

Function and VI
Reference Manual
LabVIEW Function and VI Reference Manual
January 1998 Edition
Part Number 321526B-01

725 11,
91,
4 00,
7 1200,
Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 4130
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 8
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 37
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1997, 1998 National Instruments Corporation. All rights reserved.

Important Information

ng
enced
at do
ty
 free.

tside
pping

y
serves
. The
ble for

act
 cause
 its
ailures
s;
 flood,

nical,
,

ability

on the
g
itional
s injury
uments
ed to
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programmi
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media th
not execute programming instructions if National Instruments receives notice of such defects during the warran
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the ou
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shi
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefull
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments re
the right to make changes to subsequent editions of this document without prior notice to holders of this edition
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be lia
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY
DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER
DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF
DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contr
or tort, including negligence. Any action against National Instruments must be brought within one year after the
of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond
reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service f
caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instruction
owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part
without the prior written consent of National Instruments Corporation.

Trademarks
DAQCard™, DAQ-STC™, DAQPad™, LabVIEW™, natinst.com ™, National Instruments™, NI-DAQ™,
PXI™, RTSI™, and SCXI™, are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reli
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors
part of the user or application designer. Any use or application of National Instruments products for or involvin
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all trad
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent seriou
or death should always continue to be used when National Instruments products are being used. National Instr
products are NOT intended to be a substitute for any form of established process, procedure, or equipment us
monitor or safeguard human health and safety in medical or clinical treatment.

Contents
xxv
xxvi
.xxvii
xxviii

1-1
1-2
1-2
-3

1-3
1-3
-3

1-3
1-4
-4
-4

1-4
-5
-5
-5
-5
-6
-6

-6
-6
-7
About This Manual
Organization of the Product User Manual ...
Conventions Used in This Manual...
Related Documentation...
Customer Communication ...

Chapter 1
Introduction to the G Functions and VIs

Locating the G Functions and VIs ...
Function and VI Overviews...

Structures...
Numeric Functions ..1
Boolean Functions ...
String Functions...
Array Functions ...1
Cluster Functions...
Comparison Functions...
Time and Dialog Functions ...1
File I/O Functions..1
Advanced Functions ..
DAQ ..1
Instrument I/O ...1
Communication ...1
Analysis VIs ..1
Select A VI... ...1
Tutorial ..1
Instrument Driver Library ...1
User Library...1
Application Control ...1
© National Instruments Corporation v LabVIEW Function and VI Reference Manual

Contents

2-2
2-2
-2
-3
-4

-5
2-6

3-2

4-2
-3
-3
-4
4-4
4-9
-14

4-20
4-21

5-1
5-2
PART I
G Functions and VIs

Chapter 2
G Function and VI Reference Overview

G Functions Overview...
Introduction to Polymorphism...

Polymorphism ... 2
Unit Polymorphism... 2
Numeric Conversion ... 2
Overflow and Underflow .. 2
Wire Styles..

Chapter 3
Structures

Structures Overview ..

Chapter 4
Numeric Functions

Polymorphism for Numeric Functions ..
Polymorphism for Transcendental Functions ... 4
Polymorphism for Conversion Functions ... 4
Polymorphism for Complex Functions ... 4

Arithmetic Function Descriptions ...
Conversion Functions Descriptions...
Trigonometric and Hyperbolic Functions Descriptions .. 4
Complex Function Descriptions ..
Additional Numeric Constants Descriptions ...

Chapter 5
Boolean Functions

Polymorphism for Boolean Functions...
Boolean Function Descriptions ...
LabVIEW Function and VI Reference Manual vi © National Instruments Corporation

Contents

-1
-1
2
-2
6-2
6-6
6-18
.6-20

7-2
-3

7-3
7-3

8-2
8-3
8-3
8-4

9-1
9-1
9-2
-2

9-2
9-2
9-4
9-5
9-6
Chapter 6
String Functions

Overview of Polymorphism for String Functions..6
Polymorphism for String Functions ..6
Polymorphism for Additional String to Number Functions6-
Polymorphism for String Conversion Functions...6

Format Strings Overview...
String Function Descriptions ...
String Conversion Function Descriptions..
String Fixed Constants..

Chapter 7
Array Functions

Array Function Overview ..
Out-of-Range Index Values...7

Polymorphism for Array Functions ...
Array Function Descriptions..

Chapter 8
Cluster Functions

Cluster Function Overview..
Polymorphism for Cluster Functions...

Setting the Order of Cluster Elements...
Cluster Function Descriptions ...

Chapter 9
Comparison Functions

Comparison Function Overview..
Boolean Comparison ...
String Comparison...
Numeric Comparison...9
Cluster Comparison...
Comparison Modes..
Character Comparison...

Polymorphism for Comparison Functions...
Comparison Function Descriptions ...
© National Instruments Corporation vii LabVIEW Function and VI Reference Manual

Contents

0-2
0-2
0-3
0-4
10-6
0-10

1-2
1-2
-2

11-3
11-4
1-5
11-5
1-6
1-12

11-14
11-2
. 11-26

2-2
12-7
12

13-2
13-4
13-7
13-8

. 13
Chapter 10
Time, Dialog, and Error Functions

Time, Dialog, and Error Functions Overview... 1
Timing Functions .. 1
Error Handling Overview.. 1

Error I/O and the Error State Cluster.. 1
Time and Dialog Function Descriptions..
Error Handling VI Descriptions .. 1

Chapter 11
File Functions

File I/O VI and Function Overview... 1
High-Level File VIs .. 1
Low-Level File VIs and File Functions .. 11
Byte Stream and Datalog Files..
Flow-Through Parameters...
Error I/O in File I/O Functions ... 1
Permissions ...

File I/O Function and VI Descriptions .. 1
Binary File VI Descriptions... 1
Advanced File Function Descriptions ...
Configuration File VIs...0
File Constants Descriptions..

Chapter 12
Application Control Functions

Application Control Functions .. 1
Help Function Descriptions...
Menu Functions ...-8

Chapter 13
Advanced Functions

Advanced Function Descriptions ..
Data Manipulation Function Descriptions...
Memory VI Descriptions...
Synchronization VIs ..
Notification VIs ...13-8
Queue VIs.. 13-11
Rendezvous VIs..-14
LabVIEW Function and VI Reference Manual viii © National Instruments Corporation

Contents

.1
.13-19

4-2
14-3
4-4
4-5
-5
4-5
4-5
14-
4-7
4-7
-7
4-8
4-8
14-
4-9
4-9
4-10
-10

14-11
4-11
4-12
4-12
4-12
4-12

15-1
Semaphore VIs..3-16
Occurrence Function Descriptions..

PART II
Data Acquisition VIs

Chapter 14
Introduction to the LabVIEW Data Acquisition VIs

Finding Help Online for the DAQ VIs ..1
The Analog Input VIs ..

Easy Analog Input VIs ..1
Intermediate Analog Input VIs..1
Analog Input Utility VIs..14
Advanced Analog Input VIs..1
Locating Analog Input VI Examples...1

Analog Output VIs...6
Easy Analog Output VIs..1
Intermediate Analog Output VIs ...1
Analog Output Utility VIs ...14
Advanced Analog Output VIs ...1
Locating Analog Output VI Examples ..1

Digital Function VIs ..8
Easy Digital I/O VIs ..1
Intermediate Digital I/O VIs..1
Advanced Digital I/O VIs..1
Locating Digital I/O VI Examples ..14

Counter VIs..14-10
Easy Counter VIs...
Intermediate Counter Input VIs...1
Advanced Counter VIs ..1
Locating Counter VI Examples ...1

Calibration and Configuration VIs ..1
Signal Conditioning VIs ..1

Chapter 15
Easy Analog Input VIs

Easy Analog Input VI Descriptions ...
© National Instruments Corporation ix LabVIEW Function and VI Reference Manual

Contents

1
6-2

1
7-2

8-1

19-1

2
20-2

2
1-2

2-1

23-1
Chapter 16
Intermediate Analog Input VIs

Handling Errors ...6-1
Intermediate Analog Input VI Descriptions .. 1

Chapter 17
Analog Input Utility VIs

Handling Errors ...7-2
Analog Input Utility VI Descriptions .. 1

Chapter 18
Advanced Analog Input VIs

Advanced Analog Input VI Descriptions .. 1

Chapter 19
Easy Analog Output VIs

Easy Analog Output VI Descriptions ..

Chapter 20
Intermediate Analog Output VIs

Handling Errors ...0-1
Analog Output VI Descriptions...

Chapter 21
Analog Output Utility VIs

Handling Errors ...1-1
Analog Output Utility VI Descriptions ... 2

Chapter 22
Advanced Analog Output VIs

Advanced Analog Output VI Descriptions.. 2

Chapter 23
Easy Digital I/O VIs

Easy Digital I/O Descriptions..
LabVIEW Function and VI Reference Manual x © National Instruments Corporation

Contents

4-2

5-2
5-3

26-2

27-2

28-2

9-2
29-18

0-2
Chapter 24
Intermediate Digital I/O VIs

Handling Errors..24-2
Intermediate Digital I/O VI Descriptions ..2

Chapter 25
Advanced Digital I/O VIs

Digital Port VI Descriptions ..2
Digital Group VI Descriptions...2

Chapter 26
Easy Counter VIs

Easy Counter VI Descriptions ...

Chapter 27
Intermediate Counter VIs

Handling Errors..27-2
Intermediate Counter VI Descriptions...

Chapter 28
Advanced Counter VIs

Advanced Counter VI Descriptions...

Chapter 29
Calibration and Configuration VIs

Calibration and Configuration VI Descriptions...2
Channel Configuration VIs..

Chapter 30
Signal Conditioning VIs

Signal Conditioning VI Descriptions...3
© National Instruments Corporation xi LabVIEW Function and VI Reference Manual

Contents

31-2
1-3
3
1-4
1-4
31-5
-5
1-5

1-6
-6
1-6
-7
1-7
31-7

2-1
2-2

3-2
33-4
33-10
33-12
33-16
33-18
33-19
33-20
33-20
33-20
33-20
3-21
PART III
Instrument I/O Functions and VIs

Chapter 31
Introduction to LabVIEW Instrument I/O VIs

Instrument Drivers Overview..
Instrument Driver Distribution.. 3

CD-ROM Instrument Driver Distribution .. 31-
Instrument Driver Template VIs ... 3

Introduction to VISA Library.. 3
Introduction to GPIB ...

LabVIEW Traditional GPIB Functions .. 31
GPIB 488.2 Functions... 3

Single-Device Functions... 3
Multiple-Device Functions ... 31
Bus Management Functions ... 3
Low-Level Functions.. 31
General Functions... 3

Serial Port VI Overview ..

Chapter 32
Instrument Driver Template VIs

Introduction to Instrument Driver Template VIs... 3
Instrument Driver Template VI Descriptions.. 3

Chapter 33
VISA Library Reference

Operations.. 33-2
VISA Library Reference Parameters .. 3

VISA Operation Descriptions..
Event Handling Functions ...
High Level Register Access Functions..
Low Level Register Access Functions ..
VISA Serial Functions...
VISA Property Node ...
VISA Property Node Descriptions ..

Fast Data Channel ...
General Settings ..
GPIB Settings..
Interface Information .. 3
LabVIEW Function and VI Reference Manual xii © National Instruments Corporation

Contents

.33-21
3-21

33-21
33-21
33-21
33-22
3-22
3-22

34-2
4-3
4-3

34-7
34
34-

.35-1
5-2
5-4
35-6
5-8
35-10

36-1

.37-2
7-2
Message-Based Settings ...
Modem Line Settings ..3
PXI Resources ...
PXI Settings...
Register-Based Settings...
Serial Settings..
Version Information ..3
VME/VXE Settings ...3

Chapter 34
Traditional GPIB Functions

Traditional GPIB Function Parameters..
Traditional GPIB Function Behavior...3
Traditional GPIB Function Descriptions ...3
GPIB Device and Controller Functions ...
Device Functions ...-7
Controller Functions ..9

Chapter 35
GPIB 488.2 Functions

GPIB 488.2 Common Function Parameters ...
GPIB 488.2 Function Descriptions (Single-Device Functions).......................................3
GPIB 488.2 Multiple-Device Function Descriptions ..3
GPIB 488.2 Bus Management Function Descriptions...
GPIB 488.2 Low-Level I/O Function Descriptions...3
GPIB 488.2 General Function Descriptions ..

Chapter 36
Serial Port VIs

Serial Port VI Descriptions ..

PART IV
Analysis VIs

Chapter 37
Introduction to Analysis in LabVIEW

Full Development System...
Analysis VI Overview ...3
© National Instruments Corporation xiii LabVIEW Function and VI Reference Manual

Contents

37-3
37-4

38-2

39-2

40-2

41-

2-2

3-2

44-2

5-2
Analysis VI Organization ..
Notation and Naming Conventions ...

Chapter 38
Signal Generation VIs

Signal Generation VI Descriptions..

Chapter 39
Digital Signal Processing VIs

Signal Processing VI Descriptions ..

Chapter 40
Measurement VIs

Measurement VI Descriptions...

Chapter 41
Filter VIs

Filter VI Descriptions ..2

Chapter 42
Window VIs

Window VI Descriptions... 4

Chapter 43
Curve Fitting VIs

Curve Fitting VI Descriptions ... 4

Chapter 44
Probability and Statistics VIs

Probability and Statistics VI Descriptions...

Chapter 45
Linear Algebra VIs

Linear Algebra VI Descriptions .. 4
LabVIEW Function and VI Reference Manual xiv © National Instruments Corporation

Contents

6-2

7-1

48-2
.48

49-1

0-2
50-3

1-2
.51-4

52-2
2-2
2-3

52-4
52-4
Chapter 46
Array Operation VIs

Array Operation VI Descriptions...4

Chapter 47
Additional Numerical Method VIs

Additional Numerical Method VI Descriptions...4

PART V
Communication VIs and Functions

Chapter 48
TCP VIs

TCP VI Description ...
TCP/IP Functions..-2

Chapter 49
UDP VIs

UDP VI Descriptions ...

Chapter 50
DDE VIs

DDE Client VI Descriptions ..5
DDE Server VI Descriptions ...

Chapter 51
ActiveX Automation Functions

ActiveX Automation Function Descriptions ...5
Data Conversion Function ..

Chapter 52
AppleEvent VIs

General AppleEvent VI Behavior..
The User Identity Dialog Box ...5
Target ID ...5
Send Options ...

Targeting VI Descriptions ...
© National Instruments Corporation xv LabVIEW Function and VI Reference Manual

Contents

52-6
2-8
52-

52-9
52-10
2-13
52-16
2-18
52-18
2-18
52-18
2-19
-19
-19

-19
2-19
2-19
-19
-20
-20
-20

-20
2-20
2-20
-20
-21
-21
-21

-21
2-21
2-21
-21

2-22
-22
-22

-22
2-22
2-22
-22
AppleEvent VI Descriptions..
LabVIEW-Specific AppleEvent VIs ... 5
Advanced Topics ...9

Constructing and Sending Other AppleEvents ...
Creating AppleEvent Parameters ..

Low-Level AppleEvent VIs .. 5
Object Support VI Example ..
Sending AppleEvents to LabVIEW from Other Applications .. 5

Required AppleEvents ..
LabVIEW Specific AppleEvents .. 5
Replies to AppleEvents...

Event: Run VI ... 5
Description ... 52
Event Class... 52
Event ID ... 52
Event Parameters.. 5
Reply Parameters.. 5
Possible Errors.. 52

Event: Abort VI .. 52
Description ... 52
Event Class... 52
Event ID ... 52
Event Parameters.. 5
Reply Parameters.. 5
Possible Errors.. 52

Event: VI Active? ... 52
Description ... 52
Event Class... 52
Event ID ... 52
Event Parameters.. 5
Reply Parameters.. 5
Possible Errors.. 52

Event: Close VI .. 5
Description ... 52
Event Class... 52
Event ID ... 52
Event Parameters.. 5
Reply Parameters.. 5
Possible Errors.. 52
LabVIEW Function and VI Reference Manual xvi © National Instruments Corporation

Contents

53-2

.A-1

-1
.B-10

B-16
-20
-21
-22
-23
B-24

C-1
C-6
Chapter 53
Program to Program Communication VIs

PPC VI Descriptions..

Appendices and Index

Appendix A
Error Codes

Numeric Error Codes ..

Appendix B
DAQ Hardware Capabilities

MIO and AI Device Hardware Capabilities...B
Lab and 1200 Series and Portable Devices Hardware Capabilities................................
54xx Devices..B-14
SCXI Module Hardware Capabilities ..
Analog Output Only Devices Hardware Capabilities..B
Dynamic Signal Acquisition Devices Hardware Capabilities ...B
Digital Only Devices Hardware Capabilities...B
Timing Only Devices Hardware Capabilities ..B
5102 Devices Hardware Capabilities...

Appendix C
GPIB Multiline Interface Messages

Multiline Interface Messages...
Message Definitions ..

Appendix D
Customer Communication

Index
© National Instruments Corporation xvii LabVIEW Function and VI Reference Manual

Contents

7-5
7-6
7-6
7-6
7-6
7-7

28-4
8-5
8-6
8-6

28-7
8-7
8-7

8-8
28-8

-4

-5

-6
0-7
-7

41-8
41-8
41-8
41-9

. 6-3
6-4
6-7
6-7
6-9
6-10
Figures and Tables

Figures
Figure 27-1. Setup Mode in ICTR Control.. 2
Figure 27-2. Setup Mode 1 in ICTR Control... 2
Figure 27-3. Setup Mode 2 in ICTR Control... 2
Figure 27-4. Setup Mode 3 in ICTR Control... 2
Figure 27-5. Setup Mode 4 in ICTR Control... 2
Figure 27-6. Setup Mode 5 in ICTR Control... 2

Figure 28-1. Unbuffered Mode 2 and 3 Counting ...
Figure 28-2. Buffered Mode 3 Counting ... 2
Figure 28-3. Unbuffered Mode 4 High Pulse Width Measurement 2
Figure 28-4. Buffered Mode 4 Rising-Edge Pulse Width Measurement..................... 2
Figure 28-5. Unbuffered Mode 4 Rising-Edge Period Measurement..........................
Figure 28-6. Buffered Mode 4 Rising-Edge Pulse Width Measurement..................... 2
Figure 28-7. Unbuffered Mode 6 High Pulse Width Measurement 2
Figure 28-8. Buffered Mode 6 High Pulse Width Measurement

(Count on Rising Edge of Source) ... 2
Figure 28-9. Buffered Mode 7 Semi-Period Measurement ...

Figure 30-1. Strain Gauge Bridge Completion Networks
(Quarter-Bridge Configuration) ... 30

Figure 30-2. Strain Gauge Bridge Completion Networks
(Half-Bridge Configuration) .. 30

Figure 30-3. Strain Gauge Bridge Completion Networks
(Full-Bridge Configuration) ... 30

Figure 30-4. Circuit Diagram of a Thermistor in a Voltage Divider........................... 3
Figure 30-5. Circuit Diagram of a Thermistor with Current Excitation...................... 30

Figure 41-1. Lowpass Filter...
Figure 41-2. Highpass Filter ..
Figure 41-3. Bandpass Filter..
Figure 41-4. Bandstop Filter..

Tables
Table 6-1. Special Escape Codes ..
Table 6-2. String Syntax...
Table 6-3. Possible Format into String Errors..
Table 6-4. Format Specifiers ..
Table 6-5. Special Characters for Match Pattern ...
Table 6-6. Strings for the Match Pattern Examples ...
LabVIEW Function and VI Reference Manual xviii © National Instruments Corporation

Contents

6-12
6-12

9-8

0-2
10-7

8-2

-4
8-6
8-7
8-9
8-11
8-14
8-17

-18

18

20

20

21

25-6

8-2
8-3
28-9

29-8
29-9

34-4
34-4

1-2

52-11
Table 6-7. Scan from String Errors...
Table 6-8. Scan from String Examples...

Table 9-1. Lexical Class Number Descriptions ..

Table 10-1. Valid Value of Elements for Date/Time Cluster1
Table 10-2. Format Codes for the Time Format String ..

Table 18-1. AI Buffer Config VI Device-Specific Settings and Ranges....................1
Table 18-2. Device-Specific Settings and Ranges for Controls

in the AI Clock Config VI ..18
Table 18-3. Device-Specific Settings and Ranges for the AI Control VI...................1
Table 18-4. Device-Specific Settings and Ranges for the AI Group Config VI1
Table 18-5. AI Hardware Config Channel Configuration ..1
Table 18-6. Device-Specific Settings and Ranges for the AI Hardware Config VI ...1
Table 18-7. Device-Specific Settings and Ranges for the AI SingleScan VI.............1
Table 18-8. Restrictions for Analog Triggering on E-Series Devices........................1
Table 18-9. Digital Trigger Sources for Devices

with Fixed Digital Trigger Sources ..18
Table 18-10. Device-Specific Settings and Ranges

for the AI Trigger Config VI (Part 1) ...18-
Table 18-11. Device-Specific Settings and Ranges

for the AI Trigger Config VI (Part 2) ...18-
Table 18-12. Device-Specific Settings and Ranges

for the AI Trigger Config VI (Part 3) ...18-
Table 18-13. Device-Specific Settings and Ranges

for the AI Trigger Config VI (Part 4) ...18-

Table 25-1. Device Specific Parameters and Legal Ranges for Devices....................

Table 28-1. Counter Chips and Their Available DAQ Devices2
Table 28-2. Valid Counter Numbers for CTR Group Config Devices.......................2
Table 28-3. Adjacent Counters ...

Table 29-1. Channel to Index VI Parameter Examples ..
Table 29-2. Channel to Index VI Parameter Examples for Sun

Table 34-1. Command String Device Functions ..
Table 34-2. Command String Controller Functions ...

Table 51-1. New and Old ActiveX Automation Functions ..5

Table 52-1. AppleEvent Descriptor String Formats ...
© National Instruments Corporation xix LabVIEW Function and VI Reference Manual

Contents

A-1
-2

A-4
-7
-21
-22

A-23
A-24
-25
-28
A-28
A-29
-29
A-29

-2
-3
-4
-4
-7

8
-9
10

-10

-11

-11

-12

-12

-13

-14

-15
-16
-17
-17
Table A-1. Numeric Error Code Ranges...
Table A-2. VISA Error Codes... A
Table A-3. Analysis Error Codes ..
Table A-4. Data Acquisition VI Error Codes.. A
Table A-5. AppleEvent Error Codes ... A
Table A-6. Instrument Driver Error Codes ... A
Table A-7. PPC Error Codes ...
Table A-8. GPIB Error Codes ...
Table A-9. LabVIEW Function Error Codes .. A
Table A-10. LabVIEW-Specific PPC Error Codes... A
Table A-11. TCP and UDP Error Codes ...
Table A-12. Serial Port Error Codes ...
Table A-13. LabVIEW-Specific Error Codes for AppleEvent Messages................... A
Table A-14. DDE Error Codes..

Table B-1. Analog Input Configuration Programmability—MIO and AI Devices .. B-1
Table B-2. Analog Input Characteristics—MIO and AI Devices (Part 1)................ B
Table B-3. Analog Input Characteristics—MIO and AI Devices (Part 2)................ B
Table B-4. Internal Channel Support—MIO and AI Devices B
Table B-5. Analog Output Characteristics—MIO and AI Devices B
Table B-6. Analog Output Characteristics—E Series Devices................................. B
Table B-7. Digital I/O Hardware Capabilities—MIO and AI Devices..................... B-
Table B-8. Counter Characteristics—MIO and AI Devices B
Table B-9. Counter Usage for Analog Input and Output—MIO and AI Devices B-
Table B-10. Analog Input Configuration Programmability—

Lab and 1200 Series and Portable Devices.. B
Table B-11. Analog Input Characteristics—Lab and 1200 Series and

Portable Devices (Part 1) ... B
Table B-12. Analog Input Characteristics—Lab and 1200 Series and

Portable Devices (Part 2) ... B
Table B-13. Analog Output Characteristics—Lab and 1200 Series and

 Portable Devices ... B
Table B-14. Counter Usage for Analog Input and Output—Lab Series and

Portable Devices .. B
Table B-15. Digital I/O Hardware Capabilities—Lab and 1200 Series and

Portable Devices .. B
Table B-16. Analog Output and Digital Output Characteristics—

54XX Series Devices ... B
Table B-17. Counter/Timer Characteristics—Lab and 1200 Series and

Portable Devices .. B
Table B-18. Analog Input Characteristics—SCXI Modules (Part 1) B
Table B-19. Analog Output Characteristics—SCXI Modules.................................... B
Table B-20. Relay Characteristics—SCXI Modules .. B
LabVIEW Function and VI Reference Manual xx © National Instruments Corporation

Contents

-18
-18
-19
-19
-20

21

21

22
22
23
-24
-24

-24
B-24
Table B-21. Digital Input and Output Characteristics—SCXI Modules.....................B
Table B-22. Terminal Block Selection Guide—SCXI ModulesB
Table B-23. Analog Input Configuration Programmability ..B
Table B-24. Analog Input Configuration Programmability ..B
Table B-25. Analog Output Characteristics—Analog Output Only Devices..............B
Table B-26. Analog Input Configuration Programmability—

Dynamic Signal Acquisition Devices...B-
Table B-27. Analog Output Characteristics—

Dynamic Signal Acquisition Devices...B-
Table B-28. Analog Input Characteristics—

Dynamic Signal Acquisition Devices...B-
Table B-29. Digital Hardware Capabilities—Digital I/O Devices..............................B-
Table B-30. Digital Hardware Capabilities—Timing Only DevicesB-
Table B-31. Counter/Timer Characteristics—Timing Only Devices..........................B
Table B-32. Analog Input Configuration Programmability ..B
Table B-33. Analog Input Characteristics ...B
Table B-34. Analog Input Characteristics, Part 2..
© National Instruments Corporation xxi LabVIEW Function and VI Reference Manual

About This Manual
the

s

e
The LabVIEW Function and VI Reference Manual contains descriptions of
all virtual instruments (VIs) and functions, including the following:

• VIs that support the devices for data acquisition

• VIs for GPIB, VXIbus, and serial port I/O operation

• digital signal processing, filtering, and numerical and statistical VIs

• networking and interapplication communications VIs

This manual is a supplement to the LabVIEW User Manual and you should
be familiar with that material.

