COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs.

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216

www.apexwaves.com

sales@apexwaves.com

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote

FD-11605

SPECIFICATIONS

FD-11605

8-Channel, ±60 V Voltage Input Device for FieldDAQ

Conditions

Specifications are typical and valid from -40 $^{\circ}$ C to +85 $^{\circ}$ C unless otherwise noted.

Input Characteristics

Number of channels	8 analog input channels
Isolation	Galvanic isolation between channels and to chassis
Input voltage range (AI+ to AI-)	±60 V, ±16 V
Minimum input overrange	
60 V range	6%
16 V range	13%
ADC resolution	24 bits
Type of ADC	Delta-Sigma (with analog prefiltering)
Sample mode	Simultaneous
Timebases $(f_M)^1$	
Frequency	13.1072 MHz, 12.8 MHz, 12.288 MHz, 10.24 MHz
Accuracy	±30 ppm maximum

Base clocks can be synchronized with other FieldDAQ devices using the network synchronization feature.

Sampled data rate range (f_s)

Minimum	500 Sample/s
Maximum	102.4 kSample/s
Sampled data rates (f_s)	Refer to the following table for sample data rates supported for each timebase

Table 1. Timebases (f_M) and Supported Sampled Data Rates (f_S), (kSamples/s)

13.1072 MHz	12.8 MHz	12.288 MHz	10.24 MHz
102.4	100.0	96.0	80.0
51.2	50.0	48.0	40.0
34.133	33.333	32.0	26.667
25.6	25.0	24.0	20.0*
20.48	20.0	19.2	16.0
17.067	16.667	16.0*	13.333
12.8	12.5	12.0	10.0*
10.24	10.0	9.6	8.0
8.533	8.333	8.0*	6.667
6.4	6.25	6.0	5.0*
5.12	5.0	4.8	4.0
4.267	4.167	4.0*	3.333
3.2	3.125	3.0	2.5*
2.56	2.5	2.4	2.0
2.133	2.083	2.0*	1.667
1.6	1.563	1.5	1.25*
1.28	1.25	1.2	1.0
1.067	1.042	1.0*	0.833
0.8	0.781	0.75	0.625

Table 1. Timebases (f_M) and Supported Sampled Data Rates (f_s), (kSamples/s) (Continued)

13.1072 MHz	12.8 MHz	12.288 MHz	10.24 MHz
0.64	0.625	0.6	0.5

Note: For sample rates that can be obtained using two different timebases, the lowest noise (highest resolution) option is indicated with an asterisk (*).

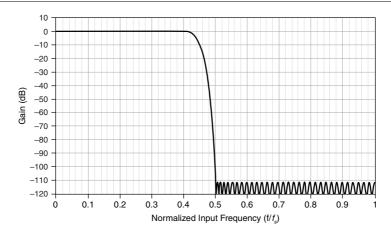
Input impedance (AI+ to AI-)

 $>1.1 \text{ M}\Omega$

Table 2. Accuracy

Nominal Input Range	Temperature	Gain Error (% of Reading)	Offset Error (% of Range, mV)
±60 V	5 °C to 40 °C	0.039%, typical	0.0012%, 0.72 mV, typical
		0.089%, maximum	0.0043%, 2.6 mV, maximum
	-40 °C to 85 °C	0.181%, maximum	0.01%, 6.0 mV, maximum
±16 V	5 °C to 40 °C	0.043%, typical	0.0015%, 0.24 mV, typical
		0.096%, maximum	0.0075%, 1.2 mV, maximum
	-40 °C to 85 °C	0.204%, maximum	0.018%, 2.9 mV, maximum

Sampled data rate noise		
1 kSample/s		
60 V	41 μV RMS	
16 V	15 μV RMS	
10 kSample/s		
60 V	89 μV RMS	
16 V	38 μV RMS	
102.4 kSample/s		
60 V	285 μV RMS	
16 V	120 μV RMS	


Stability

±9 ppm/°C ±11 ppm/°C
±11 ppm/°C
•
A C XX/0.0
.04 ****
$\pm 26 \mu\text{V/}^{\circ}\text{C}$
$\pm 13 \ \mu V/^{\circ}C$
-90 dB
95 dB
130 dBFS
-90 dB

Filtering

Brickwall filter (default)	
Input delay	$36/f_s + 2.3 \mu s$
Input delay tolerance	±400 ns
Passband frequency	DC to $0.4 \cdot f_s$
Passband flatness and input delay variation	on with frequency
0 kHz to 10 kHz	$\pm 0.02 \text{ dB}, \pm 10 \text{ ns}$
0 kHz to 20 kHz	±0.04 dB, ±20 ns
0 kHz to 40 kHz	±0.15 dB, ±60 ns
Stopband frequency	At or above $0.5 \cdot f_s$
Stopband rejection	≥100 dB
Alias-free bandwidth	$0.5 \cdot f_s$

