

 GPIB-1014D

https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-1014D?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-1014D?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-1014D?aw_referrer=pdf

© Copyright 1991, 1994 National Instruments Corporation.
All Rights Reserved.

ESP-488 Software Reference
Manual for VxWorks and

the GPIB-1014/1014D

National Instruments IEEE-488 Engineering Software Package

for the VxWorks Operating System

March 1994 Edition

Part Number 320429-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (512) 794-5678

Branch Offices:
Australia 03 879 9422, Austria 0662 435986, Belgium 02 757 00 20, Canada (Ontario) 519 622 9310,
Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 90 527 2321, France 1 48 65 33 70,
Germany 089 714 50 93, Italy 02 48301892, Japan 03 3788 1921, Netherlands 01720 45761, Norway 03 846866,
Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 27 00 20, U.K. 0635 523545

Limited Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED,
AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART
OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER.
NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS,
USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence. Any action against National Instruments must be brought within
one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due
to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner's failure to follow the National Instruments installation, operation,
or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and
power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-488® is a trademark of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

Warning Regarding Medical and Clinical Use

of National Instruments Products

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all
traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments products are being used.
National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or
equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v ESP-488 for VxWorks and GPIB-1014/1014D

Contents

About This Manual .. ix
Organization of This Manual ... ix
Conventions Used in This Manual...x

Abbreviations...x
Related Documentation..x
Customer Communication ...x

Chapter 1

Introduction ..1-1
What Your Kit Should Contain..1-1
Important Considerations...1-1

Chapter 2

The C Language Library ...2-1
Global Variables ..2-1

Status Word – ibsta ..2-1
Error Variable – iberr...2-2
Count Variable – ibcnt ...2-3

Read and Write Termination..2-4
Compiling C Programs...2-4
GPIB Function Descriptions ..2-5
Device-Level Functions ...2-5
Low-Level Functions ...2-5

Chapter 3

ibic ..3-1
Running ibic...3-1
Syntax Translation Guidelines...3-1
Sample Session ..3-2
Auxiliary Functions..3-3

Chapter 4

ESP-488 Functions and Utilities Reference ...4-1
IBIC(1)...4-2
IBTEST(1) ...4-6
DVCLR(3) ...4-7
DVRD(3)..4-8
DVRSP(3) ..4-10
DVTRG(3) ...4-12
DVWRT(3) ..4-13
IBCAC(3)...4-15
IBCMD(3)..4-16
IBEOS(3) ...4-18

Contents

ESP-488 for VxWorks and GPIB-1014/1014D vi © National Instruments Corporation

IBEOT(3) ...4-20
IBGTS(3) ...4-21
IBLINES(3)..4-22
IBONL(3)...4-23
IBPAD(3)...4-24
IBRD(3) ...4-25
IBRPP(3)..4-27
IBRSV(3) ...4-28
IBSAD(3)...4-29
IBSIC(3)...4-30
IBSRE(3)..4-31
IBTMO(3) ..4-32
IBWAIT(3)...4-34
IBWRT(3) ..4-36

Appendix A

Multiline Interface Command Messages..A-1

Appendix B

GPIB-1014/1014D Configuration and Installation ...B-1
GPIB-1014 Hardware Configuration...B-1
GPIB-1014D Hardware Configuration ..B-2
GPIB-1014/1014D Hardware Installation ...B-3
Software Installation and Configuration..B-3

Changing the Configuration...B-4
Installing Multiple Driver Modules ...B-5

Appendix C

GPIB Programming Example ..C-1

Appendix D

Customer Communication...D-1

Contents

© National Instruments Corporation vii ESP-488 for VxWorks and GPIB-1014/1014D

Tables

Table 2-1. Status Word Layout ..2-1
Table 2-2. GPIB Error Codes...2-2

Table 3-1. Auxiliary Functions that ibic Supports...3-3

Table 4-1. Syntax of ESP-488 Functions in ibic..4-2
Table 4-2. Status Word Layout ..4-4
Table 4-3. GPIB Error Codes...4-4
Table 4-4. Auxiliary Functions that ibic Supports...4-5
Table 4-5. Data Transfer Termination Method..4-18
Table 4-6. Timeout Settings...4-32
Table 4-7. Wait Mask Layout ..4-34

Table B-1. GPIB-1014 Hardware Configuration Settings..B-1
Table B-2. GPIB-1014D Hardware Configuration Settings...B-2
Table B-3. Software Distribution Files...B-4
Table B-4. Naming Syntax for esp488_2.o ..B-5

© National Instruments Corporation ix ESP-488 for VxWorks and GPIB-1014/1014D

About This Manual

This manual describes the IEEE-488 Engineering Software Package (ESP-488) for the VxWorks
operating system (Version 5.0 and higher) from Wind River Systems, Inc. This package is
intended to be used with one of the following interface boards:

• National Instruments GPIB-1014

• National Instruments GPIB-1014D

Organization of This Manual

This manual is organized as follows:

Chapter 1, Introduction, contains an overview of the ESP-488 VxWorks software, lists the
contents of the ESP-488 VxWorks kit, and describes important considerations for using the
software.

Chapter 2, The C Language Library, contains a general description of the C language
programming interface to the ESP-488 VxWorks device driver, including the GPIB device-level
and low-level functions.

Chapter 3, ibic, introduces you to the Interface Bus Interactive Control (ibic) program. This
chapter also contains instructions for running ibic, contains guidelines for translating ibic
syntax, contains a sample session, and summarizes the auxiliary functions that ibic supports.

Chapter 4, ESP-488 Functions and Utilities Reference, contains detailed information for using
the functions and utilities contained in the ESP-488 software package. For ease of use, this
material is presented in a format familiar to most users of the UNIX and VxWorks operating
systems.

Appendix A, Multiline Interface Command Messages, is a listing of multiline interface
messages.

Appendix B, GPIB-1014/1014D Configuration and Installation, describes how to configure and
install the hardware and software for the GPIB-1014 and GPIB-1014D interface boards.

Appendix C, GPIB Programming Example, illustrates the steps involved in programming a
representative IEEE-488 instrument from a terminal using the ESP-488 functions in C language.
This appendix is designed to help you learn how to use the ESP-488 driver software to execute
certain programming and control sequences.

Appendix D, Customer Communication, contains forms you can use to request help from
National Instruments or to comment on our products and manuals.

About This Manual

ESP-488 for VxWorks and GPIB-1014/1014D x © National Instruments Corporation

Conventions Used in This Manual

The following conventions are used to distinguish elements of text throughout this manual:

italic Italic text denotes emphasis, a cross reference, or an introduction to a key
concept.

monospace Text in this font denotes text or characters that are to be literally input
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives,
paths, directories, programs, subprograms, subroutines, device names,
functions, variables, filenames and extensions, and for statements and
comments taken from program code.

bold italic Bold Italic text denotes an important note.

Abbreviations

The following abbreviations for units of measure are used in this manual:

µsec microsecond
msec millisecond
sec second

Related Documentation

The following documents contain information that you may find helpful as you read this manual:

• ANSI/IEEE Standard 488-1987, IEEE Standard Digital Interface for Programmable
Instrumentation

• GPIB-1014 User Manual (part number 320030-01)

• GPIB-1014D User Manual (part number 320140-01)

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help if you have
problems with them. To make it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in Appendix D, Customer
Communication, at the back of this manual.

© National Instruments Corporation 1-1 ESP-488 for VxWorks and GPIB-1014/1014D

Chapter 1
Introduction

This chapter contains an overview of the ESP-488 VxWorks software, lists the contents of the
ESP-488 VxWorks kit, and describes important considerations for using the software.

ESP-488 is a functional subset of the industry standard NI-488 GPIB driver software. Standard
ESP-488 implements an optimized set of ten fundamental GPIB functions for low-level
communication and control through a single GPIB interface. In addition to this core set of ten
functions, ESP-488 for VxWorks includes several functions for interface configuration and high-
level device communication. Other features include timeout support, error reporting, and an
interactive control utility (ibic) similar to the ibic included with NI-488 software packages.

What Your Kit Should Contain

Your kit should contain the following components:

Component Part Number

One of the following software media:

• UNIX tar formatted streaming tape for
the ESP-488 VxWorks software 460861-13

• UNIX tar formatted 9-track tape for
the ESP-488 VxWorks software 430861-13

ESP-488 for VxWorks and the GPIB-1014/1014D
Software Reference Manual 320429-01

Important Considerations

Before using the ESP-488 VxWorks software, you must install an appropriate GPIB interface
board and load the software from tape. Refer to Appendix B, GPIB-1014/1014D Configuration
and Installation, for instructions on installing the hardware and software.

Consider also the following points when using the ESP-488 software:

• The ESP-488 functions support synchronous I/O transfers through a single GPIB interface.
The functions are intended to be accessed by only one program task at a time.

Introduction Chapter 1

ESP-488 for VxWorks and GPIB-1014/1014D 1-2 © National Instruments Corporation

• All functions return a subset of the standard NI-488 status bit vector as described later in this
manual. The result of the last call is also available in the global variable, ibsta. Additional
information on the result of the last call is sometimes contained in the global variables
ibcnt and iberr. Refer to Chapter 2, The C Language Library, for more information on
the global variables.

• The GPIB interface is normally designated to be the System Controller. Most ESP-488
functions are optimized to assume the GPIB interface is also the Controller-In-Charge (CIC).

• You must call the ibonl function to initialize the GPIB interface before any other call is
made.

• Prior to calling ibrd or ibwrt, you must address the appropriate devices, including the
GPIB interface, by calling ibcmd with the proper addressing commands.

• Five device-level calls are included with this package. All of these calls need the primary
address (PAD) and secondary address (SAD) of the device you want to communicate with.
If the device does not have a secondary address, pass a zero for the SAD portion of the
address argument.

• Include the header file ugpib.h in any application program that uses the ESP-488
functions.

• Refer to the Readme file on the software distribution media for additional information on a
specific ESP-488 VxWorks kit.

© National Instruments Corporation 2-1 ESP-488 for VxWorks and GPIB-1014/1014D

Chapter 2
The C Language Library

This chapter contains a general description of the C language programming interface to the
ESP-488 VxWorks device driver, including the GPIB device-level and low-level functions.

Global Variables

The following sections explain the status word (ibsta), the error variable (iberr), and the
count variable (ibcnt). These variables are updated each time a driver call is made, to reflect
the status of the GPIB interface.

Status Word – ibsta

All functions return a status word which reports the success of the function call and information
about the state of the GPIB interface. The status word is also available as the external variable
ibsta.

