

 AT-MIO-16F-5

https://www.apexwaves.com/modular-systems/national-instruments/at-series/AT-MIO-16F-5?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/at-series/AT-MIO-16F-5?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/at-series/AT-MIO-16F-5?aw_referrer=pdf

Getting Results with
ComponentWorks™

Getting Results with ComponentWorks

June 1997 Edition

Part Number 321170B-01

© Copyright 1996, 1997 National Instruments Corporation. All rights reserved.

E-mail: support@natinst.com

info@natinst.com

FTP Site: ftp.natinst.com

Web Address: http://www.natinst.com

BBS United States: (512) 794-5422

BBS United Kingdom: 01635 551422

BBS France: 01 48 65 15 59

(512) 418-1111

Tel: (512) 795-8248

Fax: (512) 794-5678

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,

Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30,

Hong Kong 2645 3186, Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970,

Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,

Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51,

Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

Fax-on-Demand Support

Telephone Support (U.S.)

International Offices

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action
against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part,
without the prior written consent of National Instruments Corporation.

Trademarks

ComponentWorks™, LabVIEW®, National Instruments®, NI-DAQ®, DAQ-STC™, natinst.com™, and SCXI™ are
trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all traditional
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent serious injury
or death should always continue to be used when National Instruments products are being used. National Instruments
products are NOT intended to be a substitute for any form of established process, procedure, or equipment used to
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v Getting Results with ComponentWorks

Contents

About This Manual
Organization of This Manual ...xi

Conventions Used in This Manual...xiii

Customer Communication ...xiv

Chapter 1
Introduction to ComponentWorks

What is ComponentWorks? ...1-1

Installing ComponentWorks ..1-2

System Requirements ..1-2

Installation Instructions ...1-3

Installing the ComponentWorks ActiveX Control..............................1-3

Installing From Floppy Disks ...1-3

Installing the Instrument Drivers DLLs ..1-4

Installed Files...1-4

About the ComponentWorks Controls ..1-5

Properties, Methods, and Events ...1-5

Object Hierarchy ...1-6

Collection Objects ...1-7

Setting the Properties of an ActiveX Control ..1-8

Using Property Sheets ...1-8

Changing Properties Programmatically...1-10

Item Method ..1-11

Working with Control Methods...1-12

Developing Event Handler Routines ...1-12

Using the Analysis Library and Instrument Driver DLLs.................................1-13

The Help File—Learning the Properties, Methods, and Events........................1-13

Chapter 2
Building ComponentWorks Applications with Visual Basic

Developing Visual Basic Applications ..2-1

Loading the ComponentWorks Controls into the Toolbox2-1

Building the User Interface Using ComponentWorks.......................................2-2

Using Property Sheets ...2-3

Contents

Getting Results with ComponentWorks vi © National Instruments Corporation

Using Your Program to Edit Properties .. 2-4

Working with Control Methods .. 2-5

Developing Control Event Routines ... 2-6

Using the ComponentWorks Instrument Driver DLLs in Visual Basic 2-7

Object Browser—Building Your Code in Visual Basic 2-8

Pasting Code into Your Program .. 2-11

Learning to Use Specific ComponentWorks Controls...................................... 2-11

Chapter 3
Building ComponentWorks Applications with Visual C++

Developing Visual C++ Applications ... 3-1

Creating Your Application.. 3-1

Adding ComponentWorks Controls to the Visual C++ Controls Toolbar 3-3

Building the User Interface Using ComponentWorks Controls 3-4

Programming with the ComponentWorks Controls.. 3-5

Using Properties .. 3-7

Using Methods .. 3-9

Using Events ... 3-10

Learning to Use Specific ComponentWorks Controls...................................... 3-11

Chapter 4
Building ComponentWorks Applications with Delphi

Developing Delphi Applications ... 4-1

Loading the ComponentWorks Controls into the Component Palette.............. 4-1

Building the User Interface ... 4-3

Placing Controls .. 4-3

Using Property Sheets ... 4-4

Using Your Program to Edit Properties .. 4-5

Programming with ComponentWorks .. 4-6

Using Methods .. 4-7

Using Events ... 4-8

Learning to Use Specific ComponentWorks Controls...................................... 4-8

Chapter 5
Using the Graphical User Interface Controls

What are the GUI Controls? .. 5-2

Object Hierarchy and Common Objects.. 5-3

The Knob and Slide Controls .. 5-4

Knob and Slide Object .. 5-5

Pointers Collection.. 5-5

Pointer Object ... 5-5

Contents

© National Instruments Corporation vii Getting Results with ComponentWorks

Axis Object..5-6

Ticks and Labels Objects...5-6

ValuePairs Collection..5-7

ValuePair Object ...5-7

Statistics Object ...5-8

Events ..5-8

The Numeric Edit Box Control..5-9

Events ..5-9

Tutorial: Knob, Slide, and Numeric Edit Box Controls ..5-10

Designing the Form ...5-10

Developing the Program Code ..5-11

Testing Your Program ...5-13

The Button Control ..5-14

Events ..5-15

The Graph Control ...5-15

Graph Object ...5-17

Plot Methods..5-17

Chart Methods ...5-18

Plots Collection ...5-19

Plot Object ...5-19

PlotTemplate Object ..5-20

Cursors Collection ...5-21

Cursor Object...5-21

Axes Collection ...5-22

Axis Object..5-23

Events ..5-23

Panning and Zooming..5-24

Tutorial: Graph and Button Controls ...5-25

Designing the Form ...5-25

Developing the Code ...5-27

Testing Your Program ...5-29

Chapter 6
Using the Data Acquisition Controls

Data Acquisition Configuration...6-2

Object Hierarchy and Common Properties ..6-2

Device, DeviceName, and DeviceType...6-3

Channel Strings ...6-3

SCXI Channel Strings ...6-4

ExceptionOnError and ErrorEventMask ...6-5

AIPoint Control—Single Point Analog Input..6-6

AIPoint Object...6-6

Contents

Getting Results with ComponentWorks viii © National Instruments Corporation

Channels Collection .. 6-7

Channel Object.. 6-8

ChannelClock Object .. 6-8

AI Control—Waveform Analog Input .. 6-9

AI Object... 6-10

Methods and Events .. 6-10

Asynchronous Acquisition ... 6-10

Synchronous Acquisition.. 6-11

Error Handling.. 6-12

ScanClock and ChannelClock Objects ... 6-12

StartCondition, PauseCondition and StopCondition Objects 6-13

Tutorial: Using the AIPoint and AI DAQ controls ... 6-14

Designing the Form... 6-15

Setting the DAQ Properties... 6-16

Developing the Code... 6-17

Testing Your Program... 6-19

AOPoint Control—Single Point Analog Output ... 6-19

AOPoint Object... 6-20

Methods... 6-20

AO Control—Waveform Analog Output .. 6-21

AO Object ... 6-22

Methods and Events .. 6-23

UpdateClock and IntervalClock Objects .. 6-24

StartCondition Object ... 6-25

Tutorial: Using the AOPoint control ... 6-26

Designing the Form... 6-26

Developing the Code... 6-27

Testing Your Program... 6-29

Digital Controls and Hardware.. 6-30

DIO Control—Single Point Digital Input and Output 6-30

DIO Object .. 6-31

Ports Collection and Port Object .. 6-32

Lines Collection and Line Object ... 6-33

Common Properties and Methods... 6-34

DI Control—Buffered Waveform Digital Input ... 6-36

DI Object... 6-36

UpdateClock Object ... 6-37

Methods and Events.. 6-38

DO Control—Buffered Waveform Digital Output ... 6-40

DO Object... 6-40

UpdateClock Object ... 6-41

Methods and Events.. 6-42

Tutorial: Using the DIO control .. 6-44

Contents

© National Instruments Corporation ix Getting Results with ComponentWorks

Designing the Form ...6-44

Developing the Code ...6-45

Testing Your Program ...6-47

DAQTools—Data Acquisition Utility Functions ..6-48

Using DAQ Tools functions..6-49

Counter/Timer Hardware ...6-50

Counter Control—Counting and Measurement Operations6-50

Counter Object ..6-51

Methods and Events..6-53

Buffered Measurements..6-54

Pulse Control—Digital Pulse and Pulsetrain Generation..................................6-55

Pulse Object ..6-56

Methods ..6-58

FSK and ETS Pulse Generation..6-59

Tutorial: Using the Counter and Pulse controls...6-60

Designing the Form ...6-60

Developing the Code ...6-62

Testing Your Program ...6-65

Chapter 7
Using the Analysis Controls and Functions

What are the Analysis Controls? ...7-1

Analysis Library Versions ..7-2

Controls ...7-12

Analysis Function Descriptions ..7-13

Error Messages..7-13

Tutorial: Using Simple Statistics Functions ..7-13

Designing the Form ...7-14

Developing the Program Code ..7-15

Testing Your Program ...7-17

Chapter 8
Building Advanced Applications

Using Advanced ComponentWorks Features..8-1

A Virtual Oscilloscope ..8-2

Data Acquisition Stop Condition Modes ..8-3

Data Acquisition Pretriggering ...8-3

User Interface Value Pairs ..8-4

Virtual Spectrum Meter...8-5

DSP Analysis Library ...8-7

Cursors ..8-8

Graph Track Mode ..8-10

Contents

Getting Results with ComponentWorks x © National Instruments Corporation

A Virtual Data Logger .. 8-11

Multiple Graph Axes .. 8-12

Graph Axes Formats ... 8-13

File Input/Output .. 8-14

Adding Testing and Debugging to Your Application ... 8-14

Error Checking.. 8-14

Exceptions .. 8-15

Return Codes .. 8-17

Error and Warning Events .. 8-18

GetErrorText Function ... 8-19

Debugging... 8-20

Debug Print... 8-20

Breakpoint .. 8-20

Watch Window ... 8-21

Single Step, Step Into and Step Over ... 8-21

Appendix A
Common Questions

ComponentWorks Common Questions... A-1

Appendix B
Error Codes

Appendix C
Customer Communication

Glossary

Index

Tables
Table 7-1. Analysis Control Function Tree.. 7-3

Table B-1. Data Acquisition Control Error Codes.. B-1

Table B-2. Analysis Error Codes .. B-22

Table B-3. General ComponentWorks Error Codes .. B-27

© National Instruments Corporation xi Getting Results with ComponentWorks

About

This

Manual

The Getting Results with ComponentWorks manual contains the

information you need to get started with the ComponentWorks software

package. ComponentWorks adds the instrumentation-specific tools for

acquiring, analyzing, and displaying data in Visual Basic, Visual C, and

Delphi.

This manual contains step-by-step instructions for building applications

with ComponentWorks. You can then modify these sample applications

to suit your needs. This manual does not show you how to use every

control or solve every possible programming problem. Use the online

reference for further, function-specific information.

To use this manual, you should already be familiar with one of the

supported programming environments and Windows 95 or

Windows NT.

Organization of This Manual

The Getting Results with ComponentWorks manual is organized as

follows:

• Chapter 1, Introduction to ComponentWorks, contains an overview

of ComponentWorks, lists the ComponentWorks system

requirements, describes how to install the software, and explains

the basics of ActiveX controls.

• Chapter 2, Building ComponentWorks Applications with Visual
Basic, contains an overview of using ComponentWorks controls

with Visual Basic. This chapter explains how to insert the controls

into the Visual Basic environment, set their properties, and use

their methods and events.

• Chapter 3, Building ComponentWorks Applications with Visual
C++, contains an overview of using ComponentWorks controls

with Visual C++. This chapter explains how to insert the controls

into the Visual C++ environment and create the necessary wrapper

classes, as well as how to use the MFC AppWizard with

ComponentWorks controls.

About This Manual

Getting Results with ComponentWorks xii © National Instruments Corporation

• Chapter 4, Building ComponentWorks Applications with Delphi,
contains an overview of using ComponentWorks controls with

Delphi. This chapter explains how to insert the controls into the

Delphi environment, set their properties, and use their methods and

events.

• Chapter 5, Using the Graphical User Interface Controls, shows you

how to use the graphical user interface (GUI) controls to customize

your application’s interface to suit your needs.

• Chapter 6, Using the Data Acquisition Controls, shows how to use

the ComponentWorks data acquisition (DAQ) controls in your

application to perform input and output operations with your

National Instruments DAQ hardware.

• Chapter 7, Using the Analysis Library, shows you how to use the

ComponentWorks analysis controls and functions. The analysis

functions can be used alone or with other controls to perform data

analysis, manipulation, and simulation.

• Chapter 8, Building Advanced Applications, discusses how to build

applications using more advanced features of ComponentWorks,

including advanced data acquisition techniques, the DSP Analysis

Library, and advanced GUI controls. It also discusses error

tracking, error checking, and debugging techniques.

• Appendix A, Common Questions, contains a list of answers to

frequently asked questions. It contains general ComponentWorks

questions as well as specific data acquisition, graphical user

interface, and Analysis Library questions.

• Appendix B, Error Codes, lists the error codes returned by the

ComponentWorks DAQ controls and Analysis Library functions. It

also lists some general ComponentWorks error codes.

• Appendix C, Customer Communication, contains forms you can

use to request help from National Instruments or to comment on our

products and manuals.

• The Glossary contains an alphabetical list and description of terms

used in this manual, including acronyms, abbreviations, metric

prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in

this manual, including the page where you can find each one.

About This Manual

© National Instruments Corporation xiii Getting Results with ComponentWorks

Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes a parameter, menu name, palette name, menu item,

return value, function panel item, or dialog box button or option.

italic Italic text denotes mathematical variables, emphasis, a cross reference,

or an introduction to a key concept.

bold italic Bold italic text denotes an activity objective, note, caution, or warning.

monospace Text in this font denotes text or characters that you should literally enter

from the keyboard. Sections of code, programming examples, and

syntax examples also appear in this font. This font also is used for the

proper names of disk drives, paths, directories, programs, subprograms,

subroutines, device names, variables, filenames, and extensions, and for

statements and comments taken from program code.

<> Angle brackets enclose the name of a key on the keyboard—for

example, <PageDown>.

- A hyphen between two or more key names enclosed in angle brackets

denotes that you should simultaneously press the named keys—for

example, <Control-Alt-Delete>.

<Control> Key names are capitalized.

» The » symbol leads you through nested menu items and dialog box

options to a final action. The sequence File»Page Setup»Options»Fonts

directs you to pull down the File menu, select the Page Setup item,

select Options, and finally select the Fonts option from the last dialog

box.

paths Paths in this manual are denoted using backslashes (\) to separate drive

names, directories, and files, as in C:\dir1name\dir2name\file.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and

terms are listed in the Glossary.

About This Manual

Getting Results with ComponentWorks xiv © National Instruments Corporation

Customer Communication

National Instruments wants to receive your comments on our products

and manuals. We are interested in the applications you develop with our

products, and we want to help if you have problems with them. To make

it easy for you to contact us, this manual contains comment and

configuration forms for you to complete. These forms are in

Appendix C, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 Getting Results with ComponentWorks

Chapter

1
Introduction to
ComponentWorks

This chapter contains an overview of ComponentWorks, lists the

ComponentWorks system requirements, describes how to install the

software, and explains the basics of ActiveX controls.

What is ComponentWorks?

ComponentWorks is a collection of ActiveX controls and DLLs

(Dynamic Link Libraries) for acquiring, analyzing, and presenting data

within any compatible ActiveX control container. ActiveX controls are

also known as OLE (Object Linking and Embedding) controls, and the

two terms can be used interchangeably in this context. Use the online

reference for specific information about the properties, methods, and

events of the individual ActiveX controls and the routines of the DLLs.

Access this information by opening the online ComponentWorks

Reference Manual in the ComponentWorks folder.

With ComponentWorks, you can easily develop complex custom user

interfaces to display your data, control your National Instruments Data

Acquisition (DAQ) boards, and analyze data you acquired or received

from some other source. The ComponentWorks package contains the

following components:

• User Interface Controls—32-bit ActiveX controls for presenting

your data in a technical format. These controls include a graph/strip

chart control, sliders, thermometers, tanks, knobs, gauges, meters,

LEDs, and switches.

• DAQ Controls—32-bit ActiveX controls for analog, digital I/O,

and counter/timer I/O operations using National Instruments DAQ

products.

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-2 © National Instruments Corporation

• Analysis Library Controls—Functions for statistics, advanced

signal processing, windowing, filters, curve-fitting, vector and

matrix algebra routines, probability, and array manipulations.

These functions are packaged in 32-bit ActiveX controls. Each

ComponentWorks package (Base, Standard, and Full Development

System) contains different options for analysis. The Base package

includes functions for basic statistics and array operations; the

Standard Development System includes additional Digital Signal

Processing (DSP)functions for signal processing, windowing, and

filtering operations; and the Full Development System adds

advanced statistics and probability functions.

• Instrument Drivers (shipped only with the Full Development

System)—32-bit DLLs for controlling common GPIB instruments

with high-level instrument control routines.

The ComponentWorks ActiveX controls and DLLs are designed for use

in Visual Basic, a premier ActiveX control container application. Some

ComponentWorks features and utilities have been incorporated with the

Visual Basic user in mind. However, you can use ActiveX controls and

DLLs in many other applications that support ActiveX controls. Visual

C++, Access, and Delphi are just a few of the development

environments outside of Visual Basic that support ActiveX controls and

DLLs.

Installing ComponentWorks

You must install ComponentWorks on your computer before you can

get started. The ComponentWorks setup program does this for you in a

process that lasts approximately five minutes.

System Requirements
To use the ComponentWorks ActiveX controls and Analysis Library,

you must have the following:

• Microsoft Windows 95 or Windows NT (4.0 required for DAQ

controls) operating system

• Personal computer using at least a 33 MHz 80486 or higher

microprocessor (National Instruments recommends a 66 MHz

80486 or higher microprocessor)

• VGA resolution (or higher) video adapter

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-3 Getting Results with ComponentWorks

• ActiveX custom control container such as Visual Basic (32-bit

version), Visual C++, Delphi (32-bit version)

• NI-DAQ 5.0 or later for Windows 95 or Windows NT (if you are

using DAQ controls)

• Minimum of 8 MB of memory

• Minimum of 10 MB of free hard disk space

• Microsoft-compatible mouse

Installation Instructions
Complete the following steps to install ComponentWorks:

Note: If you are installing ComponentWorks on a Windows NT system, you must

be logged in with Administrator privileges to complete the installation.

Installing the ComponentWorks ActiveX Control

1. Make sure that your computer and monitor are turned on and that

you have installed Windows 95 or Windows NT.

2. Insert the ComponentWorks CD into the CD drive of your

computer. From the CD startup screen, click on Install

ComponentWorks 1.1. If the CD startup screen does not appear,

use the Windows Explorer or File Manager to run the SETUP.EXE

program in the \CWorks\disks\disk1 directory on the CD.

Installing From Floppy Disks
If your computer using ComponentWorks does not have a CD drive,

follow these instructions for installing the software:

1. On another computer with a CD drive and disk drive, copy the files

in the individual subdirectories of the \CWorks\disks directory on

the CD onto individual 3.5” floppy disks. The floppy disks should

not contain any directories, and should be labeled disk1, disk2,

etc., following the name of the source directories.

2. On the target computer, insert the floppy labeled disk1 and run the

setup.exe program from the floppy.

3. Follow the instructions of the installation program on the screen.

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-4 © National Instruments Corporation

Installing the Instrument Drivers DLLs

If you have purchased the Instrument Driver DLL library or the

ComponentWorks Full Development System you will have received a

separate CD containing the instrument driver DLLs. Follow these

instructions for their installation:

1. Run the setup.exe program from the Instrument Driver CD.

2. Following the instructions in the installation program, select

whether to install the 16- or 32-bit versions of the instrument

drivers. If you would like both versions, you will need to run the

installation twice. To do this, move the installed DLL files to a

different directory after the first installation, so that they will not be

copied over during the second installation.

3. Select the desired support files and continue to the driver selection.

4. When you select the actual drivers to install, click to the left of the

driver name (in the white space, not on the name itself) so that a

check mark appears next to the selected drivers. In this dialog, also

select the pathname for the installation. The default is \InstrDLL.

5. Follow the installer instructions to complete the installation.

6. To use the instrument drivers, copy the INSTRSUP.DLL and/or

LWSUPP.DLL files (found in the \InstrDLL\System directory) to

the \System subdirectory under your Windows 95 directory or to

the \System32 subdirectory under your WindowsNT directory.

Installed Files
The ComponentWorks setup program installs the following groups of

files on your hard disk:

• ActiveX Controls and Documentation

Directory: \Windows\system(32)\

Files: cwdaq.ocx, cwui.ocx, cwanalysis.ocx,

cwref.hlp

• Example Programs and Applications

Directory: \ComponentWorks\samples\…

• Tutorial Programs

Directory: \ComponentWorks\tutorial\…

• Miscellaneous Files

Directory: \ComponentWorks\

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-5 Getting Results with ComponentWorks

• Instrument Driver Files

Directory: \InstrDLL\.

Note: You select the \ComponentWorks\… and \InstrDLL\… directories during

installation.

About the ComponentWorks Controls
Before learning how to use ComponentWorks, you should be familiar

with using ActiveX controls. This section outlines some background

information about ActiveX controls, in particular the ComponentWorks

controls. If you are not already familiar with the concepts outlined in

this section, make sure you understand them before continuing.

You may also want to refer to your programming environment

documentation for more information on using Active X (OLE) controls

in your particular environment.

Properties, Methods, and Events
ActiveX controls consists of three different parts (properties, events,

and methods) used to implement and program the controls.

Properties are the attributes of a control. These attributes describe the

current state of the control and affect the display and behavior of the

control. The values of the properties are stored in variables that are part

of the control.

Methods are functions defined as part of the controls. Methods are

called with respect to a particular control and usually have some affect

on the control itself. The operation of most methods is also affected by

the current property values of the control.

Events are messages generated by a control in response to some

particular occurrence. The events pass to the control container

application to execute a particular section in the program (event

handler).

For example, the ComponentWorks Graph control has a wide variety of

properties that determine how the graph looks and operates. You can set

properties for color, axes, scaling, tick marks, cursors, and labels, to

name a few, to customize the graph appearance and behavior.

The Graph control also has a series of high-level methods, or functions,

that you can invoke to set several properties at once and to perform a

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-6 © National Instruments Corporation

particular operation. For example, you can use the PlotY method to

pass an array of data to the Graph control.

The Graph control generates events when particular operations take

place. For example, when you drag a cursor on the graph, the control

passes an event to your program so you can respond to cursor

movements. For example, you might want to retrieve the X- and

Y-coordinate positions of a cursor as it is being dragged and display

the coordinates in text boxes.

Note: Use the ComponentWorks online reference for specific information about

the properties, methods, and events of the ActiveX controls and the routines

of the instrument driver DLLs.

Object Hierarchy
As described in the previous section, each ActiveX control has

properties, methods and events. These three parts are stored in a

software object, which is the piece of software that makes up the

ActiveX control and contains all its parts. Certain ActiveX controls can

be become very complex, containing many different parts (properties).

For this reason, complex ActiveX controls are often subdivided into

different software objects, the sum of which make up the ActiveX

control. Each individual object in a control contains some specific parts

(properties) and functionality (methods and event) of the ActiveX

control. The relationship between the different objects of a control are

maintained in an object hierarchy. At the top of the hierarchy is the

actual control itself. This top-level object contains its own properties,

methods and events. In addition, the object contains references to other

objects that define specific parts of the control. Such references are

usually also referred to as properties of the control/object because they

describe the state of the object. The number of levels in the hierarchy is

not limited, and objects below the top-level object may contain

references to other objects of their own.

Another advantage of subdividing controls is the re-use of different

objects between different controls. One object may be used at different

places in the same object hierarchy, or may be used in several different

controls/object hierarchies.

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-7 Getting Results with ComponentWorks

The following diagram shows an example of an object hierarchy using

the ComponentWorks slide control:

The Slide object contains some of its own properties such as Name and

BackColor. It also contains properties such as Axis and Pointers, which

are separate objects from the Slide object. The Axis object contains all

the information about the axis used on the slide and has properties such

as Maximum and Minimum. The Pointers Collection object contains

several Pointer objects of its own, each describing one pointer on the

Slide control. Each Pointer object has properties, one of which is

Value, while the Pointers Collection object has the property Count.

The Pointers Collection object is a special type of object referred to as

a collection, which is described in the Collection Objects section.

Collection Objects
In certain cases one object contains several objects of the same type.

For example, a Graph object contains several Axis objects, each

representing one of the axes on the graph. Additionally, the number of

objects in the group of objects may not be defined, and may change

while the program is running (that is, you can add or remove axes as part

of your program). To handle these groups of objects more easily, an

object called a Collection is created.

A collection is an object which contains or stores a varying number of

objects of the same type. It can also be regarded as an array of objects.

The name of a collection object is usually the plural of the name of the

object type contained within the collection. For example, a collection of

Pointer objects is referred to as Pointers, a collection of Plot objects as

Slide Object
Name: CWSlide1

BackColor: vbBlue

Axis Object
Minimum: 0

Maximum: 10

Pointer Collection Object
Count: 2

Pointer Object
Value 2.4

Pointer Object
Value 3.6

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-8 © National Instruments Corporation

Plots, and a collection of Axis objects as Axes. In the software, the

terms object and collection are removed so that only the type names

Pointer and Pointers are used.

Each collection object contains an Item method you can use to access

any particular object stored in the collection. This method and how to

access properties and objects in the object hierarchy are explained in the

Setting the Properties of an ActiveX Control section.

Setting the Properties of an ActiveX Control

You can set the properties of an ActiveX control from its property

sheets or from within your program. Information specific to your

programming environment on how to perform these operations is

documented in the following chapters. This section discusses the

general issues regarding these operations.

Using Property Sheets
You use property sheets to set the default property values for each

ActiveX control. Property sheets are common throughout the Windows

95 and Windows NT interface. When you want to change the

appearance or options of a particular object, right-click on the object

and select Properties. A property sheet or tabbed dialog box appears

with a variety of properties that you can set for that particular object.

You customize ActiveX controls in exactly the same way. Once you

drop the control onto a form in your programming environment,

right-click on the control and select Properties…. You can then set the

properties, customizing the appearance and operation of the control.

Use the property sheets to set the default property values for each

control while you are creating your application. The property values

you select at this point represent the state of the control at the beginning

of your application. The property values can also be changed from

within your program, as shown in the Changing Properties
Programmatically section later in this chapter.

In some programming environments (such as Visual Basic and Delphi),

you may have two different property sheets. The property sheet

common to the programming environment is called the default property
page; it contains the most basic properties of a control.

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-9 Getting Results with ComponentWorks

Your programming environment assigns default values for some of the

basic properties, such as the control name and the tab order. You must

edit these properties by using the default property sheet.

The following illustration shows the Visual Basic default property sheet

for the CWGraph control:

The second property sheet is called the custom property page. The

layout and functionality of the custom property sheets are defined by

the developer of the ActiveX control and varies among different

controls.

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-10 © National Instruments Corporation

The following illustration shows the custom property sheet for the

CWGraph control:

Changing Properties Programmatically
You can also set or read the properties of your controls

programmatically. For example, if you want to change the state of an

LED control during program execution, change the Value property from

True to False, or False to True. The exact syntax for reading and

writing property values depends on your programming language, so

consult the appropriate chapter for using your programming

environment. For illustration purposes we will use the Visual Basic

syntax here, which is similar to most other implementations.

Each control you create in your program will have a name (like a

variable name) which is used to reference the control in your program.

Setting the value of a property on a top level object is straightforward.

name.property = new_value

For example, to change the value property of an LED control to off, use

the following line of code, where CWButton1 is the default name of the

button/LED control:

CWButton1.Value = False

To access properties of sub-objects referenced by the top level object,

follow the control name with the name of the sub-object followed by the

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-11 Getting Results with ComponentWorks

property name. For example, consider the following code for the

ComponentWorks data acquisition analog input (CWAI) control:

CWAI1.ScanClock.Frequency = 10000

In the above code, ScanClock is a property/object of the CWAI control.

Frequency is a property of the ScanClock object. As an object of the

CWAI control, ScanClock has several additional properties.

You can retrieve the value of control properties from your program in

the same way. For example, to print the value of the LED control listed

above, use the following line of code:

Print CWButton1.Value

To display the frequency used by the CWAI control in a Visual Basic

text box use the following code.

Text1.Text = CWAI1.ScanClock.ActualFrequency

Item Method
To access an object or its properties in a collection you use the Item

method of the collection object. For example to set the value of the

second pointer on a slide use the following code.

CWSlide1.Pointers.Item(2).Value = 5.0

The term CWSlide1.Pointers.Item(2) refers to the second Pointer

object in the Pointers collection of the Slide object. The parameter of

the Item method is either an integer representing the (one-based) index

of the object in the collection or a string with the name of one of the

objects in the collection.

CWSlide1.Pointers.Item(“TemperaturePointer”)

Because the Item method is the most commonly used method on a

collection it is referred to as the default method. Therefore, in some

programming environments, .Item can be left out of the code. So,

CWSlide1.Pointers(2).Value = 5.0

is programmatically the same as

CWSlide1.Pointers.Item(2).Value = 5.0

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-12 © National Instruments Corporation

Working with Control Methods
ActiveX controls and objects have their own methods, or functions, that

you can call from your program. Methods can have parameters that you

pass to the method, and return values that pass information back to your

program.

For example, the PlotY method for the ComponentWorks Graph

control has a required parameter—the array of data to be plotted—that

you must include when you call the method. If you want to plot the data

returned from an Analog Input control, use the following line of code

(the array Voltages is automatically generated by the CWAI control).

CWGraph1.PlotY Voltages

The PlotY method has additional parameters that are optional in some

programming environments. For example, in addition to the first

parameter representing the data to be plotted, you can pass a second

parameter to represent the initial value for the X axis, a third parameter

for an incremental change on the X axis corresponding to each data

point, and a fourth parameter that determines how the graph should

handle two-dimensional data:

CWGraph1.PlotY Voltages, 0.0, 1.0, True

Depending on your programming environment, the parameters may be

enclosed in parentheses. Visual Basic does not use parentheses to pass

parameters if the function or method is not assigned a return variable.

The AcquireData method in the DAQ Analog Input control has the

following form when used with a return variable lErr.

lErr = CWAI1.AcquireData(Voltages, BinaryCodes, 1#)

Developing Event Handler Routines
After you configure your controls on a form, you create event handler

routines in your program to respond to events generated by the controls.

For example, the DAQ Analog Input control has an Acquired_Data

event that fires (occurs) when the acquired data is ready to be processed,

based on the acquisition options you have configured in the control

property pages.

You can configure the control to continuously collect 1,000 points of

data from a particular channel at a rate of 1,000 points per second.

Therefore, once every second, the data buffer is ready and the

Acquired_Data event is fired. In your Acquired_Data event routine,

you can write code to analyze the data buffer, plot it, or store it to disk.

Chapter 1 Introduction to ComponentWorks

© National Instruments Corporation 1-13 Getting Results with ComponentWorks

To develop the event routine code, most programming environments

generate a skeleton function to handle each event. Chapters 2, 3, and 4

of this manual outline how to generate these function skeletons to build

your event handler routines. For example, the Visual Basic environment

generates the following function skeleton into which you insert the

functions to call when the AcquireData event occurs.

Private Sub CWAI1_AcquiredData(Voltages As Variant,

BinaryCodes As Variant)

End Sub

In most cases, the event also returns some data to the event handler that

can be used in your event handler routine. In the example of the

AcquireData event above, this includes the Voltages and

BinaryCodes arrays.

Using the Analysis Library and Instrument Driver DLLs
The ComponentWorks Analysis Library is packaged as a set of ActiveX

controls, while the instrument drivers are packaged as 32-bit DLLs.

You can add analysis functions to your project in the same way you add

user interface or data acquisition controls. After adding the Analysis

controls to your programming environment, use the analysis functions

like any other method on a control. To use any specific function, place

the appropriate analysis control on a form. Then, in your program, call

the name of the control followed by the name of the analysis function:

MeanValue = CWStat1.Mean (Data)

Consult Chapter 7, Using the Analysis Controls and Functions, and the

ComponentWorks online help for more information on the individual

analysis functions and their use.

To use the instrument driver DLLs, you must add a reference to the DLL

in your project. After you add the appropriate reference to your project,

you can use the functions included in the DLLs to control your

instruments easily.

The Help File—Learning the Properties, Methods, and Events
The ComponentWorks online help files contain detailed information on

each control and its associated properties, methods, and events. Refer to

ComponentWorks Help when you are using a control for the first time.

Remember that many of the ComponentWorks controls share

sub-objects, properties, and more, so when you learn how to use one

control, you also learn how to use others. You can open the help file

Chapter 1 Introduction to ComponentWorks

Getting Results with ComponentWorks 1-14 © National Instruments Corporation

from within most programming environments by clicking on the Help

button in the custom property pages, or you can open it from the

Windows environment by selecting the ComponentWorks Reference

icon in the ComponentWorks folder/program group.

Some programming environments, compatible with ActiveX controls,

have built-in mechanisms for detailing the available properties,

methods and events for a particular control. Some of these include

automatic links into the online help file. These additional tools are

highlighted in the chapters of this manual discussing the individual

programming environments.

© National Instruments Corporation 2-1 Getting Results with ComponentWorks

Chapter

2
Building ComponentWorks
Applications
with Visual Basic

This chapter contains an overview of using the ComponentWorks

controls with Visual Basic. At this point you should be familiar with the

general structure of ActiveX controls described in Chapter 1,

Introduction to ComponentWorks. This chapter explains how to insert

the controls into the Visual Basic environment, set their properties, and

use their methods and events. This chapter discusses how to perform

these operations using ActiveX controls in general. The individual

ComponentWorks controls are described later in this manual. This

chapter also outlines Visual Basic features that simplify working with

ActiveX controls.

Developing Visual Basic Applications

You start developing applications in Visual Basic using a form. A form

is a window or area on the screen on which you can place controls and

indicators to create the user interface for your programs. The toolbox in

Visual Basic contains all of the controls available for developing the

form.

After you place each control on the form, the next step is to configure

the properties of the control. This is done using the default and custom

property pages.

Each control you place on a form has associated code (event handler

routines) in your Visual Basic program that is automatically executed

when that control is operated by the user. To create this code,

double-click on the control and the Visual Basic code editor is opened

to a default event handler routine.

Loading the ComponentWorks Controls into the Toolbox
Before you build an application using the ComponentWorks controls

and libraries, you must add them to the Visual Basic toolbox. The

ComponentWorks ActiveX controls are divided into three groups:

user interface controls (CWUI.OCX), data acquisition controls

(CWDAQ.OCX), and analysis library controls and functions

Chapter 2 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 2-2 © National Instruments Corporation

(CWANALYSIS.OCX). When you start a new project in Visual Basic,

right-click on the toolbox and select Custom Controls…. The

ComponentWorks controls should be listed in the Available Controls

list starting with National Instruments.... Select the controls you want

to use in your project. If the ComponentWorks controls are not in the

list, select the desired control files from the \Windows\System(32)

directory by pressing the Browse button.

If you plan to use the ComponentWorks controls in several projects,

you can configure Visual Basic 4 to include the ComponentWorks

controls in the default collection of controls in the toolbox. Do this by

loading the project AUTO32LD.VBP from the Visual Basic directory.

This file contains the default settings for your Visual Basic projects.

Then, add the ComponentWorks controls to the toolbox and save the

project. When you create a new project in Visual Basic, the

ComponentWorks controls will always appear in the toolbox.

Building the User Interface Using ComponentWorks
After you add the ComponentWorks controls to the Visual Basic

toolbox, use them to create the front panel of your application. To place

the controls on the form, select the corresponding icon in the toolbox

and click and drag the mouse on the form. This step creates the

corresponding control. After you create controls, move and size them

by using the mouse. To move a control, click and hold the mouse on the

control and drag the control to the desired location. To resize a control,

select the control and place the mouse pointer on one of the hot spots on

the border of the control. Drag the border to the desired size. Notice that

the icons for the data acquisition (DAQ) and analysis controls cannot be

resized and will not be visible at run time.

Once ActiveX controls are placed on the form, you can edit their

properties using their property sheets. You can also edit the properties

from within the Visual Basic program at run time.

Chapter 2 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 2-3 Getting Results with ComponentWorks

Using Property Sheets
After dropping a control on a Visual Basic form, configure the control

by setting its properties in the default and custom control property

pages. Visual Basic assigns some default properties, such as the control

name and the tab order. When you create the control, you can edit these

stock properties in the Visual Basic default property sheet. To access

this sheet, select a control and select Properties from the View menu,

or press <F4>. To edit a property, highlight the property value on the

right side of the property sheet and type in the new value or select it

from a pull down menu. The most important property in the default

property sheet is the Name, which is used to reference the control in the

program. The following illustration shows the Visual Basic property

sheet for the CWGraph control:

Chapter 2 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 2-4 © National Instruments Corporation

All other properties of an ActiveX control are edited in the custom

property sheets. To open the custom property sheets right-click on the

control on the form and select Properties.... The following illustration

shows the custom property sheet for the CWGraph control:

Using Your Program to Edit Properties
You can also set or read the properties of your controls

programmatically in Visual Basic. Use the name of the control

combined with the name of the property as you would with any other

variable in Visual Basic.

For example, if you want to change the state of an LED control during

program execution, you change the Value property from True to

False, or False to True. The syntax for setting a property in Visual

Basic is name.property = new value. For example:

CWButton1.Value = False

Some properties can be objects that have their own properties. In this

case, you string the name of the control, sub-object and property

together. For example, consider the following code for the DAQ CWAI

control:

DAQ.ScanClock.Frequency = 10000

In the above code, ScanClock is the property of the DAQ control.

Frequency is a property of the ScanClock object. As an object of the

DAQ control, ScanClock itself has several additional properties.

Chapter 2 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 2-5 Getting Results with ComponentWorks

You can retrieve the value of control properties from your program in

the same way. For example, to print the value of an LED control use the

following line of code:

Print CWButton1.Value

In Visual Basic most controls have a default property such as Value

for the Knob, Button and Slide controls. You can access the default

property of a control by using its control name (without the property

name attached). For example:

CWSlide1 = 5.0

is programmatically equivalent to:

CWSlide1.Value = 5.0

Consult the How to Set the Properties of a ActiveX Control section of

Chapter 1, Introduction to ComponentWorks, for information on how to

set properties programmatically, specifically on using objects and

properties in collections. One tool in Visual Basic that is helpful with

using properties in your code is the Object Browser, which is described

in detail in the Object Browser—Building Your Code in Visual Basic

section of this chapter.

Working with Control Methods
Calling the methods of an ActiveX control in Visual Basic is similar to

working with the control properties. To call a method, add the name of

the method after the name of the control (and sub-object if applicable).

To call the Start method on the DAQ analog input control, for

instance, use the following code:

CWAI1.Start

Methods can also have parameters that you pass with the method, and

return values that pass information back to your program. For example,

the PlotY method for the ComponentWorks Graph control has a

required parameter—the array of data to be plotted—that you must

include when you call the method. If you want to plot the data returned

from an Analog Input control, use the following line of code.

CWGraph1.PlotY Voltages

Chapter 2 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 2-6 © National Instruments Corporation

The PlotY method has some additional parameters that are optional.

These are added after the Voltages parameter, separated by commas,

if desired.

If you call a method without assigning a return variable, any parameters

passed to the method are listed after the method name, separated by

commas without parentheses:

CWAI1.AcquireData Voltages, BinaryCodes, 1.0

However, if you assign the return value of a method to a return variable

the parameters need to be enclosed in parentheses as in the following

example:

lErr = CWAI1.AcquireData(Voltages, BinaryCodes, 1.0)

Use the Visual Basic Object Browser to add method calls to your

program easily.

Developing Control Event Routines
After you configure your controls in the forms editor, you write

Visual Basic code to respond to events on the controls. These events

are generated by the controls in response to user interactions with the

controls, or in response to some other occurrence in the control. To

develop the event handler routine code for an ActiveX controls in

Visual Basic, double-click on the control to open the code editor. This

action automatically generates a default event handler routine for the

control. The event handler routine skeleton that is generated includes

the control name, the default event, and any parameters that are passed

to the event handler routine. The following code is an example of the

event routine generated for the Slide control. This event routine

(PointerValueChanged) is called when the value of the slide is

changed by the user or by some other part of the program:

Private Sub CWSlide1_PointerValueChanged(ByVal

Pointer As Long, Value As Variant)

End Sub

Chapter 2 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 2-7 Getting Results with ComponentWorks

To generate an event handler for a different event of a control,

double-click the control to generate the default handler. Then, select the

desired event from the Proc (Procedure) field in the code window, as

shown in the following illustration:

This generates an event handler routine for the selected event on the

same control. Use the Object field in the code window to change to

another control without going back to the form window.

Using the ComponentWorks Instrument Driver DLLs in Visual Basic
The ComponentWorks Full Development System comes with a library

of instrument drivers. An instrument driver is software that handles the

details of control and communications with a specific instrument.

An instrument driver consists of a set of high-level functions that

controls a specific programmable instrument. Each function

corresponds to a programmatic operation such as initialization,

configuration, and measurement. If you did not purchase the

ComponentWorks Full Development Kit and find that you need

instrument drivers, contact National Instruments for information on

ordering drivers.

The ComponentWorks instrument drivers are packaged as 32-bit DLLs.

Before you can use any of the instrument driver functions in your

program, you must add a reference to the instrument driver DLL to your

project.

Chapter 2 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 2-8 © National Instruments Corporation

To add a instrument driver DLL to your project, select References…

from the Tools or Project menu. In the References dialog window,

press the Browse button and then move to the directory in which you

installed your instrument drivers (the default is \InstrDLL\System).

Select the instrument driver DLL you wish to add to your project.

After you have added the reference to the DLL, you can use any of the

functions in the instrument driver without having to do any more

declarations. An example of a typical instrument driver function is the

initialization function for the Fluke 45 multimeter:

lerr = fl45_init(2, 1, 1, InstrID)

All the functions in each instrument driver are listed and described in

the corresponding help file which is installed with each driver. After

you add the appropriate reference to your project for using an

instrument driver DLL, use the object browser to view the functions and

parameters available in each instrument driver. Refer to the Object
Browser—Building Your Code in Visual Basic section for more

information on using the object browser to help you build your

program.

Object Browser—Building Your Code in Visual Basic
Visual Basic includes a tool called the object browser that you can use

to work with ActiveX controls and instrument driver DLLs while

creating your program. The object browser displays a detailed list of the

available properties and methods for a particular control, as well as the

functions of an instrument driver. It presents a three-step hierarchical

view of controls or libraries and their properties, methods and

functions. To open the object browser select Object Browser… from

the View menu, or press <F2>.

In the object browser, use the Libraries/Projects field to select a

particular ActiveX control file, library or instrument driver. You can

select any of the currently loaded controls or drivers. The

Classes/Modules window of the object browser shows a list of controls,

objects, and function classes available in the selected control file or

driver.

Chapter 2 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 2-9 Getting Results with ComponentWorks

The illustration below shows the ComponentWorks User Interface (UI)

control file selected. The Classes/Modules list shows all the UI controls

and associated object types. Each time you select an item from the

Classes/Modules window in the object browser, the

Methods/Properties window displays the properties, methods and

functions for the selected object or class.

When you select an item in the Methods/Properties window, the

prototype and description of the selected property, method or function

is displayed at the bottom of the object browser dialog box. For

example, in the figure above the CWGraph control is selected from the

list of available UI objects. For this control the PlotY method is

selected and the prototype and description of the method appears in the

dialog box. The prototype of a method or function includes a list of

parameters that can or must be passed.

