

 GPIB-1014DP

https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-1014DP?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-1014DP?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-1014DP?aw_referrer=pdf

LabVIEW
Function and VI

Reference Manual
LabVIEW Function and VI Reference Manual

VI Reference Overview

May 1997 EditionPart

Number 321526A-01

© Copyright 1997 National Instruments Corporation. All rights reserved.

support@natinst.com

E-mail: info@natinst.com

FTP Site: ftp.natinst.com

Web Address: http://www.natinst.com

BBS United States: (512) 794-5422

BBS United Kingdom: 01635 551422

BBS France: 01 48 65 15 59

(512) 418-1111

Tel: (512) 795-8248

Fax: (512) 794-5678

Australia 02 9874 4100, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,

Finland 09 527 2321, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,

Israel 03 5734815, Italy 06 5729961, Japan 03 5472 2970, Korea 02 596 7456,

Mexico 5 520 2635, Netherlands 31 348 43 34 66, Norway 32 84 84 00, Singapore 2265886,

Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,

U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

Fax-on-Demand Support

Telephone Support (U.S.)

International Offices

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action
against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part,
without the prior written consent of National Instruments Corporation.

Trademarks

LabVIEW®, National Instruments™, natinst.com™, and NI-DAQ® are trademarks of National
Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all traditional
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent serious injury
or death should always continue to be used when National Instruments products are being used. National Instruments
products are NOT intended to be a substitute for any form of established process, procedure, or equipment used to
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v LabVIEW Function and VI Reference Manual

Contents

About This Manual
Organization of the Product User Manual ...xxiii
Conventions Used in This Manual...xxiv
Related Documentation..xxv
Related Online Documentation..xxvi
Customer Communication ...xxvi

Chapter 1
Introduction to the LabVIEW Functions and VIs

Locating the G Functions and VIs ...1-1
Function and VI Overviews...1-2

Structures...1-2
Numeric Functions ..1-3
Boolean Functions ...1-3
String Functions...1-3
Array Functions ...1-3
Cluster Functions...1-4
Comparison Functions...1-4
Time and Dialog Functions ...1-4
File I/O Functions..1-4
Advanced Functions ..1-4
DAQ ..1-5
Instrument I/O ...1-5
Communication ...1-5
Analysis VIs ..1-5
Select A VI... ...1-6
Tutorial ..1-6
Instrument Driver Library ...1-6
User Library...1-7

Contents

LabVIEW Function and VI Reference Manual vi © National Instruments Corporation

Section One: G Functions and VIs

Chapter 2
G Function and VI Reference Overview

G Functions Overview... 2-2
Introduction to Polymorphism... 2-2

Polymorphism ... 2-2
Unit Polymorphism... 2-2
Numeric Conversion ... 2-3
Overflow and Underflow .. 2-5
Wire Styles.. 2-5

Chapter 3
Structures

Structures Overview .. 3-2

Chapter 4
Numeric Functions

Polymorphism for Numeric Functions .. 4-2
Polymorphism for Trig Functions... 4-3
Polymorphism for Logarithmic Functions.. 4-3
Polymorphism for Conversion Functions ... 4-4
Polymorphism for Complex Functions ... 4-4

Arithmetic Function Descriptions ... 4-4
Conversion Functions Descriptions... 4-9
Trigonometric Functions Descriptions .. 4-14
Logarithmic Functions Descriptions ... 4-18
Complex Function Descriptions .. 4-20
Additional Numeric Constants Descriptions ... 4-22

Chapter 5
Boolean Functions

Polymorphism for Boolean Functions... 5-1
Boolean Function Descriptions ... 5-2

Chapter 6
String Functions

Overview of Polymorphism for String Functions ... 6-1
Polymorphism for String Functions.. 6-2

Contents

© National Instruments Corporation vii LabVIEW Function and VI Reference Manual

Polymorphism for Additional String to Number Functions6-2
Polymorphism for String Conversion Functions...6-2

Format Strings Overview...6-2
String Function Descriptions ...6-6
Additional String To Number Function Descriptions..6-15
String Conversion Function Descriptions..6-19
String Fixed Constants...6-21

Chapter 7
Array Functions

Array Function Overview ..7-2
Polymorphism for Array Functions ...7-3
Array Function Descriptions..7-3

Chapter 8
Cluster Functions

Cluster Function Overview..8-2
Polymorphism for Cluster Functions ...8-2

Setting the Order of Cluster Elements...8-3
 Cluster Function Descriptions ..8-3

Chapter 9
Comparison Functions

Comparison Function Overview..9-1
Compare Boolean ..9-2
Compare Strings ..9-2
Compare Clusters ..9-2
Compare Modes...9-2
Character Comparison ...9-4

Polymorphism for Comparison Functions ...9-5
Comparison Function Descriptions ...9-6

Chapter 10
Time, Dialog, and Error Functions

Time, Dialog, and Error Functions Overview ...10-1
Timing Functions...10-2
Error Handling Overview ..10-2

Error I/O and the Error State Cluster ..10-4
Time and Dialog Function Descriptions ..10-6
Error Handling VI Descriptions...10-8

Contents

LabVIEW Function and VI Reference Manual viii © National Instruments Corporation

Chapter 11
File Functions

File I/O VI and Function Overview... 11-2
High-Level VIs ... 11-2
Low-Level File VIs and File Functions .. 11-2
Byte Stream and Datalog Files.. 11-3
Flow-Through Parameters... 11-5
Error I/O in File I/O Functions ... 11-5
Permissions ... 11-5

File I/O Function and VI Descriptions .. 11-6
Binary File VI Descriptions... 11-13
Advanced File Function Descriptions ... 11-14
File Constants Descriptions... 11-21

Chapter 12
Advanced Functions

Advanced Function Descriptions .. 12-2
Data Manipulation Function Descriptions... 12-5
Help Function Descriptions... 12-8
Occurrence Function Descriptions .. 12-9
Memory VI Descriptions... 12-10
VI Control VI Descriptions ... 12-11

Section Two: Data Acquisition VIs

Chapter 13
Introduction to the LabVIEW Data Acquisition VIs

Finding Help Online for the DAQ VIs .. 13-2
The Analog Input VIs.. 13-3

Easy Analog Input VIs .. 13-4
Intermediate Analog Input VIs ... 13-5
Analog Input Utility VIs ... 13-5
Advanced Analog Input VIs ... 13-6
Locating Analog Input VI Examples .. 13-6

Analog Output VIs .. 13-6
Easy Analog Output VIs ... 13-7
Intermediate Analog Output VIs... 13-7
Analog Output Utility VIs... 13-8
Advanced Analog Output VIs... 13-8
Locating Analog Output VI Examples.. 13-8

Contents

© National Instruments Corporation ix LabVIEW Function and VI Reference Manual

Digital Function VIs ..13-9
Easy Digital I/O VIs ..13-9
Intermediate Digital I/O VIs..13-10
Advanced Digital I/O VIs..13-10
Locating Digital I/O VI Examples ..13-10

Counter VIs..13-11
Easy Counter VIs...13-11
Intermediate Analog Input VIs..13-12
Advanced Counter VIs ..13-12
Locating Counter VI Examples ...13-13

Calibration and Configuration VIs ..13-13
Signal Conditioning VIs ..13-13

Chapter 14
Easy Analog Input VIs

Easy Analog Input VI Descriptions ...14-1

Chapter 15
Intermediate Analog Input VIs

Handling Errors.. 15-1
Intermediate Analog Input VI Descriptions...15-2

Chapter 16
Analog Input Utility VIs

Handling Errors.. 16-1
Analog Input Utility VI Descriptions ..16-2

Chapter 17
Advanced Analog Input VIs

Advanced Analog Input VI Descriptions...17-1

Chapter 18
Easy Analog Output VIs

Easy Analog Output VI Descriptions ..18-1

Contents

LabVIEW Function and VI Reference Manual x © National Instruments Corporation

Chapter 19
Intermediate Analog Output VIs

Handling Errors ... 19-1
Analog Output VI Descriptions... 19-2

Chapter 20
Analog Output Utility VIs

Handling Errors ... 20-1
Analog Output Utility VI Descriptions ... 20-2

Chapter 21
Advanced Analog Output VIs

Advanced Analog Output VI Descriptions.. 21-1

Chapter 22
Easy Digital I/O VIs

Easy Digital I/O Descriptions.. 22-1

Chapter 23
Intermediate Digital I/O VIs

Handling Errors ... 23-2
Intermediate Digital I/O VI Descriptions .. 23-2

Chapter 24
Advanced Digital I/O VIs

Digital Port VI Descriptions.. 24-1
Digital Group VI Descriptions .. 24-3

Chapter 25
Easy Counter VIs

Easy Counter VI Descriptions ... 25-2

Chapter 26
Intermediate Counter VIs

Handling Errors ... 26-1
Intermediate Counter VI Descriptions... 26-2

Contents

© National Instruments Corporation xi LabVIEW Function and VI Reference Manual

Chapter 27
Advanced Counter VIs

Advanced Counter VI Descriptions ...27-2

Chapter 28
Calibration and Configuration VIs

Calibration and Configuration VI Descriptions...28-2
Channel Configuration VIs ..28-16

Chapter 29
Signal Conditioning VIs

Signal Conditioning VI Descriptions...29-2

Section Three: Instrument I/O Functions and VIs

Chapter 30
Introduction to LabVIEW Instrument Driver VIs

Instrument Drivers Overview ..30-2
Instrument Driver Distribution ..30-3

CD-ROM Instrument Driver Distribution...30-3
Instrument Driver Template VIs ...30-3

Introduction to VISA Library ..30-4
Introduction to GPIB ...30-4

History of the GPIB...30-4
The IEEE 488.2 Standard ..30-5
Compatible GPIB Hardware..30-6

LabVIEW for Windows 95 and Windows 95-Japanese30-6
LabVIEW for Windows NT..30-6
LabVIEW for Windows 3.1 ..30-6
LabVIEW for Mac OS ..30-7
LabVIEW for HP-UX ...30-7
LabVIEW for Sun (Solaris) ..30-7
LabVIEW for Concurrent PowerMAX...30-7

LabVIEW Traditional GPIB Functions...30-8
GPIB 488.2 Functions ...30-8

Single-Device Functions ...30-9
Multiple-Device Functions ...30-9
Bus Management Functions..30-9

Contents

LabVIEW Function and VI Reference Manual xii © National Instruments Corporation

Low-Level Functions.. 30-9
General Functions... 30-10

Serial Port VI Overview .. 30-10

Chapter 31
LabVIEW Instrument Driver Models

LabVIEW Instrument Driver External Interface Model ... 31-1
Functional Body.. 31-2
Interactive Developer Interface... 31-2
Programmatic Developer Interface ... 31-2
I/O Interface .. 31-3
Subroutine Interface .. 31-3

LabVIEW Instrument Driver Internal Design Model ... 31-3
Instrument Driver Application VIs ... 31-4
Instrument Driver Component VIs ... 31-5
Error Reporting ... 31-8
Additional VIs Distributed with the Instrument Driver 31-8

The Getting Started VI ... 31-9
The VI Tree VI ... 31-10

Chapter 32
LabVIEW Instrument Driver Development

Development Procedure .. 32-1
Designing the Instrument Driver Structure ... 32-1

Instrument Driver Structure and VI Hierarchy................................... 32-2
Guidelines and Recommendations ... 32-4
Design Example.. 32-6

Modifying the Instrument Driver Templates .. 32-8
Adding Instrument Driver Component VI VIs ... 32-10
Modifying the Menu Files to Create Function Sub-Palettes............................. 32-11

Tips for Developing a LabVIEW Instrument Driver .. 32-12
Loop Termination Conditions... 32-12
Assembling Command Strings.. 32-13
Data Dependency .. 32-14
Guidelines ... 32-16

Front Panel.. 32-17
Required Front Panel Controls ... 32-18
Block Diagram.. 32-20
Icon ... 32-21
Connector Pane... 32-21

Error Reporting ... 32-22
Online Help Information... 32-22

Contents

© National Instruments Corporation xiii LabVIEW Function and VI Reference Manual

VI Descriptions ...32-22
Control and Indicator Descriptions ...32-23

Application VIs ...32-24
LabVIEW Instrument Driver Standards Checklist ..32-24

Chapter 33
Instrument Driver Template VIs

Introduction to Instrument Driver Template VIs ...33-1
Instrument Driver Template VI Descriptions ..33-2

Chapter 34
VISA Library Reference

Operations ..34-2
VISA Library Reference Parameters...34-2

VISA Operation Descriptions ..34-3
Event Handling Functions ...34-7
High Level Register Access Functions ..34-8
Low Level Register Access Functions...34-11
VISA Attribute Node ...34-13
VISA Attribute Node Descriptions..34-14

Chapter 35
Traditional GPIB Functions

Traditional GPIB Function Parameters..35-1
Traditional GPIB Function Behavior...35-2
Traditional GPIB Function Descriptions ...35-3
GPIB Device and Controller Functions ...35-7
Device Functions ...35-7
Controller Functions ..35-9

Chapter 36
GPIB 488.2 Functions

GPIB 488.2 Common Function Parameters ..36-1
GPIB 488.2 Function Descriptions (Single-Device Functions).......................................36-2
GPIB 488.2 Multiple-Device Function Descriptions ..36-4
GPIB 488.2 Bus Management Function Descriptions...36-6
GPIB 488.2 Low-Level I/O Function Descriptions...36-8
GPIB 488.2 General Function Descriptions ..36-10

Contents

LabVIEW Function and VI Reference Manual xiv © National Instruments Corporation

Chapter 37
Serial Port VIs

Common Serial Port VI Parameters .. 37-1
Port Number.. 37-1
Handshaking Modes.. 37-2
Software Handshaking–XON/XOFF .. 37-3
Error Codes ... 37-3

Serial Port VI Descriptions.. 37-3

Section Four: Analysis VIs

Chapter 38
Introduction to Analysis in LabVIEW

The Importance of Data Analysis.. 38-2
Full Development System ... 38-3
Analysis VI Overview ... 38-3
Analysis VI Organization .. 38-4
Notation and Naming Conventions ... 38-5
Sampling Signals ... 38-8

Chapter 39
Analysis Signal Generation VIs

Normalized Frequency .. 39-1
Signal Generation VI Descriptions.. 39-4

Chapter 40
Analysis Digital Signal Processing VIs

The Fast Fourier Transform (FFT) .. 40-2
Signal Processing VI Descriptions .. 40-8

Chapter 41
Analysis Measurement VIs

Introduction to Measurement VIs.. 41-2
Measurement VI Descriptions... 41-4

Contents

© National Instruments Corporation xv LabVIEW Function and VI Reference Manual

Chapter 42
Analysis Filter VIs

Introduction to Digital Filtering Functions ..42-1
Infinite Impulse Response Filters ..42-3

Cascade Form IIR Filtering ...42-5
Butterworth Filters...42-7
Chebyshev Filters ..42-8
Chebyshev II or Inverse Chebyshev Filters...42-9
Elliptic (or Cauer) Filters...42-10
Bessel Filters ...42-11

Finite Impulse Response Filters...42-12
Designing FIR Filters by Windowing ...42-13
Designing Optimum FIR Filters using the Parks-McClellan Algorithm...........42-14
Designing Narrowband FIR Filters ...42-14
Windowed FIR Filters ...42-15
Optimum FIR Filters ...42-15
FIR Narrowband Filters...42-15

Nonlinear Filters ..42-16
Filter VI Descriptions ..42-16

Chapter 43
Analysis Window VIs

Introduction to Smoothing Windows...43-1
Windows for Spectral Analysis versus Windows for Coefficient Design.......................43-2
Window VI Descriptions ...43-5

Chapter 44
Analysis Curve-Fitting VIs

Introduction to Curve Fitting ...44-1
Curve Fitting VI Descriptions..44-3

Chapter 45
Analysis Probability and Statistics VIs

Probability and Statistics VI Descriptions ...45-1

Contents

LabVIEW Function and VI Reference Manual xvi © National Instruments Corporation

Chapter 46
Analysis Linear Algebra VIs

Basic Matrix Manipulations Functions ... 46-2
Common Matrices ... 46-3
Matrix Factorization .. 46-4
Solving Linear Equations and Matrix Inverses ... 46-5
Eigenvalues and Eigenvectors... 46-6
Matrix Analysis ... 46-6
Linear Algebra VI Descriptions .. 46-6

Chapter 47
Analysis Array Operation VIs

Array Operation VI Descriptions .. 47-1

Chapter 48
Analysis Additional Numerical Method VIs

Additional Numerical Method VI Descriptions .. 48-1

Section Five: Communication VIs and Functions

Chapter 49
Introduction to LabVIEW Communication VIs and Functions

LabVIEW Communication VIs and Functions Overview... 49-3
Introduction to Communication Protocols .. 49-4
File Sharing vs Communication Protocols .. 49-5
Client/Server Model .. 49-5

A General Model for a Client ... 49-6
A General Model for a Server... 49-7

TCP/IP (all platforms) ... 49-8
Internet Addresses... 49-9

Setup .. 49-10
Setup for Your System.. 49-10

UNIX .. 49-10
Macintosh ... 49-10
Windows 3.x ... 49-10
Windows 95 and Windows NT .. 49-11

LabVIEW and TCP/IP .. 49-11
TCP versus UDP ... 49-11
TCP Client Example ... 49-11

Contents

© National Instruments Corporation xvii LabVIEW Function and VI Reference Manual

Timeouts and Errors ..49-12
TCP Server Example ...49-12
TCP Server with Multiple Connections ..49-13

DDE (Windows Only) ...49-13
Services, Topics, and Data Items ..49-14
Examples of Client Communication with Excel ...49-15
LabVIEW VIs as DDE Servers ...49-16
Requesting Data versus Advising Data ...49-18
Synchronization of Data ..49-19
Networked DDE ..49-22

OLE Automation (Windows Only)..49-23
AppleEvents (Macintosh Only) ...49-23

Client Server Model ..49-24
AppleEvent Client Examples ..49-24

Launching Other Applications ..49-24
Sending Events to Other Applications ..49-25
Dynamically Loading and Running a VI ..49-26

PPC (Macintosh Only)...49-27
Ports, Target IDs, and Sessions ...49-27
PPC Client Example ..49-28
PPC Server Example ...49-29
PPC Server with Multiple Connections...49-30

Chapter 50
TCP VIs

Internet Protocol (IP) ...50-1
Transmission Control Protocol (TCP) ...50-2
Using TCP..50-2
TCP Errors ...50-4
TCP VI Descriptions..50-4

Chapter 51
UDP VIs

UDP Overview...51-1
Using UDP...51-2

UDP VI Descriptions ...51-2

Contents

LabVIEW Function and VI Reference Manual xviii © National Instruments Corporation

Chapter 52
DDE VIs

DDE Overview .. 52-1
Using DDE as a Client .. 52-2
Using DDE as a Server ... 52-3
Using NetDDE .. 52-4

DDE Client VI Descriptions.. 52-7
DDE Server VI Descriptions ... 52-9

Chapter 53
OLE Automation VIs

OLE Automation Concepts ... 53-2
Using LabVIEW to Implement OLE Automation... 53-2
OLE Automation VI Descriptions... 53-3

Chapter 54
AppleEvent VIs

AppleEvents ..54-2
Sending AppleEvents .. 54-3
General AppleEvent VI Behavior ... 54-3

The User Identity Dialog Box .. 54-3
Target ID... 54-4
Send Options... 54-5

Targeting VI Descriptions ... 54-5
AppleEvent VI Descriptions.. 54-7
LabVIEW Specific AppleEvent VIs ... 54-9
Advanced Topics ... 54-10

Constructing and Sending Other AppleEvents ... 54-10
Creating AppleEvent Parameters .. 54-11

Low-Level AppleEvent VIs .. 54-15
Object Support VI Example .. 54-18
Sending AppleEvents to LabVIEW from Other Applications .. 54-20

Required AppleEvents .. 54-21
LabVIEW Specific AppleEvents .. 54-21
Replies to AppleEvents ... 54-21

Event: Run VI ... 54-21
Event: Abort VI .. 54-23
Event: VI Active? ... 54-24
Event: Close VI .. 54-25

Contents

© National Instruments Corporation xix LabVIEW Function and VI Reference Manual

Chapter 55
Program to Program Communication VIs

Introduction to PPC ...55-1
General PPC Behavior ...55-2
PPC VI Descriptions ..55-3

Appendix A
DAQ Hardware Capabilities

Appendix B
Multiline Interface Messages

Appendix C
Operation of the GPIB

Appendix D
References

Appendix E
Customer Communication

Index

Figures
Figure 31-1. General Model of Instrument Drivers in LabVIEW31-1
Figure 31-2. LabVIEW Instrument Driver Internal Design Model31-4
Figure 31-3. Tek VX4790 Example VI..31-5
Figure 31-4. VIs in Tek VX4790 Example Diagram...31-7
Figure 31-5. Tek VX4790 Config Std Wave Diagram ..31-8

Figure 32-1. LabVIEW Instrument Driver VIs for the Tektronix VX4790.................32-8
Figure 32-2. Incorrect Mechanism for Escaping from While Loop.............................32-12
Figure 32-3. Correct Mechanism for Escaping from While Loop32-13
Figure 32-4. Range Test VI (Front Panel and Block Diagram)32-15
Figure 32-5. Simple Trigger VI with Programmatic Range Testing32-16
Figure 32-6. Simple Trigger VI without Programmatic Range Testing32-16
Figure 32-7. Simple Trigger VI Front Panel (See Figure 32-8 for Diagram)32-20

Contents

LabVIEW Function and VI Reference Manual xx © National Instruments Corporation

Figure 32-8. Simple Trigger Block Diagram... 32-20
Figure 39-1. Front Panel Example... 39-3
Figure 39-2. Block Diagram example ... 39-4

Figure 55-1. PPC VI Execution Order (Used by permission of Apple Computer, Inc.)55-3
Figure 55-2. GPIB Connector Showing Signal Assignment C-5
Figure 55-3. Linear Configuration... C-6
Figure 55-4. Star Configuration... C-7

Tables
Table 6-1. Special Escape Codes ... 6-3
Table 6-2. String Syntax... 6-4
Table 6-3. Possible Format Into String Errors ... 6-7
Table 6-4. Format Specifiers .. 6-8
Table 6-5. Special Characters for Match Pattern ... 6-9
Table 6-6. Strings for the Match Pattern Examples ... 6-11
Table 6-7. Scan From String Errors ... 6-12
Table 6-8. Scan from String Examples .. 6-13

Table 9-1. Lexical Class Number Descriptions.. 9-9

Table 10-1. Order of 32-bit Integers in TIming Functions... 10-2

Table 17-1. AI Buffer Config VI Device-Specific Settings and Ranges 17-2
Table 17-2. Device-Specific Settings and Ranges for Controls in the

AI Clock Config VI .. 17-4
Table 17-3. Device-Specific Settings and Ranges for the AI Control VI 17-6
Table 17-4. Device-Specific Settings and Ranges for the AI Group Config VI 17-7
Table 17-5. AI Hardware Config Channel Configuration.. 17-9
Table 17-6. Device-Specific Settings and Ranges for the AI Hardware Config VI... 17-12
Table 17-7. Device-Specific Settings and Ranges for the AI SingleScan VI 17-14
Table 17-8. Restrictions for Analog Triggering on E Series Devices........................ 17-17
Table 17-9. Digital Trigger Sources for Devices with Fixed Digital

Trigger Sources ... 17-18
Table 17-10. Device-Specific Settings and Ranges for the AI Trigger

Config VI—Part 1... 17-19
Table 17-11. Device-Specific Settings and Ranges for the AI Trigger

Config VI—Part 2... 17-20
Table 17-12. Device-Specific Settings and Ranges for the AI Trigger

Config VI—Part 4... 17-21
Table 24-1. Physical Port Widths of Digital Ports ... 24-2
Table 24-2. Device specific parameters and legal ranges for devices........................ 24-7
Table 27-1. Counter Chips and Their Available DAQ Devices................................. 27-2

Contents

© National Instruments Corporation xxi LabVIEW Function and VI Reference Manual

Table 27-2. Valid Counter Numbers for CTR Group Config Devices.......................27-3
Table 27-3. Adjacent Counters. ..27-10

Table 28-1. Channel to Index VI Parameter Examples ..28-7
Table 28-2. Channel to Index VI Parameter Examples for Sun28-8

Table 32-1. Instrument Driver Organization Example ...32-3
Table 32-2. Command Summary from Tektronix VX479032-7

Table 35-1. Command String Functions...35-4

Table 52-1. Values to Add in Place of Default...52-5

Table 54-1. AppleEvent Descriptor String Formats ...54-13

Table A-1. Analog Input Configuration Programmability—MIO and AI Devices...A-2
Table A-2. Analog Input Characteristics—MIO and AI Devices (Part 1)A-2
Table A-3. Analog Input Characteristics—MIO and AI Devices (Part 2)A-4
Table A-4. Analog Output Characteristics—MIO and AI Devices...........................A-5
Table A-5. Digital I/O Hardware Capabilities—MIO and AI DevicesA-7
Table A-6. Counter Characteristics—MIO and AI Devices......................................A-8
Table A-7. Counter Usage for Analog Input and Output—MIO and AI Devices.....A-8
Table A-8. Analog Input Configuration Programmability—Lab and 1200 Series

and Portable Devices ...A-9
Table A-9. Analog Input Characteristics—Lab and 1200 Series and Portable

Devices (Part 1) ...A-10
Table A-10. Analog Input Characteristics—Lab and 1200 Series and Portable

Devices (Part 2)A-10
Table A-11. Analog Output Characteristics—Lab and 1200 Series and

Portable Devices..A-11
Table A-12. Counter Usage for Analog Input and Output—Lab Series and

Portable Devices..A-12
Table A-13. Digital I/O Hardware Capabilities—Lab and 1200 Series and

Portable Devices..A-12
Table A-14. Analog Output and Digital Output Characteristics—54XX Series

Devices ..A-14
Table A-15. Counter/Timer Characteristics -- Lab and 1200 Series and

Portable Devices..A-16
Table A-16. Analog Input Characteristics—SCXI Modules (Part 1)..........................A-17
Table A-17. Analog Output Characteristics—SCXI ModulesA-18
Table A-18. Relay Characteristics—SCXI Modules...A-18
Table A-19. Digital Input and Output Characteristics—SCXI Modules.....................A-19
Table A-20. Terminal Block Selection Guide—SCXI ModulesA-19

Contents

LabVIEW Function and VI Reference Manual xxii © National Instruments Corporation

Table A-21. Analog Input Configuration Programmability.. A-20
Table A-22. Analog Input Configuration Programmability.. A-20
Table A-23. Analog Output Characteristics--Analog Output Only Devices A-21
Table A-24. Analog Input Configuration Programmability—Dynamic Signal

Acquisition Devices .. A-22
Table A-25. Analog Input Characteristics—Dynamic Signal Acquisition Devices ... A-22
Table A-26. Digital Hardware Capabilities—Digital I/O Devices A-24
Table A-27. Counter/Timer Characteristics—Timing Only Devices A-25
Table A-28. Analog input configuration programmability ... A-26
Table A-29. Analog input characteristics.. A-26
Table A-30. Analog input characteristics, part 2 .. A-26

© National Instruments Corporation xxiii LabVIEW Function and VI Reference Manual

About

This

Manual

The LabVIEW Function and VI Reference Manual contains descriptions
of all virtual instruments (VIs) available for LabVIEW, including the
following:

• G functions and VIs

• VIs that support the devices for data acquisition

• VIs for GPIB, VXIbus, and serial port I/O operation

• digital signal processing, filtering, and numerical and
statistical VIs

• networking and interapplication communications VIs

This manual is a supplement to the LabVIEW User Manual and assumes
that you are familiar with that material. You should also know how to
operate LabVIEW, and your computer and operating system.

This manual provides an overview of each function and VI available in
LabVIEW. However, for more specific information regarding each
function and VI (e.g. for specific parameter information), refer to the
LabVIEW Online Reference, which you can access by selecting
Online Reference from the LabVIEW Help menu, or Help, which you
access by selecting Show Help from the LabVIEW Help menu.

Organization of the Product User Manual

This manual covers five subject areas G Functions, Data Acquisition
VIs, Instrument I/O VIs, Analysis VIs, and Communications VIs.
Chapter 1 introduces the LabVIEW Functions and VIs, which comprise
the sections in this manual.

• Section 1, G Functions and VIs, includes Chapters 2 through 12,
which describe the functions unique to the G programming
language.

• Section 2, Data Acquisition VIs, includes Chapters 13 through 29,
which describe the Data Acquisition (DAQ) VIs.

LabVIEW Function and VI Reference Manual xxiv © National Instruments Corporation

About This Manual

• Section 3, Instrument I/O Functions and VIs, includes Chapters 30
through 37, which describe the Instrument I/O VIs and functions.

• Section 4, Analysis VIs, includes Chapters 38 through 48, which
describe the Analysis VIs.

• Section 5, Communications VI and Functions, includes Chapters 49
through 55, which describe the Communication VIs.

In addition, this manual includes the following appendices and index:

• Appendix A, DAQ Hardware Capabilities, includes tables that
summarize the analog and digital I/O capabilities of National
Instruments data acquisition devices.

• Appendix B, Multiline Interface Messages, lists commands that
IEEE 488 defines.

• Appendix C, Operation of the GPIB, describes basic concepts you
need to understand to operate the GPIB.

• Appendix D, References, lists the reference material used to
produce the Analysis VIs described in this manual.

• Appendix E, Customer Communication, contains forms to help you
gather the information necessary to help us solve your technical
problems and a form you can use to comment on the product
documentation.

• The Index contains an alphabetical list of VIs described in this
manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

< > Angle brackets enclose the name of a key on the keyboard (for example,
<option>). Angle brackets containing numbers separated by an ellipsis
represent a range of values associated with a bit or signal name (for
example, DBIO<3…0>).

[] Square brackets enclose optional items (for example, [response]).

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys–for
example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box
options to a final action. The sequence File»Page Setup»Options»
Substitute Fonts directs you to pull down the File menu, select the

© National Instruments Corporation xxv LabVIEW Function and VI Reference Manual

About This Manual

Page Setup item, select Options, and finally select the Substitute Fonts
options from the last dialog box.

♦ The ♦ symbol indicates that the text following it applies only to a
specific product, a specific operating system, or a specific software
version.

bold Bold text denotes the names of menus, menu items, parameters, dialog
box, dialog box buttons or options, icons, windows, Windows 95 tabs,
or LEDs.

bold italic Bold italic text denotes a note, caution, or warning.

bold Bold text in this font denotes the messages and responses that the
monospace computer automatically prints to the screen. This font also emphasizes

lines of code that are different from the other examples.

CTRL Key names are in all capital letters.

italic Italic text denotes emphasis, a cross reference, or an introduction to a
key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows 3.x.

italic Italic text in this font denotes that you must supply the appropriate
monospace words or values in the place of these items.

monospace Text in this font denotes text or characters that should literally enter
from the keyboard, sections of code, programming examples, and
syntax examples. This font is also used for the proper names of disk
drives, paths, directories, programs, subprograms, subroutines, device
names, functions, operations, variables, filenames and extensions, and
for statements and comments taken from programs.

paths Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

The Glossary lists abbreviations, acronyms, metric prefixes,
mnemonics, symbols, and terms.

Related Documentation

You might find the following documents helpful as you read this
manual:

• LabVIEW User Manual

• LabVIEW Error Codes

• LabVIEW Getting Started Card

• LabVIEW QuickStart Guide

LabVIEW Function and VI Reference Manual xxvi © National Instruments Corporation

About This Manual

• LabVIEW Release Notes

• LabVIEW Upgrade Notes

• G Quick Reference Card

Related Online Documentation

The following related documents are available through the LabVIEW
Online Reference, which you access by selecting
Help»OnlineReference.

• Communications Common Questions

• LabVIEW Glossary

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make
it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in
Appendix E, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 LabVIEW Function and VI Reference Manual

Chapter

1
Introduction to the LabVIEW
Functions and VIs

This chapter contains basic information about the functions and virtual
instruments (VIs) that are available with LabVIEW.

LabVIEW includes collections of VIs that work with your G
programming language, data acquisition (DAQ) hardware devices,
instrument input and output devices, analysis instruments, and
communication devices.

Locating the G Functions and VIs

You can find the G functions and VIs on the Functions palette. To
access the Functions palette, access a block diagram in LabVIEW.
When you put your cursor over each of the icons in the Functions
palette, LabVIEW displays the name of the icon palette.

Functions are elementary nodes in the G programming language. They
are analogous to operators or library functions in conventional
languages. Functions are not VIs and therefore do not have front panels
or block diagrams. When compiled, functions generate inline machine
code.

You select functions from the Functions palette, in the block diagram.
When the block diagram window is active, select
Windows»Show Functions Palette. You also can access the

Chapter 1 Introduction to the LabVIEW Functions and VIs

LabVIEW Function and VI Reference Manual 1-2 © National Instruments Corporation

Functions palette by popping up on the area in the block diagram
window where you want to place the function.

Many Function palette chapters include information about function
examples.

The paths for these examples for LabVIEW begin with examples\.

Function and VI Overviews

The following functions and VIs are available.

Structures
G Structures include While Loop, For Loop, Case and Sequence
structures. This palette also contains the global and local variable
nodes.

Chapter 1 Introduction to the LabVIEW Functions and VIs

© National Instruments Corporation 1-3 LabVIEW Function and VI Reference Manual

Numeric Functions
Numeric functions perform arithmetic operations, conversions,
trigonometric, logarithmic, and complex mathematical functions. This
palette also contains additional numeric constants, such as Pi.

Boolean Functions
Boolean functions perform Boolean and logical operations.

String Functions
String functions manipulate strings and convert numbers to and from
strings. This palette also includes the subpalettes Additional String To
Number Functions and String Conversion Functions.

Array Functions
Array functions assemble, disassemble, and process arrays.

Chapter 1 Introduction to the LabVIEW Functions and VIs

LabVIEW Function and VI Reference Manual 1-4 © National Instruments Corporation

Cluster Functions
Use Cluster functions to assemble, access, and change elements in a
cluster.

Comparison Functions
Comparison functions compare data (greater than, less than, and so on)
and operations that are based on a comparison, such as finding the
minimum and maximum ranges for two values.

Time and Dialog Functions
Time and Dialog functions can be used to manipulate time functions
and display dialog boxes. This palette also includes the functions that
perform error handling.

File I/O Functions
File I/O functions manipulate files and directories. This palette also
contains the subpalettes Advanced File Functions, Binary File VIs, and
File Constants.

Advanced Functions
Advanced functions are functions that do not fit into any other category.
The Code Interface Node is an example of an advanced function. The

Chapter 1 Introduction to the LabVIEW Functions and VIs

© National Instruments Corporation 1-5 LabVIEW Function and VI Reference Manual

Advanced Functions palette also contains Help Window functions, VI
Control VIs, Data Manipulation functions, and Occurrences functions.

DAQ
DAQ VIs acquire and generate real-time analog and digital data as well
as perform counting operations. See Chapter 13, Introduction to the

LabVIEW Data Acquisition VIs, for more information.

Instrument I/O
Instrument I/O VIs communicate with instruments using GPIB, VISA,
or serial communication. See Chapter 30, Introduction to LabVIEW

Instrument Driver VIs, for more information.

Communication
Communication VIs network to other applications using TCP/IP, DDE,
OLE, Apple Events, PPC, or UDP. See Chapter 49, Introduction to

LabVIEW Communication VIs and Functions, for more information.

Analysis VIs
Analysis VIs perform measurement, signal generation, digital signal
processing, filtering, windowing, probability and statistics, curve
fitting, linear algebra, array operations, and VIs which perform

Chapter 1 Introduction to the LabVIEW Functions and VIs

LabVIEW Function and VI Reference Manual 1-6 © National Instruments Corporation

additional numerical methods. See Chapter 38, Introduction to Analysis

in LabVIEW, for more information.

Select A VI...
When you select Functions»Select a VI..., LabVIEW displays a file
dialog box. From there, you can select any VI and place it on a diagram.

Tutorial
Selecting Functions»Tutorial accesses the Tutorial VIs. You call these
VIs while working through the LabVIEW Tutorial Manual.

Instrument Driver Library
Instrument drivers are a set of VIs for GPIB, VISA, Serial, and CAMAC
instruments. National Instruments, as well as other vendors, distribute
these instrument drivers. Any drivers you place in the instr.lib
appear in the palette.

Chapter 1 Introduction to the LabVIEW Functions and VIs

© National Instruments Corporation 1-7 LabVIEW Function and VI Reference Manual

User Library
This palette automatically includes any VIs in your user.lib
directory, making it more convenient to gain access to commonly used
sub-VIs you have written.

© National Instruments Corporation 2-1 LabVIEW Function and VI Reference Manual

Chapter

2
G Function and VI
Reference Overview

This chapter introduces the G Functions and VIs, descriptions of which
comprise Chapter 3 through Chapter 12.

Functions are elementary nodes in the G programming language. They
are analogous to operators or library functions in conventional
languages. Functions are not VIs and therefore do not have front panels
or block diagrams. When compiled, functions generate inline machine
code.

VIs are “virtual instruments,” so called because they model the
appearance functions of a physical instrument.

You select G Functions from the Functions palette, in the block
diagram. When the block diagram window is active, you can display the
Functions palette by selecting Windows»Show Functions Palette.
You also can access the Functions palette by popping up on the area in
the block diagram window where you want to place the function.

Many Functions palette chapters include information about function
examples. The paths for these examples for LabVIEW begin
examples\.

Chapter 2 G Function and VI Reference Overview

LabVIEW Function and VI Reference Manual 2-2 © National Instruments Corporation

G Functions Overview

For brief descriptions of each of the 10 G Function and VI palettes
available refer to Chapter 1, Introduction to LabVIEW Functions and VIs.

Introduction to Polymorphism

The following sections provide some general information about
Polymorphism in G functions.

Polymorphism
Polymorphism is the ability of a function to adjust to input data of
different types or representations. Most functions are polymorphic. VIs
are not polymorphic. All functions that take numeric input can accept
any numeric representation (except some functions that do not accept
complex numbers).

Functions are polymorphic to varying degrees; none, some, or all of
their inputs may be polymorphic. Some function inputs accept numbers
or Boolean values. Some accept numbers or strings. Some accept not
only scalar numbers but also arrays of numbers, clusters of numbers,
arrays of clusters of numbers, and so on. Some accept only
one-dimensional arrays although the array elements may be of any type.
Some functions accept all types of data, including complex numbers.

Unit Polymorphism
If you want to create a VI that computes the root, mean square value of
a waveform, you have to define the unit associated with the waveform.
You would need a separate VI for voltage waveforms, current
waveforms, temperature waveforms, and so on. LabVIEW has
polymorphic unit capability so that one VI can perform the same
calculation, regardless of the units received by the inputs.

You create a polymorphic unit by entering $x, where x is a number (for
example, $1). You can think of this as a placeholder for the actual unit.
When LabVIEW calls the VI, the program substitutes the units you pass
in for all occurrences of $x in that VI.

LabVIEW treats a polymorphic unit as a unique unit. You cannot
convert a polymorphic unit to any other unit, and polymorphic units
propagate throughout the diagram, just as other units do. When the unit

Chapter 2 G Function and VI Reference Overview

© National Instruments Corporation 2-3 LabVIEW Function and VI Reference Manual

connects to an indicator that also has the abbreviation $1, the units
match and the VI can then compile.

You can use $1 in combinations just like any other unit. For example,
if the input is multiplied by 3 seconds and then wired to an indicator,
the indicator must be $1 s units. If the indicator has different units, the
block diagram shows a bad wire. If you need to use more than one
polymorphic unit, you can use the abbreviations $2, $3, and so on.

A call to a subVI containing polymorphic units computes output units
based on the units received by its inputs. For example, suppose you
create a VI that has two inputs with the polymorphic units $1 and $2
that creates an output in the form $1 $2 / s. If a call to the VI receives
inputs with the unit m/s to the $1 input and kg to the $2 input, LabVIEW
computes the output unit as kg m / s^2.

Suppose a different VI has two inputs of $1 and $1/s, and computes an
output of $1^2. If a call to this VI receives inputs of m/s to the $1 input
and m/s^2 to the $1/s input, LabVIEW computes the output unit as m^2
/ s^2. If this VI receives inputs of m to the $1 input and kg to the $1/s
input, however, LabVIEW declares one of the inputs as a unit conflict
and computes (if possible) the output from the other input.

A polymorphic VI can have a polymorphic subVI because LabVIEW
keeps the respective units distinct.

Numeric Conversion
You can convert any numeric representation to any other numeric
representation. When you wire two or more numeric inputs of different
representations to a function, the function usually returns output in the
larger or wider format. The functions coerce the smaller representations
to the widest representation before execution.

Some functions, such as Divide, Sine, and Cosine, always produce
floating-point output. If you wire integers to their inputs, these
functions convert the integers to double-precision, floating-point
numbers before performing the calculation.

For floating-point, scalar quantities, it is usually best to use
double-precision, floating-point numbers. Single-precision,
floating-point numbers save little memory, little or no time, and
overflow much more easily. You should only use extended-precision,
floating-point numbers when necessary. The performance and precision
of extended-precision arithmetic varies among the platforms.

Chapter 2 G Function and VI Reference Overview

LabVIEW Function and VI Reference Manual 2-4 © National Instruments Corporation

For integers, it is usually best to use a long integer.

If you wire an output to a destination that has a different numeric
representation from the source, LabVIEW converts the data according
to the following rules:

• Signed or unsigned integer to floating-point number—Conversion
is exact, except for long integers to single-precision, floating-point
numbers. In this case, LabVIEW reduces the precision from 32 bits
to 24 bits.

• Floating-point number to signed or unsigned integer—LabVIEW
moves out-of-range values to the integer's minimum or maximum
value. In most integer objects, such as the iteration terminal of a For
Loop, LabVIEW rounds floating-point numbers. LabVIEW rounds
a fractional part of 0.5 to the nearest even integer—for example,
LabVIEW rounds 6.5 to 6 rather than 7.

• Integer to integer—LabVIEW does not move out-of-range values
to the integer’s minimum or maximum value. If the source is
smaller than the destination, LabVIEW extends the sign of a signed
source and places zeros in the extra bits of an unsigned source. If
the source is larger than the destination, LabVIEW copies only the
low order bits of the value.

On the block diagram, LabVIEW places a coercion dot on the border of
a terminal where the conversion takes place to indicate that automatic
numeric conversion occurred, as in the following example.

Chapter 2 G Function and VI Reference Overview

© National Instruments Corporation 2-5 LabVIEW Function and VI Reference Manual

Because VIs and functions can have many terminals, a coercion dot can
appear inside an icon if the wire crosses an internal terminal boundary
before it leaves the icon/connector, as the following illustration shows.

Moving a wired icon stretches the wire. Coercion dots can cause a VI to
use more memory and time. You should try to keep data types
consistent in your VIs. For more information on coercion dots, see
Chapter 8, Customizing Your LabVIEW Environment, in the LabVIEW

User Manual.

Overflow and Underflow
LabVIEW does not check for overflow or underflow conditions on
integer values. Overflow and underflow for floating-point numbers is in
accordance with IEEE 488 Standard 754 for binary, floating-point
arithmetic.

Floating-point operations propagate not-a-number (NaN) and +/-Inf
faithfully. When you explicitly or implicitly convert NaN or +/-Inf to
an integer or Boolean value, however, you get a value that looks
reasonable, but is meaningless. For example, dividing by zero produces
+/-Inf, but converting that value to a word integer gives the value
32,768, which is the largest value that can be represented in the
destination format.

Wire Styles
The wire style represents the data type for each terminal, as the
following table shows. Polymorphic functions show the wire style for
the most commonly used data type.

© National Instruments Corporation 3-1 LabVIEW Function and VI Reference Manual

Chapter

3Structures

This chapter describes the Structures available through LabVIEW.

To access the Structures palette, select Functions»Structures. The
following illustration shows the options that are available on the
Structures palette.

See examples\general\structs.llb for examples of how
these structures are used in LabVIEW.

Chapter 3 Structures

LabVIEW Function and VI Reference Manual 3-2 © National Instruments Corporation

Structures Overview

The following Structures are available in LabVIEW.

Case Structure
Has one or more subdiagrams, or cases, exactly one of which executes when the structure
executes. Whether or not it executes depends on the value of the Boolean or numeric
scalar you wire to the external side of the terminal or selector.

For more information on how to use the Case structure in LabVIEW, see Chapter 19,
Structures, in the LabVIEW User Manual.

Sequence Structure
Consists of one or more subdiagrams, or frames, that execute sequentially. As an option,
you can add sequence locals that allow you to pass information from one frame to
subsequent frames by popping up on the edge of the structure.

For more information on how to use the Sequence structure in LabVIEW, see Chapter 19,
Structures, in the LabVIEW User Manual.

For Loop
Executes its subdiagram count times, where the count equals the value contained in the
count terminal. As an option, you can add shift registers so you can pass information from
one iteration to the next by popping up on the edge of the structure.

For more information on how to use For Loop in LabVIEW, see Chapter 19, Structures,
in the LabVIEW User Manual.

Chapter 3 Structures

© National Instruments Corporation 3-3 LabVIEW Function and VI Reference Manual

While Loop
Executes its subdiagram until a Boolean value you wire to the conditional terminal is
FALSE. As an option, you can add shift registers so you can pass information from one
iteration to the next by popping up on the edge of the structure.

For more information on how to use While Loop in LabVIEW, see Chapter 19,
Structures, in the LabVIEW User Manual.

