Function and VI
Reference Manual

"ﬂ”?:rrlll%'lq\llAEINTs January 1998 Edition

The Software is the Instrument ™ Part Number 321526B-01

Internet Support

E-mail: support@natinst.com

FTP Siteftp.natinst.com

Web Addresshttp://www.natinst.com

Bulletin Board Support

BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1997, 1998 National Instruments Corporation. All rights reserved.

Important Information

Warranty

Copyright

Trademarks

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXxcEePTAs SPECIFIEDHEREIN, NATIONAL INSTRUMENTSMAKES NO WARRANTIES, EXPRESSOR IMPLIED, AND SPECIFICALLY

DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESSFORA PARTICULAR PURPOSE CUSTOMER S RIGHT TO RECOVER

DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTSSHALL BE LIMITED TO THE AMOUNT
THERETOFOREPAID BY THE CUSTOMER NATIONAL INSTRUMENTSWILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF

DATA, PROFITS USE OF PRODUCTS OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOR

This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract

or tort, including negligence. Any action against National Instruments must be brought within one year after the cause
of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond its
reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service failures
caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions;
owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood,
accident, actions of third parties, or other events outside reasonable control.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part,
without the prior written consent of National Instruments Corporation.

DAQCard™, DAQ-STC™, DAQPad™, LabVIEW™atinst.com ™, National Instruments™, NI-DAQ™,
PXI™, RTSI™, and SCXI™, are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all traditional
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent serious injury
or death should always continue to be used when National Instruments products are being used. National Instruments
products are NOT intended to be a substitute for any form of established process, procedure, or equipment used to
monitor or safeguard human health and safety in medical or clinical treatment.

Contents

About This Manual
Organization of the Product User Manualcccciuuiiiieieee i ee e XXV
Conventions Used in This Manual............cccoooeiiiiiieeeeeeeeeaans XXVi
Related DOCUMENTALION. .. .uuvvteirririritiririr s e e s e s e se s e s e e e s e s e e e e eaeaeeeeeeeaeeaaeseseseeeseees XXVii
CUStOMEr COMMUNICALION ..uvvvvveiiiiririiiiiiiriei e s s e s e sese s s e e e e e s e sesaseseaeseeeseseeseeaeseeeens XXVili
Chapter 1
Introduction to the G Functions and Vls
Locating the G FUNCHONS @Nd VIScoouiiiiiiiiiiiii e 1-1
FUNCLION QN VI OVEIVIEWScevveeiiiieeeeeee et e e e e et e e e e e e e ebbe e e e e s eeaabeeeeseees 1-2
] 1 (U Tod (U =TS 1-2
N[0T =T o VT o 1T T 1-3
BOOIEAN FUNCLIONSeveiiiiiieeiee et e e e e e e e eraaaas 1-3
SNG FUNCHONS. ..ottt s e e e 1-3
AITAY FUNCHIONS ...ceiiiiiiiiie ettt et e e st e e e e 1-3
(08 [0y (] g U [T 0T 1= 1-3
ComPAriSON FUNCHONSciiiiiiiiie ittt 1-4
Time and Dialog FUNCLIONScooiiiiiiiiiiiiie e 1-4
[TST 1@ 2 U T T 1 o 1R 1-4
AdVANCEA FUNCHIONScceeeiiie e e e e e e e e e e e e e 1-4
DA ettt e e e e e e e e aet et e et e ——————— 1-5
INSTIUMENT 1O .ottt e e e s e e e e eas 1-5
COMMUNICALIONcoeiiiiiiiiieieeeeeee e e s e s e e e e e e e eeeeeaaeaeeeeseeseeeeesreresararanes 1-5
N = 12T Y SRS 1-5
SEIECE A VL.t oo et e e e e e e e e e e e 1-6
IV} (o] = | PP UPPUPURRRPRPRPIR: 1-6
INStrument DHVEr LIDIaryc.c..vvveiieeiiee e 1-6
L LYY g I o - VSRR 1-6
PN o] o] o= 11T o I @Xo] | 1 (] PR 1-7

© MNational Instruments Corporation v LabVIEW Function and VI Reference Manual

Contents

PART |
G Functions and Vs

Chapter 2
G Function and VI Reference Overview
G FUNCLIONS OVEIVIEW. ...ttt ettt nnn e nnne e e nne s 2-2
Introduction t0 POIYMOIPRISM......cc e e e e ee e 2-2
POlYMOIPRISIM ...t e 2-2
UNit POlYMOIPRISM ..cceieie e e e 2-3
NUMETIC CONVEISION ...ttt ettt 2-4
Overflow and UNderflowcoocvviiiiiiiiiieciiec e 2-5
Wi SEYIES ... e e e e e e e e e e e e e e e e e e aaa—a 2-6
Chapter 3
Structures
SETUCLUIES OVEIVIEW ..c.ciiiiie ettt ettt ettt e e e st e e e e s bt e e e st b e e e e e nabbe e e e enenes 3-2
Chapter 4
Numeric Functions
Polymorphism for NUMEric FUNCHONSvviiiiiiiieiiiee e 4-2
Polymorphism for Transcendental FUNCHONScceeeeiiiiiieieiniiiiee e 4-3
Polymorphism for Conversion FUNCHONSc.uevveiiiiiieeiiiiiee e 4-3
Polymorphism for ComplexX FUNCLIONScooiiiiiiiiiiiiiiee e 4-4
Arithmetic FUNCLION DESCHPLIONSvviiiiiiiieii et 4-4
Conversion FUNCHIONS DESCHPLIONS.......iuuiiiie ittt 4-9
Trigonometric and Hyperbolic FUNCctions DeSCIPLIONScoovviiiieiiiiiiee e 4-14
Complex FUNCLION DESCHPLIONSc.uiiiieiiiiieee et 4-20
Additional Numeric Constants DEeSCHPLIONSuvviiiiiiiiieiiiie et 4-21
Chapter 5
Boolean Functions
Polymorphism for Boolean FUNCLONS...........ccccuiiiiiiiiicc et e e 5-1
Boolean FUNCioN DESCIIPLIONScciceiiiiiiiiieiie et e e e e e s e e e e e e e e s st e e e e e e e e e s e snnnnnes 5-2

LabVIEW Function and VI Reference Manual vi © MNational Instruments Corporation

Contents

Chapter 6
String Functions
Overview of Polymorphism for String FUNCHONS...........cccuiiiiiiiiiie e 6-1
Polymorphism for String FUNCHIONSoooiiiiiiiiiiiiee e 6-1
Polymorphism for Additional String to Number Functions.............ccccccceeeeenn. 6-2
Polymorphism for String Conversion FUNCHONS...........ccuvuiiiiiiiiieeeiiiieee 6-2
FOrmMat StNGS OVEIVIEWeeiiiiiiiei ittt e e e e e e e et e e e e e ae e e s e e s nbebbeeeeeas 6-2
String FUNCHON DESCIIPLIONS ...ceiiiiiiiiiiiiiiee et e e e e e e e 6-6
String Conversion FUNCION DESCHPLIONSuuuiiiiiieiaieiiiiiii et 6-18
SHNG FIXEA CONSTANTSeuiiiiiiiie ettt e e ettt e e e e e e e e e e et abreeeaaaeeas 6-20
Chapter 7
Array Functions
Array FUNCHON OVEIVIEWuiiiiiiiiiie e e e i ceciiietee e et e e e e e e s s re e e e e ae e e s s e s nannnsreereeeaeaeaeeannnnnns 7-2
Out-of-Range INAEX ValUES.......cccceeeiiiiiiiiiiieeeee e 7-3
Polymorphism for Array FUNCHONScoiiiiiiiiiiiiiiie e svnren e e e 7-3
Array FUNCION DESCIIPLIONS......uuuiiiiiiiiiee e e s i et er e e e e s e s s e e e e e e e s s s s st rrerreeaeeeaean 7-3
Chapter 8
Cluster Functions
ClUSEEr FUNCLION OVEIVIEW ...ccciiiiiiiiie ittt ettt ettt e et e e e sib e e e s sbaeeeeeanes 8-2
Polymorphism for ClUStEr FUNCHONSoiuuiiiiiiiiiie e 8-3
Setting the Order of Cluster EIemMentS..........ccooiiiiiiiiiiiiiie e 8-3
Cluster FUNCLION DESCIPLIONSeiiiiiiiiiiee ittt et 8-4
Chapter 9
Comparison Functions
Comparison FUNCLON OVEIVIEW.........cccciiiiiiiiiiii e 9-1
B00olean COMPATISONccoiuiiiiieiiiiie ettt e e e 9-1
SrNG COMPATISON.....eiiiiiiiiii ettt e e e s e e e e e nnees 9-2
NUMETIC COMPATISON. ..ceeiitiriieiiiiie e ettt ettt s s e e s bt e s e nnbe e e e e annneas 9-2
ClUSEEr COMPATTISON ...ttt ettt e et e e e st e e e e sbreeea e 9-2
COMPAISON MOAES......cooiiiiiiie it e 9-2
Character COMPATISONueiiiiiiiieie ittt e e e s snb e e annnees 9-4
Polymorphism for Comparison FUNCHONSoouiiiiiiiiiiceiicce e 9-5
Comparison FUNCLION DESCIIPLONSceiiiiiiiieeiiiiiee ettt e 9-6

© MNational Instruments Corporation vii LabVIEW Function and VI Reference Manual

Contents

Chapter 10
Time, Dialog, and Error Functions
Time, Dialog, and Error FUNCHONS OVEIVIEWcooiiiiiiiiiiiiiie e 10-2
TIMING FUNCHONS ...ttt e e e e e e e e s enanes 10-2
Error HanNdliNG OVEIVIEW.......c.coiiiiiiiiiiiiiie ettt 10-3
Error I/O and the Error State CIUSEr..........ceviiieiiiiiiiiiiieeeeeee e 10-4
Time and Dialog FUNCLION DESCHPIONS.uuiiiiiiiaiiiiiiiiiiee e 10-6
Error Handling VI DESCIPLIONSuuiiiiieeieiiiiitie ettt e e 10-10
Chapter 11
File Functions
File 1/0 VI and FUNCHON OVEIVIEW.ciiuiiiieiiiiiiie ettt e s siteee e st e e e snnbee e e e nnneee 11-2
HIGh-LEVEl FIle VIS ... a e 11-2
Low-Level File VIs and File FUNCLONSccuviiiiiiiiiie e 11-2
Byte Stream and Datalog FileS.............oooiiiiiiiiiieiee e 11-3
FIow-Through Parameters.........cceceeiiiiiiiiiiiiiieeee e ae e e 11-4
Error 1/0 in File 1/O FUNCHONSuuiiiiiiiiieiiiiiiiieee e 11-5
PEIMISSIONS ...ttt e e e e e e 11-5
File I/O Function and VI DeSCHPLIONSiiiiiiieiee e e 11-6
Binary File VI DESCIPLIONS.ttt n e a e e e e e e e 11-12
Advanced File FUNCLION DESCIPLIONSovviiiiieiiieiiiiiiies s e e e e e e e e e e e e e e aaaaeeereeeeeeanes 11-14
ConfIguration File VIS.... ... i e a e e e e e e 0..11-2
File Constants DeSCIIPLIONSuviviiieiiiiiiiiieeesss e s s s e e e s e e e e e e e e e ae e et e eeeeeeeeaeaeeeeeerernrnnnnaaanns 11-26
Chapter 12
Application Control Functions
Application CoNtrol FUNCLIONScoiuiiiiiiiiiie ettt 12-2
Help FUNCLION DESCHPLIONSiiiiiiiiie ittt 12-7
V1= 10 0 T o) PRSPPI 8.....12
Chapter 13
Advanced Functions
Advanced FUNCLioN DESCIPLIONSoiuuiiiiiiiiiie ettt e e 13-2
Data Manipulation FUNCtion DESCHPLIONS.........ceiiiiiiiiiieiiiiie e 13-4
MEMOIY VI DESCHIPIONS ...c.uetiieee ittt e e e s aanneeees 13-7
SYNCAIONIZALION VIS ...ciiiiiiiiii ettt e e s e e e s abrreeeeaaes 13-8
NOLFICALION VIS ... e e e e e e e e e e e ennes 13:8....
QUEUE VIS ..ottt e e e e e e e e e e e e e aeaeeeann 13-11.
RENUEZVOUS VIS ... ittt e e e e e e e e e e e e e e e e e sneeneeees -14....13

LabVIEW Function and VI Reference Manual viii © MNational Instruments Corporation

SEMAPNOIE VIS ..ottt 3:16.....1
Occurrence FUNCLION DESCPLIONS.uviiiiiiiiiie ittt

PART Il
Data Acquisition Vis

Contents

Chapter 14
Introduction to the LabVIEW Data Acquisition Vis
Finding Help Online for the DAQ VIScuiiiiiiiiiicc st r e e e 14-2
The ANAIOG INPUL VIS ...t e e e e e e e s s r e e e e e e e e s e s nnnbnraneeees 14-3
Easy ANalog INPUL VIS ..ot e e e e e e ennnes 14-4
Intermediate ANalog INPUE VIS ... e 14-5
ANalog INPUt ULITILY VIS. ... 14-5
Advanced ANalog INPUL VIS ..o e 14-5
Locating Analog INput VI EXamMPIES......cccooeiiiiiiiiieicce e 14-5
F N g b= oo T 011 o1 U L B 4 SR 6....14-
Easy ANalog OULPUL VIS....uuueeeiie i s 14-7
Intermediate Analog OULIPUL VISuvieiiiiiiiiiiiiieis s s e e e e e e e e ee e eeeeeeeaaenens 14-7
Analog OUtPUL ULITItY VIS ...ccceii i 14-7
Advanced Analog OULPUL VISocieiiiiiiiieiieiiiiiierses s e e e e e e e e e e e aeeeeeeeeeeaenns 14-8
Locating Analog Output VI EXamples ... 14-8
Digital FUNCHON VIS ...t e aeeeeeaeeaeennnees 8....14-
Easy Digital 1/O VIS ... e aaaaes 14-9
Intermediate Digital /O VIS........coveeiiiiieiiiiiiieries st e e e e e e e eeaeaaanns 14-9
Advanced Digital [/O VIS........cooviviiiieeieerrss s e e e e e ae s e e e ae e e e e e aeaaaans 14-10
Locating Digital I/O VI EXaMPIESuuuuuuriiiiiiiiii e 14-10
COUNTEE VIS et e e e e e e e e e e e e e e eeeeeeeeenes 14-10.
EASY COUNTEI VIS, ..ttt e e aab e e aeee 14-11
Intermediate Counter INPUL VIS........iiiiiiiiiiie e 14-11
AAVANCEA COUNTET VIS ...ttt e e e 14-12
Locating Counter VI EXampPlesS.......coceeiiiiiiiiii e 14-12
Calibration and Configuration VISuuuiiiiiiiiiiiiiir s e e e nea e e e e e e aaaeaeas 14-12
Signal ConditioNiNg VISccooiiiii i 14-12
Chapter 15
Easy Analog Input Vis
15-1

Easy Analog INPut VI DESCHPLIONScciiiiiiiieiiiiiee et

© National Instruments Corporation ix

LabVIEW Function and VI Reference Manual

Contents

Chapter 16

Intermediate Analog Input Vis

HaNAIING BITOTS ...t eee e e 6-1.....1
Intermediate Analog INput VI DeSCIIPLIONScoooiiiiiiiiiiiie e 16-2

Chapter 17
Analog Input Utility Vis

L F= Lo [T g T T S 4 0] £ PR 7-2.....1
Analog Input Utility VI DESCIIPLIONSceveeeeiii ittt e e e e e eeseinreee e e e e e e e e snranaeeee e 17-2

Chapter 18
Advanced Analog Input Vis

Advanced Analog INput VI DESCHPLIONSceiiiiiiiiieiiiiiee e 18-1

Chapter 19
Easy Analog Output Vs

Easy Analog Output VI DESCHIPHONSccciiuiiiieiiiiiiee ittt esireee e e 19-1

Chapter 20

Intermediate Analog Output Vis

L F= Lo [T g T T 0] £ USRS 0:1....2
ANalog OULPUL VI DESCIIPLIONSuuuiiiiiiieeeeeiiiciitieee e e e e e e e e sssntrrrre e e e s ee e e s e s s nnenrrrrrreaeeeeenas 20-2

Chapter 21
Analog Output Utility Vis

HANAING EFTOIS ...ttt e s 1-1.....2
Analog Output Utility VI DESCIIPLIONSccceiiiiiiiieiiiiiiie ittt 21-2

Chapter 22
Advanced Analog Output Vis

Advanced Analog Output VI DESCIIPHONS.cuuuiiiiiiiiiii et 22-1

Chapter 23
Easy Digital 1/0 Vis

Easy Digital 1/O DESCIPLONS........cccviiiiieieiie e e e et e e e e e s s e e e e e e e s s e s snrnreaaeeeeeeas 23-1

LabVIEW Function and VI Reference Manual X © MNational Instruments Corporation

Chapter 24
Intermediate Digital 1/0 Vis

Contents

[F= T To | T To T = 1 o =R 24:2.....

Intermediate Digital 1/O VI Descriptions

Chapter 25
Advanced Digital 1/0 Vis

Digital POrt VI DESCIIPLIONS ...cviiieeiii ittt ie e e e e e e s s st r e s e e e e s e e s st a e e e e e e e e e s s e snneeneeees 25-2
Digital Group VI DESCIIPLIONS........uuiiiiiiieeieees e e et e e e e e e e e s st rr e e e e e e e s s e e s ssnnrrrrrereaaaees 25-3

Chapter 26

Easy Counter Vis
Easy Counter VI Descriptions

Chapter 27
Intermediate Counter Vis

HaNAIiNG EFTOrS......eeiiiiiieee et 27-2.....

Intermediate Counter VI Descriptions

Chapter 28
Advanced Counter Vis

Advanced Counter VI Descriptions

Chapter 29

Calibration and Configuration Vis

Calibration and Configuration VI Descriptions

Channel Configuration VISocueiioiiiiie et 29-18

Chapter 30
Signal Conditioning Vis

Signal Conditioning VI Descriptions

© MNational Instruments Corporation

Xi

LabVIEW Function and VI Reference Manual

Contents

PaART Il
Instrument 1/0 Functions and Vis

Chapter 31
Introduction to LabVIEW Instrument 1/0 Vis
INSTFUMENT DIVEIS OVEIVIEW ...ceiiiiiieiiee ittt e s eitieee e s sttt e et e e e s neaee e e s snbeeeeessnnaeeeessnnneeas 31-2
Instrument Driver DIStriDULION...........coiiiiiiiiiiie e 31-3
CD-ROM Instrument Driver DisStributioncccccoviiiieeeiiiiiieneninns 31-3
Instrument Driver TEMPIALE VISccovveeiiiiieeee e 31-4
INtroduction t0 VISA LIBIaryc..evviiiiieiice et 31-4
INErOAUCTION T0 GPIB ... 31-5
LabVIEW Traditional GPIB FUNCHONScccuiiiiiiiiieiiee e 31-5
GPIB 488.2 FUNCHONSuutiiiiiiieiee ettt e e e e e e e e 31-5
Single-Device FUNCLONS.......ccoiiiiiiiiii e 31-6
Multiple-Device FUNCLONSccoooiiiiiiieeeeeeeeeee s 31-6
Bus Management FUNCLIONScccoooveviiiiiieieeeeeee e 31-6
LOW-LeVel FUNCHIONSuiiiiiiiiiiaieeiiieeee e 31-7
General FUNCHONSuuuiiiiiiiiii e 31-7
SErIAl POIT VI OVEIVIEW ...ttt ettt ettt e e e et e e e e e e e e e e e sanabeeeeees 31-7
Chapter 32
Instrument Driver Template Vls
Introduction to Instrument Driver Template VIS.......coooiiiiiiiiiie e 32-1
Instrument Driver Template VI DEeSCHPLIONSc.vviiiiiiiiie it 32-2
Chapter 33
VISA Library Reference
(O] o1=T =i o]0 - TP PP PO P PP PPPPPPPPPPPP 33:2..
VISA Library Reference Parametersccooviiiiiiiiiiiiie e 33-2
VISA Operation DEeSCHPLIONS.ueiieiiiiiiie ettt 334
Event Handling FUNCHONScoiiiiiiiiieiieee e 33-10
High Level Register ACCESS FUNCLONS..........ciiiiiiiiiiiiiiice et 33-12
Low Level Register ACCESS FUNCHONScooiiiiiiiieiiiiiie e 33-16
VISA Serial FUNCHONS.coi ittt e e e e e e s s eeeaaaeeeeaeannes 33-18
VISA Property NOGEvuiiiiiiiiiiie ettt e e 33-19
VISA Property NOde DeSCIPUONSueiiiiiiiiiie ittt e et e e nirnee e e e 33-20
Fast Data Channel ... 33-20
GENETAl SEHINGS ...ttt et 33-20
GPIB SEINGS ... et teeeitiit ettt e et e e e e e 33-20
Interface INfOrmMation ..o 33-21

LabVIEW Function and VI Reference Manual Xii © MNational Instruments Corporation

Contents

Message-Based SettiNgScouuiuiiiiiiiiiiie e 33-21
MOdEM LiNE SEINGS ...vviieiiiiiiie ettt 33-21
PXIRESOUICES ...ttt ettt e et e e e e et e e e e e ebea s 33-21
[IS 1= 11T o PP PRPRPTPPPP 33-21
RegiSter-Based SEttNGS.......coiuuiiiiiiiiiiee et 33-21
ST AT LRST= 1] [0 PP PPPPPPPR 33-22
Version INfOrMALIONuviiiiiiee e e e e 33-22
VIME/VXE SEEHNGS ..ce ittt ettt e e nbbaee e e 33-22
Chapter 34
Traditional GPIB Functions
Traditional GPIB FUNCHON Parameters............eciiiiiiiiiiiiiiieeea et 34-2
Traditional GPIB FUNCLION BENAVIOTcciiiiiiiiiiiiiiiie ettt 34-3
Traditional GPIB FUNCLION DESCIPLIONSoeoiiiiiiiiiieiiee ettt e e 34-3
GPIB Device and Controller FUNCLIONSuuiiiiiiiiiiiiieeee e 34-7
DEVICE FUNCLIONSvviiiiiiiiiiiiiiiiieiii e s e e s e s e s e e e e e e e e e e e e e aaaaaaaaaaaaans «f...34
Controller FUNCLIONS ..o e e e e e e e e e e e e e e e e 9.....34-
Chapter 35
GPIB 488.2 Functions
GPIB 488.2 Common FUNCLON Parametersoocvveeiiiiiieeiiiiiee et 35-1
GPIB 488.2 Function Descriptions (Single-Device FUNCLIONS)...........ccccvvveeeeeeeeeiccinnne, 35-2
GPIB 488.2 Multiple-Device FUNction DESCIIPLIONSceveeeeeeiiiiiiiiiieeee e e s s ecciiiineeeeeeeens 35-4
GPIB 488.2 Bus Management Function DesSCriptionS.........ccccvvveeeeiiiiciiieireeee e 35-6
GPIB 488.2 Low-Level I/O Function DeSCIPLiONS.........ccvveeeiiiiiiiiiiiiieeee e cciivineeee e 35-8
GPIB 488.2 General FUNCtioN DESCHPLIONSieieeeie i 35-10
Chapter 36
Serial Port Vls
Serial POrt VI DESCHPLONS ... s e e e e e s e s er e e e e e e e e s ansnsnnrnrneeeaeaeeeenean 36-1
PART IV
Analysis Vis
Chapter 37
Introduction to Analysis in LabVIEW
Full Development SYSEM.........cccciiiiiiiii i 37-2
ANGAIYSIS VI OVEIVIEW ...ttt ettt e e e e e e s s s e e e e e e e e e s s e s snnnbaeereeeaaeaesanannns 37-2

© MNational Instruments Corporation Xiii LabVIEW Function and VI Reference Manual

Contents

ANAIYSIS VI OrganiZAtIONc.uvviiiiiiiiiii et 37-3
Notation and Naming CONVENTIONSeeiiiiiiiiiiiiiiiiee et e et snebeee e 37-4

Chapter 38

Signal Generation Vis
Signal Generation VI DESCHPLIONS.uuiiiiiiieai ittt e e e e e 38-2

Chapter 39
Digital Signal Processing Vls

Signal Processing VI DESCHPLIONSccccuviiiiiiiie et s s ar e e e e e s e e eeaee e 39-2

Chapter 40

Measurement Vis
Measurement VI DESCHIPHONSuuiiiiiiiieie ettt 40-2

Chapter 41
Filter Vis

FIlter VI DESCIIPLIONSeeeeeee ittt e e 2...41-

Chapter 42
Window Vls

WINAOW VI DESCHPONSuuiiiiiiiiiiee e e e i e ectiiie e et e e e e e s se e e e e e e e e e e s s ssnsbnbaeeeeaaeaeeessnnnnnes 42-2

Chapter 43
Curve Fitting Vs

Curve Fitting VI DESCIPLIONSeeiiiiiiieeeiitee ettt 43-2

Chapter 44
Probability and Statistics Vs

Probability and StatisticsS VI DESCHPLIONS..........eiiiiiiiiiieeiiiiiee et 44-2

Chapter 45
Linear Algebra Vis

Linear Algebra VI DESCHPLIONSuuuiiiiiiee et e e s r e e e e e s e s areeaaee e 45-2

LabVIEW Function and VI Reference Manual Xiv © MNational Instruments Corporation

Contents

Chapter 46
Array Operation Vis
Array Operation VI DeSCIIPLIONSuuiiiiiieeiei ittt e e e e e e e 46-2
Chapter 47
Additional Numerical Method Vis
Additional Numerical Method VI DeSCIIPHONS........ccuviiiiiiiiiee it 47-1
PART V
Communication Vis and Functions
Chapter 48
TGP Vis
RO eV I =T o o] o] 1 o] o E TSP TP PPRPPPPP 48-2
QIO o U o 1o Y 2. 48
Chapter 49
UDP Vis
UDP VI DESCHIPLIONStteeee ettt ettt ettt e e e st e e e st e e e e s nnba e e e e e nnbbe e e e e snnbeeeeennneeas 49-1
Chapter 50
DDE Vis
DDE Client VI DESCHPLIONSceiiiiiiiiieiiiieie ettt esnneae s 50-2
DDE Server VI DESCHPLIONSccoiiiiiiiieiie e e ettt e e e e e s s st e e e e e e e e e s s snnnnenneeeees 50-3
Chapter 51
ActiveX Automation Functions
ActiveX Automation FUNCHION DESCHPLIONSceeiiiiiiiieiiiiiee it 51-2
Data CoNVErSION FUNCHIONuuiiiiiiiiiiee ittt e sttt e e e e e e e s e s st eeeeeaaeeeesanenes 51-4
Chapter 52
AppleEvent Vis
General AppleEveNnt VI BENAVIONcoiuiiiiiiiiiiiie e 52-2
The User Identity DIialog BOXuuuiiiieeeeiiiiiiiiiiieeeeeee e e e s s ssiineneee e e e e e e e s e s nnnneeees 52-2
TANGEEID oot 52-3
Y= Lo [@ o) 1o] 1RSSR 52-4
Targeting VI DESCHPLIONScciii i ettt e e e e e e e e e s e e s e aaeeeeeas 52-4

© MNational Instruments Corporation XV LabVIEW Function and VI Reference Manual

Contents

APPIEEVENT VI DESCHIPHIONS.eiieiiieiiiee ittt ettt st e ebbe e e s 52-6
LabVIEW-Specific APPIEEVENT VIS ..ot 52-8
Yo (V7= L ol=To B o] ool PRSPPI 9. 52-
Constructing and Sending Other AppleEVents ..., 52-9
Creating AppleEVeNt PArameterscueeeeiiiiiiieiiiiee e 52-10
Low-Level APPIEEVENT VISooiiiiiiiiiiiie ettt 52-13
Object SUPPOIt VI EXAMPIEcoiiiiiiiieiiiiiie e 52-16
Sending AppleEvents to LabVIEW from Other Applications............cccccvevveieeeeneiiiennns 52-18
Required APPIEEVENLSooiiiiiii i 52-18
LabVIEW Specific APPIEEVENLScooiiiiiiiiiiiie e 52-18
Replies t0 APPIEEVENTS ... 52-18
EVENE RUN V..o 52-19
=TS g o] 1o o R 52-19
EVENE ClaSS......ieiiie i 52-19
EVENTID ..ot 52-19
EVENt PArameters........ooviiiiiiiiiiieeee e 52-19
Reply Parameters........ccuvuveiieeeee e en e 52-19
POSSIDIE EFTOIS.....ciiiiiiie it 52-19
EVENE: ADOI V1 ..ot 52-20
[T g o] 1o o R 52-20
EVENE ClaSS......ceiiiiiiiiiie e 52-20
EVENTID ..o 52-20
EVENt PArameters........oeviiiiiiiiiiiiieeeee e 52-20
Reply Parameters........cuuvveriieeee e ee e 52-20
POSSIDIE EFTOIS....cciiiiiiie ittt 52-20
EVENE VI ACHVE? ..ottt 52-21
=T] o] 1o o [SRR 52-21
EVENE ClaSS......ceiiieiiiiiiee e 52-21
EVENEID ..o 52-21
Event Parameters. ... 52-21
Reply Parameters.......cccuvveeiieeeee it 52-21
POSSIDIE EXTOIS.....ciiviiiie ittt 52-21
EVENL: ClOSE VI .ot 52-22
DTSt] o] 1o o [RS 52-22
EVENE ClaSS......uviiie et 52-22
EVENEID .ot 52-22
Event Parameters. ... 52-22
Reply Parameters.........ccuvveeiieeeee e 52-22
POSSIDIE EITOrS. ...t 52-22

LabVIEW Function and VI Reference Manual Xvi © MNational Instruments Corporation

Contents

Chapter 53
Program to Program Communication Vis
PPC VI DESCIIPLIONScceii ittt ettt ettt e e e e e e e e e s abb b e s e e e e aaaeeeeaaannes 53-2
Appendices and Index
Appendix A
Error Codes
NUMETIC EITOI COURSoiiiiiiiiiiie ittt et ettt e e st ee s annbneee s A-1
Appendix B
DAQ Hardware Capabilities
MIO and Al Device Hardware Capabilities...........ccuveiiiiiiiiiiii e B-1
Lab and 1200 Series and Portable Devices Hardware Capabilities............cccccocvvveennnne. B-10
BAXX DBVICES. ...ttt ettt ettt e et e e et e e e b e e e B-14..
SCXI Module Hardware Capabilitiescveeiiiiiiiieiiiiiee e B-16
Analog Output Only Devices Hardware Capabilities............cccceeiiiiiiiiiiiieieiieee e, B-20
Dynamic Signal Acquisition Devices Hardware Capabilitiesccccceeiviiiiiiininnnn. B-21
Digital Only Devices Hardware Capabilities...........c.cccooriiiiiiiiiiiii e B-22
Timing Only Devices Hardware CapabilitieS ... B-23
5102 Devices Hardware CapabilitieS..........ccoiiiiiiiiiii e B-24
Appendix C
GPIB Multiline Interface Messages
MUItIliNE INtEIrfaCe MESSATESuuueiiiiiiiiee ettt e e e e e e e e e C-1
Message DefiNitiONSuuiiiiiiiiiii e C-6
Appendix D

Customer Communication

Index

© MNational Instruments Corporation Xvii LabVIEW Function and VI Reference Manual

Contents

Figures

Figure 27-1.
Figure 27-2.
Figure 27-3.
Figure 27-4.
Figure 27-5.
Figure 27-6.