The status word contains 16 bits, nine of which are meaningful. A bit value of one indicates that
the corresponding condition is in effect; a bit value of zero indicates that the condition is not in
effect. Table 2-1 lists each condition and the corresponding bit position to be tested for that
condition.

Table 2-1. Status Word Layout

Mnemonic Bit Hex Description
Position Value

ERR 15 8000 GPIB error

TIMO 14 4000 Time limit exceeded

END 13 2000 END detected

SRQI 12 1000 SRQ is asserted

CMPL 8 100 I/O completed

CIC 5 20 Controller-In-Charge

ATN 4 10 Attention is asserted

TACS 3 8 Talker

LACS 2 4 Listener

The C Language Library Chapter 2

ESP-488 for VxWorks and GPIB-1014/1014D 2-2 © National Instruments Corporation

A description of each status bit and its condition follows.

ERR The ERR bit is set in the status word following any call that results in an error; the
particular error can be determined by examining the iberr variable. The ERR bit is
cleared following any call that does not result in an error.

TIMO The TIMO bit indicates whether the time limit for I/O completion has been exceeded.

END The END bit indicates whether the END message has occurred during a read
operation.

SRQI The SRQI bit indicates whether the GPIB line SRQ is asserted.

CMPL The CMPL bit indicates that the previous I/O operation is complete. Because I/O is
synchronous, CMPL is always set.

CIC The CIC bit indicates whether the GPIB interface is the Controller-In-Charge.

ATN The ATN bit indicates whether the GPIB line ATN is asserted.

TACS The TACS bit indicates whether the GPIB interface is addressed to talk.

LACS The LACS bit indicates whether the GPIB interface is addressed to listen.

Error Variable – iberr

When the ERR bit is set in the status word, a GPIB error has occurred. One of the following
error codes is returned in the external variable iberr.

Table 2-2. GPIB Error Codes

Suggested Decimal Explanation
Mnemonic Value

ECIC 1 Function requires GPIB interface to be CIC

ENOL 2 Write handshake error (e.g., no listener)

EADR 3 GPIB interface not addressed correctly

EARG 4 Invalid argument to function call

EABO 6 I/O operation aborted

ENEB 7 GPIB interface is offline

EDMA 8 DMA hardware error

EBUS 14 GPIB bus error

Chapter 2 The C Language Library

© National Instruments Corporation 2-3 ESP-488 for VxWorks and GPIB-1014/1014D

A description of each error and some conditions under which it may occur follow:

ECIC (1) This code is returned when a call requiring the GPIB interface to be Controller-In-
Charge (CIC) is made, but the interface is not CIC. This could have happened
because the interface was never made CIC, or it passed control to another
Controller.

ENOL (2) The most common cause of this error code is when a write operation is attempted
with no Listeners addressed. For a device write, this indicates that the GPIB
address passed in to the driver does not match the GPIB address of any device
connected to the bus. For a low-level write, the appropriate addressing commands
were not previously sent.

This error may also occur in situations in which the GPIB interface is not the
Controller-In-Charge and the Controller asserts ATN before the write call in
progress has ended.

EADR (3) This error results from the GPIB interface not addressing itself before read and
write calls when it is the Controller-In-Charge.

EARG (4) This error results when an invalid argument is passed to a function call.

EABO (6) This error indicates that I/O has been cancelled. This error usually results from a
timeout condition.

ENEB (7) This error, which literally means "non-existent board," occurs when the GPIB
interface is offline.

EDMA (8) This error indicates that a DMA hardware error occurred during an I/O operation.

EBUS (14) This error indicates a GPIB bus error during a device call. This is usually the
result of the internal time limit being exceeded.

Count Variable – ibcnt

The ibcnt variable is updated after each read, write, or command function call with the number
of bytes actually transferred by the operation.

The C Language Library Chapter 2

ESP-488 for VxWorks and GPIB-1014/1014D 2-4 © National Instruments Corporation

Read and Write Termination

The IEEE-488 specification defines two methods of identifying the last byte of device-dependent
(data) messages. The two methods permit a Talker to send data messages of any length without
the Listener(s) knowing in advance the number of bytes in the transmission. The two methods
are as follows:

• END message. In this method, the Talker asserts the End Or Identify (EOI) signal
simultaneously with transmission of the last data byte. By design, the Listener stops reading
when it detects a data message accompanied by EOI, regardless of the value of the byte.

• End-Of-String (EOS) character. In this method, the Talker uses a special character at the end
of its data string. By prior arrangement, the Listener stops receiving data when it detects that
character. Either a 7-bit ASCII character or a full 8-bit binary byte can be used.

These two methods can be used individually or in combination. However, it is important that the
Listener be properly configured to unambiguously detect the end of a transmission.

The GPIB interface always terminates ibrd operations on the END message. For ibwrt
operations, the GPIB interface always sends the END message with the last byte in the transfer.
Use the ibeos and ibeot functions to select other modes of operation.

Compiling C Programs

In addition to any VxWorks or other required include files, always include the file ugpib.h in
every GPIB program. This file defines all status bits, error codes, and externals needed.

Compile the application program on a suitable UNIX host system using the native C compiler.
For example, to compile the program prog.c, enter the following command:

cc -c -I/usr/vw/h -O prog.c

The resulting object module, prog.o, can be linked directly with the GPIB driver library
esp488.o and then loaded into the VxWorks system, or prog.o can be loaded separately into
a VxWorks system that already contains esp488.o. In the latter case, all ESP function
references in prog.o are resolved dynamically by the VxWorks loader. Dynamic linking is the
method used by the ESP-488 utility programs ibic.o, ibtsta.o, and ibtstb.o.

For more information on creating and running VxWorks applications, refer to cc(1) or the
equivalent in your UNIX documentation, and to the Cross-Development section in the VxWorks
Programmer's Guide.

Chapter 2 The C Language Library

© National Instruments Corporation 2-5 ESP-488 for VxWorks and GPIB-1014/1014D

GPIB Function Descriptions

The remainder of this chapter is intended as a quick reference to the GPIB device-level and
GPIB low-level functions. Refer to Chapter 4, ESP-488 Functions and Utilities Reference, for
more thorough information and specific examples. Refer to Appendix B, GPIB-1014/1014D
Configuration and Installation, for information on alternative naming conventions used in
various ESP-488 driver modules.

Device-Level Functions

The following functions can be performed on a GPIB device at the specified address. All
Controller sequences conform to the IEEE-488.2 specification.

dvclr(a) Sends the message Selected Device Clear (SDC) to a device at
address a.

dvrd(a,buf,cnt) Reads from the device at address a into a buffer.

dvrsp(a,buf) Performs a serial poll of a device at address a.

dvtrg(a) Triggers the device at address a by sending the message Group
Execute Trigger (GET).

dvwrt(a,buf,cnt) Writes from a buffer to the device at address a.

Low-Level Functions

The following functions can be performed directly on or through the GPIB interface.

ibcac(v) Takes the interface from Controller Standby to Active Controller state
(asserts ATN). v equal to 1 takes control synchronously, if possible.
v equal to 0 takes control asynchronously. The interface must be CIC.

ibcmd(buf,cnt) Sends a buffer of command messages. The interface must be CIC, but
need not be Active Controller.

ibeos(v) Changes the end-of-string (EOS) mode. The low byte contains the eos
character and the high byte is any of REOS, XEOS, or BIN. v equal to
0 disables EOS checking.

ibeot(v) Enables sending END with the last byte of every GPIB write. A value
of 0 disables.

ibgts() Puts the interface in standby state (deasserts ATN).

The C Language Library Chapter 2

ESP-488 for VxWorks and GPIB-1014/1014D 2-6 © National Instruments Corporation

iblines(clines) Returns the state of the GPIB control lines in clines.

ibonl(v) Reinitializes the GPIB software and hardware. v equal to 1 places the
interface online. v equal to 0 places the interface offline.

ibpad(v) Changes the value of the primary GPIB address.

ibrd(buf,cnt) Reads from the GPIB into a buffer. The interface must have been
previously addressed to listen.

ibrpp(buf) Executes a parallel poll. The interface must be CIC.

ibrsv(v) Sets the serial poll response byte of the board. If bit 0x40 is set, the
board asserts SRQ. If the board is CIC, it will not assert SRQ.

ibsad(v) Changes the secondary GPIB address. v equal to 0 disables secondary
address recognition.

ibsic() Pulses Interface Clear (IFC).

ibsre(v) Asserts Remote Enable (REN) if v equal to 1. v equal to 0 clears
REN.

ibtmo(v) Changes the timeout value. v equal to 0 disables timeouts. Timeout
values are given in ugpib.h.

ibwait(mask) Waits for events to occur. Valid mask bits are: TIMO, SRQI, CIC,
TACS, and LACS.

ibwrt(buf,cnt) Writes from a buffer to the GPIB. The interface must have been
previously addressed to talk.

© National Instruments Corporation 3-1 ESP-488 for VxWorks and GPIB-1014/1014D

Chapter 3
ibic

This chapter introduces you to the Interface Bus Interactive Control (ibic) program. This
chapter also contains instructions for running ibic, contains guidelines for translating ibic
syntax, contains a sample session, and summarizes the auxiliary functions that ibic supports.

Refer to Chapter 4, ESP-488 Functions and Utilities Reference, for detailed descriptions of the C
language functions.

Running ibic

From the VxWorks shell, load ibic.o using the ld command. For example,

ld < host:ibic.o

One or more ESP-488 driver modules must also be loaded into the system before running ibic.

Once the required modules are loaded, run ibic by entering the following command at the shell
prompt:

ibic

If more than one driver module is loaded, ibic will initially direct all calls to the first module it
can find in memory. Other modules can be activated using the set command (refer to the
Auxiliary Functions section later in this chapter).

Syntax Translation Guidelines

To translate between C syntax and ibic syntax, use the following guidelines:

• Omit the parentheses around the function argument list.

• Regardless of which driver modules are loaded, all functions are called using the default
naming syntax.

ib2wrt becomes: ibwrt

• Functions with a single numeric argument are followed by a number.

ibsre(1) becomes: ibsre 1

ibic Chapter 3

ESP-488 for VxWorks and GPIB-1014/1014D 3-2 © National Instruments Corporation

• Functions that write a buffer are followed by a string, but no count.

ibwrt("text",4) becomes: ibwrt "text"

• Functions that read a buffer are followed by a count only.

ibrd(buf,50) becomes: ibrd 50

• Functions that perform a poll take no buffer argument.

ibrpp(buf) becomes: ibrpp

• Functions that take a mask argument are followed by a list of mask bits in parentheses.

ibwait(TIMO|SRQI) becomes: ibwait (timo srqi)

Sample Session

The following is a sample session of ibic that triggers a digital voltmeter at address 3, waits for
a service request, and reads in a buffer of data. User inputs are underlined.

