

 FP-2000

https://www.apexwaves.com/modular-systems/national-instruments/fieldpoint/FP-2000?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/fieldpoint/FP-2000?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/fieldpoint/FP-2000?aw_referrer=pdf

LabVIEW
TM

Real-Time Module User Manual

Real-Time Module User Manual

April 2003 Edition

Part Number 322154D-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 02 612 9672 8846, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,

Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,

Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530,

China 86 21 6555 7838, Czech Republic 420 2 2423 5774, Denmark 45 45 76 26 00,

Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427,

India 91 80 51190000, Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970,

Korea 82 02 3451 3400, Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,

New Zealand 64 09 914 0488, Norway 47 0 32 27 73 00, Poland 48 0 22 3390 150, Portugal 351 210 311 210,

Russia 7 095 238 7139, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,

Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,

Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment

on the documentation, send email to techpubs@ni.com.

© 1999–2003 National Instruments Corporation. All rights reserved.

 Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
DAQ-STC™, DataSocket™, FieldPoint™, IVI™, LabVIEW™, National Instruments™, NI™, NI Developer Zone™, NI-CAN™, ni.com™,
NI-DAQ™, NI-IMAQ™, NI-Motion™, NI-VISA™, RTSI™, SCXI™, and TestStand™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Real-Time Module User Manual

Contents

About This Manual
Conventions ... ix

Related Documentation..x

Chapter 1
Introduction

Real-Time System Components ..1-1

Host Computer...1-1

LabVIEW ..1-1

RT Engine..1-2

RT Target...1-2

RT Series Plug-In Devices ..1-2

Networked RT Series Devices ..1-3

Communicating with RT Target VIs ...1-3

Front Panel Communication..1-4

Network Communication ..1-5

Real-Time Module and Express VI Considerations ..1-6

Unsupported LabVIEW Features...1-7

Modifying Front Panel Objects of RT Target VIs...1-7

Using OS-Specific Technologies in RT Target VIs ..1-7

Chapter 2
Installing and Configuring the Real-Time Module and RT Targets

Installing the Real-Time Module ...2-1

Installing and Configuring RT Series Plug-In Devices ...2-2

RT Series PCI Plug-In Devices ...2-2

RT Series PXI Plug-In Devices...2-2

Configuring RT Series Plug-In Devices..2-3

Configuring Networked RT Series Devices ..2-4

Booting into the Real-Time Operating System.................................2-4

Configuring Network Settings ..2-5

Downloading Software ...2-6

Setting the System Time of RT Targets...2-7

Contents

Real-Time Module User Manual vi ni.com

Chapter 3
Real-Time Module Environment

Targeting LabVIEW to an RT Target ... 3-1

Downloading VIs to an RT Target .. 3-3

Closing a Front Panel Connection without Closing VIs ... 3-4

Connecting to VIs Running on an RT Target.. 3-4

Configuring Options of Networked RT Targets.. 3-5

Setting Access Permissions for an RT Target... 3-5

Setting Options for RT Target Start-up Applications 3-8

Chapter 4
Building Deterministic Applications

Programming for Determinism.. 4-1

Overview of Multithreaded Applications ... 4-1

Creating Multithreaded Applications in LabVIEW .. 4-2

Scheduling Threads .. 4-2

Assigning Priorities .. 4-2

Assigning VIs to Execution Systems.. 4-3

Dividing Tasks to Create

Deterministic Multithreaded Applications ... 4-4

Cooperatively Yielding Time-Critical VI Execution...................................... 4-5

Passing Data between VIs ... 4-5

Global Variables ... 4-5

Functional Global Variables ... 4-6

Real-Time FIFO VIs ... 4-7

Creating a User Interface for RT Target VIs... 4-8

Exploring Communication Methods ... 4-9

Shared Memory... 4-10

TCP ... 4-10

UDP... 4-11

DataSocket .. 4-11

VI Server ... 4-12

SMTP .. 4-13

Serial ... 4-13

CAN .. 4-14

Using Remote Panels with RT Target VIs .. 4-14

Enabling Remote Panel Connections to RT Target VIs 4-14

Regaining Control of RT Target VIs

from Remote Panel Connections.. 4-15

Minimizing Memory Usage by the RT Target Web Server............................ 4-16

Contents

© National Instruments Corporation vii Real-Time Module User Manual

Chapter 5
Creating Deterministic Control Applications

Overview of Control Applications...5-1

Implementing a Deterministic Control Application ..5-2

Timing Control Loops ...5-3

Timing Control Loops Using Software ...5-3

Timing Control Loops Using Hardware..5-5

AI SingleScan VI ..5-5

Counter Control VI ...5-6

Acquiring Measurement Data ..5-7

Using DAQ Devices to Acquire Measurement Data.......................................5-8

Using FieldPoint Devices to Acquire Measurement Data...............................5-9

Processing Measurement Data...5-10

Outputting Compensation Data ...5-11

Using NI-DAQ VIs to Output Control Data..5-11

Using FieldPoint VIs to Output Control Data ...5-14

Using Watchdogs in Applications ...5-14

Inactivity Watchdog ..5-15

Network Watchdog..5-15

Chapter 6
Optimizing Applications

Avoiding Shared Resources...6-1

Memory Allocations and Preallocating Arrays ...6-1

Casting Data to Proper Data Types ...6-3

Reducing the Use of Global Variables ..6-3

Avoiding Contiguous Memory Conflicts ..6-3

Avoiding SubVI Overhead ..6-5

Setting VI Properties..6-5

Disabling the Disk Cache ..6-5

Setting BIOS Options ..6-6

Mass Compiling VIs ..6-6

Contents

Real-Time Module User Manual viii ni.com

Chapter 7
Deploying Applications

Building Stand-Alone Applications .. 7-1

Creating an Application Installer .. 7-1

Configuring Target Settings.. 7-2

Saving Stand-Alone Applications... 7-2

Selecting a Target after Launch.. 7-3

Quitting LabVIEW after Launch .. 7-3

Launching Stand-Alone Applications ... 7-3

Launching Applications Automatically on Start-up 7-4

Launching Applications Automatically

Using Command Line Arguments ... 7-4

Connecting to Applications Running on RT Targets .. 7-5

Chapter 8
Debugging Deterministic Applications

Verifying Correct Application Behavior ... 8-1

Using the LabVIEW Debugging Tools... 8-1

Using the Profile Window... 8-1

Verifying Correct Timing Behavior .. 8-2

Using the Tick Count (ms) Function... 8-2

Using the Pentium Time Stamp Counter .. 8-2

Using an Oscilloscope... 8-3

Using Software Drivers... 8-3

Using and Defining Error Codes ... 8-3

Defining Custom Error Codes... 8-3

Setting Custom Error File INI Tokens .. 8-4

Appendix A
Configuring and Testing Device Drivers

Appendix B
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation ix Real-Time Module User Manual

About This Manual

This manual contains installation information and configuration

instructions for the LabVIEW Real-Time Module and RT Series hardware.

This manual also contains real-time programming techniques to help you

build a deterministic application using the Real-Time Module.

Conventions

The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence File»Page Setup»Options directs you to

pull down the File menu, select the Page Setup item, and select Options

from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such

as menu items and dialog box options. Bold text also denotes parameter

names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction

to a key concept. This font also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of disk drives, paths, directories,

programs, subprograms, subroutines, device names, functions, operations,

variables, filenames and extensions, and code excerpts.

Platform Text in this font denotes a specific platform and indicates that the text

following it applies only to that platform.

About This Manual

Real-Time Module User Manual x ni.com

Related Documentation

The following documents contain information that you might find helpful

as you read this manual:

• RT Series hardware documentation

• Getting Started with the LabVIEW Real-Time Module

• LabVIEW Real-Time Module Release Notes

• LabVIEW Help, available by selecting Help»VI, Function,

& How-To Help

• Getting Started with LabVIEW

• LabVIEW User Manual

• LabVIEW Application Builder User Guide

© National Instruments Corporation 1-1 Real-Time Module User Manual

1
Introduction

Most LabVIEW applications run on a general-purpose operating system

(OS) like Windows, Linux, Solaris, or Mac OS. Some applications require

deterministic real-time performance that general-purpose operating

systems cannot guarantee. The LabVIEW Real-Time Module and

RT Series hardware extend the capabilities of LabVIEW to address the

need for deterministic real-time performance.

The Real-Time Module combines LabVIEW graphical programming with

the power of RT Series hardware, enabling you to build deterministic

real-time systems. You develop VIs in LabVIEW and embed the VIs on

RT targets. The RT target runs VIs without a user interface and offers a

stable platform for real-time VIs.

Real-Time System Components

A real-time system consists of software and hardware components.

The software components include LabVIEW, the RT Engine, and VIs built

using LabVIEW. The hardware components of a real-time system include

a host computer and an RT target. The following section describes the

different components of a real-time system.

Host Computer
The host computer is the computer where you develop the VIs for the

real-time system. The host computer can be a PC, Mac, or a PXI controller

with a Windows operating system.

LabVIEW
You develop VIs with LabVIEW on the host computer. The Real-Time

Module extends the capabilities of LabVIEW to allow you to select an RT

target to run VIs.

Chapter 1 Introduction

Real-Time Module User Manual 1-2 ni.com

RT Engine
The RT Engine is a version of LabVIEW that runs on the RT target.

The RT Engine runs the VIs you download to the targets from LabVIEW

on the host computer. The RT Engine provides deterministic real-time

performance for the following reasons:

• The RT Engine is designed for real-time performance.

• The RT Engine runs on a real-time operating system (RTOS), which

ensures that the LabVIEW execution system and other operating

system services adhere to real-time operation. Refer to Chapter 4,

Building Deterministic Applications, for information about the

LabVIEW execution system.

• The RT Engine runs on RT Series hardware. Other applications or

device drivers commonly found on the host computer do not run on

RT targets. The absence of additional applications or devices means

that a third-party application or driver does not impede the execution

of VIs.

• RT Series hardware uses no virtual memory, which eliminates a major

source of unpredictability in deterministic systems.

RT Target
An RT target refers to RT Series hardware that runs the RT Engine and VIs

you create using LabVIEW. There are two types of RT targets: RT Series

plug-in devices and networked RT Series devices.

RT Series Plug-In Devices
The RT Series plug-in devices are plug-in PCI/PXI devices with embedded

processors. Each plug-in device contains a processor board and data

acquisition daughterboard. The processor board contains a microprocessor

that runs LabVIEW VIs.

This manual does not contain information about the data acquisition

daughterboard of plug-in devices. Refer to the appropriate plug-in device

documentation for information about the data acquisition daughterboard

for plug-in devices.

Chapter 1 Introduction

© National Instruments Corporation 1-3 Real-Time Module User Manual

Networked RT Series Devices
A networked RT Series device is a networked hardware platform with an

embedded processor that runs LabVIEW VIs. You can use a separate host

computer to communicate with and control VIs on the networked RT Series

device through an Ethernet connection, but the device is independent of the

host computer. Some examples of networked RT Series devices include the

following:

• RT Series PXI Controllers—A networked device that installs in an

NI PXI chassis and communicates with NI PXI modules installed in

the chassis. You can write VIs that use all the input/output (I/O)

capabilities of the PXI modules, SCXI, and other signal conditioning

devices installed in a PXI chassis. The RT Engine also supports

features of the RT Series PXI controller. For example, you can use the

GPIB and serial ports onboard the NI PXI-8176 controller for

instrument control. Refer to the National Instruments Web site at

ni.com/info and enter the info code RT0001 for information about

the features supported by the RT Engine on specific networked

devices.

• RT Series FieldPoint Modules—A networked device ideal for

distributed real-time I/O applications.

• 7041 RT Series Plug-In Devices—A hybrid between a traditional

plug-in device and a networked device that communicates through

shared memory or communicates through a network connection.

This manual does not contain hardware-related information about specific

networked devices. Refer to the appropriate device documentation for

information about the device.

Communicating with RT Target VIs

The RT Engine on the RT target does not provide a user interface for

applications. You can use one of two communication protocols, Front

Panel Communication or Network Communication, to provide a user

interface for RT target VIs.

Chapter 1 Introduction

Real-Time Module User Manual 1-4 ni.com

Front Panel Communication
With Front Panel Communication, LabVIEW and the RT Engine execute

different parts of the same VI, as shown in Figure 1-1. LabVIEW on the

host computer displays the front panel of the VI while the RT Engine

executes the block diagram.

Figure 1-1. Front Panel Communication Protocol

Use Front Panel Communication between LabVIEW on the host computer

and the RT Engine to control and test VIs running on an RT target. After

downloading and running the VIs, keep LabVIEW on the host computer

open to display and interact with the front panel of the VI.

You also can use Front Panel Communication to debug VIs while they run

on the RT target. You can use LabVIEW debugging tools—such as probes,

execution highlighting, breakpoints, and single stepping—to locate errors

on the block diagram code. Refer to Chapter 8, Debugging Deterministic

Applications, for information about debugging applications.

Front Panel Communication is a good communication method typically

used during development because it is a quick method for monitoring and

interfacing with VIs running on an RT target. Use Network Communication

to increase the efficiency of the communication between a host computer

and the RT Engine.

LabVIEW

RT Engine

Host Computer

RT Target

Network Communication

Chapter 1 Introduction

© National Instruments Corporation 1-5 Real-Time Module User Manual

Network Communication
With Network Communication, a host VI runs on the host computer and

communicates with the VI running on the RT target using specific network

communication programmatic controls such as TCP, VI Server, and in the

case of non-networked RT Series plug-in devices, shared memory reads

and writes. You might use Network Communication for the following

reasons:

• You want to run another VI on the host computer, but you cannot use

LabVIEW for any other task when you target an RT target.

• You want to control information sent back and forth. You can

customize communication code to specify which front panel objects

get updated and when. You also can control which components are

visible on the front panel because some controls and indicators might

be more important than others.

• You want to control timing and sequencing of the data transfer.

• You want to perform additional data processing or logging.

In Figure 1-2, the RT target VI is similar to the VI in Figure 1-1 that runs

on the RT target using Front Panel Communication to update the front panel

controls and indicators. However, the RT target VI in Figure 1-2 uses

Real-Time FIFO VIs to pass data to a communication VI. The

communication VI then communicates with a host computer VI using

network communication methods to update controls and indicators. Refer

to Chapter 4, Building Deterministic Applications, for information about

methods of communication available in LabVIEW.

Chapter 1 Introduction

Real-Time Module User Manual 1-6 ni.com

Figure 1-2. Network Communication Protocol

Real-Time Module and Express VI Considerations

LabVIEW Express VIs increase LabVIEW ease of use and improve

productivity with interactive dialog boxes that minimize programming for

measurement applications. Express VIs do require additional performance

overhead during execution, therefore do not use Express VIs in

time-critical or processor-intensive applications. Instead, develop real-time

applications with standard LabVIEW VIs. Refer to the Getting Started with

LabVIEW manual for information about LabVIEW Express VIs.

LabVIEW shows an Express VI-oriented palette view by default. Complete

the following steps to switch to the Advanced LabVIEW palette view.

1. Select Tools»Options from LabVIEW.

2. Select Controls/Functions Palettes from the Options dialog box

pull-down menu.

LabVIEW

RT Engine

Host Computer

RT Target

Network Communication

VI Communication

Chapter 1 Introduction

© National Instruments Corporation 1-7 Real-Time Module User Manual

3. Select Advanced from the Palette View pull-down menu.

4. Click the OK button.

Unsupported LabVIEW Features

Some LabVIEW features are unavailable when you target a specific RT

target. For example, there is no media storage device on some RT Series

plug-in devices. Therefore, when you target LabVIEW to a plug-in device,

the RT Engine might not support disk file I/O.

Note If you attempt to download and run on an RT target a VI that has unsupported

functionality, the VI still executes. However, the unsupported functions do not work and

return standard LabVIEW error codes.

Modifying Front Panel Objects of RT Target VIs
When a VI or stand-alone application runs on an RT target and there is no

front panel connection with host LabVIEW, you cannot execute VIs that

modify a front panel. For example, you cannot change or read the

properties of front panel objects with property nodes because there is no

front panel.

You must establish a front panel connection with the RT target or open a

remote front panel connection to read any front panel properties or for any

front panel property node changes to reflect on the front panel objects.

The following features do not work on an RT target with no front panel

connection:

• Front panel property nodes and control references

• Dialog VIs

• VI Server front panel functions

Using OS-Specific Technologies in RT Target VIs
VIs on the RT target cannot use VIs that leverage Windows only

technology.

The following features do not work on an RT target:

• ActiveX VIs

• .NET VIs

• VIs that use NI-IVI drivers

Chapter 1 Introduction

Real-Time Module User Manual 1-8 ni.com

• Windows Registry Access VIs

• TestStand VIs (ActiveX-based)

• Report Generation Toolkit VIs

• Call Library Nodes that access an operating system API other than

Pharlap

• Graphics and Sound VIs

• Database Connectivity Toolset

• XML DOM Parser and G Web Server for CGI Support

© National Instruments Corporation 2-1 Real-Time Module User Manual

2
Installing and Configuring the
Real-Time Module and RT
Targets

This chapter explains installation and configuration of the LabVIEW

Real-Time Module and RT Series hardware.