Figure 28-1.
Figure 28-2.
Figure 28-3.
Figure 28-4.
Figure 28-5.
Figure 28-6.
Figure 28-7.
Figure 28-8.

Figure 28-9.
Figure 30-1.
Figure 30-2.
Figure 30-3.

Figure 30-4.
Figure 30-5.

Figure 41-1.
Figure 41-2.
Figure 41-3.
Figure 41-4.

Tables

LabVIEW Function and VI Reference Manual

Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.

Figures and Tables

Setup Mode in ICTR CONLrOl........ooouiiiiiiiiiiie e 27-5
Setup Mode 1 in ICTR CONtrol...........uuuiiiiiiiiieeee e 27-6
Setup Mode 2 in ICTR CONLrol........ccuuuiiiiiiiiieeeee e 27-6
Setup Mode 3N ICTR CONLrol........ccuuuiiiiiiiiieeee e 27-6
Setup Mode 4 in ICTR CONLrol..........cuuuiiiiiiiiieeee e 27-6
Setup Mode 5in ICTR CONLrol........c.cuuiiiiiiiiiieeee e 27-7
Unbuffered Mode 2 and 3 COUNTINGueeeiiiieiiiiiiiiieiceeeee e 28-4
Buffered Mode 3 COUNTINGuvvriiiiiieaieiiiiiieieee e 28-5
Unbuffered Mode 4 High Pulse Width Measurementcccccceee... 28-6
Buffered Mode 4 Rising-Edge Pulse Width Measurement..................... 28-6
Unbuffered Mode 4 Rising-Edge Period Measurement...............cccco...... 28-7
Buffered Mode 4 Rising-Edge Pulse Width Measurement..................... 28-7
Unbuffered Mode 6 High Pulse Width Measurementccccceee... 28-7
Buffered Mode 6 High Pulse Width Measurement

(Count on Rising Edge Of SOUICE)ueviiiiiiiieiiiiiiec e 28-8
Buffered Mode 7 Semi-Period Measurementcccoccvvveiniiieeeiniinennn 28-8

Strain Gauge Bridge Completion Networks

(Quarter-Bridge Configuration)coocueeeeiiiiieee e 30-4
Strain Gauge Bridge Completion Networks

(Half-Bridge Configuration)ceeeeeiiieieeiiiieeee i 30-5
Strain Gauge Bridge Completion Networks

(Full-Bridge Configuration)coouiueieeeiiieeee e 30-6
Circuit Diagram of a Thermistor in a Voltage Divider..........cccccocueeeene 30-7
Circuit Diagram of a Thermistor with Current Excitation...................... 30-7
LOWPASS FIlLEI ...t 41-8
HIGNPASS FltEr ...cooiiiiieiee e 41-8
Bandpass Filter.........uuiiiiiiiiii e 41-8
BandStOp FIlLEr.....ccoiiiiiieiiie e 41-9
Special ESCAPE COUESuueiiiiiiiiiiiiiiiiie e 6-3
SHING SYNTAX. ittt e e bbb e e e as 6-4
Possible Format into String Errors.............eeeveiiiiiiiiiiiiiieeece e 6-7
FOrmat SPECITIEIS ...eeiiiiiie e 6-7
Special Characters for Match Patternccccccoiiiiicc s 6-9
Strings for the Match Pattern Examples ..., 6-10

XViii © MNational Instruments Corporation

Table 6-7.
Table 6-8.

Table 9-1.

Table 10-1.
Table 10-2.

Table 18-1.
Table 18-2.

Table 18-3.
Table 18-4.
Table 18-5.
Table 18-6.
Table 18-7.
Table 18-8.
Table 18-9.

Table 18-10.

Table 18-11.

Table 18-12.

Table 18-13.

Table 25-1.
Table 28-1.
Table 28-2.
Table 28-3.

Table 29-1.
Table 29-2.

Table 34-1.
Table 34-2.

Table 51-1.

Table 52-1.

Contents

Scan from String ErTOrS... ..o 6-12
Scan from String EXamplesS ... 6-12
Lexical Class Number DeSCriptioNScoviuiiiieiniiiie e 9-8
Valid Value of Elements for Date/Time Cluster..........cccccovvvevieeeeeninnnne 10-2
Format Codes for the Time Format String..........coecvveeiiiieeeeiiiieeee 10-7
Al Buffer Config VI Device-Specific Settings and Ranges................... 18-2
Device-Specific Settings and Ranges for Controls

in the Al Clock Config VIooiiiii e 18-4
Device-Specific Settings and Ranges for the Al Control VI................... 18-6
Device-Specific Settings and Ranges for the Al Group Config VI 18-7
Al Hardware Config Channel Configurationccccccoevvvviieeeeeeeiinnnns 18-9
Device-Specific Settings and Ranges for the Al Hardware Config VI...18-11
Device-Specific Settings and Ranges for the Al SingleScan Vi............. 18-14
Restrictions for Analog Triggering on E-Series DeViCes.......ccccccveeerrnnne 18-17
Digital Trigger Sources for Devices

with Fixed Digital Trigger SOUICEScovvvviieiiieeee i ciiieeee e e e e 18-18
Device-Specific Settings and Ranges

for the Al Trigger Config VI (Part 1)cccccvviieiieeeeeiiiciiieeeeee e 18-18
Device-Specific Settings and Ranges

for the Al Trigger Config VI (Part 2).........ccccuvvieiieeeeeiiiciiieeeeee e 18-20
Device-Specific Settings and Ranges

for the Al Trigger Config VI (Part 3)........cccccuviieeieeeeeiiiciiieeeeee e 18-20
Device-Specific Settings and Ranges

for the Al Trigger Config VI (Part 4)ccccouveeeeeeeeei i 18-21
Device Specific Parameters and Legal Ranges for Devices.................... 25-6
Counter Chips and Their Available DAQ DeVICESceeveeeviiicirrvveennnnn. 28-2
Valid Counter Numbers for CTR Group Config Devices............cccuuu.... 28-3
AdJACENT COUNTEIS ..uvviiiiiiee e i e ettt e e e s e e e e e e s st eeeeeaee s 28-9
Channel to Index VI Parameter Examples...........cccccvvevieeeeeeee e, 29-8
Channel to Index VI Parameter Examples for Suncccccccveveeeeeniinnns 29-9
Command String Device FUNCLONScoccciiiiiiiiiieee e 34-4
Command String Controller FUNCLONSccoeiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeies 34-4
New and Old ActiveX Automation FUNCLIONSocciviiiiiiiiiiieeenie 51-2
AppleEvent Descriptor String FOrmats............ooovvvvvvviviiiiiiiiiieienie e 52-11

© MNational Instruments Corporation Xix LabVIEW Function and VI Reference Manual

Contents

Table A-1. NUumeric Error Code RANGESuvveiiiiiiiiiee ettt A-1
Table A-2. VISA EIOr COUEScoiiiiiiiiiieeeeeeee et e e e e e e e e e e e e e e e e eeeeeaeeaens A-2
Table A-3. ANAIYSIS ErTOr COUESuviiiiiiiiiiie ittt A-4
Table A-4. Data Acquisition VI Error COUES.......cuuviiiiiiiiiie i A-7
Table A-5. APPIEEVENT Error COUESeviiieiiiiiiee et A-21
Table A-6. Instrument Driver Error COAESoocuviiiiiiiiieee et e e e e A-22
Table A-7. PPC EITOr COUEBSoeviiiiittettiiccee et et e e e e e A-23
Table A-8. GPIB EITOr COUEBScceeveeeeiietiitit it ee e e et e e e e e e e e e e e e e e e e e b e aaaaaes A-24
Table A-9. LabVIEW Function Error COAESuuuuiiiieeeeeiiiiiiiieeireeee e e e e s eneneveeeees A-25
Table A-10. LabVIEW-Specific PPC Error COUES.........ccoeiiiiiiiiiiiiiiie e A-28
Table A-11. TCP and UDP Error COUESciceeiiiiiiiiiiiiiiireeeee e e e s ssesienaeeeeeeaeeeseeennnnes A-28
Table A-12. Serial POrt Error COUESuuuuiiiiiieeeiieiicieiieiree s e e e e e s ssesieeeeeree e e e e e e e ennnnees A-29
Table A-13. LabVIEW-Specific Error Codes for AppleEvent Messages................... A-29
Table A-14. DDE EITOr COUEScooiiiiiiiiei ittt A-29
Table B-1. Analog Input Configuration Programmability—MIO and Al Devices.. B-1
Table B-2. Analog Input Characteristics—MIO and Al Devices (Part 1)................ B-2
Table B-3. Analog Input Characteristics—MIO and Al Devices (Part 2)................ B-3
Table B-4. Internal Channel Support—MIO and Al DEVICEScceevvvvivvivieeereeennn, B-4
Table B-5. Analog Output Characteristics—MIO and Al DeViCescccccvveeeennnnne B-4
Table B-6. Analog Output Characteristics—E Series Devices..........cccccvvvvveeeeeninnnns B-7
Table B-7. Digital I/O Hardware Capabilities—MIO and Al Devices...........c......... B-8
Table B-8. Counter Characteristics—MIO and Al DEVICEScccceeeeiiiieeeiiiiieeenns B-9
Table B-9. Counter Usage for Analog Input and Output—MIO and Al Devices..... B-10
Table B-10. Analog Input Configuration Programmability—

Lab and 1200 Series and Portable DeviCes.........cccccevviviieeiiiiieeeeennnen, B-10
Table B-11. Analog Input Characteristics—Lab and 1200 Series and

Portable Devices (Part 1)cccuuveveeeeiiiciiiieie e e e B-11
Table B-12. Analog Input Characteristics—Lab and 1200 Series and

Portable Devices (Part 2)cceeveeei it B-11
Table B-13. Analog Output Characteristics—Lab and 1200 Series and

POrtable DEVICESuviiiiiiiiiiee ittt e e B-12
Table B-14. Counter Usage for Analog Input and Output—Lab Series and

POrtable DEVICESeiiiiiiiiiiee ittt B-12
Table B-15. Digital I/O Hardware Capabilities—Lab and 1200 Series and

POrtable DEVICESoeiiiiiiiiiie ettt B-13
Table B-16. Analog Output and Digital Output Characteristics—

BAXX SErIES DEVICESvveiieiiiiiiie ettt B-14
Table B-17. Counter/Timer Characteristics—Lab and 1200 Series and

POrtable DEVICESuuiiiiiiiiiiee et B-15
Table B-18. Analog Input Characteristics—SCXI Modules (Part 1)ceeeeee. B-16
Table B-19. Analog Output Characteristics—SCXI Modules..........ccccuvvvvvvevninnnennnn. B-17
Table B-20. Relay Characteristics—SCXI MOdUIESoovvviriiiiviiiiiiiiiiieiee e, B-17

LabVIEW Function and VI Reference Manual XX © MNational Instruments Corporation

Table B-21.
Table B-22.
Table B-23.
Table B-24.
Table B-25.
Table B-26.

Table B-27.

Table B-28.

Table B-29.
Table B-30.
Table B-31.
Table B-32.
Table B-33.
Table B-34.

© National Instruments Corporation XXi

Contents

Digital Input and Output Characteristics—SCXI Modules..................... B-18
Terminal Block Selection Guide—SCXI Modules...........cccccevviieieennnn. B-18
Analog Input Configuration Programmabilityccccoveiiiiiniinennnnen. B-19
Analog Input Configuration Programmabilityccccveiiiiiniinennnnen. B-19
Analog Output Characteristics—Analog Output Only Devices.............. B-20
Analog Input Configuration Programmability—

Dynamic Signal AcqUuiSItion DEVICES..........euvvviiiiiieiiiiiiie e B-21
Analog Output Characteristics—

Dynamic Signal AcqUuiSItion DEVICES...........uuvviiviiieiiiiiee e B-21
Analog Input Characteristics—

Dynamic Signal ACqUISItion DEVICES...........uuvviiviiieiiiiiiie e B-22
Digital Hardware Capabilities—Digital I/O DeViCesS..........cccccevvveeeennee. B-22
Digital Hardware Capabilities—Timing Only Devicescccvvveee... B-23
Counter/Timer Characteristics—Timing Only Devices..........ccccccceevnnne B-24
Analog Input Configuration Programmabilitycccceveeeeviiiiciiiennnn. B-24
Analog Input CharacteristiCsuuvieeiiiiiiciiiiiie e B-24
Analog Input Characteristics, Part 2.........ccccccveeeiivcviiiieeie e B-24

LabVIEW Function and VI Reference Manual

About This Manual

TheLabVIEW Function and VI Reference Mancahtains descriptions of
all virtual instruments (VIs) and functions, including the following:

» VIs that support the devices for data acquisition

» Vis for GPIB, VXIbus, and serial port I/O operation

« digital signal processing, filtering, and numerical and statistical VIs
* networking and interapplication communications VIs

This manual is a supplement to ttebVIEW User Manuaknd you should
be familiar with that material.

This manual provides an overview of each function and VI available in the
LabVIEW development system. However, for more specific parameter
information regarding each function and VI, refer to@mine Reference
which you can access by selectitglp»Online Reference or to the Help
window, which you access by selectidglp»Show Help

Organization of the Product User Manual

This manual covers five subject areas: G functions and VIs, Data
Acquisition VIs, Instrument I/O Vls, Analysis VIs, and Communications
VlIs. Chapter 1introduction to the G Functions and Vistroduces the
functions and VIs available in the LabVIEW development system.

» PartI,G Functions and Vldncludes Chapters 2 through 13, which
describe the functions unique to the G programming language.

e Part Il,Data Acquisition Visincludes Chapters 14 through 30, which
describe the Data Acquisition (DAQ) Vls.

* Part I, Instrument I/O Functions and VIscludes Chapters 31
through 36, which describe the Instrument 1/O VIs and functions.

e Part IV,Analysis VisincludeChapters 37 through 47, which describe
the Analysis Vls.

e Part V,Communication VIs and Functignacludes Chapters 48
through 53, which describe the Communication VIs.

© MNational Instruments Corporation XXiif LabVIEW Function and VI Reference Manual

About This Manual

In addition, this manual includes the following appendices and index:

* Appendix A,Error Codes includes tables that summarize the analog
and digital 1/0 capabilities of National Instruments data acquisition
devices.

« Appendix B,DAQ Hardware Capabilitieslists commands that
IEEE 488 defines.

e Appendix C,GPIB Multiline Interface Messagedescribes basic
concepts you need to understand to operate GPIB.

¢ Appendix D,Customer Communicatigeontains forms to help you
gather the information necessary to help us solve your technical
problems and a form you can use to comment on the product
documentation.

e Thelndexcontains an alphabetical list of VIs described in this manual,
including the page where you can find each one.

Conventions Used in This Manual

<>

(]

»

bold

bold italic

Ctrl

The following conventions are used in this manual:

Angle brackets enclose the name of a key on the keyboard — for example,
<shift>. Angle brackets containing numbers separated by an ellipsis
represent a range of values associated with a bit or signal name —

for example, DBIO<3..0>.

Square brackets enclose optional items — for examggspdnse].

A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys —
for example, <Control-Alt-Delete>.

The» symbol leads you through nested menu items and dialog box options
to a final action. The sequenge»Page Setup»Options»Substitute

Fonts directs you to pull down thgile menu, select theage Setuptem,
selectOptions, and finally select th8ubstitute Fontsoptions from the

last dialog box.

Bold text denotes the names of menus, menu items, parameters, dialog
boxes, dialog box buttons or options, icons, windows, Windows 95 tabs,
or LEDs.

Bold italic text denotes an activity objective, note, caution, or warning.

Key names are capitalized.

LabVIEW Function and VI Reference Manual Xxiv © MNational Instruments Corporation

italic

italic monospace

monospace

monospace bold

paths

About This Manual

Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows. 3.

Italic text in this font denotes that you must supply the appropriate words
or values in the place of these items.

Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, variables, filenames and extensions, and for statements and
comments taken from programs.

Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

Related Documentation

You might find the following documentation helpful as you read this
manual:

e LabVIEW User Manual

e G Programming Reference Manual

* LabVIEW Data Acquisition Basics Manual
» LabVIEW QuickStart Guide

e LabVIEW Online Referengeavailable by selecting
Help»Online Reference

* LabVIEW Online Tutoria{Windows only), which you launch from
the LabVIEW dialog box.

* LabVIEW Getting Started Card

e G Programming Quick Reference Card
* LabVIEW Release Notes

* LabVIEW Upgrade Notes

© MNational Instruments Corporation Xxv LabVIEW Function and VI Reference Manual

About This Manual

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendi€stomer
Communicatiopat the end of this manual.

LabVIEW Function and VI Reference Manual XXVi © MNational Instruments Corporation

Introduction to the
G Functions and Vs

This chapter contains basic information about the functions and virtual
instruments (VIs) that are available in the LabVIEW development system.

The development system includes collections of Vs that work with your
G programming language, data acquisition (DAQ) hardware devices,
instrument devices, and other communication interfaces.

Locating the G Functions and Vis

Functions are elementary nodes in the G programming language. They are
analogous to operators or library functions in conventional languages.
Functions are not VIs and therefore do not have front panels or block
diagrams. When compiled, functions generate inline machine code.

You select functions from theunctions palette in the block diagram.
When the block diagram window is active, sel&imdows»

Show FunctionsPalette. You also can access tRanctions palette by
popping up on the area in the block diagram window where you want to
place the function.

© MNational Instruments Corporation 1-1 LabVIEW Function and VI Reference Manual

Chapter 1 Introduction to the G Functions and VIs

The following illustration shows the functions and VIs available from the
Functions palette.

Structures, Numeric, Boolean

String, Array, Cluster

Comparison, Time & Dialog File I/O

Communication, Instrument /O, DAQ

Analysis, Tutorial, Advanced

Instrument Library, User Libraries,
Application Control

Select a VI

Many Functions palette chapters include information about function
examples. The paths for these examples for LabVIEW begin with
examples\

Function and VI Overviews

The following functions and VIs are available from Fenctions palette.

Structures

G Structures include While Loop, For Loop, Case, and Sequence
structures. This palette also contains the global and local variable nodes,
and the formula node.

LabVIEW Function and VI Reference Manual 1-2 © MNational Instruments Corporation

Chapter 1 Introduction to the G Functions and VIs

Numeric Functions

Numeric functions perform arithmetic operations, conversions,
trigonometric, logarithmic, and complex mathematical functions. This
palette also contains additional numeric constants, such as

Boolean Functions
Boolean functions perform Boolean and logical operations.

String Functions

String functions manipulate strings and convert numbers to and from
strings. This palette also includes Additional String To Number functions
and String Conversion functions.

Array Functions
Array functions assemble, disassemble, and process arrays.

Cluster Functions
Cluster functions assemble, access, and change elements in a cluster.

© MNational Instruments Corporation 1-3 LabVIEW Function and VI Reference Manual

Chapter 1 Introduction to the G Functions and VIs

Comparison Functions

Comparison functions compare data (greater than, less than, and so on) and
operations that are based on a comparison, such as finding the minimum
and maximum ranges for a group or array of values.

Time and Dialog Functions

Time and Dialog functions manipulate time functions and display dialog
boxes. This palette also includes the VIs that perform error handling.

File 1/0 Functions

File 1/0 functions manipulate files and directories. This palette also
contains the subpalettéslvanced File Functions Binary File VIs, and
File Constants

Advanced Functions

Advanced functions are functions that are highly specialized. The Code
Interface Node is an example of an advanced functionAt@lkanced
palette also contains Data Manipulation functions and Occurrences
functions.

LabVIEW Function and VI Reference Manual 1-4 © MNational Instruments Corporation

Chapter 1 Introduction to the G Functions and VIs

DAQ

DAQ VIs acquire and generate real-time analog and digital data as well as
perform counting operations. See Chaptedritoduction to the LabVIEW
Data Acquisition VIsfor more information.

Instrument 1/0

Instrument I/O VIs communicate with instruments using GPIB, VISA, or
serial communication. See Chapter Bitroduction to LabVIEW
Instrument I/O Vls for more information.

Communication

Communication VIs network to other applications using TCP/IP, DDE,
ActiveX, Apple Events, PPC, or UDP. See ChapterMR VIs through
Chapter 53Program to Program Communication Vr more
information.

Analysis Vis

Analysis Vs perform measurement, signal generation, digital signal
processing, filtering, windowing, probability and statistics, curve fitting,
linear algebra, array operations, and VIs which perform additional
numerical methods. See Chapterld#oduction to Analysis in LabVIEW
for more information.

© MNational Instruments Corporation 1-5 LabVIEW Function and VI Reference Manual

Chapter 1 Introduction to the G Functions and VIs

Select A VI...

Tutorial

TheSelect a VI...allows you to select any VI using a file dialog box and
then place it on a diagram.

The Tutorial VIs provide examples for you to use while working through
theLabVIEW User Manual.

Instrument Driver Library

User Library

Instrument drivers are a set of Vls for GPIB, VISA, serial, and CAMAC
instruments. National Instruments, as well as other vendors, distribute these
instrument drivers. Any drivers you place in thr.lib appear in the
palette.

TheUser Library palette automatically includes any VIs in your
userlib directory, making it more convenient to gain access to
commonly used sub-VIs you have written.

LabVIEW Function and VI Reference Manual 1-6 © MNational Instruments Corporation

Chapter 1 Introduction to the G Functions and VIs

Application Control

TheApplication Control palette includes the Help functions, Menu
functions, Print Vs, and VI Server Vls.

© MNational Instruments Corporation 1-7 LabVIEW Function and VI Reference Manual

Part |

G Functions and Vs

Part I,G Functions and Vlsntroduces the G Functions and Vls
descriptions. This part contains the following chapters:

Chapter 2G Function and VI Reference Overvjanatroduces the G
functions and VIs. This chapter also describes the differences between
functions and Vils.

Chapter 3Structuresdescribes the structures available in G.

Chapter 4Numeric Functionsdescribes the functions that perform
arithmetic operations, complex, conversion, logarithmic, and
trigonometric operations. It also describes the commonly used
constants like the Numeric constant, Enumerated constant, and Ring
constant, as well as additional numeric constants.

Chapter 5Boolean Functionsdescribes the functions that perform
logical operations.

Chapter 65String Functionsdescribes the string functions, including
those that convert strings to numbers and numbers to strings.

Chapter 7Array Functions describes the functions for
array operations.

Chapter 8Cluster Functionsdescribes the functions for
cluster operations.

Chapter 9Comparison Functionglescribes the functions that
perform comparisons or conditional tests.

Chapter 10Time, Dialog, and Error Functionglescribes the timing
functions, which you can use to get the current time, measure elapsed
time, or suspend an operation for a specific period of time. Error
Handling also is covered in this chapter.

Chapter 11File Functions describes the low-level VIs and functions
that manipulate files, directories, and paths. This chapter also
describes file constants and the high-level file Vis.

Part | G Functions and Vs

e Chapter 12Application Control Functionsgdescribes the Application
Control functions.

« Chapter 13Advanced Functionslescribes the functions that perform
advanced operations. This chapter also describes the Help, Data
Manipulation, and Synchronization functions, and the VI Control and
Memory VISA.

LabVIEW Function and VI Reference Manual -2 © MNational Instruments Corporation

G Function and
VI Reference Overview

This chapter introduces the G Functions and VIs, descriptions of which
comprise Chapter 3 through Chapter 13.

Functions are elementary nodes in the G programming language. They are
analogous to operators or library functions in conventional languages.
Functions are not VlIs and therefore do not have front panels or block
diagrams. When compiled, functions generate machine code.

VIs are “virtual instruments,” so called because they model the appearance
functions of a physical instrument.

You select G Functions from tlk@inctions palette, in the block diagram.
When the block diagram window is active, you can displaythetions
palette by selectingvindows»Show Functions Palette You also can
access th&unctions palette by popping up on the area in the block
diagram window where you want to place the function.

© MNational Instruments Corporation 2-1 LabVIEW Function and VI Reference Manual

Chapter 2 G Function and VI Reference Overview

The following illustration shows the G functions and VIs available on the
Functions palette.

G Functions and Vls

Many Functions palette chapters include information about function
examples.

G Functions Overview

For brief descriptions of each of the eleven G Function and VI palettes
available, refer to Chapter thtroduction to the G Functions and VIs

Introduction to Polymorphism

The following sections provide some general information about
polymorphism in G functions.

