from
window.

Chapter 9 X Property Library — GetXWindowPropertyItem

Standard Libraries Reference Manual 9-24 © National Instruments Corporation

Return Values

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to one or more
parameters.

InvalidDisplayXErr -2 display argument is not a
valid display. You must use the
predefined value CVIXDisplay or
obtain a display pointer from
ConnectToXDisplay.

InvalidWindowXErr -3 window argument is not a valid
window.

InvalidPropertyXErr -4 property argument is not a valid
property handle. You must obtain
a property handle from
CreateXProperty.

TypeMismatchXErr -12 Actual X type of the property value
on the window does not match the
type you specified for property.

UnitMismatchXErr -13 Actual X format of the property
value on the window does not
match the unit you specified for
property.

SizeMismatchXErr -15 Number of bytes in the property
value is not a multiple of the size
you specified for property.

MissingPropertyXErr -18 Property does not exist on the
window.

InsuffMemXErr -19 Insufficient memory to perform the
operation.

GeneralXErr -20 An Xlib function failed for an
unknown reason.

BrokenConnectionXErr -21 Connection to the X server was
broken. This occurs if the remote
server terminates.

Chapter 9 X Property Library — GetXWindowPropertyItem

© National Instruments Corporation 9-25 Standard Libraries Reference Manual

Parameter Discussion
display must be the predefined value CVIXDisplay or must be a display pointer you obtain
from ConnectToXDisplay. Use CVIXDisplay if the window is on the same display
LabWindows/CVI uses.

For the window parameter, use CVIXRootWindow to access the default root window of the
display LabWindows/CVI uses. Use CVIXHiddenWindow to access the hidden window
associated with your application.

propertyItem must point to an object of the same size as the property item. You can get the
size of the property item by calling the function GetXPropertySize.

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface,

MIT X Consortium Standard for more information about XGetWindowProperty.

Chapter 9 X Property Library — GetXWindowPropertyValue

Standard Libraries Reference Manual 9-26 © National Instruments Corporation

GetXWindowPropertyValue

PropLibXErrType status = GetXWindowPropertyValue (DisplayPtrX display,
WindowX window, PropertyHandleX property,
unsigned int index,
unsigned int numberOfItemsRequested, int delete,
unsigned int *numberOfItemsReturned,
unsigned int *numberOfItemsRemaining,
void *propertyValue);

Purpose
Gets the value of a property on a window.

GetXWindowPropertyValue obtains the value of the specified property on the window and
copies it into the supplied buffer.

Note If the property does not exist on the window, GetXWindowPropertyValue does

not report an error. Instead, it sets the number of items returned to 0.

Parameters

Input

Name Type Description

display DisplayPtrX Pointer to the display of the
X server to which the window
belongs.

window WindowX Window from which to obtain the
property value.

property PropertyHandleX Handle of the property to obtain.
You must obtain this handle from
CreateXProperty.

index unsigned integer Index into the property value
where reading is to begin. Specify
the number of property items to
skip from the start of the property
value.

Chapter 9 X Property Library — GetXWindowPropertyValue

© National Instruments Corporation 9-27 Standard Libraries Reference Manual

Output

Return Values

Name Type Description

numberOfItemsRequested unsigned integer Number of property items to
obtain from the window.

delete integer Flag that indicates whether to
delete the property value from the
window after it is obtained.
Specify 1 to delete the portion of
the property value that was
obtained. Specify 0 to leave the
property value as it is.

Name Type Description

numberOfItemsReturned unsigned integer Number of property items that
were obtained from the window.

numberOfItemsRemaining unsigned integer Number of property items on the
window that were neither skipped
nor obtained. Pass NULL for this
parameter if you do not need this
information.

propertyValue generic pointer Property value obtained from
window. This parameter must
point to an array of size n-by-m
bytes, where n is the size of the
property item, and m is the
number of items requested.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to one or more
parameters.

Chapter 9 X Property Library — GetXWindowPropertyValue

Standard Libraries Reference Manual 9-28 © National Instruments Corporation

InvalidDisplayXErr -2 display argument is not a valid
display. You must use the
predefined value CVIXDisplay
or obtain a display pointer from
ConnectToXDisplay.

InvalidWindowXErr -3 window argument is not a valid
window.

InvalidPropertyError -4 property argument is not a
valid property handle. You
must obtain a handle from
CreateXProperty.

TypeMismatchXErr -12 Actual X type of the property
value on the window does not
match the type you specified for
property.

UnitMismatchXErr -13 Actual X format of the property
value on the window does not
match the unit you specified for
property.

InvalidIndexXErr -14 index you specified is larger than
the actual number of property
items on the window.

SizeMismatchXErr -15 Number of bytes in the property
value is not a multiple of the size
you specified for property.

InsuffMemXErr -19 Insufficient memory to perform
the operation.

GeneralXErr -20 An Xlib function failed for an
unknown reason.

BrokenConnectionXErr -21 Connection to the X server was
broken. This occurs if the remote
server terminates.

Constant Name Value Description

Chapter 9 X Property Library — GetXWindowPropertyValue

© National Instruments Corporation 9-29 Standard Libraries Reference Manual

Parameter Discussion
display must be the predefined value CVIXDisplay or must be a display pointer you obtain
from ConnectToXDisplay. Use CVIXDisplay if the window is on the same display
LabWindows/CVI uses.

For the window parameter, use CVIXRootWindow to access the default root window of the
display LabWindows/CVI uses. Use CVIXHiddenWindow to access the hidden window
associated with your application.

numberOfItemsReturned will be less than or equal to the number of property items you
requested. If the property does not exist on the window or no property value exists, this value
is 0. You must check this value to determine if any property items were read.

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface,

MIT X Consortium Standard for more information about XGetWindowProperty.

Chapter 9 X Property Library — InstallXPropertyCallback

Standard Libraries Reference Manual 9-30 © National Instruments Corporation

InstallXPropertyCallback

PropLibXErrType status = InstallXPropertyCallback (DisplayPtrX display,
const WindowX windowList[],
unsigned int numberOfWindows,
const PropertyHandleX propertyList[],
unsigned int numberOfProperties,
const void *callbackData,
PropertyCallbackTypeX *callbackFunction);

Purpose
Installs a property callback function.

The X Property Library calls the callback function whenever one of the specified properties
on one of the specified windows changes in any way. If you install more than one function for
the same property, the library calls the functions in the reverse order in which you installed
them.

If you already installed the callback function, the window list and properties you specify in
this call replace the ones you previously associated with the callback function.

Parameters

Input

Name Type Description

display DisplayPtrX Pointer to the display of the
X server to which the window
belongs.

windowList const WindowX
[]

Array of windows on which the
properties can exist.

numberOfWindows unsigned integer Number of windows in the window
list; this value must be greater
than 0.

propertyList const Property
CallbackTypeX
[]

Array of handles to properties
for which the library invokes the
callback.

numberOfProperties unsigned
integer

Number of properties in the
property list.

Chapter 9 X Property Library — InstallXPropertyCallback

© National Instruments Corporation 9-31 Standard Libraries Reference Manual

Return Values

Name Type Description

callbackData generic pointer Pointer to data to pass
to the callback function.
LabWindows/CVI passes this
value to the callback function as
userData.

callbackFunction Property
CallbackTypeX *

Pointer to the function to call when
the properties change.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to one
or more parameters. The
numberOfWindows argument
is 0.

InvalidDisplayXErr -2 display argument is not a valid
display. You must use the
predefined value CVIXDisplay or
obtain a display pointer from
ConnectToXDisplay.

InvalidWindowXErr -3 One or more of the windows in the
windowList argument are not
valid.

InvalidPropertyXErr -4 One or more of the property
handles in the propertyList
argument are not valid. These
properties must be values
CreateXProperty returns.

InsuffMemXErr -19 Insufficient memory to perform the
operation.

BrokenConnectionXErr -21 Connection to the X server was
broken. This occurs if the remote
server terminates.

Chapter 9 X Property Library — InstallXPropertyCallback

Standard Libraries Reference Manual 9-32 © National Instruments Corporation

Parameter Discussion
display must be the predefined value CVIXDisplay or must be a display pointer you obtain
from ConnectToXDisplay. Use CVIXDisplay if the window is on the same display
LabWindows/CVI uses.

To specify a single window named win, pass the expression &win for the windowList

parameter and pass 1 for the numberOfWindows. Use &CVIXRootWindow to access the
default root window of the display LabWindows/CVI uses. Use &CVIXHiddenWindow to
specify the hidden window associated with your application.

If numberOfProperties is 0 or the propertyList value is ANY_X_PROPERTY, the callback
function is called whenever any property changes on any of the windows in the windowList.

The values in the propertyList array must be handles you obtain from CreateXProperty.

To specify a single property named prop, pass the expression &prop for the propertyList
parameter and pass 1 for numberOfProperties. If this value is ANY_X_PROPERTY or the
numberOfProperties is 0, the callback function is called whenever any property changes on
any of the windows in the windowList.

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface,

MIT X Consortium Standard for more information about the PropertyNotify event.

Chapter 9 X Property Library — PutXWindowPropertyItem

© National Instruments Corporation 9-33 Standard Libraries Reference Manual

PutXWindowPropertyItem

PropLibXErrType status = PutXWindowPropertyItem (DisplayPtrX display,
WindowX window, PropertyHandleX property,
void *propertyItem);

Purpose
Stores a single property item on a window. This value replaces any existing property value.

To store multiple property items, use PutXWindowPropertyValue.

Parameters

Input

Return Values

Name Type Description

display DisplayPtrX Pointer to the display of the
X server to which the window
belongs.

window WindowX Window on which the property
item is to be stored.

property PropertyHandleX Handle of the property to store.
You must obtain this handle from
CreateXProperty.

propertyItem generic pointer Property item to store on the
window. This parameter must
point to an object of the same size
as a property item. You can get
the property item size by calling
GetXPropertySize.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to one or more
parameters.

Chapter 9 X Property Library — PutXWindowPropertyItem

Standard Libraries Reference Manual 9-34 © National Instruments Corporation

Parameter Discussion
display must be the predefined value CVIXDisplay or must be a display pointer you obtain
from ConnectToXDisplay. Use CVIXDisplay if the window is on the same display
LabWindows/CVI uses.

For the window parameter, use CVIXRootWindow to access the default root window of the
display LabWindows/CVI uses. Use CVIXHiddenWindow to access the hidden window
associated with your application.

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface,

MIT X Consortium Standard for more information about XChangeProperty.

InvalidDisplayXErr -2 display argument is not a valid
display. You must use the
predefined value CVIXDisplay or
obtain a display pointer from
ConnectToXDisplay.

InvalidWindowXErr -3 window argument is not a valid
window.

InvalidPropertyXErr -4 property argument is not a
valid property handle. You must
obtain a property handle from
CreateXProperty.

InsuffMemXErr -19 Insufficient memory to perform the
operation.

GeneralXErr -20 An Xlib function failed for an
unknown reason.

BrokenConnectionXErr -21 Connection to the X server was
broken. This occurs if the remote
server terminates.

Constant Name Value Description

Chapter 9 X Property Library — PutXWindowPropertyValue

© National Instruments Corporation 9-35 Standard Libraries Reference Manual

PutXWindowPropertyValue

PropLibXErrType status = PutXWindowPropertyValue (DisplayPtrX display,
WindowX window, PropertyHandleX property,
unsigned int numberOfItems, int mode,
void *propertyValue);

Purpose
Stores the value of a property on a window.

To store a single property item, you can use PutXWindowPropertyItem.

Parameters

Input

Name Type Description

display DisplayPtrX Pointer to the display of the
X server to which the window
belongs.

window WindowX Window on which the property
value is to be stored.

property PropertyHandleX Handle of the property to store.
You must obtain this handle from
CreateXProperty.

numberOfItems unsigned integer Number of property items to store
on the window.

mode integer Mode in which property value
is stored.

propertyValue generic pointer Property value to store on the
window. This parameter must be an
array of size n-by-m bytes, where n
is the size of a property item, and m
is the number of items to write.

Chapter 9 X Property Library — PutXWindowPropertyValue

Standard Libraries Reference Manual 9-36 © National Instruments Corporation

Return Values

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to one or
more parameters; mode is
not ReplaceXPropMode,
PrependXPropMode or
AppendXPropMode.

InvalidDisplayXErr -2 display argument is not a
valid display. You must use the
predefined value CVIXDisplay
or obtain a display pointer from
ConnectToXDisplay.

InvalidWindowXErr -3 window argument is not a valid
window.

InvalidPropertyXErr -4 property argument is not a
valid property handle. You must
obtain a property handle from
CreateXProperty.

TypeMismatchXErr -12 Actual X type of the property value
on the window does not match the
type you specified for property.
This can occur only if you set mode
to append or prepend.

UnitMismatchXErr -13 Actual X format of the property
value on the window does not
match the unit you specified for
property. This can occur only if
you set mode to append or prepend.

OverflowXErr -16 Arithmetic overflow occurred in
calculations on the property item
sizes and the number of items you
specified.

InsuffMemXErr -19 Insufficient memory to perform the
operation.

Chapter 9 X Property Library — PutXWindowPropertyValue

© National Instruments Corporation 9-37 Standard Libraries Reference Manual

Parameter Discussion
display must be the predefined value CVIXDisplay or must be a display pointer you obtain
from ConnectToXDisplay. Use CVIXDisplay if the window is on the same display
LabWindows/CVI uses.

For the window parameter, use CVIXRootWindow to access the default root window of the
display LabWindows/CVI uses. Use CVIXHiddenWindow to access the hidden window
associated with your application.

The following values are valid for the mode parameter:

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface,

MIT X Consortium Standard for more information about XChangeProperty.

GeneralXErr -20 An Xlib function failed for an
unknown reason.

BrokenConnectionXErr -21 Connection to the X server was
broken. This occurs if the remote
server terminates.

ReplaceXPropMode—Replaces the existing property value with the new value.

PrependXPropMode—Adds the new property value to the beginning of the existing value.

AppendXPropMode—Adds the new property value to the end of the existing value.

Constant Name Value Description

Chapter 9 X Property Library — RemoveXWindowProperty

Standard Libraries Reference Manual 9-38 © National Instruments Corporation

RemoveXWindowProperty

PropLibXErrType status = RemoveXWindowProperty (DisplayPtrX display,
WindowX window, PropertyHandleX property);

Purpose
Deletes the property value and removes the property from the window.

Parameters

Input

Return Values

Name Type Description

display DisplayPtrX Pointer to the display of the
X server to which the window
belongs.

window WindowX Window from which the property is
to be removed.

property PropertyHandleX Handle of the property to remove.
You must obtain this handle from
CreateXProperty.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidParamXErr -1 NULL was passed to one or more
parameters.

InvalidDisplayXErr -2 display argument is not a
valid display. You must use the
predefined value CVIXDisplay
or obtain a display pointer from
ConnectToXDisplay.

InvalidWindowXErr -3 window argument is not a valid
window.

InvalidPropertyXErr -4 property argument is not a
valid property handle. You must
obtain a property handle from
CreateXProperty.

Chapter 9 X Property Library — RemoveXWindowProperty

© National Instruments Corporation 9-39 Standard Libraries Reference Manual

Parameter Discussion
display must be the predefined value CVIXDisplay or must be a display pointer you obtain
from ConnectToXDisplay. Use CVIXDisplay if the window is on the same display
LabWindows/CVI uses.

For the window parameter, use CVIXRootWindow to access the default root window of the
display LabWindows/CVI uses. Use CVIXHiddenWindow to access the hidden window
associated with your application.

See Also
Refer to the Xlib Programming Manual or to Xlib—C Language X Interface,

MIT X Consortium Standard for more information about XDeleteProperty.

InsuffMemXErr -19 Insufficient memory to perform the
operation.

BrokenConnectionXErr -21 Connection to the X server was
broken. This occurs if the remote
server terminates.

Constant Name Value Description

Chapter 9 X Property Library — UninstallXPropertyCallback

Standard Libraries Reference Manual 9-40 © National Instruments Corporation

UninstallXPropertyCallback

PropLibXErrType status = UninstallXPropertyCallback
(PropertyCallbackTypeX *callbackFunction);

Purpose
Uninstalls a property callback function.

After a callback function is uninstalled, it is no longer called when properties change.
LabWindows/CVI automatically uninstalls all property callback functions when the program
terminates.

Note Although you cannot selectively uninstall certain properties or windows

associated with a callback function, you can reinstall a callback function with a

new set of windows and properties using InstallXPropertyCallback.

Parameter

Input

Return Values

Name Type Description

callbackFunction Property
CallbackTypeX *

Function that was installed with
InstallXPropertyCallback.

Constant Name Value Description

NoXErr 0 Function was successful.

InvalidCallbackXErr -17 Function you specified is not
installed as a callback.

© National Instruments Corporation 10-1 Standard Libraries Reference Manual

10
Easy I/O for DAQ Library

This chapter describes the functions in the Easy I/O for DAQ Library. The Easy I/O for DAQ

Library Function Overview section contains general information about the functions and
guidelines and restrictions you should know when using the Easy I/O for DAQ Library. The
Easy I/O for DAQ Function Reference section contains an alphabetical list of function
descriptions.

Easy I/O for DAQ Library Function Overview

The functions in the Easy I/O for DAQ Library make it easier to write simple DAQ programs
than if you use the Data Acquisition Library.

This library implements a subset of the functionality of the Data Acquisition Library, but it
does not use the same functions as the Data Acquisition Library. Read the following
advantages and limitations to see if the Easy I/O for DAQ Library is appropriate for
your application.

You must have NI-DAQ for PC compatibles installed to use the Easy I/O for DAQ Library,
which has been tested using version 4.6.1 and later of NI-DAQ. It has not been tested using
previous versions of NI-DAQ.

The cvi\samples\easyio directory includes sample programs for the Easy I/O for DAQ
Library. The EASYIO section of cvi\samples.doc includes discussions of these sample
programs.

Note Do not mix calls to the Data Acquisition Library with similar types of calls to the

Easy I/O for DAQ Library in the same application. For example, do not mix

analog input calls to the Data Acquisition Library with analog input calls to the

Easy I/O for DAQ Library in the same program.

Advantages of Using the Easy I/O for DAQ Library
If you want to scan multiple analog input channels on an MIO board using the Data
Acquisition Library, you have to programmatically build a channel list and a gain list before
calling SCAN_Op.

The Easy I/O for DAQ functions accept a channel string and upper and lower input limit
parameters so you can easily perform a scan in one step.

Chapter 10 Easy I/O for DAQ Library — Easy I/O for DAQ Library Function Overview

Standard Libraries Reference Manual 10-2 © National Instruments Corporation

In the Data Acquisition Library, you might have to use Lab_ISCAN_Op, SCAN_Op, or
MDAQ_Start depending on which DAQ device you use. Also, if you use SCXI, you must call
a number of SCXI-specific functions before you actually acquire data.

The Easy I/O for DAQ functions are device independent, which means that you can use the
same function on a Lab series board, an MIO board, an EISA-A2000, or an SCXI module.

Limitations of Using the Easy I/O for DAQ Library
The Easy I/O for DAQ Library currently works only with analog I/O, counter/timers, and
simple digital I/O.

The library does not currently work with multirate scanning.

Easy I/O for DAQ Library Function Panels
The Easy I/O for DAQ Library function panels are grouped in the tree structure in Table 10-1
according to the types of operations they perform.

The first- and second-level headings in the function tree are names of the function classes and
subclasses. Function classes and subclasses are groups of related function panels. The
third-level headings are the names of individual function panels. Each Easy I/O for DAQ
function panel generates a function call.

Table 10-1. Functions in the Easy I/O for DAQ Library Function Tree

Class/Panel Name Function Name
Analog Input

AI Sample Channel AISampleChannel
AI Sample Channels AISampleChannels
AI Acquire Waveform(s) AIAcquireWaveforms
AI Acq. Triggered Waveform(s) AIAcquireTriggeredWaveforms

Asynchronous Acquisition
AI Start Acquisition AIStartAcquisition
AI Check Acquisition AICheckAcquisition
AI Read Acquisition AIReadAcquisition
AI Clear Acquisition AIClearAcquisition
Plot Last Waveform(s) to Popup PlotLastAIWaveformsPopup

Analog Output
AO Update Channel AOUpdateChannel
AO Update Channels AOUpdateChannels
AO Generate Waveform(s) AOGenerateWaveforms
AO Clear Waveform(s) AOClearWaveforms

Digital Input/Output
Read from Digital Line ReadFromDigitalLine
Read from Digital Port ReadFromDigitalPort

Chapter 10 Easy I/O for DAQ Library — Easy I/O for DAQ Library Function Overview

© National Instruments Corporation 10-3 Standard Libraries Reference Manual

Class Descriptions

• The Analog Input function class contains all the functions that perform A/D conversions.

• The Asynchronous Acquisition function class contains all the functions that perform
asynchronous, or background, A/D conversions.

• The Analog Output function class contains all the functions that perform
D/A conversions.

• The Digital Input/Output function class contains all the functions that perform digital
input and output operations.

• The Counter/Timer function class contains all the functions that perform counting and
timing operations.

• The Miscellaneous function class contains functions that do not fit into the other
categories but are useful when you write programs using the Easy I/O for DAQ Library.

The online help with each panel contains specific information about operating each
function panel.

Digital Input/Output (continued)
Write to Digital Line WriteToDigitalLine
Write to Digital Port WriteToDigitalPort

Counter/Timer
Counter Measure Frequency CounterMeasureFrequency
Counter Event or Time Configure CounterEventOrTimeConfig
Continuous Pulse Gen Configure ContinuousPulseGenConfig
Delayed Pulse Gen Configure DelayedPulseGenConfig
Frequency Divider Configure FrequencyDividerConfig
Pulse Width or Period Meas Conf PulseWidthOrPeriodMeasConfig
Counter Start CounterStart
Counter Read CounterRead
Counter Stop CounterStop
I Counter Control ICounterControl

Miscellaneous
Get DAQ Error Description GetDAQErrorString
Get Number of Channels GetNumChannels
Get Channel Indices GetChannelIndices
Get Channel Name from Index GetChannelNameFromIndex
Get AI Limits of Channel GetAILimitsOfChannel
Group by Channel GroupByChannel
Set Multitasking Mode SetEasyIOMultitaskingMode

Table 10-1. Functions in the Easy I/O for DAQ Library Function Tree

Class/Panel Name Function Name

Chapter 10 Easy I/O for DAQ Library — Easy I/O for DAQ Library Function Overview

Standard Libraries Reference Manual 10-4 © National Instruments Corporation

Device Numbers
The first parameter to most of the Easy I/O for DAQ functions is the device number of the
DAQ device you want to use for the given operation. After you have followed the installation
and configuration instructions in Chapter 1, Introduction to NI-DAQ, of the NI-DAQ User

Manual for PC Compatibles, the configuration utility displays the device number for each
device you have installed in the system. You can use the configuration utility to verify your
device numbers. To use multiple DAQ devices in one application, pass the appropriate device
number to each function.

Channel String for Analog Input Functions
The second parameter to most of the analog input functions is the channel string that contains
the analog input channels to sample.

Refer to Chapter 2, Hardware Overview, in your NI-DAQ User Manual for PC Compatibles
to determine exactly what channels are valid for your hardware.

The following examples explain the syntax for the channel string in various cases:

• If you are using an MIO board, NEC-AI-16E-4, or NEC-AI-16XE-50, list the channels
in the order in which they are to be read, as in the following example:

"0,2,5" /* reads channels 0, 2, and 5 in that order */

"0:3" /* reads channels 0 through 3 inclusive */

• If you are using AMUX-64T boards, you can address AMUX-64T channels when you
attach one, two, or four AMUX-64T boards to a plug-in data acquisition board.

Refer to Chapter 2, Hardware Overview, in your NI-DAQ User Manual for PC

Compatibles to determine how AMUX-64T channels are multiplexed onto
onboard channels.

The onboard channel to which each block of four, eight, or 16 AMUX-64T channels are
multiplexed and the scanning order of the AMUX-64T channels are fixed. To specify a
range of AMUX-64T channels, you enter in the channel list the onboard channel into
which the range is multiplexed. For example, if you have one AMUX-64T:

"0" /* reads channels 0 through 3 on each AMUX-64T board in that
order */

To sample a single AMUX-64T channel, you also must specify the number of the
AMUX-64T board, as in the following example:

"AM1!3" /* samples channel 3 on AMUX-64T board 1 */
"AM4!8" /* samples channel 8 on AMUX-64T board 4 */

• If you are using a Lab-PC+, DAQCard-500/700/1200, DAQPad-1200, or PC-LPM-16,
you can sample input channels only in descending order, and you must end with
channel 0, such as "3:0". If you are using a Lab-PC+ or 1200 product in differential
mode, you must use even-numbered channels.

Chapter 10 Easy I/O for DAQ Library — Easy I/O for DAQ Library Function Overview

© National Instruments Corporation 10-5 Standard Libraries Reference Manual

• If you are using a DAQPad-MIO-16XE-50, you can read the value of the cold junction
compensation temperature sensor using "cjtemp" as the channel.

• If you are using SCXI, you can address SCXI channels when you attach one or more
SCXI chassis to a plug-in data acquisition board. If you operate a module in parallel
mode, you can select a SCXI channel by specifying the corresponding onboard channels
or by using special channel syntax for SCXI. If you operate the modules in multiplexed
mode, you must use the SCXI channel syntax. The following example describes the
SCXI channel syntax:

"OB1!SCx!MDy!a" /* Channel a on the module in slot y of the chassis
with ID x is multiplexed into onboard channel 1. */
"OB0!SCx!MDy!a:b" /* Channels a through b inclusive on the module
in slot y of the chassis with ID x is multiplexed into onboard
channel 0. */

SCXI channel ranges cannot cross module boundaries and must always increase in
channel number.

The following examples of the SCXI channel syntax introduce the special SCXI channels:

• "OB0!SCx!MDy!MTEMP" /* The temperature sensor configured in
MTEMP mode on the multiplexed module in slot y of the chassis with
ID x. */

• "OB1!SCx!MDy!DTEMP" /* The temperature sensor configured in
DTEMP mode on the parallel module in slot y of the chassis with
ID x. */

• "OB0!SCx!MDy!CALGND" /* (SCXI-1100 and SCXI-1122 only) The
grounded amplifier of the module in slot y of the chassis with
ID x. */

• "OB0!SCx!MDy!SHUNT0" /* (SCXI-1121, SCXI-1122 and SCXI-1321 only)
Channel 0 of the module in slot y of the chassis with ID x, with
the shunt resistor applied. */

• "OB0!SCx!MDy!SHUNT0:3" /* (SCXI-1121, SCXI-1122 and SCXI-1321
only) Channel 0 through 3 of the module in slot y of the chassis
with ID x, with the shunt resistors applied at each channel. */

Command Strings
You can use command strings within the channel string to set per-channel limits and an
interchannel sample rate. For example,

"cmd hi 10.0 low -10.0; 7:4; cmd hi 5.0 low -5.0; 3:0"

specifies that channels 7 through 4 should be scanned with limits of +/- 10.0 volts and
channels 3 through 0 should be scanned with limits of +/- 5.0 volts. As you view the
channel string from left to right, each high/low limit command applies to the channels that

Chapter 10 Easy I/O for DAQ Library — Easy I/O for DAQ Library Function Overview

Standard Libraries Reference Manual 10-6 © National Instruments Corporation

follow it until the next high/low limit command is encountered. The highLimit and lowLimit
parameters to AISampleChannels are the initial high/low limits, which apply to channels in
the channel string to the left of the first high/low limit command.

The channel string

"cmd interChannelRate 1000.0; 0:3"

specifies that channels 0 through 3 should be sampled at 1,000.0 Hz. In other words, there
should be 1/1,000.0 = 1 ms of delay between each channel. If you do not set an interchannel
sample rate, the channels are sampled as fast as possible for your hardware to achieve
pseudo-simultaneous scanning.

The following guide describes the syntax for the command string:

• Items enclosed in [] are optional.

• <number> is an integer or real number.

• <LF> is a linefeed character.

• ;|<LF> means you can use either ; or <LF> to separate command strings from channel
strings.

• You can use ! as an optional command separator.

• Spaces are optional.

The following example specifies the syntax for the initial command string that appears before
any channel:

"cmd [interChannelRate <number>[!]] [hi <number> [!]low
 <number>[!]];|<LF>"

The following example specifies the syntax for command strings that appear after
any channel:

";|<LF> cmd hi <number>[!] low <number>[!] ;|<LF>"

Channel String for Analog Output Functions
The second parameter to most of the analog output functions is the channel string that
contains the analog output channels to drive.

Refer to the chapter specific to your DAQ device in the DAQ Hardware Overview Guide to
determine what channels are valid for your hardware. The document is an Adobe Acrobat file,
daqhwov.pdf, that you can view on screen or print. daqhwov.pdf is part of a set of .pdf
files that National Instruments includes with every DAQ device the company sells.

Chapter 10 Easy I/O for DAQ Library — Easy I/O for DAQ Function Reference

© National Instruments Corporation 10-7 Standard Libraries Reference Manual

The following examples explain the syntax for the channel string:

• If you are using a DAQ device without SCXI, list the channels to drive, as in the
following example:

"0,2,5" /* drives channels 0, 2, and 5 */

"0:3" /* drives channels 0 through 3 inclusive */

• If you are using SCXI, you can address SCXI channels when you attach one or more
SCXI chassis to a plug-in data acquisition board by using the following SCXI
channel syntax:

"SCx!MDy!a" /* Channel a on the module in slot y of the chassis
with ID x. */

"SCx!MDy!a:b" /* Channels a through b inclusive on the module in
slot y of the chassis with ID x. */

SCXI channel ranges cannot cross module boundaries and must always increase in
channel number.

Valid Counters for the Counter/Timer Functions
The second parameter to most of the counter/timer functions is the counter the functions use
for the operation. The valid counters you can use depends on your hardware, as shown
in Table 10-2.

Easy I/O for DAQ Function Reference

This section describes each function in the Easy I/O for DAQ Library in alphabetical order.

Table 10-2. Valid Counters

Device Type Valid Counters

DAQ-STC Devices 0 and 1

Am9513 MIO boards 1, 2, and 5

PC-TIO-10 1–10

EISA-A2000 2

Chapter 10 Easy I/O for DAQ Library — AIAcquireTriggeredWaveforms

Standard Libraries Reference Manual 10-8 © National Instruments Corporation

AIAcquireTriggeredWaveforms

short error = AIAcquireTriggeredWaveforms (short device,
char channelString[], long numberOfScans,
double scansPerSecond, double highLimit,
double lowLimit, double *actualScanRate,
unsigned short triggerType,
unsigned short edgeSlope, double triggerLevel,
char triggerSource[], long pretriggerScans,
double timeLimitsec, short fillMode,
double waveforms[]);

Purpose
Performs a timed acquisition of voltage data from the analog channels you specify in
channelString. The acquisition does not start until the trigger conditions are satisfied.

If you have an E Series DAQ device, you can select Equivalent Time Sampling for
triggerType to sample repetitive waveforms at up to 20 MHz. Refer to the following
Parameter Discussion section for more information.

Parameters

Input

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

channelString string Analog input channels to sample.

numberOfScans long integer Number of scans to acquire. One scan
involves sampling every channel in
channelString once.

scansPerSecond double Number of scans performed per second.
The function samples each channel at this
rate.

highLimit double Maximum value to measure.

lowLimit double Minimum value to measure.

triggerType unsigned short
integer

Trigger type.

edgeSlope unsigned short
integer

Edge/slope condition for triggering.

triggerLevel double Value at which the trigger is to occur.

Chapter 10 Easy I/O for DAQ Library — AIAcquireTriggeredWaveforms

© National Instruments Corporation 10-9 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
channelString is the analog input channel to sample. Refer to the Channel String for Analog

Input Functions section of the Easy I/O for DAQ Library Function Overview section of this
chapter for the syntax of this string.

triggerSource string Specifies which channel is the trigger
source.

pretriggerScans long integer Specifies the number of scans to retrieve
before the trigger point.

timeLimitsec double Maximum length of time in seconds to
wait for the data.

fillMode short integer Specifies whether the waveforms array is
in GROUP_BY_CHANNEL or
GROUP_BY_SCAN mode.

Name Type Description

actualScanRate double Actual scan rate. The actual scan rate
might differ slightly from the scan rate you
specified, given the limitations of your
particular DAQ device.

waveforms double array Array that contains the values acquired on
the channels you specify in
channelString.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Name Type Description

Chapter 10 Easy I/O for DAQ Library — AIAcquireTriggeredWaveforms

Standard Libraries Reference Manual 10-10 © National Instruments Corporation

triggerType is the trigger type. Table 10-3 lists trigger types.

If you choose Hardware or Software Analog Trigger, AIAcquireTriggeredWaveforms
retrieves data after the analog triggering parameters are satisfied. Be sure that triggerSource
is one of the channels the channel string lists. Hardware triggering is more accurate than
software triggering, but it is not available on all boards.

If you choose Digital Trigger A, the trigger starts the acquisition if pretriggerScans is 0. For
the MIO-16, connect the digital trigger signal to the STARTTRIG input. If pretriggerScans
is greater than 0, the trigger stops the acquisition after all posttrigger data is acquired. For the
MIO-16, connect the digital trigger signal to the STOPTRIG input.

If you choose Digital Trigger A & B, pretriggerScans must be greater than 0. A digital
trigger starts the acquisition and a digital trigger stops the acquisition after all posttrigger data
is acquired. For the MIO-16, the STARTTRIG input starts the acquisition and the STOPTRIG
input stops the acquisition.

If you choose Scan Clock Gating, an external signal gates the scan clock on and off. If the
scan clock gate becomes FALSE, the current scan completes, and the scan clock ceases
operation. When the scan clock gate becomes TRUE, the scan clock immediately begins
operation again.

If you choose Equivalent Time Sampling, you use the Equivalent Time Sampling technique
on an E Series DAQ device to achieve an effective acquisition rate of up to 20 MHz, with the
following conditions:

• The signal that you measure must be a periodic waveform.

• The trigger conditions must be satisfied or AIAcquireTriggeredWaveforms
times out.

Table 10-3. Trigger Types

Trigger Type Constant Name

Hardware Analog Trigger HW_ANALOG_TRIGGER

Digital Trigger A DIGITAL_TRIGGER_A

Digital Triggers A & B DIGITAL_TRIGGER_AB

Scan Clock Gating SCAN_CLOCK_GATING

Software Analog Trigger SW_ANALOG_TRIGGER

Equivalent Time Sampling ETS_TRIGGER

Chapter 10 Easy I/O for DAQ Library — AIAcquireTriggeredWaveforms

© National Instruments Corporation 10-11 Standard Libraries Reference Manual

Equivalent Time Sampling is the process of taking A/D conversions from a periodic
waveform at special points in time such that when the A/D conversions are placed side by
side, they represent the original waveform as if it were sampled at a high frequency.

For example, if the A/D conversions, represented by x’s, on the waveform shown in
Figure 10-1 are placed side by side, they represent one cycle of the waveform.

Figure 10-1. One Cycle of a Waveform

AIAcquireTriggeredWaveforms accomplishes Equivalent Time Sampling as follows:

• You set a hardware analog trigger condition for measuring your waveform using
edgeSlope, triggerLevel, and triggerSource.

• Whenever a hardware analog trigger occurs, AIAcquireTriggeredWaveforms
strobes the internal ATCOUT signal.

• AIAcquireTriggeredWaveforms internally routes the ATCOUT signal to the gate of
GPCTR0, which is configured to generate a pulse each time it receives a rising edge at
its gate input.

• The function then internally routes the output of GPCTR0 to the data acquisition sample
clock to control the A/D conversion rate.

• You can achieve a very high effective scan rate through a pre-pulse delay that is
programmed into GPCTR0. This delay automatically increments before each GPCTR0
pulse so that the A/D conversions occur at slightly larger intervals from the trigger
condition as trigger conditions occur over time.

• Because the waveform being measured is periodic, A/D conversions that are at particular
intervals from trigger conditions over time can look the same as A/D conversions at
particular intervals from one unique trigger point in time, as shown in Figure 10-2 and
Figure 10-3.

X X

X X

X X

X

X X

X X

X X

X

Chapter 10 Easy I/O for DAQ Library — AIAcquireTriggeredWaveforms

Standard Libraries Reference Manual 10-12 © National Instruments Corporation

In Figure 10-2:

 tn = nth trigger condition
 dn = delay between the nth trigger and the nth conversion
 x = an A/D conversion
--- = the trigger level

Figure 10-2. Converting a Signal at Periodic Intervals

When the A/D conversions are placed side by side, they represent the original waveform as if
it were sampled at a high frequency.

Figure 10-3. Resulting Waveform That Resembles Original Waveform

edgeSlope specifies whether the trigger occurs when the trigger signal value is leading,
POSITIVE_SLOPE, or trailing, NEGATIVE_SLOPE.

triggerLevel specifies the value at which the trigger is to occur. triggerLevel is valid only
when triggerType is hardware or software analog trigger.

triggerSource specifies which channel the trigger source is. triggerSource must be one of
the channels channelString lists. If you pass "" or NULL, the function uses the first channel
in channelString as triggerSource. triggerSource is valid only when triggerType is
hardware or software analog trigger.

timeLimitsec is the maximum length of time in seconds to wait for the data. If the time you
set expires, AIAcquireTriggeredWaveforms returns a timeout error
(timeOutErr = -10800). A value of -2.0 disables the time limit.

Caution Disabling the time limit leaves your program in a suspended state until the trigger

condition occurs.

X X

X X

X X

X

t

d

t

d

t

d

0

0 2 31 4 65

1 2 t

d

3 t

d

t

d

4 5 t

d

6

X X

X X

X X

X

!

Chapter 10 Easy I/O for DAQ Library — AIAcquireTriggeredWaveforms

© National Instruments Corporation 10-13 Standard Libraries Reference Manual

A value of -1.0 (default) for timeLimitsec lets the function calculate the timeout based on
the acquisition rate and number of scans you request.

fillMode specifies whether the waveforms array is grouped by channels or grouped by scans.
Consider the following examples:

• If you scan channels A through C and numberOfScans is 5, the possible fill modes are
as follows:

GROUP_BY_CHANNEL

GROUP_BY_SCAN

• If you pass the array to a graph, acquire the data grouped by channel.

• If you pass the array to a strip chart, acquire the data grouped by scan.

• You can acquire the data grouped by scan and later reorder it to be grouped by channel
using GroupByChannel.

waveforms is an array that contains the values acquired on the channels you specify in the
channelString. AIAcquireTriggeredWaveforms places the acquired values into the array
in the order fillMode specifies. This array must be declared as large as

. You can determine the number of channels
using GetNumChannels.

If you set highLimit and lowLimit to 0.0, this function uses the default limits, which are
defined as follows:

• For channels you configure in the DAQ Channel Wizard, the default limits are set in the
Physical Quantity section of the DAQ Channel Wizard.

• For hardware channels, the default limits are set in the AI section of NI-DAQ
Configuration Utility.

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5

A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 A5 B5 C5

number of channels() numberOfScans()×

Chapter 10 Easy I/O for DAQ Library — AIAcquireWaveforms

Standard Libraries Reference Manual 10-14 © National Instruments Corporation

AIAcquireWaveforms

short error = AIAcquireWaveforms (short device, char channelString[],
long numberOfScans, double scansPerSecond,
double highLimit, double lowLimit,
double *actualScanRate, short fillMode,
double waveforms[]);

Purpose
Performs a timed acquisition of voltage data from the analog channels you specify in
channelString.

Parameters

Input

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

channelString string Analog input channels to sample.

numberOfScans long integer Number of scans to acquire. One scan
involves sampling every channel in
channelString once.

scansPerSecond double Number of scans performed per second.
The function samples each channel at
this rate.

highLimit double Maximum value to measure.

lowLimit double Minimum value to measure.

fillMode short integer Specifies whether the waveforms array is
in GROUP_BY_CHANNEL or
GROUP_BY_SCAN mode.

Chapter 10 Easy I/O for DAQ Library — AIAcquireWaveforms

© National Instruments Corporation 10-15 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
channelString is the analog input channel to sample. Refer to the Channel String for Analog

Input Functions section of the Easy I/O for DAQ Library Function Overview section of this
chapter for the syntax of this string.

fillMode specifies whether the waveforms array is grouped by channels or grouped by scans.
Consider the following examples:

• If you scan channels A through C and numberOfScans is 5, the possible fill modes are
as follows:

GROUP_BY_CHANNEL

GROUP_BY_SCAN

• If you pass the array to a graph, acquire the data grouped by channel.

• If you pass the array to a strip chart, acquire the data grouped by scan.

• You can acquire the data grouped by scan and later reorder it to be grouped by channel
using GroupByChannel.

waveforms is an array that contains the values acquired on the channels you specify
in the channelString. AIAcquireWaveforms places the acquired values into the array in the
order fillMode specifies.

Name Type Description

actualScanRate double Actual scan rate. The actual scan rate
might differ slightly from the scan rate you
specified, given the limitations of your
particular DAQ device.

waveforms double array Array that contains the values acquired on
the channels you specify in the
channelString.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5

A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 A5 B5 C5

Chapter 10 Easy I/O for DAQ Library — AIAcquireWaveforms

Standard Libraries Reference Manual 10-16 © National Instruments Corporation

This array must be declared as large as . You can
determine the number of channels using GetNumChannels.

If you set highLimit and lowLimit to 0.0, this function uses the default limits, which are
defined as follows:

• For channels you configure in the DAQ Channel Wizard, the default limits are set in the
Physical Quantity section of the DAQ Channel Wizard.

• For hardware channels, the default limits are set in the AI section of NI-DAQ
Configuration Utility.

number of channels() numberOfScans()×

Chapter 10 Easy I/O for DAQ Library — AICheckAcquisition

© National Instruments Corporation 10-17 Standard Libraries Reference Manual

AICheckAcquisition

short error = AICheckAcquisition (unsigned long taskID,
unsigned long *scanBacklog);

Purpose
Determines the backlog of scans that have been acquired into the circular buffer but that you
have not read using AIReadAcquisition.

If you call AIReadAcquisition with read mode set to LATEST_MODE,
AICheckAcquisition resets scanBacklog to zero.

Parameters

Input

Output

Return Value

Name Type Description

taskID unsigned long
integer

Task ID that AIStartAcquisition
returns.

Name Type Description

scanBacklog unsigned long
integer

Returns the backlog of scans that have
been acquired into the circular buffer but
that you have not read using
AIReadAcquisition.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — AIClearAcquisition

Standard Libraries Reference Manual 10-18 © National Instruments Corporation

AIClearAcquisition

short error = AIClearAcquisition (unsigned long taskID);

Purpose
Clears the current asynchronous acquisition that AIStartAcquisition started.

Parameter

Input

Return Value

Name Type Description

taskID unsigned long
integer

Task ID that AIStartAcquisition
returns.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — AIReadAcquisition

© National Instruments Corporation 10-19 Standard Libraries Reference Manual

AIReadAcquisition

short error = AIReadAcquisition (unsigned long taskID, long scanstoRead,
unsigned short readMode,
unsigned long *scanBacklog,
short fillMode, double waveforms[]);

Purpose
Reads the specified number of scans from the internal circular buffer established by
AIStartAcquisition.

If the specified number of scans is not available in the buffer, the function waits until the scans
are available. You can call AICheckAcquisition before calling AIReadAcquisition to
determine how many scans are available.

Parameters

Input

Output

Name Type Description

taskID unsigned long
integer

Task ID that AIStartAcquisition
returns.

scanstoRead long integer Number of scans to read from the internal
circular buffer.

readMode unsigned short
integer

Specifies whether to read scans from the
circular buffer in CONSECUTIVE_MODE or
LATEST_MODE.

fillMode short integer Specifies whether the waveforms array is
in GROUP_BY_CHANNEL or
GROUP_BY_SCAN mode.

Name Type Description

scanBacklog unsigned long
integer

Returns the backlog of scans that have
been acquired into the circular buffer but
that you have not read using
AIReadAcquisition.

waveforms double array Array that contains the values acquired on
the channels you specify in the
channelString.

Chapter 10 Easy I/O for DAQ Library — AIReadAcquisition

Standard Libraries Reference Manual 10-20 © National Instruments Corporation

Return Value

Parameter Discussion
readMode specifies whether AIReadAcquisition reads scans from the circular buffer in
CONSECUTIVE_MODE or LATEST_MODE. In CONSECUTIVE_MODE, the function reads scans
from the internal circular buffer starting from the last scan that you read. Using this mode, you
are guaranteed not to lose data unless an error occurs. In LATEST_MODE,
AIReadAcquisition reads the most recently acquired n scans from the internal circular
buffer, where n is scanstoRead. Calling AIReadAcquisition in this mode resets the
scanBacklog to zero.

scanBacklog returns the backlog of scans that have been acquired into the circular buffer but
that you have not read using AIReadAcquisition. You can call AICheckAcquisition to
determine the scan backlog before you call AIReadAcquisition.

waveforms is an array that contains the values acquired on the channels you specify
in the channelString. AIReadAcquisition places the acquired values into the array in the
order fillMode specifies.

This array must be declared as large as . You can
determine the number of channels using GetNumChannels.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

number of channels() scanstoRead()×

Chapter 10 Easy I/O for DAQ Library — AISampleChannel

© National Instruments Corporation 10-21 Standard Libraries Reference Manual

AISampleChannel

short error = AISampleChannel (short device, char singleChannel[],
double highLimit, double lowLimit,
double *sample);

Purpose
Acquires a single voltage from a single analog input channel.

Parameters

Input

Output

Return Value

Parameter Discussion
singleChannel is the analog input channel to sample. Refer to the Channel String for Analog

Input Functions section of the Easy I/O for DAQ Library Function Overview section of this
chapter for the syntax of this string.

Name Type Description

device short integer Assigned by the NI-DAQ configuration
utility.

singleChannel string Analog input channel to sample.

highLimit double Maximum value to measure.

lowLimit double Minimum value to measure.

Name Type Description

sample double (passed
by reference)

The measured value.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — AISampleChannel

Standard Libraries Reference Manual 10-22 © National Instruments Corporation

If you set highLimit and lowLimit to 0.0, this function uses the default limits, which are
defined as follows:

• For channels you configure in the DAQ Channel Wizard, the default limits are set in the
Physical Quantity section of the DAQ Channel Wizard.

• For hardware channels, the default limits are set in the AI section of NI-DAQ
Configuration Utility.

Chapter 10 Easy I/O for DAQ Library — AISampleChannels

© National Instruments Corporation 10-23 Standard Libraries Reference Manual

AISampleChannels

short error = AISampleChannels (short device, char channelString[],
double highLimit, double lowLimit,
double sampleArray[]);

Purpose
Performs a single scan on a set of analog input channels.

Parameters

Input

Output

Return Value

Parameter Discussion
channelString is the Analog input channels to sample. Refer to the Channel String for

Analog Input Functions section of the Easy I/O for DAQ Library Function Overview section
of this chapter for the syntax of this string.

sampleArray is an array that contains the values acquired on the channels you specify in
channelString. AISampleChannels places the acquired values into the array in the order
you specify in channelString. This array must be declared as large as the number of channels
you specify in channelString.

Name Type Description

device short integer Assigned by the NI-DAQ configuration
utility.

channelString string Analog input channels to sample.

highLimit double Maximum value to measure.

lowLimit double Minimum value to measure.

Name Type Description

sampleArray double array Array that contains the values acquired on
the channels you specify in
channelString.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — AISampleChannels

Standard Libraries Reference Manual 10-24 © National Instruments Corporation

You can use GetNumChannels to determine the number of channels.

If you set highLimit and lowLimit to 0.0, this function uses the default limits, which are
defined as follows:

• For channels you configure in the DAQ Channel Wizard, the default limits are set in the
Physical Quantity section of the DAQ Channel Wizard.

• For hardware channels, the default limits are set in the AI section of NI-DAQ
Configuration Utility.