Formula Node
Executes mathematical formulas on the block diagram.

For more information on the Formula Node, see Chapter 20, The Formula Node, in the
LabVIEW User Manual.

Global Variable
A built-in LabVIEW object that you define by creating a special kind of VI, with front
panel controls that define the datatype of the global variable.

For more information on the global variable, see Chapter 22, Global and Local Variables,
in the LabVIEW User Manual.

Local Variable
Lets you read or write one of the controls or indicators on the front panel of your VI.
Writing to a local variable has the same result as passing data to a terminal, except that
you can write to it even though it is a control, or read from it even though it is an
indicator.

Chapter 3 Structures

LabVIEW Function and VI Reference Manual 3-4 © National Instruments Corporation

For more information on the local variable, see Chapter 22, Global and Local Variables,
in the LabVIEW User Manual.

© National Instruments Corporation 4-1 LabVIEW Function and VI Reference Manual

Chapter

4Numeric Functions

This chapter describes the functions that perform arithmetic operations,
complex, conversion, logarithmic, and trigonometric operations. It also
describes the commonly used constants like the numeric constant,
enumerated constant, and ring constant as well additional numeric
constants.

To access the Numeric palette, select Functions»Numeric. The
following illustration shows the options that are available on the
Numeric palette.

The Numeric palette includes the following subpalettes:

• Additional Numeric Constants

• Complex

• Conversion

• Logarithmic

• Trigonometric

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-2 © National Instruments Corporation

For examples of some of the arithmetic functions, see
examples\general\structs.llb.

Polymorphism for Numeric Functions

The arithmetic functions accept numeric input data. With some
exceptions noted in the function descriptions, the output has the same
numeric representation as the input, or if the inputs have different
representations, the output is the wider of the inputs.

The arithmetic functions work on numbers, arrays of numbers, clusters
of numbers, arrays of clusters of numbers, complex numbers, and so on.
A formal and recursive definition of the allowable input type is as
follows:

Numeric type = numeric scalar || array [numeric type] || cluster
[numeric types]

The numeric scalars can be a floating-point, integer or complex,
number. G does not allow you to use arrays of arrays.

Arrays can have any number of dimensions of any size. Clusters can
have any number of elements. For functions with one input, the
functions operate on each element of the structure.

For functions with two inputs, you can use the following input
combinations:

• Similar—both inputs have the same structure, and the output has
the same structure as the inputs.

• One scalar—one input is a numeric scalar, the other is an array or
cluster, and the output is an array or cluster.

• Array of—one input is a numeric array, the other is the numeric
type itself, and the output is an array.

For similar inputs, G performs the function on the respective elements
of the structures. For example, G can add two arrays
element-by-element. Both arrays must have the same dimensionality.
You can add arrays with differing numbers of elements; the output of
such an addition has the same number of elements as the smallest input.
Clusters also must have the same number of elements, and the
respective elements must have the same structure.

Note: You cannot use the multiply function to do matrix multiplication. If you

use the multiply function with two matrices, G takes the first number in the

Chapter 4 Numeric Functions

© National Instruments Corporation 4-3 LabVIEW Function and VI Reference Manual

first row of the first matrix, multiplies it by the first number in the first row

of the second matrix, and so on.

For operations involving a scalar and an array or cluster, G performs the
function on the scalar and the respective elements of the structure. For
example, G can subtract a number from all elements of an array,
regardless of the dimensionality of the array.

For operations that involve a numeric type and an array of that type, G
performs the function on each array element. For example, a graph is an
array of points, and a point is a cluster of two numeric types, x and y.
To offset a graph by 5 units in the x direction and 8 units in the y
direction, you can add a point, (5, 8), to the graph.

See the Polymorphic Combinations example below illustrates some of
the possible polymorphic combinations of the Add function.

Polymorphism for Trig Functions
The trigonometric functions accept numeric input data. If the input is an
integer, the output is a double-precision, floating-point number.
Otherwise, the output has the same numeric representation as the input.

These functions work on numbers, arrays of numbers, clusters of
numbers, arrays of clusters of numbers, complex numbers, and so on.

Polymorphism for Logarithmic Functions
The logarithmic functions accept numeric input data. If the input is an
integer, the output is a double-precision, floating-point number.
Otherwise, the output has the same numeric representation as the input.

These functions work on numbers, arrays of numbers, clusters of
numbers, arrays of clusters of numbers, complex numbers, and so on.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-4 © National Instruments Corporation

Polymorphism for Conversion Functions
All the conversion functions except Byte Array to String, String to Byte
Array, Convert Unit, and Cast Unit Bases are polymorphic. That is, the
polymorphic functions work on scalar values, arrays of scalars, clusters
of scalars, arrays of clusters of scalars, and so on. The output has the
same numeric representation as the input but with the new type.

Polymorphism for Complex Functions
The complex functions work on scalar values, arrays of scalars, clusters
of scalars, arrays of clusters of scalars, and so on. The output has the
same composition as the input but with the new type.

Arithmetic Function Descriptions

The following functions are available.

Absolute Value

Returns the absolute value of the input.

Add

Computes the sum of the inputs.

Add Array Elements

Returns the sum of all the elements in numeric array.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-5 LabVIEW Function and VI Reference Manual

Compound Arithmetic

Performs arithmetic on two or more numeric, cluster, or Boolean inputs.

You select the operation (multiply, AND, or OR) by popping up on the function and
selecting Change Mode.

You can invert the inputs or the output of this function by popping up on the individual
terminals, and selecting Invert. For Add, select Invert to negate an input or the output.
For Multiply, select Invert to use the reciprocal of an input or to produce the reciprocal
of the output. For AND or OR, select Invert to logically negate an input or the output.

Note: You add inputs to this node by popping up on an input and selecting Add

Input or by placing the Positioning tool in the lower left or right corner of

the node and dragging it.

Decrement

Subtracts 1 from the input value.

Divide

Computes the quotient of the inputs.

Increment

Adds 1 to the input value.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-6 © National Instruments Corporation

Multiply

Returns the product of the inputs.

Multiply Array Elements

Returns the product of all the elements in numeric array.

Negate

Negates the input value.

Quotient & Remainder

Computes the integer quotient and the remainder of the inputs.

With integer input values for y of zero, the quotient is zero and the remainder is the
dividend x. For floating point inputs, if y is zero, the quotient is infinity and the remainder
defaults to NaN.

Random Number (0–1)

Produces a double-precision floating-point number between 0 and 1 exclusive, or not
including 0 and 1. The distribution is uniform.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-7 LabVIEW Function and VI Reference Manual

Reciprocal

Divides 1 by the input value.

Round To +Infinity

Rounds the input to the next highest integer. For example, if the input is 3.1, the result
is 4. If the input is –3.1, the result is –3.

Round To –Infinity

Rounds the input to the next lowest integer. For example, if the input is 3.8, the result is
3. If the input is –3.8, the result is –4.

Round To Nearest

Rounds the input to the nearest integer. If the value of the input is midway between two
integers (for example, 1.5 or 2.5), the function returns the nearest even integer (2).

Scale By Power Of 2

Multiplies one input (x) by 2 raised to the power of the other input (n). If n is
floating-point, this function rounds n prior to scaling x (0.5 rounds to 0; 0.51 rounds
to 1). If x is an integer, this function is the equivalent of an arithmetic shift.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-8 © National Instruments Corporation

Sign

Returns 1 if the input value is greater than 0, returns 0 if the input value is equal to 0, and
returns –1 if the input value is less than 0. Other programming languages typically call
this function the signum or sgn function.

Square Root

Computes the square root of the input value. If x is negative, the square root is not a
number (NaN) unless x is complex.

Subtract

Computes the difference of the inputs.

User Definable Arithmetic Constants
You can define the following constants.

Numeric Constant

Use this to supply a constant numeric value to the block diagram. Set this value by
clicking inside the constant with the Operating tool and typing in a value. You can change
the data format and representation.

The value of the numeric constant cannot be changed while the VI executes. You can
assign a label to this constant.

Enumerated Constant

Enumerated values associate unsigned integers to strings. If you display a value from an
enumerated constant the string displays instead of the number associated with it. If you
need a set of strings that will not change, then use this constant. Set the value by clicking
inside the constant with the Operating Tool. Set the string with the Labeling Tool and
enter the string. To add another item, click on the constant and choose Add Item Before
or Add Item After.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-9 LabVIEW Function and VI Reference Manual

The value of the enumerated constant cannot be changed while the VI executes. You can
assign a label to this constant.

Ring Constant

Rings can be used to associate unsigned integers to strings. If you display a value from a
ring constant the number displays instead of the string associated with it. If you need a
set of strings that will not change, then use this constant. Set the value by clicking inside
the constant with the Operating Tool. Set the string with the Labeling Tool and enter the
string. To add another item, pop up on the constant and choose Add Item Before or Add
Item After.

The value of the ring constant cannot be changed while the VI executes. You can assign
a label to this constant.

Conversion Functions Descriptions

The following illustration shows the options that are available on the Conversion
subpalette.

The following functions convert a numeric input into a specific representation:

• To Byte Integer

• To Double Precision Complex

• To Double Precision Float

• To Extended Complex

• To Extended Precision Float

• To Long Integer

• To Single Precision Complex

• To Single Precision Float

• To Unsigned Byte Integer

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-10 © National Instruments Corporation

• To Unsigned Word Integer

• To Unsigned Long Integer

• To Word Integer

When these functions convert a floating-point number to an integer, they round the output
to the nearest integer, or the nearest even integer if the fractional part is 0.5. If the result
is out of range for the integer, these functions return the minimum or maximum value for
the integer type. When these functions convert an integer to a smaller integer, they copy
the least significant bits without checking for overflow. When they convert an integer to
a larger integer, they extend the sign of a signed integer and pad an unsigned integer with
zeros.

Use caution when you convert numbers to smaller representations, particularly when
converting integers, because the G conversion routines do not check for overflow.

Boolean Array To Number
Converts Boolean array to an unsigned long integer by interpreting it as the two’s
complement representation of an integer with the 0th element of the array being the least
significant bit.

Boolean To (0,1)
Converts a Boolean value to a word integer— 0 and 1 for the input values FALSE and
TRUE, respectively.

Boolean can be a scalar, an array, or a cluster of Boolean values, an array of clusters of
Boolean values, and so on. See the Polymorphism for Boolean Functions section in
Chapter 5, Boolean Functions.

Byte Array To String
Converts an array of unsigned bytes into a string.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-11 LabVIEW Function and VI Reference Manual

Cast Unit Bases
Changes the units associated with the input to the units associated with unit and returns
the results at the output terminal. Use this function with extreme care. Because the Cast
Unit Bases function works with bases, you must understand the conversion from an
arbitrary unit to its bases before you can effectively use this function. This function can
change base units, such as changing meters to grams.

Convert Unit
Converts a physical number (a number that has a unit) to a pure number (a number with
no units) or a pure number to a physical number.

You can edit the string inside of the unit by highlighting the string with an Operating tool
and then entering the text.

If the input is a pure number, the output receives the specified units. For example, given
an input of 13 and a unit specification of seconds(s), the resulting value is 13 seconds.

If the input is a physical number, and unit is a compatible unit, the output is the input
measured in the specified units. For example, if you specify 37 meters(m), and a unit is
m, the result is 37 with no associated units. If unit is feet (ft), the result is 121.36 with
no associated units.

Number To Boolean Array
Converts an integer number to a Boolean array of 8, 16, or 32 elements, where the 0th
element corresponds to the least significant bit (LSB) of the two’s complement
representation of the integer.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-12 © National Instruments Corporation

String To Byte Array
Converts a string into an array of unsigned bytes.

To Byte Integer
Converts number to an 8-bit integer in the range –128 to 127.

To Double Precision Complex
Converts a number to a double-precision complex number.

To Double Precision Float
Converts number to a double-precision floating-point number.

To Extend Precision Complex
Converts a number to an extended-precision complex number.

To Extended Precision Float
Converts number to an extended-precision floating-point number.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-13 LabVIEW Function and VI Reference Manual

To Long Integer
Converts number to a 32-bit integer in the range –231 to 231–1

To Single Precision Complex
Coverts a number to a single-precision complex number.

To Single Precision Float
Converts number to a single-precision floating-point number.

To Unsigned Byte Integer
Converts number to an 8-bit unsigned integer in the range 0 to 255.

To Unsigned Long Integer
Converts number to a 32-bit unsigned integer in the range 0 to 232 –1.

To Unsigned Word Integer
Converts number to a 16-bit unsigned integer in the range 0 to 65,535.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-14 © National Instruments Corporation

To Word Integer
Converts number to a 16-bit integer in the range –32,768 to 32,767.

Trigonometric Functions Descriptions

The following illustration shows the options for the Trigonometric subpalette.

Cosecant
Computes the cosecant of x, where x is in radians. Cosecant is the reciprocal of sine.

Cosine
Computes the cosine of x, where x is in radians.

Cotangent
Computes the cotangent of x, where x is in radians. Cotangent is the reciprocal of tangent.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-15 LabVIEW Function and VI Reference Manual

Hyperbolic Cosine
Computes the hyperbolic cosine of x, where x is in radians.

Hyperbolic Sine
Computes the hyperbolic sine of x, where x is in radians.

Hyperbolic Tangent
Computes the hyperbolic tangent of x, where x is in radians.

Inverse Cosine
Computes the arccosine of x in radians. If x is not complex and is less than –1 or greater
than +1, the result is NaN.

Inverse Hyperbolic Cosine
Computes the hyperbolic argcosine of x in radians. If x is not complex and is less than 1,
the result is NaN.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-16 © National Instruments Corporation

Inverse Hyperbolic Sine
Computes the hyperbolic argsine of x in radians.

Inverse Hyperbolic Tangent
Computes the hyperbolic argtangent of x in radians. If x is not complex and is less than
–1 or greater than 1, the result is NaN.

Inverse Sine
Computes the arcsine of x in radians. If x is not complex and is less than –1 or greater
than +1, the result is NaN.

Inverse Tangent
Computes the arctangent of x in radians (which can be between –Π/2 and Π/2).

Inverse Tangent (2 Input)
Computes the arctangent of y/x in radians. This function can compute the arctangent for
angles in any of the four quadrants of the x,y plane, whereas the Inverse Tangent function
computes the arctangent in only two quadrants.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-17 LabVIEW Function and VI Reference Manual

Secant
Computes the secant of x, where x is in radians.

Sinc
Computes the sine of x divided by x, where x is in radians.

Sine
Computes the sine of x, where x is in radians.

Sine & Cosine
Computes both the sine and cosine of x, where x is in radians. Use this function only
when you need both results.

Tangent
Computes the tangent of x, where x is in radians.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-18 © National Instruments Corporation

Logarithmic Functions Descriptions

The following illustration shows the options for the Logarithmic subpalette.

Exponential
Computes the value of e raised to the x power.

Exponential (Arg) –1
Computes 1 less than the value of e raised to the x power. When x is very small, this
function is more accurate than using the Exponential function and then subtracting 1 from
the output.

Logarithm Base 2
Computes the base 2 logarithm of x. If x is 0, log2(x) is –∞. If x is not complex and is
less than 0, log2(x) is NaN.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-19 LabVIEW Function and VI Reference Manual

Logarithm Base 10
Computes the base 10 logarithm of x. If x is 0, log(x) is –∞. If x is not complex and is
less than 0, log(x) is NaN.

Logarithm Base X
Computes the base x logarithm of y (x>0, y>0). If y is 0, the output is –∞. When x and y
are both not complex and x is less than or equal to 0, or y is less than 0, the output is NaN.

Natural Logarithm
Computes the natural base e logarithm of x, that is, the logarithm of x. If x is 0, ln(x) is
–∞. If x is not complex and is less than 0, ln(x) is NaN.

Natural Logarithm (Arg +1)
Computes the natural logarithm of (x + 1). When x is near 0, this function is more
accurate than adding 1 to x and then using the Natural Logarithm function. If x is equal
to –1, the result is –∞. If x is not complex and is less than –1, the result is NaN.

Power Of 2
Computes 2 raised to the x power.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-20 © National Instruments Corporation

Power Of 10
Computes 10 raised to the x power.

Power Of X
Computes x raised to the y power. If x is not complex, it must be greater than zero unless
y is an integer value. Otherwise, the result is NaN. If y is zero, x^y is 1 for all values of
x, including zero.

Complex Function Descriptions

The following illustration displays the options available on the Complex subpalette.

The functions Polar To Complex and Re/Im To Complex create complex numbers from
two values given in rectangular or polar notation, and the functions Complex To Polar
and Complex To Re/Im break a complex number into its rectangular or polar
components.

Complex Conjugate
Produces the complex conjugate of x + iy.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-21 LabVIEW Function and VI Reference Manual

Complex To Polar
Breaks a complex number into its polar components.

Complex To Re/Im
Breaks a complex number into its rectangular components.

Polar To Complex
Creates a complex number from two values in polar notation.

Re/Im To Complex
Creates a complex number from two values in rectangular notation.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-22 © National Instruments Corporation

Additional Numeric Constants Descriptions

The following illustration displays the options available on the Additional Numeric
Constants subpalette.

Additional User Definable Constants
You can define the following constants.

Listbox Symbol Ring Constant

This ring constant assigns symbols to items in a listbox control. Typically, you wire this
constant into the Item Symbols attribute.

Color Box Constant

Use this to supply a constant color value to the block diagram. Set this value by clicking
on the constant with the Operating tool and choosing the desired color.

The value of the color box constant cannot be changed while the VI executes. You can
assign a label to this constant.

Error Ring Constant

This constant is a predefined ring of errors specific to memory usage, networking,
printing, and file I/O. Errors related to DAQ, GPIB, VISA, and Serial VIs and functions
are not options in this ring.

Fixed Constants
The following constants are fixed.

Chapter 4 Numeric Functions

© National Instruments Corporation 4-23 LabVIEW Function and VI Reference Manual

Avogadro Constant (1/mol)

Returns the value 6.0220e23.

Base 10 Logarithm of e

Returns the value 0.43429448190325183.

Elementary Charge (c)

Returns the value 1.6021892e–19.

Gravitational Constant (Nm2/kg2)

Returns the value 6.6720e–11.

Molar Gas Constant (J/mol K)

Returns the value 8.31441.

e

Returns the value 2.7182818284590452e+0.

Natural Logarithm of Pi

Returns the value 1.14472988584940020.

Natural Logarithm of 2

Returns the value 0.69314718055994531.

Natural Logarithm of 10

Returns the value 2.30234095236904570.

Negative Infinity

Returns the value –∞.

Pi

Returns the value 3.14159265358979320.

Pi divided by 2

Returns the value 1.57079632679489660.

Pi multiplied by 2

Returns the value 6.28318530717958650.

Chapter 4 Numeric Functions

LabVIEW Function and VI Reference Manual 4-24 © National Instruments Corporation

Planck’s Constant (J/Hz)

Returns the value 6.6262e–34.

Positive Infinity

Returns the value +∞.

Reciprocal of e

Returns the value 0.36787944117144232.

Reciprocal of Pi

Returns the value 0.31830988618379067.

Rydberg Constant (/m)

Returns the value 1.097373177e7.

Speed of Light in Vacuum (m/sec)

Returns the value 299,792,458.

© National Instruments Corporation 5-1 LabVIEW Function and VI Reference Manual

Chapter

5Boolean Functions

This chapter describes the functions that perform logical operations.

The following illustration shows the Boolean palette, which you access
by selecting Functions»Boolean.

For examples of some of the Boolean functions, see
examples\general\structs.llb.

Polymorphism for Boolean Functions

The logical functions take either Boolean or numeric input data. If the
input is numeric, G performs a bit-wise operation. If the input is an
integer, the output has the same representation. If the input is a
floating-point number, G rounds it to a long integer, and the output is
long integer.

The logical functions work on arrays of numbers or Boolean values,
clusters of numbers or Boolean values, arrays of clusters of numbers or

Chapter 5 Boolean Functions

LabVIEW Function and VI Reference Manual 5-2 © National Instruments Corporation

Boolean values, and so on. A formal and recursive definition of the
allowable input type is as follows.

Logical type = Boolean scalar || numeric scalar || array [logical type] ||
cluster [logical types]

except that complex numbers and arrays of arrays are not allowed.

Logical functions with two inputs can have the same input
combinations as the arithmetic functions. However, the logical
functions have the further restriction that the base operations can only
be between two Boolean values or two numbers. For example, you
cannot have an AND between a Boolean value and a number. See the
example below for an illustration of some combinations of Boolean
values for the AND function.

Boolean Function Descriptions

The following Boolean functions are available.

And
Computes the logical AND of the inputs.

Note: This function performs bit-wise operations on numeric inputs.

Chapter 5 Boolean Functions

© National Instruments Corporation 5-3 LabVIEW Function and VI Reference Manual

And Array Elements
Returns TRUE if all the elements in Boolean array are true; otherwise it returns FALSE.

Boolean Array To Number
Converts Boolean array to an unsigned long integer by interpreting it as the two’s
complement representation of an integer with the 0th element of the array being the least
significant bit.

Boolean To (0,1)
Converts a Boolean value to a word integer--0 and 1 for the input values FALSE and
TRUE, respectively.

Compound Arithmetic
Performs arithmetic on two or more numeric, cluster, or Boolean inputs.

You select the operation (multiply, AND, or OR) by popping up on the function and
selecting Change Mode.

You can invert the inputs or the output of this function by popping up on the individual
terminals, and selecting Invert. For Add, select Invert to negate an input or the output.
For Multiply, select Invert to use the reciprocal of an input or to produce the reciprocal
of the output. For AND or OR, select Invert to logically negate an input or the output.

Note: You add inputs to this node by popping up on an input and selecting Add

Input or by placing the Positioning tool in the lower left or right corner of

the node and dragging it.

Chapter 5 Boolean Functions

LabVIEW Function and VI Reference Manual 5-4 © National Instruments Corporation

Exclusive Or
Computes the logical Exclusive OR of the inputs.

Implies
Computes the logical OR of y and of the logical negation of x. That is, the function
negates x and then computes the logical OR of y and of the negated x.

Not
Computes the logical negation of the input.

Not And
Computes the logical NAND of the inputs.

Not Exclusive Or
Computes the logical negation of the logical exclusive OR of the inputs.

Not Or
Computes the logical NOR of the inputs.

Chapter 5 Boolean Functions

© National Instruments Corporation 5-5 LabVIEW Function and VI Reference Manual

Number To Boolean Array
Converts number to a Boolean array of 8, 16, or 32 elements, where the 0th element
corresponds to the least significant bit (LSB) of the two's complement representation of
the integer.

Or
Computes the logical OR of the inputs.

Or Array Elements
Returns FALSE if all the elements in Boolean array are false; otherwise it returns
TRUE.

Boolean Constant
Use this to supply a constant true/false value to the block diagram. Set this value by
clicking on the T or F portion of the constant with the Operating tool. This value cannot
be changed while the VI executes.

You can assign a label to this constant.

© National Instruments Corporation 6-1 LabVIEW Function and VI Reference Manual

Chapter

6String Functions

This chapter describes the string functions, including those that convert
strings to numbers and numbers to strings.

The following illustration shows the String palette, which you access
by selecting Functions»String.

Overview of Polymorphism for String Functions

This section provides descriptions of polymorphism for String
functions, Additional String to Number functions, and String
Conversion functions.

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-2 © National Instruments Corporation

Polymorphism for String Functions
String Length, To Upper Case, To Lower Case, Reverse String, and
Rotate String accept strings, clusters, arrays of strings, and arrays of
clusters. To Upper Case and To Lower Case also accept numbers,
clusters of numbers, and arrays of numbers, interpreting them as ASCII
codes for characters (refer to the Appendix B, Multiline Interface

Messages, later in this manual, for the numbers that correspond to each
character). Width and precision inputs must be scalar.

Polymorphism for Additional String to Number Functions
To Decimal, To Hex, To Octal, To Engineering, To Fractional, and To
Exponential accept clusters and arrays of numbers and produce clusters
and arrays of strings. From Decimal, From Hex, From Octal, and From
Exponential/Fract/Sci accept clusters and arrays of strings and produce
clusters and arrays of numbers. Width and precision inputs must be
scalar.

Polymorphism for String Conversion Functions
The Path To String and String To Path functions are polymorphic. That
is, they work on scalar values, arrays of scalars, clusters of scalars,
arrays of clusters of scalars, and so on. The output has the same
composition as the input but with the new type.

Format Strings Overview

Many G functions accept a format string input, which controls the
behavior of the function. A format string is composed of one or more
format specifiers, which determine what action to take to process a
given parameter. The Format Into String and Scan From String
functions can use multiple format specifiers in the format string, one for
each resizable input or output to the function. Characters in the string
that are not part of the format specifier are copied verbatim to the output
string (in the case of Format Into String) or are matched exactly in the
input string (in the case of Scan From String), with the exception of
special escape codes. You can use these codes to insert nondisplayable
characters, the backslash, and percent characters within any format
string. These codes are similar to those used in the C programming
language.

Chapter 6 String Functions

© National Instruments Corporation 6-3 LabVIEW Function and VI Reference Manual

Table 6-1 displays the special escape codes. A code does not exist for
the platform-dependent end-of-line (eol) character. If you need to
append one, use the End-of-Line constant from the String palette.

Notice also that for the Scan From String and Format & Strip functions,
a space in the format string matches any amount of whitespace (spaces,
tabs, and form feeds) in the input string.

The Format & Append, Format & Strip, Array To Spreadsheet String,
and Spreadsheet String To Array functions use only one format
specifier in the format string, because these functions have only one
input that can be converted. Any extraneous specifiers inserted into
these functions are treated as literal strings with no special meaning.

For functions that output a string, such as Format Into String, Format &
Append, and Array To Spreadsheet String, a format specifier has the
following syntax. Double brackets ([]) enclose optional elements.

%[–][+][^][0][Width][.Precision][{unit}]Conversion Code

Table 6-1. Special Escape Codes

Code Meaning

\r Carriage Return

\t Tab

\b Backspace

\n Newline

\f Form Feed

\s space

\xx character with hexadecimal ASCII code xx (using 0
through 9 and upper case A through F)

\\ \

%% %

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-4 © National Instruments Corporation

For functions that scan a string, such as Scan From String, Format &
Strip, and Spreadsheet String to Array, a format specifier has the
following, simplified syntax:

%[Width]Conversion Code

Table 6-2 displays the string syntax available.

Table 6-2. String Syntax

Syntax Element Description

% Begins the formatting specification.

– (optional) Causes the parameter to be left justified rather
than right justified within its width.

+ (optional) For numeric parameters, includes the sign even
when the number is positive.

^ (optional When used with the e or g conversion codes,
uses engineering notation (exponent is always a
multiple of 3).

0 (optional) Pads any excess space to the left of a numeric
parameter with 0s rather than spaces.

Width (optional) When scanning, specifies an exact field width to
use. G scans only the specified number of
characters when processing the parameter.

When formatting, specifies the minimum
character field width of the output. This is not a
maximum width; G uses as many characters as
necessary to format the parameter without
truncating it. G pads the field to the left or right of
the parameter with spaces, depending on
justification. If Width is missing or zero, the
output is only as long as necessary to contain the
converted input parameter.

. Separates Width from Precision.

Chapter 6 String Functions

© National Instruments Corporation 6-5 LabVIEW Function and VI Reference Manual

The Conversion Codes used in G are similar to those used in the C
programming language. However, G uses conversion codes to
determine the textual format of the parameter, not the datatype of the
parameter.

You can use the d, x, o, b, f, e and g conversion codes to process any
numeric G data type, including complex numbers and enums.

Precision (optional) For floating-point parameters, specifies the
number of digits to the right of the decimal point.
If Width is not followed by a period, G inserts a
fractional part of six digits. If Width is followed
by a period, and Precision is missing or 0, G does
not insert a fractional part.

For string parameters, specifies the maximum
width of the field. G truncates strings longer than
this length.

{unit} (optional) Overrides the choice of unit of a VI when
converting a physical quantity (a value with an
associated unit). Must be a valid unit.

Conversion Codes Single character that specifies how to convert
number, as follows
d to decimal integer
x to hex integer
o to octal integer
b to binary integer
f to floating-point number with

fractional format

e to floating-point number with
scientific notation

g to floating-point number using e
format if the exponential is less
than –4 or greater than Precision,
or f format otherwise

s to string

Table 6-2. String Syntax (Continued)

Syntax Element Description

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-6 © National Instruments Corporation

For complex numbers, you can use the format specifier to process both
the real and imaginary parts as a single parameter.

You can use the s conversion code to process string or path parameters
or enums.

Notice that you can use either a numeric or string conversion code with
an enum, depending on whether you want the numeric value or
symbolic (string) value of the enum.

For compatibility with C, G treats a u conversion code (unsigned
integer) the same as a d, and ignores an l or L preceding the conversion
code. However, in G it is the datatype of the parameter that determines
the size of an integer and whether the integer is signed or unsigned.

For examples of format string usage, see the Format Into String and
Scan From String function descriptions later in this chapter.

String Function Descriptions

The following string functions are available.

Array To Spreadsheet String
Converts an array of any dimension to spreadsheet string. spreadsheet string is a table
in string form, containing delimiter-separated column elements, a platform-dependent
EOL character separating rows, and, for arrays of three or more dimensions, pages are
separated.

Concatenate Strings
Concatenates input strings and one-dimensional arrays of strings into a single, output
string. For array inputs, this function concatenates each element of the array.

Chapter 6 String Functions

© National Instruments Corporation 6-7 LabVIEW Function and VI Reference Manual

Format Into String
Converts input arguments into resulting string, whose format is determined by format
string. You increase the number of parameters by popping up on the node and selecting
Add Parameter or by placing the Positioning tool over the lower left or right corner of
the node and then stretching it until you reach the desired number of arguments.

Table 6-3 shows the possible errors which may be produced in error out by Format Into
String.

Note: If an error occurs, the source component of the error out cluster contains

a string of the form “Format Into String (arg n),” where n is the first

argument for which the error occurred.

If you wire a block diagram constant string to format string, G checks for errors in format
string at compile time. Such errors must be corrected before you can run the VI. In this
case, no errors can occur at run time.

Table 6-3. Possible Format Into String Errors

Error Code Description

Format specifier type
mismatch

81 The datatype of a format specifier in the format string
does not match the datatype of the corresponding
input argument.

Unknown format
specifier

82 The format string contains an invalid format specifier.

Too few format
specifiers

83 There are more arguments than format specifiers.

Too many format
specifiers

84 There are more format specifiers than arguments.

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-8 © National Instruments Corporation

Format Specifier Examples

In Table 6-4, the underline character (_) represent spaces in the output. The last three
entries are examples of physical quantity inputs.

The last table entry shows the output when the unit in the format specifier is in conflict
with the input unit.

Index & Append
Selects a string specified by index from string array and appends that string to string.

Index & Strip
Compares each string in string array with the beginning of string until there is a match.

Table 6-4. Format Specifiers

Format String Argument(s) Resulting String

score= %2d%% 87 score= 87%

level= \n%–7.2e V 0.03642 level= 3.64e–2 V

Name: %s, %s. Smith John Name: Smith, John.

Temp: %05.1f %s 96.793 Fahrenheit Temp: 096.8 Fahrenheit

String: %10.5s. Hello, World String:_____Hello.

%5.3f 5.67 N 5.670 N

%5.3{mN}f 5.67 N 5670.000 mN

%5.3{kg}f 5.67 N 5.670 ?kg

Chapter 6 String Functions

© National Instruments Corporation 6-9 LabVIEW Function and VI Reference Manual

Match Pattern
Searches for regular expression in string beginning at offset, and if it finds a match,
splits string into three substrings.

Table 6-5. Special Characters for Match Pattern

Special Character Interpreted by the Match Pattern Function as...

. Matches any character.

? Matches zero or one instances of the expression preceding ?.

\ Cancels the interpretation of special characters (for example, \?
matches a question mark). You can also use the following
constructions for the space and nondisplayable characters

\b backspace

\f form feed

\n newline

\s space

\r carriage return

\xx any character, where xx is the hex code
using 0 through 9 and upper case A
through F

\t tab

^ If ̂ is the first character of regular expression, it anchors the match
to the offset in string. The match fails unless regular expression
matches that portion of string that begins with the character at
offset. If ^ is not the first character, it is treated as a regular
character.

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-10 © National Instruments Corporation

Table 6-6 shows examples of the Strings for the Match Pattern functions.

[] Encloses alternates. For example, [abc] matches a, b, or c. The
following character has special significance when used within the
brackets in the following manner.

– (dash)Indicates a range when used between digits, or lowercase or
uppercase letters (for example, [0–5],[a–g], or [L–Q])

The following characters have significance only when they are the
first character within the brackets.

~ Excludes the set of characters, including nondisplayable
characters. [~0–9] matches any character other than 0 through 9.

^ Excludes the set with respect to all the displayable characters (and
the space characters). [^0–9] gives the space characters and all
displayable characters except 0 through 9.

+ Matches the longest number of instances of the expression
preceding +; there must be at least one instance to constitute a
match.

* Matches the longest number of instances of the expression
preceding * in regular expression, including zero instances.

$ If $ is the last character of regular expression, it anchors the match
to the last element of string. The match fails unless regular
expression matches up to and including the last character in the
string. If $ is not last, it is treated as a regular character.

Table 6-6. Strings for the Match Pattern Examples

Characters to Be Matched Regular Expression

VOLTS VOLTS

All uppercase and lowercase versions of
volts, that is, VOLTS, Volts, volts, and so
on

[Vv][Oo][Ll][Tt][Ss]

Table 6-5. Special Characters for Match Pattern (Continued)

Special Character Interpreted by the Match Pattern Function as...

Chapter 6 String Functions

© National Instruments Corporation 6-11 LabVIEW Function and VI Reference Manual

Pick Line & Append
Chooses a line from multi-line string and appends that line to string.

Reverse String
Produces a string whose characters are in reverse order of those in string.

A space, a plus sign, or a minus sign [+–]

A sequence of one or more digits [0–9]+

Zero or more Spaces \s* or * (that is, a space followed by an
asterisk)

One or more Spaces, Tabs, Newlines, or
Carriage Returns

[\t \r \n \s]+

One or more characters other than digits [~0–9]+

The word Level only if it begins at the
offset position in the string

^Level

The word Volts only if it appears at the end
of the string

Volts$

The longest string within parentheses (.*)

The longest string within parentheses but
not containing any parentheses within it

([~()]*)

The character, [[[]

Table 6-6. Strings for the Match Pattern Examples (Continued)

Characters to Be Matched Regular Expression

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-12 © National Instruments Corporation

Rotate String
Places the first character of string in the last position of first char last, shifting the other
characters forward one position. For example, the string abcd becomes bcda.

Scan From String
Scans the input string and converts the string according to format string. You increase
the number of parameters by popping up on the node and selecting Add Parameter or
by placing the Positioning tool over the lower left or right corner of the node and then
stretching it until you reach the desired number of parameters.

Use Scan From String when you know the exact format of the input string.

Table 6-7 lists the Scan from String errors.

Table 6-7. Scan From String Errors

Error Code Description

Format specifier type mismatch 81 The datatype of a format specifier
in the format string does not match
the datatype of the corresponding
output.

Unknown format specifier 82 The format string contains an
invalid format specifier.

Too few format specifiers 83 There are more arguments than
format specifiers.

Chapter 6 String Functions

© National Instruments Corporation 6-13 LabVIEW Function and VI Reference Manual

Note: If an error occurs, the source component of the error out cluster contains

a string of the form “Scan From String (arg n),” where n is the first

argument for which the error occurred.

If you wire a block diagram constant string to format string, G checks for errors in format
string at compile time. You must correct these errors before you can run the VI. In this
case, only Scan failed can occur at run time.

Table 6-8 lists Scan From String examples.

Too many format specifiers 84 There are more format specifiers
than arguments.

Scan failed 85 Scan From String was unable to
convert the input string into the
datatype indicated by the format
specifier.

Table 6-8. Scan from String Examples

Input String Format String Default(s) Output(s)
Remaining

String

abc xyz
12.3+56i 7200

%s
%s%f%2d

abc
xyz
12.3+56i
72

00

Q+1.27E–3 tail Q%f t 1.27E–3 ail

0123456789 %3d%3d 12
345

6789

X:9.860 Z:3.450 X:%fY:%f 100 (I32)
100.0 (DBL)

10
100.0

Z: 3450

set49.4.2 set%d 49 .4.2

Table 6-7. Scan From String Errors (Continued)

Error Code Description

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-14 © National Instruments Corporation

Select & Append
Selects either a false string or true string according to a Boolean selector and appends
that string to string.

Select & Strip
Examines the beginning of string to see whether it matches true string or false string.
This function returns a Boolean TRUE or FALSE value in selection, depending on
whether string matches true string or false string.

Split String
Splits the string at offset or searches for the first occurrence of search char in the string,
beginning at offset, and splits the string at that point.

Spreadsheet String To Array
Converts the spreadsheet string to a numeric array of the dimension and representation
of array type. This function works for arrays of strings as well as arrays of numbers.

Chapter 6 String Functions

© National Instruments Corporation 6-15 LabVIEW Function and VI Reference Manual

String Length
Returns in length the number of characters (bytes) in string.

String Subset
Returns the substring of the original string beginning at offset and containing length
number of characters.

To Lower Case
Converts all alphabetic characters in string to lowercase characters. This function does
not affect nonalphabetic characters.

To Upper Case
Converts all alphabetic characters in string to uppercase characters. This function does
not affect nonalphabetic characters.

Additional String To Number Function Descriptions

For general information about Additional String to Number functions, see Polymorphism

for Additional String to Number Functions, earlier in this chapter.

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-16 © National Instruments Corporation

The following illustration displays the options available on the Additional String to
Number Functions subpalette.

Format & Append
Converts number into a regular string according to the format specified in format
string, and appends this to string.

Note: The Format Into String function has the same functionality as Format &

Append but can use multiple inputs, so that you can convert information

simultaneously. You should consider using Format Into String instead of

this function: in many cases, this can simplify your block diagram.

Format & Strip
Looks for format string at the beginning of string, formats any number in this string
portion according to the conversion codes in format string, and returns the converted
number in number and the remainder of string after the match in output string.

Chapter 6 String Functions

© National Instruments Corporation 6-17 LabVIEW Function and VI Reference Manual

From Decimal
Converts the numeric characters in string, starting at offset, to a decimal integer and
returns it in number.

From Exponential/Fract/Eng
Interprets the characters 0 through 9, plus, minus, e, E, and the decimal point (usually
period) in string starting at offset as a floating-point number in engineering notation, or
exponential or fractional format and returns it in number.

Note: If you wire the characters Inf or NaN to string, this function returns the G

values Inf and NaN, respectively.

From Hexadecimal
Interprets the characters 0 through 9, A through F, and a through f in string starting at
offset as a hex integer and returns it in number.

From Octal
Interprets the characters 0 through 7 in string starting at offset as an octal integer and
returns it in number. This function also returns the index in string of the first character
following the number.

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-18 © National Instruments Corporation

To Decimal
Converts number to a string of decimal digits width characters wide, or wider if
necessary.

To Engineering
Converts number to an engineering format, floating-point string width characters wide,
or wider if necessary. Engineering format is similar to E format, except the exponent is
a multiple of three (–3, 0, 3, 6).

To Exponential
Converts number to an E-format (exponential notation), floating-point string width
characters wide, or wider if necessary.

To Fractional
Converts number to an F-format (fractional notation), floating-point string width
characters wide, or wider if necessary.

Chapter 6 String Functions

© National Instruments Corporation 6-19 LabVIEW Function and VI Reference Manual

To Hexadecimal
Converts number to a string of hexadecimal digits width characters wide, or wider if
necessary.

To Octal
Converts number to a string of octal digits width characters wide, or wider if necessary.

String Conversion Function Descriptions

For general information about String Conversion functions, see Overview of

Polymorphism for String Functions earlier in this chapter.

The following illustration shows the String Conversion subpalette.

Array Of Strings To Path accepts one-dimensional (1D) arrays of strings, Path To Array
Of Strings accepts paths, Path To String accepts paths, and String To Path accepts strings.

Array Of Strings To Path
Converts an array of strings into a relative or absolute path.

Chapter 6 String Functions

LabVIEW Function and VI Reference Manual 6-20 © National Instruments Corporation

If you have an empty string in the array the directory location before the empty string is
deleted in the path output. Think of this as moving up a level in directory hierarchy.

Byte Array To String
Converts an array of unsigned bytes into a string.

Path To Array Of Strings
Converts a path into an array of strings and indicates whether the path is relative.

Path To String
Converts path into a string describing a path in the standard format of the platform.

Refnum To Path
Returns the path associated with the specified refnum.

String To Byte Array
Converts a string into an array of unsigned bytes.

Chapter 6 String Functions

© National Instruments Corporation 6-21 LabVIEW Function and VI Reference Manual

String To Path
Converts a string, describing a path in the standard format for the current platform, to a
path.

String Fixed Constants

The following String Fixed Constants are available.

String Constant
Use this to supply a constant ASCII value to the block diagram. Set this value by clicking
inside the constant with the Operating tool and typing in the value. You can change the
display mode so you can see non-displayable characters or the hex equivalent to the
characters. You can also set the constant in password display mode so “*” are displayed
when you type in characters.

The value of the string constant cannot be changed while the VI executes. You can assign
a label to this constant.

Carriage Return
Consists of a constant string containing the ASCII CR value.

Empty String
Consists of a constant string that is empty. Length is zero.

End of Line
Consists of a constant string containing the platform-dependent, end of line value. For
Windows, the value is CRLF; for Macintosh, the value is CR; and on UNIX, the value
is LF.

Line Feed
Consists of a constant string containing the ASCII LF value.

Tab
Consists of a constant string containing the ASCII HT (horizontal tab) value.

© National Instruments Corporation 7-1 LabVIEW Function and VI Reference Manual

Chapter

7Array Functions

This topic describes the functions for array operations.

The following illustration shows the Array palette which you access by
selecting Functions»Array.

Chapter 7 Array Functions

LabVIEW Function and VI Reference Manual 7-2 © National Instruments Corporation

Some of the array functions are also available from the Array Tools
palette of most terminal or wire pop-up menus. The illustration below
shows the pop-up menu.

If you select the functions from this palette, they appear with the correct
number of terminals to wire to the object on which you popped up.

For examples of array functions, see
examples\general\arrays.llb.

Array Function Overview

Some of the array functions have a variable number of terminals. When
you drop a new function of this kind, it appears on the block diagram
with only one or two terminals. You can add and remove terminals by
using the pop-up menu Add Element Input or Add Array Input and
Remove Input commands (the actual names depend on the function) or
by resizing the node vertically from any corner. If you want to add
terminals by popping up, you must place your cursor on the input
terminals to access the pop-up menu.

You can shrink the node if doing so does not delete wired terminals. The
Add Element Input or Add Array Input command inserts a terminal
directly after the one on which you popped up. The Remove Input
command removes the terminal on which you popped up, even if it is

Chapter 7 Array Functions

© National Instruments Corporation 7-3 LabVIEW Function and VI Reference Manual

wired. The following illustration shows the two ways to add more
terminals to the Build Array function.

Out-of-Range Index Values
Attempting to index an array beyond its bounds results in a default
value determined by the array element type.

Polymorphism for Array Functions

Most of the array functions accept n-dimensional arrays of any type,
however the wiring diagrams in the function descriptions show numeric
arrays as the default data type.

Array Function Descriptions

The following Array functions are available.

Array Max & Min
Searches for the first maximum and minimum values in numeric array. This function
also returns the indices where it finds the maximum and minimum values.

Chapter 7 Array Functions

LabVIEW Function and VI Reference Manual 7-4 © National Instruments Corporation

The function compares each datatype according to the rules referred to in Chapter 9,
Comparison Functions.

Array Size
Returns the number of elements in each dimension of array.

Array Subset
Returns a portion of array starting at index and containing length elements.

Array To Cluster
Converts a 1D array to a cluster of elements of the same type as the array elements. Pop
up on the node to set the number of elements in the cluster. The default is nine. The
maximum cluster size for this function is 256.

For more information on clusters, see Chapter 8, Cluster Functions.

Build Array
Appends any number of array or element inputs in top-to-bottom order to create array
with appended element.

To change an element input to an array input, pop up on the input and select Change to
Array. In general, to build an array of n-dimensions, each array input must be of the
same dimension, n, and each element input must have n–1 dimensions. To create a 1D
array, connect scalar values to the element inputs and 1D arrays to the array inputs. To
build a 2D array, connect 1D arrays to element inputs and 2D arrays to the array inputs.

Chapter 7 Array Functions

© National Instruments Corporation 7-5 LabVIEW Function and VI Reference Manual

Cluster To Array
Converts a cluster of identically typed components to a 1D array of elements of the same
type.

For more information on clusters, see Chapter 8, Cluster Functions.

Decimate 1D Array
Divides the elements of array into the output arrays.

Index Array
Returns the element of array at index. If array is multidimensional, you must add
additional index terminals for each dimension of the array.

In addition to extracting an element of the array, you can slice out a higher dimensional
component by disabling one or more of the index terminals.

Initialize Array
Creates an n-dimensional array in which every element is initialized to the value of
element.

Chapter 7 Array Functions

LabVIEW Function and VI Reference Manual 7-6 © National Instruments Corporation

Interleave 1D Arrays
Interleaves corresponding elements from the input arrays into a single output array.

Interpolate 1D Array
Uses the integer part of the fractional index of x to index the array and the fractional part
of fractional index of x to linearly interpolate between the values of the indexed element
and its adjacent element.

Replace Array Element
Replaces the element in array at index with the new element.