Polymorphism

Polymorphisnis the ability of a function to adjust to input data of different
types or representations. Most functions are polymorphic. Vis are not
polymorphic. All functions that take numeric input can accept any numeric

LabVIEW Function and VI Reference Manual 2-2 © MNational Instruments Corporation

Chapter 2 G Function and VI Reference Overview

representation (except some functions that do not accept complex
numbers).

Functions are polymorphic to varying degrees; none, some, or all of their
inputs may be polymorphic. Some function inputs accept numbers or
Boolean values. Some accept nhumbers or strings. Some accept not only
scalar numbers but also arrays of numbers, clusters of numbers, arrays of
clusters of numbers, and so on. Some accept only one-dimensional arrays
although the array elements may be of any type. Some functions accept all
types of data, including complex numbers.

Unit Polymorphism

If you want to create a VI that computes the root, mean square value of a
waveform, you have to define the unit associated with the waveform.

You would need a separate VI for voltage waveforms, current waveforms,
temperature waveforms, and so on. LabVIEW has polymorphic unit
capability so that one VI can perform the same calculation, regardless of
the units received by the inputs.

You create a polymorphic unit by enteritig, wherex is a number (for
example$1). You can think of this as a placeholder for the actual unit.
When LabVIEW calls the VI, the program substitutes the units you pass in
for all occurrences dfx in that VI.

LabVIEW treats a polymorphic unit as a unique unit. You cannot convert

a polymorphic unit to any other unit, and polymorphic units propagate
throughout the diagram, just as other units do. When the unit connects to an
indicator that also has the abbreviatin the units match and the VI can
then compile.

You can us&l in combinations just like any other unit. For example, if the
input is multiplied by 3 seconds and then wired to an indicator, the indicator
must be$l s units. If the indicator has different units, the block diagram
shows a bad wire. If you need to use more than one polymorphic unit, you
can use the abbreviatio$8, $3, and so on.

A call to a subVI containing polymorphic units computes output units
based on the units received by its inputs. For example, suppose you create
a VI that has two inputs with the polymorphic uditsand$2 that creates

an output in the forms1 $2 /s . If a call to the VI receives inputs with

the unit m/s to thél input and kg to thé2 input, LabVIEW computes the
output unit akg m/ s"2

© MNational Instruments Corporation 2-3 LabVIEW Function and VI Reference Manual

Chapter 2

G Function and VI Reference Overview

Suppose a different VI has two inputssafand$1/s , and computes an
output of$172 . If a call to this VI receives inputs of m/s to $leinput
andm/s”2 to the$l/s input, LabVIEW computes the output unit as
m~2 / s”2 . If this VI receives inputs of m to ti$a input and kg to
the$l/s input, however, LabVIEW declares one of the inputs as a unit
conflict and computes (if possible) the output from the other input.

A polymorphic VI can have a polymorphic subVI because LabVIEW keeps
the respective units distinct.

Numeric Conversion

You can convert any numeric representation to any other numeric
representation. When you wire two or more numeric inputs of different
representations to a function, the function usually returns output in the
larger or wider format. The functions coerce the smaller representations to
the widest representation before execution.

Some functions, such as Divide, Sine, and Cosine, always produce
floating-point output. If you wire integers to their inputs, these functions
convert the integers to double-precision, floating-point numbers before
performing the calculation.

For floating-point, scalar quantities, it is usually best to use
double-precision, floating-point numbers. Single-precision, floating-point
numbers save little or no execution time, and overflow much more easily.
The analysis libraries, for example, use double-precision, floating-point
numbers. You should only use extended-precision, floating-point numbers
when necessary. The performance and precision of extended-precision
arithmetic varies among the platforms.

For integers, it is usually best to use a long integer.

If you wire an output to a destination that has a different numeric
representation from the source, G converts the data according to the
following rules:

* Signed or unsigned integer to floating-point number—Conversion is
exact, except for long integers to single-precision, floating-point
numbers. In this case, G reduces the precision from 32 bits to 24 bits.

¢ Floating-point number to signed or unsigned integer—G moves
out-of-range values to the integer's minimum or maximum value.
Most integer objects, such as the iteration terminal of a For Loop,
round floating-point numbers. G rounds a fractional part of 0.5 to the
nearest even integer—for example, G rounds 6.5 to 6 rather than 7.

LabVIEW Function and VI Reference Manual 2-4 © MNational Instruments Corporation

Chapter 2 G Function and VI Reference Overview

» Integer to integer—G does not move out-of-range values to the
integer’s minimum or maximum value. If the source is smaller than the
destination, G extends the sign of a signed source and places zeros in
the extra bits of an unsigned source. If the source is larger than the
destination, G copies only the low order bits of the value.

The block diagram placescaercion dobn the border of a terminal where
the conversion takes place to indicate that automatic numeric conversion
occurred, as in the following example.

Because VIs and functions can have many terminals, a coercion dot can
appear inside an icon if the wire crosses an internal terminal boundary
before it leaves the icon/connector, as the following illustration shows.

Moving a wired icon stretches the wire. Coercion dots can cause a VI to use
more memory and increase its execution time. You should try to keep data
types consistent in your VIs.

Overflow and Underflow

G does not check for overflow or underflow conditions on integer values.
Overflow and underflow for floating-point numbers is in accordance with
IEEE 754 Standard for binary, floating-point arithmetic.

Floating-point operations propagate not-a-number (NaN) and zInf
faithfully. When you explicitly or implicitly convert NaN or +Inf to an
integer or Boolean value, however, you get a value that looks reasonable,
but is meaningless. For example, dividing by zero produces =Inf, but
converting that value to a word integer gives the value 32,768, which is the
largest value that can be represented in the destination format.

© MNational Instruments Corporation 2-5 LabVIEW Function and VI Reference Manual

Chapter 2 G Function and VI Reference Overview

Wire Styles

The wire style represents the data type for each terminal, as the following
table shows. Polymorphic functions show the wire style for the most
commonly used data type.

LabVIEW Function and VI Reference Manual 2-6 © MNational Instruments Corporation

Structures

This chapter describes the Structures available in G.

To access th8tructures palette, seledtunctions»Structures The
following illustration shows the options that are available osthectures
palette.

Seeexamples\general\structs.llb for examples of how these
structures are used in LabVIEW.

© MNational Instruments Corporation 3-1 LabVIEW Function and VI Reference Manual

Chapter 3 Structures

Structures Overview

The following Structures are available in G.

Case Structure
Has one or more subdiagramscasegsexactly one of which executes when the structure
executes. Whether it executes depends on the value of the Boolean, string, or numeric scalar
you wire to the external side of the terminakefector

For more information on how to use the Case structure in LabVIEW, see Ch&pdase4nd
Sequence Structures and the Formula NadéheLabVIEW User Manual

Sequence Structure
Consists of one or more subdiagramdrames that execute sequentially. As an option, you
can add sequence locals that allow you to pass information from one frame to subsequent
frames by popping up on the edge of the structure.

For more information on how to use the Sequence structure in LabVIEW, see Chapter 4,
Case and Sequence Structures and the Formula,NiodleeLabVIEW User Manual

For Loop
Executes its subdiagramtimes, wheren equals the value contained in the count terminal.
As an option, you can add shift registers so that you can pass information from one iteration
to the next by popping up on the edge of the structure.

For more information on how to use For Loop in LabVIEW, see Chapteo®s and Charts
in theLabVIEW User Manual

LabVIEW Function and VI Reference Manual 3-2 © MNational Instruments Corporation

Chapter 3 Structures

While Loop

Executes its subdiagram until a Boolean value you wire toahéitional terminals FALSE.
As an option, you can add shift registers so you can pass information from one iteration to the
next by popping up on the edge of the structure.

For more information on how to use While Loop in LabVIEW, see Chaptardps and
Charts in theLabVIEW User Manual

Formula Node
Executes mathematical formulae on the block diagram.

For more information on the Formula Node, see Chapteage and Sequence Structures and
the Formula Nodgin theLabVIEW User Manual

Global Variable

A built-in LabVIEW object that you define by creating a special kind of VI, with front panel
controls that define the datatype of the global variable. You can read and write values to the
global variable.

For more information on the Global Variable, see ChapteGR#al and Local Variables
in theG Programming Reference Manual

© MNational Instruments Corporation 3-3 LabVIEW Function and VI Reference Manual

Chapter 3 Structures

Local Variahle

Lets you read or write to one of the controls or indicators on the front panel of your VI.
Writing to a local variable has the same result as passing data to a terminal, except that you
can write to it even though it is a control, or read from it even though it is an indicator.

For more information on the Local Variable, see ChapteG&al and Local Variablgsn
theG Programming Reference Manual

LabVIEW Function and VI Reference Manual 3-4 © MNational Instruments Corporation

Numeric Functions

This chapter describes the functions that perform arithmetic, complex,
conversion, logarithmic, and trigonometric operations. It also describes the
commonly used constants such as the Numeric constant, Enumerated
constant, and Ring constant, as well as additional numeric constants.

To access theumeric palette, seledtunctions»Numeric. The following
illustration shows the options that are available orNiieric palette.

TheNumeric palette includes the following subpalettes:
» Additional Numeric Constants

e Complex

» Conversion

* Logarithmic

e Trigonometric

For examples of some of the arithmetic functions ezamples\
general\structs.llb

© MNational Instruments Corporation 4-1 LabVIEW Function and VI Reference Manual

Chapter 4

Numeric Functions

Polymorphism for Numeric Functions

Note

The arithmetic functions accept numeric input data. With some exceptions
noted in the function descriptions, the output has the same numeric
representation as the input, or if the inputs have different representations,
the output is the wider of the inputs.

The arithmetic functions work on numbers, arrays of numbers, clusters of
numbers, arrays of clusters of numbers, complex numbers, and so on.
A formal and recursive definition of the allowable input type is as follows:

Numeric type= numeric scalar || arragdmeric typg|| cluster
[numeric typeks

The numeric scalars can be a floating-point, integer or complex,
number. G does not allow you to use arrays of arrays.

Arrays can have any number of dimensions of any size. Clusters can have
any number of elements. For functions with one input, the functions operate
on each element of the structure.

For functions with two inputs, you can use the following input
combinations:

e Simila—both inputs have the same structure, and the output has the
same structure as the inputs.

e One scalar—one input is a numeric scalar, the other is an array or
cluster, and the output is an array or cluster.

« Array of—one input is a numeric array, the other is the numeric type
itself, and the output is an array.

For similar inputs, G performs the function on the respective elements of
the structures. For example, G can add two arrays element by element.
Both arrays must have the same dimensionality. You can add arrays with
differing numbers of elements; the output of such an addition has the same
number of elements as the smallest input. Clusters also must have the same
number of elements, and the respective elements must have the same
structure.

You cannot use the multiply function to do matrix multiplication. If you use the
multiply function with two matrices, G takes the first number in the first row of the
first matrix, multiplies it by the first number in the first row of the second matrix,
and so on.

LabVIEW Function and VI Reference Manual 4-2 © MNational Instruments Corporation

Chapter 4 Numeric Functions

For operations involving a scalar and an array or cluster, G performs the
function on the scalar and the respective elements of the structure.

For example, G can subtract a number from all elements of an array,
regardless of the dimensionality of the array.

For operations that involve a humeric type and an array of that type,

G performs the function on each array element. For example, a graph is an
array of points, and a point is a cluster of two numeric typasdy. To

offset a graph by 5 units in tlalirection and 8 units in thedirection, you

can add a point, (5, 8), to the graph.

The Polymorphic Combinations example below illustrates some of the
possible polymorphic combinations of the Add function.

Polymorphism for Transcendental Functions

The transcendental functions accept numeric input data. If the input is an
integer, the output is a double-precision, floating-point number. Otherwise,
the output has the same numeric representation as the input.

These functions work on numbers, arrays of numbers, clusters of numbers,
arrays of clusters of numbers, complex numbers, and so on.

Polymorphism for Conversion Functions

All the conversion functions except Byte Array to String, String to Byte
Array, Convert Unit, and Cast Unit Bases are polymorphic. Therefore, the
polymorphic functions work on scalar values, arrays of scalars, clusters of
scalars, arrays of clusters of scalars, and so on. The output has the same
numeric representation as the input but with the new type.

© MNational Instruments Corporation 4-3 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

When you compare signed and unsigned integers and the signed integer is
negative, the negative integer is changed to positive before the comparison
occurs. Therefore, you do not get the expected results. For example, if you
enter —1 with representation 132 for one input and 5 with a representation
U32 as the other input, the result returned states that the minimum value
is 5, because 5 is less than 4294967295.

Polymorphism for Complex Functions

The complex functions work on scalar values, arrays of scalars, clusters of
scalars, arrays of clusters of scalars, and so on. The output has the same
composition as the input but with the new type.

Arithmetic Function Descriptions

The following functions are available.

Absolute Value
Returns the absolute value of the input.

Add

Computes the sum of the inputs.

Add Array Elements

Returns the sum of all the elementsiinmeric array.

LabVIEW Function and VI Reference Manual 4-4 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Compound Arithmetic
Performs arithmetic on two or more numeric, cluster, or Boolean inputs.

You select the operation (multiply, AND, or OR) by popping up on the function and selecting
Change Mode

You can invert the inputs or the output of this function by popping up on the individual
terminals, and selectirigvert. For Add, selecinvert to negate an input or the output. For
Multiply, selectinvert to use the reciprocal of an input or to produce the reciprocal of the
output. For AND or OR, seletivert to logically negate an input or the output.

Note You add inputs to this node by popping up on an input and selecting Add Input or
by placing the Positioning tool in the lower left or right corner of the node and
dragging it.

Decrement
Subtracts 1 from the input value.

Divide
Computes the quotient of the inputs.

Increment
Adds 1 to the input value.

© MNational Instruments Corporation 4-5 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Multiply

Returns the product of the inputs.

Multiply Array Elements

Returns the product of all the elementsiimeric array.

Negate

Negates the input value.

Quotient & Remainder
Computes the integer quotient and the remainder of the inputs.

If the integer input value gf is zero, the quotient is zero and the remainder is divideRdr
floating point inputs, ify is zero, the quotient is infinity and the remainder defaults to NaN.

Random Number (0-1)

Produces a double-precision floating-point number between 0 and 1 exclusive, or not
including 0 and 1. The distribution is uniform.

LabVIEW Function and VI Reference Manual 4-6 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Reciprocal
Divides 1 by the input value.

Round To +Infinity

Rounds the input to the next highest integer. For example, if the input is 3.1, the result is 4.
If the input is —3.1, the result is —3.

Round To —Infinity

Rounds the input to the next lowest integer. For example, if the input is 3.8, the result is 3.
If the input is —3.8, the result is —4.

Round To Nearest

Rounds the input to the nearest integer. If the value of the input is midway between two
integers (for example, 1.5 or 2.5), the function returns the nearest even integer (2).

Scale By Power Of 2

Multiplies one inputX) by 2 raised to the power of the other inpyt (f n is a floating-point
number, this function roundsprior to scaling (0.5 rounds to 0; 0.51 rounds to 1)xli§ an
integer, this function is the equivalent of an arithmetic shift.

© MNational Instruments Corporation 4-7 LabVIEW Function and VI Reference Manual

Chapter 4

Numeric Functions

Sign
Returns 1 if the input value is greater than O, returns 0 if the input value is equal to 0, and

returns —1 if the input value is less than 0. Other programming languages typically call this
function thesignum orsgn function.

Square Root

Computes the square root of the input valug.iff negative, the square root is NaN unless
X is complex.

Subtract
Computes the difference of the inputs.

User Definabhle Arithmetic Constants

You can define the following constants.

Numeric Constant

Use this constant to supply a constant numeric value to the block diagram. Set this value by
clicking in the constant with the Operating tool and typing a value. You can change the data
format and representation.

The value of the numeric constant cannot be changed while the VI executes. You can assign
a label to this constant.

Enumerated Constant

Enumerated values associate unsigned integers to strings. If you display a value from an
enumerated constant, the string is displayed, instead of the number associated with it. If you
need a set of strings that do not change, then use this constant. Set the value by clicking in the
constant with the Operating Tool. Set the string with the Labeling Tool and enter the string.
To add another item, click the constant and chéakkltem Before or Add Item After.

LabVIEW Function and VI Reference Manual 4-8 © MNational Instruments Corporation

Chapter 4 Numeric Functions

The value of the enumerated constant cannot be changed while the VI executes. You can
assign a label to this constant.

Ring Constant

Rings associate unsigned integers to strings. If you display a value from a ring constant, the

number is displayed, instead of the string associated with it. If you need a set of strings that

do not change, then use this constant. Set the value by clicking the constant with the Operating
tool. Set the string with the Labeling tool and enter the string. To add another item, pop up on

the constant and chooéed Item Before or Add Item After.

The value of the Ring constant cannot be changed while the VI executes. You can assign a
label to this constant.

Conversion Functions Descriptions

The following illustration shows the options that are available o€tmyersionsubpalette.

The following functions convert a numeric input into a specific representation:
« To Byte Integer

* To Double Precision Complex
* To Double Precision Float

« To Extended Complex

» To Extended Precision Float
e To Long Integer

e To Single Precision Complex
» To Single Precision Float

* To Unsigned Byte Integer

e To Unsigned Word Integer

* To Unsigned Long Integer

* To Word Integer

© MNational Instruments Corporation 4-9 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

When these functions convert a floating-point number to an integer, they round the output to
the nearest integer, or the nearest even integer if the fractional part is 0.5. If the result is out
of range for the integer, these functions return the minimum or maximum value for the integer
type. When these functions convert an integer to a smaller integer, they copy the
least-significant bits without checking for overflow. When they convert an integer to a larger
integer, they extend the sign of a signed integer and pad an unsigned integer with zeros.

Use caution when you convert numbers to smaller representations, particularly when
converting integers, because the G conversion routines do not check for overflow.

Boolean Array To Number

ConvertsBoolean array to an unsigned long integer by interpreting it as the two’s
complement representation of an integer, with tAeement of the array being the
least-significant bit.

Boolean To (0,1)

Converts a Boolean value to a word integer— 0 and 1 for the input values FALSE and TRUE,
respectively.

Booleancan be a scalar, an array, or a cluster of Boolean values, an array of clusters of
Boolean values, and so on. SeeRbiymorphism for Boolean Functiossction in Chapter 5,
Boolean Functions

Byte Array To String

Converts an array of unsigned bytes into a string.

LabVIEW Function and VI Reference Manual 4-10 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Cast Unit Bases
Changes the units associated with the input to the units associatedivi#md returns the
results at the output terminal. Use this function with extreme caution. Because the Cast Unit
Bases function works with bases, you must understand the conversion from an arbitrary unit
to its bases before you can use this function effectively. This function can change base units,
such as changing meters to grams.

Convert Unit

Converts a physical number (a number that has a unit) to a pure number (a number with no
units), or a pure number to a physical number.

You can edit the string inside the unit by highlighting the string with the Operating tool then
entering the text.

If the input is a pure number, the output receives the specified units. For example, given an
input of 13 and a unit specification of seconds(s), the resulting value is 13 seconds.

If the input is a physical number andit is a compatible unit, the output is the input measured
in the specified units. For example, if you specify 37 meters(m)y@ihds meters, the result
is 37 with no associated units.ulfit is feet (ft), the result is 121.36 with no associated units.

Number To Boolean Array
Converts an integerumber to a Boolean array of 8, 16, or 32 elements, wherefreednent
corresponds to the least-significant bit (LSB) of the two’s complement representation of the
integer.

String To Byte Array

Convertsstring into an array of unsigned bytes.

© MNational Instruments Corporation 4-11 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

To Byte Integer

Convertsnumber to an 8-bit integer in the range —128 to 127.

To Double Precision Complex
Convertsnumber to a double-precision complex number.

To Double Precision Float
Convertsnumber to a double-precision floating-point number.

To Extend Precision Complex
Convertsnumber to an extended-precision complex number.

To Extended Precision Float
Convertsnumber to an extended-precision floating-point number.

To Long Integer
Convertsnumber to a 32-bit integer in the range®20 21-1

LabVIEW Function and VI Reference Manual 4-12 © MNational Instruments Corporation

Chapter 4 Numeric Functions

To Single Precision Complex
Covertsnumber to a single-precision complex number.

To Single Precision Float
Convertsnumber to a single-precision floating-point number.

To Unsigned Byte Integer

Convertsnumber to an 8-bit unsigned integer in the range 0 to 255.

To Unsigned Long Integer
Convertsnumber to a 32-bit unsigned integer in the range 0%o-21.

To Unsigned Word Integer

Convertsnumber to a 16-bit unsigned integer in the range 0 to 65,535.

To Word Integer
Convertsnumber to a 16-bit integer in the range —32,768 to 32,767.

© MNational Instruments Corporation 4-13 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Trigonometric and Hyperbolic Functions Descriptions

The following illustration shows the options for fiigonometric subpalette.

Cosecant
Computes the cosecantxafwherex is in radians. Cosecant is the reciprocal of sine.

Cosine
Computes the cosine f wherex is in radians.

Cotangent
Computes the cotangentxafwherex is in radians. Cotangent is the reciprocal of tangent.

Hyperbolic Cosine
Computes the hyperbolic cosinexof

LabVIEW Function and VI Reference Manual 4-14 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Hyperbolic Sine

Computes the hyperbolic sinexf

Hyperbolic Tangent
Computes the hyperbolic tangentof

Inverse Cosine

Computes the arccosinesfn radians. I is not complex and is less than —1 or greater
than 1, the result is NaN.

Inverse Hyperholic Cosine

Computes the hyperbolic argcosinexoff x is not complex and is less than 1, the result
is NaN.

Inverse Hyperbolic Sine
Computes the hyperbolic argsinexof

© MNational Instruments Corporation 4-15 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Inverse Hyperbolic Tangent

Computes the hyperbolic argtangenkoff x is not complex and is less than —1 or greater
than 1, the result is NaN.

Inverse Sine

Computes the arcsine win radians. I is not complex and is less than —1 or greater than 1,
the result is NaN.

Inverse Tangent
Computes the arctangent>ofn radians (which can be betwegm2-andp/2).

Inverse Tangent (2 Input)
Computes the arctangentygk in radians. This function can compute the arctangent for
angles in any of the four quadrants of #agplane, whereas the Inverse Tangent function
computes the arctangent in only two quadrants.

Secant
Computes the secantxfwherex is in radians.

LabVIEW Function and VI Reference Manual 4-16 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Sinc
Computes the sine afdivided byx, wherex is in radians.
Sine
Computes the sine af wherex is in radians.
Sine & Cosine
Computes both the sine and cosing,ofvherex is in radians. Use this function only when
you need both results.
Tangent

Computes the tangent xf wherex is in radians.

Logarithmic Functions Descriptions
The following illustration shows the options for thegarithmic subpalette.

© MNational Instruments Corporation 4-17 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Exponential
Computes the value efraised to thex power.

Exponential (Arg) -1
Computes 1 less than the valueeodised to the power. Wherx is very small, this function
is more accurate than using the Exponential function then subtracting 1 from the output.

Logarithm Base 2

Computes the base-2 logarithmxoff x is 0,log2(x) is —¥. If x is not complex and is less
than 0Jlog2(x) is NaN.

Logarithm Base 10

Computes the base-10 logarithmxoff x is 0,log(x) is —¥. If x is not complex and is less
than 0,og(x) is NaN.

Logarithm Base X

Computes the basdogarithm ofy (x>0,y>0). Ify is 0, the output is¥. Whenx andy are
both not complex and is less than or equal to 0, wis less than 0, the output is NaN.

LabVIEW Function and VI Reference Manual 4-18 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Natural Logarithm

Computes the natural baségarithm ofx. If x is 0,In(x) is —¥. If x is not complex and is
less than On(x) is NaN.

Natural Logarithm (Arg +1)
Computes the natural logarithm af€ 1). Wherx is near 0, this function is more accurate
than adding 1 ta then using the Natural Logarithm functionxlis equal to —1, the result is
—¥ . If X is not complex and is less than —1, the result is NaN.

Power Of 2

Computes 2 raised to tlxepower.

Power Of 10

Computes 10 raised to tlgpower.

Power Of X
Computex raised to thg power. Ifx is not complex, it must be greater than zero unjéss
an integer value. Otherwise, the result is NaN.iff zerox”y is 1 for all values oX,
including zero.

© MNational Instruments Corporation 4-19 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Complex Function Descriptions

The following illustration displays the options available onGloenplex subpalette.

The functions Polar To Complex and Re/lm To Complex create complex numbers from two
values given in rectangular or polar notation. The functions Complex To Polar and Complex
To Re/lm break a complex number into its rectangular or polar components.

Complex Conjugate
Produces the complex conjugatexof iy.

Complex To Polar
Breaks a complex number into its polar components.

Complex To Re/Im
Breaks a complex number into its rectangular components.

Polar To Complex
Creates a complex number from two values in polar notation.

LabVIEW Function and VI Reference Manual 4-20 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Re/Im To Complex
Creates a complex number from two values in rectangular notation.

Additional Numeric Constants Descriptions

The following illustration shows the options available orAtiditional Numeric Constants
subpalette.

Additional User Definable Constants
You can define the following constants.

Listbox Symbol Ring Constant

This ring constant assigns symbols to items in a listbox control. Typically, you wire this
constant to the Iltem Symbols attribute.

Color Box Constant

Use this constant to supply a constant color value to the block diagram. Set this value by
clicking the constant with the Operating tool and choosing the desired color.

The value of the Color Box constant cannot be changed while the VI executes. You can assign
a label to this constant.

© MNational Instruments Corporation 4-21 LabVIEW Function and VI Reference Manual

Chapter 4 Numeric Functions

Error Ring Constant

This constant is a predefined ring of errors specific to memory usage, networking, printing,
and file 1/O. Errors related to DAQ, GPIB, VISA, and Serial VIs and functions are not options
in this ring.

Fixed Constants
The following constants are fixed.

Avogadro Constant (1/mol)
Returns the value 6.02828.

Base 10 Logarithm of e
Returns the value 0.43429448190325183.

Elementary Charge (c)
Returns the value 1.60218929.

Gravitational Constant (Nm2/kg?)
Returns the value 6.67&011.

Molar Gas Constant (J/mol K)
Returns the value 8.31441.

e
Returns the value 2.7182818284590&52

Natural Logarithm of Pi
Returns the value 1.14472988584940020.

Natural Logarithm of 2
Returns the value 0.69314718055994531.

Natural Logarithm of 10
Returns the value 2.30234095236904570.

Negative Infinity
Returns the value¥-

LabVIEW Function and VI Reference Manual 4-22 © MNational Instruments Corporation

Chapter 4 Numeric Functions

Pi
Returns the value 3.14159265358979320.

Pi divided by 2
Returns the value 1.57079632679489660.

Pi multiplied by 2
Returns the value 6.28318530717958650.

Planck’s Constant (J/Hz)
Returns the value 6.626234.

Positive Infinity
Returns the valu¥.

Reciprocal of e
Returns the value 0.36787944117144232.

Reciprocal of Pi
Returns the value 0.31830988618379067.

Rydberg Constant (/m)
Returns the value 1.097373¥77

Speed of Light in Vacuum (m/sec)
Returns the value 299,792,458.

© MNational Instruments Corporation 4-23 LabVIEW Function and VI Reference Manual

Boolean Functions

This chapter describes the functions that perform logical operations.

The following illustration shows thBooleanpalette, which you access by
selectingFunctions»Boolean

For examples of some of the Boolean functions egemples\
general\structs.llb

Polymorphism for Boolean Functions

The logical functions take either Boolean or numeric input data. If the input
is numeric, G performs a bit-wise operation. If the input is an integer, the

output has the same representation. If the input is a floating-point number,
G rounds it to a long integer, and the output is a long integer.

The logical functions work on arrays of numbers or Boolean values,

clusters of numbers or Boolean values, arrays of clusters of numbers or
Boolean values, and so on.

© MNational Instruments Corporation 5-1 LabVIEW Function and VI Reference Manual

Chapter 5 Boolean Functions

A formal and recursive definition of the allowable input type is as follows:

Logical type= Boolean scalar || numeric scalar || artagi¢al typ4q ||
cluster [ogical type$

except that complex numbers and arrays of arrays are not allowed.