This manual provides an overview of each function and VI available in
LabVIEW development system. However, for more specific parameter
information regarding each function and VI, refer to the Online Reference,
which you can access by selecting Help»Online Reference, or to the Help
window, which you access by selecting Help»Show Help.

Organization of the Product User Manual
This manual covers five subject areas: G functions and VIs, Data
Acquisition VIs, Instrument I/O VIs, Analysis VIs, and Communication
VIs. Chapter 1, Introduction to the G Functions and VIs, introduces the
functions and VIs available in the LabVIEW development system.

• Part I, G Functions and VIs, includes Chapters 2 through 13, which
describe the functions unique to the G programming language.

• Part II, Data Acquisition VIs, includes Chapters 14 through 30, which
describe the Data Acquisition (DAQ) VIs.

• Part III, Instrument I/O Functions and VIs, includes Chapters 31
through 36, which describe the Instrument I/O VIs and functions.

• Part IV, Analysis VIs, includes Chapters 37 through 47, which describ
the Analysis VIs.

• Part V, Communication VIs and Functions, includes Chapters 48
through 53, which describe the Communication VIs.
© National Instruments Corporation xxiii LabVIEW Function and VI Reference Manual

About This Manual

g

al,

ple,

ions

g
s,
In addition, this manual includes the following appendices and index:

• Appendix A, Error Codes, includes tables that summarize the analo
and digital I/O capabilities of National Instruments data acquisition
devices.

• Appendix B, DAQ Hardware Capabilities, lists commands that
IEEE 488 defines.

• Appendix C, GPIB Multiline Interface Messages, describes basic
concepts you need to understand to operate GPIB.

• Appendix D, Customer Communication, contains forms to help you
gather the information necessary to help us solve your technical
problems and a form you can use to comment on the product
documentation.

• The Index contains an alphabetical list of VIs described in this manu
including the page where you can find each one.

Conventions Used in This Manual
The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard — for exam
<shift>. Angle brackets containing numbers separated by an ellipsis
represent a range of values associated with a bit or signal name —
for example, DBIO<3..0>.

[] Square brackets enclose optional items — for example, [response].

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys —
for example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box opt
to a final action. The sequence File»Page Setup»Options»Substitute
Fonts directs you to pull down the File menu, select the Page Setup item,
select Options, and finally select the Substitute Fonts options from the
last dialog box.

bold Bold text denotes the names of menus, menu items, parameters, dialo
boxes, dialog box buttons or options, icons, windows, Windows 95 tab
or LEDs.

bold italic Bold italic text denotes an activity objective, note, caution, or warning.

Ctrl Key names are capitalized.
LabVIEW Function and VI Reference Manual xxiv © National Instruments Corporation

About This Manual

ction
e

ds

er
tax
ths,

ions,
nd

puter
ode

rive
italic Italic text denotes variables, emphasis, a cross reference, or an introdu
to a key concept. This font also denotes text from which you supply th
appropriate word or value, as in Windows 3.x.

italic monospace Italic text in this font denotes that you must supply the appropriate wor
or values in the place of these items.

monospace Text in this font denotes text or characters that you should literally ent
from the keyboard, sections of code, programming examples, and syn
examples. This font is also used for the proper names of disk drives, pa
directories, programs, subprograms, subroutines, device names, funct
operations, variables, filenames and extensions, and for statements a
comments taken from programs.

monospace bold Bold text in this font denotes the messages and responses that the com
automatically prints to the screen. This font also emphasizes lines of c
that are different from the other examples.

paths Paths in this manual are denoted using backslashes (\) to separate d
names, directories, folders, and files.

Related Documentation
You might find the following documentation helpful as you read this
manual:

• LabVIEW User Manual

• G Programming Reference Manual

• LabVIEW Data Acquisition Basics Manual

• LabVIEW QuickStart Guide

• LabVIEW Online Reference, available by selecting
Help»Online Reference

• LabVIEW Online Tutorial (Windows only), which you launch from
the LabVIEW dialog box.

• LabVIEW Getting Started Card

• G Programming Quick Reference Card

• LabVIEW Release Notes

• LabVIEW Upgrade Notes
© National Instruments Corporation xxv LabVIEW Function and VI Reference Manual

About This Manual

ur
e it
tion
Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with o
products, and we want to help if you have problems with them. To mak
easy for you to contact us, this manual contains comment and configura
forms for you to complete. These forms are in Appendix D, Customer
Communication, at the end of this manual.
LabVIEW Function and VI Reference Manual xxvi © National Instruments Corporation

© National Instruments Corporation 1-1 LabVIEW Function and VI
1

l
em.

r

y are

to
Introduction to the
G Functions and VIs

This chapter contains basic information about the functions and virtua
instruments (VIs) that are available in the LabVIEW development syst

The development system includes collections of VIs that work with you
G programming language, data acquisition (DAQ) hardware devices,
instrument devices, and other communication interfaces.

Locating the G Functions and VIs

Functions are elementary nodes in the G programming language. The
analogous to operators or library functions in conventional languages.
Functions are not VIs and therefore do not have front panels or block
diagrams. When compiled, functions generate inline machine code.

You select functions from the Functions palette in the block diagram.
When the block diagram window is active, select Windows»
Show Functions Palette. You also can access the Functions palette by
popping up on the area in the block diagram window where you want
place the function.
Reference Manual

Chapter 1 Introduction to the G Functions and VIs

e

es,
The following illustration shows the functions and VIs available from th
Functions palette.

Many Functions palette chapters include information about function
examples. The paths for these examples for LabVIEW begin with
examples\ .

Function and VI Overviews
The following functions and VIs are available from the Functions palette.

Structures
G Structures include While Loop, For Loop, Case, and Sequence
structures. This palette also contains the global and local variable nod
and the formula node.

Structures, Numeric, Boolean

String, Array, Cluster

Comparison, Time & Dialog File I/O

Communication, Instrument I/O, DAQ

Analysis, Tutorial, Advanced

Instrument Library, User Libraries,
Application Control

Select a VI
LabVIEW Function and VI Reference Manual 1-2 © National Instruments Corporation

Chapter 1 Introduction to the G Functions and VIs

ns

.

Numeric Functions
Numeric functions perform arithmetic operations, conversions,
trigonometric, logarithmic, and complex mathematical functions. This
palette also contains additional numeric constants, such as p.

Boolean Functions
Boolean functions perform Boolean and logical operations.

String Functions
String functions manipulate strings and convert numbers to and from
strings. This palette also includes Additional String To Number functio
and String Conversion functions.

Array Functions
Array functions assemble, disassemble, and process arrays.

Cluster Functions
Cluster functions assemble, access, and change elements in a cluster
© National Instruments Corporation 1-3 LabVIEW Function and VI Reference Manual

Chapter 1 Introduction to the G Functions and VIs

) and
um

g

e
Comparison Functions
Comparison functions compare data (greater than, less than, and so on
operations that are based on a comparison, such as finding the minim
and maximum ranges for a group or array of values.

Time and Dialog Functions
Time and Dialog functions manipulate time functions and display dialo
boxes. This palette also includes the VIs that perform error handling.

File I/O Functions
File I/O functions manipulate files and directories. This palette also
contains the subpalettes Advanced File Functions, Binary File VIs , and
File Constants.

Advanced Functions
Advanced functions are functions that are highly specialized. The Cod
Interface Node is an example of an advanced function. The Advanced
palette also contains Data Manipulation functions and Occurrences
functions.
LabVIEW Function and VI Reference Manual 1-4 © National Instruments Corporation

Chapter 1 Introduction to the G Functions and VIs

ll as

r

,
DAQ
DAQ VIs acquire and generate real-time analog and digital data as we
perform counting operations. See Chapter 14, Introduction to the LabVIEW
Data Acquisition VIs, for more information.

Instrument I/O
Instrument I/O VIs communicate with instruments using GPIB, VISA, o
serial communication. See Chapter 31, Introduction to LabVIEW
Instrument I/O VIs, for more information.

Communication
Communication VIs network to other applications using TCP/IP, DDE,
ActiveX, Apple Events, PPC, or UDP. See Chapter 48, TCP VIs, through
Chapter 53, Program to Program Communication VIs, for more
information.

Analysis VIs
Analysis VIs perform measurement, signal generation, digital signal
processing, filtering, windowing, probability and statistics, curve fitting
linear algebra, array operations, and VIs which perform additional
numerical methods. See Chapter 37, Introduction to Analysis in LabVIEW,
for more information.
© National Instruments Corporation 1-5 LabVIEW Function and VI Reference Manual

Chapter 1 Introduction to the G Functions and VIs

h

hese
Select A VI...
The Select a VI... allows you to select any VI using a file dialog box and
then place it on a diagram.

Tutorial
The Tutorial VIs provide examples for you to use while working throug
the LabVIEW User Manual.

Instrument Driver Library
Instrument drivers are a set of VIs for GPIB, VISA, serial, and CAMAC
instruments. National Instruments, as well as other vendors, distribute t
instrument drivers. Any drivers you place in the instr.lib appear in the
palette.

User Library
The User Library palette automatically includes any VIs in your
user.lib directory, making it more convenient to gain access to
commonly used sub-VIs you have written.
LabVIEW Function and VI Reference Manual 1-6 © National Instruments Corporation

Chapter 1 Introduction to the G Functions and VIs
Application Control

The Application Control palette includes the Help functions, Menu
functions, Print VIs, and VI Server VIs.
© National Instruments Corporation 1-7 LabVIEW Function and VI Reference Manual

Part I
een

ing

sed

G Functions and VIs

Part I, G Functions and VIs, introduces the G Functions and VIs
descriptions. This part contains the following chapters:

• Chapter 2, G Function and VI Reference Overview, introduces the G
functions and VIs. This chapter also describes the differences betw
functions and VIs.

• Chapter 3, Structures, describes the structures available in G.

• Chapter 4, Numeric Functions, describes the functions that perform
arithmetic operations, complex, conversion, logarithmic, and
trigonometric operations. It also describes the commonly used
constants like the Numeric constant, Enumerated constant, and R
constant, as well as additional numeric constants.

• Chapter 5, Boolean Functions, describes the functions that perform
logical operations.

• Chapter 6, String Functions, describes the string functions, including
those that convert strings to numbers and numbers to strings.

• Chapter 7, Array Functions, describes the functions for
array operations.

• Chapter 8, Cluster Functions, describes the functions for
cluster operations.

• Chapter 9, Comparison Functions, describes the functions that
perform comparisons or conditional tests.

• Chapter 10, Time, Dialog, and Error Functions, describes the timing
functions, which you can use to get the current time, measure elap
time, or suspend an operation for a specific period of time. Error
Handling also is covered in this chapter.

• Chapter 11, File Functions, describes the low-level VIs and functions
that manipulate files, directories, and paths. This chapter also
describes file constants and the high-level file VIs.

Part I G Functions and VIs

nd
• Chapter 12, Application Control Functions, describes the Application
Control functions.

• Chapter 13, Advanced Functions, describes the functions that perform
advanced operations. This chapter also describes the Help, Data
Manipulation, and Synchronization functions, and the VI Control a
Memory VISA.
LabVIEW Function and VI Reference Manual I-2 © National Instruments Corporation

© National Instruments Corporation 2-1 LabVIEW Function and VI
2

h

y are

nce
G Function and
VI Reference Overview

This chapter introduces the G Functions and VIs, descriptions of whic
comprise Chapter 3 through Chapter 13.

Functions are elementary nodes in the G programming language. The
analogous to operators or library functions in conventional languages.
Functions are not VIs and therefore do not have front panels or block
diagrams. When compiled, functions generate machine code.

VIs are “virtual instruments,” so called because they model the appeara
functions of a physical instrument.

You select G Functions from the Functions palette, in the block diagram.
When the block diagram window is active, you can display the Functions
palette by selecting Windows»Show Functions Palette. You also can
access the Functions palette by popping up on the area in the block
diagram window where you want to place the function.
Reference Manual

Chapter 2 G Function and VI Reference Overview

e

t

ric
The following illustration shows the G functions and VIs available on th
Functions palette.

Many Functions palette chapters include information about function
examples.

G Functions Overview
For brief descriptions of each of the eleven G Function and VI palettes
available, refer to Chapter 1, Introduction to the G Functions and VIs.

Introduction to Polymorphism
The following sections provide some general information about
polymorphism in G functions.

Polymorphism
Polymorphism is the ability of a function to adjust to input data of differen
types or representations. Most functions are polymorphic. VIs are not
polymorphic. All functions that take numeric input can accept any nume

G Functions and VIs
LabVIEW Function and VI Reference Manual 2-2 © National Instruments Corporation

Chapter 2 G Function and VI Reference Overview

eir

nly
s of
rays
pt all

of a

ms,

 of

s in

rt

to an

e
tor

you

reate
representation (except some functions that do not accept complex
numbers).

Functions are polymorphic to varying degrees; none, some, or all of th
inputs may be polymorphic. Some function inputs accept numbers or
Boolean values. Some accept numbers or strings. Some accept not o
scalar numbers but also arrays of numbers, clusters of numbers, array
clusters of numbers, and so on. Some accept only one-dimensional ar
although the array elements may be of any type. Some functions acce
types of data, including complex numbers.

Unit Polymorphism
If you want to create a VI that computes the root, mean square value
waveform, you have to define the unit associated with the waveform.
You would need a separate VI for voltage waveforms, current wavefor
temperature waveforms, and so on. LabVIEW has polymorphic unit
capability so that one VI can perform the same calculation, regardless
the units received by the inputs.

You create a polymorphic unit by entering $x , where x is a number (for
example, $1). You can think of this as a placeholder for the actual unit.
When LabVIEW calls the VI, the program substitutes the units you pas
for all occurrences of $x in that VI.

LabVIEW treats a polymorphic unit as a unique unit. You cannot conve
a polymorphic unit to any other unit, and polymorphic units propagate
throughout the diagram, just as other units do. When the unit connects
indicator that also has the abbreviation $1, the units match and the VI can
then compile.

You can use $1 in combinations just like any other unit. For example, if th
input is multiplied by 3 seconds and then wired to an indicator, the indica
must be $1 s units. If the indicator has different units, the block diagram
shows a bad wire. If you need to use more than one polymorphic unit,
can use the abbreviations $2, $3, and so on.

A call to a subVI containing polymorphic units computes output units
based on the units received by its inputs. For example, suppose you c
a VI that has two inputs with the polymorphic units $1 and $2 that creates
an output in the form $1 $2 / s . If a call to the VI receives inputs with
the unit m/s to the $1 input and kg to the $2 input, LabVIEW computes the
output unit as kg m / s^2 .
© National Instruments Corporation 2-3 LabVIEW Function and VI Reference Manual

Chapter 2 G Function and VI Reference Overview

ps

s to

s

int
ily.
t
ers
n

is

bits.

he
7.
Suppose a different VI has two inputs of $1 and $1/s , and computes an
output of $1^2 . If a call to this VI receives inputs of m/s to the $1 input
andm/s^2 to the $1/s input, LabVIEW computes the output unit as
m^2 / s^2 . If this VI receives inputs of m to the $1 input and kg to
the$1/s input, however, LabVIEW declares one of the inputs as a unit
conflict and computes (if possible) the output from the other input.

A polymorphic VI can have a polymorphic subVI because LabVIEW kee
the respective units distinct.

Numeric Conversion
You can convert any numeric representation to any other numeric
representation. When you wire two or more numeric inputs of different
representations to a function, the function usually returns output in the
larger or wider format. The functions coerce the smaller representation
the widest representation before execution.

Some functions, such as Divide, Sine, and Cosine, always produce
floating-point output. If you wire integers to their inputs, these function
convert the integers to double-precision, floating-point numbers before
performing the calculation.

For floating-point, scalar quantities, it is usually best to use
double-precision, floating-point numbers. Single-precision, floating-po
numbers save little or no execution time, and overflow much more eas
The analysis libraries, for example, use double-precision, floating-poin
numbers. You should only use extended-precision, floating-point numb
when necessary. The performance and precision of extended-precisio
arithmetic varies among the platforms.

For integers, it is usually best to use a long integer.

If you wire an output to a destination that has a different numeric
representation from the source, G converts the data according to the
following rules:

• Signed or unsigned integer to floating-point number—Conversion
exact, except for long integers to single-precision, floating-point
numbers. In this case, G reduces the precision from 32 bits to 24

• Floating-point number to signed or unsigned integer—G moves
out-of-range values to the integer’s minimum or maximum value.
Most integer objects, such as the iteration terminal of a For Loop,
round floating-point numbers. G rounds a fractional part of 0.5 to t
nearest even integer—for example, G rounds 6.5 to 6 rather than
LabVIEW Function and VI Reference Manual 2-4 © National Instruments Corporation

Chapter 2 G Function and VI Reference Overview

the
os in
e

ion

an

 use
data

es.
th

ble,

 the
• Integer to integer—G does not move out-of-range values to the
integer’s minimum or maximum value. If the source is smaller than
destination, G extends the sign of a signed source and places zer
the extra bits of an unsigned source. If the source is larger than th
destination, G copies only the low order bits of the value.

The block diagram places a coercion dot on the border of a terminal where
the conversion takes place to indicate that automatic numeric convers
occurred, as in the following example.

Because VIs and functions can have many terminals, a coercion dot c
appear inside an icon if the wire crosses an internal terminal boundary
before it leaves the icon/connector, as the following illustration shows.

Moving a wired icon stretches the wire. Coercion dots can cause a VI to
more memory and increase its execution time. You should try to keep
types consistent in your VIs.

Overflow and Underflow
G does not check for overflow or underflow conditions on integer valu
Overflow and underflow for floating-point numbers is in accordance wi
IEEE 754 Standard for binary, floating-point arithmetic.

Floating-point operations propagate not-a-number (NaN) and ±Inf
faithfully. When you explicitly or implicitly convert NaN or ±Inf to an
integer or Boolean value, however, you get a value that looks reasona
but is meaningless. For example, dividing by zero produces ±Inf, but
converting that value to a word integer gives the value 32,768, which is
largest value that can be represented in the destination format.
© National Instruments Corporation 2-5 LabVIEW Function and VI Reference Manual

Chapter 2 G Function and VI Reference Overview

ing
Wire Styles
The wire style represents the data type for each terminal, as the follow
table shows. Polymorphic functions show the wire style for the most
commonly used data type.
LabVIEW Function and VI Reference Manual 2-6 © National Instruments Corporation

© National Instruments Corporation 3-1 LabVIEW Function and VI
3

Structures

This chapter describes the Structures available in G.

To access the Structures palette, select Functions»Structures. The
following illustration shows the options that are available on the Structures
palette.

See examples\general\structs.llb for examples of how these
structures are used in LabVIEW.
Reference Manual

Chapter 3 Structures

 scalar

u
ent

 4,

.
ration
Structures Overview
The following Structures are available in G.

Case Structure
Has one or more subdiagrams, or cases, exactly one of which executes when the structure
executes. Whether it executes depends on the value of the Boolean, string, or numeric
you wire to the external side of the terminal or selector.

For more information on how to use the Case structure in LabVIEW, see Chapter 4, Case and
Sequence Structures and the Formula Node, in the LabVIEW User Manual.

Sequence Structure
Consists of one or more subdiagrams, or frames, that execute sequentially. As an option, yo
can add sequence locals that allow you to pass information from one frame to subsequ
frames by popping up on the edge of the structure.

For more information on how to use the Sequence structure in LabVIEW, see Chapter
Case and Sequence Structures and the Formula Node, in the LabVIEW User Manual.

For Loop
Executes its subdiagram n times, where n equals the value contained in the count terminal
As an option, you can add shift registers so that you can pass information from one ite
to the next by popping up on the edge of the structure.

For more information on how to use For Loop in LabVIEW, see Chapter 3, Loops and Charts,
in the LabVIEW User Manual.
LabVIEW Function and VI Reference Manual 3-2 © National Instruments Corporation

Chapter 3 Structures

 to the

d

el
to the
While Loop
Executes its subdiagram until a Boolean value you wire to the conditional terminal is FALSE.
As an option, you can add shift registers so you can pass information from one iteration
next by popping up on the edge of the structure.

For more information on how to use While Loop in LabVIEW, see Chapter 3, Loops and
Charts, in the LabVIEW User Manual.

Formula Node
Executes mathematical formulae on the block diagram.

For more information on the Formula Node, see Chapter 4, Case and Sequence Structures an
the Formula Node, in the LabVIEW User Manual.

Global Variable
A built-in LabVIEW object that you define by creating a special kind of VI, with front pan
controls that define the datatype of the global variable. You can read and write values
global variable.

For more information on the Global Variable, see Chapter 23, Global and Local Variables,
in the G Programming Reference Manual.
© National Instruments Corporation 3-3 LabVIEW Function and VI Reference Manual

Chapter 3 Structures

t you
Local Variable
Lets you read or write to one of the controls or indicators on the front panel of your VI.
Writing to a local variable has the same result as passing data to a terminal, except tha
can write to it even though it is a control, or read from it even though it is an indicator.

For more information on the Local Variable, see Chapter 23, Global and Local Variables, in
the G Programming Reference Manual.
LabVIEW Function and VI Reference Manual 3-4 © National Instruments Corporation

© National Instruments Corporation 4-1 LabVIEW Function and VI
4

 the

Numeric Functions

This chapter describes the functions that perform arithmetic, complex,
conversion, logarithmic, and trigonometric operations. It also describes
commonly used constants such as the Numeric constant, Enumerated
constant, and Ring constant, as well as additional numeric constants.

To access the Numeric palette, select Functions»Numeric. The following
illustration shows the options that are available on the Numeric palette.

The Numeric palette includes the following subpalettes:

• Additional Numeric Constants

• Complex

• Conversion

• Logarithmic

• Trigonometric

For examples of some of the arithmetic functions, see examples\

general\structs.llb .
Reference Manual

Chapter 4 Numeric Functions

ons

ns,

s of
.
s:

ave
rate

the

e

 of
t.
ith
ame
same

Polymorphism for Numeric Functions
The arithmetic functions accept numeric input data. With some excepti
noted in the function descriptions, the output has the same numeric
representation as the input, or if the inputs have different representatio
the output is the wider of the inputs.

The arithmetic functions work on numbers, arrays of numbers, cluster
numbers, arrays of clusters of numbers, complex numbers, and so on
A formal and recursive definition of the allowable input type is as follow

Numeric type = numeric scalar || array [numeric type] || cluster
[numeric types]

The numeric scalars can be a floating-point, integer or complex,
number. G does not allow you to use arrays of arrays.

Arrays can have any number of dimensions of any size. Clusters can h
any number of elements. For functions with one input, the functions ope
on each element of the structure.

For functions with two inputs, you can use the following input
combinations:

• Similar—both inputs have the same structure, and the output has
same structure as the inputs.

• One scalar—one input is a numeric scalar, the other is an array or
cluster, and the output is an array or cluster.

• Array of—one input is a numeric array, the other is the numeric typ
itself, and the output is an array.

For similar inputs, G performs the function on the respective elements
the structures. For example, G can add two arrays element by elemen
Both arrays must have the same dimensionality. You can add arrays w
differing numbers of elements; the output of such an addition has the s
number of elements as the smallest input. Clusters also must have the
number of elements, and the respective elements must have the same
structure.

Note You cannot use the multiply function to do matrix multiplication. If you use the
multiply function with two matrices, G takes the first number in the first row of the
first matrix, multiplies it by the first number in the first row of the second matrix,
and so on.
LabVIEW Function and VI Reference Manual 4-2 © National Instruments Corporation

Chapter 4 Numeric Functions

he

is an

 an
ise,

ers,

the
s of
me
For operations involving a scalar and an array or cluster, G performs t
function on the scalar and the respective elements of the structure.
For example, G can subtract a number from all elements of an array,
regardless of the dimensionality of the array.

For operations that involve a numeric type and an array of that type,
G performs the function on each array element. For example, a graph
array of points, and a point is a cluster of two numeric types, x and y. To
offset a graph by 5 units in the x direction and 8 units in the y direction, you
can add a point, (5, 8), to the graph.

The Polymorphic Combinations example below illustrates some of the
possible polymorphic combinations of the Add function.

Polymorphism for Transcendental Functions
The transcendental functions accept numeric input data. If the input is
integer, the output is a double-precision, floating-point number. Otherw
the output has the same numeric representation as the input.

These functions work on numbers, arrays of numbers, clusters of numb
arrays of clusters of numbers, complex numbers, and so on.

Polymorphism for Conversion Functions
All the conversion functions except Byte Array to String, String to Byte
Array, Convert Unit, and Cast Unit Bases are polymorphic. Therefore,
polymorphic functions work on scalar values, arrays of scalars, cluster
scalars, arrays of clusters of scalars, and so on. The output has the sa
numeric representation as the input but with the new type.
© National Instruments Corporation 4-3 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

er is
rison
 you
tion
lue

rs of
me
When you compare signed and unsigned integers and the signed integ
negative, the negative integer is changed to positive before the compa
occurs. Therefore, you do not get the expected results. For example, if
enter –1 with representation I32 for one input and 5 with a representa
U32 as the other input, the result returned states that the minimum va
is 5, because 5 is less than 4294967295.

Polymorphism for Complex Functions
The complex functions work on scalar values, arrays of scalars, cluste
scalars, arrays of clusters of scalars, and so on. The output has the sa
composition as the input but with the new type.

Arithmetic Function Descriptions
The following functions are available.

Absolute Value
Returns the absolute value of the input.

Add
Computes the sum of the inputs.

Add Array Elements
Returns the sum of all the elements in numeric array.
LabVIEW Function and VI Reference Manual 4-4 © National Instruments Corporation

Chapter 4 Numeric Functions

ting

e

or
Compound Arithmetic
Performs arithmetic on two or more numeric, cluster, or Boolean inputs.

You select the operation (multiply, AND, or OR) by popping up on the function and selec
Change Mode.