Chapter 10 Easy I/O for DAQ Library — AIStartAcquisition

© National Instruments Corporation 10-25 Standard Libraries Reference Manual

AIStartAcquisition

short error = AIStartAcquisition (short device, char channelString[],
int bufferSize, double scansPerSecond,
double highLimit, double lowLimit,
double *actualScanRate, unsigned long *taskID);

Purpose
Starts a continuous asynchronous acquisition on the analog input channels you specify in
channelString. AIStartAcquisition acquires data into an internal circular buffer. Use
AIReadAcquisition to retrieve scans from the internal buffer.

Parameters

Input

Output

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

channelString string Analog input channels to sample.

bufferSize integer Size of the internal circular buffer in scans.

scansPerSecond double Number of scans performed per second.
The function samples each channel at
this rate.

highLimit double Maximum value to measure.

lowLimit double Minimum value to measure.

Name Type Description

actualScanRate double Actual scan rate. The actual scan rate
might differ slightly from the scan rate you
specified, given the limitations of your
particular DAQ device.

taskID unsigned long
integer

Identifier for the asynchronous acquisition.

Chapter 10 Easy I/O for DAQ Library — AIStartAcquisition

Standard Libraries Reference Manual 10-26 © National Instruments Corporation

Return Value

Parameter Discussion
channelString is the Analog input channels to sample. Refer to the Channel String for

Analog Input Functions section of the Easy I/O for DAQ Library Function Overview section
of this chapter for the syntax of this string.

taskID is an identifier for the asynchronous acquisition that you must pass to
AICheckAcquisition, AIReadAcquisition, and AIClearAcquisition.

If you set highLimit and lowLimit to 0.0, this function uses the default limits, which are
defined as follows:

• For channels you configure in the DAQ Channel Wizard, the default limits are set in the
Physical Quantity section of the DAQ Channel Wizard.

• For hardware channels, the default limits are set in the AI section of NI-DAQ
Configuration Utility.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — AOClearWaveforms

© National Instruments Corporation 10-27 Standard Libraries Reference Manual

AOClearWaveforms

short error = AOClearWaveforms (unsigned long taskID);

Purpose
Clears the waveforms AOGenerateWaveforms generates when you pass 0 for Iterations.

Parameter

Input

Return Value

Name Type Description

taskID unsigned long
integer

Task ID AOGenerateWaveforms returns.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — AOGenerateWaveforms

Standard Libraries Reference Manual 10-28 © National Instruments Corporation

AOGenerateWaveforms

short error = AOGenerateWaveforms (short device, char channelString[],
double updatesPerSecond, int updatesPerChannel,
int iterations, double waveforms[],
unsigned long *taskID);

Purpose
Generates a timed waveform of voltage data on the analog output channels you specify in
channelString.

Parameters

Input

Output

Name Type Description

device short integer Assigned by the NI-DAQ configuration
utility.

channelString string The analog output channels to apply the
voltages to.

updatesPerSecond double Number of updates to perform per second.
The function updates each channel at
this rate.

updatesPerChannel integer Number of D/A conversions that compose
a waveform for a particular channel.

iterations integer Number of waveform iterations to perform
before the operation is complete;
0 = continuous.

Name Type Description

waveforms double array Voltages to apply to the channels you
specify in channelString.

taskID unsigned long
integer

Identifier for the waveform generation. If
you pass 0 as the iterations parameter, you
need to pass taskID to
AOClearWaveforms to clear the
waveform generation.

Chapter 10 Easy I/O for DAQ Library — AOGenerateWaveforms

© National Instruments Corporation 10-29 Standard Libraries Reference Manual

Return Value

Parameter Discussion
channelString is the analog output channels to apply the voltages to. Refer to the Channel

String for Analog Output Functions section of the Easy I/O for DAQ Library Function

Overview section of this chapter for the syntax of this string.

updatesPerChannel is the number of D/A conversions that compose a waveform for a
particular channel. If updatesPerChannel is 10, each waveform is composed of 10 elements
from the waveforms array.

iterations is the number of waveform iterations performed before the operation is complete.
If you pass 0, AOGenerateWaveforms generates the waveform(s) continuously and you
need to call AOClearWaveforms to clear waveform generation.

waveforms is the array that contains the voltages to apply to the channels you specify in
channelString. The voltages are applied to the analog output channels in the order you
specify in channelString. For example, if channelString is

"0:3,5",

the array contains the voltages in the following order:

waveforms[0] /* the 1st update on channel 0 */
waveforms[1] /* the 1st update on channel 1 */
waveforms[2] /* the 1st update on channel 2 */
waveforms[3] /* the 1st update on channel 3 */
waveforms[4] /* the 1st update on channel 5 */
waveforms[5] /* the 2nd update on channel 0 */
waveforms[6] /* the 2nd update on channel 1 */
waveforms[7] /* the 2nd update on channel 2 */
waveforms[8] /* the 2nd update on channel 3 */
waveforms[9] /* the 2nd update on channel 5 */
.
.
.
waveforms[n-5] /* the last update on channel 0 */
waveforms[n-4] /* the last update on channel 1 */
waveforms[n-3] /* the last update on channel 2 */
waveforms[n-2] /* the last update on channel 3 */
waveforms[n-1] /* the last update on channel 5 */

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — AOUpdateChannel

Standard Libraries Reference Manual 10-30 © National Instruments Corporation

AOUpdateChannel

short error = AOUpdateChannel (short device, char singleChannel[],
double voltage);

Purpose
Applies the voltage you specify to a single analog output channel.

Parameters

Input

Return Value

Parameter Discussion
singleChannel is the analog output channel to which the voltage is applied. Refer to the
Channel String for Analog Output Functions section of the Easy I/O for DAQ Library

Function Overview section of this chapter for the syntax of this string.

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

singleChannel string Analog output channel to which the
voltage is applied.

voltage double Voltage applied to the analog output
channel.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — AOUpdateChannels

© National Instruments Corporation 10-31 Standard Libraries Reference Manual

AOUpdateChannels

short AOUpdateChannels (short device, char channelString[],
double voltageArray[]);

Purpose
Applies the voltages you specify in voltageArray to the analog output channel you specify
in channelString.

Parameters

Input

Return Value

Parameter Discussion
channelString is the analog output channels to which the voltages are applied. Refer to the
Channel String for Analog Output Functions section of the Easy I/O for DAQ Library

Function Overview section of this chapter for the syntax of this string.

voltageArray is
the voltages that are applied to the analog output channels you specify. This array contains the
voltages to apply to the analog output channels in the order that you specify in channelString.
For example, if channelString contains:

"0,1,3"

then:

voltage[0] = 1.2; /* 1.2 volts applied to channel 0 */
voltage[1] = 2.4; /* 2.4 volts applied to channel 1 */
voltage[2] = 3.6; /* 3.6 volts applied to channel 3 */

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

channelString string Analog output channels to which the
voltages are applied.

voltageArray double array Voltages applied to the analog output
channels you specify.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — ContinuousPulseGenConfig

Standard Libraries Reference Manual 10-32 © National Instruments Corporation

ContinuousPulseGenConfig

short error = ContinuousPulseGenConfig (short device, char counter[],
double frequency, double dutyCycle,
unsigned short gateMode,
unsigned short pulsePolarity,
double *actualFrequency,
double *actualDutyCycle,
unsigned long *taskID);

Purpose
Configures a counter to generate a continuous Transistor-Transistor Logic (TTL) pulse train
on its OUT pin.

ContinuousPulseGenConfig creates the signal by repeatedly decrementing the counter
twice, first for the delay to the pulse, phase 1, then for the pulse itself, phase 2. The function
selects the highest resolution timebase to achieve the desired characteristics.

You can gate or trigger the operation with a signal on the counter GATE pin. Call
CounterStart to start the operation or to enable the gate or trigger action.

Parameters

Input

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

counter string Counter to use for the counting operation.

frequency double Desired repetition rate of the continuous
pulse train.

dutyCycle double Desired ratio of the duration of the pulse
phase, phase 2, to the period,
(phase 1 + phase 2).

gateMode unsigned short
integer

Specifies how to use the signal on the
counter GATE pin.

pulsePolarity unsigned short
integer

Polarity of phase 2 of each cycle.

Chapter 10 Easy I/O for DAQ Library — ContinuousPulseGenConfig

© National Instruments Corporation 10-33 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
counter is the counter to use for the counting operation. For valid counters, refer to
Table 10-2 in the Valid Counters for the Counter/Timer Functions section of the Easy I/O for

DAQ Library Function Overview section of this chapter.

dutyCycle is the desired ratio of the duration of the pulse phase, phase 2, to the period,
phase 1 + phase 2. The default of 0.5 generates a square wave.

• If dutyCycle = 0.0, ContinuousPulseGenConfig computes the closest achievable
duty cycle using a minimum pulse phase, phase 2, of three timebase cycles.

• If dutyCycle = 1.0, ContinuousPulseGenConfig computes the closest achievable
duty cycle using a minimum delay phase, phase 1, of three timebase cycles.

• A duty cycle very close to 0.0 or 1.0 might not be possible.

gateMode specifies how to use the signal on the counter GATE pin. You can use the
following options:

• UNGATED_SOFTWARE_START—Ignore the gate signal and start when you call
CounterStart.

• COUNT_WHILE_GATE_HIGH—Count while the gate signal is TTL high after you call
CounterStart.

• COUNT_WHILE_GATE_LOW—Count while the gate signal is TTL low after you call
CounterStart.

Name Type Description

actualFrequency double Achieved frequency based on the
resolution and range of your hardware.

actualDutyCycle double Achieved duty cycle based on the
resolution and range of your hardware.

taskID unsigned long
integer

Reference number assigned to this
operation. You pass taskID to
CounterStart, CounterRead, and
CounterStop.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — ContinuousPulseGenConfig

Standard Libraries Reference Manual 10-34 © National Instruments Corporation

• START_COUNTING_ON_RISING_EDGE—Start counting on the rising edge of the TTL
gate signal after you call CounterStart.

• START_COUNTING_ON_FALLING_EDGE—Start counting on the falling edge of the TTL
gate signal after you call CounterStart.

pulsePolarity is the polarity of phase 2 of each cycle. You can use the following options:

• POSITIVE_POLARITY—The delay, phase 1, is a low TTL level, and the pulse, phase 2,
is a high level.

• NEGATIVE_POLARITY—The delay, phase 1, is a high TTL level, and the pulse, phase 2,
is a low level.

Chapter 10 Easy I/O for DAQ Library — CounterEventOrTimeConfig

© National Instruments Corporation 10-35 Standard Libraries Reference Manual

CounterEventOrTimeConfig

short error = CounterEventOrTimeConfig (short device, char counter[],
unsigned short counterSize,
double sourceTimebase,
unsigned short countLimitAction,
short sourceEdge, unsigned short gateMode,
unsigned long *taskID);

Purpose
Configures one or two counters to count edges in the signal on the counter SOURCE pin you
specify or the number of cycles of an internal timebase signal you specify.

When you use CounterEventOrTimeConfig with the internal timebase and in conjunction
with CounterStart and CounterRead, your program can make more precise timing
measurements than with Timer.

You can gate or trigger the operation with a signal on the counter GATE pin. Call
CounterStart to start the function or to enable the gate or trigger action.

Parameters

Input

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

counter string Counter to use for the counting operation.

counterSize unsigned short
integer

Determines the size of the counter used to
perform the operation.

sourceTimebase double Use USE_COUNTER_SOURCE to count TTL
edges at the counter SOURCE pin or
supply a valid internal timebase frequency
to count the TTL edges of an internal
clock.

countLimitAction unsigned short
integer

Action to take when the counter reaches
terminal count.

sourceEdge short integer Edge of the counter source or timebase
signal on which it increments.

gateMode unsigned short
integer

Specifies how to use the signal on the
counter GATE pin.

Chapter 10 Easy I/O for DAQ Library — CounterEventOrTimeConfig

Standard Libraries Reference Manual 10-36 © National Instruments Corporation

Output

Return Value

Parameter Discussion
counter is the counter to use for the counting operation. For valid counters, refer to
Table 10-2 in the Valid Counters for the Counter/Timer Functions section of the Easy I/O for

DAQ Library Function Overview section of this chapter.

counterSize determines the size of the counter CounterEventOrTimeConfig uses to
perform the operation. For a device with DAQ-STC counters, counterSize must be
ONE_COUNTER (24-bit). For a device with Am9513 counters, counterSize can be
ONE_COUNTER (16-bit) or TWO_COUNTERS (32-bit). If you use TWO_COUNTERS, counter+1 is
cascaded with the counter you specify. Table 10-4 defines counter+1.

Name Type Description

taskID unsigned long
integer

Reference number assigned to this counter
operation. You pass taskID to
CounterStart, CounterRead, and
CounterStop.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Table 10-4. Definition of Am9513: Counter+1

counter counter+1

1 2

2 3

3 4

4 5

5 1

6 7

7 8

8 9

9 10

10 6

Chapter 10 Easy I/O for DAQ Library — CounterEventOrTimeConfig

© National Instruments Corporation 10-37 Standard Libraries Reference Manual

sourceTimebase determines whether the counter uses its SOURCE pin or an internal
timebase as its signal source. Pass USE_COUNTER_SOURCE to count TTL edges at the counter
SOURCE pin or pass a valid internal timebase frequency to count the TTL edges of an
internal clock.

Table 10-5 shows valid internal timebase frequencies are:

countLimitAction is the action to take when the counter reaches terminal count and accepts
the following attributes:

• COUNT_UNTIL_TC—Count until terminal count and set the overflow status when it is
reached. This mode is not available on the DAQ-STC.

• COUNT_CONTINUOUSLY—Count continuously. The Am9513 does not set the overflow
status at terminal count, but the DAQ-STC does.

sourceEdge is the edge of the counter source or timebase signal on which it increments and
accepts COUNT_ON_RISING_EDGE and COUNT_ON_FALLING_EDGE as values.

gateMode specifies how to use the signal on the counter GATE pin. You can use the
following options:

• UNGATED_SOFTWARE_START—Ignore the gate signal and start when you call
CounterStart.

• COUNT_WHILE_GATE_HIGH—Count while the gate signal is TTL high after you call
CounterStart.

• COUNT_WHILE_GATE_LOW—Count while the gate signal is TTL low after you call
CounterStart.

Table 10-5. Valid Internal Timebase Frequencies

Frequency

Chip Type on

DAQ Board

1,000,000 Am9513

100,000 Am9513

10,000 Am9513

1,000 Am9513

100 Am9513

20,000,000 DAQ-STC

 100,000 DAQ-STC

Chapter 10 Easy I/O for DAQ Library — CounterEventOrTimeConfig

Standard Libraries Reference Manual 10-38 © National Instruments Corporation

• START_COUNTING_ON_RISING_EDGE—Start counting on the rising edge of the TTL
gate signal after you call CounterStart.

• START_COUNTING_ON_FALLING_EDGE—Start counting on the falling edge of the TTL
gate signal after you call CounterStart.

Chapter 10 Easy I/O for DAQ Library — CounterMeasureFrequency

© National Instruments Corporation 10-39 Standard Libraries Reference Manual

CounterMeasureFrequency

short error = CounterMeasureFrequency (short device, char counter[],
unsigned short counterSize,
double gateWidthSampleTimeinSec,
double maxDelayBeforeGateSec,
unsigned short counterMinus1GateMode,
double *actualGateWidthSec, short *overflow,
short *valid, short *timeout, double *frequency);

Purpose
Measures the frequency of a TTL signal on the counter SOURCE pin you specify by counting
rising edges of the signal during a period of time you specify. In addition to this connection,
you also must wire the counter GATE pin to the OUT pin of counter–1. Table 10-6 defines
counter, counter–1 and counter+1.

CounterMeasureFrequency is useful for relatively high frequency signals when many
cycles of the signal occur during the timing period. Use
PulseWidthOrPeriodMeasConfig for relatively low-frequency signals. Remember that

period = 1/frequency

Table 10-6. Adjacent Counters

Chip counter–1 counter counter+1

Am9513 5 1 2

1 2 3

2 3 4

3 4 5

4 5 1

10 6 7

6 7 8

7 8 9

8 9 10

9 10 6

DAQ-STC 1 0 1

0 1 0

Chapter 10 Easy I/O for DAQ Library — CounterMeasureFrequency

Standard Libraries Reference Manual 10-40 © National Instruments Corporation

CounterMeasureFrequency configures counter and counter+1 (optional) to be event
counters that count rising edges of the signal on the counter SOURCE pin. The function also
configures counter–1 to generate a minimum-delayed pulse to gate the event counter, starts
the event counter and then the gate counter, waits the expected gate period, and reads the gate
counter until its output state is low. CounterMeasureFrequency then reads the event
counter and computes the signal frequency, number of events/actual gate pulse width, and
stops the counters. You can also gate or trigger the operation with a signal on the counter–1
GATE pin.

Parameters

Input

Name Type Description

device short integer Assigned by NI-DAQ configuration
utility.

counter string Counter to use for the counting
operation.

counterSize unsigned short
integer

Determines the size of the counter to
use to perform the operation:
ONE_COUNTER or TWO_COUNTERS.

gateWidthSampleTimeinSec double Desired length of the pulse to use to
gate the signal. The lower the signal
frequency, the longer the gate width
must be.

maxDelayBeforeGateSec double Maximum expected delay between
the time you call the function and the
start of the gating pulse. If the gate
signal does not start in this time, a
timeout occurs.

counterMinus1GateMode unsigned short
integer

Gate mode for counter–1.

Chapter 10 Easy I/O for DAQ Library — CounterMeasureFrequency

© National Instruments Corporation 10-41 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
counter is the counter to use for the counting operation. For valid counters, refer to
Table 10-2 in the Valid Counters for the Counter/Timer Functions section of the Easy I/O for

DAQ Library Function Overview section of this chapter.

counterSize determines the size of the counter to use to perform the operation. For a device
with DAQ-STC counters, counterSize must be ONE_COUNTER (24-bit). For a device with
Am9513 counters, counterSize can be ONE_COUNTER (16-bit) or TWO_COUNTERS (32-bit). If
you use TWO_COUNTERS, counter+1 is cascaded with the specified counter. counter+1 is
defined as shown in Table 10-6 in this function description.

counterMinus1GateMode is the gate mode for counter–1. The possible values are
UNGATED_SOFTWARE_START, COUNT_WHILE_GATE_HIGH, COUNT_WHILE_GATE_LOW, and
START_COUNTING_ON_RISING_EDGE

Name Type Description

actualGateWidthSec double Achieved length in seconds of the gating
pulse.

overflow short integer 1 = counter rolled past terminal count
0 = counter did not roll past terminal count.
If overflow is 1, the value of frequency is
inaccurate.

valid short integer Set to 1 if the measurement completes
without a counter overflow. A timeout and a
valid measurement can occur at the same
time. A timeout does not produce an error.

timeout short integer Set to 1 if the time limit expires during the
function call. A timeout and a valid
measurement can occur at the same time. A
timeout does not produce an error.

frequency double Frequency of the signal, it is computed as
(number of rising edges) / (actualGateWidthSec).

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — CounterMeasureFrequency

Standard Libraries Reference Manual 10-42 © National Instruments Corporation

CounterMeasureFrequency uses counter–1 to gate counter so that rising edges are
counted over a precise sample time. For a specified counter, counter–1 is defined as shown
in Table 10-6 in this function description.

Chapter 10 Easy I/O for DAQ Library — CounterRead

© National Instruments Corporation 10-43 Standard Libraries Reference Manual

CounterRead

short error = CounterRead (unsigned long taskID, short *overflow,
long *count);

Purpose
Reads the counter taskID identifies.

Parameters

Input

Output

Return Value

Parameter Discussion
overflow indicates whether the counter rolled over past its terminal count. If overflow is 1,
the value of count is inaccurate.

Name Type Description

taskID unsigned long
integer

Reference number assigned to the counting
operation by one of the counter
configuration functions.

Name Type Description

overflow short integer 1 = counter rolled past terminal count
0 = counter did not roll past terminal count

count long integer Value of the counter at the time it is read.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — CounterStart

Standard Libraries Reference Manual 10-44 © National Instruments Corporation

CounterStart

short error = CounterStart (unsigned long taskID);

Purpose
Starts the counter taskID identifies.

Parameter

Input

Return Value

Name Type Description

taskID unsigned long
integer

Reference number assigned to the counting
operation by one of the counter
configuration functions.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — CounterStop

© National Instruments Corporation 10-45 Standard Libraries Reference Manual

CounterStop

short error = CounterStop (unsigned long taskID);

Purpose
Stops a count operation immediately.

Parameter

Input

Return Value

Name Type Description

taskID unsigned long
integer

Reference number assigned to the counting
operation by one of the counter
configuration functions.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — DelayedPulseGenConfig

Standard Libraries Reference Manual 10-46 © National Instruments Corporation

DelayedPulseGenConfig

short error = DelayedPulseGenConfig (short device, char counter[],
double pulseDelay, double pulseWidth,
unsigned short timebaseSource,
unsigned short gateMode,
unsigned short pulsePolarity,
double *actualDelay, double *actualPulseWidth,
unsigned long *taskID);

Purpose
Configures a counter to generate a delayed TTL pulse or triggered pulse train on its OUT pin.

DelayedPulseGenConfig creates the signal by decrementing the counter twice, first for the
delay to the pulse, phase 1, then for the pulse itself, phase 2. DelayedPulseGenConfig
selects the highest resolution timebase to achieve the desired characteristics.

You can gate or trigger the operation with a signal on the counter GATE pin. Call
CounterStart to start the operation or to enable the gate or trigger action.

Parameters

Input

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

counter string Counter to use for the counting operation.

pulseDelay double Desired duration of the delay, phase 1,
before the pulse.

pulseWidth double Desired duration of the pulse, phase 2,
after the delay.

timebaseSource unsigned short
integer

Signal that causes the counter to count.

gateMode unsigned short
integer

Specifies how to use the signal on the
counter GATE pin.

pulsePolarity unsigned short
integer

Polarity of phase 2 of each cycle.

Chapter 10 Easy I/O for DAQ Library — DelayedPulseGenConfig

© National Instruments Corporation 10-47 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
counter is the counter to use for the counting operation. For valid counters, refer to
Table 10-2 in the Valid Counters for the Counter/Timer Functions section of the Easy I/O for

DAQ Library Function Overview section of this chapter.

pulseDelay is the desired duration of the delay, phase 1, before the pulse. The unit is seconds
if timebaseSource is USE_INTERNAL_TIMEBASE or cycles if timebaseSource is
USE_COUNTER_SOURCE. If pulseDelay = 0.0 and timebaseSource is internal,
DelayedPulseGenConfig selects a minimum delay of three cycles of the timebase you use.

pulseWidth is the desired duration of the pulse, phase 2, after the delay.

timebaseSource is the signal that causes the counter to count and can be one of the
following values:

• USE_INTERNAL_TIMEBASE—DelayedPulseGenConfig selects an internal timebase
based on the pulse delay and width, in units of seconds.

• USE_COUNTER_SOURCE—DelayedPulseGenConfig uses the signal on the counter
SOURCE pin; the units of pulse delay and width are cycles of that signal.

Name Type Description

actualDelay double Achieved delay based on the resolution
and range of your hardware.

actualPulseWidth double Achieved pulse width based on the
resolution and range of your hardware.

taskID unsigned long
integer

Reference number assigned to this
operation. You pass taskID to
CounterStart, CounterRead, and
CounterStop.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — DelayedPulseGenConfig

Standard Libraries Reference Manual 10-48 © National Instruments Corporation

gateMode specifies how to use the signal on the counter GATE pin. You can use the
following options:

• UNGATED_SOFTWARE_START—Ignore the gate signal and start when you call
CounterStart.

• COUNT_WHILE_GATE_HIGH—Count while the gate signal is TTL high after you call
CounterStart.

• COUNT_WHILE_GATE_LOW—Count while the gate signal is TTL low after you call
CounterStart.

• START_COUNTING_ON_RISING_EDGE—Start counting on the rising edge of the TTL
gate signal after you call CounterStart.

• START_COUNTING_ON_FALLING_EDGE—Start counting on the falling edge of the TTL
gate signal after you call CounterStart.

• RESTART_ON_EACH_RISING_EDGE—Restart counting on each rising edge of the TTL
gate signal after you call CounterStart.

• RESTART_ON_EACH_FALLING_EDGE—Restart counting on each falling edge of the
TTL gate signal after you call CounterStart.

pulsePolarity is the polarity of phase 2 of each cycle. You can use the following options:

• POSITIVE_POLARITY—The delay, phase 1, is a low TTL level, and the pulse, phase 2,
is a high level.

• NEGATIVE_POLARITY—The delay, phase 1, is a high TTL level; and the pulse, phase 2,
is a low level.

Chapter 10 Easy I/O for DAQ Library — FrequencyDividerConfig

© National Instruments Corporation 10-49 Standard Libraries Reference Manual

FrequencyDividerConfig

short error = FrequencyDividerConfig (short device, char counter[],
double sourceTimebase, double timebaseDivisor,
unsigned short gateMode,
unsigned short outputBehavior, short sourceEdge,
unsigned long *taskID);

Purpose
Configures the counter you specify to count the number of signal transitions on its SOURCE
pin or on an internal timebase signal and to strobe or toggle the signal on its OUT pin.

To divide an external TTL signal, connect it to the counter SOURCE pin and set the
sourceTimebase parameter to USE_COUNTER_SOURCE.

To divide an internal timebase signal, set the sourceTimebase parameter to a desired
valid frequency.

Set the timebaseDivisor to the desired value. For a value of n and a pulsed output, an output
pulse equal to the period of the source or timebase signal appears on the counter OUT pin
once for each n cycles of that signal. For a toggled output, the output toggles after each n
cycles. The toggled output frequency is half that of the pulsed output.

If gateMode is not UNGATED_SOFTWARE_START, connect your gate signal to the counter
GATE pin.

Parameters

Input

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

counter string Counter to use for the counting operation.

sourceTimebase double Use USE_COUNTER_SOURCE to count TTL
edges at the counter SOURCE pin or
supply a valid internal timebase frequency
to count the TTL edges of an internal
clock.

timebaseDivisor double Source frequency divisor.

gateMode unsigned short
integer

Specifies how to use the signal on the
counter GATE pin.

Chapter 10 Easy I/O for DAQ Library — FrequencyDividerConfig

Standard Libraries Reference Manual 10-50 © National Instruments Corporation

Output

Return Value

Parameter Discussion
counter is the counter to use for the counting operation. For valid counters, refer to
Table 10-2 in the Valid Counters for the Counter/Timer Functions section of the Easy I/O for

DAQ Library Function Overview section of this chapter.

sourceTimebase determines whether the counter uses its SOURCE pin or an internal
timebase as its signal source. Pass USE_COUNTER_SOURCE to count TTL edges at the counter
SOURCE pin or pass a valid internal timebase frequency to count the TTL edges of an
internal clock.

outputBehavior unsigned short
integer

Behavior of the output signal when counter
reaches terminal count.

sourceEdge short integer Edge of the counter source or timebase
signal on which it decrements:
COUNT_ON_RISING_EDGE or
COUNT_ON_FALLING_EDGE.

Name Type Description

taskID unsigned long
integer

Reference number assigned to this
operation. You pass taskID to
CounterStart, CounterRead, and
CounterStop.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Name Type Description

Chapter 10 Easy I/O for DAQ Library — FrequencyDividerConfig

© National Instruments Corporation 10-51 Standard Libraries Reference Manual

Table 10-7 shows valid internal timebase frequencies.

timebaseDivisor is the source frequency divisor. For example, if the source signal is
1,000 Hz, the timebaseDivisor is 10, and the output is pulsed, the frequency of the counter
OUT signal is 100 Hz. If the output is toggled, the frequency is 50 Hz.

gateMode specifies how to use the signal on the counter GATE pin. You can use the
following options:

• UNGATED_SOFTWARE_START—Ignore the gate signal and start when you call
CounterStart.

• COUNT_WHILE_GATE_HIGH—Count while the gate signal is TTL high after you call
CounterStart.

• COUNT_WHILE_GATE_LOW—Count while the gate signal is TTL low after you call
CounterStart.

• START_COUNTING_ON_RISING_EDGE—Start counting on the rising edge of the TTL
gate signal after you call CounterStart.

• START_COUNTING_ON_FALLING_EDGE—Start counting on the falling edge of the TTL
gate signal after you call CounterStart.

outputBehavior is the behavior of the output signal when counter reaches terminal count and
can be one of the following values:

• HIGH_PULSE—High pulse that lasts one cycle of the source or timebase signal.

• LOW_PULSE—Low pulse that lasts one cycle of the source or timebase signal.

• HIGH_TOGGLE—High toggle that lasts until the next terminal count (TC).

• LOW_TOGGLE—Low toggle that lasting until the next TC.

Table 10-7. Valid Internal Timebase Frequencies

Frequency

Chip Type on

DAQ Board

1,000,000 Am9513

100,000 Am9513

10,000 Am9513

1,000 Am9513

100 Am9513

20,000,000 DAQ-STC

 100,000 DAQ-STC

Chapter 10 Easy I/O for DAQ Library — FrequencyDividerConfig

Standard Libraries Reference Manual 10-52 © National Instruments Corporation

For a Timebase Divisor of N and a pulsed output, an output pulse equal to the period of the
source or timebase signal appears on the counter OUT pin once each N cycles of that signal
For a toggled output, the output toggles after each N cycles. The toggled output frequency is
thus half that of the pulsed output, in other words,

pulsedFrequency = sourceFrequency/N

and

toggledFrequency = sourceFrequency/(2 × N)

If N = 3, the OUT pin generates pulses as shown in Figure 10-4.

Figure 10-4. OUT Pin Pulses

source

pulsed

toggled

Chapter 10 Easy I/O for DAQ Library — GetAILimitsOfChannel

© National Instruments Corporation 10-53 Standard Libraries Reference Manual

GetAILimitsOfChannel

short error = GetAILimitsOfChannel (short device, char channelString[],
char singleChannel[],
double initialHighLimit,
double initialLowLimit,
double *highLimit, double *lowLimit);

Purpose
Returns the high and low limits for a particular channel in the channel string.

Parameters

Input

Output

Return Value

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

channelString string Analog input channels to sample.

singleChannel string Single channel of the channel string.

initialHighLimit double Maximum value to measure for all
channels that appear in the channel string
before the first command string that
specifies a new high limit.

initialLowLimit double Minimum value to measure for all
channels that appear in the channel string
before the first command string that
specifies a new low limit.

Name Type Description

highLimit double Returns the high limit for the channel
you specify.

lowLimit double Returns the low limit for the channel
you specify.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — GetAILimitsOfChannel

Standard Libraries Reference Manual 10-54 © National Instruments Corporation

Parameter Discussion
channelString is the list of Analog input channels to sample. Refer to the Channel String for

Analog Input Functions section of the Easy I/O for DAQ Library Function Overview section
of this chapter for the syntax of this string.

singleChannel is a single channel of the channel string. For example, if the channel string is
"0:3,5" a single channel can be "2" or "5" and so on.

initialHighLimitVolts specifies the maximum voltage to measure for all channels that appear
in the channel string before the first command string that specifies a new high limit. Consider
the following channel string:

"0,1; cmd hi 10.0 low -10.0; 2,3"

If initialHighLimitVolts is 5.0, channels "0" and "1" have a high limit of 5.0 and channels
"2" and "3" have a high limit of 10.0.

initialLowLimitVolts is the minimum voltage to measure for all channels that appear in the
channel string before the first command string that specifies a new low limit. Consider the
following channel string:

"0,1; cmd hi 10.0 low -10.0; 2,3"

If the initialLowLimitVolts is –5.0, channels "0" and "1" have a low limit of –5.0, and
channels "2" and "3" have a low limit of –10.0.

Chapter 10 Easy I/O for DAQ Library — GetChannelIndices

© National Instruments Corporation 10-55 Standard Libraries Reference Manual

GetChannelIndices

short error = GetChannelIndices (short device, char channelString[],
char channelSubString[], short channelType,
long channelIndices[]);

Purpose
Determines the indices of the channels in channelSubString. For example, if channelString
is "1:6" and channelSubString is "1,3,6".

GetChannelIndices fills in the channelIndices array as follows:
channelIndices[0] = 0;
channelIndices[1] = 2;
channelIndices[2] = 5;

GetChannelIndices is useful if you want to verify that a particular channel is part of
channelString.

Parameters

Input

Output

Return Value

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

channelString string Analog channel string.

channelSubString string Sub-string of channelString.

channelType short integer Specifies whether the channelString is
ANALOG_INPUT or ANALOG_OUTPUT.

Name Type Description

channelIndices long integer
array

Returns the indices of the channels in the
channelSubString.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — GetChannelIndices

Standard Libraries Reference Manual 10-56 © National Instruments Corporation

Parameter Discussion
channelString is the analog channels to sample. Refer to the Channel String for Analog Input

Functions section of the Easy I/O for DAQ Library Function Overview section of this chapter
for the syntax of this string.

channelSubString is a sub-string of the channelString. For example, if channelString is
"0:3,5" the sub-string can be "2" or "1,3".

Chapter 10 Easy I/O for DAQ Library — GetChannelNameFromIndex

© National Instruments Corporation 10-57 Standard Libraries Reference Manual

GetChannelNameFromIndex

short error = GetChannelNameFromIndex (short device, char channelString[],
long index, short channelType,
char channelName[]);

Purpose
Determines the name of the particular channel in channelString that index indicates.

Parameters

Input

Output

Return Value

Parameter Discussion
channelString is the analog channels to sample. Refer to the Channel String for Analog Input

Functions or Channel String for Analog Output Functions section of the Easy I/O for DAQ

Library Function Overview section of this chapter for the syntax of this string.

channelName returns the name of the particular channel in channelString that index
indicates. Declare this string to have MAX_CHANNEL_NAME_LENGTH bytes.

Name Type Description

device short integer Assigned by the NI-DAQ configuration
utility.

channelString string Analog input channels to sample.

index long integer Index of a particular channel in
channelString.

channelType short integer Specifies whether the channelString is
ANALOG_INPUT or ANALOG_OUTPUT.

Name Type Description

channelName string Returns the name of the particular channel
in channelString that index.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — GetDAQErrorString

Standard Libraries Reference Manual 10-58 © National Instruments Corporation

GetDAQErrorString

char *errorString = GetDAQErrorString (short errorNumber);

Purpose
Returns a string that contains the description for the numeric error code.

Parameter

Input

Return Value

Name Type Description

errorNumber short integer Error number an Easy I/O for DAQ
function returns.

Name Type Description

errorString string String that contains the description for the
numeric error code.

Chapter 10 Easy I/O for DAQ Library — GetNumChannels

© National Instruments Corporation 10-59 Standard Libraries Reference Manual

GetNumChannels

short error = GetNumChannels (short device, char channelString[],
short channelType,
unsigned long *numberOfChannels);

Purpose
Determines the number of channels channelString contains.

You must know the number of channels in channelString so you can correctly interpret
analog input waveform arrays or build analog output waveform arrays.

Parameters

Input

Output

Return Value

Parameter Discussion
channelString is the analog channels to sample. Refer to the Channel String for Analog Input

Functions or Channel String for Analog Output Functions section of the Easy I/O for DAQ

Library Function Overview section of this chapter for the syntax of this string.

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

channelString string Analog channel string.

channelType short integer Specifies whether channelString is
ANALOG_INPUT or ANALOG_OUTPUT.

Name Type Description

numberOfChannels unsigned long
integer

Returns the number of channels
channelString contains.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — GroupByChannel

Standard Libraries Reference Manual 10-60 © National Instruments Corporation

GroupByChannel

short error = GroupByChannel (float array[], long numberOfScans,
unsigned long numberOfChannels);

Purpose
Reorders an array of data from GROUPED_BY_SCAN mode into
GROUPED_BY_CHANNEL mode.

If you acquire data in GROUPED_BY_SCAN mode, you need to reorder the array into “grouped
by channel” mode before you can pass it to graph plotting functions, analysis functions,
and others.

Refer to the description of the fillMode parameter of AIAcquireWaveforms for an
explanation of GROUPED_BY_SCAN versus GROUPED_BY_CHANNEL.

Parameters

Input/Output

Input

Return Value

Name Type Description

array double array Pass in the GROUPED_BY_SCAN array.
GroupByChannel groups the data by
channel in place.

Name Type Description

numberOfScans long integer Number of scans the data array contains.

numberOfChannels unsigned long
integer

Specifies the number of channels that were
scanned. You can use GetNumChannels
to determine the number of channels your
channel string contains.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — ICounterControl

© National Instruments Corporation 10-61 Standard Libraries Reference Manual

ICounterControl

short error = ICounterControl (short device, short counter,
short controlCode, unsigned short count,
short binaryorBCD, short outputState,
unsigned short *readValue);

Purpose
Controls counters on devices that use the 8253 timer chip, such as Lab boards, SCXI-1200,
DAQPad-1200, PC-LPM-16, and DAQCard 700.

Parameters

Input

Output

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

counter short integer Counter to control.
Valid counters = 0–2.

controlCode short integer Determines the counter operating mode.

count unsigned short
integer

Period between output pulses.

binaryorBCD short integer I_BINARY = Counter operates as a 16-bit
binary counter; 0–65,535
I_BCD = Counter operates as a 4-digit
BCD counter; 0–9,999

outputState short integer I_HIGH_STATE = Output state of the
counter is high
I_LOW_STATE = Output state of the
counter is low
Matters only when controlCode = 7
(I_RESET).

Name Type Description

readValue unsigned short
integer

Returns the value read from the counter
when controlCode = 6 (I_READ).

Chapter 10 Easy I/O for DAQ Library — ICounterControl

Standard Libraries Reference Manual 10-62 © National Instruments Corporation

Return Value

Parameter Discussion
controlCode determines the counter operating mode and accepts the following attributes:

• 0: I_TOGGLE_ON_TC—Counter output becomes low after the mode set operation and the
counter decrements from count to 0 while the gate is high. The output toggles from low
to high after the counter reaches 0.

• 1: I_PROGRAMMABLE_ONE_SHOT—Counter output becomes low on the count following
the leading edge of the gate input and becomes high on terminal count.

• 2: I_RATE_GENERATOR—Counter output becomes low for one period of the clock input.
count indicates the period between output pulses.

• 3: I_SQUARE_WAVE_RATE_GENERATOR—Counter output stays high for half the count
clock pulses and stays low for the other half.

• 4: I_SOFTWARE_TRIGGERED_STROBE—Counter output is initially high, and the
counter begins to count down while the gate input is high. On terminal count, the output
becomes low for on clock pulse, then becomes high again.

• 5: I_HARDWARE_TRIGGERED_STROBE—Similar to mode 4 except that a rising edge at
the gate input triggers the count to start.

• 6: I_READ—Reads the counter and returns the value in readValue.

• 7: I_RESET—Resets the counter and sets its output to outputState.

count is the period between output pulses and can be one of the following values:

• If controlCode is 0, 1, 4, or 5, count can be 0 through 65,535 in binary counter operation
and 0 through 9,999 in binary-coded decimal (BCD) counter operation.

• If controlCode is 2 or 3, count can be 2 through 65,535 in binary counter operation and
2 through 9,999 in BCD counter operation.

Note 0 is equivalent to 65,536 in binary counter operation and 10,000 in BCD

counter operation.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — PlotLastAIWaveformsPopup

© National Instruments Corporation 10-63 Standard Libraries Reference Manual

PlotLastAIWaveformsPopup

short error = PlotLastAIWaveformsPopup (short device,
double waveformsBuffer[]);

Purpose
Plots the last analog input (AI) waveform you acquired. It is intended for
demonstration purposes.

You must group data by channel before you pass it to PlotLastAIWaveformsPopup. Use
GROUP_BY_CHANNEL as fillMode when you acquire the data, or call GroupByChannel
before you call this function.

Parameters

Input

Return Value

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

waveformsBuffer double array Array that contains the last AI waveform
acquired.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — PulseWidthOrPeriodMeasConfig

Standard Libraries Reference Manual 10-64 © National Instruments Corporation

PulseWidthOrPeriodMeasConfig

short error = PulseWidthOrPeriodMeasConfig (short device, char counter[],
unsigned short typeOfMeasurement,
double sourceTimebase, unsigned long *taskID);

Purpose
Configures the counter you specify to measure the pulse width or period of a TTL signal
connected to its GATE pin. PulseWidthOrPeriodMeasConfig takes the measurement by
counting the number of cycles of the timebase you specify between the appropriate starting
and ending events.

Connect the signal you want to measure to the counter GATE pin.

To measure with an internal timebase, set sourceTimebase to the desired frequency.

To measure with an external timebase, connect that signal to the counter SOURCE pin and
set sourceTimebase to USE_COUNTER_SOURCE.

Call CounterStart to start the measurement. Then call CounterRead to read the value. If
the operation is valid, CounterRead returns a count greater than 3 in the count output
parameter and returns 0 in the overflow output parameter.

Parameters

Input

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

counter string Counter to use for the counting operation.

typeOfMeasurement unsigned short
integer

Identifies the type of pulse width or period
measurement to make.

sourceTimebase double Use USE_COUNTER_SOURCE to count TTL
edges at the counter SOURCE pin or
supply a valid internal timebase frequency
to count the TTL edges of an internal
clock.

Chapter 10 Easy I/O for DAQ Library — PulseWidthOrPeriodMeasConfig

© National Instruments Corporation 10-65 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
typeOfMeasurement identifies the type of pulse width or period measurement to make and
accepts the following attributes:

• MEASURE_HIGH_PULSE_WIDTH—Measure high pulse width from rising to falling edge.

• MEASURE_LOW_PULSE_WIDTH—Measure low pulse width from falling to rising edge.

• MEASURE_PERIOD_BTW_RISING_EDGES—Measure period between adjacent
rising edges.

• MEASURE_PERIOD_BTW_FALLING_EDGES—Measure period between adjacent
falling edges.

sourceTimebase determines whether the counter uses its SOURCE pin or an internal
timebase as its signal source. Pass USE_COUNTER_SOURCE to count TTL edges at the counter
SOURCE pin or pass a valid internal timebase frequency to count the TTL edges of an
internal clock.

Table 10-8 shows valid internal timebase frequencies and the corresponding chip types on a
DAQ board.

Name Type Description

taskID unsigned long
integer

Reference number assigned to this counter
operation. You pass taskID to
CounterStart, CounterRead, and
CounterStop.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Table 10-8. Valid Internal Timebase Frequencies

Frequency

Chip Type on

DAQ Board

1,000,000 Am9513

100,000 Am9513

10,000 Am9513

1,000 Am9513

Chapter 10 Easy I/O for DAQ Library — PulseWidthOrPeriodMeasConfig

Standard Libraries Reference Manual 10-66 © National Instruments Corporation

100 Am9513

20,000,000 DAQ-STC

100,000 DAQ-STC

Table 10-8. Valid Internal Timebase Frequencies (Continued)

Frequency

Chip Type on

DAQ Board

Chapter 10 Easy I/O for DAQ Library — ReadFromDigitalLine

© National Instruments Corporation 10-67 Standard Libraries Reference Manual

ReadFromDigitalLine

short error = ReadFromDigitalLine (short device, char portNumber[],
short line, short portWidth, long configure,
unsigned long *lineState);

Purpose
Reads the logical state of a digital line on a port that you configure as input.

Parameters

Input

Output

Return Value

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

portNumber string Specifies the digital port
ReadFromDigitalLine configures.

line short integer Specifies the individual bit or line within
the port to use for I/O (zero-based).

portWidth short integer Total width in bits of the port.

configure long integer 1 = Configure the digital port before
reading
0 = Do not configure the digital port before
reading

Name Type Description

lineState unsigned long
integer

Returns the state of the digital line.
1 = logical high
0 = logical low

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — ReadFromDigitalLine

Standard Libraries Reference Manual 10-68 © National Instruments Corporation

Parameter Discussion
portNumber specifies the digital port ReadFromDigitalLine configures.

A portNumber value of 0 signifies port 0; a portNumber of 1 signifies port 1; and so on. If
you use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the
following syntax:

"SCx!MDy!0"

where x is the chassis ID and y is the module device number, to specify the port on a module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non-E Series) board by setting portWidth to 8.

When portWidth is greater than the physical port width of a digital port, the following
restrictions apply: The portWidth must be an integral multiple of the physical port width, and
the port numbers in the combined port must begin with the port named by portNumber and
must increase consecutively. For example, if portNumber is 3 and portWidth is 24 (bits),
LabWindows/CVI uses ports 3, 4, and 5.

You must pass a portWidth of at least 8 for the 8255-based digital I/O ports, including all
digital ports on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F,
DIO-96, and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3, and 4.

configure specifies whether to configure the digital port before reading.

When you call ReadFromDigitalLine in a loop, you can optimize it by configuring the
digital port only on the first iteration.

When you configure a digital I/O port that is part of an 8255 PPI, including all digital ports
on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and
AT-MIO-16DE-10/AT-MIO-16D ports 2, 3, and 4, the 8255 PPI goes through a configuration
phase in which all the ports within the same PPI chip are reset to logic low, regardless of the
data direction. The data directions on other ports, however, are maintained.

Chapter 10 Easy I/O for DAQ Library — ReadFromDigitalPort

© National Instruments Corporation 10-69 Standard Libraries Reference Manual

ReadFromDigitalPort

short error = ReadFromDigitalPort (short device, char portNumber[],
short portWidth, long configure,
unsigned long *pattern);

Purpose
Reads a digital port that you configure for input.

Parameters

Input

Output

Return Value

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

portNumber string Specifies the digital port
ReadFromDigitalPort configures.

portWidth short integer Total width in bits of the port.

configure long integer 1= Configure the digital port before
reading
0 = Do not configure the digital port before
reading

Name Type Description

pattern unsigned long
integer

Data read from the digital port.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — ReadFromDigitalPort

Standard Libraries Reference Manual 10-70 © National Instruments Corporation

Parameter Discussion
portNumber specifies the digital port ReadFromDigitalPort configures.

A portNumber value of 0 signifies port 0; a portNumber of 1 signifies port 1; and so on. If
you use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the
following syntax:

"SCx!MDy!0"

where x is the chassis ID and y is the module device number, to specify the port on a module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non-E Series) board by setting portWidth to 8.

When portWidth is greater than the physical port width of a digital port, the following
restrictions apply: The portWidth must be an integral multiple of the physical port width, and
the port numbers in the combined port must begin with the port named by portNumber and
must increase consecutively. For example, if portNumber is 3 and portWidth is 24 (bits),
LabWindows/CVI uses ports 3, 4, and 5.

You must pass a portWidth of at least 8 for the 8255-based digital I/O ports, including all
digital ports on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F,
DIO-96, and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3, and 4.

configure specifies whether to configure the digital port before reading.

When you call ReadFromDigitalPort in a loop, you can optimize it by configuring the
digital port only on the first iteration.

When you configure a digital I/O port that is part of an 8255 PPI, including all digital ports
on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and
AT-MIO-16DE-10/AT-MIO-16D ports 2, 3, and 4, the 8255 PPI goes through a configuration
phase in which all the ports within the same PPI chip are reset to logic low, regardless of the
data direction. The data directions on other ports, however, are maintained.

Chapter 10 Easy I/O for DAQ Library — SetEasyIOMultitaskingMode

© National Instruments Corporation 10-71 Standard Libraries Reference Manual

SetEasyIOMultitaskingMode

void SetEasyIOMultitaskingMode (int multitaskingMode);

Purpose
By default, if you call the non-timed Easy I/O for DAQ functions repetitively,
LabWindows/CVI does not reconfigure the hardware unless you change the parameters.
Thus, LabWindows/CVI improves the performance of these functions by reconfiguring the
hardware only when necessary.

However, if you run multiple data acquisition programs simultaneously, the non-timed Easy
I/O for DAQ functions do not know when the hardware has been reconfigured by another
application that accesses the same DAQ device. Consequently, the functions might work
incorrectly.

To get around this problem, you can force these functions to always reconfigure the hardware.
You do this by setting the multitasking mode to MULTITASKING_AWARE.