Figure 1. Brickwall Filter Magnitude Response

Butterworth filter	
Input delay	Refer to the Butterworth Filter Input Delay for Available Timebases (f_M) table.
Input delay tolerance	±400 ns
Filter order	2nd or 4th order

Table 3. Butterworth Filter Cutoff Frequencies (-3 dB Point) for Available Timebases

13.1072 MHz	12.8 MHz	12.288 MHz	10.24 MHz
4096 Hz	4000 Hz	3840 Hz	3200 Hz
2048 Hz	2000 Hz	1920 Hz	1600 Hz
1024 Hz	1000 Hz	960 Hz	800 Hz
512 Hz	500 Hz	480 Hz	400 Hz
256 Hz	250 Hz	240 Hz	200 Hz
128 Hz	125 Hz	120 Hz	100 Hz

Table 4. Butterworth Filter Input Delay for Available Timebases (f_M)

		4th	n Order	2nd Order	
Timebase (MHz)	Cutoff (Hz)	Input Delay	Maximum Input Delay	Input Delay	Maximum Input Delay
13.1072	4096	436.84 μs	458.17 μs	399.46 μs	405.85 μs
	2048	537.87 μs	581.11 μs	454.14 μs	467.12 μs
	1024	741.15 μs	828.18 μs	563.88 μs	589.96 μs
	512	1.14730 ms	1.32160 ms	783.66 μs	835.62 μs
	256	1.95910 ms	2.30540 ms	1.22320 ms	1.32710 ms
	128	3.58390 ms	4.27780 ms	2.08320 ms	2.29320 ms
12.8	4000	447.27 μs	469.11 μs	408.99 μs	415.53 μs
	2000	550.73 μs	595.00 μs	464.98 μs	478.27 μs
	1000	758.88 μs	848.00 μs	577.35 μs	604.07 μs
	500	1.17470 ms	1.35320 ms	802.41 μs	855.62 μs
	250	2.00610 ms	2.36060 ms	1.25250 ms	1.35890 ms
	125	3.66990 ms	4.38040 ms	2.13320 ms	2.34820 ms
12.288	3840	465.81 μs	488.56 μs	425.94 μs	432.75 μs
	1920	573.58 μs	619.7 μs	484.26 μs	498.10 μs
	960	790.41 μs	883.24 μs	601.32 μs	629.14 μs
	480	1.22360 ms	1.40950 ms	835.75 μs	891.18 μs
	240	2.08960 ms	2.45890 ms	1.30460 ms	1.41540 ms
	120	3.82270 ms	4.56280 ms	2.22200 ms	2.44590 ms
10.24	3200	558.52 μs	585.81 μs	510.67 μs	518.84 μs
	1600	687.83 μs	743.18 μs	580.65 μs	597.26 μs
	800	948.03 μs	1.05940 ms	721.12 μs	754.51 μs
	400	1.46780 ms	1.69100 ms	1.00240 ms	1.06900 ms
	200	2.50700 ms	2.95020 ms	1.56510 ms	1.69800 ms
	100	4.58670 ms	5.47490 ms	2.66590 ms	2.93460 ms

Note Input delay is the delay for signal frequencies much lower than the cutoff frequency. Maximum input delay is the peak delay at high signal frequency. The following figures depict how the input delay varies with signal frequency. Refer to the FD-11605 User Guide for more information.

Figure 2. Butterworth Filter Magnitude Response (4th Order, with 12.8 MHz Timebase)

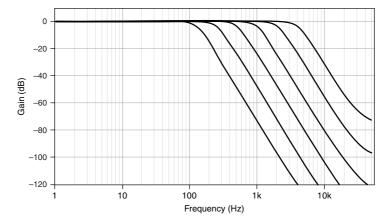


Figure 3. Butterworth Filter Magnitude Response (2nd Order, with 12.8 MHz Timebase)

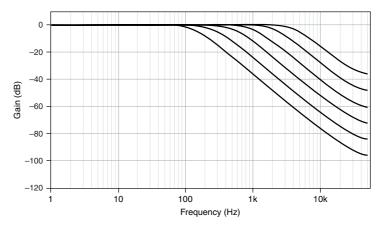


Figure 4. Butterworth Filter Input Delay (4th Order, with 12.8 MHz Timebase, 4 kHz, 2 kHz, 1 kHz Filter)