Logical functions with two inputs can have the same input combinations as
the arithmetic functions. However, the logical functions have the further
restriction that the base operations can only be between two Boolean values
or two numbers. For example, you cannot have an AND between a Boolean
value and a number. See the example below for an illustration of some
combinations of Boolean values for the And function.

Boolean Function Descriptions

The following Boolean functions are available.

And
Computes the logical AND of the inputs.
Note This function performs bit-wise operations on humeric inputs.

LabVIEW Function and VI Reference Manual 5-2 © MNational Instruments Corporation

Chapter 5 Boolean Functions

And Array Elements
Returns TRUE if all the elementsBoolean array are true; otherwise it returns FALSE.

Boolean Array To Number

ConvertsBoolean arrayto an unsigned long integer by interpreting it as the two’s
complement representation of an integer with the Oth element of the array being the least
significant bit.

Boolean To (0,1)

Converts a Boolean value to a word integer — 0 and 1 for the input values FALSE and TRUE,
respectively.

Compound Arithmetic
Performs arithmetic on two or more numeric, cluster, or Boolean inputs.

You choose the operation (multiply, AND, or OR) by popping up on the function and selecting
Change Mode

You can invert the inputs or the output of this function by popping up on the individual
terminals and selectirigvert. For Add, selecinvert to negate an input or the output. For
Multiply, selectinvert to use the reciprocal of an input or to produce the reciprocal of the
output. For AND or OR, selettivert to logically negate an input or the output.

Note You add inputs to this node by popping up on an input and selechdd Input or
by placing the Positioning tool in the lower left or right corner of the node and
dragging it.

© MNational Instruments Corporation 5-3 LabVIEW Function and VI Reference Manual

Chapter 5 Boolean Functions

Exclusive Or
Computes the logical exclusive OR of the inputs.

Implies
Computes the logical OR gfand of the logical negation &f The function negatesthen
computes the logical OR gfand of the negated

Not

Computes the logical negation of the input.

Not And
Computes the logical NAND of the inputs.

Not Exclusive Or
Computes the logical negation of the logical exclusive OR of the inputs.

Not Or
Computes the logical NOR of the inputs.

LabVIEW Function and VI Reference Manual 5-4 © MNational Instruments Corporation

Chapter 5 Boolean Functions

Number To Boolean Array
Convertsnumber to a Boolean array of 8, 16, or 32 elements, wherefredément
corresponds to the least significant bit (LSB) of the two's complement representation of the
integer.

Or
Computes the logical OR of the inputs.

Or Array Elements
Returns FALSE if all the elementsBoolean array are false; otherwise it returns TRUE.

Boolean Constant

Use this function to supply a constant TRUE/FALSE value to the block diagram. Set this
value by clicking th@ or F portion of the constant with the Operating tool. This value cannot
be changed while the VI executes. You can assign a label to this constant.

© MNational Instruments Corporation 5-5 LabVIEW Function and VI Reference Manual

String Functions

This chapter describes the string functions, including those that convert
strings to numbers and numbers to strings.

The following illustration shows thgtring palette, which you access by
selectingFunctions»String.

Overview of Polymorphism for String Functions

This section provides descriptions of polymorphism for String functions,
Additional String to Number functions, and String Conversion functions.

Polymorphism for String Functions

String Length, To Upper Case, To Lower Case, Reverse String, and Rotate
String accept strings, clusters, arrays of strings, and arrays of clusters.
To Upper Case and To Lower Case also accept numbers, clusters of

© MNational Instruments Corporation 6-1 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

numbers, and arrays of numbers, interpreting them as ASCII codes for
characters (refer to the Appendix@R1B Multiline Interface Messagésr

the numbers that correspond to each character). Width and precision inputs
must be scalar.

Polymorphism for Additional String to Number Functions

To Decimal, To Hex, To Octal, To Engineering, To Fractional, and

To Exponential accept clusters and arrays of numbers and produce clusters
and arrays of strings. From Decimal, From Hex, From Octal, and From
Exponential/Fract/Sci accept clusters and arrays of strings and produce
clusters and arrays of numbers. Width and precision inputs must be scalar.

Polymorphism for String Conversion Functions

The Path To String and String To Path functions are polymorphic. They
work on scalar values, arrays of scalars, clusters of scalars, arrays of
clusters of scalars, and so on. The output has the same composition as the
input but with the new type.

Format Strings Overview

Many G functions acceptfarmat string input, which controls the

behavior of the function. A format string is composed of one or more
format specifiers, which determine what action to take to process a given
parameter. The Format Into String and Scan From String functions can use
multiple format specifiers in the format string, one for each resizable input
or output to the function. Characters in the string that are not part of the
format specifier are copied verbatim to the output string (in the case of
Format Into String) or are matched exactly in the input string (in the case
of Scan From String), with the exception of special escape codes. You can
use these codes to insert nondisplayable characters, the backslash, and
percent characters within any format string. These codes are similar to
those used in the C programming language.

Table 6-1 displays the special escape codes. A code does not exist for the
platform-dependent end-of-line (EOL) character. If you need to append
one, use the End-of-Line constant from $teng palette.

LabVIEW Function and VI Reference Manual 6-2 © MNational Instruments Corporation

Chapter 6 String Functions

Table 6-1. Special Escape Codes

Code Meaning
\r Carriage Return
\t Tab
\b Backspace
\n Newline
\f Form Feed
\s space
\xx character with hexadecimal ASCII coxle
(using 0 through 9 and upper case A through F)
\\ \
%% %

Notice that for the Scan From String and Format & Strip functions, a space
in the format string matches any amount of whitespace (spaces, tabs, and
form feeds) in the input string.

The Format & Append, Format & Strip, Array To Spreadsheet String, and
Spreadsheet String To Array functions use only one format specifier in the
format string because these functions have only one input that can be
converted. Any extraneous specifiers inserted into these functions are
treated as literal strings with no special meaning.

For functions that produce a string as output, such as Format Into String,
Format & Append, and Array To Spreadsheet String, a format specifier has
the following syntax. Double bracket§ () enclose optional elements.

%[-][+]["[0][Width][.Precision][{unit}]Conversion Code

For functions that scan a string, such as Scan From String, Format & Strip,
and Spreadsheet String to Array, a format specifier has the following,
simplified syntax:

%[Width]Conversion Code

© MNational Instruments Corporation 6-3 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Table 6-2 displays the string syntax available.

Table 6-2. String Syntax

Syntax Element

Description

%

Begins the formatting specification.

— (optional)

Causes the parameter to be left justified rathg
than right justified within its width.

+ (optional)

For numeric parameters, includes the sign even

when the number is positive.

~ (optional)

When used with the org conversion codes, use
engineering notation (exponent is always a
multiple of 3).

0 (optional)

Pads any excess space to the left of a numeri
parameter with Os rather than spaces.

Width (optional)

When scanning, specifies an exact field width
use. G scans only the specified number of
characters when processing the parameter.

When formatting, specifies the minimum
character field width of the output. This width
not a maximum width; G uses as many charac
as necessary to format the parameter without
truncating it. G pads the field to the left or righ
of the parameter with spaces, depending on
justification. IfWidth is missing or zero, the
output is only as long as necessary to contain
converted input parameter.

=

%)

ers

—

the

Separatesvidth from Precision

Precision
(optional)

For floating-point parameters, specifies the
number of digits to the right of the decimal poirn
If width is not followed by a period, G inserts
fractional part of six digits. Mvidth is followed
by a period, an@recision is missing 00,

G does not insert a fractional part.

For string parameters, specifies the maximumi
width of the field. G truncates strings longer th
this length.

—

LabVIEW Function and VI Reference Manual

6-4

© National Instruments Corporation

Chapter 6 String Functions

Table 6-2. String Syntax (Continued)

Syntax Element

Description

{unit} (optional)

Overrides the choice of unit of a VI when
converting a physical quantity (a value with ar
associated unit). Must be a valid unit.

Conversion Codes

Single character that specifies how to scan or
format perimeter, as follows:

decimal integer

hex integer

octal integer

binary integer

floating-point number with

fractional format

- T O X Qo

e floating-point number with
scientific notation

g floating-point number using format
if the exponential is less than —4 or greater
than Precision, dr format otherwise

s string

An | (lowercase L) preceding the conversion

Localization Codes

Codes used as format separators for localizat
as follows:

%,; comma decimal separator

%.; period decimal separator

%; system default separator

The conversion codes used in G are similar to those used in the

C programming language. However, G uses conversion codes to determine

the textual format of the parameter, not the datatype of the parameter.

You can use thé, x, 0, b, f, e, andg conversion codes to process any

numeric G data type,

For complex numbers, you can use the format specifier to process both the

including complex numbers and enums.

real and imaginary parts as a single parameter.

You can use the conversion code to process string or path parameters or

enums.

© MNational Instruments Corporation

6-5

LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Notice that you can use either a numeric or string conversion code with an
enum, depending on whether you want the numeric value or symbolic
(string) value of the enum.

For compatibility with C, G treatswaconversion code (unsigned integer)
the same as@ and ignores ah or L preceding the conversion code.
However, in G, the datatype of the parameter determines the size of an
integer and whether the integer is signed or unsigned.

For examples of format string usage, see the Format Into String and Scan
From String function descriptions later in this chapter.

String Function Descriptions

The following string functions are available.

Array To Spreadsheet String
Converts ararray of any dimension tepreadsheet stringspreadsheet strings a table in
string form, containing delimiter-separated column elements, a platform-dependent EOL
character separating rows, and, for arrays of three or more dimensions, separated pages.

Concatenate Strings

Concatenates input strings and one-dimensional arrays of strings into a single, output string.
For array inputs, this function concatenates each element of the array.

Format Into String
Converts input arguments intesulting string, whose format is determined fiyrmat
string. You increase the number of parameters by popping up on the node and sakitting
Parameter or by placing the Positioning tool over the lower left or right corner of the node,
then stretching it until you reach the desired number of arguments.

LabVIEW Function and VI Reference Manual 6-6 © MNational Instruments Corporation

Chapter 6 String Functions

Table 6-3 shows the errors that can appearrior out by the Format Into String function.

Table 6-3. Possible Format into String Errors

Error Code Description

Format specifier typel 81 The datatype of a format specifier in the format string
mismatch does not match the datatype of the corresponding
input argument.

Unknown format 82 The format string contains an invalid format specifier.

specifier

Too few format 83 There are more arguments than format specifiers.

specifiers

Too many format 84 There are more format specifiers than arguments,

specifiers

Note If an error occurs, the source component of the error out cluster contains a string

of the form“Format Into String (arg n),” where n is the first argument

for which the error occurred.

If you wire a block diagram constant stringféemat string, G checks for errors iformat
string at compile time. You must correct these errors before you can run the VI. In this case,
Nno errors can occur at run time.

Format Specifier Examples

In Table 6-4, the underline character (_) represent spaces in the output. The last three entries
are examples of physical quantity inputs.

Table 6-4. Format Specifiers

Format String Argument(s) Resulting String
score = %2d%% 87 score = 87%
level =\n%—7.2e V 0.03642 level =
3.64e-2V
Name: %s, %s. Smith John Name: Smith, John.

© MNational Instruments Corporation 6-7 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Table 6-4. Format Specifiers (Continued)

Format String Argument(s) Resulting String
Temp: %05.1f %s 96.793 Fahrenheit Temp: 096.8 Fahrenheit
String: %10.5s. Hello, World String:____ Hello.

%5.3f 5.67 N 5.670 N
%5.3{mN}f 567N 5670.000 mN
%5.3{kg})f 5.67 N 5.670 ?kg

The last table entry shows the output when the unit in the format specifier is in conflict with
the input unit.

Index & Append

Selects a string specified mdex from string array and appends that stringgtring.

Index & Strip

Compares each string gtring array with the beginning oétring until there is a match.

Match Pattern

Searches foregular expressionin string beginning abffset, and if it finds a match, splits
string into three substrings.

LabVIEW Function and VI Reference Manual 6-8 © MNational Instruments Corporation

Chapter 6 String Functions

Table 6-5. Special Characters for Match Pattern

Special Character

Interpreted by the Match Pattern Function as...

Matches any character.

Matches zero or one instances of the expression preceding

Cancels the interpretation of special characters (for example,
\? matches a question mark). You can also use the following
constructions for the space and non-displayable characters:
\b backspace

\f form feed

\n newline

\s space

\r carriage return

\ xx any character, where s the hex code using O through 9
and upper case A through F

\t tab

If ~ is the first character oégular expression it anchors the match
to theoffsetin string. The match fails unlegggular expression
matches that portion atring that begins with the character at
offset If 2 is not the first character, it is treated as a regular
character.

Encloses alternates. For examfidéc] matches, b, orc.
The following character has special significance when used wi
the brackets:

— (dash) Indicates a range when used between digits, or lowe
or uppercase letters (for example, [0-5],[a—g], or [L—Q])

The following characters have significance only when they are
first character within the brackets:

~ Excludes the set of characters, including nondisplayable
characters. [~0—9] matches any character other than 0 throug

~ Excludes the set with respect to all the displayable characte
(and the space characters). [*0—9] gives the space characters
displayable characters except 0 through 9.

thin

case

the

h 9.

(S
and all

© MNational Instruments Corporation

6-9 LabVIEW Function and VI Reference Manual

Chapter 6

LabVIEW Function and VI Reference Manual

String Functions

Table 6-5. Special Characters for Match Pattern (Continued)

Special Character

Interpreted by the Match Pattern Function as...

+

match.

Matches the longest number of instances of the expression
precedingt+; there must be at least one instance to constitute a

* Matches the longest number of instances of the expression
preceding in regular expression including zero instances.

If $ is the last character odgular expression it anchors the
match to the last element siring. The match fails unless
regular expressionmatches up to and including the last charag
in the string. If$ is not last, it is treated as a regular character.

Table 6-6 shows examples of the Strings for the Match Pattern functions.

Table 6-6. Strings for the Match Pattern Examples

Characters to Be Matched

Regular Expression

VOLTS

VOLTS

All uppercase and lowercase versions 0
volts, that is, VOLTS, Volts, volts, and
soon

[VWI][Oo][LI[Tt][Ss]

A space, a plus sign, or a minus sign

[+-]

A sequence of one or more digits

[0-9]+

Zero or more Spaces

\s* or* (thatis, a space followed by an
asterisk)

One or more Spaces, Tabs, New Lines,
Carriage Returns

[MAr\n\s]+

One or more characters other than digit

[-0-9]+

The word Level only if it begins at the
offset position in the string

Level

The word Volts only if it appears at the er]
of the string

Volts$

The longest string within parentheses

("

6-10

© National Instruments Corporation

ter

Chapter 6 String Functions

Table 6-6. Strings for the Match Pattern Examples (Continued)

Characters to Be Matched Regular Expression

The longest string within parentheses by ([~()I*)
not containing any parentheses within it

The charactef [[]

Pick Line & Append

Chooses a line frommulti-line string and appends that line $tring.

Reverse String
Produces a string whose characters are in reverse order of tistsegn

Rotate String

Places the first character sifing in the last position dirst char last, shifting the other
characters forward one position. For example, the siting becomescda .

Scan From String
Scans the input string and converts the string accordifayr@at string. You increase the
number of parameters by popping up on the node and selAdiihgarameter or by placing
the Positioning tool over the lower left or right corner of the node, then stretching it until you
reach the desired number of parameters.

Use Scan From String when you know the exact format of the input string.

© MNational Instruments Corporation 6-11 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Table 6-7 lists the Scan from String errors.

Table 6-7. Scan from String Errors

Error Code Description

Format specifier type mismatch 81 The datatype of a format specifie
in the format string does not match
the datatype of the corresponding

output.

Unknown format specifier 82 The format string contains an

invalid format specifier.

Too few format specifiers 83 There are more arguments than

format specifiers.

Too many format specifiers 84 There are more format specifiers

than arguments.

Scan failed 85 Scan From String was unable to
convert the input string into the
datatype indicated by the format

specifier.

Note If an error occurs, the source component of teeror out cluster contains a string
of the form“Scan From String (arg n),” wheren is the first argument for

which the error occurred.

If you wire a block diagram constant string to format string, G checks for errors in format
string at compile time. You must correct these errors before you can run the VI. In this case,

only the Scan-failed error can occur at run time.

Table 6-8 lists Scan From String examples.

Table 6-8. Scan from String Examples

Format Remaining
Input String String Default(s) Output(s) String
abc xyz %s — abc 00
12.3+56i 7200 %s%f%2d — Xyz
0&0i (CDB) 12.3+56i
— 72
Q+1.27E-3 tall QY%f t — 1.27E-3 ail
LabVIEW Function and VI Reference Manual 6-12 © MNational Instruments Corporation

Chapter 6 String Functions
Table 6-8. Scan from String Examples (Continued)
Format Remaining
Input String String Default(s) Output(s) String
0123456789 %3d%3d — 12 6789
345
X:9.860 Z:3.450 | X:9%fY:%f 100 (132) 10 Z: 3450
100.0 (DBL) 100.0
set49.4.2 set%d — 49 4.2

Scan String for Tokens

Scandgnput string, starting abffset, and returns the next token found.

A tokenis a substring ahput string, which is surrounded tgelimiters, or which matches
an element iperators. Typically, tokens represent individual keywords, numeric values,
or operators found when parsing a configuration file or other text-based data format.

This function scansput string, starting abffset, returning the next token found.

See the online reference for more information about the Scan String for Tokens function and

parameters.

Select & Append

Selects eithefialse stringor true string according to a Booleaselectorand appends that

string tostring.

© MNational Instruments Corporation

6-13

LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

Select & Strip
Examines the beginning sfring to see whether it match&se string or false string This
function returns a Boolean TRUE or FALSE valusétection depending on whethstring
matchegrue string or false string.

Split String
Splits the string at offset or searches for the first occurrenseas€hchar in string,
beginning abffset, and splits the string at that point.

Spreadsheet String To Array
Convertsspreadsheet stringo a numeriarray of the dimension and representation of
array type. This function works for arrays of strings as well as arrays of numbers.

String Length

Returns inength the number of characters (bytesyiring.

String Subset

Returnssubstring of the originaktring beginning abffsetand containingength number of
characters.

LabVIEW Function and VI Reference Manual 6-14 © MNational Instruments Corporation

Chapter 6 String Functions

To Lower Case
Converts all alphabetic charactersiring to lowercase characters. This function does not

affect non-alphabetic characters.

To Upper Case

Converts all alphabetic charactersstring to uppercase characters. This function does not
affect non-alphabetic characters.

Additional String To Number Function Descriptions
For general information about Additional String to Number functions?sgamorphism for
Additional String to Number Functionsarlier in this chapter.

The following illustration displays the options available onAHditional String to Number
Functions subpalette.

Format & Append

Convertsmwumber into a regular string according to the format specifiédrimat string, and
appends this tetring.

© MNational Instruments Corporation 6-15 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

= Note The Format Into String function has the same functionality as Format & Append
but can use multiple inputs, so you can convert information simultaneously.

Consider using Format Into String instead of this function to simplify your block
diagram.

Format & Strip

Looks forformat string at the beginning dftring, formats any number in this string portion
according to the conversion codegormat string, and returns the converted number in
number and the remainder sfring after the match ioutput string.

From Decimal

Converts the numeric characterstring, starting at offset, to a decimal integer and returns
it in number.

From Exponential/Fract/Eng

Interprets the characters 0 through 9, plus, minus, e, E, and the decimal point (usually period)
in string starting aoffsetas a floating-point number in engineering notation, or exponential
or fractional format and returns it mumber.

7 & Note If you wire the characters Inf or NaN to string, this function returns the G values
Inf and NaN, respectively.

From Hexadecimal

Interprets the characters 0 through 9, A through F, and a throughrihig starting abffset
as a hex integer and returns inimmber.

LabVIEW Function and VI Reference Manual 6-16 © MNational Instruments Corporation

Chapter 6 String Functions

From Octal
Interprets the characters O through 8titing starting abffsetas an octal integer and returns
itin number. This function also returns the indexsining of the first character following the
number.

To Decimal
Convertsnumber to a string of decimal digitwidth characters wide, or wider if necessary.

To Engineering
Convertsnumber to an engineering format, floating-point striwgth characters wide, or

wider if necessary. Engineering format is similar to E format, except the exponent is a
multiple of three (-3, 0, 3, 6).

To Exponential

Convertsnumber to an E-format (exponential notation), floating-point strivigth
characters wide, or wider if necessary.

To Fractional

Convertsnumber to an F-format (fractional notation), floating-point strimiglth characters
wide, or wider if necessary.

© MNational Instruments Corporation 6-17 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

To Hexadecimal
Convertsnumber to a string of hexadecimal digitedth characters wide, or wider if
necessary.

To Octal

Convertsnumber to a string of octal digiteidth characters wide, or wider if necessary.

String Conversion Function Descriptions

For general information about String Conversion functionsOsegview of Polymorphism
for String Function®arlier in this chapter.

The following illustration shows th®tring Conversion subpalette.

Array Of Strings To Path accepts one-dimensional (1D) arrays of strings, Path To Array Of
Strings accepts paths, Path To String accepts paths, and String To Path accepts strings.

LabVIEW Function and VI Reference Manual 6-18 © MNational Instruments Corporation

Chapter 6 String Functions

Array Of Strings To Path

Convertsarray of strings into a relative or absolufgath.

If you have an empty string in the array, the directory location before the empty string is
deleted in the path output. Think of this change as moving up a level in directory hierarchy.

Byte Array To String

Converts an array of unsigned bytes into a string.

Path To Array Of Strings

Convertspath into array of strings and indicates whether the pathiésative.

Path To String

Convertspath into a string describing a path in the standard format of the platform.

Refnum To Path

Returns the path associated with the speciididum.

String To Byte Array

Convertsstring into an array of unsigned bytes.

© MNational Instruments Corporation 6-19 LabVIEW Function and VI Reference Manual

Chapter 6 String Functions

String To Path

Converts a string, describing a path in the standard format for the current platform, to a path.

String Fixed Constants

The following String Fixed Constants are available.

String Constant

Use this constant to supply a constant ASCII string to the block diagram. Set this string by
clicking the constant with the Operating tool and typing the value. You can change the display
mode so you can see non-displayable characters or the hex equivalent to the characters.
You also can set the constant in password display mode so asterisks are displayed when you
type characters.

The value of the string constant cannot be changed while the VI executes. You can assign a
label to this constant.

Carriage Return
Consists of a constant string containing the ASCII CR value.

Empty String

Consists of a constant string that is empty. Length is zero.

End of Line

Consists of a constant string containing the platform-dependent, end-of-line value. For
Windows, the value is CRLF; for Macintosh, the value is CR; and for UNIX, the value is LF.

Line Feed
Consists of a constant string containing the ASCII LF value.

Tab

Consists of a constant string containing the ASCII HT (horizontal tab) value.

LabVIEW Function and VI Reference Manual 6-20 © MNational Instruments Corporation

Array Functions

This chapter describes the functions for array operations.

The following illustration shows th&rray palette, which you access by
selectingFunctions»Array.

© MNational Instruments Corporation 7-1 LabVIEW Function and VI Reference Manual

Chapter 7 Array Functions

Some of the array functions also are available fronAthey Tools palette
of most terminal or wire pop-up menus. The illustration below shows this
pop-up menu.

If you select functions from this palette, they appear with the correct
number of terminals to wire to the object on which you popped up.

For examples of array functions, se@mples\general\arrays.llb

Array Function Overview

Some of the array functions have a variable number of terminals.

When you drop a new function of this kind, it appears on the block diagram
with only one or two terminals. You can add and remove terminals by using
Add Element Input or Add Array Input andRemove Inputpop-up
menucommands (the actual names depend on the function) or by resizing
the node vertically from any corner. If you want to add terminals by
popping up, you must place your pointer on the input terminals to access
the pop-up menu.

You can shrink the node if doing so does not delete wired terminals.

The Add Element Input or Add Array Input command inserts a terminal
directly after the one on which you popped up. Rieenove Input

command removes the terminal on which you popped up, even if it is wired.

LabVIEW Function and VI Reference Manual 7-2 © MNational Instruments Corporation

Chapter 7 Array Functions

The following illustration shows the two ways to add more terminals to the
Build Array function.

Out-of-Range Index Values

Attempting to index an array beyond its bounds results in a default value
determined by the array element type.

Polymorphism for Array Functions

Most of the array functions accaptlimensional arrays of any type.
However, the wiring diagrams in the function descriptions show numeric
arrays as the default data type.

Array Function Descriptions

The following Array functions are available.

Array Max & Min

Searches for the first maximum and minimum values in a numeey. This function also
returns the index or indices where it finds the maximum and minimum values.

© MNational Instruments Corporation 7-3 LabVIEW Function and VI Reference Manual

Chapter 7

Array Functions

If a numericarray has one dimension, timeax indexandmin index outputs are scalar
integers. If a numeriarray has more than one dimension, these outputs are 1D arrays that
contain the indices of the maximum and minimum values.

The function compares each datatype according to the rules referred to in Chapter 9,
Comparison Functions

Array Size

Returns the number of elements in each dimensianray.

Array Subset

Returns a portion drray starting atndex and containingength elements.

Array To Cluster

Converts a 1D array to a cluster of elements of the same type as the array elements. Pop up
on the node to set the number of elements in the cluster. The default is nine. The maximum

cluster size for this function is 256.

For more information about clusters, see Chapt&ster Functions

Build Array

Appends any number of array or element inputs in top-to-bottom order to anegtavith
appended element

To change an element input to an array input, pop up on the input an@éelege to Array.
In general, to build an array ofdimensions, eacérray input must be of the same
dimensionn, and eaclelementinput must have— 1 dimensions. To create a 1D array,

LabVIEW Function and VI Reference Manual 7-4 © MNational Instruments Corporation

Chapter 7 Array Functions

connect scalar values to the element inputs and 1D arrays to the array inputs. To build a
2D array, connect 1D arrays to element inputs and 2D arrays to the array inputs.

Cluster To Array
Converts a cluster of identically typed components to a 1D array of elements of the same type.

For more information about clusters, see Chapt@l@ter Functions

Decimate 1D Array
Divides the elements @frray into the output arrays.

Index Array

Returns thelementof array atindex. If array is multidimensional, you must add additional
index terminals for each dimension afray.

In addition to extracting an element of the array, you can slice out a higher-dimensional
component by disabling one or more of the index terminals.

Initialize Array
Creates an-dimensional array in which every element is initialized to the valaéeofient

© MNational Instruments Corporation 7-5 LabVIEW Function and VI Reference Manual

Chapter 7 Array Functions

Interleave 1D Arrays
Interleaves corresponding elements from the input arrays into a single output array.

Interpolate 1D Array
Uses the integer part &fictional index or x to index the array and the fractional part of
fractional index or x to linearly interpolate between the values of the indexed element and
its adjacent element.

Replace Array Element
Replaces the elementémray atindex with thenew element

Reshape Array
Changes the dimension of an array according to the valliemehsion size The function is
resizablem-dim array has one dimension for eadimension sizeinput. For example, you
can use this function to change a 1D array into a 2D array or vice versa. You also can use it
to increase and decrease the size of a 1D array.

Reverse 1D Array
Reverses the order of the elementariray.

LabVIEW Function and VI Reference Manual 7-6 © MNational Instruments Corporation

Chapter 7 Array Functions

Rotate 1D Array

Rotates the elements afray by the number of places and in the direction indicatad by

Search 1D Array

Searches foelementin 1D array starting astart index.

Sort 1D Array

Returns a sorted version afray with the elements arranged in ascending order. The rules
for comparing each datatype are described in Chap@o@parison Functions

Split 1D Array

Dividesarray atindex and returns the two portions.

Threshold 1D Array

Compareghreshold y to the values imrray of numbers or points starting atstart index
until it finds a pair of consecutive elements such thiashold y is greater than the value of
the first element and less than or equal to the value of the second element.