You should set the multitasking mode to MULTITASK_AWARE if your program calls the
non-timed Easy I/O for DAQ functions and you expect another data acquisition program to
access the same board while your program runs. In this mode, the Easy I/O for DAQ functions
always reconfigure the hardware on each invocation, which means they are not optimized for
speed, but other applications cannot adversely affect them.

You should set the multitasking mode to MULTITASK_UNAWARE if you know no another
program accesses the same DAQ device while your program runs.

Parameter

Input

Return Value
None.

Name Type Description

multitaskingMode integer When set to a nonzero value, DAQ devices
are reconfigured to default settings every
time an Easy I/O for DAQ function invokes
such devices.

Chapter 10 Easy I/O for DAQ Library — WriteToDigitalLine

Standard Libraries Reference Manual 10-72 © National Instruments Corporation

WriteToDigitalLine

short error = WriteToDigitalLine (short device, char portNumber[],
short line, short portWidth, long configure,
unsigned long lineState);

Purpose
Sets the output logic state of a digital line on a digital port.

Parameters

Input

Return Value

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

portNumber string Specifies the digital port this function
configures.

line short integer Specifies the individual bit or line within
the port to use for I/O.

portWidth short integer Total width in bits of the port.

configure long integer 1= Configure the digital port before
writing
0 = Do not configure the digital port before
writing

lineState unsigned long
integer

Specifies the new state of the digital line.
1 = logical high
0 = logical low

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — WriteToDigitalLine

© National Instruments Corporation 10-73 Standard Libraries Reference Manual

Parameter Discussion
portNumber specifies the digital port WriteToDigitalLine configures.

A portNumber value of 0 signifies port 0; a portNumber of 1 signifies port 1; and so on. If
you use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the
following syntax:

"SCx!MDy!0"

where x is the chassis ID and y is the module device number, to specify the port on a module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non-E Series) board by setting portWidth to 8.

When portWidth is greater than the physical port width of a digital port, the following
restrictions apply: the portWidth must be an integral multiple of the physical port width, and
the port numbers in the combined port must begin with the port named by portNumber and
must increase consecutively. For example, if portNumber is 3 and portWidth is 24 (bits),
LabWindows/CVI uses ports 3, 4, and 5.

You must pass a portWidth of at least 8 for the 8255-based digital I/O ports, including all
digital ports on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F,
DIO-96, and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3, and 4.

configure specifies whether to configure the digital port before writing.

When you call WriteToDigitalLine in a loop, you can optimized it by configuring the
digital port only on the first iteration.

When you configure a digital I/O port that is part of an 8255 PPI, including all digital ports
on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and
AT-MIO-16DE-10/AT-MIO-16D ports 2, 3, and 4, the 8255 PPI goes through a configuration
phase in which all the ports within the same PPI chip are reset to logic low, regardless of the
data direction. The data directions on other ports, however, are maintained.

Chapter 10 Easy I/O for DAQ Library — WriteToDigitalPort

Standard Libraries Reference Manual 10-74 © National Instruments Corporation

WriteToDigitalPort

short error = WriteToDigitalPort (short device, char portNumber[],
short portWidth, long configure,
unsigned long pattern);

Purpose
Outputs a decimal pattern to a digital port.

Parameters

Input

Return Value

Name Type Description

device short integer Assigned by NI-DAQ configuration utility.

portNumber string Specifies the digital port this function
configures.

portWidth short integer Total width in bits of the port.

configure long integer 1 = Configure the digital port before
writing
0 = Do not configure the digital port before
writing

pattern unsigned long
integer

Specifies the new state of the lines in
the port.

Name Type Description

error short integer Refer to Table 10-9 for error codes.

Chapter 10 Easy I/O for DAQ Library — WriteToDigitalPort

© National Instruments Corporation 10-75 Standard Libraries Reference Manual

Parameter Discussion
portNumber specifies the digital port WriteToDigitalPort configures.

A portNumber value of 0 signifies port 0; a portNumber of 1 signifies port 1; and so on. If
you use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the
following syntax:

"SCx!MDy!0"

where x is the chassis ID and y is the module device number, to specify the port on a module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non-E Series) board by setting portWidth to 8.

When portWidth is greater than the physical port width of a digital port, the following
restrictions apply: the portWidth must be an integral multiple of the physical port width, and
the port numbers in the combined port must begin with the port named by portNumber and
must increase consecutively. For example, if portNumber is 3 and portWidth is 24 (bits),
LabWindows/CVI uses ports 3, 4, and 5.

You must pass a portWidth of at least 8 for the 8255-based digital I/O ports, including all
digital ports on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F,
DIO-96, and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3, and 4.

configure specifies whether to configure the digital port before writing.

When you call WriteToDigitalPort in a loop, you can optimized it by configuring the
digital port only on the first iteration.

When you configure a digital I/O port that is part of an 8255 PPI, including all digital ports
on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and
AT-MIO-16DE-10/AT-MIO-16D ports 2, 3, and 4, the 8255 PPI goes through a configuration
phase in which all the ports within the same PPI chip are reset to logic low, regardless of the
data direction. The data directions on other ports, however, are maintained.

Chapter 10 Easy I/O for DAQ Library — Error Conditions

Standard Libraries Reference Manual 10-76 © National Instruments Corporation

Error Conditions

All the functions in the Easy I/O for DAQ Library return an error code. A negative number
indicates that an error occurred. If the return value is positive, it has the same description as
if it were negative, but it is considered a warning.

Table 10-9. Easy I/O for DAQ Library Error Codes

Code Constant Name Explanation

0 Success.

–10001 syntaxErr An error was detected in the input string;
the arrangement or ordering of the
characters in the string is not consistent
with the expected ordering.

–10002 semanticsErr An error was detected in the input string;
the syntax of the string is correct, but
certain values you specify in the string
are inconsistent with other values you
specify in the string.

–10003 invalidValueErr The value of a numeric parameter is
invalid.

–10004 valueConflictErr The value of a numeric parameter is
inconsistent with another parameter, and
the combination is therefore invalid.

–10005 badDeviceErr Device parameter is invalid.

–10006 badLineErr Line parameter is invalid.

–10007 badChanErr A channel is out of range for the
device type or input configuration, the
combination of channels is invalid, or
you must reverse the scan order so that
channel 0 is last.

–10008 badGroupErr Group parameter is invalid.

–10009 badCounterErr Counter parameter is invalid.

–10010 badCountErr Count parameter is too small or too large
for the specified counter.

Chapter 10 Easy I/O for DAQ Library — Error Conditions

© National Instruments Corporation 10-77 Standard Libraries Reference Manual

–10011 badIntervalErr Interval parameter is too small or too
large for the associated counter or I/O
channel.

–10012 badRangeErr Analog input or analog output voltage
range is invalid for the specified channel.

–10013 badErrorCodeErr Driver returned an unrecognized or
unlisted error code.

–10014 groupTooLargeErr Group size is too large for the device.

–10015 badTimeLimitErr Time limit parameter is invalid.

–10016 badReadCountErr Read count parameter is invalid.

–10017 badReadModeErr Read mode parameter is invalid.

–10018 badReadOffsetErr Offset is unreachable.

–10019 badClkFrequencyErr Frequency parameter is invalid.

–10020 badTimebaseErr Timebase parameter is invalid.

–10021 badLimitsErr Limits are beyond the range of the
device.

–10022 badWriteCountErr Data array contains an incomplete
update; you are trying to write past the
end of the internal buffer; or your output
operation is continuous and the length of
your array is not a multiple of half the
internal buffer size.

–10023 badWriteModeErr Write mode is out of range or is invalid.

–10024 badWriteOffsetErr Write offset plus the write mark is
greater than the internal buffer size or it
must be set to 0.

–10025 limitsOutOfRangeErr Voltage limits are out of range for this
device in the current configuration.
Alternate limits were selected.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

Standard Libraries Reference Manual 10-78 © National Instruments Corporation

–10026 badInputBufferSpecification Input buffer specification is invalid.
This error results if, for example, you
try to configure a multiple-buffer
acquisition for a device that cannot
perform multiple-buffer acquisition.

–10027 badDAQEventErr For DAQEvents 0 and 1, general value A
must be greater than 0 and less than the
internal buffer size. If DMA is used for
DAQEvent 1, general value A must
divide the internal buffer size evenly,
with no remainder. If the TIO-10 is used
for DAQEvent 4, general value A must be
1 or 2.

–10028 badFilterCutoffErr Cutoff frequency is not valid for this
device.

–10080 badGainErr Gain parameter is invalid.

–10081 badPretrigCountErr Pretrigger sample count is invalid.

–10082 badPosttrigCountErr Posttrigger sample count is invalid.

–10083 badTrigModeErr Trigger mode is invalid.

–10084 badTrigCountErr Trigger count is invalid.

–10085 badTrigRangeErr Trigger range or trigger hysteresis
window is invalid.

–10086 badExtRefErr External reference value is invalid.

–10087 badTrigTypeErr Trigger type parameter is invalid.

–10088 badTrigLevelErr Trigger level parameter is invalid.

–10089 badTotalCountErr Total count you specified is inconsistent
with the buffer configuration and
pretrigger scan count or with the device
type.

–10090 badRPGErr Individual range, polarity, and gain
settings are valid but the combination
you specified is invalid for this device.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

© National Instruments Corporation 10-79 Standard Libraries Reference Manual

–10091 badIterationsErr Analog output buffer iterations count is
invalid. It must be 0, for indefinite
iterations, or 1.

–10100 badPortWidthErr Requested digital port width is not a
multiple of the hardware port width.

–10240 noDriverErr Driver interface could not locate or open
the driver.

–10241 oldDriverErr Driver is out of date.

–10242 functionNotFoundErr Specified function is not located in the
driver.

–10243 configFileErr Driver could not locate or open the
configuration file, or the format of the
configuration file is not compatible with
the currently installed driver.

–10244 deviceInitErr Driver encountered a
hardware-initialization error while
attempting to configure the specified
device.

–10245 osInitErr Driver encountered an operating system
error while attempting to perform an
operation, or the driver performed an
operation that the operating system does
not recognize.

–10246 communicationsErr Driver is unable to communicate with
the specified external device.

–10247 cmosConfigErr CMOS configuration memory for the
computer is empty or invalid, or the
configuration you specified does not
agree with the current configuration of
the computer.

–10248 dupAddressErr Base addresses for two or more devices
are the same; consequently, the driver is
unable to access the specified device.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

Standard Libraries Reference Manual 10-80 © National Instruments Corporation

–10249 intConfigErr Interrupt configuration is incorrect given
the capabilities of the computer or
device.

–10250 dupIntErr Interrupt levels for two or more devices
are the same.

–10251 dmaConfigErr DMA configuration is incorrect given
the capabilities of the computer/DMA
controller or device.

–10252 dupDMAErr DMA channels for two or more devices
are the same.

–10253 switchlessBoardErr NI-DAQ was unable to find one or more
switchless boards you configured using
WDAQCONF.

–10254 DAQCardConfigErr Cannot configure the DAQCard because:
the correct version of card and socket
services software is not installed; the
card in the PCMCIA socket is not a
DAQCard: or the base address and/or
interrupt level you requested are not
available according to the card and
socket services resource manager. Try
different settings or use AutoAssign in
the NI-DAQ configuration utility.

–10340 noConnectErr No RTSI signal/line is connected, or the
specified signal and the specified line are
not connected.

–10341 badConnectErr RTSI signal/line cannot be connected as
specified.

–10342 multConnectErr Specified RTSI signal is already being
driven by a RTSI line, or the specified
RTSI line is already being driven by a
RTSI signal.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

© National Instruments Corporation 10-81 Standard Libraries Reference Manual

–10343 SCXIConfigErr Specified SCXI configuration
parameters are invalid, or the function
cannot be executed given the current
SCXI configuration.

–10360 DSPInitErr DSP driver was unable to load the kernel
for its operating system.

–10370 badScanListErr Scan list is invalid. This error can result
if, for example, you mix AMUX-64T
channels and onboard channels, or if you
scan multiplexed SCXI channels out of
order.

–10400 userOwnedRsrcErr Specified resource is owned by the user
and cannot be accessed or modified by
the driver.

–10401 unknownDeviceErr Specified device is not a National
Instruments product, or the driver does
not work with the device. For example,
the driver was released before the
features of the device existed.

–10402 deviceNotFoundErr No device is located in the specified slot
or at the specified address.

–10403 deviceSupportErr Requested action does not work with
specified device. The driver recognizes
the device, but the action is inappropriate
for the device.

–10404 noLineAvailErr No line is available.

–10405 noChanAvailErr No channel is available.

–10406 noGroupAvailErr No group is available.

–10407 lineBusyErr Specified line is in use.

–10408 chanBusyErr Specified channel is in use.

–10409 groupBusyErr Specified group is in use.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

Standard Libraries Reference Manual 10-82 © National Instruments Corporation

–10410 relatedLCGBusyErr A related line, channel, or group is in
use. If the driver configures the specified
line, channel, or group, the
configuration, data, or handshaking lines
for the related line, channel, or group
will be disturbed.

–10411 counterBusyErr Specified counter is in use.

–10412 noGroupAssignErr No group is assigned, or the specified
line or channel cannot be assigned to a
group.

–10413 groupAssignErr A group is already assigned, or the
specified line or channel is already
assigned to a group.

–10414 reservedPinErr Selected signal indicates a pin reserved
by NI-DAQ. You cannot configure this
pin yourself.

–10440 sysOwnedRsrcErr Specified resource is owned by the driver
and cannot be accessed or modified by
the user.

–10441 memConfigErr No memory is configured to work with
the current data transfer mode, or the
configured memory does not work with
the current data transfer mode. If block
transfers are in use, the memory must be
capable of performing block transfers.

–10442 memDisabledErr Specified memory is disabled or is
unavailable given the current addressing
mode.

–10443 memAlignmentErr Transfer buffer is not aligned properly
for the current data transfer mode. For
example, the memory buffer is at an odd
address, is not aligned to a 32-bit
boundary, is not aligned to a 512-bit
boundary, and so on. Alternatively, the
driver is unable to align the buffer
because the buffer is too small.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

© National Instruments Corporation 10-83 Standard Libraries Reference Manual

–10444 memFullErr No more system memory is available on
the heap, or no more memory is available
on the device.

–10445 memLockErr Transfer buffer cannot be locked into
physical memory.

–10446 memPageErr Transfer buffer contains a page break.
System resources might require
reprogramming when the page break is
encountered.

–10447 memPageLockErr Operating environment is unable to grant
a page lock.

–10448 stackMemErr Driver is unable to continue parsing a
string input because of stack limitations.

–10449 cacheMemErr A cache-related error occurred, or
caching does not work in the current
mode.

–10450 physicalMemErr A hardware error occurred in physical
memory, or no memory is located at the
specified address.

–10451 virtualMemErr Driver is unable to make the transfer
buffer contiguous in virtual memory and
therefore cannot lock the buffer into
physical memory; thus, you cannot use
the buffer for DMA transfers.

–10452 noIntAvailErr No interrupt level is available for use.

–10453 intInUseErr Specified interrupt level is already in use
by another device.

–10454 noDMACErr No DMA controller is available in the
system.

–10455 noDMAAvailErr No DMA channel is available for use.

–10456 DMAInUseErr Specified DMA channel is already in use
by another device.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

Standard Libraries Reference Manual 10-84 © National Instruments Corporation

–10457 badDMAGroupErr DMA cannot be configured for the
specified group because it is too small,
too large, or misaligned. Consult the user
manual for the device in question to
determine group ramifications with
respect to DMA.

–10459 DLLInterfaceErr DLL could not be called because of an
interface error.

–10460 interfaceInteractionErr You have attempted to mix LabVIEW
2.2 VIs and LabVIEW 3.0 VIs. You must
run an application that consists only of
2.2 VIs, then run the 2.2 Board Reset VI,
before you can run any 3.0 VIs. You
must run an application that consists of
only 3.0 VIs, then run the 3.0 Device
Reset VI, before you can run
any 2.2 VIs.

–10560 invalidDSPhandleErr DSP handle input to the VI is not a
valid handle.

–10600 noSetupErr No setup operation has been performed
for the specified resources.

–10601 multSetupErr Specified resources have already been
configured by a setup operation.

–10602 noWriteErr No output data has been written into the
transfer buffer.

–10603 groupWriteErr Output data associated with a group
must be for a single channel or must be
for consecutive channels.

–10604 activeWriteErr Once data generation has started, only
the transfer buffers originally written to
can be updated. If DMA is active and a
single transfer buffer contains
interleaved channel data, all output
channels currently using the DMA
channel will require new data.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

© National Instruments Corporation 10-85 Standard Libraries Reference Manual

–10605 endWriteErr No data was written to the transfer buffer
because the final data block has already
been loaded.

–10606 notArmedErr Specified resource is not armed.

–10607 armedErr Specified resource is already armed.

–10608 noTransferInProgErr No transfer is in progress for the
specified resource.

–10609 transferInProgErr A transfer is already in progress for the
specified resource.

–10610 transferPauseErr A single output channel in a group
cannot be paused if the output data for
the group is interleaved.

–10611 badDirOnSomeLinesErr Some of the lines in the specified
channel are not configured for the
transfer direction specified. For a write
transfer, some lines were configured for
input. For a read transfer, some lines
were configured for output.

–10612 badLineDirErr Specified line does not support the
specified transfer direction.

–10613 badChanDirErr Specified channel does not support the
specified transfer direction.

–10614 badGroupDirErr Specified group does not support the
specified transfer direction.

–10615 masterClkErr Clock configuration for the clock master
is invalid.

–10616 slaveClkErr Clock configuration for the clock slave
is invalid.

–10617 noClkSrcErr No source signal has been assigned to
the clock resource.

–10618 badClkSrcErr Specified source signal cannot be
assigned to the clock resource.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

Standard Libraries Reference Manual 10-86 © National Instruments Corporation

–10619 multClkSrcErr A source signal has already been
assigned to the clock resource.

–10620 noTrigErr No trigger signal has been assigned to
the trigger resource.

–10621 badTrigErr Specified trigger signal cannot be
assigned to the trigger resource.

–10622 preTrigErr Pretrigger mode is not supported or is
not available in the current
configuration, or no pretrigger source
has been assigned.

–10623 postTrigErr No posttrigger source has been assigned.

–10624 delayTrigErr Delayed trigger mode is not supported or
is not available in the current
configuration, or no delay source has
been assigned.

–10625 masterTrigErr Trigger configuration for the trigger
master is invalid.

–10626 slaveTrigErr Trigger configuration for the trigger
slave is invalid.

–10627 noTrigDrvErr No signal has been assigned to the
trigger resource.

–10628 multTrigDrvErr A signal has already been assigned to the
trigger resource.

–10629 invalidOpModeErr Specified operating mode is invalid, or
the resources have not been configured
for the specified operating mode.

–10630 invalidReadErr An attempt was made to read 0 bytes
from the transfer buffer, or an attempt
was made to read past the end of the
transfer buffer.

–10631 noInfiniteModeErr Continuous input or output transfers are
invalid in the current operating mode.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

© National Instruments Corporation 10-87 Standard Libraries Reference Manual

–10632 someInputsIgnoredErr Certain inputs were ignored because
they are not relevant in the current
operating mode.

–10633 invalidRegenModeErr This device does not support the
specified analog output regeneration
mode.

–10680 badChanGainErr All channels must have an identical
setting for this device.

–10681 badChanRangeErr All channels of this device must have the
same range.

–10682 badChanPolarityErr All channels of this device must have the
same polarity.

–10683 badChanCouplingErr All channels of this device must have the
same coupling.

–10684 badChanInputModeErr All channels of this device must have the
same input range.

–10685 clkExceedsBrdsMaxConvRate Clock rate selected exceeds the
recommended maximum rate for this
device.

–10686 scanListInvalidErr A configuration change has invalidated
the scan list.

–10687 bufferInvalidErr A configuration change has invalidated
the allocated buffer.

–10688 noTrigEnabledErr Total number of scans and pretrigger
scans implies that a trigger start is
intended, but no trigger is enabled.

–10689 digitalTrigBErr Digital trigger B is illegal for the total
scans and pretrigger scans specified.

–10690 digitalTrigAandBErr With this device, you cannot enable
digital triggers A and B at the same time.

–10691 extConvRestrictionErr With this device, you cannot use an
external sample clock with an external
scan clock, start trigger, or stop trigger.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

Standard Libraries Reference Manual 10-88 © National Instruments Corporation

–10692 chanClockDisabledErr Cannot start the acquisition because the
channel clock is disabled.

–10693 extScanClockErr Cannot use an external scan clock when
performing a single scan of a single
channel.

–10694 unsafeSamplingFreqErr Sampling frequency exceeds the safe
maximum rate for the ADC, gains, and
filters you are using.

–10695 DMAnotAllowedErr You must use interrupts. DMA does not
work.

–10696 multiRateModeErr Multirate scanning can not be used with
AMUX-64, SCXI, or pre-triggered
acquisitions.

–10697 rateNotSupportedErr NI-DAQ was unable to convert your
timebase/interval pair to match the
actual hardware capabilities of the
specified board.

–10698 timebaseConflictErr You cannot use this combination of scan
and sample clock timebases for the
specified board.

–10699 polarityConflictErr You cannot use this combination of scan
and sample clock source polarities for
this operation for the specified board.

–10700 signalConflictErr You cannot use this combination of scan
and convert clock signal sources for this
operation for the specified board.

–10740 SCXITrackHoldErr A signal has already been assigned to the
SCXI track-and-hold trigger line, or a
control call was inappropriate because
the specified module is not configured
for one-channel operation.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

© National Instruments Corporation 10-89 Standard Libraries Reference Manual

–10780 sc2040InputModeErr When you have an SC2040 attached to
your device, all analog input channels
must be configured for differential
input mode.

–10800 timeOutErr Operation could not complete within the
time limit.

–10801 calibrationErr An error occurred during the calibration
process.

–10802 dataNotAvailErr Requested amount of data has not yet
been acquired, or the acquisition has
completed and no more data is available
to read.

–10803 transferStoppedErr Transfer has been stopped to prevent
regeneration of output data.

–10804 earlyStopErr Transfer stopped before reaching the end
of the transfer buffer.

–10805 overRunErr Clock source for the input transfer is
faster than the maximum input-clock
rate; the integrity of the data has been
compromised. Alternatively, the clock
source for the output transfer is faster
than the maximum output-clock rate; a
data point was generated more than once
because the update occurred before new
data was available.

–10806 noTrigFoundErr No trigger value was found in the input
transfer buffer.

–10807 earlyTrigErr Trigger occurred before sufficient
pretrigger data was acquired.

–10809 gateSignalErr Attempted to start a pulse width
measurement with the pulse in the active
state.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

Standard Libraries Reference Manual 10-90 © National Instruments Corporation

–10840 softwareErr Contents or the location of the driver file
was changed between accesses to the
driver.

–10841 firmwareErr Firmware does not support the specified
operation, or the firmware operation
could not complete because of a
data-integrity problem.

–10842 hardwareErr Hardware is not responding to the
specified operation, or the response from
the hardware is not consistent with the
functionality of the hardware.

–10843 underFlowErr The update rate exceeds your system
capacity to supply data to the output
channel.

–10844 underWriteErr At the time of the update for the
device-resident memory, insufficient
data was present in the output transfer
buffer to complete the update.

–10845 overFlowErr At the time of the update clock for the
input channel, the device-resident
memory was unable to accept additional
data. One or more data points might have
been lost.

–10846 overWriteErr New data was written into the input
transfer buffer before the old data was
retrieved.

–10847 dmaChainingErr New buffer information was not
available at the time of the DMA
chaining interrupt; DMA transfers will
terminate at the end of the currently
active transfer buffer.

–10848 noDMACountAvailErr Driver could not obtain a valid reading
from the transfer-count register in the
DMA controller.

–10849 openFileErr Unable to open a file.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

Chapter 10 Easy I/O for DAQ Library — Error Conditions

© National Instruments Corporation 10-91 Standard Libraries Reference Manual

–10850 closeFileErr Unable to close a file.

–10851 fileSeekErr Unable to seek within a file.

–10852 readFileErr Unable to read from a file.

–10853 writeFileErr Unable to write to a file.

–10854 miscFileErr An error occurred accessing a file.

–10880 updateRateChangeErr A change to the update rate is not
possible at this time because when
waveform generation is in progress, you
cannot change the interval timebase; or
when you make several changes in a row,
you must wait long enough for each
change to take effect before you request
more changes.

–10920 gpctrDataLossErr One or more data points might have been
lost during buffered GPCTR operations
because of speed limitations of your
system.

Table 10-9. Easy I/O for DAQ Library Error Codes (Continued)

Code Constant Name Explanation

© National Instruments Corporation 11-1 Standard Libraries Reference Manual

11
ActiveX Automation Library

This chapter describes the ActiveX Automation Library, which contains functions that control
ActiveX Automation servers. The ActiveX Automation Library Function Overview section
contains general information about the functions as well as guidelines and restrictions you
should know when you use the ActiveX Automation Library. The ActiveX Automation

Library Function Reference section contains an alphabetical list of function descriptions.

Note This library is available only on Windows 95/NT.

ActiveX Automation Library Function Overview

ActiveX Automation (formerly called OLE Automation) allows applications to make their
unique features available to scripting tools and other applications. An ActiveX Automation
server is the application that exposes its features. An ActiveX Automation controller is the
application that uses the features of an ActiveX Automation server. An ActiveX Automation
server exports its features as a set of ActiveX Objects. For example, Microsoft Excel exposes
its workbooks, worksheets, and charts as ActiveX Objects. Each ActiveX Object provides
methods and properties that other applications can access. For example, the Microsoft Excel
worksheet object provides a calculate method that calculates the values in a worksheet.

The ActiveX Automation Library contains functions that facilitate calling into ActiveX server
interfaces. Use the ActiveX Automation Library in conjunction with the instrument drivers
the ActiveX Automation Controller Wizard generates. The ActiveX Automation Controller
Instrument Drivers contain C functions to create ActiveX Objects, to call ActiveX Object
methods, and to get and set ActiveX Object properties. Select Tools»Create ActiveX

Automation Controller to start the wizard.

The ActiveX Automation Library contains functions that:

• Help you work with the VARIANT parameters, SAFEARRAY parameters, and return values
of the functions in the generated instrument drivers.

• Free resources dynamically allocated by the generated instrument drivers or by other
ActiveX Automation Library functions.

• Display error information the library functions or the Automation server methods return.

The ActiveX Automation Library also contains low-level functions that the generated drivers
use. These low-level functions invoke methods of server objects and get and set properties of
server objects.

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Overview

Standard Libraries Reference Manual 11-2 © National Instruments Corporation

If you want to use the low-level functions, you should know ActiveX concepts. In particular,
you should know how to browse through an ActiveX Automation server type library.

Variants and Safe Arrays
The VARIANT data type is a structure that can hold a value of any valid ActiveX Automation
data type. Refer to Tables 11-1 and 11-2 for valid ActiveX Automation data types. ActiveX
Automation server functions declare a parameter as a VARIANT when the parameter can take
a value of more than one data type. This document uses the term variant to refer to parameters
or variables declared with the VARIANT data type. The ActiveX Automation Library provides
functions to help you pass values as variant input parameters and retrieve values from variant
output parameters.

The SAFEARRAY data type is a structure that holds an array of data, the number of dimensions
in the array, and the size of each dimension. ActiveX Automation server functions use the
SAFEARRAY data type to pass arrays. This document uses the term safe array to refer to
parameters or variables declared with the SAFEARRAY data type. The ActiveX Automation
Library provides functions to convert between C-style arrays and safe arrays, functions to
obtain the number of dimensions in a safe array and the size of each dimension, and functions
to convert between C-arrays and safe arrays stored inside variants.

You can declare a variant structure as a local or global variable, but safe arrays are always
dynamically allocated. Consequently, you must always reference safe arrays using pointers.
Use the LPSAFEARRAY typedef to declare a pointer to a safe array. Microsoft adds LP at the
beginning of data type names to indicate a pointer to a data type. Thus, LPSAFEARRAY
signifies a pointer to a SAFEARRAY.

Events are Not Supported
The ActiveX Automation Library does not receive events from Automation servers. If you
need to receive events through an Automation server event interface, you must manually
create an IDispatch interface that conforms to the event interface the server provides.

ActiveX Automation Library Function Panels
The ActiveX Automation Library function panels are grouped in the tree structure in
Table 11-1 according to the types of operations they perform.

The first- and second-level headings in the tree are names of function classes and subclasses.
Function classes and subclasses are groups of related function panels. The third-level
headings are the names of individual function panels. Each function panel generates a
function call.

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Overview

© National Instruments Corporation 11-3 Standard Libraries Reference Manual

The following shows the structure of the ActiveX Automation Library function tree.

Variant-Related Functions
Passing Values as Variants
Assigning Values to Variants
Querying the Type of a Variant
Retrieving Values from Variants

Array Functions
C Array-to-Safe Array Conversion
Safe Array-to-C Array Conversion
Querying Safe Arrays

BSTR Functions
Freeing Resources
Error Processing
Locales
Low-level Functions

Creating Automation Objects
Calling Methods and Properties

Table 11-1. Functions in the ActiveX Automation Library Function Tree

Class/Panel Name Function Name
Variant-Related Functions

Passing Values as Variants
Variant From Long CA_VariantLong
Variant From Short CA_VariantShort
Variant From Int CA_VariantInt
Variant From Bool CA_VariantBool
Variant From Float CA_VariantFloat
Variant From Double CA_VariantDouble
Variant From Currency CA_VariantCurrency
Variant From Date CA_VariantDate
Variant From Error CA_VariantError
Variant From UnsignedChar CA_VariantUChar
Variant From Dispatch CA_VariantDispatch
Variant From IUnknown CA_VariantIUnknown
Variant From BSTR CA_VariantBSTR
Empty Variant CA_VariantEmpty
NULL Variant CA_VariantNULL
Default Value Variant CA_DefaultValueVariant

Assigning Values to Variants
Variant Set Empty CA_VariantSetEmpty
Variant Set Long CA_VariantSetLong
Variant Set Short CA_VariantSetShort
Variant Set Int CA_VariantSetInt
Variant Set Bool CA_VariantSetBool
Variant Set Float CA_VariantSetFloat
Variant Set Double CA_VariantSetDouble

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Overview

Standard Libraries Reference Manual 11-4 © National Instruments Corporation

Variant-Related Functions (continued)
Assigning Values to Variants (continued)

Variant Set Safe Array CA_VariantSetSafeArray
Variant Set 1D Array CA_VariantSet1DArray
Variant Set 2D Array CA_VariantSet2DArray
Variant Set BSTR CA_VariantSetBSTR
Variant Set NULL CA_VariantSetNULL
Variant Set Currency CA_VariantSetCurrency
Variant Set Date CA_VariantSetDate
Variant Set Dispatch CA_VariantSetDispatch
Variant Set IUnknown CA_VariantSetIUnknown
Variant Set Error CA_VariantSetError
Variant Set Unsigned Char CA_VariantSetUChar
Variant Set C String CA_VariantSetCString
Variant Set Long Ptr CA_VariantSetLongPtr
Variant Set Short Ptr CA_VariantSetShortPtr
Variant Set Int Ptr CA_VariantSetIntPtr
Variant Set Bool Ptr CA_VariantSetBoolPtr
Variant Set Float Ptr CA_VariantSetFloatPtr
Variant Set Double Ptr CA_VariantSetDoublePtr
Variant Set Safe Array Ptr CA_VariantSetSafeArrayPtr
Variant Set BSTR Ptr CA_VariantSetBSTRPtr
Variant Set Currency Ptr CA_VariantSetCurrencyPtr
Variant Set Date Ptr CA_VariantSetDatePtr
Variant Set Dispatch Ptr CA_VariantSetDispatchPtr
Variant Set IUnknown Ptr CA_VariantSetIUnknownPtr
Variant Set Error Ptr CA_VariantSetErrorPtr
Variant Set Unsigned Char Ptr CA_VariantSetUCharPtr
Variant Set Variant Ptr CA_VariantSetVariantPtr

Querying the Type of a Variant
Variant Get Type CA_VariantGetType
Variant Has Array CA_VariantHasArray
Variant Has Pointer CA_VariantHasPtr
Variant Has Long CA_VariantHasLong
Variant Has Short CA_VariantHasShort
Variant Has Int CA_VariantHasInt
Variant Has Bool CA_VariantHasBool
Variant Has Float CA_VariantHasFloat
Variant Has Double CA_VariantHasDouble
Variant Has C String CA_VariantHasCString
Variant Has BSTR CA_VariantHasBSTR
Variant Has NULL CA_VariantHasNull
Variant Has Currency CA_VariantHasCurrency
Variant Has Date CA_VariantHasDate
Variant Has IUnknown CA_VariantHasIUnknown

Table 11-1. Functions in the ActiveX Automation Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Overview

© National Instruments Corporation 11-5 Standard Libraries Reference Manual

Variant-Related Functions (continued)
Querying the Type of a Variant (continued)

Variant Has Dispatch CA_VariantHasDispatch
Variant Has ObjHandle CA_VariantHasObjHandle
Variant Has Unsigned Char CA_VariantHasUChar
Variant Has Error Code CA_VariantHasError
Variant Is Empty CA_VariantIsEmpty

Retrieving Values from Variants
Convert Variant To Type CA_VariantConvertToType
Copy Variant CA_VariantCopy
Variant Get Long CA_VariantGetLong
Variant Get Short CA_VariantGetShort
Variant Get Int CA_VariantGetInt
Variant Get Boolean CA_VariantGetBool
Variant Get Float CA_VariantGetFloat
Variant Get Double CA_VariantGetDouble
Variant Get Safe Array CA_VariantGetSafeArray
Variant Get 1D Array CA_VariantGet1DArray
Variant Get 2D Array CA_VariantGet2DArray
Variant Get 1D Array in Buffer CA_VariantGet1DArrayBuf
Variant Get 2D Array in Buffer CA_VariantGet2DArrayBuf
Variant Get Array Num Dims CA_VariantGetArrayNumDims
Variant Get 1D Array Size CA_VariantGet1DArraySize
Variant Get 2D Array Size CA_VariantGet2DArraySize
Variant Get BSTR CA_VariantGetBSTR
Variant Get Currency CA_VariantGetCurrency
Variant Get Date CA_VariantGetDate
Variant Get Dispatch CA_VariantGetDispatch
Variant Get IUnknown CA_VariantGetIUnknown
Variant Get Error CA_VariantGetError
Variant Get Unsigned Char CA_VariantGetUChar
Variant Get ObjHandle CA_VariantGetObjHandle
Variant Get String Length CA_VariantGetCStringLen
Variant Get String In Buffer CA_VariantGetCStringBuf
Variant Get String CA_VariantGetCString
Variant Get Long Ptr CA_VariantGetLongPtr
Variant Get Short Ptr CA_VariantGetShortPtr
Variant Get Int Ptr CA_VariantGetIntPtr
Variant Get Bool Ptr CA_VariantGetBoolPtr
Variant Get Float Ptr CA_VariantGetFloatPtr
Variant Get Double Ptr CA_VariantGetDoublePtr
Variant Get Safe Array Ptr CA_VariantGetSafeArrayPtr
Variant Get BSTR Ptr CA_VariantGetBSTRPtr
Variant Get Currency Ptr CA_VariantGetCurrencyPtr
Variant Get Date Ptr CA_VariantGetDatePtr

Table 11-1. Functions in the ActiveX Automation Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Overview

Standard Libraries Reference Manual 11-6 © National Instruments Corporation

Variant-Related Functions (continued)
Retrieving Values from Variants (continued)

Variant Get Dispatch Ptr CA_VariantGetDispatchPtr
Variant Get IUnknown Ptr CA_VariantGetIUnknownPtr
Variant Get Error Ptr CA_VariantGetErrorPtr
Variant Get Unsigned Char Ptr CA_VariantGetUCharPtr
Variant Get Variant Ptr CA_VariantGetVariantPtr

Array Functions
C Array-to-Safe Array Conversion

1D Array to Safe Array CA_Array1DToSafeArray
2D Array to Safe Array CA_Array2DToSafeArray

Safe Array-to-C Array Conversion
Safe Array to 1D Array CA_SafeArrayTo1DArray
Safe Array to 2D Array CA_SafeArrayTo2DArray
Safe Array to 1D Array Buffer CA_SafeArrayTo1DArrayBuf
Safe Array to 2D Array Buffer CA_SafeArrayTo2DArrayBuf

Querying Safe Arrays
Safe Array Get Number of Dims CA_SafeArrayGetNumDims
Get 1D Safe Array Size CA_SafeArrayGet1DSize
Get 2D Safe Array Size CA_SafeArrayGet2DSize

BSTR Functions
C String To BSTR CA_CStringToBSTR
BSTR Get C String CA_BSTRGetCString
BSTR Get C String In Buffer CA_BSTRGetCStringBuf
BSTR Get C String Length CA_BSTRGetCStringLen

Freeing Resources
Free Memory CA_FreeMemory
Clear Variant CA_VariantClear
Destroy Safe Array CA_SafeArrayDestroy
Discard Object Handle CA_DiscardObjHandle
Free Unused Servers CA_FreeUnusedServers

Error Processing
Display Error Info CA_DisplayErrorInfo
Get Automation Error String CA_GetAutomationErrorString

Locales
Set Locale CA_SetLocale
Get Locale CA_GetLocale

Low-level Functions
Creating Automation Objects

Get Active Object By Class Id CA_GetActiveObjectByClassId
Get Active Object By Prog Id CA_GetActiveObjectByProgId
Create Object By Class Id CA_CreateObjectByClassId
Create Object By Prog Id CA_CreateObjectByProgId
Load Object From File CA_LoadObjectFromFile
Load Object From File By Class Id CA_LoadObjectFromFileByClassId

Table 11-1. Functions in the ActiveX Automation Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Overview

© National Instruments Corporation 11-7 Standard Libraries Reference Manual

Class Descriptions

• The Variant-Related Functions class contains all the functions for assigning values to, or
obtaining values from, variables or parameters declared with the VARIANT data type.

• The Passing Values as Variants class contains functions that allow you to pass variant
parameters without declaring variant variables. You cannot pass strings or arrays using
these functions because the conversions needed to store strings or arrays in variants
might fail.

• The Assigning Values to Variants class contains functions that assign values to variant
variables.

• The Querying the Type of a Variant class contains functions that allow you to query the
data type of the value a variant holds.

• The Retrieving Values from Variants class contains functions that retrieve the values the
variant parameters or variables hold.

• The Array Functions class contains functions that convert between C-style arrays and
safe arrays and functions that can get the dimension and sizes of a safe array.

• The C Array-to-Safe Array Conversion class contains functions to create safe arrays from
C-style arrays.

• The Safe Array-to-C Array Conversion class contains functions to create C-style arrays
from safe arrays.

• The Querying Safe Arrays class contains functions to determine the number of
dimensions and size of a safe array.

Low-level Functions (continued)
Creating Automation Objects (continued)

Load Object From File By Prog Id CA_LoadObjectFromFileByProgId
Create ObjHandle from Dispatch CA_CreateObjHandleFromIDispatch

Calling Methods and Properties
Invoke Method CA_MethodInvoke
Invoke Method (List) CA_MethodInvokeV
Get Property CA_PropertyGet
Set Property CA_PropertySet
Set Property (List) CA_PropertySetV
Set Property By Ref CA_PropertySetByRef
Set Property By Ref (List) CA_PropertySetByRefV
Invoke Method/Property CA_InvokeHelper
Invoke Method/Property (List) CA_InvokeHelperV

Get Dispatch From ObjHandle CA_GetDispatchFromObjHandle

Table 11-1. Functions in the ActiveX Automation Library Function Tree (Continued)

Class/Panel Name Function Name

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Overview

Standard Libraries Reference Manual 11-8 © National Instruments Corporation

• The BSTR Functions class contains functions that convert between C-style strings and
BSTR strings, which are Basic-style strings that store both text and length information.

• The Freeing Resources class contains functions to free resources that the Automation
Controller Instrument Drivers or ActiveX Automation Library functions dynamically
allocate.

• The Error Processing class contains functions that display error information based on
error values that the ActiveX Automation Library functions or the Automation server
functions return.

• The Locales class contains functions that set and get the language to use in the
communication with the Automation server.

• The Low-level Functions class contains functions to create Automation server objects,
invoke methods of those objects, and set and get properties of those objects.

• The Creating Automation Objects class contains functions to create Automation server
objects, such as an Excel worksheet.

• The Calling Methods and Properties class contains functions to invoke methods of
Automation server objects and to set and get properties of those objects.

The online help with each panel contains specific information about operating each
function panel.

Using Input Variant Parameters
The ActiveX Automation Library contains two sets of functions to help you pass variant input
parameters and set variants properties. The first set of functions allows you to pass values as
variants without declaring VARIANT variables. The Passing Values as Variants function tree
class includes these functions. You cannot pass strings or arrays using these functions because
the conversions needed when storing strings or arrays in variants might fail.

Some server methods have optional variant parameters. You can tell the server to use a
server-defined default value for an optional parameter by passing a variant with a special
value. Use CA_DefaultValueVariant to pass a variant that contains this special value. You
can use the CA_DEFAULT_VAL macro to refer to CA_DefaultValueVariant.

For strings and arrays, you must declare variables of type VARIANT and use the functions in
the Assigning Values to Variants function tree class to store values in these variables. You
must free the strings or arrays stored in variants when you no longer need them. Use
CA_VariantClear to free the contents of variants.

Using Output Variant Parameters
The ActiveX Automation Library contains functions to query the type of value a variant
contains and functions to retrieve values from a variant. CA_VariantGetType returns a
constant that represents the type of value the variant contains. Other functions, such as

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Overview

© National Instruments Corporation 11-9 Standard Libraries Reference Manual

CA_VariantHasLong and CA_VariantHasShort, return a Boolean value that indicates
whether the variant contains a value of a specific type.

CA_VariantConvertToType converts the value the variant contains to a type you specify.
Other functions, such as CA_VariantGetLong, retrieve a value of a specific type from a
variant and fail if the variant does not contain a value of that type.

Variants Marked as Empty by Retrieval Functions
All the functions that retrieve values from a variant mark the variant as empty and free any
dynamically allocated memory the variant holds. Thus, you cannot call the retrieval functions
multiple times on the same variant. If you do not retrieve the values from a variant, you can
free the contents of a variant using CAVariantClear.

Data Types for Variants, Safe Arrays, and Properties
A set of fundamental data types exists that is valid for variants, safe arrays, and properties.
You can apply a set of modifiers to the fundamental data types to create more data types. Not
all combinations are valid in all cases. The function descriptions specify which data types are
valid in particular contexts. Table 11-2 shows the fundamental data types.

Table 11-2. Fundamental Data Types for Variants, Safe Arrays, and Properties

Defined Constant Data Type or Meaning

CAVT_EMPTY Variant contains nothing.

CAVT_NULL Variant contains NULL value.

CAVT_SHORT short

CAVT_LONG long

CAVT_INT int (same as CAVT_LONG)

CAVT_FLOAT float

CAVT_DOUBLE double

CAVT_CY CURRENCY (Windows SDK data type)

CAVT_DATE DATE (Windows SDK data type)

CAVT_BSTR BSTR (Windows SDK data type)

CAVT_DISPATCH LPDISPATCH (ActiveX data type for an automation object
interface)

CAVT_ERROR SCODE (Windows SDK data type)

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Overview

Standard Libraries Reference Manual 11-10 © National Instruments Corporation

You can bitwise OR all the constants in Table 11-2 with the data type modifiers except for
CAVT_EMPTY and CAVT_NULL. Table 11-3 shows the data type modifiers.

To pass a pointer to the array address, use CAVT_ARRAY and one of the CAVT_BYREF
modifiers.

CAVT_BOOL VBOOL, which maps to VARIANT_BOOL (ActiveX data type)

CAVT_VARIANT VARIANT (ActiveX data type)

CAVT_UNKNOWN LPUNKNOWN (ActiveX data type for an unknown interface)

CAVT_UCHAR unsigned char

CAVT_CSTRING char* (null-terminated string)

CAVT_OBJHANDLE CAObjHandle, which maps to void*

Table 11-3. Data Types Modifiers for Variants, Safe Arrays, and Properties

Defined Constant Meaning

CAVT_ARRAY Array of data type. For example, CAVT_SHORT|CAVT_ARRAY
signifies an array of short integers.

CAVT_BYREF Pointer to data type.

CAVT_BYREFI Pointer to data type. Input-only parameter you pass by reference.
Defined as CAVT_BYREF|CAVT_IN.

CAVT_BYREFO Pointer to data type. Output-only parameter you pass by reference.
Defined as CAVT_BYREF|CAVT_OUT.

CAVT_BYREFIO Pointer to data type. Input-output parameter you pass by
reference. Defined as CAVT_BYREF|CAVT_IN|CAVT_OUT.

Table 11-2. Fundamental Data Types for Variants, Safe Arrays, and Properties (Continued)

Defined Constant Data Type or Meaning

Chapter 11 ActiveX Automation Library — ActiveX Automation Library Function Reference

© National Instruments Corporation 11-11 Standard Libraries Reference Manual

Handling Dynamic Memory Variants Hold
Variants of the following data types store their values in dynamically allocated memory:

CAVT_CSTRING
CAVT_OBJHANDLE
<any type> | CAVT_ARRAY

The functions that retrieve values from such variants free the memory. If you do not retrieve
the value stored in the variant, you can free the contents of a variant using
CA_VariantClear.

ActiveX Automation Library Function Reference

This section describes each function in the LabWindows/CVI ActiveX Automation Library
in alphabetical order.

Chapter 11 ActiveX Automation Library — CA_Array1DToSafeArray

Standard Libraries Reference Manual 11-12 © National Instruments Corporation

CA_Array1DToSafeArray

HRESULT status = CA_Array1DToSafeArray (void *array, unsigned int arrayType,
unsigned int numElements,
LPSAFEARRAY *safeArray);

Purpose
Creates a safe array from a 1D array.

Parameters

Input

Output

Return Value

Parameter Discussion
The arrayType parameter can have any of the values in Table 11-2 except for CAVT_EMPTY,
CAVT_NULL, or CAVT_OBJHANDLE. Table 11-2 is in the Data Types for Variants, Safe Arrays,

and Properties section of the ActiveX Automation Library Function Overview section of this
chapter.

CA_Array1DToSafeArray does not make copies of BSTR, VARIANT, LPUNKNOWN, or
LPDISPATCH elements. It simply copies the pointers from array into the created safeArray.
Therefore, when you call CA_SafeArrayDestroy,which frees all contents of the safe array,
the BSTR, VARIANT, LPUNKNOWN, or LPDISPATCH elements in array become invalid.

Name Type Description

array void pointer 1D array.

arrayType unsigned integer Data type of the elements in array.

numElements unsigned integer Number of elements in array.

Name Type Description

safeArray LPSAFEARRAY Safe array CA_Array1DToSafeArray
creates from the contents of array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_Array2DToSafeArray

© National Instruments Corporation 11-13 Standard Libraries Reference Manual

CA_Array2DToSafeArray

HRESULT status = CA_Array2DToSafeArray (void *array, unsigned int arrayType,
unsigned int numElemsDim1,
unsigned int numElemsDim2,
LPSAFEARRAY *safeArray);

Purpose
Creates a safe array from a 2D array.

Parameters

Input

Output

Return Value

Parameter Discussion
The arrayType parameter can have any of the values in Table 11-2 except for CAVT_EMPTY,
CAVT_NULL, or CAVT_OBJHANDLE. Table 11-2 is in the Data Types for Variants, Safe Arrays,

and Properties section of the ActiveX Automation Library Function Overview section of this
chapter.

Name Type Description

array void pointer 2D array.

arrayType unsigned integer Data type of the elements in array.

numElemsDim1 unsigned integer Number of rows in array.

numElemsDim2 unsigned integer Number of columns in array.