ESP: ibonl 1
[0100] (cmpl)

ESP: dvclr 3
[0100] (cmpl)

ESP: dvwrt 3 "F3R7T3"
[0100] (cmpl)
 count: 6

ESP: ibwait (srqi timo)
[0900] (srqi cmpl)

ESP: dvrsp 3
[0100] (cmpl)
Poll: 0xC0

ESP: dvrd 3 10000
[2100] (end cmpl)
count: 10

01 02 03 04 05 06 25 07 % .
62 03 a .

Chapter 3 ibic

© National Instruments Corporation 3-3 ESP-488 for VxWorks and GPIB-1014/1014D

Auxiliary Functions

Table 3-1 summarizes the auxiliary functions that ibic supports.

Table 3-1. Auxiliary Functions that ibic Supports

Function Syntax Description

set ESP[x] Direct all subsequent calls to driver module x.

help [option] Display help information. All available functions are briefly described.

! Repeat previous command.

- Turn printing off. This is most often used with the $ command.

+ Turn printing on.

n* function Execute command n times.

n* ! Execute previous command n times.

$ filename Execute indirect file.

print string Display string on screen.

e, q, or ^d Exit or quit ibic.

© National Instruments Corporation 4-1 ESP-488 for VxWorks and GPIB-1014/1014D

Chapter 4
ESP-488 Functions and Utilities Reference

This chapter contains detailed information for using the functions and utilities contained in the
ESP-488 software package. For ease of use, this material is presented in a format familiar to
most users of the UNIX and VxWorks operating systems.

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-2 © National Instruments Corporation

IBIC(1) GPIB IBIC(1)

Name
ibic - interface bus interactive control program

Synopsis
ld < host:ibic.o
ibic

Description
ibic is a command language for controlling the National Instruments GPIB interface. It
executes commands read from stdin or a file and returns detailed status information.
All commands from the GPIB library esp488.o are supported.

Commands
Table 4-1 summarizes the ESP-488 functions and syntax when called from ibic.

Table 4-1. Syntax of ESP-488 Functions in ibic

Description Function
Syntax

Function
Type

Note

Clear specified device dvclr a device-level 1

Read data from a device dvrd a v device-level 1,5

Return serial poll byte dvrsp a device-level 1

Trigger selected device dvtrg a device-level 1

Write data to a device dvwrt a string device-level 1,4

Become active controller ibcac [v] low-level 2,3

Send commands from string ibcmd string low-level 4

Change/disable EOS message ibeos v low-level 3

Enable/disable END message ibeot [v] low-level 2,3

Go from active controller to standby ibgts low-level

Get state of GPIB control lines iblines low-level

Place GPIB interface online or
offline

ibonl [v] low-level 2,3

Change primary address ibpad v low-level 3

Read data ibrd v low-level 5

(continues)

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-3 ESP-488 for VxWorks and GPIB-1014/1014D

Table 4-1. Syntax of ESP-488 Functions in ibic (Continued)

Description Function
Syntax

Function
Type

Note

Conduct a parallel poll ibrpp low-level

Request service ibrsv v low-level 3

Change secondary address ibsad v low-level 3

Send interface clear ibsic low-level

Set/clear remote enable line ibsre [v] low-level 2,3

Change/disable time limit ibtmo v low-level 3

Wait for selected event ibwait [mask] low-level 2,6

Write data ibwrt string low-level 4

Notes

1. a is the hex, octal, or decimal integer (see note 3) specifying the GPIB address of the device.
The least significant byte (bits 0 through 7) contains the primary address and the next least
significant byte (bits 8 through 15) contains the secondary address. If the device has no
secondary address, pass a zero in bits 8 through 15.

2. Values enclosed in square brackets ([]) are optional. The default value is zero for ibwait
and one for all other functions.

3. v is a hex, octal, or decimal integer. Hex numbers must be preceded by zero and x (for
example, 0xD). Octal numbers must be preceded by zero only (for example, 015). Other
numbers are assumed to be decimal.

4. string consists of a list of ASCII characters, octal or hex bytes, or special symbols. The
entire sequence of characters must be enclosed in quotation marks. An octal byte consists of
a backslash character followed by the octal value. For example, octal 40 would be
represented by \40. A hex byte consists of a backslash character and a character x followed
by the hex value. For example, hex 40 would be represented by \x40. Two special symbols
are \r for a carriage return character and \n for a linefeed character. These symbols are a
convenient method for inserting the carriage return and linefeed characters into a string, as
shown in the following string: "F3R5T1\r\n". Because the carriage return can be
represented equally well in hex, \xD and \r are equivalent strings.

5. v is the number of bytes to read.

6. mask is a hex, octal, or decimal integer (see note 3) or a mask bit mnemonic.

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-4 © National Instruments Corporation

Return Values
All ibic functions return a status word in both hex and bit mnemonic form. Table 4-2
lists the mnemonics of the status word. (This is the same information that is given in
Table 2-1.)

Table 4-2. Status Word Layout

Mnemonic Bit Hex Description
Position Value

ERR 15 8000 GPIB error

TIMO 14 4000 Time limit exceeded

END 13 2000 END detected

SRQI 12 1000 SRQ is asserted

CMPL 8 100 I/O completed

CIC 5 20 Controller-In-Charge

ATN 4 10 Attention is asserted

TACS 3 8 Talker

LACS 2 4 Listener

If the ERR bit is set, an error mnemonic will be displayed as shown in Table 4-3. (This is
the same information that is given in Table 2-2.)

Table 4-3. GPIB Error Codes

Suggested Decimal Explanation
Mnemonic Value

ECIC 1 Function requires GPIB interface to be CIC

ENOL 2 Write handshake error (e.g., no listener)

EADR 3 GPIB interface not addressed correctly

EARG 4 Invalid argument to function call

EABO 6 I/O operation aborted

ENEB 7 GPIB interface is offline

EDMA 8 DMA hardware error

EBUS 14 GPIB bus error

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-5 ESP-488 for VxWorks and GPIB-1014/1014D

Auxiliary Functions

Table 4-4 summarizes the auxiliary functions that ibic supports. (This is the same information
that is given in Table 3-1.)

Table 4-4. Auxiliary Functions that ibic Supports

Function Syntax Description

set ESP[x] Direct all subsequent calls to driver module x.

help [option] Display help information. All available functions are briefly described.

! Repeat previous command.

- Turn printing off. This is most often used with the $ command.

+ Turn printing on.

n* function Execute command n times.

n* ! Execute previous command n times.

$ filename Execute indirect file.

print string Display string on screen.

e, q, or ^d Exit or quit ibic.

See Also
Chapter 2, The C Language Library
Chapter 3, ibic

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-6 © National Instruments Corporation

IBTEST(1) GPIB IBTEST(1)

Name
ibtsta, ibtstb - installation tests (parts A and B) for ESP-488

Synopsis
ld < host:ibtsta.o
ibtsta [x]
ld < host:ibtstb.o
ibtstb [x]

Description
ibtsta and ibtstb are test programs for verifying the correct installation and
operation of an ESP-488 library. If the optional argument x is specified, the test is run on
the indicated driver module. For example,

ibtsta 1

will run installation test part A on esp488_1.o. If the x argument is omitted, the test
is run on the default module, esp488.o, or on the first module found in memory.

ibtsta checks for basic driver functionality, takes only a few seconds to complete, and
requires no interaction from the user. ibtstb performs a more thorough check of I/O
and interrupt operation and requires the use of a GPIB analyzer. Both tests give on-
screen instructions at program startup for the user to set up and run the test.

ibtsta should be run first. If ibtsta completes with no errors and a GPIB analyzer
is available, ibtstb should then be run. ibtstb may be omitted if an analyzer is not
available.

See Also
ibic (1)
Chapter 2, The C Language Library

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-7 ESP-488 for VxWorks and GPIB-1014/1014D

DVCLR(3) device-level DVCLR(3)

Name
dvclr - send Selected Device Clear (SDC) to a GPIB device

Synopsis
#include "ugpib.h"
dvclr (a)
int a;

Description
a is the GPIB address of the device. The least significant byte (bits 0 through 7)
contains the primary address and the next least significant byte (bits 8 through 15)
contains the secondary address. If the device has no secondary address, pass a zero in
bits 8 through 15.

The dvclr function sends the message SDC, the meaning of which depends on the
specific device. SDC usually resets all device functions. dvclr sends the following
commands and information:

• Talk address of the GPIB interface

• Secondary address of the GPIB interface, if applicable

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device, if applicable

• Selected Device Clear (SDC)

Examples
1. Clear the device at address 3.

dvclr(3);

2. Clear the device at primary address 5 and secondary address 0x61.

dvclr(0x6105);

See Also
ibcmd(3)
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-8 © National Instruments Corporation

DVRD(3) device-level DVRD(3)

Name
dvrd - read data from a GPIB device into a buffer

Synopsis
#include "ugpib.h"
dvrd (a,buf,cnt)
int a,cnt;
char buf[];

Description
a is the GPIB address of the device. The least significant byte (bits 0 through 7)
contains the primary address and the next least significant byte (bits 8 through 15)
contains the secondary address. If the device has no secondary address, pass a zero in
bits 8 through 15. buf identifies the buffer to use. cnt specifies the number of bytes
to read from the GPIB.

The dvrd function reads cnt bytes of data from a GPIB device. Prior to reading the
data, dvrd sends the following commands and information:

• Unlisten (UNL)

• Listen address of the GPIB interface

• Secondary address of the GPIB interface, if applicable

• Talk address of the device

• Secondary address of the device, if applicable

When the dvrd function returns, ibsta holds the latest GPIB status; ibcnt is the
actual number of data bytes read from the device; and iberr is the first error detected if
the ERR bit in ibsta is set.

The dvrd operation terminates on any of the following events.

• Allocated buffer becomes full.

• Error is detected.

• Time limit is exceeded.

• END message is detected.

After termination, ibcnt contains the number of bytes read. A short count can occur on
any of the above events but the first.