You can invert the inputs or the output of this function by popping up on the individual
terminals, and selecting Invert . For Add, select Invert to negate an input or the output. For
Multiply, select Invert to use the reciprocal of an input or to produce the reciprocal of th
output. For AND or OR, select Invert to logically negate an input or the output.

Note You add inputs to this node by popping up on an input and selecting Add Input
by placing the Positioning tool in the lower left or right corner of the node and
dragging it.

Decrement
Subtracts 1 from the input value.

Divide
Computes the quotient of the inputs.

Increment
Adds 1 to the input value.
© National Instruments Corporation 4-5 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

N.
Multiply
Returns the product of the inputs.

Multiply Array Elements
Returns the product of all the elements in numeric array.

Negate
Negates the input value.

Quotient & Remainder
Computes the integer quotient and the remainder of the inputs.

If the integer input value of y is zero, the quotient is zero and the remainder is dividendx. For
floating point inputs, if y is zero, the quotient is infinity and the remainder defaults to Na

Random Number (0–1)
Produces a double-precision floating-point number between 0 and 1 exclusive, or not
including 0 and 1. The distribution is uniform.
LabVIEW Function and VI Reference Manual 4-6 © National Instruments Corporation

Chapter 4 Numeric Functions

 is 4.

s 3.

Reciprocal
Divides 1 by the input value.

Round To +Infinity
Rounds the input to the next highest integer. For example, if the input is 3.1, the result
If the input is –3.1, the result is –3.

Round To –Infinity
Rounds the input to the next lowest integer. For example, if the input is 3.8, the result i
If the input is –3.8, the result is –4.

Round To Nearest
Rounds the input to the nearest integer. If the value of the input is midway between two
integers (for example, 1.5 or 2.5), the function returns the nearest even integer (2).

Scale By Power Of 2
Multiplies one input (x) by 2 raised to the power of the other input (n). If n is a floating-point
number, this function rounds n prior to scaling x (0.5 rounds to 0; 0.51 rounds to 1). If x is an
integer, this function is the equivalent of an arithmetic shift.
© National Instruments Corporation 4-7 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

nd
 this

ue by
 data

assign

an
 If you
g in the
ring.
Sign
Returns 1 if the input value is greater than 0, returns 0 if the input value is equal to 0, a
returns –1 if the input value is less than 0. Other programming languages typically call
function the signum or sgn function.

Square Root
Computes the square root of the input value. If x is negative, the square root is NaN unless
x is complex.

Subtract
Computes the difference of the inputs.

User Definable Arithmetic Constants
You can define the following constants.

Numeric Constant
Use this constant to supply a constant numeric value to the block diagram. Set this val
clicking in the constant with the Operating tool and typing a value. You can change the
format and representation.

The value of the numeric constant cannot be changed while the VI executes. You can
a label to this constant.

Enumerated Constant
Enumerated values associate unsigned integers to strings. If you display a value from
enumerated constant, the string is displayed, instead of the number associated with it.
need a set of strings that do not change, then use this constant. Set the value by clickin
constant with the Operating Tool. Set the string with the Labeling Tool and enter the st
To add another item, click the constant and choose Add Item Before or Add Item After .
LabVIEW Function and VI Reference Manual 4-8 © National Instruments Corporation

Chapter 4 Numeric Functions

an

t, the
s that
erating
up on

ign a
The value of the enumerated constant cannot be changed while the VI executes. You c
assign a label to this constant.

Ring Constant
Rings associate unsigned integers to strings. If you display a value from a ring constan
number is displayed, instead of the string associated with it. If you need a set of string
do not change, then use this constant. Set the value by clicking the constant with the Op
tool. Set the string with the Labeling tool and enter the string. To add another item, pop
the constant and choose Add Item Before or Add Item After .

The value of the Ring constant cannot be changed while the VI executes. You can ass
label to this constant.

Conversion Functions Descriptions
The following illustration shows the options that are available on the Conversion subpalette.

The following functions convert a numeric input into a specific representation:

• To Byte Integer

• To Double Precision Complex

• To Double Precision Float

• To Extended Complex

• To Extended Precision Float

• To Long Integer

• To Single Precision Complex

• To Single Precision Float

• To Unsigned Byte Integer

• To Unsigned Word Integer

• To Unsigned Long Integer

• To Word Integer
© National Instruments Corporation 4-9 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

ut to
is out
teger

rger
s.

RUE,

f
When these functions convert a floating-point number to an integer, they round the outp
the nearest integer, or the nearest even integer if the fractional part is 0.5. If the result
of range for the integer, these functions return the minimum or maximum value for the in
type. When these functions convert an integer to a smaller integer, they copy the
least-significant bits without checking for overflow. When they convert an integer to a la
integer, they extend the sign of a signed integer and pad an unsigned integer with zero

Use caution when you convert numbers to smaller representations, particularly when
converting integers, because the G conversion routines do not check for overflow.

Boolean Array To Number
Converts Boolean array to an unsigned long integer by interpreting it as the two’s
complement representation of an integer, with the 0th element of the array being the
least-significant bit.

Boolean To (0,1)
Converts a Boolean value to a word integer— 0 and 1 for the input values FALSE and T
respectively.

Boolean can be a scalar, an array, or a cluster of Boolean values, an array of clusters o
Boolean values, and so on. See the Polymorphism for Boolean Functions section in Chapter 5,
Boolean Functions.

Byte Array To String
Converts an array of unsigned bytes into a string.
LabVIEW Function and VI Reference Manual 4-10 © National Instruments Corporation

Chapter 4 Numeric Functions

t Unit
y unit
 units,

th no

hen

n an

ed

its.

f the
Cast Unit Bases
Changes the units associated with the input to the units associated with unit and returns the
results at the output terminal. Use this function with extreme caution. Because the Cas
Bases function works with bases, you must understand the conversion from an arbitrar
to its bases before you can use this function effectively. This function can change base
such as changing meters to grams.

Convert Unit
Converts a physical number (a number that has a unit) to a pure number (a number wi
units), or a pure number to a physical number.

You can edit the string inside the unit by highlighting the string with the Operating tool t
entering the text.

If the input is a pure number, the output receives the specified units. For example, give
input of 13 and a unit specification of seconds(s), the resulting value is 13 seconds.

If the input is a physical number and unit is a compatible unit, the output is the input measur
in the specified units. For example, if you specify 37 meters(m), and unit is meters, the result
is 37 with no associated units. If unit is feet (ft), the result is 121.36 with no associated un

Number To Boolean Array
Converts an integer number to a Boolean array of 8, 16, or 32 elements, where the 0th element
corresponds to the least-significant bit (LSB) of the two’s complement representation o
integer.

String To Byte Array
Converts string into an array of unsigned bytes.
© National Instruments Corporation 4-11 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions
To Byte Integer
Converts number to an 8-bit integer in the range –128 to 127.

To Double Precision Complex
Converts number to a double-precision complex number.

To Double Precision Float
Converts number to a double-precision floating-point number.

To Extend Precision Complex
Converts number to an extended-precision complex number.

To Extended Precision Float
Converts number to an extended-precision floating-point number.

To Long Integer
Converts number to a 32-bit integer in the range –231 to 231–1
LabVIEW Function and VI Reference Manual 4-12 © National Instruments Corporation

Chapter 4 Numeric Functions
To Single Precision Complex
Coverts number to a single-precision complex number.

To Single Precision Float
Converts number to a single-precision floating-point number.

To Unsigned Byte Integer
Converts number to an 8-bit unsigned integer in the range 0 to 255.

To Unsigned Long Integer
Converts number to a 32-bit unsigned integer in the range 0 to 232 – 1.

To Unsigned Word Integer
Converts number to a 16-bit unsigned integer in the range 0 to 65,535.

To Word Integer
Converts number to a 16-bit integer in the range –32,768 to 32,767.
© National Instruments Corporation 4-13 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

.
Trigonometric and Hyperbolic Functions Descriptions
The following illustration shows the options for the Trigonometric subpalette.

Cosecant
Computes the cosecant of x, where x is in radians. Cosecant is the reciprocal of sine.

Cosine
Computes the cosine of x, where x is in radians.

Cotangent
Computes the cotangent of x, where x is in radians. Cotangent is the reciprocal of tangent

Hyperbolic Cosine
Computes the hyperbolic cosine of x.
LabVIEW Function and VI Reference Manual 4-14 © National Instruments Corporation

Chapter 4 Numeric Functions
Hyperbolic Sine
Computes the hyperbolic sine of x.

Hyperbolic Tangent
Computes the hyperbolic tangent of x.

Inverse Cosine
Computes the arccosine of x in radians. If x is not complex and is less than –1 or greater
than 1, the result is NaN.

Inverse Hyperbolic Cosine
Computes the hyperbolic argcosine of x. If x is not complex and is less than 1, the result
is NaN.

Inverse Hyperbolic Sine
Computes the hyperbolic argsine of x.
© National Instruments Corporation 4-15 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

1,
Inverse Hyperbolic Tangent
Computes the hyperbolic argtangent of x. If x is not complex and is less than –1 or greater
than 1, the result is NaN.

Inverse Sine
Computes the arcsine of x in radians. If x is not complex and is less than –1 or greater than
the result is NaN.

Inverse Tangent
Computes the arctangent of x in radians (which can be between –p/2 and p/2).

Inverse Tangent (2 Input)
Computes the arctangent of y/x in radians. This function can compute the arctangent for
angles in any of the four quadrants of the x-y plane, whereas the Inverse Tangent function
computes the arctangent in only two quadrants.

Secant
Computes the secant of x, where x is in radians.
LabVIEW Function and VI Reference Manual 4-16 © National Instruments Corporation

Chapter 4 Numeric Functions
Sinc
Computes the sine of x divided by x, where x is in radians.

Sine
Computes the sine of x, where x is in radians.

Sine & Cosine
Computes both the sine and cosine of x, where x is in radians. Use this function only when
you need both results.

Tangent
Computes the tangent of x, where x is in radians.

Logarithmic Functions Descriptions
The following illustration shows the options for the Logarithmic subpalette.

© National Instruments Corporation 4-17 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

t.
Exponential
Computes the value of e raised to the x power.

Exponential (Arg) –1
Computes 1 less than the value of e raised to the x power. When x is very small, this function
is more accurate than using the Exponential function then subtracting 1 from the outpu

Logarithm Base 2
Computes the base-2 logarithm of x. If x is 0, log2(x) is –¥ . If x is not complex and is less
than 0, log2(x) is NaN.

Logarithm Base 10
Computes the base-10 logarithm of x. If x is 0, log(x) is –¥ . If x is not complex and is less
than 0, log(x) is NaN.

Logarithm Base X
Computes the base x logarithm of y (x>0, y>0). If y is 0, the output is –¥ . When x and y are
both not complex and x is less than or equal to 0, or y is less than 0, the output is NaN.
LabVIEW Function and VI Reference Manual 4-18 © National Instruments Corporation

Chapter 4 Numeric Functions

Natural Logarithm
Computes the natural base e logarithm of x. If x is 0, ln(x) is –¥ . If x is not complex and is
less than 0, ln(x) is NaN.

Natural Logarithm (Arg +1)
Computes the natural logarithm of (x + 1). When x is near 0, this function is more accurate
than adding 1 to x then using the Natural Logarithm function. If x is equal to –1, the result is
–¥ . If x is not complex and is less than –1, the result is NaN.

Power Of 2
Computes 2 raised to the x power.

Power Of 10
Computes 10 raised to the x power.

Power Of X
Computes x raised to the y power. If x is not complex, it must be greater than zero unless y is
an integer value. Otherwise, the result is NaN. If y is zero, x^y is 1 for all values of x,
including zero.
© National Instruments Corporation 4-19 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

 two
plex
Complex Function Descriptions
The following illustration displays the options available on the Complex subpalette.

The functions Polar To Complex and Re/Im To Complex create complex numbers from
values given in rectangular or polar notation. The functions Complex To Polar and Com
To Re/Im break a complex number into its rectangular or polar components.

Complex Conjugate
Produces the complex conjugate of x + iy.

Complex To Polar
Breaks a complex number into its polar components.

Complex To Re/Im
Breaks a complex number into its rectangular components.

Polar To Complex
Creates a complex number from two values in polar notation.
LabVIEW Function and VI Reference Manual 4-20 © National Instruments Corporation

Chapter 4 Numeric Functions

by

assign
Re/Im To Complex
Creates a complex number from two values in rectangular notation.

Additional Numeric Constants Descriptions
The following illustration shows the options available on the Additional Numeric Constants
subpalette.

Additional User Definable Constants
You can define the following constants.

Listbox Symbol Ring Constant
This ring constant assigns symbols to items in a listbox control. Typically, you wire this
constant to the Item Symbols attribute.

Color Box Constant
Use this constant to supply a constant color value to the block diagram. Set this value
clicking the constant with the Operating tool and choosing the desired color.

The value of the Color Box constant cannot be changed while the VI executes. You can
a label to this constant.
© National Instruments Corporation 4-21 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

ting,
ions
Error Ring Constant
This constant is a predefined ring of errors specific to memory usage, networking, prin
and file I/O. Errors related to DAQ, GPIB, VISA, and Serial VIs and functions are not opt
in this ring.

Fixed Constants
The following constants are fixed.

Avogadro Constant (1/mol)
Returns the value 6.0220e23.

Base 10 Logarithm of e
Returns the value 0.43429448190325183.

Elementary Charge (c)
Returns the value 1.6021892e–19.

Gravitational Constant (Nm2/kg2)
Returns the value 6.6720e–11.

Molar Gas Constant (J/mol K)
Returns the value 8.31441.

e
Returns the value 2.7182818284590452e+0.

Natural Logarithm of Pi
Returns the value 1.14472988584940020.

Natural Logarithm of 2
Returns the value 0.69314718055994531.

Natural Logarithm of 10
Returns the value 2.30234095236904570.

Negative Infinity
Returns the value –¥ .
LabVIEW Function and VI Reference Manual 4-22 © National Instruments Corporation

Chapter 4 Numeric Functions
Pi
Returns the value 3.14159265358979320.

Pi divided by 2
Returns the value 1.57079632679489660.

Pi multiplied by 2
Returns the value 6.28318530717958650.

Planck’s Constant (J/Hz)
Returns the value 6.6262e–34.

Positive Infinity
Returns the value ¥ .

Reciprocal of e
Returns the value 0.36787944117144232.

Reciprocal of Pi
Returns the value 0.31830988618379067.

Rydberg Constant (/m)
Returns the value 1.097373177e7.

Speed of Light in Vacuum (m/sec)
Returns the value 299,792,458.
© National Instruments Corporation 4-23 LabVIEW Function and VI Reference Manual

© National Instruments Corporation 5-1 LabVIEW Function and VI
5

put
he
ber,

or
Boolean Functions

This chapter describes the functions that perform logical operations.

The following illustration shows the Boolean palette, which you access by
selecting Functions»Boolean.

For examples of some of the Boolean functions, see examples\

general\structs.llb .

Polymorphism for Boolean Functions
The logical functions take either Boolean or numeric input data. If the in
is numeric, G performs a bit-wise operation. If the input is an integer, t
output has the same representation. If the input is a floating-point num
G rounds it to a long integer, and the output is a long integer.

The logical functions work on arrays of numbers or Boolean values,
clusters of numbers or Boolean values, arrays of clusters of numbers
Boolean values, and so on.
Reference Manual

Chapter 5 Boolean Functions

s:

.

s as
r
lues

lean

A formal and recursive definition of the allowable input type is as follow

Logical type = Boolean scalar || numeric scalar || array [logical type] ||
cluster [logical types]

except that complex numbers and arrays of arrays are not allowed

Logical functions with two inputs can have the same input combination
the arithmetic functions. However, the logical functions have the furthe
restriction that the base operations can only be between two Boolean va
or two numbers. For example, you cannot have an AND between a Boo
value and a number. See the example below for an illustration of some
combinations of Boolean values for the And function.

Boolean Function Descriptions
The following Boolean functions are available.

And
Computes the logical AND of the inputs.

Note This function performs bit-wise operations on numeric inputs.
LabVIEW Function and VI Reference Manual 5-2 © National Instruments Corporation

Chapter 5 Boolean Functions

ast

RUE,

ting

e
And Array Elements
Returns TRUE if all the elements in Boolean array are true; otherwise it returns FALSE.

Boolean Array To Number
Converts Boolean array to an unsigned long integer by interpreting it as the two’s
complement representation of an integer with the 0th element of the array being the le
significant bit.

Boolean To (0,1)
Converts a Boolean value to a word integer — 0 and 1 for the input values FALSE and T
respectively.

Compound Arithmetic
Performs arithmetic on two or more numeric, cluster, or Boolean inputs.

You choose the operation (multiply, AND, or OR) by popping up on the function and selec
Change Mode.

You can invert the inputs or the output of this function by popping up on the individual
terminals and selecting Invert . For Add, select Invert to negate an input or the output. For
Multiply, select Invert to use the reciprocal of an input or to produce the reciprocal of th
output. For AND or OR, select Invert to logically negate an input or the output.

Note You add inputs to this node by popping up on an input and selecting Add Input or
by placing the Positioning tool in the lower left or right corner of the node and
dragging it.
© National Instruments Corporation 5-3 LabVIEW Function and VI Reference Manual

Chapter 5 Boolean Functions
Exclusive Or
Computes the logical exclusive OR of the inputs.

Implies
Computes the logical OR of y and of the logical negation of x. The function negates x then
computes the logical OR of y and of the negated x.

Not
Computes the logical negation of the input.

Not And
Computes the logical NAND of the inputs.

Not Exclusive Or
Computes the logical negation of the logical exclusive OR of the inputs.

Not Or
Computes the logical NOR of the inputs.
LabVIEW Function and VI Reference Manual 5-4 © National Instruments Corporation

Chapter 5 Boolean Functions

f the

is
ot
Number To Boolean Array
Converts number to a Boolean array of 8, 16, or 32 elements, where the 0th element
corresponds to the least significant bit (LSB) of the two's complement representation o
integer.

Or
Computes the logical OR of the inputs.

Or Array Elements
Returns FALSE if all the elements in Boolean array are false; otherwise it returns TRUE.

Boolean Constant
Use this function to supply a constant TRUE/FALSE value to the block diagram. Set th
value by clicking the T or F portion of the constant with the Operating tool. This value cann
be changed while the VI executes. You can assign a label to this constant.
© National Instruments Corporation 5-5 LabVIEW Function and VI Reference Manual

© National Instruments Corporation 6-1 LabVIEW Function and VI
6

rt

s,
s.

tate
.
String Functions

This chapter describes the string functions, including those that conve
strings to numbers and numbers to strings.

The following illustration shows the String palette, which you access by
selecting Functions»String.

Overview of Polymorphism for String Functions
This section provides descriptions of polymorphism for String function
Additional String to Number functions, and String Conversion function

Polymorphism for String Functions
String Length, To Upper Case, To Lower Case, Reverse String, and Ro
String accept strings, clusters, arrays of strings, and arrays of clusters
To Upper Case and To Lower Case also accept numbers, clusters of
Reference Manual

Chapter 6 String Functions

r

puts

sters

e
alar.

y

s the

en
 use
put
e
f
se
 can
nd

r the
d
numbers, and arrays of numbers, interpreting them as ASCII codes fo
characters (refer to the Appendix C, GPIB Multiline Interface Messages for
the numbers that correspond to each character). Width and precision in
must be scalar.

Polymorphism for Additional String to Number Functions
To Decimal, To Hex, To Octal, To Engineering, To Fractional, and
To Exponential accept clusters and arrays of numbers and produce clu
and arrays of strings. From Decimal, From Hex, From Octal, and From
Exponential/Fract/Sci accept clusters and arrays of strings and produc
clusters and arrays of numbers. Width and precision inputs must be sc

Polymorphism for String Conversion Functions
The Path To String and String To Path functions are polymorphic. The
work on scalar values, arrays of scalars, clusters of scalars, arrays of
clusters of scalars, and so on. The output has the same composition a
input but with the new type.

Format Strings Overview
Many G functions accept a format string input, which controls the
behavior of the function. A format string is composed of one or more
format specifiers, which determine what action to take to process a giv
parameter. The Format Into String and Scan From String functions can
multiple format specifiers in the format string, one for each resizable in
or output to the function. Characters in the string that are not part of th
format specifier are copied verbatim to the output string (in the case o
Format Into String) or are matched exactly in the input string (in the ca
of Scan From String), with the exception of special escape codes. You
use these codes to insert nondisplayable characters, the backslash, a
percent characters within any format string. These codes are similar to
those used in the C programming language.

Table 6-1 displays the special escape codes. A code does not exist fo
platform-dependent end-of-line (EOL) character. If you need to appen
one, use the End-of-Line constant from the String palette.
LabVIEW Function and VI Reference Manual 6-2 © National Instruments Corporation

Chapter 6 String Functions

ace
 and

nd
 the

ng,
 has

trip,
Notice that for the Scan From String and Format & Strip functions, a sp
in the format string matches any amount of whitespace (spaces, tabs,
form feeds) in the input string.

The Format & Append, Format & Strip, Array To Spreadsheet String, a
Spreadsheet String To Array functions use only one format specifier in
format string because these functions have only one input that can be
converted. Any extraneous specifiers inserted into these functions are
treated as literal strings with no special meaning.

For functions that produce a string as output, such as Format Into Stri
Format & Append, and Array To Spreadsheet String, a format specifier
the following syntax. Double brackets ([]) enclose optional elements.

%[–][+][^][0][Width][.Precision][{unit}]Conversion Code

For functions that scan a string, such as Scan From String, Format & S
and Spreadsheet String to Array, a format specifier has the following,
simplified syntax:

%[Width]Conversion Code

Table 6-1. Special Escape Codes

Code Meaning

\r Carriage Return

\t Tab

\b Backspace

\n Newline

\f Form Feed

\s space

\xx character with hexadecimal ASCII code xx

(using 0 through 9 and upper case A through F)

\\ \

%% %
© National Instruments Corporation 6-3 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

s

e

Table 6-2 displays the string syntax available.

Table 6-2. String Syntax

Syntax Element Description

% Begins the formatting specification.

– (optional) Causes the parameter to be left justified rather
than right justified within its width.

+ (optional) For numeric parameters, includes the sign even
when the number is positive.

^ (optional) When used with the e or g conversion codes, uses
engineering notation (exponent is always a
multiple of 3).

0 (optional) Pads any excess space to the left of a numeric
parameter with 0s rather than spaces.

Width (optional) When scanning, specifies an exact field width to
use. G scans only the specified number of
characters when processing the parameter.

When formatting, specifies the minimum
character field width of the output. This width is
not a maximum width; G uses as many character
as necessary to format the parameter without
truncating it. G pads the field to the left or right
of the parameter with spaces, depending on
justification. If Width is missing or zero, the
output is only as long as necessary to contain th
converted input parameter.

. Separates Width from Precision .

Precision
(optional)

For floating-point parameters, specifies the
number of digits to the right of the decimal point.
If Width is not followed by a period, G inserts a
fractional part of six digits. If Width is followed
by a period, and Precision is missing or 0,
G does not insert a fractional part.

For string parameters, specifies the maximum
width of the field. G truncates strings longer than
this length.
LabVIEW Function and VI Reference Manual 6-4 © National Instruments Corporation

Chapter 6 String Functions

mine

h the

 or

,
The conversion codes used in G are similar to those used in the
C programming language. However, G uses conversion codes to deter
the textual format of the parameter, not the datatype of the parameter.

You can use the d, x , o, b, f , e, and g conversion codes to process any
numeric G data type, including complex numbers and enums.

For complex numbers, you can use the format specifier to process bot
real and imaginary parts as a single parameter.

You can use the s conversion code to process string or path parameters
enums.

{unit} (optional) Overrides the choice of unit of a VI when
converting a physical quantity (a value with an
associated unit). Must be a valid unit.

Conversion Codes Single character that specifies how to scan or
format perimeter, as follows:
d decimal integer
x hex integer
o octal integer
b binary integer
f floating-point number with

fractional format

e floating-point number with
scientific notation

g floating-point number using e format
if the exponential is less than –4 or greater
than Precision, or f format otherwise

s string

An l (lowercase L) preceding the conversion

Localization Codes Codes used as format separators for localization
as follows:
%,; comma decimal separator
%.; period decimal separator
%; system default separator

Table 6-2. String Syntax (Continued)

Syntax Element Description
© National Instruments Corporation 6-5 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

h an

n

can

L
es.

string.

g
de,
Notice that you can use either a numeric or string conversion code wit
enum, depending on whether you want the numeric value or symbolic
(string) value of the enum.

For compatibility with C, G treats a u conversion code (unsigned integer)
the same as a d, and ignores an l or L preceding the conversion code.
However, in G, the datatype of the parameter determines the size of a
integer and whether the integer is signed or unsigned.

For examples of format string usage, see the Format Into String and S
From String function descriptions later in this chapter.

String Function Descriptions
The following string functions are available.

Array To Spreadsheet String
Converts an array of any dimension to spreadsheet string. spreadsheet string is a table in
string form, containing delimiter-separated column elements, a platform-dependent EO
character separating rows, and, for arrays of three or more dimensions, separated pag

Concatenate Strings
Concatenates input strings and one-dimensional arrays of strings into a single, output
For array inputs, this function concatenates each element of the array.

Format Into String
Converts input arguments into resulting string, whose format is determined by format
string. You increase the number of parameters by popping up on the node and selectinAdd
Parameter or by placing the Positioning tool over the lower left or right corner of the no
then stretching it until you reach the desired number of arguments.
LabVIEW Function and VI Reference Manual 6-6 © National Instruments Corporation

Chapter 6 String Functions

g

ase,

entries

.

Table 6-3 shows the errors that can appear in error out by the Format Into String function.

Note If an error occurs, the source component of the error out cluster contains a strin
of the form “Format Into String (arg n),” where n is the first argument
for which the error occurred.

If you wire a block diagram constant string to format string , G checks for errors in format
string at compile time. You must correct these errors before you can run the VI. In this c
no errors can occur at run time.

Format Specifier Examples
In Table 6-4, the underline character (_) represent spaces in the output. The last three
are examples of physical quantity inputs.