Name Type Description

safeArray LPSAFEARRAY Safe array CA_Array2DToSafeArray
creates from the contents of array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_Array2DToSafeArray

Standard Libraries Reference Manual 11-14 © National Instruments Corporation

CA_Array2DToSafeArray does not make copies of BSTR, VARIANT, LPUNKNOWN, or
LPDISPATCH elements. It simply copies the pointers from array into the created safeArray.
Therefore, when you call CA_SafeArrayDestroy, which frees all contents of the safe array,
the BSTR, VARIANT, LPUNKNOWN, or LPDISPATCH elements in array become invalid.

Chapter 11 ActiveX Automation Library — CA_BSTRGetCString

© National Instruments Corporation 11-15 Standard Libraries Reference Manual

CA_BSTRGetCString

HRESULT status = CA_BSTRGetCString (BSTR bString, char **cString);

Purpose
Converts a BSTR into a C-style string. A BSTR is a Basic-style string that stores both text and
length information.

CA_BSTRGetCString does not free the Basic-style string.

Parameters

Input

Output

Return Value

Parameter Discussion
When you no longer need the C-style string, call CA_FreeMemory to free it.

Name Type Description

bString BSTR Basic-style string you want to convert to
a C-style string.

Name Type Description

cString string Dynamically allocated C-style string that
CA_BSTRGetCString converts from the
Basic-style string.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_BSTRGetCStringBuf

Standard Libraries Reference Manual 11-16 © National Instruments Corporation

CA_BSTRGetCStringBuf

HRESULT status = CA_BSTRGetCStringBuf (BSTR bString, char buffer[],
unsigned long bufferSize);

Purpose
Converts a BSTR into a C-style string and copies it into a buffer you pass as a parameter. A
BSTR is a Basic-style string that stores both text and length information.

CA_BSTRGetCStringBuf does not free the Basic-style string.

If buffer is not large enough to hold the string, CA_BSTRGetCStringBuf copies
bytes to the buffer, followed by an ASCII NUL byte.

 Parameters

Input

Output

Return Value

Name Type Description

bString BSTR Basic-style string you want to convert to
a C-style string.

bufferSize unsigned long integer Number of bytes in buffer. Must be must
be large enough to hold the string text
and an ASCII NUL byte.

Name Type Description

buffer string Character buffer into which the
CA_BSTRGetCString copies the
C-style string it converts from the
Basic-style string.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

bufferSize 1–()

Chapter 11 ActiveX Automation Library — CA_BSTRGetCStringLen

© National Instruments Corporation 11-17 Standard Libraries Reference Manual

CA_BSTRGetCStringLen

HRESULT status = CA_BSTRGetCStringLen (BSTR bString, int *len);

Purpose
Obtains the length of the C-style string you can create by calling CA_BSTRToCString on a
BSTR you specify. A BSTR is a Basic-style string that stores both text and length information.

The length CA_BSTRGetCStringLen returns does not include the ASCII NUL byte.

Parameters

Input

Output

Return Value

Name Type Description

bString BSTR Basic-style string.

Name Type Description

len integer Length of the C-style string
CA_BSTRToCString can convert
from the Basic-style string. Does
not include the ASCII NUL byte.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_CreateObjectByClassId

Standard Libraries Reference Manual 11-18 © National Instruments Corporation

CA_CreateObjectByClassId

HRESULT status = CA_CreateObjectByClassId (GUID *classID,
char *serverMachineName,
CAObjHandle *objHandle);

Purpose
Creates a new Automation server object based on an object Class ID.

If the application that provides the Automation object is already running,
CA_CreateObjectByClassId might start another copy of the application, depending on
the implementation of the application.

Parameters

Input

Output

Name Type Description

classID GUID pointer Class ID of the Automation server
object; located in the server type
library.

serverMachineName string Name or IP address of the computer on
which you want to run the Automation
server.

Name Type Description

objHandle CAOHandle Handle to the server object you create.

Chapter 11 ActiveX Automation Library — CA_CreateObjectByClassId

© National Instruments Corporation 11-19 Standard Libraries Reference Manual

Return Value

Parameter Discussion
The serverMachineName can be either a UNC name ("\\server") or a DNS name
("home.server.com").

If you pass NULL for the serverMachineName and a RemoteServerName registry entry
exists for this server, the server runs on the computer the RemoteServerName entry
specifies. If you pass NULL for this parameter and no RemoteServerName registry entry
exists for this server, the server runs on the same computer as your program.

You can pass objHandle to other functions in this library to call methods of the Automation
object or to get and set properties of the Automation object. When you no longer need
objHandle, discard it by calling CA_DiscardObjHandle.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes
or to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_CreateObjectByProgId

Standard Libraries Reference Manual 11-20 © National Instruments Corporation

CA_CreateObjectByProgId

HRESULT status = CA_CreateObjectByProgId (char *progID,
char *serverMachineName, CAObjHandle *objHandle);

Purpose
Creates a new Automation server object based on the object Prog ID.

If the application that provides the Automation object is already running,
CA_CreateObjectByProgId might start another copy of the application, depending on the
implementation of the application.

Parameters

Input

Output

Return Value

Name Type Description

progID string Prog ID of the Automation server object;
located in the server documentation.

serverMachineName string Name or IP address of the computer on
which you want to run the Automation
server.

Name Type Description

objHandle CAObjHandle Handle to the server object you create.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_CreateObjectByProgId

© National Instruments Corporation 11-21 Standard Libraries Reference Manual

Parameter Discussion
The serverMachineName can be either a UNC name ("\\server") or a DNS name
("home.server.com").

If you pass NULL for the serverMachineName and a RemoteServerName registry entry
exists for this server, the server runs on the computer the RemoteServerName entry
specifies. If you pass NULL for this parameter and no RemoteServerName registry entry
exists for this server, the server runs on the same computer as your program.

You can pass objHandle to other functions in this library to call methods of the Automation
object or to get and set properties of the Automation object. When you no longer need
objHandle, discard it by calling CA_DiscardObjHandle.

Chapter 11 ActiveX Automation Library — CA_CreateObjHandleFromIDispatch

Standard Libraries Reference Manual 11-22 © National Instruments Corporation

CA_CreateObjHandleFromIDispatch

HRESULT status = CA_CreateObjHandleFromIDispatch (LPDISPATCH dispatchPtr,
int callAddRef, CAObjHandle *objHandle);

Purpose
Creates a CAObjHandle value when you already have a Dispatch pointer to an
automation object.

Parameters

Input

Output

Return Value

Parameter Discussion
You can pass objHandle to other functions in this library to call methods of the Automation
object or to get and set properties of the Automation object. When you no longer need
objHandle, discard it by calling CA_DiscardObjHandle.

Name Type Description

dispatchPtr LPDISPATCH Dispatch pointer to an Automation server
object.

callAddRef integer If nonzero,
CA_CreateObjHandleFromIDispatch
invokes the AddRef method of the object.

Name Type Description

objHandle CAObjHandle Handle to the server object you create.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_CStringToBSTR

© National Instruments Corporation 11-23 Standard Libraries Reference Manual

CA_CStringToBSTR

HRESULT status = CA_CStringToBSTR (char cString[], BSTR *bString);

Purpose
Converts a C-style string into a BSTR. A BSTR is a Basic-style string that stores both text and
length information.

CA_CStringToBSTR does not free the C-style string.

 Parameters

Input

Output

Return Value

Parameter Discussion
When you no longer need the Basic-style string, call the Windows SDK function
SysFreeString to free it.

Name Type Description

cString string C-style string you want to convert to a BSTR.

Name Type Description

bString BSTR Basic-style string CA_CSringToBSTR
creates from cString.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_DefaultValueVariant

Standard Libraries Reference Manual 11-24 © National Instruments Corporation

CA_DefaultValueVariant

VARIANT *variant = CA_DefaultValueVariant (void);

Purpose
Some Automation server functions allow you to pass a VARIANT parameter value that means
“use the default value for this parameter.” CA_DefaultValueVariant returns such a
variant. You can use the macro CA_DEFAULT_VAL to refer to CA_DefaultValueVariant.

You can use the returned variant only for parameters that are optional. You can tell whether a
parameter is optional by checking the default value in its function panel control. If the default
value is CA_DEFAULT_VAL, the parameter is optional.

CA_DefaultValueVariant sets the type field in the returned variant to VT_ERROR and the
error value field to DISP_E_PARAMNOTFOUND.

Parameters
None.

Return Value

Name Type Description

variant VARIANT Variant in which LabWindows/CVI sets the
type field to VT_ERROR and the error value
to DISP_E_PARAMNOTFOUND.

Chapter 11 ActiveX Automation Library — CA_DiscardObjHandle

© National Instruments Corporation 11-25 Standard Libraries Reference Manual

CA_DiscardObjHandle

HRESULT status = CA_DiscardObjHandle (CAObjHandle objHandle);

Purpose
Use CA_DiscardObjHandle when you no longer need to reference an Automation server
object. CA_DiscardObjHandle releases resources associated with the object and calls the
Release method of the Automation server object.

If objHandle is the only reference to the Automation server and the Automation server is an
application, the server application might shut down after you call CA_DiscardObjHandle.
If you implement the Automation server as a DLL, you must call the Windows SDK function
CoFreeUnusedLibraries to unload the DLL. If you do not call
CoFreeUnusedLibraries, the DLL does not unload until you exit your program.

Parameters

Input

Return Value

Name Type Description

objHandle CAObjHandle ActiveX Object handle one of the object
creation functions in this library or an
Automation server method returns.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_DisplayErrorInfo

Standard Libraries Reference Manual 11-26 © National Instruments Corporation

CA_DisplayErrorInfo

HRESULT status = CA_DisplayErrorInfo (CAObjHandle objHandle, char *title,
HRESULT errorCode, ERRORINFO *errorInfo);

Purpose
Displays in a dialog box the description associated with an error code and the error
information an ERRORINFO structure contains. CA_DisplayErrorInfo formats and
displays the sCode, wCode, source, description, and errorParamPos fields of the
ERROINFO structure, unless they are NULL.

If the helpFile of the ERROINFO structure field is not NULL, the dialog box includes a Help
button. To display the help file, click on the Help button.

 Parameters

Input

Return Value

Name Type Description

objHandle CAObjHandle Object handle you pass to the Automation
server function or ActiveX Automation
Library function that reported the error.

title string Title of the dialog box. If you pass NULL,
Automation Error appears as the title.

errorCode HRESULT Error code an Automation server function or
an ActiveX Automation Library function
returns.

errorInfo ERRORINFO Structure the ActiveX Automation Library
fills in when a server method fails. You can
pass NULL for this parameter.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_FreeMemory

© National Instruments Corporation 11-27 Standard Libraries Reference Manual

CA_FreeMemory

void CA_FreeMemory (void *memPtr);

Purpose
Frees memory allocated through the following sources:

• String output parameters of functions in an Automation Instrument Driver

• Strings that the following functions allocate: CA_VariantGetCString,
CA_BSTRGetCString, and CA_VariantConvertToType

• Arrays that the following functions allocate: CA_SafeArrayTo1DArray,
CA_SafeArrayTo2DArray, CA_VariantGet1DArray, and
CA_VariantGet2DArray

• String array elements of arrays that the following functions allocate:
CA_SafeArrayTo1DArray, CA_SafeArrayTo2DArray,
CA_SafeArrayTo1DArrayBuf, CA_SafeArrayTo2DArrayBuf,
CA_VariantGet1DArray, CA_VariantGet2DArray, CA_VariantGet1DArrayBuf,
and CA_VariantGet2DArrayBuf

Parameters

Input

Return Value
None.

Name Type Description

memPtr void pointer Address of the memory to free.

Chapter 11 ActiveX Automation Library — CA_FreeUnusedServers

Standard Libraries Reference Manual 11-28 © National Instruments Corporation

CA_FreeUnusedServers

void FreeUnusedServers(void)

Purpose
Unloads ActiveX Automation server DLLs that you are no longer using.

For each server that is in DLL form, CA_UnloadUnusedServers unloads the server DLL if
you have already called CA_DiscardObjectHandle on all object handles for that server.
This includes object handles that you create by calling server methods, functions in the
ActiveX Automation Library, and functions in generated automation controller instrument
drivers that return object handles, such as New, Open, and Active.

This function has no effect on servers that are running in separate processes.

Parameters
None.

Return Value
None.

Chapter 11 ActiveX Automation Library — CA_GetActiveObjectByClassId

© National Instruments Corporation 11-29 Standard Libraries Reference Manual

CA_GetActiveObjectByClassId

HRESULT status = CA_GetActiveObjectByClassId (GUID *classID,
char *serverMachineName, CAObjHandle *objHandle);

Purpose
Obtains a handle to an active Automation server object based on the Class ID of the object.

Parameters

Input

Output

Return Value

Name Type Description

classID GUID pointer Class ID of the Automation server object;
located in the server type library.

serverMachineName string Name or IP address of the computer on
which you want to run the Automation
server.

Name Type Description

objHandle CAObjHandle Handle to the server object you create.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or
to cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_GetActiveObjectByClassId

Standard Libraries Reference Manual 11-30 © National Instruments Corporation

Parameter Discussion
The serverMachineName can be either a UNC name ("\\server") or a DNS name
("home.server.com"). If you pass NULL for the serverMachineName,
CA_GetActiveObjectByClassId looks for the active Automation server on the same
computer as your program.

Note Windows 95 and Windows NT 4.0 do not allow you to access active objects on

remote machines. Future versions of these operating systems might support this

functionality.

You can pass objHandle to other functions in this library to call methods of the Automation
object or to get and set properties of the Automation object. When you no longer need
objHandle, discard it by calling CA_DiscardObjHandle.

Chapter 11 ActiveX Automation Library — CA_GetActiveObjectByProgId

© National Instruments Corporation 11-31 Standard Libraries Reference Manual

CA_GetActiveObjectByProgId

HRESULT status = CA_GetActiveObjectByProgId (char *progID,
char *serverMachineName, CAObjHandle *objHandle);

Purpose
Obtains a handle to an active Automation server object based on the Prog ID of the object.

Parameters

Input

Output

Return Value

Name Type Description

progID string Prog ID of the Automation server
object; located in the server
documentation.

serverMachineName string Name or IP address of the computer
on which you want to run the
Automation server.

Name Type Description

objHandle CAObjHandle Handle to the server object you
create.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes
or to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_GetActiveObjectByProgId

Standard Libraries Reference Manual 11-32 © National Instruments Corporation

Parameter Discussion
The serverMachineName can be either a UNC name ("\\server") or a DNS name
("home.server.com"). If you pass NULL for the serverMachineName,
CA_GetActiveObjectByProgId looks for the active Automation server on the same
computer as your program.

Note Windows 95 and Windows NT 4.0 do not allow you to access active objects on

remote machines. Future versions of these operating systems might support this

functionality.

You can pass objHandle to other functions in this library to call methods of the Automation
object or to get and set properties of the Automation object. When you no longer need
objHandle, discard it by calling CA_DiscardObjHandle.

Chapter 11 ActiveX Automation Library — CA_GetAutomationErrorString

© National Instruments Corporation 11-33 Standard Libraries Reference Manual

CA_GetAutomationErrorString

void CA_GetAutomationErrorString (HRESULT errorCode, char buffer[],
unsigned int bufferSize);

Purpose
Converts an error code number into a meaningful error string.

Parameters

Input

Output

Return Value
None.

Parameter Discussion
 If buffer cannot hold the entire error string, CA_GetAutomationErrorString copies
(bufferSize–1) bytes into buffer, appended by the ASCII NUL byte.

Name Type Description

errorCode HRESULT Error code an Automation server function or
an ActiveX Automation Library function
returns.

Name Type Description

buffer character array Buffer into which
CA_GetAutomationErrorString
copies the error string.

bufferSize unsigned integer Number of bytes in buffer.

Chapter 11 ActiveX Automation Library — CA_GetDispatchFromObjHandle

Standard Libraries Reference Manual 11-34 © National Instruments Corporation

CA_GetDispatchFromObjHandle

HRESULT status = CA_GetDispatchFromObjHandle (CAObjHandle objHandle,
LPDISPATCH *dispatchPtr);

Purpose
Obtains the Dispatch pointer associated with the CAObjHandle for an Automation server
object. You can use the Dispatch pointer to call members of the server IDispatch interface, or
you can pass the Dispatch pointer to Windows SDK functions.

CA_GetDispatchFromObjHandle does not invoke the AddRef method on the
Dispatch pointer.

Parameters

Input

Output

Return Value

Name Type Description

objHandle CAObjHandle ActiveX Object handle one of the object
creation functions in this library or an
Automation server method returns.

Name Type Description

dispatchPtr LPDISPATCH Dispatch pointer of the Automation server
object objHandle identifies.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_GetLocale

© National Instruments Corporation 11-35 Standard Libraries Reference Manual

CA_GetLocale

HRESULT status = CA_GetLocale (CAObjHandle objHandle, LCID *locale);

Purpose
Obtains the language the Automation server uses to interpret the arguments it receives as
parameters to its functions.

Parameters

Input

Output

Return Value

Name Type Description

objHandle CAObjHandle ActiveX Object handle one of the object
creation functions in this library or an
Automation server method returns.

Name Type Description

locale LCID ID that indicates the language the
Automation server uses. Refer to
CA_SetLocale for a list of locale IDs.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_InvokeHelper

Standard Libraries Reference Manual 11-36 © National Instruments Corporation

CA_InvokeHelper

HRESULT status = CA_InvokeHelper (CAObjHandle objHandle,
ERRORINFO *errorInfo, int methodOrPropertyID,
int operation, unsigned int returnType,
void *returnValue, int parameterCount,
unsigned int parameterTypes[], ...);

Purpose
Gets or sets the value of an Automation server property or invokes a method of an Automation
server. Unlike CA_InvokeHelperV, CA_InvokeHelper accepts arguments to the server
operation as comma-separated parameters.

Note Automation Controller Instrument Drivers you generate with the ActiveX

Automation Controller Wizard use CA_InvokeHelper. You do not need to call

it directly.

Parameters

Input

Name Type Description

objHandle CAObjHandle ActiveX Object handle one of
the object creation functions in
this library or an Automation
server method returns.

methodOrPropertyID integer ID of the method or property you
call or access; located in the
server type library.

operation integer Type of operation you want the
server to perform.

returnType unsigned integer Type of the return value (if any).

parameterCount integer Number of arguments you pass
that follow parameterTypes.

parameterTypes unsigned integer array Data types of each argument that
follows this parameter.

parameters depends on the values in
parameterTypes

Arguments to the Automation
server operation. You must
separate multiple arguments
with commas.

Chapter 11 ActiveX Automation Library — CA_InvokeHelper

© National Instruments Corporation 11-37 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
When an Automation server method invoked by CA_InvokeHelper fails with the error code
DISP_E_EXCEPTION, CA_InvokeHelper stores descriptive information about the error in
the errorInfo parameter. The descriptive information includes the error code, source, and
description. It also can include a help file and help file context string.

When an Automation server method invoked by CA_InvokeHelper fails with the error
codes DISP_E_PARAMNOTFOUND, DISP_E_TYPEMISMATCH, or E_INVALIDARG,
CA_InvokeHelper might store the parameter position of the invalid argument in the
errorParamPos member of the errorInfo structure.

You can pass NULL for the errorInfo parameter.

The operation parameter must be one of the values in Table 11-4.

Name Type Description

errorInfo ERRORINFO Structure CA_InvokeHelper
fills in when a server method
fails. You can pass NULL.

returnValue void pointer The value (if any) the server
method or property function
returns.

Name Type Description

status HRESULT Refer to Table 11-19
for error codes or to
cvi\sdk\winerror.h for
Windows SDK error codes.

Table 11-4. operation Parameter Values

Defined Constant Type of Operation

DISPATCH_METHOD Invoke a method.

DISPATCH_PROPERTYGET Get a property value.

DISPATCH_PROPERTYPUT Set a property value.

DISPATCH_PROPERTYPUTREF Set a property value (pass a pointer to the value).

Chapter 11 ActiveX Automation Library — CA_InvokeHelper

Standard Libraries Reference Manual 11-38 © National Instruments Corporation

The value you pass for returnType depends on the operation parameter as shown in
Table 11-5.

For DISPATCH_METHOD and DISPATCH_PROPERTYGET, the returnType can be any of the
types in Table 11-2 in the Data Types for Variants, Safe Arrays, and Properties section of the
ActiveX Automation Library Function Overview section of this chapter except CAVT_NULL.
You can use the CAVT_ARRAY modifier on all data types except CAVT_EMPTY,
CAVT_CSTRING, and CAVT_OBJHANDLE.

The value you pass for parameterCount depends on the operation parameter as shown in
Table 11-6.

Table 11-5. Return Type Values

Operation Return Type

DISPATCH_METHOD Return type of the server function.

DISPATCH_PROPERTYGET Data type of the property.

DISPATCH_PROPERTYPUT Always CAVT_EMPTY.

DISPATCH_PROPERTYPUTREF Always CAVT_EMPTY.

Table 11-6. Parameter Count Values

Operation Parameter Count

DISPATCH_METHOD Number of arguments to pass to the server
function.

DISPATCH_PROPERTYGET 0

DISPATCH_PROPERTYPUT 1

DISPATCH_PROPERTYPUTREF 1

Chapter 11 ActiveX Automation Library — CA_InvokeHelper

© National Instruments Corporation 11-39 Standard Libraries Reference Manual

The value you pass for parameterTypes depends on the operation parameter as shown in
Table 11-7.

The parameterTypes array can contain any of the data types in Table 11-2 except
CAVT_NULL or CAVT_EMPTY. Table 11-2 is in the Data Types for Variants, Safe Arrays, and

Properties section of the ActiveX Automation Library Function Overview section of this
chapter. You can use the CAVT_ARRAY modifier on all data types except CAVT_CSTRING and
CAVT_OBJHANDLE. For parameters you pass by reference using DISPATCH_METHOD, you can
use the CAVT_BYREFI, CAVT_BYREFO, or CAVT_BYREFIO modifier. For
DISPATCH_PROPERTYPUTREF, you should add the CAVT_BYREFI modifier, but the ActiveX
Automation Library adds it for you if you forget.

The values you pass for parameters depends on the operation parameter as shown in
Table 11-8.

Table 11-7. Parameter Types Values

Operation Parameter Types

DISPATCH_METHOD Array that contains the types of the arguments to
the server function.

DISPATCH_PROPERTYGET NULL

DISPATCH_PROPERTYPUT Single-element array that contains the data type of
the property.

DISPATCH_PROPERTYPUTREF Single-element array that contains the data type of
the property.

Table 11-8. Parameter Values

Operation Parameters

DISPATCH_METHOD Arguments to the server function. You must
separate multiple arguments with commas.

DISPATCH_PROPERTYGET Do not pass any arguments.

DISPATCH_PROPERTYPUT Value to which you want to set the property.

DISPATCH_PROPERTYPUTREF Pointer to the value to which you want to set the
property.

Chapter 11 ActiveX Automation Library — CA_InvokeHelper

Standard Libraries Reference Manual 11-40 © National Instruments Corporation

The value CA_InvokeHelper returns in returnValue depends on the operation parameter
as shown in Table 11-9.

Table 11-9. Return Values

Operation Return Value

DISPATCH_METHOD Value the server function returns. Pass a pointer to
a variable of the data type returnType specifies.

DISPATCH_PROPERTYGET Value of the property. Pass a pointer to a variable
of the data type returnType specifies.

DISPATCH_PROPERTYPUT None. Always pass NULL.

DISPATCH_PROPERTYPUTREF None. Always pass NULL.

Chapter 11 ActiveX Automation Library — CA_InvokeHelperV

© National Instruments Corporation 11-41 Standard Libraries Reference Manual

CA_InvokeHelperV

HRESULT status = CA_InvokeHelperV (CAObjHandle objHandle,
ERRORINFO *errorInfo, int methodOrPropertyID,
int operation, unsigned int returnType,
void *returnValue, int parameterCount,
unsigned int parameterTypes[],
va_list parameters);

Purpose
Gets or sets the value of an Automation server property or invokes a method of an Automation
server. Unlike CA_InvokeHelper, CA_InvokeHelperV accepts arguments to the server
operation as a variable argument list.

Note Automation Controller Instrument Drivers you generate with the ActiveX

Automation Controller Wizard use CA_InvokeHelperV. You do not need to call

it directly.

Parameters
The parameters to CA_InvokeHelperV are the same as the parameters to
CA_InvokeHelper except that you must pass the parameters to the Automation server
operation as a variable argument list (va_list) that you initialize with the va_start macro.

Return Value

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_LoadObjectFromFile

Standard Libraries Reference Manual 11-42 © National Instruments Corporation

CA_LoadObjectFromFile

HRESULT status = CA_LoadObjectFromFile (char *filename,
char *serverMachineName, CAObjHandle *objHandle);

Purpose
Creates an Automation server object and initializes it using data CA_LoadObjectFromFile
reads from a file. The extension portion of the filename parameter identifies the Automation
server to use. The contents of the file identifies the type of object to create and its initial data.

Parameters

Input

Output

Return Value

Name Type Description

filename string Pathname of file that contains the
type of object to create and its initial
data. The extension indicates the
Automation server to use.

serverMachineName string Name or IP address of the computer
on which you want to run the
Automation server.

Name Type Description

objHandle CAObjHandle Handle to the server object you
create.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes
or to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_LoadObjectFromFile

© National Instruments Corporation 11-43 Standard Libraries Reference Manual

Parameter Discussion
The serverMachineName can be either a UNC name ("\\server") or a DNS name
("home.server.com").

If you pass NULL for the serverMachineName and a RemoteServerName registry entry
exists for this server, the server runs on the computer the RemoteServerName entry
specifies. If you pass NULL for this parameter and no RemoteServerName registry entry
exists for this server, the server runs on the same computer as your program.

You can pass objHandle to other functions in this library to call methods of the Automation
object or to get and set properties of the Automation object. When you no longer need
objHandle, discard it by calling CA_DiscardObjHandle.

Chapter 11 ActiveX Automation Library — CA_LoadObjectFromFileByClassId

Standard Libraries Reference Manual 11-44 © National Instruments Corporation

CA_LoadObjectFromFileByClassId

HRESULT status = CA_LoadObjectFromFileByClassId (char *filename,
GUID *classID, char *serverMachineName,
CAObjHandle *objHandle);

Purpose
Creates an Automation server object and initializes it using data
CA_LoadObjectFromFileByClassId reads from a file. The classID parameter identifies
the Automation server object. filename specifies the file that contains the initial data.

Parameters

Input

Output

Return Value

Name Type Description

filename string Pathname of file that contains the
initial data for the object.

classID GUID pointer Class ID of the Automation server
object; located in the server type
library.

serverMachineName string Name or IP address of the computer on
which you want to run the Automation
server.

Name Type Description

objHandle CAObjHandle Handle to the server object you create.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or
to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_LoadObjectFromFileByClassId

© National Instruments Corporation 11-45 Standard Libraries Reference Manual

Parameter Discussion
The serverMachineName can be either a UNC name ("\\server") or a DNS name
("home.server.com").

If you pass NULL for the serverMachineName and a RemoteServerName registry entry
exists for this server, the server runs on the computer the RemoteServerName entry
specifies. If you pass NULL for this parameter and no RemoteServerName registry entry
exists for this server, the server runs on the same computer as your program.

You can pass objHandle to other functions in this library to call methods of the Automation
object or to get and set properties of the Automation object. When you no longer need
objHandle, discard it by calling CA_DiscardObjHandle.

Chapter 11 ActiveX Automation Library — CA_LoadObjectFromFileByProgId

Standard Libraries Reference Manual 11-46 © National Instruments Corporation

CA_LoadObjectFromFileByProgId

HRESULT status = CA_LoadObjectFromFileByProgId (char *filename,
char *progID, char *serverMachineName,
CAObjHandle *objHandle);

Purpose
Creates an Automation server object and initializes it using data
CA_LoadObjectFromFileByProgId reads from a file. The progID parameter identifies
the Automation server object. filename specifies the file that contains the initial data.

Parameters

Input

Output

Return Value

Name Type Description

filename string Pathname of file that contains the
initial data for the object.

progID string ProgID of the Automation server
object; located in the server
documentation.

serverMachineName string Name or IP address of the computer on
which you want to run the Automation
server.

Name Type Description

objHandle CAObjHandle Handle to the server object you create.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or
to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_LoadObjectFromFileByProgId

© National Instruments Corporation 11-47 Standard Libraries Reference Manual

Parameter Discussion
The serverMachineName can be either a UNC name ("\\server") or a DNS name
("home.server.com").

If you pass NULL for the serverMachineName and a RemoteServerName registry entry
exists for this server, the server runs on the computer the RemoteServerName entry
specifies. If you pass NULL for this parameter and no RemoteServerName registry entry
exists for this server, the server runs on the same computer as your program.

You can pass objHandle to other functions in this library to call methods of the Automation
object or to get and set properties of the Automation object. When you no longer need
objHandle, discard it by calling CA_DiscardObjHandle.

Chapter 11 ActiveX Automation Library — CA_MethodInvoke

Standard Libraries Reference Manual 11-48 © National Instruments Corporation

CA_MethodInvoke

HRESULT status = CA_MethodInvoke (CAObjHandle objHandle,
ERRORINFO *errorInfo, int methodID,
unsigned int returnType, void *returnValue,
int parameterCount,
unsigned int parameterTypes[], ...);

Purpose
Invokes an Automation server method. Unlike CA_MethodInvokeV, CA_MethodInvoke
accepts arguments to the server operation as comma-separated parameters.

Note Automation Controller Instrument Drivers you generate with the ActiveX

Automation Controller Wizard use CA_MethodInvoke. You do not need to call

it directly.

Parameters

Input

Name Type Description

objHandle CAObjHandle ActiveX Object handle one of the object
creation functions in this library or an
Automation server method returns.

methodID integer ID of the method you call; located in the
server type library.

returnType unsigned integer Data type of the return value of the
server method.

parameterCount integer Number of arguments you pass that
follow parameterTypes.

parameterTypes unsigned integer array Data types of each argument that follows
this parameter.

parameters depends on the values in
parameterTypes

Arguments to the Automation server
method. You must separate multiple
arguments with commas.

Chapter 11 ActiveX Automation Library — CA_MethodInvoke

© National Instruments Corporation 11-49 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
When an Automation server method invoked by CA_MethodInvoke fails with the error code
DISP_E_EXCEPTION, CA_MethodInvoke stores descriptive information about the error in
the errorInfo parameter. The descriptive information includes the error code, source, and
description. It also can include a help file and help file context string.

When an Automation server method invoked by CA_MethodInvoke fails with the error
codes DISP_E_PARAMNOTFOUND, DISP_E_TYPEMISMATCH, or E_INVALIDARG,
CA_MethodInvoke might store the parameter position of the invalid argument in the
errorParamPos member of the errorInfo structure.

You can pass NULL for the errorInfo parameter.

The returnType can be any of the types in Table 11-2 except CAVT_NULL. Table 11-2 is in
the Data Types for Variants, Safe Arrays, and Properties section of the ActiveX Automation

Library Function Overview section of this chapter. You can use the CAVT_ARRAY modifier on
all data types except CAVT_EMPTY, CAVT_CSTRING, and CAVT_OBJHANDLE.

The parameterTypes array can contain any of the data types in Table 11-2 except
CAVT_NULL or CAVT_EMPTY. Table 11-2 is in the Data Types for Variants, Safe Arrays, and

Properties section of the ActiveX Automation Library Function Overview section of this
chapter. You can use the CAVT_ARRAY modifier on all data types except CAVT_CSTRING and
CAVT_OBJHANDLE. For parameters you pass by reference, you can use the CAVT_BYREFI,
CAVT_BYREFO, or CAVT_BYREFIO modifier.

Name Type Description

errorInfo ERRORINFO Structure CA_MethodInvoke fills in
when a server method fails. You can
pass NULL.

returnValue void pointer The value the server method returns.
Pass a pointer to a variable of the data
type returnType specifies.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or
to cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_MethodInvokeV

Standard Libraries Reference Manual 11-50 © National Instruments Corporation

CA_MethodInvokeV

HRESULT status = CA_MethodInvokeV (CAObjHandle objHandle,
ERRORINFO *errorInfo, int methodID,
unsigned int returnType, void *returnValue,
int parameterCount,
unsigned int parameterTypes[],
va_list parameterList);

Purpose
Invokes a method of an Automation server. Unlike CA_MethodInvoke,
CA_MethodInvokeV accepts arguments to the server operation as a variable argument list.

Note Automation Controller Instrument Drivers you generate with the ActiveX

Automation Controller Wizard use CA_MethodInvokeV. You do not need to call

it directly.

Parameters
The parameters to CA_MethodInvokeV are the same as the parameters to
CA_MethodInvoke except that you must pass the parameters to the Automation server
method as a variable argument list (va_list) that you initialize with the va_start macro.

Return Value

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_PropertyGet

© National Instruments Corporation 11-51 Standard Libraries Reference Manual

CA_PropertyGet

HRESULT status = CA_PropertyGet (CAObjHandle objHandle,
ERRORINFO *errorInfo, int propertyID,
unsigned int propertyType, void *propertyValue);

Purpose
Obtains the value of the property of an Automation server object.

Note Automation Controller Instrument Drivers you generate with the ActiveX

Automation Controller Wizard use CA_PropertyGet. You do not need to call

it directly.

Parameters

Input

Output

Return Value

Name Type Description

objHandle CAObjHandle ActiveX Object handle one of the object
creation functions in this library or an
Automation server method returns.

propertyID integer ID of the automation server property;
located in the server type library.

propertyType unsigned integer Data type of the property.

Name Type Description

errorInfo ERRORINFO Structure CA_PropertyGet fills in when
a server function fails. You can pass NULL.

propertyValue depends on the value of
propertyType

Value the server method returns. Pass a
pointer to a variable of the data type
propertyType specifies.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_PropertyGet

Standard Libraries Reference Manual 11-52 © National Instruments Corporation

Parameter Discussion
When an Automation server method invoked by CA_PropertyGet fails with the error code
DISP_E_EXCEPTION, CA_PropertyGet stores descriptive information about the error in the
errorInfo parameter. The descriptive information includes the error code, source, and
description. It also can include a help file and help file context string.

When an Automation server method invoked by CA_PropertyGet fails with the error codes
DISP_E_PARAMNOTFOUND, DISP_E_TYPEMISMATCH, or E_INVALIDARG,
CA_PropertyGet might store the parameter position of the invalid argument in the
errorParamPos member of the errorInfo structure.

You can pass NULL for the errorInfo parameter.

The propertyType can be any of the data types in Table 11-2 except CAVT_NULL or
CAVT_EMPTY. Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties
section of the ActiveX Automation Library Function Overview section of this chapter. You can
use the CAVT_ARRAY modifier on all data types except CAVT_CSTRING and
CAVT_OBJHANDLE.

Chapter 11 ActiveX Automation Library — CA_PropertySet

© National Instruments Corporation 11-53 Standard Libraries Reference Manual

CA_PropertySet

HRESULT status = CA_PropertySet (CAObjHandle objHandle,
ERRORINFO *errorInfo, int propertyID,
unsigned int propertyType, ...);

Purpose
Sets the value of the property of an Automation server object. Unlike CA_SetPropertyV,
CA_PropertySet accepts the property value as a simple parameter.

Note Automation Controller Instrument Drivers you generate with the ActiveX

Automation Controller Wizard use CA_PropertySet. You do not need to call

it directly.

Parameters

Input

Output

Name Type Description

objHandle CAObjHandle ActiveX Object handle one of the object
creation functions in this library or an
Automation server method returns.

propertyID integer ID of the automation server property;
located in the server type library.

propertyType unsigned integer Data type of the property.

propertyValue depends on the value of
propertyType

Value to which you want to set the
property. Pass a value with the data type
propertyType specifies. If propertyType
is VARIANT, you can pass a value of
any type.

Name Type Description

errorInfo ERRORINFO Structure CA_PropertySet fills in when
a server function fails. You can pass NULL.

Chapter 11 ActiveX Automation Library — CA_PropertySet

Standard Libraries Reference Manual 11-54 © National Instruments Corporation

Return Value

Parameter Discussion
When an Automation server method invoked by CA_PropertySet fails with the error code
DISP_E_EXCEPTION, CA_PropertySet stores descriptive information about the error in the
errorInfo parameter. The descriptive information includes the error code, source, and
description. It also can include a help file and help file context string.

When an Automation server method invoked by CA_PropertySet fails with the error codes
DISP_E_PARAMNOTFOUND, DISP_E_TYPEMISMATCH, or E_INVALIDARG,
CA_PropertySet might store the parameter position of the invalid argument in the
errorParamPos member of the errorInfo structure.

The propertyType can be any of the data types in Table 11-2 except CAVT_NULL or
CAVT_EMPTY. Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties
section of the ActiveX Automation Library Function Overview section of this chapter. You can
use the CAVT_ARRAY modifier on all data types except CAVT_CSTRING and
CAVT_OBJHANDLE.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_PropertySetByRef

© National Instruments Corporation 11-55 Standard Libraries Reference Manual

CA_PropertySetByRef

HRESULT status = CA_PropertySetByRef (CAObjHandle objHandle,
ERRORINFO *errorInfo, int propertyID,
unsigned int propertyType, ...);

Purpose
Sets the value of the property of an Automation server object. Unlike CA_SetProperty,
CA_PropertySetByRef accepts a pointer to the property value. Unlike
CA_SetPropertyByRefV, it accepts the pointer as a simple parameter.

Note Automation Controller Instrument Drivers you generate with the ActiveX

Automation Controller Wizard use CA_PropertySetByRef. You do not need to

call it directly.

Parameters

Input

Output

Name Type Description

objHandle CAObjHandle ActiveX Object handle one of the object
creation functions in this library or an
Automation server method returns.

propertyID integer ID of the automation server property;
located in the server type library.

propertyType unsigned integer Data type of the property.

pointerToValue pointer to the type
propertyType specifies

Pointer to the value to which you want to
set the property. Must point to the data
type propertyType specifies. If
propertyType is VARIANT, you can pass
a pointer to any type. If the
propertyType includes the
CAVT_ARRAY modifier, you must pass the
address of a pointer to an array.

Name Type Description

errorInfo ERRORINFO Structure CA_PropertySetByRef fills
in when a server function fails. You can
pass NULL.

Chapter 11 ActiveX Automation Library — CA_PropertySetByRef

Standard Libraries Reference Manual 11-56 © National Instruments Corporation

Return Value

Parameter Discussion
When an Automation server method invoked by CA_PropertySetByRef fails with the error
code DISP_E_EXCEPTION, CA_PropertySetByRef stores descriptive information about
the error in the errorInfo parameter. The descriptive information includes the error code,
source, and description. It also can include a help file and help file context string.

When an Automation server method invoked by CA_PropertySetByRef fails with the error
codes DISP_E_PARAMNOTFOUND, DISP_E_TYPEMISMATCH, or E_INVALIDARG,
CA_PropertySetByRef might store the parameter position of the invalid argument in the
errorParamPos member of the errorInfo structure.

The propertyType can be any of the data types in Table 11-2 except CAVT_NULL or
CAVT_EMPTY. Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties
section of the ActiveX Automation Library Function Overview section of this chapter. You can
use the CAVT_ARRAY modifier on all data types except CAVT_CSTRING and
CAVT_OBJHANDLE. You should add the CAVT_BYREFI modifier, but the ActiveX Automation
Library adds it for you if you forget.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_PropertySetByRefV

© National Instruments Corporation 11-57 Standard Libraries Reference Manual

CA_PropertySetByRefV

HRESULT status = CA_PropertySetByRefV (CAObjHandle objHandle,
ERRORINFO *errorInfo, int propertyID,
unsigned int propertyType,
va_list pointerToValue);

Purpose
Sets the value of the property of an Automation server object. Unlike CA_SetPropertyV,
CA_PropertySetByRefV accepts a pointer to the property value. Unlike
CA_SetPropertyByRef, it accepts the pointer as the single element in a variable
argument list.

Note Automation Controller Instrument Drivers you generate with the ActiveX

Automation Controller Wizard use CA_PropertySetByRefV. You do not need to

call it directly.

Parameters
The parameters to CA_PropertySetByRefV are the same as the parameters to
CA_PropertySetByRef except that you pass pointerToValue as a variable argument list
(va_list) that you initialize with the va_start macro.

Return Value

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_PropertySetV

Standard Libraries Reference Manual 11-58 © National Instruments Corporation

CA_PropertySetV

HRESULT status = CA_PropertySetV (CAObjHandle objHandle,
ERRORINFO *errorInfo, int propertyID,
unsigned int propertyType,
va_list propertyValue);

Purpose
Sets the value of the property of an Automation server object. Unlike CA_SetProperty,
CA_PropertySetV accepts the property value as the single element in a variable
argument list.

Note Automation Controller Instrument Drivers you generate with the ActiveX

Automation Controller Wizard use CA_PropertySetV. You do not need to call

it directly.

Parameters
The parameters to CA_PropertySetV are the same as the parameters to CA_PropertySet
except that you pass propertyValue as a variable argument list (va_list) that you initialize
with the va_start macro.

Return Value

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_SafeArrayDestroy

© National Instruments Corporation 11-59 Standard Libraries Reference Manual

CA_SafeArrayDestroy

HRESULT status = CA_SafeArrayDestroy (LPSAFEARRAY safeArray);

Purpose
Frees the memory a safe array uses.

Note Do not call CA_SafeArrayDestroy on a safe array if you pass the safe array to

one of the Safe Array-to-C Array conversion functions. The Safe Array-to-C Array

conversion functions free the safe array.

Parameter

Input

Return Value

Name Type Description

safeArray LPSAFEARRAY Safe array to free.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_SafeArrayGet1DSize

Standard Libraries Reference Manual 11-60 © National Instruments Corporation

CA_SafeArrayGet1DSize

HRESULT status = CA_SafeArrayGet1DSize (LPSAFEARRAY safeArray,
unsigned int *numElements);

Purpose
Obtains the number of elements in a 1D safe array.

Parameters

Input

Output

Return Value

Name Type Description

safeArray LPSAFEARRAY 1D safe array.

Name Type Description

numElements unsigned integer Number of elements in the safe array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_SafeArrayGet2DSize

© National Instruments Corporation 11-61 Standard Libraries Reference Manual

CA_SafeArrayGet2DSize

HRESULT status = CA_SafeArrayGet2DSize (LPSAFEARRAY safeArray,
unsigned int *numElemsDim1,
unsigned int *numElemsDim2);

Purpose
Obtains the number of elements in a 2D safe array.

Parameters

Input

Output

Return Value

Name Type Description

safeArray LPSAFEARRAY 2D safe array.

Name Type Description

numElemsDim1 unsigned integer Number of elements in the first
dimension of the safe array.

numElemsDim2 unsigned integer Number of elements in the second
dimension of the safe array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_SafeArrayGetNumDims

Standard Libraries Reference Manual 11-62 © National Instruments Corporation

CA_SafeArrayGetNumDims

HRESULT status = CA_SafeArrayGetNumDims (LPSAFEARRAY safeArray,
unsigned int *numDims);

Purpose

Obtains the number of dimensions in a safe array.

Parameters

Input

Output

Return Value

Name Type Description

safeArray LPSAFEARRAY Safe array.

Name Type Description

numDims unsigned integer Number of dimensions in the safe array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo1DArray

© National Instruments Corporation 11-63 Standard Libraries Reference Manual

CA_SafeArrayTo1DArray

HRESULT status = CA_SafeArrayTo1DArray (LPSAFEARRAY *safeArray,
unsigned int arrayType, void *array,
unsigned int *numElements);

Purpose
Converts a 1D safe array into a dynamically allocated C-style array.

Upon success, CA_SafeArrayTo1DArray frees the contents of the safe array and sets the
safe array pointer to NULL.

Parameters

Input/Output

Input

Output

Name Type Description

safeArray LPSAFEARRAY 1D safe array. Pass the address of the safe
array pointer. CA_SafeArrayTo1DArray
frees the safe array contents and sets the safe
array pointer to NULL.

Name Type Description

arrayType unsigned integer Data type of the array
CA_SafeArrayTo1DArray creates from
the safe array.

Name Type Description

array depends on the value of
arrayType

C-style array that
CA_SafeArrayTo1DArray dynamically
allocates. The type of the array must be the
same as arrayType. Pass the address of an
array pointer.

numElements unsigned integer Number of elements in array. You can pass
NULL for this parameter.

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo1DArray

Standard Libraries Reference Manual 11-64 © National Instruments Corporation

Return Value

Parameter Discussion
The arrayType parameter must be the same as the type of the safe array except for the
following cases:

• You can create a C-style array that contains char* elements from a BSTR safe array.

• You can create a C-style array that contains CAObjHandle elements from an
LPDISPATCH safe array.

arrayType can be any of the data types in Table 11-2 except CAVT_EMPTY or CAVT_NULL.
Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties section of the
ActiveX Automation Library Function Overview section of this chapter.
CA_SafeArrayTo1DArray ignores the CAVT_ARRAY modifier.

When you no longer need the C-style array, call CA_FreeMemory to discard it. If the C-style
array contains elements of one of the data types in Table 11-10, use the corresponding
function to free each element when you no longer need it.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Table 11-10. Data Types and Functions to Free Each Element for CA_SafeArrayTo1DArray

Data Type Function to Free Each Element

 char * CA_FreeMemory

 CAObjHandle CA_DiscardObjHandle

 BSTR SysFreeString (a Windows SDK function)

 LPUNKNOWN Release (array[i]->lpVtbl->Release())

 LPDISPATCH Release (array[i]->lpVtbl->Release())

 VARIANT CA_VariantClear

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo1DArray

© National Instruments Corporation 11-65 Standard Libraries Reference Manual

Example
The following code shows you how to use CA_SafeArrayTo1Darray:

double * dblArray = NULL;
LPSAFEARRAY safeArray;
unsigned numElements;
int index;

/* Call an ActiveX Automation function that returns a safe array. */
.
.
.
/* Convert the safe array into a C-style array. */
CA_SafeArrayTo1DArray(&safeArray, CAVT_DOUBLE, &dblArray,

&numElements);

for (index = 0; index < numElements; index++)
printf("%f", dblArray[index]);

/* Free the allocated array. */
CA_FreeMemory(dblArray);

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo1DArrayBuf

Standard Libraries Reference Manual 11-66 © National Instruments Corporation

CA_SafeArrayTo1DArrayBuf

HRESULT status = CA_SafeArrayTo1DArrayBuf (LPSAFEARRAY *safeArray,
unsigned int arrayType, void *arrayBuffer,
unsigned int bufferSize,
unsigned int *numElements);

Purpose
Converts a 1D safe array into a C-style array you pass as a buffer.

Upon success, CA_SafeArrayTo1DArrayBuf frees the contents of the safe array and sets
the safe array pointer to NULL.

CA_SafeArrayTo1DArrayBuf returns an error if the buffer is not big enough to hold
the array.

Parameters

Input/Output

Input

Name Type Description

safeArray LPSAFEARRAY 1D safe array. Pass the address of the safe
array pointer.
CA_SafeArrayTo1DArrayBuf frees the
safe array contents and sets the safe array
pointer to NULL.

Name Type Description

arrayType unsigned integer Data type of the array
CA_SafeArrayTo1DArrayBuf creates
from the safe array.

bufferSize unsigned integer Number of bytes in the arrayBuffer
parameter.

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo1DArrayBuf

© National Instruments Corporation 11-67 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
The arrayType parameter must be the same as the type of the safe array except for the
following cases:

• You can create a C-style array that contains char* elements from a BSTR safe array.

• You can create a C-style array that contains CAObjHandle elements from an
LPDISPATCH safe array.

arrayType can be any of the data types in Table 11-2 except CAVT_EMPTY or CAVT_NULL.
Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties section of the
ActiveX Automation Library Function Overview section of this chapter.
CA_SafeArrayTo1DArrayBuf ignores the CAVT_ARRAY modifier.

If the C-style array contains elements of one of the data types in Table 11-11, use the
corresponding function to free each element when you no longer need it.