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-9 ESP-488 for VxWorks and GPIB-1014/1014D

Examples
1. Read 56 bytes of data from the device at address 5 and secondary address 0x61.

dvrd(0x6105,rdbuf,56);
/* Check ibsta to see how the read terminated: on CMPL, */
/* END, TIMO, or ERR. */
/* Data is stored in rdbuf. */

2. Read 1024 bytes of data from the device at talk address 0x4C (ASCII L).

dvrd(0x4c,rdbuf,1024);
/* Check ibsta to see how the read terminated: on CMPL, */
/* END, TIMO, or ERR. */
/* Data is stored in rdbuf. */

See Also
ibcmd(3) and ibrd(3)
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-10 © National Instruments Corporation

DVRSP(3) device-level DVRSP(3)

Name
dvrsp - return serial poll status byte from a GPIB device

Synopsis
#include "ugpib.h"
dvrsp (a,spr)
int a;
char spr[];

Description
a is the GPIB address of the device. The least significant byte (bits 0 through 7) contains
the primary address and the next least significant byte (bits 8 through 15) contains the
secondary address. If the device has no secondary address, pass a zero in bits 8 through
15. spr is the buffer in which the poll response is stored.

The dvrsp function is used to serial poll one device and obtain its status byte. If the
0x40 (RQS) bit of the response is set, the status response is positive, that is, the device is
requesting service.

dvrsp sends the following commands and information:

• Unlisten (UNL)

• Listen address of the GPIB interface

• Secondary address of the GPIB interface, if applicable

• Serial Poll Enable (SPE)

• Talk address of the device

• Secondary address of the device, if applicable

After the response byte is read, dvrsp sends the following commands:

• Serial Poll Disable (SPD)

• Untalk (UNT)

The interpretation of the response in spr, other than the RQS bit, is device-specific. For
example, the polled device might set a particular bit in the response byte to indicate that it
has data to transfer, and another bit to indicate a need for reprogramming. Consult the
documentation for the device for interpretation of the response byte.

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-11 ESP-488 for VxWorks and GPIB-1014/1014D

Example
Obtain the serial poll response byte from the device at address 7.

dvrsp (7,spr);
/* The application program would then analyze the response*/
/* in spr. */

See Also
ibcmd(3) and ibrd(3)
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-12 © National Instruments Corporation

DVTRG(3) device-level DVTRG(3)

Name
dvtrg - send Group Execute Trigger (GET) to a GPIB device

Synopsis
#include "ugpib.h"
dvtrg (a)
int a;

Description
a is the GPIB address of the device. The least significant byte (bits 0 through 7) contains
the primary address and the next least significant byte (bits 8 through 15) contains the
secondary address. If the device has no secondary address, pass a zero in bits 8 through
15.

The dvtrg function addresses and triggers the specified device. dvtrg sends the
following commands and information:

• Talk address of the GPIB interface

• Secondary address of the GPIB interface, if applicable

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device, if applicable

• Group Execute Trigger (GET)

The response to a trigger is device-dependent.

Examples
1. Trigger the device at address 3.

dvtrg(3);

2. Trigger the device at primary address 5 and secondary address 0x61.

dvtrg(0x6105);

See Also
ibcmd(3)
Chapter 2, The C Language Library

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-13 ESP-488 for VxWorks and GPIB-1014/1014D

DVWRT(3) device-level DVWRT(3)

Name
dvwrt - write data to a GPIB device from a buffer

Synopsis
#include "ugpib.h"
dvwrt (a,buf,cnt)
int a,cnt;
char buf[];

Description
a is the GPIB address of the device. The least significant byte (bits 0 through 7) contains
the primary address and the next least significant byte (bits 8 through 15) contains the
secondary address. If the device has no secondary address, pass a zero in bits 8 through
15. buf contains the data to be sent over the GPIB. cnt specifies the number of bytes
to be sent over the GPIB.

The dvwrt function writes cnt bytes of data to a GPIB device. Prior to writing the
data, dvwrt sends the following commands and information:

• Talk address of the GPIB interface

• Secondary address of the GPIB interface, if applicable

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device, if applicable

When the dvwrt function returns, ibsta holds the latest GPIB status, ibcnt is the
actual number of data bytes written to the device, and iberr is the first error detected if
the ERR bit in ibsta is set.

The dvwrt operation terminates on any of the following events:

• All bytes are transferred.

• Error is detected.

• Time limit is exceeded.

After termination, ibcnt contains the number of bytes written. A short count can occur
on any of the above events but the first.

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-14 © National Instruments Corporation

Examples
1. Write ten instruction bytes to the device at address 5 and secondary address 0x61.

dvwrt(0x6105,"F3R1X5P2G0",10);

2. Write five instruction bytes terminated by a carriage return and a linefeed to the device at
address 3.

dvwrt(3,"IP2X5\r\n",7);

See Also
ibcmd(3) and ibwrt(3)
Chapter 2, The C Language Library

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-15 ESP-488 for VxWorks and GPIB-1014/1014D

IBCAC(3) low-level IBCAC(3)

Name
ibcac - become Active Controller

Synopsis
#include "ugpib.h"
ibcac (v)
int v;

Description
v identifies the method used to take control.

If v is non-zero, the GPIB interface takes control synchronously with respect to data
transfer operations; otherwise, the GPIB interface takes control immediately (and
possibly asynchronously).

To take control synchronously, the GPIB interface waits before asserting the ATN signal
so that data being transferred on the GPIB will not be corrupted. If a data handshake is in
progress, the take control action is postponed until the handshake is complete; if a
handshake is not in progress, the take control action is done immediately. Synchronous
take control is not guaranteed if an ibrd or ibwrt operation completed with a timeout
or error.

Asynchronous take control should be used in situations where it appears to be impossible
to gain control synchronously (for example, after a timeout error).

It is generally not necessary to use the ibcac function. Functions, such as ibcmd and
ibrpp (which require that the GPIB interface take control), take control automatically.

The ECIC error results if the GPIB interface is not Controller-In-Charge.

Examples
1. Take control immediately without regard to any data handshake in progress.

ibcac(0);

2. Take control synchronously and assert ATN following a read operation.

ibrd(rd,512);
ibcac(1);

See Also
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-16 © National Instruments Corporation

IBCMD(3) low-level IBCMD(3)

Name
ibcmd - send command message to GPIB

Synopsis
#include "ugpib.h"
ibcmd (cmd,cnt)
int cnt;
char cmd[];

Description
cmd contains the commands to be sent over the GPIB. cnt specifies the number of
bytes to be sent over the GPIB.

The ibcmd function is used to transmit interface messages (commands) over the GPIB.
These commands, which are listed in Appendix A, Multiline Interface Command
Messages, include device talk and device listen addresses, secondary addresses, serial and
parallel poll configuration messages, and device clear and device trigger instructions.
The ibcmd function is also used to pass GPIB control to another device. This function
is not used to transmit programming instructions to devices; programming instructions
and other device-dependent information are transmitted with the ibwrt or dvwrt
functions.

The ibcmd operation terminates on any of the following events:

• All commands are successfully transferred.

• Error is detected.

• Time limit is exceeded.

• Take Control (TCT) command is sent.

After termination, the ibcnt variable contains the number of commands sent. A short
count can occur on any of the above events but the first.

An ECIC error results if the GPIB interface is not Controller-In-Charge. If it is not
Active Controller, it takes control and asserts ATN prior to sending the command bytes.
It remains Active Controller afterward.

In the examples that follow, GPIB commands and addresses are coded as printable ASCII
characters. When the hex values to be sent over the GPIB correspond to printable ASCII
characters, this is the simplest means of specifying the values. Refer to Appendix A for
conversions of hex values to ASCII characters.

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-17 ESP-488 for VxWorks and GPIB-1014/1014D

Examples
1. Unaddress all Listeners with the Unlisten command (ASCII ?) and address a Talker at

0x46 (ASCII F) and a Listener at 0x31 (ASCII 1).

ibcmd("?F1",3); /* UNL TAD LAD */

2. Unaddress all Listeners with the Unlisten command (ASCII ?) and address a Talker at
0x46 (ASCII F) and a Listener at 0x31 (ASCII 1) and 0x6E (ASCII n).

ibcmd("?F1n",4); /* UNL TAD LAD SAD */

3. Clear all GPIB devices (that is, reset internal functions) with the Device Clear (DCL)
command (0x14).

ibcmd("\024",1); /* DCL (octal 24 or hex 14) */

4. Clear two devices with Listen addresses of 0x21 (ASCII !) and 0x28 (ASCII () with the
Selected Device Clear (SDC) command (0x4).

ibcmd("?!(\004",4); /* UNL LAD LAD SDC */

5. Trigger any devices previously addressed to listen with the Group Execute Trigger (GET)
command (0x8).

ibcmd("\010",1); /* GET */

6. Unaddress all Listeners and serial poll a device at talk address 0x52 (ASCII R) using the
Serial Poll Enable (0x18) and Serial Poll Disable (0x19) commands (the listen address of
the GPIB interface is 0x20 or ASCII blank).

ibcmd("?R \030",4); /* UNL TAD MLA SPE */
ibrd(rd,1); /* read one byte */
/* After checking the status byte in rd[0], disable this*/
/* device and unaddress it with the Untalk (UNT) command*/
/* (0x5F or ASCII _) before polling the next one. */
ibcmd("\031_",2); /* SPD UNT */

See Also
dvtrg(3), dvclr(3), dvrsp(3), ibcac(3), ibgts(3), and ibtmo(3).
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-18 © National Instruments Corporation

IBEOS(3) low-level IBEOS(3)

Name
ibeos - change or disable end-of-string mode

Synopsis
#include "ugpib.h"
ibeos (v)
int v;

Description
v selects the EOS character and the data transfer termination method according to Table
A-5. ibeos is needed only to alter the value from its default setting of zero.

The assignment made by this function remains in effect until ibeos is called again or
the ibonl function is called.

Table 4-5. Data Transfer Termination Method

Method Value of v
High Byte Low Byte

A. Terminate read when EOS is detected. 0x04 (REOS) EOS

B. Set EOI with EOS on write function. 0x08 (XEOS) EOS

C. Compare all 8 bits of EOS byte rather than
low 7 bits (all read and write functions). 0x10 (BIN) EOS

Methods A and C determine how read operations terminate. If Method A alone is
chosen, reads terminate when the low seven bits of the byte that is read match the low
seven bits of the EOS character. If Methods A and C are chosen, a full 8-bit comparison
is used.

Methods B and C together determine when write operations send the END message. If
Method B alone is chosen, the END message is sent automatically with the EOS byte
when the low seven bits of that byte match the low seven bits of the EOS character. If
Methods B and C are chosen, a full 8-bit comparison is used.

The options coded in v are used for both low-level and device-level reads and writes.