Reshape Array
Changes the dimension of an array according to the value of dimension size. For
example, you can use this function to change a 1D array into a 2D array or vice versa.
You can also use it to increase and decrease the size of a 1D array.

Reverse 1D Array
Reverses the order of the elements in array.

Chapter 7 Array Functions

© National Instruments Corporation 7-7 LabVIEW Function and VI Reference Manual

Rotate 1D Array
Rotates the elements of array by the number of places and in the direction indicated by n.

Search 1D Array
Searches for element in 1D array starting at start index.

Sort 1D Array
Returns a sorted version of array with the elements arranged in ascending order. The
rules for comparing each datatype are described in Chapter 9, Comparison Functions.

Split 1D Array
Divides array at index and returns the two portions.

Threshold 1D Array
Compares threshold y to the values in array of numbers or points starting at start
index until it finds a pair of consecutive elements such that threshold y is greater than
the value of the first element and less than or equal to the value of the second element.

The function then calculates the fractional distance between the first value and threshold
y and returns the fractional index at which threshold y would be placed within array of
numbers or points using linear interpolation.

Chapter 7 Array Functions

LabVIEW Function and VI Reference Manual 7-8 © National Instruments Corporation

For example, suppose array of numbers or points is an array of four numbers [4, 5, 5,
6], start index is 0, and threshold y is 5. The fractional index or x is 1, corresponding
to the index of the first value of 5 the function finds. Suppose the array elements are 6,
5, 5, 7, 6, 6, the start index is 0, and the threshold y is 6 or less. The output is 0. If
threshold y is greater than 7 for the same set of numbers, the output is 5. If threshold y
is 14.2, start index is 5, and the values in the array starting at index 5 are 9.1, 10.3, 12.9,
and 15.5, threshold y falls between elements 7 and 8 because 14.2 is midway between
12.9 and 15.5. The value for fractional index or x is 7.5, that is, halfway between 7 and
8.

If the array input consists of an array of points where each point is a cluster of x and y
coordinates, the output is the interpolated x value corresponding to the interpolated
position of threshold y rather than the fractional index of the array. If the interpolated
position of threshold y is midway between indices 4 and 5 of the array with x values of
–2.5 and 0 respectively, the output is not an index value of 4.5 as it would be for a
numeric array, but rather an x value of –1.25.

Transpose 2D Array
Rearranges the elements of 2D array such that 2D array[i,j] becomes transposed
array[j,i].

© National Instruments Corporation 8-1 LabVIEW Function and VI Reference Manual

Chapter

8Cluster Functions

This chapter describes the functions for cluster operations.

The following illustration shows the Cluster palette, which you access
by selecting Functions»Cluster.

Some of the cluster functions are also available from the Cluster Tools
palette of most terminal or wire pop-up menus. The following
illustration shows the pop-up menu.

If you select the functions from this palette, they appear with the correct
number of terminals to wire to the object on which you popped up.

Chapter 8 Cluster Functions

LabVIEW Function and VI Reference Manual 8-2 © National Instruments Corporation

Cluster Function Overview

Some of the cluster functions have a variable number of terminals.
When you drop a new function of this kind, it appears on the block
diagram with only one or two terminals. You can add and remove
terminals by using the pop-up menu Add Input or Remove Input
options or by resizing the node using the Positioning tool. If you want
to add terminals by popping up, you must place your cursor on the input
terminal to access the pop-up menu.

You can shrink the node if doing so does not delete wired terminals. The
Add Input option inserts a terminal directly after the one on which you
popped up. The Remove Input option removes the terminal on which
you popped up, even if it is wired.

The following illustration shows the two ways to add more terminals to
the Bundle function.

Polymorphism for Cluster Functions

The Bundle and Unbundle functions do not show the datatype for their
individual input or output terminals until you wire objects to these
terminals. When you wire them, these terminals look similar to the
datatypes of the corresponding front panel control or indicator
terminals.

Chapter 8 Cluster Functions

© National Instruments Corporation 8-3 LabVIEW Function and VI Reference Manual

Setting the Order of Cluster Elements
Cluster elements have a logical order that is unrelated to their positions
within the shell. The first object you insert in the cluster is element 0,
the second is 1, and so on. If you delete an element, the order adjusts
automatically. You can change the current order by selecting the
Cluster Order... option from the cluster pop-up menu.

Clicking on an element with the cluster order cursor sets the elements
place in the cluster order to the number displayed inside the Tools
palette. You change this order by typing a new number into that field.
When the order is as you want it, click on the Enter button to set it and
exit the cluster order edit mode. Click on the X button to revert to the
old order.

The cluster order determines the order in which the elements appear as
terminals on the Bundle and Unbundle functions in the block diagram.

The Bundle By Name and Unbundle By Name functions give you more
flexible access to data in clusters. With these functions, you can access
specific elements in clusters by name and access only the elements you
want to access. Because these functions reference components by name
and not by cluster position, you can change the data structure of a
cluster without breaking wires, as long as you do not change the name
of or remove the component you reference on the block diagram.

 Cluster Function Descriptions

The following cluster functions are available.

Array To Cluster
Converts a 1D array to a cluster of elements of the same type as the array elements. Pop
up on the node or resize it to set the number of elements in the cluster. The default is nine.
The maximum cluster size for this function is 256.

Build Cluster Array
Assembles all the component inputs in top-down order into an array of clusters of that
component. If the input is four, single-precision, floating-point components, the output

Chapter 8 Cluster Functions

LabVIEW Function and VI Reference Manual 8-4 © National Instruments Corporation

is a four-element array of clusters containing one single-precision, floating-point
number. Element 0 of the array has the value of the top component, and so on.

Bundle
Assembles all the individual input components into a single cluster.

Bundle By Name
Replaces components in an existing cluster. After you wire the node to a cluster, you
pop-up on the name terminals to choose from the list of components of the cluster.

You must always wire the cluster input. If you are creating a cluster for a cluster
indicator, you can wire a local variable of that indicator to the cluster input. If you are
creating a cluster for a cluster control of a subVI, you can place a copy of that control
(possibly hidden) on the front panel of the VI and wire the control to the cluster input.

Cluster To Array
Converts a cluster of identically typed components to a 1D array of elements of the same
type.

Chapter 8 Cluster Functions

© National Instruments Corporation 8-5 LabVIEW Function and VI Reference Manual

Index & Bundle Cluster Array
Indexes a set of arrays and creates a cluster array in which the ith element contains the

ith element of each input array.

This function is equivalent to the following block diagram and is useful for converting a
cluster of arrays to an array of clusters.

Unbundle
Disassembles a cluster into its individual components.

Unbundle By Name
Returns the cluster elements whose names you specify. You select the element you want
to access by popping up on the name output terminals and selecting a name from the list
of elements in the cluster.

© National Instruments Corporation 9-1 LabVIEW Function and VI Reference Manual

Chapter

9Comparison Functions

This chapter describes the functions that perform comparisons or
conditional tests.

The following illustration shows the Comparison palette, which you
access by selecting Functions»Comparison.

For examples of comparison functions, see
examples\general\struct.llb.

Comparison Function Overview

This section introduces the Comparison functions.

Chapter 9 Comparison Functions

LabVIEW Function and VI Reference Manual 9-2 © National Instruments Corporation

Compare Boolean
For the Compare Boolean functions, the Boolean value TRUE is greater
than the Boolean value FALSE.

Compare Strings
These functions compare strings according to the numerical equivalent
of the ASCII characters. Thus, a (with a decimal value of 97) is greater
than A (65), which is greater than the numeral 0 (48), which is greater
than the space character (32). These functions compare characters one
by one from the beginning of the string until an inequality occurs, at
which time the comparison ends. For example, LabVIEW evaluates the
strings abcd and abef until it finds c, which is greater than the value of
e. The presence of a character is greater than the absence of one. Thus,
the string abcd is greater than abc because the first string is longer.
Most of the comparison functions test one input or compare two inputs
and return a Boolean value. The functions convert numbers to the same
representation before comparing them. Comparisons with a value of
NaN (not a number) return a value that indicates inequality.

The functions that test the category of a string character (for example,
the Decimal Digit? and Printable? functions) evaluate only the first
character of the string.

Compare Clusters
The comparison functions compare clusters the same way they compare
strings, one element at a time starting with the 0th element until an
inequality occurs. Clusters must have the same number of elements, of
the same type, and in the same order if you want to compare them.

Compare Modes
Some of the comparison functions have two modes for comparing
arrays or clusters. In the Compare Aggregates mode, if you compare
two arrays or clusters, the function returns a single value. In the
Compare Elements mode, the function compares the elements

Chapter 9 Comparison Functions

© National Instruments Corporation 9-3 LabVIEW Function and VI Reference Manual

individually and then returns an array or cluster of Boolean values. The
following illustration shows the two modes.

You change the comparison mode by selecting Compare Elements or
Compare Aggregates in the pop-up menu for the node, as shown in the
following illustrations.

When you compare two arrays of unequal lengths in the Compare
Elements mode, LabVIEW ignores each element in the larger array

Chapter 9 Comparison Functions

LabVIEW Function and VI Reference Manual 9-4 © National Instruments Corporation

whose index is greater than the index of the last element in the smaller
array.

When you use the Compare Aggregates mode to compare two arrays,
the following occurs: (1) LabVIEW searches for the first set of
corresponding elements in the two inputs that differ, and uses those to
determine the results of the comparison. (2) If all elements are identical
except that one has more elements, LabVIEW considers the longer
array to be greater than the shorter array. (3) If no elements of the two
arrays differ, and the arrays have the same length, the arrays are equal.
Thus, LabVIEW considers the array [1,2,3] to be greater than the array
[1,2] and returns a single Boolean value in the Compare Aggregates
mode.

When comparing clusters using the Compare Aggregates mode,
LabVIEW goes by cluster order instead of array order. The two clusters
LabVIEW compares are always the same length.

In the Compare Elements mode, LabVIEW returns a Boolean for each
of the first two elements and ignores the last element of the larger array,
as in the preceding example.

Arrays must have the same dimension size (for example, both
two-dimensional), and for the comparison between multidimensional
arrays to make sense, each dimension must have the same size.

The comparison functions that do not have the Compare Aggregates or
Compare Elements modes compare arrays in the same manner as
strings—one element at a time starting with the 0th element until an
inequality occurs.

Character Comparison
You can use the functions that compare characters to determine a
character’s type. The following functions are character comparison
functions.

• Decimal Digit?

• Hex Digit?

• Lexical Class

• Octal Digit?

• Printable?

• White Space?

Chapter 9 Comparison Functions

© National Instruments Corporation 9-5 LabVIEW Function and VI Reference Manual

If the input is a string, the functions test the first character. If the input
is an empty string, the result is FALSE. If the input is a number, the
functions interpret it as a code for an ASCII character.

See Appendix B, Multiline Interface Messages, for the numbers that
correspond to each character.

Polymorphism for Comparison Functions

The functions Equal?, Not Equal?, and Select take inputs of any type,
as long as the inputs are the same type.

The functions Greater or Equal?, Less or Equal?, Less?, Greater?,
Max & Min, and In Range? take inputs of any type except complex,
path, or refnum, as long as the inputs are the same type. You can
compare numbers, strings, Booleans, arrays of strings, clusters of
numbers, clusters of strings, and so on. You cannot, however, compare
a number to a string or a string to a Boolean, and so on.

The functions that compare values to zero accept numeric scalars,
clusters, and arrays of numbers. These functions output Boolean values
in the same data structure as the input.

The Not A Number/Path/Refnum function accepts the same input types
as functions that compare values to zero. This function also accepts
paths and refnums. Not A Number/Path/Refnum outputs Boolean
values in corresponding structures. See Chapter 30, Introduction to

LabVIEW Instrument Driver VIs, and Chapter 11, File Functions, for
more information on these functions.

The functions Decimal Digit?, Hex Digit?, Octal Digit?, Printable?, and
White Space? accept a scalar string or number input, clusters of strings
or non-complex numbers, arrays of strings or non-complex numbers,
and so on. The output consists of Boolean values in the same data
structure as the input.

The function Empty String/Path? accepts a path, a scalar string, clusters
of strings, arrays of strings, and so on. The output consists of Boolean
values in the same data structure as the input.

You can use the Equal?, Not Equal?, Not A Number/Path/Refnum?,
Empty String/Path?, and Select functions with paths and refnums, but
no other comparison functions accept paths or refnums as inputs.

Chapter 9 Comparison Functions

LabVIEW Function and VI Reference Manual 9-6 © National Instruments Corporation

Comparison functions that use arrays and clusters normally produce
Boolean arrays and clusters of the same structure. You can pop-up and
change to compare aggregates, in which case the function outputs a
single Boolean value. The function compares aggregates by comparing
the first set of elements to produce the output, unless the first elements
are equal, in which case the function compares the second set of
elements, and so on.

Comparison Function Descriptions

The following Comparison functions are available.

Decimal Digit?
Returns TRUE if char is a decimal digit ranging from 0 through 9. Otherwise, this
function returns FALSE.

Empty String/Path?
Returns TRUE if string/path is an empty string or path. Otherwise, this function returns
FALSE.

Equal?
Returns TRUE if x is equal to y. Otherwise, this function returns FALSE.

Equal To 0?
Returns TRUE if x is equal to 0. Otherwise, this function returns FALSE.

Chapter 9 Comparison Functions

© National Instruments Corporation 9-7 LabVIEW Function and VI Reference Manual

Greater?
Returns TRUE if x is greater than y. Otherwise, this function returns FALSE.

Greater Or Equal?
Returns TRUE if x is greater than or equal to y. Otherwise, this function returns FALSE.

Greater Or Equal To 0?
Returns TRUE if x is greater than or equal to 0. Otherwise, this function returns FALSE.

Greater Than 0?
Returns TRUE if x is greater than 0. Otherwise, this function returns FALSE.

Hex Digit?
Returns TRUE if char is a hex digit ranging from 0 through 9, A through F, or a through
f. Otherwise, this function returns FALSE.

n Range?
Returns TRUE if x is greater than or equal to lo and less than hi. Otherwise, this function
returns FALSE.

Chapter 9 Comparison Functions

LabVIEW Function and VI Reference Manual 9-8 © National Instruments Corporation

Note: This function always operates in the Compare Aggregates mode. To

produce a Boolean array as an output, you must execute this function in a

loop structure.

Less?
Returns TRUE if x is less than y. Otherwise, this function returns FALSE.

Less Or Equal?
Returns TRUE if x is less than or equal to y. Otherwise, this function returns FALSE.

Less Or Equal To 0?
Returns TRUE if x is less than or equal to 0. Otherwise, this function returns FALSE.

Less Than 0?
Returns TRUE if x is less than 0. Otherwise, this function returns FALSE.

Chapter 9 Comparison Functions

© National Instruments Corporation 9-9 LabVIEW Function and VI Reference Manual

Lexical Class
Returns the class number for char.

Max & Min
Compares x and y and returns the larger value at the top output terminal and the smaller
value at the bottom output terminal.

Not A Number/Path/Refnum?
Returns TRUE if number/path/refnum is not a numeric value, path, or refnum.
Otherwise, this function returns FALSE. NaN can be the result of dividing by 0, the
square root of a negative number, and so on.

Table 9-1. Lexical Class Number Descriptions

Class Number Lexical Class

0 Extended characters with a Command- or Option- key prefix (codes 128
through 255)

1 Nondisplayable ASCII characters (codes 0 to 31 excluding 9 through 13)

2 White space characters: Space, Tab, Carriage Return, Form Feed,
Newline, and Vertical Tab (codes 32, 9, 13, 12, 10, and 11, respectively)

3 Digits 0 through 9

4 Uppercase characters A through Z

5 Lowercase characters a through z

6 All printable ASCII nonalphanumeric characters

Chapter 9 Comparison Functions

LabVIEW Function and VI Reference Manual 9-10 © National Instruments Corporation

Not Equal?
Returns TRUE if x is not equal to y. Otherwise, this function returns FALSE.

Not Equal To 0?
Returns TRUE if x is not equal to 0. Otherwise, this function returns FALSE.

Octal Digit?
Returns TRUE if char is an octal digit ranging from 0 through 7. Otherwise, this function
returns FALSE.

Printable?
Returns TRUE if char is a printable ASCII character. Otherwise, this function returns
FALSE.

Select
Returns the value connected to the t input or f input, depending on the value of s. If s is
TRUE, this function returns the value connected to t. If s is FALSE, this function returns
the value connected to f.

Chapter 9 Comparison Functions

© National Instruments Corporation 9-11 LabVIEW Function and VI Reference Manual

White Space?
Returns TRUE if char is a white space character, such as space, Tab, Newline, Carriage
Return, Form Feed, or Vertical Tab. Otherwise, the function returns FALSE.

© National Instruments Corporation 10-1 LabVIEW Function and VI Reference Manual

Chapter

10
Time, Dialog, and
Error Functions

This chapter describes the timing functions, which you can use to get
the current time, measure elapsed time, or suspend an operation for a
specific period of time. Error Handling also is covered in this chapter.

The following illustration shows the Time & Dialog palette, which you
access by selecting Functions»Time & Dialog.

For examples of time and dialog functions, see
examples\general\viopts.llb.

Time, Dialog, and Error Functions Overview

This section introduces the Timing, Dialog, and Error Functions.

Chapter 10 Time, Dialog, and Error Functions

LabVIEW Function and VI Reference Manual 10-2 © National Instruments Corporation

Timing Functions
The Date/Time To Seconds and the Seconds To Date/Time functions
have a parameter called date time rec, which is a cluster that consists
of signed 32-bit integers in the following order.

The Wait (ms) and Wait Until Next ms Multiple functions make
asynchronous system calls, but the nodes themselves function
synchronously. That is, they do not complete execution until the
specified time has elapsed. The functions use asynchronous calls so that
other nodes can execute while the timing nodes wait.

Note: National Instruments can only guarantee correct time values across all

platforms for the range 2082844800 to 4230328447 seconds or 12:00 a.m.,

Jan. 1, 1970, Universal Time to 3:14 a.m., Jan. 19, 2038, Universal Time.

Error Handling Overview
Every time you design a program, you should consider the possibility
that something can go wrong and, if it does, you should consider how
your program should manage the problem. LabVIEW automatically

Table 10-1. Order of 32-bit Integers in TIming Functions

Time Value and Range

0 (second) 0 to 59

1 (minute) 0 to 59

2 (hour) 0 to 23

3 (day of month) 1 to 31 as output from the function;1 to 366 as
input

4 (month) 1 to 12

5 (year) 1904 to 2040

6 (day of week) 1 to 7 (Sunday to Saturday)

7 (day of year) 1 to 366

8 (DST) 0 to 1 (0 for Standard Time, 1 for Daylight
Savings Time)

Chapter 10 Time, Dialog, and Error Functions

© National Instruments Corporation 10-3 LabVIEW Function and VI Reference Manual

notifies you with a dialog box only when a few run-time errors occur,
mostly for file dialog operations. It does not report all errors. If it were
to report all errors, you would lose the flexibility to determine what to
do when an error occurs and how and when to inform the user of the
error in your program.

Rigorous error checking, especially for I/O operations (file, serial,
GPIB, data acquisition, and communication), is invaluable in all phases
of a project. This section describes three I/O situations in which errors
can occur.

The first error can occur when you have initialized your
communications incorrectly or have written improper data to your
external device. This type of problem usually occurs during program
development and disappears once you finish debugging your program.
However, you can spend a lot of time tracking down a simple
programming mistake because you have not incorporated error checks.
Without error checks, all you know is that your program does not work.
You do not know why the error occurred or where it is.

The second type of error can occur because your external device may be
powered off, broken down, or otherwise unable to do what it normally
does. This type of problem can occur at any time, but if you have
incorporated error checking, your program notifies you immediately
when such operational failures occur.

The third kind of error can occur when you upgrade LabVIEW or your
operating system software, and you notice a bug in either a G program
or a system program. This type of error means you should check errors
that you may have felt safe ignoring, such as those from functions that
close files or clear DAQ operations. The bottom line is, check all I/O
operations for errors.

It may feel easier to ignore error checking when you have to add error
handling code to test and report errors. The VIs described here are
designed to make it easier for you to create programs with error
checking and handling.

G functions and library VIs return errors in one of two ways—with
numeric error codes or with an error state cluster. Typically, functions
output error codes while VIs incorporate the error cluster, usually
within a framework called error input/output or error I/O.

Chapter 10 Time, Dialog, and Error Functions

LabVIEW Function and VI Reference Manual 10-4 © National Instruments Corporation

Error I/O and the Error State Cluster
The concept of error I/O is natural to the G dataflow architecture. If data
information can flow from one node to another, so can error state
information. Each node that needs to know about errors tests the
incoming error state and responds appropriately. If no error exists, the
node executes normally. If an error does exist, the node detects an error,
skips execution, and then passes its error state out to the next node,
which responds in the same way. In this fashion, notice of the first error
that occurs in a sequence of operations is passed through all the nodes,
with each node responding to the error. At the end of the flow, your
program reports the error to the user.

Error I/O has an additional benefit—you can use it to control the
execution order of independent operations. While you can use the DAQ
taskID to control the order of DAQ operations for one group, you
cannot use it to control the order for multiple groups. The DAQ taskID
does not work with other types of I/O operations such as file operations.

The following diagram from the File Utility VI, Read Characters
From File, shows how error I/O is implemented in a simple VI.

The operation starts at Open File+.vi. If it opens the file
successfully, Read File+ (string).vi reads the file and Close
File+.vi closes the file. If you pass in an invalid path, Open
File+.vi detects the error and passes the error state through the other
two VIs to the General Error Handler, which reports it. Notice that the

Chapter 10 Time, Dialog, and Error Functions

© National Instruments Corporation 10-5 LabVIEW Function and VI Reference Manual

only presence of error handling on this block diagram is the error wire
and the General Error Handler. It is neither cumbersome nor distracting.

The error state consists of three pieces of information, which are
combined into the error cluster. The status is a Boolean value—TRUE
if an error exists, FALSE if it does not. The code consists of an unsigned
32-bit integer that identifies the error. In some cases, a non-zero error
code coupled with a FALSE error status signals a warning rather than
a fatal error. For example, a DAQ timeout event (code 10800) is
typically reported as a warning. The source consists of a string that
identifies where the error occurred.

The error in and error out state clusters for the Open File+ VI, where
the error shown in the preceding example originated, are shown in the
following illustration. The error in cluster, whose default value is no

error does not need to be wired if it is the first in the chain.

You can find the error in and error out clusters by selecting
Controls»Array & Cluster on the front panel.

Chapter 10 Time, Dialog, and Error Functions

LabVIEW Function and VI Reference Manual 10-6 © National Instruments Corporation

The following illustration shows the message you receive from the
General Error Handler if you pass in an invalid path.

General Error Handler is one of the three error handling utility VIs. It
contains a database of error codes and descriptions, from which it
creates messages like the previous one. The Simple Error Handler
performs the same basic operation but has fewer options. The third VI,
Find First Error, creates the error I/O cluster from functions or VIs that
output only scalar error codes.

Time and Dialog Function Descriptions

The following Time and Dialog functions are available.

Date/Time To Seconds
Converts a cluster of nine, signed 32-bit integers assumed to specify the local time
(second, minute, hour, day, month, year, day of the week, day of the year, and Standard
or Daylight Savings Time) in the configured time zone for your computer into a
time-zone-independent number of seconds that have elapsed since 12:00 a.m., Friday,
January 1, 1904, Universal Time.

If the year and month integers are out of range, the results are unpredictable. G ignores
the day of the week and day of the year integers. The other five integers can be any value.
Thus, you can specify Julian dates by setting the month to January and the current day to
the day of the year. For example, use January 150 for the 150th day of the year.

Chapter 10 Time, Dialog, and Error Functions

© National Instruments Corporation 10-7 LabVIEW Function and VI Reference Manual

Get Date/Time In Seconds
Returns a time-zone-independent number that contains the number of seconds that have
elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time.

Get Date/Time String
Converts a time-zone-independent number assumed to be the number of seconds that
have elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a date and
time string in the configured time zone for your computer.

One Button Dialog Box
Displays a dialog box that contains a message and a single button. The button name is
the name displayed on the dialog box button.

Seconds To Date/Time
Converts a time-zone-independent number assumed to be the number of seconds that
have elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a cluster of
nine, signed 32-bit integers that specify (second, minute, hour, day of the month, number
of month (1–12), year, day of the week, day of the year, and Standard or Daylight Savings
Time) in the configured time zone for your computer.

Tick Count (ms)
Returns the value of the millisecond timer. The base reference time (millisecond zero) is
undefined; that is, you cannot convert millisecond timer value to a real-world time or

Chapter 10 Time, Dialog, and Error Functions

LabVIEW Function and VI Reference Manual 10-8 © National Instruments Corporation

date. Be careful when you use this function in comparisons, because the value of the
millisecond timer wraps from 232–1 to 0.

Two Button Dialog Box
Displays a dialog box that contains a message and two buttons. T button name and F
button name are the names displayed on the buttons of the dialog box.

Wait (ms)
Waits the specified number of milliseconds and then returns the value of the millisecond
timer.

Wait Until Next ms Multiple
Waits until the value of the millisecond timer becomes a multiple of the specified
millisecond multiple. You can use this function to synchronize activities. You can call
this function in a loop to control the loop execution rate. However, it is possible that the
first loop period may be short.

Error Handling VI Descriptions

The following Error Handling VIs are available.

Chapter 10 Time, Dialog, and Error Functions

© National Instruments Corporation 10-9 LabVIEW Function and VI Reference Manual

Find First Error
Tests the error status of one or more low-level functions or subVIs that output a numeric
error code.

If this VI finds an error, it sets the parameters in the error out cluster. You can wire this
cluster to the Simple or General Error Handler to identify the error and describe it to the
user.

Find First Error Example

The following illustration shows how you can use Find First Error in the example VI
Write Binary File. Find First Error creates the error cluster from individual error
numbers, and Simple Error Handler reports any errors to the user.

Chapter 10 Time, Dialog, and Error Functions

LabVIEW Function and VI Reference Manual 10-10 © National Instruments Corporation

General Error Handler
Determines whether an error has occurred. If an error occurred, this VI creates a
description of the error and optionally displays a dialog box.

Simple Error Handler
Determines whether an error occurred. If it finds an error, this VI creates a description of
the error and optionally displays a dialog box.

Simple Error Handler calls General Error Handler and has the same basic functionality
as General Error Handler, but with fewer options.

© National Instruments Corporation 11-1 LabVIEW Function and VI Reference Manual

Chapter

11File Functions

This topic describes the low-level functions that manipulate files and
directories. This topic also describes file constants and the high-level
file VIs.

You access these functions, constants, and VIs by selecting
Functions»File I/O.

The File I/O palette includes the following subpalettes:

• Advanced File Functions

• Binary File VIs

• File Constants

For examples of File functions and VIs, see examples\file.

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-2 © National Instruments Corporation

File I/O VI and Function Overview

This section introduces the high-level and low-level File VIs, and the
File functions.

High-Level VIs
You can use the high-level File VIs to write or read the following types
of data:

• Strings to text files

• One-dimensional (1D) or two-dimensional (2D) arrays of
single-precision numbers to spreadsheet text files.

• 1D or 2D arrays of single-precision or signed word integers to byte
stream files.

The high-level File VIs described here call the low-level functions to
perform complete, easy-to-use file operations. These VIs open or create
a file, write or read to it, and close it. If an error occurs, these VIs
display a dialog box that describes the problem and gives you the option
to halt execution or to continue.

The high-level File VIs are located on the top row of the palette and
consist of the following VIs:

• Write Characters to File

• Write to Spreadsheet File

• Read Characters from File

• Read from Spreadsheet File

• Read Lines from File

• Binary File VIs—located in the subpalette.

Low-Level File VIs and File Functions
The low-level File functions perform one file operation at a time. These
VIs and functions perform error detection in addition to their other
functions. The most commonly used low-level file functions and VIs
are located on the second row of the palette. The remaining low-level
functions are located in the Advanced File Functions subpalette.

The principal low-level file operations involve a three-step process.
First, you create or open a file. Then you write data to the file or read
data from the file. Finally, you close the file. Other file operations

Chapter 11 File Functions

© National Instruments Corporation 11-3 LabVIEW Function and VI Reference Manual

include creating directories; moving, copying, or deleting files; flushing
files; listing directory contents; changing file characteristics; and
manipulating paths.

When creating or opening a file, you must specify its location. Different
computers describe the location of files in different ways, but most
computer systems use a hierarchical system to specify the location of
files. In a hierarchical file system, the computer system superimposes a
hierarchy on the storage media. You can store files inside directories,
which can contain other directories.

When you specify a file or directory in a hierarchical file system, you
must indicate the name of the file or directory, as well as its location in
the hierarchy. In addition, some file systems support the connection of
multiple discrete media, called volumes. For example, Windows
systems support multiple drives connected to a system; for most of
these systems, you must include the name of the volume to create a
complete specification for the location of a file. On other systems, such
as UNIX, you do not need to specify the storage media locations for
files because the operating system hides the physical implementation of
the file system from you.

The method of identifying the target of a file function varies depending
on whether the target is an open file. If the target is not an open file, or
if it is a directory, you specify a target using the path of the target. The
path describes the volume containing the target, the directories between
the top-level and the target, and the name of the target. If the target is
an open file, you use a file refnum to identify the file that G is supposed
to manipulate. The file refnum is an identifier that G associates with the
file when you open it. When you close the file, the file manager
dissociates the file refnum from the file. In other words, the refnum is
obsolete once the file is closed.

See, Strings and File I/O, Chapter 6 of the Tutorial Manual, and Path

Controls and Refnum in that section for more information on path
specification in G and for file function examples.

Byte Stream and Datalog Files
G can make and access two types of files—byte stream and
datalog files.

A byte stream file, as the name implies, is a file whose fundamental unit
is a byte. A byte stream file can contain anything from a homogeneous

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-4 © National Instruments Corporation

set of one G datatype to an arbitrary collection of datatypes—
characters, numbers, Booleans, arrays, strings, clusters, and so on. An
ASCII text file, a file containing this paragraph, for example, is perhaps
the simplest byte stream file. A similar byte stream file is a basic
spreadsheet text file, which consists of rows of ASCII numbers, with
the numbers separated by tabs and the rows separated by
carriage returns.

Another simple byte stream file is an array of binary 16-bit integers or
single-precision, floating point numbers, which you acquire from a data
acquisition (DAQ) program. A more complicated byte stream file is one
in which an array of binary 16-bit integers or single-precision, floating
point numbers is preceded by a header of ASCII text that describes how
and when you acquired the data. That header could alternatively be a
cluster of acquisition parameters, such as arrays of channels and scale
factors, the scan rate, and so forth.

An Excel worksheet file, as opposed to an Excel text file, is also a more
complicated form of byte stream file because it contains text
interspersed with Excel-specific formatting data that does not make
sense when you read it as text. In summary, you can make a byte stream
file that consists of one each of all of G datatypes. Byte stream files can
be created using high-level VIs and low-level functions.

A datalog file, on the other hand, consists of a sequence of
identically-structured records. Like byte stream files, the components
of a datalog record can be any G datatype. The difference is that all the
datalog records must be the same type. Datalog files can only be created
using low-level file functions.

You write a byte stream file typically by appending new strings,
numbers, or arrays of numbers of any length to the file. You can also
overwrite data anywhere within the file. You write a datalog file by
appending one record at a time. You cannot overwrite the record.

You read a byte stream file by specifying the byte offset or index and
the number of instances of the specified byte stream type you want to
read. You read a datalog file by specifying the record offset or index and
the number of records you want to read.

You use byte stream files typically for text or spreadsheet data that
other applications may need to read. You can use byte stream files to
record continuously acquired data that you need to read sequentially or
randomly in arbitrary amounts. You use datalog files typically to record

Chapter 11 File Functions

© National Instruments Corporation 11-5 LabVIEW Function and VI Reference Manual

multiple test results or waveforms that you read one at a time and treat
individually. Datalog files are difficult to read from non-G applications.

Flow-Through Parameters
Many file functions contain flow-through parameters, which return the
same value as an input parameter. You can use these parameters to
control the execution order of the functions. By wiring the flow-through
output of the first node you want to execute to the corresponding input
of the next node you want to execute, you create artificial data
dependency. Without these flow-through parameters, you would often
have to use Sequence structures to ensure that file I/O operations take
place in the correct order.

Error I/O in File I/O Functions
G uses error I/O clusters, consisting of error in and error out, in all of
its file I/O functions. With error I/O clusters you can string together
several functions. When an error occurs in a function, that function
passes the error along to the next function. When the error passes to
subsequent functions, the subsequent function does not execute and
passes the error along to the following function, and so on. The
following illustration displays an example of the error in and error out
clusters.

Although the error I/O clusters specify whether an error has occurred,
you may want to use error handlers to report the error to the user. For
more information on error I/O, see Chapter 10, Time, Dialog, and

Error Functions, in this manual.

Permissions
Some of the File Functions have a 32-bit integer parameter called
permissions or new permissions. G uses only the least significant nine
bits of the 32-bit integer to determine file and directory access
permissions.

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-6 © National Instruments Corporation

(Windows) G ignores the permissions for directories. For files, only bit 7
(the UNIX user write permission bit) is used. If this bit is clear, the file
is read-only. Otherwise, you can write to the file.

(Macintosh) G uses all 9 bits of permissions for directories. The bits
which control read, write, and execute permissions, respectively, on a
UNIX system are used to control See Files, Make Changes, and See
Folders access rights, respectively, on the Macintosh. For files, only bit
7 (the UNIX user write permission bit) is used. If this bit is clear, the
file is locked. Otherwise, the file is not locked.

(UNIX) The nine bits of permissions correspond exactly to nine UNIX
permission bits governing read, write, and execute permissions for
users, groups, and others. The following illustration shows the
permission bits on a UNIX system.

File I/O Function and VI Descriptions

The following functions and VIs are available from the File I/O palette.

Build Path
Creates a new path by appending a name (or relative path) to an existing path.

Close File
Writes all buffers of the file identified by refnum to disk, updates the directory entry of
the file, closes the file, and voids refnum for subsequent file operations.

Chapter 11 File Functions

© National Instruments Corporation 11-7 LabVIEW Function and VI Reference Manual

Note: Error I/O functions uniquely in the Close File function, which closes

regardless of whether an error occurred in a preceding operation, insuring

that files are closed correctly.

Open/Create/Replace File
Opens an existing file, creates a new file, or replaces an existing file, programmatically
or interactively using a file dialog box. You can optionally specify a dialog prompt,
default file name, start path, or filter pattern. Use this VI with the intermediate Write
File or Read File functions.

Read Characters From File
Reads a specified number of characters from a byte stream file beginning at a specified
character offset. The VI opens the file before reading from it and closes it afterwards.

Read File
Reads data from the file specified by refnum and returns it in data. Reading begins at a
location specified by pos mode and pos offset and depends on the format of the specified
file.

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-8 © National Instruments Corporation

Reading Byte Stream Files

If refnum is a byte stream file refnum, the Read File function reads data from the byte
stream file specified by refnum. You can wire either line mode or byte stream type
when you read byte stream files, but you cannot wire both. If you do not wire byte stream
type, Read File assumes the data that begins at the designated byte offset is a string of
characters. If you wire byte stream type, the function interprets data starting at the
designated byte offset to be count instances of that type. Following the read operation,
the function sets the file mark to the byte following the last byte read. If the function
encounters end of file before reading all of the requested data, it returns as many whole
instances of the designated byte stream type as it finds.

Reading Characters

To read characters from a byte stream file (typically a text file) do not wire the byte
stream type. The following paragraphs describe the manner in which the line mode,
count, convert eol, and data parameters function when reading from a byte stream file.

line mode, in conjunction with count, determines when the read stops.

If line mode is TRUE, and if you do not wire count or count equals 0, Read File reads
until it encounters an end of line marker—a carriage return, a line feed, or a carriage
return followed by a line feed, or it encounters end of file. If line mode is TRUE, and
count is greater than 0, Read File reads until it encounters an end of line marker, it
encounters end of file, or it reads count characters.

If line mode is FALSE, Read File reads count characters. In this case, if you do not wire
count, it defaults to 0. line mode defaults to FALSE.

convert eol (F) determines whether the function converts the end of line markers it reads
into G end of line markers. The system-specific end of line marker is a carriage return
followed by a line feed on Windows, a carriage return on Macintosh, and a line feed on
UNIX. The G end of line marker is a line feed.

If convert eol is TRUE, the function converts all end of line markers it encounters into
line feeds. If convert eol is FALSE, the function does not convert the end of line markers
it reads. convert eol defaults to FALSE.

data is the string of characters read from the file.

Reading Binary Data

To read binary data from a byte stream file, wire the type of the data to byte stream type.
In this case, count, and data function in the manner described in the following
paragraphs, and you do not have to wire line mode or convert eol.

Chapter 11 File Functions

© National Instruments Corporation 11-9 LabVIEW Function and VI Reference Manual

byte stream type can be any datatype. Read File interprets the data starting at the
designated byte offset to be count instances of that type. If the type is variable-length,
that is, an array, a string, or a cluster containing an array or string, the function assumes
that each instance of the type contains the length or dimensions of that instance. If they
do not, the function misinterprets the data. If G determines that the data does not match
the type, it sets the value of data to the default value for its type and returns an error.

count is the number of instances of the byte stream type to read. If count is unwired,
the function returns a single instance of the byte stream type.

If you wire count, it can be a scalar number, in which case the function returns a 1-D
array of instances of the byte stream type. Or it can be a cluster of N scalar numbers, in
which case the function returns an N-dimension array of instances of the byte stream
type.

If the wired count is a scalar number and the byte stream type is something other than
an array, the function returns that number of instances in a 1D array. For example, if the
type is a single-precision, floating point number, the function returns an array of three,
single-precision, floating point numbers. However, if the type is an array, the function
returns the instances in a cluster array, because G does not have arrays of arrays.
Therefore, if the type is an array of single-precision, floating point numbers and count
is 3, the function returns a cluster array of three, single-precision, floating point number
arrays.

If the wired count is a cluster of N numbers, the function returns an N-dimension array
of instances of the type. The size of each dimension is the value of the corresponding
number according to its cluster order. The number of instances returned in this manner is
the product of the N numbers. Thus, you can return 20, single-precision, floating point
numbers as a 2D array of two columns and ten rows by wiring a two-element cluster with
element 0 = 2 and element 1 = 10 to count.

data contains the data read from the file. Refer to the previous description of count for
an explanation of the structures data can have.

Reading Datalog Files

If refnum is a datalog file refnum, the Read File function reads records from the datalog
file specified by refnum. If the data in the file does not match the datatype associated
with the datalog file, this function returns an error.

The number of records read can be less than specified by count if this function encounters
the end of the file. The function sets the file mark to the record following the last record
read. (You should never encounter a partial record; if you do, the file is corrupt.)

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-10 © National Instruments Corporation

Do not wire convert eol, line mode, and byte stream type. They do not pertain to
datalog files. The count and data parameters function in the following manner.

count is the number of records to read and may be wired or unwired. If you do not wire
count, the function returns a single record of the datalog type specified when the file is
created or opened. For example, if the type is a 16-bit integer, the function returns one
16-bit integer. If the type is an array of 16-bit integers, the functions returns one array of
16-bit integers. (Your records typically consist of clusters of diverse elements, but the
rules for simple types used in these examples apply to those as well.)

If you wire count, it can be a scalar number, in which case the function returns a 1D array
of records. Or it can be a cluster of N scalar numbers, in which case the function returns
an N-dimension array of records.

If the wired count is a scalar number, and the datalog type is something other than an
array, the function returns that number of records in a 1D array. For example, if the type
is a single-precision, floating-point number and count is 3, the array contains three,
single-precision, floating-point numbers. However, if the type is an array, the function
returns the records in a cluster array (because G does not have arrays of arrays).
Therefore, if the datalog type is an array of single-precision, floating-point numbers and
count is 3, the function returns a cluster array of three, single-precision, floating-point
number arrays.

If the wired count is a cluster of N numbers, the function returns an N-dimension array
of records. The size of each dimension is the value of the corresponding number
according to its cluster order. The number of records returned in this manner is the
product of the N numbers. Therefore, you can return 20 records as a 2D array of two
columns and ten rows by wiring a two-element cluster with element 0 = 2 and element
1 = 10 to count.

Read From Spreadsheet File
Reads a specified number of lines or rows from a numeric text file beginning at a
specified character offset and converts the data to a 2D, single-precision array of
numbers. Optionally, you can transpose the array. The VI opens the file before reading
from it and closes it afterwards. You can use this VI to read a spreadsheet file saved in
text format. This VI calls the Spreadsheet String to Array function to convert the data.

Chapter 11 File Functions

© National Instruments Corporation 11-11 LabVIEW Function and VI Reference Manual

Read Lines From File
Reads a specified number of lines from a byte stream file beginning at a specified
character offset. The VI opens the file before reading from it and closes it afterwards.

Strip Path
Returns the name of the last component of a path and the stripped path that leads to that
component.

Write Characters To File
Writes a character string to a new byte stream file or appends the string to an existing file.
The VI opens or creates the file before writing to it and closes it afterwards.

Write File
Writes data to the file specified by refnum. Writing begins at a location specified by pos
mode and pos offset for byte stream file and at the end of file for datalog files. data,
header, and the format of the specified file determine the amount of data written.

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-12 © National Instruments Corporation

Writing Byte Stream Files

If refnum is a byte stream file refnum, the Write File function writes to a location
specified by pos mode and pos offset in the byte stream file specified by refnum. If the
top-level datatype of data is of variable length (that is, a string or an array), Write File
can write a header to the file that specifies the size of the data. G sets the file mark to the
byte following the last byte written. convert eol determines whether the function
converts the end-of-line markers it writes into system-specific end-of-line markers. You
can wire convert eol only if data is a string. The system-specific end-of-line marker is a
carriage return followed by a line feed on Windows, a line feed on UNIX, and a carriage
return on Macintosh. If header is true, G ignores convert eol.

Writing Datalog Files

If refnum is a datalog file refnum, the Write File function writes data as records to the
datalog file specified by refnum. Writing always starts at the end of the datalog file
(datalog files are append-only). G sets the file mark to the record following the last record
written. The convert eol, header, pos mode, and pos offset parameters do not apply with
datalog files, and you cannot wire them. The data parameter functions in the following
manner for datalog files.

data must be either a datatype that matches the datatype specified when you open or
create the file, or an array of such datatypes. In the former case, this function writes data
as a single record in the datalog file. Representation of numeric data is coerced to the
representation of the datatype if necessary. In the latter case, this function writes each
element of data as a separate record in the datalog file in row-major order.

Write To Spreadsheet File
Converts a 2D or 1D array of single-precision (SGL) numbers to a text string and writes
the string to a new byte stream file or appends the string to an existing file. You can
optionally transpose the data. This VI opens or creates the file before writing to it and
closes it afterwards. You can use this VI to create a text file readable by most spreadsheet
applications. This VI calls the Array to Spreadsheet String function to convert the data.

Chapter 11 File Functions

© National Instruments Corporation 11-13 LabVIEW Function and VI Reference Manual

Binary File VI Descriptions

The following VIs are available on the Binary File VIs subpalette.

Read From I16 File
Reads a 2D or 1D array of data from a byte stream file of signed, word integers (I16). The
VI opens the file before reading from it and closes it afterwards. You can use this VI to
read unscaled or binary data acquired from data acquisition VIs and written to a file with
Write To I16 File.

Read From SGL File
Reads a 2D or 1D array of data from a byte stream file of single-precision numbers
(SGL). The VI opens the file before reading from it and closes it afterwards. You can use
this VI to read scaled data acquired from data acquisition VIs and written to a file with
Write To SGL File.

Write To I16 File
Writes a 2D or 1D array of signed word integers (I16) to a new byte stream file or appends
the data to an existing file. The VI opens or creates the file before writing to it and closes

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-14 © National Instruments Corporation

it afterwards. You can use this VI to write unscaled or binary data from data acquisition
VIs.

Write To SGL File
Writes a 2D or 1D array of single-precision numbers (SGL) to a new byte stream file or
appends the data to an existing file. The VI opens or creates the file before writing to it
and closes it afterwards. You can use this VI to write scaled data from data acquisition
VIs without changing the representation.

Advanced File Function Descriptions

The following functions are available on the Advanced File Functions subpalette.

Chapter 11 File Functions

© National Instruments Corporation 11-15 LabVIEW Function and VI Reference Manual

Access Rights
Sets and returns the owner, group, and permissions of the file or directory specified by
path. If you do not specify new owner, new group, or new permissions, this function
returns the current settings unchanged.

(Windows) The Access Rights function ignores new owner and new group and returns
empty strings for owner and group because Windows does not support owners and
groups.

(Macintosh) If path refers to a file, the Access Rights function ignores new owner and
new group and returns empty strings for owner and group because Macintosh does not
support owners or groups for files.

Array Of Strings To Path
Converts an array of strings into a relative or absolute path.

Copy
Copies the file or directory specified by source path to the location specified by target
path. If you copy a directory, this function copies all its contents recursively.

Delete
Deletes the file or directory specified by path. If path specifies a directory that is not
empty or if you do not have write permission for both the file or directory specified by

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-16 © National Instruments Corporation

path and its parent directory, this function does not remove the directory and returns an
error.

EOF
Sets and returns the logical EOF (end-of-file) of the file identified by refnum. pos mode
and pos offset specify the new location of the EOF. If you do not specify pos mode or
pos offset, this function returns the current unchanged EOF. This function always returns
the location of the EOF relative to the beginning of the file.