Name Type Description

arrayBuffer depends on the value of
arrayType

Buffer to receive the C-style array elements.
The type of the array must be the same as
arrayType.

numElements unsigned integer Number of elements
CA_SafeArrayTo1DArrayBuf stores in
arrayBuffer. You can pass NULL for this
parameter.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Table 11-11. Data Types and Functions to Free Each CA_SafeArrayTo1DArrayBuf Element

Data Type Function to Free Each Element

 char * CA_FreeMemory

 CAObjHandle CA_DiscardObjHandle

 BSTR SysFreeString (a Windows SDK function)

 LPUNKNOWN Release (array[i]->lpVtbl->Release())

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo1DArrayBuf

Standard Libraries Reference Manual 11-68 © National Instruments Corporation

Example
The following code shows you how to use CA_SafeArrayTo1DArrayBuf:

double dblArray[1024];
LPSAFEARRAY safeArray;
unsigned numElements;
int index;

/* Call an ActiveX Automation function that returns a safe array. */
.
.
.
/* Convert the safe array into a C-style array. */
CA_SafeArrayTo1DArrayBuf(&safeArray, CAVT_DOUBLE, dblArray,

sizeof(dblArray), &numElements);

for (index = 0; index < numElements; index++)
printf("%f", dblArray[index]);

 LPDISPATCH Release (array[i]->lpVtbl->Release())

 VARIANT CA_VariantClear

Table 11-11. Data Types and Functions to Free Each CA_SafeArrayTo1DArrayBuf Element

Data Type Function to Free Each Element

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo2DArray

© National Instruments Corporation 11-69 Standard Libraries Reference Manual

CA_SafeArrayTo2DArray

HRESULT status = CA_SafeArrayTo2DArray (LPSAFEARRAY *safeArray,
unsigned int arrayType, void *array,
unsigned int *numElemsDim1,
unsigned int *numElemsDim2);

Purpose
Converts a 2D safe array into a dynamically allocated C-style array.

Upon success, CA_SafeArrayTo2DArray frees the contents of the safe array and sets the
safe array pointer to NULL.

Parameters

Input/Output

Input

Name Type Description

safeArray LPSAFEARRAY 2D safe array. Pass the
address of the safe array pointer.
CA_SafeArrayTo2DArray frees the
safe array contents and sets the safe array
pointer to NULL.

Name Type Description

arrayType unsigned integer Data type of the array
CA_SafeArrayTo2DArray
creates from the safe array.

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo2DArray

Standard Libraries Reference Manual 11-70 © National Instruments Corporation

Output

Return Value

Parameter Discussion
The arrayType parameter must be the same as the type of the safe array except for the
following cases:

• You can create a C-style array that contains char* elements from a BSTR safe array.

• You can create a C-style array that contains CAObjHandle elements from an
LPDISPATCH safe array.

arrayType can be any of the data types in Table 11-2 except CAVT_EMPTY or CAVT_NULL.
Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties section of the
ActiveX Automation Library Function Overview section of this chapter.
CA_SafeArrayTo2DArray ignores the CAVT_ARRAY modifier.

To access the elements of array, use the CA_Get2DArrayElement macro, which is declared
in cviauto.h.

When you no longer need the C-style array, call CA_FreeMemory to discard it. If the C-style
array contains elements of one of the data types in Table 11-12, use the corresponding
function to free each element when you no longer need it.

Name Type Description

array depends on the value of
arrayType

C-style array that
CA_SafeArrayTo2DArray
dynamically allocates. The type of the
array must be the same as arrayType.
Pass the address of an array pointer.

numElemsDim1 unsigned integer Number of elements in the first
dimension of array. You can pass NULL
for this parameter.

numElemsDim2 unsigned integer Number of elements in the second
dimension of array. You can pass NULL
for this parameter.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo2DArray

© National Instruments Corporation 11-71 Standard Libraries Reference Manual

Example
The following code shows you how to use CA_SafeArrayTo2Darray:

double *dblArray = NULL;
LPSAFEARRAY safeArray;
unsigned numElemsDim1, numElemsDim2;
int index1, index2;

/* Call an ActiveX Automation function that returns a safe array. */
.
.
.
/* Convert the safe array into a C-style array. */
CA_SafeArrayTo2DArray(&safeArray, CAVT_DOUBLE, &dblArray,

&numElemsDim1, &numElemsDim2);

for (index1 = 0; index1 < numElemsDim1; index1++)
for (index2 = 0; index2 < numElemsDim2; index2++)

{
double d;
d = CA_Get2DArrayElement(dblArray, numElemsDim1, numElemsDim2,

index1, index2, double);
printf("%f", d);
}

/* Free the allocated array. */
CA_FreeMemory(dblArray);

Table 11-12. Data Types and Functions to Free Each Element for CA_SafeArrayTo2DArray

Data Type Function to Free Each Element

 char * CA_FreeMemory

 CAObjHandle CA_DiscardObjHandle

 BSTR SysFreeString (a Windows SDK function)

 LPUNKNOWN Release (array[i]->lpVtbl->Release())

 LPDISPATCH Release (array[i]->lpVtbl->Release())

 VARIANT CA_VariantClear

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo2DArrayBuf

Standard Libraries Reference Manual 11-72 © National Instruments Corporation

CA_SafeArrayTo2DArrayBuf

HRESULT status = CA_SafeArrayTo2DArrayBuf (LPSAFEARRAY *safeArray,
unsigned int arrayType, void *arrayBuffer,
unsigned int bufferSize,
unsigned int *numElemsDim1,
unsigned int *numElemsDim2);

Purpose
Converts a 2D safe array into a C-style array you pass in as a buffer.

Upon success, CA_SafeArrayTo2DArrayBuf frees the contents of the safe array and sets
the safe array pointer to NULL.

CA_SafeArrayTo2DArrayBuf returns an error if the buffer is not big enough to hold
the array.

Parameters

Input/Output

Input

Name Type Description

safeArray LPSAFEARRAY 2D safe array. Pass the
address of the safe array pointer.
CA_SafeArrayTo2DArrayBuf frees
the safe array contents and sets the safe
array pointer to NULL.

Name Type Description

arrayType unsigned integer Data type of the array
CA_SafeArrayTo2DArrayBuf
creates from the safe array.

bufferSize unsigned integer Number of bytes in the arrayBuffer
parameter.

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo2DArrayBuf

© National Instruments Corporation 11-73 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
The arrayType parameter must be the same as the type of the safe array except for the
following cases:

• You can create a C-style array that contains char* elements from a BSTR safe array.

• You can create a C-style array that contains CAObjHandle elements from an
LPDISPATCH safe array.

arrayType can be any of the data types in Table 11-2 except CAVT_EMPTY or CAVT_NULL.
Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties section of the
ActiveX Automation Library Function Overview section of this chapter.
CA_SafeArrayTo2DArrayBuf ignores the CAVT_ARRAY modifier.

To access the elements of array, use the CA_Get2DArrayElement macro, which is declared
in cviauto.h.

Name Type Description

arrayBuffer depends on the value of
arrayType

Buffer to receive the C-style array
elements. The type of the array must be
the same as arrayType.

numElemsDim1 unsigned integer Number of elements in the first
dimension of array. You can pass NULL
for this parameter.

numElemsDim2 unsigned integer Number of elements in the second
dimension of array. You can pass NULL
for this parameter.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_SafeArrayTo2DArrayBuf

Standard Libraries Reference Manual 11-74 © National Instruments Corporation

If the C-style array contains elements of one of the data types in Table 11-13, use the
corresponding function to free each element when you no longer need it.

Example
The following code shows you how to use CA_SafeArrayTo2DArrayBuf:

double dblArray[1024];
LPSAFEARRAY safeArray;
unsigned numElemsDim1, numElemsDim2;
int index1, index2;

/* Call an ActiveX Automation function that returns a safe array. */
.
.
.
/* Convert the safe array into a C-style array. */
CA_SafeArrayTo2DArrayBuf(&safeArray, CAVT_DOUBLE, dblArray,

sizeof(dblArray), &numElemsDim1,
&numElemsDim2);

for (index1 = 0; index1 < numElemsDim1; index1++)
for (index2 = 0; index2 < numElemsDim2; index2++)

{
double d;
d = CA_Get2DArrayElement(dblArray, numElemsDim1, numElemsDim2,

index1, index2, double);
printf("%f", d);
}

Table 11-13. Data Types and Functions to Free Each Element for CA_SafeArrayTo2DArrayBuf

Data Type Function to Free Each Element

 char* CA_FreeMemory

 CAObjHandle CA_DiscardObjHandle

 BSTR SysFreeString (a Windows SDK function)

 LPUNKNOWN Release (array[i]->lpVtbl->Release())

 LPDISPATCH Release (array[i]->lpVtbl->Release())

 VARIANT CA_VariantClear

Chapter 11 ActiveX Automation Library — CA_SetLocale

© National Instruments Corporation 11-75 Standard Libraries Reference Manual

CA_SetLocale

HRESULT status = CA_SetLocale (CAObjHandle objHandle, LCID locale);

Purpose
Sets the language the Automation server uses to interpret the arguments it receives as
parameters to its functions.

If you do not call CA_SetLocale, the ActiveX Automation Library asks the Automation
server to use LANG_NEUTRAL, which signifies the default language of the server.

Parameters

Input

Return Value

Parameter Discussion
The locale can be any of the locales that the Automation server you are using supports. The
following list shows the defined constant for locale ID:

LANG_NEUTRAL
LANG_AFRIKAANS
LANG_ALBANIAN
LANG_ARABIC
LANG_BASQUE
LANG_BELARUSIAN
LANG_BULGARIAN
LANG_CATALAN

LANG_CHINESE

Name Type Description

objHandle CAObjHandle ActiveX Object handle one of the object
creation functions in this library or an
Automation server method returns.

locale LCID ID that indicates the language the
Automation server uses. Refer to the
following Parameter Discussion section.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_SetLocale

Standard Libraries Reference Manual 11-76 © National Instruments Corporation

LANG_CROATIAN
LANG_CZECH
LANG_DANISH
LANG_DUTCH
LANG_ENGLISH
LANG_ESTONIAN
LANG_FAEROESE
LANG_FARSI
LANG_FINNISH
LANG_FRENCH
LANG_GERMAN
LANG_GREEK
LANG_HEBREW
LANG_HUNGARIAN
LANG_ICELANDIC
LANG_INDONESIAN
LANG_ITALIAN
LANG_JAPANESE
LANG_KOREAN
LANG_LATVIAN
LANG_LITHUANIAN
LANG_NORWEGIAN
LANG_POLISH
LANG_PORTUGUESE
LANG_ROMANIAN
LANG_RUSSIAN
LANG_SERBIAN
LANG_SLOVAK
LANG_SLOVENIAN
LANG_SPANISH
LANG_SWEDISH
LANG_THAI
LANG_TURKISH
LANG_UKRAINIAN
LANG_VIETNAMESE

Chapter 11 ActiveX Automation Library — CA_VariantBool

© National Instruments Corporation 11-77 Standard Libraries Reference Manual

CA_VariantBool

VARIANT variant = CA_VariantBool (VBOOL boolValue);

Purpose
Converts a VBOOL value into a variant that contains the VBOOL value. Use CA_VariantBool
to pass a VBOOL value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

boolValue VBOOL Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
boolValue.

Chapter 11 ActiveX Automation Library — CA_VariantBSTR

Standard Libraries Reference Manual 11-78 © National Instruments Corporation

CA_VariantBSTR

VARIANT variant = CA_VariantBSTR (BSTR BSTRValue);

Purpose
Converts a BSTR into a variant that contains a BSTR. Use CA_VariantBSTR to pass a BSTR
value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

BSTRValue BSTR Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
BSTRValue.

Chapter 11 ActiveX Automation Library — CA_VariantClear

© National Instruments Corporation 11-79 Standard Libraries Reference Manual

CA_VariantClear

HRESULT status = CA_VariantClear (VARIANT *variant);

Purpose
Frees the contents of a variant and marks the variant as empty.

Although you can call CA_VariantClear on a variant that contains a value of any type,
CA_VariantClear frees resources only when the variant contains a string (BSTR), an
automation object interface (LPDISPATCH), or an unknown interface (LPUNKNOWN).

CA_VariantClear always sets the variant type to VT_EMPTY.

Do not call CA_VariantClear on a variant that you have not initialized. You can initialize
a variant using any of the CA_VariantSet functions.

Parameter

Input

Return Value

Name Type Description

variant VARIANT Variant whose contents you want to clear.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantConvertToType

Standard Libraries Reference Manual 11-80 © National Instruments Corporation

CA_VariantConvertToType

HRESULT status = CA_VariantConvertToType (VARIANT *variant,
unsigned int desiredType, void *convertedValue);

Purpose
Converts a value in a variant to a variable with a data type you specify. This can help you when
you are uncertain about the data type a variant stores and when you need to work with a
particular data type.

CA_VariantConvertToType converts all the fundamental types, such as numeric, string,
DATE, CURRENCY, and so on. It converts from a pointer to a value by dereferencing the pointer.
It cannot convert to a pointer type, and it cannot convert to or from array types unless the
desiredType is exactly the same as the type in the variant.

Upon success, CA_VariantConvertToType frees the contents of the variant parameter,
marks it as empty, and sets the type to VT_EMPTY.

Parameters

Input

Output

Return Value

Name Type Description

variant VARIANT Variant that contains the value to convert.
CA_VariantConvertToType frees the
variant contents and marks the variant
as empty.

desiredType unsigned integer Type to convert the variant value to.

Name Type Description

convertedValue depends on the value
of desiredType

Address of a variable large enough to hold
the converted value.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantConvertToType

© National Instruments Corporation 11-81 Standard Libraries Reference Manual

Parameter Discussion
desiredType can be any of the fundamental data types in Table 11-2 except CAVT_EMPTY or
CAVT_NULL. Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties
section of the ActiveX Automation Library Function Overview section of this chapter. You can
use the CAVT_ARRAY modifier.

Note If you use the CAVT_ARRAY modifier, CA_VariantConvertToType returns a safe

array, not a C-style array.

If the desiredType is one of the data types in Table 11-14, you must call the corresponding
function to free the convertedValue when you no longer need it.

Table 11-14. Data Types and Functions to Free the Converted Value

Data Type Function to Free Converted Value

char * CA_FreeMemory

CAObjHandle CA_DiscardObjHandle

BSTR SysFreeString (a Windows SDK function)

LPUNKNOWN Release (convertedValue->lpVtbl.Release())

LPDISPATCH Release (convertedValue->lpVtbl.Release())

any type | CAVT_ARRAY CA_SafeArrayDestroy

Chapter 11 ActiveX Automation Library — CA_VariantCopy

Standard Libraries Reference Manual 11-82 © National Instruments Corporation

CA_VariantCopy

HRESULT status = CA_VariantCopy (VARIANT *sourceVariant,
VARIANT *destinationVariant);

Purpose
Copies the contents of one variant to another variant. CA_VariantCopy makes a deep copy
of the source variant by duplicating any allocated data that it contains.

Parameters

Input

Output

Return Value

Name Type Description

sourceVariant pointer to VARIANT Pointer to the variant that contains the
value to copy.

Name Type Description

destinationVariant VARIANT Variant into which CA_VariantCopy
copies the sourceVariant contents.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or
to cvi\3sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantCurrency

© National Instruments Corporation 11-83 Standard Libraries Reference Manual

CA_VariantCurrency

VARIANT variant = CA_VariantCurrency (CURRENCY currencyValue);

Purpose
Converts a CURRENCY value into a variant that contains the CURRENCY value. Use
CA_VariantCurrency to pass a CURRENCY value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

currencyValue CURRENCY Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
currencyValue.

Chapter 11 ActiveX Automation Library — CA_VariantDate

Standard Libraries Reference Manual 11-84 © National Instruments Corporation

CA_VariantDate

VARIANT variant = CA_VariantDate (DATE dateValue);

Purpose
Converts a DATE value into a variant that contains the DATE value. Use CA_VariantDate to
pass a DATE value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

dateValue DATE Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
dateValue.

Chapter 11 ActiveX Automation Library — CA_VariantDispatch

© National Instruments Corporation 11-85 Standard Libraries Reference Manual

CA_VariantDispatch

VARIANT variant = CA_VariantDispatch (LPDISPATCH dispatchValue);

Purpose
Converts a LPDISPATCH value into a variant that contains the LPDISPATCH value. Use
CA_VariantDispatch to pass a LPDISPATCH value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

dispatchValue LPDISPATCH Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
dispatchValue.

Chapter 11 ActiveX Automation Library — CA_VariantDouble

Standard Libraries Reference Manual 11-86 © National Instruments Corporation

CA_VariantDouble

VARIANT variant = CA_VariantDouble (double doubleValue);

Purpose
Converts a double-precision value into a variant that contains the double-precision value. Use
CA_VariantDouble to pass a double-precision value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

doubleValue double-precision Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
doubleValue.

Chapter 11 ActiveX Automation Library — CA_VariantEmpty

© National Instruments Corporation 11-87 Standard Libraries Reference Manual

CA_VariantEmpty

VARIANT variant = CA_VariantEmpty (void);

Purpose
Returns a variant in which the value of the type field is VT_EMPTY. Use CA_VariantEmpty
to pass an empty variant as a parameter.

Parameters
None.

Return Value

Name Type Description

variant VARIANT Variant in which the value of the type field
is VT_EMPTY.

Chapter 11 ActiveX Automation Library — CA_VariantError

Standard Libraries Reference Manual 11-88 © National Instruments Corporation

CA_VariantError

VARIANT variant = CA_VariantError (SCODE errorValue);

Purpose
Converts an SCODE value into a variant that contains the SCODE value. SCODE is the data type
for an error value. Use CA_VariantError to pass an SCODE value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

errorValue SCODE Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
errorValue.

Chapter 11 ActiveX Automation Library — CA_VariantFloat

© National Instruments Corporation 11-89 Standard Libraries Reference Manual

CA_VariantFloat

VARIANT variant = CA_VariantFloat (float floatValue);

Purpose
Converts a single-precision, floating-point value into a variant that contains the
single-precision value. Use CA_VariantFloat to pass a single-precision value as a variant
parameter.

Parameter

Input

Return Value

Name Type Description

floatValue single-precision Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
floatValue.

Chapter 11 ActiveX Automation Library — CA_VariantGet1DArray

Standard Libraries Reference Manual 11-90 © National Instruments Corporation

CA_VariantGet1DArray

HRESULT status = CA_VariantGet1DArray (VARIANT *variant,
unsigned int arrayType, void *array,
unsigned int *numElements);

Purpose
Converts a 1D safe array in a variant parameter into a dynamically allocated C-style array.

Upon success, CA_VariantGet1DArray frees the contents of the variant parameter and
marks it as empty.

Parameters

Input/Output

Input

Output

Name Type Description

variant VARIANT Pointer to a variant that contains a 1D safe
array. CA_VariantGet1DArray frees the
contents of the variant contents and marks it
as empty.

Name Type Description

arrayType unsigned integer Data type of the array
CA_VariantGet1DArray creates from the
safe array.

Name Type Description

array depends on the value of
arrayType

C-style array that
CA_VariantGet1DArray dynamically
allocates. The type of the array must be the
same as arrayType. Pass the address of an
array pointer.

numElements unsigned integer Number of elements in array. You can pass
NULL for this parameter.

Chapter 11 ActiveX Automation Library — CA_VariantGet1DArray

© National Instruments Corporation 11-91 Standard Libraries Reference Manual

Return Value

Parameter Discussion
The arrayType parameter must be the same as the type of the safe array except for the
following cases:

• You can create a C-style array that contains char* elements from a BSTR safe array.

• You can create a C-style array that contains CAObjHandle elements from an
LPDISPATCH safe array.

arrayType can be any of the data types in Table 11-2 except CAVT_EMPTY or CAVT_NULL.
Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties section of the
ActiveX Automation Library Function Overview section of this chapter.
CA_VariantGet1DArray ignores the CAVT_ARRAY modifier.

If you do not know the type of the array, you can call CA_VariantGetType and pass its
return value as the arrayType.

When you no longer need the C-style array, call CA_FreeMemory to discard it. If the C-style
array contains elements of one of the data types in Table 11-15, use the corresponding
function to free each element when you no longer need it.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Table 11-15. Data Types and Functions to Free Each Element for CA_VariantGet1DArray

Data Type Function to Free Each Element

 char * CA_FreeMemory

 CAObjHandle CA_DiscardObjHandle

 BSTR SysFreeString (a Windows SDK function)

 LPUNKNOWN Release (array[i]->lpVtbl->Release())

 LPDISPATCH Release (array[i]->lpVtbl->Release())

 VARIANT CA_VariantClear

Chapter 11 ActiveX Automation Library — CA_VariantGet1DArray

Standard Libraries Reference Manual 11-92 © National Instruments Corporation

Example
The following code shows you how to use CA_VariantGet1Darray:

double *dblArray = NULL;
VARIANT variant;
unsigned numElements;
int index;

/* Call an ActiveX Automation function that returns a safe array in a
Variant. */
.
.
.
/* Convert the safe array the variant contains into a C-style array. */
CA_VariantGet1DArray(&variant, CAVT_DOUBLE, &dblArray, &numElements);

for (index = 0; index < numElements; index++)
printf("%f", dblArray[index]);

/* Free the allocated array. */
CA_FreeMemory(dblArray);

Chapter 11 ActiveX Automation Library — CA_VariantGet1DArrayBuf

© National Instruments Corporation 11-93 Standard Libraries Reference Manual

CA_VariantGet1DArrayBuf

HRESULT status = CA_VariantGet1DArrayBuf (VARIANT *variant,
unsigned int arrayType, void *arrayBuffer,
unsigned int bufferSize,
unsigned int *numElements);

Purpose
Converts a 1D safe array in a variant parameter into a C-style array you pass as a buffer.

On success, CA_VariantGet1DArrayBuf releases the contents of the variant parameter and
marks it as empty.

CA_VariantGet1DArrayBuf returns an error if the buffer is not big enough to hold
the array.

Parameters

Input/Output

Input

Name Type Description

variant VARIANT Pointer to a variant that contains a 1D safe
array. CA_VariantGet1DArrayBuf frees
the contents of the variant contents and
marks it as empty.

Name Type Description

arrayType unsigned integer Data type of the array
CA_VariantGet1DArrayBuf creates
from the safe array.

bufferSize unsigned integer Number of bytes in the arrayBuffer
parameter.

Chapter 11 ActiveX Automation Library — CA_VariantGet1DArrayBuf

Standard Libraries Reference Manual 11-94 © National Instruments Corporation

Output

Return Value

Parameter Discussion
The arrayType parameter must be the same as the type of the safe array except for the
following cases:

• You can create a C-style array that contains char* elements from a BSTR safe array.

• You can create a C-style array that contains CAObjHandle elements from an
LPDISPATCH safe array.

arrayType can be any of the data types in Table 11-2 except CAVT_EMPTY or
CAVT_NULL.Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties
section of the ActiveX Automation Library Function Overview section of this chapter.
CA_VariantGet1DArrayBuf ignores the CAVT_ARRAY modifier.

If you do not know the type of the array, you can call CA_VariantGetType and pass its
return value as the arrayType.

Name Type Description

arrayBuffer depends on the value of
arrayType

Buffer to receive the C-style array elements.
The type of the array must be the same as
arrayType.

numElements unsigned integer Number of elements
CA_VariantGet1DArrayBuf stores in
arrayBuffer. You can pass NULL for this
parameter.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGet1DArrayBuf

© National Instruments Corporation 11-95 Standard Libraries Reference Manual

If the C-style array contains elements of one of the data types in Table 11-16, use the
corresponding function to free each element when you no longer need it.

Example
The following code shows you how to use CA_VariantGet1DArrayBuf:

double dblArray[1024];
VARIANT variant;
unsigned numElements;
int index;

/* Call an ActiveX Automation function that returns a safe array in a
Variant. */
.
.
.
/* Convert the safe array the variant contains into a C-style array. */
CA_VariantGet1DArrayBuf(&variant, CAVT_DOUBLE, dblArray,

sizeof(dblArray), &numElements);
for (index = 0; index < numElements; index++)

printf("%f", dblArray[index]);

Table 11-16. Data Types and Functions to Free Each Element for CA_VariantGet1DArrayBuf

Data Type Function to Free Each Element

 char * CA_FreeMemory

 CAObjHandle CA_DiscardObjHandle

 BSTR SysFreeString (a Windows SDK function)

 LPUNKNOWN Release (array[i]->lpVtbl->Release())

 LPDISPATCH Release (array[i]->lpVtbl->Release())

 VARIANT CA_VariantClear

Chapter 11 ActiveX Automation Library — CA_VariantGet1DArraySize

Standard Libraries Reference Manual 11-96 © National Instruments Corporation

CA_VariantGet1DArraySize

HRESULT status = CA_VariantGet1DArraySize (VARIANT *variant,
unsigned int *numElements);

Purpose
Obtains the number of elements in a 1D safe array in the variant you specify.

Parameters

Input

Output

Return Value

Name Type Description

variant VARIANT Pointer to a variant that contains a 1D
safe array.

Name Type Description

numElements unsigned integer Number of elements in the safe array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGet2DArray

© National Instruments Corporation 11-97 Standard Libraries Reference Manual

CA_VariantGet2DArray

HRESULT status = CA_VariantGet2DArray (VARIANT *variant,
unsigned int arrayType, void *array,
unsigned int *numElemsDim1,
unsigned int *numElemsDim2);

Purpose
Converts a 2D safe array in a variant parameter into a dynamically allocated C-style array.

Upon success, CA_VariantGet2DArray frees the contents of the variant parameter and
marks it as empty.

Parameters

Input/Output

Input

Name Type Description

variant VARIANT Pointer to a variant that contains a 2D safe
array. CA_VariantGet2DArray frees the
contents of the variant contents and marks it
as empty.

Name Type Description

arrayType unsigned integer Data type of the array
CA_VariantGet2DArray creates from the
safe array.

Chapter 11 ActiveX Automation Library — CA_VariantGet2DArray

Standard Libraries Reference Manual 11-98 © National Instruments Corporation

Output

Return Value

Parameter Discussion
The arrayType parameter must be the same as the type of the safe array except for the
following cases:

• You can create a C-style array that contains char* elements from a BSTR safe array.

• You can create a C-style array that contains CAObjHandle elements from an
LPDISPATCH safe array.

arrayType can be any of the data types in Table 11-2 except CAVT_EMPTY or CAVT_NULL.
Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties section of the
ActiveX Automation Library Function Overview section of this chapter.
CA_VariantGet2Darray ignores the CAVT_ARRAY modifier.

If you do not know the type of the array, you can call CA_VariantGetType and pass its
return value as the arrayType.

To access the elements of array, use the CA_Get2DArrayElement macro, which is declared
in cviauto.h.

Name Type Description

array depends on the value of
arrayType

C-style array that
CA_VariantGet2DArray dynamically
allocates. The type of the array must be
the same as arrayType. Pass the address
of an array pointer.

numElemsDim1 unsigned integer Number of elements in the first
dimension of array. You can pass NULL
for this parameter.

numElemsDim2 unsigned integer Number of elements in the second
dimension of array. You can pass NULL
for this parameter.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGet2DArray

© National Instruments Corporation 11-99 Standard Libraries Reference Manual

When you no longer need the C-style array, call CA_FreeMemory to discard it. If the C-style
array contains elements of one of the data types in Table 11-17, use the corresponding
function to free each element when you no longer need it.

Example
The following code shows you how to use CA_VariantGet2Darray:

double *dblArray = NULL;
VARIANT variant;
unsigned numElemsDim1, numElemsDim2;
int index1, index2;

/* Call an ActiveX Automation function that returns a safe array in a
Variant. */
.
.
.
/* Convert the safe array the variant contains into a C-style array. */
CA_VariantGet2DArray(&variant, CAVT_DOUBLE, &dblArray, &numElemsDim1,

&numElemsDim2);

for (index1 = 0; index1 < numElemsDim1; index1++)
for (index2 = 0; index2 < numElemsDim2; index2++)

{
double d;
d = CA_Get2DArrayElement(dblArray, numElemsDim1, numElemsDim2,

index1, index2, double);
printf("%f", d);
}

/* Free the allocated array. */
CA_FreeMemory(dblArray);

Table 11-17. Data Types and Functions to Free Each Element for CA_VariantGet2DArray

Data Type Function to Free Each Element

 char * CA_FreeMemory

 CAObjHandle CA_DiscardObjHandle

 BSTR SysFreeString (a Windows SDK function)

 LPUNKNOWN Release (array[i]->lpVtbl->Release())

 LPDISPATCH Release (array[i]->lpVtbl->Release())

 VARIANT CA_VariantClear

Chapter 11 ActiveX Automation Library — CA_VariantGet2DArrayBuf

Standard Libraries Reference Manual 11-100 © National Instruments Corporation

CA_VariantGet2DArrayBuf

HRESULT status = CA_VariantGet2DArrayBuf (VARIANT *variant,
unsigned int arrayType, void *arrayBuffer,
unsigned int bufferSize,
unsigned int *numElemsDim1,
unsigned int *numElemsDim2);

Purpose
Converts a 2D safe array in a variant parameter into a C-style array you pass as a buffer.

On success, CA_VariantGet2DArrayBuf releases the contents of the variant parameter and
marks it as empty.

CA_VariantGet2DArrayBuf returns an error if the buffer is not big enough to hold
the array.

Parameters

Input/Output

Input

Name Type Description

variant VARIANT Pointer to a variant that
contains a 2D safe array.
CA_VariantGet2DArrayBuf frees
the contents of the variant contents
and marks it as empty.

Name Type Description

arrayType unsigned integer Data type of the array
CA_VariantGet2DArrayBuf
creates from the safe array.

bufferSize unsigned integer Number of bytes in the arrayBuffer
parameter.

Chapter 11 ActiveX Automation Library — CA_VariantGet2DArrayBuf

© National Instruments Corporation 11-101 Standard Libraries Reference Manual

Output

Return Value

Parameter Discussion
The arrayType parameter must be the same as the type of the safe array except for the
following cases:

• You can create a C-style array that contains char* elements from a BSTR safe array.

• You can create a C-style array that contains CAObjHandle elements from an
LPDISPATCH safe array.

arrayType can be any of the data types in Table 11-2 except CAVT_EMPTY or CAVT_NULL.
Table 11-2 is in the Data Types for Variants, Safe Arrays, and Properties section of the
ActiveX Automation Library Function Overview section of this chapter.
CA_VariantGet2DArrayBuf ignores the CAVT_ARRAY modifier.

If you do not know the type of the array, you can call CA_VariantGetType and pass its
return value as the arrayType.

To access the elements of array, use the CA_Get2DArrayElement macro, which is declared
in cviauto.h.

Name Type Description

arrayBuffer depends on the value of
arrayType

Buffer to receive the C-style array
elements. The type of the array must be
the same as arrayType.

numElemsDim1 unsigned integer Number of elements in the first
dimension of array. You can pass NULL
for this parameter.

numElemsDim2 unsigned integer Number of elements in the second
dimension of array. You can pass NULL
for this parameter.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGet2DArrayBuf

Standard Libraries Reference Manual 11-102 © National Instruments Corporation

If the C-style array contains elements of one of the data types in Table 11-18, use the
corresponding function to free each element when you no longer need it.

Example
The following code shows you how to use CA_VariantGet2DArrayBuf:

double dblArray[1024];
VARIANT variant;
unsigned numElemsDim1, numElemsDim2;
int index1, index2;

/* Call an ActiveX Automation function that returns a safe array in a
Variant. */
.
.
.
/* Convert the safe array the variant contains into a C-style array. */
CA_VariantGet2DArrayBuf(&variant, CAVT_DOUBLE, dblArray,

sizeof(dblArray), &numElemsDim1,
&numElemsDim2);

for (index1 = 0; index1 < numElemsDim1; index1++)
for (index2 = 0; index2 < numElemsDim2; index2++)

{
double d;
d = CA_Get2DArrayElement(dblArray, numElemsDim1, numElemsDim2,

index1, index2, double);
printf("%f", d);
}

Table 11-18. Data Types and Functions to Free Each Element for CA_VariantGet2DArrayBuf

Data Type Function to Free Each Element

 char * CA_FreeMemory

 CAObjHandle CA_DiscardObjHandle

 BSTR SysFreeString (a Windows SDK function)

 LPUNKNOWN Release (array[i]->lpVtbl->Release())

 LPDISPATCH Release (array[i]->lpVtbl->Release())

 VARIANT CA_VariantClear

Chapter 11 ActiveX Automation Library — CA_VariantGet2DArraySize

© National Instruments Corporation 11-103 Standard Libraries Reference Manual

CA_VariantGet2DArraySize

HRESULT status = CA_VariantGet2DArraySize (VARIANT *variant,
unsigned int *numElemsDim1,
unsigned int *numElemsDim2);

Purpose
Obtains the number of elements in a 2D safe array in the variant parameter you specify.

Parameters

Input

Output

Return Value

Name Type Description

variant VARIANT Pointer to a variant that contains a 2D
safe array.

Name Type Description

numElemsDim1 unsigned integer Number of elements in the first dimension
of the safe array.

numElemsDim2 unsigned integer Number of elements in the second
dimension of the safe array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetArrayNumDims

Standard Libraries Reference Manual 11-104 © National Instruments Corporation

CA_VariantGetArrayNumDims

HRESULT status = CA_VariantGetArrayNumDims (VARIANT *variant,
unsigned int *numDims);

Purpose
Obtains the number of dimensions in a safe array in the variant you specify.

Parameters

Input

Output

Return Value

Name Type Description

variant VARIANT Pointer to a variant that contains a
safe array.

Name Type Description

numDims unsigned integer Number of dimensions in the safe array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetBool

© National Instruments Corporation 11-105 Standard Libraries Reference Manual

CA_VariantGetBool

HRESULT status = CA_VariantGetBool (VARIANT *variant, VBOOL *boolValue);

Purpose
Copies the value in a variant into a VBOOL variable.

CA_VariantGetBool returns an error if the variant does not contain a VBOOL value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a VBOOL
value.

Name Type Description

boolValue VBOOL VBOOL value CA_VariantGetBool copies
from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetBoolPtr

Standard Libraries Reference Manual 11-106 © National Instruments Corporation

CA_VariantGetBoolPtr

HRESULT status = CA_VariantGetBoolPtr (VARIANT *variant,
VBOOL **boolValuePtr);

Purpose
Copies the value in a variant into a VBOOL pointer variable.

CA_VariantGetBoolPtr returns an error if the variant does not contain a pointer to a
VBOOL value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a VBOOL
pointer.

Name Type Description

boolValuePtr pointer to VBOOL VBOOL pointer CA_VariantGetBoolPtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetBSTR

© National Instruments Corporation 11-107 Standard Libraries Reference Manual

CA_VariantGetBSTR

HRESULT status = CA_VariantGetBSTR (VARIANT *variant, BSTR *BSTRValue);

Purpose
Copies the value in a variant into a BSTR variable.

On success, CA_VariantGetBSTR marks the variant as empty.

CA_VariantGetBSTR returns an error if the variant does not contain a BSTR value.

Parameters

Input

Output

Return Value

Parameter Discussion
When you no longer need the BSTR, call the Windows SDK function SysFreeString to
free it.

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a BSTR
value. CA_VariantGetBSTR marks the
variant as empty on success.

Name Type Description

BSTRValue BSTR BSTR value CA_VariantGetBSTR copies
from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetBSTRPtr

Standard Libraries Reference Manual 11-108 © National Instruments Corporation

CA_VariantGetBSTRPtr

HRESULT status = CA_VariantGetBSTRPtr (VARIANT *variant,
 BSTR **BSTRValuePtr);

Purpose
Copies the value in a variant into a BSTR pointer variable.

CA_VariantGetBSTRPtr returns an error if the variant does not contain a pointer to a
BSTR value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a BSTR
pointer.

Name Type Description

BSTRValuePtr pointer to BSTR BSTR pointer CA_VariantGetBSTRPtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetCString

© National Instruments Corporation 11-109 Standard Libraries Reference Manual

CA_VariantGetCString

HRESULT status = CA_VariantGetCString (VARIANT *variant, char **cString);

Purpose
Converts the BSTR string in the variant you specify to a dynamically allocated C-style string.

On success, CA_VariantGetCString releases the contents of the variant and marks it
as empty.

CA_VariantGetCString returns an error if the variant does not contain a BSTR value.

Parameters

Input

Output

Return Value

Parameter Discussion
When you no longer need the C-style string, call CA_FreeMemory to free it.

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a BSTR
value. CA_VariantGetCString marks the
variant as empty on success.

Name Type Description

cString string Dynamically allocated C-style string
CA_VariantGetCString converts from
the BSTR in the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetCStringBuf

Standard Libraries Reference Manual 11-110 © National Instruments Corporation

CA_VariantGetCStringBuf

HRESULT status = CA_VariantGetCStringBuf (VARIANT *variant,
char buffer[], unsigned long bufferSize);

Purpose
Converts the BSTR string in the variant you specify to a C-style string and copies the string
into a buffer parameter.

If buffer is not large enough to hold the string, CA_VariantGetCStringBuf copies
(bufferSize –1) characters into the buffer, followed by an ASCII NUL byte.

On success, CA_VariantGetCStringBuf releases the contents of the variant and marks it
as empty.

CA_VariantGetCStringBuf returns an error if the variant does not contain a BSTR value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a BSTR
value. CA_VariantGetCStringBuf
marks the variant as empty on success.

bufferSize unsigned integer Number of bytes in buffer.

Name Type Description

buffer character array Buffer into which
CA_VariantGetCStringBuf copies the
C-style string it converts from the BSTR in
the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetCStringLen

© National Instruments Corporation 11-111 Standard Libraries Reference Manual

CA_VariantGetCStringLen

HRESULT status = CA_VariantGetCStringLen (VARIANT *variant,
unsigned long *len);

Purpose
Obtains the length of the C string you can create by calling CA_VariantGetCString to
convert the BSTR string in the variant you specify. The length does not include the ASCII
NUL byte.

CA_VariantGetCStringLen returns an error if the variant does not contain a BSTR value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a BSTR
value.

Name Type Description

len string Length of C-style string that
CA_VariantGetCString can convert
from the BSTR in the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetCurrency

Standard Libraries Reference Manual 11-112 © National Instruments Corporation

CA_VariantGetCurrency

HRESULT status = CA_VariantGetCurrency (VARIANT *variant,
CURRENCY *currencyValue);

Purpose
Copies the value in a variant into a CURRENCY variable.

CA_VariantGetCurrency returns an error if the variant does not contain a
CURRENCY value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a
CURRENCY value.

Name Type Description

currencyValue CURRENCY CURRENCY value
CA_VariantGetCurrency
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetCurrencyPtr

© National Instruments Corporation 11-113 Standard Libraries Reference Manual

CA_VariantGetCurrencyPtr

HRESULT status = CA_VariantGetCurrencyPtr (VARIANT *variant,
CURRENCY **currencyValuePtr);

Purpose
Copies the value in a variant into a CURRENCY pointer variable.

CA_VariantGetCurrencyPtr returns an error if the variant does not contain a pointer to a
CURRENCY value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a
CURRENCY pointer.

Name Type Description

currencyValuePtr pointer to CURRENCY CURRENCY pointer
CA_VariantGetCurrencyPtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes
or to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetDate

Standard Libraries Reference Manual 11-114 © National Instruments Corporation

CA_VariantGetDate

HRESULT status = CA_VariantGetDate (VARIANT *variant, DATE *dateValue);

Purpose
Copies the value in a variant into a DATE variable.

CA_VariantGetDate returns an error if the variant does not contain a DATE value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a DATE
value.

Name Type Description

dateValue DATE DATE value CA_VariantGetDate copies
from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetDatePtr

© National Instruments Corporation 11-115 Standard Libraries Reference Manual

CA_VariantGetDatePtr

HRESULT status = CA_VariantGetDatePtr (VARIANT *variant,
DATE **dateValuePtr);

Purpose
Copies the value in a variant into a DATE pointer variable.

CA_VariantGetDatePtr returns an error if the variant does not contain a pointer to a
DATE value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a DATE
pointer.

Name Type Description

dateValuePtr pointer to DATE DATE pointer CA_VariantGetDatePtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetDispatch

Standard Libraries Reference Manual 11-116 © National Instruments Corporation

CA_VariantGetDispatch

HRESULT status = CA_VariantGetDispatch (VARIANT *variant,
LPDISPATCH *dispatchValue);

Purpose
Copies the value in a variant into an LPDISPATCH variable. An LPDISPATCH value is a
dispatch pointer for an ActiveX Automation object interface.

On success, CA_VariantGetDispatch marks the variant parameter as empty.

CA_VariantGetDispatch returns an error if the variant does not contain an
LPDISPATCH value.

Parameters

Input

Output

Return Value

Parameter Discussion
When you no longer need the LPDISPATCH, free it by calling its Release function, as in the
following:

lpDispatch->lpVtbl->Release();

Name Type Description

variant pointer to VARIANT Pointer to a variant that
contains an LPDISPATCH value.
CA_VariantGetDispatch marks the
variant as empty on success.

Name Type Description

dispatchValue LPDISPATCH LPDISPATCH value
CA_VariantGetDispatch
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetDispatchPtr

© National Instruments Corporation 11-117 Standard Libraries Reference Manual

CA_VariantGetDispatchPtr

HRESULT status = CA_VariantGetDispatchPtr (VARIANT *variant,
LPDISPATCH **dispatchValuePtr);

Purpose
Copies the value in a variant into a variable that is a pointer to the LPDISPATCH type. An
LPDISPATCH value is a dispatch pointer for an ActiveX Automation object interface.

CA_VariantGetDispatchPtr returns an error if the variant does not contain a pointer to an
LPDISPATCH value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains an
LPDISPATCH pointer.

Name Type Description

dispatchValuePtr pointer to LPDISPATCH LPDISPATCH pointer
CA_VariantGetDispatchPtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes
or to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetDouble

Standard Libraries Reference Manual 11-118 © National Instruments Corporation

CA_VariantGetDouble

HRESULT status = CA_VariantGetDouble (VARIANT *variant,
double *dblValue);

Purpose
Copies the value in a variant into a double-precision variable.

CA_VariantGetDouble returns an error if the variant does not contain a double-precision
value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a
double-precision value.

Name Type Description

dblValue double-precision Double-precision value
CA_VariantGetDouble copies from the
variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetDoublePtr

© National Instruments Corporation 11-119 Standard Libraries Reference Manual

CA_VariantGetDoublePtr

HRESULT status = CA_VariantGetDoublePtr (VARIANT *variant,
double **doubleValuePtr);

Purpose
Copies the value in a variant into a double-precision pointer variable.

CA_VariantGetDoublePtr returns an error if the variant does not contain a pointer to a
double-precision value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a
double-precision pointer.

Name Type Description

doubleValuePtr pointer to
double-precision

Double-precision pointer
CA_VariantGetDoublePtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetError

Standard Libraries Reference Manual 11-120 © National Instruments Corporation

CA_VariantGetError

HRESULT status = CA_VariantGetError (VARIANT *variant,
SCODE *errorValue);

Purpose
Copies the value in a variant into an SCODE variable. SCODE is the data type for an error value.

CA_VariantGetError returns an error if the variant does not contain an SCODE value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains an SCODE
value.

Name Type Description

errorValue SCODE SCODE value CA_VariantGetError
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetErrorPtr

© National Instruments Corporation 11-121 Standard Libraries Reference Manual

CA_VariantGetErrorPtr

HRESULT status = CA_VariantGetErrorPtr (VARIANT *variant,
SCODE **errorValuePtr);

Purpose
Copies the value in a variant into an SCODE pointer variable. SCODE is the data type for an
error value.

CA_VariantGetErrorPtr returns an error if the variant does not contain a pointer to an
SCODE value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains an SCODE
pointer.

Name Type Description

errorValuePtr pointer to SCODE SCODE pointer CA_VariantGetErrorPtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetFloat

Standard Libraries Reference Manual 11-122 © National Instruments Corporation

CA_VariantGetFloat

HRESULT status = CA_VariantGetFloat (VARIANT *variant,
float *floatValue);

Purpose
Copies the value in a variant into a single-precision, floating-point variable.

CA_VariantGetFloat returns an error if the variant does not contain a single-precision
value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a
single-precision value.

Name Type Description

floatValue single-precision Single-precision value
CA_VariantGetFloat copies from the
variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetFloatPtr

© National Instruments Corporation 11-123 Standard Libraries Reference Manual

CA_VariantGetFloatPtr

HRESULT status = CA_VariantGetFloatPtr (VARIANT *variant,
float **floatValuePtr);

Purpose
Copies the value in a variant into a single-precision, floating-point pointer variable.

CA_VariantGetFloatPtr returns an error if the variant does not contain a pointer to a
single-precision value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a
single-precision pointer.

Name Type Description

floatValuePtr pointer to
single-precision

Single-precision pointer
CA_VariantGetFloatPtr copies from
the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetInt

Standard Libraries Reference Manual 11-124 © National Instruments Corporation

CA_VariantGetInt

HRESULT status = CA_VariantGetInt (VARIANT *variant, int *intValue);

Purpose
Copies the value in a variant into an integer variable.

CA_VariantGetInt returns an error if the variant does not contain an integer value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains an integer
value.

Name Type Description

intValue integer Integer value CA_VariantGetInt copies
from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetIntPtr

© National Instruments Corporation 11-125 Standard Libraries Reference Manual

CA_VariantGetIntPtr

HRESULT status = CA_VariantGetIntPtr (VARIANT *variant,
int **intValuePtr);

Purpose
Copies the value in a variant into an integer pointer variable.

CA_VariantGetIntPtr returns an error if the variant does not contain a pointer to an
integer value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains an integer
pointer.

Name Type Description

intValuePtr pointer to integer Integer pointer CA_VariantGetIntPtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetIUnknown

Standard Libraries Reference Manual 11-126 © National Instruments Corporation

CA_VariantGetIUnknown

HRESULT status = CA_VariantGetIUnknown (VARIANT *variant,
LPUNKNOWN *IUnknownValue);

Purpose
Copies the value in a variant into a LPUNKNOWN variable. An LPUNKNOWN value is a pointer to
an unknown interface.

On success, CA_VariantGetIUnknown marks the variant parameter as empty.

CA_VariantGetIUnknown returns an error if the variant does not contain an
LPUNKNOWN value.

Parameters

Input

Output

Return Value

Parameter Discussion
When you no longer need the LPUNKNOWN, free it by calling its Release function, as in the
following:

lpUnknown->lpVtbl->Release();

Name Type Description

variant pointer to VARIANT Pointer to a variant that
contains an LPUNKNOWN value.
CA_VariantGetIUnknown marks
the variant as empty on success.

Name Type Description

IUnknownValue LPUNKNOWN LPUNKNOWN value
CA_VariantGetIUnknown
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetIUnknownPtr

© National Instruments Corporation 11-127 Standard Libraries Reference Manual

CA_VariantGetIUnknownPtr

HRESULT status = CA_VariantGetIUnknownPtr (VARIANT *variant,
LPUNKNOWN **IUnknownValPtr);

Purpose
Copies the value in a variant into a variable that is a pointer to the LPUNKNOWN type. An
LPUNKNOWN value is a pointer to an unknown interface.

CA_VariantGetIUnknownPtr returns an error if the variant does not contain a pointer to an
LPUNKNOWN value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains an
LPUNKNOWN pointer.

Name Type Description

IUnknownValPtr pointer to LPUNKNOWN LPUNKNOWN pointer
CA_VariantGetIUnknownPtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes
or to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetLong

Standard Libraries Reference Manual 11-128 © National Instruments Corporation

CA_VariantGetLong

HRESULT status = CA_VariantGetLong (VARIANT *variant, long *longValue);

Purpose
Copies the value in a variant into a long integer variable.

CA_VariantGetLong returns an error if the variant does not contain a long integer value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a long
integer value.