Chapter 2 Building ComponentWorks Applications with Visual Basic

Getting Results with ComponentWorks 2-10 © National Instruments Corporation

When you select a property of a control or object in the

Method/Properties window which is an object in itself, the description

of the property includes a reference to the object type of the property.

For example, the next figure shows the Knob control (CWKnob) selected

in the Classes/Modules field and its Axis property, selected in the

Methods/Properties field.

The Axis on the Knob control is a separate object, so the description at

the bottom of the dialog window lists the Axis property as CWAxis.

CWAxis is the type name of the Axis object and can be selected in the

Classes/Modules list to see its properties and methods. Move from one

level of the object hierarchy to the next level using the object browser

to explore the structure of different controls.

The question mark (?) button at the bottom of the object browser dialog

window opens the help file to a description of the currently selected

item. To find more information about the CWGraph control, select the

control in the window and press the ? button.

Chapter 2 Building ComponentWorks Applications with Visual Basic

© National Instruments Corporation 2-11 Getting Results with ComponentWorks

Pasting Code into Your Program
If you open the object browser from the code editor in Visual Basic, you

can paste a selected property, method, or function directly into your

program. To perform this operation, place the cursor at the location in

your program where you want to insert the new code. Open the object

browser by pressing <F2>. Select the desired property name, method,

or function in the window of the object browser, and click on the Paste

button. This pastes a copy of the selected item into your code. When you

paste in a call to a method or function that includes parameters, you

must replace the parameter prototypes with actual variables or values.

You can also use this method repeatedly to build a more complex

reference to a property of a lower level object in the object hierarchy.

For example, you can create a reference to

CWGraph1.Axes.Item(1).ValuePairs.Item(3).Name

by typing in the name of the control (CWGraph1) and then using

the object browser to add each section of the property reference.

Refer to the Item Method section of Chapter 1, Introduction to
ComponentWorks, for more information on the Item method and

collections.

Learning to Use Specific ComponentWorks Controls
Each ComponentWorks control and its use is described in more detail

in later chapters in this manual. However, these chapters will not

discuss every property, method, and feature of each control. The

ComponentWorks online help contains detailed information on each

control and all its associated properties, events, and methods. Refer to

onlineonline help to find descriptions of the different features of a

particular control. Remember that many of the ComponentWorks

controls share properties, so when you learn how to use one control, you

are learning how to use others as well.

© National Instruments Corporation 3-1 Getting Results with ComponentWorks

Chapter

3
Building ComponentWorks
Applications with Visual C++

This chapter contains an overview of using ComponentWorks controls

with Visual C++. At this point you should be familiar with the general

structure of ActiveX controls described in Chapter 1, Introduction to
ComponentWorks, as well as C++ programming and the Visual C++

environment. This chapter explains how to insert the controls into the

Visual C++ environment and create the necessary wrapper classes. It

also shows you how to create an application compatible with the

ComponentWorks controls using the Microsoft Foundation Classes

Application Wizard (MFC AppWizard), and how to build your program

using the ClassWizard with the controls. This chapter discusses how to

perform these general operations using ActiveX controls. The

individual ComponentWorks controls are described later in this

manual.

Developing Visual C++ Applications

You start developing applications in Visual C++ by creating a new

workspace or project. To create a project compatible with the

ComponentWorks ActiveX controls, use the Visual C++ MFC

AppWizard to create a skeleton project and program. After the skeleton

project is built, add any ActiveX controls to be used to the Controls

toolbar. From the toolbar, you can add the controls to the application

itself. After you add a control to your application, configure its

properties using its property pages. While developing your program

code, you can use the control properties and methods as well as create

event handlers to process different events generated by the control.

Creating the necessary code for these different operations is simplified

by using the ClassWizard in the Visual C++ environment.

Creating Your Application
When you begin developing a new application, the project must be

configured to be compatible with ActiveX controls. This is done by

using the MFC AppWizard when you create the new project workspace.

The MFC AppWizard creates the project skeleton and adds the

Chapter 3 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 3-2 © National Instruments Corporation

necessary code so that you can add ActiveX controls to your program

later on.

Create a new project by selecting New from the File menu and then

select Project Workspace. In the next dialog window, select the MFC

AppWizard (exe) and enter your project name in the Name field. Then

click on Create to setup your project.

In the next series of dialog windows, the MFC AppWizard prompts you

for different project options. If you are not familiar with Visual C++ or

the MFC AppWizard, use the default options unless otherwise noted

here. In the first step, you select the type of application to build.

Selecting a Dialog based application initially makes it easier to become

familiar with the ComponentWorks controls. Click on the Next> button.

In the following steps of the MFC AppWizard, make sure you enable

OLE/ActiveX controls support. This is done in step 2, as shown above,

of the MFC AppWizard, if you select a Dialog based application.

Continue to the end of the MFC AppWizard, selecting desired options.

The MFC AppWizard then builds a project and program skeleton

according to the selected options. The skeleton includes several classes,

resources, and files, all of which can be accessed from the Visual C++

Chapter 3 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 3-3 Getting Results with ComponentWorks

development environment. Use the Project Workspace window, which

can be selected from the View menu, to see these different components

in your project.

Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
To use ComponentWorks controls in your application, you must load

the controls into the Controls toolbar in Visual C++. This is done from

the Component Gallery in the Visual C++ environment. The process of

loading the controls using the Component Gallery automatically

generates a set of C++ wrapper classes in your project, which are

necessary to work with the ComponentWorks controls.

The Controls toolbar is only visible in the Visual C++ environment if

the Visual C++ dialog editor is currently active. To open the dialog

editor, open the Project Workspace window (select Project Workspace

from the View menu), select the ResourceView, and double-click on

one of the Dialog entries.

To add a new control, select the Component option from the Insert

menu. This opens the Component Gallery in Visual C++ as shown in the

following illustration:

Select the OLE Controls tab in the gallery and look for the

ComponentWorks controls. ComponentWorks control names all start

with CW.

Chapter 3 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 3-4 © National Instruments Corporation

If the ComponentWorks controls are not shown in the OLE controls tab

of the Component Gallery, push the Customize button, and the Import

button in the dialog window that appears. Select the OCX file on your

hard drive that contains the controls you want to load. The

ComponentWorks OCX files are located in the \Windows\System(32)

directory and have names of the form CW*.OCX. Repeat the import

process for any additional OCX files. This adds the corresponding

ComponentWorks controls to the Component Gallery.

From the Component Gallery, select a control you want to add to the

Controls toolbar and push the Insert button. The dialog window that

appears lists the classes generated for the ActiveX control and the file

names used. Click OK to continue. This adds the new classes to your

project and the new control to the Controls toolbar. Repeat this process

for additional controls.

When you have completed adding controls, click on Close in the

Component Gallery. The new controls should now be visible in the

Visual C++ environment Controls toolbar.

Building the User Interface Using ComponentWorks Controls
After the controls are added to the Controls toolbar, you can use the

controls in the design of the application user interface. Place the

controls on the dialog form using the dialog editor. You can size and

move individual controls in the form to customize the interface.

Configure controls through their property sheets. This affects both their

representation on the user interface as well as their behavior at run-time.

Notice that the following sections assume that you are developing a

dialog based application.

To add ComponentWorks controls to the form, open the dialog editor

by selecting the dialog form from the Resource View of the Project

Workspace. After you open the dialog editor, if the Controls toolbar is

not displayed, open it by selecting Toolbars from the View menu and

placing a check mark next to Controls.

Chapter 3 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 3-5 Getting Results with ComponentWorks

To place a ComponentWorks control on the dialog form, select the

desired control in the Controls toolbar, then click and drag the mouse

on the form to create the control. After placing the controls, move and

resize them on the form.

When you add a ComponentWorks control to a dialog form, configure

the default properties of the control by displaying its custom property

sheets. The graph control property sheets are shown below as an

example:

A separate window displays a sample copy of the control that reflects

the property changes as you make them in the property sheets, so you

can see what the control will look like. To open the property sheets,

right click on the control and select Properties.

Programming with the ComponentWorks Controls
To program with ComponentWorks controls, use the properties,

methods, and events of the controls as defined by the wrapper classes in

Visual C++. Later chapters in this manual provide more information on

the most commonly used properties, methods, and events of the

individual controls. All the properties, methods and events of the

different controls are described in detail in the ComponentWorks

Online Reference, which you can access from the ComponentWorks

folder under the Start menu. Consult the online documentation for

information on how to use specific controls and their properties,

methods and events.

Chapter 3 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 3-6 © National Instruments Corporation

Before you can use the properties or methods of a control in your

program, you must assign a member variable name to the control. This

member variable becomes a variable of the application dialog class.

To create a member variable for a control on the dialog form, right-click

on the control and select ClassWizard. In the MFC Class Wizard

window switch to the Member Variables tab.

Select the new control in the Control IDs field and press the Add

Variable... button. In the dialog window that appears, complete the

member variable name and press OK. Usually member variable names

start with m_ and you should use this convention. After you create the

member variable, use it to access a control from your source code. The

figure above shows the MFC Class Wizard after member variables have

been added for a graph and analog input control.

Chapter 3 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 3-7 Getting Results with ComponentWorks

Using Properties
Unlike Visual Basic, you do not read or set the properties of

ComponentWorks controls directly in Visual C++. Instead, the wrapper

class of each control contains functions to read and write the value of

each property. These functions are named starting with either Get or

Set followed by the name of the property. For example, to set the Value

property of a slide, use the SetValue function of the wrapper class for

the slide control. In the source code, the function call is preceded by the

member variable name of the control to which it applies. For example:

m_Slide.SetValue(COleVariant(5.0));

All values passed to properties need to be of variant type. Convert the

value passed to the Value property to a variant using COleVariant().

To read the value of a control use the GetValue() function. You can

also use the GetValue function to pass a value of a control to another

part of your program. For example, to pass the value of a slide control

to a meter control, use the following line of code:

m_Meter.SetValue(m_Slide.GetValue());

The conversion to a variant type is not necessary in the previous line

because the GetValue function returns its value as a variant.

You can see the names of all the property functions for a given control

in the ClassView of the Project Workspace. In the Project Workspace

window, select ClassView, and then select the control to view its

property functions, as well as methods. The following figure shows the

functions for the slide object as they are listed in the Project Workspace.

Chapter 3 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 3-8 © National Instruments Corporation

These are created automatically when you add a control to the Controls

toolbar in you project.

If you need to access a property of a control which is in itself another

object, use the appropriate property function to return the sub-object of

the control. Then make a call to access the property of the sub-object.

You need to include the header file in your program for any new object

you use. For example, use the following code to configure the Axis

object of a slide control:

#include“cwaxis.h”

CCWAxis Axis1;

Axis1 = m_Slide.GetAxis();

Axis1.SetMaximum(COleVariant(5.0));

You can chain this operation into one function call without the need to

declare another variable:

#include “cwaxis.h”

m_Slide.GetAxis().SetMaximum (COleVariant(5.0));

Chapter 3 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 3-9 Getting Results with ComponentWorks

If you need to access an object in a collection property, use the Item

method with the index of the object. Remember to include the header

file for the collection object. For example, to set the maximum of the

first Y axis on a graph use the following code:

#include “cwaxes.h”

#include “cwaxis.h”

m_Graph.GetAxes().Item(COleVariant(2.0)).SetMaximum

(COleVariant(5.0));

Using Methods
All the methods of each control are extracted with its wrapper class. To

call a method, append the method name to the member variable name

and pass the appropriate parameters. Methods that do not take any

parameters should be followed by a pair of empty parentheses:

m_CWAI1.Start();

Most methods take some parameters as variants. You must convert any

such parameter to a variant if you have not already done so. You can

easily convert most scalar values to a variant by using COleVariant().

For example, the PlotY method of the graph control requires three

scalar values as variants:

m_Graph.PlotY (*Voltages, COleVariant(0.0),

COleVariant(1.0), COleVariant(1.0));

Consult the Visual C++ documentation for more information on the

variant data type.

If you need to call a method on a sub-object of a control, follow the

conventions outlined in the Using Properties section. For example, a

single plot on a graph is an object in the Plots collection—which itself

is an object in the graph control. To call PlotY on one particular plot

of your graph use the following line of code:

m_Graph.GetPlots().Item(COleVariant(2.0)).PlotY

(*Voltages, COleVariant(0.0), COleVariant(1.0));

Chapter 3 Building ComponentWorks Applications with Visual C++

Getting Results with ComponentWorks 3-10 © National Instruments Corporation

Using Events
After you place a control on your form, you can start defining event

handler functions for the control in your code. Events are generated

automatically at run time by different controls in response to

conditions, such as the user clicking a button on the form or the data

acquisition process acquiring a specified number of points.

To create an event handler, right-click on a control and select

ClassWizard. Select the Message Maps tab and the desired control in

the Object IDs field. The Messages field displays the available events

for the selected control. Select the event and press the Add Function...

button to add the event handler to your code. To switch directly to the

source code for the event handler, click on the Edit Code button.

This places the cursor in the event handler, where you can add the

functions to call when the event occurs. You can use the Edit Code

button at any time by opening the class wizard and selecting the event

for the specific control.

Chapter 3 Building ComponentWorks Applications with Visual C++

© National Instruments Corporation 3-11 Getting Results with ComponentWorks

The following is an example of an event handler generated for the

PointerValueChanged event of a knob. Insert your own code in the

event handler:

void CTestDlg::OnPointerValueChangedCwknob1(long

Pointer, VARIANT FAR* Value)

{

// TODO: Add your control notification handler code here

}

Learning to Use Specific ComponentWorks Controls
Each ComponentWorks control and its use is described in more detail

in later chapters in this manual. However, these chapters will not

discuss every property, method, and feature of each control. The

ComponentWorks online help contains detailed information on each

control and all its associated properties, events, and methods. Refer to

online help to find descriptions of the different features of a particular

control. Remember that many of the ComponentWorks controls share

properties, so when you learn how to use one control, you are learning

how to use others.

© National Instruments Corporation 4-1 Getting Results with ComponentWorks

Chapter

4
Building ComponentWorks
Applications with Delphi

This chapter contains an overview of using ComponentWorks controls

with Delphi. At this point you should be familiar with the general

structure of ActiveX controls as described in Chapter 1, Introduction to
ComponentWorks. This chapter explains how to insert controls into the

Delphi environment, how to set their properties, and use their methods

and events using ActiveX controls. Individual ComponentWorks

controls are described later in the manual. This chapter also outlines

Delphi features that simplify working with ActiveX controls.

Developing Delphi Applications

You start developing applications in Delphi using a form. A form is a

window or area on the screen on which you can place controls and

indicators to create the user interface for your programs. The

Component palette in Delphi contains all of the controls available for

building applications. After you place each control on the form, the next

step is to configure the properties of the control. This is done by using

the default and custom property pages. Each control you place on a form

has associated code (event handler routines) in the Delphi program that

is automatically executed when that control is operated by the user.

Loading the ComponentWorks Controls into the Component Palette
Before you can use the ComponentWorks controls in your Delphi

applications, you must add them to the Component palette in the Delphi

environment. The controls only need to be added once to the palette

because they will be available until they are explicitly removed from the

Component palette. Adding the controls to the palette also creates a

Pascal import unit (header file) that declares all the properties, methods

and events of a control. When you use a control on a form, a reference

to the import unit is automatically added to the program.

Chapter 4 Building ComponentWorks Applications with Delphi

Getting Results with ComponentWorks 4-2 © National Instruments Corporation

Before adding a new control to the Component palette, make sure to

save all your work in Delphi, including files and projects. After loading

the controls, Delphi closes any open projects and files to complete the

loading process.

To add ActiveX controls to the Component palette, select Install from

the Component menu in the Delphi environment. In the Install

Components window that appears, press the OCX button. In the Import

OLE Control window, select the desired registered control that appears

on the Registered Controls field. The ComponentWorks controls all start

with National Instruments. After you have selected the proper

control, click OK to close the window. When you click the OK button,

Delphi generates a Pascal import unit file for the selected .OCX file,

which is stored in the \Lib directory of Delphi. If you had previously

installed the same .OCX file, it will prompt you to overwrite the existing

import unit file.

If your control does not show in the Import OLE Control window it is

not registered with the operating system. In this case click on the

Register... button to open the Register OLE Control window, find the

OCX file that contains the control, and select it. This process registers

the control with the operating system. Most OCX files are located in the

\System(32) directory under Windows.

Chapter 4 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 4-3 Getting Results with ComponentWorks

To load additional controls, return to the Import OLE Controls window

and select more controls.

When you have finished selecting controls, click OK in the Install

Components window to load the new controls and add them to the OCX

tab of the Component palette. This step closes any open projects in the

Delphi environment, so you will need to reopen any projects you had

open.

You can rearrange controls on the Component palette in Delphi by

right-clicking on the palette and selecting Properties.

Building the User Interface
After you add the ComponentWorks controls to the Component palette,

you can begin building your application. Starting with a new project,

place different controls on the form. These controls are part of the user

interface of the program, and also add specific functionality to the

application. After you place controls on the form, configure their

default property values through the stock and custom property sheets.

Placing Controls
To place a control on the form, select the control from the Component

palette and click and drag the mouse on the form. Select controls from

the different tabs available in the Component palette. You can move and

resize controls using the mouse to customize the interface. After

controls are placed, you can change their default property values by

Chapter 4 Building ComponentWorks Applications with Delphi

Getting Results with ComponentWorks 4-4 © National Instruments Corporation

using the default property sheet (Object Inspector) and custom property

sheets.

Using Property Sheets
Set the property values such as the name of the control in the Object

Inspector of Delphi. To open the Object Inspector, select Object

Inspector from the View menu or press <F11>. Under the Properties

tab of the Object Inspector, you can set the different properties of the

selected control.

Chapter 4 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 4-5 Getting Results with ComponentWorks

To open the custom property pages of a control, double click on the

control or right-click on the control and select Properties.... Most of the

properties of a control can be edited here. The specific properties of the

controls are explained later in this manual and in the online reference.

The following illustration is an example of the ComponentWorks graph

control property sheet:

Using Your Program to Edit Properties
You can set or read the properties of your controls programmatically

from within your Delphi code. This is done by using the name of the

control (set in the object inspector) combined with the name of the

property, as you would a variable in Delphi.

For example, if you want to change the state of an LED control during

program execution, you change the Value property from True to

False, or from False to True. The syntax for setting the value

property in Delphi is name.property: = new_value. For example:

CWButton1.Value := True;

Some properties can be objects that have their own properties. In this

case you combine the name of the control, sub-object and property. For

example, consider the following code for the DAQ CWAI control:

CWAI1.ScanClock.Frequency := 10000;

Chapter 4 Building ComponentWorks Applications with Delphi

Getting Results with ComponentWorks 4-6 © National Instruments Corporation

In the above code, ScanClock is both a property of the DAQ control,

and an object itself. Frequency is a property of the ScanClock object.

As an object of the DAQ control, ScanClock itself has several

additional properties.

You can retrieve the property value of a control from your program in

the same way. For example, to assign the value of a knob control to the

scan rate of a CWAI control, use the following code:

CWAI1.ScanClock.Frequency := CWKnob1.Value;

To use the properties or methods of an object in a collection, use the

Item method to extract the object from the collection. Once the object

is extracted, use its properties and methods as you normally do:

CWGraph1.Axes.Item(2).Maximum := 5;

In some cases an object may be assigned as a property to another object.

For example, the following code assigns a plot object of a graph to a

cursor object in order to specify which plot the cursor is tracking:

CWGraph1.Cursors.Item(1).Plot :=

CWGraph1.Plots.Item(2);

Consult the Setting the Properties of an ActiveX Control section in

Chapter 1, Introduction to ComponentWorks, for more information on

setting properties programmatically.

Programming with ComponentWorks
The code for each form in Delphi is listed in the associated Unit (code)

window. You can toggle between the form and associated unit window

by pressing <F12>. When you have placed controls on the form, you

Chapter 4 Building ComponentWorks Applications with Delphi

© National Instruments Corporation 4-7 Getting Results with ComponentWorks

can use their methods in your code and create event handler routines to

process events generated by the controls at run-time.

Using Methods
Each control has a number of methods defined that you can use in your

program. Some of these may require some parameters. To call a method

in your program, use the control name followed by the method name:

CWAI1.Start;

Parameters passed to a method are of type variant in most cases. Simple

scalar values can automatically be converted into variant type value,

and may therefore be passed to methods. Arrays, however, must be

explicitly declared as variant arrays. The following example shows how

to plot some data using the PlotY method. The data acquisition control

returns its data as a variant array so it can be plotted directly on the

graph control. Consult the Delphi documentation for more information

on the variant data type:
var

 vData:Variant;

begin

 // Create array in Variant

 vData := VarArrayCreate([0, 99], varDouble);

 for i := 0 to 99 do

 begin

 vData[i] := Random;

 end;

 // Plot Variant Array

 CWGraph1.PlotY (vData, 0.0, 1.0, True);

end;

Chapter 4 Building ComponentWorks Applications with Delphi

Getting Results with ComponentWorks 4-8 © National Instruments Corporation

Using Events
Use event handler routines in your source code to respond to and

process events generated by the different ComponentWorks controls.

Events are generated in response to user interaction with an object such

as a knob, but also by other controls (such as the DAQ controls) in

response to internal conditions (for example, acquisition completed or

error). You can easily create a skeleton for an event handler routine

using the object inspector in the Delphi environment.

To open the object inspector, press <F11> or select Object Inspector

from the View menu. In the object inspector, select the Events tab. This

lists all the events of the currently selected control. To use a specific

event and create its skeleton function in your code window,

double-click on the empty field next to the desired event name. Delphi

generates the event handler routine in the code window using the

default name for the event handler.

To specify your own event handler name, single-click in the empty field

in the object inspector next to the event, and enter the desired function

name. After the event handler function is created, insert the desired

code in the event handler.

Learning to Use Specific ComponentWorks Controls
Each ComponentWorks control and its use is described in more detail

in later chapters in this manual. However, these chapters will not

discuss every property, method, and feature of each control. The

ComponentWorks online help contains detailed information on each

control and all its associated properties, events, and methods. Refer to

online help to find descriptions of the different features of a particular

control. Remember that many of the ComponentWorks controls share

properties, so when you learn how to use one control, you are learning

how to use others.

© National Instruments Corporation 5-1 Getting Results with ComponentWorks

Chapter

5
Using the Graphical User
Interface Controls

This chapter shows how to use the ComponentWorks Graphical User

Interface (GUI) controls to customize your application interface to suit

your needs. The GUI controls include features commonly used in

instrumentation and data acquisition. They can be used to create the

front end for virtually any type of application, including finance,

systems management, and many others. The individual controls and

most commonly used properties, methods and events are explained in

this chapter. Additional information is found in the online help file.

This chapter also includes tutorial exercises that give step-by-step

instructions on using the controls in simple programs. While the code

listed with the tutorials uses Visual Basic syntax, the steps can be

applied to any programming environment. Consult the appropriate

chapter in this manual for information on using the ComponentWorks

controls in another environment. The software includes solutions for

the tutorials in Visual Basic, Visual C++, and Delphi.

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-2 © National Instruments Corporation

What are the GUI Controls?

The user interface file CWUI.OCX contains five separate ActiveX

controls with instrumentation-style interface controls and indicators.

Each of the ActiveX controls represents a family of individual control

styles. The following table lists the controls and their associated styles.

You set the style of an individual control from the property sheets at

design time, or it can be set through properties and methods at run-time.

This chapter discusses the most commonly used properties, methods

and events for each of the different controls and how they are applied in

typical applications. To become familiar with a specific control, read

the section discussing and describing that control and work through the

tutorial that implements the control in a simple program.

Control Control Style

CWGraph Graph

Strip Chart

Scope Chart

CWButton Slide Switch

Toggle Switch

Push Button

Command Button

Custom Bitmap Button

LED

CWSlide Horizontal and Vertical Slide

Horizontal and Vertical Fill

Thermometer

Tank

CWKnob Knob

Dial

Horizontal and Vertical Meter

CWNumEdit Numeric Edit Box

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-3 Getting Results with ComponentWorks

Object Hierarchy and Common Objects

Most of the ComponentWorks user interface controls are made up of a

hierarchy of less-complex objects. This chapter outlines the object

hierarchy for each of the controls and describes the individual objects.

Understanding how these different objects fit together to create one

control is the key to properly understanding and programming the

individual controls. By breaking a control down into individual

components, it actually becomes much simpler to work with, because

each individual component has fewer parts that you need to use at one

time.

Several objects in the object hierarchy are reused throughout different

controls. This further simplifies the process of becoming familiar with

different controls because as you learn the parts of one control, you are

learning parts of other controls at the same time. This chapter describes

such common controls the first time they are encountered and will refer

to that explanation from other sections.

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-4 © National Instruments Corporation

The Knob and Slide Controls

The knob and slide controls are similar to each other. The knob control

represents different types of circular displays, such as a knob, gauge, or

different types of meters. The slide control represents different types of

linear displays, such as thermometers and tank displays. The purpose of

the knob and slide is to allow the user to input or output (display)

individual or multiple scalar values. A knob or slide can have multiple

pointers on the control, each pointer representing one scalar value.

Like other controls, the knob and slide are made up of a hierarchy of

objects, illustrated in the following diagram, that simplifies the use of

the controls:

The following sections outline the structure of the controls, followed by

descriptions of the individual objects and their use. For most of the

objects, the section outlines the most common properties and methods,

followed by a description of the events generated by the control.

Axis Object
Properties:

(such as AutoScale,
Maximum)

Statistics Object
Properties:

(such as Maximum)

Knob/Slide Control
Properties:

(such as Color, Font)

Pointers
Collection

Property: Count

Ticks Object
Properties:

(such as Inside,
MajorTicks)

Value Pairs
Collection

Property: Count

Labels Object
Properties:

(such as Left,
Color)

Value Pair
Object

Properties:
Name, Value

Pointer Object
Properties:

(such as Color,
PointerStyle)

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-5 Getting Results with ComponentWorks

Knob and Slide Object
The knob or slide object maintains the basic attributes of the control

such as background color and the caption. Its most important property,

though, is the Value property, that contains the value of the currently

active pointer. Because a control can have more than one pointer it also

contains more than one value (stored in each pointer object). The Value

property of the knob or slide control is a copy of the value of the active

pointer. The active pointer is selected either by using the

ActivePointer property on the control or by using the mouse. You

access the value property using the following code

CWKnob1.Value = 5.0

x = CWSlide1.Value

Pointers Collection
The pointers collection of the knob or slide object contains the

individual pointer objects of the control. It has one read-only property,

Count, which returns the number of pointer objects in the collection.

NumPointers = CWSlide1.Pointers.Count

Like all collections, the pointers collection also has an Item method

that you use to access any particular pointer in the collection. To

retrieve a pointer, call the Item method and specify the (one-based)

index of the pointer in the collection:

CWKnob1.Pointers.Item(2)

Each pointer also has a name property, so you can retrieve individual

pointers using their name instead of their index:

CWSlide1.Pointers.Item(“BoilerPressure”)

Pointer Object
The Pointer object is stored in the pointers collection, and represents

one value displayed on either a knob or a slide control. It contains

properties such as Style and FillStyle which affect the display of

the pointer. These properties are usually set through the property sheets

at design time, and not changed during program execution. Each pointer

has a value property containing the value of the pointer that is used to

read or set its value if the pointer is not currently active. For example:

MaxLimit = CWKnob1.Pointers.Item(3).Value

CWSlide1.Pointers.Item(“BoilerPressure”).Value =

AcquiredPressure

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-6 © National Instruments Corporation

Axis Object
The Axis object contains the information about the axis scale used on

the control if it is a knob (circular scale) or a slide (straight scale). The

axis object is also used in the axes collection as part of the graph

control. The axis object has a number of simple properties like

AutoScale, Maximum, and Minimum that can be set and read directly.

For example:

CWKnob1.Axis.AutoScale = True

MaxValue = CWKnob1.Axis.Maximum

It also contains three other objects: Ticks, Labels and the

ValuePairs collection. These sub-objects are described in the

following sections:

The axis object contains a method SetMinMax which lets you specify

both a new minimum and maximum for the axis in one function call:

CWSlide1.Axis.SetMinMax newMin, newMax

Ticks and Labels Objects
Use the Ticks object to specify how tick marks are displayed on a

particular axis. Properties include the spacing of the ticks as well as

major and minor tick selection. The Tick object also controls any grid

displayed for a particular axis on the graph. Usually the Tick properties

are set at design time though the property sheets. If necessary they can

also be changed at run-time with simple property calls:

CWSlide1.Axis.Ticks.AutoDivision = False

CWKnob1.Axis.Ticks.MinorUnitsInterval = 2.0

CWGraph1.Axes.Item(1).Ticks.MajorGrid = True

The Labels object determines how the axis labels are drawn. Labels are

the numbers displayed next to the ticks. The label object has properties

to select where the labels are drawn (right, left, above, below) and

the color of the labels:

CWSlide1.Axis.Labels.Color = vbBlue

CWKnob1.Axis.Lables.Radial = True

CWGraph1.Axes.Item(1).Labels.Above = True

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-7 Getting Results with ComponentWorks

ValuePairs Collection
Use the ValuePairs collection and ValuePair objects to mark specific

points on any axis with a custom label. The ValuePairs collection is the

container for a varying number of ValuePair objects on an axis. It has a

Count property as well as several other properties that determine how

the value pairs are displayed on the axis:

NumMarkers = CWSlide1.Axis.ValuePairs.Count

CWKnob1.Axis.ValuePairs.LabelType = cwVPLabelName

The ValuePairs collection has an Item method to access any specific

ValuePair in the collection as well as several other methods to

dynamically manipulate the collection (Add, Remove, RemoveAll). The

RemoveAll method deletes all objects in the collection while the Add

and Remove methods add or remove one value pair at a time. Specify

the index of the value pair to be removed on the Remove method:

CWSlide1.Axis.ValuePairs.Item(2)

CWKnob1.Axis.ValuePairs.RemoveAll

CWGraph1.Axes.Item(2).ValuePairs.Remove 2

ValuePair Object
The ValuePair object configures an individual value pair that consists

of a Name and a Value property. Use value pairs on the axis of a knob,

slide, or graph control as custom ticks, labels, and grid lines. You can

use value pairs on the knob and slide control to implement a Value Pairs
Only control that limits the valid values of the control to the control's

value pairs. Specify the Name and Value property of a value pair in the

property sheets or at run-time. For example, to create a new value pair

and set its properties, use the following code:

CWSlide1.Axis.ValuePairs.Add

n = CWSlide1.Axis.ValuePairs.Count

CWSlide1.Axis.ValuePairs.Item(n).Name = “Max”

CWSlide1.Axis.ValuePairs.Item(n).Value = 7.0

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-8 © National Instruments Corporation

Statistics Object
The statistics object provides access to the statistical value stored by the

Knob and Slide controls. The three calculated statistics, minimum,

maximum, and mean, are updated each time a pointer value is changed

programmatically or graphically. The statistics object has a method

Reset that allows you to reset all its values. The minimum and

maximum are calculated since the last reset while the mean is the

average of the last ten values:

AverageMeasurement = CWSlide1.Statistics.Mean

CWKnob1.Statistics.Reset

Using the property sheets or the Pointer.Mode property, you can

assign a specific pointer on a control to display any of the statistics

values continuously.

Events
The main event on the knob and slide controls is

PointerValueChanged. It is fired when the value of a pointer on the

control is changed from the user interface or the program. This is

normally used to update values in your application in response to

changes on the user interface. For example, to use a numeric edit box as

a digital display for a slide and synchronize the two controls, use the

following event handler:

Private Sub CWSlide1_PointerValueChanged(ByVal Pointer

As Long, Value As Variant)

 NumEdit1.Value = CWSlide1.Value

End Sub

The Pointer parameter returned to the event handler specifies the

index of the pointer that has changed value.

Consult the online help file for more information on the individual

properties, methods or events.

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-9 Getting Results with ComponentWorks

The Numeric Edit Box Control

Use the numeric edit box control to display numbers in a manner similar

to a text box. The control includes increment and decrement buttons to

change the value of the control by using a mouse or touch screen. The

control includes range checking, so you can preset a valid range for the

control and the application will be notified if the value is set outside of

the limits. The control has no other objects in its hierarchy and all

properties and methods are contained in the control itself.

The most commonly used property is the Value property used to read

and set the value of the numeric edit box control:

CWNumEdit1.Value = 5.0

x = CWNumEdit1.Value

The Minimum, Maximum, and RangeChecking properties allow you to

configure the range checking process:

CWNumEdit1.Maximum = 5.0

CWNumEdit1.RangeChecking = True

The SetMinMax method can be used to set both the upper and lower

limit of the range at once:

CWNumEdit1.SetMinMax -10,10

Events
The numeric edit box control has three key events, ValueChanged,

ValueChanging, and IncDecButtonClicked.

ValueChanged is fired every time the value of the control has been

changed from the program or user interface.

ValueChanging is fired any time the value of the control is changed, but

before the new value is set in the control. The event returns parameters for

the new value with range checking in place, the attempted value, and the

previous value. NewValue is passed by reference so the code in the event

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-10 © National Instruments Corporation

routine is able to revise this value before it is set in the control. You need

only update NewValue and the changed value will be stored in the control:

Private Sub CWNumEdit1_ValueChanging(NewValue As

Variant, ByVal AttemptedValue As Variant, ByVal

PreviousValue As Variant, ByVal OutOfRange As Boolean)

If NewValue > 100 Then NewValue = NewValue + 10

End Sub

IncDecButtonClicked is fired when either the increment or

decrement button on the numeric edit box control is pressed on the user

interface. The event returns a boolean parameter to indicate which of

the two buttons was pressed.

Consult the online help file for more information on the individual

properties, methods or events.

Tutorial: Knob, Slide, and Numeric Edit Box Controls

This tutorial shows how to use the knob, slide and numeric edit box in

an application. Normally these control are used to display information

or to input simple data into your application. The tutorial goes through

all the steps necessary to integrate the controls with the program.

The knob and slide control each have several different display styles,

such as the meter and dial for the knob, and the fill, thermometer, and

tank for the slide. Although each of these styles changes the display of

the control, the programmatic functionality of the control remains

constant, and property sheets, event functions, and code interface are

used the same way.

The tutorial uses Visual Basic syntax, but is explained in general terms

so you can follow it in any compatible programming environment.

Remember to adjust any code to your specific programming language.

Consult the chapter specific to your programming environment for

information on implementing any particular step.

Designing the Form
1. Open a new project and form. If you are working in Visual C++,

select a dialog based application and name your project SimpleUI.

2. Load the ComponentWorks user interface controls (specifically,

the numeric edit box, knob, and slide) into your programming

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-11 Getting Results with ComponentWorks

environment. Consult the chapter discussing your environment if

you are not familiar with this operation.

3. From the toolbox or toolbar, place a CWKnob (knob) control on the

form. Keep its default name, CWKnob1.

4. Place a CWSlide (slide) control on the form. Keep its default name,

CWSlide1. Open its property sheet and select the Vertical Fill

style. You can also change other properties such as the fill color.

5. Place a CWNumEdit (numerical edit box) control near the knob on

the form. Keep its default name, CWNumEdit1. Keep its default

property values.

6. Place another CWNumEdit (numerical edit box) control near the

slide on the form. Change its name from CWNumEdit2 to

CWSlideDisplay. To change the name, in Visual Basic, use the

default property sheet (press <F4>). In Visual C++, open the

custom property sheets. In Delphi, use the object inspector (press

<F11>). Open its custom property sheet, under the Style tab, select

the Indicator Control Mode and unselect the Visible property of the

Inc/Dec Button. You can also change other properties such as the

font used in the display.

Your form should look similar to the one shown below.

Developing the Program Code
This program uses the numeric edit box next to the slide (without the

increment or decrement arrows) to display the value of the slide control.

The knob is used to change the value of the slide, and the other numeric

edit box is used to change the value of the knob, thereby changing the

value of the slide.

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-12 © National Instruments Corporation

To have your program respond when the slide value changes, add the

PointerValueChanged event for the slide. Use the Value property to

retrieve or set the current value of the controls.

1. Create a skeleton event handler for the PointerValueChanged

event of CWSlide1.

a. In Visual Basic, double-click on the slide control on the form

to create the CWKnob1_PointerValueChanged subroutine.

b. In Visual C++, use the MFC ClassWizard to create the event

handler routine. Right-click on the slide control and select

ClassWizard.

c. In Delphi, use the object inspector to create the event handler

routine. Select the slide control, press <F11> to open the object

inspector, select the Events tab and double-click the empty

field next to the PointerValueChanged event.

2. Add the following code inside the event handler routine. If you are

working Visual C++, first add a member variable for each control

to the application dialog class.

a. Visual Basic:

CWSlideDisplay.Value = CWSlide1.Value

b. Visual C++:

m_CWSlideDisplay.SetValue(m_CWSlide1.GetValue());

c. Delphi:

CWSlideDisplay.Value:= CWSlide1.Value;

3. Repeat step 1 for the knob control.

4. Add the following code to the CWKnob1_PointerValueChanged

event routine, adjusting for your programming language:

CWSlide1.Value = CWKnob1.Value

5. Repeat step 1 for the numeric edit box (CWNumEdit1) control.

6. Add the following code to the

CWNumEdit1_PointerValueChanged event routine, adjusting for

your programming language:

CWKnob1.Value = CWNumEdit1.Value

7. Save the project and associated files as SimpleUI.

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-13 Getting Results with ComponentWorks

Testing Your Program
Run the program. Notice that the slide display and associated numeric

edit box change as you turn the knob. Notice that when you change the

value of the other numeric edit box (with the increment or decrement

arrows), both the knob and slide value change.

The program calls the CWKnob1_PointerValueChanged function and

updates the slide control every time the value of the knob changes while

the mouse button is pressed. Because the slide control has its own

PointerValueChanged routine, the associated numeric edit box is

always updated when the value of the slide control changes. Finally,

when you change the value of the other numeric edit box, its own

PointerValueChanged routine updates the value of the knob, calling

the PointerValueChanged routine of the knob, and so on.

To call the event handler routines only when the mouse button is

released on the new selected value, use the MouseUp event instead of

PointerValueChanged.

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-14 © National Instruments Corporation

The Button Control

The button control is a simple control you use to input or output boolean

information from your application or to initiate some action in your

program. Because of its simplicity, it is made of only one object. The

different styles of the button include toggle switches, LEDs, push

buttons, slides, on/off buttons and custom bitmap buttons. The mode

property of the button allows the button, regardless of style, to act as a

command button that switches state only while the mouse button is

pressed down. This mode is used to initiate action in your program

without changing the state of the button permanently.

The most commonly used property on the button control is Value. It is

used to set the state of the control, such as for an LED or to read the state

of the control:

CWAlarmLED.Value = AlarmState

If (CWButton1.Value = True) Then...

Most other properties such as OnColor, OffColor, OnText and

OffText are usually set in the property pages during development. In

the property pages, you can select your own bitmaps to represent the on

and off states of the button to create a custom boolean control. You can

create representations of valves or heaters to depict industrial

processes.

There are no methods on the button control.

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-15 Getting Results with ComponentWorks

Events
The most important event generated by the button control is

ValueChanged which notifies the application that the button value has

changed. This event is generated if the button is in switch mode (switch

value when clicked on) or in command mode (switch value until

released):

Private Sub CWButton1_ValueChanged(ByVal Value As

Boolean)

‘insert code to run when button is pressed

End Sub

The Graph Control

The graph control is a complex control used for plotting and charting

data. It can be used to display multiple traces and supports multiple

cursors and Y axes. Plotting data refers to the process of taking a large

number of points and updating one plot on the graph with new data. The

old plot is replaced with the new plot. Charting data appends new data

points to an existing plot over time. It is used with slow processes where

only few data points per second are added to the graph. When more data

points are added than can be displayed on the graph, it starts to scroll so

that new points are added to the right side of the graph while old points

disappear on the left. The same graph control can be used both for

charting and plotting. Select between the two operations by using

different methods for displaying the data.

The graph control is made of a hierarchy of objects used to interact with

the control programmatically. At design time, you can manipulate

properties of the individual objects through the property sheets. The

following sections outline the structure of the control followed by

descriptions of the individual objects and their use. For most of the

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-16 © National Instruments Corporation

objects, the section outlines the common properties and methods,

followed by a description of the events generated by the control.

The objects in the graph control hierarchy represent the different parts

displayed on the physical representation of the graph. The three main

parts are the axes collection and axes objects, plots collection and plot

objects, and cursors collection and cursor objects. Additionally, the plot

template object serves as a template for new plot objects created in the

plots collection.

The graph object contains the basic properties of the control such as

name, graph frame color, plot area color, and track mode.

The axes collection and axis objects control the different axes on the

graph. The graph contains one X axis and a varying number of Y axes,

all contained in the axes collection.

The cursors collection and cursor objects control the cursors on the

graph. Cursors are normally created at design time by using the property

sheets. You can use cursors to mark a specific point or region on the

graph, or to highlight something programmatically.

Graph Control
Properties:

(such as PlotAreaColor, Font)

Cursors
Collection

Property: Count

Plots Collection
Property: Count

Axes Collection
Property: Count

Plot Template
Object

Property:
LineStyle

Cursor Object
Properties:

(such as Color,
PointStyle)

Plot Object
Properties:

(such as LineColor,
PointStyle)

Axis Object
Properties

(such as AutoScale,
Maximum

Ticks Object
Properties:

(such as Inside,
MajorTicks)

Value Pairs
Collection

Property: Count

Labels Object
Properties:

(such as Left,
Color)

Value Pair
Object

Properties:
Name, Value

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-17 Getting Results with ComponentWorks

Graph Object
The graph object has several simple properties, such as its name and

colors, that are usually set in the property sheets during design time.

Other important properties that affect the behavior of the graph,

generation of events, and some of its parts, such as the cursors, are

TrackMode, ChartStyle and ChartLength. The TrackMode property

specifically determines how mouse interaction with the graph is

interpreted and is used to implement cursors, zooming, and panning.

There are several methods in the graph object which are called directly

on the graph control. These are the Plot and Chart methods. These

methods are called on the graph object to send data to multiple plots at

once and can also be called on individual plot objects to send new data

to one specific plot at a time. Use the Plot methods to update and

replace all the data on the plots, and Chart methods to append new data

to the plots.

Plot Methods
The following three plot methods accept data in a slightly different

format:

• PlotY (yData, xFirst, xInc, bPlotPerRow) plots Y data evenly

spaced on the X axis relative to the index in the array. Using the

xFirst and xInc parameters, you can specify the X value at the

first data point and the incremental X value between data points.

yData can be a one dimensional array which updates the first plot

on the graph or a two dimensional array which updates the first
n plots on the graph. The bPlotPerRow parameter determines

whether a two dimensional data array is plotted by row or by

column.

• PlotXY (xyData, bPlotPerRow) plots a two dimensional array of

data. Depending on the bPlotPerRow parameter, the first row or

column in the data array contains the X data. Subsequent rows or

columns contain the Y data for different plots.

• PlotXvsY (xData, yData, bPlotPerRow) plots a one dimensional

or two dimensional array of Y data against a one dimensional array

of X data. Depending on the bPlotPerRow parameter, each row or

column of Y data generates one plot.