Table 6-3. Possible Format into String Errors

Error Code Description

Format specifier type
mismatch

81 The datatype of a format specifier in the format string
does not match the datatype of the corresponding
input argument.

Unknown format
specifier

82 The format string contains an invalid format specifier

Too few format
specifiers

83 There are more arguments than format specifiers.

Too many format
specifiers

84 There are more format specifiers than arguments.

Table 6-4. Format Specifiers

Format String Argument(s) Resulting String

score = %2d%% 87 score = 87%

level = \n%–7.2e V 0.03642 level =
3.64e–2 V

Name: %s, %s. Smith John Name: Smith, John.
© National Instruments Corporation 6-7 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

with
The last table entry shows the output when the unit in the format specifier is in conflict
the input unit.

Index & Append
Selects a string specified by index from string array and appends that string to string.

Index & Strip
Compares each string in string array with the beginning of string until there is a match.

Match Pattern
Searches for regular expression in string beginning at offset, and if it finds a match, splits
string into three substrings.

Temp: %05.1f %s 96.793 Fahrenheit Temp: 096.8 Fahrenheit

String: %10.5s. Hello, World String:_____Hello.

%5.3f 5.67 N 5.670 N

%5.3{mN}f 5.67 N 5670.000 mN

%5.3{kg}f 5.67 N 5.670 ?kg

Table 6-4. Format Specifiers (Continued)

Format String Argument(s) Resulting String
LabVIEW Function and VI Reference Manual 6-8 © National Instruments Corporation

Chapter 6 String Functions

n

se

e

.

d all
Table 6-5. Special Characters for Match Pattern

Special Character Interpreted by the Match Pattern Function as...

. Matches any character.

? Matches zero or one instances of the expression preceding ?.

\ Cancels the interpretation of special characters (for example,
\? matches a question mark). You can also use the following
constructions for the space and non-displayable characters:

\b backspace

\f form feed

\n newline

\s space

\r carriage return

\ xx any character, where xx is the hex code using 0 through 9
and upper case A through F

\t tab

^ If ^ is the first character of regular expression, it anchors the match
to the offset in string. The match fails unless regular expression
matches that portion of string that begins with the character at
offset. If ^ is not the first character, it is treated as a regular
character.

[] Encloses alternates. For example, [abc] matches a, b, or c .
The following character has special significance when used withi
the brackets:

– (dash) Indicates a range when used between digits, or lowerca
or uppercase letters (for example, [0–5],[a–g], or [L–Q])

The following characters have significance only when they are th
first character within the brackets:

~ Excludes the set of characters, including nondisplayable
characters. [~0–9] matches any character other than 0 through 9

^ Excludes the set with respect to all the displayable characters
(and the space characters). [^0–9] gives the space characters an
displayable characters except 0 through 9.
© National Instruments Corporation 6-9 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Table 6-6 shows examples of the Strings for the Match Pattern functions.

+ Matches the longest number of instances of the expression
preceding +; there must be at least one instance to constitute a
match.

* Matches the longest number of instances of the expression
preceding * in regular expression, including zero instances.

$ If $ is the last character of regular expression, it anchors the
match to the last element of string. The match fails unless
regular expression matches up to and including the last character
in the string. If $ is not last, it is treated as a regular character.

Table 6-6. Strings for the Match Pattern Examples

Characters to Be Matched Regular Expression

VOLTS VOLTS

All uppercase and lowercase versions of
volts, that is, VOLTS, Volts, volts, and
so on

[Vv][Oo][Ll][Tt][Ss]

A space, a plus sign, or a minus sign [+–]

A sequence of one or more digits [0–9]+

Zero or more Spaces \s* or * (that is, a space followed by an
asterisk)

One or more Spaces, Tabs, New Lines, or
Carriage Returns

[\t \r \n \s]+

One or more characters other than digits [~0–9]+

The word Level only if it begins at the
offset position in the string

^Level

The word Volts only if it appears at the end
of the string

Volts$

The longest string within parentheses (.*)

Table 6-5. Special Characters for Match Pattern (Continued)

Special Character Interpreted by the Match Pattern Function as...
LabVIEW Function and VI Reference Manual 6-10 © National Instruments Corporation

Chapter 6 String Functions

 you
Pick Line & Append
Chooses a line from multi-line string and appends that line to string.

Reverse String
Produces a string whose characters are in reverse order of those in string.

Rotate String
Places the first character of string in the last position of first char last, shifting the other
characters forward one position. For example, the string abcd becomes bcda .

Scan From String
Scans the input string and converts the string according to format string . You increase the
number of parameters by popping up on the node and selecting Add Parameter or by placing
the Positioning tool over the lower left or right corner of the node, then stretching it until
reach the desired number of parameters.

Use Scan From String when you know the exact format of the input string.

The longest string within parentheses but
not containing any parentheses within it

([~()]*)

The character [[[]

Table 6-6. Strings for the Match Pattern Examples (Continued)

Characters to Be Matched Regular Expression
© National Instruments Corporation 6-11 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

at
case,
Table 6-7 lists the Scan from String errors.

Note If an error occurs, the source component of the error out cluster contains a string
of the form “Scan From String (arg n) ,” where n is the first argument for
which the error occurred.

If you wire a block diagram constant string to format string, G checks for errors in form
string at compile time. You must correct these errors before you can run the VI. In this
only the Scan-failed error can occur at run time.

Table 6-8 lists Scan From String examples.

Table 6-7. Scan from String Errors

Error Code Description

Format specifier type mismatch 81 The datatype of a format specifier
in the format string does not match
the datatype of the corresponding
output.

Unknown format specifier 82 The format string contains an
invalid format specifier.

Too few format specifiers 83 There are more arguments than
format specifiers.

Too many format specifiers 84 There are more format specifiers
than arguments.

Scan failed 85 Scan From String was unable to
convert the input string into the
datatype indicated by the format
specifier.

Table 6-8. Scan from String Examples

Input String
Format
String Default(s) Output(s)

Remaining
String

abc xyz
12.3+56i 7200

%s
%s%f%2d

—
—
0&0i (CDB)
—

abc
xyz
12.3+56i
72

00

Q+1.27E–3 tail Q%f t — 1.27E–3 ail
LabVIEW Function and VI Reference Manual 6-12 © National Instruments Corporation

Chapter 6 String Functions

,

n and
Scan String for Tokens
Scans input string , starting at offset, and returns the next token found.

A token is a substring of input string , which is surrounded by delimiters, or which matches
an element in operators. Typically, tokens represent individual keywords, numeric values
or operators found when parsing a configuration file or other text-based data format.
This function scans input string , starting at offset, returning the next token found.

See the online reference for more information about the Scan String for Tokens functio
parameters.

Select & Append
Selects either false string or true string according to a Boolean selector and appends that
string to string.

0123456789 %3d%3d — 12
345

6789

X:9.860 Z:3.450 X:%fY:%f 100 (I32)
100.0 (DBL)

10
100.0

Z: 3450

set49.4.2 set%d — 49 .4.2

Table 6-8. Scan from String Examples (Continued)

Input String
Format
String Default(s) Output(s)

Remaining
String
© National Instruments Corporation 6-13 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions
Select & Strip
Examines the beginning of string to see whether it matches true string or false string. This
function returns a Boolean TRUE or FALSE value in selection, depending on whether string
matches true string or false string.

Split String
Splits the string at offset or searches for the first occurrence of search char in string,
beginning at offset, and splits the string at that point.

Spreadsheet String To Array
Converts spreadsheet string to a numeric array of the dimension and representation of
array type. This function works for arrays of strings as well as arrays of numbers.

String Length
Returns in length the number of characters (bytes) in string.

String Subset
Returns substring of the original string beginning at offset and containing length number of
characters.
LabVIEW Function and VI Reference Manual 6-14 © National Instruments Corporation

Chapter 6 String Functions

t

t
To Lower Case
Converts all alphabetic characters in string to lowercase characters. This function does no
affect non-alphabetic characters.

To Upper Case
Converts all alphabetic characters in string to uppercase characters. This function does no
affect non-alphabetic characters.

Additional String To Number Function Descriptions
For general information about Additional String to Number functions, see Polymorphism for
Additional String to Number Functions, earlier in this chapter.

The following illustration displays the options available on the Additional String to Number
Functions subpalette.

Format & Append
Converts number into a regular string according to the format specified in format string , and
appends this to string.
© National Instruments Corporation 6-15 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

s

eriod)
tial

Note The Format Into String function has the same functionality as Format & Append
but can use multiple inputs, so you can convert information simultaneously.
Consider using Format Into String instead of this function to simplify your block
diagram.

Format & Strip
Looks for format string at the beginning of string, formats any number in this string portion
according to the conversion codes in format string , and returns the converted number in
number and the remainder of string after the match in output string.

From Decimal
Converts the numeric characters in string, starting at offset, to a decimal integer and return
it in number.

From Exponential/Fract/Eng
Interprets the characters 0 through 9, plus, minus, e, E, and the decimal point (usually p
in string starting at offset as a floating-point number in engineering notation, or exponen
or fractional format and returns it in number.

Note If you wire the characters Inf or NaN to string, this function returns the G values
Inf and NaN, respectively.

From Hexadecimal
Interprets the characters 0 through 9, A through F, and a through f in string starting at offset
as a hex integer and returns it in number.
LabVIEW Function and VI Reference Manual 6-16 © National Instruments Corporation

Chapter 6 String Functions

.
From Octal
Interprets the characters 0 through 7 in string starting at offset as an octal integer and returns
it in number. This function also returns the index in string of the first character following the
number.

To Decimal
Converts number to a string of decimal digits width characters wide, or wider if necessary

To Engineering
Converts number to an engineering format, floating-point string width characters wide, or
wider if necessary. Engineering format is similar to E format, except the exponent is a
multiple of three (–3, 0, 3, 6).

To Exponential
Converts number to an E-format (exponential notation), floating-point string width
characters wide, or wider if necessary.

To Fractional
Converts number to an F-format (fractional notation), floating-point string width characters
wide, or wider if necessary.
© National Instruments Corporation 6-17 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

y Of
s.
To Hexadecimal
Converts number to a string of hexadecimal digits width characters wide, or wider if
necessary.

To Octal
Converts number to a string of octal digits width characters wide, or wider if necessary.

String Conversion Function Descriptions
For general information about String Conversion functions, see Overview of Polymorphism
for String Functions earlier in this chapter.

The following illustration shows the String Conversion subpalette.

Array Of Strings To Path accepts one-dimensional (1D) arrays of strings, Path To Arra
Strings accepts paths, Path To String accepts paths, and String To Path accepts string
LabVIEW Function and VI Reference Manual 6-18 © National Instruments Corporation

Chapter 6 String Functions

s
chy.
Array Of Strings To Path
Converts array of strings into a relative or absolute path.

If you have an empty string in the array, the directory location before the empty string i
deleted in the path output. Think of this change as moving up a level in directory hierar

Byte Array To String
Converts an array of unsigned bytes into a string.

Path To Array Of Strings
Converts path into array of strings and indicates whether the path is relative.

Path To String
Converts path into a string describing a path in the standard format of the platform.

Refnum To Path
Returns the path associated with the specified refnum.

String To Byte Array
Converts string into an array of unsigned bytes.
© National Instruments Corporation 6-19 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

 path.

 by
splay
rs.
en you

ign a

LF.
String To Path
Converts a string, describing a path in the standard format for the current platform, to a

String Fixed Constants
The following String Fixed Constants are available.

String Constant
Use this constant to supply a constant ASCII string to the block diagram. Set this string
clicking the constant with the Operating tool and typing the value. You can change the di
mode so you can see non-displayable characters or the hex equivalent to the characte
You also can set the constant in password display mode so asterisks are displayed wh
type characters.

The value of the string constant cannot be changed while the VI executes. You can ass
label to this constant.

Carriage Return
Consists of a constant string containing the ASCII CR value.

Empty String
Consists of a constant string that is empty. Length is zero.

End of Line
Consists of a constant string containing the platform-dependent, end-of-line value. For
Windows, the value is CRLF; for Macintosh, the value is CR; and for UNIX, the value is

Line Feed
Consists of a constant string containing the ASCII LF value.

Tab
Consists of a constant string containing the ASCII HT (horizontal tab) value.
LabVIEW Function and VI Reference Manual 6-20 © National Instruments Corporation

© National Instruments Corporation 7-1 LabVIEW Function and VI
7

Array Functions

This chapter describes the functions for array operations.

The following illustration shows the Array palette, which you access by
selecting Functions»Array.
Reference Manual

Chapter 7 Array Functions

his

am
ing

zing

ss

red.
Some of the array functions also are available from the Array Tools palette
of most terminal or wire pop-up menus. The illustration below shows t
pop-up menu.

If you select functions from this palette, they appear with the correct
number of terminals to wire to the object on which you popped up.

For examples of array functions, see examples\general\arrays.llb .

Array Function Overview
Some of the array functions have a variable number of terminals.
When you drop a new function of this kind, it appears on the block diagr
with only one or two terminals. You can add and remove terminals by us
Add Element Input or Add Array Input and Remove Input pop-up
menu commands (the actual names depend on the function) or by resi
the node vertically from any corner. If you want to add terminals by
popping up, you must place your pointer on the input terminals to acce
the pop-up menu.

You can shrink the node if doing so does not delete wired terminals.
TheAdd Element Input or Add Array Input command inserts a terminal
directly after the one on which you popped up. The Remove Input
command removes the terminal on which you popped up, even if it is wi
LabVIEW Function and VI Reference Manual 7-2 © National Instruments Corporation

Chapter 7 Array Functions

the

lue

ric
The following illustration shows the two ways to add more terminals to
Build Array function.

Out-of-Range Index Values
Attempting to index an array beyond its bounds results in a default va
determined by the array element type.

Polymorphism for Array Functions
Most of the array functions accept n-dimensional arrays of any type.
However, the wiring diagrams in the function descriptions show nume
arrays as the default data type.

Array Function Descriptions
The following Array functions are available.

Array Max & Min
Searches for the first maximum and minimum values in a numeric array. This function also
returns the index or indices where it finds the maximum and minimum values.
© National Instruments Corporation 7-3 LabVIEW Function and VI Reference Manual

Chapter 7 Array Functions

hat

op up
imum
If a numeric array has one dimension, the max index and min index outputs are scalar
integers. If a numeric array has more than one dimension, these outputs are 1D arrays t
contain the indices of the maximum and minimum values.

The function compares each datatype according to the rules referred to in Chapter 9,
Comparison Functions.

Array Size
Returns the number of elements in each dimension of array.

Array Subset
Returns a portion of array starting at index and containing length elements.

Array To Cluster
Converts a 1D array to a cluster of elements of the same type as the array elements. P
on the node to set the number of elements in the cluster. The default is nine. The max
cluster size for this function is 256.

For more information about clusters, see Chapter 8, Cluster Functions.

Build Array
Appends any number of array or element inputs in top-to-bottom order to create array with
appended element.

To change an element input to an array input, pop up on the input and select Change to Array.
In general, to build an array of n-dimensions, each array input must be of the same
dimension, n, and each element input must have n– 1 dimensions. To create a 1D array,
LabVIEW Function and VI Reference Manual 7-4 © National Instruments Corporation

Chapter 7 Array Functions

 a

 type.

l

l
connect scalar values to the element inputs and 1D arrays to the array inputs. To build
2D array, connect 1D arrays to element inputs and 2D arrays to the array inputs.

Cluster To Array
Converts a cluster of identically typed components to a 1D array of elements of the same

For more information about clusters, see Chapter 8, Cluster Functions.

Decimate 1D Array
Divides the elements of array into the output arrays.

Index Array
Returns the element of array at index. If array is multidimensional, you must add additiona
index terminals for each dimension of array.

In addition to extracting an element of the array, you can slice out a higher-dimensiona
component by disabling one or more of the index terminals.

Initialize Array
Creates an n-dimensional array in which every element is initialized to the value of element.
© National Instruments Corporation 7-5 LabVIEW Function and VI Reference Manual

Chapter 7 Array Functions

nd

use it
Interleave 1D Arrays
Interleaves corresponding elements from the input arrays into a single output array.

Interpolate 1D Array
Uses the integer part of fractional index or x to index the array and the fractional part of
fractional index or x to linearly interpolate between the values of the indexed element a
its adjacent element.

Replace Array Element
Replaces the element in array at index with the new element.

Reshape Array
Changes the dimension of an array according to the value of dimension size. The function is
resizable; m-dim array has one dimension for each dimension size input. For example, you
can use this function to change a 1D array into a 2D array or vice versa. You also can
to increase and decrease the size of a 1D array.

Reverse 1D Array
Reverses the order of the elements in array.
LabVIEW Function and VI Reference Manual 7-6 © National Instruments Corporation

Chapter 7 Array Functions

es

Rotate 1D Array
Rotates the elements of array by the number of places and in the direction indicated by n.

Search 1D Array
Searches for element in 1D array starting at start index.

Sort 1D Array
Returns a sorted version of array with the elements arranged in ascending order. The rul
for comparing each datatype are described in Chapter 9, Comparison Functions.

Split 1D Array
Divides array at index and returns the two portions.

Threshold 1D Array
Compares threshold y to the values in array of numbers or points starting at start index
until it finds a pair of consecutive elements such that threshold y is greater than the value of
the first element and less than or equal to the value of the second element.

The function then calculates the fractional distance between the first value and threshold y
and returns the fractional index at which threshold y would be placed within array of
numbers or points using linear interpolation.
© National Instruments Corporation 7-7 LabVIEW Function and VI Reference Manual

Chapter 7 Array Functions

, 6, 6,

 for

n

but
For example, suppose array of numbers or points is an array of four numbers [4, 5, 5, 6],
start index is 0, and threshold y is 5. The fractional index or x is 1, corresponding to the
index of the first value of 5 the function finds. Suppose the array elements are 6, 5, 5, 7
the start index is 0, and the threshold y is 6 or less. The output is 0. If threshold y is greater
than 7 for the same set of numbers, the output is 5. If threshold y is 14.2, start index is 5,
and the values in the array starting at index 5 are 9.1, 10.3, 12.9, and 15.5, threshold y falls
between elements 7 and 8 because 14.2 is midway between 12.9 and 15.5. The value
fractional index or x is 7.5, that is, halfway between 7 and 8.

If the array input consists of an array of points where each point is a cluster of x and y
coordinates, the output is the interpolated x value corresponding to the interpolated positio
of threshold y rather than the fractional index of the array. If the interpolated position of
threshold y is midway between indices 4 and 5 of the array with x values of –2.5 and 0
respectively, the output is not an index value of 4.5 as it would be for a numeric array,
rather an x value of –1.25.

Transpose 2D Array
Rearranges the elements of 2D array such that 2D array[i,j] becomes transposed array[j,i].
LabVIEW Function and VI Reference Manual 7-8 © National Instruments Corporation

© National Instruments Corporation 8-1 LabVIEW Function and VI
8

Cluster Functions

This chapter describes the functions for cluster operations.

The following illustration shows the Cluster palette that you access by
selecting Functions»Cluster.

Reference Manual

Chapter 8 Cluster Functions

LabVIEW Function and VI Reference Manual 8-2 © National Instruments Corporation

Some of the cluster functions also are available from the Cluster Tools
palette of most terminal or wire pop-up menus. The following illustration
shows the pop-up menu.

If you select the functions from this palette, they appear with the correct
number of terminals to wire to the object on which you popped up.

Cluster Function Overview
Some of the cluster functions have a variable number of terminals.
When you drop a new function of this kind, it appears on the block diagram
with only one or two terminals. You can add and remove terminals by using
the Add Input or Remove Input pop-up menu options or by resizing the
node using the Positioning tool. If you want to add terminals by popping
up, place your cursor on the input terminal to access the pop-up menu.

You can shrink the node if doing so does not delete wired terminals.
TheAdd Input option inserts a terminal directly after the one on which
you popped up. The Remove Input option removes the terminal on which
you popped up, even if it is wired.

06ch08.fm Page 2 Monday, December 15, 1997 1:26 PM

Chapter 8 Cluster Functions

the

r

ls.

s

as

s
The following illustration shows the two ways to add more terminals to
Bundle function.

Polymorphism for Cluster Functions
The Bundle and Unbundle functions do not show the datatype for thei
individual input or output terminals until you wire objects to these
terminals. When you wire them, these terminals look similar to the
datatypes of the corresponding front panel control or indicator termina

Setting the Order of Cluster Elements
Cluster elements have a logical order that is unrelated to their position
within the shell. The first object you insert in the cluster is element 0,
the second is 1, and so on. If you delete an element, the order adjusts
automatically. You can change the current order by selecting the Cluster
Order... option from the cluster pop-up menu.

Clicking an element with the cluster order cursor sets the place of the
element in the cluster order to the number displayed inside the Tools
palette. You change this order by typing a new number into that field.
When the order is as you want it, click the Enter button to set it and exit
the cluster order edit mode. Click the X button to revert to the old order.

The cluster order determines the order in which the elements appear
terminals on the Bundle and Unbundle functions in the block diagram.

The Bundle By Name and Unbundle By Name functions give you more
flexible access to data in clusters. With these functions, you can acces
© National Instruments Corporation 8-3 LabVIEW Function and VI Reference Manual

Chapter 8 Cluster Functions

ou
e and

ove

op up
.

s a
specific elements in clusters by name and access only the elements y
want to access. Because these functions reference components by nam
not by cluster position, you can change the data structure of a cluster
without breaking wires, as long as you do not change the name of or rem
the component you reference on the block diagram.

Cluster Function Descriptions
The following cluster functions are available.

Array To Cluster
Converts a 1D array to a cluster of elements of the same type as the array elements. P
on the node or resize it to set the number of elements in the cluster. The default is nine
The maximum cluster size for this function is 256.

Build Cluster Array
Assembles all the component inputs in top-down order into an array of clusters of that
component. If the input is four, single-precision, floating-point components, the output i
four-element array of clusters containing one single-precision, floating-point number.
Element 0 of the array has the value of the top component, and so on.

Bundle
Assembles all the individual input components into a single cluster.
LabVIEW Function and VI Reference Manual 8-4 © National Instruments Corporation

Chapter 8 Cluster Functions

op up

,

n the

 type.

Bundle By Name
Replaces components in an existing cluster. After you wire the node to a cluster, you p
on the name terminals to choose from the list of components of the cluster.

You must always wire the cluster input. If you are creating a cluster for a cluster indicator
you can wire a local variable of that indicator to the cluster input. If you are creating a cluster
for a cluster control of a subVI, you can place a copy of that control (possibly hidden) o
front panel of the VI and wire the control to the cluster input.

Cluster To Array
Converts a cluster of identically typed components to a 1D array of elements of the same

Index & Bundle Cluster Array
Indexes a set of arrays and creates a cluster array in which the ith element contains the ith
element of each input array.

This function is equivalent to the following block diagram and is useful for converting a
cluster of arrays to an array of clusters.
© National Instruments Corporation 8-5 LabVIEW Function and VI Reference Manual

Chapter 8 Cluster Functions

ant to
t of
Unbundle
Disassembles a cluster into its individual components.

Unbundle By Name
Returns the cluster elements whose names you specify. You select the element you w
access by popping up on the name output terminals and selecting a name from the lis
elements in the cluster.
LabVIEW Function and VI Reference Manual 8-6 © National Instruments Corporation

© National Instruments Corporation 9-1 LabVIEW Function and VI
9

an
Comparison Functions

This chapter describes the functions that perform comparisons or
conditional tests.

The following illustration shows the Comparison palette that you access
by selecting Functions»Comparison.

Comparison Function Overview
This section introduces the Comparison functions.

Boolean Comparison
The Comparison functions treat the Boolean value TRUE as greater th
the Boolean value FALSE.
Reference Manual

Chapter 9 Comparison Functions

t of

e
e

fore,

 the
ter

s
e

are

f

ays

n

String Comparison
These functions compare strings according to the numerical equivalen
the ASCII characters. Therefore, a (with a decimal value of 97) is greater
than A (65), which is greater than the numeral 0 (48), which is greater than
the space character (32). These functions compare characters one by on
from the beginning of the string until an inequality occurs, at which tim
the comparison ends. For example, LabVIEW compares the strings abcd
and abef until it finds c , which has a value less than the value of e.
The presence of a character is greater than the absence of one. There
the string abcd is greater than abc because the first string is longer.

The functions that test the category of a string character (for example,
Decimal Digit? and Printable? functions) evaluate only the first charac
of the string.

Numeric Comparison
Most of the Comparison functions test one input or compare two input
and return a Boolean value. The functions convert numbers to the sam
representation before comparing them. Comparisons with a value of
not a number (NaN) return a value that indicates inequality.

Cluster Comparison
The Comparison functions compare clusters the same way they comp
strings, one element at a time starting with the 0th element until an
inequality occurs. Clusters must have the same number of elements, o
the same type, and in the same order if you want to compare them.

Comparison Modes
Some of the Comparison functions have two modes for comparing arr
or clusters. In the Compare Aggregates mode, if you compare two arrays
or clusters, the function returns a single value. In the Compare Elements
mode, the function compares the elements individually. Then returns a
array or cluster of Boolean values. The following illustration shows the
two modes.
LabVIEW Function and VI Reference Manual 9-2 © National Instruments Corporation

Chapter 9 Comparison Functions

se

You change the comparison mode by selecting Compare Elements or
Compare Aggregates in the pop-up menu for the node, as shown in the
following illustrations.

When you compare two arrays of unequal lengths in the Compare
Elements mode, LabVIEW ignores each element in the larger array who
index is greater than the index of the last element in the smaller array.
© National Instruments Corporation 9-3 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

ng

ne

 than
ays
iders
le

e

pe of
s.

 an
s
When you use the Compare Aggregates mode to compare two arrays, the
following occurs: (1) LabVIEW searches for the first set of correspondi
elements in the two inputs that differ, and uses those to determine the
results of the comparison. (2) If all elements are identical except that o
has more elements, LabVIEW considers the longer array to be greater
the shorter array. (3) If no elements of the two arrays differ and the arr
have the same length, the arrays are equal. Therefore, LabVIEW cons
the array [1, 2, 3] to be greater than the array [1, 2] and returns a sing
Boolean value in the Compare Aggregates mode.