Installing the Real-Time Module

Complete the following steps to install the Real-Time Module on the host

computer.

(Mac OS) Refer to the LabVIEW Real-Time Module for Mac OS X User

Manual Addendum for installation and configuration instructions.

(Windows 2000/NT/XP) You must log in to the host computer as an

administrator or as a user with administrator privileges.

1. Verify that LabVIEW has been installed on the host computer.

2. Insert the LabVIEW Real-Time Module CD into the CD-ROM drive.

The Real-Time Module installation program runs automatically.

3. Follow the instructions that appear on the screen.

Complete the following steps to install device drivers for NI hardware that

you want to use with the Real-Time Module.

1. Insert the National Instruments Device Driver CD into the CD-ROM

drive. The device driver installation program runs automatically.

2. Follow the instructions that appear on the screen to install the hardware

device drivers that you need.

Chapter 2 Installing and Configuring the Real-Time Module and RT Targets

Real-Time Module User Manual 2-2 ni.com

Installing and Configuring RT Series Plug-In Devices

You can install an RT Series plug-in device in any available PCI or PXI

expansion slot in the computer or PXI chassis. This section contains

general installation instructions. Refer to the computer user manual or

technical reference manual for specific instructions and warnings about

installing hardware.

Note You must install the Real-Time Module software, Traditional NI-DAQ 7.0 from the

National Instruments Device Driver CD, and PCI-7041 and PCI/PXI-7030 support from

the National Instruments Device Driver CD before you install an RT Series plug-in device.

RT Series PCI Plug-In Devices
Complete the following steps to install an RT Series PCI plug-in device.

1. Power off and unplug the computer.

2. Remove the cover to the computer and make sure there are no lighted

LEDs on the motherboard. If any are lit, wait until they turn off before

continuing the installation.

3. Remove the expansion slot cover on the back panel of the computer.

4. Insert the plug-in device into a 5 V PCI slot. Gently rock the board to

ease it into place. Do not force the board into place.

5. Screw the mounting bracket of the plug-in device to the back panel rail

of the computer.

6. Visually verify the installation. Make sure the board is not touching

other boards or components and is fully inserted in the slot.

7. Replace the cover, plug in, and power on the computer.

8. Refer to the Configuring RT Series Plug-In Devices section for

information about configuring the PCI device.

RT Series PXI Plug-In Devices
Complete the following steps to install the RT Series PXI plug-in device.

1. Power off and unplug the PXI chassis.

2. Choose two adjacent unused PXI slots in the system.

3. Remove the filler panels for the slots you have chosen.

4. Insert the RT Series plug-in device into the 5 V PXI slots. Use the

injector/ejector handle to fully insert the board into the chassis.

Chapter 2 Installing and Configuring the Real-Time Module and RT Targets

© National Instruments Corporation 2-3 Real-Time Module User Manual

5. Screw the front panel of the RT Series plug-in device to the front panel

mounting rail of the system.

6. Plug in and power on the PXI chassis.

7. Refer to the Configuring RT Series Plug-In Devices section for

information about configuring the PXI device.

Configuring RT Series Plug-In Devices
Complete the following steps to configure an RT Series plug-in device

using Measurement & Automation Explorer (MAX).

1. Launch MAX and expand the My System, Devices and Interfaces,

and Traditional NI-DAQ Devices categories. MAX detects the

plug-in devices you have installed. The NI PCI/PXI-7030 Series

plug-in device appears in the Traditional NI-DAQ Devices category

listed by device number. The NI PCI-7041 Series plug-in device

appears in the Devices and Interfaces category listed by device name.

In Figure 2-1, an NI PCI/PXI-7030 Series plug-in device appears with

a device number of 1. The data acquisition daughterboard of the

NI PCI/PXI-7030 Series plug-in device appears under the processor

board with a device number of 2. An NI PCI-7041 Series plug-in

device appears with a device name of RT::0.

Figure 2-1. Measurement & Automation Explorer

Chapter 2 Installing and Configuring the Real-Time Module and RT Targets

Real-Time Module User Manual 2-4 ni.com

2. Note the device number or name. Also note the device number of the

data acquisition daughterboard. MAX always assigns a device number

of 1 to the daughterboard of the NI PCI-7041 Series device.

You need the device number or name of the RT Series plug-in device

to download and run LabVIEW VIs. You can use MAX to change

device numbers or names and other configuration settings for the

devices. You must reset the device for changes to take effect. Refer to

the MAX Remote Systems Help, available by selecting Help»Help

Topics»Remote Systems from MAX, for information about testing

the resources of RT Series plug-in devices.

3. Select Tools»Traditional NI-DAQ Configuration»Save

Configuration As and specify a filename to save the configuration

information.

4. Close MAX.

The NI PCI-7041 Series plug-in device requires you to install software on

the device. Refer to the Downloading Software section for information

about installing software on the device.

Configuring Networked RT Series Devices

You must configure the network settings and install software for networked

RT Series devices. Use MAX to configure the network settings of

networked RT Series devices and then to install software on the device.

RT Series controllers must boot into the Real-Time Operating System

(RTOS) before you attempt to configure the network settings. Some RT

Series PXI controllers require a boot disk to boot into the RTOS. Skip to

the Configuring Network Settings section if you do not require a PXI boot

disk to boot into the RTOS.

Note This section contains general instructions to configure the network settings and

software of networked RT Series devices. Refer to the device documentation for specific

hardware installation instructions.

Booting into the Real-Time Operating System
You must boot RT Series controllers into the RTOS before you can

configure the network settings of the controller. Some RT Series PXI

controllers do not have the RTOS pre-installed. However, you can use a

floppy disk to boot into the RTOS on a PXI controller that does not have

the RTOS installed.

Chapter 2 Installing and Configuring the Real-Time Module and RT Targets

© National Instruments Corporation 2-5 Real-Time Module User Manual

Complete the following steps to create a boot disk from the host computer.

1. Place a floppy disk in the host computer disk drive.

2. Launch MAX on the host computer.

3. Select Tools»RT PXI Disk Utilities»Create PXI Boot Disk to open

the PXI Boot Disk dialog box.

4. Click the Yes button to make the boot disk and follow the instructions

that appear on the screen.

5. Remove the floppy disk and label the disk LabVIEW Real-Time PXI

Boot Disk.

6. Insert the boot disk into the disk drive of the PXI controller and power

on or reset the controller to boot into the RTOS.

Configuring Network Settings
Complete the following steps to configure the network settings of

networked RT Series devices.

1. In MAX, click the Remote Systems category to expand the Remote

Systems list. This displays all detected networked RT Series devices

on the local subnet.

2. Select a device to configure. Unconfigured devices appear with a

0.0.0.0 device name. The right pane of the MAX window displays the

network and software settings of the device.

3. Enter a device name in the Name text box located in the Device

Identification section. The default device name is the IP address of the

device.

4. Enter the network parameters you want to assign to the device. You

can choose to assign a static IP address or have the device retrieve an

IP address automatically from a Dynamic Host Configuration

Protocol (DHCP) server.

A DHCP server allocates an IP address to the device when the device

starts up. Select Obtain IP address from DHCP server in the IP

Settings section to obtain an IP address automatically from the DHCP

server. Use DHCP if a static IP address is not available. Consult the

network administrator for more information about using a DHCP

server.

Chapter 2 Installing and Configuring the Real-Time Module and RT Targets

Real-Time Module User Manual 2-6 ni.com

Use a static IP address if the device must use the same IP address after

a reboot. Using a static IP address ensures the proper behavior of

applications that communicate with the device using a specific IP

address. Select Edit the IP settings in the IP Settings section and

specify the following network parameters:

• IP address—The unique, computer-readable address of a

networked device. Each IP address contains a set of four numbers

in the range from 0 through 255. Each number is separated by a

period. For example, 130.164.44.143.

• Subnet mask—A network code that helps a network device

determine whether other devices are on the same network.

For example, 255.255.255.0.

• Gateway—The IP address of the gateway server. The gateway

server functions as a connection between two separate networks.

• DNS server—The IP address of a Domain Name Server (DNS)

that stores host names and translates them into IP addresses.

You must provide a value for the IP address and Subnet mask. If the

network does not have a gateway or DNS server, set Gateway and

DNS server to the default setting of 0.0.0.0.

5. Click the Apply button in the Network Settings tab.

6. Click the Yes button when prompted to reboot.

Downloading Software
Complete the following steps to install or upgrade the software on a

networked RT Series device.

1. In MAX, select the device from the Remote Systems category.

2. Click the Software tab to see a list of software available on the host

computer and the software currently on the device.

3. Click the Install Software button to open the Select software to

download dialog box.

4. Place checkmarks in the checkboxes of the software that you want to

install on the device.

5. Click the OK button to install the software.

Refer to Appendix A, Configuring and Testing Device Drivers, for

information about configuring National Instruments hardware I/O device

drivers. Refer to the MAX Remote Systems Help, available by selecting

Help»Help Topics»Remote Systems from MAX, for information about

using MAX to configure remote systems.

Chapter 2 Installing and Configuring the Real-Time Module and RT Targets

© National Instruments Corporation 2-7 Real-Time Module User Manual

Setting the System Time of RT Targets

Each type of RT target obtains the system time differently on start-up.

• RT Series plug-in devices—The RT Engine on the plug-in device

obtains the system time from the host computer when you reset the

device.

• FieldPoint 20xx Series network modules—The RT Engine on the

device obtains the time from a time server at each power up to set the

internal clock. If a time server is not available, use the RT Set Date and

Time VI to programmatically set the system date and time. Refer to the

National Instruments Web site at ni.com/info and enter the

info code RT003 for information about setting local time and time

zone considerations for RT targets.

Note If you use the RT Set Date and Time VI to set the system time, set the IP address for

the Time Server entry, located on the Servers tab of the System Configuration dialog

box for the FieldPoint module, to 0.0.0.0.

• Networked RT Series PXI devices—The RT Engine on the device

obtains the system date and time from the BIOS once at boot up.

Use the RT Set Date and Time VI to programmatically set the system

date and time. Refer to the National Instruments Web site at

ni.com/info and enter the info code RT003 for information about

setting local time and time zone considerations for RT targets.

© National Instruments Corporation 3-1 Real-Time Module User Manual

3
Real-Time Module Environment

This chapter describes the basic functionality of the LabVIEW Real-Time

Module such as targeting and downloading VIs to an RT target. This

chapter also describes the available options for networked RT Series

devices.

Targeting LabVIEW to an RT Target

When you first launch LabVIEW after installing the Real-Time Module,

the default execution target is the host computer operating system, as

shown in Figure 3-1.

Figure 3-1. LabVIEW Dialog Box

Chapter 3 Real-Time Module Environment

Real-Time Module User Manual 3-2 ni.com

You can target LabVIEW to an RT target or the host computer to open a

front panel communication connection. When you select an execution

target other than the host computer, LabVIEW downloads any LabVIEW

VIs you subsequently run to the selected execution target.

Complete the following steps to target LabVIEW to an execution target.

1. Start LabVIEW. Previously targeted execution targets appear in the

Execution Target pull-down menu in the LabVIEW dialog box.

2. If you are using a previously targeted device, select the execution

target from the Execution Target pull-down menu and skip the

remaining steps.

3. If you are connecting to a networked device and have not targeted the

device previously, select Select Target with Options from the

Execution Target pull-down menu to open the Select Execution

Target dialog box.

4. Select RT Engine on Network from the target list to enter a new

networked device as shown in Figure 3-2.

Figure 3-2. Select Execution Target Dialog Box

5. Enter the IP address and password set for the networked device in

Measurement & Automation Explorer (MAX). Leave the password

field blank if the networked device does not have a password specified

in MAX.

Note If you have not configured the hardware in MAX, click the Configure button to

open MAX. Refer to Chapter 2, Installing and Configuring the Real-Time Module and RT

Targets, for configuration instructions.

Chapter 3 Real-Time Module Environment

© National Instruments Corporation 3-3 Real-Time Module User Manual

If the IP address of the host computer appears in the

RT Target: Access list of the RT target, you do not need to enter the

password. Refer to the Setting Access Permissions for an RT Target

section for information about the RT Target: Access network options.

6. Click the OK button.

Downloading VIs to an RT Target

When you select an RT target in the Select Execution Target dialog box,

LabVIEW establishes a front panel communication connection with the RT

target. You can download a VI and its associated subVIs to an RT target by

clicking the Run button. The RT Engine on the RT target then runs the

downloaded VI.

When a downloaded VI runs on the RT target, LabVIEW switches from

edit to run mode. In run mode, you cannot edit VIs. You must switch back

to edit mode to make changes to the VI. Select Operate»Change to Edit

Mode to switch to edit mode. Switching an RT target VI to edit mode

removes the VI from memory on the target.

Note When you edit a VI or convert a VI from a different version of LabVIEW, you must

save the VI on the host computer before you can download and run it on the RT target.

You also can download LabVIEW VIs without running them by selecting

Operate»Download Application while targeted to an RT target.

To see which VIs have been downloaded to the RT target, select

Browse»Show VI Hierarchy while targeted to an RT target. The VI

hierarchy appears with a pin in the upper left corner of each VI.

When the pin is in the vertical position, as shown to the left, the VI has been

downloaded.

When the pin is in the horizontal position, as shown to the left, the VI has

not been downloaded.

Chapter 3 Real-Time Module Environment

Real-Time Module User Manual 3-4 ni.com

Closing a Front Panel Connection without Closing VIs

You can select Operate»Switch Execution Target and then select another

execution target to close the networking connection to the RT target

without closing VIs.

You also can exit LabVIEW on the host computer without closing the VIs

on the RT target. Select File»Exit without closing RT Engine VIs to close

LabVIEW on the host computer. The VIs running on the RT target continue

running. VIs downloaded but not running remain loaded in memory on the

RT target.

If you select File»Exit, LabVIEW opens a dialog box that asks if you want

to exit LabVIEW without closing RT Engine VIs. If you click the Yes

button, LabVIEW exits without closing the VIs on the RT target. If you

click the Close all RT Engine VIs button, LabVIEW closes all the VIs

running on the RT target, unloads the VIs from memory, and closes

LabVIEW.

Connecting to VIs Running on an RT Target

When you target LabVIEW to an RT target to open a front panel

communication connection, LabVIEW detects VIs currently running on the

RT target. LabVIEW attempts to open the local copy of the VIs to show the

front panel.

Note When connecting to an RT Series plug-in device, if you place a checkmark in the

Reset checkbox on the Select Execution Target dialog box, LabVIEW clears all VIs in

memory on the target.

If the local copy of the VIs have been moved or modified since you

downloaded them to the RT target, LabVIEW displays the Changed or

Missing VIs dialog box, shown in Figure 3-3.

Chapter 3 Real-Time Module Environment

© National Instruments Corporation 3-5 Real-Time Module User Manual

Figure 3-3. Changed or Missing VIs Dialog Box

The Changed or Missing VIs dialog box shows the name of the local VIs

that are missing or that have been modified and no longer match the VIs

running on the RT target. From the Changed or Missing VIs dialog box,

you can browse for a VI that was moved in the host computer file system,

close all VIs running on the RT target and update them with the latest

version of each VI, and close the network connection between LabVIEW

and the RT target while leaving the VIs running.

Configuring Options of Networked RT Targets

You can set access and start-up options for networked RT targets.

With LabVIEW targeted to the RT target, select Tools»RT Target: x.x.x.x

Options to access the RT target Options dialog box, where x.x.x.x is the

IP address of the RT target.

Setting Access Permissions for an RT Target
Use the RT Target: Access page, available by selecting RT Target:

Access from the RT target Options dialog box pull-down menu, to limit

which computers can establish a front panel connection with the RT Engine

on networked RT targets.

Chapter 3 Real-Time Module Environment

Real-Time Module User Manual 3-6 ni.com

To access the RT target, the IP address of the host computer must match an

entry that allows access in the RT Target Access List and you must

provide the correct password for the RT target. You can allow or deny

access to computers by adding entries in the RT Target Access List.

Complete the following steps to add entries to the RT Target Access List.

1. From the RT Target: Access page, enter the computer IP address or

domain name entry of the computer.

Note If the RT target does not have access to a Domain Name Server (DNS), do not use

domain name entries in the RT Target Access List. Requests to resolve the domain name

fail and affect the performance of VIs running on the RT target.

2. Select the Allow Access or Deny Access radio button and click the

Add button.

When you try to target LabVIEW to an RT target, the RT Engine on the

RT target compares the host computer IP address to the entries in the

RT Target Access List to determine accessibility. You define the

RT Target Access List entries to indicate whether a host computer is

permitted or denied access. Permissions are granted to list entries in

descending order, meaning that any entry in the list supersedes a previous

list entry. For example, in Figure 3-4, a.test.site.com and

b.test.site.com can access the RT target even though a previous list

entry indicates by the * wildcard that all addresses ending in

.test.site.com are denied access. A checkmark next to a list entry

denotes that access is permitted, while an X denotes that access is denied.