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-18 © National Instruments Corporation

In some programming environments, some of these parameters are

optional. These parameters use a default value if not explicitly

specified:

Visual Basic (some parameters optional):

CWGraph1.PlotY Voltages

Visual C++ (all parameters required):

m_CWGraph1.PlotY (VariantArray, COleVariant(0.0),

COleVariant(1.0), COleVariant(1.0));

Delphi (all parameters required):

CWGraph1.PlotY (Voltages, 0.0, 1.0, True);

Chart Methods
The following three chart methods accept data in a slightly different

format:

• ChartY (yData, xInc, bChartPerRow) charts Y data on one or

more plots relative to the index of the data. The xInc parameter

determines the X spacing between points passed to a plot. yData

can be a scalar value adding one point to the first plot, a one

dimensional array adding n points to the first plot, or one point to

n plots, or a two dimension array adding multiple points to multiple

plots. The bPlotPerRow parameter determines if plots in arrays are

stored by row or column. This is applicable to one dimensional and

two dimensional arrays.

• ChartXY (xyData, bChartPerRow) charts a two dimensional array

of data. Depending on the bPlotPerRow parameter, the first row or

column in the data array contains the X data. The subsequent rows

or columns contain the Y data for different plots.

• ChartXvsY (xData, yData, bChartPerRow) charts a one

dimensional or two dimensional array of Y data against a one

dimensional array of X data. Depending on the bPlotPerRow

parameter, each row or column of Y data generates one plot.

In some programming environments, some of these parameters are

optional. These parameters use a default value if not explicitly

specified:

CWGraph1.ChartY VariantArray,,False

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-19 Getting Results with ComponentWorks

Plots Collection
The Plots collection is a standard collection containing plot objects. The

collection contains one property Count that returns the number of plot

objects in the collection.

NumPlots = CWGraph1.Plots.Count

Normally all plots and their properties are defined at design time in the

property sheets. You can use the Add, Remove, and RemoveAll method

to programmatically change the number of plots on the graph. When

you add a plot to the collection, the new plot has the properties of the

plot template object (see PlotTemplate Object section). The Remove

method requires the index of the plot to be removed.

CWGraph1.Plots.Add

CWGraph1.Plots.Remove 3

Use the Item method of the plots collection access any particular plot

object in the collection.

Dim Plot1 as CWPlot

Set Plot1 = CWGraph1.Plots.Item(1)

Plot Object
The Plot object represents an individual plot on the graph. The object

contains a number of different properties that determine the display of

the plot. These properties include LineColor, LineStyle,

PointColor, FillToBase, and others. These properties can be set

during design in the property sheets and can also be changed

programmatically.

CWGraph1.Plots.Item(1).LineColor = vbBlue

CWGraph1.Plots.Item(1).PointStyle = cwPointAsterisk

The following code fills the space between the first and second plot on

the graph red.

CWGraph1.Plots.Item(1).FillToBase = True

Set CWGraph1.Plots.Item(1).BasePlot =

CWGraph1.Plots.Item(2)

CWGraph1.Plots.Item(1).FillColor = vbRed

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-20 © National Instruments Corporation

Each plot object has a set of Plot and Chart methods similar to the

methods on the graph object. See the Plot Methods and Chart Methods

sections for detailed descriptions of these methods. Calling these

methods on the plot object directly allows you to update one individual

plot on the graph without affecting the other plots. For the PlotY,

PlotXvsY, ChartY and ChartXvsY methods, the only difference to the

graph object is that the bplotPerRow parameter falls away and all data

arrays are one dimensional only:

CWGraph1.Plots.Item(4).PlotY Voltages

CWGraph1.Plots.Item(2).ChartXvsY xData, yData

The new protoypes of the PlotXY and ChartXY methods are:

ChartXY (xyData, bXInFirstRow)

PlotXY (xyData, bXInFirstRow))

With these methods, you use a two dimensional data array with exactly

two rows or two columns. The bXInFirstRow parameter specifies

whether the x and y data is stored in rows or columns.

CWGraph1.Plots.Item(4).PlotXY xyData, True

PlotTemplate Object
The PlotTemplate object of the graph object is a special copy of the plot

object. It is used to specify the default property values of new plots. The

plot template object properties are the same as of the plot object and are

set through the property sheets or programmatically.

The plot template property values are used as the default property

values for a newly created plot when the Add method is called on the

Plots collection. New plots are created dynamically if one of the Chart

or Plot methods is called on the graph control and data for more plots

is passed to the method than are defined in the plots collection. For

example, if only one plot is defined, but the PlotY method is called with

data for five plots, the defined plot is used for the first plot and four new

plots are dynamically created to display the additional data. The new

plots use the plot template property values.

CWGraph1.PlotTemplate.LineColor = vbRed

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-21 Getting Results with ComponentWorks

Cursors Collection
The cursors collection is a standard collection containing cursor

objects. To move the cursors using the mouse while running an

application, the TrackMode property must be set to a value that supports

this operation.

The cursors collection contains one property, Count, that returns the

number of cursor objects in the collection:

NumCursors = CWGraph1.Cursors.Count

Normally all cursors and their properties are defined at design time in

the property sheets. If necessary, you can use the Add, Remove and

RemoveAll method to programmatically change the number of cursors

on the graph. The Remove method requires the index of the cursor to be

removed:

CWGraph1.Cursors.Add

CWGraph1.Cursors.Remove 3

Use the Item method of the cursors collection access any particular

cursor object in the collection:

Dim FirstCursor as CWCursor

Set FirstCursor = CWGraph1.Cursors.Item(1)

Cursor Object
The cursor object controls the position and other attributes of the

individual cursors on the graph. Two of the most frequently used cursor

object properties are XPosition and YPosition, used to read or set the

position of the cursor on the graph:

x = CWGraph1.Cursors.Item(2).XPosition

CWGraph1.Cursors.Item(1).YPosition = YLimit

A cursor can also be associated with a specific plot on a graph. Set this

association in the property sheets or programmatically using the

SnapMode and Plot properties of the cursor. If a cursor is associated

with a specific plot, the cursor PointIndex property sets the cursor at

any specific index on the plot or returns the cursor position on the plot.

The SnapMode property is set by using a predefined ComponentWorks

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-22 © National Instruments Corporation

constant. In Visual C++ and Delphi, these constants are defined in a

separate header file which must be included in your program:

CWGraph1.Cursors.Item(1).SnapMode = cwCSnapPointsOnPlot

Set CWGraph1.Cursors.Item(1).Plot =

CWGraph1.Plots.Item(1)

ptIndex = CWGraph1.Cursors.Item(1).PointIndex

Axes Collection
The Axes collection is a standard collection containing all the axis

objects of the graph. A graph has one X axis and a varying number of

Y axes. The number of Y axes is determined by the developer at design

time and can be changed programmatically at run time. These different

axis objects are all contained in the axes collection and can be

referenced by index. Normally the X axis is at index one and the Y axes

are at subsequent indices.

The axes collection contains the property Count, which returns the

number of axis objects in the collection:

NumAxes = CWGraph1.Axes.Count

Normally all axes and their properties are defined at design time in the

property sheets. If necessary you can use the Add, Remove, and

RemoveAll method to change programmatically the number of axes on

the graph. The Remove method requires the index of the axis to be

removed.

CWGraph1.Axes.Add

CWGraph1.Axes.Remove 3

Use the Item method of the axes collection access any particular axis

object in the collection.

Dim xAxis as CWAxis

Set xAxis = CWGraph1.Axes.Item(1)

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-23 Getting Results with ComponentWorks

Axis Object
The axis object contains all the properties of the individual axes on the

graph, and is identical to the axis object used on the knob and slide

controls. In addition, the axis object contains three other objects,

Labels, Ticks, and the Value Pairs collection that define different parts

of an individual axis. The axis object and its parts are described in detail

in the Knob and Slide Control section.

Events
The graph generates a number of different events used to enable your

application to react to user interaction with the graph. The graph

processes certain mouse interactions automatically without the need to

develop any event handler routines.

The type of events generated and other automatic processing is

determined by the TrackMode property on the graph object which is set

through the property sheets or programmatically. Some of the common

modes on the graph generate events for mouse interaction with cursors,

plots, and the plot area, as well as moving cursors and panning and

zooming the graph.

To move the cursors with the mouse during program execution set the

TrackMode property to a compatible value using either the property

sheets or your application.

CWGraph1.TrackMode = cwGTrackDragCursor

In this mode, the graph generates the CursorChange event when any

of the cursors move. This event can initiate some action in your

application in response:

Private Sub CWGraph1_CursorChange(CursorIndex As Long,

XPos As Variant, YPos As Variant, bTracking As Boolean)

xDisplay = XPos

yDisplay = YPos

End Sub

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-24 © National Instruments Corporation

Panning and Zooming
The TrackMode allows you to specify the panning and zooming modes

on the graph.

Panning moves the displayed plot area by using the mouse on the graph.

You can scroll through a time based data set displayed on the graph.

Panning can be enabled for both the X and Y axes or limited to one of

the axes.

Zooming selects an area of the graph and zooms in on the selection.

Zooming can also be enabled for both axes or limited to one.

Using programmatic changes of the TrackMode property, you can allow

your users to select the different modes on the graph by clicking on a

button or setting a switch. For example, to use a slide with defined value

pairs:

Private Sub CWSlide1_PointerValueChanged(ByVal Pointer

As Long, Value As Variant)

Select Case CWSlide1.ValuePairIndex

Case 1

CWGraph1.TrackMode = cwGTrackZoomRectXY

Case 2

CWGraph1.TrackMode = cwGTrackPanPlotAreaXY

Case 3

CWGraph1.TrackMode = cwGTrackDragCursor

End Select

End Sub

Consult the online help file for more information on the graph control

and its individual properties, methods or events.

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-25 Getting Results with ComponentWorks

Tutorial: Graph and Button Controls

This tutorial shows you how to integrate the button and graph controls

in a simple application.

The button control, similar to the slide and knob, has several different

display styles while maintaining one set of property sheets, event

functions, and one style of interaction with the program. You can use

the button control as an input or as an output. That is, as an input you

can create a push button or a switch to initiate an action or switch

between actions. For an output, you can create an LED to indicate a

boolean condition.

The graph is the most complex of the user interface objects. You can use

it in two basic modes—Plot and Chart—which you select by using

different methods in your program to pass data to the graph.

This tutorial uses Visual Basic syntax, but the discussion is in general

terms so that you can follow it in any compatible programming

environment. Remember to adjust any code to your specific

programming language. Consult the chapter specific to your

programming environment for information on implementing any

particular step.

Designing the Form
1. Open a new project and form. If you are working in Visual C++,

select a dialog based application and name your project

ButtonGraphExample.

2. Load the ComponentWorks user interface controls (specifically the

button and graph) into your programming environment. Consult the

chapter discussing your programming environment if you are not

familiar with this operation.

3. Place a ComponentWorks graph control (shown at left) on the

form. Keep its default name, CWGraph1. Open the graph control

property sheet and, in the Axes tab, change the X-axis range to 0 to

20 and disable autoscaling. Examine the remaining tabs.

Most of the settings in the property sheet should be

self-explanatory. For more information about some of the advanced

features, refer to Chapter 8, Building Advanced Applications, and

to the online help.

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-26 © National Instruments Corporation

4. Place two ComponentWorks buttons (shown at left) on the form.

Change their name property to Chart and Plot. This step is done

in the default property sheets in Visual Basic and Delphi Object

Inspector or the custom property sheets in Visual C++.

In the custom property sheets, change each of their styles to

Command Button. Also, in the Button tab of the property sheets,

change the On Text and Off Text to Chart for the first button and

Plot for the second button.

5. Place another ComponentWorks button on the form. Change its

name to ChartSelect. Leave its style as Vertical Toggle.

6. Place two Visual Basic labels next to the toggle button, changing

their label property so that the up state of the switch is labeled

Scope Chart and the down state Strip Chart.

Your form should now look similar to the one shown below.

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-27 Getting Results with ComponentWorks

Developing the Code
Develop the code so that data is either plotted or charted on the graph

in response to the different buttons.

1. Define an event handler routine for the Plot button to be called

when the button is pressed. In the event handler the program will

create an array of 20 points and plot it on the graph.

Generate the event handler routine for the Click event of the Plot

button. Add the following code to the Plot_Click subroutine. In

Visual C++, remember to generate member variables for any

controls referenced in the program. See the online tutorial programs

for Visual C++ and Delphi code examples.

Private Sub Plot_Click()

Dim data(0 To 20) As Double

CWGraph1.Axes.Item(1).Maximum = 20

CWGraph1.Axes.Item(1).Minimum = 0

For i = 0 To 20

data(i) = Rnd * 10#

Next i

CWGraph1.PlotY data, 0, 1, True

End Sub

This code generates an array of 20 random numbers. The PlotY

method then replaces any data on the plot and plots the new data

starting at zero on the X axis. To ensure that the new data appears

on the graph, the minimum and maximum values of the X axis

(CWGraph1.Axes.Item(1)) are reset to 0 and 20. This routine uses

a one-dimensional array with the PlotY method to generate one

trace. You can also use a two-dimensional array to generate

multiple traces. For more information about the parameters on the

PlotY method, see the description of the graph control.

Chapter 5 Using the Graphical User Interface Controls

Getting Results with ComponentWorks 5-28 © National Instruments Corporation

2. The Chart button when pressed will chart some random data on the

graph. Generate the event handler routine for the Click event of

the Chart button. Add the following code to the Chart_Click

subroutine:

Private Sub Chart_Click()

Dim data As Double

For i = 0 To 59

data = Rnd * 10#

CWGraph1.ChartY data, 1, True

Next i

End Sub

The Chart_Click subroutine performs a similar action to the

Plot_Click routine, except that the random points are generated

and charted individually. When the ChartY method is called, it

appends the new data to the data already on the graph. If you only

add one point at a time, you can use a scalar value, or you may use

a one-dimensional array to pass multiple points to the trace. Use a

two-dimensional array to chart multiple traces.

The ChartStyle property on the graph sets the style of charting

used. This example uses the toggle switch to switch between the

two charting styles. To have your program respond when the user

switches styles, add the ChartSelect_ValueChanged event

handler routine for the switch. Use the Value property of the switch

to retrieve or set the current Value of the control.

3. Generate the event handler routine for the ValueChanged event of

the switch. Add the following code. In Visual C++ and Delphi, you

also must include the appropriate header files to define the constant

values:

Private Sub ChartSelect_ValueChanged(ByVal Value As

Variant)

If ChartSelect.Value = True Then

CWGraph1.ChartStyle = cwChartScope

Else

CWGraph1.ChartStyle = cwChartStrip

End If

End Sub

4. Save the project and form as ButtonGraphExample.

Chapter 5 Using the Graphical User Interface Controls

© National Instruments Corporation 5-29 Getting Results with ComponentWorks

Testing Your Program
Run and test the program. Notice the difference between the Plot, Strip

Chart, and Scope Chart options.

PlotY and ChartY are the two most common methods for passing data

to the graph. There are two more Plot (PlotXY and PlotXvsY) and two

more Chart (ChartXY and ChartXvsY) methods that change how data

passes to the graph. For more information on these methods, see the

description of the graph control or the online help file. Refer to

Chapter 8, Building Advanced Applications, for more information about

other advanced graph features, such as cursors and multiple axes.

© National Instruments Corporation 6-1 Getting Results with ComponentWorks

Chapter

6
Using the Data
 Acquisition Controls

This chapter shows how to use the ComponentWorks data acquisition

(DAQ) controls in your application to perform input and output

operations using your DAQ hardware. The DAQ controls are used to

program your DAQ hardware and integrate these operations into the

rest of your application. The individual controls and their most

commonly used properties, methods and events are explained in this

chapter. Additional information is found in the online help file.

This chapter also includes tutorials that give step-by-step instructions

on using the controls in simple programs. While the code listed with the

tutorials uses the Visual Basic syntax, the steps can be applied to any

programming environment. Consult the appropriate chapters in this

manual for information on using the ComponentWorks controls in

another environment.

The data acquisition file CWDAQ.OCX contains nine separate ActiveX

controls for performing DAQ operations as well as a utility control that

contains miscellaneous DAQ support functions. Each control is used for

one specific type of operation such as analog input, analog output, and

so on. The following is a list of the DAQ controls:

• CWAIPoint Single Point Analog Input

• CWAI Waveform Analog Input

• CWAOPoint Single Point Analog Output

• CWAO Waveform Analog Output

• CWDIO Single Point Digital Input/Output

• CWDI Waveform Digital Input

• CWDO Waveform Digital Output

• CWCounter Data Acquisition Counter Functions

• CWPulse Data Acquisition Pulse Generation Functions

• CWDAQTools Data Acquisition Utilities

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-2 © National Instruments Corporation

This chapter discusses the most commonly used properties, methods

and events for each of the different controls, and how they are applied

in typical applications. To become familiar with a specific control, read

the section discussing the control and work through the tutorial that

shows you how to implement the control in a simple program.

Most properties are normally set through property pages as you design

and create the program. This is also the best place to become familiar

with the different properties of a control. In certain cases you need to

change the value of one or more properties in your program code. The

following sections give many examples of how to change property

values programmatically.

Data Acquisition Configuration

Before you can use your National Instruments data acquisition

hardware with the ComponentWorks DAQ controls you must configure

your DAQ device using the NI-DAQ driver configuration utility. Make

sure that you follow the directions in the NI-DAQ driver documentation

(online) for properly configuring the hardware. The configuration

utility also allows you to test the hardware and perform simple

input/output operations. Once a data acquisition device is configured it

is assigned a device number that is used to reference the device in your

application. Select the desired device and device number in the property

sheets of each control.

Object Hierarchy and Common Properties

Some of the ComponentWorks data acquisition controls are made up of

a hierarchy of less complex individual objects. This chapter outlines the

object hierarchy for each of the controls and describes the individual

objects. Understanding how these different objects fit together to create

one control is the key to properly programming with the individual

controls. Breaking a control down into individual objects makes it

easier to work with a control, because each individual component has

fewer parts. Additionally, more complex features are part of lower level

objects with which a beginning user does not need to interact. You can

also set all properties directly from the property pages of the controls.

Some objects in the hierarchy are re-used by different controls. This

simplifies the process of becoming familiar with different controls,

because as you learn the parts of one control, you are also learning parts

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-3 Getting Results with ComponentWorks

of others. This chapter describes such common controls the first time

they are encountered, and refers to their description from other sections.

The main objects of each DAQ control share certain common properties

described in the following section.

Device, DeviceName, and DeviceType
Each control has a Device property you use to select which hardware

device is used by the control. You can set this property from a pull down

menu in the property sheets of each control, or set it programmatically

as in the following example:

CWAI1.Device = 2

DeviceName and DeviceType are read-only properties that return the

name and type number of the selected device. The name of a device is

its descriptive name such as AT-MIO-64E-3. The type number is a

unique number assigned to each hardware device type in the NI-DAQ

driver. Use these properties to control the execution of your application

depending on the device used. You can also build a list of available

devices in your system. For example:

If CWAI1.DeviceType = 16 then…

Channel Strings
Most DAQ controls have some kind of channel string property in their

object hierarchy. Use the channel string to specify what channels on a

data acquisition device are used by a particular operation. If you use

only one channel, enter the channel number in the string. For example:

CWAOPoint1.ChannelString = "1"

In many cases, you need to specify more than one channel in a channel

string. There are several conventions you can use to do this. If you want

to specify a series of consecutive channels, specify the first and last

channel in your list separated by a colon:

CWAI1.Channels.Item(1).ChannelString = "1:4"

‘ specifies channel 1, 2, 3, and 4

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-4 © National Instruments Corporation

You can also specify a reverse list of consecutive channels:

CWAI1.Channels.Item(1).ChannelString = "6:3"

‘ specifies channels 6, 5, 4, and 3

Note: Certain DAQ devices require that a multiple channel acquisition use a

reverse list of consecutive channels ending with channel 0. These devices

include all 500-, 700-, and 1200-series devices, as well as the Lab and LPM

series cards:

CWAI1.Channels(1).Item.ChannelString = "3:0"

You can specify non-consecutive channels in a channel string by listing

each channel separated by commas:

CWAIPoint1.Channels.Item(1).ChannelString = "0,1,3,5"

SCXI Channel Strings
You can use the ComponentWorks DAQ control with SCXI signal

condition hardware by using a different channel string to specify your

channels.

To configure channels on a SCXI module set the Device property of the

control to the number of the DAQ board directly or indirectly connected

to the desired SCXI module. The channel string(s) of your controls

include information about the DAQ device channel, SCXI chassis

number, SCXI module number and SCXI channel number. The string

has the following format:

oba!scx!mdy!z

In the SCXI channel string, a represents the DAQ device (onboard)

channel used for the acquisition, x represents the chassis number, y the

module number, and z the channel number on the SCXI module. The

onboard channel number is usually one less than the chassis number:

CWAIPoint1.Channels(1).Item.ChannelString =

"ob0!sc1!md1!0"

‘ specifies channel 0 on module 1 in chassis 1

Multiple channels on a SCXI module can be specified in a consecutive

list:

CWAI1.Channels(1).ChannelString = "ob0!sc1!md3!1:5"

‘ specifies channel 1 through 5 on module 3 in chassis 1

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-5 Getting Results with ComponentWorks

Other combinations are listed in the following table:

ExceptionOnError and ErrorEventMask
DAQ controls handle error checking in a number of different ways. By

default, each DAQ control generates an exception that is handled by

your programming environment when an error occurs. You can disable

the generation of exceptions using the ExceptionOnError property of

each DAQ control. If exceptions are disabled, each call to a DAQ

control method returns an error code. If the code is equal to zero,

everything completed normally. If the value is non-zero, either a

warning or error occurred and the condition should be handled by the

application. Consult the section on error handling in Chapter 8, Building
Advanced Applications for more information.

Another type of error notification is the generation of error and warning

events in response to error conditions. Each event calls a corresponding

event handler routine that processes the error information. You use the

ErrorEventMask property on each DAQ control to limit the error and

warning event generation to specific operations (contexts) of the DAQ

controls. For example, by default the AI control generates an error event

only during the following contexts: cwaiReadingData,

cwaiReadingDataContinuous, cwaiReadingDataSWAnalog. These

three are asynchronous contexts, which means the AI control is in the

process of acquiring data and returning it to the application. Other

contexts, such as cwaiStartingAcquisition or

cwaiConfiguringChannels do not generate error events by default.

To select which contexts generate error events, add the values of the

CWAIErrorContexts constants and assign the sum to the

ErrorEventMask property. For example:

String Syntax Description

ob0!sc1!md2!5 channel 5 on module 2 of SCXI chassis 1 read

through onboard channel 0

ob0!sc1!md2!0:7 channels 0 through 7 on module 2 read

through onboard channel 0

ob1!sc2!md1!20:24 channels 20 through 24 of module 1 on

chassis 2 read through onboard channel 1

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-6 © National Instruments Corporation

CWAI1.ErrorEventMask = cwaiReadingData +

cwaiReadingDataContinuous + cwaiReadingDataSWAnalog +

cwaiStartingAcquisition

Error handling is discussed in more detail in Chapter 8, Building
Advanced Applications.

AIPoint Control—Single Point Analog Input

Use the AIPoint control to acquire one point of data from one or more

analog input channels at a time. This control is used for monitoring

slowly changing processes such as temperature. After you set the

properties of the control, the application can acquire a single scan of

data using a simple method call to the AIPoint control. A scan is defined

as an acquisition of one point from each channel in the channel list.

The object hierarchy of the AIPoint control is fairly simple, containing

a channels collection with channel objects and a channel clock object.

AIPoint Object
In addition to the default properties of each DAQ control, the AIPoint

object has one more property, ReturnDataType, which determines

whether the acquired data is returned to the application as voltage data,

binary values, or both.

The AIPoint object has two methods, SingleRead and Reset. The

SingleRead method performs a single scan using the values set in the

control properties. The SingleRead method has three variant

parameters: data and an optional parameter, TimeLimit, which you

use to specify the time limit for the acquisition:

AIPoint Control

Propert ies:

Dev ice, Er rorEventMask

Channels

Collection
Property: Count

Channel Object

Propert ies:

Channelstr ing,

UpperLimi t

ChannelClock Object

Propert ies: Frequency,

 T imebaseSource

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-7 Getting Results with ComponentWorks

Dim data as Variant

CWAIPoint1.SingleRead data, 1.0

The variable passed to data must be passed as a variant and will be

assigned the values to return. The data is returned in the format

specified by the ReturnDataType property as a one or two dimensional

array.

When the SingleRead method is called, the hardware is configured

using the values set in the control properties. This configuration is only

done when necessary, such as calling SingleRead the first time or after

changing any of the properties. You can also manually unconfigure the

control using the Reset method. The control then configures the

hardware on the next acquisition:

CWAIPoint1.Reset

Channels Collection
Use the channels collection on analog input and analog output DAQ

controls. This collection contains the individual channel objects of a

control that determine which channels on the hardware are used by the

control. The collection has a read-only property Count, which returns

the number of channel objects in the collection:

NumChanObjects = CWAIPoint1.Channels.Count

You can read the read-only property NChannels after a control has been

configured. This returns the total number of channels used by the

control. The value returned from this property is only valid when the

control is configured, which you do using the Configure method or

SingleRead method of the respective control, without calling Reset:

NumChannels = CWAIPoint1.Channels.NChannels

Like all collections, the channels collection has an Item method you

use to access any particular channel object in the collection. To retrieve

a channel, call the Item method and specify the (one-based) index of

the channel in the collection:

CWAIPoint1.Channels.Item(2)

In this way you can programmatically change properties of individual

channel objects. There are also several other methods on the channels

collection that you can use to modify the number of channel objects in

the collection. The RemoveAll method clears the collection of all

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-8 © National Instruments Corporation

channel objects. Use the Remove method to delete individual channel

objects. The Add method adds a new channel object to the collection:

CWAIPoint1.Channels.RemoveAll

CWAIPoint1.Channels.Remove 1

CWAIPoint1.Channels.Add "1", 10, -10, cwaiDIFF, cwaiDC

Channel Object
Each channel object contains information about one or more channels

used by a DAQ control. The individual channel object contains

properties such as ChannelString, InputMode, UpperLimit, and

LowerLimit. For example, the ChannelString property specifies

which channels are affected by the channel object, while the remaining

properties determine how the channels are used. You can read and set

these properties programmatically:

CWAIPoint1.Channels.Item(1).ChannelString = “0,1”

MaxVolts = CWAIPoint1.Channels.Item(1).UpperLimit

ChannelClock Object
The channel clock object determines the timing the AIPoint control uses

in the actual analog-to-digital conversions within a scan. Use it to

increase the delay between the acquisitions of different channels or to

synchronize conversion(s) with an external signal. It directly affects the

conversions by allowing you to select either an internal source and

frequency or an external source and exact description of the signal

source, such as an I/O pin or RTSI pin.

By default ComponentWorks picks your channel clock settings, which

should work for most applications. You usually configure the channel

clock in the property pages, but you may also change its settings from

your program. For example, to switch to frequency mode and change

the frequency setting use the following code:

CWAIPoint1.ChannelClock.ClockSourceType =

cwaiInternalCS

CWAIPoint1.ChannelClock.Frequency = 10000

Consult the online reference for other properties of the channel clock

object.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-9 Getting Results with ComponentWorks

AI Control—Waveform Analog Input

Use the AI control to perform waveform analog input operations

including single shot and continuous acquisitions. With it you can

acquire data from one or more channels at a time and configure for

many different modes, such as start and stop triggers, pause conditions,

and different channel and scan clocks. Use this control for any

application that requires fast acquisition of multiple points per channel,

such as frequency analysis. After the properties of the control are set,

the application can perform acquisitions using a number of simple

method calls.

The object hierarchy of the AI control separates the different

functionality of the control into individual objects. The channels

collection and channel objects specify the channels and channel

parameters used for the acquisition process. The condition objects

control when an acquisition is performed, such as triggering. The clock

objects control the rate of the acquisition.

StartCondition Object

Propert ies: Mode, Level ,

Hysteresis

AIPoint Control

Propert ies:

Dev ice, Er rorEventMask

Channels

Collection
Property: Count

Channel Object

Propert ies:

Channelstr ing,
UpperLimi t

ChannelClock Object

Propert ies: Frequency,

 T imebaseSource

ScanClock Object
Propert ies: Frequency,

 T imebaseSource

StopCondition Object

Propert ies: Mode, Level ,

Hysteresis

PauseCondition Object
Propert ies: Mode, Level ,

Hysteresis

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-10 © National Instruments Corporation

AI Object
Along with the default properties of the DAQ controls, the AI object has

other properties. One is ReturnDataType, which determines whether

the acquired data is returned to the application as voltage data, binary

values, or both. The NScans property (number of scans to acquire)

specifies the number of scans acquired in a single-shot acquisition, or

the number of scans returned at a time in a multiple channel acquisition:

CWAI1.NScans = 5000

If the UseDefaultBufferSize property is set to False, the

NScansPerBuffer property determines the size of the acquisition

buffer; otherwise ComponentWorks automatically selects the buffer

size.

The AI control uses the Channels collection and Channel object in the

same manner as the AIPoint control. See the AIPoint section earlier in

this chapter for more information on these objects. Consult the online

help file for more information on the individual properties, methods or

events of the AI objects or any of its underlying objects.

Methods and Events
The AI control has a number of simple methods for running the different

acquisition processes. The normal and recommended acquisition type is

an asynchronous acquisition which is controlled using four different

method calls and gives you the most flexibility and control over the

acquisition. Alternatively, in environments that do not support event

handler routines, you can use an additional method to perform a

synchronous acquisition.

Asynchronous Acquisition
The methods to perform an asynchronous acquisition are Configure,

Start, Stop and Reset. Use these methods to the control the

acquisition. These methods do not require any parameters, as

acquisition parameters are set through the control properties. Use the

Configure method to configure the DAQ driver and hardware with the

acquisition parameters. Configure must be called before the Start

method. Use the Start method to start the acquisition that proceeds

according to the start condition object described later. Use the Stop

method only during a continuous acquisition to stop such an

acquisition. Use the Reset method to unconfigure the AI control and

free any resources reserved during configuration. You must also call the

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-11 Getting Results with ComponentWorks

Configure method after you change any of the control properties

before they will take effect, and after you call the Reset method before

restarting an acquisition:

Private Sub StartAcquisition_Click()

CWAI1.Configure

CWAI1.Start

End Sub

Private Sub StopAcquisition_Click()

CWAI1.Stop

End Sub

Private Sub ResetAcquisition_Click()

CWAI1.Reset

End Sub

The AI control returns data from an asynchronous acquisition by

generating an AcquiredData event. The acquired data is returned as

arrays, Voltages and/or BinaryCodes, passed to the event handler.

You can process the data inside the event handler by displaying it on a

graph or writing it to file:

Private Sub CWAI1_AcquiredData(Voltages As Variant,

BinaryCodes As Variant)

CWGraph1.PlotY Voltages

End Sub

Synchronous Acquisition
Certain programming environments do not support event handler

functions, and are therefore not suited for running an asynchronous

acquisition. In such cases the AI control can perform a synchronous

acquisition using the AcquireData method. The AcquireData method

requires you to pass in two variables for the voltage and binary data

which are used to return the acquired data at the completion of the

acquisition. You must call the Configure method before calling

AcquireData, and you cannot run a continuous acquisition using this

method. Because the AcquireData method takes control of the

program until the acquisition is completed, you can also specify a

timeout parameter in seconds that forces the method to return in the

time limit specified:

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-12 © National Instruments Corporation

Private Sub RunAcquisition_Click()

Dim Voltages As Variant

Dim BinaryCodes As Variant

CWAI1.Configure

CWAI1.AcquireData Voltages, BinaryCodes, 5

'timeout is 5 seconds

CWGraph1.PlotY Voltages

End Sub

Error Handling
The AI control also has DAQError and DAQWarning events which can

be used for error handling:

Private Sub CWAI1_DAQError(ByVal StatusCode As Long,

ByVal ContextID As Long, ByVal ContextDescription As

String)

MsgBox "DAQ Error: " + CStr(StatusCode)

End Sub

ScanClock and ChannelClock Objects
The AI control contains both a scan clock and channel clock to specify

the scan rate and interchannel delay. These two settings apply if you

acquire multiple points of data from more than one channel. In this type

of operation, the data acquisition device performs repeated scans, in

which one scan is an acquisition of one data point from each channel in

the channel list. The timing within one scan is called the interchannel
delay and is set in the channel clock object. The rate at which scans are

acquired is called the scan rate, and is set in the scan clock object. The

effective acquisition rate per channel (the rate at which points on one

channel are acquired) is also the scan rate.

The channel clock object is described in the AIPoint control section.

This object normally selects the interchannel delay automatically.

The scan clock object is critical to the operation of the AI control and

you must set it for most applications. In common operations, specify an

internal frequency to use and set the acquisition (scan) rate in the

property pages. More complex operations can include specifying an

external source for the scan clock to synchronize the acquisition with

another process. You can make these settings in the property pages or

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-13 Getting Results with ComponentWorks

programmatically. After the control is configured, you can read back

the actual frequency or period used for the acquisition:

CWAI1.ScanClock.Frequency = 200

CWAI1.Configure

ScanPeriod = CWAI1.ScanClock.ActualPeriod

Consult the online reference manual for the other properties of the scan

clock object.

StartCondition, PauseCondition and StopCondition Objects
The start, pause and stop condition objects control when an acquisition

starts, pauses and stops. The main property of the condition object is

Type, which sets the overall operation of the object. The value of the

Type property determines which of the remaining properties on the

condition object are used.

Certain condition types are only supported by specific hardware. Check

that your data acquisition device supports the desired operation. For

example, all hardware analog conditions require specific analog trigger

circuitry on the acquisition device.

The start condition object controls when an acquisition is started. By

default (Type set to cwaiNoActiveCondition) the acquisition is

started immediately after the corresponding method call:

CWAI1.StartCondition.Type = cwaiNoActiveCondition

You can also set the start condition to start the acquisition on a digital

or analog trigger. In such cases, the hardware is set to start on the

corresponding software call, but actual conversions do not start until the

digital or analog trigger arrives. You can set trigger conditions either in

the property pages or programmatically:

CWAI1.StartCondition.Type = cwaiHWAnalog

CWAI1.StartCondition.Level = 5

CWAI1.StartCondition.Hysteresis = 0.1

CWAI1.StartCondition.Source = 1

CWAI1.StartCondition.Mode = cwaiRising

The pause condition object controls when an ongoing acquisition is

paused. This may be done in response to an external digital or analog

signal, and can be used with a limited number of data acquisition

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-14 © National Instruments Corporation

devices. The Type property selects among None, Hardware Digital

Gate, and Hardware Analog Gate settings. The remaining properties

of the pause condition are similar to the start condition and select the

specific pause conditions. You can pause the acquisition while above or

below a specific analog level (high and low for digital) or while inside

or outside a specific analog window:

CWAI1.PauseCondition.Type = cwaiHWAnalog

CWAI1.PauseCondition.Mode = cwaiInside

The stop condition object controls when the acquisition is stopped. The

default mode is to stop after the acquisition buffer, set by the NScans

property on the AI control, has been filled once. You can also select to

run a continuous acquisition so the acquisition stops only on a user

command or when an error occurs. Other advanced options are stopping

on a hardware digital or analog signal, or a software analog condition

(single shot or continuous). These last three types also support

pretrigger scans, which means you can specify to acquire a number of

points before the stop condition and the remainder after. The remaining

properties are similar to the start and pause condition objects.

The software analog trigger type on the stop condition is added to

support analog triggering on devices that do not have an explicit

hardware analog trigger circuit. In this mode data is continuously

acquired from the data acquisition device, but returned only when it

matches the specified conditions. This mode behaves similarly to a

hardware analog start trigger, and you can run it as either a one-shot or

continuous acquisition. The continuous software analog trigger makes

it easy for you to duplicate the operation of an oscilloscope in your

application.

Tutorial: Using the AIPoint and AI DAQ controls

This tutorial shows you an example of using the AIPoint and AI

controls in a simple program to acquire some data. New data acquisition

programmers can easily incorporate these controls, which also offer

advanced features for more experienced programmers. There are a lot

of similarities between these and all other DAQ controls, so as you

become familiar with each DAQ control, you should be more at ease

using any of them.

This example shows how to acquire one scan of data from several

channels using the AIPoint controls, as well as how to perform a simple

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-15 Getting Results with ComponentWorks

waveform acquisition using the AI control, and display the data on a

graph.

This tutorial uses Visual Basic syntax, but the discussion is in general

terms so you can follow it in any compatible programming

environment. Remember to adjust any code to your specific

programming language. Consult the chapter specific to your

programming environment for information on implementing any

particular step. You can also consult the Tutorial examples installed

with ComponentWorks for a completed version of this example in

several different programming environments.

Designing the Form
1. Open a new project and form. If you are working in Visual C++,

select a dialog based application and name your project

AIExample.

2. Load the ComponentWorks user interface controls (specifically,

the graph, button, and numeric edit box) and the data acquisition

controls (specifically, the AIPoint and AI controls) into your

programming environment. Consult the chapter discussing your

environment if you are not familiar with this operation.

3. Place an AIPoint and AI control on your form. You will configure

their properties in the next section.

4. Place a ComponentWorks graph control on the form. Keep its

default name CWGraph1.

Most of the settings of the graph in its property sheet should be

self-explanatory. For more information about the advanced

features, refer to Chapter 8, Building Advanced Applications, and

the online help manual.

5. Place two ComponentWorks numeric edit boxes on the form. Keep

their default names, CWNumEdit1 and CWNumEdit2.

6. Place two ComponentWorks buttons on the form (toolbar icon

shown at left; modify in properties sheet to make a button on your

form). Change their Name property to Acquire and Start. This is

done in the default property sheets in Visual Basic and Delphi or

the custom property sheets in Visual C++.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-16 © National Instruments Corporation

In the custom property sheets, change each of their style to

Command Button. Also, in the Button tab of the property sheets,

change the On Text and Off Text to Acquire for the first button

and Start for the second button.

Your form should look similar to the one shown below:

Setting the DAQ Properties
You normally configure the default property values of the different

controls before you develop your program code. When using the DAQ

controls, most or all properties are set at design-time and are not

changed during program execution. The program is only used to start

and stop the acquisition processes. If necessary, you can edit the

properties of the DAQ controls at run-time.

1. Open the custom property pages for the AIPoint control on the form

by right-clicking on the control and selecting Properties…. In the

General tab select your data acquisition device from the Device

combobox. In the Channel List tab, add channels 0 and 1 to the

channel list. Do this by entering 0,1 in the Channels field and then

clicking the Add>> button. The new channels will be added to the

channel list on the right side. Close the AIPoint property pages. If

necessary, reverse the order of the channels for your DAQ device.

See the Channel String section for more information.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-17 Getting Results with ComponentWorks

2. Open the custom property pages for the AI control on the form. In

the General tab select your data acquisition device from the Device

combobox. In the Channel List tab, add channel 1 to the channel

list. Do this by entering 1 in the Channels field and then clicking

the Add>> button. The new channels are added to the channel list

on the right side. In the Clocks tab, change the scan rate

(Scans/second) to 1000. Close the AI property pages.

Developing the Code
Next, you develop the code so that data is acquired and displayed in

response to the buttons.

1. For the Acquire button, define an event handler routine that will be

called when the button is pressed. In the event handler, acquire one

scan of data (one point each from channel 0 and 1) and display the

two points in the numeric edit boxes.

Generate the event handler routine for the Click event of the

Acquire button. In the event handler declares a variable as a

Variant. Pass this variable to the SingleRead method of the

AIPoint control. Then display the data returned in the first variable

in the numeric edit boxes. Add the following code to the

Acquire_Click subroutine. In Visual C++ remember to generate

member variables for any controls referenced in the program. See

the Tutorial folder for Visual C++ and Delphi code examples.

Private Sub Acquire_Click()

Dim Volts As Variant

CWAIPoint1.SingleRead Volts, 1

CWNumEdit1.Value = Volts(0)

CWNumEdit2.Value = Volts(1)

End Sub

This code acquires a scan from channels 0 and 1 using the

SingleRead method and returns the data in a one dimensional

array (Volts). The two values are copied to the numeric edit boxes

to be displayed.

2. For the Start button, define an event handler routine that will be

called when the button is pressed. In the event handler, start an

asynchronous acquisition on the AI control. Because the

acquisition is asynchronous, the program regains control

immediately after the acquisition is started, while the acquisition

continues to run in the background.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-18 © National Instruments Corporation

Generate the event handler routine for the Click event of the Start

button. In the event handler, call the Configure and Start

methods of the AI control. Add the following code to the

Start_Click subroutine. In Visual C++, remember to generate

member variables for any controls referenced in the program. See

the Tutorial folder for Visual C++ and Delphi code examples.

Private Sub Start_Click

CWAI1.Configure

CWAI1.Start

End Sub

This code starts the acquisition and then returns control to the

program.

3. The AI control fires an AcquiredData event when it is ready to

return the data it has acquired. You need to generate the

corresponding event handler to receive and process the data. In this

example, plot the data on a graph. Use the PlotY method of the

Graph control to display the returned Voltages array.

Generate the event handler for the AcquiredData event of the AI

control and add the following line of code:

Private Sub CWAI1_AcquiredData(Voltages As Variant,

BinaryCodes As Variant)

CWGraph1.PlotY Voltages, 0, 1, 1

CWAI1.Reset

End Sub

4. Save the project and form as AIExample.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-19 Getting Results with ComponentWorks

Testing Your Program
Run and test the program. Click on the Acquire and Start buttons to

perform the acquisitions. Your application should look similar to the

following figure. The data displayed on the graph will depend on the

signal connected to your data acquisition board.

You can further enhance the waveform acquisition performed in this

example by defining more properties of the AI control. For example,

you can perform a continuous acquisition by setting the Type property

of the AI control stop condition object to Continuous. Do this in the
Conditions tab of the AI control property pages. In continuous mode,

the acquisition continues and repeatedly returns the specified number of

points in the DataAcquired event. The AI control has a Stop method

you can call to stop a continuous acquisition.

AOPoint Control—Single Point Analog Output

Use the AOPoint control to update one or more analog output channels

with new values. Use the control in applications such as slow process

control systems for setting a control output such as the power of a heater

or throughput of a valve. After you set the properties of the control, the

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-20 © National Instruments Corporation

application can update the configured channels using a simple method

call to the AOPoint control.

The AOPoint control contains no other objects and therefore has no

hierarchy. All properties of the control are part of the top level object.

AOPoint Object
In addition to the default properties of each DAQ control, the AOPoint

object has several unique properties that control the operation of the

control.

The ChannelString property, together with the UpperLimit,

LowerLimit, Reference Source and ChannelType properties,

control the output from the AOPoint control. You normally configure

these properties through the property pages but they may also be set

programmatically:

CWAOPoint1.ChannelString = "0,1"

CWAOPoint1.UpperLimit = 10.0

Methods
The AOPoint object has two methods, SingleWrite and Reset. The

SingleWrite method performs a single update on all the channels

configured for the control. The SingleWrite method has two variant

parameters, Values and Scaled. The Values parameter is used to pass

the analog values to the method that will be generated by the analog

output channels. The optional Scaled parameter allows you to specify

whether the analog values are passed as voltage or binary data. By

default, the information is interpreted as voltage data:

‘ update one channel

CWAOPoint1.ChannelString = "0"

CWAOPoint1.SingleWrite 5.0, True

‘ update two channels

Dim VoltsArrayData(0 to 1)

CWAOPoint2.ChannelString = "0,1"

AOPoint Control

Propert ies:
Dev ice, Er rorEventMask,

ChannelSt r ing

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-21 Getting Results with ComponentWorks

VoltsArrayData(0) = 3.2

VoltsArrayData(1) = 6.5

CWAOPoint2.SingleWrite VoltsArrayData, True

You can send the output data to the SingleWrite method as a scalar

value for updating one channel, or as a one dimensional array of values

for more than one channel.