You cannot set the EOF of a datalog file. If refnum identifies a datalog file, you cannot
wire pos mode and pos offset. However, you still can get the EOF of a datalog file, which
tells you how many records exist in the file.

File Dialog
Displays a dialog box with which you can specify the path to a file or directory. You can
use this dialog box to select existing files or directories or to select a location and name
for a new file or directory.

File/Directory Info
Returns information about the file or directory specified by path, including its size, its
last modification date, and whether it is a directory.

Chapter 11 File Functions

© National Instruments Corporation 11-17 LabVIEW Function and VI Reference Manual

Flush File
Writes all buffers of the file identified by refnum to disk and updates the directory entry
of the file associated with refnum. The file remains open, and refnum remains valid.

Data written to a file often resides in a buffer until the buffer fills up or until you close
the file. This function forces the operating system to write any buffer data to the file.

List Directory
Returns two arrays of strings listing the names of all files and directories found in
directory path, filtering both arrays based upon pattern and filtering the file names
array based upon the specified datalog type.

Lock Range
Locks or unlocks a range of a file specified by refnum. Locking a range of a file prevents
both reading and writing by other users, overriding permissions for the file, and the deny
mode associated with refnum. See File I/O VI and Function Overview earlier in this
manual for a full discussion of permissions. Unlocking a range of a file removes the
override caused by locking a range, so that the file's permissions and the deny mode
associated with refnum determine whether other users can read from or write to that
range of the file.

You cannot lock a range of a datalog file.

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-18 © National Instruments Corporation

Move
Moves the file or directory specified by source path to the location specified by target
path.

New Directory
Programmatically creates the directory specified by directory path. If a file or directory
already exists at the specified location, this function returns an error instead of
overwriting the existing file or directory.

New File
Creates the file specified by file path and opens it for reading and writing (regardless of
permissions).

Open File
Opens the file specified by file path for reading and/or writing.

Chapter 11 File Functions

© National Instruments Corporation 11-19 LabVIEW Function and VI Reference Manual

Path To Array Of Strings
Converts a path into an array of strings and indicates whether the path is relative.

Path To String
Converts path into a string describing a path in the standard format of the platform.

Path Type
Returns the type of the specified path, indicating whether it is an absolute, relative, or
invalid path. This function checks only the format of the path, not whether the path refers
to an existing file or directory. Therefore, this function only indicates an invalid path for
Not A Path.

Refnum To Path
Returns the path associated with the specified refnum.

Seek
Moves the current file mark of the file identified by refnum to the position indicated by
pos offset according to the mode chosen by pos mode.

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-20 © National Instruments Corporation

String To Path
Converts a string, describing a path in the standard format for the current platform, to a
path.

Type and Creator
Reads and sets the type and creator of the file specified by path. File type and creator are
four-character strings. If you do not specify new type or new creator, this function
returns the current settings unchanged.

Windows and UNIX do not support file types and creators. Trying to set the type or
creator of a file in these platforms results in an error; however, you can get the file type
and creator in these platforms. If the specified file has a name ending with characters that
LabVIEW recognizes as specifying a file type (such as .vi for the LVIN file type and
.llb for the LVAR file type), this function returns that type in type and LBVW in creator.
Otherwise, the function returns ???? in both type and creator.

Volume Info
Returns information about the volume containing the file or directory specified by path,
including the total storage space provided by the volume, the amount used, and the
amount free in bytes.

Chapter 11 File Functions

© National Instruments Corporation 11-21 LabVIEW Function and VI Reference Manual

File Constants Descriptions

The following constants are the options available on the File Constants subpalette.

Current VI's Path Constant
Returns the path to the file containing the VI in which this function appears. If the VI is
incorporated into an application (using the Application Builder libraries), the function
returns the path to the VI in the application file, and treats the application file as a VI
library.

Default Directory Constant
Returns the path to your default directory. The default directory is the directory which
the file dialog displays initially. The G Preferences dialog box, under Paths, defines this
directory.

Empty Path
Returns an empty path.

Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-22 © National Instruments Corporation

Not A Path
Returns a path whose value is Not A Path. You can use this path as an output from
structures and subVIs when an error occurs.

Not A Refnum
Returns a refnum whose value is Not A Refnum. You can use this refnum as an output
from structures and subVIs when an error occurs.

Path Constant
Use this to supply a constant directory or file path to the block diagram. Set this value by
clicking inside the constant with the Operating tool and typing in the value. Use the
standard file path syntax for a given platform.

The value of the path constant cannot be changed while the VI executes. You can assign
a label to this constant.

Temporary Directory Constant
Returns the path to your temporary directory. The temporary directory is the directory in
which you store temporary information that you expect the user or the operating system
to delete periodically. The Preferences dialog box, under Paths, defines this directory.

VI Library Constant
Returns the path to the VI library directory for the current G on the current computer. The
G Preferences dialog box (Edit»Preferences) defines this directory. If you build an
application using the Application Builder libraries, this path is the path of the directory
containing the application.

© National Instruments Corporation 12-1 LabVIEW Function and VI Reference Manual

Chapter

12Advanced Functions

This chapter describes the functions that perform advanced operations.
This chapter also describes the Help, Data Manipulation, and
Occurrence Functions, and the VI Control and Memory VISA.

To access the Advanced palette, shown in the following illustration,
select Functions»Advanced.

The Advanced Functions include the following subpalettes:

• Data Manipulation

• Help

• Memory

Chapter 12 Advanced Functions

LabVIEW Function and VI Reference Manual 12-2 © National Instruments Corporation

• Occurrences

• VI Controls

Advanced Function Descriptions

The following Advanced Functions are available.

Beep
Causes the system to issue an audible tone. You can specify the tone frequency in Hertz,
the duration in milliseconds, and the intensity as a value from 0 to 255, with 255 being
the loudest. Although this VI appears on all platforms, the frequency, duration, and
intensity parameters work only on the Macintosh.

Call Chain
Returns the chain of callers from this VI to the top-level VI as an array of strings.

Code Interface Node
With a Code Interface Node (CIN), you can call code written in a conventional
programming language, such as C, directly from a block diagram. CINs make it possible
for you to use algorithms written in another language or to access platform-specific
features or hardware that G does not directly support.

Code Interface Nodes are resizable and show datatypes for the connected inputs and
outputs, similar to the Bundle function. The following illustration shows the CIN
function.

Chapter 12 Advanced Functions

© National Instruments Corporation 12-3 LabVIEW Function and VI Reference Manual

LabVIEW’s interface to external code is very powerful. You can pass any number of
parameters to or from external code, and each parameter can be of any arbitrary G
datatype. LabVIEW provides several libraries of routines that make working with G
datatypes easier. These routines support memory allocation, file manipulation, and
datatype conversion.

If you convert a VI that contains a CIN to another platform, you need to recompile the
code for the new platform, because CINs use code compiled in another programming
language. You can write source code for a CIN so that it is machine-independent,
requiring only a recompile to convert it to another platform.

For examples of CINs, see examples\cins.

For more information on the Code Interface Node see the Code Interface Reference

Manual.

Call Library Function
With the Call Library Function node, you can call standard libraries without writing a
Code Interface Node (CIN). Under Windows, you can call a dynamic link library (DLL)
function directly. In Macintosh and UNIX, you can call a shared library function directly.
On the Macintosh 68K, you must have the CFM-68K system extension installed for the
Call Library Function node to operate.

This node supports a large number of datatypes and calling conventions. You should be
able to use it to call functions from most standard and custom-made libraries.

The Call Library Function node, shown in the following illustration, looks similar to a
Code Interface Node.

The Call Library Function consists of paired input/output terminals with input on the left
and output on the right. You can use one or both. The return value for the function is
returned in the right terminal of the top pair of terminals of the node. If there is no return
value, then this pair of terminals is unused. Each additional pair of terminals corresponds
to a parameter in the functions parameter list. You pass a value to the function by wiring
to the left terminal of a terminal pair. You read the value of a parameter after the function
call by wiring from the right terminal of a terminal pair.

If you select Configure... from the pop-up menu of the node, you see a Call Library
Function dialog box from which you can specify the library name or path, function name,

Chapter 12 Advanced Functions

LabVIEW Function and VI Reference Manual 12-4 © National Instruments Corporation

calling conventions, parameters, and return value for the node. When you click on OK,
the node automatically increases in size to have the correct number of terminals. It then
sets the terminals to the correct datatypes. For more information on Call Library Function
refer to Chapter 24, Calling Code From Other Languages, in the LabVIEW User Manual.

Quit
Stops all executing VIs and ends the current session of LabVIEW. This function shuts
down only LabVIEW; the function does not power down the system or affect other
applications. The function stops running VIs the same way the Stop function does.

Stop
Stops the VI in which it executes, just as if you clicked the stop button in the toolbar. If
you wired the input, stop occurs only if the input value is TRUE. If you leave the input
unwired, the stop occurs as soon as the node that is currently executing finishes.

If you need to abort execution of all VIs in a hierarchy from the block diagram, you can
use this function, but you must use it with caution. Before you call the Stop function with
a TRUE input, be sure to complete all final tasks for the VI first, such as closing files,
setting save values for devices being controlled, and so on. If you put the Stop function
in a subVI, you should make its behavior clear to other users of the VI, because this
function causes their VI hierarchies to abort execution.

In general, you should avoid using the Stop function when you have a built-in terminator
protocol in your VI. For example, I/O operations should be performed in While Loops so
that the VI can terminate the loop on an I/O error. You should also consider using a front
panel Stop Boolean control to terminate the loop at the request of the user rather than
using the Stop function.

Chapter 12 Advanced Functions

© National Instruments Corporation 12-5 LabVIEW Function and VI Reference Manual

Data Manipulation Function Descriptions

The following illustration displays the options available on the Data Manipulation
subpalette.

Flatten To String
Converts anything to a string of binary values. type string is a type descriptor that
describes the datatype of anything. data string is the flattened form of anything. For more
information on type descriptors and flattened data, see Flattened Data, in Appendix A,
Data Storage Formats, of the LabVIEW User Manual.

Join Numbers
Creates a number from the component bytes or words.

Logical Shift
Shifts x the number of bits specified by y.

Chapter 12 Advanced Functions

LabVIEW Function and VI Reference Manual 12-6 © National Instruments Corporation

Mantissa & Exponent
Returns the mantissa and exponent of the input numeric value such that number =
mantissa * 2 exponent. If number is 0, both mantissa and exponent are 0. Otherwise, the
value of mantissa is greater than or equal to 1 and less than 2, and the value of exponent
is an integer.

Rotate
Rotates x the number of bits specified by y.

Rotate Left With Carry
Rotates each bit in the input value to the left (from least significant to most significant
bit), inserts carry in the low-order bit, and returns the most significant bit.

Rotate Right With Carry
Rotates each bit in value to the right (from most significant to least significant), inserts
carry in the high-order bit, and returns the least significant bit.

Split Number
Breaks a number into its component bytes or words.

Chapter 12 Advanced Functions

© National Instruments Corporation 12-7 LabVIEW Function and VI Reference Manual

The following illustration shows an example of how to use the Split Number function.
The function splits the signed 32-bit number 100,000 into the high word component, 1,
and the low word component, 34,464.

Swap Bytes
Swaps the high-order 8 bits and the low-order 8 bits for every word in anything.

Swap Words
Swaps the high-order 16 bits and the low-order 16 bits for every long integer in anything.

Type Cast
Casts x to the datatype, type.

Chapter 12 Advanced Functions

LabVIEW Function and VI Reference Manual 12-8 © National Instruments Corporation

Casting data to a string converts it into machine-independent, big endian form. That is,
the function puts the most significant byte or word first and the least significant byte or
word last, removes alignment, and converts extended-precision numbers to 16 bytes.
Casting a string to a 1D array converts the string from machine-independent form to the
native form for that platform.

Unflatten From String
Converts binary string to the type wired to type. This function performs the inverse of
Flatten To String. binary string should contain flattened data of the type wired to type.
For more information on type descriptors and flattened data, see Flattened Data, in
Appendix A, Data Storage Formats, of the LabVIEW User Manual.

Help Function Descriptions

The following illustration displays the options available on the Help subpalette.

Control Help Window
Modifies the Help window by showing, hiding, or repositioning the window.

Control Online Help
Controls the online help system by displaying the table of contents of a help file, jumping
to a specific point in a help file, or closing the online help system.

Chapter 12 Advanced Functions

© National Instruments Corporation 12-9 LabVIEW Function and VI Reference Manual

Get Help Window Status
Returns the status and the position information for the Help window.

Occurrence Function Descriptions

You can use the occurrence functions to control separate, synchronous activities. In
particular, you use these functions when you want one VI or part of a block diagram to
wait until another VI or part of a block diagram finishes a task without forcing LabVIEW
to poll.

You can perform the same task using global variables, with one loop polling the value of
the global until its value changes. However, global variables add overhead, because the
loop that waits uses execution time. With occurrences, the polling loop is replaced with
a Wait on Occurrence function and does not use processor time. When some diagram sets
the occurrence, LabVIEW activates all Wait on Occurrence functions in any block
diagrams that are waiting for the specified occurrence.

The following illustration displays the options available on the Occurrences subpalette.

Generate Occurrence
Creates an occurrence that you can pass to the Wait on Occurrence and Set Occurrence
functions.

Ordinarily, only one Generate Occurrence node is connected to any set of Wait on
Occurrence and Set Occurrence functions. You can connect a Generate Occurrence
function to any number of Wait on Occurrence and Set Occurrence functions. You do not
have to have the same number of Wait on Occurrence and Set Occurrence functions.

Chapter 12 Advanced Functions

LabVIEW Function and VI Reference Manual 12-10 © National Instruments Corporation

Each Generate Occurrence function on a block diagram represents a single, unique
occurrence. In this way, you can think of the Generate Occurrence function as a constant.
When a VI is running, every time a Generate Occurrence function executes, the node
produces the same value. For example, if you place a Generate Occurrence function
inside of a loop, the value produced by Generate Occurrence is the same for every
iteration of the loop. If you place a Generate Occurrence function on the block diagram
of a reentrant VI, Generate Occurrence produces a different value for each caller.

Set Occurrence
Triggers the specified occurrence. All block diagrams that are waiting for this
occurrence stop waiting.

Wait On Occurrence
Waits for the Set Occurrence function to set or trigger the given occurrence.

Memory VI Descriptions

The following illustration displays the options available on the Memory subpalette.

In Port (Windows 3.1 and Windows 95)
Reads a byte or word integer from a specific register address. Because this VI is not
available on all platforms, VIs using this subVI are not portable.

Chapter 12 Advanced Functions

© National Instruments Corporation 12-11 LabVIEW Function and VI Reference Manual

Out Port (Windows 3.1 and Windows 95)
Writes a byte or word integer to a specific register address. Because this VI is not
available on all platforms, VIs using this subVI are not portable.

VI Control VI Descriptions

You can use the VI Control VIs to dynamically load, call, and close other VIs. When you
call a VI dynamically, you specify whether or not the called VI opens its front panel and
then closes the front panel when it finishes executing. You can also pass parameters to
and from the dynamically called VI.

All of these VIs use error cluster inputs and outputs to make error handling easier. If an
incoming error is set, the VI does not do anything. The Release Instrument VI, however,
releases the specified VI from memory regardless of incoming errors.

The following illustration displays the options available on the VI Control subpalette.

Abort Instrument
Aborts the execution of the specified VI, just as if you clicked the stop button in the
specified VI’s toolbar.

Chapter 12 Advanced Functions

LabVIEW Function and VI Reference Manual 12-12 © National Instruments Corporation

Call Instrument
Loads and then calls another VI as long as the VI you are calling is not currently in the
VI hierarchy of any running VI, including your main VI. For example, if you have the
Serial Port Read VI on your block diagram, you cannot use Call Instrument to call Serial
Port Read directly, because it is already in the main VI’s hierarchy. However, you can
call the Serial Port Read VI if you create a VI that is not part of the main VI’s hierarchy.
If the called VI has not already been loaded, LabVIEW loads it before the call, and
unloads the VI when the call is finished. If you do not want to incur the speed penalty of
loading the VI at the time of the call, use the Preload Instrument VI to preload the VI,
and then use the Release Instrument VI when you are finished with it. If error in contains
an error, LabVIEW does not call the VI.

Note: You can pass data to any control (excluding indicators) on the front panel

of the called VI; the controls do not have to be on the connector pane of the

called VI.

Close Panel
Closes the front panel of a specified VI. If the VI is running it will be aborted.

Close Panel No Abort
Closes the front panel of the specified VI. If the VI is running and was loaded using
Preload Instrument VI, it will not be aborted. If the VI is running, but it has not been
preloaded, it will be aborted.

Chapter 12 Advanced Functions

© National Instruments Corporation 12-13 LabVIEW Function and VI Reference Manual

Get Instrument State
Returns the VI execution state (Broken, Idle, or Running) and the panel window state
(Closed, Open, or Open and Active). If the VI is not in memory, the error out will be
File Not Found.

Get Panel Size
Read the size of the panel of a VI that is already in memory. The VI must be in memory
but its panel does not need to be open.

Open Panel
Opens the front panel of the specified VI. The specified VI must already be in memory,
either because it was loaded using the Preload Instrument VI, or because it is the subVI
of another VI.

Preload Instrument
You can use this VI to load another VI into memory. The front panel of the specified VI
is not visible when it is loaded. If you want the front panel to be visible, call either Open
Panel VI or use the appropriate call mode for the Call Instrument VI.

If you execute a Preload Instrument VI, and it does not return an error, make sure you
call the Release Instrument VI when you are finished to remove the loaded VI from
memory. If you call the Preload Instrument VI multiple times, you need to balance the
calls with Release Instrument VI calls.

Chapter 12 Advanced Functions

LabVIEW Function and VI Reference Manual 12-14 © National Instruments Corporation

Release Instrument
Use this VI to unload a VI that was loaded using the Preload Instrument VI. If you call
Preload Instrument more than once; the specified VI is not unloaded until you call
Release Instrument an equal number of times.

Resize Panel
Resizes and/or moves the front panel of a VI that is already in memory. The VI must be
in memory, but its front panel does not have to be open. Consequently, you can size or
position a front panel before opening it.

Run Instrument
You can use this VI to run another VI that is in memory with the front panel of the VI in
memory open. Run Instrument is different from Call Instrument in that Run Instrument
returns immediately after starting the specified VI running, whereas Call Instrument
waits for the called VI to complete execution and can pass parameters to and from the
called VI. Run Instrument works just as if you selected Operate»Run, while Call
Instrument functions more like a subVI call.

© National Instruments Corporation 13-1 LabVIEW Function and VI Reference Manual

Chapter

13
Introduction to the LabVIEW
Data Acquisition VIs

This chapter contains basic information about the data acquisition
(DAQ) VIs and shows where you can find them in LabVIEW.
Descriptions of these VIs comprise Chapter 14 through Chapter 29.

LabVIEW includes a collection of VIs that work with your DAQ
hardware devices. With LabVIEW’s DAQ VIs you can develop
acquisition and control applications.

You can find the DAQ VIs in the Functions palette from your block
diagram in LabVIEW. The DAQ VIs are located near the bottom of the
Functions palette.

To access the Data Acquisition palette, choose Functions»Data
Acquisition, as shown in the following illustration.

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

LabVIEW Function and VI Reference Manual 13-2 © National Instruments Corporation

The Data Acquisition palette contains six subpalette icons that take you
to the different classes of DAQ VIs. The following illustration shows
what each of the icons in the Data Acquisition palette means.

This section of the manual is organized in the order that the DAQ VI
icons appear in the Data Acquisition palette from left to right. For
example, in this section, the Analog Input VI chapters are followed by
the Analog Output VI chapters, which are followed by the Digital I/O
VI chapters, and so on. Most often, there are several chapters devoted
to one class of DAQ VI in the palette, because many of the VI palettes
also contain several subpalettes.

Finding Help Online for the DAQ VIs

You can find helpful information about individual VIs online by using
the LabVIEW Help window (Help»Show Help). When you place the
cursor on a VI icon, the wiring diagram and parameter names for that
VI appear in the Help window. You can also find information for front
panel controls or indicators by placing the cursor over the control or
indicator with the Help window open. For more information on the
LabVIEW Help window, refer to the Getting Help section in Chapter 2,
Creating VIs, of the LabVIEW User Manual.

In addition to the Help window, LabVIEW has more extensive online
information available. To access this information, select Help»Online
Reference. For most block diagram objects, you can select Online
Reference from the object’s pop-up menu to access the online
description. You can also access this information by pressing the button
shown to the left, which is located at the bottom of LabVIEW’s Help
window. For information on creating your own online reference files,

Analog Input VIs

Analog Output VIs Digital I/O VIs

Counter VIs

Signal Conditioning VIs

Calibration and
Configuration VIs

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

© National Instruments Corporation 13-3 LabVIEW Function and VI Reference Manual

see the Creating Your Own Help Files section in Chapter 25, Managing

Your Applications of the LabVIEW User Manual.

Note: Use only the inputs that you need on each VI. LabVIEW sets all unwired

inputs to their default values. Many of the DAQ function inputs are

optional and do not appear in the Simple Diagram Help window. These

inputs typically specify rarely-used options. If an input is required, your VI

wiring remains “broken” until a value is wired to the input. Required

inputs appear in bold in the Help window, recommended inputs appear in

plain text, and optional inputs are in gray text. The default values for

inputs appear in parentheses beside the input name in the Help window.

Note: Some DAQ VIs use an enumerated data type as a control or indicator

terminal. If you connect a numeric value to an enumerated indicator,

LabVIEW converts the number to the closest enumeration item. If you

connect an enumerated control to a number value, the value is the

enumeration index. To wire an enumerated control to an enumerated

indicator, the enumerated items must match exactly, or you will get a

broken wire.

The Analog Input VIs

These VIs perform analog input operations.

The Analog Input VIs can be found by choosing
Functions»Data Acquisition»Analog Input. When you click on the

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

LabVIEW Function and VI Reference Manual 13-4 © National Instruments Corporation

Analog Input icon in the Data Acquisition palette, the Analog Input
palette pops up, as shown in the following illustration.

There are four classes of Analog Input VIs found in the Analog Input
palette. The Easy Analog Input VIs, Intermediate Analog Input VIs,
Analog Input Utility VIs, and Advanced Analog Input VIs. The
following illustrates these VI classes.

Easy Analog Input VIs
The Easy Analog Input VIs perform simple analog input operations.
You can run these VIs from the front panel or use them as subVIs in
basic applications.

Easy Analog Input VIs

Intermediate
Analog Input VIs

Advanced
Analog Input VIs

Analog Input Utility VIs

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

© National Instruments Corporation 13-5 LabVIEW Function and VI Reference Manual

You can use each VI alone to perform a basic analog operation. Unlike
intermediate- and advanced-level VIs, Easy Analog Input VIs
automatically alert you to errors with a dialog box that asks you to stop
the execution of the VI or to ignore the error.

The Easy Analog Input VIs are actually composed of Intermediate
Analog Input VIs, which are in turn composed of Advanced Analog
Input VIs. The Easy Analog Input VIs provide a basic, convenient
interface with only the most commonly used inputs and outputs. For
more complex applications, you should use the intermediate- or
advanced-level VIs for more functionality and performance.

Refer to Chapter 14, Easy Analog Input VIs, for specific VI information.

Intermediate Analog Input VIs
You can find intermediate-level Analog Input VIs in two different
places in the Analog Input palette. You can find the Intermediate
Analog Input VIs in the second row of the Analog Input palette. The
other intermediate-level VIs are in the Analog Input Utilities palette,
which will be discussed later. The Intermediate Analog Input VIs—AI
Config, AI Start, AI Read, AI Single Scan, and AI Clear—are in turn
built from the fundamental building block layer, called the Advanced
Analog Input VIs. These VIs offer almost as much power as the
advanced-level VIs, and they conveniently group the advanced-level
VIs into a tidy, logical sequence.

Refer to Chapter 15, Intermediate Analog Input VIs, for specific VI
information.

Analog Input Utility VIs
You can access the Analog Input Utilities palette by choosing the
Analog Input Utility icon from the Analog Input palette. The Analog
Input Utility VIs—AI Read One Scan, AI Waveform Scan, and AI
Continuous Scan—are single-VI solutions to common analog input
problems. These VIs are convenient, but they lack flexibility. These
three VIs are built from the Intermediate Analog Input VIs in the
Analog Input palette.

Refer to Chapter 16, Analog Input Utility VIs, for specific VI
information.

Analog Input
Utility Icon

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

LabVIEW Function and VI Reference Manual 13-6 © National Instruments Corporation

Advanced Analog Input VIs
You can access the Advanced Analog Input palette by choosing the
Advanced Analog Input icon from the Analog Input palette. These VIs
are the interface to the NI-DAQ data acquisition software and are the
foundation of the Easy, Utility, and Intermediate Analog Input VIs.

Refer to Chapter 17, Advanced Analog Input VIs, for specific VI
information.

Locating Analog Input VI Examples
For examples of how to use the analog input VIs, see
examples\daq\anlogin\anlogin.llb

Analog Output VIs

These VIs perform analog output operations.

The Analog Output VIs can be found by choosing Functions»Data
Acquisition»Analog Output. When you click on the Analog Output
icon in the Data Acquisition palette, the Analog Output palette pops up,
as shown in the following illustration.

There are four classes of Analog Output VIs found in the Analog
Output palette: the Easy Analog Output VIs, Intermediate Analog

Advanced Analog
Input Icon

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

© National Instruments Corporation 13-7 LabVIEW Function and VI Reference Manual

Output VIs, Analog Output Utility VIs, and the Advanced Analog
Output VIs. The following illustrates these VI classes.

Easy Analog Output VIs
The Easy Analog Output VIs perform simple analog output operations.
You can run these VIs from the front panel or use them as subVIs in
basic applications.

You can use each VI by itself to perform a basic analog output
operation. Unlike intermediate- and advanced-level VIs, Easy Analog
Output VIs automatically alert you to errors with a dialog box that asks
you to stop the execution of the VI or to ignore the error.

The Easy Analog Output VIs are actually composed of Intermediate
Analog Output VIs, which are in turn composed of Advanced Analog
Output VIs. The Easy Analog Output VIs provide a basic, convenient
interface with only the most commonly used inputs and outputs. For
more complex applications, you should use the intermediate- or
advanced-level VIs for more functionality and performance.

Refer to Chapter 18, Easy Analog Output VIs, for specific VI
information.

Intermediate Analog Output VIs
You can find intermediate-level Analog Output VIs in two different
places in the Analog Output palette. You can find the Intermediate
Analog Output VIs in the second row of the Analog Output palette. The
other intermediate-level VIs are in the Analog Output Utilities palette,

Easy Analog Output VIs

Intermediate
Analog Output VIs

Advanced
Analog Output VIs

Analog Output Utility VIs

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

LabVIEW Function and VI Reference Manual 13-8 © National Instruments Corporation

which will be discussed later. The Intermediate Analog Output VIs—
AO Config, AO Write, AO Start, AO Wait, and AO Clear—are in turn
built from the fundamental building block layer, called the Advanced
Analog Output VIs. These VIs offer almost as much power as the
advanced-level VIs, and they conveniently group the advanced-level
VIs into a tidy, logical sequence.

Refer to Chapter 19, Intermediate Analog Output VIs, for specific VI
information.

Analog Output Utility VIs
You can access the Analog Output Utilities palette by choosing the
Analog Output Utility icon from the Analog Output palette. The
Analog Output Utility VIs—AI Read One Scan, AI Waveform Scan,
and AI Continuous Scan—are single-VI solutions to common analog
output problems. These VIs are convenient, but they lack flexibility.
These three VIs are built from the Intermediate Analog Output VIs in
the Analog Output palette.

Refer to Chapter 20, Analog Output Utility VIs, for specific VI
information.

Advanced Analog Output VIs
You can access the Advanced Analog Output palette by choosing the
Advanced Analog Output icon from the Analog Output palette. These
VIs are the interface to the NI-DAQ software and are the foundation of
the Easy, Utility, and Intermediate Analog Output VIs.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 21, Advanced Analog Output VIs, for additional information on
the inputs and outputs and how they work.

Locating Analog Output VI Examples
For examples of how to use the analog output VIs, see the examples in
examples\daq\anlogout\anlogout.llb.

Analog Output
Utility Icon

Advanced Analog
Output Icon

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

© National Instruments Corporation 13-9 LabVIEW Function and VI Reference Manual

Digital Function VIs

These VIs perform digital operations.

The Digital I/O VIs can be found by choosing Functions»Data
Acquisition»Digital I/O. When you click on the Digital I/O icon in the
Data Acquisition palette, the Digital I/O palette pops up, as shown in
the following illustration.

There are three classes of Digital I/O VIs found in the Digital I/O
palette. The Easy Digital I/O VIs, Intermediate Digital I/O VIs, and
Advanced Digital I/O VIs. The following illustrates these VI classes.

Easy Digital I/O VIs
The Easy Digital I/O VIs perform simple digital operations. You can
run these VIs from the front panel or use them as subVIs in basic
applications.

Easy Digital I/O VIs

Intermediate
Digital I/O VIs

Advanced
Digital I/O VIs

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

LabVIEW Function and VI Reference Manual 13-10 © National Instruments Corporation

You can use each VI by itself to perform a basic digital operation.
Unlike intermediate- and advanced-level VIs, Easy Digital I/O VIs
automatically alert you to errors with a dialog box that asks you to stop
the execution of the VI or to ignore the error.

The Easy Digital I/O VIs are actually composed of Intermediate Digital
I/O VIs, which are in turn composed of Advanced Digital I/O VIs. The
Easy Digital I/O VIs provide a basic, convenient interface with only the
most commonly used inputs and outputs. For more complex
applications, you should use the intermediate- or advanced-level VIs for
more functionality and performance.

Refer to Chapter 22, Easy Digital I/O VIs, for specific VI information.

Intermediate Digital I/O VIs
You can find intermediate-level Digital I/O VIs in the second and third
rows of the Digital I/O palette. The Intermediate Digital I/O VIs are in
turn built from the fundamental building block layer, called the
Advanced Digital I/O VIs. These VIs offer almost as much power as the
advanced-level VIs, and they conveniently group the advanced-level
VIs into a tidy, logical sequence.

Refer to Chapter 23, Intermediate Digital I/O VIs, for specific VI
information.

Advanced Digital I/O VIs
You can access the Advanced Digital I/O palette by choosing the
Advanced Digital I/O icon from the Digital I/O palette. These VIs are
the interface to the NI-DAQ software and are the foundation of the
Easy, Utility, and Intermediate Digital I/O VIs.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 24, Advanced Digital I/O VIs, for additional information on the
inputs and outputs and how they work.

Locating Digital I/O VI Examples
For examples of how to use the Digital I/O VIs, see the examples in
examples\daq\digital\digital.llb.

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

© National Instruments Corporation 13-11 LabVIEW Function and VI Reference Manual

Counter VIs

These VIs perform counting operations.

The Counter VIs can be found by choosing Functions»Data
Acquisition»Counter. When you click on the Counter icon in the Data
Acquisition palette, the Counter palette pops up, as shown in the
following illustration.

There are three classes of Counter VIs found in the Counter palette: the
Easy, Intermediate, and Advanced Counter VIs. The following
illustrates these VI classes.

Easy Counter VIs
The Easy Counter VIs perform simple counting operations. You can run
these VIs from the front panel or use them as subVIs in basic
applications.

Easy Counter VIs

Advanced
Counter VIs

Intermediate Counter VIs

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

LabVIEW Function and VI Reference Manual 13-12 © National Instruments Corporation

You can use each VI by itself to perform a basic counting operation.
Unlike intermediate- and advanced-level VIs, Easy Counter VIs
automatically alert you to errors with a dialog box that asks you to stop
the execution of the VI or to ignore the error.

The Easy Counter VIs are actually composed of Intermediate Counter
VIs, which are in turn composed of Advanced Counter VIs. The Easy
Counter VIs provide a basic, convenient interface with only the most
commonly used inputs and outputs. For more complex applications, you
should use the intermediate- or advanced-level VIs for more
functionality and performance.

Note: An important basic data acquisition concept is to use only the inputs that

you need on each VI. Leave the rest of the inputs unwired, and LabVIEW

sets them to their default values. In the Help window, the most important

terminals are labeled in bold, and the least commonly used are in brackets.

Values given in parentheses are default values.

Refer to Chapter 25, Easy Counter VIs, for specific VI information.

Intermediate Counter Input VIs
You can find the Intermediate Counter VIs in the second row of the
Counter palette. The Intermediate Counter VIs are in turn built from the
fundamental building block layer, called the Advanced Counter VIs.
These VIs offer almost as much power as the advanced-level VIs, and
they conveniently group the advanced-level VIs into a tidy, logical
sequence.

Refer to Chapter 26, Intermediate Counter VIs, for specific VI
information.

Advanced Counter VIs
You can access the Advanced Counter palette by choosing the
Advanced Counter icon from the Counter palette. These VIs are the
interface to the NI-DAQ software and are the foundation of the Easy
and Intermediate Counter VIs.

Because all these VIs rely on the advanced-level VIs, you can refer to
Chapter 27, Advanced Counter VIs, for additional information on the
inputs and outputs and how they work.

Intermediate
Counter VI Icon

Ad d

Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

© National Instruments Corporation 13-13 LabVIEW Function and VI Reference Manual

Locating Counter VI Examples
For examples of how to use the Counter VIs, open the example library
by opening examples\daq\counter\counter.llb.

Calibration and Configuration VIs

These VIs calibrate specific devices and set and return configuration
information.

See Chapter 28, Calibration and Configuration VIs, for information on
locating these VIs and examples.

Signal Conditioning VIs

These VIs convert analog input voltages read from resistance
temperature detectors (RTDs), strain gauges, or thermocouples into
units of strain or temperature.

See Chapter 29, Signal Conditioning VIs, for information on locating
these VIs and examples.

© National Instruments Corporation 14-1 LabVIEW Function and VI Reference Manual

Chapter

14Easy Analog Input VIs

This chapter describes the Easy Analog Input VIs, which perform
simple analog input operations. You can run these VIs from the front
panel or use them as subVIs in basic applications.

You can access the Easy Analog Input VIs by choosing Functions»Data
Acquisition»Analog Input. The Easy Analog Input VIs are the VIs on
the top row of the Analog Input palette, as shown below.

Easy Analog Input VI Descriptions

The following Easy Analog Input VIs are available.

AI Acquire Waveform
Acquires a specified number of samples at a specified sample rate from a single input
channel and returns the acquired data.

Easy Analog Input VIs

Chapter 14 Easy Analog Input VIs

LabVIEW Function and VI Reference Manual 14-2 © National Instruments Corporation

The AI Acquire Waveform VI performs a hardware-timed measurement of a waveform
(multiple voltage readings at a specified sampling rate) on a single analog input channel.
If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and input
limits available with your DAQ device.

AI Acquire Waveforms
Acquires data from the specified channels and samples the channels at the specified scan
rate.

The AI Acquire Waveforms VI performs a timed measurement of multiple waveforms on
the specified analog input channels. If an error occurs, a dialog box appear, giving you
the option to abort the operation or continue execution.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and input
limits available with your DAQ device.

AI Sample Channel
Measures the signal attached to the specified channel and returns the measured voltage.

The AI Sample Channel VI performs a single, untimed measurement of a channel. If an
error occurs, a dialog box appears giving you the option to stop the VI or continue.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and input
limits available with your DAQ device.

Chapter 14 Easy Analog Input VIs

© National Instruments Corporation 14-3 LabVIEW Function and VI Reference Manual

AI Sample Channels
Performs a single voltage reading from each of the specified channels.

The AI Sample Channels VI measures a single voltage from each of the specified analog
input channels. If an error occurs, a dialog box appears, giving you the option to stop the
VI or continue.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and input
limits available with your DAQ device.

© National Instruments Corporation 15-1 LabVIEW Function and VI Reference Manual

Chapter

15
Intermediate
Analog Input VIs

This chapter describes the Intermediate Analog Input VIs. These VIs
are convenient, but they lack flexibility.

You can access the Intermediate Analog Input VIs by choosing
Functions»Data Acquisition»Analog Input. The Intermediate Analog
Input VIs are the VIs on the second row of the Analog Input palette, as
shown below.

Handling Errors

LabVIEW makes error handling easy with the Intermediate Analog
Input VIs. Each intermediate-level VI has an error in input cluster and
an error out output cluster. The clusters contain a Boolean that
indicates whether an error occurred, the error code for the error, and the
name of the VI that returned the error. If error in indicates an error, the
VI returns the error information in error out and does not continue to
run.

Note: The AI Clear VI is an exception to this rule—this VI always clears the

acquisition regardless of whether error in indicates an error.

When you use any of the Intermediate Analog Input VIs in a While
Loop, you should stop the loop if the status in the error out cluster

Intermediate
Analog Input VIs

Chapter 15 Intermediate Analog Input VIs

LabVIEW Function and VI Reference Manual 15-2 © National Instruments Corporation

reads TRUE. If you wire the error cluster to the General Error Handler
VI, the VI deciphers the error information and describes the error to
you.

The General Error Handler VI is in Functions»Time and Dialog in
LabVIEW.

Intermediate Analog Input VI Descriptions

The following Intermediate Analog Input VIs are available.

AI Clear
Clears the analog input task associated with taskID in.

The AI Clear VI stops an acquisition associated with taskID in and release associated
internal resources, including buffers. Before beginning a new acquisition, you must call
the AI Config VI. Refer to Chapter 17, Advanced Analog Input VIs, for description of the
AI Control VI.

Note: The AI Clear VI always clears the acquisition regardless of whether error

in indicates that an error occurred.

When you use any of the Intermediate Analog Input VIs in a While Loop, you should stop
the loop if the status in the error out cluster reads TRUE. If you wire the error cluster to
the General Error Handler VI, the VI deciphers the error information and describes the
error to you.

The General Error Handler VI is in Functions»Time and Dialog in LabVIEW. For more
information on this VI, refer to your LabVIEW User Manual.

Chapter 15 Intermediate Analog Input VIs

© National Instruments Corporation 15-3 LabVIEW Function and VI Reference Manual

AI Config
Configures an analog input operation for a specified set of channels. This VI configures
the hardware and allocates a buffer for a buffered analog input operation.

You can allocate more than one buffer only with the following devices.

• (Macintosh) NB-A2000, NB-A2100, and NB-A2150

• (Windows) EISA-A2000, AT-A2150, and AT-DSP2200

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits,
and scanning order you can use with your National Instruments DAQ device.

AI Read
Reads data from a buffered data acquisition.

The AI Read VI calls the AI Buffer Read VI to read data from a buffered analog input
acquisition.

Chapter 15 Intermediate Analog Input VIs

LabVIEW Function and VI Reference Manual 15-4 © National Instruments Corporation

AI Single Scan
Returns one scan of data from a previously configured group of channels.

If you have already started an acquisition with the AI Start VI, this VI reads one scan
from the acquisition buffer data, or the onboard FIFO if the acquisition is not buffered.
If you have not started an acquisition, this VI starts an acquisition, retrieves a scan of
data, and then terminates the acquisition. The group configuration determines the
channels the VI samples.

If you do not call the AI Start VI, this VI initiates a single scan using the fastest safe
channel clock rate. You can alter the channel clock rate with the AI Config VI.

If you run the AI Start VI, a clock signal initiates the scans.

You must use the AI Start VI to set the clock source to external, for externally-clocked
conversions.

If clock sources are internal and you do not allocate memory, a timed nonbuffered
acquisition begins when you run the AI Start VI. You use this type of acquisition for
synchronizing analog inputs and outputs in a point-to-point control application. The
following devices do not support timed, nonbuffered acquisitions.

• (Macintosh) NB-A2000, NB-A2100, and NB-A2150

• (Windows) AT-DSP2200, EISA-A2000, and AT-A2150

Note: LabVIEW restarts the device in the event of a FIFO overflow during a

timed, nonbuffered acquisition.

When you set opcode to 1 for a nonbuffered acquisition, the VI reads one scan from the
FIFO and returns the data. If opcode is 2, the VI reads the FIFO until it is empty and
returns the last scan read.

Chapter 15 Intermediate Analog Input VIs

© National Instruments Corporation 15-5 LabVIEW Function and VI Reference Manual

AI Start
Starts a buffered analog input operation. This VI sets the scan rate, the number of scans
to acquire, and the trigger conditions. The VI then starts an acquisition.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits,
scanning order, triggers, clocks and you can use with your National Instruments DAQ
device.

© National Instruments Corporation 16-1 LabVIEW Function and VI Reference Manual

Chapter

16Analog Input Utility VIs

This chapter describes the Analog Input Utility VIs. These VIs—AI
Read One Scan, AI Waveform Scan, and AI Continuous Scan—are
single-VI solutions to common analog input problems. The Analog
Input Utility VIs are intermediate-level VIs, so they rely on the
advanced-level VIs. You can refer to Chapter 17, Advanced Analog

Input VIs, for additional information on the inputs and outputs and how
they work.

You can access the Analog Input Utilities palette by choosing
Functions»Data Acquisition»Analog Input»Analog Input Utilities.
The icon that you must select to access the Analog Input Utility VIs is
on the bottom row of the Analog Input palette, as shown below.

Handling Errors

LabVIEW makes error handling easy with the intermediate-level
Analog Input Utility VIs. Each intermediate-level VI has an error in
input cluster and an error out output cluster. The clusters contain a
Boolean that indicates whether an error occurred, the error code for the
error, and the name of the VI that returned the error. If error in
indicates an error, the VI returns the error information in error out and
does not continue to run.

Analog Input Utility VIs

Chapter 16 Analog Input Utility VIs

LabVIEW Function and VI Reference Manual 16-2 © National Instruments Corporation

When you use any of the Analog Input Utility VIs in a While Loop, you
should stop the loop if the status in the error out cluster reads TRUE. If
you wire the error cluster to the General Error Handler VI, the VI
deciphers the error information and describes the error to you.

The General Error Handler VI is in Functions»Time and Dialog in
LabVIEW. For more information on this VI, refer to your LabVIEW

User Manual.

Analog Input Utility VI Descriptions

The following VIs are available through the Analog Input Utility subpalette.

AI Continuous Scan
Makes continuous, time-sampled measurements of a group of channels, stores the data in
a circular buffer, and returns a specified number of scan measurements on each call.

The AI Continuous Scan VI scans a group of channels indefinitely, as
you might do in data logging applications. Place the VI in a While Loop
and wire the loop’s iteration terminal to the VI iteration input.

Also wire the condition that terminates the loop to the clear acquisition input, inverting
the signal if necessary so that it reads TRUE on the last iteration. On iteration 0, the VI
calls the AI Config VI to configure the channel group and hardware and allocates a data
buffer; the VI calls the AI Start VI to set the scan rate and start the acquisition. On each
iteration, the VI calls the AI Read VI to retrieve the number of measurements specified
by number of scans to read, scales them, and returns the data as an array of voltages.
On the last iteration (when clear acquisition is TRUE) or if an error occurs, the VI calls
the AI Clear VI to clear any acquisition in progress. You should not need to call the AI
Continuous Scan VI outside of a loop, but if you do, you can leave the iteration and clear
acquisition inputs unwired.

When calling the AI Continuous Scan VI in a loop to read portions of the data from the
ongoing acquisition, you must read the data fast enough so that newly acquired data does

iteration
terminal

Chapter 16 Analog Input Utility VIs

© National Instruments Corporation 16-3 LabVIEW Function and VI Reference Manual

not overwrite it. The scan backlog output tells you how much data acquired by the VI,
but remains unread. If the backlog increases steadily, your new data may eventually
overwrite old data. Retrieve data more often, or adjust the buffer size, the scan rate, or
the number of scans to read to fix this problem

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits,
and scanning order you can use with your National Instruments DAQ device.

AI Read One Scan
Measures the signals on the specified channels and returns the measurements in an array
of voltages or binary values.

The AI Read One Scan VI performs an immediate measurement of a
group of one or more channels. If you place the VI in a loop to take
multiple measurements from a group of channels, wire the loop iteration
terminal to the VI iteration parameter.

On iteration 0, this VI calls the AI Config VI to configure the channel group and
hardware, then calls the AI Single Scan VI to measure and report the results. On
subsequent iterations, the VI avoids unnecessary configuration and calls only the AI
Single Scan VI. If you call the AI Read One Scan VI once to take a single measurement
from the group of channels, the iteration parameter can remain unwired.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits,
and scanning order available with your DAQ device.

iteration
terminal

Chapter 16 Analog Input Utility VIs

LabVIEW Function and VI Reference Manual 16-4 © National Instruments Corporation

AI Waveform Scan
Acquires the specified number of scans at the specified scan rate and returns all the data
acquired. You can trigger the acquisition.

The AI Waveform Scan VI acquires a specified number of scans from a
channel group at a specified scan rate. If you place this VI in a loop to
take multiple acquisitions from the same group of channels, wire the
iteration terminal of the loop to the VI iteration input.

Also wire the condition that terminates the loop to the VI clear acquisition input,
inverting the signal if necessary so that it reads TRUE on the last iteration. On iteration
zero, this VI calls the AI Config VI to configure the channel group and hardware and
allocate a data buffer. On each iteration, this VI calls the AI Start and AI Read VIs. The
AI Start VI sets the scan rate and trigger conditions and starts the acquisition. The VI
stores the measurements in the buffer as they are acquired, and the AI Read VI retrieves
them from the buffer, scales them, and returns all the data as an array of voltages. On the
last iteration (when clear acquisition is TRUE) or if an error occurs, the VI also calls the
AI Clear VI to clear the acquisition in progress. If you call the AI Waveform Scan VI
only once, you can leave iteration and clear acquisition unwired.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits,
scanning order, triggers, and clocks you can use with your National Instruments DAQ
device.