Arrays must have the same number of dimensions (for example, both
two-dimensional), and, for the comparison between multidimensional
arrays to make sense, each dimension must have the same size.

For clusters using the Compare Aggregates mode, LabVIEW compares
using cluster order. The two clusters LabVIEW compares must have th
same number of elements.

The Comparison functions that do not have the Compare Aggregates
or Compare Elements modes compare arrays in the same manner as
strings—one element at a time starting with the 0th element until an
inequality occurs.

Character Comparison
You can use the functions that compare characters to determine the ty
a character. The following functions are character-comparison function

• Decimal Digit?

• Hex Digit?

• Lexical Class

• Octal Digit?

• Printable?

• White Space?

If the input is a string, the functions test the first character. If the input is
empty string, the result is FALSE. If the input is a number, the function
interpret it as a code for an ASCII character.

See Appendix C, GPIB Multiline Interface Messages, for the numbers that
correspond to each ASCII character.
LabVIEW Function and VI Reference Manual 9-4 © National Instruments Corporation

Chapter 9 Comparison Functions

 as

th,

sters
g or

ters,
put in

s as
 and
me

s or

re as

rs of
lues

pty
er

d

irst
set of
Polymorphism for Comparison Functions
The functions Equal?, Not Equal?, and Select take inputs of any type,
long as the inputs are the same type.

The functions Greater or Equal?, Less or Equal?, Less?, Greater?,
Max & Min, and In Range? take inputs of any type except complex, pa
or refnum, as long as the inputs are the same type. You can compare
numbers, strings, Booleans, arrays of strings, clusters of numbers, clu
of strings, and so on. You cannot, however, compare a number to a strin
a string to a Boolean, and so on.

The functions that compare values to zero accept numeric scalars, clus
and arrays of numbers. These functions release Boolean values as out
the same data structure as the input.

The Not A Number/Path/Refnum function accepts the same input type
functions that compare values to zero. This function also accepts paths
refnums. Not A Number/Path/Refnum outputs Boolean values in the sa
data structure as the input. See Chapter 11, File Functions, and Chapter 31,
Introduction to LabVIEW Instrument I/O VIs, for more information about
these functions.

The functions Decimal Digit?, Hex Digit?, Octal Digit?, Printable?, and
White Space? accept a scalar string or number input, clusters of string
non-complex numbers, arrays of strings or non-complex numbers, and
so on. The output consists of Boolean values in the same data structu
the input.

The function Empty String/Path? accepts a path, a scalar string, cluste
strings, arrays of strings, and so on. The output consists of Boolean va
in the same data structure as the input.

You can use the Equal?, Not Equal?, Not A Number/Path/Refnum?, Em
String/Path?, and Select functions with paths and refnums, but no oth
comparison functions accept paths or refnums as inputs.

Comparison functions that use arrays and clusters normally produce
Boolean arrays and clusters of the same structure. You can pop-up an
change to Compare Aggregates, in which case the function releases a
single Boolean value as output. The function compares aggregates by
comparing the first set of elements to produce the output, unless the f
elements are equal, in which case the function compares the second
elements, and so on.
© National Instruments Corporation 9-5 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

n
Comparison Function Descriptions
The following Comparison functions are available.

Decimal Digit?
Returns TRUE if char is a decimal digit ranging from 0 through 9. Otherwise, this functio
returns FALSE.

Empty String/Path?
Returns TRUE if string/path is an empty string or path. Otherwise, this function returns
FALSE.

Equal?
Returns TRUE if x is equal to y. Otherwise, this function returns FALSE.

Equal To 0?
Returns TRUE if x is equal to 0. Otherwise, this function returns FALSE.

Greater?
Returns TRUE if x is greater than y. Otherwise, this function returns FALSE.
LabVIEW Function and VI Reference Manual 9-6 © National Instruments Corporation

Chapter 9 Comparison Functions

f.

Greater Or Equal?
Returns TRUE if x is greater than or equal to y. Otherwise, this function returns FALSE.

Greater Or Equal To 0?
Returns TRUE if x is greater than or equal to 0. Otherwise, this function returns FALSE.

Greater Than 0?
Returns TRUE if x is greater than 0. Otherwise, this function returns FALSE.

Hex Digit?
Returns TRUE if char is a hex digit ranging from 0 through 9, A through F, or a through
Otherwise, this function returns FALSE.

In Range?
Returns TRUE if x is greater than or equal to lo and less than hi. Otherwise, this function
returns FALSE.

Note This function always operates in the Compare Aggregates mode. To produce a
Boolean array as an output, you must execute this function in a loop structure.
© National Instruments Corporation 9-7 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

3)

ly)
Less?
Returns TRUE if x is less than y. Otherwise, this function returns FALSE.

Less Or Equal?
Returns TRUE if x is less than or equal to y. Otherwise, this function returns FALSE.

Less Or Equal To 0?
Returns TRUE if x is less than or equal to 0. Otherwise, this function returns FALSE.

Less Than 0?
Returns TRUE if x is less than 0. Otherwise, this function returns FALSE.

Lexical Class
Returns class number for char.

Table 9-1. Lexical Class Number Descriptions

Class
Number Lexical Class

0 Extended characters with a Command- or Option- key prefix
(codes 128 through 255)

1 Non-displayable ASCII characters (codes 0 to 31 excluding 9 through 1

2 White space characters: Space, Tab, Carriage Return, Form Feed,
Newline, and Vertical Tab (codes 32, 9, 13, 12, 10, and 11, respective
LabVIEW Function and VI Reference Manual 9-8 © National Instruments Corporation

Chapter 9 Comparison Functions

alue

.
ting
Max & Min
Compares x and y and returns the larger value at the top output terminal and the smaller v
at the bottom output terminal.

Not A Number/Path/Refnum?
Returns TRUE if number/path/refnum is not a number (NaN), not a path, or not a refnum
Otherwise, this function returns FALSE. NaN can be the result of dividing by 0, calcula
the square root of a negative number, and so on.

Not Equal?
Returns TRUE if x is not equal to y. Otherwise, this function returns FALSE.

Not Equal To 0?
Returns TRUE if x is not equal to 0. Otherwise, this function returns FALSE.

3 Digits 0 through 9

4 Uppercase characters A through Z

5 Lowercase characters a through z

6 All printable ASCII non-alphanumeric characters

Table 9-1. Lexical Class Number Descriptions (Continued)

Class
Number Lexical Class
© National Instruments Corporation 9-9 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

Octal Digit?

Returns TRUE if char is an octal digit ranging from 0 through 7. Otherwise, this function
returns FALSE.

Printable?
Returns TRUE if char is a printable ASCII character. Otherwise, this function returns
FALSE.

Select
Returns the value connected to the t input or f input, depending on the value of s. If s is TRUE,
this function returns the value connected to t. If s is FALSE, this function returns the value
connected to f.

White Space?
Returns TRUE if char is a white space character, such as Space, Tab, Newline,
Carriage Return, Form Feed, or Vertical Tab. Otherwise, the function returns FALSE.
LabVIEW Function and VI Reference Manual 9-10 © National Instruments Corporation

© National Instruments Corporation 10-1 LabVIEW Fu
10

the
cific

Time, Dialog, and
Error Functions

This chapter describes the timing functions, which you can use to get
current time, measure elapsed time, or suspend an operation for a spe
period of time. Error Handling also is covered in this chapter.

The following illustration shows the Time & Dialog palette that you access
by selecting Functions»Time & Dialog.

nction and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

have
d

other

.m.,
ot

e.
Time, Dialog, and Error Functions Overview
This section introduces the Timing, Dialog, and Error functions.

Timing Functions
The Date/Time To Seconds and the Seconds To Date/Time functions
a parameter called date time rec, which is a cluster that consists of signe
32-bit integers in the following order.

The Wait (ms) and Wait Until Next ms Multiple functions make
asynchronous system calls, but the nodes themselves function
synchronously. Therefore, they do not complete execution until the
specified time has elapsed. The functions use asynchronous calls, so
nodes can execute while the timing nodes wait.

Note Time values outside the range 2082844800 to 4230328447 seconds or 12:00 a
Jan. 1, 1970, Universal Time to 3:14 a.m., Jan. 19, 2038, Universal Time might n
convert to the same date on all platforms. This exception primarily exists on
Windows 3.x, which does not support dates prior to Jan. 1, 1970, Universal Tim

Table 10-1. Valid Value of Elements for Date/Time Cluster

Element Valid Values

0 (second) 0 to 59

1 (minute) 0 to 59

2 (hour) 0 to 23

3 (day of month) 1 to 31 as output from the function; 1 to 366
as input

4 (month) 1 to 12

5 (year) 1904 to 2040

6 (day of week) 1 to 7 (Sunday to Saturday)

7 (day of year) 1 to 366

8 (DST) 0 to 1 (0 for Standard Time, 1 for Daylight
Savings Time)
LabVIEW Function and VI Reference Manual 10-2 © National Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

ing
an
g

ou
nd

B,

nal
ent
 can
use
y
r

t be

 or a
 you
iles
.

r
igned

ric
tput
Error Handling Overview
Every time you design a program, consider the possibility that someth
can go wrong and, if it does, you should consider how your program c
manage the problem. LabVIEW automatically notifies you with a dialo
box only when a few run-time errors occur, mostly for file-dialog
operations. LabVIEW does not report all errors. If it reported all errors, y
would lose the flexibility to determine what to do when an error occurs a
how and when to inform the user of the error in your program.

Rigorous error checking, especially for I/O operations (file, serial, GPI
data acquisition, and communication), is invaluable in all phases of a
project. This section describes three I/O situations in which errors can
occur.

The first type of error can occur when you have initialized your
communications incorrectly or have written improper data to your exter
device. This type of problem usually occurs during program developm
and disappears once you finish debugging your program. However, you
spend a lot of time tracking down a simple programming mistake beca
you have not incorporated error checks. Without error checks, you onl
know that your program does not work. You do not know why the erro
occurred or where it is.

The second type of error can occur because your external device migh
powered off, broken down, or otherwise unable to complete its normal
tasks. This type of problem can occur at any time, but if you have
incorporated error checking, your program notifies you immediately
when such operational failures occur.

The third kind of error can occur when you upgrade LabVIEW or your
operating system software and you notice a bug in either a G program
system program. This type of error means you should check errors that
might have felt safe ignoring, such as those from functions that close f
or clear DAQ operations. Be sure to check all I/O operations for errors

It might seem easier to ignore error checking when you must add erro
handling code to test and report errors. The VIs described here are des
to make it easier for you to create programs with error checking and
handling.

G functions and library VIs return errors in one of two ways—with nume
error codes or with an error state cluster. Typically, functions release ou
error codes while VIs incorporate the error cluster, usually within a
framework called error input/output (error I/O).
© National Instruments Corporation 10-3 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

ta

ode
ips
onds
a
de
e

ion

ith

ng
Error I/O and the Error State Cluster
The concept of error I/O is logical for the G dataflow architecture. If da
information can flow from one node to another, so can error state
information. Each node that needs information about errors tests the
incoming error state and responds appropriately. If no error exists, the n
executes normally. If an error does exist, the node detects an error, sk
execution, then passes its error state out to the next node, which resp
in the same way. In this fashion, notice of the first error that occurs in
sequence of operations is passed through all the nodes, with each no
responding to the error. At the end of the flow, your program reports th
error to the user.

Error I/O has an additional benefit—you can use it to control the execut
order of independent operations. While you can use the DAQ taskID to
control the order of DAQ operations for one group, you cannot use it to
control the order for multiple groups. The DAQ taskID does not work w
other types of I/O operations such as file operations.

The following diagram from the File Utility VI, Read Characters From

File.vi , shows how error I/O is implemented in a simple VI.

The operation starts at Open File+.vi . If it opens the file successfully,
Read File+(string).vi reads the file and Close File+.vi closes the
file. If you pass in an invalid path, Open File+.vi detects the error and
passes the error state through the other two VIs to the General Error
Handler, which reports it. Notice that the only presence of error handli
LabVIEW Function and VI Reference Manual 10-4 © National Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

It is

ed

e

eral
on this block diagram is the error wire and the General Error Handler.
neither cumbersome nor distracting.

The error state consists of three pieces of information that are combin
into the error cluster. The status is a Boolean value—TRUE if an error
exists, FALSE if it does not. The code consists of a signed 32-bit integer
that identifies the error. A non-zero error code coupled with a FALSE
errorstatus signals a warning rather than a fatal error. For example, a
DAQ timeout event (code 10800) typically is reported as a warning. Th
source consists of a string that identifies where the error occurred.

The error in and error out state clusters for the Open File+.vi , where
the error shown in the preceding example originated, are shown in the
following illustration. The error in cluster, whose default value is no

error does not need to be wired if it is the first in the chain.

You can find the error in and error out clusters by selecting
Controls»Array & Cluster on the front panel.

The following illustration shows the message you receive from the Gen
Error Handler if you pass an invalid path.
© National Instruments Corporation 10-5 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

.
ates

he
ror,
ar

cond,
light
dent

s are

, you
 of the

ale.
The General Error Handler is one of the three error-handling utility VIs
It contains a database of error codes and descriptions, from which it cre
messages like the previous one. The Simple Error Handler performs t
same basic operation but has fewer options. The third VI, Find First Er
creates the error I/O cluster from functions or VIs that output only scal
error codes.

Time and Dialog Function Descriptions
The following Time and Dialog functions are available.

Date/Time To Seconds
Converts a cluster of nine, signed 32-bit integers assumed to specify the local time (se
minute, hour, day, month, year, day of the week, day of the year, and Standard or Day
Savings Time) in the configured time zone for your computer into a time-zone-indepen
number of seconds that have elapsed since 12:00 a.m., Friday, January 1, 1904,
Universal Time.

The day of week, day of year, and DST integers are ignored. If any of the other integer
out of the ranges specified in Table 10-1, the results are unpredictable.

When used as an integer, the day of month integer has a valid range of 1 to 366. Thus
can specify Julian dates by setting the month to January and the current day to the day
year. For example, use January 150 for the 150th day of the year.

Format Date/Time String Function
Gives you the ability to display the date and time in a format you specify.

The date/time string is determined from the seconds (now), which is the number of seconds
since 12:00 a.m., January 1, 1904, Universal Time, and time format string is the format of
the output string.

If seconds is not wired, the current time is used. If time format string is not wired, the default
is %c, which corresponds to the date/time representation appropriate for the current loc
LabVIEW Function and VI Reference Manual 10-6 © National Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

wing

The Format Date/Time String function calculates date/time string by copying time format
string and replacing each of the format codes with the corresponding values in the follo
table.

Table 10-2. Format Codes for the Time Format String

Format Code Value

%% a single percent character

%a abbreviated weekday name (e.g. Wed)

%A full weekday name (e.g. Wednesday)

%b abbreviated month name (e.g. Jun)

%B full month name (e.g. June)

%c locale’s default date and time representation

%d day of month (01– 31)

%H hour (24-hour clock) (00–23)

%I hour (12-hour clock) (01–12)

%j day number of year (001–366)

%m month number (01–12)

%M minute (00–59)

%p AM or PM flag

%S seconds (00–59)

%U week number of the year (00–53), with Sunday as the first day of
the week

%w weekday as a decimal number (0–6), with 0 representing Sunday

%W week number of the year (00–53), with Monday as the first day of
the week

%x date representation of locale

%X time representation of locale

%y year within century (00–99)

%Y year, including the century (for example, 1997)

%Z time zone name or abbreviation
© National Instruments Corporation 10-7 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

o

width.

rt;

lapsed

t have
string
Characters appearing in time format string that are not part of a format code are copied t
the output string verbatim. Time format codes (beginning with %) that are not recognized
output the character literally.

Time format codes always have leading zeros as necessary to ensure a constant field
An optional # modifier before the format code letter removes the leading zeros from the
following format codes:

%#d, %#H, %#I, %#j , %#m, %#M, %#S, %#S, %#U, %#w, %#W, %X, %#y, %#Y.

The # modifier does not modify the behavior of any other format codes.

Note The %c, %x, %X, and %Z format codes depend on operating system locale suppo
the output of these codes is platform dependent. Interpretation of the Daylight
Savings Time rule also can vary per platform.

Get Date/Time In Seconds
Returns a time-zone independent number containing the number of seconds that have e
since 12:00 a.m., Friday, January 1, 1904, Universal Time.

Get Date/Time String
Converts a time-zone independent number calculated to be the number of seconds tha
elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a date and time
in the configured time zone for your computer.

One Button Dialog Box
Displays a dialog box that contains a message and a single button. The button name control
is the name displayed on the dialog box button.
LabVIEW Function and VI Reference Manual 10-8 © National Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

igned
th,

eter
ther

er.
Seconds To Date/Time
Converts a time-zone-independent number calculated to be the number of seconds that have
elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a cluster of nine, s
32-bit integers that specify the local time (second, minute, hour, day of the month, mon
year, day of the week, day of the year, and Standard or Daylight Savings Time) in the
configured time zone for your computer. The Standard or Daylight Savings time param
is set according to the operating system setting for Daylight Savings and indicates whe
the date/time cluster was adjusted due to Daylight Savings Time.

Tick Count (ms)
Returns the value of the millisecond timer. The base reference time (millisecond zero)
is undefined; therefore, you cannot convert millisecond timer value to a real-world time
or date. Be careful when you use this function in comparisons because the value of the
millisecond timer wraps from 232 –1 to 0.

Two Button Dialog Box
Displays a dialog box that contains a message and two buttons. T button name and F button
name are the names displayed on the buttons of the dialog box.

Wait (ms)
Waits the specified number of milliseconds then returns the value of the millisecond tim
© National Instruments Corporation 10-9 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

t

eric

ite

Wait Until Next ms Multiple
Waits until the value of the millisecond timer becomes a multiple of the specified millisecond
multiple . Use this function to synchronize activities. You can call this function in a loop
to control the loop execution rate. However, it is possible that the first loop period migh
be short.

Error Handling VI Descriptions
The following Error Handling VIs are available.

Find First Error
Tests the error status of one or more low-level functions or subVIs that produce a num
error code as output.

If this VI finds an error, it sets the parameters in the error out cluster. You can wire this cluster
to the Simple or General Error Handler to identify the error and describe it to the user.

The following illustration shows how you can use Find First Error in the example VI Wr
Binary File. Find First Error creates the error cluster from individual error numbers, and
Simple Error Handler reports any errors to the user.
LabVIEW Function and VI Reference Manual 10-10 © National Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

ion of

 as
General Error Handler
Determines whether an error has occurred. If an error has occurred, this VI creates a
description of the error and optionally displays a dialog box.

Simple Error Handler
Determines whether an error has occurred. If it finds an error, this VI creates a descript
the error and optionally displays a dialog box.

Simple Error Handler calls General Error Handler and has the same basic functionality
General Error Handler, but with fewer options.
© National Instruments Corporation 10-11 LabVIEW Function and VI Reference Manual

© National Instruments Corporation 11-1 LabVIEW Fu
11

 and
File Functions

This chapter describes the low-level VIs and functions that manipulate
files, directories, and paths. This chapter also describes file constants
the high-level file VIs.

You access these functions, constants, and VIs by selecting
Functions»File I/O.

The File I/O palette includes the following subpalettes:

• Advanced File Functions

• Binary File VIs

• Configuration File VIs

• File Constants

For examples of File functions and VIs, see examples\file .
nction and VI Reference Manual

Chapter 11 File Functions

ile

ers

te a
 a

sist

.
er
e
ons

st,
om

File I/O VI and Function Overview
This section introduces the high-level and low-level file VIs, and the F
functions.

High-Level File VIs
You can use the high-level file VIs to write or read the following types
of data:

• Strings to text files

• One-dimensional (1D) or two-dimensional (2D) arrays of
single-precision numbers to spreadsheet text files

• 1D or 2D arrays of single-precision numbers or signed word integ
to byte stream files

The high-level file VIs described here call the low-level file functions to
perform complete, easy-to-use file operations. These VIs open or crea
file, write or read to it, and close it. If an error occurs, these VIs display
dialog box that describes the problem and gives you the option to halt
execution or to continue.

The high-level file VIs are located on the top row of the palette and con
of the following VIs:

• Binary File VIs—located in the subpalette

• Read Characters from File

• Read from Spreadsheet File

• Read Lines from File

• Write Characters to File

• Write to Spreadsheet File

Low-Level File VIs and File Functions
The low-level file VIs and functions perform one file operation at a time
These VIs and functions perform error detection in addition to their oth
functions. The most commonly used low-level file functions and VIs ar
located on the second row of the palette. The remaining low-level functi
are located in the Advanced File Functions subpalette.

The principal low-level file operations involve a three-step process. Fir
you create or open a file. Then you write data to the file or read data fr
the file. Finally, you close the file. Other file operations include creating
LabVIEW Function and VI Reference Manual 11-2 © National Instruments Corporation

Chapter 11 File Functions

s.

t

iles.
rchy

st

iple
ort

ust
the

tem

 on
t is

e
open

ou

iles.

 is
et

 file,
yte
ich
 and
directories; moving, copying, or deleting files; flushing files; listing
directory contents; changing file characteristics; and manipulating path

When creating or opening a file, you must specify its location. Differen
computers describe the location of files in different ways, but most
computer systems use a hierarchical system to specify the location of f
In a hierarchical file system, the computer system superimposes a hiera
on the storage media. You can store files inside directories, which can
contain other directories.

When you specify a file or directory in a hierarchical file system, you mu
indicate the name of the file or directory, as well as its location in the
hierarchy. In addition, some file systems support the connection of mult
discrete media, called volumes. For example, Windows systems supp
multiple drives connected to a system; for most of these systems, you m
include the name of the volume to create a complete specification for
location of a file. On other systems, such as UNIX, you do not need to
specify the storage media locations for files because the operating sys
hides the physical implementation of the file system from you.

The method of identifying the target of a file function varies depending
whether the target is an open file. If the target is not an open file, or if i
a directory, you specify a target using the path of the target. The path
describes the volume containing the target, the directories between th
top-level and the target, and the name of the target. If the target is an
file, you use a file refnum to identify the file to be manipulated. The file
refnum is an identifier associated with the file when you open it. When y
close the file, the file manager dissociates the file refnum from the file.
In other words, the refnum is obsolete once the file is closed.

Refer to the LabVIEW Online Tutorial: Introduction to LabVIEW for more
information on path specification in G and for file function examples.

Byte Stream and Datalog Files
G can make and access two types of files—byte stream and datalog f

A byte stream file, as the name implies, is a file whose fundamental unit
a byte. A byte stream file can contain anything from a homogeneous s
of one G datatype to an arbitrary collection of datatypes—characters,
numbers, Booleans, arrays, strings, clusters, and so on. An ASCII text
a file containing this paragraph, for example, is perhaps the simplest b
stream file. A similar byte stream file is a basic spreadsheet text file, wh
consists of rows of ASCII numbers, with the numbers separated by tabs
the rows separated by carriage returns.
© National Instruments Corporation 11-3 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

a
 in
int

hen

 the

e
ed

u
ts of
ing

f a
alog
g

rs,
ata
rd

he
 You
ber

er

mly
st

.

ontrol
of
xt
Another simple byte stream file is an array of binary 16-bit integers or
single-precision, floating point numbers, which you acquire from a dat
acquisition (DAQ) program. A more complicated byte stream file is one
which an array of binary 16-bit integers or single-precision, floating po
numbers is preceded by a header of ASCII text that describes how and w
you acquired the data. That header could alternatively be a cluster of
acquisition parameters, such as arrays of channels and scale factors,
scan rate, and so forth.

An Excel worksheet file, as opposed to an Excel text file, is also a mor
complicated form of byte stream file because it contains text interspers
with Excel-specific formatting data that does not make sense when yo
read it as text. In summary, you can make a byte stream file that consis
one each of all of the G datatypes. Byte stream files can be created us
high-level File VIs and low-level File VIs and functions.

A datalog file, on the other hand, consists of a sequence of
identically-structured records. Like byte stream files, the components o
datalog record can be any G datatype. The difference is that all the dat
records must be the same type. Datalog files can only be created usin
low-level file functions.

You write a byte stream file typically by appending new strings, numbe
or arrays of numbers of any length to the file. You can also overwrite d
anywhere within the file. You write a datalog file by appending one reco
at a time. You cannot overwrite the record.

You read a byte stream file by specifying the byte offset or index and t
number of instances of the specified byte stream type you want to read.
read a datalog file by specifying the record offset or index and the num
of records you want to read.

You use byte stream files typically for text or spreadsheet data that oth
applications may need to read. You can use byte stream files to record
continuously acquired data that you need to read sequentially or rando
in arbitrary amounts. You use datalog files typically to record multiple te
results or waveforms that you read one at a time and treat individually
Datalog files are difficult to read from non-G applications.

Flow-Through Parameters
Many file functions contain flow-through parameters, which return the
same value as an input parameter. You can use these parameters to c
the execution order of the functions. By wiring the flow-through output
the first node you want to execute to the corresponding input of the ne
LabVIEW Function and VI Reference Manual 11-4 © National Instruments Corporation

Chapter 11 File Functions

out
e
der.

al
rror

ions,
to the

you
e

t 7
is

ly

node you want to execute, you create artificial data dependency. With
these flow-through parameters, you would often have to use Sequenc
structures to ensure that file I/O operations take place in the correct or

Error I/O in File I/O Functions
G uses error I/O clusters, consisting of error in and error out , in all of its
file I/O functions. With error I/O clusters you can string together sever
functions. When an error occurs in a function, that function passes the e
along to the next function. When the error passes to subsequent funct
the subsequent function does not execute and passes the error along
following function, and so on. The following illustration displays an
example of the error in and error out clusters.

Although the error I/O clusters specify whether an error has occurred,
may want to use error handlers to report the error to the user. For mor
information on error I/O, see Chapter 10, Time, Dialog, and
Error Functions, in this manual.

Permissions
Some of the file functions have a 32-bit integer parameter called
permissions or new permissions. These functions use only the least
significant nine bits of the 32-bit integer to determine file and directory
access permissions.