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-19 ESP-488 for VxWorks and GPIB-1014/1014D

Examples
1. Send END when the linefeed character is written for all subsequent write operations.

v = (XEOS<<8) | '\n'; /* or v = 0x080A */
ibeos(v);
wrt[0] = '1'; /* data bytes to be written */
wrt[1] = '2';
wrt[2] = '3';
wrt[3] = '\n'; /* EOS character is last byte */
dvwrt(3,wrt,4);

2. Program the GPIB interface to terminate a read on detection of the linefeed character
('\n'==0x0A) that is expected to be received within 512 bytes.

v = (REOS<<8) | '\n'; /* or v = 0x040A */
ibeos(v);
/* assume interface has been addressed; do low-level read */
ibrd(rd,512);
/* The END bit in ibsta is set if the read terminated */
/* on the EOS character, with the actual number of bytes */
/* received contained in ibcnt. */

3. Program the GPIB interface to terminate read operations on the 8-bit value 0x82 rather
than the 7-bit character 0x0A.

v = ((BIN | REOS)<<8) | 0x82; /* or v = 0x1482 */
ibeos(v);
/* assume interface has been addressed; do low-level read */
ibrd(rd,512);
/* The END bit in ibsta is set if the read terminated */
/* on the EOS character, with the actual number of bytes */
/* received contained in ibcnt. */

4. Disable use of the EOS character for all subsequent read and write operations.

ibeos(0); /* No EOS modes enabled */

5. Send END with linefeeds and terminate reads on linefeeds for all subsequent I/O
operations.

v = ((REOS | XEOS)<<8) | 0x0A;/* or v = 0x180A */
ibeos(v);
wrt[0] = '1'; /* data bytes to be written */
wrt[1] = '2';
wrt[2] = '3';
wrt[3] = 0x0A; /* EOS character is last byte */
ibwrt(wrt,4);

See Also
ibeot(3) and ibonl(3)
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-20 © National Instruments Corporation

IBEOT(3) low-level IBEOT(3)

Name
ibeot - change or disable END termination mode

Synopsis
#include "ugpib.h"
ibeot (v)
int v;

Description
If v is non-zero, the END message is sent automatically with the last byte of each write
operation. If v is zero, END is not sent. ibeot is needed only to alter the value from its
default setting of one.

The END message is sent by asserting the GPIB EOI signal during a data transfer. It is
used to identify the last byte of a data string without having to use an End-Of-String
character. ibeot is used primarily to send variable length binary data.

The option specified in v is used for both low-level and device-level write operations.
The assignment made by this function remains in effect until ibeot is called again or
the ibonl function is called.

Examples
1. Send the END message with the last byte of all subsequent write operations.

ibeot(1); /* enable sending of EOI */
/* It is assumed that wrt contains the data to be written */
/* to the GPIB device at address 7 */
dvwrt(7,wrt,3); /* write 3 bytes */

2. Stop sending END with the last byte for all subsequent write operations.

ibeot(0); /* disable sending EOI */

See Also
ibeos(3) and ibonl(3)
Chapter 2, The C Language Library

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-21 ESP-488 for VxWorks and GPIB-1014/1014D

IBGTS(3) low-level IBGTS(3)

Name
ibgts - go from Active Controller to standby

Synopsis
#include "ugpib.h"
ibgts ()

Description
The ibgts function causes the GPIB interface to go to the Controller Standby state and
to deassert the ATN signal if it is the Active Controller. ibgts permits GPIB devices to
transfer data without the GPIB interface being a party to the transfer.

The ECIC error results if the GPIB interface is not Controller-In-Charge.

Example
Turn the ATN line off.

ibgts();

See Also
ibcmd(3) and ibcac(3)
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-22 © National Instruments Corporation

IBLINES(3) low-level IBLINES(3)

Name
iblines - return the status of the GPIB control lines

Synopsis
#include "ugpib.h"
iblines (clines)
int *clines;

Description
A valid mask is returned along with the GPIB control line state information in
clines. The low-order byte (bits 0 through 7) of clines contains a mask
indicating the capability of the GPIB interface to sense the status of each GPIB
control line. The next-order byte (bits 8 through 15) contains the GPIB control line
state information. Bits 16 through 31 are undefined. The pattern of the defined bits
is as follows:

7 6 5 4 3 2 1 0

EOI ATN SRQ REN IFC NRFD NDAC DAV

To determine if a GPIB control line is asserted, first check the appropriate bit in the
lower byte to determine if the line can be monitored. If the line can be monitored
(indicated by a 1 in the appropriate bit position), check the corresponding bit in the
upper byte. If the bit is set (1), the corresponding control line is asserted. If the bit
is clear (0), the control line is deasserted.

Example
Test for Remote Enable (REN).

if (iblines(&clines) < 0) error();
if (!(clines & 0x10)) {

 printf("GPIB interface can't monitor REN!");
 exit();

}
if (clines & 0x1000)
 printf("REN is asserted.");
else
 printf("REN is not asserted.");

See Also
ibwait(3)
Chapter 2, The C Language Library

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-23 ESP-488 for VxWorks and GPIB-1014/1014D

IBONL(3) low-level IBONL(3)

Name
ibonl - place the GPIB interface online or offline

Synopsis
#include "ugpib.h"
ibonl (v)
int v;

Description
v specifies online or offline.

ibonl initializes all hardware and software and is used to bring the GPIB interface
online for the first time. ibonl must be called with v non-zero before any other GPIB
functions can be called. If v is zero, the GPIB interface will be left offline, not
participating in GPIB activity.

During program operation, call ibonl with v non-zero to reset the GPIB hardware and
software to its power-on state.

Examples
1. Bring the GPIB interface online for the first time.

ibonl(1);

2. Disable the GPIB interface.

ibonl(0);

See Also
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-24 © National Instruments Corporation

IBPAD(3) low-level IBPAD(3)

Name
ibpad - change primary address of the GPIB interface

Synopsis
#include "ugpib.h"
ibpad (v)
int v;

Description
v specifies the primary GPIB address.

ibpad is used to alter the primary address from its default setting of zero. The listen
address is formed by adding 0x20 to the primary address; the talk address is formed by
adding 0x40 to the primary address.

Only the low five bits of v are significant and they must be in the range of 0 through
0x1E.

The assignment made by this function remains in effect until ibpad is called again or
the ibonl function is called.

Example
Change the primary GPIB listen and talk address of the GPIB interface from its current
value to 0x27 and 0x47, respectively.

ibpad(7);

See Also
ibsad(3)
Chapter 2, The C Language Library

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-25 ESP-488 for VxWorks and GPIB-1014/1014D

IBRD(3) low-level IBRD(3)

Name
ibrd - read data from the GPIB into a buffer

Synopsis
#include "ugpib.h"
ibrd (buf,cnt)
int cnt;
char buf[];

Description
buf identifies the buffer to use. cnt specifies the number of bytes to read from the
GPIB.

The ibrd function reads cnt bytes of data from a GPIB device. The device is assumed
to be already properly initialized and addressed.

If the GPIB interface is Controller-In-Charge (CIC), the ibcmd function must be called
prior to ibrd to address a device to talk and the interface to listen. If the interface is not
CIC, the device on the GPIB that is the CIC must perform the addressing.

If the GPIB interface is Active Controller, the interface is first placed in Standby
Controller state, with ATN off, and remains there after the read operation is completed.
An EADR error results if the interface is CIC but has not been addressed to listen with
the ibcmd function. An EABO error results if the interface is not the CIC and is not
addressed to listen within the time limit. An EABO error also results if the device that is
to talk is not addressed and/or the operation does not complete for whatever reason within
the time limit.

The ibrd operation terminates on any of the following events.

• Allocated buffer becomes full.

• Error is detected.

• Time limit is exceeded.

• END message is detected.

After termination, ibcnt contains the number of bytes read. A short count can occur on
any of the above events but the first.

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-26 © National Instruments Corporation

Example
Read 1024 bytes of data from a device at talk address 0x4C (ASCII L) and then
unaddress it (the GPIB interface is at listen address 0x20 or ASCII blank).

ibcmd("?L ",3); /* UNL TAD MLA */
ibrd(rdbuf,1024);
/* Check ibsta to see how the read terminated: on CMPL, */
/* END, TIMO, or ERR. */
/* Data is stored in rdbuf. */
/* Unaddress the Talker and Listener. */
ibcmd("_?",1); /* UNT UNL */

See Also
ibcmd(3) and dvrd(3)
Chapter 2, The C Language Library

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-27 ESP-488 for VxWorks and GPIB-1014/1014D

IBRPP(3) low-level IBRPP(3)

Name
ibrpp - conduct a parallel poll

Synopsis
#include "ugpib.h"
ibrpp (ppr)
char *ppr;

Description
ppr identifies the address where the parallel poll response byte is stored.

The ibrpp function causes the GPIB interface to conduct a parallel poll of previously
configured devices by sending the Identify (IDY) message (ATN and EOI both asserted).

An ECIC error results if the GPIB interface is not Controller-In-Charge. If the GPIB
interface is Standby Controller, it takes control and asserts ATN (becomes Active) prior
to polling. It remains Active Controller afterward.

Examples
1. Remotely configure a device at listen address 0x23 to respond positively on DIO3 if its

individual status bit is one, and then parallel poll all configured devices.

cmd[0] = 0x23; /* device listen address */
cmd[1] = PPC;
cmd[2] = PPE | S | 2; /* send PPR3 if ist = 1 */
cmd[3] = UNL;
ibcmd(cmd,4);
ibrpp(&ppr); /* PPR returned in ppr */

2. Disable and unconfigure all GPIB devices from parallel polling using the PPU command.

ibcmd("\x15",1); /* PPU */

See Also
ibcmd(3)
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-28 © National Instruments Corporation

IBRSV(3) low-level IBRSV(3)

Name
ibrsv - request service and/or set serial poll status byte

Synopsis
#include "ugpib.h"
ibrsv (v)
int v;

Description
v specifies the serial poll response byte of the GPIB interface.

If the 0x40 bit is set in v, the GPIB interface additionally requests service from the
Controller by asserting the GPIB SRQ line.

 The ibrsv function is used to request service from the Controller using the SRQ signal
and to provide a system-dependent status byte when the Controller serial polls the GPIB
interface.

It is not an error to call the ibrsv function when the GPIB interface is the Controller-In-
Charge (CIC), although doing so makes sense only if control will be passed later to
another device. In this case, the call updates the status byte, but the SRQ signal is
asserted only if the 0x40 bit is set and only when control is passed.

Examples
1. Set the serial poll status byte to 0x41, which simultaneously requests service from an

external CIC.

ibrsv(0x41);

2. Stop requesting service (unassert SRQ).

ibrsv(0);

3. Change the status byte without requesting service.

ibrsv(0x01); /* new status byte value */

See Also
dvrsp(3)
Chapter 2, The C Language Library

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-29 ESP-488 for VxWorks and GPIB-1014/1014D

IBSAD(3) low-level IBSAD(3)

Name
ibsad - change or disable secondary address of the GPIB interface

Synopsis
#include "ugpib.h"
ibsad (v)
int v;

Description
v is a valid secondary address.