Note: These VIs use an uninitialized shift register as local memory to remember

the taskID for the group of channels between VI calls. You normally use

one VI in one place on your diagram, but if you use it more than once, the

multiple instances of the VI share the same taskID. All calls to one of these

VIs configure, read data from, or clear the same acquisition. Occasionally

you may want to use each VI in multiple places and have each instance

refer to a different taskID (for example, when you measure two devices

iteration
terminal

Chapter 16 Analog Input Utility VIs

© National Instruments Corporation 16-5 LabVIEW Function and VI Reference Manual

simultaneously). Save a copy of the VI with a new name (for example,

AI Waveform Scan R) and make your new VI reentrant.

Note: For all Analog Input Utility VIs, if your program iterates more than 231 - 1

times, do not wire the iteration input to the loop iteration terminal. Instead,

set iteration to 0 on the first loop, then to any positive value on all other

iterations. The VI reconfigures and restarts if iteration ≤0.

© National Instruments Corporation 17-1 LabVIEW Function and VI Reference Manual

Chapter

17Advanced Analog Input VIs

This chapter contains reference descriptions of the Advanced Analog
Input VIs. These VIs are the interface to the NI-DAQ software and are
the foundation of the Easy, Utility and Intermediate Analog Input VIs.

You can access the Advanced Analog Input palette by choosing
Functions»Data Acquisition»Analog Input»Advanced Analog Input.
The icon that you must select to access the Advanced Analog Input VIs
is on the bottom row of the Analog Input palette, as shown below.

Advanced Analog Input VI Descriptions

The following Advanced Analog Input VIs are available.

AI Buffer Config
Allocates memory for LabVIEW to store analog input data until the AI Buffer Read VI
can deliver it to you. LabVIEW refers to the buffer(s) allocated by the AI Buffer Config
VI as internal buffers because you do not have direct access to them.

Advanced
Analog Input VIs

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-2 © National Instruments Corporation

Note: (Macintosh) If you are using an NB-A2000 with an NB-DMA2800, buffer
size and total scans to acquire are both multiples of 32, and your computer

has block-mode memory, the driver will automatically use block-mode

DMA transfers.

Note: When you run the AI Control VI with control code set to 4 (clear), the VI

performs the equivalent of running the AI Buffer Config VI with allocation

mode set to 1. That is, both VIs deallocate the internal analog input data

buffers. However, acquisitions that use DSP or expansion card memory are

an exception. The AI Control VI does not deallocate DSP memory when

clearing an acquisition. You must explicitly call the AI Buffer Config VI to

deallocate DSP acquisition buffers.

Table 17-1 lists default settings and ranges for the AI Buffer Config VI. The first row
gives the values for most devices, and the other rows give the values for devices that are
exceptions to the rule.

Table 17-1. AI Buffer Config VI Device-Specific Settings and Ranges

Device
Scans per Buffer Number of Buffers Allocation Mode

Default
Setting Range

Default
Setting Range

Default
Setting Range

Most devices 100 0, n≥3 1 0, 1 2 1, 2

Lab-NB
Lab-LC

100 n≥3 1 0, 1 2 1, 2

AT-DSP2200 100 n≥0 1 n≥0 2 1≤n≤4

NB-A2000
EISA-A2000
NB-A2100
NB-A2150
AT-A2150

100 n≥0 1 n≥0 2 1, 2

5102 devices 100 n≥3 1 1 2 1, 2

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-3 LabVIEW Function and VI Reference Manual

AI Buffer Read
Returns analog input data from the internal data buffer(s).

Note: When the VI reads from the trigger mark, it does not return data until the

acquisition completes for the buffer containing the trigger.

AI Clock Config
Sets the channel and scan clock rates.

Refer to Appendix A, DAQ Hardware Capabilities, for the clocks available with your
DAQ device.

For devices that have only a channel clock (Lab-LC, Lab-NB, NB-MIO-16, Lab-PC+,
PCI-1200, PC-LPM-16, DAQCard-500, DAQCard-700, and DAQCard-1200), you
cannot set independent channel and scan clock rates. Setting one resets the other because
the channel rate equals scan rate/number of channels to scan.

For devices that have no channel clock (NB-A2000, NB-A2100, NB-A2150,
EISA-A2000, AT-A2150, and AT-DSP2200), setting the channel clock produces an
error.

If you specify a value of 0 for the scan clock rate, interval scanning turns off, and channel
scanning (or round-robin scanning) proceeds at the channel clock rate. This option is
meaningful only for devices with independent channel and scan clocks.

The clock rate is the rate at which LabVIEW samples data or acquires scans. You can
express the clock rate three ways—with clock frequency, with clock period, or with
timebase source, timebase signal, and timebase divisor. The VI searches these

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-4 © National Instruments Corporation

parameters in that order and sets the clock rate using the first one with a value not equal
to –1.

Table 17-2 lists default settings and ranges for the controls of the AI Clock Config VI.

Table 17-2. Device-Specific Settings and Ranges for Controls in the AI Clock Config VI

Device

Configuration
Mode

Retrigger
Mode Which Clock Clock Source

Default
Setting Range

Default
Setting

Default
Setting Range

Default
Setting Range

AT-MIO-16E-2
AT-MIO-64E-3
NEC-MIO-16E-4
PCI-MIO-16E-1
PCI-MIO-16E-4
PCI-MIO-16XE-10

1 1, 3 no
support

1 1, 2 1 1, 2
4≤n≤11

AT-MIO-16E-10
AT-MIO-16DE-10
AT-MIO-16XE-50
PCI-MIO-16XE-50

1 1, 3 no
support

1 1, 2 1 1, 2
4≤n≤9

AT-A2150
NB-A2150
NB-A2100
NB-A2000
AT-DSP2200
EISA-A2000

1 1, 3 no
support

1 1 1 1≤n≤3

PC-LPM-16
DAQCard-500
DAQCard-700
Lab-PC

1 1, 3 no
support

1 1, 2 1 1, 2

Lab-LC
Lab-NB
NB-MIO-16

1 1, 3 no
support

1 2 1 1, 2

All Other Devices 1 1, 3 no
support

1 1, 2 1 1≤n≤3

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-5 LabVIEW Function and VI Reference Manual

AI Control
Controls the analog input tasks and specifies the amount of data to acquire.

Note: You cannot use this VI to start an acquisition when you use a Lab and 1200

Series device, PC-LPM-16, DAQCard-500, or a DAQCard-700 device to

scan multiple SCXI channels in multiplexed mode. For this special case,

you must use the AI SingleScan VI to acquire data. (For more information

about the AI SingleScan VI, refer to its description in this chapter.)

However, you can use the AI Control VI for a Lab and 1200 Series device,

PC-LPM-16, DAQCard-500, or DAQCard-700 device when you scan SCXI

channels in parallel mode or sample a single SCXI channel in multiplexed

mode. You can use this VI for an MIO device scanning SCXI channels in

either mode.

Note: Nonbuffered acquisitions are not supported for the following devices.

• (Macintosh) NB-A2000, NB-A2100, or NB-A2150

• (Windows) AT-DSP2200, EISA-A2000, or AT-A2150

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-6 © National Instruments Corporation

Table 17-3 lists default settings and ranges for the AI Control VI.

AI Group Config
Defines what channels belong to a group and assigns them.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges and scanning
order available with your DAQ device.

Table 17-3. Device-Specific Settings and Ranges for the AI Control VI

Device Control
Code

Total Scans
to Acquire

Minimum
Pretrigger
Scans to
Acquire

Number of
Buffers to
Acquire

D S* R* DS* R* DS* R* DS* R*

AT-DSP2200,
EISA-A2000,
AT-A2150,
NB-A2000,
NB-A2150,

0 0, 1, 4 0 0, n≥0 0 0, n≥3 1 n≥0

PC-LPM-16,
DAQCard-500,
DAQCard-700

0 0, 1, 4 0 0, n≥3 0 no
support

1 1

MIO-E Series 0 0, 1, 4 0 0, n≥3 0 0, n≥3 1 1

5102 Devices 0 0, 1, 4 0 n≥0 0 n≥0 1 1

All Other Devices 0 0, 1,4 0 0, n≥3 0 n≥0 1 1

* DS = Default Setting; R = Range

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-7 LabVIEW Function and VI Reference Manual

Table 17-4 lists default settings and ranges for the AI Group Config VI. The first row of
the table gives the values for most devices, and the other rows give the values for devices
that are exceptions to the rule.

Note: The Lab-LC, Lab-NB, Lab-PC+, PCI-1200, PC-LPM-16, DAQCard-500,

DAQCard-700, and DAQCard-1200 must scan channel lists containing

multiple channels from channel n (n ≥ 0) to channel 0 in sequential order,

including all channels between n and 0. The NB-A2000, NB-A2150,

EISA-A2000, and AT-A2150 allow only the following scan lists: (0), (1),

(2), (3), (0, 1), (2, 3), and (0, 1, 2, 3). The NB-A2100 allows the following

scan lists: (0), (1), (0, 1), and (1, 0).

The channel scan list range shown above is for single-ended mode. Please

refer to Appendix A, DAQ Hardware Capabilities, to determine the valid

range for channels in differential mode.

Table 17-4. Device-Specific Settings and Ranges for the AI Group Config VI

Device
Group Channel Scan List

Default
Setting Range Default Setting Range

Most Windows Devices 0 0≤n≤15 all channels 0≤n≤15

Most Macintosh Devices 0 0≤n≤15 all channels 0≤n≤15

AT-MIO-64F-5
AT-MIO-64E-3

0 0≤n≤15 all channels 0≤n≤63

AT-A2150, EISA-A2000 0 0≤n≤15 all channels 0≤n≤3

AT-DSP2200 0 0≤n≤15 all channels 0, 1

Lab-PC+, PCI-1200,
DAQCard-1200

0 0≤n≤15 all channels 0≤n≤7

Lab-LC, Lab-NB 0 0≤n≤15 all channels 0≤n≤7

NB-A2000, NB-A2150 0 0≤n≤15 all channels 0≤n≤3

NB-A2100 0 0≤n≤15 all channels 0, 1

5102 Devices 0 0≤n≤15 all channels 0, 1

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-8 © National Instruments Corporation

SCXI modules in multiplexed mode must scan channels in ascending consecutive order,
starting from any channel on the module. The module order you specify can be arbitrary.
SCXI modules in parallel mode must follow the DAQ device restrictions on the order of
channel scan lists. Refer to the Channel, Port, and Counter Addressing section of
Chapter 3, Basic LabVIEW Data Acquisition Concepts, in the LabVIEW Data Acquisition

Basics Manual for information about SCXI channel string syntax.

AI Hardware Config
Configures either the upper and lower input limits or the range, polarity, and gain. The
AI Hardware Config VI also configures the coupling, input mode, and number of
AMUX-64T devices. The configuration utility determines the default settings for the
parameters of this VI.

You can use this VI to retrieve the current settings by wiring taskID only or by wiring
both taskID and channel list. If channel list is empty, the VI configures channels on a
per group basis. This means that the configuration applies to all the channels in the
group. When you specify one or more channels in channel list, the VI configures
channels on a per channel basis. This means that the configuration applies only to the
channels you specify. This VI always returns the current settings for the entire group.

When the configuration is on a per channel basis, channel list can contain one or more
channels. The channels in channel list must belong to the group named by taskID. You
specify channels the same way you specify them for the AI Group Config VI. If you take
multiple samples of a channel within a scan and you want to change the hardware
configuration for that channel at each sample, you must supply the settings for each
instance of the channel within the scan. If an element of channel list specifies more than
one channel, the corresponding element of the other arrays applies to all those channels.

The VI applies the values contained in the configuration arrays (upper input limits,
lower input limits, coupling, range, polarity, gain, and mode) to the channels in the
group (if you configured on a per group basis) or the channels in channel list (if you
configured on a per channel basis) in the following way. The VI applies the values listed
first in the arrays (at index 0) to the first channel in the group or the channel(s) listed in
index 0 of channel list. The VI applies the values listed second in the configuration
arrays (at index 1) to the second channel in the group or channel(s) listed in index 1 of
channel list. The VI continues to apply the values in this fashion until the arrays are

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-9 LabVIEW Function and VI Reference Manual

exhausted. If channels in the group or channel list remain unconfigured, the VI applies
the final values in the arrays to all the remaining unconfigured channels.

Table 17-5 gives examples of this method. The parameter channel scan list, which is
part of the AI Group Config VI, is used in the following table.

Table 17-5. AI Hardware Config Channel Configuration

Configuration
Basis Array Values Results

Group Group channel scan list = 1, 3, 4, 5, 7
channel list is empty
lower input limit [0] = –1.0
upper input limit [0] = +1.0

All channels in the group have
input limits of –1.0 to +1.0.

Group Group channel scan list = 1, 3, 4, 5, 7
channel list is empty
lower input limit [0] = –1.0
upper input limit [0] = +1.0
lower input limit [1] = 0.0
upper input limit [1] = +5.0
lower input limit [2] = –10.0
upper input limit [2] = +10.0

Channel 1 has input limits of
–1.0 to +1.0. Channel 3 has
input limits 0.0 to +5.0.
Channels 4, 5, and 7 have input
limits of –10.0 to +10.0.

Channel Group channel scan list = 1, 3, 4, 5, 7
channel list [0] = 1
channel list [1] = 3:5
lower input limit [0] = –1.0
upper input limit [0] = +1.0

Channels 1, 3, 4, and 5 have
input limits of –1.0 to +1.0.
Channel 7 has the default input
limits set by the configuration
utility. It is unchanged because
it is not listed in channel list.

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-10 © National Instruments Corporation

The range, polarity, and gain determine the lower and upper input limits. When you
wire valid input limit arrays (that is, arrays of lengths greater than zero) the VI chooses
suitable input ranges, polarities, and gains to achieve these input limits. The VI ignores
the range, polarity, and gain arrays.

If you do not wire the input limit arrays, the VI checks range, polarity, and gain. Where
the VI finds an array, it sets the corresponding input property to the values in the array.
Where the VI does not find an array, it leaves the corresponding input property
unchanged.

For some devices and SCXI modules, onboard jumpers set range, polarity, and/or gain.
LabVIEW does not alter the settings of jumpered parameters when you specify input
limits. If LabVIEW cannot achieve the desired input limits using the current jumpered
settings, it returns a warning.

To override the current jumper values, you must call the AI Hardware Config VI and
specify range, polarity, and/or gain explicitly. The configuration utility determines the
initial setting for these parameters (the default value is the factory jumper setting).

If a pair of input limits values are both 0, the VI does not change the input limits.

Channel Group channel scan list = 1, 3, 4, 5, 7
channel list [0] = 1
channel list [1] = 3:5
lower input limit [0] = –1.0
upper input limit [0] = +1.0
lower input limit [1] = 0.0
upper input limit [1] = +5.0

Channel 1 has input limits of
–1.0 to +1.0. Channels 3, 4,
and 5 have input limits of 0.0
to +5.0. Channel 7 has the
default input limits set by the
configuration utility.

Group Group channel scan list = 0, 1, 0, 1
channel list is empty
lower input limit [0] = –1.0
upper input limit [0] = +1.0
lower input limit [1] = –1.0
upper input limit [1] = +1.0
lower input limit [2] = –10.0
upper input limit [2] = +10.0
lower input limit [3] = –10.0
upper input limit [3] = +10.0

Channels 0 and 1 have input
limits of –1.0 to +1.0 the first
time they are sampled and
input limits of –10.0 to +10.0
the second time they are
sampled.

Table 17-5. AI Hardware Config Channel Configuration (Continued)

Configuration
Basis Array Values Results

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-11 LabVIEW Function and VI Reference Manual

SCXI channel hardware configurations are actually a combination of SCXI module and
DAQ device settings and require special considerations. The way you specify channels
indicates whether LabVIEW alters the SCXI module settings and/or the DAQ device
settings. The input limits parameter always applies to the entire acquisition path.

When you configure on a per group basis, LabVIEW may alter both SCXI module and
DAQ device settings. In this case, gain applies to the entire path and is the product of the
SCXI channel gain and acquisition device channel gain. LabVIEW sets the highest gain
needed on the SCXI module, then adds DAQ device gain if necessary.

When configuration is on a per channel basis, you can specify the channels in one of three
ways. The first way is to specify the entire path, as in the following example.

OB0!SC1!MD1!CH0:7

(Windows) Also, you can specify the path using channel names configured in the DAQ
Channel Wizard, as in the following example.

temperature

If you use either of these methods, LabVIEW can alter both SCXI and DAQ device
settings, and gain applies to the product of the SCXI channel gain and the DAQ device
gain. LabVIEW sets the highest gain needed on the SCXI module, then adds DAQ device
gain if necessary.

The second method is to specify the SCXI channel only, as in the following example.

SC1!MD1!CH0:7

This specification indicates that LabVIEW should alter SCXI settings only. Additionally,
gain applies only to the SCXI channel.

The third way is to specify the acquisition device channel only, as in the following
example.

OB0

In this case, LabVIEW alters only DAQ device settings. The gain parameter applies to
the onboard channel only.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits,
and scanning order available with your DAQ device.

Tables 17-6 through 17-9 list default settings and ranges for the AI Hardware Config VI.
A tilde (~) indicates that the parameter is configurable on a per group basis only. This
means you cannot configure it by channel. The first row of these tables give the values
for most devices, and the other rows give the values for devices that are exceptions to the

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-12 © National Instruments Corporation

rule. If you did not set the default settings with the configuration utility, use the default
settings shown in these tables.

Note: Channels 0 and 1 and channels 2 and 3 must have the same coupling for

the NB-A2150, AT-DSP2200, and AT-A2150.

Table 17-6. Device-Specific Settings and Ranges for the AI Hardware Config VI

Device

Channel Input
Configuration Cluster

Number
of AMUX

Channel
ListCoupling Input Mode ~

DS* R* DS* R* DS* R* DS*

Most Devices 1 1 1 1 ≤n≤3 0 0 ≤n≤4 empty

EISA-A2000,
NB-A2000

2 1, 2 2 2 0 0 empty

PC-LPM-16,
Lab-LC, Lab-NB

1 1 2 2 0 0 empty

Lab and 1200
Series devices

1 1 2 1 ≤n≤3 0 0 empty

AT-MIO-16X,
AT-MIO-64F-5

1 1 1 (no ~) 1 ≤n≤3 0 0 ≤n≤4 empty

AT-A2150,
AT-DSP-2200,
NB-A2100,
NB-A2150

1 1, 2 2 2 0 0 empty

DAQCard-500,
DAQCard-700

1 1 2 1, 2 0 0 empty

5102 Devices 5 1,2 2 2 0 0 empty

* DS = Default Setting; R = Range

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-13 LabVIEW Function and VI Reference Manual

AI Parameter
Configures and retrieves miscellaneous parameters associated with Analog Input of an
operation of a device that are not covered with other AI VIs.

AI SingleScan
Returns one scan of data. If you started an acquisition with the AI Control VI, this VI
reads one scan of the data from the internal buffer. On the Macintosh and in Windows,
the VI reads from the onboard FIFO if the acquisition is nonbuffered. If you have not
started an acquisition, this VI starts an acquisition, retrieves a scan of data, and then
terminates the acquisition. The group configuration determines the channels the VI
sample. This VI does not support 5102 devices.

If you do not call the AI Control VI, this VI initiates a single scan using the fastest and
most safe channel clock rate. You can, however, alter the channel clock rate with the AI
Clock Config VI.

If you run the AI Control VI with control code set to 0 (Start), a clock signal initiates the
scans.

If you want externally clocked conversions, you must use the AI Clock Config VI to set
the clock source to external.

If clock sources are internal and you do not allocate memory, a timed, nonbuffered
acquisition begins when you run the AI Control VI with control code set to 0. This type
of acquisition is useful for synchronizing analog inputs and outputs in a point-to-point

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-14 © National Instruments Corporation

control application. The following devices do not support timed, nonbuffered
acquisitions.

• (Macintosh) Lab-NB, Lab-LC, NB-A2000, NB-A2100, and NB-A2150

• (Windows) AT-DSP2200, EISA-A2000, and AT-A2150

Note: In the event of a FIFO overflow during a timed, nonbuffered acquisition,

LabVIEW restarts the device.

Table 17-7 lists default settings and ranges for the AI SingleScan VI.

AI Trigger Config
Configures the trigger conditions for starting the scan and channel clocks and the scan
counter.

Refer to Appendix A, DAQ Hardware Capabilities, for information on the triggers
available with your DAQ device. Refer to your E Series device user manual for a detailed
description of the triggering capabilities of the device.

The following is a detailed description of trigger types 1 (analog trigger), 2 (digital
trigger A), and 3 (digital trigger B) as they apply to three types of applications:
posttrigger, pretrigger with software start, and pretrigger with hardware start. The other
trigger types are discussed at the end of this section.

Table 17-7. Device-Specific Settings and Ranges for the AI SingleScan VI

Device
Output Type Opcode Time Limit

DS R DS R DS R

AT-DSP2200, EISA-A2000,
AT-A2150, NB-A2000,
NB-A2100, NB-A2150

1 1≤n≤3 1 1 variable n≥0

All Other Devices 1 1≤n≤3 1 1≤n≤4 1≤n≤4 n≥0

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-15 LabVIEW Function and VI Reference Manual

Application Type 1: Posttriggered Acquisition (Start

Trigger Only)

If total scans to acquire is ≥ 0 and pretrigger scans to acquire is 0, you are performing
a posttriggered acquisition. A trigger type of 1 or 2 (analog trigger or digital trigger A,
respectively) starts the acquisition (digital trigger B is illegal). You provide a start
trigger. Refer to Table 17-10, parts 2 and 3, to determine the default pin to which you
connect your trigger signal.On some devices you can specify an alternative source
through the trigger source parameter.

With E Series devices, if you are using an analog trigger and the analog signal is
connected to one of the analog input channels, that channel must be first in the scan list.
This restriction does not apply if you connect the analog signal to PFI0.

In the above illustration, total scans to acquire is 1000 and pretrigger scans to acquire
is 0. The start trigger can come from digital trigger A or an analog trigger (trigger or
pause condition =1: Trigger on a rising edge or slope, level = 5.5, window size = 0.2).

Application Type 2: Pretriggered Acquisition (for all

trigger types)

If total scans to acquire and pretrigger scans to acquire are both > 0, a trigger type
of 1 or 2 (analog trigger or digital trigger A, respectively) starts the acquisition of
posttrigger data after the pretrigger data is acquired. The trigger is called a stop trigger

because the acquisition does not stop until the trigger occurs. A software strobe starts the
acquisition. This is a software start pretrigger acquisition. You provide the stop trigger.
Refer to Table 17-10, parts 2 and 3, to determine the default pin to which you connect

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-16 © National Instruments Corporation

your trigger signal. On some devices, you can specify an alternative source through the
trigger source parameter.

In the above illustration, total scans to acquire is 1000 and pretrigger scans to acquire
is 900. The stop trigger can come from digital trigger A or an analog trigger (trigger or
pause condition = 1: Trigger on rising edge or slope, level = 3.7, window size = 0.5).

With E Series devices, if you are using an analog trigger and the analog signal is
connected to an analog input channel, that channel must be the only channel in the scan
list (no multiple channel scan allowed). This restriction does not apply if you connect the
analog signal to PFI0.

Application Type 3: Pretriggered Acquisition (Start and

Stop Trigger)

Application Type 3 is used infrequently. Unless you plan to provide both a start trigger
and a stop trigger, skip this section.

On MIO devices, you can enable both the start trigger and the stop trigger. (You must call
the AI Trigger Config VI twice to do this.) In this case, a digital or analog trigger signal
starts the acquisition rather than a software strobe. This is a hardware start pretriggered
acquisition. You provide both the start trigger (as described in Application Type 1) and the
stop trigger (as described in Application Type 2). Refer to Table 17-10 , parts 2 and 3, to

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-17 LabVIEW Function and VI Reference Manual

determine the default pin to which you connect your trigger signal. On some devices, you
can specify an alternative source through the trigger source parameter.

In the above illustration, total scans to acquire is 1000 and pretrigger scans to acquire
is 900. The start trigger can come from digital trigger B or an analog trigger (trigger or
pause condition = 1: Trigger on rising edge or slope, level = 5.5, window size = 0.2).
The stop trigger can come from digital trigger A or an analog trigger (trigger or pause
condition = 1: Trigger on rising edge or slope, level = 4.0, window size = 0.2). Notice
that some of the data after the start trigger has been discarded, because all 900 pretrigger
scans have been collected and the stop trigger is more than 900 scans away from the start
trigger.

When using analog triggering on E Series devices, there are several restrictions that
apply, as shown in Table 17-8.

Table 17-8. Restrictions for Analog Triggering on E Series Devices

Start
Trigger

Stop
Trigger Restrictions

Digital A Digital B None

Digital B Analog Analog signal must be connected to PFI0, unless you are
scanning only one channel, in which case the input to that
channel can be used.

Analog Digital A Analog signal must be first in scan list if it is connected to an
analog input channel.

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-18 © National Instruments Corporation

A trigger type of 4 (digital scan clock gating) enables an external TTL signal to gate the
scan clock on and off, effectively pausing and resuming an acquisition.

Channel clock and scan clock are the same on the NB-MIO-16. Therefore, if the scan
clock gate becomes FALSE, the current scan does not complete and the scan clock ceases
operation. When the scan clock gate becomes TRUE, the scan clock immediately begins
operation again, where it left off previously. You wire your signal to the EXTGATE pin.

A trigger type of 5 (analog scan clock gating) enables an external analog signal to gate
the scan clock on and off, effectively pausing and resuming an acquisition. A trigger type
of 6 allows you to use the output of the analog trigger circuitry (ATCOUT) as a general
purpose signal. For example, you can use ATCOut to start an analog output operation, or
you can count the number of analog triggers appearing at ATCOut.

Note: Trigger types 1, 5, and 6 on E Series devices use the same analog trigger

circuitry. All three types can be enabled at the same time, but the last one

enabled dictates how the analog trigger circuitry behaves. The

E Series restrictions described in the trigger applications apply to all three

trigger types.

Trigger type 5 on E Series devices uses the digital scan clock gate and the analog trigger
circuitry. Therefore, enabling trigger type 5 overwrites any settings made for trigger type
4.

For some devices, digital triggering is supported, but for these devices the source is
predetermined. Therefore, the trigger source parameter is invalid. Table 17-9 shows the
pin names on the I/O connector to which you should connect your digital trigger signal.

Table 17-9. Digital Trigger Sources for Devices with Fixed Digital Trigger Sources

Device
Posttriggering Pretriggering

Start
Trigger Pin

Start
Trigger Pin

Stop
Trigger Pin

MIO-16L/H, MIO-16DL/DH STARTTRIG* STARTTRIG* STOPTRIG

NB-MIO-16L/H STARTTRIG* no support no support

AT-MIO-16X, AT-MIO-16F-5,
AT-MIO-64F-5

EXTTRIG* EXTTRIG* EXTTRIG*

Lab and 1200 Series devices EXTTRIG no support EXTTRIG

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-19 LabVIEW Function and VI Reference Manual

Table 17-10 lists the default settings and ranges for the AI Trigger Config VI. The first
row of each table gives the values for most devices, and the other rows give the values
for devices that are exceptions to the rule.

PC-LPM-16, DAQCard-500,
DAQCard-700

no support no support no support

AT-DSP2200, EISA-A2000,
AT-A2150, NB-A2000,
NB-A2100, NB-A2150

EXTTRIG* no support EXTTRIG*

* On the AT-MIO-16X, AT-MIO-16F-5, and AT-MIO-64F-5, the same pin is used for
both the start trigger and the stop trigger. Refer to your hardware user manual for more
details

Table 17-10. Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 1

Device
Trigger

Type Mode

Trigger or
Pause

Condition Level

DS* R* DS* R* DS* R* DS* R*

Most Devices 2 2, 3 1 1≤n≤ 3 no support no support

AT-MIO-16E-10,
AT-MIO-16DE-10,
AT-MIO-16XE-50,
PCI-MIO-16XE-50

2 2≤n≤4 1 1≤n≤ 3 1 1, 2, 7,
8

no support

AT-MIO-16E-2,
AT-MIO-64E-3,
NEC-MIO-16E-4

2 1≤n≤6 1 1≤n ≤3 1 1≤n≤8 0 –10
≤n≤
10

Lab and 1200
Series devices

2 2 1 1≤n≤ 3 no
 support

no
support

Table 17-9. Digital Trigger Sources for Devices with Fixed Digital Trigger Sources (Continued)

Device
Posttriggering Pretriggering

Start
Trigger Pin

Start
Trigger Pin

Stop
Trigger Pin

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-20 © National Instruments Corporation

PC-LPM-16,
DAQCard-500,
DAQCard-700

no support no support no support no support

AT-DSP2200,
AT-A2150,
NB-A2100,
NB-A2150

1 1, 2 1 1≤n≤3 1 1, 2 0 –2.828
≤n≤

2.828

EISA-A2000,
NB-A2000

1 1, 2 1 1≤n ≤3 1 1, 2 0 –5.12
≤n≤
5.12

* DS = Default Setting; R = Range

Table 17-11. Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 2

Device
Trigger Source

(Analog)

Additional Trigger Specifications
Cluster

Window Size Coupling

Default
Setting Range

Default
Setting Range

Default
Setting Range

AT-MIO-16E-2
NEC-MIO-16E-4

0 0≤n≤15,
PFI0

0 0≤n≤20 no support

AT-MIO-64E-3 0 0≤n≤63,
PFI0

0 0≤n≤20 no support

EISA-A2000,
NB-A2000

0 0 ≤n≤ 3 no support 2 1, 2

AT-A2150,
NB-A2100, NB-A2150

0 0 ≤n ≤3 0 0 ≤n≤
5.656

1 1, 2

Table 17-10. Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 1 (Continued)

Device
Trigger

Type Mode

Trigger or
Pause

Condition Level

DS* R* DS* R* DS* R* DS* R*

Chapter 17 Advanced Analog Input VIs

© National Instruments Corporation 17-21 LabVIEW Function and VI Reference Manual

AT-DSP2200 0 0, 1 0 0 ≤n≤
5.656

1 1, 2

All Other Devices, no support no support no support

Device Trigger Source (Digital)

DS R

E Series Start Trigger PFI0 PFI 0~9, RTSI 0~6, GPCTR0

E Series Stop Trigger PFI1 PFI 0~9, RTSI 0~6

E Series Digital Scan Clock Gate PFI0 PFI 0~9, RTSI 0~6

All Other Devices no support*

* See Table 17-9 for devices with fixed digital trigger sources.

Table 17-12. Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 4

Device

Additional Trigger Specifications
Cluster

Delay Skip
Count

Time
Limit

DS R DS R DS R

EISA-A2000, NB-A2000 0 0≤n≤655.35 no
support

no
support

AT-A2150 0 0≤n≤2.05 no
support

no
support

Table 17-11. Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 2 (Continued)

Device
Trigger Source

(Analog)

Additional Trigger Specifications
Cluster

Window Size Coupling

Default
Setting Range

Default
Setting Range

Default
Setting Range

Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-22 © National Instruments Corporation

NB-A2100, NB-A2150S 0 0≤n≤32.77 no
support

no
support

NB-A2150C 0 0≤n≤16.38 no
support

no
support

NB-A2150F 0 0≤n≤17.05 no
support

no
support

AT-DSP2200 0 no support no
support

no
support

All Other Devices no support no
support

no
support

Table 17-12. Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 4 (Continued)

Device

Additional Trigger Specifications
Cluster

Delay Skip
Count

Time
Limit

DS R DS R DS R

© National Instruments Corporation 18-1 LabVIEW Function and VI Reference Manual

Chapter

18Easy Analog Output VIs

This chapter describes the Easy Analog Output VIs in LabVIEW, which
perform simple analog output operations. You can run these VIs from
the front panel or use them as subVIs in basic applications.

You can access the Easy Analog Output VIs by choosing
Functions»Data Acquisition»Analog Output. The Easy Analog Output
VIs are the VIs on the top row of the Analog Output palette, as shown
below.

Easy Analog Output VI Descriptions

The following Easy Analog Output VIs are available.

AO Generate Waveform
Generates a voltage waveform on an analog output channel at the specified update rate.

The AO Generate Waveform VI generates a multipoint voltage waveform on a specified
analog output channel. If an error occurs, a dialog box appears, giving you the option to
stop the VI or continue.

Easy Analog Output VIs

Chapter 18 Easy Analog Output VIs

LabVIEW Function and VI Reference Manual 18-2 © National Instruments Corporation

AO Generate Waveforms
Generates multiple voltage waveforms on the specified analog output channels at the
specified update rate.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers you can use
with your DAQ device.

AO Update Channel
Writes a specified voltage value to an analog output channel.

The AO Update Channel VI writes a single update to an analog output channel. If an error
occurs, a dialog box appears, giving you the option to stop the VI or continue.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and output
limits available with your DAQ device.

AO Update Channels
Writes voltage values to each of the specified analog output channels.

The AO Update Channels VI updates multiple analog output channels with single voltage
values. If an error occurs, a dialog box appears, giving you the option to stop the VI or
continue.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers you can use
with your DAQ device.

© National Instruments Corporation 19-1 LabVIEW Function and VI Reference Manual

Chapter

19
Intermediate
Analog Output VIs

This chapter describes the Intermediate Analog Output VIs. These
VIs—AO Write One Update, AO Waveform Gen, and AO Continuous
Gen—are single VI solutions to common analog output problems. The
intermediate-level VIs are convenient, but they lack flexibility. Because
all the VIs in this chapter rely on the advanced layer, you can refer to
Chapter 21, Advanced Analog Output VIs, for additional information on
the inputs and outputs and how they work.

You can access the Intermediate Analog Output VIs by choosing
Functions»Data Acquisition»Analog Output. The Intermediate Analog
Output VIs are the VIs on the second row of the Analog Output palette,
as shown below.

Handling Errors

LabVIEW makes error handling easy with the Intermediate Analog
Output VIs. Each intermediate-level VI has an error in input cluster
and an error out output cluster. The clusters contain a Boolean that
indicates whether an error occurred, the error code for the error, and the
name of the VI that returned the error. If error in indicates an error, the
VI returns the error information in error out and does not continue
to run.

Intermediate
Analog Output VIs

Chapter 19 Intermediate Analog Output VIs

LabVIEW Function and VI Reference Manual 19-2 © National Instruments Corporation

Note: The AO Clear VI is an exception to this rule—this VI always clears the

acquisition regardless of whether error in indicates an error.

When you use any of the Intermediate Analog Output VIs in a While
Loop, you should stop the loop if the status in the error out cluster
reads TRUE. If you wire the error cluster to the General Error Handler
VI, the VI deciphers the error information and describes the error to
you.

The General Error Handler VI is in Functions»Time and Dialog in
LabVIEW. For more information on this VI, refer to your LabVIEW

User Manual.

Analog Output VI Descriptions

The following Analog Output VIs are available.

AO Clear
Clears the analog output task associated with taskID in.

The AO Clear VI always clears the generation regardless of whether error in indicates
an error.

AO Config
Configures the channel list and output limits, and allocates a buffer for analog output
operation.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges and output
limits available with your DAQ device.

Chapter 19 Intermediate Analog Output VIs

© National Instruments Corporation 19-3 LabVIEW Function and VI Reference Manual

AO Start
Starts a buffered analog output operation. This VI sets the update rate and then starts the
generation.

AO Wait
Waits until the waveform generation of the task completes before returning.

Use the AO Wait VI to wait for a buffered, finite waveform generation to finish before
calling the AO Clear VI. The AO Wait VI checks the status of the task at regular intervals
by calling the AO Write VI and checking its generation complete output. The AO Wait
VI waits asynchronously between intervals to free the processor for other operations. The
VI calculates the wait interval by dividing the check every N updates input by the update
rate. You should not use the AO Wait VI when you generate data continuously, because
the generation never finishes. The AO Clear VI stops a continuous waveform generation.

AO Write
Writes data into the buffer for a buffered analog output operation.

© National Instruments Corporation 20-1 LabVIEW Function and VI Reference Manual

Chapter

20Analog Output Utility VIs

This chapter describes the Analog Output Utility VIs. The VIs—AO
Continuous Generation, AO Waveform Generation, and AO Write One
Update—are single-VI solutions to common analog output problems.
The Analog Output Utility VIs are intermediate-level VIs, so they rely
on the advanced-level VIs. You can refer to Chapter 21, Advanced

Analog Output VIs, for additional information on the inputs and outputs
and how they work.

You can access the Analog Output Utilities palette by choosing
Functions»Data Acquisition»Analog Output»Analog Output Utilities.
The icon that you must select to access the Analog Output Utility VIs is
on the bottom row of the Analog Output palette, as shown below.

Handling Errors

LabVIEW makes error handling easy with the intermediate-level
Analog Output Utility VIs. Each intermediate-level VI has an error in
input cluster and an error out output cluster. The clusters contain a
Boolean that indicates whether an error occurred, the error code for the
error, and the name of the VI that returned the error. If error in
indicates an error, the VI returns the error information in error out and
does not continue to run.

Analog Output Utility VIs

Chapter 20 Analog Output Utility VIs

LabVIEW Function and VI Reference Manual 20-2 © National Instruments Corporation

When you use any of the Analog Output Utility VIs in a While Loop,
you should stop the loop if the status in the error out cluster reads
TRUE. If you wire the error cluster to the General Error Handler VI, the
VI deciphers the error information and describes the error to you.

The General Error Handler VI is in Functions»Utilities in LabVIEW.
For more information on this VI, refer to your LabVIEW User Manual.

Analog Output Utility VI Descriptions

The following Analog Output Utility VIs are available.

AO Continuous Gen
Generates a continuous, timed, circular-buffered waveform for the given output channels
at the specified update rate. The VI updates the output buffer continuously as it generates
the data. If you simply want to generate the same data continuously, use the AO
Waveform Gen VI instead.

You use the AO Continuous Gen VI when your waveform data resides
on disk and is too large to hold in memory, or when you must create
your waveform in real time. Place the VI in a While Loop and wire the
iteration terminal to the VI iteration input.

Note: If your program iterates more than 231–1 times, do not wire this VI

iteration terminal to the loop iteration terminal. Instead, set iteration to 0

on the first loop, then to any positive value on all other iterations. The VI

reconfigures and restarts if iteration ≤0.

Also wire the condition that terminates the loop to the VI's clear acquisition input,
inverting the signal if necessary so that it is TRUE on the last iteration. On iteration 0, the
VI calls the AO Config VI to configure the channel group and hardware and to allocate
a buffer for the data. It also calls the AO Write VI to write the given voltage data into the
buffer, and then the AO Start VI to set the update rate and start the signal generation. On
each subsequent iteration, the VI calls the AO Write VI to write the next portion of data

iteration
terminal

Chapter 20 Analog Output Utility VIs

© National Instruments Corporation 20-3 LabVIEW Function and VI Reference Manual

into the buffer at the current write position. On the last iteration (when clear generation
is TRUE) or if an error occurs, the VI also calls the AO Clear VI to clear any generation
in progress. Although it is not normally necessary, you can call the AO Continuous Gen
VI outside of a loop (that is, to call it only once). But if you do, leave the iteration and
clear generation inputs unwired.

The first call to the AO Write VI sets allow regeneration to TRUE, so that the same data
can be generated more than once. If you change allow regeneration to FALSE, you must
write new data fast enough that new data is always available to be generated. If you do
not fill the buffer fast enough, you get a regeneration error. To correct this problem,
decrease the update rate, increase the buffer size, increase the amount of data written
each time, or write data more often.

(Windows) If you set allow regeneration to FALSE, and your device has an analog output
FIFO, your buffer size must be at least twice as big as your FIFO.

If an error occurs, the VI calls the AO Clear VI to clear any generation in progress, then
passes the unmodified error information to error out. If an error occurs inside the AO
Continuous Gen VI, the AO Clear VI clears any generation in progress and passes its
error information out.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges and output
limits available with your DAQ device.

Note: The AO Continuous Gen VI uses an uninitialized shift register as local

memory to remember the taskID of the output operation between calls. You

normally use this VI in one place on a diagram, but if you use it in more

than one place, the multiple instances of the VI share the same taskID. All

calls to this VI configure, write data, or clear the same generation.

Occasionally, you may want to use this VI in multiple places on the

diagram but have each instance refer to a different taskID (for example,

when you want to generate waveforms with two devices simultaneously).

Save a copy of this VI with a new name (for example, AO Continuous Gen

R) and make your new VI reentrant.

AO Waveform Gen
Generates a timed, simple-buffered or circular-buffered waveform for the given output
channels at the specified update rate. Unless you perform indefinite generation, the VI
returns control to the LabVIEW diagram only when the generation completes.

Chapter 20 Analog Output Utility VIs

LabVIEW Function and VI Reference Manual 20-4 © National Instruments Corporation

If you place this VI in a loop to generate multiple waveforms with the
same group of channels, wire the iteration terminal to the VI iteration
input.

Note: If your program iterates more than 231–1 times, do not wire this VI

iteration terminal to the loop iteration terminal. Instead, set the iteration

value to 0 on the first loop, then to any positive value on all other iterations.

The VI reconfigures and restarts if iteration ≤0.

On iteration 0, the VI calls the AO Config VI to configure the channel group and
hardware and to allocate a buffer for the data. On each iteration, the VI calls the AO Write
VI to write the data into the buffer, then the AO Start VI to set the update rate and start
the generation. If you call the AO Waveform Gen VI only once, you can leave iteration
unwired. The iteration parameter defaults to 0, which tells the VI to configure the device
before starting the waveform generation.

If an error occurs, the VI calls the AO Clear VI to clear any generation in progress, then
passes the error information unmodified through error out. If an error occurs inside the
AO Waveform Gen VI, it clears any generation in progress and passes its error
information out.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, output limits,
and scanning order available with your DAQ device.

Note: The AO Waveform Gen VI uses an uninitialized shift register as local

memory to remember the taskID of the output operation between calls. You

normally use this VI in one place on your diagram, but if you use it in

multiple places, all instances of the VI share the same taskID. All calls to

this VI configure, write data, or clear the same generation. Occasionally,

you may want to use this VI in multiple places on the diagram, but have

each instance refer to a different taskID. Save a copy of this VI with a new

name (for example, AO Waveform Gen R) and make the new VI reentrant.

AO Write One Update
Writes a single voltage value to each of the specified analog output channels.

iteration
terminal

Chapter 20 Analog Output Utility VIs

© National Instruments Corporation 20-5 LabVIEW Function and VI Reference Manual

The AO Write One Update VI performs an immediate, untimed update
of a group of one or more channels. If you place the VI in a loop to write
more than one value to the same group of channels, wire the iteration
terminal to the VI iteration input.

Note: If your program iterates more than 231–1 times, do not wire this VI

iteration terminal to the loop iteration terminal. Instead, set the iteration

value to 0 on the first loop, then to any positive value on all other iterations.

The VI reconfigures and restarts if iteration ≤0.

On iteration 0, the VI calls the AO Config VI to configure the channel group and
hardware, then calls the AO Single Update VI to write the voltage to the output channels.
On future iterations, the VI calls only the AO Single Update VI, avoiding unnecessary
configuration. If you call the AO Write One Update VI only once to write a single value
to each channel, leave the iteration input unwired. Its default value of 0 tells the VI to
perform the configuration before writing any data.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, output limits,
and scanning order available with your DAQ device.

Note: The AO Write One Update VI uses an uninitialized shift register as local

memory to remember the taskID for the group of channels when calling

between VIs. Usually, this VI appears in one place on your diagram.

However, if you use it in more than one place, the multiple instances of the

VI share the same taskID. All calls to this VI configure or write data to the

same group. If you want to use this VI in more than one place on your

diagram, and want each instance to refer to a different taskID (for

example, to write data with two devices at the same time), you should save

a copy of this VI with a new name (for example, AO Write One Update R)

and make your new VI reentrant.

iteration
terminal

© National Instruments Corporation 21-1 LabVIEW Function and VI Reference Manual

Chapter

21Advanced Analog Output VIs

This chapter contains reference descriptions of the Advanced Analog
Output VIs. These VIs are the interface to the NI-DAQ software and are
the foundation of the Easy, Utility and Intermediate Analog Output VIs.

You can access the Advanced Analog Output palette by choosing
Functions»Data Acquisition»Analog Output»Advanced Analog
Output. The icon that you must select to access the Advanced Analog
Output VIs is on the bottom row of the Analog Output palette, as shown
below.

Advanced Analog Output VI Descriptions

The following Advanced Analog Output VIs are available.

AO Buffer Config
Allocates memory for an analog output buffer. If you are using interrupts, you can
allocate a series of analog output buffers and assign them to a group by calling the AO
Buffer Config VI multiple times. Each buffer can have its own size. If you are using
DMA, you may allocate only one buffer.

Note: (Macintosh) If you are using the NB-A2100 with the NB-DMA2800, the AO

Buffer Write VI restricts the amount of data that can be put into the VI to

one-half of the buffer size specified in the AO Buffer Config VI.

Advanced
Analog Output VIs

Chapter 21 Advanced Analog Output VIs

LabVIEW Function and VI Reference Manual 21-2 © National Instruments Corporation

Use the number you assign to the buffer with this VI when you need to refer to this buffer
for other VIs.

AO Buffer Write
Writes analog output data to buffers created by the AO Buffer Config VI.