When you call the SingleRead method, the hardware is configured

using the values set in the control properties. This configuration is done

only when necessary, such as when SingleRead is called the first time

or after changing any of the properties. You can also manually

unconfigure the control using the Reset method, which causes the

control to configure the hardware on the next output:

CWAOPoint1.Reset

Consult the online reference manual for more information on the

AOPoint control.

AO Control—Waveform Analog Output

Use the AO control to perform waveform generation operations from

one or more analog output channels on a data acquisition device. The

waveform generation can be run in a continuous or finite mode. You can

configure properties on the control such as the channels used for the

waveform generation, the frequency (update clock) used, and the start

condition or trigger. This control is used for different types of

applications that require dynamic analog signals such as testing of

analog devices. After you set the properties of the control, the

application can perform output operations using a number of simple

method calls.

IntervalClock Object
Properties: Frequency,

TimebaseSource

AO Control
Properties:

Device, ErrorEventMask

Channels Collection
Property: Count

Channel Object
Properties:

ChannelString,
UpperLimit

UpdateClock Object
Properties:
Frequency,

 TimebaseSource

StartCondition Object
Properties: Type

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-22 © National Instruments Corporation

The object hierarchy of the AO control separates the different

functionality of the control into individual objects. The channels

collection and channel objects specify the channels and channel

parameters used for the output process. The start condition object

controls the start of the operation, while the clock objects control the

rate of the output.

AO Object
In addition to the default properties of the DAQ controls, the AO Object

has several other properties. The generated waveform data is stored in

a buffer in memory. The NUpdates property specifies how many

updates will be stored in the buffer. The Infinite property is a boolean

that select whether a waveform generation runs continuously or stops

after a finite number of buffer outputs. In a finite generation the

NIterations property specifies how often the data in the buffer is

generated:

CWAO1.Infinite = False

CWAO1.NIterations = 10

The data buffer is usually stored in the memory of the computer. If you

are using some specific data acquisition devices, you may also be able

to store the data in memory on the DAQ device itself, which enables

faster output of the waveform. You can select this type of operation

using the AllocationMode property.

The AO control can generate events to notify you of the progress of the

output operation while a waveform generation is running. The

frequency at which these events are generated is set by the

ProgressInterval property, and is specified in number of updates.

The AO control uses the Channels collection and Channel object in

the same manner as the AIPoint control. See the AIPoint description for

information on these objects. Consult the online help file for detailed

information on all the properties of the AO channel object. The

reference file also contains more information on the individual

properties, methods, and events of the AO objects or any of its other

underlying objects.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-23 Getting Results with ComponentWorks

Methods and Events
The AO control has a number of methods for performing waveform

generation operations. The methods used with the AO controls are

Configure, Write, Start, and Reset. All are used to control the

output operations. Only the Write method requires parameters.

Use the Configure method to configure the DAQ driver and hardware

with the operation parameters. Use the Write method to write an array

of voltage data to the buffer in memory before it can be generated from

the analog output channels. All other parameters are set through the

properties of the control.

Configure must be called before the Write and Start methods. Use

the Start method to start the waveform generation which proceeds

indefinitely or stops after the specified number of buffer generations.

Use the Reset method to stop a continuous generation, unconfigure the

AO control, and free any resources reserved during configuration.

You must call the Configure method again after any of the control

properties are changed before they will take effect, and after the Reset

method is used, before restarting a waveform generation:

Private Sub Start_Click()

Dim WaveData(0 to 99) As Double

For i = 0 To 99

WaveData(i) = Sin(i / 100 * 6.28)

Next i

CWAO1.Configure

CWAO1.Write WaveData

CWAO1.Start

End Sub

Private Sub Stop_Click()

CWAO1.Reset

End Sub

The AO control fires the Progress event while the output operation is

running. The event notifies your application that a specific number of

updates has been performed on the output. The frequency at which the

event is generated is set in the ProgressInterval property. You can

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-24 © National Instruments Corporation

use the event to update your front panel as to the progress of the

waveform generation, or for several other purposes:

Private Sub CWAO1_Progress(ByVal ScansGenerated As Long)

Text1.Text = ScansGenerated

End Sub

The AO control also has DAQError and DAQWarning events which can

be used for error handling:

Private Sub CWAO1_DAQError(ByVal StatusCode As Long,

ByVal ContextID As Long, ByVal ContextDescription As

String)

MsgBox "DAQ Error: " + CStr(StatusCode)

End Sub

UpdateClock and IntervalClock Objects
The AO control contains both an update clock and interval clock to

specify the update rate and optional interval delay. Only the update

clock is commonly used. It specifies the rate at which data points are

generated by the boards. Because each output channel has its own

digital-to-analog (DAC) converter, there is no delay between updates

from different channels and all channels are updated simultaneously.

You can set the update clock either in the property pages or

programmatically to use an internal frequency, a signal from another

component on the DAQ device or an external signal. The choices of

update clock sources will depend on the specific DAQ device used:

CWAO1.UpdateClock.ClockSourceType = cwaoInternalCS

CWAO1.UpdateClock.Frequency = 10000

The property page for the update clock gives a good overview of the

different possible settings for the properties of the update clock object.

You can also select any of these settings programmatically.

The interval clock is used in a very limited number of applications and

is supported on only a small number of DAQ devices. It is used in a

waveform generation, when the data is stored completely in FIFO

memory on the DAQ device, to add a time delay in the output between

generations of the waveform data stored in the buffer. For example, this

allows you to store one cycle of a sine wave in the buffer and generate

repeated cycles of a sine wave with delays between the different cycles.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-25 Getting Results with ComponentWorks

You can examine the properties of the interval clock object and their

possible settings in its property page.

Consult the online reference manual for more information on the update

and interval clock objects.

StartCondition Object
Use the start condition object to specify when the waveform generation

is started. In most cases, the generation starts immediately after the

Start method is called. You can use the start condition object on some

DAQ devices to trigger the generation in response to an external signal

or a signal coming from another component on the device. You can use

this functionality to synchronize a waveform generation with an input

operation or other external process.

The main property of the start condition object is Type, which selects

the overall operation of the object. The value of the Type property

determines which of the remaining properties on the condition object

are used. If the start condition object is set to use another signal as the

start trigger, the Source property specifies the source of the signal.

Other properties may be used to specify trigger parameters, such as the

slope of the signal to trigger on, or the conditions of an analog trigger.

You can also set the values of the different start condition properties

programmatically:

CWAO1.StartCondition.Type = cwaiHWAnalog

CWAO1.StartCondition.Source = "PFI0"

CWAO1.StartCondition.Level = 5

CWAO1.StartCondition.Mode = cwaoRising

If you use a start trigger, the hardware is set to start the waveform

generation after the Start method is called. The actual output

conversions do not start until the specified trigger signal arrives.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-26 © National Instruments Corporation

Tutorial: Using the AOPoint control

This tutorial develops a simple program using the AOPoint control. To

use this example, your DAQ device must have one or more analog

output channels. In addition, you will use an analog input channel of

your DAQ device to read the output voltage. If your device does not

have analog inputs, you can use an external voltmeter or oscilloscope.

Designing the Form
1. Open a new project and form. If you are working in Visual C++,

select a dialog based application and name your project AOPoint.

2. Load the ComponentWorks user interface controls (specifically,

the graph and slide) and the data acquisition controls (specifically,

the AOPoint and AI controls) into your programming environment.

Consult the chapter discussing your environment if you are not

familiar with this operation.

3. Place a ComponentWorks button on the form. In the custom

property sheet change the button style to Toggle Button, its

On Text to Stop, and its Off Text to Start. In the default

property sheet, change the Name to Start.

4. Place a ComponentWorks slide control on the form and change its

name to UpdateValue. In the custom property sheet under the

Numeric tab, change its Min and Max properties to -10 and 10.

5. Place a ComponentWorks graph on the form. In the custom

property sheet Axis tab, set the X-axis range to 0 to 30, and the

Y-axis range to -10 to 10.

6. If your DAQ device has analog input channels, place a DAQ AI

control on the form. In the property sheet, select the device and

channel you want to use. Also set the Number of scans to acquire

to 1, the Scan Clock to Internal 10 scans/second, and the Stop

Condition to Continuous.

7. Place a DAQ AOPoint control on the form. In the custom property

sheet of the AOPoint control, select the device and output channel

you want to use.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-27 Getting Results with ComponentWorks

8. Your form should now look similar to the one shown below:

Developing the Code

The next step is to add the necessary code to generate the analog output

and acquire the signal using your analog input channel. If you do not

have an analog input channel on your DAQ device, leave out all the

calls relating to the analog input (starting with CWAI) and use an

external voltmeter to measure your analog output when you run the

program.

The program updates the selected analog output channel with the value

of the slide when the slide pointer is moved. Use the Start/Stop button

to start and stop a continuous analog input operation that measures the

voltage being generated.

1. Use the PointerValueChanged event of the slide control to detect

any changes in the slide control and update the analog output value.

Use the SingleWrite method of the AOPoint control to update the

output.

Create the event handler routine for the PointerValueChanged

event of the slide control and add the following code to it. In Visual

C++, you first need to create a member variable for the AOPoint

control using the ClassWizard.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-28 © National Instruments Corporation

Private Sub UpdateValue_PointerValueChanged(ByVal

Pointer As Long, ByVal Value As Variant)

lerr = AOPoint1.SingleWrite(UpdateValue.Value,

True)

End Sub

2. To monitor the voltage being generated, run a continuous analog

input operation and chart the acquired voltage on a graph. Start and

stop the acquisition using the Start/Stop button in response to its

ValueChanged event.

Create the event handler routine for the ValueChanged event of the

button and add the following code to it. In Visual C++ you first

need to create a member variable for the AI control using the

ClassWizard. Depending on the state (Value) of the button, the

event handler either starts or stops the acquisition.

Private Sub Start_ValueChanged(ByVal Value As

Boolean)

If Value Then

CWAI1.Configure

CWAI1.Start

Else

CWAI1.Stop

End If

End Sub

3. While the acquisition is running continuously, it returns data

through the AcquiredData event of the AI control. In this event

handler routine, chart the data on the graph. The ChartY method of

the graph acts similar to the PlotY method, except that data is

appended to the data already displayed on the graph.

Create the event handler routine for the AcquiredData event of the

AI control and add the following code to it. In Visual C++ you first

need to create a member variable for the graph control using the

ClassWizard.

Private Sub CWAI1_AcquiredData(Voltages As Variant,

BinaryCodes As Variant)

CWGraph1.ChartY Voltages, 1, True

End Sub

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-29 Getting Results with ComponentWorks

4. You normally reset hardware operations before quitting the

application. This means stopping any ongoing acquisition and

resetting the analog output to 0 volts.

Add the following code to an event handler routine that you call

when your application is terminated. The exact name of the event

varies depending on your programming environment. In Visual

Basic, you can use the Terminate event of the Form object.

Private Sub Form_Terminate()

CWAOPoint1.SingleWrite 0, True

End Sub

5. Save your project and form as AOPoint.

Testing Your Program
1. Run the program. Remember to physically connect the analog

output to your analog input. When you toggle the Start button, the

continuous input operation starts and display its measurement on

the graph.

2. Change the value of the analog output by moving the slider. When

you move the slider, the analog output is updated and you can see

the change on the graph.

Your completed running program should look similar to the one

shown below.

3. When you end the program, the analog output is automatically reset

to zero volts.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-30 © National Instruments Corporation

Digital Controls and Hardware

There are three ComponentWorks DAQ controls for performing digital

input and output operations. Use the DIO control for both input and

output single point operations to update the state of any output lines or

read the state of any input lines. Use the DI control to perform buffered

digital waveform input operations, and the DO control to perform

buffered digital waveform output (pattern generation) operations.

The digital I/O lines on each data acquisition device are grouped into

logical units called ports. There are eight lines per port on most devices,

although there can be as few as two and up to 32 lines. When

referencing digital lines on the different controls, you always specify a

port number (starting with zero per device) to select the lines you wish

to use. On the DIO control you can also select individual lines of a given

port to update or read.

DIO Control—Single Point Digital Input and Output
Use the DIO control to perform single-point updates or reads on the

digital lines of a data acquisition device. Typical applications using the

DIO control include controlling the state of a physical device such as a

valve, relay or LED; or reading the current state of a similar device such

as a switch or light gate. You can also use the DIO control to generate

slow pulses to activate other parts of your system. After you set the

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-31 Getting Results with ComponentWorks

properties of the DIO control, your program can perform the different

operations using simple method calls to the DIO control.

The DIO control consist of a top level object and a set of Ports and Lines

collections and objects. The Ports collection contains a number of Port

objects which represent the logical ports on the DAQ device selected in

the DIO object. Once you select a device in the DIO object, all ports of

the device are represented by the control. The Lines collections contains

a Line object for each physical digital line on the device. You normally

access the Lines collection through one of the port objects, but you also

may access it directly from the DIO object. See the following sections

for more information on how to reference specific digital lines using

these two methods.

Depending on the device you are using, you configure all lines in a

given port for input or output operations, or you may be able to

configure individual lines of a digital port for input and output

operations. Devices that allow for line configuration include all

E-Series devices (except the extended ports on the MIO-16DE-10), the

PC-TIO-10, and DIO-32HS devices.

DIO Object
In addition to the default properties of each DAQ control, the DIO

object contains a SCXIChannelString property. If you use the DIO

DIO Control

Properties:

Device, ErrorEventMask

Lines Collection

Property: Count

Line Object

Properties:

Value, Name

Ports Collection

Property: Count

Port Object

Properties:

Value, Name

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-32 © National Instruments Corporation

control with one of the SCXI-116x digital modules, enter a SCXI

channel string for this property to select the SCXI module. The string

must follow the convention for SCXI channel strings listed at the

beginning of this chapter. Each SCXI digital module has only one

logical port (port 0) which contains all the digital lines of the module.

Therefore the port number is always zero, such as in the following

example:

CWDIO1.SCXIChannelString = “sc1!md3!0”

The DIO object also contains the Ports collection, which contains

individual Port objects. Use the port object to configure the individual

ports on a device including programmatic configuration of the direction

of the digital lines. Each port object contains a Lines collection with

Line objects that allow you to access the individual digital lines of the

DAQ device. You can also to access the lines collection directly from

the DIO control.

Normally you configure the direction of individual ports and lines using

the property pages of the DIO control. You can do this through an

intuitive interface that presents the individual ports and lines to you. In

most cases, this is all you do to configure the control.

The DIO, port, and line objects contain a set of common methods to

perform operations using the DIO control. These methods are described

after the sections outlining the port and line objects.

Ports Collection and Port Object

The Ports collection contains the common properties and methods of a

collection such as Count and Item. Use the Item method to access the

individual Port objects.

CWDIO1.Ports.Item(1)

Use the port object to configure the individual digital ports on a DAQ

device. Port objects include properties such as Assignment and

LineDirection. Use these two properties to programmatically

configure the direction of the port or the lines in the port. The

Assignment property specifies whether a port is configured for input

or output operations or is line configured. In line configuration, use the

LineDirection property to specify the direction of each individual

line in the port. Each bit in the LineDirection property corresponds

to a digital line. For example, bit 0 corresponds to line 0. A bit value of

1 indicates an output line and a 0 indicates an input line.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-33 Getting Results with ComponentWorks

‘ Configure port 2 for output

CWDIO1.Ports.Item(2).Assignment = cwdioPortOutput

‘ Configure port 0, lines 0-3 for output, lines 4-7 for

input, binary 00001111 = decimal 15

CWDIO1.Ports.Item(0).Assignment =

cwdioPortLineConfigured

CWDIO1.Ports.Item(0).LineDirection = 15

Note: The MIO-16DE-10 is a hybrid DIO board:

• Port 0 is 8 bits wide, and is line configurable.

• Port 1 does not exist.

• Ports 2, 3, and 4 are each 8 bits, and are port configurable.

The port object has another property Value and several methods, all of

which are described in the section, Common Properties and Methods.

Each port object also contains a reference to a Lines collection

containing individual Line objects. Use these to configure and operate

the individual digital lines of the data acquisition device.

Lines Collection and Line Object

The Lines collection has the same properties as the Ports collection,

and allows you to select individual Line objects. The line object has a

Name property which allows you to identify individual lines by name:

CWDIO1.Ports.Item(0).Lines.Item(0).Name = "Switch1"

The Assignment property of the line object is read-only. Use it to

check the current direction of a particular line:

Line0isOutput =

CWDIO1.Ports.Item(0).Lines.Item(0).Assignment

See the following section for information on the Value property and the

methods of the line object.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-34 © National Instruments Corporation

Common Properties and Methods

The DIO, Port and Line objects have a set of common methods

(SingleRead, SingleWrite, and Update) to perform the actual input

and output operations. In addition the port and line objects include a

Value property which you use in conjunction with the Update method.

Use either the SingleRead or SingleWrite method to read or write

the current state of the digital I/O lines. SingleRead requires as a

parameter a variant which returns the value or values from the read

operation. Performing SingleRead on the DIO object returns an array

of integers where each array element represents the state of one port.

The integer represents the state of the digital lines in a port by bit, where

the lowest bit in the integer represents the state of line 0 in the port and

so on. For example an integer of value 25 (binary 00011001) would

mean the state of lines 0, 3 and 4 are high and all the remaining are low.

Performing SingleRead on a port object returns a single integer

representing the state of the port, and SingleRead on the line object

return a simple boolean indicating the state of the line:

Dim vData As Variant

CWDIO1.SingleRead vData

‘ returns an array of integers

CWDIO1.Ports.Item(0).SingleRead vData

‘ returns an integer

CWDIO1.Ports.Item(0).Lines.Item(0).SingleRead vData

‘ returns a boolean

You can also access the Lines collection directly from the DIO object.

If you have assigned a name to a specific digital line you can use it as

reference:

CWDIO1.Lines.Item("Switch1").SingleRead bState

CWDIO1.Lines.Item(14).SingleRead bState

To write to the digital output lines, use the SingleWrite method on

either the DIO, Port or Line object. This method requires you to write

a parameter containing the data to the digital lines. The form of the

parameters is the same as it would be returned from a corresponding

SingleRead call:

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-35 Getting Results with ComponentWorks

Dim vData As Variant

‘ an array of integers to write to the DIO object

vData = Array(0, 0, 0)

CWDIO1.SingleWrite vData

‘ a single integer to write to a port

vData = 0

CWDIO1.Ports.Item(0).SingleWrite vData

‘ a boolean to write to a line

vData = False

CWDIO1.Ports.Item(0).Lines.Item(0).SingleWrite vData

The alternative to reading and writing using the digital lines is using the

Value property of the port or line object and the Update method on the

DIO, Port or Line object.

In the output direction, use the Value property to specify the value of

a port or line, which will be written to the hardware the next time you

call the Update method. On the input side the Value property

represents the state of the hardware lines the last time the Update

method was called.

Note: The Value property does not represent the current state of the digital lines.

The Value property represents a cached state of either the last input

operation or the data that will be written on the next output operation.

Use the Update method to synchronize the cached values with the

hardware. This allows you to assign new values to individual output

lines, and update all of them at once. You can cache the current state of

a set of input lines once and then read the values from the individual

lines:
‘ Input Operation

CWDIO1.Update

portVal = CWDIO1.Ports.Item(0).Value

lineVal = CWDIO1.Ports.Item(0).Lines.Item(4).Value

‘ Output Operation

CWDIO1.Ports.Item(0).Lines.Item(6).Value = False

CWDIO1.Ports.Item(0).Value = newPortVal

CWDIO1.Update

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-36 © National Instruments Corporation

DI Control—Buffered Waveform Digital Input

Use the DI control to perform buffered waveform digital input

operations. This allows you to acquire data from your digital inputs

quickly, at a rate specified by an external signal or internal frequency.

Typical applications using the DI control include transferring digital

data from an external device or monitoring of a quickly changing

system. Advanced applications may include network analyzers. After

the properties of the DI control are set, your program can perform the

digital acquisition using a couple simple method calls to the DI control.

The DI control consists of a top level object and UpdateClock object.

Most properties that determine the actions of the DI control are set on

the control itself, while the update clock object determines the source

for the rate of acquisition.

The capabilities of the DI object depend on the data acquisition device

you are using. Many DAQ devices do not support buffered digital

acquisition, and the DI control will not work with these devices. Other

devices support only single buffered acquisition. For these devices you

will not be able to use the continuous mode. Most of these devices also

require an external signal to set the acquisition rate and you can not just

specify an internal frequency. Devices in the DIO-32 series support

both continuous acquisitions and internal frequency sources, and can

take advantage of the full range of the DI control features. Check the

hardware manual of your data acquisition device for detailed

information on its capabilities.

DI Object
After the default DAQ properties of the DI object (such as Device) are

set, the most important property to configure is ChannelString. You

specify what digital ports are used by the DI control using the

ChannelString property. Enter the number of the port to be used, or

DI Control

Propert ies: Device,
ErrorEventMask

UpdateClock Object

Propert ies:
ClockSourceType, Frequency

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-37 Getting Results with ComponentWorks

enter a list of ports separated by commas. Make sure the ports you

specify support the desired operation. Not all ports on a device may

necessarily support buffered digital input. For example of the three

ports on the DIO-24 devices, only ports 0 and 1 can be used with the DI

control. Consult your hardware manual for more information.

You can run the DI control in either continuous or single buffer mode.

In continuous mode, data is acquired until the operation is explicitly

stopped, while the single buffered operation acquires a preset number

of points and stops. Use the Continuous property to select between

these two different modes:

CWDI1.Continuous = True

The NPatterns property specifies the size of the acquisition buffer,

which also equals the number of patterns acquired per port in a single

buffer acquisition. A pattern is a value acquired from a digital port that

is a numeric representation of the state of the digital lines in the port.

NPatterns is specified in number of patterns per port in the channel

list. For example, if NPatterns is set to 1000 and there are two ports

in ChannelString, the buffer contains 2000 pattern values. When the

control is ready to return data to the application, it fires the

AcquiredData event and returns the patterns in an array.

While the acquisition is running you have the option of receiving

progress events from the DI control. Set the frequency of the Progress

event in the ProgressInterval property in number of patterns

acquired; ProgressInterval must be less than or equal to

NPatterns and a zero value disables the Progress event generation.

You can select to have the acquired patterns returned with the event

using the ProgressReturnData boolean property:

CWDI1.NPatterns = 1000

CWDI1.ProgressInterval = 100

CWDI1.ProgressReturnData = False

UpdateClock Object
Use the UpdateClock object to set the rate used to acquired the digital

pattern into the buffer. Depending on the data acquisition device you are

using, you may need to supply a clock signal to the device; or you may

be able to select an internal rate by frequency or period. Check the

hardware manual to see what clock sources are available on your

device.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-38 © National Instruments Corporation

The main property of update clock is ClockSourceType, which sets

the source for the clock signal. This may be the I/O connector of the

device, the RTSI bus, or an internal clock. Depending on this value,

different other properties are used to further specify the clock. If you are

using an internal clock you can use the InternalClockMode and

Frequency or Period properties to set the acquisition rate:

CWDI1.UpdateClock.ClockSourceType =

cwdioCSInternalClock

CWDI1.UpdateClock.InternalClockMode = cwdioFrequency

CWDI1.UpdateClock.Frequency = 1000

You do not need to set any other properties if you select to use the I/O

connector or RTSI bus.

Methods and Events
You normally operate the DI control using its Configure, Start, and

Reset methods. None of these methods require any parameters. After

you set the properties of the control, call the Configure method to

program the driver and hardware with the current property values. Next,

call the Start method to initiate the acquisition. Use the Reset method

during a continuous acquisition to stop the acquisition and to release

any resource assigned in the Configure call. You may perform another

acquisition without calling Configure again if the control was not

reset since the last acquisition. However, if any of the property values

were changed, you need to call Configure to implement those

changes:

Private Sub DigStart_Click()

CWDI1.Configure

CWDI1.Start

End Sub

Private Sub DigStop_Click()

CWDI1.Reset

End Sub

Note: If your digital acquisition requires an external signal to use as a clock, you

must physically connect this signal to the proper line of the I/O connector

of your data acquisition card. Consult your hardware manual to determine

where to connect this signal.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-39 Getting Results with ComponentWorks

The acquisition can generate two types of events. The AcquiredData

event is generated at the completion of a single buffer acquisition or at

NPatterns/2 intervals of a continuous acquisition. The

AcquiredData event is the main mechanism for returning the acquired

data to the application. Data from a one port acquisition is returned in a

one dimensional array; data from a multiport acquisition is returned in

a two dimensional array.

Private Sub CWDI1_AcquiredData(Waveform As Variant)

CWGraph1.PlotY Waveform, 0, 1, True

End Sub

The Progress event is generated if the ProgressInterval property

has a value other than zero, and it returns data if you set the

ProgressReturnData property to True. Use the Progress event to

retrieve data during an acquisition or to show the progress of an

acquisition on the user interface:

Private Sub CWDI1_Progress(ByVal TotalPatterns As Long,

Waveform As Variant)

‘ show percent complete

CWSlide1.Value = TotalPatterns / CWDI1.NPatterns * 100

Text1.Text = TotalPatterns

End Sub

For programming environments that do not support event handler

routines, you can call the AcquireData method to perform a

synchronous acquisition. You can only do this with a single buffered

operation:

Private Sub SynchAcq_Click()

Dim waveform As Variant

CWDI1.Configure

CWDI1.AcquireData waveform, 5

CWGraph1.PlotY waveform, 0, 1, True

End Sub

See the online reference manual, for more information on the DI control

and its object, properties, methods and events.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-40 © National Instruments Corporation

DO Control—Buffered Waveform Digital Output
Use the DO control to perform buffered waveform digital output

operations. The DO control is similar to the DI control. DO allows you

to generate a digital stream from the digital outputs at a rate specified

by an external signal or internal frequency. Typical applications using

the DO control include generating digital test signals for testing of

electronic devices, systems and networks. You can also use the DO

control to transfer binary data from a computer to another computer or

other device. By building your application after the properties of the DO

control are set, your program can perform the digital waveform

generation using a couple of simple method calls to the DO control.

The DO control consists of a top level object and UpdateClock object.

You set most of the properties that determine the actions of the DO

control on the control itself, while the update clock object determines

the source for the rate of generation.

The capabilities of the DO object depend on the data acquisition device

you are using. Many DAQ devices do not support buffered digital

generation and the DO control will not work with these devices. Other

devices support only single buffered generation. you will not be able to

use the continuous mode in the DO control. Most of these devices also

require an external signal to set the update rate and you can not simply

specify an internal frequency. Devices in the DIO-32 series support

both continuous acquisitions and internal frequency sources, and can

take advantage of the full range of the DO control features. Check the

hardware manual of your data acquisition device for detailed

information on its capabilities.

DO Object
After you set the default DAQ properties of the DO object (such as

Device, the most important property to configure is ChannelString.

You specify what digital ports are used by the DO control using the

DO Control

Propert ies: Device,
ErrorEventMask

UpdateClock Object

Propert ies:
ClockSourceType, Frequency

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-41 Getting Results with ComponentWorks

ChannelString property. Enter the number of the port to be used, or

enter a list of ports separated by commas. Make sure the ports you

specify support the desired operation. Not all ports on a device may

support buffered digital input. For example, of the three ports on the

DIO-24 devices, only ports 0 and 1 can be used with the DO control.

Port 2 is used to connect the timing signals required for these

operations. Consult your hardware manual for more information.

You can run the DO control in either continuous or single buffer mode.

In the continuous mode, data is generated until you explicitly stop the

operation; while the single buffer operation generates a preset number

of data values stored in the control buffer once and stops. Use the

Continuous property to select between these two different modes:

CWDO1.Continuous = True

The NPatterns property specifies the size of the control buffer used to

store the output data. A pattern is a value generated from a digital port

numerically representing the state of the digital lines in the port.

NPatterns is specified in number of patterns per port in the channel

list. For example, if NPatterns is set to 1000 and there are two ports

in ChannelString, the buffer contains 2000 pattern values.

While the generation occurs, the control fires the Progress event to

indicate the status of the operation. By default the progress event is

only generated at the completion of a single buffer operation or at the

end of every completed half-buffer in a continuous operation. You

can set the frequency of the Progress event explicitly by disabling

the AutoSelectProgressInterval property and specifying the

ProgressInterval property in number of patterns acquired;

ProgressInterval must be less than NPatterns and a zero value

disables the progress event generation:

CWDO1.NPatterns = 1000

CWDO1.AutoSelectProgressInterval = False

CWDO1.ProgressInterval = 100

UpdateClock Object
Use the UpdateClock object to set the update rate of the digital

waveform generation. Depending on the data acquisition device you are

using, you may need to supply a clock signal to the device or you may

be able to select an internal rate by frequency or period. Check the

hardware manual to see what clock sources are available on your

device.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-42 © National Instruments Corporation

The main property of the scan clock object is ClockSourceType,

which sets the source for the clock signal. This may be the I/O

connector of the device, the RTSI bus or an internal clock. Depending

on this value, other properties are used to further specify the clock. If

you are using an internal clock, you can use the InternalClockMode

and Frequency, Period, or Timebase properties to set the update

rate:

CWDI1.UpdateClock.ClockSourceType = cwdioCSInternalClock

CWDI1.UpdateClock.InternalClockMode = cwdioFrequency

CWDI1.UpdateClock.Frequency = 1000

If you use the I/O connector or RTSI bus, no other properties need to be

set.

Methods and Events
You normally operate the DO control using its Configure, Write,

Start, and Reset methods. Only the Write method requires any

parameters to be passed. After you set the properties of the control, call

the Configure method to program the driver and hardware with the

current property values. Next you must call the Write method to send

data to the control buffer for output. Data should be passed as a one

dimensional array of pattern values for a single port output, and a two

dimensional array of patterns for a multiport output. You then call the

Start method to initiate the output operation. In a single buffer output,

the generation stops after it completes the buffer. In a continuous

generation, use the Reset method to stop the output and to release any

resource assigned in the Configure call. You may perform another

output without calling Configure again if the control was not reset

since the last generation. You must call Configure again to implement

any changes you make to the property values:

Private Sub DigStart_Click()

Dim data(0 to 1, 0 to 99) ‘ 2-port output

For i = 0 To 99

data(0, i) = i ‘ port 1 data

data(1, i) = Int(Rnd * 256) ‘ port 2 data

Next i

CWDO1.Configure

CWDO1.Write data

CWDO1.Start

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-43 Getting Results with ComponentWorks

End Sub

Private Sub DigStop_Click()

CWDO1.Reset

End Sub

Note: If your digital waveform generation requires an external signal to use as a

clock, you must physically connect this signal to the proper line of the I/O

connector of your data acquisition card. Consult your hardware manual to

determine where to connect this signal.

You also use the Write method during a continuous output to send new

data to the buffer so that it can be output from the digital lines. This new

data is usually written in half buffer sizes to the control. Use the

Progress event described next to determine when to write new data to

the DO control. In continuous mode, you can set the

AllowRegeneration property to False to prevent the DO control

from generating the same data in the buffer twice.

During the digital output operation, the DO control generates a

Progress event to notify you of the completion of an output or to allow

you to monitor its progress. In a continuous generation, the Progress

event is normally set to fire after half the buffer is generated to prompt

you to send new data to the control. Data is written to the control using

the Write method as shown before although only half the buffer is

normally updated at a time.

Private Sub CWDO1_Progress(ByVal TotalPatterns As Long)

Dim data(0 to 1, 0 to 49)

For i = 0 To 49

data(0, i) = i

data(1, i) = Int(Rnd * 256)

Next i

CWDO1.Write data

End Sub

See the online reference manual, for more information on the DO

control and its object, properties, methods and events.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-44 © National Instruments Corporation

Tutorial: Using the DIO control

This tutorial develops a simple program that uses the DIO control to

perform single point digital inputs and outputs. Your DAQ device must

have one or more digital ports to use this example. You also need a way

to apply signals to the digital lines if you want to perform an input, or a

way to display the state of any output lines. If you have two digital ports

you can connect all the lines from one to the other so that the input can

read the state of the output lines.

This tutorial uses Visual Basic syntax, but the discussion is in general

terms so that you can follow it in any compatible programming

environment. Remember to adjust any code to your specific

programming language. Consult the chapter specific to your

programming environment for information on implementing any

particular step. You can also consult the Tutorial examples installed

with ComponentWorks for a completed version of this example in

several different programming environments.

Designing the Form
1. Open a new project and form. If you are working in Visual C++,

select a dialog based application and name your project DIO.

2. Load the ComponentWorks user interface controls (specifically,

the numeric edit box CWNumEdit) and the data acquisition

controls (specifically, the DIO control) into your programming

environment. Consult the chapter discussing your environment if

you are not familiar with this operation.

3. Place two buttons on the form. Change their captions and names to

the ones listed in the following table:

4. Place two ComponentWorks numeric edit box controls on the form

and change their names to InputNum and OutputNum.

5. Place two DIO controls on the form. Use the first one (CWDIO1)

for your input operations, and the second (CWDIO2) for any output

Name Caption

Input Read Port

Output Write Port

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-45 Getting Results with ComponentWorks

operation. You will configure the DIO controls in the next section

of this tutorial.

Your form should now look similar to the one shown below:

Developing the Code
Next, configure the DIO controls and add the necessary code to write an

update to the output lines or read the state of the input lines. If you only

use either the input or output control, follow the directions for the

appropriate task. Most digital ports can be configured for either input or

output, although there are ports on some boards which can only be

configured as one or the other. Check your hardware manual for

information on such limitations.

1. Configure one DIO control for input and one for output.

Input: In the custom property page of the first DIO control CWDIO1,

select the appropriate DAQ device. Then select (highlight) one

digital port in the list and set its direction (Port assignment) to

Input. Set the port assignment for all other ports to Unused.

Output: In the custom property page of the second DIO control

CWDIO2, select the appropriate DAQ device. Then select (highlight)

one digital port in the list and set its direction (Port assignment) to

Output. Set the port assignment for all other ports to Unused.

Depending on your device, you may be able to select the same port

for both controls. You can then write to the port using one control

and read back a value with the other control without making any

external connections.

2. Use the Read Input button to read the state of the digital input port

and display the pattern value in the numeric edit control. You can

read the state of all the ports at once or you can select to read a

specific port using the DIO control. In this example, read only the

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-46 © National Instruments Corporation

selected port. This makes the code more independent of the

hardware you are using.

Create an event handler for the Click event of the Input button

and add the following code. In the Item method, use the number

of the digital port you configured for Input. In this example, port 1

is used. The first port on a board is normally port 0.

Private Sub Input_Click()

Dim data As Variant

CWDIO1.Ports.Item(1).SingleRead data

InputNum.Value = data

End Sub

Note: If you read all the ports at once, the data is retuned as an array and you

need to access individual array elements for the information. The following

lines of code show how to do this. Do not add them to your example.

Dim data As Variant

CWDIO1.SingleRead data

InputNum.Value = data(1)

3. Use the Write Output button to set the state of the digital output

port and display the pattern value in the numeric edit control. You

can write the state of all the ports at once or you can select to write

to a specific port using the DIO control. In this example, write only

to the selected port. This makes the code more independent of the

hardware you are using.

Create an event handler for the Click event of the Output button

and add the following code. In the Item method, use the number of

the digital port you configured for Output. In this example, port 0

is used, which is the first port on most boards.

Private Sub Output_Click()

Dim data As Variant

data = OutputNum.Value

CWDIO2.Ports.Item(0).SingleWrite data

End Sub

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-47 Getting Results with ComponentWorks

Note: If you want to write to all the ports at once, you need to pass in an array of

data with a value for each port on the device you are using. The following

lines of code show how to do this. Do not add them to your example:

Dim data As Variant

‘ for a device with one port

data = OutputNum.Value

‘ for a device with three ports

data = Array(OutputNum.Value, 0, 0)

CWDIO2.Ports(0).SingleWrite data

4. Save your project and form as DIO.

Testing Your Program
Before you can run your program, you should connect a signal source

to your input port and a display or sensor to the output port. As an

option, you can connect the output lines to the input lines and use the

input to measure the output.

1. Run the program. Write a value to the output port by setting a value

in the corresponding numeric edit box and pressing the Write

Output button. The value in the numeric edit box represents the

pattern written to the port. The pattern is a numeric (integer)

representation of the bits in the digital port. A value of zero means

all lines are written low. A value of 22 (binary 00010110) means

lines 1, 2 and 4 are written high. Most ports have 8 digital lines and

a value of 255 corresponds to all lines high.

2. Read the value of the input port by pressing the Read Input button.

The pattern value is read from the port and displayed in the

corresponding numeric edit box. If you have connected all lines of

the output port to the input port, you should read the same value you

wrote out. If you read input lines that are not connected to anything

(floating), their values will not necessarily be low and therefore an

open port may read any value and not always 0.

3. Quit the program.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-48 © National Instruments Corporation

Instead of using the SingleRead and SingleWrite methods, you can

also use the Value property and Update method of the DIO control to

implement the functionality of this tutorial. The Update method can be

called on the DIO control as a whole or on the individual port. The

following are examples of the event handlers using this alternative:

Private Sub Input_Click()

Dim data As Variant

CWDIO1.Update

data = CWDIO1.Ports.Item(1).Value

InputNum.Value = data

End Sub

Private Sub Output_Click()

Dim data As Variant

data = OutputNum.Value

CWDIO2.Ports.Item(0).Value data

CWDIO2.Ports.Item(0).Update

End Sub

DAQTools—Data Acquisition Utility Functions

• The ComponentWorks DAQ controls include a DAQTools control

that contains a set of utility function for data acquisition. These

utility functions are all methods of the DAQTools control, while

the control itself has no properties or events. They can be used with

many different data acquisition devices to implement specific

functionality which is not part of any of the other DAQ controls.

The function groups in the DAQ Tools control include:

• The GetErrorText function converts a ComponentWorks error

number into a descriptive string. Use this in error handling to take

the return code from a DAQ method call and convert it to an error

message.

• Configure functions configure specific devices or parts of devices

such as the hardware analog trigger circuit on specific E-Series

devices.

• Conversion functions convert measurement units into physical

units for certain transducers such as thermocouples, thermistors,

RTDs, and strain gauges.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-49 Getting Results with ComponentWorks

• Get and Set functions read and set different properties of data

acquisition and SCXI (signal conditioning) devices.

• Reset functions reset DAQ and SCXI devices.

• ICtr functions perform operations using the interval counter

(ICounter) on some data acquisition devices. Devices that include

this counter are the 500, 700, 1200, LPM-16 and Lab-PC series

devices. The functions are ResetICtr, StartICtr, and

ReadICtr.

• FOUT functions generate a simple continuous pulse train from the

FOUT pin of different DAQ devices. The functions are StartFOUT

and ResetFOUT.

• Calibration functions perform software calibration on different

data acquisition devices.

Note: In most cases you do not need to calibrate your device. All devices are

calibrated before being shipped and they do not need to be calibrated before

using them for the first time. It is very important that you read the

hardware documentation regarding calibration and the description of the

calibration functions before attempting to perform any calibration.

Using DAQ Tools functions
You must drop the DAQTools control on your form to use the

DAQTools functions. Once you do this you can use any of its functions

in your program. To call a function use the regular convention of calling

any method of a control, i.e. prepend the name of the control to the

function name. The following example converts an error code number

to a text description and displays it in a message box:

MsgBox "DAQ Error: " +

CWDAQTools1.GetErrorText(ErrorCode)

To configure the hardware analog trigger circuit you can use the

ConfigureATCOut function:

‘ Prototype: ConfigureATCOut(Device:=, Enable:=,

TriggerMode:=, Level:=, Hysteresis:=, strSource:=,

ActualLevel:=, ActualHysteresis:=)

Dim Level as Variant, Hysteresis as Variant

CWDAQTools1.ConfigureATCOut 1, True, 1, 0#, 0.1, "0",

Level, Hysteresis

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-50 © National Instruments Corporation

See the online reference manual for a complete description of all the

functions in the DAQTools control.

Counter/Timer Hardware

The hardware component on the DAQ device used by the Counter and

Pulse controls is called a counter/timer. You can use this component to

count or measure incoming digital pulses as well generate digital pulses

and pulse trains on its output.

Each counter/timer has two inputs labeled Source and Gate and one

output labeled Out. The Source is also referred to as Clock. The basic

operation of the counter is to count the number of digital pulses coming

in on the source input. The counting operation can be gated by a digital

signal applied to the gate input. The output of the counter generates a

pulse when the counter reaches its maximum count or zero, depending

on whether it is counting up or down. By varying parameters such as

the signals applied to the source and gate, as well as the initial count of

the counter and the mode used in gating, this simple component can be

used for a variety of different applications.

The ComponentWorks Counter and Pulse control simplifies the use of

the counter/timer by allowing you to select from a number of standard

operations and specifying applicable properties. The properties in the

controls are grouped by the I/O point of the counter that they affect,

such as source, gate and output.

Counter Control—Counting and Measurement Operations
Use the Counter control to perform counting and other measurement

operations using the counter/timer components on a data acquisition

device. Typical operations include counting a number of events,

measuring the period of an unknown pulse, or measuring the frequency

of a signal. After the properties of the control are set, the application

can perform the operation using a simple method call to the counter

control. The operation of the counter control is measurement-oriented,

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-51 Getting Results with ComponentWorks

and the behavior of the control depends on the type of measurement

selected.

The counter control consists of only one object. The counter object

contains all the properties and methods necessary to use the control

Counter Object
Besides the default properties of each DAQ control, the counter object

contains all the properties necessary to a configure counting or

measurement operation. There are a three properties that affect the

counter control as a whole, while the remaining properties apply

specifically to the source, gate or output of the counter.

The two main properties of the control are Counter and

MeasurementType. The Counter property specifies what

counter/timer on the DAQ device will be used by the control. The

available counter numbers depends on the type of DAQ device you are

using. The MeasurementType property selects the type of operation

the control will perform, and affects the interpretation of the remaining

properties. Another property that affects the general operation is

InitialCount, which sets the value of the counter at the start of an

operation.

The following table describes the different measurement types:

Measurement

Type

Description Units One

Point

Buffered

Event Count Counts the number of pulses on the source input. Count X X

Time Measures time by counting a known clock input. Sec X X

Frequency Measure frequency on source input by counting number of pulse in a

known period of time.

Hertz X

Counter Control

Properties:

e.g. Device, Counter,

Measurement Type

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-52 © National Instruments Corporation

Frequency and Single Shot Pulse Width measurements can only be

performed as one point (unbuffered) operations, but the Semi-Period

measurement must always be buffered. See the section on Buffered

Measurements for more information.

The remaining properties of the counter object directly affect one of the

inputs or outputs of the control. The properties affecting the source

input include TimebaseSource, TimebaseSignal, SourceEdge and

CountDirection. Depending on the TimebaseSource property,

TimebaseSignal selects either a specific input pin of your board or the

internal frequency used for the source of the counter. SourceEdge

selects whether rising or falling edges on the source are counted and

CountDirection determines whether the counter counts up or down.

The gate properties are GateMode, GateSource, GateSignal, and

GateWidth. GateMode selects the type of gating used in an operation

such as No Gating, High Level Gating, and so on. GateSource and

GateSignal select the source of the gate signal. GateWidth is only

Pulse Width,

High

AM9513: Measure length of high pulse until next falling edge

(partial measurement possible if pulse is initially high).