If no entry matches the host computer address, access is denied unless you

supply a password. Place frequently matched entries toward the bottom of

the RT Target Access List to improve system performance.

Chapter 3 Real-Time Module Environment

© National Instruments Corporation 3-7 Real-Time Module User Manual

Figure 3-4. RT Target: Access Page

Table 3-1 shows examples of RT Target Access List entries and provides

an explanation of matching entries.

Table 3-1. Example RT Target Access List Entries

Access String Matches

* All hosts

test.site.com The host whose domain name is

test.site.com

*.site.com All hosts whose domain names end with

.site.com

130.164.123.123 The host with the IP address

130.164.123.123

130.164.123.* All hosts whose IP addresses start with

130.164.123

Chapter 3 Real-Time Module Environment

Real-Time Module User Manual 3-8 ni.com

To specify an Internet host address, enter its domain name or IP address.

Use the * wildcard when specifying Internet host addresses. For example,

you can specify all hosts within the domain site.com with the following

entry:

*.site.com

You can specify all hosts in the subnet whose first two numbers are 130.164

with the following entry:

130.164.*

The * entry is the default RT Target Access List entry and matches all

addresses.

Setting Options for RT Target Start-up Applications
Use the RT Target: Miscellaneous page, available by selecting

RT Target: Miscellaneous from the RT target Options dialog box

pull-down menu, to set RT target start-up application options.

Figure 3-5. RT Target: Miscellaneous Page

Place a checkmark in the Launch Application at Boot-up checkbox,

shown in Figure 3-5, to launch the application specified in the Application

Path text box when you boot up a networked RT target with a media

storage device. The path specified in the Application Path text box also

determines the path and application name that appear when you target

Chapter 3 Real-Time Module Environment

© National Instruments Corporation 3-9 Real-Time Module User Manual

LabVIEW to the RT target and create an embedded stand-alone

application. You first must create a stand-alone application before you

select this option. Refer to the Building Stand-Alone Applications section

of Chapter 7, Deploying Applications, for information about using the

LabVIEW Application Builder to create start-up applications.

By changing the entry in the Application Path text box to another

filename, you can create multiple stand-alone applications on the RT target

using the LabVIEW Application Builder. After building an application

using the Application Builder and embedding it on the RT target, you can

change the entry in the Application Path text box and build another

application. However, if you select Launch Application at Boot-up, only

the application you specify in the Application Path launches at start-up.

Use Downloaded VI Path to specify the default path on the RT target for

VIs. The RT Engine uses the path specified in Downloaded VI Path for

operations that require the VI path. For example, the Current VI’s Path

function returns the path of the current VI. When you run a VI that contains

the Current VI’s Path function on the RT target, the function returns the

path specified in the Downloaded VI Path text box, appended with the

name of the VI.

Note Application Path and Downloaded VI Path refer to the file system on the RT

target.

© National Instruments Corporation 4-1 Real-Time Module User Manual

4
Building Deterministic
Applications

This chapter explains how to build deterministic applications using the

LabVIEW Real-Time Module.

Programming for Determinism

The first thing to consider when implementing a real-time system with

LabVIEW is whether you need determinism. Determinism is the

characteristic of a system that describes how consistently it responds to

external events or performs operations within a given time limit. If you

intend to build deterministic applications, use the programming techniques

in this chapter to achieve high levels of determinism in VIs.

Overview of Multithreaded Applications
Most computers have only one processor, so tasks execute one at a time.

Multitasking is achieved by running one application for a short amount of

time and then having other applications run. As long as the amount of

processor time allocated for each application is small enough, computers

appear to have multiple applications running simultaneously.

Multithreading is when you apply the concept of multitasking to a single

application by breaking it into smaller tasks that execute for short amounts

of time in different execution system threads. A thread is a completely

independent flow of execution for an application within the execution

system. Multithreaded applications maximize the efficiency of the

processor because the processor does not sit idle if there are other threads

ready to run. Any application that reads and writes from a file, performs

I/O, or polls the user interface for activity can benefit from multithreading

simply because you can use the processor to run other tasks during these

activities.

Chapter 4 Building Deterministic Applications

Real-Time Module User Manual 4-2 ni.com

Creating Multithreaded Applications in LabVIEW
To create a multithreaded application in LabVIEW, you must separate

time-critical tasks from non-time-critical tasks. You then can build VIs to

complete each task. You prioritize the VIs and then categorize them into

one of the available execution systems to control the amount of processor

resources each VI receives. LabVIEW assigns each VI to an execution

system thread according to the VI priority. The threads execute on the

processor accordingly.

Scheduling Threads
The Real-Time Operating System (RTOS) on RT targets uses a

combination of round robin and preemptive scheduling to execute threads

in the execution system. Round robin scheduling applies to threads of equal

priority. Equal shares of processor time are allocated between equal

priority threads. For example, each normal priority thread is allotted 10 ms

to run. The processor executes all the tasks it can in 10 ms and whatever is

incomplete at the end of that period must wait to complete during the next

allocation of time. Conversely, preemptive scheduling means that any

higher priority thread that needs to execute immediately pauses execution

of all lower priority threads and begins to execute. A time-critical priority

thread is the highest priority and preempts all priorities.

Assigning Priorities
You can select from the following VI priorities, listed in order from lowest

to highest, to assign VIs to an execution system thread:

• background priority (lowest)

• normal priority

• above normal priority

• high priority

• time-critical priority (highest)

Threads of higher priority preempt threads of lower priority.

Normal priority is the default thread priority for all VIs created in

LabVIEW. The time-critical priority preempts all thread priorities.

A time-critical priority thread does not relinquish processor resources

until it has completed or until it cooperatively relinquishes the processor

resources. You must ensure that the time-critical thread does not

monopolize the processor resources. Because time-critical priority threads

cannot preempt each other, create only one time-critical thread in an

application to guarantee deterministic behavior.

Chapter 4 Building Deterministic Applications

© National Instruments Corporation 4-3 Real-Time Module User Manual

In addition to the five priority levels listed above, you can set VIs to

subroutine priority. VIs set for subroutine priority do not share execution

time with other VIs. When a VI runs at the subroutine priority level, it

effectively takes control of the thread in which it is running, and it runs in

the same thread as its caller. No other VI can run in that thread until the

subroutine VI finishes running, even if the other VI is at the subroutine

priority level.

Assigning VIs to Execution Systems
LabVIEW has the following six execution systems to categorize VIs:

• user interface

• standard

• instrument I/O

• data acquisition

• other 1

• other 2

The names of the execution systems are suggestions for the type of VIs to

place within the execution system. By default, all VIs run in the standard

execution system at normal priority. The user interface execution system

handles all user interface tasks. Instrument I/O and data acquisition task

VIs can be assigned to other execution systems, but you can use the labels

to understand the organization. In addition to the six execution systems,

you also can assign VIs to the same as caller execution system. The same

as caller category is not a true execution system because it runs subVIs in

the same execution system as the VI that called the subVI.

Every execution system except user interface has a thread queue.

For example, if you have three threads assigned to an execution system,

at any time, one thread might run and the other two wait in the queue.

Assuming all threads have the same priority, one of the threads runs for a

certain amount of time. The thread then moves to the end of the queue, and

the next thread runs. When a thread completes, the execution system

removes it from the queue.

The execution systems are not responsible for managing the user interface.

If a thread in one of the queues needs to update the user interface, the

execution system passes responsibility to the user interface execution

system, which updates the user interface.

Chapter 4 Building Deterministic Applications

Real-Time Module User Manual 4-4 ni.com

Dividing Tasks to Create Deterministic Multithreaded Applications
Deterministic control applications depend on time-critical tasks to

complete on time, every time. Therefore, time-critical tasks need enough

processor resources to ensure their completion. Separate time-critical tasks

from all other tasks in the application and place them in a separate VI so

you can ensure they receive enough processor resources. For example, if a

control application processes measurement data at regular intervals and

stores the data on disk, you must handle the timing and control of the data

acquisition in a time-critical VI. However, storing the data on disk is

inherently a non-deterministic task because file I/O operations have

unpredictable response times that depend on the hardware and the

availability of the hardware resource. Place file I/O operations in the

normal priority VI.

The time-critical priority VI receives the processor resources necessary to

complete the task and does not relinquish control of the processor until it

cooperatively yields to the normal priority VI or until it completes the task.

The normal priority VI then runs until preempted by the time-critical VI.

The process repeats until all tasks complete.

If the application contains two normal priority VIs in addition to the

time-critical VI, the timing of the application changes. For example, if the

application also requires updates to a LabVIEW front panel, you must

create a separate normal priority VI for network communication.

The network communication VI can receive data from other VIs in the

application using different communication methods. The communication

VI then can execute the non-deterministic network communication code to

update the front panel. When the application runs, the time-critical VI uses

the processor resources until the task completes or until it cooperatively

relinquishes control. The two normal priority VIs then round robin the

control of the processor resources in equal amounts of time until the tasks

complete or until preempted by the time-critical VI again for control of the

processor resources.

After separating all deterministic tasks from non-deterministic tasks in the

application into different VIs, assign the VIs to an execution system and

prioritize them accordingly.

Complete the following steps to set the execution system and priority

of a VI.

1. Select File»VI Properties to open the VI Properties dialog box.

2. Select Execution from the Category pull-down menu.

Chapter 4 Building Deterministic Applications

© National Instruments Corporation 4-5 Real-Time Module User Manual

3. Select the priority from the Priority pull-down menu.

4. Select the execution system from the Preferred Execution System

pull-down menu.

You then can use the different VIs as subVIs to build the final deterministic

application in one VI.

Cooperatively Yielding Time-Critical VI Execution
Because of the preemptive nature of time-critical VIs, they can monopolize

processor resources. A time-critical VI might use all of the processor

resources, not allowing lower priority VIs in the application to execute.

You must build time-critical VIs that periodically yield, or sleep, to allow

lower priority tasks to execute without affecting the determinism of the

time-critical code. By timing control loops, you can yield time-critical VIs

and cooperatively relinquish processor resources. Refer to the Timing

Control Loops section of Chapter 5, Creating Deterministic Control

Applications, for information about the methods available for timing

time-critical VIs to relinquish processor resources.

Passing Data between VIs

After dividing tasks in an application into separate VIs of varying priorities,

you might need to communicate between the different VIs. Use global

variables, functional global variables, and the Real-Time FIFO VIs to send

and receive data between VIs in an application.

Global Variables
Use global variables to access and pass small amounts of data between VIs,

such as from a time-critical VI to a lower priority VI.

Global variables are a lossy form of communication, meaning the data in a

global variable can be overwritten before actually being read. Tasks in a

lower priority thread might not have enough processor time to read the data

before other tasks in a different thread overwrite the data.

A global variable is a shared resource that you must use carefully in a

time-critical VI. If you use a global variable to pass data out of a

time-critical VI, you must ensure that a lower priority VI reads the data and

unlocks the global before the time-critical VI attempts to write to the global

again. Refer to Chapter 6, Optimizing Applications, for information about

shared resources.

Chapter 4 Building Deterministic Applications

Real-Time Module User Manual 4-6 ni.com

Using a global variable is a good way to pass small amounts of data, such

as scalar data, between VIs. For larger amounts of data, use functional

global variables or the Real-Time FIFO VIs. Refer to the LabVIEW User

Manual for information about creating and using global variables.

Functional Global Variables
Use functional global variables like global variables to pass data between

VIs. A functional global variable is a subVI set to subroutine priority.

The subVI contains a While Loop with a nested Case structure for read

and write access, as shown in Figure 4-1. The While Loop contains

uninitialized shift registers that store data. A functional global variable

receives an action input that specifies which task the VI performs, as shown

in Figure 4-1 by the Mode input parameter. Any subsequent calls to the

functional global variable can access the most recent data. Functional

global variables resemble queues because you can add more shift registers

to store a longer history of values. You also can add more than one set of

shift registers to pass more than one set of data.

Figure 4-1. Functional Global Variable

Unlike global variables, you can implement functional global variables

such that they are not a shared resource. If you right-click on a subVI set to

subroutine priority and select Skip Subroutine Call If Busy from the

shortcut menu, the execution system skips the call if the subroutine is

currently running in another thread. This helps in time-critical VIs where

the execution system safely skips the subroutine subVI without waiting.

If you skip the execution of a subVI, all outputs of the subVI become the

Chapter 4 Building Deterministic Applications

© National Instruments Corporation 4-7 Real-Time Module User Manual

default value for that data type, not the default value for the indicator on the

subVI front panel. For example, numeric outputs are zero, string and array

outputs are empty, and Boolean parameters are FALSE. If you want to

detect if a subroutine executes, make an output Boolean return TRUE if it

executes successfully and FALSE if it did not. Skip functional global

variables in time-critical VIs, but not in lower priority VIs. In lower priority

VIs, you can wait to receive non-default values.

Functional global variables can be a lossy form of communication that lose

data if a VI overwrites the shift register data before you read the data.

Refer to the examples\Real-Time\RT Communication.llb for

examples of using Functional Global Variables to communicate between

VIs that run on an RT Target.

Real-Time FIFO VIs
Use the Real-Time FIFO VIs to transfer data between VIs in an application.

An RT FIFO acts like a fixed queue, where the first value in is the first

value out. Use the RTFIFOWrite VI to add data to an RT FIFO. Next,

reference the RT FIFO in another VI. Use the RTFIFORead VI to read the

data from the referenced RT FIFO.

RT FIFOs and LabVIEW queues both transfer data from one VI to another.

However, unlike a LabVIEW queue, an RT FIFO ensures deterministic

behavior by imposing a size restriction. You must define the number and

size of the RT FIFO elements before the data enters the time-critical VI.

Both a reader and writer can access the data in an RT FIFO at the same

time, allowing RT FIFOs to work safely from within a time-critical VI.

Because of the fixed-size restriction, an RT FIFO can be a lossy

communication method. Writing data to an RT FIFO when the FIFO is full

overwrites the oldest element. You must read data stored in an RT FIFO

before the FIFO is full to ensure the transfer of every element without

losing data. Check the overwrite output of the RTFIFOWrite VI to ensure

that data is not overwritten. If the RT FIFO overwrites data, the overwrite

output returns a TRUE value. Refer to the LabVIEW Help, available by

selecting Help»VI, Function, & How-To Help, for VI reference

information about the Real-Time FIFO VIs. Refer to the examples\

Real-Time\RT Communication.llb for examples of using the

Real-Time FIFO VIs to communicate between VIs that run on an RT target.

Chapter 4 Building Deterministic Applications

Real-Time Module User Manual 4-8 ni.com

Creating a User Interface for RT Target VIs

Use the RT Communication Wizard to create a user interface for

time-critical VIs running on an RT target. The RT Communication Wizard

creates the following three user interface VIs:

• Host VI—Provides a user interface that runs on the host computer.

• Time-Critical VI—Contains the time-critical tasks.

• Normal Priority VI—Contains all non-deterministic network

communication tasks used to update the host VI front panel with data

received from the time-critical VI. The normal priority VI also calls

the time-critical VI.

Complete the following steps to create the user interface VIs.

1. Select Tools»RT Communication Wizard to open the RT

Communication Wizard.

2. Select a VI by entering the path or by clicking the Browse button and

navigating to the location of the VI.

3. Select the front panel communication method from the available

choices—TCP, User Datagram Protocol (UDP), DataSocket, or

Logos.

4. Enter the IP address of the RT target in the IP address of RT target

listbox. You also can select an RT target IP address from the pull-down

menu.

5. Enter the TCP port to use for communication in the TCP Port text box.

If you use the UDP protocol, you must specify the UDP send and

receive ports in the UDP Send Port and UDP Receive Port text

boxes.

6. Click the Next button.

The RT Communication Wizard returns a list of controls and indicators

present in the time-critical VI. The RT Communication Wizard

replaces front panel controls and indicators in the time-critical VI with

RT FIFOs. Also, the RT Communication Wizard places RT FIFOs in a

new normal priority VI. The RT FIFOs in the normal priority VI and

time-critical VI send and receive front panel data. RT FIFOs are

deterministic and do not affect the timing of the time-critical code.

The RT Communication Wizard displays the old control or indicator

name and the new RT FIFO name for all controls and indicators.

Chapter 4 Building Deterministic Applications

© National Instruments Corporation 4-9 Real-Time Module User Manual

7. Enter the number of elements in each RT FIFO in the Length text box

and click the Next button. You must ensure that you set Length large

enough to contain the data written to an RT FIFO to prevent the loss of

data from overflow.

Note Remove the checkmark from the control or indicator Select checkbox to leave the

control or indicator in place without converting it to an RT FIFO.