You wire the new data to one of three inputs—voltage/current data, binary data, or
DSP memory handle. The VI searches these inputs in that order for the first array with
a length greater than zero. The VI then writes the data from this array to the output buffer.
The length of the voltage/current data or binary data arrays determines the number of
updates the VI writes. If DSP memory handle points to the source of the data, updates
to write must indicate how many updates the VI is to write. When no data is wired, this
VI is still useful for reporting update progress information.

The total number of updates written to a buffer before you start it can be less than the
number of updates you allocated the buffer to hold when you called the AO Buffer Config
VI. LabVIEW generates only the updates written to the buffer.

Chapter 21 Advanced Analog Output VIs

© National Instruments Corporation 21-3 LabVIEW Function and VI Reference Manual

AO Clock Config
Configures an update or interval clock for analog output.

Refer to Appendix A, DAQ Hardware Capabilities, for the clocks available with your
DAQ device.

You can express clock rates three ways—with ticks per second, seconds per tick, or the
three timebase parameters. The VI searches these parameters in that order and expresses
clock rates on the first parameter with a wired valid input. When you configure an update
clock, one tick equals one update. When you configure the interval clock, one tick equals
one interval.

AO Control
Starts, pauses, resumes, and clears analog output tasks.

AO Group Config
Assigns a list of analog output channels to a group number and produces the taskID that
all the other analog output VIs use.

Refer to Appendix A, DAQ Hardware Capabilities, for the channels available with your
DAQ device.

Chapter 21 Advanced Analog Output VIs

LabVIEW Function and VI Reference Manual 21-4 © National Instruments Corporation

AO Hardware Config
Configures the reference voltage level, output polarity, and the unit of measure for the
data of a given channel (volts or milliamperes). This VI always returns the current
settings for all the channels in the group.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, and output
limits available with your DAQ device.

AO Parameter
Sets miscellaneous parameters associated with the Analog Output operation of the
devices that are not covered with other Analog Output VIs.

AO Single Update
Performs an immediate update of the channels in the group.

Chapter 21 Advanced Analog Output VIs

© National Instruments Corporation 21-5 LabVIEW Function and VI Reference Manual

AO Trigger and Gate Config (Windows)
Configures the trigger and gate conditions for analog output operations on E Series
devices 5411 devices.

© National Instruments Corporation 22-1 LabVIEW Function and VI Reference Manual

Chapter

22Easy Digital I/O VIs

This chapter describes the Easy Digital I/O VIs, which perform simple
digital I/O operations. You can run these VIs from the front panel or use
them as subVIs in basic applications.

Access the Easy Digital I/O VIs by choosing Functions»Data
Acquisition»Digital I/O.

The Easy Digital I/O VIs are the VIs on the top row of the Digital I/O
palette. For examples of how to use the Easy Digital I/O VIs, open the
example library by opening examples\daq\digital\digital.llb.

Note: You must define the high and low limit settings for your board when using

the Easy I/O DAQ VIs.

Easy Digital I/O Descriptions

The following Easy Digital I/Os are available.

Chapter 22 Easy Digital I/O VIs

LabVIEW Function and VI Reference Manual 22-2 © National Instruments Corporation

Read from Digital Line
Reads the logical state of a digital line on a port that you configure.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note: When you call this VI on a digital I/O port that is part of an 8255 PPI when

your iteration terminal is left at 0, the 8255 PPI goes through a

configuration phase, where all the ports within the same PPI chip get reset

to logic low, regardless of the data direction. The data direction on other

ports, however, is maintained. To avoid this effect, connect a value other

than 0 to the iteration terminal once you have configured the desired ports.

Read from Digital Port
Reads a digital port that you configure.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note: When you call this VI on a digital I/O port that is part of an 8255 PPI when

your iteration terminal is left at 0, the 8255 PPI goes through a

configuration phase, where all the ports within the same PPI chip get reset

to logic low, regardless of the data direction. To avoid this effect, connect

a value other than 0 to the iteration terminal once you have configured the

desired ports.

Chapter 22 Easy Digital I/O VIs

© National Instruments Corporation 22-3 LabVIEW Function and VI Reference Manual

Write to Digital Line
Sets the output logic state of a digital line to high or low on a digital port that you specify.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note: When you call this VI on a digital I/O port that is part of an 8255 PPI when

your iteration terminal is left at 0, the 8255 PPI goes through a

configuration phase, where all the ports within the same PPI chip get reset

to logic low, regardless of the data direction. The data direction on other

ports, however, is maintained. To avoid this effect, connect a value other

than 0 to the iteration terminal once you have configured the desired ports.

Write to Digital Port
Outputs a decimal pattern to a digital port that you specify.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note: When you call this VI on a digital I/O port that is part of an 8255 PPI when

your iteration terminal is left at 0, the 8255 PPI goes through a

configuration phase, where all the ports within the same PPI chip get reset

to logic low, regardless of the data direction. The data direction on other

ports, however, is maintained. To avoid this effect, connect a value other

than 0 to the iteration terminal once you have configured the desired ports.

© National Instruments Corporation 23-1 LabVIEW Function and VI Reference Manual

Chapter

23Intermediate Digital I/O VIs

This chapter describes the Intermediate Digital I/O VIs. These VIs are
single VI solutions to common digital problems.

For example, the DIO Single Read/Write VI is a single VI solution for
non-buffered reads and writes to the ports in your group. The DIO
Single Read/Write VI works with any device with digital ports.

You combine the other VIs—DIO Config, DIO Start, DIO Read, DIO
Write, DIO Wait, and DIO Clear—to build more demanding
applications using buffered digital reads and writes. Your device must
support handshaking to use this group of VIs, with the exception of the
DIO Single Read/Write VI.

All the VIs described in this chapter are built from the fundamental
building block layer, the advanced-level VIs.

You can access the Intermediate Digital I/O VIs by choosing
Functions»Data Acquisition»Digital I/O. The Intermediate Digital I/O
VIs are the VIs on the second and third rows of the Digital palette, as
shown below.

Intermediate
Digital I/O VIs

Chapter 23 Intermediate Digital I/O VIs

LabVIEW Function and VI Reference Manual 23-2 © National Instruments Corporation

Handling Errors

LabVIEW makes error handling easy with the Intermediate Digital I/O
VIs. Each intermediate-level VI has an error in input cluster and an
error out output cluster. The clusters contain a Boolean that indicates
whether an error occurred, the error code for the error, and the name of
the VI that returned the error. If error in indicates an error, the VI
returns the error information in error out and does not continue to run.

Note: The DIO Clear VI is an exception to this rule—this VI always clears the

acquisition regardless of whether error in indicates an error.

When you use any of the Intermediate Digital I/O VIs in a While Loop,
you should stop the loop if the status in the error out cluster reads
TRUE. If you wire the error cluster to the General Error Handler VI, the
VI deciphers the error information and describes the error to you.

The General Error Handler VI is in Functions»Time and Function in
LabVIEW. For more information on this VI, refer to your LabVIEW

User Manual.

Intermediate Digital I/O VI Descriptions

The following Intermediate Digital I/O VIs are available.

DIO Clear
Calls the Digital Group Buffer Control VI to halt a transfer and clear the group.

DIO Config
The DIO Config VI calls the advanced Digital Group Config VI to assign a list of ports
to the group, establish the group's direction, and produce the taskID. The VI then calls
the Digital Mode Config VI to establish the handshake parameters, which only affect the

Chapter 23 Intermediate Digital I/O VIs

© National Instruments Corporation 23-3 LabVIEW Function and VI Reference Manual

operation of the DIO-32 devices. Finally, the VI calls the Digital Buffer Config VI to
allocate a buffer to hold the scans as they are read or the updates to be written.

Refer to Appendix A, DAQ Hardware Capabilities, for the ports and directions available
with your DAQ device.

DIO Read
Calls the Digital Buffer Read VI to read data from the internal transfer buffer and returns
the data read in pattern.

DIO Single Read/Write
Reads or writes digital data to the ports specified in the port list. This single VI configures
and transfers data. When you use this VI in a loop, wire the iteration counter to the
iteration input so that port configuration takes place only once.

Chapter 23 Intermediate Digital I/O VIs

LabVIEW Function and VI Reference Manual 23-4 © National Instruments Corporation

DIO Start
Starts a buffered digital I/O operation. This VI calls the Digital Clock Config VI to set
the clock rate if the internal clock produces the handshake signals, and then starts the data
transfer by calling the Digital Buffer Control VI.

DIO Wait
Waits until the digital buffered input or output operation completes before returning. For
input, the VI detects completion when the acquisition state returned by the Digital Buffer
Read VI finishes with or without backlog. For output, the VI detects completion when
the generation complete indicator of the DIO Write VI is TRUE.

Refer to Appendix A, DAQ Hardware Capabilities, for the handshake modes available
with your DAQ device.

DIO Write
Calls the Digital Buffer Write VI to write to the internal transfer buffer.

(Macintosh) You must fill the buffer with data before you use the DIO Start VI to begin the
digital output operation. You can call the DIO Write VI after the transfer begins to
retrieve status information.

© National Instruments Corporation 24-1 LabVIEW Function and VI Reference Manual

Chapter

24Advanced Digital I/O VIs

This chapter describes the Advanced Digital I/O VIs, which include the
digital port and digital group VIs. You use the digital port VIs for
immediate reads and writes to digital lines and ports. You use the digital
group VIs for immediate, handshaked, or clocked I/O for multiple ports.
These VIs are the interface to the NI-DAQ software and the foundation
of the Easy and Intermediate Digital I/O VIs.

You can access the Advanced Digital I/O palette by choosing
Functions»Data Acquisition»Digital I/O»Advanced Digital I/O. The
icon that you must select to access the Advanced Digital I/O VIs is on
the bottom row of the Digital I/O palette, as shown below.

Digital Port VI Descriptions

The digital port VIs perform immediate digital reads and writes only.

Advanced
Digital I/O VIs

Chapter 24 Advanced Digital I/O VIs

LabVIEW Function and VI Reference Manual 24-2 © National Instruments Corporation

DIO Port Config
Establishes a port configuration. You can use the taskID that this VI returns only in
digital port VIs.

Refer to Appendix A, DAQ Hardware Capabilities, for the ports and directions available
with your DAQ device.

Table 24-1 shows the physical port widths you can use.

Table 24-1. Physical Port Widths of Digital Ports

Device Ports Physical Port Width

MIO-16L/H 0, 1 4 bits

AT-MIO-16D 0, 1
2, 3, 4

4 bits
8 bits

Most E Series Devices 0 8 bits

AT-MIO-10DE-10 0, 2, 3, 4 8 bits

AT-AO-6/10 0, 1 4 bits

PC-TIO-10, NB-TIO-10, AO-2DC Devices 0, 1 8 bits

PC-LPM-16, PC-LPM-16PnP,
DAQCard-700

0, 1 8 bits (cannot be combined)

DAQCard-500, 516 Devices 0, 1 4 bits

Lab and 1200 Series Devices, DIO-24
Devices

0, 1, 2 8 bits

DIO-96 Devices 0 through 11 8 bits

AT-DIO-32F, NB-DIO-32F 0 through 3 8 bits

4 3 bits (cannot be combined)

Chapter 24 Advanced Digital I/O VIs

© National Instruments Corporation 24-3 LabVIEW Function and VI Reference Manual

DIO Port Read
Reads the port identified by taskID and returns the pattern read in pattern.

DIO Port Write
Writes the value in pattern to the port identified by taskID.

Digital Group VI Descriptions

The digital group VIs perform immediate, handshaked, or clocked digital I/O.

Digital Buffer Config
Allocates memory for a digital input or output buffer.

DIO32HS

SCXI-1160 0 16 bits

SCXI-1161 0 8 bits

SCXI-1162, SCXI-1162HV, SCXI-1163,
SCXI-1163R

0 32 bits

Table 24-1. Physical Port Widths of Digital Ports (Continued)

Device Ports Physical Port Width

Chapter 24 Advanced Digital I/O VIs

LabVIEW Function and VI Reference Manual 24-4 © National Instruments Corporation

Digital Buffer Control
 Starts an input or output operation.

Digital Buffer Read
Returns digital input data from the internal data buffer.

Digital Buffer Write
Writes digital output data to the buffer created by the Digital Buffer Config VI. The write
always begins at the write mark. After a write, the write mark points to the update
following the last update written.

(Macintosh) Fill the buffer with data before you use the Digital Buffer Control VI to begin
the digital output operation. You can call the Digital Buffer Write VI after the transfer
begins to retrieve status information.

The total number of updates written to a buffer before you start it can be less than the
number of updates you allocated the buffer to hold when you called the Digital Buffer
Config VI. The VI generates only the updates written to the buffer.

Chapter 24 Advanced Digital I/O VIs

© National Instruments Corporation 24-5 LabVIEW Function and VI Reference Manual

Digital Clock Config
Configures a DIO-32 device to produce handshake signals based on the output of a clock
for timed digital I/O.

Refer to Appendix A, DAQ Hardware Capabilities, for the clocks available with your
DAQ device.

The following example illustrates how to use the three timebase parameters to specify a
clock rate. Assume these parameters have the following settings:

timebase source: 1
timebase signal: 1,000,000.0 Hz
timebase divisor: 25

In this case, the ticks per second rate is 1,000,000.0 divided by 25, so LabVIEW updates
the digital group 40,000 times per second.

Digital Group Config
Defines a digital input or output group. You can use the taskID this VI returns only in
the digital group VIs.

Refer to Appendix A, DAQ Hardware Capabilities, for the ports and directions available
with your DAQ device.

Note: The same port cannot belong to two different groups. If you configure a

group to use a specified port, that port must be one that is not already

defined in another group or you will get an error.

MIO devices (except for the AT-MIO-16D and the AT-MIO-16DE-10), as well as the
NB-TIO-10, LPM devices, DAQCard-500, 516 devices, DAQCard-700, PC-TIO-10,
AO-2DC devices, PC-OPDIO-16, and AT-AO-6/10, do not allow handshaking. The
digital port VIs are more appropriate for these devices. The AT-MIO-16D and

Chapter 24 Advanced Digital I/O VIs

LabVIEW Function and VI Reference Manual 24-6 © National Instruments Corporation

AT-MIO-16DE-10 do not allow handshaking if port list includes ports 0, 1, and/or 4. The
DIO-96 devices do not allow handshaking if port list includes ports 2, 5, 8, and/or 11.
The DIO-24 and Lab and 1200 Series devices do not allow handshaking if port list
includes port 2. The DIO-32F allows handshaking for the following configurations only:

• A group containing any one port

• A group containing ports 0 and 1, or ports 2 and 3, in that order

• A group containing ports 0, 1, 2, and 3, in that order

Digital Mode Config
Configures the handshaking characteristics for DIO-32 devices.

Refer to Appendix A, DAQ Hardware Capabilities, for the handshake modes available
with your DAQ device.

DIO Parameter
Configures and retrieves miscellaneous parameters associated with digital input and
output that are not configured by other DIO VIs.

Chapter 24 Advanced Digital I/O VIs

© National Instruments Corporation 24-7 LabVIEW Function and VI Reference Manual

Table 24-2 lists device specific parameters and legal ranges for devices.

Digital Single Read
Reads the ports that belong to the group identified by taskID and returns the
patterns read.

Digital Single Write
Writes the data in pattern array to the ports that belong to the group identified by
taskID.

Digital Trigger Config
Configures the trigger condition for starting and/or stopping a digital pattern generation
operation. This VI is only valid when the Digital Clock Config VI has its handshake
source parameter set to 1 or 4 (internal or external pattern generation w/ external clock).

Table 24-2. Device specific parameters and legal ranges for devices

Device
Parameter

Name Support
Setting
Possible

Input/output
you should

use
Legal
Values

Default
Value

VXI-DI
O-128

0: Input
Port Logic
Threshold

per input
port

yes channels,
float in, float
out

N/A N/A

© National Instruments Corporation 25-1 LabVIEW Function and VI Reference Manual

Chapter

25Easy Counter VIs

The Easy Counter VIs perform simple counting operations. You can run
these VIs from the front panel or use them as subVIs in basic
applications.

You can access the Easy Counter VIs by choosing Functions»Data
Acquisition»Counter. The Easy Counter VIs are the VIs on the top row
of the Counter palette.

This chapter describes the high-level VIs for programming counters on
the MIO, TIO, and other devices with the Am9513 or DAQ-STC
counter/timer chips. These VIs call the Intermediate Counter VIs to
generate a single delayed TTL pulse, a finite or continuous train of
pulses, and to measure the frequency, pulse width, or period of a
TTL signal.

Note: These VIs do not work with Lab and 1200 Series devices, DAQCards, and

other devices that have the 8253 chip. Use the intermediate-level ICTR

Control for those devices. Refer to Chapter 26, Intermediate Counter VIs

for more information on the ICTR Control VI.

Some of these VIs use other counters in addition to the one specified.
In this case, a logically adjacent counter is chosen, which is referred to
as counter+1 when it is the adjacent, logically higher counter and
counter–1 when it is the adjacent, logically lower counter.

For a device with the Am9513 chip, if the counter is 1, then counter+1
is counter 2 and counter–1 is counter 5.

Chapter 25 Easy Counter VIs

LabVIEW Function and VI Reference Manual 25-2 © National Instruments Corporation

See the Adjacent Counters VI described in Chapter 26, Intermediate

Counter VIs, for more information.

For examples of how to use the Easy Counter VIs, open the example
library by opening examples\daq\counter\counter.llb.

Easy Counter VI Descriptions

The following Easy Counter VIs are available.

Count Events or Time
Configures one or two counters to count external events or elapsed time. An external
event is a high or low signal transition on the specified SOURCE pin of the counter.

To count events, set the event source/timebase to 0.0 and connect the signal you want to
count to the SOURCE pin of the counter. To count time, set this control to the timebase
frequency you want to use.

Generate Delayed Pulse
Configures and starts a counter to generate a single pulse with the specified delay and
pulse width on the counter’s OUT pin. A single pulse consists of a delay phase (phase 1),
followed by a pulse phase (phase 2), and than a return to the phase 1 level. If an internal
timebase is chosen, the VI selects the highest resolution timebase for the counter to
achieve the desired characteristics. If an external timebase signal is chosen, the user
indicates the delay and width as cycles of that signal. Execute the Counter Start VI with
this VI’s taskID to generate another pulse. You can optionally gate or trigger the pulse
with a signal on the counter’s GATE pin.

Chapter 25 Easy Counter VIs

© National Instruments Corporation 25-3 LabVIEW Function and VI Reference Manual

Generate Pulse Train
Configures the specified counter to generate a continuous pulse train on the counter's
OUT pin, or to generate a finite-length pulse train using the specified counter and an
adjacent counter. The signal has the prescribed frequency, duty cycle, and polarity. Each
cycle of the pulse train consist of a delay phase (phase 1) followed by a pulse phase
(phase 2).

This VI uses only the specified counter to generates a continuous pulse. For a
finite-length pulse, the VI also uses counter–1 to generate a minimum-delayed pulse to
gate counter. To generate another pulse train, execute the intermediate Counter Start VI
with the taskIDs supplied by this VI. To stop a continuous pulse train, execute the
intermediate Counter Stop VI or execute this counter again to generate one, short pulse.
You must externally wire counter–1’s OUT pin to counter's GATE pin for a finite-length
pulse train. You can optionally gate or trigger the start of the train with a signal on the
counter–1’s GATE pin.

Note: A pulse train consists of a series of delayed pulses, where phase 1 or the

first phase of each pulse is the inactive state of the output (low for a high

pulse) and the phase 2 of the second phase is the pulse itself. Refer to the

following illustration of a high polarity pulse train.

Measure Frequency
Measures the frequency of a TTL signal on the specified counter’s SOURCE pin by
counting positive edges of the signal during a specified period of time. In addition to this
connection, you must wire the counter’s GATE pin to the OUT pin of counter–1. This VI
is useful for relatively high frequency signals, when many cycles of the signal occur
during the timing period. Use the Measure Pulse Width or Period VI for relatively low
frequency signals. Keep in mind that period(s) = 1/frequency (Hz).

Chapter 25 Easy Counter VIs

LabVIEW Function and VI Reference Manual 25-4 © National Instruments Corporation

This VI configures the specified counter and counter+1 (optional) as event counters to
count rising edges of the signal on counter's SOURCE pin. The VI also configures
counter–1 to generate a minimum-delayed pulse to gate the event counter, starts the event
counter and then the gate counter, waits the expected gate period, and then reads the gate
counter until its output state is low. Next the VI reads the event counter and computes the
signal frequency (number of events/actual gate pulse width) and stops the counters.
You can optionally gate or trigger the operation with a signal on counter–1’s GATE pin.

Measure Pulse Width or Period
Measures the pulse width (length of time a signal is high or low) or period (length of time
between adjacent rising or falling edges) of a TTL signal connected to the counter’s
GATE pin. The method used gates an internal timebase clock with the signal being
measured. This VI is useful in measuring the period or frequency (1/period) of relatively
low frequency signals, when many timebase cycles occur during the gate. Use the
Measure Frequency VI to measure the period or frequency of relatively high frequency
signals.

The VI iterates until a valid measurement, timeout, or counter overflow occurs. A valid
measurement exists when count (4 without a counter overflow. If counter overflow
occurs, lower the timebase. If you start a pulse width measurement during the phase you
want to measure, you get an incorrect low measurement. Therefore, make sure the pulse
does not occur until after the counter is started. This restriction does not apply to period
measurements.

© National Instruments Corporation 26-1 LabVIEW Function and VI Reference Manual

Chapter

26Intermediate Counter VIs

This chapter describes Intermediate Counter VIs you can use to
program counters on MIO, TIO, and other devices with the Am9513 or
DAQ-STC counter chips. These VIs call the Advanced Counter VIs to
configure the counters for common operations and to start, read, and
stop the counters. You can configure these VIs to generate single pulses
and continuous pulse trains, to count events or elapsed time, to divide
down a signal, and to measure pulse width or period. The Easy Counter
VIs call these Intermediate VIs for several pulse generation, counting,
and measurement operations.

This chapter also describes the ICTR Control VI that you use with Lab
and 1200 Series and PC-LPM devices that contain the 8253
counter/timer chip.

You can access the Intermediate Counter VIs by choosing
Functions»Data Acquisition»Counter. The Intermediate Counter VIs
are the VIs on the second row of the Counter palette, as shown below.

Handling Errors

LabVIEW makes error handling easy with the Intermediate Counter
VIs. Each intermediate-level VI has an error in input cluster and an
error out output cluster. The clusters contain a Boolean that indicates
whether an error occurred, the error code for the error, and the name of
the VI that returned the error. If error in indicates an error, the VI
returns the error information in error out and does not continue to run.

Intermediate Counter VIs

Chapter 26 Intermediate Counter VIs

LabVIEW Function and VI Reference Manual 26-2 © National Instruments Corporation

When you use any of the Intermediate Counter VIs in a While Loop,
you should stop the loop if the status in the error out cluster reads
TRUE. If you wire the error cluster to the General Error Handler VI, the
VI deciphers the error information and describes the error to you.

The General Error Handler VI is in Functions»Utilities in LabVIEW.
For more information on this VI, refer to your LabVIEW User Manual.

Intermediate Counter VI Descriptions

The following Intermediate Counter VIs are available.

Adjacent Counters
This VI identifies the counters logically adjacent to a specified counter of an MIO or TIO
device. It also returns the counter size (number of bits) and the timebases.

Devices with the Am9513 chip have one or two sets of five, 16-bit counters (1–5, 6–10)
that can be connected in a circular fashion. For example, the next higher counter to
counter 1 (called counter+1) is 2 and the next lower one (called counter–1) is 5.

Continuous Pulse Generator Config
Configures a counter to generate a continuous TTL pulse train on its OUT pin.

The signal is created by repeatedly decrementing the counter twice, first for the delay to
the pulse (phase 1), then for the pulse itself (phase two). The VI selects the highest
resolution timebase to achieve the desired characteristics. You can optionally gate or
trigger the operation with a signal on the counter’s GATE pin. Call the Counter Start VI
to start the pulse train or to enable it to be gated.

Chapter 26 Intermediate Counter VIs

© National Instruments Corporation 26-3 LabVIEW Function and VI Reference Manual

Counter Read
Reads the counter or counters identified by taskID.

The VI is designed to read one counter or two concatenated counters of an Am9513
counter chip or to read one counter of a DAQ-STC counter chip.

Counter Start
Starts the counters identified by taskID.

Counter Stop
Stops a count operation immediately or conditionally on an input error.

Delayed Pulse Generator Config
Configures a counter to generate a single, delayed TTL pulse on its OUT pin.

The signal is created by decrementing the counter twice, first for the delay to the pulse
(called phase 1), then for the pulse itself (phase 2). If an internal timebase is chosen, the
VI selects the highest resolution timebase for the counter to achieve the desired
characteristics. If an external timebase signal is chosen, the user designates the delay and
width as cycles of that signal. You can optionally gate or trigger the operation with a

Chapter 26 Intermediate Counter VIs

LabVIEW Function and VI Reference Manual 26-4 © National Instruments Corporation

signal on the counter’s GATE pin. Call the Counter Start VI to start the pulse or enable
it to be gated.

Down Counter or Divider Config
Configures the specified counter to count down or divide a signal on the counter’s
SOURCE pin or on an internal timebase signal using a count value called the timebase
divisor. The result is that the signal on the counter’s OUT pin is equal to the frequency
of the input signal/timebase divisor.

You can use this VI to generate finite pulse trains by enabling a continuous pulse
generator until the desired number of pulses has occurred. You can also use it in place of
the Continuous Pulse Generator Config VI to generate a train of strobe or trigger signals.

Event or Time Counter Config
Configures one or two counters to count edges in the signal on the specified counter’s
SOURCE pin or the number of cycles of a specified internal timebase signal.

When the internal timebase is used, this VI works like the Tick Count (ms) function but
uses a hardware counter on the DAQ device with programmable resolution. You can
optionally gate or trigger the operation with a signal on the counter’s GATE pin. Call the
Counter Start VI to start the operation or enable it to be gated.

Chapter 26 Intermediate Counter VIs

© National Instruments Corporation 26-5 LabVIEW Function and VI Reference Manual

Pulse Width or Period Meas Config
Configures the specified counter to measure the pulse width or period of a TTL signal
connected to its GATE pin.

The measurement is done by counting the number of cycles of the specified timebase
between the appropriate starting and ending events. To accurately measure pulse width,
the pulse must occur after the counter is started. Call the Counter Start VI to start the
operation. You can also use this VI to measure the frequency of low frequency signals.
For more accurate measurements, use a faster timebase.

ICTR Control
Controls counters the following devices that use the 8253 chip:

• Lab and 1200 Series devices, DAQCard-500, and DAQCard 700

• (Windows) LPM devices, 516 devices

In setup mode 0, as shown in Figure 26-1, the output becomes low after the mode set
operation, and the counter begins to count down while the gate input is high. The output
becomes high when counter reaches the TC (that is, when the counter decreases to 0) and
stays high until you set the selected counter to a different mode.

Figure 26-1.

In setup mode 1, as shown in Figure 26-2, the output becomes low on the count following
the leading edge of the gate input and becomes high on TC.

Chapter 26 Intermediate Counter VIs

LabVIEW Function and VI Reference Manual 26-6 © National Instruments Corporation

Figure 26-2.

In setup mode 2, as shown in Figure 26-3, the output becomes low for one period of the
clock input. The count indicates the period between output pulses.

Figure 26-3.

In setup mode 3, the output stays high for one-half of the count clock pulses and stays
low for the other half. Refer to Figure 26-4.

Figure 26-4.

In setup mode 4, as in Figure 26-5, the output is initially high, and the counter begins to
count down while the gate input is high. On TC, the output becomes low for one clock
pulse, then becomes high again.

Figure 26-5.

Setup mode 5 is similar to mode 4, except that the gate input triggers the count to start.
See Figure 26-6 for an illustration of mode 5.

Figure 26-6.

See the 8253 Programmable Interval Timer data sheet in your Lab device user manual for
details on these modes and their associated timing diagrams.

Chapter 26 Intermediate Counter VIs

© National Instruments Corporation 26-7 LabVIEW Function and VI Reference Manual

Pulse Width or Period Meas Config
Configures the specified counter to measure the pulse width or period of a TTL signal
connected to its GATE pin.

The measurement is done by counting the number of cycles of the specified timebase
between the appropriate starting and ending events. To accurately measure pulse width,
the pulse must occur after the counter is started. Call the Counter Start VI to start the
operation. You can also use this VI to measure the frequency of low frequency signals.
For more accurate measurements, use a faster timebase.

Wait+ (ms)
Calls the Wait (ms) function only if no input error exists.

This VI is useful when you want to wait between calls to I/O subVIs that use the error
I/O mechanism; without it you need to use a Sequence Structure to control the execution
order.

© National Instruments Corporation 27-1 LabVIEW Function and VI Reference Manual

Chapter

27Advanced Counter VIs

This chapter describes the VIs that configure and control hardware
counters. You can use these VIs to generate variable duty cycle square
waves, to count events, and to measure periods and frequencies.

You can access the Advanced Counter palette by choosing
Functions»Data Acquisition»Counter»Advanced Analog Input. The
icon that you must select to access the Advanced Counter VIs is on the
bottom row of the Counter palette, as shown below.

Note: An important basic data acquisition concept is to use only the inputs that

you need on each VI. Leave the rest of the inputs unwired, and LabVIEW

sets them to their default values. In the Help window, the most important

terminals are labeled in bold, and the least commonly used are in brackets.

Values given in parentheses are default values.

The following lists the type of counter chips that your device must have
to work with your version of LabVIEW:

• Am9513, 8253, or DAQ-STC Counter Chip

• DAQ-STC Counter Chip

The ICTRControl VI works with devices that contain the 8253 counter
chip.

Advanced
Counter VIs

Chapter 27 Advanced Counter VIs

LabVIEW Function and VI Reference Manual 27-2 © National Instruments Corporation

Refer to Table 27-1 for the counter chips used with the various devices.

Advanced Counter VI Descriptions

The following Advanced Counter VIs are available.

CTR Buffer Config
Allocates memory where LabVIEW stores counter data. The CTR Buffer Config VI also
configures the specified group to perform buffered counter operations instead of the
normal single point operations.

CTR Buffer Read
Returns data from the buffer allocated by CTR Buffer Config.

Table 27-1. Counter Chips and Their Available DAQ Devices

Counter
Chip

DAQ Device

Am9513 AT-MIO-16, AT-MIO-16D, AT-MIO-16F-5,
AT-MIO-16X, AT-MIO-64F-5, PC-TIO-10, All
AO-2DC Devices, EISA-A2000, NB-MIO-16,
NB-MIO-16X, NB-DMA-8-G, NB-DMA2800,
NB-TIO-10, NB-A2000

DAQ-STC All E Series Devices, 5102 Devices

8253 All Lab and 1200 Series Devices, DAQCard-500,
DAQCard-700, LPM Devices, 516 Devices

Chapter 27 Advanced Counter VIs

© National Instruments Corporation 27-3 LabVIEW Function and VI Reference Manual

Note: Incremental reading from the count buffer is not supported at this time.

Therefore, you must allow the buffer to fill before you read from it and then

you must read all of it. Until incremental reading and circular use of the

buffer are implemented, leave number to read unwired (with a value

of –1) or set it to the value of counts per buffer.

CTR Group Config
Collects one or more counters into a group. You can use counter groups containing more
than one counter to start, stop, or read multiple counters simultaneously. DAQ-STC
devices do not currently support multiple counter groups.

Table 27-2 contains valid counter numbers for devices supported by this VI.

Table 27-2. Valid Counter Numbers for CTR Group Config Devices

Device Type Valid Numbers

DAQ-STC Devices 0 and 1

Am9513 MIO Devices 1, 2, and 5

NB-DMA-8-G, NB-DMA2800 1 through 5

PC-TIO-10, NB-TIO-10 1 through 10

EISA-A2000, NB-A2000 2

Chapter 27 Advanced Counter VIs

LabVIEW Function and VI Reference Manual 27-4 © National Instruments Corporation

CTR Mode Config
Configures one or more counters for a designated counter operation and selects the
source signal, gating mode, and output behavior on terminal count (TC).

This VI does not start the counters. Use CTR Control VI with control code 1 (Start) to
start the counters. If you are using a counter for pulse generation, you do not have to call
this VI unless you want to change the gate mode or output behavior.

Modes 3, 4, and 6 can be used with or without buffered counting. Mode 7 must be used
with buffered counting. With buffered counting, call the CTR Buffer Config VI before or
after the CTR Mode Config VI and before the CTR Control VI to start the operation, then
call the CTR Buffer Read VI to read the buffered count values. With buffered or
unbuffered operations, call the CTR Control VI to read the most recently acquired,
unbuffered count value.

Unless otherwise stated, the following figures show timing and counter values for
operations in which the gate mode is set to high-level or rising-edge and the source edge
is set to rising-edge.

Use mode 1 to reset all the CTR Mode Config VI parameters to their default settings. This
mode overrides any conflicting parameter settings.

Use mode 2 to count transitions of the selected signal and to stop at the first TC. The
overflow status bit is set at TC. Use the CTR Control VI to read the overflow status. This
mode is available only with Am9513 devices. Mode 2 counting is unbuffered.

Chapter 27 Advanced Counter VIs

© National Instruments Corporation 27-5 LabVIEW Function and VI Reference Manual

Figure 27-1 shows the count values you would read with this mode using three gate mode
settings (gating off; high-level gating; and rising-edge gating).

Figure 27-1. Unbuffered Mode 2 and 3 Counting

Use mode 3 to count transitions of the selected signal continuously, rolling over at TC
and then continuing on. Figure 27-1 shows unbuffered mode 3 counting. Figure 27-2
illustrates a buffered mode 3 operation with rising-edge gating. This buffered operation
is available only with DAQ-STC devices. With buffered mode 3 operation, LabVIEW
stores the current count value into the buffer on each selected edge of the source signal.

Figure 27-2. Buffered Mode 3 Counting

Use mode 4 with level gating to measure pulse width and with edge gating to measure the
period of the selected gate signal.

Note: For the following descriptions of pulse width measurements (modes 4, 6,

and 7), a high pulse is defined simply as the high-level phase of a signal

when gate mode is set to high-level gating. This definition differs from that

of a high pulse using pulse generation (mode 5), which consists of a low

Chapter 27 Advanced Counter VIs

LabVIEW Function and VI Reference Manual 27-6 © National Instruments Corporation

level delay phase followed by a high level pulse phase. (Low pulses are

similarly defined by switching the words high and low.)

To measure pulse width, set the gate mode to high or low level. Figure 27-3 shows
unbuffered mode 4 pulse width measurements. You can start an Am9513 counter at any
time, and it will measure pulses until you stop it. If you start it in the middle of the pulse
you want to measure (for example, during a high pulse for high-level gating), LabVIEW
returns a short count for that measurement. You must start a DAQ-STC counter only
when the signal is in the opposite polarity from the selected gate level (for example, a
low-level phase for high-level gating). Otherwise, the VI returns error number –10890.
With unbuffered counting, the DAQ-STC stops counting after one measurement. Mode
5 configures the counter for pulse generation. Use the CTR Pulse Config VI to specify
the pulse you want to generate.

Figure 27-3. Unbuffered Mode 4 High Pulse Width Measurement

Figure 27-4 shows the buffered mode 4 pulse width measurement, which is available only
with DAQ-STC devices. The measured value is stored into the buffer at the end of each
pulse. See mode 6 for another way to measure pulse width with a DAQ-STC device.

Figure 27-4. Buffered Mode 4 Rising-Edge Pulse Width Measurement

To measure period, set the gate mode to rising or falling edge. Figure 27-5 shows
unbuffered mode 4 pulse width measurement.

You may start either an Am9513 or a DAQ-STC counter at any time. The counter begins
counting at the start of the next period. The Am9513 counter measures periods

Chapter 27 Advanced Counter VIs

© National Instruments Corporation 27-7 LabVIEW Function and VI Reference Manual

continuously. With unbuffered counting, the DAQ-STC stops counting after one
measurement.

Figure 27-5. Unbuffered Mode 4 Rising-Edge Period Measurement

Figure 27-6 shows buffered mode 4 period measurement, which is available only with
DAQ-STC devices. The measured value is stored into the buffer at the end of each period.

Figure 27-6. Buffered Mode 4 Rising-Edge Pulse Width Measurement

Use mode 5 to configure for pulse generation when you also need to configure the gate
mode, output type, or output polarity to non-default values. Otherwise, avoid calling
the CTR Mode Config VI and use only the CTR Pulse Config VI for pulse generation.
See the CTR Pulse Config VI more additional information about this operation.

Use mode 6 with level gating to measure the pulse width of the selected signal. This mode
is available only with DAQ-STC devices. Mode 6 differs from mode 4 in that the
measurement of a high (low) pulse does not begin until the first falling (rising) edge of
the signal after you start the counter. If you use unbuffered counting, the counter
continues to measure pulses until you call the CTR Control VI to read the most recently

Chapter 27 Advanced Counter VIs

LabVIEW Function and VI Reference Manual 27-8 © National Instruments Corporation

measured value, at which time the counter stops. Unbuffered mode 6 counting is
illustrated in Figure 27-7.

Figure 27-7. Unbuffered Mode 6 High Pulse Width Measurement

With buffered mode 6 counting, the measured value is stored into the buffer at the end of
each pulse, as illustrated with Figure 27-8. Call the CTR Buffer Read VI to read the
values.

Figure 27-8. Buffered Mode 6 High Pulse Width Measurement (Count on Rising Edge of Source)

Use mode 7 to measure every phase of the selected signal using buffered counting. This
mode is available only with DAQ-STC devices. The count value is stored in the buffer
on each low-to-high and high-to-low transition. Use the CTR Buffer Read VI to read the
values. To measure period with this mode, sum successive pairs of signals. To measure
phase, use every other value. LabVIEW ignores the value of gate mode with mode 7,

Chapter 27 Advanced Counter VIs

© National Instruments Corporation 27-9 LabVIEW Function and VI Reference Manual

which means that you cannot tell whether the first measurement starts at a rising or falling
edge.

Figure 27-9. Buffered Mode 7 Semi-Period Measurement

Table 27-3 shows the legal values and default settings for timebase signal. A value of -1
tells LabVIEW to use the default settings. When the table says counter, it refers to the
counter being configured. If there are multiple counters, LabVIEW configures each
counter successively.

Chapter 27 Advanced Counter VIs

LabVIEW Function and VI Reference Manual 27-10 © National Instruments Corporation

Refer to Table 27-3 to determine what is the next higher or lower consecutive counter.

CTR Pulse Config
Specifies the parameters for pulse generation. This VI configures the counters but does
not start them. Use the CTR Control VI with control code 1 (Start) to produce the pulse.

Table 27-3. Adjacent Counters.

Device
Type

Next
Lower

Counter Counter

Next
Higher

Counter

Am9513

5 1 2

1 2 3

2 3 4

3 4 5

4 5 1

10 6 7

6 7 8

7 8 9

8 9 10

9 10 6

DAQ-STC
1 0 1

0 1 0

Chapter 27 Advanced Counter VIs

© National Instruments Corporation 27-11 LabVIEW Function and VI Reference Manual

Use this VI to specify the characteristics of your pulses. You can also use the CTR Mode
Config VI to set your desired gate modes, output polarity, and output type. Use the CTR
Pulse Config VI to specify timebase source and timebase signal for pulse generation,
because LabVIEW ignores these values specified in the CTR Mode Config VI.

CTR Control
Controls and reads groups of counters. Control operations include starting, stopping, and
setting the output state.

ICTRControl
Controls counters on devices that use the 8253 chip (Lab and 1200 Series devices,
516_devices PC-LPM-16, DAQCard-500, and DAQCard 700).

© National Instruments Corporation 28-1 LabVIEW Function and VI Reference Manual

Chapter

28
Calibration and
Configuration VIs

This chapter describes the VIs that calibrate specific devices and set and
return configuration information.

This chapter also includes a VI for controlling the RTSI bus, which is a
triggering and timing bus you can use to synchronize, time, and trigger
multiple DAQ devices.

(Windows) There is also a VI you can use to set up data acquisition event
occurrences.

You can calibrate certain DAQ devices with the device-specific VIs, but
this is not always necessary because National Instruments calibrates all
devices at the factory.

You can access the Calibration and Configuration VIs by choosing
Functions»Data Acquisition»Calibration and Configuration as shown
below.

Chapter 28 Calibration and Configuration VIs

LabVIEW Function and VI Reference Manual 28-2 © National Instruments Corporation

Calibration and Configuration VI Descriptions

The following Calibration and Configuration VIs are available.

1200 Calibrate
This VI calibrates the gain and offset values for the ADCs and DACs on 1200 Series
devices (i.e., DAQPad-1200, DAQCard-1200, etc.).

You can perform a new calibration (and optionally save the new calibration constants in
one of four user areas in the onboard EEPROM) or load an existing set of calibration
constants by copying them from their storage location in the onboard EEPROM.
LabVIEW automatically loads the calibration constants stored in the onboard EEPROM
load area when LabVIEW launches or when you reset the device. By default the
EEPROM load area contains a copy of the calibration constants in the factory area

A2000 Calibrate
Calibrates the NB-A2000 or EISA-A2000 A/D gain and offset values or restores them to
the original factory-set values.

You can calibrate your NB-A2000 or EISA-A2000 to adjust the accuracy of the readings
from the four analog input channels. LabVIEW automatically loads the stored calibration
values when it launches or when you reset your NB-A2000 or EISA-A2000.

Warning: This VI is supported only up to NI-DAQ version 4.9.0 and has been

removed from the Calibration and Configuration palette. This VI is still

included in the DAQ VI Library for compatibility only, therefore if you are

using NI-DAQ version 5.0 or later, this VI will return the following

message: deviceSupportError. If you wish to use this VI, please

re-install NI-DAQ version 4.9.0 or an earlier version.

Chapter 28 Calibration and Configuration VIs

© National Instruments Corporation 28-3 LabVIEW Function and VI Reference Manual

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the
NB-A2000 or EISA-A2000 DAQ devices.

Warning: Read the calibration chapter in the NB-A2000 or EISA-A2000 User Manual

before using the A2000 Calibrate VI.

If you set save new values to 1, then this VI stores the gain and offset calibration values
in an EEPROM on the NB-A2000 or EISA-A2000 device, which does not lose its data
even if the device loses power. LabVIEW reads these EEPROM values and loads them
into the NB-A2000 or EISA-A2000, you can choose to replace the permanent copies of
the gain and offset EEPROM values and use the new values until the next calibration,
even if you reinitialize the device. You can also choose not to replace the EEPROM
values, but to use the new values until the next calibration or initialization.

For example, if you consistently get inaccurate readings from one or more input channels
after you reset the device, you can calibrate and save the new gain and offset values as
permanent copies in the EEPROM. However, if acquisition results are accurate after
initialization but start to drift after a few hours of device operation when the device
temperature increases, you can calibrate the device at this operating temperature and
retain the current EEPROM values to use after the next initialization.

A2000 Configure
Configures dithering and whether to drive the SAMPCLK* line for the NB-A2000 or
EISA-A2000.

Warning: This VI is supported only up to NI-DAQ version 4.9.0 and has been

removed from the Calibration and Configuration palette. This VI is still

included in the DAQ VI Library for compatibility only, therefore if you are

using NI-DAQ version 5.0 or later, this VI will return the following

message: deviceSupportError. If you wish to use this VI, please

re-install NI-DAQ version 4.9.0 or an earlier version.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the
NB-A2000 or EISA-A2000 DAQ devices.

After system startup, LabVIEW configures the NB-A2000 or EISA-A2000 as follows.

• sample clock drive = 0: Sample clock signal does not drive SAMPCLK* line.

• dither = 0: Dither disabled.

Chapter 28 Calibration and Configuration VIs

LabVIEW Function and VI Reference Manual 28-4 © National Instruments Corporation

A2100 Calibrate (Macintosh)
Selects the desired calibration reference and performs an offset calibration cycle on the
ADCs on the NB-A2100 or the NB-A2150.

NI-DAQ driver software calibrates the two A/D channels using the analog input ground
as the reference for each channel when you turn on the computer.

A2100 Config (Macintosh)
Selects the signal source used to provide data to the DACs and lets you configure the
external digital trigger to be shared by data acquisition and waveform generation
operations on the NB-A2100.

If LabVIEW acquires multiple data acquisition frames and generates multiple waveform
cycles with a trigger required at the beginning of each cycle, then the external trigger
recognition synchronizes so that each trigger simultaneously initiates the acquisition of
the next data frame while generating the output of the next waveform cycle.

A2150 Config (Macintosh)
Selects whether or not LabVIEW should drive an internally generated trigger to the
NB-A2150 I/O connector. This VI also determines whether LabVIEW should drive the
NB-A2150 sampling clock signal over the RTSI bus to other devices for multiple-device
synchronized data acquisition.

Enable io trigger drive only if you have executed the RTSI Control VI to receive the
RTSITRIG* signal over the RTSI bus, or if you have enabled the analog level trigger
using the AI Trigger Config VI. In these cases, you can monitor the signal being sent to
the A/D trigger circuitry at the EXTTRIG* line of the I/O connector after starting the
acquisition. A high-to-low edge of the signal triggers the data acquisition.

Chapter 28 Calibration and Configuration VIs

© National Instruments Corporation 28-5 LabVIEW Function and VI Reference Manual

The NB-A2150 uses signals over the RTSI bus for sampling clock synchronization
between two or more NB-A2150 devices. The sampling clock synchronization circuitry
makes simultaneous sampling possible on more than four channels using additional
NB-A2150 devices. If master clock is 1, slave list should contain the list of devices that
accept the sampling clock from device. After you run A2150 Config with master clock
equal to 1 and number of slaves greater than 0, you cannot use the AI Clock Config to
set the scan rate for devices in slave list until you run A2150 Config again on device with
master clock equal to 1 and number of slaves equal to 0.