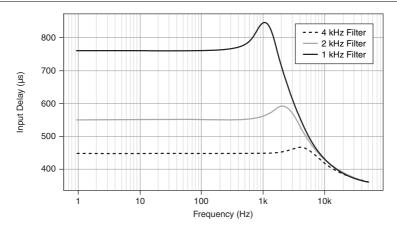


Figure 5. Butterworth Filter Input Delay (4th Order, with 12.8 MHz Timebase, 500 Hz, 250 Hz, 125 Hz Filter)

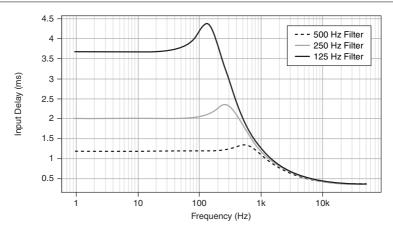


Figure 6. Butterworth Filter Input Delay (2nd Order, with 12.8 MHz Timebase,4 kHz, 2 kHz, 1 kHz Filter)

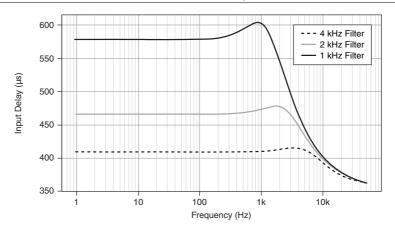
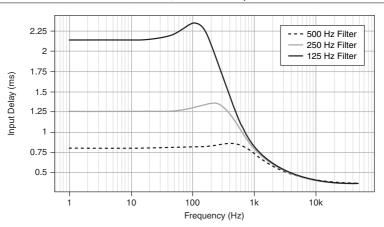
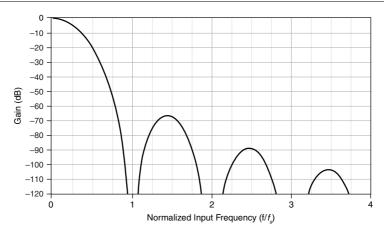




Figure 7. Butterworth Filter Input Delay (2nd Order, with 12.8 MHz Timebase, 500 Hz, 250 Hz, 125 Hz Filter)

Comb filter	
Input delay	$5/f_s + 2.3 \ \mu s$
Input delay tolerance	±400 ns
Notches	$f_s, 2f_s, 3f_s,$

Figure 8. Comb Filter Magnitude Response

Time-Based Triggers

Type Start Trigger, Sync Pulse

Timing and Synchronization

Protocol	IEEE 802.1AS for network synchronization over 1000 Base-TX, full-duplex
Network synchronization accuracy ²	<1 μs
Network synchronization accuracy with optimized configuration ³	<100 ns

Note When configured to use IEEE 1588, performance of synchronization may vary from these specifications.

² I/O synchronization is system-dependent. Assumes the devices are connected in a line topology. For information about network synchronization accuracy, visit ni.com/info and enter Info Code syncacc.

³ I/O synchronization is system-dependent. Assumes a system containing one hop. For information about achieving high accuracy synchronization, visit ni.com/info and enter Info Code fdsync.

Network Interface

Network protocols	TCP/IP, UDP
Network ports used	HTTP:80 (configuration only), TCP:3580; UDP:5353 (configuration only), TCP:5353 (configuration only); TCP:31415; UDP:7865 (configuration only), UDP:8473 (configuration only)
Network IP configuration	DHCP + Link-Local, DHCP, Static, Link-Local
Default MTU size	1500 bytes

Ethernet

Number of ports	2 8-pin X-coded M12 ports, internally switched ⁴
Network interface	1000 Base-TX, full-duplex; 1000 Base-TX, half-duplex; 100 Base-TX, full-duplex; 100 Base-TX, half-duplex; 10 Base-T, full-duplex; 10 Base-T, half-duplex
Communication rates	10/100/1000 Mbps, auto-negotiated
Maximum cabling distance	100 m/segment
Maximum hops per line ⁵	15

Power Requirements

Notice The protection provided by the FD-11605 can be impaired if it is used in a manner not described in the FD-11605 User Guide.

Voltage input range	
V_{in}	9 V DC to 30 V DC
V _{aux}	Up to 30 V DC

⁴ This allows for line topologies or network redundancy.

⁵ With default software configuration. For information about creating reliable Ethernet-based systems, visit ni.com/info and enter Info Code fdenet.

Maximum device power consumption ⁶	6 W
Power input connector	5-pin L-coded male M12 connector
Power output connector	5-pin L-coded female M12 connector

Current Limits

Caution Exceeding the current limits may cause damage to the device. Stay below a maximum of 10 A shared between both Input and Aux terminals.