The function then calculates the fractional distance between the first valtteesiwld y
and returns the fractional index at whibtineshold y would be placed withiarray of
numbers or pointsusing linear interpolation.

© MNational Instruments Corporation 7-7 LabVIEW Function and VI Reference Manual

Chapter 7 Array Functions

For example, supposaray of numbers or pointsis an array of four numbers [4, 5, 5, 6],

start index is 0, andhreshold y is 5. Thefractional index or x is 1, corresponding to the

index of the first value of 5 the function finds. Suppose the array elements are 6, 5, 5, 7, 6, 6,
thestart index is 0, and thé¢hreshold yis 6 or less. The output is Otlfreshold y is greater

than 7 for the same set of numbers, the output istBrd§hold y is 14.2 start index is 5,

and the values in the array starting at index 5 are 9.1, 10.3, 12.9, antthiEsiBold y falls
between elements 7 and 8 because 14.2 is midway between 12.9 and 15.5. The value for
fractional index or x is 7.5, that is, halfway between 7 and 8.

If the array input consists of an array of points where each point is a clugtendy
coordinates, the output is the interpolatadlue corresponding to the interpolated position
of threshold y rather than the fractional index of the array. If the interpolated position of
threshold y is midway between indices 4 and 5 of the array withlues of —2.5 and O
respectively, the output is not an index value of 4.5 as it would be for a numeric array, but
rather arx value of —1.25.

Transpose 2D Array

Rearranges the element@f array such thaD array[i,j] becomesransposed arrayj,i].

LabVIEW Function and VI Reference Manual 7-8 © MNational Instruments Corporation

Cluster Functions

This chapter describes the functions for cluster operations.

The following illustration shows th€luster palette that you access by
selectingFunctions»Cluster.

© MNational Instruments Corporation 8-1 LabVIEW Function and VI Reference Manual

Chapter 8 Cluster Functions

Some of the cluster functions also are available fronCthster Tools
palette of most terminal or wire pop-up menus. The following illustration
shows the pop-up menu.

If you select the functions from this palette, they appear with the correct
number of terminals to wire to the object on which you popped up.

Cluster Function Overview

Some of the cluster functions have a variable number of terminals.

When you drop a new function of this kind, it appears on the block diagram
with only one or two terminals. You can add and remove terminals by using
theAdd Input or Remove Inputpop-up menu options or by resizing the
node using the Positioning tool. If you want to add terminals by popping
up, place your cursor on the input terminal to access the pop-up menu.

You can shrink the node if doing so does not delete wired terminals.
TheAdd Input option inserts a terminal directly after the one on which
you popped up. ThRemove Inputoption removes the terminal on which
you popped up, even if it is wired.

LabVIEW Function and VI Reference Manual 8-2 © National Instruments Corporation

Chapter 8 Cluster Functions

The following illustration shows the two ways to add more terminals to the
Bundle function.

Polymorphism for Cluster Functions

The Bundle and Unbundle functions do not show the datatype for their
individual input or output terminals until you wire objects to these
terminals. When you wire them, these terminals look similar to the
datatypes of the corresponding front panel control or indicator terminals.

Setting the Order of Cluster Elements

Cluster elements have a logical order that is unrelated to their positions
within the shell. The first object you insert in the cluster is element 0,
the second is 1, and so on. If you delete an element, the order adjusts
automatically. You can change the current order by selectingltiséer
Order... option from the cluster pop-up menu.

Clicking an element with the cluster order cursor sets the place of the
element in the cluster order to the number displayed inside the Tools
palette. You change this order by typing a new number into that field.
When the order is as you want it, click t&eter button to set it and exit
the cluster order edit mode. Click thebutton to revert to the old order.

The cluster order determines the order in which the elements appear as
terminals on the Bundle and Unbundle functions in the block diagram.

The Bundle By Name and Unbundle By Name functions give you more
flexible access to data in clusters. With these functions, you can access

© MNational Instruments Corporation 8-3 LabVIEW Function and VI Reference Manual

Chapter 8 Cluster Functions

specific elements in clusters by name and access only the elements you
want to access. Because these functions reference components by name and
not by cluster position, you can change the data structure of a cluster
without breaking wires, as long as you do not change the name of or remove
the component you reference on the block diagram.

Cluster Function Descriptions

The following cluster functions are available.

Array To Cluster
Converts a 1D array to a cluster of elements of the same type as the array elements. Pop up
on the node or resize it to set the number of elements in the cluster. The default is nine.
The maximum cluster size for this function is 256.

Build Cluster Array
Assembles all theomponentinputs in top-down ordeénto an array of clusters of that
component If the input is four, single-precision, floating-point components, the output is a
four-element array of clusters containing one single-precision, floating-point number.
Element 0 of the array has the value of the top component, and so on.

Bundle

Assembles all the individual input components into a single cluster.

LabVIEW Function and VI Reference Manual 8-4 © MNational Instruments Corporation

Chapter 8 Cluster Functions

Bundle By Name
Replaces components in an existing cluster. After you wire the node to a cluster, you pop up
on the name terminals to choose from the list of components of the cluster.

You must always wire theluster input. If you are creating a cluster for a cluster indicator,
you can wire a local variable of that indicator to¢hester input. If you are creating a cluster

for a cluster control of a subVI, you can place a copy of that control (possibly hidden) on the
front panel of the VI and wire the control to ttlaster input.

Cluster To Array
Converts a cluster of identically typed components to a 1D array of elements of the same type.

Index & Bundle Cluster Array
Indexes a set of arrays and creates a cluster array in whii¢heteenent contains the
element of each input array.

This function is equivalent to the following block diagram and is useful for converting a
cluster of arrays to an array of clusters.

© MNational Instruments Corporation 8-5 LabVIEW Function and VI Reference Manual

Chapter 8 Cluster Functions

Unbundle

Disassembles a cluster into its individual components.

Unbundle By Name
Returns the cluster elements whose names you specify. You select the element you want to
access by popping up on the name output terminals and selecting a name from the list of
elements in the cluster.

LabVIEW Function and VI Reference Manual 8-6 © MNational Instruments Corporation

Comparison Functions

This chapter describes the functions that perform comparisons or
conditional tests.

The following illustration shows theéomparison palette that you access
by selecting-unctions»Comparison

Comparison Function Overview

This section introduces the Comparison functions.

Boolean Comparison

The Comparison functions treat the Boolean value TRUE as greater than
the Boolean value FALSE.

© MNational Instruments Corporation 9-1 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

String Comparison

These functions compare strings according to the numerical equivalent of
the ASCII characters. Therefoee(with a decimal value of 97) is greater
thanA (65), which is greater than the numerg#8), which is greater than

the space characted?(). These functions compare characters one by one
from the beginning of the string until an inequality occurs, at which time
the comparison ends. For example, LabVIEW compares the sitiog)s
andabef until it findsc, which has a value less than the value.of

The presence of a character is greater than the absence of one. Therefore,
the stringabed is greater thaabc because the first string is longer.

The functions that test the category of a string character (for example, the
Decimal Digit? and Printable? functions) evaluate only the first character
of the string.

Numeric Comparison

Most of the Comparison functions test one input or compare two inputs
and return a Boolean value. The functions convert numbers to the same
representation before comparing them. Comparisons with a value of
not a number (NaN) return a value that indicates inequality.

Cluster Comparison

The Comparison functions compare clusters the same way they compare
strings, one element at a time starting with tHee@ment until an

inequality occurs. Clusters must have the same number of elements, of
the same type, and in the same order if you want to compare them.

Comparison Modes

Some of the Comparison functions have two modes for comparing arrays
or clusters. In th€ompare Aggregatesnode, if you compare two arrays

or clusters, the function returns a single value. Itbmpare Elements
mode, the function compares the elements individually. Then returns an
array or cluster of Boolean values. The following illustration shows the
two modes.

LabVIEW Function and VI Reference Manual 9-2 © MNational Instruments Corporation

Chapter 9 Comparison Functions

You change the comparison mode by seledioghpare Elementsor
Compare Aggregatesn the pop-up menu for the node, as shown in the
following illustrations.

When you compare two arrays of unequal lengths iiCtirapare
Elementsmode, LabVIEW ignores each element in the larger array whose
index is greater than the index of the last element in the smaller array.

© MNational Instruments Corporation 9-3 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

When you use th€ompare Aggregatesnode to compare two arrays, the
following occurs: (1) LabVIEW searches for the first set of corresponding
elements in the two inputs that differ, and uses those to determine the
results of the comparison. (2) If all elements are identical except that one
has more elements, LabVIEW considers the longer array to be greater than
the shorter array. (3) If no elements of the two arrays differ and the arrays
have the same length, the arrays are equal. Therefore, LabVIEW considers
the array [1, 2, 3] to be greater than the array [1, 2] and returns a single
Boolean value in th€ompare Aggregatesmnode.

Arrays must have the same number of dimensions (for example, both
two-dimensional), and, for the comparison between multidimensional
arrays to make sense, each dimension must have the same size.

For clusters using theompare Aggregatesnode, LabVIEW compares
using cluster order. The two clusters LabVIEW compares must have the
same number of elements.

The Comparison functions that do not haveGloenpare Aggregates

or Compare Elementsmodes compare arrays in the same manner as
strings—one element at a time starting with tiee@ment until an
inequality occurs.

Character Comparison

You can use the functions that compare characters to determine the type of
a character. The following functions are character-comparison functions.

« Decimal Digit?

e Hex Digit?
e Lexical Class
e Octal Digit?

e Printable?
¢ White Space?

If the input is a string, the functions test the first character. If the inputis an
empty string, the result is FALSE. If the input is a number, the functions
interpret it as a code for an ASCII character.

See Appendix CGPIB Multiline Interface Messaggefor the numbers that
correspond to each ASCII character.

LabVIEW Function and VI Reference Manual 9-4 © MNational Instruments Corporation

Chapter 9 Comparison Functions

Polymorphism for Comparison Functions

The functions Equal?, Not Equal?, and Select take inputs of any type, as
long as the inputs are the same type.

The functions Greater or Equal?, Less or Equal?, Less?, Greater?,

Max & Min, and In Range? take inputs of any type except complex, path,
or refnum, as long as the inputs are the same type. You can compare
numbers, strings, Booleans, arrays of strings, clusters of numbers, clusters
of strings, and so on. You cannot, however, compare a number to a string or
a string to a Boolean, and so on.

The functions that compare values to zero accept numeric scalars, clusters,
and arrays of numbers. These functions release Boolean values as output in
the same data structure as the input.

The Not A Number/Path/Refnum function accepts the same input types as
functions that compare values to zero. This function also accepts paths and
refnums. Not A Number/Path/Refnum outputs Boolean values in the same
data structure as the input. See ChapteFild Functions and Chapter 31,
Introduction to LabVIEW Instrument I/O Vifor more information about
these functions.

The functions Decimal Digit?, Hex Digit?, Octal Digit?, Printable?, and
White Space? accept a scalar string or number input, clusters of strings or
non-complex numbers, arrays of strings or non-complex numbers, and

so on. The output consists of Boolean values in the same data structure as
the input.

The function Empty String/Path? accepts a path, a scalar string, clusters of
strings, arrays of strings, and so on. The output consists of Boolean values
in the same data structure as the input.

You can use the Equal?, Not Equal?, Not A Number/Path/Refnum?, Empty
String/Path?, and Select functions with paths and refnums, but no other
comparison functions accept paths or refnums as inputs.

Comparison functions that use arrays and clusters normally produce
Boolean arrays and clusters of the same structure. You can pop-up and
change taCompare Aggregatesin which case the function releases a

single Boolean value as output. The function compares aggregates by
comparing the first set of elements to produce the output, unless the first
elements are equal, in which case the function compares the second set of
elements, and so on.

© MNational Instruments Corporation 9-5 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

Comparison Function Descriptions

The following Comparison functions are available.

Decimal Digit?
Returns TRUE ithar is a decimal digit ranging from 0 through 9. Otherwise, this function
returns FALSE.

Empty String/Path?
Returns TRUE istring/path is an empty string or path. Otherwise, this function returns
FALSE.

Equal?
Returns TRUE ik is equal toy. Otherwise, this function returns FALSE.

Equal To 0?
Returns TRUE ik is equal to 0. Otherwise, this function returns FALSE.

Greater?
Returns TRUE ik is greater thag. Otherwise, this function returns FALSE.

LabVIEW Function and VI Reference Manual 9-6 © MNational Instruments Corporation

Chapter 9 Comparison Functions

Greater Or Equal?
Returns TRUE ik is greater than or equal yoOtherwise, this function returns FALSE.

Greater Or Equal To 0?

Returns TRUE ik is greater than or equal to 0. Otherwise, this function returns FALSE.

Greater Than 0?
Returns TRUE ik is greater than 0. Otherwise, this function returns FALSE.

Hex Digit?
Returns TRUE ithar is a hex digit ranging from O through 9, A through F, or a through f.
Otherwise, this function returns FALSE.

In Range?
Returns TRUE ik is greater than or equallmand less thahi. Otherwise, this function
returns FALSE.

Note This function always operates in theompare Aggregatesnode. To produce a
Boolean array as an output, you must execute this function in a loop structure.

© MNational Instruments Corporation 9-7 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

Less?

Returns TRUE ik is less thary. Otherwise, this function returns FALSE.

Less Or Equal?

Returns TRUE ik is less than or equal yo Otherwise, this function returns FALSE.

Less Or Equal To 0?

Returns TRUE ik is less than or equal to 0. Otherwise, this function returns FALSE.

Less Than 0?

Returns TRUE ik is less than 0. Otherwise, this function returns FALSE.

Lexical Class

Returnsclass numberfor char.

Table 9-1. Lexical Class Number Descriptions

Class
Number Lexical Class
0 Extended characters with a Command- or Option- key prefix
(codes 128 through 255)
1 Non-displayable ASCII characters (codes 0 to 31 excluding 9 throug
2 White space characters: Space, Tab, Carriage Return, Form Feed,
Newline, and Vertical Tab (codes 32, 9, 13, 12, 10, and 11, respect
LabVIEW Function and VI Reference Manual 9-8 © MNational Instruments Corporation

h 13)

vely)

Chapter 9 Comparison Functions

Table 9-1. Lexical Class Number Descriptions (Continued)

Class
Number Lexical Class
3 Digits 0 through 9
4 Uppercase characters A through Z
5 Lowercase characters a through z
6 All printable ASCII non-alphanumeric characters

Max & Min

Comparex andy and returns the larger value at the top output terminal and the smaller value
at the bottom output terminal.

Not A Number/Path/Refnum?
Returns TRUE ihumber/path/refnum is not a number (NaN), not a path, or not a refnum.
Otherwise, this function returns FALSE. NaN can be the result of dividing by 0, calculating
the square root of a negative number, and so on.

Not Equal?
Returns TRUE ik is not equal ty. Otherwise, this function returns FALSE.

Not Equal To 0?
Returns TRUE ik is not equal to 0. Otherwise, this function returns FALSE.

© MNational Instruments Corporation 9-9 LabVIEW Function and VI Reference Manual

Chapter 9 Comparison Functions

Octal Digit?
Returns TRUE ithar is an octal digit ranging from 0 through 7. Otherwise, this function
returns FALSE.

Printable?

Returns TRUE ithar is a printable ASCII character. Otherwise, this function returns
FALSE.

Select
Returns the value connected totlgout orf input, depending on the valueff sis TRUE,
this function returns the value connected.tkd s is FALSE, this function returns the value
connected td.

White Space?
Returns TRUE ithar is a white space character, such as Space, Tab, Newline,
Carriage Return, Form Feed, or Vertical Tab. Otherwise, the function returns FALSE.

LabVIEW Function and VI Reference Manual 9-10 © MNational Instruments Corporation

Time, Dialog, and
Error Functions

This chapter describes the timing functions, which you can use to get the
current time, measure elapsed time, or suspend an operation for a specific
period of time. Error Handling also is covered in this chapter.

The following illustration shows thEme & Dialog palette that you access
by selecting-unctions»Time & Dialog.

© MNational Instruments Corporation 10-1 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

Time, Dialog, and Error Functions Overview

This section introduces the Timing, Dialog, and Error functions.

Timing Functions

The Date/Time To Seconds and the Seconds To Date/Time functions have
a parameter calledte time rec,which is a cluster that consists of signed
32-bit integers in the following order.

Table 10-1. Valid Value of Elements for Date/Time Cluster

Element Valid Values

0 | (second) 0to 59

1| (minute) 0to 59

2 | (hour) Oto 23

3 | (day of month)| 1 tq 31 as output from the function; 1 to 366
as input

4 | (month) 1to12

5| (year) 1904 to 2040

6 | (day of week) | 1to 7 (Sunday to Saturday)

7 | (day of year) | 1to 366

8| (DST) 0 to 1 (O for Standard Time, 1 for Daylight
Savings Time)

The Wait (ms) and Wait Until Next ms Multiple functions make
asynchronous system calls, but the nodes themselves function
synchronously. Therefore, they do not complete execution until the
specified time has elapsed. The functions use asynchronous calls, so other
nodes can execute while the timing nodes wait.

Note Time values outside the range 2082844800 to 4230328447 seconds or 12:00 a.m.,
Jan. 1, 1970, Universal Time to 3:14 a.m., Jan. 19, 2038, Universal Time might not
convert to the same date on all platforms. This exception primarily exists on
Windows 3.x, which does not support dates prior to Jan. 1, 1970, Universal Time.

LabVIEW Function and VI Reference Manual 10-2 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

Error Handling Overview

Every time you design a program, consider the possibility that something
can go wrong and, if it does, you should consider how your program can
manage the problem. LabVIEW automatically notifies you with a dialog
box only when a few run-time errors occur, mostly for file-dialog
operations. LabVIEW does not report all errors. If it reported all errors, you
would lose the flexibility to determine what to do when an error occurs and
how and when to inform the user of the error in your program.

Rigorous error checking, especially for 1/O operations (file, serial, GPIB,
data acquisition, and communication), is invaluable in all phases of a
project. This section describes three 1/O situations in which errors can
occur.

The first type of error can occur when you have initialized your
communications incorrectly or have written improper data to your external
device. This type of problem usually occurs during program development
and disappears once you finish debugging your program. However, you can
spend a lot of time tracking down a simple programming mistake because
you have not incorporated error checks. Without error checks, you only
know that your program does not work. You do not know why the error
occurred or where it is.

The second type of error can occur because your external device might be
powered off, broken down, or otherwise unable to complete its normal
tasks. This type of problem can occur at any time, but if you have
incorporated error checking, your program notifies you immediately

when such operational failures occur.

The third kind of error can occur when you upgrade LabVIEW or your
operating system software and you notice a bug in either a G program or a
system program. This type of error means you should check errors that you
might have felt safe ignoring, such as those from functions that close files
or clear DAQ operations. Be sure to check all I/O operations for errors.

It might seem easier to ignore error checking when you must add error
handling code to test and report errors. The Vs described here are designed
to make it easier for you to create programs with error checking and
handling.

G functions and library VIs return errors in one of two ways—uwith numeric
error codes or with an error state cluster. Typically, functions release output
error codes while VIs incorporate the error cluster, usually within a
framework called error input/output (error 1/O).

© MNational Instruments Corporation 10-3 LabVIEW Function and VI Reference Manual

Chapter 10

Time, Dialog, and Error Functions

Error 1/0 and the Error State Cluster

The concept of error I/O is logical for the G dataflow architecture. If data
information can flow from one node to another, so can error state
information. Each node that needs information about errors tests the
incoming error state and responds appropriately. If no error exists, the node
executes normally. If an error does exist, the node detects an error, skips
execution, then passes its error state out to the next node, which responds
in the same way. In this fashion, notice of the first error that occurs in a
sequence of operations is passed through all the nodes, with each node
responding to the error. At the end of the flow, your program reports the
error to the user.

Error 1/0 has an additional benefit—you can use it to control the execution
order of independent operations. While you can use the DAQ taskID to
control the order of DAQ operations for one group, you cannot use it to
control the order for multiple groups. The DAQ taskID does not work with
other types of I/O operations such as file operations.

The following diagram from the File Utility VRead Characters From
File.vi , shows how error I/O is implemented in a simple VI.

The operation starts @pen File+.vi . If it opens the file successfully,
ReadFile+(string).vi reads the file andloseFile+.vi closes the
file. If you pass in an invalid patpen File+.vi detects the error and
passes the error state through the other two VIs to the General Error
Handler, which reports it. Notice that the only presence of error handling

LabVIEW Function and VI Reference Manual 10-4 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

on this block diagram is the error wire and the General Error Handler. It is
neither cumbersome nor distracting.

The error state consists of three pieces of information that are combined
into the error cluster. Th&tatusis a Boolean value—TRUE if an error
exists, FALSE if it does not. Theodeconsists of a signed 32-bit integer
that identifies the error. A non-zero ergmdecoupled with a FALSE
errorstatus signals a warning rather than a fatal error. For example, a
DAQ timeout event (code 10800) typically is reported as a warning. The
sourceconsists of a string that identifies where the error occurred.

Theerror in anderror out state clusters for thepen File+.vi , Where
the error shown in the preceding example originated, are shown in the
following illustration. Theerror in cluster, whose default valueris

error does not need to be wired if it is the first in the chain.

You can find theerror in anderror out clusters by selecting
Controls»Array & Cluster on the front panel.

The following illustration shows the message you receive from the General
Error Handler if you pass an invalid path.

© MNational Instruments Corporation 10-5 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

The General Error Handler is one of the three error-handling utility VIs.

It contains a database of error codes and descriptions, from which it creates
messages like the previous one. The Simple Error Handler performs the
same basic operation but has fewer options. The third VI, Find First Error,
creates the error I/O cluster from functions or VIs that output only scalar
error codes.

Time and Dialog Function Descriptions

The following Time and Dialog functions are available.

Date/Time To Seconds
Converts a cluster of nine, signed 32-bit integers assumed to specify the local time (second,
minute, hour, day, month, year, day of the week, day of the year, and Standard or Daylight
Savings Time) in the configured time zone for your computer into a time-zone-independent
number ofsecondghat have elapsed since 12:00 a.m., Friday, January 1, 1904,
Universal Time.

The day of week, day of year, and DST integers are ignored. If any of the other integers are
out of the ranges specified in Table 10-1, the results are unpredictable.

When used as an integer, the day of month integer has a valid range of 1 to 366. Thus, you
can specify Julian dates by setting the month to January and the current day to the day of the
year. For example, use January 150 for théh]dﬂy of the year.

Format Date/Time String Function
Gives you the ability to display the date and time in a format you specify.

Thedate/time stringis determined from th&econds (now)which is the number of seconds
since 12:00 a.m., January 1, 1904, Universal Timetiarelformat string is the format of
the output string.

If secondds not wired, the current time is usedinie format string is not wired, the default
is %¢ which corresponds to the date/time representation appropriate for the current locale.

LabVIEW Function and VI Reference Manual 10-6 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

The Format Date/Time String function calculadese/time string by copyingtime format
string and replacing each of the format codes with the corresponding values in the following

table.
Table 10-2. Format Codes for the Time Format String
Format Code Value
%% a single percent character
%a abbreviated weekday name (e.g. Wed)
%A full weekday name (e.g. Wednesday)
%b abbreviated month name (e.g. Jun)
%B full month name (e.g. June)
%c locale’s default date and time representation
%d day of month (01-31)
%H hour (24-hour clock) (00-23)
%l hour (12-hour clock) (01-12)
%j day number of year (001—-366)
%m month number (01-12)
%M minute (00-59)
%p AM or PM flag
%S seconds (00-59)
%U week number of the year (00—53), with Sunday as the first day of
the week
%W weekday as a decimal number (0-6), with O representing Sunday
%W week number of the year (00—53), with Monday as the first day of
the week
%X date representation of locale
%X time representation of locale
%y year within century (00—99)
%Y year, including the century (for example, 1997)
%Z time zone name or abbreviation

© MNational Instruments Corporation 10-7 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

Characters appearing time format string that are not part of a format code are copied to
the output string verbatim. Time format codes (beginning %itihat are not recognized
output the character literally.

Time format codes always have leading zeros as necessary to ensure a constant field width.
An optional# modifier before the format code letter removes the leading zeros from the
following format codes:

%#d, %#H %#|, %#j, YoM %HEM %HS %o#S Yol Yoty YoH WX Yoiy, Yo#tY
The # modifier does not modify the behavior of any other format codes.

Note The %c %x %X and%zformat codes depend on operating system locale support;
the output of these codes is platform dependent. Interpretation of the Daylight
Savings Time rule also can vary per platform.

Get Date/Time In Seconds

Returns a time-zone independent number containing the number of seconds that have elapsed
since 12:00 a.m., Friday, January 1, 1904, Universal Time.

Get Date/Time String
Converts a time-zone independent number calculated to be the number of seconds that have
elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a date and time string
in the configured time zone for your computer.

One Button Dialog Box
Displays a dialog box that contains a message and a single buttdsut@irename control
is the name displayed on the dialog box button.

LabVIEW Function and VI Reference Manual 10-8 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

Seconds To Date/Time
Converts a time-zone-independent number calculated to be the numnsbeonfighat have
elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a cluster of nine, signed
32-bit integers that specify the local time (second, minute, hour, day of the month, month,
year, day of the week, day of the year, and Standard or Daylight Savings Time) in the
configured time zone for your computer. The Standard or Daylight Savings time parameter
is set according to the operating system setting for Daylight Savings and indicates whether
the date/time cluster was adjusted due to Daylight Savings Time.

Tick Count (ms)
Returns the value of the millisecond timer. The base reference time (millisecond zero)
is undefined; therefore, you cannot conveilisecond timer valueto a real-world time
or date. Be careful when you use this function in comparisons because the value of the
millisecond timer wraps fror23?-1 t0 0.

Two Button Dialog Box

Displays a dialog box that containe@ssageand two buttonsl button nameandF button
name are the names displayed on the buttons of the dialog box.

Wait (ms)

Waits the specified number of milliseconds then returns the value of the millisecond timer.

© MNational Instruments Corporation 10-9 LabVIEW Function and VI Reference Manual

Chapter 10 Time, Dialog, and Error Functions

Wait Until Next ms Multiple

Waits until the value of the millisecond timer becomes a multiple of the speuifies:cond
multiple. Use this function to synchronize activities. You can call this function in a loop
to control the loop execution rate. However, it is possible that the first loop period might
be short.

Error Handling VI Descriptions

The following Error Handling Vs are available.

Find First Error

Tests the error status of one or more low-level functions or subVIs that produce a numeric
error code as output.

If this VI finds an error, it sets the parameters irgitier out cluster. You can wire this cluster
to the Simple or General Error Handler to identify the error and describe it to the user.

The following illustration shows how you can use Find First Error in the example VI Write
Binary File. Find First Error creates the error cluster from individual error numbers, and
Simple Error Handler reports any errors to the user.

LabVIEW Function and VI Reference Manual 10-10 © MNational Instruments Corporation

Chapter 10 Time, Dialog, and Error Functions

General Error Handler

Determines whether an error has occurred. If an error has occurred, this VI creates a
description of the error and optionally displays a dialog box.

Simple Error Handler

Determines whether an error has occurred. If it finds an error, this VI creates a description of
the error and optionally displays a dialog box.

Simple Error Handler calls General Error Handler and has the same basic functionality as
General Error Handler, but with fewer options.

© MNational Instruments Corporation 10-11 LabVIEW Function and VI Reference Manual

File Functions

This chapter describes the low-level Vis and functions that manipulate
files, directories, and paths. This chapter also describes file constants and
the high-level file Vls.

You access these functions, constants, and VIs by selecting
Functions»File I/0.

TheFile I/O palette includes the following subpalettes:
» Advanced File Functions

* Binary File VIs

» Configuration File VIs

* File Constants

For examples of File functions and Vls, ssamplesifile

© MNational Instruments Corporation 11-1 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

File 1/0 VI and Function Overview

This section introduces the high-level and low-level file VIs, and the File
functions.