Note: Executing A2150 Config with master clock equal to 1 and number of slaves

equal to 0 deconfigures the devices previously in the slave list and sets them

up to use their own sampling clock signal.

A2150 Calibrate (Windows)
Performs offset calibrations on the ADCs of the specified AT-A2150.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the
AT-A2150 DAQ device.

When you launch LabVIEW, or when you reset the AT-A2150, LabVIEW performs an
offset calibration using the analog ground as the reference. Use this VI only for device
calibration to an external reference or for device recalibration for ground reference after
using an external reference.

AO-6/10 Calibrate (Windows)
Loads a set of calibration constants into the calibration DACs or copies a set of
calibration constants from one of four EEPROM areas to EEPROM area 1.

You can load an existing set of calibration constants into the calibration DACs from a
storage area in the onboard EEPROM. You can copy EEPROM storage areas 2 through 5
to storage area 1. EEPROM area 5 contains the factory calibration constants. LabVIEW
automatically loads the calibration constants stored in EEPROM area 1 upon start-up or
when you reset the AT-AO-6/10.

Chapter 28 Calibration and Configuration VIs

LabVIEW Function and VI Reference Manual 28-6 © National Instruments Corporation

Note: You can also use the calibration utility provided with the AT-AO-6/10 to

perform a calibration procedure. Refer to the calibration chapter in the

AT-AO-6/10 User Manual for more information.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the
AT-AO-6/10 DAQ devices.

When LabVIEW initializes the AT-AO-6/10, the DAC calibration constants stored in
EEPROM location 1 (user calibration area 1) provide the gain and offset values that
ensure proper device operation. So, this initialization is the same as running the
AO-6/10 Calibrate VI with operation set to 1 and EEPROM location set to 1. When the
AT-AO-6/10 leaves the factory, EEPROM location 1 contains a copy of the calibration
constants stored in EEPROM location 5 (factory calibration).

A calibration procedure performed in bipolar mode is not valid for unipolar mode and
vice versa. See the calibration chapter of the AT-AO-6/10 User Manual for more
information.

Channel To Index
Uses the current group configuration for the specified task to produce a list of indices into
the group’s scan or update list for each channel specified in the channel list.

You can use this list of channel indices to locate data for a particular channel within a
multiple channel buffer. You can also use the indices to read or write to a group subset
with the buffer read and write VIs.

Refer to your specific device information in Appendix A, DAQ Hardware Capabilities, for
the channel limitations that apply to your device.

Chapter 28 Calibration and Configuration VIs

© National Instruments Corporation 28-7 LabVIEW Function and VI Reference Manual

Table 28-1 shows possible values for the channel scan list, channel list, and channel
indices parameters. Table 28-2 shows the possible values for the Sun. The channel scan
list parameter is an input for the group configuration VIs.

Table 28-1. Channel to Index VI Parameter Examples

Channel Scan List Channel List Channel Indices

1, 3, 4, 5, 7 channel list[0] = 5 channel indices[0] = 3.
Data for channel 5 is at position 3
within a scan. Indices are
zero-based.

1, 3, 4, 5, 7 channel list is of 0 length. channel indices is of 0 length.
(In this case, status is non-zero.)

1, 2, 1, 3, 1, 4
(The device samples
channel 1 three times
during a scan.)

channel list[0] = 1, 1, 1 channelindices[0] = 0,
channelindices[1] = 2, and
channelindices[2] = 4.
The first occurrence of channel 1
within a scan is at index 0, the
second at index 2, and the third at
index 4

0, 1, 3, 4
(For this example,
channel scan list is a
digital input group.)

channel list[0] = 3 channel indices[0] = 2.
The eight bits of data from port 3
are at index 2 in the scan list.

0:3

(One AMUX-64T in
use.)

channel list[0] = AM1!9 channel indices[0] = 9.
Data obtained from channel 9 on
AMUX-64T device number 1 is at
index 9 in the data buffer.

SC1!MD1!CH0:7,

SC1!MD2!CH0:4

channel list[0] =
SC1!MD2!CH3

channel indices[0] = 11.
Data obtained from channel 3 of
the SCXI module in slot 2 is at
index 11 in the data buffer.

Chapter 28 Calibration and Configuration VIs

LabVIEW Function and VI Reference Manual 28-8 © National Instruments Corporation

DAQ Occurrence Config (Windows)
Creates occurrences that are set by data acquisition events.

A DAQ event can be the completion of an acquisition, the acquisition of a certain number
of scans, an analog signal meeting certain trigger conditions, a periodic event, an
aperiodic (externally driven) event, or a digital pattern match or mismatch. Your VI can
sleep while waiting for an occurrence to be set, freeing your computer to execute other
VIs.

When you set the create/clear control to 1 (create) and call the VI, this VI creates an
occurrence. Use the DAQ event control to select the event that sets the occurrence. Wire
the occurrence this VI produces to the Wait on Occurrence function. Anything you wire
to the output of the Wait on Occurrence function does not execute until the occurrence is
set. The occurrence is set each time the event occurs. The occurrence does not clear until
you set the create/clear control to 0 (clear) and call this VI, or call the Device Reset VI
for the device.

Table 28-2. Channel to Index VI Parameter Examples for Sun

channel scan list channel list channel indices

1, 3, 4, 5, 7 channel list[0] = 5 channel indices[0] = 3.
Data for channel 5 is at position 3
within a scan. Indices are
zero-based.

1, 3, 4, 5, 7 channel list is of 0 length. channel indices is of 0 length. (In
this case, status is non-zero.)

1, 2, 1, 3, 1, 4
(The device samples
channel 1 three times
during a scan.)

channel list[0] = 1, 1, 1 channel indices[0] = 0,
channel indices[1] = 2, and
channel indices[2] = 4.
The first occurrence of channel 1
within a scan is at index 0, the
second at index 2, and the third at
index 4

Chapter 28 Calibration and Configuration VIs

© National Instruments Corporation 28-9 LabVIEW Function and VI Reference Manual

LabVIEW returns a Not a Refnum file I/O constant along with a non-zero status code if
it cannot create the occurrence.

For each computer platform, LabVIEW limits the number of occurrences per second that
you can set. Although this limit depends on the speed of your computer, avoid exceeding
500 occurrences per second.

For some of the events, you must perform your operation using interrupts instead of
DMA. Refer to the description of the DAQ event control in this section for more
information.

Device Reset
Resets either an entire device or the particular function identified by taskID.

Resetting a taskID function has the same result as calling the control VI for that function
with control code set to clear. When you reset the entire device, LabVIEW clears all
tasks and changes all device settings to their default values.

DSP2200 Calibrate (Windows)
Performs offset calibrations on the analog input and/or analog output of the
AT-DSP2200.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the
AT-DSP2200 DAQ device.

When you launch LabVIEW or reset the AT-DSP2200, LabVIEW performs an offset
calibration on both the analog input and output using analog ground as the reference.

You can use this VI to calibrate the analog input using an external reference or to
recalibrate the AT-DSP2200 to compensate for configuration or environmental changes.

Chapter 28 Calibration and Configuration VIs

LabVIEW Function and VI Reference Manual 28-10 © National Instruments Corporation

DSP2200 Configure (Windows)
Specifies data translation and demultiplexing operations that the AT-DSP2200 performs
on analog input and output data.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the
AT-DSP2200 DAQ device.

Because software running locally on the AT&T WE DSP32C DSP chip reads data from
the ADCs and writes data to the DACs, you can manipulate the data during these
transfers. When you write analog input data to DSP memory, you can write the data as
unscaled 16-bit integers, unscaled 32C floating-point numbers, or scaled 32C
floating-point voltages. You can use the demux option only when you write analog input
data to DSP memory. When you enable demux, the device writes data from channel 0
consecutively into DSP memory, beginning at the start of each buffer, and writes channel
1 data consecutively beginning at the half-way point of each buffer. When the device
writes analog input data to PC memory, it can write the data as unscaled 16-bit integers,
unscaled IEEE single-precision floating-point numbers, or scaled IEEE single-precision
voltages.

The analog output translations in the opposite directions from the analog input
translations. If aotranslate is 0, the source data must be in a format suitable for the DACs
(16-bit integer DAC values). If aotranslate is 1 or 3, the source data are DAC values in
32C format in DSP memory or in IEEE single-precision format in PC memory. If
aotranslate is 2 or 4, the source data are voltages in 32C format in DSP memory or in
IEEE single-precision format in PC memory.

E-Series Calibrate (Windows)
Use this VI to calibrate your E Series device and to select a set of calibration constants
to be used by LabVIEW.

Warning: Read the calibration chapter in your device user manual before using the

E-Series Calibrate VI.

Chapter 28 Calibration and Configuration VIs

© National Instruments Corporation 28-11 LabVIEW Function and VI Reference Manual

Your device contains calibration D/A converters (calDACs) that are used for fine-tuning
the analog circuitry. The calDACs must be programmed (loaded) with certain numbers,
called calibration constants. Those constants are stored in non-volatile memory
(EEPROM) on your device or are maintained by LabVIEW. To achieve specification
accuracy, you should perform an internal calibration of your device just before a
measurement session, but after your computer and the device have been powered on and
allowed to warm up for at least 15 minutes. Frequent calibration produces the most stable
and repeatable measurement performance. The device is not harmed in any way if you
recalibrate it as often as you like.

Two sets of calibration constants can reside in two areas inside the EEPROM, called load

areas. One set of constants is programmed at the factory, the other is left for the user.
One load area in the EEPROM corresponds to one set of constants. The load area
LabVIEW uses for loading calDACs with calibration constants is called the default load
areas. When you get the device from the factory, the default load area is the area that
contains the calibration constants obtained by calibrating the device in the factory.
LabVIEW automatically loads the relevant calibration constants stored in the load area
the first time you call a VI that requires them.

Note: Calibration of your E Series device takes some time. Do not be alarmed if

the VI takes several seconds to execute.

Warning: When you run this VI with the operation set to self calibrate or external

calibrate, LabVIEW will abort any ongoing operations the device is

performing and set all configurations to their defaults. Therefore, you

should run this VI before any other DAQ VIs or when no other operations

are running.

12-bit E Series Devices

• Connect the positive output of your reference voltage source to the analog input
channel 8.

• Connect the negative output of your reference voltage source to the AISENSE line.

• Connect DAC0 line (analog output channel 0) with analog input channel 0.

• If your reference voltage source and your computer are floating with respect to each
other, connect the AISENSE line with the AIGND line as well as with the negative
output of your reference voltage source.

16-bit E Series Devices

• Connect the positive output of your reference voltage source to the analog input
channel 0.

Chapter 28 Calibration and Configuration VIs

LabVIEW Function and VI Reference Manual 28-12 © National Instruments Corporation

• Connect the negative output of your reference voltage source to the analog output
channel 8 (by performing those two connections you supply reference voltage to the
analog input channel 0, which is configured for differential operation.)

• If your reference voltage source and your computer are floating with respect to each
other, connect the negative output of your reference voltage source to the AIGND
line, as well as to the analog input channel 8.

Get DAQ Device Information
Returns information about a DAQ device.

Refer to Appendix A, DAQ Hardware Capabilities, for the transfer methods available with
your DAQ device.

Get SCXI Information
Returns the SCXI chassis configuration information that you set using the configuration
utility or the Set SCXI Information VI.

LPM-16 Calibrate
Calibrates the PC-LPM-16 or PC-LPM-16PnP converter. The calibration calculates the
correct offset voltage for the voltage comparator, adjusts positive linearity and full-scale
errors to less than ±0.5 LSB each, and adjusts zero error to less than ±1 LSB.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the
PC-LPM-16, DAQCard-500, or DAQCard-700 device.

Chapter 28 Calibration and Configuration VIs

© National Instruments Corporation 28-13 LabVIEW Function and VI Reference Manual

Master Slave Config
Configures one device as a master device and any remaining devices as slave devices for
multiple-buffered analog input operations.

Warning: This VI is supported only up to NI-DAQ version 4.9.0 and has been

removed from the Calibration and Configuration palette. This VI is still

included in the DAQ VI Library for compatibility only, therefore if you are

using NI-DAQ version 5.0 or later, this VI will return the following

message: deviceSupportError. If you wish to use this VI, please

re-install NI-DAQ version 4.9.0 or an earlier version.

Makes sure LabVIEW always re-enables the slave devices before the master device in a
multiple-buffer analog input operation. Only the following devices, which support
multiple buffered acquisitions, can use this VI.

• (Macintosh) NB-A2000, NB-A2100, and NB-A2150.

The master device sends a trigger or clock signal to the slave device(s) to control the
slave device sampling. In a multiple-buffer acquisition, you must enable the slave device
before the master device to make sure the slave device always responds to a master
signal. If you enable the master device first, it can send a signal to the slave devices
before they can respond. You are responsible for the initial startup order. You should
always start the master device last. The Master Slave Configuration VI makes sure
LabVIEW arms the master device last for each subsequent buffer acquired during a
multiple-buffer acquisition.

MIO Calibrate (Windows)
Calibrates the AT-MIO-16F-5, AT-MIO-64F-5, and AT-MIO-16X gain and offset values
for the ADCs and the DACs. You can either perform a new calibration or use an existing
set of calibration constants by copying the constants from their storage location in the
onboard EEPROM. You can store several sets of calibration constants. LabVIEW

Chapter 28 Calibration and Configuration VIs

LabVIEW Function and VI Reference Manual 28-14 © National Instruments Corporation

automatically loads the calibration constants stored in the EEPROM load area during
startup or when you reset the device.

The load area for the AT-MIO-16F-5 is user area 5. The load area for the AT-MIO-64F-5
and AT-MIO-16X is user area 8.

Warning: Read the calibration chapter in your device user manual before using the

MIO Calibrate VI.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the
AT-MIO-16F-5, AT-MIO-64F-5, and AT-MIO-16X DAQ devices.

Note: You should always calibrate the ADC and the DACs after you calibrate the

internal reference voltage.

Note: If the device takes analog input measurements with the wrong set of

calibration constants loaded, you may get erroneous data.

MIO Configure (Windows)
Turns dithering on and off. This VI supports the following devices: AT-MIO-16F-5,
AT-MIO-64F-5, all 12-bit E Series devices, and all 1200 Series devices.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the devices
supported by this VI.

Route Signal
Use this VI to route an internal signal to the specified I/O connector or RTSI bus line, or
to enable clock sharing through the RTSI bus clock line.

Chapter 28 Calibration and Configuration VIs

© National Instruments Corporation 28-15 LabVIEW Function and VI Reference Manual

Note: This VI is supported by E Series and 54XX Series devices only.

RTSI Control
Connects or disconnects trigger and timing signals between DAQ devices along the
Real-Time System Integration (RTSI) bus.

This VI is not supported for E Series devices. For E Series devices, multiple RTSI
connections can be set directly in the analog input, analog output, and counter VIs and
used along with the Route Signal VI. Other RTSI connections must be made using the
Route Signal VI.

SCXI Cal Constants
Calculates calibration constants for the given channel and range or gain using measured
voltage/binary pairs. You can use this VI with any SCXI module.

Chapter 28 Calibration and Configuration VIs

LabVIEW Function and VI Reference Manual 28-16 © National Instruments Corporation

Set DAQ Device Information
Sets the data transfer mode for different types of operations.

Refer to Appendix A, DAQ Hardware Capabilities, for the transfer methods available with
your DAQ device.

Set SCXI Information
Sets the SCXI chassis configuration information.

Use this VI to override the configuration already set with the configuration utility You
can use this VI instead of using the configuration utility to enter the chassis configuration
information. If you do not use this VI, the first VI that accesses an SCXI chassis
automatically tries to load information from the configuration file.

Channel Configuration VIs

The following illustration shows the Channel Configurations VIs palette.

Chapter 28 Calibration and Configuration VIs

© National Instruments Corporation 28-17 LabVIEW Function and VI Reference Manual

Set DAQ Configuration File (Windows)
Sets the default DAQ Configuration file, which the NI-DAQ driver uses.

Note: This VI is specific to computers running Windows with NI-DAQ 5.0 or

later. LabVIEW returns an UnsupportedError message if you attempt to

run this VI on computers not running Windows.

Get DAQ Channel Names (Windows)
Returns the an array of all the channel names in the default configuration file. A
corresponding array of the channels' configured physical units is also returned.

Note: This VI is specific to computers running Windows with NI-DAQ 5.0 or

later. LabVIEW returns an UnsupportedError message if you attempt to

run this VI on computers not running Windows.

© National Instruments Corporation 29-1 LabVIEW Function and VI Reference Manual

Chapter

29Signal Conditioning VIs

This chapter describes the data acquisition Signal Conditioning VIs,
which you use to convert analog input voltages read from resistance
temperature detectors (RTDs), strain gauges, or thermocouples into
units of strain or temperature.

You can edit the conversion formulas used in these VIs or replace them
with your own to meet the specific accuracy requirements of your
application. If you edit or replace the formulas, you should save the new
VI in one of your own directories or folders outside of vi.lib.

You can access the Signal Conditioning VIs by choosing
Functions»Data Acquisition»Signal Conditioning, as shown below.

Chapter 29 Signal Conditioning VIs

LabVIEW Function and VI Reference Manual 29-2 © National Instruments Corporation

Signal Conditioning VI Descriptions

The following Signal Conditioning VIs are available.

Convert RTD Reading
Converts a voltage you read from an RTD into temperature in Celsius.

This VI first finds the RTD resistance by dividing RTDVolts by Iex. The VI then
converts the resistance to temperature using the following solution to the Callendar
Van-Dusen equation for RTDs:

Rt = Ro[1 + At + Bt2 + C(t–100)t3]

For temperatures above 0° C, the C coefficient is 0, and the preceding equation reduces
to a quadratic equation for which the algorithm implemented in the VI gives the
appropriate root. So, this conversion VI is accurate only for temperatures above 0° C.

Your RTD documentation should give you Ro and the A and B coefficients for the
Callendar Van-Dusen equation. The most common RTDs are 100-Ω platinum RTDs that
either follow the European temperature curve (DIN 43760) or the American curve. The
following table gives the values for A and B for the European and American curves.

Some RTD documentation gives values for α and ∂, from which you can calculate A and
B using the following equations:

A = α(1 + ∂/100)

B = –α∂/1002

European Curve (DIN 43760) American Curve

A = 3.90802e–03
B = –5.80195e–07
(α = 0.00385; ∂ = 1.492)

A = 3.9784e–03
B = –5.8408e–07
(α = 0.00392; ∂ = 1.492)

Chapter 29 Signal Conditioning VIs

© National Instruments Corporation 29-3 LabVIEW Function and VI Reference Manual

Convert Strain Gauge Reading
Converts a voltage you read from a strain gauge to units of strain.

The conversion formula the VI uses is based solely on the bridge configuration.
Figures 29-1 through 29-3 show the seven bridge configurations you can use and the
corresponding formulas. For all bridge configurations, the VI uses the following formula
to obtain Vr:

Vr = (Vsg – Vinit) / Vex

In the circuit diagrams, VOUT is the voltage you measure and pass to the conversion VI
as the Vsg parameter. In the quarter-bridge and half-bridge configurations, R1 and R2 are
dummy resistors that are not directly incorporated into the conversion formula. The
SCXI-1121 and SCXI-1122 modules provide R1 and R2 for a bridge-completion network,
if needed.

Refer to your Getting Started with SCXI manual for more information on
bridge-completion networks and voltage excitation.

Chapter 29 Signal Conditioning VIs

LabVIEW Function and VI Reference Manual 29-4 © National Instruments Corporation

Figures 29-1 through 29-3 illustrate the bridge-completion networks available.

Figure 29-1. Strain Gauge Bridge Completion Networks (Quarter-Bridge Configuration)

Chapter 29 Signal Conditioning VIs

© National Instruments Corporation 29-5 LabVIEW Function and VI Reference Manual

Figure 29-2. Strain Gauge Bridge Completion Networks (Half-Bridge Configuration)

Chapter 29 Signal Conditioning VIs

LabVIEW Function and VI Reference Manual 29-6 © National Instruments Corporation

Figure 29-3. Strain Gauge Bridge Completion Networks (Full-Bridge Configuration)

Chapter 29 Signal Conditioning VIs

© National Instruments Corporation 29-7 LabVIEW Function and VI Reference Manual

Convert Thermistor Reading
Converts a thermistor voltage into temperature. This VI has two different modes of
operation for voltage-excited and current-excited thermistors.

This VI has two modes of operation for use with different types of thermistor circuits.
Figure 29-4 shows how the thermistor can be connected to a voltage reference. This is
the setup used in the SCXI-1303, SCXI-1322, SCXI-1327, and SCXI-1328 terminal
blocks, which use an onboard thermistor for cold-junction compensation.

Figure 29-4. Circuit Diagram of a Thermistor in a Voltage Divider

Figure 29-5 shows a circuit where the thermistor is excited by a constant current source.
An example of this setup would be the use of the DAQPad-MIO-16XE-50, which

Chapter 29 Signal Conditioning VIs

LabVIEW Function and VI Reference Manual 29-8 © National Instruments Corporation

provides a constant current output. The DAQPad-TB-52 has a thermistor for
cold-junction sensing.

Figure 29-5. Circuit Diagram of a Thermistor with Current Excitation

If the thermistor is excited by voltage, the following shows equation relating the
thermistor resistance, RT, to the input values:

If the thermistor is current excited, the equation is

The following equation is the standard formula the VI uses for converting a thermistor
resistance to temperature:

The values used by this VI for a, b, and c are given below. These values are correct for
the thermistors provided on the SCXI and DAQPad-TB-52 terminal blocks. If you are
using a thermistor with different values for a, b, and c (refer to your thermistor data
sheet), you can edit the VI diagram to use your own a, b, and c values.

a = 1.295361E–3
b = 2.343159E–4
c = 1.018703E–7

The VI produces a temperature in degrees Celsius. Therefore, TC = TK – 273.15.

R
T

R
1

V
0

V
REF

V
0

–
------------------------ 

 =

R
T

V
0

IEX

-------=

TK

1

a b lnRT()+c lnR
T

()3
+

--=

Chapter 29 Signal Conditioning VIs

© National Instruments Corporation 29-9 LabVIEW Function and VI Reference Manual

Convert Thermocouple Buffer
Converts a voltage buffer read from a thermocouple into a temperature buffer value in
degrees Celsius.

Convert Thermocouple Reading
Converts a voltage read from a thermocouple into a temperature value in degrees Celsius.

Scaling Constant Tuner
Adjusts the scaling constants, which LabVIEW uses to account for offset and non-ideal
gain, to convert analog input binary data to voltage data.

To use this VI correctly, you must first take two analog input readings—a zero offset
reading and a known-voltage reading.

The default binary offset for each channel in the group is 0. To determine the actual
binary offset for a channel path, ground the channel inputs and take a binary reading, or
take multiple binary readings and average them to get fractional LSBs of the offset.

If you use SCXI, ground the inputs of the SCXI channels to measure the offset of the
entire signal path, including both the SCXI module and the DAQ device. The SCXI-1100,
SCXI-1122, and SCXI-1141 modules have an internal switch you can use to ground the
amplifier inputs without actually wiring the terminals to ground. To use this feature, type
the special SCXI string CALGND in your SCXI channel string as described in the Amplifier

Offset section of Chapter 19, Common SCXI Applications, in the LabVIEW Data

Acquisition Basics Manual. Use intermediate or advanced analog input VIs to get binary
data instead of voltage data.

Chapter 29 Signal Conditioning VIs

LabVIEW Function and VI Reference Manual 29-10 © National Instruments Corporation

Note: If your device supports dithering, you should enable dither on your DAQ

device when you take multiple readings and average them.

LabVIEW assumes the DAQ devices gain settings and SCXI modules are ideal when it
scales binary readings to voltage, unless you use this VI to determine actual gain values
for the channels. Apply a known precision voltage to each channel and take a binary
reading, or take multiple readings from each channel and compute an average binary
reading for each channel. Your precision voltage should be about ten times as accurate
as the resolution of your DAQ device to produce meaningful results. When you wire
binary readings, precision voltages, and binary offsets to this VI, LabVIEW
determines the actual gain using the following formula:

In this formula, the voltage resolution value expressed in volts per LSB and is a value
that varies depending on the DAQ device type, the polarity setting, and the input range
setting. For example, the voltage resolution for a PCI-MIO-16E-1 device in bipolar mode
with an input range of +5 to –5 V is 2.44 mV. The VI returns an array of the actual gain
values that the VI stores for each channel.

Note: When you take readings to determine the offset and actual gain, you should

use the same input limits settings and clock rates that you use to measure

your input signals.

LabVIEW uses the following equation to scale binary readings to voltage:

When you run the AI Group Config VI, it sets the attributes of all the channels in the
group to their defaults, including the binary offset and gain values.

You can wire channel list if you want to adjust the scaling constants for a subset of the
channels in the group. If you leave channel list unwired, the VI adjusts the scaling
constants for all channels in the group. The VI uses the same method as the AI Hardware
Config VI to apply values in the binary offsets, precision voltages, and binary readings
input arrays That is, if you wired channel list first (at index 0) of the input arrays apply
to the channels listed at index 0 of channel list if you wired channel list, or to the
channels listed at index 0 of channel list. If you leave channel list unwired, the first
values of the input arrays apply to the first channel in the group. The VI applies the values
of each input array to channel list channels or the group in this manner until the VI

actual gain
voltage resolution * binary reading binary offset–()

precision voltage
---=

voltage
voltage resolution * binary reading binary offset–()

gain
---=

Chapter 29 Signal Conditioning VIs

© National Instruments Corporation 29-11 LabVIEW Function and VI Reference Manual

exhausts the arrays. If channels in channel list or in the group remain unconfigured, the
VI applies the final values in the arrays to all the remaining unconfigured channels.

If you want to adjust only the channel offsets, and you want to assume the gain settings
on the DAQ device and SCXI modules are ideal, wire only binary offsets and leave
precision voltages and binary readings unwired.

You can also use this VI to retrieve the binary offset and actual gain values for all the
channels in the group by wiring taskID only.

After you use this VI to adjust the scaling constants for a channel path, any analog input
VIs that return voltage data use the adjusted constants for scaling. You can use the AI
Group Config VI to reset the scaling constants for each channel in the group to their
default values (zero offset and ideal gain).

SCXI Temperature Scan
This VI returns a single scan of temperature data from a list of SCXI channel. The SCXI
Temperature Scan VI uses averaging to reduce 60 Hz and 50 Hz noise, performs
thermocouple linearization, and performs offset compensation for the SCXI-1100
module.

© National Instruments Corporation 30-1 LabVIEW Function and VI Reference Manual

Chapter

30
Introduction to LabVIEW
Instrument Driver VIs

This chapter includes an overview of LabVIEW instrument drivers and
the GPIB, serial port, instrument driver template, and VISA VIs and
functions. It also contains a history of the GPIB, and an explanation of
GPIB improvements and standards. Descriptions of the VIs and
functions comprise Chapter 31 through Chapter 37.

You can find the Instrument Driver VIs in the Functions palette from
your block diagram in LabVIEW. The Instrument Driver VIs are
located near the bottom of the Functions palette.

To access the Instrument I/O palette, choose
Functions»Instrument I/O, as shown in the following illustration.

The Instrument I/O palette consists of the following subpalettes:

• VISA

• Traditional GPIB

Chapter 30 Introduction to LabVIEW Instrument Driver VIs

LabVIEW Function and VI Reference Manual 30-2 © National Instruments Corporation

• GPIB 488.2

• Serial

You can find helpful information about individual VIs online by using
the LabVIEW Help window (Help»Show Help). When you place the
cursor on a VI icon, the wiring diagram and parameter names for that
VI appear in the Help window. You can also find information for front
panel controls or indicators by placing the cursor over the control or
indicator with the Help window open. For more information on the
LabVIEW Help window, refer to the Getting Help section in Chapter 2,
Creating VIs, of the LabVIEW User Manual.

In addition to the Help window, LabVIEW has more extensive online
information available. To access this information, select Help»Online
Reference. For most block diagram objects, you can select Online
Reference from the object’s pop-up menu to access the online
description. For information on creating your own online reference
files, see the Creating Your Own Help Files section in Chapter 25,
Managing Your Applications of the LabVIEW User Manual.

Instrument Drivers Overview

A LabVIEW instrument driver is a set of VIs that control a
programmable instrument. Each VI corresponds to a programmatic
operation such as configuring, reading from, writing to, or triggering
the instrument. LabVIEW instrument drivers simplify instrument
control and reduce test program development time by eliminating the
need to learn the low-level programming protocol for each instrument.

The LabVIEW instrument driver library contains instrument drivers for
a variety of programmable instrumentation, including GPIB, VXI, and
serial. If a driver for your instrument is in the library, you can use it as
is to control your instrument. Instrument drivers are distributed with
their block diagram source code, so you can customize them for your
specific application. If a driver for your particular instrument does not
exist, you can:

• Try using a driver for a similar instrument. Often similar
instruments from the same manufacturer have similar if not
identical instrument drivers.

• Modify the Instrument Driver Template VIs to create a new driver
for your instrument.

Chapter 30 Introduction to LabVIEW Instrument Driver VIs

© National Instruments Corporation 30-3 LabVIEW Function and VI Reference Manual

• Use either the GPIB, VXI, Serial, or VISA I/O libraries provided
with LabVIEW to send commands directly to your instrument.

Instrument Driver Distribution
LabVIEW instrument drivers are distributed in a variety of media
including electronic via bulletin board and internet and CD-ROM.

You can download the latest versions of the LabVIEW instrument
drivers from one of the National Instruments bulletin boards and, if you
have internet access, you can download the latest instrument driver files
from the National Instrument File Transfer Protocol site. See the
Bulletin Board Support and FTP Support sections of Appendix E,
Customer Communication.

CD-ROM Instrument Driver Distribution
The entire library of LabVIEW instrument drivers is available on
CD-ROM. The instrument driver CD-ROM is available from National
Instruments at no charge.

You can retrieve the latest instrument driver list on a touch-tone phone
by calling the National Instruments automated fax system, Fax-on-
Demand, at (512) 418-1111 or by calling National Instruments.

Instrument Driver Template VIs
The LabVIEW instrument driver templates are the foundation for all
LabVIEW instrument driver development. The templates have a simple,
flexible structure and a common set of instrument driver VIs that you
can use for driver development. The VIs establish a standard format for
all LabVIEW drivers and each has instructions for modifying it for a
particular instrument.

The LabVIEW instrument driver templates are predefined instrument
driver VIs that perform common operations such as initialization,
self-test, reset, error query, and so on. Instead of developing your own
VIs to accomplish these tasks, you should use the LabVIEW instrument
driver template VIs, which already conform to the LabVIEW standards
for instrument drivers.

Chapter 33, Instrument Driver Template VIs, provides more information
on the Instrument Driver Template VIs.

Chapter 30 Introduction to LabVIEW Instrument Driver VIs

LabVIEW Function and VI Reference Manual 30-4 © National Instruments Corporation

Introduction to VISA Library

VISA (Virtual Instrument Software Architecture) is a single interface
library for controlling VXI, GPIB, RS-232, and other types of
instruments. The VISA Library provides a standard set of I/O routines
used by all LabVIEW instrument drivers. Using the VISA functions,
you can construct a single instrument driver VI which controls a
particular instrument model across different I/O interfaces.

An instrument descriptor string is passed to the VISA Open function in
order to select which kind of I/O will be used to communicate with the
instrument. Once the session with the instrument is open, functions such
as VISA Read and VISA Write perform the instrument I/O activities in
a generic manner such that the program is not tied to any specific GPIB
or VXI functions. Such an instrument driver is considered to be
interface independent and can be used as is in different systems.

Instrument drivers which use the VISA functions perform activities
specific to the instrument, not to the communication interface. This
creates more opportunities for using the instrument driver in many
diverse situations.

For more information on VISA functions, see Chapter 34, VISA Library

Reference.

Introduction to GPIB

The General Purpose Interface Bus (GPIB) is a link, or interface
system, through which interconnected electronic devices communicate.

History of the GPIB
Hewlett-Packard designed the GPIB (originally called the HP-IB) to
interconnect and control its line of programmable instruments. The
GPIB was soon applied to other applications such as intercomputer
communication and peripheral control because of its 1 Mbytes/s
maximum data transfer rates. It was later accepted as IEEE Standard
488-1975 and has since evolved into ANSI/IEEE Standard 488.2-1987.
The versatility of the system prompted the name General Purpose
Interface Bus. For a basic description of the GPIB, see Appendix C,
Operation of the GPIB.

Chapter 30 Introduction to LabVIEW Instrument Driver VIs

© National Instruments Corporation 30-5 LabVIEW Function and VI Reference Manual

National Instruments brought the GPIB to users of
non-Hewlett-Packard computers and devices, specializing in both
high-performance, high-speed hardware interfaces and comprehensive,
full-function software. The GPIB functions for LabVIEW follow the
IEEE 488.2 specification.

The IEEE 488.2 Standard
The ANSI/IEEE Standard 488.2-1987 expanded on the earlier
IEEE 488.1 standard to describe exactly how the Controller should
manage the GPIB, including the standard messages that compliant
devices should understand, the mechanisms for reporting device errors
and other status information, and the various protocols that discover and
configure compliant devices connected to the bus.

The original standard, renamed IEEE 488.1, addressed only the
hardware specifications of the GPIB cable and basic protocols. Its main
shortcoming was that it left the interpretation of the standard as it
applied to GPIB devices up to the instrument manufacturers. Thus, each
GPIB instrument had a unique command set. To integrate each
instrument into a particular GPIB system, programmers had to learn
programming particulars for each device, a time-consuming and
frustrating process. IEEE 488.2 specifically states how compliant
devices must communicate. This standard, along with Standard
Commands for Programmable Instruments (SCPI), which defines
specific function-dependent command sets, makes instrument
programming more uniform.

The IEEE 488.2 standard also addresses Controller issues, such as the
capabilities a compatible Controller must have. For example, the ability
to monitor any of the bus lines at any time is crucial for detecting active
devices (Talkers and Listeners) on the GPIB. IEEE 488.2 also defines
the bus commands and protocols a Controller must use. The new
standard also lists minimum functionality requirements, which directly
influence the style of the NI-488.2 software in general and the GPIB
488.2 functions for LabVIEW in particular. Appendix C, Operation of

the GPIB, for more information on Talkers, Listeners, and Controllers.

Chapter 30 Introduction to LabVIEW Instrument Driver VIs

LabVIEW Function and VI Reference Manual 30-6 © National Instruments Corporation

Compatible GPIB Hardware
The following National Instruments GPIB hardware products are
compatible with LabVIEW:

LabVIEW for Windows 95 and Windows 95-Japanese

• AT-GPIB/TNT, AT-GPIB/TNT (PnP), AT-GPIB/TNT+ ² PCI-
GPIB

• PCMCIA-GPIB, PCMCIA-GPIB+

• GPIB-ENET

• EISA-GPIB

• VXIpc Model 850

• NEC-GPIB/TNT, NEC-GPIB/TNT (PnP)

• GPIB-PCII/IIA

• PC/104-GPIB

• CPCI-GPIB

• GPIB-ENET

• PMC-GPIB

LabVIEW for Windows NT

• AT-GPIB, AT-GPIB/TNT

• PCMCIA-GPIB

• PCI-GPIB

• VXIpc Model 850

• GPIB-ENET

LabVIEW for Windows 3.1

• AT-GPIB, AT-GPIB/TNT, AT-GPIB/TNT (PnP), AT-GPIB/TNT+
PCI-GPIB

• PCMCIA-GPIB, PCMCIA-GPIB+

• GPIB-ENET

• EISA-GPIB

• VXIpc Model 850

• NEC-GPIB/TNT (Japanese), NEC-GPIB/TNT (PnP) (Japanese) ²
GPIB-PCII/IIA

• GPIB-232CT-A

Chapter 30 Introduction to LabVIEW Instrument Driver VIs

© National Instruments Corporation 30-7 LabVIEW Function and VI Reference Manual

• GPIB-485CT-A

• GPIB-1284CT

• PCII/IIA

• STD-GPIB

• EXM-GPIB

• MC-GPIB

LabVIEW for Mac OS

• PCI-GPIB

• NB-GPIB/TNT, NB-GPIB-P/TNT

• PCMCIA-GPIB

• LC-GPIB

• GPIB-ENET

• GPIB-232CT-A

• GPIB-SCSI-A

• PC/104-GPIB

• NB-DMA2800 (Traditional GPIB VI's only)

LabVIEW for HP-UX

• GPIB-ENET

• EISA-GPIB

• AT-GPIB/TNT

LabVIEW for Sun (Solaris)

• GPIB-ENET

• GPIB-SCSI-A

• SB-GPIB/TNT

LabVIEW for Concurrent PowerMAX

• GPIB-1014

• GPIB-1014D

• GPIB-1014P

• GPIB-1014DP

Chapter 30 Introduction to LabVIEW Instrument Driver VIs

LabVIEW Function and VI Reference Manual 30-8 © National Instruments Corporation

LabVIEW Traditional GPIB Functions
The traditional GPIB functions are compatible with all the GPIB boards
listed in the Compatible GPIB Hardware section of this chapter.

These traditional GPIB functions are compatible with both IEEE 488
and IEEE 488.2 devices and are suffcient for most applications. For
more complex applications, such as using several devices and more than
one GPIB interface, you can use the GPIB IEE 488.2 functions.

For more information on the LabVIEW Traditional GPIB functions, see
Chapter 35, Traditional GPIB Functions.

GPIB 488.2 Functions
Using GPIB 488.2 functions together with IEEE 488.2-compatible
devices improves the predictability of instrument and software behavior
and lessens programming differences between instruments of different
manufacturers.

The latest revisions of many National Instruments GPIB boards are
fully compatible with the IEEE 488.2 specification for Controllers. The
LabVIEW package also contains functions that make use of
IEEE 488.2. By using these functions, your programming interface will
strictly adhere to the IEEE 488.2 standard for command and data
sequences.

The GPIB 488.2 functions contain the same basic functionality as the
traditional GPIB functions, and include the following enhancements
and additions:

• You specify the GPIB device address with an integer instead of a
string. Further, you specify the bus number with an additional
numeric control, which makes dealing with multiple GPIB
interfaces easier.

• You can determine the GPIB status, error, and/or byte count
immediately from the connector pane of each GPIB 488.2 function.
You no longer need to use the GPIB Status Function to obtain error
and other information.

• The FindLstn Function implements the IEEE 488.2 Find All
Listeners protocol. You can use this function at the beginning of an
application to determine which devices are present on the bus
without knowing their addresses.

• The GPIB Misc Function is still available, but it is no longer
necessary in most cases. IEEE 488.2 specifies routines for most

Chapter 30 Introduction to LabVIEW Instrument Driver VIs

© National Instruments Corporation 30-9 LabVIEW Function and VI Reference Manual

GPIB application needs, which are implemented as functions.
However, you can mix the GPIB Misc Function, as well as other
GPIB functions, with the GPIB 488.2 functions if you need to.

• There are GPIB 488.2 functions with low-level as well as
high-level functionality, to suit any GPIB application. You can use
the low-level functions in Non-Controller situations or when you
need additional flexibility.

• Although you must use an IEEE 488.2-compatible Controller to use
these functions, they can control both IEEE 488.1 and IEEE 488.2
devices. The GPIB 488.2 functions are divided into five functional
categories: single-device, multiple-device, bus management,
low-level, and general.

Single-Device Functions
The single-device functions perform GPIB I/O and control operations
with a single GPIB device. In general, each function accepts a
single-device address as one of its inputs.

For more information on Single-Device Functions, see Chapter 36,
GPIB 488.2 Functions.

Multiple-Device Functions
The multiple-device functions perform GPIB I/O and control operations
with several GPIB devices at once. In general, each function accepts an
array of addresses as one of its inputs.

For more information on Multiple Device Functions, see Chapter 36,
GPIB 488.2 Functions.

Bus Management Functions
The bus management functions perform system-wide functions or
report system-wide status.

For more information on Bus Management functions, see Chapter 36,
GPIB 488.2 Functions.

Low-Level Functions
The low-level functions let you create a more specific, detailed program
than higher-level functions. You use low-level functions for unusual
situations or for situations requiring additional flexibility.

Chapter 30 Introduction to LabVIEW Instrument Driver VIs

LabVIEW Function and VI Reference Manual 30-10 © National Instruments Corporation

For more information on Low-Level functions, see Chapter 36,
GPIB 488.2 Functions.

General Functions
The general functions are useful for special situations. The following
table lists the general functions:

For more information on General functions, see Chapter 36,
GPIB 488.2 Functions.

Serial Port VI Overview

The serial port VIs configure the serial port of your computer and
conduct I/O using that port.

For more information on serial port functions, see Chapter 37,
Serial Port VIs.

© National Instruments Corporation 31-1 LabVIEW Function and VI Reference Manual

Chapter

31
LabVIEW Instrument Driver
Models

This chapter contains an overview of the LabVIEW instrument driver
external interface model and the LabVIEW Instrument Driver Internal
Design Model.

The following two conceptual models help define a standard for
LabVIEW instrument driver software design, development and use. The
first model, the instrument driver external interface model, shows how
the instrument driver interfaces with other system components. The
second model, the instrument driver internal design model, defines the
internal organization of an instrument driver software module.

LabVIEW Instrument Driver External Interface Model

The following figure shows a general model of how a LabVIEW
instrument driver interfaces with the rest of the system.

Figure 31-1. General Model of Instrument Drivers in LabVIEW

Chapter 31 LabVIEW Instrument Driver Models

LabVIEW Function and VI Reference Manual 31-2 © National Instruments Corporation

Functional Body
The functional body is the actual code for the instrument driver. Refer
to the LabVIEW Instrument Driver Internal Design Model section of this
chapter, for more information.

The most successful instrument driver products historically have been
developed by using a standard programming language for the functional
body. This is the approach LabVIEW instrument drivers take. The
advantages include greater developer control over the driver, more
robust drivers, and increased functionality. LabVIEW instrument
drivers are written using the standard LabVIEW graphical
programming environment.

The functional body of a LabVIEW instrument driver is a set of VIs that
control a specific instrument. The source code for these VIs are block
diagrams consisting of executable icons connected by data flow wires.
Because the functional body is developed with the standard tools
provided in LabVIEW, users can view instrument driver source code
easily and optimize it for their application.

Interactive Developer Interface
The interactive developer interface of a LabVIEW instrument driver is
the front panel. It is analogous to a physical instrument panel and is the
interactive user interface of the VI. On the panel, controls and
indicators graphically represent the inputs and outputs of the VI. With
the LabVIEW front panel, users can operate individual instrument
driver VIs interactively and verify communication.

Programmatic Developer Interface
The icon/connector is the programmatic interface of the LabVIEW
instrument driver VI. It consists of a graphical representation of the VI
(icon) and a definition of the input and output terminals for the VI
(connector). When you call or execute a VI from another VI, you place
a copy of the subVI icon/connector in the block diagram of the calling
VI. Information passes between the two VIs through the connector
terminals. There are several benefits to this approach. You can assemble
test systems easily using LabVIEW instrument drivers by combining a
few instrument driver VIs, each using multiple parameters. The
instrument driver interface in the user program is modular and easy to
identify, and you can recall the VI front panels during debugging to
understand how the program uses the instrument driver.

Chapter 31 LabVIEW Instrument Driver Models

© National Instruments Corporation 31-3 LabVIEW Function and VI Reference Manual

I/O Interface
An important consideration for instrument drivers is how they perform
I/O to and from instruments. The I/O interfaces for LabVIEW
instrument drivers are the VISA and GPIB function libraries, and the
VXI and Serial VI libraries. These libraries contain sets of functions
and VIs that cover the capabilities of GPIB, VXIbus, and Serial bus
capabilities, including both message-based and register-based
programming, interrupt and event handling, and direct access to the
VXI backplane.

VISA, an acronym for Virtual Interface Software Architecture, is a
single interface library for controlling VXI, GPIB, RS-232, and other
types of instruments. Refer to Chapter 34, VISA Library Reference, for
further information.

Subroutine Interface
Because you write LabVIEW instrument drivers in standard LabVIEW
graphical code, an instrument driver has the same capabilities as any
other LabVIEW VI. While some VIs (such as instrument drivers)
perform only simple I/O to and from an instrument, other VIs might
control multiple instruments or use support libraries to integrate data
analysis or other measurement-specific operations. With LabVIEW,
you can build virtual instruments that combine hardware and software
capabilities. You can develop and package complete, high-level tests as
single VIs, which other test developers can reuse.

By ensuring compatibility with the virtual instrument concept, the
LabVIEW instrument driver standard has unlimited potential for
delivering baseline as well as sophisticated application-specific
instrument drivers. The LabVIEW instrument driver standard defined in
this document applies both to instrument drivers that control only a
single instrument, and to virtual instrument drivers that combine
features of multiple instruments and add software processing.

LabVIEW Instrument Driver Internal Design Model

The LabVIEW instrument driver internal design model, shown in the
following figure, defines the organization of the LabVIEW instrument
driver functional body. Because development guidelines and all
LabVIEW instrument drivers are based on this model, it is important to
both developers and end users of instrument drivers. When you

Chapter 31 LabVIEW Instrument Driver Models

LabVIEW Function and VI Reference Manual 31-4 © National Instruments Corporation

understand the model and how to use one instrument driver, you can use
that knowledge across numerous instrument drivers.