If the time-critical VI contains a control or indicator of type 1D array,

you must set the array length for each RT FIFO element. If you have

no controls or indicators of type 1D array, skip step 8.

8. Enter the length of the array that will be contained in each element of

the RT FIFO in the Array Length text box and click the Next button.

The RT Communication Wizard creates three VIs and provides a

different name for each VI.

9. Verify the VI names and directory in which to save the VIs and click

the Finish button. The original VI is not changed.

The RT Communication Wizard generates the three VIs and creates front

panel code for the time-critical VI using the specified communication

method in the normal priority VI. However, if you want more than one

communication method to handle the front panel communication code or

you want to vary the order in which the network communication VI sends

and receives data, use network communication methods to create a network

communication VI. Refer to the Exploring Communication Methods

section for information about the network communication methods you can

use in LabVIEW.

Exploring Communication Methods

You can use high-level software protocols to communicate between host

LabVIEW VIs and RT target VIs. Each protocol has its advantages and

disadvantages. You can choose any method based on the communication

need. The following list classifies the different communication methods:

• Shared Memory Communication—Used for communication between

LabVIEW and RT Series plug-in devices only.

• Network Communication—Used for communication over Ethernet

networks.

– TCP

– UDP

Chapter 4 Building Deterministic Applications

Real-Time Module User Manual 4-10 ni.com

– DataSocket

– VI Server

– SMTP (send only)

• Bus Communication—Used for communication over different bus

communication ports.

– Serial

– CAN

Shared Memory
Shared memory is the physical medium through which the host computer

and RT Series plug-in device communicate.

In operating systems like Windows, two processes or applications can

communicate with each other using the shared memory mechanism the

operating system provides. Similarly, RT target VIs and LabVIEW VIs can

communicate using shared memory VIs to read and write to the shared

memory locations on the RT Series plug-in device.

The Real-Time Shared Memory VIs have very low timing overhead and are

not a shared resource, so they are the only communication method you can

place in a time-critical VI. However, the size of the shared memory is

limited to 1 KB for 7030 Series plug-in device and 512 KB for the

7041 Series plug-in devices. If you need to transfer several megabytes of

data, you must divide the data into smaller portions and then transfer them.

In doing so, you must make sure that data in the shared memory is not

overwritten before it is read. Refer to the LabVIEW Help, available by

selecting Help»VI, Function, & How-To Help, for information about the

Real-Time Shared Memory VIs.

TCP
TCP is an industry-standard protocol for communicating over networks.

Host LabVIEW VIs can communicate with RT target VIs using the

LabVIEW TCP functions. Refer to the LabVIEW Help, available by

selecting Help»VI, Function, & How-To Help, for information about the

TCP functions.

Chapter 4 Building Deterministic Applications

© National Instruments Corporation 4-11 Real-Time Module User Manual

The Real-Time Module extends the capabilities of the existing TCP

functions to enable communication with networked RT Series devices and

to allow communication across shared memory with RT Series plug-in

devices. However, TCP is non-deterministic, and using TCP

communication inside a time-critical VI adds jitter to the application. Jitter

is the amount of time that a loop cycle time varies from the desired time.

UDP
UDP is a network transmission protocol for transferring data between two

locations on a network. UDP is not a connection-based protocol, so the

transmitting and receiving computers do not establish a network

connection. Because there is no network connection, there is little overhead

when transmitting data. However, UDP is non-deterministic, and using

UDP communication inside a time-critical VI adds jitter to the application.

When using UDP to send data, the receiving computer must have a read

port open before the transmitting computer sends the data. Use the UDP

Open function to open a write port and specify the IP address and port of

the receiving computer. The data transfer occurs in byte streams of varying

lengths called datagrams. Datagrams arrive at the listening port and the

receiving computer buffers and then reads the data.

It is possible to do bi-directional data transfers with UDP. With

bi-directional data transfers, both computers specify a read and write port

and transmit data back and forth using the specified ports. You can use

bi-directional UDP data transfers to send and receive data from the network

communication VI on the RT target.

UDP has the ability to perform fast data transmissions with minimal jitter.

However, UDP cannot guarantee that all datagrams arrive at the receiving

computer. Because UDP is not connection based, the arrival of datagrams

cannot be verified. To prevent this, you must read data stored in the

receiving computer’s data buffer fast enough to prevent overflow and loss

of data. Refer to the LabVIEW Help, available by selecting Help»VI,

Function, & How-To Help, for information about using the UDP

functions to exchange data with devices on a remote UDP port.

DataSocket
DataSocket is an Internet programming technology to share live data

between VIs and other computers. A DataSocket Server running on a host

computer acts as a data repository. Data placed on the DataSocket Server

becomes available for clients to access.

Chapter 4 Building Deterministic Applications

Real-Time Module User Manual 4-12 ni.com

Note You can bind a DataSocket connection to a front panel object and control the object

from a client connection. However, this feature is not supported by VIs on an RT target

because there is no front panel.

One advantage of using DataSocket is that multiple clients can access data

on the DataSocket Server. A LabVIEW VI can use the DataSocket Write

VI to post data to the DataSocket Server. Any number of VIs on different

RT targets can use the DataSocket Read VI to retrieve the data. RT target

VIs can post data, such as status information, to the DataSocket Server for

the host computer VI to read.

DataSocket is non-deterministic and using DataSocket functions inside a

time-critical VI adds jitter to the application. Refer to the LabVIEW User

Manual for information about DataSocket technology. Refer to the

LabVIEW Help, available by selecting Help»VI, Function, & How-To

Help, for information about the DataSocket VIs and functions.

VI Server
Use the VI Server to monitor and control VIs on a remote RT target.

Using VI Server technology, a LabVIEW VI can invoke RT target VIs.

The LabVIEW VI can pass parameter values to and from the RT target VIs,

creating a distributed application.

A host VI can invoke only VIs in memory on the RT target. The host VI

cannot dynamically download LabVIEW VIs to the RT target for use with

the VI Server. Refer to the Downloading VIs to an RT Target section of

Chapter 3, Real-Time Module Environment, for information about

downloading VIs without running them.

One advantage to using the VI Server for communication is that it allows

you to access the functionality of TCP while working within the framework

of LabVIEW. However, VI Server is non-deterministic and using VI Server

communication inside a time-critical VI adds jitter to the application. Refer

to the LabVIEW User Manual for information about using the VI Server.

Chapter 4 Building Deterministic Applications

© National Instruments Corporation 4-13 Real-Time Module User Manual

Table 4-1 lists the characteristics of the different network communication

methods.

SMTP
Use the SMTP VIs to send data from a VI running on the RT target to VIs

running on another computer. The SMTP VIs can send electronic mail,

including attached data and files, using the Simple Mail Transfer

Protocol (SMTP). You cannot use the SMTP VIs to receive information.

SMTP is non-deterministic, and using SMTP communication inside a

time-critical VI adds jitter to the application. Refer to the LabVIEW User

Manual for information about emailing data from a VI.

Serial
Serial communication is the transmission of data between two locations

through the serial ports. The VISA functions provide serial communication

support in LabVIEW for communication between RT targets with serial

devices and serial instruments or computers that have a serial connection.

Serial communication is ideal when transfer data rates are low or for

transmitting data over long distances. You must install NI-Serial RT on the

RT target from MAX. (Mac OS) Install using the Remote System Explorer.

Serial is non-deterministic, and using serial communication inside a

time-critical VI adds jitter to the application. Refer to the LabVIEW Help,

available by selecting Help»VI, Function, & How-To Help, for

information about using the VISA functions for serial communication.

Table 4-1. Characteristics of Network Communication Protocols

Protocol Speed Loss

TCP Fast Lossless

UDP Very Fast Lossy

DataSocket Fast Lossy*

VI Server Slow Lossless**

*Data can be overwritten if items are not read from the DataSocket Server before the

next write.

**Not for large data transfers. Mostly used for monitoring or controlling one shot runs of

remote VIs. VI Server is primarily suited for remote control of VIs.

Chapter 4 Building Deterministic Applications

Real-Time Module User Manual 4-14 ni.com

CAN
Controller Area Network (CAN) is a deterministic, multi-drop

communication bus standardized as ISO 11898. Using CAN, you can

transfer up to 8 data bytes per frame at a rate of up to 1 Mbit per second.

You can network multiple RT systems using NI-CAN interface cards and

NI-CAN driver software. You cannot use CAN communication with the

RT Series plug-in devices. You must install NI-CAN RT on the RT target

from MAX. (Mac OS) Install using the Remote System Explorer. Refer to

the NI-CAN Hardware and Software Manual for information about using

NI-CAN hardware and software with LabVIEW.

Using Remote Panels with RT Target VIs

Use remote panels to view or remotely control an RT target VI from a

remote LabVIEW client or Web browser. Only one user may control a VI

at any specific time, but several users at different locations can view the VI

front panel simultaneously.

Enabling Remote Panel Connections to RT Target VIs
The RT target Web Server must be enabled to allow remote panel control

of an RT target VI or to view the front panel of an RT target VI remotely

using a Web browser.

Complete the following steps to enable the RT target Web Server and add

VIs to the Web server Visible VIs list.

1. Target LabVIEW to the RT target.

2. Select Tools»RT Target: x.x.x.x Options and select Web Server:

Configuration from the pull-down menu.

3. Place a checkmark in the Enable Web Server checkbox to enable the

Web Server.

4. Enter the Web Server root directory in the Root Directory text box.

The Web Server root directory is the top directory in a Web Server file

system.

5. Select Web Server: Visible VIs from the pull-down menu.

6. Add to the Visible VIs list the VIs that you want to be accessible on

the Web. Click the OK button to close the Options dialog box.

7. Download the VIs to the RT target. Refer to the Downloading VIs to

an RT Target section of Chapter 3, Real-Time Module Environment,

for information about downloading VIs to an RT target.

Chapter 4 Building Deterministic Applications

© National Instruments Corporation 4-15 Real-Time Module User Manual

With the RT target Web Server enabled, you can create HTML files to

allow Web browser access to RT target VIs in the Visible VIs list.

Complete the following steps to create HTML files of VIs and make

them available to Web browsers from the RT target Web Server.

1. Open in host LabVIEW the VIs you want to publish.

2. Select Tools»Web Publishing Tool to open the Web Publishing

Tool dialog box and create an HTML file that embeds the VI.

3. Click the Save to Disk button to create the HTML file.

4. Using the FTP client in MAX, transfer the HTML file to the RT target

directory that you specified as the Web Server root directory.

(Mac OS) Use the FTP client of the Remote System Explorer.

Refer to Chapter 18, Networking in LabVIEW, of the LabVIEW User

Manual for information about publishing VIs on the Web using the Web

Publishing Tool and viewing and controlling front panels remotely.

Regaining Control of RT Target VIs from Remote Panel Connections
If a remote panel connection assumes control of an RT target VI while you

have a front panel connection to the RT target, LabVIEW alerts you that

control was transferred to a remote client. Also, if a remote panel

connection has control of a VI running on an RT target and you open a front

panel connection to the target from the host computer, LabVIEW alerts you

that a remote connection exists and has control of the VI.

You can regain control of an RT target VI from host LabVIEW by opening

a front panel connection to the target and clicking the RT Target

information banner located on the lower-left corner of the VI front panel

and selecting Regain Control. The remote user receives a message that the

server has regained control of the VI. The host computer regains and locks

control of the VI, not allowing remote connections to regain control. You

can unlock control of the VI by clicking the RT Target information banner

and selecting Unlock Control. You can switch control of a VI to a user that

requested control while the VI was locked by clicking the RT Target

information banner and selecting Switch Controller. If more than one

remote connection requested control of the VI, the first connection in the

queue assumes control.

Chapter 4 Building Deterministic Applications

Real-Time Module User Manual 4-16 ni.com

Minimizing Memory Usage by the RT Target Web Server
To minimize memory usage when you enable the Web Server on the RT

target, include only the VIs you want to access on the Visible VIs list. Also,

disable the Web Server or remove all VIs on the Visible VIs list to avoid

losing memory when the Web Server is not in use.

© National Instruments Corporation 5-1 Real-Time Module User Manual

5
Creating Deterministic Control
Applications

This chapter explains how to create control applications using the

LabVIEW Real-Time Module. This chapter also explains how to use the

NI-Watchdog VIs to monitor a control system for critical failures or events.

Overview of Control Applications

In a typical control application, the process variable is a system variable

that you want to control. Sensors measure the process variable in the

dynamic system and provide the data to the control application. The set

point is the value, or command value, you want for the process variable.

A comparator determines if a difference exists between the process

variable and the set point. If a difference exists and it is deemed large

enough, the compensator processes the data and determines the desired

actuator output to drive the system appropriately. Figure 5-1 illustrates a

typical control system.

Figure 5-1. Typical Control System

For example, in a temperature measurement system, if the actual

temperature is 100 °C and the temperature set point is 120 °C, the

compensator needs to take some action to raise the temperature.

CompensatorSet Point
Actuator
Output

System
(Plant)

Process
Variable

Measurement

Comparator

+ –

Chapter 5 Creating Deterministic Control Applications

Real-Time Module User Manual 5-2 ni.com

One actuator output might be to drive a heater at 62 percent of its maximum

output capacity. The increased heater actuator output causes the system to

become warmer, which results in an increased temperature. This kind of

system is called a closed-loop control system because the process of

reading sensors and calculating the actuator output you want repeats

continuously at a fixed loop rate.

Implementing a Deterministic Control Application

You can use the Real-Time Module, RT Series hardware, and National

Instruments I/O hardware to create deterministic control applications to

monitor a system. RT Series hardware can handle the process variable

measurement and actuator compensation sections of a control system.

A LabVIEW application can retrieve sensor measurement data from the

hardware, compare set point and process variable data values, use control

algorithms to processes the data, and output compensation data to the

system compensation hardware. Figure 5-2 shows the LabVIEW

implementation of a control system. Timing the control loop is not

represented in Figure 5-2. However, the timing of the control loop is

important to the success of the control system.

Figure 5-2. Typical LabVIEW Control Application

When you develop a deterministic control application, you must consider

memory management, time-critical versus normal priority code, and

communication. Refer to Chapter 4, Building Deterministic Applications,

for information about deterministic programming techniques.

Building a deterministic control application includes the following steps.

1. Time the control loop.

2. Acquire the measurement data.

3. Process the measurement data.

4. Output the compensation data.

Software
Processing

Actuator
Output

Sensor
Input

Data Acquisition
Device

RT Target VI Data Acquisition
Device

Chapter 5 Creating Deterministic Control Applications

© National Instruments Corporation 5-3 Real-Time Module User Manual

Timing Control Loops

Because of the preemptive nature of the Real-Time Operating System

(RTOS) RT Series devices use, a time-critical application thread can

monopolize the processor on the device. A thread might use all processor

resources and not allow lower-priority threads in the application to execute.

The time-critical task must periodically yield processor resources to the

lower-priority tasks so they can execute. By properly separating the

time-critical task from lower priority tasks, you can reduce application

jitter. Refer to Chapter 4, Building Deterministic Applications, for

information about building deterministic VIs that reduce application jitter.

You can use a software method or hardware methods to time control loops.

The software method is available for RT Series FieldPoint modules,

RT Series PXI controllers, and RT Series plug-in devices. The hardware

method is available only for RT Series plug-in devices and RT Series PXI

controllers.

Timing Control Loops Using Software
The Wait Until Next ms Multiple function causes a thread to sleep until the

operating system millisecond timer value equals a multiple of the

millisecond multiple input. For example, if the Wait Until Next ms

Multiple function executes with a millisecond multiple input of 10 ms and

the operating system millisecond timer value is 112 ms, the VI pauses until

the millisecond timer value equals 120 ms because 120 ms is the first

multiple of 10 ms after the Wait Until Next ms Multiple function executes.

Use the Wait Until Next ms Multiple function to synchronize a loop with

the operating system millisecond timer value multiple. A loop has a period

of millisecond multiple if the Wait Until Next ms Multiple function

executes in parallel with other code in the same loop. However, the loop

does not have the period of millisecond multiple if the code takes longer

to execute than the millisecond multiple.

Avoid placing the Wait Until Next ms Multiple function in parallel with

other code because doing so can result in incorrect timing in a control

system. Instead, use sequence structures to control when the Wait Until

Next ms Multiple function executes using data flow. Figure 5-3 shows the

Chapter 5 Creating Deterministic Control Applications

Real-Time Module User Manual 5-4 ni.com

ideal timing of a control system. The example control system reads an

analog input, writes an analog output, and waits in a synchronized cycle

that repeats.

Figure 5-3. Ideal Timing of a Control System

The block diagram in Figure 5-4 uses a loop with the Wait Until Next ms

Multiple function to create a control system.

Figure 5-4. Parallel Implementation of a Control System

Because of the dataflow properties of LabVIEW programming, the Wait

Until Next ms Multiple function can execute before, after, or between the

execution of the analog input and output. The behavior of the loop differs

depending on when the Wait Until Next ms Multiple function executes.