If v is a number between 0x60 and 0x7E, that number becomes the secondary GPIB
address of the GPIB interface. If v is 0 or 0x7F, secondary addressing is disabled.
ibsad is needed only to alter the value from its default setting of zero (disabled).

The assignment made by this function remains in effect until ibsad is called again or
the ibonl function is called.

Examples
1. Change the secondary GPIB address of the GPIB interface from its current value to

0x6A.

 ibsad(0x6A);

2. Disable secondary addressing for the GPIB interface.

 ibsad(0);

See Also
ibpad(3) and ibcmd(3)
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-30 © National Instruments Corporation

IBSIC(3) low-level IBSIC(3)

Name
 ibsic - send Interface Clear (IFC)

Synopsis
#include "ugpib.h"
ibsic ()

Description
The ibsic function causes the GPIB interface to assert the IFC signal for at least 100
µsec. This action initializes the GPIB and makes the interface Controller-In-Charge
(CIC). It is generally used to become CIC or to clear a bus fault condition.

The IFC signal is supposed to reset only the GPIB interface functions of bus devices and
is not intended to reset internal device functions. Device functions are reset with the
Device Clear (DCL) and Selected Device Clear (SDC) commands. To determine the
effect of these messages, consult the device documentation.

Example
Initialize the GPIB and become CIC at the beginning of a program.

ibsic();

See Also
dvclr(3) and ibcmd(3)
Chapter 2, The C Language Library

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-31 ESP-488 for VxWorks and GPIB-1014/1014D

IBSRE(3) low-level IBSRE(3)

Name
ibsre - set or clear the Remote Enable (REN) line

Synopsis
#include "ugpib.h"
ibsre (v)
int v;

Description
v specifies set or clear.

If v is non-zero, the Remote Enable (REN) signal is asserted. If v is zero, the signal is
deasserted.

The ibsre function turns the REN signal on and off. REN is used by devices to select
between local and remote modes of operation. REN enables the remote mode. A device
does not actually enter remote mode until it receives its listen address.

Examples
1. Place a device at listen address 0x23 (ASCII #) in remote mode with local ability to

return to local mode.

ibsre(1); /* set REN to true */
ibcmd("#",1); /* LAD */

2. Exclude the local ability of the device to return to local mode by sending the Local
Lockout command (0x11), or include it in the command string in Example 1.

ibcmd("\x11"); /* LLO */

or

ibsre(1); /* REN true */
ibcmd("#\x11"); /* LAD LLO */

3. Return all devices to local mode.

ibsre(0); /* set REN to false */

See Also
ibsic(3)
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-32 © National Instruments Corporation

IBTMO(3) low-level IBTMO(3)

Name
ibtmo - change or disable time limit

synopsis
#include "ugpib.h"
ibtmo (v)
int v;

Description
v is a code specifying the time limit. Table 4-6 lists the timeout settings.

Table 4-6. Timeout Settings

Actual Minimum
Code Value Timeout

TNONE 0 disabled*

T10us 1 10 µsec

T30us 2 30 µsec

T100us 3 100 µsec

T300us 4 300 µsec

T1ms 5 1 msec

T3ms 6 3 msec

T10ms 7 10 msec

T30ms 8 30 msec

T100ms 9 100 msec

T300ms 10 300 msec

T1s 11 1 sec

T3s 12 3 sec

T10s 13 10 sec

T30s 14 30 sec

T100s 15 100 sec

T300s 16 300 sec

T1000s 17 1000 sec

* If you select TNONE, no limit will be in
effect and I/O operations could proceed
indefinitely.

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-33 ESP-488 for VxWorks and GPIB-1014/1014D

ibtmo is needed only to alter the value from its default setting of T10s.

The time limit is an escape mechanism used to exit gracefully from a "hung bus"
condition. Since the GPIB is an asynchronous bus, read and write operations can be held
up indefinitely.

Timeout values are approximate, though never less than indicated.

Examples
1. Change the time limit for GPIB I/O operations to approximately 300 msec.

ibtmo(T300ms);

2. Perform I/O operations with no timeout in effect (not recommended).

ibtmo(0);

See Also
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-34 © National Instruments Corporation

IBWAIT(3) low-level IBWAIT(3)

Name
ibwait - wait for selected events

Synopsis
#include "ugpib.h"
ibwait (mask)
int mask;

Description
mask is a bit mask with the same bit assignments as the status word, ibsta.

A mask bit is set to wait for the corresponding event to occur.

The ibwait function is used to monitor the events selected in mask and to delay
processing until any of them occur. These events and bit assignments are shown in
Table 4-7.

Table 4-7. Wait Mask Layout

Mnemonic Bit Hex Description
Position Value

TIMO 14 4000 Time limit exceeded

SRQI 12 1000 SRQ on

CIC 5 20 GPIB interface is CIC

TACS 3 8 GPIB interface is Talker

LACS 2 4 GPIB interface is Listener

If mask=0, the function returns immediately. This is used to report the current GPIB
interface state.

 The TIMO bit is automatically included with any non-zero mask. If the time limit is set
to 0, timeouts are disabled. Disabling timeouts should be done only when it is certain the
selected event will occur.

All activity on the GPIB interface is suspended until the event occurs.

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-35 ESP-488 for VxWorks and GPIB-1014/1014D

Examples
1. Wait for a service request or a timeout.

ibwait(SRQI|TIMO);

2. Report the current status for ibsta.

ibwait(0);

3. Wait until control is passed from another Controller-In-Charge (CIC).

ibwait(CIC);

4. Wait until addressed to talk or listen by another CIC.

ibwait(TACS|LACS);

See Also
ibtmo(3)
Chapter 2, The C Language Library

ESP-488 Functions and Utilities Reference Chapter 4

ESP-488 for VxWorks and GPIB-1014/1014D 4-36 © National Instruments Corporation

IBWRT(3) low-level IBWRT(3)

Name
ibwrt - write data to GPIB from a buffer

Synopsis
#include "ugpib.h"
ibwrt (buf,cnt)
int cnt;
char buf[];

Description
buf contains the data to be sent over the GPIB. cnt specifies the number of bytes to be
sent over the GPIB.

The ibwrt function writes cnt bytes of data to a GPIB device. The device is assumed
to be already properly initialized and addressed.

If the GPIB interface is Controller-In-Charge (CIC), the ibcmd function must be called
prior to ibwrt to address the device to listen and the interface to talk. Otherwise, the
device on the GPIB that is the CIC must perform the addressing.

If the GPIB interface is Active Controller, the interface is first placed in Standby
Controller state with ATN off and remains there after the write operation has completed.
Otherwise, the write operation commences immediately. An EADR error results if the
interface is CIC but has not been addressed to talk with the ibcmd function. An EABO
error results if the interface is not the CIC and is not addressed to talk within the time
limit. An EABO error also results if the operation does not complete for whatever reason
within the time limit.

The ibwrt operation terminates on any of the following events:

• All bytes are transferred.

• Error is detected.

• Time limit is exceeded.

After termination, ibcnt contains the number of bytes written. A short count can occur
on any of the above events but the first.

Chapter 4 ESP-488 Functions and Utilities Reference

© National Instruments Corporation 4-37 ESP-488 for VxWorks and GPIB-1014/1014D

Example
Write ten instruction bytes to a device at listen address 0x35 (ASCII 5) and then
unaddress it (the talk address of the GPIB interface is 0x40 or ASCII @).

ibcmd("?@5",3); /* UNL MTA LAD */
/* send instruction bytes */
ibwrt("F3R1X5P2G0",10);
/* unaddress all listeners and talkers */
ibcmd("_?",2); /* UNT UNL */

See Also
ibcmd(3) and dvwrt(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-1 ESP-488 for VxWorks and GPIB-1014/1014D

Appendix A
Multiline Interface Command Messages

The following tables are multiline interface messages (sent and received with ATN TRUE).

Multiline Interface Command Messages Appendix A

ESP-488 for VxWorks and GPIB-1014/1014D A-2 © National Instruments Corporation

Multiline Interface Messages

Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

00 000 0 NUL 20 040 32 SP MLA0
01 001 1 SOH GTL 21 041 33 ! MLA1
02 002 2 STX 22 042 34 " MLA2
03 003 3 ETX 23 043 35 # MLA3
04 004 4 EOT SDC 24 044 36 $ MLA4
05 005 5 ENQ PPC 25 045 37 % MLA5
06 006 6 ACK 26 046 38 & MLA6
07 007 7 BEL 27 047 39 ' MLA7

08 010 8 BS GET 28 050 40 (MLA8
09 011 9 HT TCT 29 051 41) MLA9
0A 012 10 LF 2A 052 42 * MLA10
0B 013 11 VT 2B 053 43 + MLA11
0C 014 12 FF 2C 054 44 , MLA12
0D 015 13 CR 2D 055 45 - MLA13
0E 016 14 SO 2E 056 46 . MLA14
0F 017 15 SI 2F 057 47 / MLA15

10 020 16 DLE 30 060 48 0 MLA16
11 021 17 DC1 LLO 31 061 49 1 MLA17
12 022 18 DC2 32 062 50 2 MLA18
13 023 19 DC3 33 063 51 3 MLA19
14 024 20 DC4 DCL 34 064 52 4 MLA20
15 025 21 NAK PPU 35 065 53 5 MLA21
16 026 22 SYN 36 066 54 6 MLA22
17 027 23 ETB 37 067 55 7 MLA23

18 030 24 CAN SPE 38 070 56 8 MLA24
19 031 25 EM SPD 39 071 57 9 MLA25
1A 032 26 SUB 3A 072 58 : MLA26
1B 033 27 ESC 3B 073 59 ; MLA27
1C 034 28 FS 3C 074 60 < MLA28
1D 035 29 GS 3D 075 61 = MLA29
1E 036 30 RS 3E 076 62 > MLA30
1F 037 31 US 3F 077 63 ? UNL

Message Definitions

DCL Device Clear
GET Group Execute Trigger
GTL Go To Local
LLO Local Lockout
MLA My Listen Address

MSA My Secondary Address
MTA My Talk Address
PPC Parallel Poll Configure
PPD Parallel Poll Disable