(Windows) The permissions are ignored for directories. For files, only bi
(the UNIX user write permission bit) is used. If this bit is clear, the file
read-only. Otherwise, you can write to the file.

(Macintosh) All 9 bits of permissions are used for directories. The bits
that control read, write, and execute permissions, respectively, on a
UNIX system are used to control See Files, Make Changes, and
See Folders access rights, respectively, on the Macintosh. For files, on
bit 7 (the UNIX user write permission bit) is used. If this bit is clear, the
file is locked. Otherwise, the file is not locked.
© National Instruments Corporation 11-5 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

X
ers,
 on

(UNIX) The nine bits of permissions correspond exactly to the nine UNI
permission bits governing read, write, and execute permissions for us
groups, and others. The following illustration shows the permission bits
a UNIX system.

File I/O Function and VI Descriptions
The following functions and VIs are available from the File I/O palette.

Build Path
Creates a new path by appending a name (or relative path) to an existing path.

Close File
Writes all buffers of the file identified by refnum to disk, updates the directory entry of the
file, closes the file, and voids refnum for subsequent file operations.

Note The Close File VI handles error I/O differently than other file functions;
it executes even when its error in indicates that an error has occurred in a
preceding function.
LabVIEW Function and VI Reference Manual 11-6 © National Instruments Corporation

Chapter 11 File Functions

 or

d

le.

ream

ou wire

rk to
g all
Open/Create/Replace File
Opens an existing file, creates a new file, or replaces an existing file, programmatically
interactively using a file dialog box. You can optionally specify a dialog prompt , default file
name, start path, or filter pattern. Use this VI with the Write File or Read File functions.

Read Characters From File
Reads a specified number of characters from a byte stream file beginning at a specifie
character offset. The VI opens the file before reading from it and closes it afterwards.

Read File
Reads data from the file specified by refnum and returns it in data. Reading begins at a
location specified by pos mode and pos offset and depends on the format of the specified fi

Reading Byte Stream Files
If refnum is a byte stream file refnum, the Read File function reads data from the byte st
file specified by refnum. You can wire either line mode or byte stream type when you read
byte stream files, but you cannot wire both. If you do not wire byte stream type, Read File
assumes the data that begins at the designated byte offset is a string of characters. If y
byte stream type, the function interprets data starting at the designated byte offset to be
count instances of that type. Following the read operation, the function sets the file ma
the byte following the last byte read. If the function encounters end of file before readin
© National Instruments Corporation 11-7 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

t
lowed

reads

 into
wed
he

ne
ds.

s,

nated
ay,
nce of

it sets
of the requested data, it returns as many whole instances of the designated byte stream type
as it finds.

Reading Characters
To read characters from a byte stream file (typically a text file), do not wire the byte stream
type. The following paragraphs describe the manner in which the line mode, count, convert
eol, and data parameters function when reading from a byte stream file.

line mode, in conjunction with count, determines when the read stops.

If line mode is TRUE, and if you do not wire count or count equals 0, Read File reads until i
encounters an end of line marker—a carriage return, a line feed, or a carriage return fol
by a line feed, or it encounters end of file. If line mode is TRUE, and count is greater than 0,
Read File reads until it encounters an end of line marker, it encounters end of file, or it
count characters.

If line mode is FALSE, Read File reads count characters. In this case, if you do not wire
count, it defaults to 0. line mode defaults to FALSE.

convert eol (F) determines whether the function converts the end of line markers it reads
G end of line markers. The system-specific end of line marker is a carriage return follo
by a line feed on Windows, a carriage return on Macintosh, and a line feed on UNIX. T
G end of line marker is a line feed.

If convert eol is TRUE, the function converts all end of line markers it encounters into li
feeds. If convert eol is FALSE, the function does not convert the end of line markers it rea
convert eol defaults to FALSE.

data is the string of characters read from the file.

Reading Binary Data
To read binary data from a byte stream file, wire the type of the data to byte stream type.
In this case, count, and data function in the manner described in the following paragraph
and you do not have to wire line mode or convert eol.

byte stream type can be any datatype. Read File interprets the data starting at the desig
byte offset to be count instances of that type. If the type is variable-length, that is, an arr
a string, or a cluster containing an array or string, the function assumes that each insta
the type contains the length or dimensions of that instance. If they do not, the function
misinterprets the data. If Read File determines that the data does not match the type,
the value of data to the default value for its type and returns an error.

count is the number of instances of byte stream type to read. If count is unwired, the
function returns a single instance of byte stream type.
LabVIEW Function and VI Reference Manual 11-8 © National Instruments Corporation

Chapter 11 File Functions

y of
the

pe is
,

turns
the type

of
mber
oduct
 a
 and

 file
he

d.

d or
ger.
rs.
ypes

y of
an
If you wire count, it can be a scalar number, in which case the function returns a 1D arra
instances of byte stream type. Or it can be a cluster of N scalar numbers, in which case
function returns an N-dimension array of instances of byte stream type.

If the wired count is a scalar number and the byte stream type is something other than an
array, the function returns that number of instances in a 1D array. For example, if the ty
a single-precision, floating point number and count is 3, the function returns an array of three
single-precision, floating point numbers. However, if the type is an array, the function re
the instances in a cluster array, because G does not have arrays of arrays. Therefore, if
is an array of single-precision, floating point numbers and count is 3, the function returns a
cluster array of three, single-precision, floating point number arrays.

If the wired count is a cluster of N numbers, the function returns an N-dimension array
instances of the type. The size of each dimension is the value of the corresponding nu
according to its cluster order. The number of instances returned in this manner is the pr
of the N numbers. Thus, you can return 20, single-precision, floating point numbers as
2D array of two columns and 10 rows by wiring a two-element cluster with element 0 = 2
element 1 = 10 to count.

data contains the data read from the file. Refer to the previous description of count for an
explanation of the structures data can have.

Reading Datalog Files
If refnum is a datalog file refnum, the Read File function reads records from the datalog
specified by refnum. If the data in the file does not match the datatype associated with t
datalog file, this function returns an error.

The number of records read can be less than specified by count if this function encounters the
end of the file. The function sets the file mark to the record following the last record rea
(You should never encounter a partial record; if you do, the file is corrupt.)

Do not wire convert eol, line mode, and byte stream type. They do not pertain to datalog
files. The count and data parameters function in the following manner.

count is the number of records to read and may be wired or unwired. If you do not wire count,
the function returns a single record of the datalog type specified when the file is create
opened. For example, if the type is a 16-bit integer, the function returns one 16-bit inte
If the type is an array of 16-bit integers, the functions returns one array of 16-bit intege
(Your records typically consist of clusters of diverse elements, but the rules for simple t
used in these examples apply to those as well.)

If you wire count, it can be a scalar number, in which case the function returns a 1D arra
records. Or it can be a cluster of N scalar numbers, in which case the function returns
N-dimension array of records.
© National Instruments Corporation 11-9 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

e

urns
he

of
g to its
bers.

ring a

ified
nally,

 calls

racter
If the wired count is a scalar number, and the datalog type is something other than an
array, the function returns that number of records in a 1D array. For example, if the typ
is a single-precision, floating-point number and count is 3, the array contains three,
single-precision, floating-point numbers. However, if the type is an array, the function ret
the records in a cluster array because G does not have arrays of arrays. Therefore, if t
datalog type is an array of single-precision, floating-point numbers and count is 3, the
function returns a cluster array of three, single-precision, floating-point number arrays.

If the wired count is a cluster of N numbers, the function returns an N-dimension array
records. The size of each dimension is the value of the corresponding number accordin
cluster order. The number of records returned in this manner is the product of the N num
Therefore, you can return 20 records as a 2D array of two columns and ten rows by wi
two-element cluster with element 0 = 2 and element 1 = 10 to count.

Read From Spreadsheet File
Reads a specified number of lines or rows from a numeric text file beginning at a spec
character offset and converts the data to a 2D, single-precision array of numbers. Optio
you can transpose the array. The VI opens the file before reading from it and closes it
afterwards. You can use this VI to read a spreadsheet file saved in text format. This VI
the Spreadsheet String to Array function to convert the data.

Read Lines From File
Reads a specified number of lines from a byte stream file beginning at a specified cha
offset. The VI opens the file before reading from it and closes it afterwards.
LabVIEW Function and VI Reference Manual 11-10 © National Instruments Corporation

Chapter 11 File Functions

file.

ied

yte

osh.
Strip Path
Returns the name of the last component of a path and the stripped path that leads to that
component.

Write Characters To File
Writes a character string to a new byte stream file or appends the string to an existing
The VI opens or creates the file before writing to it and closes it afterwards.

Write File
Writes data to the file specified by refnum. Writing begins at a location specified by
pos mode and pos offset for byte stream file and at the end of file for datalog files. data,
header, and the format of the specified file determine the amount of data written.

Writing Byte Stream Files
If refnum is a byte stream file refnum, the Write File function writes to a location specif
by pos mode and pos offset in the byte stream file specified by refnum. If the top-level
datatype of data is of variable length (that is, a string or an array), Write File can write a
header to the file that specifies the size of the data. Write File sets the file mark to the b
following the last byte written. convert eol determines whether the function converts the
end-of-line markers it writes into system-specific end-of-line markers. You can wire convert
eol only if data is a string. The system-specific end-of-line marker is a carriage return
followed by a line feed on Windows, a line feed on UNIX, and a carriage return on Macint
If header is true, Write File ignores convert eol.
© National Instruments Corporation 11-11 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

alog

tten.

create

tion of

s the
ally

ations.
Writing Datalog Files
If refnum is a datalog file refnum, the Write File function writes data as records to the dat
file specified by refnum. Writing always starts at the end of the datalog file (datalog files
are append-only). Write File sets the file mark to the record following the last record wri
The convert eol, header, pos mode, and pos offset parameters do not apply with datalog
files, and you cannot wire them. The data parameter functions in the following manner for
datalog files.

data must be either a datatype that matches the datatype specified when you open or
the file, or an array of such datatypes. In the former case, this function writes data as a single
record in the datalog file. Representation of numeric data is coerced to the representa
the datatype if necessary. In the latter case, this function writes each element of data as a
separate record in the datalog file in row-major order.

Write To Spreadsheet File
Converts a 2D or 1D array of single-precision (SGL) numbers to a text string and write
string to a new byte stream file or appends the string to an existing file. You can option
transpose the data. This VI opens or creates the file before writing to it and closes it
afterwards. You can use this VI to create a text file readable by most spreadsheet applic
This VI calls the Array to Spreadsheet String function to convert the data.

Binary File VI Descriptions
The following VIs are available from the Binary File VIs subpalette.

LabVIEW Function and VI Reference Manual 11-12 © National Instruments Corporation

Chapter 11 File Functions

he VI
d

e To

L).
I

o

nds
es it
Is.
Read From I16 File
Reads a 2D or 1D array of data from a byte stream file of signed, word integers (I16). T
opens the file before reading from it and closes it afterwards. You can use this VI to rea
unscaled or binary data acquired from data acquisition VIs and written to a file with Writ
I16 File.

Read From SGL File
Reads a 2D or 1D array of data from a byte stream file of single-precision numbers (SG
The VI opens the file before reading from it and closes it afterwards. You can use this V
to read scaled data acquired from data acquisition VIs and written to a file with Write T
SGL File.

Write To I16 File
Writes a 2D or 1D array of signed word integers (I16) to a new byte stream file or appe
the data to an existing file. The VI opens or creates the file before writing to it and clos
afterwards. You can use this VI to write unscaled or binary data from data acquisition V
© National Instruments Corporation 11-13 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

 and
thout
Write To SGL File
Writes a 2D or 1D array of single-precision numbers (SGL) to a new byte stream file or
appends the data to an existing file. The VI opens or creates the file before writing to it
closes it afterwards. You can use this VI to write scaled data from data acquisition VIs wi
changing the representation.

Advanced File Function Descriptions
The following functions are available on the Advanced File Functions subpalette.

Access Rights
Sets and returns the owner, group, and permissions of the file or directory specified by path.
If you do not specify new owner, new group, or new permissions, this function returns the
current settings unchanged.
LabVIEW Function and VI Reference Manual 11-14 © National Instruments Corporation

Chapter 11 File Functions

t

on of
(Windows) The Access Rights function ignores new owner and new group and returns empty
strings for owner and group because Windows does not support owners and groups.

(Macintosh) If path refers to a file, the Access Rights function ignores new owner and new
group and returns empty strings for owner and group because Macintosh does not suppor
owners or groups for files.

Array Of Strings To Path
Converts array of strings into a relative or absolute path.

Copy
Copies the file or directory specified by source path to the location specified by target path.
If you copy a directory, this function copies all its contents recursively.

Delete
Deletes the file or directory specified by path. If path specifies a directory that is not empty
or if you do not have write permission for both the file or directory specified by path and its
parent directory, this function does not remove the directory and returns an error.

EOF
Sets and returns the logical EOF (end-of-file) of the file identified by refnum. pos mode and
pos offset specify the new location of the EOF. If you do not specify pos mode or pos offset,
this function returns the current unchanged EOF. This function always returns the locati
the EOF relative to the beginning of the file.
© National Instruments Corporation 11-15 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

ou

 use
 new

f

file.
You cannot set the EOF of a datalog file. If refnum identifies a datalog file, you cannot wire
pos mode and pos offset. However, you still can get the EOF of a datalog file, which tells y
how many records exist in the file.

File Dialog
Displays a dialog box with which you can specify the path to a file or directory. You can
this dialog box to select existing files or directories or to select a location and name for a
file or directory.

File/Directory Info
Returns information about the file or directory specified by path, including its size, its last
modification date, and whether it is a directory.

Flush File
Writes all buffers of the file identified by refnum to disk and updates the directory entry o
the file associated with refnum. The file remains open, and refnum remains valid.

Data written to a file often resides in a buffer until the buffer fills up or until you close the
This function forces the operating system to write any buffer data to the file.
LabVIEW Function and VI Reference Manual 11-16 © National Instruments Corporation

Chapter 11 File Functions

de

used

r
List Directory
Returns two arrays of strings listing the names of all files and directories found in directory
path, filtering both arrays based upon pattern and filtering the file names array based upon
the specified datalog type.

Lock Range
Locks or unlocks a range of a file specified by refnum. Locking a range of a file prevents both
reading and writing by other users, overriding permissions for the file, and the deny mo
associated with refnum. See the File I/O VI and Function Overview section in this chapter
for a full discussion of permissions. Unlocking a range of a file removes the override ca
by locking a range, so that the file’s permissions and the deny mode associated with refnum
determine whether other users can read from or write to that range of the file.

You cannot lock a range of a datalog file.

Move
Moves the file or directory specified by source path to the location specified by target path.

New Directory
Creates the directory specified by directory path . If a file or directory already exists at the
specified location, this function returns an error instead of overwriting the existing file o
directory.
© National Instruments Corporation 11-17 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

rs
New File
Creates the file specified by file path and opens it for reading and writing (regardless of
permissions).

Open File
Opens the file specified by file path for reading and/or writing.

Path To Array Of Strings
Converts a path into an array of strings and indicates whether the path is relative.

Path To String
Converts path into a string describing a path in the standard format of the platform.

Path Type
Returns the type of the specified path, indicating whether it is an absolute, relative, or
invalid path. This function checks only the format of the path, not whether the path refe
to an existing file or directory. Therefore, this function only indicates an invalid path for
Not A Path.
LabVIEW Function and VI Reference Manual 11-18 © National Instruments Corporation

Chapter 11 File Functions

ator
ator

d
Refnum To Path
Returns the path associated with the specified refnum.

Seek
Moves the current file mark of the file identified by refnum to the position indicated by
pos offset according to the mode chosen by pos mode.

String To Path
Converts string, describing a path in the standard format for the current platform, to path.

Type and Creator
Reads and sets the type and creator of the file specified by path. File type and creator are
four-character strings. If you do not specify new type or new creator, this function returns
the current settings unchanged.

Windows and UNIX do not support file types and creators. Trying to set the type or cre
of a file in these platforms results in an error; however, you can get the file type and cre
in these platforms. If the specified file has a name ending with characters that Type an
Creator recognizes as specifying a file type (such as .vi for the LVIN file type and .llb for
the LVAR file type), this function returns that type in type and LBVW in creator. Otherwise,
the function returns ???? in both type and creator.
© National Instruments Corporation 11-19 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

ount

 in a
ithin a
Volume Info
Returns information about the volume containing the file or directory specified by path,
including the total storage space provided by the volume, the amount used, and the am
free in bytes.

Configuration File VIs
The Configuration File VIs provide you with the tools to create, modify, and read a
platform-independent configuration file. The following illustration shows the options
available on the Configuration File VIs subpalette.

The Configuration File VIs work with a platform-independent configuration file similar in
format to the standard Windows initialization (.ini) file.

The file is divided into sections, denoted by a name enclosed in brackets. Each section
file must have a unique name. Within each section are key and value pairs. Each key w
section must have a unique name.
LabVIEW Function and VI Reference Manual 11-20 © National Instruments Corporation

Chapter 11 File Functions

 the
le,

t for
An example of a configuration file with sections section 1 and section 2 is:
[section 1]

key1="string value 1"

key2="string value 2"

key3=53

[section 2]

key1=TRUE

key2=-12.3

key3="/c/temp/data.dat"

The Configuration File VIs support the following data types:

• Strings

• Paths

• Booleans

• 64-bit floating-point numbers (Double)

• 32-bit signed integers (I32)

• 32-bit unsigned integers (U32)

String data in the file must be enclosed in double quotes. Any unprintable characters in
string are stored in the file with their equivalent hexadecimal escape codes (for examp
\0D for carriage return). In addition, backslash characters are stored in the file as
double-backslashes (for example, \\ for \).

Path data is stored in a platform-neutral format. This format is the standard UNIX forma
paths. The VIs will interpret the absolute path /c/temp/data.dat as follows on the various
G platforms:

• Windows: c\temp\data.dat

• MacOS: c:temp:data.dat

• UNIX: /c/temp/data.dat

In addition, the VIs interpret the relative path temp/data.dat as follows:

• Windows: temp\data.dat

• MacOS: :temp:data.dat

• UNIX: temp/data.dat
© National Instruments Corporation 11-21 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

fied

tion
Close Config Data
Closes a reference to the configuration data identified by refnum. If write configuration
file? is TRUE, the VI writes the data to the platform-independent configuration file identi
by refnum.

Open Config Data
Opens a reference to the configuration data found in a platform-independent configura
file. If the specified file does not exist and create file if necessary? is TRUE, the VI also
creates the configuration file.

Read Key (Boolean)
Reads a Boolean value associated with a key in a specified section from the configuration
data identified by refnum. If the key does not exist, the VI returns the default value.

Read Key (Double)
Reads a 64-bit floating-point number value associated with key in a specified section
from the configuration data identified by refnum. If key does not exist, the VI returns
default value.
LabVIEW Function and VI Reference Manual 11-22 © National Instruments Corporation

Chapter 11 File Functions
Read Key (I32)
Reads a 32-bit signed integer value associated with a key in a specified section from
the configuration data identified by refnum. If the key does not exist, the VI returns the
default value.

Read Key (Path)
Reads a path value associated with key in a specified section from the configuration data
identified by refnum. If key does not exist, the VI returns default value.

Read Key (String)
Reads a string value associated with key in a specified section from the configuration data
identified by refnum. If key does not exist, the VI returns default value.

Read Key (U32)
Reads a 32-bit unsigned integer value associated with key in a specified section from
the configuration data identified by refnum. If key does not exist, the VI returns the
default value.
© National Instruments Corporation 11-23 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions
Remove Key
Removes a key in a specified section from the configuration data identified by refnum.

Remove Section

Removes a section from the configuration data identified by refnum.

Write Key (Boolean)

Writes a Boolean value associated with key in a specified section of the configuration data
identified by refnum. If key exists, the VI replaces the existing value. If key does not exist,
the VI adds the key/value pair to the end of the specified section. If section does not exist,
the VI adds section, with the key/value pair, to the end of the configuration data.

Write Key (Double)

Writes a 64-bit floating-point number value associated with key in a specified section of the
configuration data identified by refnum. If key exists, the VI replaces the existing value.
If key does not exist, the VI adds the key/value pair to the end of the specified section.
If section does not exist, the VI adds the section, with the key/value pair, to the end of the
configuration data.
LabVIEW Function and VI Reference Manual 11-24 © National Instruments Corporation

Chapter 11 File Functions
Write Key (I32)

Writes a 32-bit signed integer value associated with key in a specified section of the
configuration data identified by refnum. If key exists, the VI replaces the existing value.
If key does not exist, the VI adds the key/value pair to the end of the specified section.
If section does not exist, the VI adds section, with the key/value pair, to the end of the
configuration data.

Write Key (Path)
Writes a path value associated with key in a specified section of the configuration data
identified by refnum. If key exists, the VI replaces the existing value. If key does not exist,
the VI adds the key/value pair to the end of the specified section. If section does not exist,
the VI adds section, with the key/value pair, to the end of the configuration data.

Write Key (String)
Writes a string value associated with key in a specified section of the configuration data
identified by refnum. If key exists, the VI replaces the existing value. If key does not exist,
the VI adds the key/value pair to the end of the specified section. If section does not exist,
the VI adds section, with the key/value pair, to the end of the configuration data.
© National Instruments Corporation 11-25 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

rns
Write Key (U32)

Writes a 32-bit unsigned integer value associated with key in a specified section of the
configuration data identified by refnum. If key exists, the VI replaces the existing value.
If key does not exist, the VI adds the key/value pair to the end of the specified section.
If the section does not exist, the VI adds section, with the key/value pair, to the end of the
configuration data.

File Constants Descriptions
The following constants are available from the File Constants subpalette.

Current VI’s Path Constant
Returns the path to the file containing the VI in which this function appears. If the VI is
incorporated into an application (using the Application Builder libraries), the function retu
the path to the VI in the application file, and treats the application file as a VI library.
LabVIEW Function and VI Reference Manual 11-26 © National Instruments Corporation

Chapter 11 File Functions

 file

ctures

 from

by
dard
 Path

ign a
Default Directory Constant
Returns the path to your default directory. The default directory is the directory which the
dialog displays initially. The Preferences dialog box (Edit»Preferences), under Paths,
defines this directory.

Empty Path
Returns an empty path.

Not A Path
Returns a path whose value is Not A Path. You can use this path as an output from stru
and subVIs when an error occurs.

Not A Refnum
Returns a refnum whose value is Not A Refnum. You can use this refnum as an output
structures and subVIs when an error occurs.

Path Constant
Use this to supply a constant directory or file path to the block diagram. Set this value
clicking inside the constant with the Operating tool and typing in the value. Use the stan
file path syntax for a given platform. You can set the value of the path constant to Not a
by clicking on the path symbol with the Operating tool and selecting Not a Path from the
resulting menu. See the Paths and Refnums section of Chapter 6, Strings and File I/O, in the
LabVIEW User Manual for more information on using the Not a Path value.

The value of the path constant cannot be changed while the VI executes. You can ass
label to this constant.
© National Instruments Corporation 11-27 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

n
 to

the
Temporary Directory Constant
Returns the path to your temporary directory. The temporary directory is the directory i
which you store temporary information that you expect the user or the operating system
delete periodically. The G Preferences dialog box (Edit»Preferences), under Paths, defines
this directory.

VI Library Constant
Returns the path to the VI library directory for the current development library on the
current computer. The Preferences dialog box (Edit»Preferences), under Paths, defines this
directory. If you build an application using the Application Builder libraries, this path is
path of the directory containing the application.
LabVIEW Function and VI Reference Manual 11-28 © National Instruments Corporation

© National Instruments Corporation 12-1 LabVIEW Fu
12

Application Control Functions

This chapter describes the Application Control functions.

To access the Application Control palette, shown in the following
illustration, select Functions»Application Control.

The Application Control palette include the following subpalettes:

• Help functions

• Menu functions
nction and VI Reference Manual

Chapter 12 Application Control Functions

a VI.
alled

e
VI
d VI
ld wire

e

st
 the

n a

Application Control Functions
The following Application Control functions are available.

Call By Reference Node
The Call By Reference node is very similar to a subVI node: you can use either to call
However, there is a significant difference. With a subVI node, you determine what VI is c
when you drop the node on the diagram.

With the Call By Reference node, the end user determines what VI is called at runtime
via thereference input. The Call By Reference node could call a VI that resides on a
different computer.

At the top of the Call By Reference node are four terminals: an input/output pair of flow
through VI reference terminals, and an input/output pair of flow through error clusters.
The VI reference input accepts wires only from strictly-typed VI references. Below thes
terminals is an area within which a connector pane resides that is identical to that of a
with its terminals showing (rather than its icon). The connector pane of the strictly-type
reference input determines the pattern and data types of this connector pane. You shou
to these terminals just as you would to a normal subVI.

As long as none of the terminals of the connector pane have wires attached to them, th
connector pane adapts automatically to the connector pane of the input VI reference.
However, if any of them are wired, the node does not adapt automatically, and you mu
explicitly change the connector pane (possibly breaking those wires) by popping up on
node and selecting the Adapt To Reference Input menu item.

At run time there is a small amount of overhead in calling the VI that is not necessary i
normal subVI call. This overhead comes from validating the VI reference and a few
other details. However, for a call to a VI in the local LabVIEW, this overhead should be
insignificant for all but the smallest subVIs. Calling a VI located in another LabVIEW
application (across the network) involves considerably more overhead. The reference input
determines the VI that is called by the Call by Reference node.
LabVIEW Function and VI Reference Manual 12-2 © National Instruments Corporation

Chapter 12 Application Control Functions

em.

get the
meters

u do

 to
 Open
ence
, it

ing.
ction
Call Chain
Returns a reference to a LabVIEW application or a VI.

Close Application or VI Reference
Closes an open VI or the TCP connection to an open copy of LabVIEW.

Invoke Node
Invokes a method or action on a VI. Most methods have parameters associated with th
To select the method, pop up anywhere on the node and select Methods. Once you select the
method, the associated parameters appear in the following illustration. You can set and
parameter values. Parameters with a white background are required inputs and the para
with a gray background are recommended inputs.