If the Wait Until Next ms Multiple function executes first, the analog input

precedes the analog output. The control system timing matches the ideal

timing shown in Figure 5-3. However, when the Wait Until Next ms

Multiple function does not execute first, the loop sleeps until the function

executes. Because a portion of the loop sleeps, the entire loop sleeps, and

the analog output waits until the loop returns from sleep to execute, which

produces results that do not match the ideal timing. Figure 5-5 shows the

incorrect results.

Wait AI AO Wait AI AO Wait

Chapter 5 Creating Deterministic Control Applications

© National Instruments Corporation 5-5 Real-Time Module User Manual

Figure 5-5. Incorrect Timing of a Control System

You can use a Flat Sequence structure to force a specific execution

sequence, as shown in Figure 5-6. In the block diagram in Figure 5-6, the

Wait Until Next ms Multiple function precedes the analog input and the

system implementation produces results that match the ideal timing.

Figure 5-6. Flat Sequence Implementation of a Control System

Timing Control Loops Using Hardware
With the Wait Until Next ms Multiple function, you can achieve loop rates

of 1 kHz at best. However, the AI SingleScan VI allows the analog input

hardware scan clock of NI E Series data acquisition devices to control when

a thread sleeps and wakes up. Because the timing is controlled through

hardware, applications using the AI SingleScan VI can achieve a sleep

resolution much finer than 1 ms and dramatically reduce jitter.

AI SingleScan VI
The AI SingleScan VI can continuously acquire one analog data point from

each channel in the scan list using hardware timing. When you configure

an NI E Series data acquisition device for non-buffered input at a certain

scan rate, the hardware scan clock controls the timing of analog-to-digital

(A/D) conversions. Each time the scan clock pulses, the data acquisition

device performs an A/D conversion for every channel in the scan list and

generates an interrupt that the AI SingleScan VI handles. The data

Wait AO AI Wait AO AI WaitAI

Chapter 5 Creating Deterministic Control Applications

Real-Time Module User Manual 5-6 ni.com

acquisition device stores the scan data in the device hardware FIFO buffer.

When the AI SingleScan VI detects the interrupt, the VI that calls the

AI SingleScan VI wakes up and acquires the data from the hardware FIFO

buffer. The remaining code executes and the cycle repeats.

Using the AI SingleScan VI is the preferred timing mechanism for

controlling single-point acquisition loop rates. The AI SingleScan VI

allows for the maximum amount of sleep time and produces the least

amount of jitter. Even if you do not use the acquired analog data, the

AI SingleScan VI provides an effective method for timing control loops.

Counter Control VI
Use the Counter Control VI to provide hardware timing for a control loop

if you do not have analog hardware for data acquisition, if you need to

perform a buffered data acquisition, or if you use the AI scan clock for other

timing tasks.

You can use an external source or an internal source to configure a counter

for pulse train generation. You then can use the pulse train to time the

control loop. Refer to the Data Acquisition VIs for Traditional NI-DAQ

Help for information about configuring the pulse specifications for counter

control.

You can use the Counter Control VI and set the control code input to wait,

available only for data acquisition devices with DAQ-STC counters, to

asynchronously wait for a hardware event and time a control loop. To use

the Counter Control VI with the control code input set to wait, you must

provide a timeout value in case expected source pulses do not occur.

Place the Counter Control VI in the control loop to wait for a pulse train

wake up edge. A wake up edge is a source pulse edge that causes the

Counter Control VI to wake up. Wake up edges occur every

active source edges, where n = 0, 1, 2, and so on. When the Counter Control

VI runs, it waits until one active source edge, or wake up edge, before the

active source edge where the output pulse occurs. For example, if PS1 = 5

and PS2 = 5, the Counter Control VI wakes up at the fourth active source

edge, which is one source edge before the output pulse occurs, as shown in

Figure 5-7. Regardless of the output polarity, the Counter Control VI

wakes up one active source edge before the output pulse.

n PS1 PS2+() PS1 1–+

Chapter 5 Creating Deterministic Control Applications

© National Instruments Corporation 5-7 Real-Time Module User Manual

Figure 5-7. Example Time Sequence

If one or multiple wake up edges occur before the next time the Counter

Control VI runs, the VI does not wait or sleep until the next wake up edge

but returns immediately. In other words, a wake up edge sets a wake up flag,

and the Counter Control VI waits for and clears the flag. If the Counter

Control VI is in a time-critical VI, lower priority VIs do not have a chance

to run.

Acquiring Measurement Data

Use the AI Sample Channel VI to acquire a single point of data from

a single channel of a data acquisition device. The block diagram in

Figure 5-8 illustrates an acquisition loop timed using the Wait Until Next

ms Multiple function and implements a single-point data acquisition using

the AI Sample Channel VI.

1 2 3 4 5 6 7 8 9 10

Source

Output

Counter control with
wait control code wakes upProgram

Chapter 5 Creating Deterministic Control Applications

Real-Time Module User Manual 5-8 ni.com

Figure 5-8. Acquiring Single Points of Data from a Single Channel

The software-timed implementation of the data acquisition has obvious

limitations. First, the acquisition cannot be faster than 1 kHz because the

Wait Until Next ms Multiple function is bounded by the resolution of the

OS system clock. Second, the acquisition is subject to software jitter.

We can increase the loop rate and decrease jitter by using hardware timing

methods.

Using DAQ Devices to Acquire Measurement Data
The block diagram in Figure 5-9 uses the AI SingleScan VI to acquire one

analog data point from each channel in the scan list of a data acquisition

device.

Figure 5-9. AI SingleScan VI Data Acquisition

Chapter 5 Creating Deterministic Control Applications

© National Instruments Corporation 5-9 Real-Time Module User Manual

During each call to the AI SingleScan VI, the loop sleeps while waiting for

the hardware clock of the E Series data acquisition device to complete the

A/D conversions of scan data from all required channels. The data

acquisition device places the scanned data in the hardware FIFO buffer of

the device. When the acquisition and data conversion completes, the

AI SingleScan VI wakes up and retrieves the data.

Because the AI SingleScan VI uses hardware timing to control the

acquisition, the application loop rates can increase dramatically over

software timing with less jitter. The AI SingleScan VI dictates how fast the

acquisition loop can execute. The data remaining output of the

AI SingleScan VI returns a numeric value to provide information about

data in the hardware FIFO buffer. If data remaining is 0, the loop executes

fast enough to retrieve every scan from the FIFO buffer. If data remaining

is 1 or greater, the loop does not execute fast enough to retrieve every data

point, and the loop rate is not deterministic. Always check the value of data

remaining to ensure that the application executes in real-time.

The value of data remaining might become skewed during the first loop

iterations with fast hardware loop rates because the processor might

initially execute the loop at rates slower than the data acquisition due to

caching effects. After multiple calls to the AI SingleScan VI, the processor

cache saves the VI, and the loop executes at a maximum speed. Use the

AI SingleScan VI opcode input to retrieve the oldest scan data or the

newest scan data from the hardware FIFO buffer. Retrieving the newest

scan data erases all older scan data from the buffer. Therefore, by obtaining

the newest data during the first few iterations of the acquisition loop, you

can ensure that the data remaining output always equals 0. After the loop

executes at a consistent speed, you can read the oldest scan data from the

buffer and use the data remaining output to detect if the loop runs in

real time.

Using FieldPoint Devices to Acquire Measurement Data
The block diagram in Figure 5-10 shows an example of a FieldPoint

implementation of a data acquisition loop. The example uses the FieldPoint

Read VI to acquire measurement data. Refer to examples/FieldPoint/

Getting Started for examples of using FieldPoint VIs to acquire

measurement data in a control loop. You can modify the example VIs to

acquire data by changing the tag configuration, which allows you to switch

from one FieldPoint module to another without changing the code.

Chapter 5 Creating Deterministic Control Applications

Real-Time Module User Manual 5-10 ni.com

Figure 5-10. Acquiring Data Using FieldPoint

Processing Measurement Data

There are many data processing algorithms to consider when creating a

control application. You can create custom control algorithms using

LabVIEW. You also can use VIs, such as the LabVIEW PID Control

Toolset VIs, to process control application data.

The LabVIEW PID Control Toolset, which is included with the Real-Time

Module, offers several libraries that you can use to develop a control

application. The most commonly used control algorithm is the

Proportional-Integral-Derivative (PID), but the toolset also includes tools

for fuzzy logic and advanced control algorithms. Fuzzy logic is a method

of rule-based decision making used for expert systems and process control

to emulate the process of human decision making.The LabVIEW PID

Control Toolset Advanced Control VIs include VIs for complex control

applications and for hardware-in-the-loop (HIL) applications.

Using the PID VIs, you can develop the following control applications:

• Proportional; proportional-integral; proportional-derivative; and

proportional-integral-derivative algorithms

• Gain-scheduled PID

• PID autotuning

• Error-squared PID

• Lead-lag compensation

Chapter 5 Creating Deterministic Control Applications

© National Instruments Corporation 5-11 Real-Time Module User Manual

• Set point profile generation

• Multiloop cascade control

• Feed forward control

• Override (minimum/maximum selector) control

• Ratio/bias control

Refer to the LabVIEW PID Control Toolset User Manual for information

about using the LabVIEW PID Control Toolset. Refer to the National

Instruments Web site at ni.com/info and enter the info code rtcontrol

for information about the control toolsets the Real-Time Module supports.

Outputting Compensation Data

Using NI-DAQ VIs to Output Control Data
You can use the AO Update Channel VI to write a specified value to an

output channel if you do not need to carefully control the timing of the

update event, and if you do not have high speed requirements for the

control loop.

You also can time analog output events and synchronize the events to the

analog input clock. Using Real-Time System Integration (RTSI), you can

share a common clock for A/D and D/A conversions to ensure that both

occur simultaneously. When you use E Series plug-in devices, a shared

clock can be the output of a counter routed over RTSI to the update clock

and scan clock. Also, the shared clock can be the output of a the scan clock

routed to the update clock, or the update clock routed to the scan clock, and

so on. However, the drawback is that outputs are always one loop cycle

behind the inputs, as shown in Figure 5-11.

Figure 5-11. Shared Clock Implementation

Input
(first point)

Input
(second point)

Processing

Delay

Time

Output (irrelevant) Output (response to first point)

Shared Clock

Chapter 5 Creating Deterministic Control Applications

Real-Time Module User Manual 5-12 ni.com

The time delay between analog input and output is exact, predictable, and

subject only to the hardware jitter of the scan clock, which is on the order

of nanoseconds.

In Figure 5-11, the output occurs as soon as the processing completes,

meaning that the software dictates the timing of the output. However,

you can improve the consistency of the delays between the input and

output events using hardware timing. Use hardware timing and a clock to

guarantee that inputs and outputs occur at regular intervals with minimal

jitter.

To minimize the time between an input and its corresponding output,

consider staggering the scan clock (A/D) and update clock (D/A) as shown

in Figure 5-12. Using one clock, you can stagger A/D and D/A conversions

by initiating an input on the rising edge of the clock and initiating an output

on the falling edge of the same clock. Adjusting the clock duty cycle

enables you to vary the time between inputs and outputs until you achieve

an optimized loop cycle time.

Figure 5-12. Divided Process Routine Implementation

In some cases, you can divide the processing routine into a pre-processing

and post-processing section. Dividing the processing routine establishes a

smaller response time between inputs and outputs by shifting some of the

processing elsewhere, as shown in Figure 5-12.

The block diagram in Figure 5-13 uses the AO SingleUpdate VI to perform

an output only operation that writes the new output value to the output

register of the device, DAC 0, which is hardware timed and driven by the

AI Scan Start signal. The AI Scan Start clock must trigger the D/A

conversion for the value to output. Refer to the One Channel PID Control

VI in the examples/Real-Time/RT Control.llb for an example of

outputting data from a PID loop.

Input Input

Post-Processing

Delay + Pre-Processing

Time

Output Output

Shared Clock
(staggered in/out)

Post-Processing

Chapter 5 Creating Deterministic Control Applications

© National Instruments Corporation 5-13 Real-Time Module User Manual

Figure 5-13. One Channel PID Output

Chapter 5 Creating Deterministic Control Applications

Real-Time Module User Manual 5-14 ni.com

Using FieldPoint VIs to Output Control Data
The block diagram in Figure 5-14 uses FieldPoint VIs to perform a

synchronous write to a specified channel.

Figure 5-14. One Channel PID Output Using FieldPoint

Using Watchdogs in Applications

In control applications, it might be necessary to respond to a failure or

system event quickly. If a critical component of a motion control system

fails, keeping the system motor running might risk the safety of both the

equipment and operators. While shutting down the equipment quickly

might be the best solution, not every failure must be handled in the same

manner. When a network connection between an RT target data-logging VI

and a host computer VI fails, the application should continue running and

logging data to disk until you reestablish the network connection.

Watchdog utilities monitor for specific system events and failures.

These utilities can be either software or hardware, where available. The

watchdog waits until a specific event occurs and executes a preconfigured

action. There are two implementations of the watchdog, the inactivity

watchdog and the network watchdog. The inactivity watchdog uses a

continuously incrementing counter that executes an expiration action when

Chapter 5 Creating Deterministic Control Applications

© National Instruments Corporation 5-15 Real-Time Module User Manual

it reaches some preconfigured terminal count. The network watchdog

checks the system for network disturbances and responds to a connection

failure.

Inactivity Watchdog
Some RT Series devices have hardware watchdogs that you can configure

programmatically to respond to system inactivity. The hardware watchdog

has a timeout period that you can configure. The watchdog uses a built-in

counter to count up to the defined timeout. When the watchdog reaches the

timeout value, it executes the preconfigured expiration action. To prevent

the watchdog from timing out, the application can reset the watchdog

count. The monitoring of the application is called whacking the dog, which

essentially resets the counter of the hardware watchdog. The application

can reset the count while it runs. If the application stops running, the

watchdog counts up to its timeout value and then carries out the expiration

action. Available expiration actions include setting a trigger, generating an

occurrence that another application can respond to, and rebooting the RT

Series device.

When hardware capability is unavailable, you can configure a counter or

timer device to behave like the built-in PXI watchdog counter. You also can

toggle a hardware digital line. By monitoring this count value from a

separate application, you can respond to inactivity in the necessary way.

If you use software watchdogs, inactivity can reset the device, set an

occurrence in software, and activate a PXI backplane trigger.

Network Watchdog
Some RT Series hardware, such as the FP-20xx, have a built-in network

monitor. If you enable the network watchdog and the FieldPoint network

module loses communication with all hosts or clients over the network, the

module sets output channels to predefined values corresponding to the

watchdog state. You can configure these watchdogs to output a certain

value when a network failure is detected.

If no built-in network watchdog is available, you can create one

programmatically. For example, if TCP is the communication protocol

between the host machine and embedded real-time applications, you can

monitor for network disconnect errors and timeouts. In these situations, you

might want to change the behavior of the system. For example, you might

want to log to a file until the network connection is reestablished.

Chapter 5 Creating Deterministic Control Applications

Real-Time Module User Manual 5-16 ni.com

Many real-time applications separate time-critical tasks into a separate VI,

and communicate between VIs using protocols such as the Real-Time FIFO

VIs. You can use the API of the Real-Time FIFO VIs to detect a failure in

the communication path or in one of the participants. For example, you can

check if the RT FIFO is unexpectedly empty or if you are overwriting data.

Appropriate expiration actions for this kind of failure include shutting

down entirely until you can reestablish communication, returning to a

known state, and continuing as usual.

Refer to the examples\Real-Time\RT Watchdog (PXI).llb for

examples of using the NI-Watchdog VIs to configure watchdogs for

RT Series devices. Refer to the LabVIEW Help for information about the

NI-Watchdog VIs.

© National Instruments Corporation 6-1 Real-Time Module User Manual

6
Optimizing Applications

This chapter explains techniques that can improve the determinism of

applications.

Avoiding Shared Resources

In LabVIEW, there are resources that two or more VIs might need to share.

These shared resources include global variables, non-reentrant subVIs, the

LabVIEW Memory Manager, queues, semaphores, single-threaded DLLs,

and so on. If a VI uses a shared resource, the VI acquires an operating

system mutex around the resource to protect the resource from access by

other VIs. A mutex locks the resource so that other VIs may not access the

resource. If a time-critical priority VI preempts a lower priority VI and

attempts to use a locked resource, the time-critical VI must wait because the

shared resource is not available. The lower priority VI becomes more

important than the time-critical VI because it must finish its work and

release the shared resource before the time-critical VI can proceed.

This scenario is a priority inversion.

Priority inversions induce jitter. Avoid or minimize jitter in a time-critical

VI to ensure determinism. Do not use shared resources in time-critical VIs.

The amount of jitter induced by a shared resource depends on the type of

shared resource involved. For instance, when accessing a global variable, a

VI can finish a read or write operation on a global within a consistent length

of time or with very little variance in time. Because reading and writing to

a global variable is bound in time, you can account for the jitter induced by

sharing global variables.