High-Level File Vis

You can use the high-level file VIs to write or read the following types
of data:

e Strings to text files

e One-dimensional (1D) or two-dimensional (2D) arrays of
single-precision numbers to spreadsheet text files

e 1D or 2D arrays of single-precision numbers or signed word integers
to byte stream files

The high-level file Vis described here call the low-level file functions to
perform complete, easy-to-use file operations. These VIs open or create a
file, write or read to it, and close it. If an error occurs, these Vis display a
dialog box that describes the problem and gives you the option to halt
execution or to continue.

The high-level file Vis are located on the top row of the palette and consist
of the following VIs:

* Binary File ViIs—located in the subpalette
* Read Characters from File

¢ Read from Spreadsheet File

¢ Read Lines from File

* Write Characters to File

¢ Write to Spreadsheet File

Low-Level File VIs and File Functions

The low-level file VIs and functions perform one file operation at a time.
These Vls and functions perform error detection in addition to their other
functions. The most commonly used low-level file functions and Vls are
located on the second row of the palette. The remaining low-level functions
are located in thAdvanced File Functionssubpalette.

The principal low-level file operations involve a three-step process. First,
you create or open a file. Then you write data to the file or read data from
the file. Finally, you close the file. Other file operations include creating

LabVIEW Function and VI Reference Manual 11-2 © MNational Instruments Corporation

Chapter 11 File Functions

directories; moving, copying, or deleting files; flushing files; listing
directory contents; changing file characteristics; and manipulating paths.

When creating or opening a file, you must specify its location. Different
computers describe the location of files in different ways, but most
computer systems use a hierarchical system to specify the location of files.
In a hierarchical file system, the computer system superimposes a hierarchy
on the storage media. You can store files inside directories, which can
contain other directories.

When you specify a file or directory in a hierarchical file system, you must
indicate the name of the file or directory, as well as its location in the
hierarchy. In addition, some file systems support the connection of multiple
discrete media, called volumes. For example, Windows systems support
multiple drives connected to a system; for most of these systems, you must
include the name of the volume to create a complete specification for the
location of a file. On other systems, such as UNIX, you do not need to
specify the storage media locations for files because the operating system
hides the physical implementation of the file system from you.

The method of identifying the target of a file function varies depending on
whether the target is an open file. If the target is not an open file, or if it is
a directory, you specify a target using gagh of the target. The path
describes the volume containing the target, the directories between the
top-level and the target, and the name of the target. If the target is an open
file, you use dile refnumto identify the file to be manipulated. The file
refnum is an identifier associated with the file when you open it. When you
close the file, the file manager dissociates the file refnum from the file.

In other words, the refnum is obsolete once the file is closed.

Refer to tha.abVIEW Online Tutorial: Introduction to LabVIE¥r more
information on path specification in G and for file function examples.

Byte Stream and Datalog Files

G can make and access two types of files—byte stream and datalog files.

A byte streanfile, as the name implies, is a file whose fundamental unit is

a byte. A byte stream file can contain anything from a homogeneous set
of one G datatype to an arbitrary collection of datatypes—characters,
numbers, Booleans, arrays, strings, clusters, and so on. An ASCI| text file,
a file containing this paragraph, for example, is perhaps the simplest byte
stream file. A similar byte stream file is a basic spreadsheet text file, which
consists of rows of ASCIl numbers, with the numbers separated by tabs and
the rows separated by carriage returns.

© MNational Instruments Corporation 11-3 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Another simple byte stream file is an array of binary 16-bit integers or
single-precision, floating point numbers, which you acquire from a data
acquisition (DAQ) program. A more complicated byte stream file is one in
which an array of binary 16-bit integers or single-precision, floating point
numbers is preceded by a header of ASCII text that describes how and when
you acquired the data. That header could alternatively be a cluster of
acquisition parameters, such as arrays of channels and scale factors, the
scan rate, and so forth.

An Excel worksheet file, as opposed to an Excel text file, is also a more
complicated form of byte stream file because it contains text interspersed
with Excel-specific formatting data that does not make sense when you
read it as text. In summary, you can make a byte stream file that consists of
one each of all of the G datatypes. Byte stream files can be created using
high-level File Vis and low-level File ViIs and functions.

A datalogfile, on the other hand, consists of a sequence of
identically-structured records. Like byte stream files, the components of a
datalog record can be any G datatype. The difference is that all the datalog
records must be the same type. Datalog files can only be created using
low-level file functions.

You write a byte stream file typically by appending new strings, numbers,

or arrays of numbers of any length to the file. You can also overwrite data
anywhere within the file. You write a datalog file by appending one record

at a time. You cannot overwrite the record.

You read a byte stream file by specifying the byte offset or index and the
number of instances of the specified byte stream type you want to read. You
read a datalog file by specifying the record offset or index and the number
of records you want to read.

You use byte stream files typically for text or spreadsheet data that other
applications may need to read. You can use byte stream files to record
continuously acquired data that you need to read sequentially or randomly
in arbitrary amounts. You use datalog files typically to record multiple test
results or waveforms that you read one at a time and treat individually.
Datalog files are difficult to read from non-G applications.

Flow-Through Parameters

Many file functions contaiflow-throughparameters, which return the

same value as an input parameter. You can use these parameters to control
the execution order of the functions. By wiring the flow-through output of
the first node you want to execute to the corresponding input of the next

LabVIEW Function and VI Reference Manual 11-4 © MNational Instruments Corporation

Chapter 11 File Functions

node you want to execute, you create artificial data dependency. Without
these flow-through parameters, you would often have to use Sequence
structures to ensure that file I/O operations take place in the correct order.

Error 1/0 in File 1/0 Functions

G uses error /O clusters, consistingeafor in anderror out, in all of its

file 1/O functions. With error 1/O clusters you can string together several
functions. When an error occurs in a function, that function passes the error
along to the next function. When the error passes to subsequent functions,
the subsequent function does not execute and passes the error along to the
following function, and so on. The following illustration displays an

example of therror in anderror out clusters.

Although the error I/O clusters specify whether an error has occurred, you
may want to use error handlers to report the error to the user. For more
information on error I/O, see Chapter Tdmne, Dialog, and

Error Functions in this manual.

Permissions

Some of the file functions have a 32-bit integer parameter called
permissionsor new permissions These functions use only the least
significant nine bits of the 32-bit integer to determine file and directory
access permissions.

(Windows) The permissions are ignored for directories. For files, only bit 7
(the UNIX user write permission bit) is used. If this bit is clear, the file is
read-only. Otherwise, you can write to the file.

(Macintosh) All 9 bits of permissions are used for directories. The bits
that control read, write, and execute permissions, respectively, on a
UNIX system are used to control See Files, Make Changes, and

See Folders access rights, respectively, on the Macintosh. For files, only
bit 7 (the UNIX user write permission bit) is used. If this bit is clear, the
file is locked. Otherwise, the file is not locked.

© MNational Instruments Corporation 11-5 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

(UNIX) The nine bits of permissions correspond exactly to the nine UNIX
permission bits governing read, write, and execute permissions for users,
groups, and others. The following illustration shows the permission bits on
a UNIX system.

File 1/0 Function and VI Descriptions

The following functions and VIs are available from Hile I/O palette.

Build Path

Creates a new path by appending a name (or relative path) to an existing path.

Close File
Writes all buffers of the file identified yefnum to disk, updates the directory entry of the
file, closes the file, and voidsfnum for subsequent file operations.

Note The Close File VI handles error 1/O differently than other file functions;
it executes even when i&gror in indicates that an error has occurred in a
preceding function.

LabVIEW Function and VI Reference Manual 11-6 © MNational Instruments Corporation

Chapter 11 File Functions

Open/Create/Replace File
Opens an existing file, creates a new file, or replaces an existing file, programmatically or
interactively using a file dialog box. You can optionally specify a diptognpt, default file
name start path, or filter pattern. Use this VI with the Write File or Read File functions.

Read Characters From File

Reads a specified number of characters from a byte stream file beginning at a specified
character offset. The VI opens the file before reading from it and closes it afterwards.

Read File

Reads data from the file specified f@fnum and returns it idata. Reading begins at a
location specified bpos modeandpos offsetand depends on the format of the specified file.

Reading Byte Stream Files

If refnum is a byte stream file refnum, the Read File function reads data from the byte stream
file specified byrefnum. You can wire eitheline modeor byte stream typewhen you read

byte stream files, but you cannot wire both. If you do not te streamtype, Read File
assumes the data that begins at the designated byte offset is a string of characters. If you wire
byte stream type the function interpretdata starting at the designated byte offset to be

count instances of that type. Following the read operation, the function sets the file mark to
the byte following the last byte read. If the function encounters end of file before reading all

© MNational Instruments Corporation 11-7 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

of the requested data, it returns as many whole instances of the dediytattdeam type
as it finds.

Reading Characters

To read characters from a byte stream file (typically a text file), do not wike/testream
type. The following paragraphs describe the manner in whichrtbenode count, convert
eol, anddata parameters function when reading from a byte stream file.

line mode, in conjunction withcount, determines when the read stops.

If line modeis TRUE, and if you do not wireount or count equals 0, Read File reads until it
encounters an end of line marker—a carriage return, a line feed, or a carriage return followed
by a line feed, or it encounters end of fildine modeis TRUE, anccount is greater than O,

Read File reads until it encounters an end of line marker, it encounters end of file, or it reads
count characters.

If line modeis FALSE, Read File read®unt characters. In this case, if you do not wire
count, it defaults to Oline modedefaults to FALSE.

convert eol (F)determines whether the function converts the end of line markers it reads into
G end of line markers. The system-specific end of line marker is a carriage return followed
by a line feed on Windows, a carriage return on Macintosh, and a line feed on UNIX. The
G end of line marker is a line feed.

If convert eolis TRUE, the function converts all end of line markers it encounters into line
feeds. Ifconvert eolis FALSE, the function does not convert the end of line markers it reads.
convert eoldefaults to FALSE.

data is the string of characters read from the file.

Reading Binary Data

To read binary data from a byte stream file, wire the type of the dajde@tream type
In this casegcount, anddata function in the manner described in the following paragraphs,
and you do not have to wilime modeor convert eol

byte stream typecan be any datatype. Read File interprets the data starting at the designated
byte offset to beount instances of that type. If the type is variable-length, that is, an array,

a string, or a cluster containing an array or string, the function assumes that each instance of
the type contains the length or dimensions of that instance. If they do not, the function
misinterprets the data. If Read File determines that the data does not match the type, it sets
the value oflata to the default value for its type and returns an error.

count is the number of instancesofte stream typeto read. Ifcount is unwired, the
function returns a single instancelgfte stream type

LabVIEW Function and VI Reference Manual 11-8 © MNational Instruments Corporation

Chapter 11 File Functions

If you wire count, it can be a scalar number, in which case the function returns a 1D array of
instances obyte stream type Or it can be a cluster of N scalar numbers, in which case the
function returns an N-dimension array of instancdsyté stream type

If the wiredcount is a scalar number and thgte stream typeis something other than an

array, the function returns that number of instances in a 1D array. For example, if the type is

a single-precision, floating point number awmdintis 3, the function returns an array of three,
single-precision, floating point numbers. However, if the type is an array, the function returns
the instances in a cluster array, because G does not have arrays of arrays. Therefore, if the type
is an array of single-precision, floating point numbers@nmat is 3, the function returns a

cluster array of three, single-precision, floating point number arrays.

If the wiredcount is a cluster of N numbers, the function returns an N-dimension array of
instances of the type. The size of each dimension is the value of the corresponding number
according to its cluster order. The number of instances returned in this manner is the product
of the N numbers. Thus, you can return 20, single-precision, floating point numbers as a

2D array of two columns and 10 rows by wiring a two-element cluster with element 0 = 2 and
element 1 = 10 toount.

data contains the data read from the file. Refer to the previous descriptionmtfor an
explanation of the structures data can have.

Reading Datalog Files

If refnum is a datalog file refnum, the Read File function reads records from the datalog file
specified byrefnum. If the data in the file does not match the datatype associated with the
datalog file, this function returns an error.

The number of records read can be less than specifismlibyif this function encounters the
end of the file. The function sets the file mark to the record following the last record read.
(You should never encounter a partial record; if you do, the file is corrupt.)

Do not wireconvert eol line mode, andbyte stream type They do not pertain to datalog
files. Thecount anddata parameters function in the following manner.

countis the number of records to read and may be wired or unwired. If you do nobwire

the function returns a single record of the datalog type specified when the file is created or
opened. For example, if the type is a 16-bit integer, the function returns one 16-bit integer.
If the type is an array of 16-bit integers, the functions returns one array of 16-bit integers.
(Your records typically consist of clusters of diverse elements, but the rules for simple types
used in these examples apply to those as well.)

If you wire count, it can be a scalar number, in which case the function returns a 1D array of
records. Or it can be a cluster of N scalar numbers, in which case the function returns an
N-dimension array of records.

© MNational Instruments Corporation 11-9 LabVIEW Function and VI Reference Manual

Chapter 11

File Functions

If the wiredcount is a scalar number, and the datalog type is something other than an
array, the function returns that number of records in a 1D array. For example, if the type

is a single-precision, floating-point number araiint is 3, the array contains three,
single-precision, floating-point numbers. However, if the type is an array, the function returns
the records in a cluster array because G does not have arrays of arrays. Therefore, if the
datalog type is an array of single-precision, floating-point numbersant is 3, the

function returns a cluster array of three, single-precision, floating-point number arrays.

If the wiredcount is a cluster of N numbers, the function returns an N-dimension array of
records. The size of each dimension is the value of the corresponding number according to its
cluster order. The number of records returned in this manner is the product of the N numbers.
Therefore, you can return 20 records as a 2D array of two columns and ten rows by wiring a
two-element cluster with element O = 2 and element 1 = t0uat.

Read From Spreadsheet File

Reads a specified number of lines or rows from a numeric text file beginning at a specified
character offset and converts the data to a 2D, single-precision array of numbers. Optionally,
you can transpose the array. The VI opens the file before reading from it and closes it
afterwards. You can use this VI to read a spreadsheet file saved in text format. This VI calls
the Spreadsheet String to Array function to convert the data.

Read Lines From File

Reads a specified number of lines from a byte stream file beginning at a specified character
offset. The VI opens the file before reading from it and closes it afterwards.

LabVIEW Function and VI Reference Manual 11-10 © MNational Instruments Corporation

Chapter 11 File Functions

Strip Path

Returns thename of the last component of a path and ¢shvgpped path that leads to that
component.

Write Characters To File

Writes a character string to a new byte stream file or appends the string to an existing file.
The VI opens or creates the file before writing to it and closes it afterwards.

Write File

Writes data to the file specified logfnum. Writing begins at a location specified by
pos modeandpos offsetfor byte stream file and at the end of file for datalog filieda,
header, and the format of the specified file determine the amount of data written.

Writing Byte Stream Files

If refnum is a byte stream file refnum, the Write File function writes to a location specified
by pos modeandpos offsetin the byte stream file specified bgfnum. If the top-level

datatype oflata is of variable length (that is, a string or an array), Write File can write a
headerto the file that specifies the size of the data. Write File sets the file mark to the byte
following the last byte writterconvert eoldetermines whether the function converts the
end-of-line markers it writes into system-specific end-of-line markers. You canomivert
eolonly if data is a string. The system-specific end-of-line marker is a carriage return
followed by a line feed on Windows, a line feed on UNIX, and a carriage return on Macintosh.
If headeris true, Write File ignoresonvert eol

© MNational Instruments Corporation 11-11 LabVIEW Function and VI Reference Manual

Chapter 11

File Functions

Writing Datalog Files

If refnum is a datalog file refnum, the Write File function writes data as records to the datalog
file specified byrefnum. Writing always starts at the end of the datalog file (datalog files

are append-only). Write File sets the file mark to the record following the last record written.
The convert eol header, pos mode andpos offsetparameters do not apply with datalog

files, and you cannot wire them. THata parameter functions in the following manner for
datalog files.

data must be either a datatype that matches the datatype specified when you open or create
the file, or an array of such datatypes. In the former case, this function dattess a single

record in the datalog file. Representation of numeric data is coerced to the representation of
the datatype if necessary. In the latter case, this function writes each elenhztat ax a

separate record in the datalog file in row-major order.

Write To Spreadsheet File

Converts a 2D or 1D array of single-precision (SGL) numbers to a text string and writes the
string to a new byte stream file or appends the string to an existing file. You can optionally
transpose the data. This VI opens or creates the file before writing to it and closes it
afterwards. You can use this VI to create a text file readable by most spreadsheet applications.
This VI calls the Array to Spreadsheet String function to convert the data.

Binary File VI Descriptions

The following VIs are available from th&inary File VIs subpalette.

LabVIEW Function and VI Reference Manual 11-12 © MNational Instruments Corporation

Chapter 11 File Functions

Read From 116 File

Reads a 2D or 1D array of data from a byte stream file of signed, word integers (116). The VI
opens the file before reading from it and closes it afterwards. You can use this VI to read
unscaled or binary data acquired from data acquisition VIs and written to a file with Write To
116 File.

Read From SGL File

Reads a 2D or 1D array of data from a byte stream file of single-precision numbers (SGL).
The VI opens the file before reading from it and closes it afterwards. You can use this VI
to read scaled data acquired from data acquisition VIs and written to a file with Write To
SGL File.

Write To 116 File
Writes a 2D or 1D array of signed word integers (116) to a new byte stream file or appends
the data to an existing file. The VI opens or creates the file before writing to it and closes it
afterwards. You can use this VI to write unscaled or binary data from data acquisition VIs.

© MNational Instruments Corporation 11-13 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Write To SGL File

Writes a 2D or 1D array of single-precision numbers (SGL) to a new byte stream file or
appends the data to an existing file. The VI opens or creates the file before writing to it and
closes it afterwards. You can use this VI to write scaled data from data acquisition VIs without
changing the representation.

Advanced File Function Descriptions

The following functions are available on tAdvanced File Functionssubpalette.

Access Rights

Sets and returns the owner, group, and permissions of the file or directory speqiféh.by
If you do not specifjnew owner, new group, or new permissions this function returns the
current settings unchanged.

LabVIEW Function and VI Reference Manual 11-14 © MNational Instruments Corporation

Chapter 11 File Functions

(Windows) The Access Rights function ignomesw ownerandnew groupand returns empty
strings forowner andgroup because Windows does not support owners and groups.

(Macintosh) If path refers to a file, the Access Rights function igneres ownerandnew
group and returns empty strings fowner andgroup because Macintosh does not support
owners or groups for files.

Array Of Strings To Path

Convertsarray of strings into a relative or absolutgath.

Copy
Copies the file or directory specified bgurce pathto the location specified ligrget path.
If you copy a directory, this function copies all its contents recursively.

Delete
Deletes the file or directory specified pgth. If path specifies a directory that is not empty
or if you do not have write permission for both the file or directory specifigehthyand its
parent directory, this function does not remove the directory and returns an error.

EOF

Sets and returns the logical EOF (end-of-file) of the file identifiegtinum. pos modeand

pos offsetspecify the new location of the EOF. If you do not spegify modeor pos offset

this function returns the current unchanged EOF. This function always returns the location of
the EOF relative to the beginning of the file.

© MNational Instruments Corporation 11-15 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

You cannot set the EOF of a datalog filerefinum identifies a datalog file, you cannot wire
pos modeandpos offset However, you still can get the EOF of a datalog file, which tells you
how many records exist in the file.

File Dialog
Displays a dialog box with which you can specify the path to a file or directory. You can use
this dialog box to select existing files or directories or to select a location and name for a new
file or directory.

File/Directory Info

Returns information about the file or directory specifiegath, including itssize its last
modification date, and whether it is a directory.

Flush File

Writes all buffers of the file identified mefnum to disk and updates the directory entry of
the file associated wittefnum. The file remains open, amefnum remains valid.

Data written to a file often resides in a buffer until the buffer fills up or until you close the file.
This function forces the operating system to write any buffer data to the file.

LabVIEW Function and VI Reference Manual 11-16 © MNational Instruments Corporation

Chapter 11 File Functions

List Directory
Returns two arrays of strings listing the names of all files and directories fodirddtory
path, filtering both arrays based uppattern and filtering theile namesarray based upon
the specifiedlatalog type

Lock Range
Locks or unlocks a range of a file specified&fnum. Locking a range of a file prevents both
reading and writing by other users, overriding permissions for the file, and the deny mode
associated witihefnum. See thé=ile 1/0 VI and Function Overviewection in this chapter
for a full discussion of permissions. Unlocking a range of a file removes the override caused
by locking a range, so that the file’s permissions and the deny mode associatedihwith
determine whether other users can read from or write to that range of the file.

You cannot lock a range of a datalog file.

Move
Moves the file or directory specified kpurce pathto the location specified lgrget path.

New Directory
Creates the directory specified thyectory path. If a file or directory already exists at the
specified location, this function returns an error instead of overwriting the existing file or
directory.

© MNational Instruments Corporation 11-17 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

New File

Creates the file specified lfije path and opens it for reading and writing (regardless of
permissions.

Open File

Opens the file specified Hife path for reading and/or writing.

Path To Array Of Strings

Converts gath into anarray of strings and indicates whether the pathésative.

Path To String

Convertspath into a string describing a path in the standard format of the platform.

Path Type

Returns the type of the specified path, indicating whether it is an absolute, relative, or
invalid path. This function checks only the format of the path, not whether the path refers
to an existing file or directory. Therefore, this function only indicates an invalid path for
Not A Path.

LabVIEW Function and VI Reference Manual 11-18 © MNational Instruments Corporation

Chapter 11 File Functions

Refnum To Path
Returns thgath associated with the specifieefnum.

Seek

Moves the current file mark of the file identified lfnum to the position indicated by
pos offsetaccording to the mode chosengns mode

String To Path

Convertsstring, describing a path in the standard format for the current platfonpatho

Type and Creator

Reads and sets the type and creator of the file specifipdtbyFile type and creator are
four-character strings. If you do not speaifgw type or new creator, this function returns
the current settings unchanged.

Windows and UNIX do not support file types and creators. Trying to set the type or creator
of a file in these platforms results in an error; however, you can get the file type and creator
in these platforms. If the specified file has a name ending with characters that Type and
Creator recognizes as specifying a file type (suchi aor the LVIN file type andllb ~ for

the LVAR file type), this function returns that typetype andLBVWn creator. Otherwise,

the function returng??? in bothtype andcreator.

© MNational Instruments Corporation 11-19 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Volume Info
Returns information about the volume containing the file or directory specifipdthy
including the total storage space provided by the volume, the amount used, and the amount

free in bytes.

Configuration File Vs

The Configuration File VIs provide you with the tools to create, modify, and read a
platform-independent configuration file. The following illustration shows the options
available on th€onfiguration File VIs subpalette.

The Configuration File VIs work with a platform-independent configuration file similar in
format to the standard Windows initializatiami() file.

The file is divided into sections, denoted by a name enclosed in brackets. Each section in a
file must have a unique name. Within each section are key and value pairs. Each key within a
section must have a unique name.

LabVIEW Function and VI Reference Manual 11-20 © MNational Instruments Corporation

Chapter 11 File Functions

An example of a configuration file with sectiosestion 1 andsection2 is:
[section 1]
keyl="string value 1"
key2="string value 2"
key3=53
[section 2]
keyl=TRUE
key2=-12.3
key3="/c/temp/data.dat"

The Configuration File VIs support the following data types:

e Strings

» Paths

* Booleans

e 64-bit floating-point numbers (Double)

* 32-bit signed integers (132)

e 32-bit unsigned integers (U32)

String data in the file must be enclosed in double quotes. Any unprintable characters in the
string are stored in the file with their equivalent hexadecimal escape codes (for example,

\0OD for carriage return). In addition, backslash characters are stored in the file as
double-backslashes (for example,for\).

Path data is stored in a platform-neutral format. This format is the standard UNIX format for
paths. The Vls will interpret the absolute pattemp/data.dat as follows on the various
G platforms:

* Windows:c\temp\data.dat
¢ MacOS:c:temp:data.dat
¢ UNIX: /c/temp/data.dat

In addition, the VIs interpret the relative padmp/data.dat as follows:
e Windows:temp\data.dat

¢« MacOS::temp:data.dat

e UNIX: temp/data.dat

© MNational Instruments Corporation 11-21 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Close Config Data

Closes a reference to the configuration data identifiegfoyaum. If write configuration
file? is TRUE, the VI writes the data to the platform-independent configuration file identified
by refnum.

Open Config Data

Opens a reference to the configuration data found in a platform-independent configuration
file. If the specified file does not exist anckate file if necessary?s TRUE, the VI also
creates the configuration file.

Read Key (Boolean)

Reads a Booleavalue associated with key in a specifiedsectionfrom the configuration
data identified byefnum. If the key does not exist, the VI returns tefault value.

Read Key (Double)

Reads a 64-bit floating-point numbealue associated witkey in a specifiedsection
from the configuration data identified bgfnum. If key does not exist, the VI returns
default value.

LabVIEW Function and VI Reference Manual 11-22 © MNational Instruments Corporation

Chapter 11 File Functions

Read Key (132)

Reads a 32-bit signed integerlue associated with key in a specifiedsectionfrom
the configuration data identified logfnum. If the key does not exist, the VI returns the
default value.

Read Key (Path)

Reads a pathalue associated witkey in a specifiedectionfrom the configuration data
identified byrefnum. If key does not exist, the VI returdgfault value.

Read Key (String)

Reads a stringalue associated witkey in a specifiedsectionfrom the configuration data
identified byrefnum. If key does not exist, the VI returdgfault value.

Read Key (U32)

Reads a 32-bit unsigned integatue associated witkey in a specifiedsectionfrom
the configuration data identified wgfnum. If key does not exist, the VI returns the
default value.

© MNational Instruments Corporation 11-23 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Remove Key
Removes &ey in a specifiedectionfrom the configuration data identified bgfnum.

Remove Section

Removes a&ectionfrom the configuration data identified bgfnum.

Write Key (Boolean)

Writes a Booleawalue associated witkey in a specifiedectionof the configuration data
identified byrefnum. If key exists, the VI replaces the existing valuey does not exist,
the VI adds th&ey/value pair to the end of the specifisdction If sectiondoes not exist,

the VI addssection with thekey/value pair, to the end of the configuration data.

Write Key (Double)

Writes a 64-bit floating-point numbgalue associated witkey in a specifiedectionof the
configuration data identified knefnum. If key exists, the VI replaces the existing value.
If key does not exist, the VI adds tkey/value pair to the end of the specified section.
If sectiondoes not exist, the VI adds the section, withkiéngvalue pair, to the end of the
configuration data.

LabVIEW Function and VI Reference Manual 11-24 © MNational Instruments Corporation

Chapter 11 File Functions

Write Key (132)

Writes a 32-bit signed integealue associated witkey in a specifiedsectionof the
configuration data identified yefnum. If key exists, the VI replaces the existing value.
If key does not exist, the VI adds tkey/value pair to the end of the specifisdction

If sectiondoes not exist, the VI addection with thekey/value pair, to the end of the
configuration data.

Write Key (Path)

Writes a patlvalue associated witkey in a specifiedsectionof the configuration data
identified byrefnum. If key exists, the VI replaces the existing valu&key does not exist,
the VI adds th&ey/value pair to the end of the specifisdction If sectiondoes not exist,
the VI addssection with thekey/value pair, to the end of the configuration data.

Write Key (String)

Writes a stringralue associated witkey in a specifiedsectionof the configuration data
identified byrefnum. If key exists, the VI replaces the existing valugey does not exist,
the VI adds thé&ey/value pair to the end of the specifisdction If sectiondoes not exist,
the VI addssection with thekey/value pair, to the end of the configuration data.

© MNational Instruments Corporation 11-25 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Write Key (U32)

Writes a 32-bit unsigned integealue associated witkey in a specifiedsectionof the
configuration data identified yefnum. If key exists, the VI replaces the existing value.
If key does not exist, the VI adds tkey/value pair to the end of the specifisdction

If the section does not exist, the VI addstion with thekey/value pair, to the end of the
configuration data.