Name Type Description

longValue long integer Long integer value CA_VariantGetLong
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetLongPtr

© National Instruments Corporation 11-129 Standard Libraries Reference Manual

CA_VariantGetLongPtr

HRESULT status = CA_VariantGetLongPtr (VARIANT *variant,
long **longValuePtr);

Purpose
Copies the value in a variant into a long integer pointer variable.

CA_VariantGetLongPtr returns an error if the variant does not contain a pointer to a long
integer value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a long
integer pointer.

Name Type Description

longValuePtr pointer to long integer long integer pointer
CA_VariantGetLongPtr copies from the
variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetObjHandle

Standard Libraries Reference Manual 11-130 © National Instruments Corporation

CA_VariantGetObjHandle

HRESULT status = CA_VariantGetObjHandle (VARIANT *variant,
CAObjHandle *objHandle);

Purpose
Converts the LPDISPATCH value in a variant to a CAObjHandle.

On success, CA_VariantGetObjHandle marks the variant parameter as empty.

CA_VariantGetObjHandle returns an error if the variant does not contain an
LDISPATCH value.

Parameters

Input

Output

Return Value

Parameter Discussion
When you no longer need objHandle, call CA_DiscardObjHandle to free it.

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains an
LPDISPATCH value.
CA_VariantGetObjHandle marks the
variant as empty on success.

Name Type Description

objHandle CAObjHandle Object handle
CA_VariantGetObjHandle converts
from the LPDISPATCH value in the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetSafeArray

© National Instruments Corporation 11-131 Standard Libraries Reference Manual

CA_VariantGetSafeArray

HRESULT status = CA_VariantGetSafeArray (VARIANT *variant,
unsigned int arrayType,
LPSAFEARRAY *safeArray);

Purpose
Copies the safe array in a variant into a safe array variable.

On success, CA_VariantGetSafeArray marks the variant parameter as empty.

CA_VariantGetSafeArray returns an error if the variant does not contain a safe array.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a safe
array. CA_VariantGetSafeArray marks
the variant as empty on success.

arrayType unsigned integer Type of the safe array.

Name Type Description

safeArray LPSAFEARRAY Safe array CA_VariantGetSafeArray
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetSafeArray

Standard Libraries Reference Manual 11-132 © National Instruments Corporation

Parameter Discussion
The arrayType parameter can have any of the values in Table 11-2 except for CAVT_EMPTY,
CAVT_NULL, and CAVT_OBJHANDLE. Table 11-2 is in the Data Types for Variants, Safe

Arrays, and Properties section of the ActiveX Automation Library Function Overview section
of this chapter.

If you do not know the type of the safe array, call CA_VariantGetType and pass its return
value as the arrayType. CA_VariantGetSafeArray ignores the CAVT_ARRAY modifier.

Chapter 11 ActiveX Automation Library — CA_VariantGetSafeArrayPtr

© National Instruments Corporation 11-133 Standard Libraries Reference Manual

CA_VariantGetSafeArrayPtr

HRESULT status = CA_VariantGetSafeArrayPtr (VARIANT *variant,
unsigned int arrayType,
LPSAFEARRAY **safeArrayPtr);

Purpose
Copies the value in a variant into a safe array pointer variable.

CA_VariantGetSafeArrayPtr returns an error if the variant does not contain a pointer to
a safe array.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a pointer to
a safe array.

arrayType unsigned integer Type of the safe array.

Name Type Description

safeArrayPtr pointer to
LPSAFEARRAY

Safe array pointer
CA_VariantGetSafeArrayPtr
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetSafeArrayPtr

Standard Libraries Reference Manual 11-134 © National Instruments Corporation

Parameter Discussion
The arrayType parameter can have any of the values in Table 11-2 except for CAVT_EMPTY,
CAVT_NULL, and CAVT_OBJHANDLE. Table 11-2 is in the Data Types for Variants, Safe

Arrays, and Properties section of the ActiveX Automation Library Function Overview section
of this chapter.

If you do not know the type of the safe array, call CA_VariantGetType and pass its return
value as the arrayType. CA_VariantGetSafeArrayPtr ignores the CAVT_ARRAY
modifier.

Chapter 11 ActiveX Automation Library — CA_VariantGetShort

© National Instruments Corporation 11-135 Standard Libraries Reference Manual

CA_VariantGetShort

HRESULT status = CA_VariantGetShort (VARIANT *variant,
short *shortValue);

Purpose
Copies the value in a variant into a short integer variable.

CA_VariantGetShort returns an error if the variant does not contain a short integer value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a short
integer value.

Name Type Description

shortValue short integer Short integer value CA_VariantGetShort
copies from the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetShortPtr

Standard Libraries Reference Manual 11-136 © National Instruments Corporation

CA_VariantGetShortPtr

HRESULT status = CA_VariantGetShortPtr (VARIANT *variant,
short **shortValuePtr);

Purpose
Copies the value in a variant into a short integer pointer variable.

CA_VariantGetShortPtr returns an error if the variant does not contain a pointer to a short
integer value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a short
integer pointer.

Name Type Description

shortValuePtr pointer to short integer Short integer pointer
CA_VariantGetShortPtr copies from
the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetType

© National Instruments Corporation 11-137 Standard Libraries Reference Manual

CA_VariantGetType

unsigned int type = CA_VariantGetType (VARIANT *variant);

Purpose
Returns the type of value the variant you specify contains.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

type unsigned integer 0 if the parameter is invalid. Otherwise, one
of the data types listed in Table 11-2 in the
Data Types for Variants, Safe Arrays, and

Properties section of the ActiveX

Automation Library Function Overview
section of this chapter, possibly bitwise
OR’ed with one or more of the data type
modifiers listed in Table 11-3 in the Data

Types for Variants, Safe Arrays, and

Properties section of the ActiveX

Automation Library Function Overview
section of this chapter.

Chapter 11 ActiveX Automation Library — CA_VariantGetUChar

Standard Libraries Reference Manual 11-138 © National Instruments Corporation

CA_VariantGetUChar

HRESULT status = CA_VariantGetUChar (VARIANT *variant,
unsigned char *uCharValue);

Purpose
Copies the value in a variant into an unsigned character variable.

CA_VariantGetUChar returns an error if the variant does not contain an unsigned
character value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains an
unsigned character value.

Name Type Description

uCharValue unsigned character unsigned character value
CA_VariantGetUChar copies from the
variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetUCharPtr

© National Instruments Corporation 11-139 Standard Libraries Reference Manual

CA_VariantGetUCharPtr

HRESULT status = CA_VariantGetUCharPtr (VARIANT *variant,
unsigned char **uCharValuePtr);

Purpose
Copies the value in a variant into an unsigned character pointer variable.

CA_VariantGetUCharPtr returns an error if the variant does not contain a pointer to an
unsigned character value.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains an
unsigned character pointer.

Name Type Description

uCharValuePtr pointer to unsigned
character

Unsigned character pointer
CA_VariantGetUCharPtr copies from
the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantGetVariantPtr

Standard Libraries Reference Manual 11-140 © National Instruments Corporation

CA_VariantGetVariantPtr

HRESULT status = CA_VariantGetVariantPtr (VARIANT *variant,
VARIANT **variantPtr);

Purpose
Copies the value in a variant into a variant pointer variable.

CA_VariantGetVariantPtr returns an error if the variant does not contain a pointer
to variant.

Parameters

Input

Output

Return Value

Name Type Description

variant pointer to VARIANT Pointer to a variant that contains a VARIANT
pointer.

Name Type Description

variantPtr pointer to VARIANT VARIANT pointer
CA_VariantGetVariantPtr copies from
the variant.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasArray

© National Instruments Corporation 11-141 Standard Libraries Reference Manual

CA_VariantHasArray

HRESULT status = CA_VariantHasArray (VARIANT *variant);

Purpose
Determines whether a variant contains an array. This is true if the type field of the variant
contains the VT_CAVT modifier.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant type is an array.

0 if variant type is not an array.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasBool

Standard Libraries Reference Manual 11-142 © National Instruments Corporation

CA_VariantHasBool

HRESULT status = CA_VariantHasBool (VARIANT *variant);

Purpose
Determines whether a variant contains a VBOOL value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if the variant contains a VBOOL value.

0 if variant does not contain a VBOOL value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasBSTR

© National Instruments Corporation 11-143 Standard Libraries Reference Manual

CA_VariantHasBSTR

HRESULT status = CA_VariantHasBSTR (VARIANT *variant);

Purpose
Determines whether a variant contains a BSTR value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if the variant contains a BSTR value.

0 if variant does not contain a BSTR value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasCString

Standard Libraries Reference Manual 11-144 © National Instruments Corporation

CA_VariantHasCString

HRESULT status = CA_VariantHasCString (VARIANT *variant);

Purpose
Determines whether a variant contains a string. Variants do not contain C-style strings, but
you can convert the strings they contain to C-style strings.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if the variant contains a string value.

0 if variant does not contain a string value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasCurrency

© National Instruments Corporation 11-145 Standard Libraries Reference Manual

CA_VariantHasCurrency

HRESULT status = CA_VariantHasCurrency (VARIANT *variant);

Purpose
Determines whether a variant contains a CURRENCY value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if the variant contains a CURRENCY value.

0 if variant does not contain a CURRENCY
value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasDate

Standard Libraries Reference Manual 11-146 © National Instruments Corporation

CA_VariantHasDate

HRESULT status = CA_VariantHasDate (VARIANT *variant);

Purpose
Determines whether a variant contains a DATE value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains a DATE value.

0 if variant does not contain a DATE value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasDispatch

© National Instruments Corporation 11-147 Standard Libraries Reference Manual

CA_VariantHasDispatch

HRESULT status = CA_VariantHasDispatch (VARIANT *variant);

Purpose
Determines whether a variant contains an IDispatch interface.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains an IDispatch interface.

0 if variant does not contain an IDispatch
interface.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasDouble

Standard Libraries Reference Manual 11-148 © National Instruments Corporation

CA_VariantHasDouble

HRESULT status = CA_VariantHasDouble (VARIANT *variant);

Purpose
Determines whether a variant contains a double-precision value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains a double-precision
value.

0 if variant does not contain a
double-precision value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasError

© National Instruments Corporation 11-149 Standard Libraries Reference Manual

CA_VariantHasError

HRESULT status = CA_VariantHasError (VARIANT *variant);

Purpose
Determines whether a variant contains an SCODE value. SCODE is the data type for an
error value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains an SCODE value.

0 if variant does not contain an SCODE
value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasFloat

Standard Libraries Reference Manual 11-150 © National Instruments Corporation

CA_VariantHasFloat

HRESULT status = CA_VariantHasFloat (VARIANT *variant);

Purpose
Determines whether a variant contains a single-precision, floating-point value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains a single-precision
value.

0 if variant does not contain a
single-precision value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasInt

© National Instruments Corporation 11-151 Standard Libraries Reference Manual

CA_VariantHasInt

HRESULT status = CA_VariantHasInt (VARIANT *variant);

Purpose
Determines whether a variant contains an integer value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains an integer value.

0 if variant does not contain an integer
value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasIUnknown

Standard Libraries Reference Manual 11-152 © National Instruments Corporation

CA_VariantHasIUnknown

HRESULT status = CA_VariantHasIUnknown (VARIANT *variant);

Purpose
Determines whether a variant contains an IUnknown interface.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains an IUnknown
interface.

0 if variant does not contain an IUnknown
interface.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasLong

© National Instruments Corporation 11-153 Standard Libraries Reference Manual

CA_VariantHasLong

HRESULT status = CA_VariantHasLong (VARIANT *variant);

Purpose
Determines whether a variant contains a long integer value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains a long integer value.

0 if variant does not contain a long integer
value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasNull

Standard Libraries Reference Manual 11-154 © National Instruments Corporation

CA_VariantHasNull

HRESULT status = CA_VariantHasNull (VARIANT *variant);

Purpose
Determines whether the data type of a variant is VT_NULL.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant has a type of VT_NULL.

0 if variant does not have a type of
VT_NULL.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasObjHandle

© National Instruments Corporation 11-155 Standard Libraries Reference Manual

CA_VariantHasObjHandle

HRESULT status = CA_VariantHasObjHandle (VARIANT *variant);

Purpose
Determines whether a variant contains a value that you can convert to a CAObjHandle using
CA_VariantGetObjHandle. This is true if the variant type is CAVT_DISPATCH and the
IDispatch pointer the variant contains is not NULL.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains a non-null IDispatch
interface.

0 if variant does not contain a non-null
IDispatch interface.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasPtr

Standard Libraries Reference Manual 11-156 © National Instruments Corporation

CA_VariantHasPtr

HRESULT status = CA_VariantHasPtr (VARIANT *variant);

Purpose
Determines whether a variant contains a pointer to a data value. This is true if the type field
of the variant contains the VT_BYREF flag.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains a pointer to a value.

0 if variant does not contain a pointer to a
value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasShort

© National Instruments Corporation 11-157 Standard Libraries Reference Manual

CA_VariantHasShort

HRESULT status = CA_VariantHasShort (VARIANT *variant);

Purpose
Determines whether a variant contains a short integer value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains a short integer value.

0 if variant does not contain a short integer
value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantHasUChar

Standard Libraries Reference Manual 11-158 © National Instruments Corporation

CA_VariantHasUChar

HRESULT status = CA_VariantHasUChar (VARIANT *variant);

Purpose
Determines whether a variant contains an unsigned character value.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant contains an unsigned character
value.

0 if variant does not contain an unsigned
character value.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantInt

© National Instruments Corporation 11-159 Standard Libraries Reference Manual

CA_VariantInt

VARIANT variant = CA_VariantInt (int intValue);

Purpose
Converts an integer value to a variant that contains the integer value. Use CA_VariantInt to
pass an integer value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

intValue integer Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in intValue.

Chapter 11 ActiveX Automation Library — CA_VariantIsEmpty

Standard Libraries Reference Manual 11-160 © National Instruments Corporation

CA_VariantIsEmpty

HRESULT status = CA_VariantIsEmpty (VARIANT *variant);

Purpose
Determines whether the data type of a variant type is VT_EMPTY.

Parameter

Input

Return Value

Name Type Description

variant pointer to VARIANT Pointer to the variant variable to inspect.

Name Type Description

status HRESULT 1 if variant has a type of VT_EMPTY.

0 if variant does not have a type of
VT_EMPTY.

< 0 if variant is invalid.

Refer to Table 11-18 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantIUnknown

© National Instruments Corporation 11-161 Standard Libraries Reference Manual

CA_VariantIUnknown

VARIANT variant = CA_VariantIUnknown (LPUNKNOWN IUnknownValue);

Purpose
Converts an LPUNKNOWN value to a variant that contains an LPUNKNOWN value. Use
CA_VariantIUnknown to pass an LPUNKNOWN value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

IUnknownValue LPUNKNOWN Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
IUnknownValue.

Chapter 11 ActiveX Automation Library — CA_VariantLong

Standard Libraries Reference Manual 11-162 © National Instruments Corporation

CA_VariantLong

VARIANT variant = CA_VariantLong (long longValue);

Purpose
Converts a long integer value to a variant that contains the long integer value. Use
CA_VariantLong to pass a long integer value as a variant parameter.

Parameter

Input

Return Value

Name Type Description

longValue long integer Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
longValue.

Chapter 11 ActiveX Automation Library — CA_VariantNULL

© National Instruments Corporation 11-163 Standard Libraries Reference Manual

CA_VariantNULL

VARIANT variant = CA_VariantNULL (void);

Purpose
Returns a variant in which the value of the type field is VT_NULL. Use CA_VariantNULL to
pass a NULL variant as a parameter.

Parameters
None.

Return Value

Name Type Description

variant VARIANT Variant in which LabWindows/CVI sets the
type field to VT_NULL.

Chapter 11 ActiveX Automation Library — CA_VariantSet1DArray

Standard Libraries Reference Manual 11-164 © National Instruments Corporation

CA_VariantSet1DArray

HRESULT status = CA_VariantSet1DArray (VARIANT *variant,
unsigned int arrayType, unsigned int numElements,
void *array);

Purpose
Creates a safe array from a 1D array and stores the safe array in a variant.

Parameters

Input/Output

Input

Return Value

Name Type Description

variant VARIANT Variant to which CA_VariantSet1DArray
assigns the safe array.

Name Type Description

arrayType unsigned integer Data type of array.

numElements unsigned integer Number of elements in array.

array depends on value of
arrayType

1D array that CA_VariantSet1DArray
converts to a safe array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSet1DArray

© National Instruments Corporation 11-165 Standard Libraries Reference Manual

Parameter Discussion
The arrayType parameter can contain any of the fundamental types in Table 11-2 except
CAVT_EMPTY, CAVT_NULL, and CAVT_OBJHANDLE. Table 11-2 is in the Data Types for

Variants, Safe Arrays, and Properties section of the ActiveX Automation Library Function

Overview section of this chapter.

Note CA_VariantSet1DArray does not make copies of BSTR, VARIANT, LPUNKNOWN,

or LPDISPATCH elements. It simply copies the pointers into the created safe array.

Therefore, when you call CA_VariantClear, which frees the safe array and all

its contents, the BSTR, VARIANT, LPUNKNOWN, or LPDISPATCH elements of the

input array parameter become invalid.

Chapter 11 ActiveX Automation Library — CA_VariantSet2DArray

Standard Libraries Reference Manual 11-166 © National Instruments Corporation

CA_VariantSet2DArray

HRESULT status = CA_VariantSet2DArray (VARIANT *variant,
unsigned int arrayType,
unsigned int numElemsDim1,
unsigned int numElemsDim2, void *array);

Purpose
Creates a safe array from a 2D array and stores the safe array in a variant.

Parameters

Input/Output

Input

Return Value

Name Type Description

variant VARIANT Variant to which
CA_VariantSet2DArray
assigns the safe array.

Name Type Description

arrayType unsigned integer Data type of array.

numElemsDim1 unsigned integer Number of elements in the first
dimension of array.

numElemsDim2 unsigned integer Number of elements in the second
dimension of array.

array depends on value of
arrayType

2D array that CA_VariantSet2DArray
converts to a safe array.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSet2DArray

© National Instruments Corporation 11-167 Standard Libraries Reference Manual

Parameter Discussion
The arrayType parameter can contain any of the fundamental types in Table 11-2 except
CAVT_EMPTY, CAVT_NULL, and CAVT_OBJHANDLE. Table 11-2 is in the Data Types for

Variants, Safe Arrays, and Properties section of the ActiveX Automation Library Function

Overview section of this chapter.

Note CA_VariantSet2DArray does not make copies of BSTR, VARIANT, LPUNKNOWN,

or LPDISPATCH elements. It simply copies the pointers into the created safe array.

Therefore, when you call CA_VariantClear, which frees the safe array and all

its contents, the BSTR, VARIANT, LPUNKNOWN, or LPDISPATCH elements of the

input array parameter become invalid.

Chapter 11 ActiveX Automation Library — CA_VariantSetBool

Standard Libraries Reference Manual 11-168 © National Instruments Corporation

CA_VariantSetBool

HRESULT status = CA_VariantSetBool (VARIANT *variant, VBOOL boolValue);

Purpose
Stores a VBOOL value in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

boolValue VBOOL Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetBool
assigns boolValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetBoolPtr

© National Instruments Corporation 11-169 Standard Libraries Reference Manual

CA_VariantSetBoolPtr

HRESULT status = CA_VariantSetBoolPtr (VARIANT *variant,
VBOOL *boolValuePtr);

Purpose
Stores a pointer to a VBOOL value in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

boolValuePtr pointer to VBOOL Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetBoolPtr
assigns boolValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetBSTR

Standard Libraries Reference Manual 11-170 © National Instruments Corporation

CA_VariantSetBSTR

HRESULT status = CA_VariantSetBSTR (VARIANT *variant, BSTR BSTRValue);

Purpose
Stores a BSTR in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

BSTRValue BSTR Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetBSTR
assigns BSTRValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetBSTRPtr

© National Instruments Corporation 11-171 Standard Libraries Reference Manual

CA_VariantSetBSTRPtr

HRESULT status = CA_VariantSetBSTRPtr (VARIANT *variant,
BSTR *BSTRValuePtr);

Purpose
Stores a pointer to a BSTR in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

BSTRValuePtr pointer to BSTR Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetBSTRPtr
assigns BSTRValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetCString

Standard Libraries Reference Manual 11-172 © National Instruments Corporation

CA_VariantSetCString

HRESULT status = CA_VariantSetCString (VARIANT *variant, char *cString);

Purpose
Converts a C-style string to a BSTR, stores the BSTR in a variant, and sets the type field of the
variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

cString string Value CA_VariantSetCString converts
to a BSTR.

Name Type Description

variant VARIANT Variant to which CA_VariantSetCString
assigns the BSTR it creates.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetCurrency

© National Instruments Corporation 11-173 Standard Libraries Reference Manual

CA_VariantSetCurrency

HRESULT status = CA_VariantSetCurrency (VARIANT *variant,
CURRENCY currencyValue);

Purpose
Stores a CURRENCY value in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

currencyValue CURRENCY Value to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetCurrency assigns
currencyValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetCurrencyPtr

Standard Libraries Reference Manual 11-174 © National Instruments Corporation

CA_VariantSetCurrencyPtr

HRESULT status = CA_VariantSetCurrencyPtr (VARIANT *variant,
CURRENCY *currencyValuePtr);

Purpose
Stores a pointer to a CURRENCY value in a variant and sets the type field of the variant
accordingly.

Parameters

Input

Output

Return Value

Name Type Description

currencyValuePtr pointer to CURRENCY Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetCurrencyPtr
assigns currencyValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or
to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetDate

© National Instruments Corporation 11-175 Standard Libraries Reference Manual

CA_VariantSetDate

HRESULT status = CA_VariantSetDate (VARIANT *variant, DATE dateValue);

Purpose
Stores a DATE value in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

dateValue DATE Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetDate
assigns dateValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetDatePtr

Standard Libraries Reference Manual 11-176 © National Instruments Corporation

CA_VariantSetDatePtr

HRESULT status = CA_VariantSetDatePtr (VARIANT *variant,
DATE *dateValuePtr);

Purpose
Stores a pointer to a DATE value in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

dateValuePtr pointer to DATE Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetDatePtr
assigns dateValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetDispatch

© National Instruments Corporation 11-177 Standard Libraries Reference Manual

CA_VariantSetDispatch

HRESULT status = CA_VariantSetDispatch (VARIANT *variant,
LPDISPATCH dispatchValue);

Purpose
Stores an LPDISPATCH value in a variant and sets the type field of the variant accordingly. An
LPDISPATCH value is a dispatch pointer for an ActiveX Automation object interface.

Parameters

Input

Output

Return Value

Name Type Description

dispatchValue LPDISPATCH Value to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetDispatch assigns
dispatchValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetDispatchPtr

Standard Libraries Reference Manual 11-178 © National Instruments Corporation

CA_VariantSetDispatchPtr

HRESULT status = CA_VariantSetDispatchPtr (VARIANT *variant,
LPDISPATCH *dispatchValuePtr);

Purpose
Stores a pointer to an LPDISPATCH value in a variant and sets the type field of the variant
accordingly. An LPDISPATCH value is a dispatch pointer for an ActiveX Automation object
interface.

Parameters

Input

Output

Return Value

Name Type Description

dispatchValuePtr pointer to LPDISPATCH Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetDispatchPtr
assigns dispatchValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes
or to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetDouble

© National Instruments Corporation 11-179 Standard Libraries Reference Manual

CA_VariantSetDouble

HRESULT status = CA_VariantSetDouble (VARIANT *variant,
double doubleValue);

Purpose
Stores a double-precision value in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

doubleValue double-precision Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetDouble
assigns doubleValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetDoublePtr

Standard Libraries Reference Manual 11-180 © National Instruments Corporation

CA_VariantSetDoublePtr

HRESULT status = CA_VariantSetDoublePtr (VARIANT *variant,
double *doubleValuePtr);

Purpose
Stores a pointer to a double-precision value in a variant and sets the type field of the variant
accordingly.

Parameters

Input

Output

Return Value

Name Type Description

doubleValuePtr pointer to
double-precision

Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetDoublePtr
assigns doubleValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetEmpty

© National Instruments Corporation 11-181 Standard Libraries Reference Manual

CA_VariantSetEmpty

HRESULT status = CA_VariantSetEmpty (VARIANT *variant);

Purpose
Marks a variant as empty by setting its type field to VT_EMPTY.

Parameter

Output

Return Value

Name Type Description

variant VARIANT Variant to mark as empty.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetError

Standard Libraries Reference Manual 11-182 © National Instruments Corporation

CA_VariantSetError

HRESULT status = CA_VariantSetError (VARIANT *variant, SCODE errorValue);

Purpose
Stores an SCODE value in a variant and sets the type field of the variant accordingly. SCODE is
the data type for an error value.

Parameters

Input

Output

Return Value

Name Type Description

errorValue SCODE Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetError
assigns errorValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetErrorPtr

© National Instruments Corporation 11-183 Standard Libraries Reference Manual

CA_VariantSetErrorPtr

HRESULT status = CA_VariantSetErrorPtr (VARIANT *variant,
SCODE *errorValuePtr);

Purpose
Stores a pointer to an SCODE value in a variant and sets the type field of the variant
accordingly. SCODE is the data type for an error value.

Parameters

Input

Output

Return Value

Name Type Description

errorValuePtr pointer to SCODE Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetErrorPtr assigns
errorValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetFloat

Standard Libraries Reference Manual 11-184 © National Instruments Corporation

CA_VariantSetFloat

HRESULT status = CA_VariantSetFloat (VARIANT *variant, float floatValue);

Purpose
Stores a single-precision, floating-point value in a variant and sets the type field of the variant
accordingly.

Parameters

Input

Output

Return Value

Name Type Description

floatValue single-precision Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetFloat
assigns floatValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetFloatPtr

© National Instruments Corporation 11-185 Standard Libraries Reference Manual

CA_VariantSetFloatPtr

HRESULT status = CA_VariantSetFloatPtr (VARIANT *variant,
float *floatValuePtr);

Purpose
Stores a pointer to a single-precision, floating-point value in a variant and sets the type field
of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

floatValuePtr pointer to
single-precision

Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetFloatPtr assigns
floatValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetInt

Standard Libraries Reference Manual 11-186 © National Instruments Corporation

CA_VariantSetInt

HRESULT status = CA_VariantSetInt (VARIANT *variant, int intValue);

Purpose
Stores an integer value in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

intValue integer Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetInt
assigns intValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetIntPtr

© National Instruments Corporation 11-187 Standard Libraries Reference Manual

CA_VariantSetIntPtr

HRESULT status = CA_VariantSetIntPtr (VARIANT *variant, int *intValuePtr);

Purpose
Stores a pointer to an integer value in a variant and sets the type field of the variant
accordingly.

Parameters

Input

Output

Return Value

Name Type Description

intValuePtr pointer to integer Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetIntPtr
assigns intValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetIUnknown

Standard Libraries Reference Manual 11-188 © National Instruments Corporation

CA_VariantSetIUnknown

HRESULT status = CA_VariantSetIUnknown (VARIANT *variant,
LPUNKNOWN IUnknownValue);

Purpose
Stores an LPUNKNOWN value in a variant and sets the type field of the variant accordingly. An
LPUNKNOWN value is a pointer to an unknown interface.

Parameters

Input

Output

Return Value

Name Type Description

IUnknownValue LPDISPATCH Value to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetIUnknown assigns
IUnknownValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetIUnknownPtr

© National Instruments Corporation 11-189 Standard Libraries Reference Manual

CA_VariantSetIUnknownPtr

HRESULT status = CA_VariantSetIUnknownPtr (VARIANT *variant,
LPUNKNOWN *IUnknownValuePtr);

Purpose
Stores a pointer to an LPUNKNOWN value in a variant and sets the type field of the variant
accordingly. An LPUNKNOWN value is a pointer to an unknown interface.

Parameters

Input

Output

Return Value

Name Type Description

IUnknownValuePtr pointer to LPUNKNOWN Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetIUnknownPtr
assigns IUnknownValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes
or to cvi\sdk\winerror.h for
Windows SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetLong

Standard Libraries Reference Manual 11-190 © National Instruments Corporation

CA_VariantSetLong

HRESULT status = CA_VariantSetLong (VARIANT *variant, long longValue);

Purpose
Stores a long integer value in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

longValue long integer Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetLong
assigns longValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetLongPtr

© National Instruments Corporation 11-191 Standard Libraries Reference Manual

CA_VariantSetLongPtr

HRESULT status = CA_VariantSetLongPtr (VARIANT *variant,
long *longValuePtr);

Purpose
Stores a pointer to a long integer value in a variant and sets the type field of the variant
accordingly.

Parameters

Input

Output

Return Value

Name Type Description

longValuePtr pointer to long integer Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetLongPtr
assigns longValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetNULL

Standard Libraries Reference Manual 11-192 © National Instruments Corporation

CA_VariantSetNULL

HRESULT status = CA_VariantSetNULL (VARIANT *variant);

Purpose
Marks a variant as NULL by setting its type field to VT_NULL.

Parameter

Output

Return Value

Name Type Description

variant VARIANT Variant to mark as NULL.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetSafeArray

© National Instruments Corporation 11-193 Standard Libraries Reference Manual

CA_VariantSetSafeArray

HRESULT status = CA_VariantSetSafeArray (VARIANT *variant,
unsigned int arrayType, LPSAFEARRAY safeArray);

Purpose
Stores a safe array in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Parameter Discussion
The arrayType parameter can be any of the fundamental types in Table 11-2 except
CAVT_EMPTY, CAVT_NULL, or CAVT_OBJHANDLE. Table 11-2 is in the Data Types for

Variants, Safe Arrays, and Properties section of the ActiveX Automation Library Function

Overview section of this chapter.

Name Type Description

arrayType unsigned integer Type of the safe array.

safeArray LPSAFEARRAY Value to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetSafeArray assigns
safeArray.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetSafeArrayPtr

Standard Libraries Reference Manual 11-194 © National Instruments Corporation

CA_VariantSetSafeArrayPtr

HRESULT status = CA_VariantSetSafeArrayPtr (VARIANT *variant,
unsigned int arrayType,
LPSAFEARRAY *safeArrayPtr);

Purpose
Stores a pointer to a safe array in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Parameter Discussion
The arrayType parameter can be any of the fundamental types in Table 11-2 except
CAVT_EMPTY, CAVT_NULL, or CAVT_OBJHANDLE. Table 11-2 is in the Data Types for

Variants, Safe Arrays, and Properties section of the ActiveX Automation Library Function

Overview section of this chapter.

Name Type Description

arrayType unsigned integer Type of the safe array.

safeArrayPtr pointer to
LPSAFEARRAY

Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetSafeArrayPtr assigns
safeArrayPtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetShort

© National Instruments Corporation 11-195 Standard Libraries Reference Manual

CA_VariantSetShort

HRESULT status = CA_VariantSetShort (VARIANT *variant, short shortValue);

Purpose
Stores a short integer value in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

shortValue short integer Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetShort
assigns shortValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetShortPtr

Standard Libraries Reference Manual 11-196 © National Instruments Corporation

CA_VariantSetShortPtr

HRESULT status = CA_VariantSetShortPtr (VARIANT *variant,
short *shortValuePtr);

Purpose
Stores a pointer to a short integer value in a variant and sets the type field of the variant
accordingly.

Parameters

Input

Output

Return Value

Name Type Description

shortValuePtr pointer to short integer Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetShortPtr assigns
shortValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetUChar

© National Instruments Corporation 11-197 Standard Libraries Reference Manual

CA_VariantSetUChar

HRESULT status = CA_VariantSetUChar (VARIANT *variant,
unsigned char uCharValue);

Purpose
Stores an unsigned character value in a variant and sets the type field of the variant
accordingly.

Parameters

Input

Output

Return Value

Name Type Description

uCharValue unsigned character Value to store in variant.

Name Type Description

variant VARIANT Variant to which CA_VariantSetUChar
assigns uCharValue.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetUCharPtr

Standard Libraries Reference Manual 11-198 © National Instruments Corporation

CA_VariantSetUCharPtr

HRESULT status = CA_VariantSetUCharPtr (VARIANT *variant,
unsigned char *uCharValuePtr);

Purpose
Stores a pointer to an unsigned character value in a variant and sets the type field of the variant
accordingly.

Parameters

Input

Output

Return Value

Name Type Description

uCharValuePtr pointer to unsigned
character

Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetUCharPtr assigns
uCharValuePtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows
SDK error codes.

Chapter 11 ActiveX Automation Library — CA_VariantSetVariantPtr

© National Instruments Corporation 11-199 Standard Libraries Reference Manual

CA_VariantSetVariantPtr

HRESULT status = CA_VariantSetVariantPtr (VARIANT *variant,
VARIANT *variantPtr);

Purpose
Stores a pointer to a variant in a variant and sets the type field of the variant accordingly.

Parameters

Input

Output

Return Value

Name Type Description

variantPtr pointer to VARIANT Pointer to store in variant.

Name Type Description

variant VARIANT Variant to which
CA_VariantSetVariantPtr assigns
variantPtr.

Name Type Description

status HRESULT Refer to Table 11-19 for error codes or to
cvi\sdk\winerror.h for Windows SDK
error codes.

Chapter 11 ActiveX Automation Library — CA_VariantShort

Standard Libraries Reference Manual 11-200 © National Instruments Corporation

CA_VariantShort

VARIANT variant = CA_VariantShort (short shortValue);

Purpose
Converts a short integer value to a variant that contains the short integer value. Use
CA_VariantShort to pass a short integer value as a VARIANT parameter.

Parameter

Input

Return Value

Name Type Description

shortValue short integer Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
shortValue.

Chapter 11 ActiveX Automation Library — CA_VariantUChar

© National Instruments Corporation 11-201 Standard Libraries Reference Manual

CA_VariantUChar

VARIANT variant = CA_VariantUChar (unsigned char uCharValue);

Purpose
Converts an unsigned character value to a variant that contains the unsigned character value.
Use CA_VariantUChar to pass an unsigned character value as a VARIANT parameter.

Parameter

Input

Return Value

Name Type Description

uCharValue unsigned character Value to store in the variant.

Name Type Description

variant VARIANT Variant that contains the value in
uCharValue.

Chapter 11 ActiveX Automation Library — Error Conditions

Standard Libraries Reference Manual 11-202 © National Instruments Corporation

Error Conditions

Most of the functions in the ActiveX Automation Library return error codes, which are
defined in cvi\include\cviauto.h or in cvi\sdk\include\winerror.h. Table 11-19
lists error codes defined in cviauto.h or winerror.h that the ActiveX Automation Library
returns explicitly. Occasionally, an ActiveX Automation Library function returns an error
code because an internal call to a Windows function returns it. Table 11-19 does not list such
error codes, but winerror.h does.

You can use CA_GetAutomationErrorString to get the description of an error code. You
can use CA_DisplayErrorInfo to display the description of an error code.

Table 11-19. ActiveX Automation Library Error Codes

Defined Constant Value Description

E_CVIAUTO_NO_ERROR 0 No error.

E_CVIAUTO_INVALID_TYPE_DESC 0X80040201 Type you passed is an
invalid Automation
data type.

E_CVIAUTO_INVALID_RETURN_TYPE 0X80040202 Type you passed is an
invalid return type.

E_CVIAUTO_USE_CAVT_TYPE_DESC 0X80040203 Use CAVT_ constants
for data types instead of
VT_ constants.

E_CVIAUTO_INVALID_NUM_DIM 0X80040204 Number of dimensions
in the safe array does
not match the number
this function requires.

E_CVIAUTO_DIFF_SAFEARRAY_TYPE 0X80040205 Safe array type does
not match the type
you request.

E_CVIAUTO_VARIANT_NOT_SAFEARRAY 0X80040206 Variant does not
contain a safe array.

E_CVIAUTO_NULL_RET_VAL_PARAM 0X80040207 Return value parameter
must not be NULL.

E_CVIAUTO_DLL_LOAD_FAILED 0X80040208 Could not load the
Automation
Support DLL.

Chapter 11 ActiveX Automation Library — Error Conditions

© National Instruments Corporation 11-203 Standard Libraries Reference Manual

Note Refer to cvi\sdk\winerror.h for more Windows SDK error codes.

E_CVIAUTO_BAD_DLL_VERSION 0X80040209 Automation Support
DLL version does not
match the import
library.

E_CVIAUTO_COULD_NOT_CREATE_MUTEX 0X8004020A Unable to create a
required mutex.

DISP_E_TYPEMISMATCH 0X80020005 Variant type does not
match the type this
function requires.

DISP_E_BADVARTYPE 0X80020008 Variant type is invalid
for the operation
you request.

DISP_E_EXCEPTION 0X80020009 Exception occurred in
server; refer to
ERRORINFO structure
for details or call
CA_DisplayError
Info.

E_HANDLE 0X80070006 Invalid object handle.

E_OUTOFMEMORY 0X8007000E Out of memory.

E_INVALIDARG 0X80070057 Invalid argument, such
as NULL pointer.

ERROR_INSUFFICIENT_BUFFER 0X8007007A Array buffer is not
large enough to receive
the contents of the
safe array.

Table 11-19. ActiveX Automation Library Error Codes (Continued)

Defined Constant Value Description

© National Instruments Corporation A-1 Standard Libraries Reference Manual

A
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
questions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also download
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use
your Internet address, such as joesmith@anywhere.com, as your password. The support files and
documents are located in the /support directories.

Standard Libraries Reference Manual A-2 © National Instruments Corporation

Fax-on-Demand Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) __

Computer brand____________ Model ___________________ Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter __________________________

Mouse ___yes ___no Other adapters installed _______________________________________

Hard disk capacity _____MB Brand___

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: ___

LabWindows/CVI Hardware and Software
Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration, and
use this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your
questions more efficiently.

National Instruments Products

Hardware revision ___

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware ___

Programming choice ___

National Instruments software __

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Other Products

Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: LabWindows/CVI Standard Libraries Reference Manual

Edition Date: February 1998

Part Number: 320682D-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) _______________________________

Mail to: Technical Publications Fax to: Technical Publications

National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

© National Instruments Corporation G-1 Standard Libraries Reference Manual

Glossary

Prefix Meanings Value

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

Numbers/Symbols

1D One-dimensional.

2D Two-dimensional.

A

A/D Analog-to-digital.

AI Analog input.

analog trigger A trigger that occurs at a user-selected point on an incoming analog signal.
You can set triggering to occur at a specific level on an increasing or a
decreasing signal, that is, a positive or negative slope. You can implement
analog triggering in software or in hardware. When you implement it in
software, all data is collected, transferred into system memory, and
analyzed for the trigger condition. When you implement it in hardware, no
data is transferred to system memory until the trigger condition has
occurred.

ANSI American National Standards Institute.

AO Analog output.

Glossary

Standard Libraries Reference Manual G-2 © National Instruments Corporation

asynchronous (1) Hardware—A property of an event that occurs at an arbitrary time,
without synchronization to a reference clock.

(2) Software—A property of a function that begins an operation and returns
before the completion or termination of the operation.

automatic serial A feature in which the GPIB polling driver automatically executes serial
polls whenever a device asserts the SRQ line.

B

B Bytes.

C

C locale The minimal environment for compiling a C program.

counter/timer A circuit that counts external pulses or clock pulses (timing).

coupling The manner in which a signal is connected from one location to another.

D

Data acquisition (1) Collecting and measuring electrical signals from sensors, transducers,
and test probes or fixtures and inputting them to a computer for processing.

(2) Collecting and measuring the same kinds of electrical signals with A/D
and/or DIO boards plugged into a PC and possibly generating control
signals with D/A and/or DIO boards in the same PC.

device Refers to a DAQ device inside your computer or attached directly to your
computer through a parallel port. Plug-in boards, PCMCIA cards, and
devices such as the DAQPad-1200, which connects to your computer
parallel port, are all examples of DAQ devices. SCXI modules are distinct
from devices with the exception of the SCXI-1200, which is a hybrid.

differential input An analog input that consists of two terminals, both of which are isolated
from computer ground, whose difference is measured.

digital port Refer to port.

DIO Digital I/O.

Glossary

© National Instruments Corporation G-3 Standard Libraries Reference Manual

F

FIFO A first-in first-out memory buffer; the first data stored is the first data sent
to the acceptor.

format string A mini-program that instructs the formatting and scanning functions how
to transform the input arguments to the output arguments. For conciseness,
format strings are constructed using single-character codes.

G

gender Refers to cable connector types. A male connector is one with protruding
pins, like a lamp plug. A female connector has holes, like an outlet.

gender changer A small device you can attach to serial cable connectors or PC sockets,
among others, to convert a female connector into a male or a male
connector into a female.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE Standards
488.1-1987 and 488.2-1992.

group A collection of digital ports, combined to form a larger entity for digital
input and/or output.

H

handshaking Prevents overflow of the input queue that occurs when the receiver is
unable to empty its input queue as quickly as the sender is able to fill it. The
RS-232 Library has two types of handshaking: software handshaking and
hardware handshaking. You should enable one or the other if you want to
ensure that your application program synchronizes its data transfers with
other serial devices that perform handshaking.

Hz Hertz.

Glossary

Standard Libraries Reference Manual G-4 © National Instruments Corporation

I

ID Identification.

IEEE Institute of Electrical and Electronics Engineers.

Instrument Library A LabWindows/CVI library that contains instrument drivers.

interrupt A computer signal that indicates the CPU should suspend its current task to
service a designated activity.

I/O Input/output.

K

KB Kilobytes of memory.

M

MB Megabytes of memory.

MIO Multifunction I/O.

ms Milliseconds.

N

NI-488 functions National Instruments functions you use to communicate with GPIB devices
built according to the ANSI/IEEE Standards 488.1-1987 and 488.2-1992.

NI-488.2 routines National Instruments routines you use to communicate with GPIB devices
built according to the ANSI/IEEE Standard 488.2-1992.

P

port A digital port that consists of four or eight lines of digital input and/or
output.

Glossary

© National Instruments Corporation G-5 Standard Libraries Reference Manual

R

resolution The smallest signal increment a measurement system can detect.
Resolution can be expressed in bits, in proportions, or in percent of full
scale. For example, a system has 12-bit resolution, one part in
4,096 resolution, and 0.0244 percent of full scale.

S

SCXI Signal Conditioning eXtensions for Instrumentation; the National
Instruments product line for conditioning low-level signals within an
external chassis near sensors so only high-level signals are sent to DAQ
boards in the noisy PC environment.

software trigger A programmed event that triggers an event such as data acquisition.

standard libraries The LabWindows/CVI Analysis, ANSI C, DDE, Formatting and I/O, GPIB
and GPIB-488.2, RS-232, TCP, and Utility libraries.

synchronous (1) Hardware—Property of an event that is synchronized to a
reference clock.

(2) Software—Property of a function that begins an operation and returns
only when the operation is complete.

T

TC Terminal count.

TTL Transistor-Transistor Logic.

X

Xmodem functions Allow you to transfer files that use a data transfer protocol. The protocol
uses a generally accepted technique to perform serial file transfers with
error-checking. Files are sent in packets that contain data from the files
plus error-checking and synchronization information.

© National Instruments Corporation I-1 Standard Libraries Reference Manual

Index

Numbers and Special Characters
1D array functions. See one-dimensional array

operation functions.

1D complex operation functions. See
one-dimensional complex operation functions.

2D array functions. See two-dimensional array
operation functions.

* (asterisks) in format specifiers

formatting functions, 2-61

scanning functions, 2-74

A
Abs1D function, 3-5

accessing physical memory. See
physical memory access functions.

accessing window properties. See
window properties, accessing.