Open Application Reference
Returns a reference to a VI Server application running on the specified computer. If yo
not specify a value for machine name, then it returns a reference to the local LabVIEW
application in which this function is running.

You can use the application reference output as an input to the Property and Invoke nodes
get or set properties and invoke methods on the application. Using it as the input to the
VI Reference function lets you get references to VIs in that application. Close the refer
with the Close Application or VI Reference function. If you forget to close this reference
closes automatically when the top-level VI associated with this function finishes execut
However, it is good practice to conserve the resources involved in maintaining the conne
by closing the reference when you finish using it.
© National Instruments Corporation 12-3 LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

isk.

his
a
wired

 and
at is
s that

is
ctor

t

ral

nless

iated
rces
t.
Open VI Reference
Returns a reference to a VI specified by a name string or path to the VI's location on d

You can get references to VIs in another LabVIEW application by wiring an application
reference (obtained from the Open Application Reference function) to this function. In t
case, path input refers to the file system on the remote LabVIEW computer. If you wire
reference to the local LabVIEW application you get the same behavior as if you had not
anything to the application reference input.

If you intend to perform editing operations on the referenced VI, and the VI has a
password-protected diagram, you can provide the password to the password string input.
If you provide the incorrect password, the Open VI Reference function returns an error
an invalid VI reference. If you provide no password when opening a reference to a VI th
password protected, you can still get the reference, but you can only perform operation
do not edit the VI.

If you intend to call the specified VI through the Call By Reference function, wire a
strictly-typed VI reference to the type specifier input. The function ignores the value of this
input. Only the input's type—the connector pane information—is used. By specifying th
type, the Open VI Reference function verifies at run time that the referenced VI’s conne
pane matches that of the type specifier input.

Note It is possible to wire a Generic VI refnum type to the type specifier input. Doing
this results in the same behavior as if you had not wired the type specifier inpu
at all.

If you wire the type specifier input with a strictly-typed VI refnum, the VI must meet seve
requirements before the VI reference is returned successfully:

• The VI cannot be broken for any reason.

• The VI must be runnable as a subVI; that is, it cannot be active as a top-level VI (u
the VI is re-entrant).

• The connector pane of the VI must match that of the type specifier.

If you forget to close this reference, it closes automatically when the top-level VI assoc
with this function finishes executing. However, it is good practice to conserve the resou
involved in maintaining the connection by closing the reference when you finish using i
LabVIEW Function and VI Reference Manual 12-4 © National Instruments Corporation

Chapter 12 Application Control Functions

ed for
ce.

he

ges.

 other
what

r

ot

s,

re
all
all

lecting
ch
If you get a strictly-typed reference to a reentrant VI, a dedicated data space is allocat
that reference. This data space is always used in conjunction with the output VI referen
This can lead to some new behaviors that you may not be accustomed to in LabVIEW.
For example, parallel calls (using the Call By Reference node) to a reentrant VI using t
same VI reference do not execute in parallel, but execute serially, one after the other.

Notice that a VI reference is similar to what is known as a function pointer in other langua
However, in LabVIEW, these function pointers also can be used to call VIs across the
network.

Print Panel
Produces the same printout as programmatic print at completion, but can be called from
VIs and at times other than at completion. By default, it prints the entire panel, not just
is visible in the window. This VI assumes that the VI is loaded but does not require the
window to be open.

Property Node
Sets (writes) or gets (reads) VI and application property information. To select the VI o
application class, pop up on the node and select from the Select VI Server Class submenu.
To select an application class, select Application . To select a VI class, select Virtual
Instrument , or wire the VI or application refnum to reference and the node choices change
accordingly.

To select a specific property, pop up on one of the name terminals and select Properties.
To set property information, pop up and select Change to Write, and to get property
information pop up and select Change to Read. Some properties are read only, so you cann
see Change to Write in the pop-up menu. The Property node works the same way as
Attribute nodes. If you want to add items to the node, pop up and select Add Element or click
and drag the node to expand the number of items in the node. When this node execute
properties are handled in the order from top to bottom. If an error occurs on one of the
properties, the node stops at that property and returns an error. No further properties a
handled. The error string reports which property caused the error. Remember if the sm
direction arrow on a property is on the left, you are setting the property value. If the sm
direction arrow on the property is on the right, you are getting the property value. Each
property name has a short or long name which can be changed by popping up and se
Name Format. Another name format is no name where only the type is displayed for ea
property.
© National Instruments Corporation 12-5 LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

own
ning

red,

 use
UE

ve
you
eir

 in
I can
olean
ion.
Quit
Stops all executing VIs and ends the current session of LabVIEW. This function shuts d
only LabVIEW; the function does not affect other applications. The function stops all run
VIs the same way the Stop function does.

Stop
Stops the VI in which it executes, just as if you clicked the Stop button in the toolbar. If you
wired the input, stop occurs only if the input value is TRUE. If you leave the input unwi
the stop occurs as soon as the node that is currently executing finishes.

If you need to abort execution of all VIs in a hierarchy from the block diagram, you can
this function, but you must use it with caution. Before you call the Stop function with a TR
input, be sure to complete all final tasks for the VI first, such as closing files, setting sa
values for devices being controlled, and so on. If you put the Stop function in a subVI,
should make its behavior clear to other users of the VI because this function causes th
VI hierarchies to abort execution.

In general, avoid using the Stop function when you have a built-in termination protocol
your VI. For example, I/O operations should be performed in While Loops so that the V
terminate the loop on an I/O error. You should also consider using a front panel Stop Bo
control to terminate the loop at the request of the user rather than using the Stop funct
LabVIEW Function and VI Reference Manual 12-6 © National Instruments Corporation

Chapter 12 Application Control Functions

g to
Help Function Descriptions
The following illustration displays the options available on the Help subpalette.

Control Help Window
Modifies the Help window by showing, hiding, or repositioning the window.

Control Online Help
Controls the online help system by displaying the table of contents of a help file, jumpin
a specific point in a help file, or closing the online help system.

Get Help Window Status
Returns the status and the position information for the Help window.
© National Instruments Corporation 12-7 LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

tring)
 root

tion
s in
nu

ly.
tional
Menu Functions

The following illustration displays the options available on the Menu subpalette.

The Menu functions operate on menus identified by a refnum. A VI's menu refnum is
obtained through the constant Current VI's menu. Items are identified by an item tag (s
and sometimes by an item path (string), which is a list of item tags from the menu tree
up to the item and separated by colons.

The following Menu functions are available.

Delete Menu Items
Deletes menu items from the menubar or a submenu within the menubar.

If menu tag is specified, the items are deleted from the submenu specified by menu tag, or
else the items are deleted from the menubar. The function returns an error if menu tag or one
of the items specified is not found.

items can be a tag (string) of an existing item, an array of tags of existing items, a posi
index (zero-based integer) of an item in the menu or an array of position indices of item
the menu. If you do not wire items, all the items in the menu are deleted. If there is a subme
in any of the specified items, the submenu and all its contents are deleted automatical
Because separators do not have unique tags, they are best deleted by using their posi
indices.
LabVIEW Function and VI Reference Manual 12-8 © National Instruments Corporation

Chapter 12 Application Control Functions

d as
d.

enu
Enable Menu Tracking
Enables or disables tracking of menu selections.

Get Menu Item Info
Returns the attributes of the menu item specified through item tag.

Item attributes are item name (the string that appears in the menu), enabled (false designates
that the item is grayed out), checked (specifies whether there is a check mark next to the
item), and short cut (key accelerator). If the item has a submenu, its item tags are returne
an array of strings in submenu tags. If item tag is unwired, the menubar items are returne
If item tag is not valid, an error is returned.

Get Menu Selection
Returns the item tag of the last selected menu item, optionally waiting timeout
milliseconds . item path is a string describing the position of the item in the menu
hierarchy, which is the format of a list of menu tags separated by a colon (:). If block m
is set to True , Menu selection is blocked out after an item tag is read.
© National Instruments Corporation 12-9 LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

uded

ing

me and

arator
 of all
e
Get Menu Shortcut Info
Returns the menu item that is accessible through a given shortcut.

item path is a string of menu item tags separated by a colon (:).

short cut consists of a string (key) and a Boolean (specifies whether the shift key is incl
or not).

Insert Menu Items
Inserts menu items into a menubar or a submenu within the menubar.

menu tag specifies the submenu where items are inserted. If you do not specify menu tag,
the items are inserted into the menubar.

item names and item tags identify the items to be inserted into the menu. The type of item
names and item tags can be an array of strings (for inserting multiple items) or just a str
(for inserting a single item). You can wire in either item names or item tags, in which case
both names and tags get the same values. If you require each item to have different na
tag, you must wire in separate values for item names and item tags.

after item specifies the position where the items are inserted. after item can be a tag (string)
of an existing item or a position index (zero based integer) in the menu. To insert at the
beginning of the menu, wire a number less than 0 to after item. To insert at the end of the
menu, wire a number larger than the number of items in the menu. You can insert a sep
using the application tag APP_SEPARATOR. The function always ensures that the tags
the inserted menu items are unique to the menu hierarchy by appending numbers to th
supplied tags, if necessary.

item tags out returns the actual tags of the inserted items. If menu tag or after item (tag) is
not found, the function returns an error.
LabVIEW Function and VI Reference Manual 12-10 © National Instruments Corporation

Chapter 12 Application Control Functions
Set Menu Item Info
Sets the attributes of a menu item specified through menu and item tag. Item attributes are
item name (the string that appears in the menu), enabled (false designates that the item is
grayed out), checked (specifies whether there is a check mark next to the item), and shortcut
(key accelerator). Attributes that are not wired remain unchanged. If item tag is not valid, an
error is returned.
© National Instruments Corporation 12-11 LabVIEW Function and VI Reference Manual

© National Instruments Corporation 13-1 LabVIEW Fu
13

s.
n

t
Advanced Functions

This chapter describes the functions that perform advanced operation
This chapter also describes the Data Manipulation and Synchronizatio
functions, and the VI Control and Memory VIs.

To access the Advanced palette, shown in the following illustration, selec
Functions»Advanced.

The Advanced functions include the following subpalettes:

• Data Manipulation

• Memory

• Synchronization

• VI Control
nction and VI Reference Manual

Chapter 13 Advanced Functions

rtz,
the
ty

block
en in
irectly

 the

tatype.
sier.

ode
e. You
mpile
Advanced Function Descriptions
The following Advanced functions are available.

Beep
Causes the system to issue an audible tone. You can specify the tone frequency in He
the duration in milliseconds, and the intensity as a value from 0 to 255, with 255 being
loudest. Although this VI appears on all platforms, the frequency, duration, and intensi
parameters work only on the Macintosh.

Code Interface Node
Calls code written in a conventional programming language, such as C, directly from a
diagram. Code Interface Nodes (CINs) make it possible for you to use algorithms writt
another language or to access platform-specific features or hardware that G does not d
support.

CINs are resizable and show datatypes for the connected inputs and outputs, similar to
Bundle function. The following illustration shows the CIN function.

The LabVIEW interface to external code is very powerful. You can pass any number of
parameters to or from external code, and each parameter can be of any arbitrary G da
LabVIEW provides several libraries of routines that make working with G datatypes ea
These routines support memory allocation, file manipulation, and datatype conversion.

If you convert a VI that contains a CIN to another platform, you need to recompile the c
for the new platform because CINs use code compiled in another programming languag
can write source code for a CIN so that it is machine-independent, requiring only a reco
to convert it to another platform. For examples of CINs, see examples\cins .

For more information on the Code Interface Node, see the LabVIEW Code Interface
Reference Manual, available in portable document format (PDF) only.
LabVIEW Function and VI Reference Manual 13-2 © National Instruments Corporation

Chapter 13 Advanced Functions

you
all

 to call

and
ed in
 this

ter in
al of
 the

ion

to
Call Library Function
Calls standard libraries without writing a Code Interface Node (CIN). Under Windows,
can call a dynamic link library (DLL) function directly. In Macintosh and UNIX, you can c
a shared library function directly. On the Macintosh 68K, you must have the CFM-68K
system extension installed for the Call Library Function node to operate.

This node supports a large number of datatypes and calling conventions. You can use it
functions from most standard and custom-made libraries.

The Call Library Function node, shown in the following illustration, looks similar to a
Code Interface node.

The Call Library Function consists of paired input/output terminals with input on the left
output on the right. You can use one or both. The return value for the function is return
the right terminal of the top pair of terminals of the node. If there is no return value, then
pair of terminals is unused. Each additional pair of terminals corresponds to a parame
the functions parameter list. You pass a value to the function by wiring to the left termin
a terminal pair. You read the value of a parameter after the function call by wiring from
right terminal of a terminal pair.

If you select Configure... from the pop-up menu of the node, you see a Call Library Funct
dialog box from which you can specify the library name or path, function name, calling
conventions, parameters, and return value for the node. When you click on OK , the node
automatically increases in size to have the correct number of terminals. It then sets the
terminals to the correct datatypes. For more information on Call Library Function refer
Chapter 25, Calling Code From Other Languages, in the G Programming Reference Manual.
© National Instruments Corporation 13-3 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

n
Data Manipulation Function Descriptions
The following illustration displays the options available on the Data Manipulation
subpalette.

Flatten To String
Converts anything to a string of binary values. type string is a type descriptor that describes
the datatype of anything. data string is the flattened form of anything. For more informatio
on type descriptors and flattened data, see Flattened Data, in Appendix A, Data Storage
Formats, of the G Programming Reference Manual.

Join Numbers
Creates a number from the component bytes or words.

Logical Shift
Shifts x the number of bits specified by y.
LabVIEW Function and VI Reference Manual 13-4 © National Instruments Corporation

Chapter 13 Advanced Functions

lue

Mantissa & Exponent
Returns the mantissa and exponent of the input numeric value such that
number = mantissa* 2 exponent. If number is 0, both mantissa and exponent are 0.
Otherwise, the value of mantissa is greater than or equal to 1 and less than 2, and the va
of exponent is an integer.

Rotate
Rotates x the number of bits specified by y.

Rotate Left With Carry
Rotates each bit in the input value to the left (from least significant to most significant bit),
inserts carry in the low-order bit, and returns the most significant bit.

Rotate Right With Carry
Rotates each bit in value to the right (from most significant to least significant), inserts carry
in the high-order bit, and returns the least significant bit.

Split Number
Breaks a number into its component bytes or words.
© National Instruments Corporation 13-5 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

, the
 last,
tring to
The following illustration shows an example of how to use the Split Number function.
The function splits the signed 32-bit number 100,000 into the high word component, 1,
and the low word component, 34,464.

Swap Bytes
Swaps the high-order 8 bits and the low-order 8 bits for every word in anything.

Swap Words
Swaps the high-order 16 bits and the low-order 16 bits for every long integer in anything.

Type Cast
Casts x to the datatype, type.

Casting data to a string converts it into machine-independent, big endian form. That is
function puts the most significant byte or word first and the least significant byte or word
removes alignment, and converts extended-precision numbers to 16 bytes. Casting a s
LabVIEW Function and VI Reference Manual 13-6 © National Instruments Corporation

Chapter 13 Advanced Functions

at

a 1D array converts the string from machine-independent form to the native form for th
platform.

Unflatten From String
Converts binary string to the type wired to type. This function performs the inverse of
Flatten To String. binary string should contain flattened data of the type wired to type.
For more information on type descriptors and flattened data, see Flattened Data, in
Appendix A, Data Storage Formats, of the G Programming Reference Manual.

Memory VI Descriptions
The following illustration displays the options available on the Memory subpalette.

In Port (Windows 3.1 and Windows 95)
Reads a byte or word integer from a specific register address. Because this VI is not available
on all platforms, VIs using this subVI are not portable.

Out Port (Windows 3.1 and Windows 95)
Writes a byte or word integer to a specific register address. Because this VI is not available
on all platforms, VIs using this subVI are not portable.
© National Instruments Corporation 13-7 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

ess

arallel

t is,
er
ata.
Synchronization VIs
You can synchronize tasks executing in parallel by using the Synchronization VIs.
You can also use the Synchronization VIs to pass data between parallel tasks. You acc
theSynchronization palette by choosing Functions»Advanced»Synchronization.

The following illustration displays the options available on the Synchronization palette.

The Synchronization palette consists of five subpalettes:

• Notification VIs

• Queue VIs

• Rendezvous VIs

• Semaphore VIs

• Occurrence Functions

Notification VIs

You can use the Notification VIs to pass data from one task to one or more separate, p
tasks. In particular, you use these VIs when you want one or more VIs or parts of block
diagrams to wait until another VI or part of a block diagram sends them some data.

The Notification VIs differ from the Queue VIs in that the data sent is not buffered. Tha
if there is no one waiting on a notification when it is sent, the data will be “lost” if anoth
notification is sent. Also, more than one Wait On Notification VI can receive the same d
LabVIEW Function and VI Reference Manual 13-8 © National Instruments Corporation

Chapter 13 Advanced Functions

e

exist
You can access the notification VIs by selecting
Functions»Advanced»Synchronization»Notification.

The notification VIs use the Notifier RefNum control from the Controls»Path & Refnum
palette.

The Notifier RefNum can be used with the following VIs.

Cancel Notification
Cancels and returns a previously sent notification.

This prevents a call to the Wait On Notification VI with ignore previous set to FALSE to see
the previously sent notification.

Create Notifier
Looks up an existing notifier or creates a new notifier and returns a refnum that you can us
when calling other Notification VIs.

If name is specified, the VI first searches for an existing notifier with the same name and
will return its refnum if it exists. If a named notifier with the same name does not already
and the return existing input is FALSE, the VI will create a new notifier and return its
refnum. The created new output returns TRUE if the VI creates a new notifier.
© National Instruments Corporation 13-9 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

n
Destroy Notifier
Destroys the specified notifier and returns the last notification that was sent. All Wait on
Notification VIs that are currently waiting on this notifier time out immediately and retur
an error.

Get Notifier Status
Returns current status information of notifier .

Not A Notifier
Returns TRUE if notifier is not a valid notifier refnum.

Send Notification
Sends notification to the specified notifier . All Wait On Notification VIs that are currently
waiting on this notifier stop waiting and return the specified notification .

Wait On Notification
Waits for the Send Notification VI to send notification to the specified notifier.
LabVIEW Function and VI Reference Manual 13-10 © National Instruments Corporation

Chapter 13 Advanced Functions

led,

nce

e

sk to
to wait
nt one
.

here
s in the
e two
If ignore previous is FALSE and a notification was sent since the last time this VI was cal
the VI returns immediately with the value of the old notification and with timed out as
FALSE. If the ignore previous input is TRUE, the VI will wait timeout milliseconds
(default –1, or forever) before timing out. If a notification is sent, timed out will return
FALSE. If a notification is not sent or if notifier is not valid, timed out will return TRUE.

Wait On Notification From Multiple
Waits for the Send Notification VI to send a notification to one of the specified notifiers.

If ignore previous is FALSE and a notification was sent to any of the specified notifiers si
the last time this VI was called, the VI returns immediately with the value(s) of the old
notification(s) and with timed out=FALSE. If the ignore previous input is TRUE, the VI
will wait ms timeout milliseconds (default –1, or forever) before timing out. If at least on
notification is sent, timed out will return FALSE. If no notification is sent, timed out will
return TRUE.

Queue VIs
You can use the Queue VIs to pass an ordered sequence of data elements from one ta
another separate, parallel task. In particular, you use these VIs when you want one task
until another task provides it with some data. You can also use these VIs when you wa
task to wait until another task has processed some data that the first task has provided

The queue VIs differ from the notification VIs in that the data sent is buffered. That is, if t
is no one waiting to read from the queue when an element is inserted, the element stay
queue until it is explicitly removed. Also, when data is inserted into a queue and there ar
VIs waiting to remove it from the queue, only one of them receives the data.

You can access the Queue VIs by selecting Functions»Advanced»Synchronization»Queue.

The Queue VIs use the Queue RefNum control from the Controls»Path & Refnum palette.
© National Instruments Corporation 13-11 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

e when

ueue
oved

d will
ist and
Queue RefNum can be used with the following VIs.

Create Queue
Looks up an existing queue or creates a new queue and returns a refnum that you can us
calling other queue VIs.

If you specify a size > 0, the queue size is limited to that many elements. If the Insert Q
Element VI tries to insert an element into a full queue, it must wait until an element is rem
with the Remove Queue Element VI. The default size is –1 for an unbounded queue.

If a name is specified, the VI first searches for an existing queue with the same name an
returns its refnum if it exists. If a named queue with the same name does not already ex
the return existing input is FALSE, the VI creates a new queue and return its refnum.
Thecreated new output returns TRUE if the VI creates a new queue.
LabVIEW Function and VI Reference Manual 13-12 © National Instruments Corporation

Chapter 13 Advanced Functions

 Queue
 out

r the

erted
Destroy Queue
Destroys the specified queue and returns any elements that are in the queue. All Insert
Element and Remove Queue Element VIs that are currently waiting on this queue time
immediately and return an error.

Flush Queue
Removes all elements from queue.

Get Queue Status
Returns current status information of queue.

Insert Queue Element
Inserts an element into a queue.

The at begining parameter specifies whether the element is inserted at the end (default) o
front of the queue. If the queue is full, the VI waits timeout milliseconds (default –1, or
forever) before timing out. If space becomes available during the wait, the element is ins
and timeout returns FALSE. If the queue remains full or the queue is not valid, timeout
returns TRUE.
© National Instruments Corporation 13-13 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

ait,
he

t
cified
Not A Queue
Returns TRUE if queue is not a valid queue refnum.

Remove Queue Element
Removes an element from a queue.

The from end parameter specifies whether the returned element is taken from the front
(default) or the end of the queue. If the queue is empty, the VI waits timeout milliseconds
(default –1, or forever) before timing out. If an element becomes available during the w
the element is returned and timed out returns FALSE. If no element becomes available or t
queue is not valid, timed out returns TRUE.

Rendezvous VIs
You can use the Rendezvous VIs to synchronize two or more separate, parallel tasks a
specific points of execution. Each task that reaches the rendezvous waits until the spe
number of tasks are waiting, at which point all tasks proceed with execution.

You can access the Rendezvous VIs by selecting
Functions»Advanced»Synchronization»Rendezvous.
LabVIEW Function and VI Reference Manual 13-14 © National Instruments Corporation

Chapter 13 Advanced Functions

ady
 its

g on
The Rendezvous VIs use the Rendezvous RefNum control from the Controls»
Path & Refnum palette.

The Rendezvous RefNum can be used with the following VIs.

Create Rendezvous
Looks up an existing rendezvous or creates a new rendezvous and returns a refnum that you
can use when calling other Rendezvous VIs.

The size specifies how many tasks have to meet at the rendezvous in order to continue
execution. The default size is 2.

If name is specified, the VI first searches for an existing rendezvous with the same name and
returns its refnum if it exists. If a named rendezvous with the same name does not alre
exist and the return existing input is FALSE, the VI creates a new rendezvous and return
refnum. The created new output returns TRUE if the VI creates a new rendezvous.

Destroy Rendezvous
Destroys the specified rendezvous. All Wait at Rendezvous VIs that are currently waitin
this rendezvous time out immediately and return an error.

Get Rendezvous Status
Returns current status information of a rendezvous.
© National Instruments Corporation 13-15 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

t.

cal
nts.

o that
phore.
ait

tion.
Not A Rendezvous
Returns TRUE if rendezvous is not a valid rendezvous refnum.

Resize Rendezvous
Changes the size of rendezvous by size change and returns new size.

If the number of tasks currently waiting at rendezvous is less than or equal to new size, the
first size tasks stop waiting and continue execution.

Wait at Rendezvous
Waits until a sufficient number of tasks have arrived at the rendezvous.

If the number of tasks, including the new one, waiting at rendezvous is less than the
rendezvous size, the VI waits timeout milliseconds (default –1, or forever) before timing ou
If enough tasks arrive at the rendezvous during the wait, timed out returns FALSE. If enough
tasks do not arrive or the rendezvous is not valid, timed out returns TRUE.

Semaphore VIs
Semaphores, also known as Mutex, are used to limit the number of tasks that may
simultaneously operate on a shared (protected) resource. A protected resource or criti
section may include writing to global variables or communicating with external instrume

You can use the Semaphore VIs to synchronize two or more separate, parallel tasks s
only one task at a time executes a critical section of code protected by a common sema
In particular, you use these VIs when you want other VIs or parts of block diagram to w
until another VI or part of a block diagram is finished with the execution of a critical sec

You can access the Semaphore VIs by selecting Functions»Advanced»
Synchronization»Semaphore.
LabVIEW Function and VI Reference Manual 13-16 © National Instruments Corporation

Chapter 13 Advanced Functions

able
 the

at you

lt size

e and
y exist
The semaphore VIs use the Semaphore RefNum control from the Controls»
Path & Refnum palette.

The Semaphore RefNum can be used with the following VIs.

Acquire Semaphore
Acquires access to a semaphore.

If the semaphore is already acquired by the maximum number of tasks, the VI waits timeout
milliseconds (default –1, or forever) before timing out. If the semaphore becomes avail
during the wait, timed out returns FALSE. If the semaphore does not become available or
semaphore is not valid, timed out returns TRUE.

Create Semaphore
Looks up an existing semaphore or creates a new semaphore and returns a refnum th
can use when calling other semaphore VIs.

size specifies how many tasks may acquire the semaphore at the same time. The defau
is 1.

If a name is specified, the VI first searches for an existing semaphore with the same nam
returns its refnum if it exists. If a named semaphore with the same name does not alread
© National Instruments Corporation 13-17 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

g on

ve not
and the return existing input is FALSE, the VI creates a new semaphore and return its
refnum. The created new output returns TRUE if the VI creates a new semaphore.

Destroy Semaphore
Destroys the specified semaphore. All Acquire Semaphore VIs that are currently waitin
this semaphore will time out immediately and return an error.

Get Semaphore Status
Returns current status information of a semaphore.

Not A Semaphore
Returns TRUE if semaphore is not a valid semaphore refnum.

Release Semaphore
Releases access to a semaphore.