File Constants Descriptions

The following constants are available from Hike Constantssubpalette.

Current VI's Path Constant

Returns the path to the file containing the VI in which this function appears. If the VI is
incorporated into an application (using the Application Builder libraries), the function returns
the path to the VI in the application file, and treats the application file as a VI library.

LabVIEW Function and VI Reference Manual 11-26 © MNational Instruments Corporation

Chapter 11 File Functions

Default Directory Constant
Returns the path to your default directory. The default directory is the directory which the file
dialog displays initially. The Preferences dialog bBgi{»Preferenceg, underPaths
defines this directory.

Empty Path

Returns an empty path.

Not A Path

Returns a path whose value is Not A Path. You can use this path as an output from structures
and subVIs when an error occurs.

Not A Refnum

Returns a refnum whose value is Not A Refnum. You can use this refnum as an output from
structures and subVIs when an error occurs.

Path Constant

Use this to supply a constant directory or file path to the block diagram. Set this value by
clicking inside the constant with the Operating tool and typing in the value. Use the standard
file path syntax for a given platform. You can set the value of the path constant to Not a Path
by clicking on the path symbol with the Operating tool and seleblatg Pathfrom the

resulting menu. See thiRaths and Refnunsection of Chapter &trings and File 1/Qin the
LabVIEW User Manudior more information on using the Not a Path value.

The value of the path constant cannot be changed while the VI executes. You can assign a
label to this constant.

© MNational Instruments Corporation 11-27 LabVIEW Function and VI Reference Manual

Chapter 11 File Functions

Temporary Directory Constant
Returns the path to your temporary directory. The temporary directory is the directory in
which you store temporary information that you expect the user or the operating system to
delete periodically. The G Preferences dialog it Preferenceg, underPaths defines
this directory.

VI Library Constant
Returns the path to the VI library directory for the current development library on the
current computer. The Preferences dialog liadityPreferenced, underPaths defines this
directory. If you build an application using the Application Builder libraries, this path is the
path of the directory containing the application.

LabVIEW Function and VI Reference Manual 11-28 © MNational Instruments Corporation

Application Control Functions

This chapter describes the Application Control functions.

To access thApplication Control palette, shown in the following
illustration, selecEunctions»Application Control.

TheApplication Control palette include the following subpalettes:
» Help functions
* Menu functions

© MNational Instruments Corporation 12-1 LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

Application Control Functions

The following Application Control functions are available.

Call By Reference Node
The Call By Reference node is very similar to a subVI node: you can use either to call a VI.
However, there is a significant difference. With a subVI node, you determine what VI is called
when you drop the node on the diagram.

With the Call By Reference node, the end user determines what VI is called at runtime
via thereferenceinput. The Call By Reference node could call a VI that resides on a
different computer.

At the top of the Call By Reference node are four terminals: an input/output pair of flow
through VI reference terminals, and an input/output pair of flow through error clusters.

The VI reference input accepts wires only from strictly-typed VI references. Below these
terminals is an area within which a connector pane resides that is identical to that of a VI
with its terminals showing (rather than its icon). The connector pane of the strictly-typed VI
reference input determines the pattern and data types of this connector pane. You should wire
to these terminals just as you would to a normal subVI.

As long as none of the terminals of the connector pane have wires attached to them, the
connector pane adapts automatically to the connector pane of the input VI reference.
However, if any of them are wired, the node does not adapt automatically, and you must
explicitly change the connector pane (possibly breaking those wires) by popping up on the
node and selecting thhedapt To Reference Inputmenu item.

At run time there is a small amount of overhead in calling the VI that is not necessary in a
normal subVI call. This overhead comes from validating the VI reference and a few

other details. However, for a call to a VI in the local LabVIEW, this overhead should be
insignificant for all but the smallest subVIs. Calling a VI located in another LabVIEW
application (across the network) involves considerably more overheadef€éhenceinput
determines the VI that is called by the Call by Reference node.

LabVIEW Function and VI Reference Manual 12-2 © MNational Instruments Corporation

Chapter 12 Application Control Functions

Call Chain

Returns a reference to a LabVIEW application or a VI.

Close Application or VI Reference
Closes an open VI or the TCP connection to an open copy of LabVIEW.

Invoke Node
Invokes a method or action on a VI. Most methods have parameters associated with them.
To select the method, pop up anywhere on the node and/geldntds. Once you select the
method, the associated parameters appear in the following illustration. You can set and get the
parameter values. Parameters with a white background are required inputs and the parameters
with a gray background are recommended inputs.

Open Application Reference
Returns a reference to a VI Server application running on the specified computer. If you do
not specify a value famachine name then it returns a reference to the local LabVIEW
application in which this function is running.

You can use thapplication referenceoutput as an input to the Property and Invoke nodes to
get or set properties and invoke methods on the application. Using it as the input to the Open
VI Reference function lets you get references to VIs in that application. Close the reference
with the Close Application or VI Reference function. If you forget to close this reference, it
closes automatically when the top-level VI associated with this function finishes executing.
However, it is good practice to conserve the resources involved in maintaining the connection
by closing the reference when you finish using it.

© MNational Instruments Corporation 12-3 LabVIEW Function and VI Reference Manual

Chapter 12

OpenV

Application Control Functions

| Reference
Returns a reference to a VI specified by a name string or path to the VI's location on disk.

You can get references to VIs in another LabVIEW application by wirirgpplication
reference(obtained from the Open Application Reference function) to this function. In this
casepath input refers to the file system on the remote LabVIEW computer. If you wire a
reference to the local LabVIEW application you get the same behavior as if you had not wired
anything to theapplication referenceinput.

If you intend to perform editing operations on the referenced VI, and the VI has a
password-protected diagram, you can provide the passwordpasbeordstring input.

If you provide the incorrect password, the Open VI Reference function returns an error and
an invalid VI reference. If you provide no password when opening a reference to a VI that is
password protected, you can still get the reference, but you can only perform operations that
do not edit the VI.

If you intend to call the specified VI through the Call By Reference function, wire a
strictly-typed VI reference to thtgpe specifierinput. The function ignores the value of this
input. Only the input's type—the connector pane information—is used. By specifying this
type, the Open VI Reference function verifies at run time that the referenced VI's connector
pane matches that of thge specifierinput.

Note It is possible to wire a Generic VI refnum type to the type specifier input. Doing

this results in the same behavior as if you had not wired the type specifier input
at all.

If you wire the type specifier input with a strictly-typed VI refnum, the VI must meet several
requirements before the VI reference is returned successfully:

e The VI cannot be broken for any reason.

e The VI must be runnable as a subVI; that is, it cannot be active as a top-level VI (unless
the VI is re-entrant).

¢ The connector pane of the VI must match that of the type specifier.
If you forget to close this reference, it closes automatically when the top-level VI associated

with this function finishes executing. However, it is good practice to conserve the resources
involved in maintaining the connection by closing the reference when you finish using it.

LabVIEW Function and VI Reference Manual 12-4 © MNational Instruments Corporation

Chapter 12 Application Control Functions

If you get a strictly-typed reference to a reentrant VI, a dedicated data space is allocated for
that reference. This data space is always used in conjunction with the output VI reference.
This can lead to some new behaviors that you may not be accustomed to in LabVIEW.

For example, parallel calls (using the Call By Reference node) to a reentrant VI using the
same VI reference do not execute in parallel, but execute serially, one after the other.

Notice that a VI reference is similar to what is known as a function pointer in other languages.
However, in LabVIEW, these function pointers also can be used to call VIs across the
network.

Print Panel

Produces the same printout as programmatic print at completion, but can be called from other
VIs and at times other than at completion. By default, it prints the entire panel, not just what
is visible in the window. This VI assumes that the VI is loaded but does not require the
window to be open.

Property Node

Sets (writes) or gets (reads) VI and application property information. To select the VI or
application class, pop up on the node and select froi8aleet VI Server Classubmenu.
To select an application class, sel&pplication. To select a VI class, selédirtual
Instrument, or wire the VI or application refnum teferenceand the node choices change
accordingly.

To select a specifiproperty, pop up on one of thameterminals and sele&roperties.

To set property information, pop up and sefebainge to Write, and to get property
information pop up and sele€hange to Read Some properties are read only, so you cannot
seeChange to Write in the pop-up menu. The Property node works the same way as
Attribute nodes. If you want to add items to the node, pop up and Adek&lement or click

and drag the node to expand the number of items in the node. When this node executes,
properties are handled in the order from top to bottom. If an error occurs on one of the
properties, the node stops at that property and returns an error. No further properties are
handled. The error string reports which property caused the error. Remember if the small
direction arrow on a property is on the left, you are setting the property value. If the small
direction arrow on the property is on the right, you are getting the property value. Each
property name has a short or long name which can be changed by popping up and selecting
Name Format Another name format is no name where only the type is displayed for each

property.

© MNational Instruments Corporation 12-5 LabVIEW Function and VI Reference Manual

Chapter 12

Quit

Stop

Application Control Functions

Stops all executing VIs and ends the current session of LabVIEW. This function shuts down
only LabVIEW,; the function does not affect other applications. The function stops all running
VIs the same way the Stop function does.

Stops the VI in which it executes, just as if you clickedStap button in the toolbar. If you
wired the input, stop occurs only if the input value is TRUE. If you leave the input unwired,
the stop occurs as soon as the node that is currently executing finishes.

If you need to abort execution of all VIs in a hierarchy from the block diagram, you can use
this function, but you must use it with caution. Before you call the Stop function with a TRUE
input, be sure to complete all final tasks for the VI first, such as closing files, setting save
values for devices being controlled, and so on. If you put the Stop function in a subVI, you
should make its behavior clear to other users of the VI because this function causes their
VI hierarchies to abort execution.

In general, avoid using the Stop function when you have a built-in termination protocol in
your VI. For example, I/O operations should be performed in While Loops so that the VI can
terminate the loop on an I/O error. You should also consider using a front panel Stop Boolean
control to terminate the loop at the request of the user rather than using the Stop function.

LabVIEW Function and VI Reference Manual 12-6 © MNational Instruments Corporation

Chapter 12 Application Control Functions

Help Function Descriptions

The following illustration displays the options available onHiedp subpalette.

Control Help Window

Modifies theHelp window by showing, hiding, or repositioning the window.

Control Online Help

Controls the online help system by displaying the table of contents of a help file, jumping to
a specific point in a help file, or closing the online help system.

Get Help Window Status

Returns the status and the position information foiHbkp window.

© MNational Instruments Corporation 12-7 LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

Menu Functions

The following illustration displays the options available onNtemu subpalette.

The Menu functions operate on menus identified by a refnum. A VI's menu refnum is
obtained through the constant Current VI's menu. Items are identified by an item tag (string)
and sometimes by an item path (string), which is a list of item tags from the menu tree root
up to the item and separated by colons.

The following Menu functions are available.

Delete Menu Items
Deletes menu items from the menubar or a submenu within the menubar.

If menu tagis specified, the items are deleted from the submenu specifiadrytag or
else the items are deleted from the menubar. The function returns an meauifagor one
of the items specified is not found.

items can be a tag (string) of an existing item, an array of tags of existing items, a position
index (zero-based integer) of an item in the menu or an array of position indices of items in
the menu. If you do not wiitems, all the items in the menu are deleted. If there is a submenu
in any of the specified items, the submenu and all its contents are deleted automatically.
Because separators do not have unique tags, they are best deleted by using their positional
indices.

LabVIEW Function and VI Reference Manual 12-8 © MNational Instruments Corporation

Chapter 12 Application Control Functions

Enable Menu Tracking
Enables or disables tracking of mesalections.

Get Menu Item Info
Returns the attributes of the menu item specified thrategh tag.

Item attributes argem name(the string that appears in the memmabled(false designates

that the item is grayed outhecked(specifies whether there is a check mark next to the
item), andshort cut (key accelerator). If the item has a submenu, its item tags are returned as
an array of strings isubmenu tags|f item tag is unwired, the menubar items are returned.

If item tag is not valid, an error is returned.

Get Menu Selection
Returns thetem tag of the last selected menu item, optionally waitiingeout
milliseconds . item path is a string describing the position of the item in the menu
hierarchy, which is the format of a list of menu tags separated by a colon (:). If block menu
is set toTrue , Menu selection is blocked out after an item tag is read.

© MNational Instruments Corporation 12-9 LabVIEW Function and VI Reference Manual

Chapter 12 Application Control Functions

Get Menu Shortcut Info
Returns the menu item that is accessible through a given shortcut.

item path is a string of menu item tags separated by a colon (:).

short cut consists of a string (key) and a Boolean (specifies whether the shift key is included
or not).

Insert Menu ltems
Inserts menu items into a menubar or a submenu within the menubar.

menu tagspecifies the submenu where items are inserted. If you do not specifytag
the items are inserted into theenubar.

item namesanditem tagsidentify the items to be inserted into the menu. The typeof
namesanditem tagscan be an array of strings (for inserting multiple items) or just a string

(for inserting a single item). You can wire in eitlitern namesor item tags in which case

both names and tags get the same values. If you require each item to have different name and
tag, you must wire in separate valuesifem namesanditem tags

after item specifies the position where the items are insestiéer item can be a tag (string)

of an existing item or a position index (zero based integer) in the menu. To insert at the
beginning of the menu, wire a number less thanditey item. To insert at the end of the

menu, wire a number larger than the number of items in the menu. You can insert a separator
using the application tag APP_SEPARATOR. The function always ensures that the tags of all
the inserted menu items are unique to the menu hierarchy by appending numbers to the
supplied tags, if necessary.

item tags outreturns the actual tags of the inserted itemsdifiu tagor after item (tag) is
not found, the function returns an error.

LabVIEW Function and VI Reference Manual 12-10 © MNational Instruments Corporation

Chapter 12 Application Control Functions

Set Menu Item Info

Sets the attributes of a menu item specified thronghu anditem tag. Item attributes are
item name (the string that appears in the meranabled(false designates that the item is
grayed out)checked(specifies whether there is a check mark next to the item}ytaomttut
(key accelerator). Attributes that are not wired remain unchangezmlfag is not valid, an
error is returned.

© MNational Instruments Corporation 12-11 LabVIEW Function and VI Reference Manual

Advanced Functions

This chapter describes the functions that perform advanced operations.
This chapter also describes the Data Manipulation and Synchronization
functions, and the VI Control and Memory ViIs.

To access thAdvancedpalette, shown in the following illustration, select
Functions»Advanced

The Advanced functions include the following subpalettes:
« Data Manipulation

e Memory

* Synchronization

e VI Control

© MNational Instruments Corporation 13-1 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Advanced Function Descriptions

The following Advanced functions are available.

Beep

Causes the system to issue an audible tone. You can specify the tone frequency in Hertz,
the duration in milliseconds, and the intensity as a value from 0 to 255, with 255 being the
loudest. Although this VI appears on all platforms, the frequency, duration, and intensity
parameters work only on the Macintosh.

Code Interface Node

Calls code written in a conventional programming language, such as C, directly from a block
diagram. Code Interface Nodes (CINs) make it possible for you to use algorithms written in
another language or to access platform-specific features or hardware that G does not directly
support.

CINs are resizable and show datatypes for the connected inputs and outputs, similar to the
Bundle function. The following illustration shows the CIN function.

The LabVIEW interface to external code is very powerful. You can pass any number of
parameters to or from external code, and each parameter can be of any arbitrary G datatype.
LabVIEW provides several libraries of routines that make working with G datatypes easier.
These routines support memory allocation, file manipulation, and datatype conversion.

If you convert a VI that contains a CIN to another platform, you need to recompile the code
for the new platform because CINs use code compiled in another programming language. You
can write source code for a CIN so that it is machine-independent, requiring only a recompile
to convert it to another platform. For examples of CINsegamples\cins

For more information on the Code Interface Node, sekdh¥IEW Code Interface
Reference Manuahvailable in portable document format (PDF) only.

LabVIEW Function and VI Reference Manual 13-2 © MNational Instruments Corporation

Chapter 13 Advanced Functions

Call Library Function
Calls standard libraries without writing a Code Interface Node (CIN). Under Windows, you
can call a dynamic link library (DLL) function directly. In Macintosh and UNIX, you can call
a shared library function directly. On the Macintosh 68K, you must have the CFM-68K
system extension installed for the Call Library Function node to operate.

This node supports a large number of datatypes and calling conventions. You can use it to call
functions from most standard and custom-made libraries.

The Call Library Function node, shown in the following illustration, looks similar to a
Code Interface node.

The Call Library Function consists of paired input/output terminals with input on the left and
output on the right. You can use one or both. The return value for the function is returned in
the right terminal of the top pair of terminals of the node. If there is no return value, then this
pair of terminals is unused. Each additional pair of terminals corresponds to a parameter in
the functions parameter list. You pass a value to the function by wiring to the left terminal of
a terminal pair. You read the value of a parameter after the function call by wiring from the
right terminal of a terminal pair.

If you selecConfigure... from the pop-up menu of the node, you see a Call Library Function
dialog box from which you can specify the library name or path, function name, calling
conventions, parameters, and return value for the node. When you ciik,dhe node
automatically increases in size to have the correct number of terminals. It then sets the
terminals to the correct datatypes. For more information on Call Library Function refer to
Chapter 25Calling Code From Other Languagés theG Programming Reference Manual

© MNational Instruments Corporation 13-3 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Data Manipulation Function Descriptions

The following illustration displays the options available onDia¢a Manipulation
subpalette.

Flatten To String
Convertsanything to a string of binary valuesype string is a type descriptor that describes
the datatype of anythindata string is the flattened form of anything. For more information
on type descriptors and flattened data,Ha#iened Datain Appendix A,Data Storage
Formats of theG Programming Reference Manual

Join Numbers
Creates a number from the component bytes or words.

Logical Shift
Shiftsx the number of bits specified jy

LabVIEW Function and VI Reference Manual 13-4 © MNational Instruments Corporation

Chapter 13 Advanced Functions

Mantissa & Exponent
Returns the mantissa and exponent of the input numeric value such that
number = mantissa* 2 &P f humber is 0, bothmantissaandexponentare 0.
Otherwise, the value @hantissais greater than or equal to 1 and less than 2, and the value
of exponentis an integer.

Rotate
Rotatesx the number of bits specified gy

Rotate Left With Carry

Rotates each bit in the inputlue to the left (from least significant to most significant bit),
insertscarry in the low-order bit, and returns the most significant bit.

Rotate Right With Carry

Rotates each bit walue to the right (from most significant to least significant), inseatsy
in the high-order bit, and returns the least significant bit.

Split Number

Breaks a number into its component bytes or words.

© MNational Instruments Corporation 13-5 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

The following illustration shows an example of how to use the Split Number function.
The function splits the signed 32-bit number 100,000 into the high word component, 1,
and the low word component, 34,464.

Swap Bytes
Swaps the high-order 8 bits and the low-order 8 bits for every weanalyihing.

Swap Words
Swaps the high-order 16 bits and the low-order 16 bits for every long integgything.

Type Cast
Castsx to the datatypeype.

Casting data to a string converts it into machine-independent, big endian form. That is, the
function puts the most significant byte or word first and the least significant byte or word last,
removes alignment, and converts extended-precision numbers to 16 bytes. Casting a string to

LabVIEW Function and VI Reference Manual 13-6 © MNational Instruments Corporation

Chapter 13 Advanced Functions

a 1D array converts the string from machine-independent form to the native form for that
platform.

Unflatten From String
Convertshinary string to the type wired ttype. This function performs the inverse of
Flatten To Stringbinary string should contain flattened data of the type wiretype.
For more information on type descriptors and flattened datd;latened Datain
Appendix A,Data Storage Formatof theG Programming Reference Manual

Memory VI Descriptions

The following illustration displays the options available onNfeenory subpalette.

In Port (Windows 3.1 and Windows 95)

Reads a byte or word integer from a spec#@ister address Because this VI is not available
on all platforms, VIs using this subVI are not portable.

Out Port (Windows 3.1 and Windows 95)

Writes a byte or word integer to a speciégister address Because this VI is not available
on all platforms, VIs using this subVI are not portable.

© MNational Instruments Corporation 13-7 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Synchronization Vis

You can synchronize tasks executing in parallel by using the Synchronization VIs.
You can also use the Synchronization VIs to pass data between parallel tasks. You access
the Synchronization palette by choosingunctions»Advanced»Synchronization

The following illustration displays the options available on3lachronization palette.

The Synchronization palette consists of five subpalettes:
* Naotification VIs

¢ Queue Vis

¢ Rendezvous VIs

e Semaphore Vs

* Occurrence Functions

Notification Vs

You can use the Notification VIs to pass data from one task to one or more separate, parallel
tasks. In particular, you use these VIs when you want one or more VIs or parts of block
diagrams to wait until another VI or part of a block diagram sends them some data.

The Notification Vls differ from the Queue Vis in that the data sent is not buffered. That is,
if there is no one waiting on a notification when it is sent, the data will be “lost” if another
notification is sent. Also, more than one Wait On Notification VI can receive the same data.

LabVIEW Function and VI Reference Manual 13-8 © MNational Instruments Corporation

Chapter 13 Advanced Functions

You can access the notification VIs by selecting
Functions»Advanced»Synchronization»Notification

The notification VlIs use thRotifier RefNum control from theControls»Path & Refnum
palette.

The Notifier RefNum can be used with the following VIs.

Cancel Notification
Cancels and returns a previously sent notification.

This prevents a call to the Wait On Notification VI wigimore previousset to FALSE to see
the previously sent notification.

Create Notifier

Looks up an existingotifier or creates a nemotifier and returns a refnum that you can use
when calling other Notification Vis.

If nameis specified, the VI first searches for an existiogifier with the sam&ameand

will return its refnum if it exists. If a named notifier with the same name does not already exist
and thereturn existing input is FALSE, the VI will create a nawtifier and return its

refnum. Thecreated newoutput returns TRUE if the VI creates a new natifier.

© MNational Instruments Corporation 13-9 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Destroy Notifier
Destroys the specifiedbtifier and returns thiast notification that was sent. All Wait on
Notification VIs that are currently waiting on this notifier time out immediately and return
an error.

Get Notifier Status
Returns current status informationruattifier .

Not A Notifier

Returns TRUE ihaotifier is not a valid notifier refnum.

Send Notification
Sendmotification to the specifiedhotifier. All Wait On Notification Vs that are currently
waiting on thisnotifier stop waiting and return the specifiedtification.

Wait On Notification

Waits for the Send Notification VI to sendtification to the specified notifier.

LabVIEW Function and VI Reference Manual 13-10 © MNational Instruments Corporation

Chapter 13 Advanced Functions

If ignore previousis FALSE and a notification was sent since the last time this VI was called,
the VI returns immediately with the value of the old notification and tiritled out as

FALSE. If theignore previousinput is TRUE, the VI will wait timeout milliseconds

(default -1, or forever) before timing out. If a notification is seémted out will return

FALSE. If a notification is not sent orfiifotifier is not validtimed out will return TRUE.

Wait On Notification From Multiple
Waits for the Send Notification VI to send a notification to one of the specified notifiers.

If ignore previousis FALSE and a notification was sent to any of the specified notifiers since
the last time this VI was called, the VI returns immediately with the value(s) of the old
notification(s) and withimed out=FALSE. If theignore previousinput is TRUE, the VI

will wait ms timeoutmilliseconds (default —1, or forever) before timing out. If at least one
notification is senttimed out will return FALSE. If no notification is sentimed out will

return TRUE.

Queue Vls

You can use the Queue VIs to pass an ordered sequence of data elements from one task to

another separate, parallel task. In particular, you use these VIs when you want one task to wait
until another task provides it with some data. You can also use these VIs when you want one

task to wait until another task has processed some data that the first task has provided.

The queue Vs differ from the notification VIs in that the data sent is buffered. That is, if there

is no one waiting to read from the queue when an element is inserted, the element stays in the
gueue until it is explicitly removed. Also, when data is inserted into a queue and there are two
VIs waiting to remove it from the queue, only one of them receives the data.

You can access the Queue Vls by seledfumgctions»Advanced»Synchronization»Queue

The Queue VIs use tligueue RefNumcontrol from theControls»Path & Refnum palette.

© MNational Instruments Corporation 13-11 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Queue RefNum can be used with the following Vis.

Create Queue
Looks up an existing queue or creates a new queue and returns a refnum that you can use when
calling other queue ViIs.

If you specify a size > 0, the queue size is limited to that many elements. If the Insert Queue
Element VI tries to insert an element into a full queue, it must wait until an element is removed
with the Remove Queue Element VI. The default size is —1 for an unbounded queue.

If a name is specified, the VI first searches for an existing queue with the same name and will
returns its refnum if it exists. If a named queue with the same name does not already exist and
thereturn existing input is FALSE, the VI creates a new queue and return its refnum.
Thecreated newoutput returns TRUE if the VI creates a new queue.

LabVIEW Function and VI Reference Manual 13-12 © MNational Instruments Corporation

Chapter 13 Advanced Functions

Destroy Queue

Destroys the specified queue and returns any elements that are in the queue. All Insert Queue

Element and Remove Queue Element VIs that are currently waiting on this queue time out
immediately and return an error.

Flush Queue
Removes alelementsfrom queue

Get Queue Status
Returns current status informationaqafeue

Insert Queue Element
Inserts an element into a queue.

Theat begining parameter specifies whether the elementis inserted at the end (default) or the
front of the queue. If the queue is full, the VI waitseout milliseconds (default —1, or
forever) before timing out. If space becomes available during the wait, the element is inserted

andtimeout returns FALSE. If the queue remains full or the queue is not Validput
returns TRUE.

© MNational Instruments Corporation 13-13 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Not A Queue

Returns TRUE ifjueueis not a valid queue refnum.

Remove Queue Element
Removes an element from a queue.

Thefrom end parameter specifies whether the returned element is taken from the front
(default) or the end of the queue. If the queue is empty, the VI tvagsut milliseconds
(default —1, or forever) before timing out. If an element becomes available during the wait,
the element is returned atiched out returns FALSE. If no element becomes available or the
queue is not validjmed out returns TRUE.

Rendezvous Vs

You can use the Rendezvous VIs to synchronize two or more separate, parallel tasks at
specific points of execution. Each task that reaches the rendezvous waits until the specified
number of tasks are waiting, at which point all tasks proceed with execution.

You can access the Rendezvous VIs by selecting
Functions»Advanced»Synchronization»Rendezvous

LabVIEW Function and VI Reference Manual 13-14 © MNational Instruments Corporation

Chapter 13 Advanced Functions

The Rendezvous Vs use tRendezvous RefNuntontrol from theControls»
Path & Refnum palette.

The Rendezvous RefNum can be used with the following VIs.

Create Rendezvous

Looks up an existingendezvousor creates a nerendezvousand returns a refnum that you
can use when calling other Rendezvous Vils.

Thesizespecifies how many tasks have to meet atéhdezvousin order to continue
execution. The default size is 2.

If nameis specified, the VI first searches for an existiegdezvouswith the same name and
returns its refnum if it exists. If a named rendezvous with the same name does not already
exist and theeturn existing input is FALSE, the VI creates a new rendezvous and return its
refnum. Thecreated newoutput returns TRUE if the VI creates a new rendezvous.

Destroy Rendezvous

Destroys the specified rendezvous. All Wait at Rendezvous VIs that are currently waiting on
this rendezvous time out immediately and return an error.

Get Rendezvous Status
Returns current status information afemdezvous

© MNational Instruments Corporation 13-15 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Not A Rendezvous
Returns TRUE ifendezvousis not a valid rendezvous refnum.

Resize Rendezvous
Changes the size oéndezvousby size changeand returnsiew size

If the number of tasks currently waitingrandezvousis less than or equal teew size the
first size tasks stop waiting and continue execution.

Wait at Rendezvous
Waits until a sufficient number of tasks have arrived at the rendezvous.

If the number of tasks, including the new one, waitingeatiezvousis less than the
rendezvous size, the VI wattmeout milliseconds (default —1, or forever) before timing out.
If enough tasks arrive at the rendezvous during the tivaéd out returns FALSE. If enough
tasks do not arrive or the rendezvous is not vifited out returns TRUE.