Appendix A Multiline Interface Command Messages

© National Instruments Corporation A-3 ESP-488 for VxWorks and GPIB-1014/1014D

Multiline Interface Messages

Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

40 100 64 @ MTA0 60 140 96 ` MSA0,PPE
41 101 65 A MTA1 61 141 97 a MSA1,PPE
42 102 66 B MTA2 62 142 98 b MSA2,PPE
43 103 67 C MTA3 63 143 99 c MSA3,PPE
44 104 68 D MTA4 64 144 100 d MSA4,PPE
45 105 69 E MTA5 65 145 101 e MSA5,PPE
46 106 70 F MTA6 66 146 102 f MSA6,PPE
47 107 71 G MTA7 67 147 103 g MSA7,PPE

48 110 72 H MTA8 68 150 104 h MSA8,PPE
49 111 73 I MTA9 69 151 105 i MSA9,PPE
4A 112 74 J MTA10 6A 152 106 j MSA10,PPE
4B 113 75 K MTA11 6B 153 107 k MSA11,PPE
4C 114 76 L MTA12 6C 154 108 l MSA12,PPE
4D 115 77 M MTA13 6D 155 109 m MSA13,PPE
4E 116 78 N MTA14 6E156 110 n MSA14,PPE
4F 117 79 O MTA15 6F157 111 o MSA15,PPE

50 120 80 P MTA16 70 160 112 p MSA16,PPD
51 121 81 Q MTA17 71 161 113 q MSA17,PPD
52 122 82 R MTA18 72 162 114 r MSA18,PPD
53 123 83 S MTA19 73 163 115 s MSA19,PPD
54 124 84 T MTA20 74 164 116 t MSA20,PPD
55 125 85 U MTA21 75 165 117 u MSA21,PPD
56 126 86 V MTA22 76 166 118 v MSA22,PPD
57 127 87 W MTA23 77 167 119 w MSA23,PPD

58 130 88 X MTA24 78 170 120 x MSA24,PPD
59 131 89 Y MTA25 79 171 121 y MSA25,PPD
5A 132 90 Z MTA26 7A 172 122 z MSA26,PPD
5B 133 91 [MTA27 7B 173 123 { MSA27,PPD
5C 134 92 \ MTA28 7C 174 124 | MSA28,PPD
5D 135 93] MTA29 7D 175 125 } MSA29,PPD
5E 136 94 ^ MTA30 7E176 126 ~ MSA30,PPD
5F 137 95 _ UNT 7F177 127 DEL

PPE Parallel Poll Enable
PPU Parallel Poll Unconfigure
SDC Selected Device Clear
SPD Serial Poll Disable

SPE Serial Poll Enable
TCT Take Control
UNL Unlisten
UNT Untalk

© National Instruments Corporation B-1 ESP-488 for VxWorks and GPIB-1014/1014D

Appendix B
GPIB-1014/1014D Configuration and
Installation

This appendix contains instructions for configuring and installing the GPIB-1014 and
GPIB-1014D hardware and software.

GPIB-1014 Hardware Configuration

Table B-1 lists the recommended hardware configuration settings for correct operation of the
GPIB-1014 interface board (Revision F or higher) in a VxWorks-based computer. For a
detailed explanation of each of these options and how to configure them, refer to Chapter 3 of
the GPIB-1014 User Manual (part number 320030-01) supplied with the interface board kit.

Table B-1. GPIB-1014 Hardware Configuration Settings

Configuration Option Recommended Setting Hardware Jumper Setting

Access Mode after RESET User W2 = U

Base I/O Address 2000 hex (1) W1 = 0010 000

DMA Address Modifier
Code Output

AM code 3D (2)

AM(5) = 1
AM(4) = 1 (3)

AM(3) = 1
AM(2) = 1 (3)

AM(1) = 0 (3)

AM(0) = 1

W3 = 1

W4 = 1

W5 = AM1'

Notes for Table B-1

(1) Optional base address settings range from 0000 hex to FE00 hex, in multiples of 200 hex.

(2) Address Modifier code 3D selects A24 Standard Supervisory Data Access (24-bit
addressing).

(3) Address Modifier lines AM(4), AM(2), and AM(1) are configured by the driver software
by loading the appropriate value into the DMA Controller Function Code Registers (FCRs).

GPIB-1014/1014D Configuration and Installation Appendix B

ESP-488 for VxWorks and GPIB-1014/1014D B-2 © National Instruments Corporation

If you select a value other than the recommended setting shown in Table B-1 for the base I/O
address, be sure to make a corresponding change in the software as described in the Software
Installation and Configuration section, later in this appendix.

GPIB-1014D Hardware Configuration

Table B-2 lists the recommended hardware configuration settings for correct operation of the
GPIB-1014D interface board in a VxWorks-based computer. For a detailed explanation of each
of these options and how to configure them, refer to Chapter 3 of the GPIB-1014D User Manual
(part number 320140-01) supplied with the interface board kit.

Table B-2. GPIB-1014D Hardware Configuration Settings

Configuration Option Recommended Setting Hardware Jumper Setting

Access Mode after RESET User W4 = USR

Base I/O Address 2000 hex (1) U82 = 0010 00

DMA Address Modifier
Code Output

AM code 3D (2)

AM(5) = 1
AM(4) = 1 (3)

AM(3) = 1
AM(2) = 1 (3)

AM(1) = 0 (3)

AM(0) = 1

W8 = 1

W6 = 1

W5 = AM1*

Extended Addressing 32-bit W9 = 32BIT

Interrupt Source for DMAC
Channel 2

Port B SRQ* W3 = SRQB*

VMEbus SYSFAIL*
Driver Enable

Enabled W2 = 1

Board Reset Source SYSRESET* W7 = SYS

Notes for Table B-2

(1) Optional base address settings range from 0000 hex to FC00 hex, in multiples of 400 hex.
Notice that the first GPIB port is located at offset 0 from the configured base address, while
the second GPIB port is located at offset 200 hex from the configured base address.

(2) Address Modifier code 3D selects A24 Standard Supervisory Data Access (24-bit
addressing). To select A32 Extended Supervisory Access, the Address Modifer Code
Output can be optionally configured for AM code 0D (HW jumpers W8 = 0, W6 = 1, and
W5 = AM1*).

Appendix B GPIB-1014/1014D Configuration and Installation

© National Instruments Corporation B-3 ESP-488 for VxWorks and GPIB-1014/1014D

(3) Address Modifier lines AM(4), AM(2), and AM(1) are configured by the driver software
by loading the appropriate value into the DMA Controller Function Code Registers (FCRs).

If you select values other than the recommended settings shown in Table B-2 for the base I/O
address and the DMA address modifer code output (VME addressing mode A32 versus A24), be
sure to make a corresponding change in the software as described in the Software Installation
and Configuration section, later in this appendix.

GPIB-1014/1014D Hardware Installation

Before installing the GPIB-1014 or GPIB-1014D interface board, verify that none of the selected
configuration settings conflicts with those of any other device already installed in your computer.

The following steps are general guidelines for installing the GPIB-1014 or GPIB-1014D
interface board in any computer. For specific installation instructions and warnings, refer to
Chapter 3 of the GPIB-1014 User Manual or the GPIB-1014D User Manual and to the technical
documentation supplied with your machine.

1. Shut down the computer, turn off the power switch, and unplug the power cord.

2. Select an unused slot in the VMEbus backplane in which to install the GPIB interface board.

3. On the VMEbus backplane are five jumpers associated with each slot that determine bus
grant and interrupt acknowledge capabilities. Remove all five jumpers for the slot selected in
step 2. For additional information on the purpose and location of these jumpers, refer to the
technical documentation supplied with your machine.

4. Insert the GPIB interface board into the selected slot, making sure that the 96-pin connectors
are firmly seated in the VMEbus sockets.

5. Screw the interface board front panel plate to the VMEbus expansion chassis frame.

6. Restore power to the system.

Software Installation and Configuration

The ESP-488 VxWorks software is distributed on magnetic tape media in UNIX tar format.
To read the tape on, for example, a Sun host development system, make a suitable working
directory, change to that directory, and enter the following command at the UNIX prompt:

tar xvf /dev/rst8

The driver library is distributed in both binary and source form. The utility programs are
provided in binary form only. Table B-3 describes the files included in the software distribution.

GPIB-1014/1014D Configuration and Installation Appendix B

ESP-488 for VxWorks and GPIB-1014/1014D B-4 © National Instruments Corporation

Table B-3. Software Distribution Files

File Name Description

Readme Up-to-date information not included in this
manual

esp488.o
esp488_1.o
esp488_2.o
esp488_3.o
esp488_4.o

ESP-488 driver library module(s) for
MC680x0/1014-based systems

ibic.o Interface Bus Interactive Control program

ibsta.o Software Installation Test, Part A

ibstb.o Software Installation Test, Part B

Source/
 Makefile
 esp488.h
 esp488_master.c
 sys488_master.c

Driver C Source files

ugpib.h User include file for ESP-488 applications

Changing the Configuration

All of the supplied ESP-488 binary driver modules for the GPIB-1014 are configured for the
following default settings:

I/O Base Address 0x2000
Interrupt Vector Number 0xF0
Interrupt Request Line 2
Bus Request/Grant Line 3

If you are installing or using more than one GPIB interface board or port in your system, or if the
above settings are otherwise inappropriate for your hardware configuration, you can change
these settings by including the following lines in your application program before calling the
driver function ibonl:

extern unsigned short ibbase;
extern unsigned char ibvec, ibirq, ibbrg;
:
ibbase = 0x3000; /* Example base address */
ibvec = 0xF4; /* Example interrupt vector */
ibirq = 5; /* Example interrupt request line */
ibbrg = 2; /* Example bus request/grant line */

Appendix B GPIB-1014/1014D Configuration and Installation

© National Instruments Corporation B-5 ESP-488 for VxWorks and GPIB-1014/1014D

For more extensive software configuration changes (for example, to select A32 access or to run
on a non-MC680x0 target processor), you must recompile the driver. First, edit the file
esp488.h and make any necessary changes to the Editable Parameters found at the top of the
file. Then rebuild the desired modules using the supplied Makefile. For example,

make esp488.o

Note: Before running make, you may need to edit Makefile to redefine the location of
the VxWorks include files on your development system. Refer to Makefile for
more information.

Installing Multiple Driver Modules

The esp488.o module contains all of the function entry points and global variables as
described in Chapter 2, The C Language Library. The esp488_X.o modules (where X = 1 to
4) provide the same functionality as the esp488.o module, but each contains a unique set of
function and variable names in the form ibX and dvX. These modules are for use with other
GPIB interface boards or ports installed in the same system.