DAQ-STC: Measure first pulse after next falling edge.

Sec X X

Pulse Width,

Low

AM9513: Measure length of low pulse until next rising edge

(partial measurement possible if pulse is initially low).

DAQ-STC: Measure first pulse after next rising edge.

Sec X X

Pulse Width,

High Single-Shot

AM9513: Measure length of high pulse until next falling edge

(partial measurement possible if pulse is initially high).

DAQ-STC: Measure first complete pulse, generates error if pulse is in

high state at start.

Sec X

Pulse Width,

Low Single-Shot

AM9513: Measure length of low pulse until next rising edge

(partial measurement possible if pulse is initially low).

DAQ-STC: Measure first commplete pulse, generates error if pulse is in

low state at start.

Sec X

Period, Rising

Edge

Measure period between two rising edges on gate input by counting a

known clock

Sec X X

Period, Falling

Edge

Measure period between two falling edges on gate input by counting a

known clock

Sec X X

Semi-Periods Measure of length of consecutive high and low pulses Sec X

Measurement

Type

Description Units One

Point

Buffered

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-53 Getting Results with ComponentWorks

used in Frequency measurement to set the sample width of the

measurement.

The output properties are OutputMode and Polarity. OutputMode

determines whether the counter output pulses or toggles when the

counter reaches its limit, and Polarity determines if the output is high

(active high) or low (active low) polarity.

To become familiar with the different types of measurements and

properties, browse through the custom property pages of the counter

control and study the different settings of the properties. Some

properties may be disabled depending on the state of other properties.

Consult the online reference for complete information on all properties.

Methods and Events

The counter control has a set of simple methods to control the operation

of the counter. Call the Configure method to configure the data

acquisition driver and hardware with the current properties before

starting any operation. Call the Start method to start the

measurement. If you want, you can call the Stop method to stop the

counter and the Reset method to unconfigure the counter and free up

its resources for other operations. After stopping a counter, you can

restart it using just the Start method if you have not called the Reset

method. After resetting the counter you need to call Configure again

before restarting.

Private Sub CounterStart_Click()

CWCounter1.Configure

CWCounter1.Start

End Sub

Private Sub CounterStop_Click()

CWCounter1.Stop

CWCounter1.Reset

End Sub

Depending on the measurement, the control may fire an AcquiredData

event to indicate the completion of a measurement and return the data.

The data is returned in the Measurement parameter that is passed to the

AcquiredData event, and scaled to the units indicated in the previous

table. Measurements that fire an AcquireData event are Frequency,

Pulse Width, Period and Semi-Period.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-54 © National Instruments Corporation

Private Sub CWCounter1_AcquiredData(Measurement As

Variant, ByVal Overflow As Boolean)

txtPulseWidth.Text = Measurement

End

Event counting and time measurement do not fire an event to return

data. Therefore, you use the ReadCounter and ReadMeasurement

methods to read the value of your measurement. ReadCounter returns

the actual count value of the counter and is usually used in event

counting operations. ReadMeasurement returns the value scaled to the

appropriate units. Both methods require one parameter to return the

measurement and another to indicate an overflow condition in the

counter.

Private Sub Timer1_Timer()

Dim lVal As Long

Dim vVal As Variant

Dim bOverflow As Boolean

CWCounter1.ReadCounter lVal, bOverflow

txtCount = lVal

CWCounter1.ReadMeasurement vVal, bOverflow

txtMeas = vVal

End Sub

Buffered Measurements

Normally all measurements acquire and return a single value of the

selected type. On specific data acquisition devices, such as the E-Series

devices, you can select to perform a buffered measurement for most of

the measurement types. A buffered measurement acquires multiple

values and stores the individual values in a buffer for later analysis and

processing. After a measurement is started, measurements are stored in

the buffer asynchronously. Once all the data points have been acquired,

the AcquiredData event is fired and the buffer is returned to the

application. Measurements are stored in the buffer at the completion of

a period or pulse for period and pulse measurements, or at a conversion

signal on the gate input for event counting and time measurements.

The counter object has two properties to enable buffered measurements.

UseBuffering is a boolean property that enables the buffered mode.

NMeasurements specifies the number of measurements to be made.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-55 Getting Results with ComponentWorks

While a buffered measurement is running, no data can be read from the

counter or the buffer and all data is returned when the measurement is

complete. The same methods used for a one point operation are also

used to control buffered measurements. When data is returned in the

Measurement parameter of the AcquiredData event, it is formatted

as an array.

Private Sub BufferedStart_Click()

CWCounter1.MeasurementType = cwctrHiPulseWidth

CWCounter1.UseBuffering = True

CWCounter1.NMeasurements = 10

CWCounter1.Configure

CWCounter1.Start

End Sub

Private Sub CWCounter1_AcquiredData(Measurement As

Variant, ByVal Overflow As Boolean)

CWGraph1.PlotY Measurement, 0, 1, True

End Sub

Pulse Control—Digital Pulse and Pulsetrain Generation
Use the Pulse control to generate individual pulses as well as pulse

trains with the counter/timer component on a data acquisition device.

Typical operations using the pulse control include generating a digital

test signal or driving a stepper motor. After the properties of the control

are set, the application can perform operations using simple method

calls to the pulse control. The operation of the pulse control is

task-oriented and the behavior of the control will depend on the type of

task selected in the properties.

The pulse control consists of only one object. The pulse object contains

all the properties and methods necessary to use the control

Pulse Control

Properties:

e.g. Device, Counter,

Pulse Type

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-56 © National Instruments Corporation

Pulse Object
Besides the default properties of each DAQ control, the pulse object

contains all the properties necessary to configure the pulse operations.

Two properties affect the pulse control as a whole, while the remaining

properties apply specifically to the pulse specifications, and the gate or

output of the counter/timer.

The two main properties of the control are Counter and PulseType.

The Counter property specifies what counter/timer on the DAQ device

will be used by the control. The available counter numbers depend on

the type of DAQ device you are using. The PulseType property selects

the type of operation the control performs. This selection also affects

the interpretation of the remaining properties.

The following table describes the different pulse type operations:

Pulse Type Description

Single Pulse Generate one pulse according to

the specifications.

Continuous Pulse Chain Generate a continuous pulse train

according to the specifications.

Finite Pulse Chain Generate a finite set of pulses.

This requires two counters.

FSK Pulse Frequency Shift Keying, generate

one of two different pulse trains

dependent on a digital input,

selector is applied to gate of

counter.

Incremental Delay Pulse (ETS) Equivalent time sampling pulse,

generate series of individual

pulses with increasing offset from

digital trigger, trigger is applied to

gate of counter.

Retriggerable Pulse, Rising Edge Retriggered single pulse, trigger is

applied to gate, triggered off rising

edge.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-57 Getting Results with ComponentWorks

The remaining properties of the counter object directly affect the pulse

generation or the gate of the counter. The properties affecting the pulse

generation include ClockMode, CountDirection, DutyCycle,

Frequency, Period, Period2, Phase1, Phase2, Frequency2,

Count, Phase1Inc, PulseDelay, PulseWidth, SourceEdge,

TimebaseSource, and TimebaseSignal. The parameters which are

actually used for the pulse generation depend on the settings of the

PulseType and ClockMode properties. The PulseType settings

select the general operation of the pulse control, such as single pulse or

continuous pulse generation, while the ClockMode settings determine

how the output is characterized. Settings for ClockMode include

Frequency and Period, which means the output is characterized by its

frequency or by the period of the pulse. Consult the property page of

the pulse control for more information on which property is used in a

specific operation.

The gate properties are of the pulse control are GateMode,

GateSource, GateSignal. GateMode selects the type of gating used

in an operation such as No Gating, High Level Gating, and so on.

GateSource and GateSignal select the source of the gate signal.

To become familiar with the different types of pulse generation and

their corresponding properties, browse through the custom property

pages of the counter control and study the different settings of the

properties. Some properties may be disabled depending on the state of

other properties. Consult the online reference for complete information

on all properties.

Retriggerable Pulse, Falling Edge Retriggered single pulse, trigger is

applied to gate, triggered off

falling edge.

Pulse Type Description

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-58 © National Instruments Corporation

Methods

The pulse control has a set of simple methods to control the operation

of the pulse generation. Use the Configure method to configure the

data acquisition driver and hardware with the current properties before

starting any operation. Use the Start method to start the generation.

If you want, you can call the Stop method to stop the counter and the

Reset method to unconfigure the counter and free up its resources for

other operations. After stopping a pulse generation, you can restart it

using just the Start method if you have not called the Reset method.

After resetting the counter you need to call Configure again before

restarting.

Private Sub PulseStart_Click()

CWCounter1.Configure

CWCounter1.Start

End Sub

Private Sub PulseStop_Click()

CWCounter1.Stop

CWCounter1.Reset

End Sub

While a pulse generation operation is running you can also change some

of its parameters without stopping the operation. For example, you can

change the frequency of continuous pulse generation in mid-stream. To

do this, update the relevant property of the pulse control. Then call the

Reconfigure method. Reconfigure can only be called while an

operation is running, and updates all possible properties that have

changed since the last call to Configure or Reconfigure. You can

use this method easily with the PointerValueChanged event of a slide

control to set the pulse frequency to the value of the slide.
Private Sub CWSlide1_PointerValueChanged(ByVal Pointer

As Long, Value As Variant)

CWPulse1.Frequency = Value

If OutputRunning Then CWPulse1.Reconfigure

End Sub

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-59 Getting Results with ComponentWorks

FSK and ETS Pulse Generation

The pulse control supports two specialized pulse generation modes on

the E series data acquisition devices that you can select in the

PulseType property. These modes can be used in conjunction with

analog input operations to perform special acquisitions. You may also

use them on their own for applicable situations.

Use FSK (frequency shift keying) to generate a continuous pulse with

one of two different frequencies depending on a separate digital signal.

Apply the digital signal that selects between the two different

frequencies to the gate input of the counter used by the pulse control.

Using the Frequency and Frequency2, Period and Period2, or

Phase1 and Phase2 properties, you can select the two different

frequencies to generate. This type of pulse generation can be combined

with an analog input to build a Rate-Change-on-the-Fly acquisition.

In this case, the output of the counter is used as the scan clock of the

acquisition, so you can change the acquisition rate dynamically using a

digital signal. If you have a hardware analog trigger on your device,

you can further enhance this application by using the analog trigger to

convert an analog signal, such as the one being acquired, into a digital

signal, which you then use to control the pulse generation. This means

you can use two different acquisition rates on your analog signal and the

acquisition will automatically change rates above and below the

specified analog voltage value.

ETS (equivalent time sampling) is an acquisition technique that

combines an analog input operation, hardware analog trigger and pulse

generation on a repetitive signal to achieve an effective acquisition rate

which is significantly higher than the actual acquisition rate of the

device.

In this operation the analog trigger is used to generate a repeating digital

trigger signal off the repetitive analog signal. This digital signal is

routed to the gate of a counter that generates another digital pulse with

an increasing amount of delay in response to the trigger. This pulse is

used as the scan clock of the acquisition. By triggering off the same

point of the analog signal with an exact and varying delay, you can

sample the entire signal waveform using many cycles. Because the

change in the delay is much smaller than the minimum acquisition

period of the device, the effective acquisition rate is significantly

increased.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-60 © National Instruments Corporation

In the pulse control, specify the input of the gate to be AITrigger and

set the change in delay using the ETSIncrement property. The ETS

increment is always specified in number of cycles of the clock source,

and can range between 0 and 255.

Tutorial: Using the Counter and Pulse controls

This tutorial develops a simple program that uses the Counter and Pulse

controls. The example generates a continuous pulse of varying

frequency using the pulse control, and counts the number of pulses

generated using the counter control. To use this example, your DAQ

device must have two available counters. You may also use just one

counter in this example with either the counter or pulse control. In this

case you will need an external mechanism to display the output from the

pulse control or apply an input to the counter control.

This tutorial uses syntax from the Visual Basic environment, but the

discussion is in general terms so that you can follow it in any

compatible programming environment. Remember to adjust any code

to your specific programming language. Consult the chapter specific to

your programming environment for information on implementing any

particular step. You can also consult the Tutorial examples installed

with ComponentWorks for a completed version of this example in

several different programming environments.

Designing the Form
1. Open a new project and form. If you are working in Visual C++,

select a dialog based application and name your project Counters.

2. Load the ComponentWorks user interface controls (specifically the

slide) and the data acquisition controls (specifically the Counter

and Pulse controls) into your programming environment. Consult

the chapter discussing your environment if you are not familiar

with this operation.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-61 Getting Results with ComponentWorks

3. Place five buttons on the form. Change their captions and names to

the ones listed in the following table.

4. Place a ComponentWorks slide control on the form and change its

name to Frequency. In the custom property sheet under the

Numeric tab, change its Min and Max properties to 1 and 100 and

set the Log scale option.

5. Place a text box on the form.

6. Place a DAQ Pulse control on the form. In the custom property

sheet of the Pulse control, select the device and counter you want

to use. If you have an E-Series device use counter 0; with an older

MIO device use counter 5, otherwise use an available counter. You

will set the remaining properties in the following section.

7. Place a DAQ Counter control on the form. In the property sheet,

select the device and counter you want to use. If you have an

E-Series or older MIO device use counter 1, otherwise use an

available counter.

8. If your environment has a timer control, place one on the form. In

the property sheet, set its Enabled property to False and its

Interval property to 100 (ms).

Name Caption

ConfigurePulse Configure Pulse

StartPulse Start Pulse

StopPulse Stop Pulse

StartCounter Start Counter

ReadCounter Read Counter

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-62 © National Instruments Corporation

Your form should now look similar to the one shown below.

Developing the Code
Next configure the DAQ controls and add the necessary code to

generate the continuous pulse train and count the pulses. If you will

only use one counter, follow the directions for either the counter or

pulse control. The next section will describe how you should connect

your signals in either case.

1. Configure the Pulse control to generate a continuous pulse train. In

the property page of the pulse control under the General tab set the

Pulse Mode to Continuous pulse chain. Under the Clock tab

set the Clock Mode to Use frequency settings, the Frequency

to 1.0 and the duty cycle to 0.50 (50%). Under the Gate tab set the

Gate Mode to Ungated.

2. There are three buttons on the form which control the operation of

the pulse control. Generate event handlers for the Click event of

each button and add the following code. You also need to declare

a boolean variable, Running, which is global to the module

containing the code for the form. Depending on your programming

language this declaration may vary. In Visual C++ you will also

need to create a member variable for the pulse control.

Dim Running as Boolean

Private Sub ConfigurePulse_Click()

CWPulse1.Configure

End Sub

Private Sub StartPulse_Click()

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-63 Getting Results with ComponentWorks

CWPulse1.Start

Running = True

End Sub

Private Sub StopPulse_Click()

CWPulse1.Stop

Running = False

End Sub

Using the Stop and Start buttons you can halt the pulse generation

and restart it without having to reconfigure the pulse control.

3. The slide control is used to change the frequency of the pulse train.

If the pulse generation is running the output will be updated

immediately. Create an event handler for the

PointerValueChanged event of the slide. Add the following

code.

Private Sub Frequency_PointerValueChanged(ByVal

Pointer As Long, Value As Variant)

CWPulse1.Frequency = Value

If Running Then

CWPulse1.Reconfigure

Else

CWPulse1.Configure

End If

End Sub

If the pulse generation is running the Reconfigure method is used

to update the output immediately, otherwise the Configure

method reprograms the hardware for the next start.

4. Configure the Counter control to count events, which are the pulses

generated by the pulse control. In the property page of the counter

control under the General tab, set the Measurement Type to Event

count. Under the Clock tab set the Timebase source to Counter’s

source. Under the Gate tab set the Gate Mode to Ungated.

Chapter 6 Using the Data Acquisition Controls

Getting Results with ComponentWorks 6-64 © National Instruments Corporation

5. There are two buttons on the form which control the operation of

the pulse control. Generate event handlers for the Click event of

each button and add the following code. In Visual C++ you will

also need to create a member variable for the counter control. Add

the following code to the two event handlers.

Private Sub StartCounter_Click()

CWCounter1.Configure

CWCounter1.Start

End Sub

Private Sub ReadCounter_Click()

Dim CountValue As Long

Dim Overflow As Boolean

CWCounter1.ReadCounter CountValue, Overflow

Text1.Text = CountValue

End Sub

After the counter is started, you can use the Read button to

interactively read the value of the counter and display it in the

textbox.

6. If you have a timer control on your fom you can program it to

automatically read the value of the counter once it has been started.

If you are working in Visual C++ create a member variable for the

timer control.

To activate the timer add the following line to the end of the code

in the StartCounter_Click subroutine.

Timer1.Enabled = True

Create an event handler for the Timer event of the Timer control

and add a call to the ReadCounter_Click() subroutine.

Private Sub Timer1_Timer()

ReadCounter_Click

End Sub

7. Save your project and form as Counters.

Chapter 6 Using the Data Acquisition Controls

© National Instruments Corporation 6-65 Getting Results with ComponentWorks

Testing Your Program
1. Before you can run your program you need to connect the output of

the counter running the pulse generation to the source input of the

counter counting events. This is an external connection you need

to make. If you are only using one counter of the DAQ device you

will need some other external hardware. If you are using the DAQ

pulse control you should have a device to measure the output of the

counter such as an oscilloscope or external counter. If you are

using the DAQ counter control you will need to connect an external

pulse source to the source input of the counter.

2. Run the program. Start the pulse generation by clicking on the

Configure Pulse and Start Pulse buttons. Then start the counter. If

you have the timer control enabled the textbox should display the

value of the event count. Without the timer control, you can use the

Read Counter button to update the textbox.

3. Change the value of the slide control, which changes the frequency

of the pulse generation. Notice that the count value in the textbox

changes faster or slower accordingly. You can also stop and restart

the pulse generation which affects the count value.

Your completed running program should look similar to the one shown

below.

4. Quit the progam (click on the ‘X’ button in the title bar of the

window).

© National Instruments Corporation 7-1 Getting Results with ComponentWorks

Chapter

7
Using the Analysis
Controls and Functions

This chapter shows you how to use the ComponentWorks analysis

controls and functions. You can use the analysis functions alone or with

other controls to perform data analysis, manipulation and simulation.

Functions are included for operations such as matrix and array

calculations, frequency analysis, statistical analysis and signal

generation. The analysis functions are stored as methods in a number of

different analysis controls and are organized by functionality.

The individual controls and some of the functions are explained in this

chapter. Additional information as well as a detailed description of each

individual analysis function is found in the online help file. This chapter

includes a tutorial that gives step-by-step instructions on using the

analysis controls in a simple program. While the code listed in the

tutorial uses Visual Basic syntax, the steps can be applied to any

programming environment. Consult the appropriate chapters in this

manual for information on using the ComponentWorks controls in other

environments.

What are the Analysis Controls?

The analysis controls file CWAnalysis.OCX contains five separate

ActiveX controls which include the different analysis functions. The

functions are grouped into controls according to their uses:

• CWArray—array manipulation functions

• CWComplex—complex scalars and array manipulation functions

• CWMatrix—vector and matrix algebra functions

• CWStat—statistical functions

• CWDSP—digital signal processing and signal generation functions

Chapter 7 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 7-2 © National Instruments Corporation

Analysis Library Versions
ComponentWorks is distributed with one of three different versions of

the analysis library. Each version contains a different set of functions in

the library. The functions available to you depend on the package of

ComponentWorks you purchased:

• Base Analysis Library, ComponentWorks Base Package—contains

simple matrix algebra, array and complex number functions, and

simple statistics functions.

• Digital Signal Processing (DSP) Analysis Library,

ComponentWorks Standard Development System—contains the

functions of the base analysis library plus DSP functions (time and

frequency domain analysis, filters, windows), curve fitting

functions, advanced array and complex number functions and

measurement functions.

• Advanced Analysis Library (AAL), ComponentWorks Full
Development System—contains the functions of the DSP analysis

library plus advanced statistics and matrix algebra functions.

Although specific analysis functions or controls may not be part of your

analysis library, each is shown in your development environment, such

as the Visual Basic object browser or the Visual C++ component

gallery. When you attempt to use a function that is not included in your

analysis library, an error message appears to notify you that the function

is not supported. See the Testing and Debugging Your Application section

in Chapter 8, Building Advanced Applications, for more information.

The following table lists all the analysis functions, grouped by control.

The last column specifies the ComponentWorks version which includes

the specific function:

• B - Base Package (also in Standard and Full Development System)

• S - Standard Development System (also in Full Development

System)

• F - Full Development System

Chapter 7 Using the Analysis Controls and Functions

© National Instruments Corporation 7-3 Getting Results with ComponentWorks

Table 7-1. Analysis Control Function Tree

Control Function Function Name CW Version

CWArray

1D 2D Operations

1D Maximum & Minimum MaxMin1D B

1D Array Subset Subset1D B

1D Array Reverse Reverse1D S

1D Array Shift Shift1D S

1D Array Sort Sort1D B

1D Array Interleave Interleave1D B

2D Array Transpose Transpose2D B

MultiDimensional Element

Operations

Array Addition AddArray B

Array Subtraction SubArray B

Array Multiplication MulArray B

Array Division DivArray B

Absolute Value AbsArray B

Negative Value NegArray B

Linear Evaluation LinEvArray B

Polynomial Evaluation PolEvArray S

Scaling ScaleArray S

Quick Scaling QScaleArray S

Array Clipping ClipArray S

Chapter 7 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 7-4 © National Instruments Corporation

Array Clearing ClearArray B

Array Setting SetArray B

Array Copying CopyArray B

Array Normalizing NormalizeArray S

Variant Conversion VarToDblArray B

MultiDimensional Array

Operations

Array Size ArraySize B

Sum of Elements SumArray S

Product of Elements ProArray S

Extract complete dimensions(s)

from array

IndexArray B

Array Subset SubsetArray B

Maximum and Minimum of Array MaxMinArray B

Search Array SearchArray B

Build/Concatenate Array BuildArray B

Reshape Array ReshapeArray B

CWComplex

Complex Numbers

Complex Addition CxAdd B

Complex Subtraction CxSub B

Complex Multiplication CxMul B

Table 7-1. Analysis Control Function Tree (Continued)

Control Function Function Name CW Version

Chapter 7 Using the Analysis Controls and Functions

© National Instruments Corporation 7-5 Getting Results with ComponentWorks

Complex Division CxDiv B

Complex Reciprocal CxRecip B

Complex Square Root CxSqrt S

Complex Logarithm CxLog S

Complex Natural Log Cxlon S

Complex Power CxPow S

Complex Exponential CxExp S

Rectangular to Polar ToPolar B

Polar to Rectangular ToRect B

MultiDimensional Complex

Operations

Complex Addition CxAddArray B

Complex Subtraction CxSubArray B

Complex Multiplication CxMulArray B

Complex Division CxDivArray B

Complex Linear Evaluation CxLinEvArray B

Rectangular to Polar ToPolarArray B

Polar to Rectangular ToRectArray B

CWMatrix

Vector & Matrix Algebra

Dot Product DotProduct B

Matrix Multiplication MatrixMul B

Table 7-1. Analysis Control Function Tree (Continued)

Control Function Function Name CW Version

Chapter 7 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 7-6 © National Instruments Corporation

Matrix Inversion InvMatrix B

Transpose Transpose B

Determinant Determinant B

Trace Trace F

Solution of Linear Equations LinEqs F

LU Decomposition LU F

Forward Substitution ForwSub F

Backward Substitution BackSub F

CWStat

Statistics

Mean Mean B

Standard Deviation StdDev B

Variance Variance F

RootMean Squared Value RMS F

Moments about the Mean Moment F

Median Median F

Mode Mode F

Histogram Histogram B

Probability Distributions

Normal Distribution Function N_Dist F

TDistribution Function T_Dist F

FDistricution Function F_Dist F

Table 7-1. Analysis Control Function Tree (Continued)

Control Function Function Name CW Version

Chapter 7 Using the Analysis Controls and Functions

© National Instruments Corporation 7-7 Getting Results with ComponentWorks

χ2 Distribution Function XX_Dist F

Normal Distribution Inverse

Function

InvN_Dist F

TDistribution Inverse Function InvF_Dist F

FDistribution Inverse Function InvF_Dist F

χ2 Distribution Inverse Function InvXX_Dist F

Analysis of Variance

One-way Analysis of Variance ANOVA1Way F

Two-way Analysis of Variance ANOVA2Way F

Three-way Analysis of Variance ANOVA3Way F

Nonparametric Statistics

Contingency Table Contingency_Table F

Curve Fitting

Linear Fit LinFit S

Exponential Fit ExpFit S

Polynomial Fit PolyFit S

General Least Squares Linear Fit GenLSFit S

Interpolation

Polynomial Interpolation PolyInterp F

Rational Interpolation RatInterp F

Spline Interpolation SpInterp F

Spline Interpolant Spline F

Table 7-1. Analysis Control Function Tree (Continued)

Control Function Function Name CW Version

Chapter 7 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 7-8 © National Instruments Corporation

CWDSP

Signal Generation

Impulse Impulse S

Pulse Pulse S

Ramp Ramp S

Triangle Triangle S

Sine Pattern SinePattern S

Uniform Noise Uniform S

White Noise WhiteNoise S

Gaussian Noise GaussianNoise S

Arbitary Wave ArbitaryWave S

Chirp Chirp S

Sawtooth Wave SawtoothWave S

Sinc Waveform Sinc S

Sine Waveform SineWave S

Square Wave SquareWave S

Triangle Wave TriangleWave S

Frequency Domain Signal

Processing

FFT FFT S

Inverse FFT InvFFT S

Real Valued FFT ReFFT S

Table 7-1. Analysis Control Function Tree (Continued)

Control Function Function Name CW Version

Chapter 7 Using the Analysis Controls and Functions

© National Instruments Corporation 7-9 Getting Results with ComponentWorks

Real Value Inverse FFT ReInvFFT S

Power Spectrum Spectrum S

FHT FHT S

Inverse FHT InvFHT S

Cross Spectrum CrossSpectrum S

Time Domain Signal Processing

Convolution Convolve S

Correlation Correlate S

Integration Integrate S

Differentiate Difference S

Pulse Parameters PulseParam S

Decimate Decimate S

Deconvolve Deconvolve S

UnWrap Phase UnWrapID S

IIR Digital Filters

Lowpass Butterworth Bw_LPF S

Highpass Butterworth Bw_HPF S

Bandpass Butterworth Bw_BPF S

Bandstop Butterworth Bw_BSF S

Lowpass Chebyshev Ch_LPF S

Highpass Chebyshev Ch_HPF S

Bandpass Chebyshev Ch_BPF S

Table 7-1. Analysis Control Function Tree (Continued)

Control Function Function Name CW Version

Chapter 7 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 7-10 © National Instruments Corporation

Bandstop Chebyshev Ch_BSF S

Lowpass Inverse Chebyshev InvCh_LPF S

Highpass Inverse Chebyshev InvCh_HPF S

Bandpass Inverse Chebyshev InvCh_BPF S

Bandstop Inverse Chebyshev InvCh_BSF S

Lowpass Elliptic Elp_LPF S

Highpass Elliptic Elp_HPF S

Bandpass Elliptic Elp_BPF S

Bandstop Elliptic Elp_BSF S

IIR Filtering IIRFiltering S

FIR Digital Filters

Lowpass Window Wind_LPCoef S

Highpass Window Wind_HPCoef S

Bandpass Window Wind_BPCoef S

Bandstop Window Wind_BSCoef S

Lowpass Kaiser Window Ksr_LPCoef S

Highpass Kaiser Window Ksr_HPCoef S

Bandpass Kaiser Window Ksr_BPCoef S

Bandstop Kaiser Window Ksr_BSCoef S

General EquiRipple FIR Equi_Ripple S

Lowpass EquiRipple FIR EquiRpl_LPCoef S

Highpass EquiRipple FIR EquiRpl_HPCoef S

Table 7-1. Analysis Control Function Tree (Continued)

Control Function Function Name CW Version

Chapter 7 Using the Analysis Controls and Functions

© National Instruments Corporation 7-11 Getting Results with ComponentWorks

Bandpass EquiRipple FIR EquiRpl_BPCoef S

Bandstop EquiRipple FIR EquiRpl_BSCoef S

Windows

Triangle Window TriWin S

Hanning Window HanWin S

Hamming Window HamWin S

Blackman Window BkmanWin S

Kaiser Window KsrWin S

BlackmanHarris Window BlkHarrisWin S

Tapered Cosine Window CosTaperedWin S

Exact Blackman Window ExBkmanWin S

Exponential Window ExpWin S

Flat Top Window FlatTopWin S

Force Window ForceWin S

General Cosine Window GenCosWin S

Measurement

AC/DC Estimator ACDCEstimator S

Amplitude/Phase Spectrum AmpPhaseSpectrum S

Auto Power Spectrum AutoPowerSpectrum S

Cross Power Spectrum CrossPowerSpectrum S

Impulse Response ImpulseResponse S

Network Functions NetworkFunctions S

Table 7-1. Analysis Control Function Tree (Continued)

Control Function Function Name CW Version

Chapter 7 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 7-12 © National Instruments Corporation

Controls
Each analysis function is a method of its corresponding control.

Parameters are passed to the functions like any other functions. In many

cases, the calculated value or data is returned as a result from the

function, instead of using an output variable. This allows you to assign

the result of the function directly to another part of the program, such

as the user interface, or the parameter of another function. For example:

Text1.Text = CWStat1.Mean(Data)

Because each function is a method of a control, you must place the

correct control in your application to use the function. Additionally,

each call to an analysis function includes the name of the control. For

example, a call to the AddArray function, which is part of the CWArray

control, would look like this:

SumArray = CWArray1.AddArray(Array1, Array2)

In functions where the information is not returned from the function, no

return variable is assigned. For example:

CWDSP1.AutoPowerSpectrum Data, 0.001, Spectrum, deltaF

Many parameters passed to the analysis functions are of Variant data

type. When these parameters are passed for output or return, they only

need to be declared as such. For example:

Dim Data as Variant

Data = CWDSP1.SinePattern(1024, 5, 0, 4.5)

Power Frequency Estimate PowerFrequency

Estimate

S

Scaled Window ScaledWindow S

Spectrum Unit Conversion SpectrumUnit

Conversion

S

Transfer Function TransferFunction S

Table 7-1. Analysis Control Function Tree (Continued)

Control Function Function Name CW Version

Chapter 7 Using the Analysis Controls and Functions

© National Instruments Corporation 7-13 Getting Results with ComponentWorks

Analysis Function Descriptions
Because there are many functions in the analysis libraries, individual

functions are not described in this manual. Each function, with its

purpose and parameters, is described in detail in the online

ComponentWorks reference manual. The reference manual also

includes code examples for each function. You can access the help file

directly from most programming environments. See the chapter in this

manual specific to your programming environment for more

information.

You can also open the help file by selecting the ComponentWorks

Reference in the ComponentWorks program group under the Start

button of the Windows task bar.

Error Messages
If any analysis function encounters an error, it sends an exception back

to the application, which displays a dialog box with the error number

and description. The analysis functions do not return the error code

from the function. Consult the Appendix B, Error Codes, for more

information about individual error messages and how to resolve them.

Error handling and debugging is described in more detail in Chapter 8,

Building Advanced Applications.

Tutorial: Using Simple Statistics Functions

This tutorial shows how to use some of the statistical functions of the

CWStat control. The functions in this tutorial are part of the base

analysis library, and are supported by all versions of ComponentWorks.

Place the analysis control containing the functions you are using in your

application. You can then use the functions by adding them to your code

manually, or using the tools provided by your development

environment. The analysis controls do not have any properties that need

to be edited. The only property you use with the control is the Name

property, which you use when calling any function. For example, the

default name of the CWStat controls is CWStat1 and a call to the Mean

function is CWStat1.Mean.

This tutorial uses the graph control from the user interface tools to

display data arrays. If you do not have the user interface tools, you can

still complete this tutorial. Disregard references to the graph control and

use your own method for displaying data arrays.

Chapter 7 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 7-14 © National Instruments Corporation

This tutorial uses Visual Basic syntax, but the discussion is in general

terms so that you can follow it in any compatible programming

environment. Remember to adjust any code to your specific

programming language. Consult the chapter specific to your

programming environment for information on implementing any

particular step.

Designing the Form
1. Open a new project and form. If you are working in Visual C++,

select a dialog-based application and name your project Stat.

2. Load the ComponentWorks user interface control, CWGraph, and

the CWStat analysis controls into your programming environment.

Consult the chapter discussing your environment if you are not

familiar with this operation.

3. From the toolbox or toolbar, place a CWStat control on the form.

Keep its default name, CWStat1.

4. From the toolbox or toolbar, place a CWArray control on the form.

Name the control CWArray1.

5. Place a CWGraph (graph) control on the form. Keep its default

name, CWGraph1. You can open its property sheet to change any of

its properties.

6. Place a button on the form. Change its name and caption property

to Go.

7. Create six text boxes on the form and name them Max, MaxIndex,

Min, MinIndex, Mean, and StdDev.

8. Add a label to each text box with the following descriptions:

Maximum, Max Index, Minimum, Min Index, Mean, and Standard

Deviation.

Chapter 7 Using the Analysis Controls and Functions

© National Instruments Corporation 7-15 Getting Results with ComponentWorks

Your form should now look similar to the one shown below:

Developing the Program Code
When you press the Go button, the program generates an array of

random numbers. It displays the data on the graph and also calculates

and displays the following statistics of the data set: maximum, array

index at maximum, minimum, array index at minimum, mean, and

standard deviation.

1. Create a skeleton event handler for the Click event of the Go

button.

• In Visual Basic, double-click on the button on the form to

create the Go_Click subroutine.

• In Visual C++, use the MFC ClassWizard to create the event

handler routine. Right-click on the button and select

ClassWizard.

• In Delphi, use the object inspector to create the event handler

routine. Select the Go button, then press <F11> to open the

object inspector. Select the Events tab. Double-click the empty

field next to the Click event.

2. Add code inside the event handler routine to generate an array, fill

it with random data and display it on the graph. If you are working

in Visual C++, you first need to add a member variable for the

graph control using the MFC Class Wizard.

Dim data(0 To 99)

For i = 0 To 99

data(i) = Rnd

Chapter 7 Using the Analysis Controls and Functions

Getting Results with ComponentWorks 7-16 © National Instruments Corporation

 Next i

 CWGraph1.PlotY data

3. Add the function to calculate the statistics of the data set. Use the

StdDev function of the CWStat control to calculate the standard

deviation and mean of the dataset, and the MaxMin1D function of

the CWArray control for the remaining values. You also need to

declare a number of variables to store the different calculated

values. Add the following code to the program. The variable

declarations should go at the top of the event handler routine. The

analysis functions should go after the call to the PlotY method

from the previous step.

Dim MeanVal as Variant, StdDevVal as Variant

Dim MaxVal as Variant, MaxIndexVal as Variant

MinVal as Variant, MinIndexVal as Variant

CWStat1.StdDev data, MeanVal, StdDevVal

CWArray1.MaxMin1D data, MaxVal, MaxIndexVal, MinVal,

MinIndexVal

4. Add the necessary code after the analysis functions to display the

calculated values in the textboxes on the user interface.

Mean.Text = MeanVal

StdDev.Text = StdDevVal

Max.Text = MaxVal

Min.Text = MinVal

MaxIndex.Text = MaxIndexVal

MinIndex.Text = MinIndexVal

5. Save the project and associated files as Stat.

Chapter 7 Using the Analysis Controls and Functions

© National Instruments Corporation 7-17 Getting Results with ComponentWorks

Testing Your Program
Run the program. Click on the Go button to generate a data set and

calculate the statistical values. The result should be similar to the

following illustration:

When the statistical values are displayed in the text boxes, all digits of

precision are displayed by default. You can edit the code which displays

these values to limit the number of digits displayed. Consult your

programming reference manual for information on how to limit the

degree of precision.

You can also use the numeric edit box control to display the values and

use its format string to limit the number of digits displayed.

© National Instruments Corporation 8-1 Getting Results with ComponentWorks

Chapter

8
Building Advanced
Applications

This chapter discusses how to build applications using more advanced

features of ComponentWorks, including advanced data acquisition

techniques, the DSP Analysis Library, and advanced user interface

controls. It also discusses error tracking, error checking, and debugging

techniques.

Using Advanced ComponentWorks Features

This chapter discusses some of the advanced features in the

ComponentWorks controls. It also includes examples that show how the

features are applied and used in real applications. You should be

familiar by now with the basic operations of the different controls.

This chapter illustrates advanced data acquisition techniques, such as

pretriggering and using start, stop, and pause conditions. You will also

learn how to incorporate the DSP Analysis Library and use the spectrum

functions. Finally, you will use advanced user interface control

features, such as graph cursors and multiple axes and pointers.

This chapter discusses only the key features of sample applications that

you can find in the \ComponentWorks\Tutorial directory. You can

customize these examples to implement the advanced features in your

own applications.

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-2 © National Instruments Corporation

A Virtual Oscilloscope
The Virtual Oscilloscope application uses the ComponentWorks user

interface and data acquisition analog input controls and a DAQ board to

build a simple one-channel oscilloscope. Load the sample program from

\ComponentWorks\Tutorials into your development environment to

follow the discussion. The following screen shows the application at

run-time:

Depending on the trigger mode button, the application acquires data in

a single-shot, continuous, or analog trigger continuous operation. When

the data is returned to the AcquiredData event, it is plotted on the

graph. The vertical controls on the scope adjust the Y axis of the graph,

while the horizontal and trigger settings affect the DAQ AI control. Any

property settings of the DAQ AI control that the user does not control

at run-time, such as the device and channel number, are set directly in

the DAQ AI property pages. By default, channel 1 on device 1 is used

for the acquisition. Wire your signal accordingly or change these values

in the property pages of the AI control.

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-3 Getting Results with ComponentWorks

Data Acquisition Stop Condition Modes
The scope can run in one of three acquisition modes—single,

continuous trigger, and analog continuous software trigger—which you

select by using the Single/Cont/Analog button in the Trigger section of

the form. The first two modes work well with any input signal, while

the analog trigger mode works best with a periodic dynamic input

signal.

The three trigger modes correspond to three stop condition modes of the

data acquisition analog input control. For instance, the callback

function for the Analog button programmatically sets a new value for

the CWAI1.StopCondition.Type according to the state of the button,

as shown in the following code for the analog trigger mode:

CWAI1.StopCondition.Type = cwaiSWAnalog

The DAQ control or header file defines the constant cwaiSWAnalog so

you can easily set the different modes. You can retrieve any

StopCondition.Type constant value by using the object browser in

Visual Basic, consulting the online documentation, or looking in the

header file for your environment. After changing the property value, the

event handler of the trigger button also reconfigures and restarts the

acquisition. For the analog trigger, it is important to set the trigger level

to a value within the range of the input signal.

Data Acquisition Pretriggering
When the scope is in analog trigger mode, you can move the trigger

point along the horizontal axis of the graph by using the Trigger Offset

knob. In the code, the callback for the knob changes the

PretriggerScans property of the AI control:

CWAI1.StopCondition.PreTriggerScans = TOffset.Value

Without pretriggering, the application acquires all scans after the stop

condition trigger (analog trigger). When the number of PreTrigger

scans is greater than zero, the application acquires the number of scans

specified for the PreTrigger before the trigger occurs. After the trigger

occurs, the array of data returned to the CWAI1_AcquiredData event

handler contains data both from before and after the trigger. You can set

the PretriggerScans property and all the stop trigger properties

through the property pages of the DAQ AI control. Pretriggering works

the same way with the analog software, the analog hardware, and digital

hardware stop triggers.

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-4 © National Instruments Corporation

User Interface Value Pairs
Value pairs are user interface control features for assigning names to

specific values on a scale or axis, used in the graph, slide and knob

controls. All the value pairs for a given axis are stored in the

ValuePairs collection object of that axis. Each value pair object

consists of a name and a value corresponding to a scale or axis of the

particular control. You usually set value pairs through the property page

of the control. You can also add, edit, or delete them programmatically.

The following screen shows the value pairs property page for the

Vertical Scale Knob control on the Virtual Oscilloscope form:

After you assign value pairs, such as the settings for the Vertical Scale

knob, you can limit the allowed values for a control to the predefined

value pairs. To do this, set the control to Value Pairs Only in the

Style folder of the property sheet. In the Virtual Scope application, the

vertical and horizontal scale knobs are Value Pairs Only controls. This

way, the control is limited to preset settings and the program can

retrieve the name, value, or index of the currently selected value pair.

The application uses the value of the value pair to update the

appropriate property on the graph or DAQ AI control, and uses the

name of the value pair to update the appropriate text display. The

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-5 Getting Results with ComponentWorks

following code shows how to retrieve these three components of the

currently selected value pair from a knob control.

Value:

CWKnob1.Value

Name:

CWKnob1.Axis.ValuePairs(CWknob1.ValuePairIndex).Name

Index:

CWKnob1.ValuePairIndex

Value pairs are part of only one axis of a control, because you can

specify multiple axes on a graph and associate value pairs with each

individual axis.

Virtual Spectrum Meter
Find the Spectrum Meter application in \ComponentWorks\Tutorial.

The Virtual Spectrum Meter application uses the DSP analysis

functions to build a simple spectrum analyzer. The data can either be

acquired with a DAQ board or simulated. If you do not have a DAQ

board, select Simulation with the Data Source switch and characterize

your signal in the Data Simulation section. The UI controls are used to

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-6 © National Instruments Corporation

display the information as well as control the operations of the program.

The following screen shows the application.

Once the Spectrum Meter is started, you can select either a Single

Trigger or a Continuous Trigger acquisition. The single trigger takes a

snapshot of the incoming signal so you can study the spectrum of the

acquired signal. Use the continuous trigger to monitor changes in a

signal as they are occurring. You can set some of the DAQ parameters,

such as the channel, using the DAQ settings section of the user

interface. The input limit specifies the maximum expected absolute

voltage on the input signal, and determines the optimal gain to use on

the acquisition process. You can also use an analog trigger with your

data acquisition. Set other DAQ parameters, such as the device number,

in the property pages of the AI control.

Use the cursors on the graphs to measure the amplitude of the incoming

waveform and the frequency of any specific point in the spectrum.

When you move one of the cursors, the corresponding display at the

bottom of the user interface is automatically updated.

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-7 Getting Results with ComponentWorks

DSP Analysis Library
The digital signal processing (DSP) analysis functions are part of the

ComponentWorks Standard and Full Development Systems. DSP

functions include Fourier and Hartley transforms, spectrum analysis,

convolution and correlation of data sets, and digital windowing and

filtering of data. If you have installed the ComponentWorks Base

Package, you will not be able to run these functions from your

development environment. You can still examine the Spectrum

Meter project and code and run the precompiled executable in the

\ComponentWorks\Tutorial folder. Using the DSP functions is

similar to using the Base Analysis Library functions covered in

Chapter 7, Using the Analysis Controls and Functions. To use the

DSP functions, you must first load the analysis control into your

environment, and then place the CWDSP control on your form.

The Virtual Spectrum Meter application contains all the analysis

functions in the AnalyseAndGraph subroutine. The application passes

the data (acquired or simulated) to this routine for analysis and display.