Semaphore Vis

Semaphores, also known as Mutex, are used to limit the number of tasks that may
simultaneously operate on a shared (protected) resource. A protected resource or critical
section may include writing to global variables or communicating with external instruments.

You can use the Semaphore VIs to synchronize two or more separate, parallel tasks so that
only one task at a time executes a critical section of code protected by a common semaphore.
In particular, you use these VIs when you want other VIs or parts of block diagram to wait
until another VI or part of a block diagram is finished with the execution of a critical section.

You can access the Semaphore VIs by sele&limgtions»Advanced»
Synchronization»Semaphore

LabVIEW Function and VI Reference Manual 13-16 © MNational Instruments Corporation

Chapter 13 Advanced Functions

The semaphore VIs use tBemaphore RefNumcontrol from theControls»
Path & Refnum palette.

The Semaphore RefNum can be used with the following Vls.

Acquire Semaphore
Acquires access to a semaphore.

If the semaphore is already acquired by the maximum number of tasks, the \tinnexitst
milliseconds (default —1, or forever) before timing out. If the semaphore becomes available
during the waittimed out returns FALSE. If the semaphore does not become available or the
semaphore is not valitimed out returns TRUE.

Create Semaphore

Looks up an existing semaphore or creates a new semaphore and returns a refnum that you
can use when calling other semaphore VIs.

sizespecifies how many tasks may acquire the semaphore at the same time. The default size
is 1.

If a name is specified, the VI first searches for an existing semaphore with the same name and
returns its refnum if it exists. If a named semaphore with the same name does not already exist

© MNational Instruments Corporation 13-17 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

and thereturn existing input is FALSE, the VI creates a new semaphore and return its
refnum. Thecreated newoutput returns TRUE if the VI creates a new semaphore.

Destroy Semaphore

Destroys the specified semaphore. All Acquire Semaphore VIs that are currently waiting on
this semaphore will time out immediately and return an error.

Get Semaphore Status
Returns current status information of a semaphore.

Not A Semaphore
Returns TRUE ifemaphoreis not a valid semaphore refnum.

Release Semaphore
Releases access to a semaphore.

If there is an Acquire Semaphore VI waiting for this semaphore, it stops waiting and
continues execution. If you call the Release Semaphore VI on a semaphore that you have not
acquired, you effectively increment the semaphore size.

LabVIEW Function and VI Reference Manual 13-18 © MNational Instruments Corporation

Chapter 13 Advanced Functions

Occurrence Function Descriptions

You can use the occurrence functions to control separate, synchronous activities. In particular,
you use these functions when you want one VI or part of a block diagram to wait until another
VI or part of a block diagram finishes a task without forcing LabVIEW to poll.

You can perform the same task using global variables, with one loop polling the value of the
global until its value changes. However, global variables add overhead, because the loop that
pulls the global variable uses execution time. With occurrences, the polling loop is replaced
with a Wait on Occurrence function and does not use processor time. When some diagram
sets the occurrence, LabVIEW activates all Wait on Occurrence functions in any block
diagrams that are waiting for the specified occurrence.

The following illustration displays the options available on@eurrencessubpalette.

Generate Occurrence

Creates amccurrencethat you can pass to the Wait on Occurrence and Set Occurrence
functions.

Ordinarily, only one Generate Occurrence node is connected to any set of Wait on Occurrence
and Set Occurrence functions. You can connect a Generate Occurrence function to any
number of Wait on Occurrence and Set Occurrence functions. You do not have to have the
same number of Wait on Occurrence and Set Occurrence functions.

Unlike other synchronization VIs, each Generate Occurrence function on a block diagram
represents a single, unigue occurrence. In this way, you can think of the Generate Occurrence
function as a constant. When a VI is running, every time a Generate Occurrence function
executes, the node produces the same value. For example, if you place a Generate Occurrence
function inside of a loop, the value produced by Generate Occurrence is the same for every
iteration of the loop. If you place a Generate Occurrence function on the block diagram of a
reentrant VI, Generate Occurrence produces a different value for each caller.

© MNational Instruments Corporation 13-19 LabVIEW Function and VI Reference Manual

Chapter 13 Advanced Functions

Set Occurrence

Triggers the specifiedccurrence All block diagrams that are waiting for this occurrence
stop waiting.

Wait On Occurrence
Waits for the Set Occurrence function to set or trigger the gigearrence

LabVIEW Function and VI Reference Manual 13-20 © MNational Instruments Corporation

Part ||

Data Acquisition Vis

Part Il,Data Aquisition Visintroduces the collection of Vs that work with
your data aquisition (DAQ) hardware devices. This part contains the
following chapters:

Chapter 14|ntroduction to the LabVIEW Data Acquisition Yls
contains basic information about the data acquisition (DAQ) VIs and
shows where you can find them in LabVIEW.

Chapter 15Easy Analog Input V|slescribes the Easy Analog Input
VIs, which perform simple analog input operations.

Chapter 16lntermediate Analog Input VJslescribes the Intermediate
Analog Input Vls.

Chapter 17Analog Input Utility VIs describes the Analog Input

Utility VIs. These VIs—AI Read One Scan, Al Waveform Scan, and
Al Continuous Scan—are single-VI solutions to common analog input
problems. The Analog Input Utility VIs are intermediate-level VIs, so
they rely on the advanced-level Vis.

Chapter 18Advanced Analog Input V/lsontains reference
descriptions of the Advanced Analog Input VIs. These VIs are the
interface to the NI-DAQ software and are the foundation of the Easy,
Utility and Intermediate Analog Input VIs.

Chapter 19Easy Analog Output Vlslescribes the Easy Analog
Output Vs in LabVIEW, which perform simple analog output
operations.

Chapter 20Intermediate Analog Output V/ldescribes the
Intermediate Analog Output VIs. These VIs—AO Write One Update,
AO Waveform Gen, and AO Continuous Gen—are single VI solutions
to common analog output problems.

Chapter 21Analog Output Utility Visdescribes the Analog Output
Utility VIs. The VIs—AO Continuous Generation, AO Waveform
Generation, and AO Write One Update—are single-VI solutions to

Part I

Data Acquisition VIs

common analog output problems. The Analog Output Utility VIs are
intermediate-level VIs, so they rely on the advanced-level Vis.

Chapter 22Advanced Analog Output Vlsontains reference
descriptions of the Advanced Analog Output VIs. These VIs are the
interface to the NI-DAQ software and are the foundation of the Easy,
Utility, and Intermediate Analog Output VIs.

Chapter 23Easy Digital I/O VIs describes the Easy Digital I/O Vis,
which perform simple digital I/O operations.

Chapter 24Intermediate Digital I/O Visdescribes the Intermediate
Digital I/O VIs. These Vls are single VI solutions to common digital
problems.

Chapter 25Advanced Digital /0 Visdescribes the Advanced Digital
I/0 Vls, which include the digital port and digital group VIs. You use
the digital port VIs for immediate reads and writes to digital lines and
ports. You use the digital group Vls for immediate, handshaked, or
clocked 1/O for multiple ports. These Vis are the interface to the
NI-DAQ software and the foundation of the Easy and Intermediate
Digital I/0O Vis.

Chapter 26Easy Counter Vigdescribes the Easy Counter Vls that
perform simple counting operations.

Chapter 27Intermediate Counter V]slescribes Intermediate Counter

VIs you can use to program counters on MIO, TIO, and other devices
with the DAQ-STC or Am9513 counter chips. These Vis call the
Advanced Counter VIs to configure the counters for common
operations and to start, read, and stop the counters. You can configure
these VIs to generate single pulses and continuous pulse trains, to
count events or elapsed time, to divide down a signal, and to measure
pulse width or period. The Easy Counter VIs call the Intermediate
Counter Vs for several pulse generation, counting, and measurement
operations.

Chapter 28Advanced Counter VJ]slescribes the Vis that configure
and control hardware counters. You can use these VIs to generate
variable duty cycle square waves, to count events, and to measure
periods and frequencies.

Chapter 29Calibration and Configuration Vigdescribes the VIs that
calibrate specific devices and set and return configuration information.

Chapter 30Signal Conditioning Vlisdescribes the data acquisition
Signal Conditioning VIs, which you use to convert analog input
voltages read from resistance temperature detectors (RTDs), strain
gauges, or thermocouples into units of strain or temperature.

LabVIEW Function and VI Reference Manual 1I-2 © MNational Instruments Corporation

Introduction to the LabVIEW
Data Acquisition VIs

This chapter contains basic information about the data acquisition (DAQ)
VlIs and shows where you can find them in LabVIEW. Descriptions of these
VIs comprise Chapter 14 through Chapter 29.

LabVIEW includes a collection of VIs that work with your DAQ hardware
devices. With LabVIEW DAQ VIs you can develop acquisition and control
applications.

You can find the DAQ VIs in thBunctions palette from your block
diagram in LabVIEW. The DAQ VIs are located near the bottom of the
Functions palette.

To access thBata Acquisition palette, choosEunctions»
Data Acquisition, as shown in the following illustration.

© MNational Instruments Corporation 14-1 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

TheData Acquisition palette contains six subpalette icons that take you
to the different classes of DAQ VIs. The following illustration shows what
each of the icons in tHeata Acquisition palette means.

Analog Output VIs Digital I/0 Vis

Analog Input Vis — -— Counter Vis

Calibration and >
Configuration VlIs

Signal Conditioning VIs

This part of the manual is organized in the order that the DAQ VI icons
appear in th®ata Acquisition palette from left to right. For example,

in this section, the Analog Input VI chapters are followed by the Analog
Output VI chapters, which are followed by the Digital I/0 VI chapters, and
so on. Most often, there are several chapters devoted to one class of
DAQ ViIs in the palette, because many of the VI palettes also contain
several subpalettes.

Finding Help Online for the DAQ Vls

You can find helpful information about individual VIs online by using the
LabVIEW Help window Help»Show Help. When you place the cursor

on a Vlicon, the wiring diagram and parameter names for that VI appear
in theHelp window. You can also find information for front panel controls
or indicators by placing the cursor over the control or indicator with the
Help window open. For more information on the LabVIEW Help window,
refer to theGetting Helpsection in Chapter Zireating VIs of the

LabVIEW User Manual.

In addition to theHelp window, LabVIEW has more extensive online
information available. To access this information, setep»Online
Reference For most block diagram objects, you can selgdine
Referencefrom the object’s pop-up menu to access the online description.
You can also access this information by pressing the button shown to the
left, which is located at the bottom of LabVIEWAIp window.

For information on creating your own online reference files, see the

LabVIEW Function and VI Reference Manual 14-2 © MNational Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Creating Your Own Help Filesection in Chapter Brinting and
Documenting VIsof theG Programming Reference Manual

Note Use only the inputs you need on each VI. LabVIEW sets all unwired inputs to their
default values. Many of the DAQ function inputs are optional and do not appear
in the Simple Diagram Helpwindow. These inputs typically specify rarely-used
options. If an input is required, your VI wiring remains “broken” until a value
is wired to the input. Required inputs appear in bold in tHelp window,
recommended inputs appear in plain text, and optional inputs are in gray text.
The default values for inputs appear in parentheses beside the input name in the
Help window.

Note Some DAQ VIs use an enumerated data type as a control or indicator terminal.
If you connect a numeric value to an enumerated indicator, LabVIEW converts
the number to the closest enumeration item. If you connect an enumerated control
to a number value, the value is the enumeration index.

The Analog Input Vis

These VIs perform analog input operations.

The Analog Input VIs can be found by chooskgctions»

Data Acquisition»Analog Input. When you click on the Analog Input
icon in theData Acquisition palette, théAnalog Input palette pops up,
as shown in the following illustration.

© MNational Instruments Corporation 14-3 LabVIEW Function and VI Reference Manual

Chapter 14

Introduction to the LabVIEW Data Acquisition VIs

There are four classes of Analog Input VIs found inAhalog Input
palette. The Easy Analog Input VIs, Intermediate Analog Input VIs,
Analog Input Utility VIs, and Advanced Analog Input VIs. The following
illustrates these VI classes.

-—— Easy Analog Input VIs

Intermediate

< Analog Input Vs

< Advanced
Analog Input Vis

AN

Analog Input Utility VIs

Easy Analog Input Vs

The Easy Analog Input VIs perform simple analog input operations.
You can run these VIs from the front panel or use them as subVIs in
basic applications.

You can use each VI alone to perform a basic analog operation.

Unlike intermediate- and advanced-level Vis, Easy Analog Input Vs
automatically alert you to errors with a dialog box that asks you to stop
the execution of the VI or to ignore the error.

The Easy Analog Input VIs provide a basic, convenient interface with
only the most commonly used inputs and outputs. For more complex
applications, you should use the Intermediate Analog Input VIs and
Advanced Analog Input VIs for more functionality and performance.

Refer to Chapter 1%&asy Analog Input V|dor specific VI information.

LabVIEW Function and VI Reference Manual 14-4 © National Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Intermediate Analog Input Vis

You can find intermediate-level Analog Input VIs in two different places

in theAnalog Input palette. You can find the Intermediate Analog

Input Vls in the second row of thenalog Input palette. The other
intermediate-level Vis are in thenalog Input Utilities palette, which

is discussed later. The Intermediate Analog Input VIs—AI Config,

Al Start, Al Read, Al Single Scan, and Al Clear—are in turn built from the
fundamental building block layer, called the Advanced Analog Input VIs.
These Vs offer almost as much power as the advanced-level Vs, and they
conveniently group the advanced-level Vs into a tidy, logical sequence.

Refer to Chapter 18ntermediate Analog Input Visor specific
VI information.

Analog Input Utility Vs

You can access thnalog Input Utilities palette by choosing the Analog
Input Utility icon from theAnalog Input palette. The Analog Input
Utility VIs—AI Read One Scan, Al Waveform Scan, and Al Continuous
Analog Input Scan—are single-VI solutions to common analog input problems. These
Utility Icon VIs are convenient, but they lack flexibility. These three Vls are built from
the Intermediate Analog Input Vls in tA@alog Input palette.

Refer to Chapter 1Analog Input Utility VIs for specific VI information.

Advanced Analog Input Vis

You can access thedvanced Analog Input palette by choosing the

Advanced Analog Inputicon from theAnalog Input palette. These Vls

are the interface to the NI-DAQ data acquisition software and are the
Advanced Analog foundation of the Easy, Utility, and Intermediate Analog Input VIs.

Input Icon
Refer to Chapter 1&dvanced Analog Input V/Ifor specific

VI information.

Locating Analog Input VI Examples

For examples of how to use the analog input VIs, see
examples\dag\anlogin\anlogin.llb.

© MNational Instruments Corporation 14-5 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Analog Output Vis

These Vls perform analog output operations.

The Analog Output VIs can be found by choodiuctions»Data
Acquisition»Analog Output. When you click on thAnalog Output icon
in theData Acquisition palette, théAnalog Output palette pops up, as
shown in the following illustration.

There are four classes of Analog Output Vis found inAihalog Output
palette: the Easy Analog Output Vls, Intermediate Analog Output Vs,
Analog Output Utility VIs, and the Advanced Analog Output Vls.

The following illustrates these VI classes.

< Easy Analog
Output ViIs

Intermediate

< Analog Output Vls

Advanced

< Analog Output VIs

\

Analog Output Utility VIs

LabVIEW Function and VI Reference Manual 14-6 © MNational Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition VIs

Easy Analog Output Vis

The Easy Analog Output VIs perform simple analog output operations.
You can run these Vls from the front panel or use them as subVIs in basic
applications.

You can use each VI by itself to perform a basic analog output operation.
Unlike intermediate- and advanced-level VIs, Easy Analog Output VIs
automatically alert you to errors with a dialog box that asks you to stop the
execution of the VI or to ignore the error.

The Easy Analog Output VIs provide a basic, convenient interface with
only the most commonly used inputs and outputs. For more complex
applications, you should use the Intermediate Analog Output VIs and
Advanced Analog Output VIs for more functionality and performance.

Refer to Chapter 1€asy Analog Output Vigor specific VI information.

Intermediate Analog Output VIs

You can find intermediate-level Analog Output VIs in two different places

in the Analog Output palette. You can find the Intermediate Analog

Output Vls in the second row of tWealog Output palette. The other
intermediate-level Vis are in tiaalog Output Utilities palette, which is
discussed later. The Intermediate Analog Output VIs—AO Config, AO
Write, AO Start, AO Wait, and AO Clear—are in turn built from the
fundamental building block layer, called the Advanced Analog Output VIs.
These VIs offer almost as much power as the advanced-level Vis, and they
conveniently group the advanced-level Vis into a tidy, logical sequence.

Refer to Chapter 20ntermediate Analog Output \Ifor specific
VI information.

Analog Output Utility Vs

You can access thnalog Output Utilities palette by choosing the
Analog Output Utility icon from theAnalog Output palette. The Analog
Output Utility VIs—AI Read One Scan, Al Waveform Scan, and Al
Analog Output Continuous Scan—are single-VI solutions to common analog output
Utility Icon problems. These VIs are convenient, but they lack flexibility. These three
VIs are built from the Intermediate Analog Output VIs in Amalog
Output palette.

Refer to Chapter 23nalog Output Utility Visfor specific VI information.

© National Instruments Corporation 14-7 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Advanced Analog Output Vis

Advanced Analog
Output Icon

You can access thedvanced Analog Outputpalette by choosing the
Advanced Analog Outputicon from theAnalog Output palette. These

Vls are the interface to the NI-DAQ software and are the foundation of the
Easy, Utility, and Intermediate Analog Output VIs.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 22Advanced Analog Output Vfer additional information on the
inputs and outputs and how they work.

Locating Analog Output VI Examples

For examples of how to use the analog output VIs, see the examples in
examples\dag\anlogout\anlogout.llb

Digital Function Vis

These VIs perform digital operations.

The Digital 1/0 Vs can be found by choosiRgnctions»Data
Acquisition»Digital I/O . When you click on the Digital I/0 icon in the
Data Acquisition palette, thdigital I/O palette pops up, as shown in the
following illustration.

There are three classes of Digital I/0O Vls found inRiggtal I/O palette.
The Easy Digital /0 Vls, Intermediate Digital /0 Vs, and Advanced
Digital I/O Vls. The following illustrates these VI classes.

LabVIEW Function and VI Reference Manual 14-8 © MNational Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

-———Easy Digital /0 VIs

Intermediate
/ Digital I/O Vs
< Advanced

Digital I/0 VIs

Easy Digital 1/0 Vls

The Easy Digital /0 VIs perform simple digital operations. You can run
these Vls from the front panel or use them as subVIs in basic applications.

You can use each VI by itself to perform a basic digital operation. Unlike
intermediate- and advanced-level VIs, Easy Digital I/0 VIs automatically
alert you to errors with a dialog box that asks you to stop the execution of
the VI or to ignore the error.

The Easy Digital I/O VIs are actually composed of Advanced Digital /0
VIs. The Easy Digital /0O Vls provide a basic, convenient interface with
only the most commonly used inputs and outputs. For more complex
applications, you should use the intermediate- or advanced-level Vis for
more functionality and performance.

Refer to Chapter 2Easy Digital I1/0O Visfor specific VI information.

Intermediate Digital 1/0 Vis

You can find intermediate-level Digital I/O Vls in the second and third
rows of theDigital I/O palette. The Intermediate Digital /O VIs are in turn
built from the fundamental building block layer, called the Advanced
Digital I1/0O VIs. These VIs offer almost as much power as the
advanced-level VIs, and they conveniently group the advanced-level
VIs into a tidy, logical sequence.

Refer to Chapter 24ntermediate Digital I/O Vlsfor specific
VI information.

© MNational Instruments Corporation 14-9 LabVIEW Function and VI Reference Manual

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

Advanced Digital 1/0 Vls

Advanced Digital
1/0O Icon

You can access thedvanced Digital /O palette by choosing the
Advanced Digital I/O icon from theDigital I/O palette. These VIs are the
interface to the NI-DAQ software and are the foundation of the Easy,
Utility, and Intermediate Digital 1/0 VIs.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 25Advanced Digital 1/0 Visfor additional information on the
inputs and outputs and how they work.

Locating Digital 1/0 VI Examples

Counter Vs

For examples of how to use the Digital I/O VIs, see the examples in
examples\daq\digital\digio.llb

These VIs perform counting operations.

The Counter VIs can be found by choosigictions»Data
Acquisition»Counter. When you click on th€ounter icon in the

Data Acquisition palette, theCounter palette pops up, as shown in the
following illustration.

LabVIEW Function and VI Reference Manual 14-10 © MNational Instruments Corporation

Chapter 14 Introduction to the LabVIEW Data Acquisition Vs

There are three classes of Counter VIs found irCihnter palette: the
Easy, Intermediate, and Advanced Counter VIs. The following illustrates
these VI classes.

-— Easy Counter Vs

< Advanced

Counter Vis
\ Intermediate Counter Vis

The Easy Counter VIs perform simple counting operations. You can run
these VIs from the front panel or use them as subViIs in basic applications.

Easy Counter Vs

You can use each VI by itself to perform a basic counting operation. Unlike
intermediate- and advanced-level VIs, Easy Counter VIs automatically
alert you to errors with a dialog box that asks you to stop the execution of
the VI or to ignore the error.

The Easy Counter VIs are actually composed of Intermediate Counter VIs,
which are in turn composed of Advanced Counter VIs. The Easy Counter
Vs provide a basic, convenient interface with only the most commonly
used inputs and outputs. For more complex applications, you should use the
intermediate- or advanced-level Vs for more functionality and
performance.

Refer to Chapter 2@&asy Counter Vidor specific VI information.

Intermediate Counter Input Vis

You can find the Intermediate Counter VIs in the second row of the
Counter palette. The Intermediate Counter VIs are in turn built from the
fundamental building block layer, called the Advanced Counter VIs. These
Intermediate Vis offer almost as much power as the advanced-level Vls, and they
Counter VI Icon conveniently group the advanced-level Vis into a tidy, logical sequence.

Refer to Chapter 2Tntermediate Counter V]$or specific VI information.

© MNational Instruments Corporation 14-11 LabVIEW Function and VI Reference Manual

DAQ Hardware Capabilitie

DAQ Hardware Capabilitie:

Chapter 29 Calibration and Configuration VIs

= Note Calibration of your E-Series device takes some time. Do not be alarmed if the VI
takes several seconds to execute.

A Warning When you run this VI with theoperation set to self calibrate or external calibrate,
LabVIEW will abort any ongoing operations the device is performing and set all
configurations to their defaults. Therefore, you should run this VI before any
other DAQ VIs or when no other operations are running.

12-Bit E-Series Devices

» Connect the positive output of your reference voltage source to the analog input
channel 8.

« Connect the negative output of your reference voltage source to the AISENSE line.
e Connect DACO line (analog output channel 0) with analog input channel 0.

» If your reference voltage source and your computer are floating with respect to each
other, connect the AISENSE line with the AIGND line as well as with the negative output
of your reference voltage source.

16-Bit E-Series Devices

« Connect the positive output of your reference voltage source to the analog input
channel 0.

» Connect the negative output of your reference voltage source to the analog output
channel 8 (by performing those two connections you supply reference voltage to the
analog input channel 0, which is configured for differential operation.)

» If your reference voltage source and your computer are floating with respect to each
other, connect the negative output of your reference voltage source to the AIGND line,
as well as to the analog input channel 8.

Get DAQ Device Information
Returns information about a DAQ device.

Refer to Appendix BDAQ Hardware Capabilitiesfor the transfer methods available with
your DAQ device.

© MNational Instruments Corporation 29-13 LabVIEW Function and VI Reference Manual

Appendix B DAQ Hardware Capabilities
Table B-31. Counter/Timer Characteristics—Timing Only Devices
? @ =
o o Q ©
23 < = o
T Qo
& % 2 2 3: < n .5
2 —_= > < m %) T (] =
= P73 » — [} S ° 9
O [T Lo} s} ° b4 2o 2
= c & 1] Ny o) P =9 a
Q [T 5] 7] = = =
€ o O e S 2 3 28 IS
S @ = 3 € S i) =3 273 35
. o n O o £ =1] > = [e)
Device O D # O = z O O o< O
PC-TIO-10 Am-9513 | 10 (8 have Internal: 5 MHz 16 | high-level, 10 | TC Up or
NB-TIO-10 SOURCE (only on CTR5 and low-level, pulse, Down
inputs at the | CTR10), 1 MHz, rising-edge, TC
110 100 kHz, 10 kHz, falling-edge toggle
connector) 1 kHz, 100 Hz;
external
Table B-32. Analog Input Configuration Programmability
Device Gain Coupling
5102 devices By Channel By Channels
Table B-33. Analog Input Characteristics
Number Input FIFO
Device of Channels Resolution Gains Range (V) (Words) Scanning
5102 2 8 bits 1,5, 20, 100 +5 663,000 1or2channels,
devices in any order
without
repetitions
Table B-34. Analog Input Characteristics, Part 2
Device Triggers Maximum Sampling Rate (S/s)

5102 devices

SW, Pre, Post, Analog

20,000,000 real time

LabVIEW Function and VI Reference Manual

B-24

© National Instruments Corporation

Trace, 45-18

Transfer Function, 40-7
Transpose 2D Array, 7-8
Triangle Wave, 38-9
Triangle Window, 42-7
Trigger, 35-4

TriggerList, 35-6

Two Button Dialog Box, 10-9
Type and Creator, 11-19
Type Cast, 13-6

U

UDP Close, 49-1

UDP Open, 49-1

UDP Read, 49-2

UDP Write, 49-2

Unbundle By Name, 8-6
Unbundle, 8-6

Unflatten From String, 13-7
Uniform White Noise, 38-10
Unit Vector, 46-8

Unwrap Phase, 39-19

User Definable Arithmetic Constants, 4-8

v

Variance, 44-13

VI Library Constant, 11-28

VISA Assert Trigger, 33-5

VISA Clear, 33-5

VISA Close, 33-5

VISA Disable Event, 33-10

VISA Discard Events, 33-10

VISA Enable Event, 33-11

VISA Find Resource, 33-6

VISA In8/1n16 / In32, 33-12

VISA Lock, 33-6

VISA Map Address, 33-16

VISA Memory Allocation, 33-13, 33-17

VISA Memory Free, 33-13, 33-17

VISA Move In8 / Move In16 / Move In32, 33-14
VISA Move Out8 / Move Outl6 / Move Out32, 33-14
VISA Open, 33-7

VISA Out8 / Outl6 / Out32, 33-15

VISA Peek8 / Peekl6 / Peek32, 33-17

© National Instruments Corporation -9

Index

VISA Poke8 / Pokel6 / Poke32, 33-17
VISA Read, 33-8

VISA Read STB, 33-9

VISA Status Description, 33-9

VISA Unlock, 33-9

VISA Unmap Address, 33-18

VISA Wait On Event, 33-11

VISA Write, 33-9

Volume Info, 11-20

W

Wait (ms), 10-9

Wait at Rendezvous, 13-16

Wait for GPIB RQS, 34-6

Wait On Notification, 13-10

Wait On Notification From Multiple, 13-11
Wait On Occurrence, 13-20

Wait Until Next ms Multiple, 10-10
Wait+ (ms), 27-7

WaitSRQ, 35-8

While Loop, 3-3

White Space?, 9-10

Write Characters To File, 11-11
Write File, 11-11

Write Key (Boolean), 11-24
Write Key (Double), 11-24

Write Key (132), 11-25

Write Key (Path), 11-25

Write Key (String), 11-25

Write Key (U32), 11-26

Write to Digital Line, 23-2

Write to Digital Port, 23-3

Write To 116 File, 11-13

Write To SGL File, 11-14

Write To Spreadsheet File, 11-12

Y
YI[il = Clip {X[il}, 39-19
Y[i] = X[i-n], 39-19

z

Zero Padder, 39-20

LabVIEW Function and VI Reference Manual

	LabVIEW Function and VI Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING

	Contents
	About This Manual

	fix: DAQ Hardware Capabilities,