If there is an Acquire Semaphore VI waiting for this semaphore, it stops waiting and
continues execution. If you call the Release Semaphore VI on a semaphore that you ha
acquired, you effectively increment the semaphore size.
LabVIEW Function and VI Reference Manual 13-18 © National Instruments Corporation

Chapter 13 Advanced Functions

icular,
other

f the
p that

aced
ram

rrence
y
 the

am
rrence
on
urrence

every
 of a
Occurrence Function Descriptions
You can use the occurrence functions to control separate, synchronous activities. In part
you use these functions when you want one VI or part of a block diagram to wait until an
VI or part of a block diagram finishes a task without forcing LabVIEW to poll.

You can perform the same task using global variables, with one loop polling the value o
global until its value changes. However, global variables add overhead, because the loo
pulls the global variable uses execution time. With occurrences, the polling loop is repl
with a Wait on Occurrence function and does not use processor time. When some diag
sets the occurrence, LabVIEW activates all Wait on Occurrence functions in any block
diagrams that are waiting for the specified occurrence.

The following illustration displays the options available on the Occurrences subpalette.

Generate Occurrence
Creates an occurrence that you can pass to the Wait on Occurrence and Set Occurrence
functions.

Ordinarily, only one Generate Occurrence node is connected to any set of Wait on Occu
and Set Occurrence functions. You can connect a Generate Occurrence function to an
number of Wait on Occurrence and Set Occurrence functions. You do not have to have
same number of Wait on Occurrence and Set Occurrence functions.

Unlike other synchronization VIs, each Generate Occurrence function on a block diagr
represents a single, unique occurrence. In this way, you can think of the Generate Occu
function as a constant. When a VI is running, every time a Generate Occurrence functi
executes, the node produces the same value. For example, if you place a Generate Occ
function inside of a loop, the value produced by Generate Occurrence is the same for
iteration of the loop. If you place a Generate Occurrence function on the block diagram
reentrant VI, Generate Occurrence produces a different value for each caller.
© National Instruments Corporation 13-19 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions
Set Occurrence
Triggers the specified occurrence. All block diagrams that are waiting for this occurrence
stop waiting.

Wait On Occurrence
Waits for the Set Occurrence function to set or trigger the given occurrence.
LabVIEW Function and VI Reference Manual 13-20 © National Instruments Corporation

Part II

nd

d
ut
o

sy,

e,
ns

Data Acquisition VIs

Part II, Data Aquisition VIs, introduces the collection of VIs that work with
your data aquisition (DAQ) hardware devices. This part contains the
following chapters:

• Chapter 14, Introduction to the LabVIEW Data Acquisition VIs,
contains basic information about the data acquisition (DAQ) VIs a
shows where you can find them in LabVIEW.

• Chapter 15, Easy Analog Input VIs, describes the Easy Analog Input
VIs, which perform simple analog input operations.

• Chapter 16, Intermediate Analog Input VIs, describes the Intermediate
Analog Input VIs.

• Chapter 17, Analog Input Utility VIs, describes the Analog Input
Utility VIs. These VIs—AI Read One Scan, AI Waveform Scan, an
AI Continuous Scan—are single-VI solutions to common analog inp
problems. The Analog Input Utility VIs are intermediate-level VIs, s
they rely on the advanced-level VIs.

• Chapter 18, Advanced Analog Input VIs, contains reference
descriptions of the Advanced Analog Input VIs. These VIs are the
interface to the NI-DAQ software and are the foundation of the Ea
Utility and Intermediate Analog Input VIs.

• Chapter 19, Easy Analog Output VIs, describes the Easy Analog
Output VIs in LabVIEW, which perform simple analog output
operations.

• Chapter 20, Intermediate Analog Output VIs, describes the
Intermediate Analog Output VIs. These VIs—AO Write One Updat
AO Waveform Gen, and AO Continuous Gen—are single VI solutio
to common analog output problems.

• Chapter 21, Analog Output Utility VIs, describes the Analog Output
Utility VIs. The VIs—AO Continuous Generation, AO Waveform
Generation, and AO Write One Update—are single-VI solutions to

Part II Data Acquisition VIs

e

e
sy,

l

e
nd
r

r
ces

gure
o
sure

ent

e
e

on.

in
common analog output problems. The Analog Output Utility VIs ar
intermediate-level VIs, so they rely on the advanced-level VIs.

• Chapter 22, Advanced Analog Output VIs, contains reference
descriptions of the Advanced Analog Output VIs. These VIs are th
interface to the NI-DAQ software and are the foundation of the Ea
Utility, and Intermediate Analog Output VIs.

• Chapter 23, Easy Digital I/O VIs, describes the Easy Digital I/O VIs,
which perform simple digital I/O operations.

• Chapter 24, Intermediate Digital I/O VIs, describes the Intermediate
Digital I/O VIs. These VIs are single VI solutions to common digita
problems.

• Chapter 25, Advanced Digital I/O VIs, describes the Advanced Digital
I/O VIs, which include the digital port and digital group VIs. You us
the digital port VIs for immediate reads and writes to digital lines a
ports. You use the digital group VIs for immediate, handshaked, o
clocked I/O for multiple ports. These VIs are the interface to the
NI-DAQ software and the foundation of the Easy and Intermediate
Digital I/O VIs.

• Chapter 26, Easy Counter VIs, describes the Easy Counter VIs that
perform simple counting operations.

• Chapter 27, Intermediate Counter VIs, describes Intermediate Counte
VIs you can use to program counters on MIO, TIO, and other devi
with the DAQ-STC or Am9513 counter chips. These VIs call the
Advanced Counter VIs to configure the counters for common
operations and to start, read, and stop the counters. You can confi
these VIs to generate single pulses and continuous pulse trains, t
count events or elapsed time, to divide down a signal, and to mea
pulse width or period. The Easy Counter VIs call the Intermediate
Counter VIs for several pulse generation, counting, and measurem
operations.

• Chapter 28, Advanced Counter VIs, describes the VIs that configure
and control hardware counters. You can use these VIs to generat
variable duty cycle square waves, to count events, and to measur
periods and frequencies.

• Chapter 29, Calibration and Configuration VIs, describes the VIs that
calibrate specific devices and set and return configuration informati

• Chapter 30, Signal Conditioning VIs, describes the data acquisition
Signal Conditioning VIs, which you use to convert analog input
voltages read from resistance temperature detectors (RTDs), stra
gauges, or thermocouples into units of strain or temperature.
LabVIEW Function and VI Reference Manual II-2 © National Instruments Corporation

© National Instruments Corporation 14-1 LabVIEW Fu
14

Q)

ese

e
ol

Introduction to the LabVIEW
Data Acquisition VIs

This chapter contains basic information about the data acquisition (DA
VIs and shows where you can find them in LabVIEW. Descriptions of th
VIs comprise Chapter 14 through Chapter 29.

LabVIEW includes a collection of VIs that work with your DAQ hardwar
devices. With LabVIEW DAQ VIs you can develop acquisition and contr
applications.

You can find the DAQ VIs in the Functions palette from your block
diagram in LabVIEW. The DAQ VIs are located near the bottom of the
Functions palette.

To access the Data Acquisition palette, choose Functions»
Data Acquisition, as shown in the following illustration.
nction and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

u
at

g
nd

e

ar
s

,

on.
the
The Data Acquisition palette contains six subpalette icons that take yo
to the different classes of DAQ VIs. The following illustration shows wh
each of the icons in the Data Acquisition palette means.

This part of the manual is organized in the order that the DAQ VI icons
appear in the Data Acquisition palette from left to right. For example,
in this section, the Analog Input VI chapters are followed by the Analo
Output VI chapters, which are followed by the Digital I/O VI chapters, a
so on. Most often, there are several chapters devoted to one class of
DAQ VIs in the palette, because many of the VI palettes also contain
several subpalettes.

Finding Help Online for the DAQ VIs
You can find helpful information about individual VIs online by using th
LabVIEW Help window (Help»Show Help). When you place the cursor
on a VI icon, the wiring diagram and parameter names for that VI appe
in the Help window. You can also find information for front panel control
or indicators by placing the cursor over the control or indicator with the
Help window open. For more information on the LabVIEW Help window
refer to the Getting Help section in Chapter 2, Creating VIs, of the
LabVIEW User Manual.

In addition to the Help window, LabVIEW has more extensive online
information available. To access this information, select Help»Online
Reference. For most block diagram objects, you can select Online
Reference from the object’s pop-up menu to access the online descripti
You can also access this information by pressing the button shown to
left, which is located at the bottom of LabVIEW’s Help window.
For information on creating your own online reference files, see the

Analog Input VIs

Analog Output VIs Digital I/O VIs

Counter VIs

Signal Conditioning VIs

Calibration and
Configuration VIs
LabVIEW Function and VI Reference Manual 14-2 © National Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

ir
r

he

l.

rol
Creating Your Own Help Files section in Chapter 5, Printing and
Documenting VIs, of the G Programming Reference Manual.

Note Use only the inputs you need on each VI. LabVIEW sets all unwired inputs to the
default values. Many of the DAQ function inputs are optional and do not appea
in the Simple Diagram Help window. These inputs typically specify rarely-used
options. If an input is required, your VI wiring remains “broken” until a value
is wired to the input. Required inputs appear in bold in the Help window,
recommended inputs appear in plain text, and optional inputs are in gray text.
The default values for inputs appear in parentheses beside the input name in t
Help window.

Note Some DAQ VIs use an enumerated data type as a control or indicator termina
If you connect a numeric value to an enumerated indicator, LabVIEW converts
the number to the closest enumeration item. If you connect an enumerated cont
to a number value, the value is the enumeration index.

The Analog Input VIs
These VIs perform analog input operations.

The Analog Input VIs can be found by choosing Functions»
Data Acquisition»Analog Input. When you click on the Analog Input
icon in the Data Acquisition palette, the Analog Input palette pops up,
as shown in the following illustration.
© National Instruments Corporation 14-3 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

LabVIEW Function and VI Reference Manual 14-4 © National Instruments Corporation

There are four classes of Analog Input VIs found in the Analog Input
palette. The Easy Analog Input VIs, Intermediate Analog Input VIs,
Analog Input Utility VIs, and Advanced Analog Input VIs. The following
illustrates these VI classes.

Easy Analog Input VIs
The Easy Analog Input VIs perform simple analog input operations.
You can run these VIs from the front panel or use them as subVIs in
basic applications.

You can use each VI alone to perform a basic analog operation.
Unlike intermediate- and advanced-level VIs, Easy Analog Input VIs
automatically alert you to errors with a dialog box that asks you to stop
the execution of the VI or to ignore the error.

The Easy Analog Input VIs provide a basic, convenient interface with
only the most commonly used inputs and outputs. For more complex
applications, you should use the Intermediate Analog Input VIs and
Advanced Analog Input VIs for more functionality and performance.

Refer to Chapter 15, Easy Analog Input VIs, for specific VI information.

Easy Analog Input VIs

Intermediate
Analog Input VIs

Advanced
Analog Input VIs

Analog Input Utility VIs

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

s

e
Is.
they
e.

s
se
m
Intermediate Analog Input VIs
You can find intermediate-level Analog Input VIs in two different place
in the Analog Input palette. You can find the Intermediate Analog
Input VIs in the second row of the Analog Input palette. The other
intermediate-level VIs are in the Analog Input Utilities palette, which
is discussed later. The Intermediate Analog Input VIs—AI Config,
AI Start, AI Read, AI Single Scan, and AI Clear—are in turn built from th
fundamental building block layer, called the Advanced Analog Input V
These VIs offer almost as much power as the advanced-level VIs, and
conveniently group the advanced-level VIs into a tidy, logical sequenc

Refer to Chapter 16, Intermediate Analog Input VIs, for specific
VI information.

Analog Input Utility VIs
You can access the Analog Input Utilities palette by choosing the Analog
Input Utility icon from the Analog Input palette. The Analog Input
Utility VIs—AI Read One Scan, AI Waveform Scan, and AI Continuou
Scan—are single-VI solutions to common analog input problems. The
VIs are convenient, but they lack flexibility. These three VIs are built fro
the Intermediate Analog Input VIs in the Analog Input palette.

Refer to Chapter 17, Analog Input Utility VIs, for specific VI information.

Advanced Analog Input VIs
You can access the Advanced Analog Input palette by choosing the
Advanced Analog Input icon from the Analog Input palette. These VIs
are the interface to the NI-DAQ data acquisition software and are the
foundation of the Easy, Utility, and Intermediate Analog Input VIs.

Refer to Chapter 18, Advanced Analog Input VIs, for specific
VI information.

Locating Analog Input VI Examples
For examples of how to use the analog input VIs, see
examples\daq\anlogin\anlogin.llb.

Analog Input
Utility Icon

Advanced Analog
Input Icon
© National Instruments Corporation 14-5 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs
Analog Output VIs
These VIs perform analog output operations.

The Analog Output VIs can be found by choosing Functions»Data
Acquisition»Analog Output. When you click on the Analog Output icon
in the Data Acquisition palette, the Analog Output palette pops up, as
shown in the following illustration.

There are four classes of Analog Output VIs found in the Analog Output
palette: the Easy Analog Output VIs, Intermediate Analog Output VIs,
Analog Output Utility VIs, and the Advanced Analog Output VIs.
The following illustrates these VI classes.

Easy Analog

Intermediate
Analog Output VIs

Advanced
Analog Output VIs

Analog Output Utility VIs

Output VIs
LabVIEW Function and VI Reference Manual 14-6 © National Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

© National Instruments Corporation 14-7 LabVIEW Function and VI Reference Manual

Easy Analog Output VIs
The Easy Analog Output VIs perform simple analog output operations.
You can run these VIs from the front panel or use them as subVIs in basic
applications.

You can use each VI by itself to perform a basic analog output operation.
Unlike intermediate- and advanced-level VIs, Easy Analog Output VIs
automatically alert you to errors with a dialog box that asks you to stop the
execution of the VI or to ignore the error.

The Easy Analog Output VIs provide a basic, convenient interface with
only the most commonly used inputs and outputs. For more complex
applications, you should use the Intermediate Analog Output VIs and
Advanced Analog Output VIs for more functionality and performance.

Refer to Chapter 19, Easy Analog Output VIs, for specific VI information.

Intermediate Analog Output VIs
You can find intermediate-level Analog Output VIs in two different places
in the Analog Output palette. You can find the Intermediate Analog
Output VIs in the second row of the Analog Output palette. The other
intermediate-level VIs are in the Analog Output Utilities palette, which is
discussed later. The Intermediate Analog Output VIs—AO Config, AO
Write, AO Start, AO Wait, and AO Clear—are in turn built from the
fundamental building block layer, called the Advanced Analog Output VIs.
These VIs offer almost as much power as the advanced-level VIs, and they
conveniently group the advanced-level VIs into a tidy, logical sequence.

Refer to Chapter 20, Intermediate Analog Output VIs, for specific
VI information.

Analog Output Utility VIs
You can access the Analog Output Utilities palette by choosing the
Analog Output Utility icon from the Analog Output palette. The Analog
Output Utility VIs—AI Read One Scan, AI Waveform Scan, and AI
Continuous Scan—are single-VI solutions to common analog output
problems. These VIs are convenient, but they lack flexibility. These three
VIs are built from the Intermediate Analog Output VIs in the Analog
Output palette.

Refer to Chapter 21, Analog Output Utility VIs, for specific VI information.

Analog Output
Utility Icon

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

the

in

Advanced Analog Output VIs
You can access the Advanced Analog Output palette by choosing the
Advanced Analog Output icon from the Analog Output palette. These
VIs are the interface to the NI-DAQ software and are the foundation of
Easy, Utility, and Intermediate Analog Output VIs.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 22, Advanced Analog Output VIs, for additional information on the
inputs and outputs and how they work.

Locating Analog Output VI Examples
For examples of how to use the analog output VIs, see the examples
examples\daq\anlogout\anlogout.llb .

Digital Function VIs
These VIs perform digital operations.

The Digital I/O VIs can be found by choosing Functions»Data
Acquisition»Digital I/O . When you click on the Digital I/O icon in the
Data Acquisition palette, the Digital I/O palette pops up, as shown in the
following illustration.

There are three classes of Digital I/O VIs found in the Digital I/O palette.
The Easy Digital I/O VIs, Intermediate Digital I/O VIs, and Advanced
Digital I/O VIs. The following illustrates these VI classes.

Advanced Analog
Output Icon
LabVIEW Function and VI Reference Manual 14-8 © National Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

n
ions.

ke
lly
n of

or

Easy Digital I/O VIs
The Easy Digital I/O VIs perform simple digital operations. You can ru
these VIs from the front panel or use them as subVIs in basic applicat

You can use each VI by itself to perform a basic digital operation. Unli
intermediate- and advanced-level VIs, Easy Digital I/O VIs automatica
alert you to errors with a dialog box that asks you to stop the executio
the VI or to ignore the error.

The Easy Digital I/O VIs are actually composed of Advanced Digital I/O
VIs. The Easy Digital I/O VIs provide a basic, convenient interface with
only the most commonly used inputs and outputs. For more complex
applications, you should use the intermediate- or advanced-level VIs f
more functionality and performance.

Refer to Chapter 23, Easy Digital I/O VIs, for specific VI information.

Intermediate Digital I/O VIs
You can find intermediate-level Digital I/O VIs in the second and third
rows of the Digital I/O palette. The Intermediate Digital I/O VIs are in turn
built from the fundamental building block layer, called the Advanced
Digital I/O VIs. These VIs offer almost as much power as the
advanced-level VIs, and they conveniently group the advanced-level
VIs into a tidy, logical sequence.

Refer to Chapter 24, Intermediate Digital I/O VIs, for specific
VI information.

Easy Digital I/O VIs

Intermediate
Digital I/O VIs

Advanced
Digital I/O VIs
© National Instruments Corporation 14-9 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

Advanced Digital I/O VIs
You can access the Advanced Digital I/O palette by choosing the
Advanced Digital I/O icon from the Digital I/O palette. These VIs are the
interface to the NI-DAQ software and are the foundation of the Easy,
Utility, and Intermediate Digital I/O VIs.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 25, Advanced Digital I/O VIs, for additional information on the
inputs and outputs and how they work.

Locating Digital I/O VI Examples
For examples of how to use the Digital I/O VIs, see the examples in
examples\daq\digital\digio.llb .

Counter VIs
These VIs perform counting operations.

The Counter VIs can be found by choosing Functions»Data
Acquisition»Counter. When you click on the Counter icon in the
Data Acquisition palette, the Counter palette pops up, as shown in the
following illustration.

Advanced Digital
I/O Icon
LabVIEW Function and VI Reference Manual 14-10 © National Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

s

n
ions.

like

n of

VIs,
ter

e the

e
ese

e.
There are three classes of Counter VIs found in the Counter palette: the
Easy, Intermediate, and Advanced Counter VIs. The following illustrate
these VI classes.

Easy Counter VIs
The Easy Counter VIs perform simple counting operations. You can ru
these VIs from the front panel or use them as subVIs in basic applicat

You can use each VI by itself to perform a basic counting operation. Un
intermediate- and advanced-level VIs, Easy Counter VIs automatically
alert you to errors with a dialog box that asks you to stop the executio
the VI or to ignore the error.

The Easy Counter VIs are actually composed of Intermediate Counter
which are in turn composed of Advanced Counter VIs. The Easy Coun
VIs provide a basic, convenient interface with only the most commonly
used inputs and outputs. For more complex applications, you should us
intermediate- or advanced-level VIs for more functionality and
performance.

Refer to Chapter 26, Easy Counter VIs, for specific VI information.

Intermediate Counter Input VIs
You can find the Intermediate Counter VIs in the second row of the
Counter palette. The Intermediate Counter VIs are in turn built from th
fundamental building block layer, called the Advanced Counter VIs. Th
VIs offer almost as much power as the advanced-level VIs, and they
conveniently group the advanced-level VIs into a tidy, logical sequenc

Refer to Chapter 27, Intermediate Counter VIs, for specific VI information.

Easy Counter VIs

Advanced
Counter VIs

Intermediate Counter VIs

Intermediate
Counter VI Icon
© National Instruments Corporation 14-11 LabVIEW Function and VI Reference Manual

Chapter 29 Calibration and Configuration VIs

VI

ll

.

h
tput

e

h
line,
Note Calibration of your E-Series device takes some time. Do not be alarmed if the
takes several seconds to execute.

Warning When you run this VI with the operation set to self calibrate or external calibrate,
LabVIEW will abort any ongoing operations the device is performing and set a
configurations to their defaults. Therefore, you should run this VI before any
other DAQ VIs or when no other operations are running.

12-Bit E-Series Devices
• Connect the positive output of your reference voltage source to the analog input

channel 8.

• Connect the negative output of your reference voltage source to the AISENSE line

• Connect DAC0 line (analog output channel 0) with analog input channel 0.

• If your reference voltage source and your computer are floating with respect to eac
other, connect the AISENSE line with the AIGND line as well as with the negative ou
of your reference voltage source.

16-Bit E-Series Devices
• Connect the positive output of your reference voltage source to the analog input

channel 0.

• Connect the negative output of your reference voltage source to the analog output
channel 8 (by performing those two connections you supply reference voltage to th
analog input channel 0, which is configured for differential operation.)

• If your reference voltage source and your computer are floating with respect to eac
other, connect the negative output of your reference voltage source to the AIGND
as well as to the analog input channel 8.

Get DAQ Device Information
Returns information about a DAQ device.

Refer to Appendix B, DAQ Hardware Capabilities, for the transfer methods available with
your DAQ device.
© National Instruments Corporation 29-13 LabVIEW Function and VI Reference Manual

Appendix B DAQ Hardware Capabilities
5102 Devices Hardware Capabilities

Table B-31. Counter/Timer Characteristics—Timing Only Devices

Device C
ou

nt
er

 C
hi

p
U

se
d

of

 G
en

er
al

 P
ur

po
se

C
ou

nt
er

s
A

va
ila

bl
e

T
im

eb
as

es
 A

va
ila

bl
e

N
um

be
r

of
 B

its

G
at

e
M

od
es

 A
va

ila
bl

e

O
ut

pu
ts

 A
va

ila
bl

e

O
ut

pu
t M

od
es

A
va

ila
bl

e

C
ou

nt
 D

ire
ct

io
n

PC-TIO-10
NB-TIO-10

Am-9513 10 (8 have
SOURCE
inputs at the
I/O
connector)

Internal: 5 MHz
(only on CTR5 and
CTR10), 1 MHz,
100 kHz, 10 kHz,
1 kHz, 100 Hz;
external

16 high-level,
low-level,
rising-edge,
falling-edge

10 TC
pulse,
TC
toggle

Up or
Down

Table B-32. Analog Input Configuration Programmability

Device Gain Coupling

5102 devices By Channel By Channels

Table B-33. Analog Input Characteristics

Device
Number

of Channels Resolution Gains Range (V)
Input FIFO

(Words) Scanning

5102
devices

2 8 bits 1, 5, 20, 100 ±5 663,000 1 or 2 channels,
in any order
without
repetitions

Table B-34. Analog Input Characteristics, Part 2

Device Triggers Maximum Sampling Rate (S/s)

5102 devices SW, Pre, Post, Analog 20,000,000 real time
LabVIEW Function and VI Reference Manual B-24 © National Instruments Corporation

Index
Trace, 45-18
Transfer Function, 40-7
Transpose 2D Array, 7-8
Triangle Wave, 38-9
Triangle Window, 42-7
Trigger, 35-4
TriggerList, 35-6
Two Button Dialog Box, 10-9
Type and Creator, 11-19
Type Cast, 13-6

U
UDP Close, 49-1
UDP Open, 49-1
UDP Read, 49-2
UDP Write, 49-2
Unbundle By Name, 8-6
Unbundle, 8-6
Unflatten From String, 13-7
Uniform White Noise, 38-10
Unit Vector, 46-8
Unwrap Phase, 39-19
User Definable Arithmetic Constants, 4-8

V
Variance, 44-13
VI Library Constant, 11-28
VISA Assert Trigger, 33-5
VISA Clear, 33-5
VISA Close, 33-5
VISA Disable Event, 33-10
VISA Discard Events, 33-10
VISA Enable Event, 33-11
VISA Find Resource, 33-6
VISA In8 / In16 / In32, 33-12
VISA Lock, 33-6
VISA Map Address, 33-16
VISA Memory Allocation, 33-13, 33-17
VISA Memory Free, 33-13, 33-17
VISA Move In8 / Move In16 / Move In32, 33-14
VISA Move Out8 / Move Out16 / Move Out32, 33-14
VISA Open, 33-7
VISA Out8 / Out16 / Out32, 33-15
VISA Peek8 / Peek16 / Peek32, 33-17

VISA Poke8 / Poke16 / Poke32, 33-17
VISA Read, 33-8
VISA Read STB, 33-9
VISA Status Description, 33-9
VISA Unlock, 33-9
VISA Unmap Address, 33-18
VISA Wait On Event, 33-11
VISA Write, 33-9
Volume Info, 11-20

W
Wait (ms), 10-9
Wait at Rendezvous, 13-16
Wait for GPIB RQS, 34-6
Wait On Notification, 13-10
Wait On Notification From Multiple, 13-11
Wait On Occurrence, 13-20
Wait Until Next ms Multiple, 10-10
Wait+ (ms), 27-7
WaitSRQ, 35-8
While Loop, 3-3
White Space?, 9-10
Write Characters To File, 11-11
Write File, 11-11
Write Key (Boolean), 11-24
Write Key (Double), 11-24
Write Key (I32), 11-25
Write Key (Path), 11-25
Write Key (String), 11-25
Write Key (U32), 11-26
Write to Digital Line, 23-2
Write to Digital Port, 23-3
Write To I16 File, 11-13
Write To SGL File, 11-14
Write To Spreadsheet File, 11-12

Y
Y[i] = Clip {X[i]}, 39-19
Y[i] = X[i-n], 39-19

Z
Zero Padder, 39-20
© National Instruments Corporation I-9 LabVIEW Function and VI Reference Manual

	LabVIEW Function and VI Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING

	Contents
	About This Manual

	fix: DAQ Hardware Capabilities,