ActiveX Automation Library

data type modifiers for variants, safe arrays,
and properties (table), 11-10

data types for variants, safe arrays, and
properties (table), 11-9 to 11-10

error conditions, 11-202 to 11-203

events not supported, 11-2

function panels

classes, 11-7 to 11-8

function tree, 11-3 to 11-7

function reference

CA_Array1DToSafeArray, 11-12

CA_Array2DToSafeArray,
11-13 to 11-14

CA_BSTRGetCString, 11-15

CA_BSTRGetCStringBuf, 11-16

CA_BSTRGetCStringLen, 11-17

CA_CreateObjectByClassId,
11-18 to 11-19

CA_CreateObjectByProgId, 11-20 to
11-21

CA_CreateObjHandleFromIDispatch,
11-22

CA_CStringToBSTR, 11-23

CA_DefaultValueVariant, 11-8, 11-24

CA_DiscardObjHandle, 11-25

CA_DisplayErrorInfo, 11-26

CA_FreeMemory, 11-27

CA_FreeUnusedServers, 11-28

CA_GetActiveObjectByClassId,
11-29 to 11-30

CA_GetActiveObjectByProgId,
11-31 to 11-32

CA_GetAutomationErrorString, 11-33

CA_GetDispatchFromObjHandle,
11-34

CA_GetLocale, 11-35

CA_InvokeHelper, 11-36 to 11-40

CA_InvokeHeplerV, 11-41

CA_LoadObjectFromFile,
11-42 to 11-43

CA_LoadObjectFromFileByClassId,
11-44 to 11-45

CA_LoadObjectFromFileByProgId,
11-46 to 11-47

CA_MethodInvoke, 11-48 to 11-49

CA_MethodInvokeV, 11-50

CA_PropertyGet, 11-51 to 11-52

CA_PropertySet, 11-53 to 11-54

CA_PropertySetByRef, 11-55 to 11-56

CA_PropertySetByRefV, 11-57

CA_PropertySetV, 11-58

CA_SafeArrayDestroy, 11-59

CA_SafeArrayGet1DSize, 11-60

CA_SafeArrayGet2DSize, 11-61

CA_SafeArrayGetNumDims, 11-62

Index

Standard Libraries Reference Manual I-2 © National Instruments Corporation

CA_SafeArrayTo1DArray, 11-63 to
11-65

CA_SafeArrayTo1DArrayBuf,
11-66 to 11-68

CA_SafeArrayTo2DArray,
11-69 to 11-71

CA_SafeArrayTo2DArrayBuf,
11-72 to 11-74

CA_SetLocale, 11-75 to 11-76

CA_VariantBool, 11-77

CA_VariantBSTR, 11-78

CA_VariantClear, 11-8, 11-9, 11-79

CA_VariantConvertToType, 11-9,
11-80 to 11-81

CA_VariantCopy, 11-82

CA_VariantCurrency, 11-83

CA_VariantDate, 11-84

CA_VariantDispatch, 11-85

CA_VariantDouble, 11-86

CA_VariantEmpty, 11-87

CA_VariantError, 11-88

CA_VariantFloat, 11-89

CA_VariantGet1DArray,
11-90 to 11-92

CA_VariantGet1DArrayBuf,
11-93 to 11-95

CA_VariantGet1DArraySize, 11-96

CA_VariantGet2DArray,
11-97 to 11-99

CA_VariantGet2DArrayBuf,
11-100 to 11-102

CA_VariantGet2DArraySize, 11-103

CA_VariantGetArrayNumDims,
11-104

CA_VariantGetBool, 11-105

CA_VariantGetBoolPtr, 11-106

CA_VariantGetBSTR, 11-107

CA_VariantGetBSTRPtr, 11-108

CA_VariantGetCString, 11-109

CA_VariantGetCStringBuf, 11-110

CA_VariantGetCStringLen, 11-111

CA_VariantGetCurrency, 11-112

CA_VariantGetCurrencyPtr, 11-113

CA_VariantGetDate, 11-114

CA_VariantGetDatePtr, 11-115

CA_VariantGetDispatch, 11-116

CA_VariantGetDispatchPtr, 11-117

CA_VariantGetDouble, 11-118

CA_VariantGetDoublePtr, 11-119

CA_VariantGetError, 11-120

CA_VariantGetErrorPtr, 11-121

CA_VariantGetFloat, 11-122

CA_VariantGetFloatPtr, 11-123

CA_VariantGetInt, 11-124

CA_VariantGetIntPtr, 11-125

CA_VariantGetIUnknown, 11-126

CA_VariantGetIUnknownPtr,
11-127

CA_VariantGetLong, 11-9, 11-128

CA_VariantGetLongPtr, 11-129

CA_VariantGetObjHandle, 11-130

CA_VariantGetSafeArray,
11-131 to 11-132

CA_VariantGetSafeArrayPtr,
11-133 to 11-134

CA_VariantGetShort, 11-135

CA_VariantGetShortPtr, 11-136

CA_VariantGetType, 11-8, 11-137

CA_VariantGetUChar, 11-138

CA_VariantGetUChartPtr, 11-139

CA_VariantGetVariantPtr, 11-140

CA_VariantHasArray, 11-141

CA_VariantHasBool, 11-142

CA_VariantHasBSTR, 11-143

CA_VariantHasCString, 11-144

CA_VariantHasCurrency, 11-145

CA_VariantHasDate, 11-146

CA_VariantHasDispatch, 11-147

CA_VariantHasDouble, 11-148

CA_VariantHasError, 11-149

CA_VariantHasFloat, 11-150

CA_VariantHasInt, 11-151

Index

© National Instruments Corporation I-3 Standard Libraries Reference Manual

CA_VariantHasIUnknown, 11-152

CA_VariantHasLong, 11-9, 11-153

CA_VariantHasNull, 11-154

CA_VariantHasObjectHandle,
11-155

CA_VariantHasPtr, 11-156

CA_VariantHasShort, 11-9, 11-157

CA_VariantHasUChar, 11-158

CA_VariantInt, 11-159

CA_VariantIsEmpty, 11-160

CA_VariantIUnknown, 11-161

CA_VariantLong, 11-162

CA_VariantNULL, 11-163

CA_VariantSet1DArray,
11-164 to 11-165

CA_VariantSet2DArray,
11-166 to 11-167

CA_VariantSetBool, 11-168

CA_VariantSetBoolPtr, 11-169

CA_VariantSetBSTR, 11-170

CA_VariantSetBSTRPtr, 11-171

CA_VariantSetCString, 11-172

CA_VariantSetCurrency, 11-173

CA_VariantSetCurrencyPtr, 11-174

CA_VariantSetDate, 11-175

CA_VariantSetDatePtr, 11-176

CA_VariantSetDispatch, 11-177

CA_VariantSetDispatchPtr, 11-178

CA_VariantSetDouble, 11-179

CA_VariantSetDoublePtr, 11-180

CA_VariantSetEmpty, 11-181

CA_VariantSetError, 11-182

CA_VariantSetErrorPtr, 11-183

CA_VariantSetFloat, 11-184

CA_VariantSetFloatPtr, 11-185

CA_VariantSetInt, 11-186

CA_VariantSetIntPtr, 11-187

CA_VariantSetIUnknown, 11-188

CA_VariantSetIUnknownPtr, 11-189

CA_VariantSetLong, 11-190

CA_VariantSetLongPtr, 11-191

CA_VariantSetNULL, 11-192

CA_VariantSetSafeArray, 11-193

CA_VariantSetSafeArrayPtr, 11-194

CA_VariantSetShort, 11-195

CA_VariantSetShortPtr, 11-196

CA_VariantSetUChar, 11-197

CA_VariantSetUCharPtr, 11-198

CA_VariantSetVariantPtr, 11-199

CA_VariantShort, 11-200

CA_VariantUChar, 11-201

handling dynamic memory variants
hold, 11-11

input variant parameters, 11-8

output variant parameters, 11-8 to 11-9

overview, 11-1 to 11-2

variants and safe arrays, 11-2

variants marked as empty by retrieval
functions, 11-9

Add1D function, 3-6

Add2D function, 3-7

AdviseDDEDataReady function, 6-7 to 6-9

AIAcquireTriggeredWaveforms function,
10-8 to 10-13

AIAcquireWaveforms function,
10-14 to 10-16

AICheckAcquisition function, 10-17

AIClearAcquisition function, 10-18

AIReadAcquisition function, 10-19 to 10-20

AISampleChannel function, 10-21 to 10-22

AISampleChannels function, 10-23 to 10-24

AIStartAcquisition function, 10-25 to 10-26

analog input functions, Easy I/O for
DAQ Library

AIAcquireTriggeredWaveforms,
10-8 to 10-13

AIAcquireWaveforms, 10-14 to 10-16

AISampleChannel, 10-21 to 10-22

AISampleChannels, 10-23 to 10-24

channel string, 10-4 to 10-5

Index

Standard Libraries Reference Manual I-4 © National Instruments Corporation

analog output functions, Easy I/O for
DAQ Library

AOClearWaveforms, 10-27

AOGenerateWaveforms, 10-28 to 10-29

AOUpdateChannel, 10-30

AOUpdateChannels, 10-31

channel string, 10-6 to 10-7

Analysis Library functions

error conditions, 3-51

function panels

classes and subclasses, 3-3

function tree (table), 3-1 to 3-2

hints for using, 3-4

function reference

Abs1D, 3-5

Add1D, 3-6

Add2D, 3-7

Clear1D, 3-8

Copy1D, 3-9

CxAdd, 3-10

CxAdd1D, 3-11

CxDiv, 3-12

CxDiv1D, 3-13

CxLinEv1D, 3-14 to 3-15

CxMul, 3-16

CxMul1D, 3-17

CxRecip, 3-18

CxSub, 3-19

CxSub1D, 3-20

Determinant, 3-21

Div1D, 3-22

Div2D, 3-23

DotProduct, 3-24

GetAnalysisErrorString, 3-25

Histogram, 3-26 to 3-27

InvMatrix, 3-28

LinEv1D, 3-29

LinEv2D, 3-30

MatrixMul, 3-31 to 3-32

MaxMin1D, 3-33

MaxMin2D, 3-34 to 3-35

Mean, 3-36

Mul1D, 3-37

Mul2D, 3-38

Neg1D, 3-39

Set1D, 3-40

Sort, 3-41

StdDev, 3-42

Sub1D, 3-43

Sub2D, 3-44

Subset1D, 3-45

ToPolar, 3-46

ToPolar1D, 3-47

ToRect, 3-48

ToRect1D, 3-49

Transpose, 3-50

overview, 3-1

reporting analysis errors, 3-4

ANSI C Library

C locale, 1-3 to 1-6

information values (table), 1-3 to 1-4

LC_COLLATE, 1-6

LC_CTYPE, 1-5 to 1-6

LC_MONETARY, 1-5

LC_NUMERIC, 1-5

LC_TIME, 1-6

character processing, 1-6

classes (table), 1-1 to 1-2

control functions, 1-9 to 1-11

errno set by file I/O functions, 1-7

fdopen function, 1-12

input/output facilities, 1-6

low-level I/O functions, 1-2

mathematical functions, 1-7

standard language additions, 1-3 to 1-6

string processing, 1-6

time and date functions, 1-7 to 1-9

ANSI C macros, 1-3

AOClearWaveforms function, 10-27

AOGenerateWaveforms function,
10-28 to 10-29

AOUpdateChannel function, 10-30

Index

© National Instruments Corporation I-5 Standard Libraries Reference Manual

AOUpdateChannels function, 10-31

array functions

ActiveX Automation Library

CA_Array1DToSafeArray, 11-12

CA_Array2DToSafeArray,
11-13 to 11-14

CA_SafeArrayGet1DSize, 11-60

CA_SafeArrayGet2DSize, 11-61

CA_SafeArrayGetNumDims, 11-62

CA_SafeArrayTo1DArray,
11-63 to 11-65

CA_SafeArrayTo1DArrayBuf,
11-66 to 11-68

CA_SafeArrayTo2DArray,
11-69 to 11-71

CA_SafeArrayTo2DArrayBuf,
11-72 to 11-74

Analysis Library

Abs1D, 3-5

Add1D, 3-6

Add2D, 3-7

Clear1D, 3-8

Copy1D, 3-9

Div1D, 3-22

Div2D, 3-23

LinEv1D, 3-29

LinEv2D, 3-30

MaxMin1D, 3-33

MaxMin2D, 3-34 to 3-35

Mul1D, 3-37

Mul2D, 3-38

Neg1D, 3-39

Set1D, 3-40

Sub1D, 3-43

Sub2D, 3-44

Subset1D, 3-45

ArrayToFile function, 2-5 to 2-7

asterisks (*) in format specifiers

formatting functions, 2-61

scanning functions, 2-74

asynchronous acquisition functions,
Easy I/O for DAQ Library

AICheckAcquisition, 10-17

AIClearAcquisition, 10-18

AIReadAcquisition, 10-19 to 10-20

AIStartAcquisition, 10-25 to 10-26

PlotLastAIWaveformsPopup, 10-63

asynchronous callbacks

notification of SRQ and other
GPIB events, 4-10

restrictions with ibNotify function, 4-21

automatic serial polling

compatibility, 4-8

hardware interrupts, 4-8

purpose and use, 4-7

RQS events

ibInstallCallback function, 4-16

ibNotify function, 4-20

SRQI events

ibInstallCallback function, 4-16

ibNotify function, 4-20

B
Beep function, 8-6

board control functions, GPIB, 4-2, 4-6 to 4-7

break on library error functions

DisableBreakOnLibraryErrors, 8-22

EnableBreakOnLibraryErrors, 8-27

GetBreakOnLibraryErrors, 8-31

GetBreakOnProtectionErrors, 8-32

SetBreakOnLibraryErrors, 8-109 to 8-110

SetBreakOnProtectionErrors,
8-111 to 8-112

Breakpoint function, 8-7

BroadcastDDEDataReady function,
6-10 to 6-11

BSTR functions

CA_BSTRGetCString, 11-15

CA_BSTRGetCStringBuf, 11-16

Index

Standard Libraries Reference Manual I-6 © National Instruments Corporation

CA_BSTRGetCStringLen, 11-17

CA_CStringToBSTR, 11-23

bus control functions, GPIB Library, 4-2

byte count variable (ibcntl), 4-6

C
C locale, 1-3 to 1-6

information values (table), 1-3 to 1-4

LC_COLLATE, 1-6

LC_CTYPE, 1-5 to 1-6

LC_MONETARY, 1-5

LC_NUMERIC, 1-5

LC_TIME, 1-6

CA_Array1DToSafeArray function, 11-12

CA_Array2DToSafeArray function,
11-13 to 11-14

CA_BSTRGetCString function, 11-15

CA_BSTRGetCStringBuf function, 11-16

CA_BSTRGetCStringLen function, 11-17

CA_CreateObjectByClassId function,
11-18 to 11-19

CA_CreateObjectByProgId function,
11-20 to 11-21

CA_CreateObjHandleFromIDispatch
function, 11-22

CA_CStringToBSTR function, 11-23

CA_DEFAULT_VAL macro, 11-8

CA_DefaultValueVariant function,
11-8, 11-24

CA_DiscardObjHandle function, 11-25

CA_DisplayErrorInfo function, 11-26

CA_FreeMemory function, 11-27

CA_FreeUnusedServers function, 11-28

CA_GetActiveObjectByClassId function,
11-29 to 11-30

CA_GetActiveObjectByProgId function,
11-31 to 11-32

CA_GetAutomationErrorString
function, 11-33

CA_GetDispatchFromObjHandle
function, 11-34

CA_GetLocale function, 11-35

CA_InvokeHelper function, 11-36 to 11-40

CA_InvokeHeplerV function, 11-41

CA_LoadObjectFromFile function,
11-42 to 11-43

CA_LoadObjectFromFileByClassId function,
11-44 to 11-45

CA_LoadObjectFromFileByProgId function,
11-46 to 11-47

CA_MethodInvoke function, 11-48 to 11-49

CA_MethodInvokeV function, 11-50

CA_PropertyGet function, 11-51 to 11-52

CA_PropertySet function, 11-53 to 11-54

CA_PropertySetByRef function,
11-55 to 11-56

CA_PropertySetByRefV function, 11-57

CA_PropertySetV function, 11-58

CA_SafeArrayDestroy function, 11-59

CA_SafeArrayGet1DSize function, 11-60

CA_SafeArrayGet2DSize function, 11-61

CA_SafeArrayGetNumDims function, 11-62

CA_SafeArrayTo1DArray function,
11-63 to 11-65

CA_SafeArrayTo1DArrayBuf function,
11-66 to 11-68

CA_SafeArrayTo2DArray function,
11-69 to 11-71

CA_SafeArrayTo2DArrayBuf function,
11-72 to 11-74

CA_SetLocale function, 11-75 to 11-76

CA_VariantBool function, 11-77

CA_VariantBSTR function, 11-78

CA_VariantClear function, 11-8, 11-9, 11-79

CA_VariantConvertToType function, 11-9,
11-80 to 11-81

CA_VariantCopy function, 11-82

CA_VariantCurrency function, 11-83

CA_VariantDate function, 11-84

CA_VariantDispatch function, 11-85

Index

© National Instruments Corporation I-7 Standard Libraries Reference Manual

CA_VariantDouble function, 11-86

CA_VariantEmpty function, 11-87

CA_VariantError function, 11-88

CA_VariantFloat function, 11-89

CA_VariantGet1DArray function,
11-90 to 11-92

CA_VariantGet1DArrayBuf function,
11-93 to 11-95

CA_VariantGet1DArraySize function, 11-96

CA_VariantGet2DArray function,
11-97 to 11-99

CA_VariantGet2DArrayBuf function,
11-100 to 11-102

CA_VariantGet2DArraySize function, 11-103

CA_VariantGetArrayNumDims
function, 11-104

CA_VariantGetBool function, 11-105

CA_VariantGetBoolPtr function, 11-106

CA_VariantGetBSTR function, 11-107

CA_VariantGetBSTRPtr function, 11-108

CA_VariantGetCString function, 11-109

CA_VariantGetCStringBuf function, 11-110

CA_VariantGetCStringLen function, 11-111

CA_VariantGetCurrency function, 11-112

CA_VariantGetCurrencyPtr function, 11-113

CA_VariantGetDate function, 11-114

CA_VariantGetDatePtr function, 11-115

CA_VariantGetDispatch function, 11-116

CA_VariantGetDispatchPtr function, 11-117

CA_VariantGetDouble function, 11-118

CA_VariantGetDoublePtr function, 11-119

CA_VariantGetError function, 11-120

CA_VariantGetErrorPtr function, 11-121

CA_VariantGetFloat function, 11-122

CA_VariantGetFloatPtr function, 11-123

CA_VariantGetInt function, 11-124

CA_VariantGetIntPtr function, 11-125

CA_VariantGetIUnknown function, 11-126

CA_VariantGetIUnknownPtr function, 11-127

CA_VariantGetLong function, 11-9, 11-128

CA_VariantGetLongPtr function, 11-129

CA_VariantGetObjHandle function, 11-130

CA_VariantGetSafeArray function,
11-131 to 11-132

CA_VariantGetSafeArrayPtr function,
11-133 to 11-134

CA_VariantGetShort function, 11-135

CA_VariantGetShortPtr function, 11-136

CA_VariantGetType function, 11-8, 11-137

CA_VariantGetUChar function, 11-138

CA_VariantGetUChartPtr function, 11-139

CA_VariantGetVariantPtr function, 11-140

CA_VariantHasArray function, 11-141

CA_VariantHasBool function, 11-142

CA_VariantHasBSTR function, 11-143

CA_VariantHasCString function, 11-144

CA_VariantHasCurrency function, 11-145

CA_VariantHasDate function, 11-146

CA_VariantHasDispatch function, 11-147

CA_VariantHasDouble function, 11-148

CA_VariantHasError function, 11-149

CA_VariantHasFloat function, 11-150

CA_VariantHasInt function, 11-151

CA_VariantHasIUnknown function, 11-152

CA_VariantHasLong function, 11-9, 11-153

CA_VariantHasNull function, 11-154

CA_VariantHasObjectHandle
function, 11-155

CA_VariantHasPtr function, 11-156

CA_VariantHasShort function, 11-9, 11-157

CA_VariantHasUChar function, 11-158

CA_VariantInt function, 11-159

CA_VariantIsEmpty function, 11-160

CA_VariantIUnknown function, 11-161

CA_VariantLong function, 11-162

CA_VariantNULL function, 11-163

CA_VariantSet1DArray function,
11-164 to 11-165

CA_VariantSet2DArray function,
11-166 to 11-167

CA_VariantSetBool function, 11-168

CA_VariantSetBoolPtr function, 11-169

Index

Standard Libraries Reference Manual I-8 © National Instruments Corporation

CA_VariantSetBSTR function, 11-170

CA_VariantSetBSTRPtr function, 11-171

CA_VariantSetCString function, 11-172

CA_VariantSetCurrency function, 11-173

CA_VariantSetCurrencyPtr function, 11-174

CA_VariantSetDate function, 11-175

CA_VariantSetDatePtr function, 11-176

CA_VariantSetDispatch function, 11-177

CA_VariantSetDispatchPtr function, 11-178

CA_VariantSetDouble function, 11-179

CA_VariantSetDoublePtr function, 11-180

CA_VariantSetEmpty function, 11-181

CA_VariantSetError function, 11-182

CA_VariantSetErrorPtr function, 11-183

CA_VariantSetFloat function, 11-184

CA_VariantSetFloatPtr function, 11-185

CA_VariantSetInt function, 11-186

CA_VariantSetIntPtr function, 11-187

CA_VariantSetIUnknown function, 11-188

CA_VariantSetIUnknownPtr function, 11-189

CA_VariantSetLong function, 11-190

CA_VariantSetLongPtr function, 11-191

CA_VariantSetNULL function, 11-192

CA_VariantSetSafeArray function, 11-193

CA_VariantSetSafeArrayPtr function, 11-194

CA_VariantSetShort function, 11-195

CA_VariantSetShortPtr function, 11-196

CA_VariantSetUChar function, 11-197

CA_VariantSetUCharPtr function, 11-198

CA_VariantSetVariantPtr function, 11-199

CA_VariantShort function, 11-200

CA_VariantUChar function, 11-201

cables. See RS-232 cables.

callback functions

DDE Library functions, 6-2 to 6-4

DDE transaction types (table), 6-4

example using Excel, 6-5 to 6-6

parameter prototypes (table), 6-3

GPIB/GPIB-488.2 Libraries

function tree, 4-3

ibInstallCallback, 4-10, 4-14 to 4-16

ibNotify, 4-10, 4-18 to 4-21

Windows 95/NT

asynchronous callbacks, 4-10

driver version
requirements, 4-10

ibInstallCallback, 4-14 to 4-16

ibNotify function, 4-18 to 4-21

synchronous callbacks, 4-10

RS-232 Library

function tree, 5-2

InstallComCallback, 5-33 to 5-36

TCP Library functions

overview, 7-3

TCP transaction types (table), 7-3

X Property Library functions

InstallXPropertyCallback, 9-4,
9-30 to 9-32

overview, 9-4

UninstallXPropertyCallback,
9-4, 9-40

character processing, ANSI C, 1-6

CheckForDuplicateAppInstance function,
8-8 to 8-9

classes, ANSI C Library, 1-1 to 1-2

clear functions, GPIB-488.2 Library, 4-3

Clear1D function, 3-8

ClientDDEExecute function, 6-12

ClientDDERead function, 6-13 to 6-14

ClientDDEWrite function, 6-15 to 6-16

clients and servers

DDE Library functions, 6-2

TCP Library functions, 7-1

ClientTCPRead function, 7-5

ClientTCPWrite function, 7-6

close functions

GPIB and GPIB-488.2 Libraries, 4-2

RS-232 Library, 5-1

Index

© National Instruments Corporation I-9 Standard Libraries Reference Manual

CloseCom function, 5-10

CloseCVIRTE function, 8-10

CloseDev function, 4-6, 4-12

CloseFile function, 2-8

CloseInstrDevs function, 4-13

Cls function, 8-11

ComBreak function, 5-11

ComFromFile function, 5-3, 5-12 to 5-13

communications functions. See
RS-232 Library functions.

CompareBytes function, 2-9 to 2-10

CompareStrings function, 2-11 to 2-12

complex operation functions

CxAdd, 3-10

CxAdd1D, 3-11

CxDiv, 3-12

CxDiv1D, 3-13

CxLinEv1D, 3-14 to 3-15

CxMul, 3-16

CxMul1D, 3-17

CxRecip, 3-18

CxSub, 3-19

CxSub1D, 3-20

ToPolar, 3-46

ToPolar1D, 3-47

ToRect, 3-48

ToRect1D, 3-49

ComRd function, 5-14 to 5-15

ComRdByte function, 5-16

ComRdTerm function, 5-17 to 5-18

ComSetEscape function, 5-19 to 5-20

ComToFile function, 5-3, 5-21 to 5-22

ComWrt function, 5-2 to 35-24

ComWrtByte function, 5-25

configuration functions, GPIB Library,
4-2 to 4-3

ConnectToDDEServer function, 6-2,
6-17 to 6-19

ConnectToTCPServer function, 7-7 to 7-8

ConnectToXDisplay function, 9-3, 9-6 to 9-7

ContinuousPulseGenConfig, 10-32 to 10-34

control functions

ANSI C library, 1-9 to 1-11

error codes (table), 1-10 to 1-11

RS-232 Library

ComBreak, 5-11

ComSetEscape, 5-19 to 5-20

FlushInQ, 5-26

SetComTime, 5-43

SetCTSMode, 5-7, 5-44 to 5-45

SetXMode, 5-7, 5-46

Copy1D function, 3-9

CopyBytes function, 2-13

CopyFile function, 8-12 to 8-13

CopyString function, 2-14

Count control, GPIB, 4-6

Count Variables (ibcnt, ibcntl), 4-6, 4-9

CounterEventOrTimeConfig function,
10-35 to 10-38

CounterMeasureFrequency function,
10-39 to 10-42

CounterRead function, 10-32 to 10-33

CounterStart function, 10-44

CounterStop function, 10-45

counter/timer functions, Easy I/O for
DAQ Library

ContinuousPulseGenConfig,
10-32 to 10-34

CounterEventOrTimeConfig,
10-35 to 10-38

CounterMeasureFrequency,
10-39 to 10-42

CounterRead, 10-43

CounterStart, 10-44

CounterStop, 10-45

DelayedPulseGenConfig, 10-46 to 10-48

FrequencyDividerConfig, 10-49 to 10-52

ICounterControl, 10-61 to 10-62

PulseWidthOrPeriodMeasConfig,
10-64 to 10-66

valid counters (table), 10-7

Index

Standard Libraries Reference Manual I-10 © National Instruments Corporation

CreateXProperty function, 9-3, 9-8 to 9-9

CreateXPropType function, 9-3, 9-10 to 9-12

customer communication, xxvii, A-1 to A-2

CVILowLevelSupportDriverLoaded
function, 8-14 to 8-15

CVIRTEHasBeenDetached function,
8-16 to 8-17

CVIXDisplay global variable, 9-3

CVIXHiddenWindow global variable, 9-4

CVIXRootWindow variable, 9-3

CxAdd function, 3-10

CxAdd1D function, 3-11

CxDiv function, 3-12

CxDiv1D function, 3-13

CxLinEv1D function, 3-14 to 3-15

CxMul function, 3-16

CxMul1D function, 3-17

CxRecip function, 3-18

CxSub function, 3-19

CxSub1D function, 3-20

D
data acquisition functions. See Easy I/O for

DAQ Library.

data formatting functions. See
formatting functions; scanning functions;
status functions.

DateStr function, 8-18

date/time functions

ANSI C Library, 1-7 to 1-9

CA_VariantDate, 11-84

CA_VariantGetDate, 11-114

CA_VariantGetDatePtr, 11-115

CA_VariantHasDate, 11-146

CA_VariantSetDate, 11-175

CA_VariantSetDatePtr, 11-176

configuring DST rules string, 1-8

DateStr, 8-18

GetSystemDate, 8-67

GetSystemTime, 8-68

modifying DST rules string, 1-8 to 1-9

SetSystemDate, 8-129

SetSystemTime, 8-130

starting year in daylight savings time, 1-9

suppressing daylight savings time, 1-9

TimeStr, 8-139

daylight savings time. See date/time functions.

DCE device, 5-5

DDE Library functions

callback function, 6-2 to 6-4

functions capable of trigger callback
function (table), 6-4

parameter prototypes (table), 6-3

clients and servers, 6-2

connecting to DDE server, 6-2

DDE data links, 6-4 to 6-5

DDE transaction types (table), 6-4

error conditions, 6-31 to 6-32

function reference

AdviseDDEDataReady, 6-7 to 6-9

BroadcastDDEDataReady,
6-10 to 6-11

ClientDDEExecute, 6-12

ClientDDERead, 6-13 to 6-14

ClientDDEWrite, 6-15 to 6-16

ConnectToDDEServer, 6-2,
6-17 to 6-19

DisconnectFromDDEServer, 6-20

GetDDEErrorString, 6-21

RegisterDDEServer, 6-2,
6-22 to 6-24

ServerDDEWrite, 6-25 to 6-26

SetUpDDEHotLink, 6-4, 6-27

SetUpDDEWarmLink, 6-4, 6-28

TerminateDDELink, 6-29

UnregisterDDEServer, 6-30

function tree (table), 6-1 to 6-2

Microsoft Excel example, 6-5 to 6-6

multithreading under
Windows 95/NT, 6-6

Index

© National Instruments Corporation I-11 Standard Libraries Reference Manual

Delay function, 8-19

DelayedPulseGenConfig function,
10-46 to 10-48

DeleteDir function, 8-20

DeleteFile function, 8-21

DestroyXProperty function, 9-13

DestroyXPropType function, 9-14

Determinant function, 3-21

device control functions, GPIB Library, 4-3,
4-6 to 4-7

device drivers, GPIB, 4-6

device I/O functions, GPIB-488.2 Library, 4-3

device numbers, Easy I/O for
DAQ Library, 10-4

digital input/output functions, Easy I/O for
DAQ Library

ReadFromDigitalLine, 10-67 to 10-68

ReadFromDigitalPort, 10-69 to 10-70

WriteToDigitalLine, 10-72 to 10-73

WriteToDigitalPort, 10-74 to 10-75

directory utility functions

DeleteDir, 8-20

GetDir, 8-35

GetDrive, 8-36

GetFullPathFromProject, 8-51 to 8-52

GetModuleDir, 8-56 to 8-57

GetProjectDir, 8-60 to 8-61

MakeDir, 8-90

MakePathname, 8-91

SetDir, 8-113

SetDrive, 8-114

SplitPath, 8-131 to 8-132

DisableBreakOnLibraryErrors function, 8-22

DisableInterrupts function, 8-23

DisableTaskSwitching function, 8-24 to 8-26

DisconnectFromDDEServer function, 6-20

DisconnectFromTCPServer function, 7-9

DisconnectFromXDisplay function, 9-15

DisconnectTCPClient function, 7-10

Div1D function, 3-22

Div2D function, 3-23

documentation

conventions used in manual, xxv-xxvi

LabWindows/CVI documentation
set, xxvi

organization of manual, xviii-xxv

related documentation, xxvi-xxvii

DotProduct function, 3-24

DSetUpDDEWarmLink function, 6-4 to 6-5

DTE device, 5-5

Dynamic Data Exchange (DDE). See
DDE Library functions.

dynamic link library, GPIB, 4-5

E
Easy I/O for DAQ Library

advantages, 10-1 to 10-2

calls to Data Acquisition Library
(note), 10-1

channel string

analog input functions, 10-4 to 10-5

analog output functions, 10-6 to 10-7

classes, 10-3

command strings, 10-5 to 10-6

device numbers, 10-4

error conditions (table), 10-76 to 10-91

function reference

AIAcquireTriggeredWaveforms,
10-8 to 10-13

AIAcquireWaveforms,
10-14 to 10-16

AICheckAcquisition, 10-17

AIClearAcquisition, 10-18

AIReadAcquisition, 10-19 to 10-20

AISampleChannel, 10-21 to 10-22

AISampleChannels, 10-23 to 10-24

AIStartAcquisition, 10-25 to 10-26

AOClearWaveforms, 10-27

AOGenerateWaveforms,
10-28 to 10-29

AOUpdateChannel, 10-30

Index

Standard Libraries Reference Manual I-12 © National Instruments Corporation

AOUpdateChannels, 10-31

ContinuousPulseGenConfig,
10-32 to 10-34

CounterEventOrTimeConfig,
10-35 to 10-38

CounterMeasureFrequency,
10-39 to 10-42

CounterRead, 10-43

CounterStart, 10-44

CounterStop, 10-45

DelayedPulseGenConfig,
10-46 to 10-48

FrequencyDividerConfig,
10-49 to 10-52

GetAILimitsOfChannel,
10-53 to 10-54

GetChannelIndices, 10-55 to 10-56

GetChannelNameFromIndex, 10-57

GetDAQErrorString, 10-58

GetNumChannels, 10-59

GroupByChannel, 10-60

ICounterControl, 10-61 to 10-62

PlotLastAIWaveformsPopup, 10-63

PulseWidthOrPeriodMeasConfig,
10-64 to 10-66

ReadFromDigitalLine,
10-67 to 10-68

ReadFromDigitalPort,
10-69 to 10-70

SetEasyIOMultitaskingMode, 10-71

WriteToDigitalLine, 10-72 to 10-73

WriteToDigitalPort, 10-74 to 10-75

function tree, 10-2 to 10-3

limitations, 10-2

overview, 10-1

valid counters for counter/timer functions
(table), 10-7

electronic support services, A-1 to A-2

e-mail support, A-2

EnableBreakOnLibraryErrors function, 8-27

EnableInterrupts function, 8-28

EnableTaskSwitching function, 8-29

END message, GPIB, 4-8

end-of-string (EOS) character, GPIB, 4-8

end-or-identify (EOI) signal, GPIB, 4-8

errno global variable, set by file I/O
functions, 1-7

error codes

control functions (table), 1-10 to 1-11

X Property Library, 9-4

error conditions

ActiveX Automation Library,
11-202 to 11-203

Analysis Library functions, 3-51

DDE Library functions, 6-31 to 6-32

Easy I/O for DAQ Library, 10-76 to 10-91

RS-232 Library functions, 5-52 to 5-54

TCP Library functions, 7-25

Error control, GPIB, 4-6

Error (iberr) global variable, 4-6, 4-9

error reporting

Analysis Library functions, 3-4

RS-232 Library functions, 5-3

error-related functions. See also
status functions.

CA_DisplayErrorInfo, 11-26

CA_GetAutomationErrorString, 11-33

DisableBreakOnLibraryErrors, 8-22

EnableBreakOnLibraryErrors, 8-27

GetAnalysisErrorString, 3-25

GetBreakOnLibraryErrors, 8-31

GetBreakOnProtectionErrors, 8-32

GetDDEErrorString, 6-21

GetFmtErrNdx, 2-26

GetRS232ErrorString, 5-32

GetTCPErrorString, 7-12

GetTCPSystemErrorString, 7-17

GetXPropErrorString, 9-16

ReturnRS232Err, 5-42

SetBreakOnLibraryErrors, 8-109 to 8-110

SetBreakOnProtectionErrors,
8-111 to 8-112

Index

© National Instruments Corporation I-13 Standard Libraries Reference Manual

example programs. See formatting function
programming examples; scanning function
programming examples.

ExecutableHasTerminated function, 8-30

executables, launching. See standalone
executables, launching.

extended character sets, 1-3

external module utility functions

GetExternalModuleAddr, 8-37 to 8-39

LoadExternalModule, 8-83 to 8-87

LoadExternalModuleEx, 8-88 to 8-89

ReleaseExternalModule, 8-101 to 8-102

RunExternalModule, 8-107 to 8-108

UnloadExternalModule, 8-141

F
fax and telephone support numbers, A-2

fdopen function, ANSI C Library, 1-12

file I/O functions

CloseFile, 2-8

errno global variable, 1-7

GetFileInfo, 2-25

OpenFile, 2-30 to 2-31

ReadFile, 2-32 to 2-33

SetFilePtr, 2-42 to 2-43

WriteFile, 2-47 to 2-48

file utility functions

CopyFile, 8-12 to 8-13

DeleteFile, 8-21

GetFileAttrs, 8-40 to 8-41

GetFileDate, 8-42 to 8-43

GetFileSize, 8-44 to 8-45

GetFileTime, 8-46 to 8-47

GetFirstFile, 8-48 to 8-50

GetNextFile, 8-58

RenameFile, 8-103 to 8-104

SetFileAttrs, 8-115 to 8-116

SetFileDate, 8-117

SetFileTime, 8-118 to 8-119

SplitPath, 8-131 to 8-132

FileToArray function, 2-15 to 2-17

FillBytes function, 2-18

FindPattern function, 2-19 to 2-20

floating-point modifiers (%f)

formatting functions, 2-57 to 2-58

scanning functions, 2-69 to 2-71

FlushInQ function, 5-26

FlushOutQ function, 5-27

Fmt, FmtFile, and FmtOut functions. See
formatting function programming
examples; formatting functions.

format codes

formatting functions, 2-53 to 2-54

scanning functions, 2-64 to 2-66

format string

formatting functions, 2-51 to 2-54

examples, 2-52

form of, 2-52

format codes, 2-53 to 2-54

literals, 2-61

scanning functions, 2-62 to 2-66

examples, 2-63

form of, 2-62

format codes, 2-64 to 2-66

literals, 2-75

Formatting and I/O Library functions

function panels

classes and subclasses, 2-3

function tree (table), 2-2

function reference

ArrayToFile, 2-5 to 2-7

CloseFile, 2-8

CompareBytes, 2-9 to 2-10

CompareStrings, 2-11 to 2-12

CopyBytes, 2-13

CopyString, 2-14

FileToArray, 2-15 to 2-17

FillBytes, 2-18

FindPattern, 2-19 to 2-20

Fmt, 2-21 to 2-22, 2-51

FmtFile, 2-23, 2-51

Index

Standard Libraries Reference Manual I-14 © National Instruments Corporation

FmtOut, 2-24, 2-51

GetFileInfo, 2-25

GetFmtErrNdx, 2-26

GetFmtIOError, 2-27

GetFmtIOErrorString, 2-28

NumFmtdBytes, 2-29

OpenFile, 2-30 to 2-31

ReadFile, 2-32 to 2-33

ReadLine, 2-34 to 2-35

Scan, 2-36 to 2-37, 2-62

ScanFile, 2-38 to 2-39, 2-62

ScanIn, 2-40 to 2-41, 2-62

SetFilePtr, 2-42 to 2-43

StringLength, 2-44

StringLowerCase, 2-45

StringUpperCase, 2-46

WriteFile, 2-47 to 2-48

WriteLine, 2-49

formatting function programming examples

appending to a string, 2-83

concatenating two strings, 2-82

creating array of file names, 2-84

integer and real to string with literals, 2-79

integer array to binary file, assuming fixed
number of elements, 2-80

integer to string, 2-76 to 2-77

list of examples, 2-84

real array to ASCII file in columns with
comma separators, 2-79 to 2-80

real array to binary file

assuming fixed number of
elements, 2-80

assuming variable number of
elements, 2-81

real to string

in floating-point notation, 2-78

in scientific notation, 2-78 to 2-79

short integer to string, 2-77

two integers to ASCII file with
error-checking, 2-79

variable portion of real array to binary
file, 2-81

writing line containing integer with
literals to standard output, 2-84

writing to standard output without
linefeed/carriage return, 2-84 to 2-85

formatting functions. See also scanning
functions; string manipulation functions.

asterisks (*) instead of constants in format
specifiers, 2-61

Fmt

description, 2-21 to 2-22

examples, 2-51

FmtFile

description, 2-23

examples, 2-51

FmtOut

description, 2-24

examples, 2-51

format string, 2-51 to 2-54

introductory examples, 2-50 to 2-51

literals in format string, 2-61

purpose and use, 2-50

special nature of, 2-3 to 2-4

formatting modifiers, 2-54 to 2-60. See also
scanning modifiers.

floating-point modifiers (%f),
2-57 to 2-58

integer modifiers (%i, %d, %x, %o, %c),
2-55 to 2-57

string modifiers (%s), 2-59 to 2-60

freeing resources. See
resource-freeing functions.

FrequencyDividerConfig function,
10-49 to 10-52

FTP support, A-1

Index

© National Instruments Corporation I-15 Standard Libraries Reference Manual

G
gender changer, 5-6

GetAILimitsOfChannel function,
10-53 to 10-54

GetAnalysisErrorString function, 3-25

GetBreakOnLibraryErrors function, 8-31

GetBreakOnProtectionErrors function, 8-32

GetChannelIndices function, 10-55 to 10-56

GetChannelNameFromIndex function, 10-57

GetComStat function, 5-28 to 5-29

GetCurrentPlatform function, 8-33

GetCVIVersion function, 8-34

GetDAQErrorString function, 10-58

GetDDEErrorString function, 6-21

GetDir function, 8-35

GetDrive function, 8-36

GetExternalModuleAddr function,
8-37 to 8-39

GetFileAttrs function, 8-40 to 8-41

GetFileDate function, 8-42 to 8-43

GetFileInfo function, 2-25

GetFileSize function, 8-44 to 8-45

GetFileTime function, 8-46 to 8-47

GetFirstFile function, 8-48 to 8-50

GetFmtErrNdx function, 2-26

GetFmtIOError function, 2-27

GetFmtIOErrorString function, 2-28

GetFullPathFromProject function,
8-51 to 8-52

GetHostTCPSocketHandle function, 7-11

GetInQLen function, 5-30

GetInterruptState function, 8-53

GetKey function, 8-54 to 8-55

GetModuleDir function, 8-56 to 8-57

GetNextFile function, 8-58

GetNumChannels function, 10-59

GetOutQLen function, 5-4, 5-31

GetPersistentVariable function, 8-59

GetProjectDir function, 8-60 to 8-61

GetRS232ErrorString function, 5-32

GetStdioPort function, 8-62

GetStdioWindowOptions function, 8-63

GetStdioWindowPosition function, 8-64

GetStdioWindowSize function, 8-65

GetStdioWindowVisibility function, 8-66

GetSystemDate function, 8-67

GetSystemTime function, 8-68

GetTCPErrorString function, 7-12

GetTCPHostAddr function, 7-13

GetTCPHostName function, 7-14

GetTCPPeerAddr function, 7-15

GetTCPPeerName function, 7-16

GetTCPSystemErrorString function, 7-17

GetWindowDisplaySetting function, 8-69

GetXPropErrorString function, 9-16

GetXPropertyName function, 9-17

GetXPropertyType function, 9-18

GetXPropTypeName function, 9-19

GetXPropTypeSize function, 9-20

GetXPropTypeUnit function, 9-21 to 9-22

GetXWindowPropertyItem function,
9-23 to 9-25

GetXWindowPropertyValue function,
9-26 to 9-29

global variables. See also status functions.

CVIXDisplay, 9-3

CVIXHiddenWindow, 9-4

Error (iberr), 4-6, 4-9

GPIB/GPIB-488.2 libraries, 4-9

rs232err, 5-3

Status Word (ibsta), 4-6, 4-9

GPIB and GPIB-488.2 Libraries

automatic serial polling, 4-7 to 4-8

board functions, 4-6 to 4-7

device functions, 4-6 to 4-7

function panels

classes and subclasses, 4-4 to 4-5

function tree (table), 4-2 to 4-4

function reference

CloseDev, 4-6, 4-12

CloseInstrDevs, 4-13

Index

Standard Libraries Reference Manual I-16 © National Instruments Corporation

ibInstallCallback, 4-10, 4-14 to 4-16

iblock, 4-17

ibNotify, 4-10, 4-18 to 4-21

ibunlock, 4-22

OpenDev, 4-6, 4-23

ThreadIbcnt, 4-24

ThreadIbcntl, 4-25

ThreadIberr, 4-26 to 4-28

ThreadIbsta, 4-29 to 4-30

writing instrument modules
(note), 4-6

global variables, 4-9

GPIB dynamic link library/device
driver, 4-5

guidelines and restrictions, 4-6

hardware interrupts and autopolling, 4-8

overview, 4-1

platform and board considerations,
4-9 to 4-10

read and write termination, 4-8 to 4-9

status and error controls, 4-6

timeouts, 4-9

Windows 95/NT, 4-9 to 4-10

multithreading, 4-9

notification of SRQ and other
GPIB events, 4-10

writing instrument modules (note), 4-6

GPIB device drivers, 4-5

GPIB.DLL, 4-5

GroupByChannel function, 10-60

H
handshaking for RS-232 communications,

5-6 to 5-8

hardware handshaking, 5-7 to 5-8

software handshaking, 5-7

hardware handshaking, 5-7 to 5-8

hardware interrupts and autopolling, 4-8

help, starting. See SystemHelp function.

hidden window for providing X window IDs,
9-3 to 9-4

Histogram function, 3-26 to 3-27

I
ibconf utility, 4-5

ibdev function, 4-6

ibfind function, 4-6

ibInstallCallback function, 4-14 to 4-16

callback function, 4-16

driver version requirements, 4-10

purpose and use, 4-14 to 4-16

SRQI, RQS, and auto serial polling, 4-16

synchronous callbacks, 4-10

iblock function, 4-17

ibNotify function, 4-18 to 4-21

asynchronous callbacks, 4-10

callback function, 4-20 to 4-21

driver version requirements, 4-10

purpose and use, 4-18 to 4-21

rearming error (warning), 4-20

restrictions in asynchronous
callbacks, 4-21

SRQI, RQS, and auto serial polling, 4-20

ibunlock function, 4-17

ICounterControl function, 10-61 to 10-62

InitCVIRTE function, 8-70 to 8-71

inp function, 8-72

input/output facilities, ANSI C, 1-6

inpw function, 8-73

InstallComCallback function, 5-33 to 5-36

InstallXPropertyCallback function, 9-4,
9-30 to 9-32

InStandaloneExecutable function, 8-74

integer modifiers (%i, %d, %x, %o, %c)

formatting functions, 2-55 to 2-57

scanning functions, 2-67 to 2-69

interrupts

DisableInterrupts function, 8-23

EnableInterrupts function, 8-28

Index

© National Instruments Corporation I-17 Standard Libraries Reference Manual

GetInterruptState function, 8-53

hardware interrupts and autopolling, 4-8

InvMatrix function, 3-28

I/O functions. See Easy I/O for DAQ Library;
Formatting and I/O Library functions;
Standard Input/Output window functions.

K
keyboard utility functions

GetKey, 8-54 to 8-55

KeyHit, 8-75 to 8-76

L
LaunchExecutable function, 8-77 to 8-79

LaunchExecutableEx function, 8-80 to 8-82

launching executables. See standalone
executables, launching.

LC_COLLATE locale, 1-6

LC_CTYPE locale, 1-5 to 1-6

LC_MONETARY locale, 1-5

LC_NUMERIC locale, 1-5

LC_TIME locale, 1-6

LinEv1D function, 3-29

LinEv2D function, 3-30

literals in format string

formatting functions, 2-61

scanning functions, 2-75

LoadExternalModule function, 8-83 to 8-87

LoadExternalModuleEx function, 8-88 to 8-89

local functions, GPIB-488.2 Library, 4-3

locale, C. See C locale.

locale functions, ActiveX Automation Library

CA_GetLocale, 11-35

CA_SetLocale, 11-75 to 11-76

locking functions, GPIB-488.2 Library

iblock, 4-17

ibunlock, 4-22

low-level functions, ActiveX
Automation Library

CA_CreateObjectByClassId,
11-18 to 11-19

CA_CreateObjectByProgId,
11-20 to 11-21

CA_CreateObjHandleFromIDispatch,
11-22

CA_GetActiveObjectByClassId,
11-29 to 11-30

CA_GetActiveObjectByProgId,
11-31 to 11-32

CA_GetDispatchFromObjHandle, 11-34

CA_InvokeHelper, 11-36 to 11-40

CA_InvokeHeplerV, 11-41

CA_LoadObjectFromFile, 11-42 to 11-43

CA_LoadObjectFromFileByClassId,
11-44 to 11-45

CA_LoadObjectFromFileByProgId,
11-46 to 11-47

CA_MethodInvoke, 11-48 to 11-49

CA_MethodInvokeV, 11-50

CA_PropertyGet, 11-51 to 11-52

CA_PropertySet, 11-53 to 11-54

CA_PropertySetByRef, 11-55 to 11-56

CA_PropertySetByRefV, 11-57

CA_PropertySetV, 11-58

low-level I/O functions

ANSI C Library, 1-2

GPIB-488.2 Library, 4-3 to 4-4

LPSAFEARRAY typedef, 11-2

M
MakeDir function, 8-90

MakePathname function, 8-91

managing property information. See property
information, managing.

manual. See documentation.

MapPhysicalMemory function, 8-92 to 8-94

mathematical functions, ANSI C, 1-7

Index

Standard Libraries Reference Manual I-18 © National Instruments Corporation

matrix algebra functions. See vector and
matrix algebra functions.