The following is the Visual Basic code of the AnalyseAndGraph

subroutine:

Private Sub AnalyseAndGraph(WaveformData() As Variant,

SampleInterval As Double)

Dim WindowedData As Variant

Dim FreqInterval As Variant

Dim SpectrumData As Variant

Dim HalfSpectrumData As Variant

WaveformGraph.PlotY WaveformData

WindowedData = CWDSP1.HamWin(WaveformData)

CWDSP1.AutoPowerSpectrum WindowedData,

SampleInterval, SpectrumData, FreqInterval,

SpectrumData, freqinterval

HalfSpectrumData = CWArray1.Subset1D(SpectrumData,

2, 510)

SpectrumGraph.PlotY HalfSpectrumData, FreqInterval,

FreqInterval * 2

End Sub

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-8 © National Instruments Corporation

The analysis procedure consists of the Hamming window (HamWin) and

the auto power spectrum function (AutoPowerSpectrum). The

Hamming window reduces the effect of spectral noise leakage in the

spectrum due to the finite length sample of a continuous signal. The

auto power spectrum function is a single-sided, scaled spectrum, which

the application can graph directly. The AutoPowerSpectrum function

also calculates the frequency resolution of the spectrum

(FreqInterval) using the SampleInterval value passed to

AnalyseAndGraph. The frequency resolution is used in the PlotY

method of the graph for scaling the X axis of the spectrum graph.

The DSP Analysis Library also includes a function named

SpectrumUnitConversion for scaling the calculated spectrum

between different formats, including linear, dB, and dBm, combined

with Vrms, Vrms2, Vpk, and Vpk2, as well as amplitude and power

spectral densities. Consult the online reference for more information on

the different DSP functions.

For low-level spectrum calculations, the DSP functions include FFT

and inverse FFT algorithms. Time domain functions, such as

Convolution, Correlation, Differentiate, and Integrate, are included

along with a number of different windowing, IIR (infinite impulse

response), and FIR (finite impulse response) digital filtering functions.

Cursors
The Virtual Spectrum Meter application form has cursors on the graph

for marking sections of the plots. Use the two cursors on the waveform

graph to mark the minimum and maximum values of the acquisition

waveform and measure the waveform amplitude. The cursor on the

spectrum graph marks a particular point in the spectrum and displays

the associated frequency.

To use a cursors on a graph, create and configure one or more cursors

in the property pages of the graph. You create additional cursors by

pressing the Add button in the Cursors tab of the property pages, and

then configure each cursor with the properties on the right. The Snap

Mode of the cursor specifies whether the cursor jumps (snaps) to a point

on the nearest plot or can be placed freely on the graph. When you select

Point on selected plot for the Snap Mode, you can also specify a

particular plot to which the cursor is connected.

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-9 Getting Results with ComponentWorks

The following screen shows the property pages for the cursors on the

waveform graph of the Virtual Spectrum Meter application:

Individual cursors are represented in the object hierarchy by Cursor

objects contained in the cursors collection of the graph control. You can

manipulate individual cursors programmatically by following the

normal conventions of working with collections and their objects. For

example, in the program, the cursors are referenced with the name of the

graph, cursor index, and cursor property.

Max = WaveformGraph.Cursors.Item(2).YPosition

See the chapter specific to your development environment and

Chapter 5, Using the Graphical User Interface Controls, for more

information on how to use the user interface controls.

Use event handler subroutines associated with the graph to process any

interactions by the user with the cursors. There are four events on the

graph relating to the cursors, of which the CursorChange and

CursorMouseUp routines are the most commonly used. To generate one

of these event handlers, select the graph and the corresponding cursor

event according to your development environment. An event handler

skeleton similar to the one below is generated:

Private Sub Graph_CursorChange(CursorIndex As Long, XPos

As Variant, YPos As Variant, bTracking As Boolean)

End Sub

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-10 © National Instruments Corporation

The event handler routine automatically provides the index of the cursor

(used to determine which of multiple cursors generated the event), as

well as the X and Y coordinates of the cursor on the graph. Place the

commands to perform your tasks, such as displaying the position of the

cursor, in the event handler routine. For the waveform graph cursors,

the Virtual Spectrum Meter application reads the Y position of the two

cursors to calculate the amplitude of the waveform data, as shown

below:

Private Sub WaveformGraph_CursorChange(CursorIndex As

Long, XPos As Variant, YPos As Variant, bTracking As

Boolean)

Dim Amplitude As Double

Amplitude =

Abs(WaveformGraph.Cursors.Item(1).YPosition -

WaveformGraph.Cursors.Item(2).YPosition)

CursorAmplitude = CStr(Round(Amplitude, 2)) + " V"

End Sub

Graph Track Mode
The TrackMode property of the graph determines how the graph reacts

to interactions with the mouse and what events are generated by the

graph at these times. By default, the TrackMode property is set to

cwGTrackDragCursor, which allows the mouse to move the cursors on

the graph. Moving a cursor generates the CursorChange event.

By setting the TrackMode property of the graph, either through the

property sheets or programmatically, you can choose other selections

for the Track Mode property. This setting generates events when the

mouse interacts with the plot area as a whole, or individual plots on the

graph. With these modes, you can use the mouse to select a specific plot

or detect when the user moves the mouse over the plot area.

You can also use TrackMode to select panning and zooming. When

TrackMode is set to Pan, any click-and-drag action on the graph shifts

the contents of the graph following the mouse movement. When

TrackMode is set to ZoomRect, any click-and-drag action on the graph

draws a rectangular outline on the graph. When the mouse button is

released, the graph zooms to the dimensions of the outline. For these

two operations, you can select X axis, Y axis, and XY axis modes,

limiting the motion to the specified axes. Consult the user interface

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-11 Getting Results with ComponentWorks

folder of the samples directory (\ComponentWorks\Samples\…) for an

example of how to use these track modes.

A Virtual Data Logger
The Virtual Data Logger application records real time phenomena on

multiple channels at slow rates over an extended period of time. It can

either simulate the data being acquired or use a data acquisition card.

The acquired data is logged to a serial ASCII file. Saving data in ASCII

format allows you to read the file in many other applications, but it

makes the file larger in size than if you saved the data in binary format.

You can open the saved file from the virtual data logger to inspect the

file. The following figure shows the application:

The data source is set to simulated data by default, but you can also

acquire data from a DAQ board. If you use a DAQ board to acquire the

data, set the properties for the DAQ AI control accordingly.

The Start button is an On/Off style for starting and stopping the

acquisition/logging process. The View Log File button opens the

recorded file using the Windows Notepad application. By default, the

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-12 © National Instruments Corporation

application does not clear the log file when you start the logging

process. Rather, it appends the data to any existing data in the file. You

can change this feature in the program.

Multiple Graph Axes
You can configure multiple Y axes for a graph by using its property

sheets. In the Axes folder of the property sheet, use the Add and Del

buttons to add and delete axes. For each axis, select the range and style

you want to use. After configuring the axes, switch to the Ticks folder

in the property sheet, select each axis in the pull-down ring, and

configure the labels and ticks for each axis.

In the same way you configure multiple axes or cursors, you can

predefine the properties of multiple plots on the graph by using the

Plots folder of the property sheet. By default, each plot is assigned to

the same Y axis on the graph. Using the Plots folder, you can assign

plots to different Y axes of a graph. When an application plots or charts

data on the graph, the Y axis specified for a particular plot determines

the scaling of that plot. If you generate more plots on a graph then there

are defined plots, the Template plot style and the first Y axis are used

for each undefined plot.

You can set any of the properties of the plots or axes programmatically.

Both the plots and axes are individual objects (of type Plot and Axis)

which are stored inside of corresponding collection objects (Plots and

Axes, respectively) on the graph. To change a property of an individual

axis or plot, you must first select the collection and then the individual

object in the collection. You can then specify the property to read or

write.

For example, the collection of plot objects is Plots, but you reference

the individual plot objects by using the Item method on the collection.

The methods of the Plots collection—such as Add, Item, and Remove—

make changes to the collection as a whole, while the properties of the

Plot object—such as Name, AutoScale, and LineColor—are the

individual settings for one plot.

Objects in a collection are referenced by their one-based index using

the Item method. For example, CWGraph1.Axes.Item(1) refers to

the first axis on the graph (X axis). CWGraph1.Plots.Item(2) refers

to the second plot on the graph (default name Plot-2).

CWGraph1.Axes.Item(2).Name retrieves or sets the name of the

second axis (first Y axis).

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-13 Getting Results with ComponentWorks

To assign simple properties—properties that contain boolean, double,

integer, variant, or string values—to a plot or axis, simply use the

property name like any other variable in your program. For example, to

change the name of plot on a graph, use the following code:

CWGraph1.Plots(2).Name = “Temperature”

Assigning an object as a property to another object is similar. For

example, because each plot on a graph is assigned a specific Y axis

which is used for scaling of the data, it is possible to assign a new axis

(an object) as a property to a plot. In most programming environments,

you assign the object like you would any other variable. Doing such

object assignments in Visual Basic requires the Set keyword, which

differentiates the assignment of data from the assignment of objects.

The following Visual Basic code, including the Set statement, assigns

the third axis as an object to the YAxis property of the first plot:

Set CWGraph1.Plots.Item(1).YAxis =

CWGraph1.Axes.Item(3)

Consult the Visual Basic documentation for more information on the

Set statement.

Graph Axes Formats
The axes on the graph, as well as the slide and knob, support special

formatting modes you can use to edit the labels on the tick marks.

Besides doing simple formatting like using exponential or engineering

notation, you can also add alphanumeric characters such as units (for

instance, Hz or V), and convert to currency, percentage, or time formats.

The time format includes options both for time and date. Two more

advanced formatting modes are scaling and symbolic engineering.

Use the scaling format mode to perform simple mathematical functions

(addition, subtraction, multiplication and division) automatically on

your data before displaying it on your graph. For example, if you are

using an IC temperature sensor whose output in volts corresponds to the

temperature divided by 100, you can specify your axis to automatically

scale the data by *100. The data displayed on this axis is automatically

multiplied by 100 without any changes in the code of your program.

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-14 © National Instruments Corporation

Symbolic engineering is normally used when displaying units with your

tick labels. The use of the symbolic engineering format automatically

adds prefixes such as k for kilo and m for milli before the units instead

of using the exponent. This becomes especially useful when using

logarithmic scaling.

You normally set the formatting of the axis in the property pages of the

control, but it can also be set programmatically.

File Input/Output
The file I/O functions in the Virtual Data Logger application are an

example how to perform simple file I/O in a program. Because file I/O

is not part of the ComponentWorks functionality, the functions used

will vary between different programming environments. Consult the

data logger example in your programming environment for an example

of how to perform file I/O. All the file I/O functions of the application

are in the LogData subroutine, which you can use as a template for

other input/output routines. The application uses a sequential ASCII file

to store the data and appends new data to any existing data already in

the specified file. Consult the reference manual and other example

programs for your programming environment for more information on

the file I/O functions. You can start with the names of the functions used

in the data logger for searches in the reference manual.

Adding Testing and Debugging to Your Application

The tools available for debugging vary depending on your

programming environment, but normally include features such as

Breakpoints, Step-Run mode, and a Watch Window. Consult the

reference manual for your programming environment for information

on these and other debugging tools.

Error Checking
ComponentWorks controls can report error information to you and to

the application in a number of different ways: by returning an error code

from a function or method call, by generating an error or warning event,

or by throwing an exception handled by your programming

environment. The type of error reporting used depends on the type of

application and the preference of the programmer.

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-15 Getting Results with ComponentWorks

By default, all the ComponentWorks controls generate exceptions when

errors occur, rather than returning error codes from the methods.

However, the DAQ controls have a property, ExceptionOnError, you

can set to False to use return error codes instead of exceptions.

Additionally, error events are fired by the DAQ controls if an error

occurs during specific phases (contexts) of an acquisition process. The

contexts for which error events are generated are set in the

ErrorEventMask property of the DAQ controls.

Exceptions
Exceptions are error messages returned directly to your programming

environment. Exceptions are normally processed by displaying a

default error message. The error message usually allows you to end

your application or to go into a debug mode where you can perform

certain debugging functions. Part of the exception returned is an error

number and error description, displayed as part of the error message.

For example the DAQ AI control may return the following exception to

Visual Basic:

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-16 © National Instruments Corporation

Depending on your programming environment, you may be able to

insert code that will catch exceptions being sent to your application and

handle them in another manner. In Visual Basic you can do this by using

the On Error statement. The two main implementations are On Error

Resume Next and On Error GoTo. Following are two examples of

error handling using these conventions.

• On Error Resume Next does not automatically generate an error

message, but continues running the program at the next line. To

handle the error, you should check and process the information in

the Err object in your code:

Private Sub Acquire_Click()

On Error Resume Next

CWAI1.Configure

If Err.Number <> 0 Then MsgBox "Configure: " +

CStr(Err.Number)

CWAI1.Start

If Err.Number <> 0 Then MsgBox "Start: " +

CStr(Err.Number)

End Sub

• On Error GoTo also avoids using the default mechanism for

handling the exception, running instead the section of your program

you specify. You can define one error handler in your subroutine:

Private Sub Acquire_Click()

On Error GoTo ErrorHandler

CWAI1.Configure

CWAI1.Start

Exit Sub

ErrorHandler:

MsgBox "DAQ Error: " + CStr(Err.Number)

Resume Next

End Sub

If you are not using Visual Basic, consult the documentation for your

programming environment for information on how to handle

exceptions.

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-17 Getting Results with ComponentWorks

Return Codes
If the ExceptionOnError property is set to False, the DAQ control

methods return a status code to indicate whether an operation completed

successfully. If the return value is something other than zero, it

indicates a warning or error. A positive return value indicates a

warning, signifying that a problem occurred in the operation, but that

you should be able to continue with your application. A negative value

indicates an error which means a critical problem has occurred in the

operation, and that all other functions or methods dependent on the

failed operation will also fail.

You can use the specific value of the return code for more detailed

information about the error or warning. The ComponentWorks DAQ

Controls can convert the error code into a more descriptive text

message, as described in the GetErrorText Function section of this

chapter.

To retrieve the return code from a method call, assign the value of the

function or method to a long integer variable and check the value of the

variable after calling the function or method. For example, the

following code shows how to check the return code of the Start

method of the CWAI control in Visual Basic:

lerr = CWAI1.Start

If lerr <> 0 Then MsgBox "Error at DAQ Start: " +

CStr(lerr)

A common method in Visual Basic for displaying error information to

the user is to use the MsgBox pop-up window. Normally, you can write

one error handler for your application instead of duplicating it for every

call to a function or method. For example, the following code shows

how to create a LogError subroutine to use with the Start method, as

well as for use with later functions or methods:

Private Sub LogError(code As Long)

If code <> 0 Then

MsgBox "DAQ Error: " + CStr(code)

End If

End Sub

To use the LogError subroutine, place the call to LogError in front of

every function or method call. The return code is automatically passed

to LogError and processed.

LogError CWAI1.Start

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-18 © National Instruments Corporation

If you are working in other environments, consult the documentation to

determine how to display a simple dialog window or find another

method of displaying error information.

Error and Warning Events

The DAQ controls in ComponentWorks also include their own error and

warning events—DAQError and DAQWarning. You normally use return

codes for error checking of the methods used on the DAQ controls.

However, for asynchronous operations such as a continuous analog

input, you cannot use return codes for error checking because no

methods are called after the first Start method. In this case, the CWAI

control generates its own error event if an error or warning occurs

during an on-going acquisition. You can develop an event handler to

process these error and warning events. The following code shows the

skeleton event functions for the CWAI control:

CWAI1_DAQError(ByVal StatusCode As Long, ByVal ContextID

As Long, ByVal ContextDescription As String)

CWAI1_DAQWarning(ByVal StatusCode As Long, ByVal

ContextID As Long, ByVal ContextDescription As String)

You can create both of the above routines using your normal method

for generating event handlers. The StatusCode variable automatically

passed to the event handler contains the value of the error or warning

condition. The ContextID contains a value describing the operation

where the error or warning occurred, and the ContextDescription

contains a more descriptive string describing the operation where the

error or warning occurred.

The following code shows an example of how to use the AI_DAQError

event in a Visual Basic application:

Private Sub CWAI1_DAQError(ByVal StatusCode As Long,

ByVal ContextID As Long, ByVal ContextDescription As

String)

MsgBox ContextDescription + ”:

CStr(StatusCode)

End Sub

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-19 Getting Results with ComponentWorks

This code produces the following error message box:

By default, only asynchronous operations call error and warning events.

You can set the ErrorEventMask property of the CWAI control to

specify the operations for which the error and warning events are called.

Consult the online reference for more information on how to set the

ErrorEventMask property.

GetErrorText Function
If you use the return error code to perform your error checking for data

acquisition controls, you may want to convert the error code values into

more descriptive error texts. The ComponentWorks DAQ controls

include a utility control that includes a method to convert error codes

into descriptive error strings. To use this method, create a DAQTools

control in your program and use the GetErrorText method as shown

in the following example:

DAQError = CWAI1.Start

If DAQError <> 0 Then MsgBox

CWDAQTools.GetErrorText(DAQError)

The following screen shows a message box generated by using the

GetErrorText function in the previous example:

Chapter 8 Building Advanced Applications

Getting Results with ComponentWorks 8-20 © National Instruments Corporation

Debugging
This section outlines a number of general debugging methods that you

may use in your application development. If you experience some

unexpected behavior in your program, use these methods to pin-point

and correct the problem in your application.

Debug Print
One of the most common debugging methods is to print out or display

key variables throughout the program execution. You can then monitor

critical values and determine when your program varies from the

expected progress. Some programming environments have dedicated

debugging windows which are used to display such information without

disturbing the rest of the user interface. For example, you can use the

Debug.Print command in Visual Basic to print information directly to

the debug window:

Debug.Print CWAI1.Channels.Item(1).ChannelString

Breakpoint
Most development environments include breakpoint options so you can

suspend program execution at a specific point in your code. Breakpoints

are placed on a specific line of executable code in the program to pause

program execution.

Stopping at a breakpoint confirms that your application ran to the line

of code containing the breakpoint. If you are unsure whether a specific

section of code is being called, place a breakpoint in the routine to find

out. Once you have stopped at a specific section of your code, you can

use other tools, such as a watch window or debug window, to analyze

or even edit variables. Consult your environment documentation to

determine how to set breakpoints.

In some environments, breakpoints may also include conditions so

program execution halts if certain other conditions are met. These

conditions usually check program variables for specific values. Once

you have completed the work at the breakpoint, you can continue

running your program, either in the normal run mode or in some type of

single step mode.

Chapter 8 Building Advanced Applications

© National Instruments Corporation 8-21 Getting Results with ComponentWorks

Watch Window
A watch window is used to display the value of a variable during

program execution. You can use it to edit the value of a variable while

the program is paused. In some cases, you can display expressions,

which are values calculated dynamically from one or more program

variables.

Single Step, Step Into and Step Over
Use single stepping to execute a program one line at a time. This way,

you can check variables and the output from your program during

execution. Single stepping is commonly used after a breakpoint to step

though a questionable section of code slowly. There are several

variations to the single step mode which may be supported in your

environment.

If you use Step Into, the program executes any code available for

subroutines or function calls and step through it one line at a time. Use

this mode if you want to check the code for each function called. The

Step Over mode assumes you do not want to go into the code for

functions being called, and will run them as one step.

In some cases, you may want to test a limited number of iterations of a

loop, but then run the rest of the iterations without stopping again. For

this type of debugging, several environments include an option Step to
Cursor or Run to Cursor. Under this option, you can place your cursor

at a specific point in the code, such as the first line after a loop, and run

the program to that point.

© National Instruments Corporation A-1 Getting Results with ComponentWorks

Appendix

ACommon Questions

This appendix contains a list of answers to frequently asked questions.

It contains general ComponentWorks questions as well as specific data

acquisition, graphical user interface, and analysis library questions.

ComponentWorks Common Questions

Installation and Getting Started

What does it mean when I place a ComponentWorks control on my form
and get an error from Visual Basic saying I’m not licensed to use this
control?

This error means that ComponentWorks was not installed properly.

Make sure to install ComponentWorks on your computer using your

installation disks. Copying the files or sharing them over a network does

not work.

What is the difference in Visual Basic using Base 0 or Base 1 to declare
arrays?

Visual Basic can use either zero-based or one-based arrays. The default

is Base 0. To change to the Base 1 option use the following statement

at the top of your code:

Option Base 1

You can also specify the exact range when declaring an array.

Dim voltBuffer(0 To 9) As Double

Dim voltBuffer(1 To 10) As Double

Dim voltBuffer(10 To 19) As Double

I don’t see any new controls in my Visual Basic toolbox. How do I load the
ComponentWorks controls into Visual Basic?

To load the ComponentWorks controls in Visual Basic, right-click on

the toolbox and select Custom Controls... from the popup menu. In the

Appendix A Common Questions

Getting Results with ComponentWorks A-2 © National Instruments Corporation

dialog box, click on the Browse button to select a new control. The

ComponentWorks controls are located in the \Windows\System

directory and are named CWDAQ.OCX, CWUI.OCX and CWANALYIS.OCX,

and so on. Select each of the controls and then click OK to return to

Visual Basic. The new controls will be placed in the toolbox.

Load the ComponentWorks utility library by selecting References from

the Tools menu and selecting the CWUTILS.DLL file

(\Windows\System directory) through the Browse button.

How do I have the ComponentWorks controls and libraries loaded
automatically when I start Visual Basic?

In Visual Basic 4 you can have the ComponentWorks controls and

libraries loaded by adding them to the AutoLoad project. To do this,

open the project AUTO32LD.VBP, found in your Visual Basic

directory. Then load the controls and references and save the project.

What is the object browser in Visual Basic, where do I find it, and how do
I use it?

The Object Browser is a tool in Visual Basic that displays the defined

object types of the currently loaded controls and their properties and

methods. It specifies the data type of the property for each property

(which can be another object). For methods, it shows the prototype of

each method, including its parameters.

Open the object browser in Visual Basic by pressing <F2> or selecting

View Object Browser... from the View menu. The object browser is

divided into three fields.

In the top field, select a library or project.

The left field displays all defined classes and controls for the selected

project, such as CWGraph in the CWUIControlsLib project.

After you select a class or module, the right field displays all the

properties, methods or functions of the selected class or module. When

you select one of these elements in the right window, the bottom of the

object browser displays the prototype of the selection, including any

reference to another object type (class).

Appendix A Common Questions

© National Instruments Corporation A-3 Getting Results with ComponentWorks

How do I load the ComponentWorks controls in Borland Delphi?

Follow these steps to load the ComponentWorks control in Delphi.

1. Save all your work in Delphi including files and projects.

2. Select Install... from the Component menu

3. In the Install Components window press the OCX button.

4. In the Import OLE Control window, select the registered control

you want. The ComponentWorks controls all start with National
Instruments. Click OK to close the window.

If your control does not show in the Import OLE Control window,

it is not registered with the operating system. Click on the

Register... button, find the .OCX file that contains the control, and

select it. This registers the control with the operating system. Most

.OCX files are located in the \System(32) directory under

Windows. The ComponentWorks .OCX files start with CW.

5. To load more controls, repeat steps 3 and 4.

6. When you are done selecting controls, click the OK button in the

Install Components window. This loads the new controls and adds

them to the OCX tab of the Component Palette. This step also close

any open project and you will need to reopen it.

How do I distribute an application using ComponentWorks?

To distribute an application using ComponentWorks or any ActiveX

controls, you need to distribute all the .OCX files, .DLL files and

supporting OCXs and DLLs referenced in the application. In addition

you need to distribute any support DLLs required by your specific

programming environment.

Any OCXs and OLE Automation DLLs (OLE Automation Servers)

distributed with an application need to be registered in the operating

system on the target computer. You can do this with an installer, which

you build with the Setup Wizard/Tool provided by your programming

environment, or manually using the REGSVR32.EXE utility.

To install and register an .OCX file, copy it to the \System (for Win95)

or \System32 (for WinNT) subdirectory of the Windows directory on

the target computer. Then run:

regsvr32 c:\windows\system(32)\<ocxname>.ocx

To unregister a control use:

regsvr32 /u c:\windows\system(32)\<ocxname>.ocx

Appendix A Common Questions

Getting Results with ComponentWorks A-4 © National Instruments Corporation

If you distribute the ComponentWorks OCXs, you also need to make

sure that the following support DLLs are installed on the target

computer. The DLLs are listed with the minimum required version

number.

stdole2.tlb 2.20.4054

mfc42.dll 4.2.6256

msvcirt.dll 4.20.6201

msvcrt.dll 4.20.6201

msvcrt40.dll 4.2000.6164

oleaut32.dll 2.20.4054

olepro32.dll 5.0.4055

These files are located in the \Redist directory on the

ComponentWorks installation CD. In addition, using Internet images in

the UI controls requires URLMON.DLL, WININET.DLL and other files

and registry settings. If Microsoft Internet Explorer 3.01 or later is

installed on the system, the correct files and registry settings will be

present. The CW installer does not install these files.

Remember to include any files required by your programming

environment, such as any run-time DLLs. Check with the

documentation of your development environment for a list of

required DLLs.

Analysis Controls

My analysis functions seem to have no effect. What does the return code
-30008 mean?

To use the analysis functions in your code, you must place the analysis

key icon on your form. Without this icon, the functions return the

error -30008, kErrFunctionNotLicensed, and have no effect. If

you have the analysis key icon on your form, you are calling a function

not supported by your version of ComponentWorks. Refer to Chapter 7,

Using the Analysis Controls and Functions, for more information.

Appendix A Common Questions

© National Instruments Corporation A-5 Getting Results with ComponentWorks

Data Acquisition Controls

What methods and events do I need to use for the DAQ analog input
control?

The DAQ AI control has four main methods (Configure, Start, Stop,

Reset). The methods are listed and described in the ComponentWorks

Getting Result manual and in the ComponentWorks online help.

After you set the properties of the AI control in the property pages, call

the Configure method to pass the property values to the driver and

hardware. Then call Start to start the actual acquisition. Use the

Stop method to stop a continuous acquisition, and the Reset method

to stop any acquisition and reset the driver and hardware. You need to

call Configure again any time you change a property value

programmatically, after you call the Reset method, or after the

acquisition stops due to an error.

The main event used with the AI control is the AcquiredData event,

which is called when a set number of points is acquired and which

returns the data to the program. Two additional events, the DAQError

and DAQWarning events, are generated in response to any errors or

warnings that occur in the DAQ process. The ErrorEventMask

property determines which operations (contexts) of the AI control these

events are called for. Check the online reference for more detailed

information on ErrorEventMask.

Appendix A Common Questions

Getting Results with ComponentWorks A-6 © National Instruments Corporation

How do I assign new channels dynamically or retrieve channel
information from the DAQ AI control in my program?

Use the Channels collection object of the AI control to retrieve

information from individual channel objects. Use the syntax

CWAI.Channels.Item(n) to access individual channel objects.

Dim ChannelInfo As String

ChannelInfo = CWAI1.Channels.Item(1).ChannelString

Use CWAI.Channels.RemoveAll and CWAI.Channels.Add with the

appropriate information in the parameter list to delete all the channel

objects in the channel list (Channels collection) and to add new

channel objects to the collection.

CWAI.Channels.RemoveAll

CWAI.Channels.Add 1

Refer to the properties on CWAI.Channels in the online reference

manual for more information.

Why does my EISA-A2000, AT-A2150, AT-DSP2200 data acquisition card
not work with ComponentWorks?

These three boards are not compatible with the ComponentWorks data

acquisition controls.

How do I pass an array to CWAI.AcquireData? I keep getting type
mismatches on my declared arrays. What is a Variant data type?

The two data buffers (Voltages and BinaryCodes) of the

AcquireData method are defined as variant data types. Do not declare

them ahead of time as arrays. Select two variable names, declare them

as Variant, and pass them to AcquireData. CWAI.AcquireData

redeclares the variables to the correct array data type and array size.

Variant data types are used when the resultant data type may not be

known ahead of time. This allows a function or method to redeclare the

variant variable for the appropriate type.

Dim Voltages As Variant

Dim BinaryBuffer As Variant

Dim Timeout As Single

Timeout = 5

CWAI.AcquireData (Voltages, BinaryBuffer, Timeout)

Appendix A Common Questions

© National Instruments Corporation A-7 Getting Results with ComponentWorks

When performing a single channel acquisition, both data buffers will be

declared as one-dimensional arrays; a multi-channel acquisition

declares two-dimensional arrays.

User Interface Controls

How do I add labels to the ComponentWorks graph axes?

ComponentWorks 1.1 and later includes a Caption property for the

graph axes, which you can use to label each axis.

How do I show gridlines on my graph without displaying the scales similar
to an oscilloscope screen?

In the Ticks section of the property pages of the graph enable the grid

lines for the selected axis and disable all the ticks and labels for the

same axis. Make sure to keep the Visible property of the axis enabled.

How do I set the default value for a control such as the knob or slider?

To set the default value for a knob, slider or switch, in Visual Basic or

Delphi open the default property page (<F4> in Visual Basic, <F11> in

Delphi) and set the Value property to the desired value.

In Visual C++, open the custom property pages and set the value. If

the control is a ValuePairs Only control, set the ValuePairIndex

property instead to the one-based index of the desired value.

How do I plot my data on the graph?

The easiest way to plot data is to use the PlotY method. This displays

a simple plot of your values.

' dataArray can be an array or a variant containing

’ an array

CWGraph1.PlotY dataArray,0,1, True

Additional methods you can use to plot or chart data are PlotXY,

PlotXvsY, ChartY, ChartXY, and ChartXvsY. The Plot methods plot

a whole data set at once, deleting any previous information on the same

plot. You can define multiple plots on a graph in the property pages and

use the Plot methods to update individual plots.

Appendix A Common Questions

Getting Results with ComponentWorks A-8 © National Instruments Corporation

The Chart methods append data to existing plots and are used to create

scrolling charts. Consult the online reference documentation for more

detailed descriptions of these methods.

How do I display a value on a slide or knob and how do I read values back
from them? How do I read or set a button?

To pass a value to or read a value from one of these controls in Visual

Basic and Borland Delphi, use their value property. The value property

acts like a variable in your program, except that the value of this

variable is the value of the control on the form.

‘ set the value of a slide to 5

CWSlide1.Value = 5

‘read back the value from a knob

Dim ReadValue As Double

ReadValue = CWKnob1.Value

Buttons work in the same way, except that their values are booleans.

‘set a button

CWButton1.Value = True

‘read a button

If CWButton1.Value = True then

‘ insert code here

End If

In Visual C++, control properties are not read or set directly (like

variables). Instead, the wrapper class created for each control provides

functions to read and write the value of that property. These functions

are named starting with either Get or Set, followed by the name of the

property.

For example, to set the Value property of a slide use the SetValue

function. In the C code the function call is preceded by the member

variable name of the control to which it applies.

m_Slide.SetValue(5);

To read the value of a control, use the GetValue function. You can the

use the GetValue function to pass a value to another part of your

program. For example, to pass the value of a slide to a meter control use

the following line of code.

m_Meter.SetValue(m_Slide.GetValue());

Appendix A Common Questions

© National Instruments Corporation A-9 Getting Results with ComponentWorks

The names of all the property functions for a given control can be seen

in the ClassView of the Project Workspace in Visual C++. In the

Project Workspace, select the ClassView and then select the desired

control/object to view its property functions (as well as methods).

How can I change the style of my button, knob, or slide programmatically?

The button, knob and slide control each have a number of default styles

that you can choose in the property pages of the control. In some

applications you may want to switch the style of a control while the

program is running.

It was not possible to change the style of a control programmatically

using ComponentWorks 1.0(1). With 1.1 controls, however, you can

use the SetBuiltinStyle method of these controls to change the style

at run-time. The different styles are defined as constants in the UI

controls.

CWSlide1.SetBuiltinStyle cwSlideStyleTank

CWKnob1.SetBuiltinStyle cwKnobStyleDial

CWButton1.SetBuiltinStyle cwButtonStyleRoundLED

How do I access or change a particular axis, plot, cursor, value pair on
one of the UI controls?

Each of these objects, with the exception of the axis on the knob and

slide, is normally contained within a collection object on the control. A

collection object is a special object on a control which is used to store

multiple objects of the same type. For example a graph may have many

different axes. Rather than linking each Axis object directly to the

graph control, one Axes collection is linked to the graph and it contains

all of the axes of the graph.

Other objects which are contained in collections are Plot, Cursor,

ValuePair and the Channel object on the data acquisition controls.

The name of the collection object corresponding to one of these objects

is the name of the contained object in plural form. For example, the

collection of Axis objects is Axes; Plot is Plots; Cursor is

Cursors; and so on.

The ValuePair object is contained in the ValuePairs collection,

itself is part of the Axis object, which in turn is either part of the knob

or slide control, or contained in the Axes collection of the graph.

To access one of the objects in a collection, use the Item method of the

collection object. The Item method extracts a particular object in the

Appendix A Common Questions

Getting Results with ComponentWorks A-10 © National Instruments Corporation

collection using a parameter which is the one-based index of the object

in the collection. For example, to access the first plot on a graph use

CWGraph1.Plots.Item(1)

This code segment refers to the first plot on a graph as an object. You

can then access the properties of the object by appending the name of

the property. To read the X position of the second cursor on a graph use

the following code.

x = CWGraph1.Cursors.Item(2).XPosition

The properties of the individual object are described in detail in the

online reference manual. Search for the corresponding object name

such as CWAxis, CWPlot, CWCursor, and so on, to find the description.

Each of the collection objects also has a number of its own properties

and methods.

You can use the Count property to determine the number of objects in

a collection.

NumAxes = CWGraph1.Axes.Count

Use the Add, Remove and RemoveAll methods to programmatically

change the number of objects in a collection. This way you can add and

delete axes, cursors, value pairs, and so on, in your program. The

Remove method requires the index of the object you want to remove.

CWGraph1.Axes.Add

CWSlide1.Axis.ValuePairs.Remove 3

CWGraph1.Cursors.RemoveAll

Remember that value pair objects are contained in the ValuePairs

collection, which itself is part of an Axis object. The following code

shows you how to access value pairs.

CWKnob1.Axis.ValuePairs.Item(1).Name = “Maximum”

CWGraph1.Axes.Item(3).ValuePairs.Item(2).Value = “7.5”

© National Instruments Corporation B-1 Getting Results with ComponentWorks

Appendix

BError Codes

This appendix lists the error codes returned by the ComponentWorks

DAQ controls and Analysis Library functions. It also lists some general

ComponentWorks error codes.

Table B-1 lists the negative error codes returned by the DAQ controls.

Each DAQ control returns an error code that indicates whether it

executed successfully. When a control returns a code that is a negative

number, it means that the control did not execute.

Table B-1. Data Acquisition Control Error Codes

Code Name Description

-10001 syntaxError An error was detected in the input string; the

arrangement or ordering of the characters in the string

is not consistent with the expected ordering.

-10002 semanticsError An error was detected in the input string; the syntax of

the string is correct, but certain values specified in the

string are inconsistent with other values specified in

the string.

-10003 invalidValueError The value of a numeric parameter is invalid.

-10004 valueConflictError The value of a numeric parameter is inconsistent with

another parameter, and the combination is therefore

invalid.

-10005 badDeviceError The device parameter is invalid.

-10006 badLineError The line parameter is invalid.

-10007 badChanError A channel is out of range for the board type or input

configuration, the combination of channels is not

allowed, or you must reverse the scan order so that

channel 0 is last.

Appendix B Error Codes

Getting Results with ComponentWorks B-2 © National Instruments Corporation

-10008 badGroupError The group is invalid.

-10009 badCounterError The counter parameter is invalid.

-10010 badCountError The count is too small or too large for the specified

counter, or the given I/O transfer count is not

appropriate for the current buffer or channel

configuration.

-10011 badIntervalError The analog input scan rate is too fast for the number of

channels and the channel clock rate; or the given clock

rate is not supported by the associated counter channel

or I/O channel.

-10012 badRangeError The analog input or analog output voltage range is

invalid for the specified channel.

-10013 badErrorCodeError The driver returned an unrecognized or unlisted error

code.

-10014 groupTooLargeError The group size is too large for the board.

-10015 badTimeLimitError The time limit parameter is invalid.

-10016 badReadCountError The read count parameter is invalid.

-10017 badReadModeError The read mode parameter is invalid.

-10018 badReadOffsetError The offset is unreachable.

-10019 badClkFrequencyError The frequency parameter is invalid.

-10020 badTimebaseError The timebase parameter is invalid.

-10021 badLimitsError The limits are beyond the range of the board.

-10022 badWriteCountError Your data array contains an incomplete update or you

are trying to write past the end of the internal buffer or

your output operation is continuous and the length of

your array is not a multiple of one half of the internal

buffer size.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-3 Getting Results with ComponentWorks

-10023 badWriteModeError The write mode is out of range or is disallowed.

-10024 badWriteOffsetError Adding the write offset to the write mark places the

write mark outside the internal buffer.

-10025 limitsOutOfRangeError The voltage limits are out of range for this board in the

current configuration. Alternate limits were selected.

-10026 badInputBufferSpecification The input buffer specification is invalid. This error

results if, for example, you try to configure a

multiple-buffer acquisition for a board that does not

support multiple-buffer acquisition.

-10027 badDAQEventError For DAQEvents 0 and 1 general value A must be

greater than 0 and less than the internal buffer size. If

DMA is used for DAQEvent 1, general value A must

divide the internal buffer size evenly, with no

remainder. If the TIO-10 is used for DAQEvent 4,

general value A must be 1 or 2.

-10028 badFilterCutoffError The cutoff frequency specified is not valid for this

device.

-10029 obsoleteFunctionError The function you are calling is no longer supported in

this version of the driver.

-10030 badBaudRateError The specified baud rate for communicating with the

serial port is not valid on this platform.

-10031 badChassisIDError The specified SCXI chassis does not correspond to a

configured SCXI chassis.

-10032 badModuleSlotError The SCXI module slot that was specified is invalid or

corresponds to an empty slot.

-10033 invalidWinHandleError The window handle passed to the function is invalid.

-10034 noSuchMessageError No configured message matches the one you tried to

delete.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-4 © National Instruments Corporation

-10035 irrelevantAttributeError The specified attribute is not relevant to this device

and/or this scenario. Please consult the documentation

for this function to determine the acceptable attributes

for this device and/or scenario.

-10080 badGainError The gain is invalid.

-10081 badPretrigCountError The pretrigger sample count is invalid.

-10082 badPosttrigCountError The posttrigger sample count is invalid.

-10083 badTrigModeError The trigger mode is invalid.

-10084 badTrigCountError The trigger count is invalid.

-10085 badTrigRangeError The trigger range or trigger hysteresis window is

invalid.

-10086 badExtRefError The external reference value is invalid.

-10087 badTrigTypeError The trigger type parameter is invalid.

-10088 badTrigLevelError The trigger level parameter is invalid.

-10089 badTotalCountError The total count specified is inconsistent with the buffer

configuration and pretrigger scan count or with the

board type.

-10090 badRPGError The individual range, polarity, and gain settings are

valid but the combination specified is not allowed for

this board.

-10091 badIterationsError You have attempted to use an invalid setting for the

iterations parameter. The iterations value must be 0 or

greater. Your device might be limited to only two

values, 0 and 1.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-5 Getting Results with ComponentWorks

-10092 lowScanIntervalError Some devices require a time gap between the last

sample in a scan and the start of the next scan. The

scan interval you have specified does not provide a

large enough gap for the board. See your

documentation for an explanation.

-10093 fifoModeError FIFO mode waveform generation cannot be used

because at least one condition is not satisfied.

-10100 badPortWidthError The requested digital port width is not a multiple of the

hardware port width or is not attainable by the DAQ

hardware.

-10120 gpctrBadApplicationError Invalid application used.

-10121 gpctrBadCtrNumberError Invalid counterNumber used.

-10122 gpctrBadParamValueError Invalid paramValue used.

-10123 gpctrBadParamIDError Invalid paramID used.

-10124 gpctrBadEntityIDError Invalid entityID used.

-10125 pctrBadActionError Invalid action used.

-10200 EEPROMMreadError Unable to read data from EEPROM.

-10201 EEPROMMwriteError Unable to write data to EEPROM.

-10240 noDriverError The driver interface could not locate or open the

driver.

-10241 oldDriverError The driver is out-of-date.

-10242 functionNotFoundError The specified function is not located in the driver.

-10243 configFileError The driver could not locate or open the configuration

file, or the format of the configuration file is not

compatible with the currently installed driver.

-10244 deviceInitError The driver encountered a hardware-initialization error

while attempting to configure the specified device.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-6 © National Instruments Corporation

-10245 osInitError The driver encountered an operating-system error

while attempting to perform an operation, or the

operating system does not support an operation

performed by the driver.

-10246 communicationsError The driver is unable to communicate with the specified

external device.

-10247 cmosConfigError The CMOS configuration-memory for the device is

empty or invalid, or the configuration specified does

not agree with the current configuration of the device,

or the EISA system configuration is invalid.

-10248 dupAddressError The base addresses for two or more devices are the

same; consequently, the driver is unable to access the

specified device.

-10249 intConfigError The interrupt configuration is incorrect given the

capabilities of the computer or device.

-10250 dupIntError The interrupt levels for two or more devices are the

same.

-10251 dmaConfigError The DMA configuration is incorrect given the

capabilities of the computer/DMA controller or

device.

-10252 dupDMAError The DMA channels for two or more devices are the

same.

-10253 switchlessBoardError NI-DAQ was unable to find one or more switchless

boards you have configured using WDAQCONF.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-7 Getting Results with ComponentWorks

-10254 DAQCardConfigError Cannot configure the DAQCard because:

1. The correct version of card and socket services

software is not installed.

2. The card in the PCMCIA socket is not a DAQCard.

3. The base address and/or interrupt level requested are

not available according to the card and socket

services resource manager. Try different settings or

use AutoAssign in the configuration utility.

-10255 remoteChassisDriverInit

Error

There was an error in initializing the driver for Remote

SCXI.

-10256 comPortOpenError There was an error in opening the specified COM port.

-10257 baseAddressError Bad base address specified in the configuration utility.

-10258 dmaChannel1Error Bad DMA channel 1 specified in the configuration

utility or by the operating system.

1. DMA channel 1 is the same as DMA channel 2 or 3.

2. The DMA channel assigned is not valid for this

particular bus type (e.g. DMA channel 0, 1, 2, or 3 was

assigned to an AT-MIO E Series device on an ISA bus

computer).

-10259 dmaChannel2Error Bad DMA channel 2 specified in the configuration

utility or by the operating system.

This error occurs when either:

1. DMA channel 2 is the same as DMA channel 1 or 3.

2. The DMA channel assigned is not valid for this

particular bus type (e.g. DMA channel 0, 1, 2, or 3 was

assigned to an AT-MIO E Series device on an ISA bus

computer).

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-8 © National Instruments Corporation

-10260 dmaChannel3Error Bad DMA channel 3 specified in the configuration

utility or by the operating system.

This error occurs when either:

1. DMA channel 3 is the same as DMA channel 1 or 2.

2. The DMA channel assigned is not valid for this

particular bus type (e.g. DMA channel 0, 1, 2, or 3 was

assigned to an AT-MIO E Series device on an ISA bus

computer).

-10261 userModeToKernelModeCall

Error

The user mode code failed when calling the kernel

mode code.

-10340 noConnectError No RTSI signal/line is connected, or the specified

signal and the specified line are not connected.

-10341 badConnectError The RTSI signal/line cannot be connected as specified.

-10342 multConnectError The specified RTSI signal is already being driven by a

RTSI line, or the specified RTSI line is already being

driven by a RTSI signal.