Power IN/OUT terminals	
V _{in}	10 A maximum
V_{aux}	$10~\mathrm{A}$ maximum total (combined with V_{in})
Recommended external overcurrent protection	16 A, slow blow fuse

Physical Characteristics

Dimensions	198.5 mm × 77.4 mm × 47.1 mm (7.8 in. × 3.0 in. × 1.9 in.)
Weight	1.2 kg (42 oz)
Input connection	
Number	8
Туре	4-pin A-coded male M12 connectors
Torque for M12 connectors (power, Ethernet, input connections)	0.6 N · m (5.31 lb · in.)

Calibration

Calibration interval	1 year

Environmental Characteristics

Refer to the FD-11605 $User\ Guide$ for more information about meeting these specifications.

⁶ The total amount of power drawn by the device from the power input connector.

Temperature and Humidity

-40 °C to 85 °C
-40 °C to 100 °C
Up to 100% relative humidity, condensing or noncondensing
IP65/IP67
4
5,000 m

Note Failure to follow the mounting instructions in the *FD-11605 User Guide* can cause temperature derating.

Note M12 connectors must be mated to cables or have caps installed on them to meet IP65/IP67 requirements. Cover the unused connectors with the included plastic caps whenever water, dust, or dirt are present.

Note Avoid long periods of exposure to sunlight.

Shock and Vibration

Operating vibration	
Random	10 g RMS, 5 Hz to 2,000 Hz
Sinusoidal	10 g, 20 Hz to 2,000 Hz 12.4 mm minimum pk-pk displacement, 5 Hz to 20 Hz
Operating shock	100 g, 11 ms half sine, 3 shocks at 6 orientations, 18 total 40 g, 6 ms half sine, 4,000 shocks at 6 orientations, 24,000 total

Environmental Standards

This product meets the requirements of the following environmental standards for electrical equipment.

- IEC 60068-2-1 Cold
- IEC 60068-2-2 Dry heat
- IEC 60068-2-6 Sinusoidal operating vibration
- IEC 60068-2-27 Operating shock

- IEC 60068-2-30 Damp heat cyclic (12 + 12h cycle)
- IEC 60068-2-64 Random operating vibration

Note To verify marine approval certification for a product, refer to the product label or visit *ni.com/product-certifications* and search for the certificate.

Safety Voltages

Connect only voltages that are within the following limits: Channel-to-channel isolation Nominal working voltage⁷ 60 V DC (Dry/Wet Locations) Maximum working voltage 100 V DC (Dry/Wet Locations) Transient overvoltage⁸ 1,000 V RMS, verified by 5 s withstand Channel-to-earth ground isolation Nominal working voltage 60 V DC (Dry/Wet Locations) Maximum working voltage 100 V DC (Dry/Wet Locations) 1,000 V RMS, verified by 5 s withstand Transient overvoltage Overvoltage protection⁹ $\pm 100 \text{ V}$ between any two pins on the analog

These test and measurement circuits are *not* rated for measurements performed on circuits directly connected to the electrical distribution system referred to as MAINS.

input connector

MAINS is a hazardous live electrical supply system to which equipment is designed to be connected to for the purpose of powering equipment. This product is rated for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Warning Do not connect the FD-11605 to signals or use for measurements within Measurement Categories II, III, or IV, or for measurements on MAINs circuits or on circuits derived from Overvoltage Category II, III, or IV which may have transient overvoltages above what the product can withstand. The product must not be connected to circuits that have a maximum voltage above the continuous working voltage, relative to earth or to other channels, or this could damage and defeat the insulation. The product can only withstand transients up to the transient overvoltage rating without breakdown or damage to the insulation. An analysis of the working

Working voltage rating is the highest RMS value of the AC or DC voltage across the insulation that can continuously occur when the equipment is supplied at rated voltage.

⁸ Withstand rating is the highest RMS value of the AC or DC voltage the insulation can withstand without flashover or breakdown for a specified time.

⁹ Temporary overvoltage rating is the overvoltage of relatively long duration.

voltages, loop impedances, temporary overvoltages, and transient overvoltages in the system must be conducted prior to making measurements.

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1. EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the Product Certifications and Declarations section.

Electromagnetic Compatibility Standards

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Industrial immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions •
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-003: Class A emissions

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Notice For EMC declarations and certifications, and additional information, refer to the Product Certifications and Declarations section.

Notice To ensure the specified EMC performance, operate this product only with shielded Ethernet cables.

CE Compliance (€

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit *ni.com/product-certifications*, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Commitment to the Environment* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.