Memory Allocations and Preallocating Arrays
When a VI allocates memory, the VI accesses the LabVIEW Memory

Manager. The LabVIEW Memory Manager allocates memory for data

storage. The LabVIEW Memory Manager is a shared resource and might

be locked by a mutex up to several milliseconds. Avoid allocating memory

within time-critical VI control loops.

If you are using arrays in time-critical VI control loops, you can reduce

jitter by preallocating arrays before entering the loop.

Chapter 6 Optimizing Applications

Real-Time Module User Manual 6-2 ni.com

The block diagram in Figure 6-1 builds an array within the control loop.

Jitter affects the loop because the Build Array function inside the loop uses

the LabVIEW Memory Manager.

Figure 6-1. Memory Allocation in Control Loop

The block diagram in Figure 6-2 uses the Initialize Array function outside

the loop and the Replace Array Subset function inside the loop to create the

array. No memory allocations use the LabVIEW Memory Manager

because the array has been preallocated.

Figure 6-2. Preallocated Array

You must ensure that no memory management occurs inside of time-critical

VI control loops.

Chapter 6 Optimizing Applications

© National Instruments Corporation 6-3 Real-Time Module User Manual

Casting Data to Proper Data Types
Cast data to the proper data type in time-critical and non-time-critical VIs.

Every time LabVIEW performs a type conversion, either implicitly or

explicitly, LabVIEW makes a copy of the data buffer in memory to retain

the new data type after the conversion. The LabVIEW Memory Manager

must allocate memory for the copy, which might affect the determinism of

time-critical VIs. Also, creating copies of the data buffer takes up memory

resources on an RT target. Refer to the LabVIEW User Manual for more

information about casting data types.

Use the smallest data type possible when casting the data type. If you must

convert the data type of an array, do the conversion before you build the

array. Also, keep in mind that a function output reuses an input buffer only

if the output and the input have the same data type representation. Arrays

must have the same structure and number of elements for function outputs

to reuse the input buffer.

Reducing the Use of Global Variables
LabVIEW creates an extra copy in memory of every global variable you

use in a VI. Reduce the number of global variables to improve the

efficiency and performance of VIs. Creating copies of the global variable

takes up memory resources on an RT target.

Avoiding Contiguous Memory Conflicts

LabVIEW handles many of the memory details that you normally deal with

in a conventional, text-based language. For example, functions that

generate data must allocate storage for the data. When that data is no longer

needed, LabVIEW deallocates the associated memory. When you add new

information to an array or a string, LabVIEW allocates new memory to

accommodate the new array or string. However, running out of memory in

LabVIEW is usually not a concern.

You must design memory conscious VIs for RT targets. Always preallocate

space for arrays equal to the largest array size that you might encounter.

When you reboot or reset an RT target, the Real-Time Operating System

(RTOS) and the RT Engine load into memory as shown in diagram 1 of

Figure 6-3.

Chapter 6 Optimizing Applications

Real-Time Module User Manual 6-4 ni.com

Figure 6-3. Memory Diagrams of an RT Target

The RT Engine uses available memory for running RT target VIs and

storing data. In diagram 2 of Figure 6-3, ArrayMaker.vi creates Array 1.

All elements in Array 1 must be contiguous in memory.

The RTOS reuses the same memory addresses if you stop a VI and then run

it again with arrays of the same size or smaller. In diagram 3 of Figure 6-3,

ArrayMaker.vi creates Array 2. The RTOS creates Array 2 in the

reserved memory space previously occupied by Array 1. Array 2 is small

enough to fit in the reserved memory space that was allocated to Array 1.

The extra contiguous memory used for Array 1 remains in the reserved

memory space, as shown in diagram 3 of Figure 6-3.

When ArrayMaker.vi runs for a third time with a larger array or if

another VI generates a larger array, the RT Engine must find a large enough

contiguous space. In diagram 4 of Figure 6-3, ArrayMaker.vi must

create Array 3, larger than the previous arrays, in the available memory.

Even when ArrayMaker.vi stops running, the RT Engine continues to

run. Previously reserved memory is not available. If ArrayMaker.vi runs

a fourth time and attempts to create an array larger than Array 3, the

operation fails. There is no contiguous memory area large enough to create

Real-Time
Operating
System
(RTOS)

RT Engine

Real-Time
Operating
System
(RTOS)

RT Engine

ArrayMaker.vi

Array 1

Real-Time
Operating
System
(RTOS)

RT Engine

ArrayMaker.vi

Array 2

Real-Time
Operating
System
(RTOS)

RT Engine

ArrayMaker.vi

Array 3

1 2 3 4

Chapter 6 Optimizing Applications

© National Instruments Corporation 6-5 Real-Time Module User Manual

the array because of the memory fragmentation. You can preserve memory

space by preallocating array space equal to the largest use case.

Avoiding SubVI Overhead

When you call a subVI, there is a certain amount of overhead associated

with the call. Although the overhead is small compared to I/O operations,

it adds up if you call a subVI multiple times in a loop. Instead, embed the

loop in the subVI.

You also can convert subVIs into subroutines by changing the VI priority.

The LabVIEW execution system minimizes the overhead to call

subroutines. Subroutines are short, frequently executed tasks and are

generally most appropriate when used with VIs that do not require user

interaction. Subroutines cannot display front panel data and do not

multitask with other VIs. Also, avoid using timing or dialog box functions

in subroutines. Refer to the Chapter 4, Building Deterministic

Applications, for information about setting VI priorities.

Setting VI Properties

To reduce memory requirements and increase performance of VIs, disable

nonessential options in the VI Properties dialog box available by selecting

File»VI Properties. Select Execution from the Category pull-down menu

and remove checkmarks from the Allow debugging and Auto handle

menus at launch checkboxes. By disabling these options, VIs use less

memory, compile quicker, and perform better overall.

Disabling the Disk Cache

The Real-Time Module provides a disk cache when writing data to the hard

disk of RT targets with a media storage device. The disk cache is efficient

for writing small amounts of data, much less than 512 bytes.

When writing amounts of data much greater than 512 bytes, disable the disk

caching feature for better performance. To disable the disk caching feature,

you must change the RTTarget.DiskCache.Enable token in the RT

target ni-rt.ini file from the default value of TRUE to FALSE.

When you disable the disk cache feature for RT Series PXI controllers, you

must perform writes to the disk in multiples of 512 bytes because the hard

drives of the controllers have 512 byte sectors.

Chapter 6 Optimizing Applications

Real-Time Module User Manual 6-6 ni.com

Setting BIOS Options

Another way to improve performance of VIs running on RT Series PXI

controllers is to disable USB hardware in the BIOS of the controller.

Make the following BIOS settings changes:

Integrated Peripherals

USB Keyboard = DISABLED

Additionally, for NI PXI-8170 controllers, make the following BIOS

settings changes:

PnP/PCI Configuration

Assign IRQ for USB = DISABLED

These changes can reduce or even eliminate jitter caused by USB device

interrupts.

Mass Compiling VIs

Mass compiling a VI is another way to improve performance. Mass

compiling a VI compiles the top-level VI and also recompiles and re-links

all the subVIs and functions on the block diagram with the top-level VI.

© National Instruments Corporation 7-1 Real-Time Module User Manual

7
Deploying Applications

This chapter explains how to use the LabVIEW Application Builder to

create stand-alone executables of LabVIEW Real-Time Module VIs.

Building Stand-Alone Applications

Use the Application Builder, included with the Real-Time Module

Professional Development System, to create stand-alone Real-Time

Module applications. Stand-alone applications do not require you to run

them from within a LabVIEW environment.

In LabVIEW, select Tools»Build Application or Shared Library (DLL)

to launch the LabVIEW Application Builder. Refer to the LabVIEW

Application Builder User Guide for information about using the

Application Builder to build a stand-alone application.

Creating an Application Installer
In addition to building applications, the Application Builder can create

an installer for a stand-alone application. Select the Installer Settings tab

in the Build Application or Shared Library (DLL) dialog box to access

the installer options. Click the Advanced button to open the Advanced

Installer Settings dialog box. Place a checkmark in the LabVIEW

Run-Time Engine and the LabVIEW RT Support checkboxes to add the

LabVIEW Run-Time Engine and support for RT Series hardware to the

application installer. You can use the LabVIEW Run-Time Engine to target

the application to an RT target from a computer that does not have the

Real-Time Module installed.

When you install a stand-alone application on an RT target without a media

storage device, such as an NI PCI-7030 plug-in device, you also must

install the following components from the National Instruments Device

Driver CD:

• Measurement & Automation Explorer (MAX) 3.0

• PCI-7041 and PCI/PXI-7030 support

• Traditional NI-DAQ 7.0

Chapter 7 Deploying Applications

Real-Time Module User Manual 7-2 ni.com

For targets with a media storage device, such as an RT Series PXI

controller, RT Series FieldPoint module, or NI PCI-7041 plug-in device,

you must install the following components from the National Instruments

Device Driver CD:

• MAX 3.0

• PCI-7041 and PCI/PXI-7030 support (for PCI-7041)

• FieldPoint 4.0 support (for FieldPoint)

• Necessary I/O hardware drivers

Note RT targets with media storage devices must already have a version of the RT Engine

installed that matches the version of LabVIEW used to build the stand-alone application.

Configuring Target Settings
On the Target tab, the Application Builder determines the target file name,

destination directory, and support file directory from the Application Path

setting in the Network Options dialog box, available by selecting

Tools»RT Target: x.x.x.x Options, where x.x.x.x is the IP address of the

RT target, and then selecting RT Target: Miscellaneous from the

pull-down menu. You cannot change the application name, destination

directory, or support file directory settings in the Application Builder after

you target a networked device.

If you select Small target file with external file for subVIs in the Build

Options section, you cannot change the LLB for other files path because

this path is determined from the Application Path setting in the Network

Options dialog box. Refer to the LabVIEW Help, available by selecting

Help»VI, Function, & How-To Help from LabVIEW, for more

information about build options.

Saving Stand-Alone Applications
The Application Builder stores the stand-alone application on the host

computer or on the media storage device of an RT target. You can target

LabVIEW to an RT target with a media storage device before opening the

Application Builder to store the application on the RT target.

Because some RT targets have no media storage device, you cannot

permanently store stand-alone applications on the target. You must launch

the applications on the host computer and target them to an RT target. When

power to the target is lost, the application on the RT target also is lost. Refer

to the Launching Stand-Alone Applications section for information about

launching stand-alone applications using command line arguments.

Chapter 7 Deploying Applications

© National Instruments Corporation 7-3 Real-Time Module User Manual

Selecting a Target after Launch
When you run a stand-alone application built with the Application Builder,

the Select Execution Target dialog box appears. You can select any RT

target for the application. If you do not want to select the RT target each

time you run the application, remove the checkmark from the Show

LabVIEW Real-Time target selection dialog when launched checkbox

in the Application Settings tab of the Application Builder to make the

application run automatically on the host computer. You also can use

command line arguments with the applications you build to specify the RT

target. Refer to the Launching Applications Automatically Using Command

Line Arguments section for information about command line arguments.

Quitting LabVIEW after Launch
If you design a stand-alone application to run on an RT target, you might

want the host computer to disconnect from the RT target after you

download and run the application. Place a checkmark in the Quit

LabVIEW Real-Time host application after downloading checkbox

in the Application Settings tab of the Application Builder to have

LabVIEW disconnect after launching the application on the RT target.

Selecting the Quit LabVIEW Real-Time host application after

downloading option is equivalent to selecting File»Exit without closing

RT Engine VIs in LabVIEW after downloading and running a VI on an RT

target.

Some RT targets have media storage devices where you can save

stand-alone applications. For example, the RT Series PXI controller has a

hard disk drive, and the FieldPoint 20xx network module has flash. You

then can automatically launch stand-alone applications each time you

reboot the RT target. Refer to the Launching Stand-Alone Applications

section for information about launching applications from the media

storage device of the host computer or RT target automatically.

Launching Stand-Alone Applications

You can configure RT targets to launch stand-alone applications on start-up

differently depending on the RT target. If the RT target has a media storage

device, you can embed the application directly on the target and then launch

it automatically on start-up. If the RT target does not have a media storage

device, you can still launch the application from the host computer on

startup using command line arguments.

Chapter 7 Deploying Applications

Real-Time Module User Manual 7-4 ni.com

Launching Applications Automatically on Start-up
The RT Engine can launch embedded, stand-alone applications each time

you boot the RT target.

Complete the following steps to launch an embedded, stand-alone

application when the RT target starts up.

1. Target LabVIEW to the networked RT target. Refer to the Targeting

LabVIEW to an RT Target section of Chapter 3, Real-Time Module

Environment, for information about targeting LabVIEW.

2. Select Tools»RT Target: x.x.x.x Options, where x.x.x.x is the IP

address of the device.

3. Select RT Target: Miscellaneous from the pull-down menu.

4. Place a checkmark in the Launch Application at Boot-up checkbox.

Launching Applications Automatically Using Command Line Arguments
Use command line arguments to disable the Select Execution Target

dialog box and explicitly specify a target for the application. Use command

line arguments in a batch file or shortcut from the operating system startup

folder to automatically launch stand-alone applications when the host

computer starts up.

To disable the Select Execution Target dialog box, specify the RT target

in a command line argument using –target. For example,

c:\mybuiltapp_rtengine.exe -target DAQ::3

You also can target the host computer and automatically launch a host

computer application on start-up. For example,

c:\mybuiltapp_host.exe -target host

To disconnect the host computer from the RT target after downloading the

application, leaving the embedded application running, use -quithost.

For example, the following command automatically downloads and runs

mybuiltapp_rtengine.exe on data acquisition device 1 and closes

LabVIEW on the host computer.

c:\mybuiltapp_rtengine.exe -target DAQ::1 -quithost

Note If the host computer requires a login before entering the operating system, the

application starts only after the login completes.

Chapter 7 Deploying Applications

© National Instruments Corporation 7-5 Real-Time Module User Manual

You also can reset a specified plug-in device using -reset. For example,

c:\mybuiltapp_rtengine.exe -target DAQ::3 -reset

This command automatically resets the plug-in device specified by

-target before downloading the application. Refer to the LabVIEW Help

for information about LabVIEW command-line arguments.

Connecting to Applications Running on RT Targets

You cannot open a Front Panel Communication connection to a stand-alone

application running on an RT target. Use a remote panel connection to

connect to the application, or use the RT Communication Wizard to create

VIs to provide a user interface on a host computer. Refer to Chapter 4,

Building Deterministic Applications, for information about using remote

panels and the RT Communication Wizard.

© National Instruments Corporation 8-1 Real-Time Module User Manual

8
Debugging Deterministic
Applications

Building deterministic LabVIEW applications requires programming

techniques different from typical LabVIEW programming. With

deterministic applications, there are two levels of debugging to

verify—application behavior and timing behavior.

Verifying Correct Application Behavior

You first must ensure that the application behaves as expected. Use the

LabVIEW debugging tools to detect errors and step through the flow of

execution to locate the error source. Finally, use the Profile window to test

the execution timing and memory usage of an application.

Using the LabVIEW Debugging Tools
Use the LabVIEW debugging tools, such as execution highlighting and

single-stepping, while the host computer is targeted to an RT target to step

through LabVIEW code. The only feature not supported by the Real-Time

Module is the Call Chain ring, which appears in the toolbar of a subVI

block diagram window while single-stepping. The debugging tools are

useful for determining the source of errors in an application. Refer to the

LabVIEW User Manual for information about the LabVIEW debugging

tools.

Note Do not use the LabVIEW debugging tools to debug execution timing because all of

the tools affect the timing of an application.

Using the Profile Window
The Profile window is a powerful tool for statistically analyzing how an

application uses execution time and memory. The Profile window displays

information that can identify the specific VIs or parts of VIs you need to

optimize. For example, if you notice that a particular subVI takes a long

time to execute, you can improve the performance of that VI. The Profile

window displays the performance information for all VIs in memory in an

Chapter 8 Debugging Deterministic Applications

Real-Time Module User Manual 8-2 ni.com

interactive tabular format. From the Profile window, you can select the

type of information to gather and sort the information by category.

You also can monitor subVI performance within different VIs. Select

Tools»Advanced»Profile VIs to display the Profile window.

Note You must target LabVIEW to an RT target while running the profiler.

You must place a checkmark in the Profile Memory Usage checkbox

before starting a profiling session. Collecting information about VI

memory use adds a significant amount of overhead to VI execution, which

affects the accuracy of any timing statistics gathered during the profiling

session. Therefore, perform memory profiling separate from time profiling.

Many of the options in the Profile window become available only after you

begin a profiling session. During a profiling session, you can take a

snapshot of the available data and save it to an ASCII spreadsheet file.

The timing measurements accumulate each time you run a VI. Refer to the

LabVIEW Performance and Memory Management Application Note for

information about using the Profile window.

Verifying Correct Timing Behavior

Timing is crucial in a deterministic application. Use one of the following

methods to verify the timing behavior of an application.