For example, to install and use two GPIB-1014 boards in the system at the same time (or to use
both ports on a GPIB-1014D), you might choose to load the modules esp488.o and
esp488_2.o. In your application program, you should code all function calls directed to the
first GPIB port in the format described in Chapter 2. Code all function calls directed to the
second GPIB port to use the entry points in the esp488_2.o module, as shown in Table B-4.

Table B-4. Naming Syntax for esp488_2.o

Default Name New Name for
Second GPIB Port

dvclr dv2clr
dvrd dv2rd
dvrsp dv2rsp
dvtrg dv2trg
dvwrt dv2wrt
ibcac ib2cac
ibcmd ib2cmd
ibeos ib2eos
ibeot ib2eot
ibgts ib2gts
iblines ib2lines
ibonl ib2onl
ibpad ib2pad
ibpoke ib2poke

(continues)

GPIB-1014/1014D Configuration and Installation Appendix B

ESP-488 for VxWorks and GPIB-1014/1014D B-6 © National Instruments Corporation

Table B-4. Naming Syntax for esp488_2.o (Continued)

Default Name New Name for
Second GPIB Port

ibrd ib2rd
ibrpp ib2rpp
ibrsv ib2rsv
ibsad ib2sad
ibsic ib2sic
ibsre ib2sre
ibtmo ib2tmo
ibwait ib2wait
ibwrt ib2wrt
ibsta ib2sta
ibcnt ib2cnt
iberr ib2err
ibbase ib2base
ibvec ib2vec
ibirq ib2irq
ibbrg ib2brg

Similarly, to install four GPIB-1014 boards in the system, you could load the modules
esp488_1.o, esp488_2.o, esp488_3.o, and esp488_4.o, and use function call and
variable references in the form ib1wrt, ib2wrt, ib3wrt, and so on.

© National Instruments Corporation C-1 ESP-488 for VxWorks and GPIB-1014/1014D

Appendix C
GPIB Programming Example

This appendix illustrates the steps involved in programming a representative IEEE-488
instrument from a terminal using the ESP-488 functions in C language. This appendix is
designed to help you learn how to use the ESP-488 driver software to execute certain
programming and control sequences.

The target instrument is a digital voltmeter (DVM). This instrument is otherwise unspecified.
The purpose here is to explain how to use the driver software to execute certain programming
and control sequences, not how to determine those sequences.

Because the instructions that are sent to program a device as well as the data that might be
returned from the device are called device-dependent messages, the format and syntax of the
messages used in this example are unique to this device. Furthermore, the interface messages or
bus commands that must be sent to devices will also vary, but to a lesser degree. The exact
sequence of messages to program and to control a particular device are contained in its
documentation.

For example, the following sequence of actions is assumed to be necessary to program this DVM
to make and return measurements of a high-frequency AC voltage signal in the autoranging
mode:

1. Initialize the GPIB interface circuits of the DVM so that it can respond to messages.

2. Place the DVM in remote programming mode and turn off the front panel control.

3. Initialize the internal measurement circuits.

4. Program the DVM to perform the proper function (F3 for high-frequency AC volts), range
(R7 for autoranging), and trigger source (T3 for external or remote).

5. For each measurement:

a. Send the Group Execute Trigger (GET) command to trigger the DVM.

b. Wait until the DVM asserts Service Request (SRQ) to indicate that the measurement is
ready to be read.

c. Serial poll the DVM to determine if the measured data is valid (status byte = 0xC0) or if a
fault condition exists (the 0x40 bit and another bit of the status byte, other than 0x80, are
set).

d. If the data is valid, read 16 bytes from the DVM.

GPIB Programming Example Appendix C

ESP-488 for VxWorks and GPIB-1014/1014D C-2 © National Instruments Corporation

6. End the session.

The example program given here also assumes that the GPIB interface is the designated
System Active Controller of the GPIB and that the DVM is the only instrument connected to
the bus.

Example Program

#include "ugpib.h"

char cmd[512]; /* command buffer */
char rd[512]; /* read buffer */
char wrt[512]; /* write buffer */

unsigned int mask; /* events to be waited for */

main() {
int dvm;

/* Bring GPIB interface online and initialize the bus. */
ibonl (1);
ibsic ();

/* Set the DVM for primary address 3, no secondary
 address. */
dvm = 3;

/* Place the device in Remote state with Local Lockout
(RWLS). */

if (ibsre(1) & ERR) err();
if (ibcmd("#\021",2) & ERR) err(); /* LAD3 LLO */

/* Send the Selected Device Clear (SDC) message to clear
 internal device functions. */
if (dvclr(dvm) & ERR) err();

/* Write the function, range, and trigger source
 instructions to the DVM. */
if (dvwrt(dvm,"F3R7T3",6) & ERR) err();

/* Send the Group Execute Trigger (GET) message to
 trigger a measurement reading. */
if (dvtrg(dvm) & ERR) err();

/* Wait for the DVM to set SRQ or for a timeout. */
if (ibwait(TIMO|SRQI) & (ERR|TIMO)) err();

Appendix C GPIB Programming Example

© National Instruments Corporation C-3 ESP-488 for VxWorks and GPIB-1014/1014D

/* Read serial poll response; if not equal to 0xC0,
 report dvm error. */
if (dvrsp(dvm,rd) & ERR) err();
if ((rd[0] & 0xFF) != 0xC0) dvmerr();

/* Read the measurement. */
if (dvrd(dvm,rd,16) & ERR) err();

/* Take the GPIB interface offline. */
ibonl(0);

}

err(){
/* An error checking routine at this location would, among other
 things, check iberr to determine the exact cause of the error
 condition and then take action appropriate to the application.
 For errors during data transfers, ibcnt can be examined to
 determine the actual number of bytes transferred. */

}

dvmerr() {
/* A routine at this location would analyze the fault code
 returned in the DVM's status byte and take appropriate
 action. */

}

© National Instruments Corporation D-1 ESP-488 for VxWorks and GPIB-1014/1014D

Appendix D
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to
6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
questions to us at any time.

Corporate Headquarters
(512) 795-8248
Technical Support fax: (512) 794-5678

Branch Offices Phone Number Fax Number
Australia 03 879 9422 03 879 9179
Austria 0662 435986 0662 437010 19
Belgium 02 757 00 20 02 757 03 11
Denmark 45 76 26 00 45 76 71 11
Finland 90 527 2321 90 502 2930
France 1 48 65 33 00 1 48 65 19 07
Germany 089 7 14 50 93 089 7 14 60 35
Italy 02 48301892 02 48301915
Japan 03 3788 1921 03 3788 1923
Netherlands 01720 45761 01720 42140
Norway 03 846866 03 846860
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 27 00 20 056 27 00 25
U.K. 0635 523545 0635 523154

or 0800 289877 (in U.K. only)

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use the completed
copy of this form as a reference for your current configuration. Completing this form accurately before contacting
National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand Model Processor

Operating system

Speed MHz RAM M Display adapter

Mouse yes no Other adapters installed

Hard disk capacity M Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

ESP-488 Hardware and Software
Configuration Form

Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration. Completing this form accurately before contacting National Instruments
for technical support helps our applications engineers answer your questions more efficiently.

National Instruments Products

• ESP-488 Software Revision Number on Disk:

• Types of National Instruments GPIB boards installed and their respective configuration settings:

Board
Type

Base I/O
Address

Address
Modifier

Code

Interrupt
Vector

Number

Interrupt
Request

Line

Bus Request
Grant Line

VME Slot
Number

• Did you recompile the ESP-488 driver source files?

If yes, did you make any changes to the driver source files?

Other Products

• Computer Model:

• Microprocessor:

• VxWorks Version :

• Host Development System
(computer, OS, compiler):

• Types of other boards installed in your system and their respective configuration settings:

Board
Type

Base I/O
Address

Address
Modifier

Code

Interrupt
Vector

Number

Interrupt
Request

Line

Bus Request
Grant Line

VME Slot
Number

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: ESP-488 Software Reference Manual for VxWorks and the GPIB-1014/1014D

Edition Date: March 1994

Part Number: 320429-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02 MS 53-02
Austin, TX 78730-5039 (512) 794-5678

	ESP-488 Software Reference Manual for VxWorks and the GPIB-1014/1014D
	Important Information
	National Instruments Corporate Headquarters
	Branch Offices
	Limited Warranty
	Copyright
	Trademarks
	Warning

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Abbreviations

	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	What Your Kit Should Contain
	Important Considerations

	Chapter 2 The C Language Library
	Global Variables
	Status Word – ibsta
	Error Variable – iberr
	Count Variable – ibcnt

	Read and Write Termination
	Compiling C Programs
	GPIB Function Descriptions
	Device-Level Functions
	Low-Level Functions

	Chapter 3 ibic
	Running ibic
	Syntax Translation Guidelines
	Sample Session
	Auxiliary Functions

	Chapter 4 ESP-488 Functions and Utilities Reference
	IBIC(1)
	IBTEST(1)
	DVCLR(3)
	DVRD(3)
	DVRSP(3)
	DVTRG(3)
	DVWRT(3)
	IBCAC(3)
	IBCMD(3)
	IBEOS(3)
	IBEOT(3)
	IBGTS(3)
	IBLINES(3)
	IBONL(3)
	IBPAD(3)
	IBRD(3)
	IBRPP(3)
	IBRSV(3)
	IBSAD(3)
	IBSIC(3)
	IBSRE(3)
	IBTMO(3)
	IBWAIT(3)
	IBWRT(3)

	Appendix A Multiline Interface Command Messages
	Appendix B GPIB-1014/1014D Configuration and Installation
	GPIB-1014 Hardware Configuration
	GPIB-1014D Hardware Configuration
	GPIB-1014/1014D Hardware Installation
	Software Installation and Configuration
	Changing the Configuration
	Installing Multiple Driver Modules

	Appendix C GPIB Programming Example
	Appendix D Customer Communication
	Technical Support Form
	ESP-488 Hardware and Software Configuration Form
	Documentation Comment Form

	Tables
	Table 2-1. Status Word Layout
	Table 2-2. GPIB Error Codes
	Table 3-1. Auxiliary Functions that ibic Supports
	Table 4-1. Syntax of ESP-488 Functions in ibic
	Table 4-2. Status Word Layout
	Table 4-3. GPIB Error Codes
	Table 4-4. Auxiliary Functions that ibic Supports
	Table 4-5. Data Transfer Termination Method
	Table 4-6. Timeout Settings
	Table 4-7. Wait Mask Layout
	Table B-1. GPIB-1014 Hardware Configuration Settings
	Table B-2. GPIB-1014D Hardware Configuration Settings
	Table B-3. Software Distribution Files
	Table B-4. Naming Syntax for esp488_2.o