-10343 SCXIConfigError The specified SCXI configuration parameters are

invalid, or the function cannot be executed given the

current SCXI configuration.

-10344 chassisSynchedError The Remote SCXI unit is not synchronized with the

host. Reset the chassis again to resynchronize it with

the host.

-10345 chassisMemAllocError The required amount of memory cannot be allocated

on the Remote SCXI unit for the specified operation.

-10346 badPacketError The packet received by the Remote SCXI unit is

invalid. Check your serial port cable connections.

-10347 chassisCommunicationError There was an error in sending a packet to the remote

chassis. Check your serial port cable connections.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-9 Getting Results with ComponentWorks

-10348 waitingForReprogError The Remote SCXI unit is in reprogramming mode and

is waiting for reprogramming commands from the host

(NI-DAQ Configuration Utility).

-10349 SCXIModuleTypeConflict

Error

The module ID read from the SCXI module conflicts

with the configured module type.

-10360 DSPInitError The DSP driver was unable to load the kernel for its

operating system.

-10370 badScanListError The scan list is invalid. This error can result if, for

example, you mix AMUX-64T channels and onboard

channels, or if you scan multiplexed SCXI channels

out of order.

-10400 userOwnedRsrcError The specified resource is owned by the user and cannot

be accessed or modified by the driver.

-10401 unknownDeviceError The specified device is not a National Instruments

product, or the driver does not support the device (for

example, the driver was released before the device was

supported).

-10402 deviceNotFoundError No device is located in the specified slot or at the

specified address.

-10403 deviceSupportError The specified device does not support the requested

action (the driver recognizes the device, but the action

is inappropriate for the device).

-10404 noLineAvailError No line is available.

-10405 noChanAvailError No channel is available.

-10406 noGroupAvailError No group is available.

-10407 lineBusyError The specified line is in use.

-10408 chanBusyError The specified channel is in use.

-10409 groupBusyError The specified group is in use.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-10 © National Instruments Corporation

-10410 relatedLCGBusyError A related line, channel, or group is in use. If the driver

configures the specified line, channel, or group, the

configuration, data, or handshaking lines for the

related line, channel, or group will be disturbed.

-10411 counterBusyError The specified counter is in use.

-10412 noGroupAssignError No group is assigned, or the specified line or channel

cannot be assigned to a group.

-10413 groupAssignError A group is already assigned, or the specified line or

channel is already assigned to a group.

-10414 reservedPinError Selected signal indicates a pin reserved by NIDAQ.

You cannot configure this pin yourself.

-10415 externalMuxSupporError This function does not support your DAQ device when

an external multiplexer (such as an AMUX-64T or

SCXI) is connected to it.

-10417 SCXIModuleNotSupported

Error

At least one of the SCXI modules specified is not

supported for the operation.

-10440 sysOwnedRsrcError The specified resource is owned by the driver and

cannot be accessed or modified by the user.

-10441 memConfigError No memory is configured to support the current data

transfer mode, or the configured memory does not

support the current data transfer mode. (If block

transfers are in use, the memory must be capable of

performing block transfers.)

-10442 memDisabledError The specified memory is disabled or is unavailable

given the current addressing mode.

-10443 memAlignmentError The transfer buffer is not aligned properly for the

current data-transfer mode. For example, the buffer is

at an odd address, is not aligned to a 32-bit boundary,

is not aligned to a 512-bit boundary, and so on.

Alternatively, the driver is unable to align the buffer

because the buffer is too small.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-11 Getting Results with ComponentWorks

-10444 memFullError No more system memory is available on the heap, or

no more memory is available on the device, or

insufficient disk space is available.

-10445 memLockError The transfer buffer cannot be locked into physical

memory. On PC AT machines, portions of the DMA

data acquisition buffer may be in an invalid DMA

region, for example, above 16 megabytes.

-10446 memPageError The transfer buffer contains a page break; system

resources may require reprogramming when the page

break is encountered.

-10447 memPageLockError The operating environment is unable to grant a page

lock.

-10448 stackMemError The driver is unable to continue parsing a string input

due to stack limitations.

-10449 cacheMemError A cache-related error occurred, or caching is not

supported in the current mode.

-10450 physicalMemError A hardware error occurred in physical memory, or no

memory is located at the specified address.

-10451 virtualMemError The driver is unable to make the transfer buffer

contiguous in virtual memory and therefore cannot

lock the buffer into physical memory; thus, you cannot

use the buffer for DMA transfers.

-10452 noIntAvailError No interrupt level is available for use.

-10453 intInUseError The specified interrupt level is already in use by

another device.

-10454 noDMACError No DMA controller is available in the system.

-10455 noDMAAvailError No DMA channel is available for use.

-10456 DMAInUseError The specified DMA channel is already in use by

another device.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-12 © National Instruments Corporation

-10457 badDMAGroupError DMA cannot be configured for the specified group

because it is too small, too large, or misaligned.

Consult the user manual for the device in question to

determine group ramifications with respect to DMA.

-10458 diskFullError The storage disk you specified is full.

-10459 DLLInterfaceError The DLL could not be called due to an interface error.

-10480 muxMemFullError The scan list is too large to fit into the mux-gain

memory of the board.

-10481 bufferNotInterleavedError You must provide a single buffer of interleaved data,

and the channels must be in ascending order. You

cannot use DMA to transfer data from two buffers;

however, you may be able to use interrupts.

-10541 TRIG1ResourceConflict CTRB1 will drive COUTB1, however CTRB1 will

also drive TRIG1. This may cause unpredictable

results when scanning the chassis.

-10560 invalidDSPHandleError The DSP handle input is not valid.

-10561 DSPDataPathBusyError Either DAQ or WFM can use a PC memory buffer, but

not both at the same time.

-10600 noSetupError No setup operation has been performed for the

specified resources. Or, some resources require a

specific ordering of calls for proper setup.

-10601 multSetupError The specified resources have already been configured

by a setup operation.

-10602 noWriteError No output data has been written into the transfer

buffer.

-10603 groupWriteError The output data associated with a group must be for a

single channel or must be for consecutive channels.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-13 Getting Results with ComponentWorks

-10604 activeWriteError Once data generation has started, only the transfer

buffers originally written to can be updated. If DMA is

active and a single transfer buffer contains interleaved

channel-data, new data must be provided for all output

channels currently using the DMA channel.

-10605 endWriteError No data was written to the transfer buffer because the

final data block has already been loaded.

-10606 notArmedError The specified resource is not armed.

-10607 armedError The specified resource is already armed.

-10608 noTransferInProgError No transfer is in progress for the specified resource.

-10609 transferInProgError A transfer is already in progress for the specified

resource.

-10610 transferPauseError A single output channel in a group cannot be paused if

the output data for the group is interleaved.

-10611 badDirOnSomeLinesError Some of the lines in the specified channel are not

configured for the transfer direction specified. For a

write transfer, some lines were configured for input.

For a read transfer, some lines were configured for

output.

-10612 badLineDirError The specified line does not support the specified

transfer direction.

-10613 badChanDirError The specified channel does not support the specified

transfer direction.

-10614 badGroupDirError The specified group does not support the specified

transfer direction.

-10615 masterClkError The clock configuration for the clock master is invalid.

-10616 slaveClkError The clock configuration for the clock slave is invalid.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-14 © National Instruments Corporation

-10617 noClkSrcError No source signal has been assigned to the clock

resource.

-10618 badClkSrcError The specified source signal cannot be assigned to the

clock resource.

-10619 multClkSrcError A source signal has already been assigned to the clock

resource.

-10620 noTrigError No trigger signal has been assigned to the trigger

resource.

-10621 badTrigError The specified trigger signal cannot be assigned to the

trigger resource.

-10622 preTrigError The pretrigger mode is not supported or is not

available in the current configuration, or no pretrigger

source has been assigned.

-10623 postTrigError No posttrigger source has been assigned.

-10624 delayTrigError The delayed trigger mode is not supported or is not

available in the current configuration, or no delay

source has been assigned.

-10625 masterTrigError The trigger configuration for the trigger master is

invalid.

-10626 slaveTrigError The trigger configuration for the trigger slave is

invalid.

-10627 noTrigDrvError No signal has been assigned to the trigger resource.

-10628 multTrigDrvError A signal has already been assigned to the trigger

resource.

-10629 invalidOpModeError The specified operating mode is invalid, or the

resources have not been configured for the specified

operating mode.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-15 Getting Results with ComponentWorks

-10630 invalidReadError The parameters specified to read data were invalid in

the context of the acquisition. For example, an attempt

was made to read 0 bytes from the transfer buffer, or

an attempt was made to read past the end of the

transfer buffer.

-10631 noInfiniteModeError Continuous input or output transfers are not allowed in

the current operating mode, or continuous operation is

not allowed for this type of device.

-10632 someInputsIgnoredError Certain inputs were ignored because they are not

relevant in the current operating mode.

-10633 invalidRegenModeError This board does not support the specified analog

output regeneration mode.

-10634 noContTransferInProgress

Error

No continuous (double buffered) transfer is in

progress for the specified resource.

-10635 invalidSCXIOpModeError Either the SCXI operating mode specified in a

configuration call is invalid, or a module is in the

wrong operating mode to execute the function call.

-10636 noContWithSynchError You cannot start a continuous (double-buffered)

operation with a synchronous function call.

-10637 bufferAlreadyConfigError Attempted to configure a buffer after the buffer had

already been configured. You can configure a buffer

only once.

-10680 badChanGainError All channels of this board must have the same gain.

-10681 badChanRangeError All channels of this board must have the same range.

-10682 badChanPolarityError All channels of this board must have the same polarity.

-10683 badChanCouplingError All channels of this board must have the same

coupling.

-10684 badChanInputModeError All channels of this board must have the same input

range.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-16 © National Instruments Corporation

-10685 clkExceedsBrdsMaxConv

Rate

The clock rate selected exceeds the recommended

maximum rate for this board.

-10686 scanListInvalidError A configuration change has invalidated the acquisition

buffer, or an acquisition buffer has not been

configured.

-10687 bufferInvalidError A configuration change has invalidated the allocated

buffer.

-10688 noTrigEnabledError The total number of scans and pretrigger scans implies

that a trigger start is intended, but no trigger is enabled.

-10689 digitalTrigBError Digital trigger B is illegal for the number of total scans

and pretrigger scans specified.

-10690 digitalTrigAandBError This board does not allow digital triggers A and B to

be enabled at the same time.

-10691 extConvRestrictionError This board does not allow an external sample clock

with an external scan clock, start trigger, or stop

trigger.

-10692 hanClockDisabledError The acquisition cannot be started because the channel

clock is disabled.

-10693 extScanClockError You cannot use an external scan clock when doing a

single scan of a single channel.

-10694 unsafeSamplingFreqError The sample frequency exceeds the safe maximum rate

for the hardware, gains, and filters used.

-10695 DMANotAllowedError You have set up an operation that requires the use of

interrupts. DMA is not allowed. For example, some

DAQ events, such as messaging and LabVIEW

occurrences, require interrupts.

-10696 multiRateModeError Multirate scanning can not be used with AMUX-64,

SCXI, or pre-triggered acquisitions.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-17 Getting Results with ComponentWorks

-10697 rateNotSupportedError NIDAQ was unable to convert your timebase/interval

pair to match the actual hardware capabilities of the

specified board.

-10698 timebaseConflictError You cannot use this combination of scan and sample

clock timebases for the specified board.

-10699 polarityConflictError You cannot use this combination of scan and sample

clock source polarities for this operation, for the

specified board.

-10700 signalConflictError You cannot use this combination of scan and convert

clock signal sources for this operation, for the

specified board.

-10701 noLaterUpdateError The call had no effect because the specified channel

had not been set for later internal update.

-10702 prePostTriggerError Pretriggering and posttriggering cannot be used

simultaneously on the Lab and 1200 series devices.

-10710 noHandshakeModeError The specified port has not been configured for

handshaking.

-10720 noEventCtrError The specified counter is not configured for

event-counting operation.

-10740 SCXITrackHoldError A signal has already been assigned to the SCXI

track-and-hold trigger line, or a control call was

inappropriate because the specified module is not

configured for one-channel operation.

-10780 sc2040InputModeError When you have an SC2040 attached to your device, all

analog input channels must be configured for

differential input mode.

-10781 outputTypeMustBeVoltage

Error

The polarity of the output channel cannot be bipolar

when outputting currents.

-10782 sc2040HoldModeError The specified operation cannot be performed with the

SC-2040 configured in hold mode.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-18 © National Instruments Corporation

-10783 calConstPolarityConflict

Error

Calibration constants in the load area have a different

polarity from the current configuration. Therefore, you

should load constants from factory.

-10800 timeOutError The operation could not complete within the time

limit.

-10801 calibrationError An error occurred during the calibration process.

-10802 dataNotAvailError The requested amount of data has not yet been

acquired, or the acquisition has completed and no

more data is available to read.

-10803 transferStoppedError The transfer has been stopped to prevent regeneration

of output data.

-10804 earlyStopError The transfer stopped prior to reaching the end of the

transfer buffer.

-10805 overRunError The clock source for the input transfer is faster than the

maximum input-clock rate; the integrity of the data has

been compromised. Alternatively, the clock source for

the output transfer is faster than the maximum

output-clock rate; a data point was generated more

than once since the update occurred before new data

was available.

-10806 noTrigFoundError No trigger value was found in the input transfer buffer.

-10807 earlyTrigError The trigger occurred before sufficient pretrigger data

was acquired.

-10808 LPTCommunicationError An error occurred in the parallel port communication

with the SCXI-1200.

-10809 gateSignalError Attempted to start a pulse width measurement with the

pulse in the active state.

-10810 internalDriverError An unexpected error occurred inside the driver when

performing an operation.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-19 Getting Results with ComponentWorks

-10811 internalKernelError An unexpected error occurred inside the kernel of the

device while performing this operation.

-10840 softwareError The contents or the location of the driver file was

changed between accesses to the driver.

-10841 firmwareError The firmware does not support the specified operation,

or the firmware operation could not complete due to a

data-integrity problem.

-10842 hardwareError The hardware is not responding to the specified

operation, or the response from the hardware is not

consistent with the functionality of the hardware.

-10843 underFlowError The update rate exceeds your system's capacity to

supply data to the output channel.

-10844 underWriteError At the time of the update for the device-resident

memory, insufficient data was present in the output

transfer buffer to complete the update.

-10845 overFlowError At the time of the update clock for the input channel,

the device-resident memory was unable to accept

additional data—one or more data points may have

been lost.

-10846 overWriteError New data was written into the input transfer buffer

before the old data was retrieved.

-10847 dmaChainingError New buffer information was not available at the time

of the DMA chaining interrupt; DMA transfers will

terminate at the end of the currently active transfer

buffer.

-10848 noDMACountAvailError The driver could not obtain a valid reading from the

transfer-count register in the DMA controller.

-10849 OpenFileError The configuration file or DSP kernel file could not be

opened.

-10850 closeFileError Unable to close a file.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-20 © National Instruments Corporation

-10851 fileSeekError Unable to seek within a file.

-10852 readFileError Unable to read from a file.

-10853 writeFileError Unable to write to a file.

-10854 miscFileError An error occurred accessing a file.

-10855 osUnsupportedError NI-DAQ does not support the current operation on this

particular version of the operating system.

-10856 osError An unexpected error occurred from the operating

system while performing an operation.

-10880 updateRateChangeError A change to the update rate is not possible at this time

because:

1. When waveform generation is in progress, you

cannot change the interval timebase.

2. When you make several changes in a row, you must

give each change enough time to take effect before

requesting further changes.

-10881 partialTransferComplete

Error

You cannot do another transfer after a successful

partial transfer.

-10882 daqPollDataLossError The data collected on the Remote SCXI unit was

overwritten before it could be transferred to the buffer

in the host. Try using a slower data acquisition rate if

possible.

-10883 wfmPollDataLossError New data could not be transferred to the waveform

buffer of the Remote SCXI unit to keep up with the

waveform update rate. Try using a slower waveform

update rate if possible.

-10884 pretrigReorderError Could not rearrange data after a pretrigger acquisition

completed.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-21 Getting Results with ComponentWorks

-10920 gpctrDataLossError One or more data points may have been lost during

buffered GPCTR operations due to the speed

limitations of your system.

-10940 chassisResponseTimeout

Error

No response was received from the Remote SCXI unit

within the specified time limit.

-10941 reprogrammingFailedError Reprogramming the Remote SCXI unit was

unsuccessful. Please try again.

-10942 invalidResetSignatureError An invalid reset signature was sent from the host to the

Remote SCXI unit.

-10943 chassisLockupError The interrupt service routine on the remote SCXI unit

is taking a longer than necessary amount of time to

complete, which can possibly affect the integrity of the

remote SCXI operations. You do not need to reset your

remote SCXI unit at this point; however, please clear

and restart your data acquisition.

Table B-1. Data Acquisition Control Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-22 © National Instruments Corporation

If an error condition occurs during a call to any of the functions in the

ComponentWorks Analysis Controls, the exception contains the error

code. This code is a value that specifies the type of error that occurred.

You can find the currently defined error codes and their associated

meanings in Table B-2.

Table B-2. Analysis Error Codes

Code Name Description

 0 NoErr No error, the call is successful.

-20001 OutOfMemErr There is not enough space left to perform the specified

routine.

-20002 EqSamplesErr The input sequences must be the same size.

-20003 SamplesGTZeroErr The number of samples must be greater than zero.

-20004 SamplesGEZeroErr The number of samples must be greater than or equal to

zero.

-20006 SamplesGETwoErr The number of samples must be greater than or equal to

two.

-20007 SamplesGEThreeErr The number of samples must be greater than or equal to

three.

-20008 ArraySizeErr The input arrays do not contain the correct number of

data values for this function.

-20009 PowerOfTwoErr The size of the input array must be a valid power of two:

size = 2m, 0 < m < 23.

-20010 MaxXformSizeErr The maximum allowable transform size has been

exceeded.

-20011 DutyCycleErr The duty cycle must be equal to or fall between 0 and

100: 0 ≤ duty cycle ≤ 100.

-20012 CyclesErr The number of cycles must be greater than zero and less

than or equal to the number of samples.

-20013 WidthLTSamplesErr The width must meet: 0 < width < samples.

Appendix B Error Codes

© National Instruments Corporation B-23 Getting Results with ComponentWorks

-20014 DelayWidthErr The following condition must be met:

0 ≤ (delay + width) < samples.

-20015 DtGEZeroErr dt must be ≥ 0.

-20016 DtGTZeroErr dt must be greater than zero.

-20017 IndexLTSamplesErr The index must meet: 0 ≤ index ≤ samples.

-20018 IndexLengthErr The following condition must be met:

 0 ≤ (index + length) < samples.

-20019 UpperGELowerErr The upper value must be greater than or equal to the

lower value.

-20020 NyquistErr The cut-off frequency, fc, must meet: 0 ≤ fc ≤ fs/2.

-20021 OrderGTZeroErr The order must be greater than zero.

-20022 DecFactErr The decimating factor must meet:

 0 < decimating factor ≤ samples.

-20023 BandSpecErr The following conditions must be met:

0 ≤ f_low ≤ f_high ≤ fs/2.

-20024 RippleGTZeroErr The ripple amplitude must be greater than zero.

-20025 AttenGTZeroErr The attenuation must be greater than zero.

-20026 WidthGTZeroErr The width must be > 0.

-20027 FinalGTZeroErr The final value must be > 0.

-20028 AttenGTRippleErr The attenuation must be greater than the ripple

amplitude.

-20029 StepSizeErr The step-size, u, must meet: 0 ≤ u ≤ 0.1.

-20030 LeakErr The leakage coefficient, leak, and step-size parameter,

u, must meet: 0 ≤ leak ≤ u.

Table B-2. Analysis Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-24 © National Instruments Corporation

-20031 EqRplDesignErr The filter cannot be designed with the specified input

parameters.

-20032 RankErr The rank of the filter must meet:

1 ≤ (2*rank + 1) ≤ size.

-20033 EvenSizeErr The number of coefficients must be odd for this filter.

-20034 OddSizeErr The number of coefficients must be even for this filter.

-20035 StdDevErr The standard deviation must be greater than zero for

normalization.

-20036 MixedSignErr The second (Y) array input must be nonzero and either

all positive or all negative.

-20037 SizeGTOrderErr The number of data points in the Y Values array must

be greater than the order.

-20038 IntervalsErr The number of intervals must be > 0.

-20039 MatrixMulErr The number of columns in the first matrix is not equal

to the number of rows in the second matrix or vector.

-20040 SquareMatrixErr The input matrix must be a square matrix.

-20041 SingularMatrixErr The system of equations cannot be solved because the

input matrix is singular.

-20042 LevelsErr The numbers of levels is outside the range.

-20043 FactorErr The level of factor is outside the range for some data.

-20044 ObservationsErr Zero Observations were made at some level of a factor.

-20045 DataErr The total number of data points must be equal to

product levels/each factor * observations/cell.

-20046 OverflowErr There is an overflow in the calculated F-value for the

ANOVA Fit function.

Table B-2. Analysis Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-25 Getting Results with ComponentWorks

-20047 BalanceErr The data is unbalanced. All cells must contain the same

number of observations.

-20048 ModelErr The Random Effect model was requested when the

Fixed effect model was required.

-20049 DistinctErr The x-values must be distinct.

-20050 PoleErr The interpolating function has a pole at the requested

value.

-20051 ColumnErr The first column in the X matrix must be all ones.

-20052 FreedomErr The degrees of freedom must be one or more.

-20053 ProbabilityErr The probability must meet the condition: 0 < p < 1.

-20054 InvProbErr The probability must meet the condition 0 ≤ p < 1.

-20055 CategoryErr The number of categories or samples must be greater

than one.

-20056 TableErr The contingency table has a negative number.

-20057 BetaFuncErr The parameter to the beta function should be

0 < p < 1.

-20058 DimensionErr Invalid number of dimensions or dependent variables.

-20059 NegNumErr Negative number error.

-20060 DivByZeroErr Divide by zero err.

-20061 InvSelectionErr Invalid selection: useful in programs that perform a task

based on a user selection.

-20062 MaxIterErr Maximum iteration was exceeded.

-20063 PolyErr The coefficients of the polynomial are invalid.

-20064 InitStateErr The internal memory state of this function was not

initialized correctly.

Table B-2. Analysis Error Codes (Continued)

Code Name Description

Appendix B Error Codes

Getting Results with ComponentWorks B-26 © National Instruments Corporation

-20065 ZeroVectorErr The elements in the vector cannot all be zero.

-20066 IIRFilterInfoErr The information in IIR filter structure is not correct.

-20080 AdaptTIErr Time increment must be greater than the window length

divided by 16.

-20081 GaborDNErr dN must be >0.

-20082 GaborTIErr Time increment must be greater than dN.

-20083 JTFAWindowLErr Window length must be > 4 and a power of 2.

-20084 JTFATIErr Time increment must not be greater than the window

length divided by 4.

-20085 JTFAHilbertErr The size of the input array and its Hilbert transform

must be equal.

-20086 STFTWindowLErr Window length must be > 2 and a power of 2.

-20101 BaseGETopErr The top value must be greater than the base value.

-20102 ShiftRangeErr The shifts must meet: |shifts| < samples.

-20103 OrderGEZeroErr The order must be positive.

-20999 FatalDSPErr Serious algorithm failure. Call National Instruments

support.

-20300 EngineeringMathErr The starting error codes of engineering math.

Table B-2. Analysis Error Codes (Continued)

Code Name Description

Appendix B Error Codes

© National Instruments Corporation B-27 Getting Results with ComponentWorks

Table B-3 lists the negative error codes that may be returned by any

ComponentWorks operation.

Table B-3. General ComponentWorks Error Codes

Code Name Description

-30000 kErrUnexpected An unexpected error has occurred.

-30001 kErrTooManyGroups Too many controls are configured for this DAQ device.

Reset one of the other controls configured for this

device before configuring any more controls.

-30002 kErrInvalidParameterValue You have passed an invalid value for one of the

parameters to the function, method or property.

-30003 kErrInvalidParameterType You have passed an invalid type into a parameter of a

VARIANT type.

-30004 kErrDivideByZero A divide by zero error has occurred.

-30005 kErrImaginaryNumber The result of a calculation is an imaginary number.

-30006 kErrOverflow An overflow error has occurred.

-30007 kErrOutOfMemory Out of memory.

-30008 KErrFunctionNotLicensed You have called a function or method that requires a

license that you do not have.

-30009 kErrCantReconfigure The properties of the currently configured task are too

different from the one you are trying to reconfigure to.

For example, the device may be different.

-30010 kErrIllegalMethodFor

CurrentState

The method called cannot be used on the currently

configured task.

-30013 kErrNeedNewerNIDAQ Component, or the current settings require a more

recent version of NI-DAQ than is current installed.

-30014 kErrCannotReturnBothData

Types

Scaled and unscaled data cannot be returned

simultaneously.

-30015 kErrInvalidProgressInterval CWAI.ProgressInterval must divide evenly

into CWAI.NScans.

Appendix B Error Codes

Getting Results with ComponentWorks B-28 © National Instruments Corporation

-30016 kErrInvalidNScansPer

Buffer

CWAI.NScans must divide evenly into

CWAI.NScansPerBuffer.

-30017 kErrDIOInvalidProgress

Interval

Progress Interval must divide evenly into NPatterns.

-30100 KErrElementTypeErr The type of the element is wrong.

-30101 KErrCouldNotLock Cannot lock the array.

-30102 KErrCouldNotUnlock Cannot unlock the array.

-30103 KErrBadArray The array is not a safe array.

-30104 kErrParameterTypes The input parameters must all contain the same data

type.

Table B-3. General ComponentWorks Error Codes

© National Instruments Corporation C-1 Getting Results with ComponentWorks

Appendix

CCustomer Communication

For your convenience, this appendix contains forms to help you gather the information necessary

to help us solve your technical problems and a form you can use to comment on the product

documentation. When you contact us, we need the information on the Technical Support Form and

the configuration form, if your manual contains one, about your system configuration to answer

your questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to

quickly provide the information you need. Our electronic services include a bulletin board service,

an FTP site, a fax-on-demand system, and e-mail support. If you have a hardware or software

problem, first try the electronic support systems. If the information available on these systems

does not answer your questions, we offer fax and telephone support through our technical support

centers, which are staffed by applications engineers.

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of

files and documents to answer most common customer questions. From these sites, you can also

download the latest instrument drivers, updates, and example programs. For recorded instructions

on how to use the bulletin board and FTP services and for BBS automated information, call (512)

795-6990. You can access these services at:

United States: (512) 794-5422

Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use

your Internet address, such as joesmith@anywhere.com, as your password. The support files and

documents are located in the /support directories.

Bulletin Board Support

FTP Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a

wide range of technical information. You can access Fax-on-Demand from a touch-tone telephone

at (512) 418-1111.

You can submit technical support questions to the applications engineering team through e-mail

at the Internet address listed below. Remember to include your name, address, and phone number

so we can contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical

support number for your country. If there is no National Instruments office in your country,

contact the source from which you purchased your software to obtain support.

Telephone Fax

Australia 03 9879 5166 02 9874 4455

Austria 0662 45 79 90 0 0662 45 79 90 19

Belgium 02 757 00 20 02 757 03 11

Canada (Ontario) 905 785 0085 905 785 0086

Canada (Quebec) 514 694 8521 514 694 4399

Denmark 45 76 26 00 45 76 26 02

Finland 09 725 725 11 09 725 725 99

France 01 48 14 24 24 01 48 14 24 14

Germany 089 741 31 30 089 714 60 35

Hong Kong 2645 3186 2686 8505

Israel 03 5734815 03 5734816

Italy 02 413091 06 57284309

Japan 03 5472 2970 03 5472 2977

Korea 02 596 7456 02 596 7455

Mexico 5 520 2635 5 520 3282

Netherlands 0348 433466 0348 430673

Norway 32 84 84 00 32 84 86 00

Singapore 2265886 2265887

Spain 91 640 0085 91 640 0533

Sweden 08 730 49 70 08 730 43 70

Switzerland 056 200 51 51 056 200 51 55

Taiwan 02 377 1200 02 737 4644

United States 512 794 0100 512 794 8411

U.K. 01635 523545 01635 523154

Fax-on-Demand Support

E-Mail Support (currently U.S. only)

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and

use the completed copy of this form as a reference for your current configuration. Completing this

form accurately before contacting National Instruments for technical support helps our

applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,

include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___)___________________ Phone (___)__

Computer brand ________________ Model ________________ Processor___________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB _____________________________ Display adapter

Mouse ___yes ___no Other adapters installed _______________________________________

Hard disk capacity _____MB __Brand

Instruments used ___

National Instruments hardware product model __________________________________ Revision

Configuration ___

National Instruments software product ___ Version

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem:__

ComponentWorks Hardware and Software
Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each

item. Complete a new copy of this form each time you revise your software or hardware

configuration, and use this form as a reference for your current configuration. Completing this

form accurately before contacting National Instruments for technical support helps our

applications engineers answer your questions more efficiently.

National Instruments Products

DAQ hardware __

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware ___

Programming choice __

ComponentWorks and NI-DAQ version __

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Other Products

Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our

products. This information helps us provide quality products to meet your needs.

Title: Getting Results with ComponentWorks

Edition Date: June 1997

Part Number: 321170B-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

Phone (___)__________________________ Fax (___) ________________________________

Mail to: Technical Publications Fax to: Technical Publications

National Instruments Corporation National Instruments Corporation

6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039

© National Instruments Corporation G-1 Getting Results with ComponentWorks

Glossary

Numbers/Symbols

12-bit Resolution of a data acquisition device. A 12-bit device converts an

analog voltage into a 12-bit binary integer. The binary value is

scaled to a voltage representation in software.

16-bit Resolution of a data acquisition device. A 16-bit device converts an

analog voltage into a 16-bit binary integer. The binary value is

scaled to a voltage representation in software.

1D One-dimensional.

2D Two-dimensional.

9513 Counter See AM9513 Counter.

A

A Amperes.

A/D Analog-to-digital.

AC Alternating current.

AC signal A signal with significant frequency components.

Prefix Meaning Value

m- milli- 10-3

µ- micro- 10-6

n- nano- 10-9

Glossary

Getting Results with ComponentWorks G-2 © National Instruments Corporation

ActiveX A synonym of OLE, referring to a set of Microsoft technologies for

reusable software components.

ActiveX Control See OLE control.

ADC Analog-to-digital converter. An electronic device, often an

integrated circuit, that converts an analog voltage to a digital

number.

ADC resolution The resolution of the ADC, which is measured in bits. An ADC

with 16 bits has a higher resolution than a 12-bit ADC.

AI Analog input.

AIGND The analog input ground pin on a DAQ device.

AIPoint Analog Input Single Point control.

AM 9513 Counter Counter/Timer chip used on legacy MIO and other data acquisition

devices, replaced by the DAQ-STC chip on newer devices,

including the E-series DAQ boards. The AM9513 Counter does not

support some of the advanced features of the DAQ-STC.

amplification A type of signal conditioning that improves accuracy in the

resulting digitized signal and reduces noise.

AMUX devices See analog multiplexer.

analog multiplexer Devices that increase the number of measurement channels while

still using a single instrumentation amplifier. Also called AMUX

devices.

analog trigger A trigger that occurs at a user-selected point on an incoming analog

signal. Triggering can be set to occur at a specified level on either

an increasing or a decreasing signal (positive or negative slope).

Analog triggering can be implemented either in software or in

hardware. When implemented in software, all data is collected,

transferred into system memory, and analyzed for the trigger

condition. When analog triggering is implemented in hardware, no

data is transferred to system memory until the trigger condition has

occurred.

ANOVA Analysis of variance.

AO Analog output.

Glossary

© National Instruments Corporation G-3 Getting Results with ComponentWorks

AOPoint Analog output single point control.

array Ordered, indexed set of data elements of the same type.

asynchronous Property of a function or operation that begins an operation and

returns control to the program prior to the completion or

termination of the operation.

ATC Analog Trigger Circuit; an analog trigger contained on some

E series DAQ devices, required for any analog triggering

(including ETS operations).

B

BCD Binary-coded decimal.

bipolar A signal range that includes both positive and negative values (for

example, -5 to 5 V).

buffer Temporary storage for acquired or generated data.

C

callback (function) A user-defined function that is called in response to an event

from an object. Also called an event handler.

cascading Process of extending the counting range of a counter chip by

connecting to the next higher counter.

channel Pin or wire lead to which you apply or from which you read the

analog or digital signal. Analog signals can be single-ended or

differential. For digital signals, you group channels to form ports.

Ports usually consist of either four or eight digital channels.

channel clock The clock controlling the time interval between individual channel

sampling within a scan. Boards with simultaneous sampling do not

have this clock.

channel list A collection of channel objects that specify the channels used by a

control.

Chart History A CWGraph property that determines how many points the graph

stores when charting before deleting old data.

Glossary

Getting Results with ComponentWorks G-4 © National Instruments Corporation

Chart Style A CWGraph property that specifies how a chart method updates the

display as new data is plotted.

clock Hardware component that controls timing for reading from or

writing to groups; an input pin on a counter/timer.

cm centimeters.

code width The smallest detectable change in an input voltage of a DAQ

device.

Collection A collection is a control property and object that contains a number

of objects of the same type, such as pointers, axes, and plots. The

type name of the collection is the plural of the type name of the

object in the collection. For example, a collection of CWAxis

objects is called CWAxes. To reference an object in the collection,

you must specify the object as part of the collection, usually by

index. For example, CWGraph.Axes.Item(2) is the second

axis in the CWAxes collection of a graph.

column-major order A way to organize the data in a 2D array by columns.

common-mode voltage Any voltage present at the instrumentation amplifier inputs with

respect to amplifier ground.

condition object An object used to specify the Start, Pause, or Stop condition on a

data acquisition process.

Control Refresh A CWGraph property that determines when changes to the graph

are displayed. The property name is ImmediateUpdates.

conversion device Device that transforms a signal from one form to another. For

example, analog-to-digital converters (ADCs) for analog input,

digital-to-analog converters (DACs) for analog output, digital input

or output ports, and counter/timers are conversion devices.

counter/timer group A collection of counter/timer channels. You can use this type of

group for simultaneous operation of multiple counter/timers.

coupling The manner in which a signal is connected from one location to

another.

Glossary

© National Instruments Corporation G-5 Getting Results with ComponentWorks

D

D/A Digital-to-analog.

DAC Digital-to-analog converter. An electronic device, often an

integrated circuit, that converts a digital number into a

corresponding analog voltage or current.

DAQ Data acquisition.

DAQ-STC DAQ System Timing Controller. An ASIC developed by National

Instruments for enhanced timing control on data acquisition

devices. DAQ-STC is used on E-Series and other National

Instruments DAQ devices, and is required for certain counter/timer

operations, including buffered counter measurements and

frequency shift keying.

data acquisition Process of acquiring data, typically from A/D or digital input

plug-in boards.

DC Direct current.

DC signal A signal made up solely of a non-dynamic component, steady or

very slowly changing voltage.

Delphi Borland Delphi programming environment.

device A plug-in data acquisition board that can contain multiple channels

and conversion devices.

device number The slot number or board ID number assigned to the board when

you configured it.

DFT Discrete Fourier Transform.

DI Digital Input.

DIFF Differential. A differential input is an analog input consisting of

two terminals, both of which are isolated from computer ground

and whose difference you measure.

differential measurement A way you can configure your device to read signals, in which you

do not need to connect either input to a fixed reference, such as the

earth or a building ground.

Glossary

Getting Results with ComponentWorks G-6 © National Instruments Corporation

digital trigger A TTL level signal having two discrete levels—a high and a low

level used to trigger (start or stop) another process.

DIO Digital Input/Output.

dithering The addition of Gaussian noise to an analog input signal.

DLL Dynamic link library.

DMA Direct memory access. A method by which data you can transfer

data to computer memory from a device or memory on the bus (or

from computer memory to a device) while the processor does

something else. DMA is the fastest method of transferring data to

or from computer memory.

DO Digital Output.

down counter Performing frequency division on an internal signal.

driver Software that controls a specific hardware device, such as a data

acquisition board.

DSP Digital signal processing.

E

E-Series Device Series of enhanced data acquisition devices that include

technologies such as DAQ-STC ASIC, Plug and Play

compatibility, and the NI-PGIA. Some functionality in the

ComponentWorks DAQ controls can only be used by E-Series

devices.

EEPROM Electrically erased programmable read-only memory. Read-only

memory that you can erase with an electrical signal and reprogram.

EISA Extended Industry Standard Architecture.

ETS See Equivalent Time Sampling.

Equivalent Time Sampling An analog input data acquisition method in which point are

acquired with increasing delay from a fixed point on a repetitive

waveform.

Glossary

© National Instruments Corporation G-7 Getting Results with ComponentWorks

event An object generates an event in response to some action or change

in state, such as a mouse click or x number of points being

acquired. The event calls an event handler (callback function),

which processes the event. Events are defined as part of an OLE

control object.

event handler See event.

exception An error message generated by a control, sent directly to the

application or programming environment containing the control.

external trigger A voltage pulse from an external source that triggers an event such

as A/D conversion.

F

FFT Fast Fourier Transform.

FHT Fast Hartley Transform.

FIFO A first-in-first-out memory buffer. In a FIFO, the first data stored

is the first data sent to the acceptor.

filtering A type of signal conditioning that allows you to filter unwanted

signals from the signal you are trying to measure.

FIR Finite impulse response.

fires Occurs. An event fires in response to predefined conditions, such

as the completion of a specified interval of time with a timer

control, the acquisition of a specified number of data points with a

CWAI control, or a mouse-click on a CWButton.

floating signal sources Signal sources with voltage signals that are not connected to an

absolute reference or system ground. Also called nonreferenced

signal sources. Some common example of floating signal sources

are batteries, transformers, or thermocouples.

form A window or area on the screen on which you place controls and

indicators to create the user interface for your program.

Format A flexible specification that defines how a number is displayed on

an axis or on some other display. The specification is a format

Glossary

Getting Results with ComponentWorks G-8 © National Instruments Corporation

string for formatting all values on a specific display. You specify

the format string in the property sheet of a control.

FSR Frequency Shift Keying. An advanced pulse generation mode in

which the output frequency is switched by another digital signal.

function tree The hierarchical structure in which the functions in a library or an

instrument driver are grouped. The function tree simplifies access

to a library or instrument driver by presenting functions organized

according to the operation they perform, as opposed to a single

linear listing of all available functions.

G

gain The factor by which a signal is amplified, sometimes expressed in

decibels.

GATE input pin A counter input pin that controls when counting in your application

occurs.

grounded measurement See referenced single-ended measurement system.

system

grounded signal sources Signal sources with voltage signals that are referenced to a system

ground, such as the earth or a building ground. Also called

referenced signal sources.

GUI Graphical user interface.

H

handshaked digital I/O A type of digital acquisition/generation where a device or module

accepts or transfers data after a digital pulse has been received.

Also called latched digital I/O.

hardware triggering A form of triggering where you set the start time of an acquisition

and gather data at a known position in time relative to a trigger

signal.

hex hexadecimal.

Hz Hertz. The number of scans read or updates written per second.

Glossary

© National Instruments Corporation G-9 Getting Results with ComponentWorks

I

I/O Input/output. The transfer of data to or from a computer system

involving communications channels, operator interface devices,

and/or data acquisition and control interfaces.

I/O Connector The connector on a data acquisition device, used to connect the

device to external signals or devices.

ICtr(82C53) Simple counter/timer chip used on 1200-, 700-, 500-, Lab-, and

LPM- series data acquisition devices. ICtr(82C53) supports limited

counter pulse capabilities and can be controlled using the ICtr

functions in the ComponentWorks DAQTools control.

IDFT inverse Discrete Fourier Transform.

IEEE Institute of Electrical and Electronic Engineers.

IFFT inverse Fast Fourier Transform.

IFHT inverse Fast Hartley Transform.

IIR infinite impulse response.

immediate digital I/O A type of digital acquisition/generation where LabVIEW updates

the digital lines or port states immediately or returns the digital

value of an input line. Also called nonlatched digital I/O.

in. inches.

input limits The upper and lower voltage inputs for a channel. You must use a

pair of numbers to express the input limits.

instrument driver A library of functions to control and use one specific physical

instrument. Also a set of functions that adds specific functionality

to an application.

interrupt A signal indicating that the central processing unit should suspend

its current task to service a designated activity.

interval clock Clock used in a DAQ device in an analog input operation to control

the delay between samples acquired from consecutive channels in

a scan.

Glossary

Getting Results with ComponentWorks G-10 © National Instruments Corporation

interval delay The delay between samples acquired from consecutive channels in

a scan during an analog input operation.

interval scanning Scanning method where there is a longer interval between scans

than there is between individual channels comprising a scan.

ISA Industry Standard Architecture.

isolation A type of signal conditioning in which you isolate the transducer

signals from the computer for safety purposes. This protects you

and your computer from large voltage spikes and makes sure the

measurements from the DAQ device are not affected by differences

in ground potentials.

K

ksamples 1,000 samples.

Kwords 1,024 words of memory.

L

latched digital I/O A type of digital acquisition/generation where a device or module

accepts or transfers data after a digital pulse has been received.

Also called handshaked digital I/O.

LED Light-emitting diode.

limit settings The maximum and minimum voltages of the analog signals you are

measuring or generating.

linearization A type of signal conditioning that linearizes the voltage levels from

transducers, so the voltages can be scaled to measure physical

phenomena.

LSB Least significant bit.

M

MB megabytes of memory.

memory buffer See buffer.

Glossary

© National Instruments Corporation G-11 Getting Results with ComponentWorks

method A function that performs a specific action on or with an object. The

operation of the method often depends on the values of the object’s

properties.

mse Mean squared error.

multibuffered I/O Input operation for which you allocate more than one memory

buffer so you can read and process data from one buffer while the

acquisition fills another.

multiplexed mode An SCXI operating mode in which analog input channels are

multiplexed into one module output so that your cabled DAQ

device has access to the module’s multiplexed output as well as the

outputs on all other multiplexed modules in the chassis through the

SCXI bus. Also called serial mode.

multiplexer A set of semiconductor or electromechanical switches with a

common output that can select one of a number of input signals and

that you commonly use to increase the number of signals measured

by one ADC.

N

NI-DAQ The driver level software that controls National Instruments data

acquisition cards and devices.

non-referenced signal Signal sources with voltage signals that are not connected to an

sources absolute reference or system ground. Also called floating signal

sources. Some common example of non-referenced signal sources

are batteries, transformers, or thermocouples.

non-referenced single-ended All measurements are made with respect to a common reference,

but the voltage at this reference can vary with respect to the

measurement system ground.

nonlatched digital I/O A type of digital acquisition/generation where the DIO control

updates the digital lines or port states immediately or returns the

digital value of an input line. Also called immediate digital I/O.

NRSE Nonreferenced single-ended.

Glossary

Getting Results with ComponentWorks G-12 © National Instruments Corporation

O

object A software tool for accomplishing tasks in different programming

environments. An object can have properties, methods, and events.

You change an object’s state by changing the values of its

properties. An object's behavior consists of the operations

(methods) that can be performed on it and the accompanying state

changes. Seeproperty, method, event.

object browser A dialog window that displays the available properties and methods

for the controls that are loaded. The object browser shows the

hierarchy within a group of objects. To activate the object browser

in Visual Basic, press <F2>.

OCX OLE Control eXtension. Another name for OLE or ActiveX

controls, reflected by the .OCX file extension of ActiveX control

files.