Using the Tick Count (ms) Function
The Tick Count (ms) function can be used to measure the time it takes to

perform N iterations of a specified operation and calculate the average time

in seconds per operation as well as average operations per second. Refer to

the Benchmarking Shell VI located in the examples/Real-Time/RT

Tutorial.llb for an example using Tick Count (ms) to benchmark code.

Refer to the NI Developer Zone at ni.com/zone for information about

using the Tick Count (ms) function to verify timing behavior.

Using the Pentium Time Stamp Counter
On Pentium processor-based RT targets, you can obtain a time stamp using

the Read Time Stamp Counter (RDTSC) assembly instruction. You can

make an RDTSC assembly call to read the Time Stamp Counter register

from the Pentium processor for every loop iteration. Refer to the NI

Developer Zone at ni.com/zone for information about using Pentium

Time Stamp Counter to verify timing behavior.

Chapter 8 Debugging Deterministic Applications

© National Instruments Corporation 8-3 Real-Time Module User Manual

Using an Oscilloscope
The Tick Count (ms) function and the Pentium Time Stamp Counter allow

you to examine the relative timing of sections of LabVIEW VIs and to

measure the software jitter in the VIs. Sometimes you might need to

measure the jitter of the whole system at the hardware level, especially

when you use hardware timing and the software jitter is masked out at the

system level. Use external tools such as an oscilloscope to study the

relationship between input and output signals and to measure loop rates and

jitter levels.

Using Software Drivers
Sometimes you can use software drivers to make sure that the application

is capable of keeping up with the desired loop rate. For example, you can

use NI-DAQ functions to time loops and determine whether the loop rate is

keeping real-time. The AI SingleScan VI has an output, data remaining,

that returns a 1 or greater when there is data present in the data FIFO.

The data remaining output is 0 when there is no data in the data FIFO.

Monitor the value inside a loop to determine whether the loop is

deterministic.

Using and Defining Error Codes

Use error handling to debug and manage errors in VIs. The LabVIEW error

handler VIs return error codes when an error occurs in a VI. Error codes

reveal the specific problem the VI encountered. When you configure an RT

target, LabVIEW automatically copies the error code files used by the error

handler VIs to the target.

Defining Custom Error Codes
Use custom error codes with networked RT targets that have media storage

devices. Create error files using the Error Code File Editor by selecting

Tools»Advanced»Edit Error Codes. If you use custom errors with

LabVIEW, you must place the error files in the c:\ni-rt\system\

user.lib\errors directory on the networked RT target. Use the FTP

client in Measurement & Automation Explorer (MAX) to transfer the error

file to the networked device.

Chapter 8 Debugging Deterministic Applications

Real-Time Module User Manual 8-4 ni.com

Setting Custom Error File INI Tokens
You can set two error handling configuration tokens in the ni-rt.ini

file that specify the way LabVIEW searches for custom error files.

Add RTDownloadErrors=TRUE to the ni-rt.ini file to search for error

files on the RT target. If the RT Engine does not find any local error files,

the RT Engine requests available error files from the host computer if a

front panel connection exists. The host computer searches for available

error files and transfers the parsed error data back to the RT target.

Add RTDownloadErrorList to the ni-rt.ini file equal to a list of

available files on the host computer, such as

RTDownloadErrorList="LabVIEW-error.txt;Anlys-error.txt"

Adding this token to the ni-rt.ini file causes the RT target to search for

the LabVIEW-error.txt and Anlys-error.txt files on the host

computer, parse them, and transfer the error data back to the RT target.

© National Instruments Corporation A-1 Real-Time Module User Manual

A
Configuring and Testing Device
Drivers

This appendix explains the configuration and testing of device drivers for

National Instruments I/O hardware.

Configuring and Testing NI Device Drivers

Refer to the National Instruments Web site at ni.com/info and enter the

info code RT0001 for information about the device drivers supported by the

RT Engine on a specific RT target.

Refer to the following documents for information about the configuration

and testing of device drivers for National Instruments I/O hardware.

NI-DAQ Refer to the National Instruments Web

site at ni.com/info and enter the

info code RTDRVS for information about

configuring and testing the NI-DAQ

driver.

NI-Motion Refer to the National Instruments Web

site at ni.com/info and enter the

info code RTDRVS for information about

configuring and testing the NI-Motion

driver.

NI-IMAQ Refer to the NI-IMAQ User Manual for

information about configuring NI-IMAQ

for use with the Real-Time Module.

NI-Serial Refer to the Serial Hardware and

Software for Windows User Manual for

information about configuring NI-Serial

for use with the Real-Time Module.

Appendix A Configuring and Testing Device Drivers

Real-Time Module User Manual A-2 ni.com

NI-VISA Refer to the National Instruments Web

site at ni.com/info and enter the

info code RTDRVS for information about

configuring and testing the NI-VISA

driver.

NI-CAN Refer to the NI-CAN Hardware and

Software Manual for information about

configuring NI-CAN for use with the

Real-Time Module.

FieldPoint Refer to the FP-2000/2010 User Manual

for information about configuring

FieldPoint for use with the Real-Time

Module.

Creating Device Drivers for Third-Party PXI Devices

Each I/O device requires driver software that is specific to the operating

system. Refer to the National Instruments Web site at ni.com/info and

enter the info code RTDRVS for information about creating or modifying a

device driver for the use with the Real-Time Module.

© National Instruments Corporation B-1 Real-Time Module User Manual

B
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at

ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,

visit our extensive library of technical support resources available

in English, Japanese, and Spanish at ni.com/support. These

resources are available for most products at no cost to registered

users and include software drivers and updates, a KnowledgeBase,

product manuals, step-by-step troubleshooting wizards,

conformity documentation, example code, tutorials and

application notes, instrument drivers, discussion forums,

a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other

measurement and automation professionals by visiting

ni.com/support. Our online system helps you define your

question and connects you to the experts by phone, discussion

forum, or email.

• Training—Visit ni.com/custed for self-paced tutorials, videos, and

interactive CDs. You also can register for instructor-led, hands-on

courses at locations around the world.

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, NI Alliance Program

members can help. To learn more, call your local NI office or visit

ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact

your local office or NI corporate headquarters. Phone numbers for our

worldwide offices are listed at the front of this manual. You also can visit

the Worldwide Offices section of ni.com/niglobal to access the branch

office Web sites, which provide up-to-date contact information, support

phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 Real-Time Module User Manual

Glossary

Symbol Prefix Value

m milli 10–3

k kilo 103

M mega 106

G giga 109

A

address Character code that identifies a specific location or series of locations in

memory.

application A collection of VIs that together accomplish the real-time system task.

D

DAQ See data acquisition (DAQ).

data acquisition (DAQ) (1) Acquiring and measuring analog or digital electrical signals from

sensors, transducers, and test probes or fixtures.

(2) Generating analog or digital electrical signals.

DataSocket An Internet programming technology to share live data between VIs and

other computers.

determinism Characteristic of a system that describes how consistently it can respond to

external events or perform operations within a given time limit.

device An instrument or controller you can access as a single entity that controls

or monitors real-world I/O points. A device often is connected to a host

computer through some type of communication network.

driver Software unique to the device or type of device, and includes the set of

commands the device accepts.

Glossary

Real-Time Module User Manual G-2 ni.com

E

embedded application A stand-alone application built using the LabVIEW Application Builder

and embedded as the start-up application on an RT target.

execution target The target on which to run a LabVIEW VI. Can be either an RT target or

the host computer.

F

FIFO First-in-first-out memory buffer. The first data stored is the first data sent

to the acceptor.

Front Panel

Communication

A protocol for communication between LabVIEW on the host computer

and the RT Engine on an RT target typically used during development.

functional global

variable

Is a subVI set to subroutine priority used to pass data between several VIs

on a block diagram.

G

global variable Accesses and passes data between several VIs on a block diagram.

H

host computer The computer on which you develop VIs using LabVIEW and download

them to an RT target.

Hz Hertz—The number of scans read or updates written per second.

I

I/O Input/Output—The transfer of data to/from a computer system involving

communications channels, operator interface devices, and/or data

acquisition and control interfaces.

INI A file used to set application configuration options.

Glossary

© National Instruments Corporation G-3 Real-Time Module User Manual

J

jitter The amount of time that the loop cycle time varies from the desired time.

L

Logos A mechanism for interprocess communication.

M

Measurement &

Automation Explorer

(MAX)

A graphical user interface for configuring National Instruments hardware

and software.

media storage device A device capable of storing data.

multitasking When a computer runs applications for a short amount of time to give the

impression of multiple applications running simultaneously.

multithreading Running tasks of an application for a short amount of time to give the

impression of multiple tasks running simultaneously.

mutex An operating system lock around a resource to protect the resource from

access by other VIs.

N

Network

Communication

A protocol for communication between a host VI and a VI running on the

RT target using specific network communication programmatic controls.

networked device A hardware platform with an embedded processor that you can control

using a separate host computer through an Ethernet connection.

NI-DAQ Driver software included with all NI measurement devices. NI-DAQ is an

extensive library of VIs and functions you can call from an application

development environment (ADE), such as LabVIEW, to program all the

features of an NI measurement device, such as configuring, acquiring and

generating data from, and sending data to the device.

Glossary

Real-Time Module User Manual G-4 ni.com

O

operating system Base-level software that controls a computer, runs programs, interacts with

users, and communicates with installed hardware or peripheral devices.

P

PCI Peripheral Component Interconnect—a high-performance expansion bus

architecture originally developed by Intel to replace ISA and EISA. It is

achieving widespread acceptance as a standard for PCs and workstations;

it offers a theoretical maximum transfer rate of 132 Mbytes/s.

plug-in device Plug-in NI PCI/PXI RT Series devices with embedded processors. Each

plug-in device contains a processor board and data acquisition

daughterboard.

preemptive scheduling Execution system scheduling of threads in which higher priority threads

execute before all other threads.

priorities Assigned to VIs to classify execution sequence in the execution system.

Higher priority threads execute first, while threads with a lower priority

wait.

Property Node Sets or finds the properties of a VI or application.

Proportional Integral

Derivative (PID)

Control

Combination of proportional, integral, and derivative control actions.

Refers to a control method in which the controller output is proportional to

the error, its time history, and the rate at which it is changing. The error is

the difference between the observed and desired values of a variable that is

under control action.

protocol The exact sequence of bits, characters, and control codes used to transfer

data between computers and peripherals through a communications

channel, such as the GPIB bus.

PXI PCI eXtensions for Instrumentation. A modular, computer-based

instrumentation platform.

Glossary

© National Instruments Corporation G-5 Real-Time Module User Manual

R

real-time A property of an event or system in which data is processed as it is acquired

instead of being accumulated and processed at a later time.

Real-Time Operating

System (RTOS)

Uses a combination of round robin and preemptive scheduling to execute

threads in the execution system.

remote panel Allows you to operate a front panel on a machine that is separate from

where the VI resides and executes using a LabVIEW client or Web browser.

round robin scheduling Scheduling that attempts to share the processor in equal amounts of time

among all ready tasks of the same priority.

RT Engine A version of LabVIEW that runs on the RT target.

RT target RT Series hardware that runs VIs downloaded from and built in LabVIEW.

run-time engine Runs LabVIEW executables built using the LabVIEW Application Builder

on computers without LabVIEW.

S

shared memory Memory that can be sequentially accessed by more than one controller or

processor but not simultaneously accessed. Also known as dual-mode

memory.

shift register Optional mechanism in loop structures to pass the value of a variable from

one iteration of a loop to a subsequent iteration. Shift registers are similar

to static variables in text-based programming languages.

soft reboot Restarting a computer without cycling the power, usually through the

operating system.

subVI VI used on the block diagram of another VI. Comparable to a subroutine.

synchronous (1) Hardware—A property of an event that is synchronized to a reference

clock; (2) Software—A property of a function that begins an operation and

returns only when the operation is complete.

Glossary

Real-Time Module User Manual G-6 ni.com

T

target See RT target.

TCP Transmission Control Protocol. A standard format for transmitting data in

packets from one computer to another.

thread A completely independent flow of control in an application.

Traditional NI-DAQ An upgrade to the earlier version of NI-DAQ. Traditional NI-DAQ has the

same VIs and functions and works the same way as NI-DAQ 6.9.x. You can

use both Traditional NI-DAQ and NI-DAQmx on the same computer,

which is not possible with NI-DAQ 6.9.x.

U

UDP User Datagram Protocol.

V

VI Virtual Instrument—(1) A combination of hardware and/or software

elements, typically used with a PC, that has the functionality of a classic

stand-alone instrument; (2) A LabVIEW software module (VI), which

consists of a front panel user interface and a block diagram program.

VI Server Mechanism for controlling VIs and LabVIEW applications

programmatically, locally and remotely.

Virtual Instrument

Software Architecture

(VISA)

Single interface library for controlling GPIB, VXI, RS-232, and other types

of instruments.

© National Instruments Corporation I-1 Real-Time Module User Manual

Index

A
access permissions for RT target, setting, 3-5

example RT target access list entries

(table), 3-7

RT Target: Access page (figure), 3-7

acquiring measurement data. See measurement

data

AI Sample Channel VI

acquiring measurement data, 5-7

AI SingleScan VI

acquiring measurement data, 5-8

timing control loops, 5-5

AO Single Update VI

outputting measurement data, 5-12

AO Update Channel VI

outputting measurement data, 5-11

Application Builder, 7-1

See also stand-alone applications

applications. See deterministic applications;

deterministic control applications; stand-alone

applications

arrays, preallocating, 6-1

B
bios options, setting, 6-6

C
CAN (Controller Area Network), 4-14

casting data to proper data types, 6-3

command line arguments for launching

stand-alone applications, 7-4

communicating with RT target VIs, 1-3

Front Panel Communication, 1-4

Network Communication, 1-5

communication methods, 4-9

CAN, 4-14

DataSocket, 4-11

serial, 4-13

shared memory, 4-10

SMTP, 4-13

TCP, 4-10

UDP, 4-11

VI Server, 4-12

compensation data, outputting, 5-11

FieldPoint VIs, 5-14

NI-DAQ VIs, 5-11

configuration

counter for pulse train generation, 5-6

networked RT Series devices, 2-4

booting into Real-Time Operating

System, 2-4

downloading software, 2-6

network settings, 2-5

networked RT target options, 3-5

RT target start-up applications, 3-8

setting access permissions, 3-5

plug-in devices, 2-3

contiguous memory conflicts, avoiding, 6-3

control applications

See also deterministic control applications

overview, 5-1

typical control system (figure), 5-1

Controller Area Network (CAN), 4-14

conventions used in manual, ix

Counter Control VI, 5-6

counters

See also timing behavior verification;