MatrixMul function, 3-31 to 3-32

MaxMin1D function, 3-33

MaxMin2D function, 3-34 to 3-35

Mean function, 3-36

memory access. See physical memory
access functions.

miscellaneous Easy I/O for DAQ functions

GetAILimitsOfChannel, 10-53 to 10-54

GetChannelIndices, 10-55 to 10-56

GetChannelNameFromIndex, 10-57

GetDAQErrorString, 10-58

GetNumChannels, 10-59

GroupByChannel, 10-60

SetEasyIOMultitaskingMode, 10-71

miscellaneous utility functions

Beep, 8-6

Breakpoint, 8-7

CheckForDuplicateAppInstance,
8-8 to 8-9

CloseCVIRTE, 8-10

Cls, 8-11

CVILowLevelSupportDriverLoaded,
8-14 to 8-15

CVIRTEHasBeenDetached, 8-16 to 8-17

DisableInterrupts, 8-23

EnableInterrupts, 8-28

GetCurrentPlatform, 8-33

GetCVIVersion, 8-34

GetInterruptState, 8-53

GetWindowDisplaySetting, 8-69

InitCVIRTE, 8-70 to 8-71

InStandaloneExecutable, 8-74

RoundRealToNearestInteger, 8-106

SystemHelp, 8-134 to 8-136

TruncateRealNumber, 8-140

Mul1D function, 3-37

Mul2D function, 3-38

multithreading, Windows 95/NT

DDE Library functions, 6-6

GPIB Library functions, 4-9

RS-232 Library functions, 5-8

N
Neg1D function, 3-39

null modem cable, 5-5

NumFmtdBytes function, 2-29

O
one-dimensional array operation functions

Abs1D, 3-5

Add1D, 3-6

Div1D, 3-22

LinEv1D, 3-29

MaxMin1D, 3-33

Mul1D, 3-37

Neg1D, 3-39

Sub1D, 3-43

Subset1D, 3-45

one-dimensional complex operation functions

CxAdd1D, 3-11

CxDiv1D, 3-13

CxLinEv1D, 3-14 to 3-15

CxMul1D, 3-17

CxSub1D, 3-20

ToPolar1D, 3-47

ToRect1D, 3-49

open functions

GPIB Library, 4-2

RS-232 Library, 5-1

OpenCom function, 5-4, 5-37 to 5-38

OpenComConfig function, 5-4, 5-39 to 5-41

OpenDev function, 4-6, 4-23

OpenFile function, 2-30 to 2-31

outp function, 8-95

outpw function, 8-96

Index

© National Instruments Corporation I-19 Standard Libraries Reference Manual

P
parallel poll functions,

GPIB-488.2 Library, 4-3

persistent variable functions

GetPersistentVariable, 8-59

SetPersistentVariable, 8-120

physical memory access functions

MapPhysicalMemory, 8-92 to 8-94

ReadFromPhysicalMemory, 8-97 to 8-98

ReadFromPhysicalMemoryEx,
8-99 to 8-100

UnMapPhysicalMemory, 8-142

WriteToPhysicalMemory, 8-143 to 8-144

WriteToPhysicalMemoryEx,
8-145 to 8-146

PlotLastAIWaveformsPopup function, 10-63

port I/O utility functions

inp, 8-72

inpw, 8-73

outp, 8-95

outpw, 8-96

properties. See also X Property
Library functions.

definition, 9-2

handles and types, 9-3

property events, handling

GetXPropErrorString, 9-16

InstallXPropertyCallback, 9-4,
9-30 to 9-32

UninstallXPropertyCallback, 9-4, 9-40

property information, managing

CreateXProperty, 9-3, 9-8 to 9-9

DestroyXProperty, 9-13

GetXPropertyName, 9-17

GetXPropertyType, 9-18

property types, managing

CreateXPropType, 9-3, 9-10 to 9-12

DestroyXPropType, 9-14

GetXPropTypeName, 9-19

GetXPropTypeSize, 9-20

GetXPropTypeUnit, 9-21 to 9-22

PulseWidthOrPeriodMeasConfig function,
10-64 to 10-66

PutXWindowPropertyItem function,
9-33 to 9-34

PutXWindowPropertyValue function,
9-35 to 9-37

R
read termination, GPIB, 4-8 to 4-9

ReadFile function, 2-32 to 2-33

ReadFromDigitalLine function,
10-67 to 10-68

ReadFromDigitalPort function, 10-69 to 10-70

ReadFromPhysicalMemory function,
8-97 to 8-98

ReadFromPhysicalMemoryEx function,
8-99 to 8-100

ReadLine function, 2-34 to 2-35

RegisterDDEServer function, 6-2,
6-22 to 6-24

RegisterTCPServer function, 7-2, 7-18

ReleaseExternalModule function,
8-101 to 8-102

remote functions, GPIB-488.2 Library, 4-3

remote hosts

ConnectToXDisplay function, 9-3,
9-6 to 9-7

DisConnectFromXDisplay, 9-15

RemoveXWindowProperty function,
9-38 to 9-39

RenameFile function, 8-103 to 8-104

ResetDevs function no longer supported
(note), 4-11

resource-freeing functions

CA_DiscardObjHandle, 11-25

CA_FreeMemory, 11-27

CA_FreeUnusedServers, 11-28

Index

Standard Libraries Reference Manual I-20 © National Instruments Corporation

CA_SafeArrayDestroy, 11-59

CA_VariantClear, 11-8, 11-9, 11-79

RetireExecutableHandle function, 8-105

ReturnRS232Err function, 5-42

RoundRealToNearestInteger function, 8-106

RQS events, and auto serial polling

ibInstallCallback function, 4-16

ibNotify function, 4-20

RS-232 cables, 5-4 to 5-6

DTE to DCE cable configuration
(table), 5-5

gender of connectors, 5-6

PC cable configuration (table), 5-4 to 5-5

PC to DTE cable configuration (table),
5-5 to 5-6

RS-232 Library functions

error conditions, 5-52 to 5-54

function panels

classes, 5-2

function tree (table), 5-1 to 5-2

function reference

CloseCom, 5-10

ComBreak, 5-11

ComFromFile, 5-3, 5-12 to 5-13

ComRd, 5-14 to 5-15

ComRdByte, 5-16

ComRdTerm, 5-17 to 5-18

ComSetEscape, 5-19 to 5-20

ComToFile, 5-3, 5-21 to 5-22

ComWrt, 5-2 to 35-24

ComWrtByte, 5-25

FlushInQ, 5-26

FlushOutQ, 5-27

GetComStat, 5-28 to 5-29

GetInQLen, 5-30

GetOutQLen, 5-4, 5-31

GetRS232ErrorString, 5-32

InstallComCallback, 5-33 to 5-36

OpenCom, 5-4, 5-37 to 5-38

OpenComConfig, 5-4, 5-39 to 5-41

ReturnRS232Err, 5-42

SetComTime, 5-43

SetCTSMode, 5-7, 5-44 to 5-45

SetXMode, 5-46

XModemConfig, 5-4, 5-47 to 5-48

XModemReceive, 5-3, 5-4,
5-49 to 5-50

XModemSend, 5-51

handshaking, 5-6 to 5-8

multithreading under
Windows 95/NT, 5-8

reporting errors, 5-3

RS-232 cables, 5-4 to 5-6

troubleshooting, 5-3 to 5-4

XModem file transfer functions, 5-3

rs232err global variable, 5-3

RS-485 AT-Serial board, 5-2

RunExternalModule function, 8-107 to 8-108

S
SAFEARRAY data type, 11-2

scanning function programming examples

ASCII file to two integers with error
checking, 2-94

ASCII file with comma separated
numbers to real array, with number of
elements at beginning of file, 2-94

binary file to integer array, assuming fixed
number of elements, 2-95

binary file to real array

assuming fixed number of
elements, 2-95

assuming variable number of
elements, 2-95

integer array containing 1-byte integers to
real array, 2-92

integer array to real array, 2-92

with byte swapping, 2-92

list of examples, 2-75 to 2-76

reading integer from standard input, 2-96

reading line from standard input, 2-97

Index

© National Instruments Corporation I-21 Standard Libraries Reference Manual

reading string from standard input, 2-96

scanning strings that are not
NUL-terminated, 2-91 to 2-92

string containing binary integers to
integer array, 2-93

string containing IEEE-format real
number to real variable, 2-93

string to integer, 2-85 to 2-86

string to integer and real, 2-87 to 2-88

string to integer and string, 2-89

string to real, 2-86 to 2-87

after finding semicolon in
string, 2-90

after finding substring in string,
2-90 to 2-91

skipping over non-numeric
characters, 2-89 to 2-90

string to short integer, 2-86

string to string, 2-88

string with comma-separated
ASCII numbers to real array, 2-91

scanning functions. See also Formatting and
I/O Library functions; formatting functions;
string manipulation functions.

asterisks (*) instead of constants in format
specifiers, 2-74

format string, 2-62 to 2-66

introductory examples, 2-50 to 2-51

literals in format string, 2-75

purpose and use, 2-62

Scan, 2-36 to 2-37, 2-62

ScanFile, 2-38 to 2-39, 2-62

ScanIn, 2-40 to 2-41, 2-62

special nature of, 2-3 to 2-4

scanning modifiers. See also
formatting modifiers.

floating-point modifiers (%f),
2-69 to 2-71

integer modifiers (%i, %d, %x, %o, %c),
2-67 to 2-69

string modifiers (%s), 2-71 to 2-74

serial communications functions. See
RS-232 Library functions.

serial poll functions, GPIB-488.2 Library, 4-3

serial polling, automatic. See automatic
serial polling.

ServerDDEWrite function, 6-25 to 6-26

ServerTCPWrite function, 7-21

Set1D function, 3-40

SetBreakOnLibraryErrors function,
8-109 to 8-110

SetBreakOnProtectionErrors function,
8-111 to 8-112

SetComTime function, 5-43

SetCTSMode function, 5-7, 5-44 to 5-45

SetDir function, 8-113

SetDrive function, 8-114

SetEasyIOMultitaskingMode function, 10-71

SetFileAttrs function, 8-115 to 8-116

SetFileDate function, 8-117

SetFilePtr function, 2-42 to 2-43

SetFileTime function, 8-118 to 8-119

SetPersistentVariable function, 8-120

SetStdioPort function, 8-121 to 8-122

SetStdioWindowOptions function,
8-123 to 8-124

SetStdioWindowPosition function,
8-125 to 8-126

SetStdioWindowSize function, 8-127

SetStdioWindowVisibility function, 8-128

SetSystemDate function, 8-129

SetSystemTime function, 8-130

SetTCPDisconnectMode function,
7-22 to 7-23

SetUpDDEHotLink function, 6-4, 6-27

SetUpDDEWarmLink function, 6-4, 6-28

SetXMode function, 5-7, 5-46

software handshaking, 5-7

Sort function, 3-41

SplitPath function, 8-131 to 8-132

Index

Standard Libraries Reference Manual I-22 © National Instruments Corporation

SRQ functions, GPIB-488.2 Library

function tree, 4-3

Windows 95/NT

asynchronous callbacks, 4-10

device version requirements, 4-10

synchronous callbacks, 4-10

SRQI event, and auto serial polling

ibInstallCallback function, 4-16

ibNotify function, 4-20

standalone executables, launching

ExecutableHasTerminated function, 8-30

LaunchExecutableEx function,
8-80 to 8-82

RetireExecutableHandle function, 8-105

TerminateExecutable function, 8-137

Standard Input/Output window functions

GetStdioPort, 8-62

GetStdioWindowOptions, 8-63

GetStdioWindowPosition, 8-64

GetStdioWindowSize, 8-65

GetStdioWindowVisibility, 8-66

SetStdioPort, 8-121 to 8-122

SetStdioWindowOptions, 8-123 to 8-124

SetStdioWindowPosition, 8-125 to 8-126

SetStdioWindowSize, 8-127

SetStdioWindowVisibility, 8-128

standard language additions, ANSI C,
1-3 to 1-6

statistics functions

Histogram, 3-26 to 3-27

Mean, 3-36

Sort, 3-41

StdDev, 3-42

Status control, GPIB, 4-6

status functions. See also
error-related functions.

Formatting and I/O Library functions

GetFmtErrNdx, 2-26

GetFmtIOError, 2-27

GetFmtIOErrorString, 2-28

NumFmtdBytes, 2-29

RS-232 library

GetComStat, 5-28 to 5-29

GetInQLen, 5-30

GetOutQLen, 5-4, 5-31

GetRS232ErrorString, 5-32

ReturnRS232Err, 5-42

thread-specific, GPIB Library

ThreadIbcnt, 4-24

ThreadIbcntl function, 4-25

ThreadIberr, 4-26 to 4-28

ThreadIbsta, 4-29 to 4-30

Status Word (ibsta) global variable, 4-6, 4-9

StdDev function, 3-42

string manipulation functions

CompareBytes, 2-9 to 2-10

CompareStrings, 2-11 to 2-12

CopyBytes, 2-13

CopyString, 2-14

definition, 2-3

FillBytes, 2-18

FindPattern, 2-19 to 2-20

ReadLine, 2-34 to 2-35

StringLength, 2-44

StringLowerCase, 2-45

StringUpperCase, 2-46

WriteLine, 2-49

string modifiers (%s)

formatting functions, 2-59 to 2-60

scanning functions, 2-71 to 2-74

string processing, ANSI C, 1-6

Sub1D function, 3-43

Sub2D function, 3-44

Subset1D function, 3-45

synchronous callbacks, 4-10

SyncWait function, 8-133

system control functions,
GPIB-488.2 Library, 4-3

SystemHelp function, 8-134 to 8-136

Index

© National Instruments Corporation I-23 Standard Libraries Reference Manual

T
task switching functions

DisableTaskSwitching, 8-24 to 8-26

EnableTaskSwitching, 8-29

TCP Library functions

callback function, 7-3

clients and servers, 7-1

error conditions, 7-25

function reference

ClientTCPRead, 7-5

ClientTCPWrite, 7-6

ConnectToTCPServer, 7-7 to 7-8

DisconnectFromTCPServer, 7-9

DisconnectTCPClient, 7-10

GetHostTCPSocketHandle, 7-11

GetTCPErrorString, 7-12

GetTCPHostAddr, 7-13

GetTCPHostName, 7-14

GetTCPPeerAddr, 7-15

GetTCPPeerName, 7-16

GetTCPSystemErrorString, 7-17

RegisterTCPServer, 7-2, 7-18

ServerTCPWrite, 7-21

SetTCPDisconnectMode,
7-22 to 7-23

UnregisterTCPServer, 7-24

function tree (table), 7-1 to 7-2

multithreading under
Windows 95/NT, 7-4

technical support, A-1 to A-2

telephone and fax support numbers, A-2

TerminateDDELink function, 6-29

TerminateExecutable function, 8-137

thread-specific status functions

function tree, 4-3

ThreadIbcnt, 4-24

ThreadIbcntl function, 4-25

ThreadIberr, 4-26 to 4-28

ThreadIbsta, 4-29 to 4-30

time/date functions. See date/time functions.

timeouts, GPIB, 4-9

timer/wait utility functions

Delay, 8-19

SyncWait, 8-133

Timer, 8-138

TimeStr function, 8-139

ToPolar function, 3-46

ToPolar1D function, 3-47

ToRect function, 3-48

Transmission Control Protocol Library
functions. See TCP Library functions.

Transpose function, 3-50

trigger functions, GPIB-488.2 Library, 4-3

troubleshooting RS-232 Library functions,
5-3 to 5-4

TruncateRealNumber function, 8-140

two-dimensional array operation functions

Add2D, 3-7

Div2D, 3-23

LinEv2D, 3-30

MaxMin2D, 3-34 to 3-35

Mul2D, 3-38

Sub2D, 3-44

U
UninstallXPropertyCallback function,

9-4, 9-40

UnloadExternalModule function, 8-141

UnMapPhysicalMemory function, 8-142

UnregisterDDEServer function, 6-30

UnregisterTCPServer function, 7-24

Utility Library functions

function panels

classes and subclasses, 8-5

function tree (table), 8-1 to 8-4

function reference

Beep, 8-6

Breakpoint, 8-7

Index

Standard Libraries Reference Manual I-24 © National Instruments Corporation

CheckForDuplicateAppInstance,
8-8 to 8-9

CloseCVIRTE, 8-10

Cls, 8-11

CopyFile, 8-12 to 8-13

CVILowLevelSupportDriverLoaded,
 8-14 to 8-15

CVIRTEHasBeenDetached,
8-16 to 8-17

DateStr, 8-18

Delay, 8-19

DeleteDir, 8-20

DeleteFile, 8-21

DisableBreakOnLibraryErrors, 8-22

DisableInterrupts, 8-23

DisableTaskSwitching, 8-24 to 8-26

EnableBreakOnLibraryErrors, 8-27

EnableInterrupts, 8-28

EnableTaskSwitching, 8-29

ExecutableHasTerminated, 8-30

GetBreakOnLibraryErrors, 8-31

GetBreakOnProtectionErrors, 8-32

GetCurrentPlatform, 8-33

GetCVIVersion, 8-34

GetDir, 8-35

GetDrive, 8-36

GetExternalModuleAddr,
8-37 to 8-39

GetFileAttrs, 8-40 to 8-41

GetFileDate, 8-42 to 8-43

GetFileSize, 8-44 to 8-45

GetFileTime, 8-46 to 8-47

GetFirstFile, 8-48 to 8-50

GetFullPathFromProject,
8-51 to 8-52

GetInterruptState, 8-53

GetKey, 8-54 to 8-55

GetModuleDir, 8-56 to 8-57

GetNextFile, 8-58

GetPersistentVariable, 8-59

GetProjectDir, 8-60 to 8-61

GetStdioPort, 8-62

GetStdioWindowOptions, 8-63

GetStdioWindowPosition, 8-64

GetStdioWindowSize, 8-65

GetStdioWindowVisibility, 8-66

GetSystemDate, 8-67

GetSystemTime, 8-68

GetWindowDisplaySetting, 8-69

InitCVIRTE, 8-70 to 8-71

inp, 8-72

inpw, 8-73

InStandaloneExecutable, 8-74

KeyHit, 8-75 to 8-76

LaunchExecutable, 8-77 to 8-79

LaunchExecutableEx, 8-80 to 8-82

LoadExternalModule, 8-83 to 8-87

LoadExternalModuleEx,
8-88 to 8-89

MakeDir, 8-90

MakePathname, 8-91

MapPhysicalMemory, 8-92 to 8-94

outp, 8-95

outpw, 8-96

ReadFromPhysicalMemory function,
8-97 to 8-98

ReadFromPhysicalMemoryEx,
8-99 to 8-100

ReleaseExternalModule,
8-101 to 8-102

RenameFile, 8-103 to 8-104

RetireExecutableHandle, 8-105

RoundRealToNearestInteger, 8-106

RunExternalModule, 8-107 to 8-108

SetBreakOnLibraryErrors,
8-109 to 8-110

SetBreakOnProtectionErrors,
8-111 to 8-112

SetDir, 8-113

SetDrive, 8-114

SetFileAttrs, 8-115 to 8-116

SetFileDate, 8-117

Index

© National Instruments Corporation I-25 Standard Libraries Reference Manual

SetFileTime, 8-118 to 8-119

SetPersistentVariable, 8-120

SetStdioPort, 8-121 to 8-122

SetStdioWindowOptions,
8-123 to 8-124

SetStdioWindowPosition,
8-125 to 8-126

SetStdioWindowSize, 8-127

SetStdioWindowVisibility, 8-128

SetSystemDate, 8-129

SetSystemTime, 8-130

SplitPath, 8-131 to 8-132

SyncWait, 8-133

SystemHelp, 8-134 to 8-136

TerminateExecutable, 8-137

Timer, 8-138

TimeStr, 8-139

TruncateRealNumber, 8-140

UnloadExternalModule, 8-141

UnMapPhysicalMemory, 8-142

WriteToPhysicalMemory,
8-143 to 8-144

WriteToPhysicalMemoryEx,
8-145 to 8-146

V
va_arg() macro, 1-3

variable argument functions,
LabWindows/CVI support of, 1-3

VARIANT data type, ActiveX Automation
Library, 11-2

variant parameters. See also ActiveX
Automation Library.

input parameters, 11-8

output parameters, 11-8 to 11-9

variants marked as empty by retrieval
functions, 11-9

variant-related functions

assigning values to variants

CA_VariantSet1DArray,
11-164 to 11-165

CA_VariantSet2DArray,
11-166 to 11-167

CA_VariantSetBool, 11-168

CA_VariantSetBoolPtr, 11-169

CA_VariantSetBSTR, 11-170

CA_VariantSetBSTRPtr, 11-171

CA_VariantSetCString, 11-172

CA_VariantSetCurrency, 11-173

CA_VariantSetCurrencyPtr, 11-174

CA_VariantSetDate, 11-175

CA_VariantSetDatePtr, 11-176

CA_VariantSetDispatch, 11-177

CA_VariantSetDispatchPtr, 11-178

CA_VariantSetDouble, 11-179

CA_VariantSetDoublePtr, 11-180

CA_VariantSetEmpty, 11-181

CA_VariantSetError, 11-182

CA_VariantSetErrorPtr, 11-183

CA_VariantSetFloat, 11-184

CA_VariantSetFloatPtr, 11-185

CA_VariantSetInt, 11-186

CA_VariantSetIntPtr, 11-187

CA_VariantSetIUnknown, 11-188

CA_VariantSetIUnknownPtr, 11-189

CA_VariantSetLong, 11-190

CA_VariantSetLongPtr, 11-191

CA_VariantSetNULL, 11-192

CA_VariantSetSafeArray, 11-193

CA_VariantSetSafeArrayPtr, 11-194

CA_VariantSetShort, 11-195

CA_VariantSetShortPtr, 11-196

CA_VariantSetUChar, 11-197

CA_VariantSetUCharPtr, 11-198

CA_VariantSetVariantPtr, 11-199

Index

Standard Libraries Reference Manual I-26 © National Instruments Corporation

passing values as variants

CA_DefaultValueVariant,
11-8, 11-24

CA_VariantBool, 11-77

CA_VariantBSTR, 11-78

CA_VariantCurrency, 11-83

CA_VariantDate, 11-84

CA_VariantDispatch, 11-85

CA_VariantDouble, 11-86

CA_VariantEmpty, 11-87

CA_VariantError, 11-88

CA_VariantFloat, 11-89

CA_VariantInt, 11-159

CA_VariantIUnknown, 11-161

CA_VariantLong, 11-162

CA_VariantNULL, 11-163

CA_VariantShort, 11-200

CA_VariantUChar, 11-201

querying type of variant

CA_VariantGetType, 11-8, 11-137

CA_VariantHasArray, 11-141

CA_VariantHasBool, 11-142

CA_VariantHasBSTR, 11-143

CA_VariantHasCString, 11-144

CA_VariantHasCurrency, 11-145

CA_VariantHasDate, 11-146

CA_VariantHasDispatch, 11-147

CA_VariantHasDouble, 11-148

CA_VariantHasError, 11-149

CA_VariantHasFloat, 11-150

CA_VariantHasInt, 11-151

CA_VariantHasIUnknown, 11-152

CA_VariantHasLong, 11-9, 11-153

CA_VariantHasNull, 11-154

CA_VariantHasObjectHandle,
11-155

CA_VariantHasPtr, 11-156

CA_VariantHasShort, 11-9, 11-157

CA_VariantHasUChar, 11-158

CA_VariantIsEmpty, 11-160

retrieving values from variants

CA_VariantConvertToType, 11-9,
11-80 to 11-81

CA_VariantCopy, 11-82

CA_VariantGet1DArray,
11-90 to 11-92

CA_VariantGet1DArrayBuf,
11-93 to 11-95

CA_VariantGet1DArraySize, 11-96

CA_VariantGet2DArray,
11-97 to 11-99

CA_VariantGet2DArrayBuf,
11-100 to 11-102

CA_VariantGet2DArraySize, 11-103

CA_VariantGetArrayNumDims,
11-104

CA_VariantGetBool, 11-105

CA_VariantGetBoolPtr, 11-106

CA_VariantGetBSTR, 11-107

CA_VariantGetBSTRPtr, 11-108

CA_VariantGetCString, 11-109

CA_VariantGetCStringBuf, 11-110

CA_VariantGetCStringLen, 11-111

CA_VariantGetCurrency, 11-112

CA_VariantGetCurrencyPtr, 11-113

CA_VariantGetDate, 11-114

CA_VariantGetDatePtr, 11-115

CA_VariantGetDispatch, 11-116

CA_VariantGetDispatchPtr, 11-117

CA_VariantGetDouble, 11-118

CA_VariantGetDoublePtr, 11-119

CA_VariantGetError, 11-120

CA_VariantGetErrorPtr, 11-121

CA_VariantGetFloat, 11-122

CA_VariantGetFloatPtr, 11-123

CA_VariantGetInt, 11-124

CA_VariantGetIntPtr, 11-125

CA_VariantGetIUnknown, 11-126

CA_VariantGetIUnknownPtr,
11-127

CA_VariantGetLong, 11-9, 11-128

Index

© National Instruments Corporation I-27 Standard Libraries Reference Manual

CA_VariantGetLongPtr, 11-129

CA_VariantGetObjHandle, 11-130

CA_VariantGetSafeArray,
11-131 to 11-132

CA_VariantGetSafeArrayPtr,
11-133 to 11-134

CA_VariantGetShort, 11-135

CA_VariantGetShortPtr, 11-136

CA_VariantGetUChar, 11-138

CA_VariantGetUChartPtr, 11-139

CA_VariantGetVariantPtr, 11-140

vector and matrix algebra functions

Determinant, 3-21

DotProduct, 3-24

InvMatrix, 3-28

MatrixMul, 3-31 to 3-32

Transpose, 3-50

void HandlePropertyNotifyEvent
function, 9-5

void_InitXPropertyLib function, 9-5

W
wait utility functions. See timer/wait utility

functions.

window functions, standard input/output. See
Standard Input/Output window functions.

window properties, accessing

GetXWindowPropertyItem, 9-23 to 9-25

GetXWindowPropertyValue, 9-26 to 9-29

PutXWindowPropertyItem, 9-33 to 9-34

PutXWindowPropertyValue, 9-35 to 9-37

RemoveXWindowProperty, 9-38 to 9-39

Windows 95/NT, 4-9 to 4-10

multithreading, 4-9

DDE Library functions, 6-6

GPIB and GPIB-488.2 Libraries, 4-9

TCP Library functions, 7-4

notification of SRQ and other
GPIB events, 4-10

asynchronous callbacks, 4-10

driver version requirements, 4-10

synchronous callbacks, 4-10

write termination, GPIB, 4-8 to 4-9

WriteFile function, 2-47 to 2-48

WriteLine function, 2-49

WriteToDigitalLine function, 10-72 to 10-73

WriteToDigitalPort function, 10-74 to 10-75

WriteToPhysicalMemory function,
8-143 to 8-144

WriteToPhysicalMemoryEx function,
8-145 to 8-146

X
X Property Library functions

callback functions, 9-4

communicating with local
applications, 9-3

ConnectToXDisplay function, 9-3

error codes, 9-4

function panels, 9-1 to 9-2

function reference

ConnectToXDisplay, 9-6 to 9-7

CreateXProperty, 9-3, 9-8 to 9-9

CreateXPropType, 9-3, 9-10 to 9-12

DestroyXProperty, 9-13

DestroyXPropType, 9-14

DisConnectFromXDisplay, 9-15

GetXPropErrorString, 9-16

GetXPropertyName, 9-17

GetXPropertyType, 9-18

GetXPropTypeName, 9-19

GetXPropTypeSize, 9-20

GetXPropTypeUnit, 9-21 to 9-22

GetXWindowPropertyItem,
9-23 to 9-25

GetXWindowPropertyValue,
9-26 to 9-29

Index

Standard Libraries Reference Manual I-28 © National Instruments Corporation

InstallXPropertyCallback, 9-4,
9-30 to 9-32

PutXWindowPropertyItem,
9-33 to 9-34

PutXWindowPropertyValue,
9-35 to 9-37

RemoveXWindowProperty,
9-38 to 9-39

UninstallXPropertyCallback,
9-4, 9-40

void HandlePropertyNotifyEvent,
9-5

void_InitXPropertyLib, 9-5

function tree (table), 9-1 to 9-2

hidden window, 9-3 to 9-4

overview, 9-1

property handles and types, 9-3

predefined property types (table), 9-3

using outside of LabWindows/CVI, 9-5

X interclient communication, 9-2 to 9-3

XModem file transfer functions

purpose and use, 5-3

XModemConfig, 5-4, 5-47 to 5-48

XModemReceive, 5-3, 5-4, 5-49 to 5-50

XModemSend, 5-3, 5-51

	LabWindows/CVI Standard�Libraries Reference Manual...
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATI...

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	LabWindows/CVI Documentation Set
	Related Documentation
	Customer Communication

	Chapter 1 ANSI C Library
	Low-Level I/O Functions
	Standard Language Additions
	Character Processing
	String Processing
	Input/Output Facilities
	File I/O Functions Set errno
	Mathematical Functions
	Time and Date Functions
	Configuring the DST Rules String
	Modifying the DST Rules String
	Suppressing Daylight Savings Time
	Starting Year in Daylight Savings Time

	Control Functions
	ANSI C Library Function Reference
	fdopen

	Chapter 2 Formatting and I/O Library
	Formatting and I/O Library Function Overview
	Formatting and I/O Library Function Panels
	Class and Subclass Descriptions
	String Manipulation Functions
	Special Nature of the Formatting and Scanning Func...

	Formatting and I/O Library Function Reference
	ArrayToFile
	CloseFile
	CompareBytes
	CompareStrings
	CopyBytes
	CopyString
	FileToArray
	FillBytes
	FindPattern
	Fmt
	FmtFile
	FmtOut
	GetFileInfo
	GetFmtErrNdx
	GetFmtIOError
	GetFmtIOErrorString
	NumFmtdBytes
	OpenFile
	ReadFile
	ReadLine
	Scan
	ScanFile
	ScanIn
	SetFilePtr
	StringLength
	StringLowerCase
	StringUpperCase
	WriteFile
	WriteLine

	Using the Formatting and Scanning Functions
	Introductory Formatting and Scanning Examples
	Formatting Functions
	Formatting Functions—Format String
	Formatting Modifiers
	Fmt, FmtFile, FmtOut—Asterisks (*) Instead of Cons...
	Fmt, FmtFile, FmtOut—Literals in the Format String...

	Scanning Functions
	Scanning Functions—Format String
	Scanning Modifiers
	Scan, ScanFile, ScanIn—Asterisks (*) Instead of Co...
	Scan, ScanFile, ScanIn—Literals in the Format Stri...

	Formatting and I/O Library Programming Examples
	Fmt/FmtFile/FmtOut Examples in C
	Integer to String
	Short Integer to String
	Real to String in Floating-Point Notation
	Real to String in Scientific Notation
	Integer and Real to String with Literals
	Two Integers to ASCII File with Error Checking
	Real Array to ASCII File in Columns and with Comma...
	Integer Array to Binary File, Assuming a Fixed Num...
	Real Array to Binary File, Assuming a Fixed Number...
	Real Array to Binary File, Assuming a Variable Num...
	Variable Portion of a Real Array to a Binary File
	Concatenating Two Strings
	Appending to a String
	Creating an Array of Filenames
	Writing a Line That Contains an Integer with Liter...
	Writing to the Standard Output without a Linefeed ...

	Scan/ScanFile/ScanIn Examples in C
	String to Integer
	String to Short Integer
	String to Real
	String to Integer and Real
	String to String
	String to Integer and String
	String to Real, Skipping over Non-Numeric Characte...
	String to Real, after Finding a Semicolon in the S...
	String to Real, after Finding a Substring in the S...
	String with Comma-Separated ASCII Numbers to Real ...
	Scanning Strings That Are Not Null-Terminated
	Integer Array to Real Array
	Integer Array to Real Array with Byte Swapping
	Integer Array That Contains 1-Byte Integers to Rea...
	Strings That Contain Binary Integers to Integer Ar...
	Strings That Contain an IEEE-Format Real Number to...
	ASCII File to Two Integers with Error Checking
	ASCII File with Comma-Separated Numbers to Real Ar...
	Binary File to Integer Array, Assuming a Fixed Num...
	Binary File to Real Array, Assuming a Fixed Number...
	Binary File to Real Array, Assuming a Variable Num...
	Reading an Integer from the Standard Input
	Reading a String from the Standard Input
	Reading a Line from the Standard Input

	Chapter 3 Analysis Library
	Analysis Library Function Overview
	Analysis Library Function Panels
	Class and Subclass Descriptions
	Hints for Using Analysis Function Panels

	Reporting Analysis Errors

	Analysis Library Function Reference
	Abs1D
	Add1D
	Add2D
	Clear1D
	Copy1D
	CxAdd
	CxAdd1D
	CxDiv
	CxDiv1D
	CxLinEv1D
	CxMul
	CxMul1D
	CxRecip
	CxSub
	CxSub1D
	Determinant
	Div1D
	Div2D
	DotProduct
	GetAnalysisErrorString
	Histogram
	InvMatrix
	LinEv1D
	LinEv2D
	MatrixMul
	MaxMin1D
	MaxMin2D
	Mean
	Mul1D
	Mul2D
	Neg1D
	Set1D
	Sort
	StdDev
	Sub1D
	Sub2D
	Subset1D
	ToPolar
	ToPolar1D
	ToRect
	ToRect1D
	Transpose

	Error Conditions

	Chapter 4 GPIB/GPIB-488.2 Library
	GPIB Library Function Overview
	GPIB Functions Library Function Panels
	Class and Subclass Descriptions

	GPIB Library Concepts
	GPIB Libraries and the GPIB Dynamic Link Library/D...
	Guidelines and Restrictions for Using the GPIB Lib...
	Device and Board Functions
	Automatic Serial Polling
	Autopolling Compatibility

	Hardware Interrupts and Autopolling
	Read and Write Termination
	Timeouts
	Global Variables for the GPIB Library
	Multithreading under Windows 95/NT
	Notification of SRQ and Other GPIB Events under Wi...
	Synchronous Callbacks
	Asynchronous Callbacks
	Driver Version Requirements

	GPIB Function Reference
	CloseDev
	CloseInstrDevs
	ibInstallCallback
	iblock
	ibnotify
	ibunlock
	OpenDev
	ThreadIbcnt
	ThreadIbcntl
	ThreadIberr
	ThreadIbsta

	Chapter 5 RS-232 Library
	RS-232 Library Function Overview
	RS-232 Library Function Panels
	Class Descriptions
	Using RS-485
	Reporting RS-232 Errors
	XModem File Transfer Functions
	Troubleshooting
	RS-232 Cable Information
	Handshaking
	Software Handshaking
	Hardware Handshaking

	Multithreading under Windows 95/NT

	RS-232 Library Function Reference
	CloseCom
	ComBreak
	ComFromFile
	ComRd
	ComRdByte
	ComRdTerm
	ComSetEscape
	ComToFile
	ComWrt
	ComWrtByte
	FlushInQ
	FlushOutQ
	GetComStat
	GetInQLen
	GetOutQLen
	GetRS232ErrorString
	InstallComCallback
	OpenCom
	OpenComConfig
	ReturnRS232Err
	SetComTime
	SetCTSMode
	SetXMode
	XModemConfig
	XModemReceive
	XModemSend

	Error Conditions

	Chapter 6 DDE Library
	DDE Library Function Overview
	DDE Library Function Panels
	DDE Clients and Servers
	DDE Callback Function
	DDE Links
	DDE Library Example Using Microsoft Excel and LabW...
	Multithreading under Windows 95/NT

	DDE Library Function Reference
	AdviseDDEDataReady
	BroadcastDDEDataReady
	ClientDDEExecute
	ClientDDERead
	ClientDDEWrite
	ConnectToDDEServer
	DisconnectFromDDEServer
	GetDDEErrorString
	RegisterDDEServer
	ServerDDEWrite
	SetUpDDEHotLink
	SetUpDDEWarmLink
	TerminateDDELink
	UnregisterDDEServer

	Error Conditions

	Chapter 7 TCP Library
	TCP Library Function Overview
	TCP Library Function Panels
	TCP Clients and Servers
	TCP Callback Function
	Multithreading under Windows 95/NT

	TCP Library Function Reference
	ClientTCPRead
	ClientTCPWrite
	ConnectToTCPServer
	DisconnectFromTCPServer
	DisconnectTCPClient
	GetHostTCPSocketHandle
	GetTCPErrorString
	GetTCPHostAddr
	GetTCPHostName
	GetTCPPeerAddr
	GetTCPPeerName
	GetTCPSystemErrorString
	RegisterTCPServer
	ServerTCPRead
	ServerTCPWrite
	SetTCPDisconnectMode
	UnregisterTCPServer

	Error Conditions

	Chapter 8 Utility Library
	Utility Library Function Overview
	Class Descriptions

	Utility Library Function Reference
	Beep
	Breakpoint
	CheckForDuplicateAppInstance
	CloseCVIRTE
	Cls
	CopyFile
	CVILowLevelSupportDriverLoaded
	CVIRTEHasBeenDetached
	DateStr
	Delay
	DeleteDir
	DeleteFile
	DisableBreakOnLibraryErrors
	DisableInterrupts
	DisableTaskSwitching
	EnableBreakOnLibraryErrors
	EnableInterrupts
	EnableTaskSwitching
	ExecutableHasTerminated
	GetBreakOnLibraryErrors
	GetBreakOnProtectionErrors
	GetCurrentPlatform
	GetCVIVersion
	GetDir
	GetDrive
	GetExternalModuleAddr
	GetFileAttrs
	GetFileDate
	GetFileSize
	GetFileTime
	GetFirstFile
	GetFullPathFromProject
	GetInterruptState
	GetKey
	GetModuleDir
	GetNextFile
	GetPersistentVariable
	GetProjectDir
	GetStdioPort
	GetStdioWindowOptions
	GetStdioWindowPosition
	GetStdioWindowSize
	GetStdioWindowVisibility
	GetSystemDate
	GetSystemTime
	GetWindowDisplaySetting
	InitCVIRTE
	inp
	inpw
	InStandaloneExecutable
	KeyHit
	LaunchExecutable
	LaunchExecutableEx
	LoadExternalModule
	LoadExternalModuleEx
	MakeDir
	MakePathname
	MapPhysicalMemory
	outp
	outpw
	ReadFromPhysicalMemory
	ReadFromPhysicalMemoryEx
	ReleaseExternalModule
	RenameFile
	RetireExecutableHandle
	RoundRealToNearestInteger
	RunExternalModule
	SetBreakOnLibraryErrors
	SetBreakOnProtectionErrors
	SetDir
	SetDrive
	SetFileAttrs
	SetFileDate
	SetFileTime
	SetPersistentVariable
	SetStdioPort
	SetStdioWindowOptions
	SetStdioWindowPosition
	SetStdioWindowSize
	SetStdioWindowVisibility
	SetSystemDate
	SetSystemTime
	SplitPath
	SyncWait
	SystemHelp
	TerminateExecutable
	Timer
	TimeStr
	TruncateRealNumber
	UnloadExternalModule
	UnMapPhysicalMemory
	WriteToPhysicalMemory
	WriteToPhysicalMemoryEx

	Chapter 9 X Property Library
	X Property Library Overview
	X Property Library Function Panels
	X Interclient Communication
	Property Handles and Types
	Communicating with Local Applications
	Hidden Window
	Property Callback Functions
	Error Codes
	Using the Library Outside of LabWindows/CVI

	X Property Library Function Reference
	ConnectToXDisplay
	CreateXProperty
	CreateXPropType
	DestroyXProperty
	DestroyXPropType
	DisconnectFromXDisplay
	GetXPropErrorString
	GetXPropertyName
	GetXPropertyType
	GetXPropTypeName
	GetXPropTypeSize
	GetXPropTypeUnit
	GetXWindowPropertyItem
	GetXWindowPropertyValue
	InstallXPropertyCallback
	PutXWindowPropertyItem
	PutXWindowPropertyValue
	RemoveXWindowProperty
	UninstallXPropertyCallback

	Chapter 10 Easy I/O for DAQ Library
	Easy I/O for DAQ Library Function Overview
	Advantages of Using the Easy I/O for DAQ Library
	Limitations of Using the Easy I/O for DAQ Library
	Easy I/O for DAQ Library Function Panels
	Class Descriptions
	Device Numbers
	Channel String for Analog Input Functions
	Command Strings
	Channel String for Analog Output Functions
	Valid Counters for the Counter/Timer Functions

	Easy I/O for DAQ Function Reference
	AIAcquireTriggeredWaveforms
	AIAcquireWaveforms
	AICheckAcquisition
	AIClearAcquisition
	AIReadAcquisition
	AISampleChannel
	AISampleChannels
	AIStartAcquisition
	AOClearWaveforms
	AOGenerateWaveforms
	AOUpdateChannel
	AOUpdateChannels
	ContinuousPulseGenConfig
	CounterEventOrTimeConfig
	CounterMeasureFrequency
	CounterRead
	CounterStart
	CounterStop
	DelayedPulseGenConfig
	FrequencyDividerConfig
	GetAILimitsOfChannel
	GetChannelIndices
	GetChannelNameFromIndex
	GetDAQErrorString
	GetNumChannels
	GroupByChannel
	ICounterControl
	PlotLastAIWaveformsPopup
	PulseWidthOrPeriodMeasConfig
	ReadFromDigitalLine
	ReadFromDigitalPort
	SetEasyIOMultitaskingMode
	WriteToDigitalLine
	WriteToDigitalPort

	Error Conditions

	Chapter 11 ActiveX Automation Library
	ActiveX Automation Library Function Overview
	Variants and Safe Arrays
	Events are Not Supported
	ActiveX Automation Library Function Panels
	Class Descriptions
	Using Input Variant Parameters
	Using Output Variant Parameters
	Variants Marked as Empty by Retrieval Functions

	Data Types for Variants, Safe Arrays, and Properti...
	Handling Dynamic Memory Variants Hold

	ActiveX Automation Library Function Reference
	CA_Array1DToSafeArray
	CA_Array2DToSafeArray
	CA_BSTRGetCString
	CA_BSTRGetCStringBuf
	CA_BSTRGetCStringLen
	CA_CreateObjectByClassId
	CA_CreateObjectByProgId
	CA_CreateObjHandleFromIDispatch
	CA_CStringToBSTR
	CA_DefaultValueVariant
	CA_DiscardObjHandle
	CA_DisplayErrorInfo
	CA_FreeMemory
	CA_FreeUnusedServers
	CA_GetActiveObjectByClassId
	CA_GetActiveObjectByProgId
	CA_GetAutomationErrorString
	CA_GetDispatchFromObjHandle
	CA_GetLocale
	CA_InvokeHelper
	CA_InvokeHelperV
	CA_LoadObjectFromFile
	CA_LoadObjectFromFileByClassId
	CA_LoadObjectFromFileByProgId
	CA_MethodInvoke
	CA_MethodInvokeV
	CA_PropertyGet
	CA_PropertySet
	CA_PropertySetByRef
	CA_PropertySetByRefV
	CA_PropertySetV
	CA_SafeArrayDestroy
	CA_SafeArrayGet1DSize
	CA_SafeArrayGet2DSize
	CA_SafeArrayGetNumDims
	CA_SafeArrayTo1DArray
	CA_SafeArrayTo1DArrayBuf
	CA_SafeArrayTo2DArray
	CA_SafeArrayTo2DArrayBuf
	CA_SetLocale
	CA_VariantBool
	CA_VariantBSTR
	CA_VariantClear
	CA_VariantConvertToType
	CA_VariantCopy
	CA_VariantCurrency
	CA_VariantDate
	CA_VariantDispatch
	CA_VariantDouble
	CA_VariantEmpty
	CA_VariantError
	CA_VariantFloat
	CA_VariantGet1DArray
	CA_VariantGet1DArrayBuf
	CA_VariantGet1DArraySize
	CA_VariantGet2DArray
	CA_VariantGet2DArrayBuf
	CA_VariantGet2DArraySize
	CA_VariantGetArrayNumDims
	CA_VariantGetBool
	CA_VariantGetBoolPtr
	CA_VariantGetBSTR
	CA_VariantGetBSTRPtr
	CA_VariantGetCString
	CA_VariantGetCStringBuf
	CA_VariantGetCStringLen
	CA_VariantGetCurrency
	CA_VariantGetCurrencyPtr
	CA_VariantGetDate
	CA_VariantGetDatePtr
	CA_VariantGetDispatch
	CA_VariantGetDispatchPtr
	CA_VariantGetDouble
	CA_VariantGetDoublePtr
	CA_VariantGetError
	CA_VariantGetErrorPtr
	CA_VariantGetFloat
	CA_VariantGetFloatPtr
	CA_VariantGetInt
	CA_VariantGetIntPtr
	CA_VariantGetIUnknown
	CA_VariantGetIUnknownPtr
	CA_VariantGetLong
	CA_VariantGetLongPtr
	CA_VariantGetObjHandle
	CA_VariantGetSafeArray
	CA_VariantGetSafeArrayPtr
	CA_VariantGetShort
	CA_VariantGetShortPtr
	CA_VariantGetType
	CA_VariantGetUChar
	CA_VariantGetUCharPtr
	CA_VariantGetVariantPtr
	CA_VariantHasArray
	CA_VariantHasBool
	CA_VariantHasBSTR
	CA_VariantHasCString
	CA_VariantHasCurrency
	CA_VariantHasDate
	CA_VariantHasDispatch
	CA_VariantHasDouble
	CA_VariantHasError
	CA_VariantHasFloat
	CA_VariantHasInt
	CA_VariantHasIUnknown
	CA_VariantHasLong
	CA_VariantHasNull
	CA_VariantHasObjHandle
	CA_VariantHasPtr
	CA_VariantHasShort
	CA_VariantHasUChar
	CA_VariantInt
	CA_VariantIsEmpty
	CA_VariantIUnknown
	CA_VariantLong
	CA_VariantNULL
	CA_VariantSet1DArray
	CA_VariantSet2DArray
	CA_VariantSetBool
	CA_VariantSetBoolPtr
	CA_VariantSetBSTR
	CA_VariantSetBSTRPtr
	CA_VariantSetCString
	CA_VariantSetCurrency
	CA_VariantSetCurrencyPtr
	CA_VariantSetDate
	CA_VariantSetDatePtr
	CA_VariantSetDispatch
	CA_VariantSetDispatchPtr
	CA_VariantSetDouble
	CA_VariantSetDoublePtr
	CA_VariantSetEmpty
	CA_VariantSetError
	CA_VariantSetErrorPtr
	CA_VariantSetFloat
	CA_VariantSetFloatPtr
	CA_VariantSetInt
	CA_VariantSetIntPtr
	CA_VariantSetIUnknown
	CA_VariantSetIUnknownPtr
	CA_VariantSetLong
	CA_VariantSetLongPtr
	CA_VariantSetNULL
	CA_VariantSetSafeArray
	CA_VariantSetSafeArrayPtr
	CA_VariantSetShort
	CA_VariantSetShortPtr
	CA_VariantSetUChar
	CA_VariantSetUCharPtr
	CA_VariantSetVariantPtr
	CA_VariantShort
	CA_VariantUChar

	Error Conditions

	Appendix A Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	LabWindows/CVI Hardware and Software Configuration...
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	Numbers/Symbols
	A
	B-D
	F-H
	I-P
	R-X

	Index
	Numbers and Special Characters
	A
	B
	C
	D
	E
	F
	G
	H-I
	K-M
	N-O
	P-R
	S
	T-U
	V
	W-X

	Figures
	Figure 10-1. One Cycle of a Waveform
	Figure 10-2. Converting a Signal at Periodic Inter...
	Figure 10-3. Resulting Waveform That Resembles Ori...
	Figure 10-4. OUT Pin Pulses

	Tables
	Table 1-1. ANSI C Standard Library Classes
	Table 1-2. C Locale Information Values
	Table 1-3. p_sign_posn and n_sign_posn Values
	Table 1-4. Error Codes for the system Function und...
	Table 2-1. Functions in the Formatting and I/O Lib...
	Table 2-2. Codes That Specify formatcode
	Table 2-3. Formatting Integer Modifiers (%i, %d, %...
	Table 2-4. Formatting Floating-Point Modifiers (%f...
	Table 2-5. Formatting String Modifiers (%s)
	Table 2-6. Codes That Specify formatcode
	Table 2-7. Scanning Integer Modifiers (%i, %d, %x,...
	Table 2-8. Scanning Floating-Point Modifiers (%f) ...
	Table 2-9. Scanning String Modifiers (%s)
	Table 3-1. Functions in the Analysis Library Funct...
	Table 3-2. Analysis Library Error Codes
	Table 4-1. Functions in the GPIB/GPIB-488.2 Librar...
	Table 5-1. Functions in the RS-232 Library Functio...
	Table 5-2. PC Cable Configuration
	Table 5-3. DTE to DCE Cable Configuration
	Table 5-4. PC to DTE Cable Configuration
	Table 5-5. Bit Definitions for the GetComStat Func...
	Table 5-6. Valid Event Bits and Descriptions
	Table 5-7. Syntax for Opening Ports
	Table 5-8. Syntax for Opening Ports
	Table 5-9. Valid Mode Values
	Table 5-10. RS-232 Library Error Codes
	Table 6-1. Functions in the DDE Library Function T...
	Table 6-2. DDE Transaction Types (xType)
	Table 6-3. DDE Library Error Codes
	Table 7-1. Functions in the TCP Library Function T...
	Table 7-2. TCP Transaction Types (xType)
	Table 7-3. TCP Library Error Codes
	Table 8-1. Functions in the Utility Library Functi...
	Table 8-2. Functions That Require Low-Level Driver...
	Table 8-3. Example Keystrokes and GetKey Return Va...
	Table 8-4. Valid windowState Values
	Table 9-1. Functions in the X Property Library Fun...
	Table 9-2. Predefined Property Types
	Table 10-1. Functions in the Easy I/O for DAQ Libr...
	Table 10-2. Valid Counters
	Table 10-3. Trigger Types
	Table 10-4. Definition of Am9513: Counter+1
	Table 10-5. Valid Internal Timebase Frequencies
	Table 10-6. Adjacent Counters
	Table 10-7. Valid Internal Timebase Frequencies
	Table 10-8. Valid Internal Timebase Frequencies (C...
	Table 10-9. Easy I/O for DAQ Library Error Codes
	Table 11-1. Functions in the ActiveX Automation Li...
	Table 11-2. Fundamental Data Types for Variants, S...
	Table 11-3. Data Types Modifiers for Variants, Saf...
	Table 11-4. operation Parameter Values
	Table 11-5. Return Type Values
	Table 11-6. Parameter Count Values
	Table 11-7. Parameter Types Values
	Table 11-8. Parameter Values
	Table 11-9. Return Values
	Table 11-10. Data Types and Functions to Free Each...
	Table 11-11. Data Types and Functions to Free Each...
	Table 11-12. Data Types and Functions to Free Each...
	Table 11-13. Data Types and Functions to Free Each...
	Table 11-14. Data Types and Functions to Free the ...
	Table 11-15. Data Types and Functions to Free Each...
	Table 11-16. Data Types and Functions to Free Each...
	Table 11-17. Data Types and Functions to Free Each...
	Table 11-18. Data Types and Functions to Free Each...
	Table 11-19. ActiveX Automation Library Error Code...