OLE Object linking and embedding.

OLE control A standard software tool that adds additional functionality to any

compatible OLE container. The DAQ, GUI, and analysis tools in

ComponentWorks are all OLE controls. An OLE control defines

properties, methods, objects, and events.

onboard channels Channels provided by the plug-in data acquisition board.

OUT output pin A counter output pin where the counter can generate various TTL

pulse waveforms.

output limits The upper and lower voltage or current outputs for an analog output

channel. The output limits determine the polarity and voltage

reference settings for a board.

P

parallel mode A type of SCXI operating mode in which the module sends each of

its input channels directly to a separate input channel of the device

to the module.

pattern One update (input or output) on a digital port. The number of

updates on a buffered digital operation is measured in number of

patterns.

Glossary

© National Instruments Corporation G-13 Getting Results with ComponentWorks

pattern generation A type of handshaked (latched) digital I/O in which internal

counters generate the handshaked signal, which in turn initiates a

digital transfer. Because counters output digital pulses at a constant

rate, this means you can generate and retrieve patterns at a constant

rate because the handshaked signal is produced at a constant rate.

pause condition A condition on a data acquisition process that determines when the

acquisition is paused. The condition can be a digital hardware

signal or the state of an analog hardware signal relative to set limits.

PFI Programmable Function Input. Input and output lines on the I/O

controller of E-series data acquisition devices.

PGIA Programmable gain instrumentation amplifier.

Plot A CWGraph group of methods that displays a new set of data while

deleting any previous data on the graph. A plot also refers to one

of the traces (data lines) on a graph representing the data in one row

or column of an array. Each plot on the graph has its own

properties, such as color, style, and so on.

Plug and Play devices Devices that do not require dip switches or jumpers to configure

resources on the devices. Also called switchless devices.

PnP See Plug and Play devices.

Pointer An indicator on a CWSlide or CWKnob object. You can use a

collection of pointers to display different values on the same object.

In the collection, each pointer is referenced by an index in the

collection and each individual pointer has its own properties such

as color, style, mode, and so on.

postriggering The technique you use on a data acquisition board to acquire a

programmed number of samples after trigger conditions are met.

pretriggering The technique you use on a data acquisition board to keep a

continuous buffer filled with data, so that when the trigger

conditions are met, the sample includes the data leading up to the

trigger condition.

property An attribute that controls the appearance or behavior of an object.

The property can be a specific value or another object with its own

properties and methods. For example, a value property is the color

(property) of a plot (object), while an object property is a specific

Glossary

Getting Results with ComponentWorks G-14 © National Instruments Corporation

Y axis (property) on a graph (object). The Y axis itself is another

object with properties, such as minimum and maximum values.

pulse Physical signal generated by the Pulse control. Pulse uses TTL

levels on most data acquisition devices.

pulse delay The amount of time from the start of a pulse generation until the

active phase of the pulse, measured in seconds. In a positive

polarity pulse, the output from the counter will be low for the

duration of the pulse delay before going high.

pulse period The period of a continuous or finite pulse train. The period is

defined as the amount of time between two consecutive rising or

falling edges of the signal. The period is the inverse of the

frequency of the pulse train.

pulse trains Multiple pulses.

pulse width The width of a pulse generated by a counter on a data acquisition

device, measured in seconds.

pulsed output A form of counter signal generation by which a pulse is output

when a counter reaches a certain value.

R

reference A link to an external code source in Visual Basic. References are

anything that add additional code to your program, such as OLE

controls, DLLs, objects, and type libraries. You can add references

by selecting the Tools»References… menu.

referenced single-ended All measurements are made with respect to a common reference or

(RSE) a ground. Also called a grounded measurement system.

RMS Root mean square.

row-major order A way to organize the data in a 2D array by rows.

RSE Referenced single-ended.

RTD Resistance temperature detector. A temperature-sensing device

whose resistance increases with increases in temperature.

Glossary

© National Instruments Corporation G-15 Getting Results with ComponentWorks

RTSI Real-Time System Integration bus. The National Instruments

timing bus that interconnects data acquisition boards directly, by

means of connectors on top of the boards, for precise

synchronization of functions.

S

sample A single (one and only one) analog or digital input or output data

point.

sample counter The clock that counts the output of the channel clock, in other

words, the number of samples taken. On boards with simultaneous

sampling, this counter counts the output of the scan clock and hence

the number of scans.

scan One or more analog or digital input samples. Typically, the number

of input samples in a scan is equal to the number of channels n the

input group. For example, one pulse from the scan clock produces

one scan which acquires one new sample from every analog input

channel in the group.

scan clock The clock controlling the time interval between scans. On boards

with interval scanning support (for example, the AT-MIO-16F-5),

this clock gates the channel clock on and off. On boards with

simultaneous sampling, this clock clocks the track-and-hold

circuitry.

scan rate The number of scans per second. For example, at a scan rate of

10Hz, each channel is sampled 10 times per second.

scan width The number of channels in the channel list or number of ports in the

port list you use to configure an analog or digital input group.

SCXI Signal Conditioning eXtensions for Instrumentation. The National

Instruments product line for conditioning low-level signals within

an external chassis near sensors, so only high-level signals in a

noisy environment are sent to data acquisition boards.

sec Seconds.

settling time The amount of time required for a voltage to reach its final value

within specified limits.

signal conditioning The manipulation of analog signals to prepare them for digitizing.

Glossary

Getting Results with ComponentWorks G-16 © National Instruments Corporation

signal divider Performing frequency division on an external signal.

single-ended inputs Analog inputs that you measure with respect to a common ground.

Snap Mode Mode that controls the available coordinates for cursors to line up

on a plot.

software analog triggering A method of triggering in which you to simulate an analog trigger

using software.

SOURCE input pin An counter input pin where the counter counts the signal

transitions.

start condition A condition on a data acquisition process that determines when the

actual acquisition starts. The condition can be a software trigger, an

analog hardware trigger, or a digital hardware trigger.

STC System timing controller. See DAQ-STC.

stop condition A condition on a data acquisition process that determines when the

acquisition stops. The condition can be none (the acquisition stops

when all points have been acquired), continuous (the acquisition

runs continuously), software analog trigger, hardware analog
trigger, or hardware digital trigger.

strain gauge A thin conductor, which is attached to a material, that detects stress

or vibrations in that material.

Style The display style of a GUI object. An object can have different

display styles while maintaining the same functionality. For

example, the button can be an LED, toggle switch, vertical or

horizontal slide, push button, command button, and more.

switchless device Devices that do not require dip switches or jumpers to configure

resources on the devices. Also called Plug and Play devices.

synchronous Property or operation that begins an operation and returns control

to the program only when the operation is complete.

syntax The set of rules to which statements must conform in a particular

programming language.

Glossary

© National Instruments Corporation G-17 Getting Results with ComponentWorks

T

TC Terminal count. The highest value of a counter.

thermocouple A template sensing device which measures temperature by the

changing electrical potential between two different metals.

toggled output A form of counter signal generation by which the output changes

the state of the output signal from high to low, or low to high when

the counter reaches a certain value.

trace A data line on a graph. Traces are generated using the Plot or Chart

methods of the graph. Also called a plot.

track-and-hold A circuit that tracks an analog voltage and holds the value on

command.

Track Mode Property of a graph that specifies how the mouse interacts with the

graph. Use the Track Mode to turn on zooming and panning for the

graph.

transducer excitation A type of signal conditioning that uses external voltages and

currents to excite the circuitry of a signal conditioning system into

measuring physical phenomena.

trigger A condition for starting or stopping clocks.

U

UI User Interface.

unipolar A signal range that is always positive, for example, 0 to 10 V.

update One or more analog or digital output samples. Typically, the

number of output samples in an update is equal to the number of

channels in the output group. For example, one pulse from the

update clock produces one update which sends one new sample to

every analog output channel in the group.

update clock Clock that sets the update rate for the AO, DI, and DO controls.

update rate The number of output updates per second.

Glossary

Getting Results with ComponentWorks G-18 © National Instruments Corporation

update width The number of channels in the channel list or number of ports in the

port list you use to configure an analog or digital output group.

V

V Volts.

Value Pairs Pair that consists of a name and a value that you can use for custom

ticks, labels, and grid lines on the axis of a knob, slide, or graph.

Value Pairs Only control A control whose only valid values are its value pairs.

VB Microsoft Visual Basic.

VC++ Microsoft Visual C++.

VDC Volts, direct current.

Vref Voltage reference.

W

waveform Multiple voltage readings taken at a specific sampling rate.

© National Instruments Corporation I-1 Getting Results with ComponentWorks

Index

Numbers
1D and 2D operations (table), 7-3

A
AcquireData method, 6-11

ActiveX controls. See also events; methods;

properties.

setting properties, 1-8 to 1-13

types of, 1-5 to 1-6

Advanced Analysis Library, 7-2

advanced application development, 8-1 to 8-21

distributing applications using

ComponentWorks, A-3 to A-4

testing and debugging, 8-14 to 8-21

breakpoints, 8-20

Debug.Print command, 8-20

error and warning events, 8-18 to 8-19

error checking, 8-14 to 8-15

exceptions, 8-15 to 8-16

GetErrorText function, 8-19

return codes, 8-17 to 8-18

single stepping, 8-21

Step Into mode, 8-21

Step Over mode, 8-21

watch window, 8-21

Virtual Data Logger application,

8-11 to 8-14

Virtual Oscilloscope application, 8-2 to 8-5

Virtual Spectrum Meter application,

8-5 to 8-10

AI control, 6-9 to 6-14

AI object, 6-10

asynchronous acquisition, 6-10 to 6-11

ChannelClock object, 6-12 to 6-13

error handling, 6-12

methods and events, 6-10 to 6-12

PauseCondition object, 6-13 to 6-14

ScanClock object, 6-12 to 6-13

StartCondition object, 6-13 to 6-14

StopCondition object, 6-13 to 6-14

synchronous acquisition, 6-11 to 6-12

tutorial, 6-14 to 6-19

developing code, 6-17 to 6-18

form design, 6-15 to 6-16

setting DAQ properties, 6-16 to 6-17

testing the program, 6-19

AI object, 6-10

AIPoint control, 6-6 to 6-8

AIPoint object, 6-6 to 6-7

object hierarchy (figure), 6-6

tutorial, 6-14 to 6-19

developing code, 6-17 to 6-18

form design, 6-15 to 6-16

setting DAQ properties, 6-16 to 6-17

testing the program, 6-19

AIPoint object, 6-6 to 6-7

analog input, single point. See AIPoint control.

analog output, single point. See AOPoint control.

Analysis Error Codes, Table B-2, B-22 to B-26

Analysis Library controls

descriptions in online reference

manual, 7-13

error messages, 7-13

function tree (table)

availability in different library

versions, 7-2

CWArray control, 7-3 to 7-4

CWComplex control, 7-4 to 7-5

CWDSP control, 7-8 to 7-12

CWMatrix control, 7-5 to 7-6

CWStat control, 7-6 to 7-7

Getting Results with ComponentWorks I-2 © National Instruments Corporation

functions, methods, and controls, 7-12

overview, 1-2

purpose and use, 1-13

questions and answers, A-4 to A-5

statistics function tutorial, 7-13 to 7-17

developing code, 7-15 to 7-16

form design, 7-14 to 7-15

testing the program, 7-17

versions of the library, 7-2

analysis of variance functions (table), 7-7

AO control, 6-21 to 6-25

AO object, 6-22

IntervalClock object, 6-24 to 6-25

methods and events, 6-23 to 6-24

object hierarchy (figure), 6-21

StartCondition object, 6-25

UpdateClock object, 6-24 to 6-25

AO object, 6-22

AOPoint control, 6-19 to 6-21

AOPoint object, 6-20

methods, 6-20 to 6-21

tutorial, 6-26 to 6-29

developing code, 6-27 to 6-29

form design, 6-26 to 6-27

testing the program, 6-29

AOPoint object, 6-20

application development. See also advanced

application development.

Delphi applications, 4-1 to 4-8

Visual Basic applications, 2-1 to 2-11

Visual C++ applications, 3-1 to 3-11

array operation functions (table)

1D and 2D operations, 7-3

multidimensional array operations, 7-4

multidimensional element operations,

7-3 to 7-4

asynchronous acquisition methods and events,

6-10 to 6-11

axes, Virtual Data Logger application

formats, 8-13 to 8-14

multiple, 8-12 to 8-13

Axes collection, 5-22

Axis object, 5-6, 5-23

B
Base Analysis Library, 7-2

Borland Delphi. See Delphi applications.

breakpoints, 8-20

buffered waveform digital input.

See DI control.

bulletin board support, C-1

button control. See also graph and button

control tutorial.

events, 5-15

purpose and use, 5-14

C
calibration functions, 6-49

channel object, 6-8

channel strings

devices requiring reverse list of channels

(note), 6-4

purpose and use, 6-3 to 6-4

SCXI channel strings, 6-4 to 6-5

ChannelClock object

AI control, 6-12 to 6-13

AIPoint control, 6-8

Channels collection, 6-7 to 6-8

charting data, 5-15. See also graph control.

ChartXvsY method, 5-18

ChartXY method, 5-18

ChartY method, 5-18, 5-29

clock objects

ChannelClock, 6-12 to 6-13

IntervalClock, 6-24 to 6-25

ScanClock, 6-12 to 6-13

UpdateClock, 6-24 to 6-25

collection objects, 1-7 to 1-8

collections

Axes, 5-22

Channels, 6-7 to 6-8

Cursors, 5-21

definition, 1-7

Lines, 6-33

Plots, 5-19

Pointers, 5-5

© National Instruments Corporation I-3 Getting Results with ComponentWorks

Ports, 6-32 to 6-33

ValuePairs collection, 5-7

common questions. See questions about

ComponentWorks.

complex number functions (table), 7-4 to 7-5

complex operation functions,

multidimensional (table), 7-5

ComponentWorks

components of, 1-1 to 1-2

general error codes, Table B-3,

B-27 to B-28

overview, 1-1 to 1-2

questions about, A-1 to A-10

system requirements, 1-2 to 1-3

Configure functions, 6-48

Configure method

AO control, 6-23

asynchronous acquisition, AI control,

6-10 to 6-11

UpdateClock object, 6-42

control methods. See methods.

controls. See ActiveX controls; Analysis

Library controls; specific controls.

Conversion functions, 6-48

counter/timer hardware, 6-50 to 6-65

Counter and Pulse controls tutorial,

6-60 to 6-65

designing the form, 6-60 to 6-62

developing the code, 6-62 to 6-64

testing your program, 6-65

counter/timer input and output, 6-50

counter control-counting and

measurement preparations, 6-50 to 6-51

counter object, 6-51 to 6-53

measurement types, 6-51 to 6-53

methods and events, 6-53 to 6-54

AcquiredData event, 6-53

buffered measurements, 6-54 to 6-55

Pulse Control- digital pulse and pulsetrain

generation, 6-55 to 6-60

Pulse obect, 6-56 to 6-57

pulse type operations,

6-56 to 6-57

methods, 6-58

FSK and ETS pulse generation,

6-59 to 6-60

FSK pulse generation mode

ETS pulse generation mode

6-59 to 6-60

Cursor object, 5-21 to 5-22

cursors, Virtual Spectrum Meter application,

8-8 to 8-10

Cursors collection, 5-21

curve fitting functions (table), 7-7

custom property page

CWGraph control example (figure), 1-9

definition, 1-9

customer communication, xiv, C-1 to C-2

CWArray control function tree, 7-3 to 7-4

1D and 2D operations, 7-3

multidimensional array operations, 7-4

multidimensional element operations,

7-3 to 7-4

CWButton control (table), 5-2

CWComplex control function tree, 7-4 to 7-5

complex numbers, 7-4 to 7-5

multidimensional complex operations,

7-5

CWDSP control function tree, 7-8 to 7-12

FIR digital filters, 7-10 to 7-11

frequency domain signal processing,

7-8 to 7-9

IIR digital filters, 7-9 to 7-10

measurement, 7-11 to 7-12

signal generation, 7-8

time domain signal processing, 7-9

windows, 7-11

CWGraph control

associated styles (table), 5-2

custom property page (figure), 1-9

CWKnob control (table), 5-2

CWMatrix control function tree, 7-5 to 7-6

CWNumEdit control (table), 5-2

CWSlide control (table), 5-2

CWStat control function tree, 7-6 to 7-7

analysis of variance, 7-7

Getting Results with ComponentWorks I-4 © National Instruments Corporation

curve fitting, 7-7

interpolation, 7-7

nonparametric statistics, 7-7

probability distributions, 7-6 to 7-7

statistics, 7-6

D
DAQ controls. See data acquisition controls.

DAQTools, 6-48 to 6-49

function groups, 6-48 to 6-49

using DAQTools functions, 6-49

data acquisition configuration, 6-2

data acquisition controls, 6-1 to 6-49

AI control, 6-9 to 6-14

AI object, 6-10

asynchronous acquisition,

6-10 to 6-11

ChannelClock object, 6-12 to 6-13

error handling, 6-12

methods and events, 6-10 to 6-12

PauseCondition object, 6-13 to 6-14

ScanClock object, 6-12 to 6-13

StartCondition object, 6-13 to 6-14

StopCondition object, 6-13 to 6-14

synchronous acquisition,

6-11 to 6-12

AIPoint and AI DAQ control tutorial,

6-14 to 6-19

developing code, 6-17 to 6-18

form design, 6-15 to 6-16

setting DAQ properties, 6-16 to 6-17

testing the program, 6-19

AIPoint control, 6-6 to 6-8

AIPoint object, 6-6 to 6-7

channel object, 6-8

ChannelClock object, 6-8

Channels collection, 6-7 to 6-8

AO control, 6-21 to 6-25

AO object, 6-22

IntervalClock object, 6-24 to 6-25

methods and events, 6-23 to 6-24

object hierarchy (figure), 6-21

StartCondition object, 6-25

UpdateClock object, 6-24 to 6-25

AOPoint control, 6-19 to 6-21

AOPoint object, 6-20

methods, 6-20 to 6-21

AOPoint control tutorial, 6-26 to 6-29

developing code, 6-27 to 6-29

form design, 6-26 to 6-27

testing the program, 6-29

counter/timer hardware, 6-50 to 6-65

counter/timer input and output, 6-50

DAQTools, 6-48 to 6-49

function groups, 6-48 to 6-49

using DAQTools functions, 6-49

data acquisition configuration, 6-2

DI control, 6-36

DI object, 6-36 to 6-37

methods and events, 6-38 to 6-39

UpdateClock object, 6-37 to 6-38

digital controls and hardware,

6-30 to 6-43

DIO control, 6-30 to 6-31

common properties and methods,

6-34 to 6-35

DIO object, 6-31 to 6-32

Ports collection and Port object,

6-32 to 6-33

DIO control tutorial, 6-44 to 6-48

developing code, 6-45 to 6-47

form design, 6-44 to 6-45

testing the program, 6-47 to 6-48

DO control, 6-40

DO object, 6-40 to 6-41

methods and events, 6-42 to 6-43

UpdateClock object, 6-41 to 6-42

error codes, Table B-1, B-1 to B-21

Lines collection and Line object, 6-33

common properties and methods,

6-34 to 6-35

list of DAQ controls, 6-1

object hierarchy and common properties,

6-2 to 6-6

channel strings, 6-3 to 6-4

© National Instruments Corporation I-5 Getting Results with ComponentWorks

Device, DeviceName, and

DeviceType, 6-3

ExceptionOnError and

ErrorEventMask, 6-5 to 6-6

SCXI channel strings, 6-4 to 6-5

overview, 1-1, 6-1 to 6-2

questions and answers, A-5 to A-7

data acquisition utility functions (DAQTools),

6-48 to 6-49

Data Logger application. See Virtual Data

Logger application.

debugging and testing applications,

8-14 to 8-21

breakpoints, 8-20

Debug.Print command, 8-20

error and warning events, 8-18 to 8-19

error checking, 8-14 to 8-15

exceptions, 8-15 to 8-16

GetErrorText function, 8-19

return codes, 8-17 to 8-18

single stepping, 8-21

Step Into mode, 8-21

Step Over mode, 8-21

watch window, 8-21

default property page

definition, 1-8

Visual Basic example (figure), 1-9

Delphi applications, 4-1 to 4-8

building user interface, 4-3

editing properties programmatically,

4-5 to 4-6

events, 4-8

loading ComponentWorks controls,

4-1 to 4-3, A-3

methods, 4-7

online help for learning controls, 4-8

placing controls, 4-3 to 4-4

programming with ComponentWorks

controls, 4-6 to 4-7

property sheets, 4-4 to 4-5

Device property, 6-3

DeviceName property, 6-3

DeviceType property, 6-3

DI control, 6-36

DI object, 6-36 to 6-37

digital controls and hardware, 6-30 to 6-43

common properties and methods,

6-34 to 6-35

DI control--buffered waveform digital

input, 6-36

DI object, 6-36 to 6-37

DIO control--single point digital input

and output, 6-30 to 6-31

DIO object, 6-31 to 6-32

DO control--buffered waveform digital

output, 6-40

DO object, 6-40 to 6-41

Lines collection and Line object, 6-33

methods and events

DI control, 6-38 to 6-39

DO control, 6-42 to 6-43

Ports collection and Port object,

6-32 to 6-33

UpdateClock object

DI control, 6-37 to 6-38

DO control, 6-41 to 6-42

Digital Signal Processing Analysis

Library, 7-2

digital signal processing and signal generation

functions

FIR digital filters (table), 7-10 to 7-11

frequency domain signal processing

(table), 7-8 to 7-9

IIR digital filters (table), 7-9 to 7-10

measurement functions (table),

7-11 to 7-12

signal generation functions (table), 7-8

time domain signal processing functions

(table), 7-9

Virtual Spectrum Meter application,

8-7 to 8-8

windows functions (table), 7-11

DIO control

single point digital input and output,

6-30 to 6-31

Getting Results with ComponentWorks I-6 © National Instruments Corporation

tutorial, 6-44 to 6-48

developing code, 6-45 to 6-47

form design, 6-44 to 6-45

testing the program, 6-47 to 6-48

DIO object

common properties and methods,

6-34 to 6-35

purpose and use, 6-31 to 6-32

distributing applications using

ComponentWorks, A-3 to A-4

DO control, 6-40

DO object, 6-40 to 6-41

documentation

conventions used in manual, xiii
organization of manual, xi-xii

DSP functions. See digital signal processing

and signal generation functions.

E
electronic support services, C-1 to C-2

e-mail support, C-2

equivalent time sampling, See ETS

error and warning events, 8-18 to 8-19

error checking/handling

AI control, 6-12

DAQ controls, 6-5 to 6-6

GetErrorText function, 6-48, 8-19

testing applications, 8-14 to 8-15

error codes, B-1 to B-28

Analysis Error Codes, Table B-2,

B-22 to B-26

Data Acquisition Control Error Codes,

Table B-1, B-1 to B-21

General ComponentWorks Error Codes,

Table B-3, B-27 to B-28

error messages

Analysis Library controls, 7-13

exceptions, 8-15 to 8-16

ErrorEventMask property, 6-5 to 6-6

ETS and FSK pulse generation, 6-59 to 6-60

ETS pulse generation mode 6-59 to 6-60

FSK pulse generation mode, 6-59

event handler routines

developing, 1-12

Visual Basic applications, 2-6 to 2-7

events

AO control, 6-23 to 6-24

asynchronous acquisition, 6-10 to 6-11

button control, 5-15

definition, 1-5

DI control, 6-38 to 6-39

DO control, 6-42 to 6-43

error and warning events, 8-18 to 8-19

graph control, 5-23

knob and slide controls, 5-8

numeric edit box control, 5-9 to 5-10

synchronous acquisition, 6-11 to 6-12

using in applications

Delphi applications, 4-8

Visual C++ applications,

3-10 to 3-11

ExceptionOnError property, 6-5 to 6-6

exceptions

examples, 8-16

testing applications, 8-15 to 8-16

F
fax and telephone support, C-2

Fax-on-Demand support, C-2

file input/output functions, Virtual Data

Logger application, 8-14

FIR digital filters (table), 7-10 to 7-11

forms

Delphi applications, 4-1

Visual Basic applications, 2-1

FOUT functions, 6-49

frequency domain signal processing (table),

7-8 to 7-9

frequency shift keying, See FSK

FSK and ETS pulse generation, 6-59 to 6-60

FSK pulse generation mode, 6-59

ETS pulse generation mode 6-59 to 6-60

FTP support, C-1

© National Instruments Corporation I-7 Getting Results with ComponentWorks

G
GetErrorText function, 6-48, 8-19

graph and button control tutorial, 5-25 to 5-29

developing program code, 5-27 to 5-28

form design, 5-25 to 5-26

testing the program, 5-29

graph axes, Virtual Data Logger application

formats, 8-13 to 8-14

multiple, 8-12 to 8-13

graph control, 5-15 to 5-24

Axes collection, 5-22

Axis object, 5-23

chart methods, 5-18

Cursor object, 5-21 to 5-22

Cursors collection, 5-21

events, 5-23

Graph object, 5-17

hierarchy of (figure), 5-16

overview, 1-5 to 1-6

panning and zooming, 5-24

plot methods, 5-17 to 5-18

Plot object, 5-19 to 5-20

Plots collection, 5-19

PlotTemplate object, 5-20

purpose and use, 5-15 to 5-16

tutorial, 5-25 to 5-29

Graph object, 5-17

graph track mode, Virtual Spectrum Meter

application, 8-10

Graphical User Interface controls, 5-1 to 5-29

button control, 5-14 to 5-15

events, 5-15

controls and associated styles (table), 5-2

graph and button control tutorial,

5-25 to 5-29

developing program code,

5-27 to 5-28

form design, 5-25 to 5-26

testing the program, 5-29

graph control, 5-15 to 5-24

Axes collection, 5-22

Axis object, 5-23

chart methods, 5-18

Cursor object, 5-21 to 5-22

Cursors collection, 5-21

events, 5-23

Graph object, 5-17

hierarchy of (figure), 5-16

panning and zooming, 5-24

plot methods, 5-17 to 5-18

Plot object, 5-19 to 5-20

Plots collection, 5-19

PlotTemplate object, 5-20

tutorial, 5-25 to 5-29

knob, slide, and numeric edit box control

tutorial, 5-10 to 5-13

developing program code,

5-11 to 5-12

form design, 5-10 to 5-11

testing the program, 5-13

knob and slide controls, 5-4 to 5-8

Axis object, 5-6

events, 5-8

hierarchy of (figure), 5-4

knob and slide object, 5-5

Pointer object, 5-5

Pointers collection, 5-5

Statistics object, 5-8

Ticks and Labels objects, 5-6

tutorial, 5-10 to 5-13

ValuePair object, 5-7

ValuePairs collection, 5-7

numeric edit box control, 5-9 to 5-10

events, 5-9 to 5-10

object hierarchy and common objects, 5-3

questions and answers, A-7 to A-10

GUI controls. See Graphical User Interface

controls.

H
Help button, 1-13

help files, online. See online help files.

Getting Results with ComponentWorks I-8 © National Instruments Corporation

I
ICtr functions, 6-48 to 6-49

IIR digital filters (table), 7-9 to 7-10

installation, 1-2 to 1-4

from CD-ROM, 1-3

from floppy disks, 1-3

installed files, 1-4

instrument driver DLLs, 1-4

procedure, 1-2 to 1-4

questions about ComponentWorks,

A-1 to A-4

system requirements, 1-2 to 1-3

instrument driver DLLs

installing, 1-4

using in Visual Basic applications,

2-7 to 2-8

instrument drivers

definition, 2-7

overview, 1-2

interchannel delay, 6-12

interpolation functions (table), 7-7

IntervalClock object, 6-24 to 6-25

Item method, 1-11

K
knob and slide controls, 5-4 to 5-8

Axis object, 5-6

events, 5-8

hierarchy of (figure), 5-4

knob and slide object, 5-5

Pointer object, 5-5

Pointers collection, 5-5

Statistics object, 5-8

Ticks and Labels objects, 5-6

tutorial, 5-10 to 5-13

developing program code,

5-11 to 5-12

form design, 5-10 to 5-11

testing the program, 5-13

ValuePair object, 5-7

L
Labels object, 5-6

Line object, 6-33

Lines collection, 6-33

M
matrix algebra functions (table), 7-5 to 7-6

measurement functions (table), 7-11 to 7-12

methods. See also specific methods.

AI object, 6-10 to 6-12

asynchronous acquisition,

6-10 to 6-11

synchronous acquisition,

6-11 to 6-12

AO control, 6-23 to 6-24

AOPoint object, 6-20 to 6-21

asynchronous acquisition, 6-10 to 6-11

definition, 1-5

DI control, 6-38 to 6-39

DIO control, 6-34 to 6-35

DO control, 6-42 to 6-43

functions as methods of corresponding

control, 7-12

parameters, 2-5 to 2-6

synchronous acquisition, 6-11 to 6-12

using in applications

Delphi applications, 4-7

Visual Basic applications, 2-5 to 2-6

Visual C++ applications, 3-9

working with control methods,

1-11 to 1-12

multidimensional array operations (table), 7-4

multidimensional complex operations (table),

7-5

multidimensional element operations (table),

7-3 to 7-4

multiple graph axes, Virtual Data Logger

application, 8-12 to 8-13

© National Instruments Corporation I-9 Getting Results with ComponentWorks

N
NI-DAQ driver configuration utility, 6-2

nonparametric statistics functions (table), 7-7

numeric edit box control, 5-9 to 5-10

events, 5-9 to 5-10

purpose and use, 5-9

tutorial, 5-10 to 5-11

developing program code,

5-11 to 5-12

form design, 5-10 to 5-11

testing the program, 5-13

O
object browser, in Visual Basic, 2-8 to 2-10

object hierarchy

AIPoint control (figure), 6-6

AO control (figure), 6-21

DAQ controls, 6-2 to 6-6

graph control (figure), 5-16

knob and slide controls (figure), 5-4

purpose and use, 1-6 to 1-7

similarity in different controls, 5-3

Slide object example, 1-7

one dimensional operations (table), 7-3

online help files

descriptions of analysis functions, 7-13

learning about ComponentWorks

controls, 1-13

Delphi applications, 4-8

Visual Basic applications, 2-11

Visual C++ applications, 3-11

Oscilloscope application. See Virtual

Oscilloscope application.

P
panning and zooming graphs, 5-24

parameters for methods, 2-5 to 2-6

PauseCondition object, 6-13 to 6-14

Plot object, 5-19 to 5-20

Plots collection, 5-19

PlotTemplate object, 5-20

plotting data, 5-15. See also graph control.

PlotXvsY method, 5-17 to 5-18

PlotXY method, 5-17

PlotY method

changing properties programmatically

(example), 1-11 to 1-12

format for accepting data, 5-17

graph and button control tutorial, 5-27

Pointer object, 5-5

Pointers collection, 5-5

Port object, 6-32 to 6-33

Ports collection, 6-32 to 6-33

pretriggering modes, Virtual Oscilloscope

application, 8-3

probability distribution functions (table),

7-6 to 7-7

properties

definition, 1-5

DIO, Port, and Line objects, 6-34 to 6-35

editing programmatically

Delphi applications, 4-5 to 4-6

Visual Basic applications, 2-4 to 2-5

setting, 1-8 to 1-13

Analysis Library and instrument

driver DLLs, 1-13

changing properties

programmatically, 1-10

developing event handler routines,

1-12

help file, 1-13

Item method, 1-11

property sheets, 1-8 to 1-9

working with control methods,

1-11 to 1-12

Visual C++ applications, 3-7 to 3-9

property sheets

custom property page, 1-9

default property page, 1-8 to 1-9

Delphi applications, 4-4 to 4-5

setting default values, 1-8

Visual Basic applications, 2-3 to 2-4

Pulse Control- digital pulse and pulsetrain

generation, 6-55 to 6-60

Getting Results with ComponentWorks I-10 © National Instruments Corporation

FSK and ETS pulse generation,

6-59 to 6-60

FSK pulse generation mode

ETS pulse generation mode

6-59 to 6-60

methods, 6-58

Pulse object, 6-56 to 6-57

pulse type operations, 6-56 to 6-57

Pulse and Counter controls tutorial,

6-60 to 6-65

designing the form, 6-60 to 6-62

developing the code, 6-62 to 6-64

testing your program, 6-65

Q
questions about ComponentWorks,

A-1 to A-10

analysis controls, A-4 to A-5

DAQ controls, A-5 to A-7

installation and getting started,

A-1 to A-4

user interface controls, A-7 to A-10

R
Reset functions, 6-48

Reset method

AIPoint object, 6-6, 6-7

AO control, 6-23

AOPoint object, 6-20, 6-21

asynchronous acquisition, 6-10 to 6-11

UpdateClock object, 6-42

return codes, testing applications, 8-17 to 8-18

S
scan rate, 6-12

ScanClock object, 6-12 to 6-13

SCXI channel strings, 6-4 to 6-5

Set functions, 6-48

setting properties. See properties, setting.

signal processing functions. See digital signal

processing and signal generation functions.

single point analog input. See AIPoint control.

single point analog output. See AOPoint

control.

single stepping, 8-21

SingleRead method

AIPoint object, 6-6 to 6-7

DIO, Port, and Line objects, 6-34

SingleWrite method

AOPoint object, 6-20

DIO, Port, and Line objects, 6-34

slide controls. See knob and slide controls.

software objects, 1-6

Spectrum Meter application. See Virtual

Spectrum Meter application.

Start method

AO control, 6-23

asynchronous acquisition, AI control,

6-10

UpdateClock object, 6-42

StartCondition object, 6-13 to 6-14

statistics functions

analysis of variance functions (table), 7-7

curve fitting functions (table), 7-7

interpolation functions (table), 7-7

nonparametric statistics functions (table),

7-7

probability distribution functions (table),

7-6 to 7-7

simple statistics (table), 7-6

tutorial, 7-13 to 7-17

developing code, 7-15 to 7-16

form design, 7-14 to 7-15

testing the program, 7-17

Statistics object, 5-8

Step Into mode, 8-21

Step Over mode, 8-21

stop condition modes, Virtual Oscilloscope

application, 8-3

Stop method, asynchronous acquisition, 6-10

© National Instruments Corporation I-11 Getting Results with ComponentWorks

StopCondition object, 6-13 to 6-14

synchronous acquisition methods and events,

6-11 to 6-12

system requirements, 1-2 to 1-3

T
technical support, C-1 to C-2

telephone and fax support, C-2

testing applications. See debugging and testing

applications.

Ticks object, 5-6

time domain signal processing functions

(table), 7-9

TrackMode property

Graph object, 5-17

panning and zooming, 5-24

Virtual Spectrum Meter application, 8-10

two dimensional operations (table), 7-3

U
UpdateClock object

DI control, 6-37 to 6-38

DO control, 6-41 to 6-42

user interface, building. See also Graphical

User Interface controls.

Delphi applications, 4-3

Visual Basic applications, 2-2

Visual C++ applications, 3-4 to 3-5

user interface controls. See also Graphical

User Interface controls.

overview, 1-1

questions and answers, A-7 to A-10

V
value pairs, Virtual Oscilloscope application,

8-4 to 8-5

ValuePair object, 5-7

ValuePairs collection, 5-7

vector and matrix algebra functions (table),

7-5 to 7-6

Virtual Data Logger application, 8-11 to 8-14

file input/output, 8-14

graph axes formats, 8-13 to 8-14

multiple graph axes, 8-12 to 8-13

Virtual Oscilloscope application

data acquisition pretriggering, 8-3

data acquisition stop condition modes, 8-3

user interface value pairs, 8-4 to 8-5

Virtual Spectrum Meter application,

8-5 to 8-10

cursors, 8-8 to 8-10

DSP Analysis Library functions,

8-7 to 8-8

graph track mode, 8-10

Visual Basic applications, 2-1 to 2-11

building user interface, 2-2

default property page (figure), 1-9

developing event handler routines,

2-6 to 2-7

editing properties programmatically,

2-4 to 2-5

instrument driver DLLs, 2-7 to 2-8

loading ComponentWorks controls into

toolbox, 2-1 to 2-2

object browser for building code,

2-8 to 2-10

online help for learning controls, 2-11

pasting code into programs, 2-11

property sheets, 2-3 to 2-4

questions about ComponentWorks,

A-1 to A-3

working with control methods, 2-5 to 2-6

Visual C++ applications, 3-1 to 3-11

adding ComponentWorks

controls to toolbar, 3-3 to 3-4

building user interface, 3-4 to 3-5

creating applications, 3-1 to 3-3

events, 3-10 to 3-11

methods, 3-9

online help for learning controls, 3-11

programming with ComponentWorks

controls, 3-5 to 3-6

properties, 3-7 to 3-9

Getting Results with ComponentWorks I-12 © National Instruments Corporation

W
warning events, 8-18 to 8-19

watch window, 8-21

waveform analog input. See AI control.

waveform analog output. See AO control.

waveform digital input, buffered. See DI

control.

windows functions (table), 7-11

Write method

AO control, 6-23

UpdateClock object, 6-42, 6-43

Z
zooming graphs, 5-24

	Getting Results with ComponentWorks™
	Contents
	Important Information
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (U.S.)
	International Offices
	National Instruments Corporate Headquarters
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATI...

	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Customer Communication

	Chapter 1 Introduction to ComponentWorks
	What is ComponentWorks?
	Installing ComponentWorks
	System Requirements
	Installation Instructions
	Installing the ComponentWorks ActiveX Control
	Installing From Floppy Disks
	Installing the Instrument Drivers DLLs

	Installed Files
	About the ComponentWorks Controls
	Properties, Methods, and Events
	Object Hierarchy
	Collection Objects

	Setting the Properties of an ActiveX Control
	Using Property Sheets
	Changing Properties Programmatically
	Item Method
	Working with Control Methods
	Developing Event Handler Routines
	Using the Analysis Library and Instrument Driver D...
	The Help File—Learning the Properties, Methods, an...

	Chapter 2 Building ComponentWorks Applications with Visual B...
	Developing Visual Basic Applications
	Loading the ComponentWorks Controls into the Toolb...
	Building the User Interface Using ComponentWorks
	Using Property Sheets
	Using Your Program to Edit Properties
	Working with Control Methods
	Developing Control Event Routines
	Using the ComponentWorks Instrument Driver DLLs in...
	Object Browser—Building Your Code in Visual Basic
	Pasting Code into Your Program
	Learning to Use Specific ComponentWorks Controls

	Chapter 3 Building ComponentWorks Applications with Visual C...
	Developing Visual C++ Applications
	Creating Your Application
	Adding ComponentWorks Controls to the Visual C++ C...
	Building the User Interface Using ComponentWorks C...
	Programming with the ComponentWorks Controls
	Using Properties
	Using Methods
	Using Events
	Learning to Use Specific ComponentWorks Controls

	Chapter 4 Building ComponentWorks Applications with Delphi
	Developing Delphi Applications
	Loading the ComponentWorks Controls into the Compo...
	Building the User Interface
	Placing Controls
	Using Property Sheets
	Using Your Program to Edit Properties
	Programming with ComponentWorks
	Using Methods
	Using Events
	Learning to Use Specific ComponentWorks Controls

	Chapter 5 Using the Graphical User Interface Controls
	What are the GUI Controls?
	Object Hierarchy and Common Objects
	The Knob and Slide Controls
	Knob and Slide Object
	Pointers Collection
	Pointer Object
	Axis Object
	Ticks and Labels Objects
	ValuePairs Collection
	ValuePair Object
	Statistics Object
	Events

	The Numeric Edit Box Control
	Events

	Tutorial: Knob, Slide, and Numeric Edit Box Contro...
	Designing the Form
	Developing the Program Code
	Testing Your Program

	The Button Control
	Events

	The Graph Control
	Graph Object
	Plot Methods
	Chart Methods
	Plots Collection
	Plot Object
	PlotTemplate Object
	Cursors Collection
	Cursor Object
	Axes Collection
	Axis Object
	Events
	Panning and Zooming

	Tutorial: Graph and Button Controls
	Designing the Form
	Developing the Code
	Testing Your Program

	Chapter 6 Using the Data Acquisition Controls
	Data Acquisition Configuration
	Object Hierarchy and Common Properties
	Device, DeviceName, and DeviceType
	Channel Strings
	SCXI Channel Strings
	ExceptionOnError and ErrorEventMask

	AIPoint Control—Single Point Analog Input
	AIPoint Object
	Channels Collection
	Channel Object
	ChannelClock Object

	AI Control—Waveform Analog Input
	AI Object
	Methods and Events
	Asynchronous Acquisition
	Synchronous Acquisition
	Error Handling

	ScanClock and ChannelClock Objects
	StartCondition, PauseCondition and StopCondition O...

	Tutorial: Using the AIPoint and AI DAQ controls
	Designing the Form
	Setting the DAQ Properties
	Developing the Code
	Testing Your Program

	AOPoint Control—Single Point Analog Output
	AOPoint Object
	Methods

	AO Control—Waveform Analog Output
	AO Object
	Methods and Events
	UpdateClock and IntervalClock Objects
	StartCondition Object

	Tutorial: Using the AOPoint control
	Designing the Form
	Developing the Code
	Testing Your Program

	Digital Controls and Hardware
	DIO Control—Single Point Digital Input and Output
	DIO Object
	Ports Collection and Port Object

	Lines Collection and Line Object
	Common Properties and Methods
	DI Control—Buffered Waveform Digital Input
	DI Object
	UpdateClock Object
	Methods and Events

	DO Control—Buffered Waveform Digital Output
	DO Object
	UpdateClock Object
	Methods and Events

	Tutorial: Using the DIO control
	Designing the Form
	Developing the Code
	Testing Your Program

	DAQTools—Data Acquisition Utility Functions
	Using DAQ Tools functions

	Counter/Timer Hardware
	Counter Control—Counting and Measurement Operation...
	Counter Object

	Pulse Control—Digital Pulse and Pulsetrain Generat...
	Pulse Object

	Tutorial: Using the Counter and Pulse controls
	Designing the Form
	Developing the Code
	Testing Your Program

	Chapter 7 Using the Analysis Controls and Functions
	What are the Analysis Controls?
	Analysis Library Versions
	Table 7�1. Analysis Control Function Tree (Continu...
	Controls
	Analysis Function Descriptions
	Error Messages

	Tutorial: Using Simple Statistics Functions
	Designing the Form
	Developing the Program Code
	Testing Your Program

	Chapter 8 Building Advanced Applications
	Using Advanced ComponentWorks Features
	A Virtual Oscilloscope
	Data Acquisition Stop Condition Modes
	Data Acquisition Pretriggering
	User Interface Value Pairs

	Virtual Spectrum Meter
	DSP Analysis Library
	Cursors
	Graph Track Mode

	A Virtual Data Logger
	Multiple Graph Axes
	Graph Axes Formats
	File Input/Output

	Adding Testing and Debugging to Your Application
	Error Checking
	Exceptions
	Return Codes
	Error and Warning Events
	GetErrorText Function

	Debugging
	Debug Print
	Breakpoint
	Watch Window
	Single Step, Step Into and Step Over

	Appendix A Common Questions
	ComponentWorks Common Questions
	Installation and Getting Started
	Analysis Controls
	Data Acquisition Controls
	User Interface Controls

	Appendix B Error Codes
	Table B�1. Data Acquisition Control Error Codes (C...
	Table B�2. Analysis Error Codes (Continued)
	Table B�3. General ComponentWorks Error Codes

	Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	ComponentWorks Hardware and Software Configuration...
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	Numbers/Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Index
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