timing control loops

configuring for pulse train generation, 5-6

Pentium time stamp counter, 8-2

Tick Count (ms) function, 8-2

Index

Real-Time Module User Manual I-2 ni.com

custom error codes, defining, 8-3

custom error file INI tokens, setting, 8-4

D
data types, casting data to, 6-3

DataSocket communication method, 4-11

debugging deterministic applications, 8-1

application behavior verification, 8-1

LabVIEW debugging tools, 1-4, 8-1

Profile window, 8-1

error codes

defining custom error codes, 8-3

setting custom error file INI

tokens, 8-4

timing behavior verification, 8-2

oscilloscope, 8-3

Pentium time stamp counter, 8-2

software drivers, 8-3

Tick Count (ms) function, 8-2

deploying applications. See stand-alone

applications

deterministic applications, 4-1

See also deterministic control

applications

communication methods with, 4-9

CAN, 4-14

DataSocket, 4-11

serial, 4-13

shared memory, 4-10

SMTP, 4-13

TCP, 4-10

UDP, 4-11

VI Server, 4-12

debugging, 8-1

application behavior verification, 8-1

LabVIEW debugging tools, 8-1

Profile window, 8-1

error codes

defining custom error codes, 8-3

setting custom error file INI

tokens, 8-4

timing behavior verification, 8-2

oscilloscope, 8-3

Pentium time stamp counter, 8-2

software drivers, 8-3

Tick Count (ms) function, 8-2

dividing tasks, 4-4

multithreaded applications, 4-1

dividing tasks for deterministic

applications, 4-4

execution systems for categorizing

VIs, 4-3

overview, 4-1

VI priorities, 4-2

optimizing, 6-1

avoiding contiguous memory

conflicts, 6-3

avoiding shared resources, 6-1

avoiding subVI overhead, 6-5

casting data to proper data types, 6-3

disabling disk cache, 6-5

mass compiling VIs, 6-6

memory allocations and

preallocating arrays, 6-1

reducing global variable use, 6-3

setting bios options, 6-6

setting VI properties, 6-5

passing data between VIs, 4-5

functional global variables, 4-6

global variables, 4-5

Real-Time FIFO VIs, 4-7

user interface for RT target VIs, 4-8

yielding time-critical VI execution, 4-5

deterministic control applications, 5-1

acquiring measurement data, 5-7

AI Sample Channel VI, 5-7

DAQ devices, 5-8

FieldPoint devices, 5-9

Wait Until Next ms Multiple

function, 5-7

Index

© National Instruments Corporation I-3 Real-Time Module User Manual

implementing, 5-2

outputting compensation data, 5-11

FieldPoint VIs, 5-14

NI-DAQ VIs, 5-11

overview, 5-1

processing measurement data, 5-10

timing control loops, 5-3

hardware methods, 5-5

overview, 5-3

software method, 5-3

typical LabVIEW control application

(figure), 5-2

typical steps for building, 5-2

watchdogs, 5-14

inactivity watchdog, 5-15

network watchdog, 5-15

device drivers

configuring and testing, A-1

creating for third-party PXI devices, A-2

disk cache, disabling, 6-5

documentation

conventions used in manual, ix

related documentation, x

downloading

software on networked RT Series

devices, 2-6

VIs to RT target, 3-3

E
error codes in debugging

defining custom error codes, 8-3

setting custom error file INI tokens, 8-4

Express VIs, 1-6

F
FieldPoint Modules, RT Series

acquiring measurement data, 5-9

definition, 1-3

FieldPoint VIs

acquiring measurement data, 5-9

outputting compensation data, 5-14

Flat Sequence structure, 5-5

front panel

closing front panel connection without

closing VIs, 3-4

modification of RT target VI front panels

not supported, 1-7

Front Panel Communication

protocol, 1-4

purpose and use, 1-4

functional global variables, 4-6

G
global variables

functional, 4-6

overview, 4-5

reducing use of, 6-3

H
hardware

counter for time-critical VIs, 5-5

timing control loops with, 5-5

AI SingleScan VI, 5-5

Counter Control VI, 5-6

host computer, 1-1

I
inactivity watchdog, 5-15

Initialize Array function, 6-2

installation

Real-Time Module, 2-1

RT Series plug-in devices, 2-2

PCI plug-in devices, 2-2

PXI plug-in devices, 2-2

Index

Real-Time Module User Manual I-4 ni.com

J
Jitter, 4-11

priority inversion-induced, 6-1

reducing with preallocation arrays, 6-2

L
LabVIEW debugging tools, 1-4, 8-1

LabVIEW Memory Manager, 6-1

LabVIEW PID Control Toolset VIs, 5-10

LabVIEW Real-Time Module. See Real-Time

Module

LabVIEW software

See also RT Engine

quitting after launching stand-alone

applications, 7-3

real-time system component, 1-1

targeting LabVIEW to RT target, 3-1

unsupported features with

RT target VIs, 1-7

modifying front panel objects, 1-7

using OS-specific technologies, 1-7

launching stand-alone applications, 7-3

automatically on start-up, 7-4

automatically using command line

arguments, 7-4

M
manual. See documentation

mass compiling of VIs, 6-6

Measurement & Automation Explorer

(MAX), 2-3

measurement data

acquiring, 5-7

AI Sample Channel VI, 5-7

DAQ devices, 5-8

FieldPoint devices, 5-9

Wait Until Next ms Multiple

function, 5-7

processing, 5-10

memory

allocation and preallocating arrays, 6-1

avoiding contiguous memory

conflicts, 6-3

minimizing usage by RT target Web

Server, 4-16

multithreaded applications, 4-1

cooperative yielding of time-critical

VIs, 4-5

definition, 4-1

dividing tasks for deterministic

applications, 4-4

execution systems for categorizing

VIs, 4-3

overview, 4-1

round robin scheduling, 4-2

VI priorities, 4-2

mutex, definition of, 6-1

N
Network Communication, 1-5

network watchdog, 5-15

networked RT Series devices

configuring, 2-4

booting into Real-Time Operating

System, 2-4

downloading software, 2-6

network settings, 2-5

examples, 1-3

overview, 1-3

O
operating system mutex, 6-1

oscilloscope, timing behavior verification, 8-3

outputting compensation data, 5-11

FieldPoint VIs, 5-14

NI-DAQ VIs, 5-11

Index

© National Instruments Corporation I-5 Real-Time Module User Manual

P
passing data between VIs, 4-5

functional global variables, 4-6

global variables, 4-5

Real-Time FIFO VIs, 4-7

PCI plug-in devices, installing, 2-2

Pentium time stamp counter, 8-2

PID Control Toolset. See LabVIEW PID

Control Toolset

plug-in devices, RT series.

See also PXI controllers, RT Series

7041 RT Series plug-in devices, 1-3

configuring, 2-3

creating PXI device drivers, A-2

installing, 2-2

overview, 1-2

preallocating arrays, 6-1

preemptive scheduling, 4-2

priority inversion-induced jitter, 6-1

professional services and technical

support, B-1

Profile window, 8-1

programming. See deterministic applications;

deterministic control applications;

stand-alone applications

Proportional-Integral-Derivative (PID)

algorithm, 5-10

pulse train generation, configuring counter

for, 5-6

PXI controllers, RT Series

booting into Real-Time Operating

System, 2-4

overview, 1-3

PXI plug-in devices, RT Series

creating PXI device drivers, A-2

installing, 2-2

R
Read Time Stamp Counter (RDTSC)

assembly instructions, 8-2

real-time system components, 1-1

host computer, 1-1

LabVIEW software, 1-1

RT engine, 1-2

RT targets, 1-2

Real-Time FIFO VIs, 4-7

Real-Time Module

See also RT Engine

closing front panel connection without

closing VIs, 3-4

configuring networked RT target

options, 3-5

RT target start-up applications, 3-8

setting access permissions, 3-5

connecting to VIs running on RT

target, 3-4

disabling disk cache, 6-5

downloading VIs to RT target, 3-3

Express VIs, 1-6

installing, 2-1

targeting LabVIEW to RT target, 3-1

Real-Time Operating System (RTOS)

booting into, 2-4

memory usage, 6-3

Remote Panels and RT target VIs, 4-14

enabling connections to

RT target VIs, 4-14

minimizing memory usage by RT target

Web Server, 4-16

regaining control of RT Engine VIs, 4-15

Replace Array Subset function, 6-2

round robin scheduling, 4-2

RT Communication Wizard, 4-8

RT Engine

See also Real-Time Module

description, 1-2

launching stand-alone applications

automatically on start-up, 7-4

memory usage, 6-4

regaining control of RT target VIs, 4-15

RT Series FieldPoint Modules, 1-3, 5-9

Index

Real-Time Module User Manual I-6 ni.com

RT Series networked devices. See networked

RT series devices

RT Series plug-in devices. See plug-in

devices, RT series

RT Series PXI controllers. See PXI

controllers, RT Series

RT target(s)

See also RT target VIs

configuring networked RT target

options, 3-5

RT target start-up applications, 3-8

setting access permissions, 3-5

connecting to target using crossover

cable, B-5

connecting to VIs running on

RT target, 3-4

definition, 1-2

downloading VIs to RT target, 3-3

memory diagrams (figure), 6-4

networked RT Series devices

configuring, 2-4

booting into Real-Time

Operating System, 2-4

downloading software, 2-6

network settings, 2-5

examples, 1-3

overview, 1-3

RT series plug-in devices

configuring, 2-3

creating PXI device drivers, A-2

installing, 2-2

overview, 1-2

problems with connecting, B-3

setting system time, 2-7

stand-alone applications

configuring settings for, 7-2

connecting to applications running

on targets, 7-5

launching stand-alone

applications, 7-3

selecting target after launching, 7-3

targeting LabVIEW to RT target, 3-1

RT target VIs

communicating with, 1-3

Front Panel Communication, 1-4

Network Communication, 1-5

creating using interface for, 4-8

enabling Remote Panel connections, 4-14

Network Communication protocol, 1-5

regaining control from Remote Panel

connections, 4-15

unsupported LabVIEW features, 1-7

modifying front panel objects, 1-7

using OS-specific technologies, 1-7

RT target Web Server, minimizing memory

usage by, 4-16

RTFIFO Read VI, 4-7

RTOS. See Real-Time Operating System

(RTOS)

S
saving stand-alone applications, 7-2

serial communication method, 4-12

shared memory communication method, 4-10

shared resources, avoiding, 6-1

casting data to proper data types, 6-3

memory allocations and preallocating

arrays, 6-1

reducing global variable use, 6-3

Skip Subroutine Call If Busy, 4-6

SMTP communication method, 4-12

software

See also LabVIEW software

timing control loops, 5-3

software drivers

downloading for networked RT Series

devices, 2-6

for timing behavior verification, 8-3

stand-alone applications, 7-1

configuring target settings, 7-2

Index

© National Instruments Corporation I-7 Real-Time Module User Manual

connecting to applications running on RT

targets, 7-5

creating application installer, 7-1

installing on RT target

with media storage device, 7-2

without media storage device, 7-1

launching, 7-3

automatically on start-up, 7-4

automatically using command line

arguments, 7-4

quitting LabVIEW after launch, 7-3

saving, 7-2

selecting target after launch, 7-3

start-up applications

setting options for, 3-8

subVI overhead, avoiding, 6-5

system time, setting for RT targets, 2-7

T
targets. See RT target(s)

TCP communication method, 4-10

technical support and professional

services, B-1

Thread

See also multithreaded applications

definition, 4-1

Tick Count (ms) function, 8-2

time, system, obtaining for RT targets, 2-7

time-critical VIs

cooperative yielding, 4-5

functional global variables, 4-6

memory allocation and preallocating

arrays, 6-1

multithreaded applications, 4-4

timing behavior verification, 8-2

oscilloscope, 8-3

Pentium time stamp counter, 8-2

software drivers, 8-3

Tick Count (ms) function, 8-2

timing control loops, 5-3

hardware method, 5-5

AI SingleScan VI, 5-5

Counter Control VI, 5-6

overview, 5-3

software method, 5-3

Flat Sequence structure

implementation (figure), 5-5

ideal timing (figure), 5-4

incorrect timing (figure), 5-5

parallel implementation (figure), 5-4

Wait Until Next ms Multiple

function, 5-3

U
UDP communication method, 4-11

user interface, creating for RT target VIs, 4-8

V
VI Server communication method, 4-12

VIs

See also RT target VIs; time-critical VIs

Changed or Missing VIs dialog box, 3-5

closing front panel connection without

closing VIs, 3-4

connecting to VIs running on

RT target, 3-4

downloading to RT target, 3-3

execution systems for categorizing, 4-3

Express VIs, 1-6

improving performance

avoiding subVI overhead, 6-5

mass compiling, 6-6

setting VI properties, 6-5

Network Communication protocol, 1-5

outputting compensation data

FieldPoint VIs, 5-14

NI-DAQ VIs, 5-11

Index

Real-Time Module User Manual I-8 ni.com

passing data between VIs, 4-5

functional global variables, 4-6

global variables, 4-5

Real-Time FIFO VIs, 4-7

PID Control Toolset VIs, 5-10

priorities

normal, 4-2

setting execution system and

priority, 4-4

subroutine, 4-2

types of, 4-2

Real-Time FIFO VIs, 4-7

W
Wait Until Next ms Multiple function, 5-3

watchdogs in deterministic control

applications, 5-14

inactivity watchdog, 5-15

network watchdog, 5-15

	LabVIEW Real-Time Module User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	Real-Time System Components
	Host Computer
	LabVIEW
	RT Engine
	RT Target
	RT Series Plug-In Devices
	Networked RT Series Devices

	Communicating with RT Target VIs
	Front Panel Communication
	Figure 1-1. Front Panel Communication Protocol

	Network Communication
	Figure 1-2. Network Communication Protocol

	Real-Time Module and Express VI Considerations
	Unsupported LabVIEW Features
	Modifying Front Panel Objects of RT Target VIs
	Using OS-Specific Technologies in RT Target VIs

	Chapter 2 Installing and Configuring the Real-Time Module and RT Targets
	Installing the Real-Time Module
	Installing and Configuring RT Series Plug-In Devices
	RT Series PCI Plug-In Devices
	RT Series PXI Plug-In Devices
	Configuring RT Series Plug-In Devices
	Figure 2-1. Measurement & Automation Explorer

	Configuring Networked RT Series Devices
	Booting into the Real-Time Operating System
	Configuring Network Settings
	Downloading Software

	Setting the System Time of RT Targets

	Chapter 3 Real-Time Module Environment
	Targeting LabVIEW to an RT Target
	Figure 3-1. LabVIEW Dialog Box
	Figure 3-2. Select Execution Target Dialog Box

	Downloading VIs to an RT Target
	Closing a Front Panel Connection without Closing VIs
	Connecting to VIs Running on an RT Target
	Figure 3-3. Changed or Missing VIs Dialog Box

	Configuring Options of Networked RT Targets
	Setting Access Permissions for an RT Target
	Figure 3-4. RT Target: Access Page
	Table 3-1. Example RT Target Access List Entries

	Setting Options for RT Target Start-up Applications
	Figure 3-5. RT Target: Miscellaneous Page

	Chapter 4 Building Deterministic Applications
	Programming for Determinism
	Overview of Multithreaded Applications
	Creating Multithreaded Applications in LabVIEW
	Scheduling Threads
	Assigning Priorities
	Assigning VIs to Execution Systems

	Dividing Tasks to Create Deterministic Multithreaded Applications
	Cooperatively Yielding Time-Critical VI Execution

	Passing Data between VIs
	Global Variables
	Functional Global Variables
	Figure 4-1. Functional Global Variable

	Real-Time FIFO VIs

	Creating a User Interface for RT Target VIs
	Exploring Communication Methods
	Shared Memory
	TCP
	UDP
	DataSocket
	VI Server
	Table 4-1. Characteristics of Network Communication Protocols

	SMTP
	Serial
	CAN

	Using Remote Panels with RT Target VIs
	Enabling Remote Panel Connections to RT Target VIs
	Regaining Control of RT Target VIs from Remote Panel Connections
	Minimizing Memory Usage by the RT Target Web Server

	Chapter 5 Creating Deterministic Control Applications
	Overview of Control Applications
	Figure 5-1. Typical Control System

	Implementing a Deterministic Control Application
	Figure 5-2. Typical LabVIEW Control Application

	Timing Control Loops
	Timing Control Loops Using Software
	Figure 5-3. Ideal Timing of a Control System
	Figure 5-4. Parallel Implementation of a Control System
	Figure 5-5. Incorrect Timing of a Control System
	Figure 5-6. Flat Sequence Implementation of a Control System

	Timing Control Loops Using Hardware
	AI SingleScan VI
	Counter Control VI
	Figure 5-7. Example Time Sequence

	Acquiring Measurement Data
	Figure 5-8. Acquiring Single Points of Data from a Single Channel
	Using DAQ Devices to Acquire Measurement Data
	Figure 5-9. AI SingleScan VI Data Acquisition

	Using FieldPoint Devices to Acquire Measurement Data
	Figure 5-10. Acquiring Data Using FieldPoint

	Processing Measurement Data
	Outputting Compensation Data
	Using NI-DAQ VIs to Output Control Data
	Figure 5-11. Shared Clock Implementation
	Figure 5-12. Divided Process Routine Implementation
	Figure 5-13. One Channel PID Output

	Using FieldPoint VIs to Output Control Data
	Figure 5-14. One Channel PID Output Using FieldPoint

	Using Watchdogs in Applications
	Inactivity Watchdog
	Network Watchdog

	Chapter 6 Optimizing Applications
	Avoiding Shared Resources
	Memory Allocations and Preallocating Arrays
	Figure 6-1. Memory Allocation in Control Loop
	Figure 6-2. Preallocated Array

	Casting Data to Proper Data Types
	Reducing the Use of Global Variables

	Avoiding Contiguous Memory Conflicts
	Figure 6-3. Memory Diagrams of an RT Target

	Avoiding SubVI Overhead
	Setting VI Properties
	Disabling the Disk Cache
	Setting BIOS Options
	Mass Compiling VIs

	Chapter 7 Deploying Applications
	Building Stand-Alone Applications
	Creating an Application Installer
	Configuring Target Settings
	Saving Stand-Alone Applications
	Selecting a Target after Launch
	Quitting LabVIEW after Launch

	Launching Stand-Alone Applications
	Launching Applications Automatically on Start-up
	Launching Applications Automatically Using Command Line Arguments

	Connecting to Applications Running on RT Targets

	Chapter 8 Debugging Deterministic Applications
	Verifying Correct Application Behavior
	Using the LabVIEW Debugging Tools
	Using the Profile Window

	Verifying Correct Timing Behavior
	Using the Tick Count (ms) Function
	Using the Pentium Time Stamp Counter
	Using an Oscilloscope
	Using Software Drivers

	Using and Defining Error Codes
	Defining Custom Error Codes
	Setting Custom Error File INI Tokens

	Appendix A Configuring and Testing Device Drivers
	Appendix B Technical Support and Professional Services
	Glossary
	A-D
	E-I
	J-N
	O-P
	R-S
	T-V

	Index
	A-C
	D
	E-I
	J-O
	P-R
	S
	T-V
	W