Figure 31-2. LabVIEW Instrument Driver Internal Design Model

The functional body of a LabVIEW instrument driver consists of two
main categories of VIs. The first category is a collection of component

VIs, which are individual software modules that each control a specific
type of instrument function. The second category is a collection of
higher-level application VIs that illustrate how to combine the
component VIs to perform basic test and measurement operations with
the instrument.

The internal design model of LabVIEW instrument drivers is built on a
proven methodology. With this model, you have the necessary
granularity to control instruments properly in your software
applications. You can, for example, initialize all instruments once at the
beginning, configure multiple instruments, and then trigger several
instruments simultaneously. As another example, you can initialize and
configure an instrument once, and then trigger and read from the
instrument several times.

Instrument Driver Application VIs
The application VIs are at the highest level of the instrument driver
hierarchy. They are written in LabVIEW block diagram source code and
control the most commonly used instrument configurations and
measurements. These VIs serve as a code example for how to configure

Chapter 31 LabVIEW Instrument Driver Models

© National Instruments Corporation 31-5 LabVIEW Function and VI Reference Manual

the instrument for a common operation, trigger the instrument, and take
measurements. Because the application VIs are standard VIs, with icons
and connector panes, you can call them from any high-level application
when you want a single, measurement-oriented interface to the driver.
For many developers, the application VIs are the only instrument driver
VIs needed for instrument control. The Tek VX4790 Example VI,
shown in the following figure, demonstrates an application VI front
panel.

Figure 31-3. Tek VX4790 Example VI

The application VIs are built from a low-level set of instrument driver
component VIs.

Instrument Driver Component VIs
LabVIEW instrument drivers have component VIs, which are a modular
set of VIs that contain all of the instrument configuration and
measurement capabilities. The component VIs fit into six categories:
initialize, configuration, action/status, data, utility, and close.

All LabVIEW instrument drivers should have an initialize VI. It is the
first instrument driver VI called, and establishes communication with

Chapter 31 LabVIEW Instrument Driver Models

LabVIEW Function and VI Reference Manual 31-6 © National Instruments Corporation

the instrument. Additionally, it can perform any necessary actions to
place the instrument either in its default power on state or in some other
specific state.

The configuration VIs are a collection of software routines that
configure the instrument to perform the desired operation. There may
be numerous configuration VIs, depending on the particular instrument.
After these VIs are called, the instrument is ready to take measurements
or stimulate a system.

The action/status category contains two types of VIs. Action VIs cause
the instrument to initiate or terminate test and measurement operations.
These operations can include arming the trigger system or generating a
stimulus. These VIs are different from the configuration VIs because
they do not change the instrument settings, but only order the
instrument to carry out an action based on its current configuration.
Status VIs obtain the current status of the instrument or the status of
pending operations. The specific routines in this category and the actual
operations they perform are left up to you.

Data VIs transfer data to or from the instrument. Examples include VIs
for reading a measured value or waveform from a measurement
instrument, VIs for downloading waveforms or digital patterns to a
source instrument, and so on. The specific routines in this category and
the actual operations performed by those routines are left up to you.

Utility VIs can perform a variety of operations that are auxiliary to the
most often used instrument driver VIs. These VIs include the majority
of the instrument driver template VIs such as reset, self-test, revision
query, error query, and error message and may include other custom
instrument driver VIs, such as calibration or storing and recalling
setups.

All LabVIEW instrument drivers should include a close VI. The close
VI terminates the software connection to the instrument and deallocates
system resources.

Each of these categories, with the exception of the initialize and close
VIs, consists of several modular VIs. Most of the critical work in
developing an instrument driver lies in the initial design and
organization of the instrument driver component VIs. The specific
routines in each category are further categorized as either template VIs
or developer-specified VIs.

Chapter 31 LabVIEW Instrument Driver Models

© National Instruments Corporation 31-7 LabVIEW Function and VI Reference Manual

The template VIs are instrument driver VIs that you can use as templates
or examples. These VIs perform common operations such as initialize,
close, reset, self-test, and revision query. The template VIs contain
modification instructions for their use in a specific instrument driver for
a particular instrument. For more information, refer to Chapter 33,

Instrument Driver Template VIs.

The remainder of instrument driver VIs are known as
developer-specified VIs, and the actual operations performed by those
routines are left up you. Although all instruments will have
configuration VIs, some instruments can have a different number of
configuration VIs depending on the unique capabilities of the
instrument.

Figure 31-4 shows how the Tek VX4790 Example application VI
diagram uses the instrument driver component VIs:

Figure 31-4. VIs in Tek VX4790 Example Diagram

The block diagram of the instrument driver component VIs uses
standard LabVIEW VIs, as well as VISA VIs to build command strings
and send them to the instrument. In the following figure, the Tek
VX4790 Config Std Wave component VI block diagram assembles the
command string and wires it into the VISA Write function. This function

Chapter 31 LabVIEW Instrument Driver Models

LabVIEW Function and VI Reference Manual 31-8 © National Instruments Corporation

performs the necessary I/O, checks for errors, and updates the
appropriate error indicators.

Figure 31-5. Tek VX4790 Config Std Wave Diagram

Error Reporting
LabVIEW instrument drivers use error clusters to report all errors.
Inside the cluster, a Boolean error indicator, a numeric error code, and
an error source string indicator report if there is an error, the specific
error condition, and the source (name) of the VI in which the error
occurred. Additional comments may also be included. Each instrument
driver VI has an error in and an error out terminal defined on its
connector pane in the lower left and lower right terminals respectively.
By wiring the error out cluster of one VI to the error in cluster of another
VI, you can pass error information all the way through your instrument
driver and out to your full application.

Another benefit of error input/output is that data dependency is added
to VIs that are not otherwise data dependent.

Additional VIs Distributed with the Instrument Driver
In addition to the VIs described by the internal model, include a Getting
Started VI and a VI Tree VI with your instrument driver files.

Chapter 31 LabVIEW Instrument Driver Models

© National Instruments Corporation 31-9 LabVIEW Function and VI Reference Manual

The Getting Started VI
The Getting Started VI allows the user to use the instrument without
wiring a subVI on the block diagram. This is generally the first VI the
end user runs to verify communication with the instrument. This VI
generally consists of three sub-VIs: the initialize VI, an Application VI
and the Close VI. The front panel of the Getting Started VI then
resembles the application VI’s front panel that it calls. Instead of having
the user provide the VISA resource name, the user should only provide
the GPIB address, VXI logical address or communications port. For
example, instead of requiring the resource name “GPIB0::24”, the
Getting Started VI would require the user supply a GPIB address of
“24.” The front panel and block diagram of the Getting Started VI for
the HP34401A are shown below.

Chapter 31 LabVIEW Instrument Driver Models

LabVIEW Function and VI Reference Manual 31-10 © National Instruments Corporation

The VI Tree VI
In order for customers to view the entire instrument driver hierarchy at
once, a VI Tree VI is required. This VI is a non-executable VI that is
designed to show the functional structure of the VI. If an end user does
not install the palette menu files for the instrument, the VI Tree is the
only resource to understanding the structure. An example of a VI tree
VI is shown below.

© National Instruments Corporation 32-1 LabVIEW Function and VI Reference Manual

Chapter

32
LabVIEW Instrument Driver
Development

This chapter describes the procedure for developing a LabVIEW
instrument driver. The ideal LabVIEW instrument driver has full
function control of the instrument. Rather than mandate the required
functionality of all instrument types, such as DMMs, counter/timers,
and so on, this chapter focuses on the architectural guidelines of all
drivers. With this information, driver developers can implement
functionality unique to a particular instrument, and still organize,
package and use all drivers in the same way.

Development Procedure

The best way to develop a LabVIEW Instrument Driver is to follow a
three-step process. In step one, you design the instrument driver
structure. In step two, you modify the instrument driver templates VIs.
In step three, you add developer defined VIs.

Designing the Instrument Driver Structure
The ideal instrument driver does what the user needs—no more and no
less. No particular type of driver design is perfect for everyone, but by
carefully studying the instrument and grouping controls into modular
VIs, you can satisfy most users.

When the number of programmable controls in an instrument increases,
so does the need for modular instrument driver design since a single VI
cannot access all features. However, when an instrument driver
contains hundreds of VIs, each controlling a single instrument feature,
more instrument rules regarding command order and interaction apply.
Modular design simplifies the tasks of controlling the instrument and
modifying VIs to meet special requirements.

Ideally, you should devise the overall structure of your instrument
driver before you build the individual VIs. A useful instrument driver is
more than a series of VIs; it is a tool to help users develop application
programs. You should design an instrument driver with the application
and end user in mind.

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-2 © National Instruments Corporation

You must create some instrument driver VIs that control unique
instrument features. However, you can use template VIs for common
operations. For more information about template VIs see Chapter 33,
Instrument Driver Template VIs.

Instrument Driver Structure and VI Hierarchy
When you develop a LabVIEW instrument driver, it is important to
clearly define the structure and VI hierarchy of the driver. First, define
the primary VIs and develop a modular VI hierarchy. This hierarchy is
the design document for a LabVIEW instrument driver.

Useful instrument drivers come from an in-depth knowledge of the
instrument operation and use in test applications. The following steps
outline one approach to developing the structure for the LabVIEW
instrument drivers:

1. Familiarize yourself with the instrument operation. Read the
operating manual thoroughly. Typically the foundation of the
driver hierarchy is in the instrument programming manual. Learn
how to use the instrument interactively before you attempt any
programming.

2. Use the instrument in an actual test set-up to get practical
experience. (The operating manual may explain how to set up a
simple test.)

3. Study the programming section of the manual. Skim the instruction
set to see which controls and functions are available and how the
features are organized. Decide which features are best suited for
programmatic use.

4. Examine instrument drivers for similar instruments. Often
instruments from the same family have the same programming
command set and you can easily modify their corresponding
instrument drivers.

5. Determine which LabVIEW template VIs are suitable for use with
your instrument.

6. Develop a structure for the driver by looking for controls that are
used together to perform a single task or function. The sections of
a well organized manual often correspond to the functional
groupings of an instrument driver.

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-3 LabVIEW Function and VI Reference Manual

Instrument Driver VI Organization

After you have developed your Instrument Driver structure, you can
develop a VI hierarchy to organize the VIs that will be necessary to
create the driver.

The VI organization of an instrument driver defines the hierarchy and
overall relationship of the instrument driver component VIs.

You define the majority of instrument driver VIs and design them to
access the unique capabilities of a particular instrument. However,
many operations common to all types of instrumentation are performed
by the template instrument driver VIs: initialize, close, reset, self-test,
revision query, error query, and error message.

The template VIs for LabVIEW instrument drivers include prewritten
VIs to perform these common instrument operations. The command
strings are based on the VISA functions. To include these VIs in your
instrument driver, modify the command strings as required for your
instrument. If the instrument is IEEE 488.2 compliant, little or no
modifications are needed. If you are developing a driver for a non-IEEE
488.2 compliant or a register-based device, you will develop equivalent
VIs for your instrument.

A class is a group of VIs that perform similar operations. Common
classes of VIs are configuration, action/status, data, and utility.

The following table shows an example instrument driver organization
for an oscilloscope. At the highest level of the hierarchy, you see the
template VIs, initialize and close and the typical classes of VIs.

Table 32-1. Instrument Driver Organization Example

VI Hierarchy Type

Initialize VI (Template)

Application VIs
• Autosetup and Read Waveform
• Rise-Time/Fall-Time Measurement

(Developer Defined)
(Developer Defined)

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-4 © National Instruments Corporation

Guidelines and Recommendations

• Design an instrument driver VI front panel that contains all the
controls required to perform the VI task.

For example, a configure measurement VI would contain only the
necessary controls to configure the instrument to take the
measurement. It would not take the measurement or configure any
other features. Other VIs included in the instrument driver perform
these tasks.

• Design a modular instrument driver that contains a set of VIs, each
performing a logical task or function such as configuring the
instrument or taking a measurement.

A modular instrument driver is flexible and easy to use. For
example, consider a digital multimeter driver design that uses a
single VI to both configure the instrument and read a measurement.

Configuration VIs
• Configure Vertical
• Configure Horizontal
• Configure Trigger
• Configure Acquisition Mode
• Autosetup

(Developer Defined)
(Developer Defined)
(Developer Defined
(Developer Defined)
(Developer Defined)

Action VIs
• Acquire Data (Developer Defined)

Data VIs
• Read Waveform
• Voltmeter Measurement
• Counter/Timer Measurement

(Developer Defined)
(Developer Defined)
(Developer Defined)

Utilities VIs
• Reset
• Self-Test
• Revision Query
• Error Query
• Error Message

(Template)
(Template)
(Template)
(Template)
(Template)

Close VI (Template)

Table 32-1. Instrument Driver Organization Example (Continued)

VI Hierarchy Type

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-5 LabVIEW Function and VI Reference Manual

The user cannot read multiple measurements without reconfiguring
the meter each time the VI executes. A better approach is to build
two VIs: one to configure the instrument, and one to read a
measurement. Then the user can configure the meter once and take
multiple measurements.

• Concentrate on the correct level of granularity of driver VIs and
how these VIs will be used in a system.

An instrument driver with a few very high-level VIs may not give
the user enough control of the instrument operation. Conversely, an
instrument driver with many low-level VIs is difficult for users
unfamiliar with instrument rules regarding command order and
interaction. For example, when using a measurement device such as
an oscilloscope, the user typically configures the instrument once
and takes many measurements. In this case, you should write
high-level configuration VIs for the device. On the other hand,
when using a stimulus device such as a pulse generator, the user
may want to vary individual parameters of the pulse to test the
boundary conditions of his system, or perform frequency response
tests. In this case, you should write lower-level VIs, so that users
can access individual instrument capabilities instead of
reconfiguring each time they want to change one component of the
output.

• Consider the relationship of the driver with other instrument drivers
in the system.

Typically, test designers want to initialize all of the instruments in
a system at once, then configure them, take measurements, and
finally close them at the end of the test. Good driver design includes
logical division of operations.

• Create an instrument driver design (both in appearance and
functional structure) that is similar to other instruments of the
same type.

Instrument drivers across a family of similar instruments should be
consistent in appearance, structure, and style. For example, all
oscilloscope drivers should resemble each other, as should all
multimeters, scanners, and sources. If possible, modify a copy of an
existing driver of a similar instrument.

• Design an instrument driver that optimizes the programming
capability of the instrument.

You can sometimes exclude documented functions that are not
well-suited for programmatic use.

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-6 © National Instruments Corporation

• Design each VI to be independent of other VIs.

If two or more VIs must always be used together, consolidate them
into one VI.

• Minimize redundant parameters.

For example, the parameters for each channel of a multi-channel
oscilloscope are similar or identical. Rather than duplicate the
programming controls for each channel, you can include a VI
control for selecting which channel to configure. The user can use
this VI to change the settings for an individual channel, rather than
configuring every channel each time the VI is called.

Design Example
Deciding which parameters to include in an instrument driver VI is one
of the greatest challenges facing the instrument driver developer.
Fortunately, organizational information is often available in the
instrument’s manuals. In particular, the programming section of the
manual may group the commands into sections such as configuring a
measurement, triggering, reading measurements, and so on. These
groupings can serve as a model for a driver hierarchy. Begin to develop
a structure for the driver by looking for controls that are used together
to perform a single task or function. A modular driver will contain
individual VIs for each of the control groups.

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-7 LabVIEW Function and VI Reference Manual

The following table shows how the command summary from the
Tektronix VX4790 Arbitrary Waveform Generator Operating Manual
relates to developer specified instrument driver VIs.

While the instrument manual can provide a great deal of information
about how to structure the instrument driver, you should not rely on it
exclusively. Your knowledge of the instrument and how it is used
should be the ultimate guide. The preceding table shows manual

Table 32-2. Command Summary from Tektronix VX4790

Instrument Manual Section Instrument Driver VI

Setup Commands
• External clock input enable
• External trigger source
• Sync pulse control
• Isolation relay control

TKVX4790 Setup

Pre-Programmed Waveform
Commands
• Sine wave
• Square wave
• Triangle wave
• Sawtooth wave

TKVX4790 Config Std.
Waveform

Frequency Commands
• Frequency
• Period
• Divide
• Low-Pass filters

TKVX4790 Config Sample
Frequency

Voltage/Attenuator Commands
• Voltage control
• Attenuator enable
• Attenuation level

TKVX4790 Config Volt/Atten.

Arbitrary Waveform Commands
• Sample voltage
• Breakpoint/Last commands

TKVX4790 Download Arb.
Waveform

Trigger Commands
• Start location
• Breakpoint/last commands

TKVX4790 Run/Stop

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-8 © National Instruments Corporation

sections that map nicely to VIs found in the instrument driver. There are
instances when it is more appropriate to place commands from several
different command groups in your VI.

Conversely, it is often necessary to take one group of commands and
divide it into two or more VIs. Consider how an instrument manual
groups the trigger configuration commands with the commands that
actually perform the trigger arming and execution. In this case, you
should separate the commands into two VIs; one to configure the
trigger, and one that arms or triggers the instrument.

The following figure shows the LabVIEW instrument driver VIs for the
Tektronix VX4790 Arbitrary Function Generator.

Figure 32-1. LabVIEW Instrument Driver VIs for the Tektronix VX4790

Modifying the Instrument Driver Templates
After you design the LabVIEW instrument driver structure, the next
step is to modify the template VIs to represent your instrument. Most of
the modifications involve the instrument prefix. The prefix is a unique
identifier for the instrument driver, and is used as the filename for all
files associated with the driver and as the prefix to all instrument VI
names. Typically, the prefix is the combination of an abbreviation for

Application VI

Configuration VIs

Initialize VI

Action VIs

Close VI

Data VI

Utility VIs

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-9 LabVIEW Function and VI Reference Manual

the instrument vendor name and the model number. For example, the
instrument prefix for the Tektronix VX4790 instrument driver is
tkvx4790. As a default, the template instrument drivers use PREFIX as
the instrument prefix.

Use the following procedure for modifying the LabVIEW instrument
driver template:

1. Open the PREFIX Initialize template in the file CoreDrv.llb.

2. Save the VI into a new VI library file by using the prefix for your
instrument as the filename of the.llb file. Save the VI replacing
PREFIX in the VI name with the prefix for your instrument.

3. Follow the instructions in the Modification Instructions
string control on the initialize panel to modify the VI for your
particular instrument.

4. Edit all Show VI Info... and control and indicator descriptions.

5. Edit the icon. Create an icon for each of the color modes of the icon:
Black and White, 16-Color, and 256-Color.

6. Delete the Modification Instructions string control after you
have completed the modifications.

7. Resize the front panel and save the VI.

8. Repeat steps 1 through 7 for PREFIX Close VI and the remaining
template VIs that your instrument uses. All LabVIEW instrument
drivers should have initialize, close, reset, revision query, error
message, self test and error query and error message (multiple) VIs.
If the instrument does not support some of the utility functions, the
VI should return a “not supported” warning.

After completing this procedure, you have a base-level driver that
implements all template instrument driver VIs and is a good framework
from which you can create the rest of your driver.

In addition to CoreDrv.llb, there is one more instrument driver
template library, CoreDr_U.llb. This library can contain support VIs
that the instrument driver uses internally, but which you do not intend
the end user to call. Two examples of support files, PREFIX Utility
Clean Up Initialize and PREFIX Utility Default Instrument Setup, are
included in the CoreDr_U.llb file. If you intend the instrument driver
to use these files, you should rename and modify them like those in
CoreDrv.llb.

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-10 © National Instruments Corporation

Adding Instrument Driver Component VI VIs
The final step in developing a LabVIEW instrument driver is to add the
developer defined component VIs that define the functionality of the
instrument driver and access the unique capabilities of your instrument.
The VIs that you create will be added to the source code along with the
template VIs in the file prefix.llb.

You can use the following procedure to add your new VIs:

1. Open either the PREFIX Message-Based or PREFIX
Register-Based templates VI in CoreDrv.llb. Use the PREFIX
Message-Based template VI for message-based operations. Use
the PREFIX Register-Based template VI for register-based
operations.

2. Edit the VI front panel. Create the controls and indicators for
the VI.

3. Edit all control and indicator Help information. Edit the Show VI
Info... description.

4. Edit the icon. Create an icon for each of the color modes of the icon:
Black and White, 16-Color, and 256-Color.

5. Edit the connector pane. Select an appropriate connector pattern
and wire all controls and indicators to the terminals.

6. Edit the block diagram. Program all operations necessary to carry
out the functionality of the instrument driver VI.

7. Save the VI.

8. Test the instrument driver VI.

9. Repeat these steps for every instrument driver component VI and
application VI that you define for your instrument.

10. Edit the instrument driver .llb by selecting File»Edit VI
Library... from the menu. Edit the Functions and Controls names.
Edit the arrangement of icons in the Functions and Controls
palettes.

Editing the block diagram source code is the most difficult step in
adding a component VI to the instrument driver. Defining a block
diagram structure makes it easier to edit the block diagram source code.
You can divide this process into the following steps:

1. Place the appropriate I/O routines in the block diagram.

2. Wire the error in cluster terminal to the first I/O VI error input
connector. Then wire the error out connector of that VI to the error

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-11 LabVIEW Function and VI Reference Manual

in connector of the next VI. Continue this process for all of the I/O
VIs. Then wire the error out connector of the last VI to the error
out terminal of the icon.

3. Wire the VISA session to every I/O VI.

4. Use the LabVIEW string VIs to assemble a command string based
on the VI inputs.

5. Wire the command string to the VISAWrite function.

6. Use the VISA Read function to read the response if an instrument
response is generated.

7. Use the string VIs to parse the response and wire it to the
appropriate indicator terminals.

Modifying the Menu Files to Create Function Sub-Palettes
After you complete all the required VIs, component VIs, Application
VIs and the Getting Started VI, organize them into subpalettes that the
end user can access. This involves editing the template menu files as
follows:

1. Copy the CoreDrv directory to another directory and rename the
new directory PREFIX. This directory should be a subdirectory of
Instr.lib.

2. Relaunch LabVIEW so that the new template subpalettes appear in
the function palette under instrument drivers.

3. Select Edit Controls and Function Palettes. . . from the File menu
in LabVIEW.

4. Edit the instrument driver’s palette icon and change the name to
PREFIX.

5. Access the instrument driver’s subpalette window to view the
hierarchy of the driver. For each subpalette, insert the VIs which
correspond to that category. You will need to replace the template
files with the completed version.

6. Save your changes. Your menu files will now contain the added
component VIs.

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-12 © National Instruments Corporation

The resulting menu palettes should resemble the following subpalette:

Tips for Developing a LabVIEW Instrument Driver

Loop Termination Conditions
When you use looping structures in instrument driver block diagrams,
you must include a way to escape from While Loops if an error occurs.
This escape method is important if you are using a While Loop
containing I/O routines and the loop termination depends on the result
of the I/O.

If there is an error, the I/O routines automatically shut down and
LabVIEW may be stuck in an endless loop. Therefore, always test the
error cluster status in conjunction with your normal loop termination
condition to determine when to terminate the loop. Figure 32-2 below
shows the incorrect mechanisms for terminating a While Loop.

Figure 32-2. Incorrect Mechanism for Escaping from While Loop

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-13 LabVIEW Function and VI Reference Manual

Figure 32-3 below shows the correct mechanisms for terminating a
While Loop

Figure 32-3. Correct Mechanism for Escaping from While Loop

Assembling Command Strings
After you develop your front panel, the next step is to create the block
diagram which performs the function required by the VI. Each type of
front panel control has a corresponding block diagram string VI that
simplifies the task of building command strings.

You can use Pick Line & Append to choose from a selection of strings
and concatenate it to another string in a single step. This procedure is
easier than using a Case structure and Concatenate Strings.

You can use Format & Append to format and concatenate simple
numeric values. This procedure is easier than using one of the To

Use this block diagram... rather than this one...

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-14 © National Instruments Corporation

Decimal or To Exponential type conversion VIs in conjunction with
Concatenate Strings.

By using Select & Append you can select a string constant and
concatenate it to another string in a single step. This procedure is easier
than using Select and Concatenate Strings.

Data Dependency
Carefully consider the control flow when you build your diagrams.
LabVIEW does not necessarily execute in a left-to-right, top-to-bottom
fashion. Data dependency automatically determines execution order.
Add artificial data dependency wherever appropriate (see the LabVIEW

User Manual for more information). By using the clusters to chain I/O
VIs together, you can define the execution order without using Case or
Sequence structures, as illustrated in Figure 31-3, in Chapter 31,

LabVIEW Instrument Driver Models. Sequence structures, which hide
parts of the diagram, are also effective at controlling execution order.
Whichever method you use, make sure that you clearly define control
flow so that the correct branch of the diagram executes first

Use this block diagram... rather than this one...

Use this block diagram... rather than this one...

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-15 LabVIEW Function and VI Reference Manual

.

Figure 32-4. Range Test VI (Front Panel and Block Diagram)

Programmatic range checking can easily double the size of your VI and
add some execution speed penalties. Figure 32-5 and Figure 32-6 show

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-16 © National Instruments Corporation

the changes made to the Simple Trigger VI to programmatically check
the ranges of the numeric inputs.

Figure 32-5. Simple Trigger VI with Programmatic Range Testing

Figure 32-6. Simple Trigger VI without Programmatic Range Testing

Guidelines
Like the LabVIEW VI, the standard components of an instrument driver
VI are the front panel, block diagram, and icon/connector pane. Special

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-17 LabVIEW Function and VI Reference Manual

guidelines concerning these components, as well as error reporting and
on-line help information, are described in the following sections.

Front Panel
Each VI in your instrument driver should contain a front panel that
groups all the necessary controls together to perform the function of the
VI. When you develop an instrument driver VI, decide which control
styles best represent the instrument commands and options. Typically,
you can categorize instrument commands into three types of control
styles: Boolean, digital numeric, and text or ring numeric.

For example, you can represent any instrument command that has two
options (such as TRIG:MODE:AUTO | NORMAL) on the front panel
with a Boolean switch. In this case, label the switch Trigger Mode and
add a free label showing the options: auto or normal. For commands
that have a discrete number of options (such as TRIG:COUP:AC | DC |
HFREJ), use a text ring or an enumerated type ring rather than a digital
numeric because the ring control labels each numeric value with the
command it represents. Any command requiring a numeric parameter
whose value varies over a wide range and might be represented with a
digital numeric.

Note: You might prefer to use the enumerated type ring controls because

selections for case structures are self-documenting when wired directly to

a enumerated-type control or constant. Also, by using the “Create

Constant” popup feature in LabVIEW, end users generate an enumerated

type ring constant rather than a numeric constant.

You can use Boolean, numeric, and text ring controls to represent most
instrument commands on the front panels of your VIs. In addition, block
diagram string functions specifically designed for use with these
controls exist. These features can simplify string formatting and append
instrument commands into command messages, as discussed in the
Assembling Command Strings and Block Diagram sections of this
chapter.

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-18 © National Instruments Corporation

Required Front Panel Controls
In addition to the controls required to operate the instrument, your front
panel must also have the following controls.

VISA session (except for the initialize VI) input is a unique identifier
reference to a device I/O session. It identifies the device with which the
VI communicates and all configuration information necessary to
perform the I/O.

dup VISA session output is a unique identifier reference to a device
I/O session. It identifies the device with which the VI communicates
and all configuration information necessary to perform the I/O.

error in describes error conditions that occur before this VI executes.
The default input of this cluster is no error.

error out is a cluster containing error information. If error in indicates
an error, the status, code, and source elements of error out have the
same values as the corresponding elements of error in. If error in does
not indicate an error, error out describes the error encountered by the
VI. Refer to the LabVIEW Error Codes manual for a description of the
possible error codes.

To gain consistency with other LabVIEW instrument drivers, place the
VISA session control and dup VISA session indicator in the upper left
and upper right corners of the front panel, and the error out cluster in
the lower right corner. Place the error in cluster outside the panel’s
visible window because it has no interactive use and is only needed for
programmatic use.

Control Guidelines

When placing controls on your front panels, use the following style
guidelines to ensure uniformity with other LabVIEW Instrument Driver
VI front panels:

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-19 LabVIEW Function and VI Reference Manual

• Use the default font (Application) for all LabVIEW instrument
driver front panel control labels.The application font is available on
all LabVIEW platforms.

• Use bold text for control name labels that denote important or
primary controls, and reserve plain text for secondary controls.

Note: In most cases, all instrument driver controls are primary and require bold

text. If you are finding yourself placing many secondary or auxiliary

controls on panels, this may indicate the need to subdivide your VI into two

or more VIs.

• Capitalize initial letters in all words, except abbreviations or
acronyms, which require caps (such as ID or GPIB) and error in,
error out and dup VISA session labels.

• Place labels above the associated control or indicator and color the
label background transparent.

• Enclose control default information in parentheses in the control
name.

By including default information in the control name, users access
that information through the help window. This feature is helpful
when you are using the VI in higher-level applications.

For example, Function (0:DCV) would be an appropriate label for
a function selector ring control whose default is DC voltage and
item zero in the ring. The abel for a Boolean mode switch that
defaults to true indicating automatic would be Mode (T:Auto).
(Notice that the default information is in plain text).

• Align and distribute the controls and indicators for a well balanced
panel.

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-20 © National Instruments Corporation

The following figures shows the simple trigger VI after modification to
meet the style guidelines.

Figure 32-7. Simple Trigger VI Front Panel (See Figure 32-8 for Diagram)

Figure 32-8. Simple Trigger Block Diagram

Block Diagram
Proper wiring style improves the diagram appearance and eases
understanding. The following are recommendations for developing
your instrument driver block diagrams:

• Add text labels to each frame of Case and Sequence structures.

• Label control and indicator nodes with normal text.

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-21 LabVIEW Function and VI Reference Manual

• Use bold text to make your free label comments stand out.

• Leave room for labels and wires. Do not crowd the diagram. Do not
cover wires with loops, cases, labels, or other diagram objects.

• Reduce the number of bends in the wires by aligning data terminals
whenever possible. You can use the cursor keys to move objects
one pixel width at a time. Use the Align and Distribute options in
the Edit menu to add symmetry and straight lines to your diagram.

• Label long wires and complex operations to increase
understandability.

Icon
When you use an instrument driver VI programmatically, the icon
graphically represents the function (much like the function name of a C
library call). Use meaningful icons for every VI. Include text in the icon
that identifies the instrument model controlled by the VI. If you are
unable to create an icon to express the function of the VI, you can use
text only.

You can borrow icons from similar VIs in other instrument drivers.
These sample icons are available in the file insticon.llb.

Connector Pane
When you use an instrument driver programmatically, the connector
pane defines how to pass parameters to and from the VI. Use the
following rules when creating your instrument driver connector panes:

• Place the VISA session input and dup VISA session output in the
upper left and upper right terminals of the LabVIEW instrument
driver connector pane.

• Place the error in and error out clusters in the lower left and lower
right terminals of the LabVIEW instrument driver connector pane
respectively.

• Place inputs on the left and outputs on the right of the connector
pane whenever possible. This promotes a left-to-right data flow
when the VI is used in a block diagram.

Note: It is acceptable to choose a connector pane pattern that has extra terminals

in case you make unforeseen control or indicator additions to your

instrument driver VIs in the future. This procedure prevents you from

having to change the pattern and replace all instances of calls to a modified

VI.

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-22 © National Instruments Corporation

Error Reporting
Refer to the document, LabVIEW Error Codes, for a list of error codes
reserved for LabVIEW instrument drivers.

Online Help Information
LabVIEW has two types of help mechanisms available to users: VI

Descriptions and Control Descriptions. You should implement both VI

Descriptions and Control Descriptions for all LabVIEW instrument
driver VIs and controls that you develop.

VI Descriptions
Users can access VI Description help from the description box of the
information window by selecting Windows»Show VI Info..., as shown
in the following figure.

This dialog box should contain the following information:

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-23 LabVIEW Function and VI Reference Manual

• A general description of the instrument driver VI

• Control usage rules

• VI interaction with other instrument driver VIs

• Important information concerning the use of the VI

Control and Indicator Descriptions
Control and indicator help is the information most frequently viewed by
the user. You can obtain control or indicator help by selecting Data
Operations»Description... from the control or indicator pop-up menu,
as shown in the following figure.

The control and indicator help information should contain the
following:

• Name of the parameter

• Brief description of the parameter

• Valid range

• Default value

• Interaction with other controls

Be sure to include information showing index numbers and
corresponding settings for all ring and slide controls, and settings
corresponding to True/False positions on Boolean controls.

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-24 © National Instruments Corporation

Application VIs
The application VIs demonstrate a common use of the instrument and
show how the component VIs are used programmatically to perform a
task. For example, an oscilloscope application VI would configure the
vertical and horizontal amplifiers, trigger the instrument, acquire a
waveform, and report errors. Consider the following points when
developing application VIs for your instrument driver:

• Concentrate on building simple, quality examples that can serve as
general models for users. It is not necessary to make your
application VIs perform every function found in your instrument
driver.

• Build the instrument driver top-level examples from the instrument
driver component VIs, and perform common test- and
measurement-oriented operations for this particular instrument.

• Do not use the instrument driver application VIs to call the
initialize or close instrument driver VIs, because doing so will
make the application VIs less useful to higher level applications.

LabVIEW Instrument Driver Standards Checklist

All LabVIEW instrument drivers should conform to recommendations
for programming style, error handling, front panels, block diagrams,
and online help described in this section. Use the following checklist to
verify that your instrument driver complies with library standards:

I. Files and Documents you submit:

 A. Prefix.zip containing the instrument driver files.

 1) Prefix.llb, your main instrument driver library. (e.g.,
hp16500b.llb, fl45.llb)

 2) Palette menu files. (dir.mnu, acstat.mnu,
data.mnu, applic.mnu, util.mnu. config.mnu)

 3) (optional/recommended) Prefix_u.llb. (e.g.,
hp1650_u.llb, fl45_u.llb).

 4) (optional) Prefix.txt.

 B. Manufacturer’s instrument manual or manual set.

 C. A completed checklist.

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-25 LabVIEW Function and VI Reference Manual

II. General Issues:

 A. The instrument driver must use VISA for all instrument I/O:

 B. All VIs are designed for programmatic use, so there are no
pop-up VIs or dialog boxes, and no interactive inputs. All controls and
indicators are wired to the connector pane.

 C. All VIs are multi-instance, so there are no uninitialized shift
registers, and no global storage VIs unless specifically designed to work
with multiple instruments simultaneously.

 D. All VIs are fully documented including Show VI Info and
control descriptions.

 E. Driver follows the instrument internal and external driver
model: The driver must include the following VIs: Initialize, Close,
Getting Started, Application and VI Tree. In addition, all other VIs must
be grouped into the following categories: Configure, Action/Status,
Data, Utility, or support.

 F. All VIs use the error I/O clusters, error in and error out.

 G. The instrument driver contains the following required Utility
functions: Revision Query, Self Test, Reset, Error Query (single and/or
multiple), and Error Message.

 H. The required utility VIs return a VISA NSUP warning code if
the instrument does not support the requested operation.

 I. The instrument driver uses VISA session, dup VISA session,
error in, and error out to channel data flow, and force data
dependency. Do not use sequences or case structures for this purpose
because they slow execution speed and make it harder to debug the
driver.

III. Prefix.llb:

 A. Prefix.llb contains all the instrument driver VIs that you
want the end user to access directly.

 B. All VIs are saved with meaningful names including
instrument prefix and description, and include only alpha-numeric
characters (no special characters). Use Initial Capital Letter form (e.g.,
Fluke 45 Read Measurement). VIs that are of the same type should be

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-26 © National Instruments Corporation

named so that they start with a common name. For example, all
configuration VIs should start with “Prefix Config.”

 C. The VI Tree is contained in prefix.llb and is named
Prefix VI Tree.vi. The front panel of the VI contains a message
instructing the users to “See the diagram for the VI Tree”. The diagram
contains all of the driver's VIs that are designed for the user to access.
These VIs are arranged by functional grouping, such as Getting Started,
Application, Initialize, Configuration, Action/Status, Data, Utility,
and Close.

 D. All instrument drivers have at least one Application VI. These
VIs are programmatic examples that demonstrate how to use the
instrument driver component VIs to perform a common task or tasks.

 E. All instrument drivers must have a Getting Started VI. This VI
calls the Initialize VI, one or more application VIs, followed by the
Close VI.

 F. Getting Started, Application and VI Tree VIs are given
top-level status in the VI library.

IV. Prefix_U.llb (Recommended/Optional):

 A. Prefix_U.llb contains all the support VIs the end user
should not access directly, but are used by the instrument driver.

V. Palette Menu Files:

 A. The function menu palettes are well organized and follow the
format of the instrument driver template.

 B. Palette Menu files include dir.mnu,
applic.mnu,config.mnu, acstat.mnu, data.mnu, and
util.mnu.

VI. VI Front Panels

 A. Contains VISA session, dup VISA session, error in and
error out controls/indicators.

 B. Front panel Show VI Info description is complete,
informative, and contains any additional information that helps the end
user successfully operate the instrument driver.

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-27 LabVIEW Function and VI Reference Manual

 C. Show VI Info for the Revision Query VI includes the
following:

 1) The Instrument Driver Revision Number

 2) The Firmware Revision of the Instrument used when
creating the instrument

 3) The date the driver will be released on the next Instrument
Driver CD (month/year)

 4) The instrument manufacturer's name

 5) The instrument model number

 6) The instrument type (Digital Multi-Meter, Oscilloscope,
Function Generator, etc.)

 7) The instrument driver developer’s name

 D. (optional/recommended). The same information that is
included in the revision query VI is included in the Show VI Info
documentation of the VI Tree VI.

 E. VI History is updated with comments as needed.

 F. Controls and Indicators

 1) All control and indicator descriptions are complete. This
includes valid ranges, default values and items within a ring
control.

 2) Labels are placed at the upper left of controls and the
background color of labels is transparent. Size to Text feature used.

 3) Default Application Font is used and the initial letters of
control names are capitalized. Use bold for primary controls and
plain text for secondary controls. Use plain text to indicate default
values.

 4) Proper defaults are set for each control. Default values are
included in the control name.

 5) Proper data type and display format is used.

 6) Enumerated text rings used instead of regular test rings,
whenever possible.

 G. Align and distribute the controls for an appealing panel
layout. Do not overlap controls. Set Panel Order so that users can tab
through the controls in a logical sequence.

Chapter 32 LabVIEW Instrument Driver Development

LabVIEW Function and VI Reference Manual 32-28 © National Instruments Corporation

 H. Use color sparingly or use standard gray. If color is desired,
use only the 16 basic colors.

VII. Icon/Connector Pane/VI Setup

 A. Create meaningful icons for all VIs.

 1) Place the instrument Prefix at the top of the icon. Place a
text description at the bottom of the icon.

 2) Try to keep a common theme for all VIs of a particular
driver or group within a driver.

 3) Black and white icons are required, 16 and 256 color icons
are recommended/optional.

 B. Select an appropriate connector pane.

 1) For ease of wiring it is recommended that the following
connector pane is used, whenever possible:

 2) Whenever possible, input terminals should be kept to the
left and top while outputs are on the bottom and right.

 3) VISA session must be assigned to the upper left terminal
and dup VISA session is assigned to the upper right terminal.
Similarly, error in and error out are assigned to the lower left and
lower right terminals, respectively.

 4) If future modifications are expected, a connector pane
with extra unused terminals is acceptable.

 C. Use caution when using VI Setup options. Do not select
options to make the panel automatically shown or run.

VIII. Block Diagram:

 A. Use bold text labels with 14 point application font to describe
each case or sequence frame. These descriptions should be left-justified
with the background colored transparent.

 B. Use plain text labels for controls/indicators with the default
application font. For control terminals, place labels below or on the left.
For indicator terminals, palce the labels below or on the right. If you

Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-29 LabVIEW Function and VI Reference Manual

place labels to the left of the terminal, make them right justified,
otherwise use left-justification. Make label backgrounds transparent.

 C. Do not crowd the diagram. Do not cover wires with labels,
objects, or structures.

 D. When possible, try to wire the VIs the way that they appear in
the LabVIEW Help Window.

 E. Try to lay out the diagram with a left-right, top-down
data flow.

 F. For functions and VIs that are chained together using the VISA
sessions and error clusters, try to align the wires between sequences to
be on the same horizontal level.

 G. Try to align and distribute terminals, VIs and functions within
your block diagram to give it a well-balanced look. Eliminate
unnecessary bends in the wires.

 H. Use proper error I/O wiring techniques. Use the correct error
codes for error reporting.

 I. Save diagrams with the first or most important frames and
cases visible. Place bold-text descriptive free labels in each case
and frame.

 J. Avoid using sequence structures because they slow execution
of your VI and make it harder to understand the diagram.

 K. Avoid using the Concatenate Strings function when another
string function is more appropriate. Use other string handling functions
such as Pick Line & Append, Select & Append and Format into String.

© National Instruments Corporation 33-1 LabVIEW Function and VI Reference Manual

Chapter

33
Instrument Driver
Template VIs

This chapter describes the Instrument Driver Template VIs. These VIs
are located in examples\instr\insttmpl.llb.

Introduction to Instrument Driver Template VIs

The LabVIEW instrument driver templates are the foundation for all
LabVIEW instrument driver development. The templates have a simple,
flexible structure and a common set of instrument driver VIs that you
can use for driver development. The templates establish a standard
format for all LabVIEW drivers and each has instructions for modifying
it for a particular instrument. The LabVIEW instrument driver
templates contain the following 11 predefined template component VIs:

• PREFIX Initialize

• PREFIX Initialize (VXI, Reg-based)

• PREFIX Close

• PREFIX Reset

• PREFIX Self Test

• PREFIX Error Query

• PREFIX Error Query (Multiple)

• PREFIX Error Message

• PREFIX Revision Query

• PREFIX Message-Based Template

• PREFIX Register-Based Template

The templates contain the following support VIs:

• PREFIX Revision Query

• PREFIX Message-Based Template

They also contain the following VI Example Tree:

• PREFIX Message-Based Template

Chapter 33 Instrument Driver Template VIs

LabVIEW Function and VI Reference Manual 33-2 © National Instruments Corporation

Rather than developing your own VIs to accomplish these tasks, you
should use the LabVIEW instrument driver template VIs which already
conform to the LabVIEW standards for instrument drivers. The
template VIs are IEEE 488.2 compatible and work with IEEE 488.2
instruments with minimal modifications. For non-IEEE 488.2
instruments, use the template VIs as a shell or pattern, which you can
modify by substituting your corresponding instrument-specific
commands where applicable. After modifying the VIs, you will have the
base level driver that implements all of the template instrument driver
VIs for your particular instrument.

Additionally, LabVIEW instrument drivers developed from the
template VIs will be similar to other instrument drivers in the library.
Therefore, you will have a higher level of familiarity and understanding
when you work with multiple instrument drivers.

Instrument Driver Template VI Descriptions

The following Instrument Driver Template VIs are available.

Note: To develop your own Instrument Driver VI, follow the instructions on the

front panel of the Template VI.

PREFIX Close
All LabVIEW instrument drivers should include a Close VI. The Close VI is the last VI
called when controlling an instrument. It terminates the software connection to the
instrument and deallocates system resources. Additionally, you can choose to place the
instrument in an idle state. For example, if you are developing a switch driver, you can
disconnect all switches when closing the instrument driver..

Chapter 33 Instrument Driver Template VIs

© National Instruments Corporation 33-3 LabVIEW Function and VI Reference Manual

PREFIX Error Message
The PREFIX Error Message VI is a template for creating an Error Message VI for your
particular instrument. It translates the error status information returned from a LabVIEW
instrument driver VI to a user-readable string.

PREFIX Error Query, Error Query (Multiple) and Error Message
If an instrument has error query capability, the LabVIEW instrument driver has Error

Query and Error Message VIs. The Error Query VI queries the instrument and returns the
instrument-specific error information. The Error Message VI translates the error status
information returned from a LabVIEW instrument driver VI into a user-readable string.

PREFIX Initialize and PREFIX Initialize (VXI, Reg-based)
The Initialize VI is the first VI called when you are accessing an instrument driver. It
configures the communications interface, manages handles, and sends a default
command to the instrument. Typically, the default setup configures the instrument
operation for the rest of the driver (including turning headers on or off, or using long or
short form for queries). After successful operation, the Initialize VI returns a VISA
session that addresses the instrument in all subsequent instrument driver VIs. The
Initialize VI is a template for message-based instruments while Initialize (VXI,
Reg-based) is for register-based instruments.

The VI has an instrument descriptor string as an input. Based on the syntax of this input,
the VI configures the I/O interface and generates an instrument handle for all other

Chapter 33 Instrument Driver Template VIs

LabVIEW Function and VI Reference Manual 33-4 © National Instruments Corporation

instrument driver VIs. The following table shows the grammar for the instrument
descriptor. Optional parameters are shown in square brackets ([]).

The GPIB keyword is used with GPIB instruments. The VXI keyword is used for either
embedded or MXIbus controllers. The GPIB-VXI keyword is used for a National
Instruments GPIB-VXI controller.

The following table shows the default values for optional parameters:

Additionally, the Initialize VI can perform selectable ID query and reset operations. In
other words, you can disable the ID query when you are attempting to use the driver with
a similar but different instrument without modifying the driver source code. Also, you
can enable or disable the reset operation. This feature is useful for debugging when
resetting would take the instrument out of the state you were trying to test.

PREFIX Message-Based Template and Register-Based Template
The Message-Based and Register-Based template VIs are the starting point for
developing your own instrument driver VIs. The template VIs have all required
instrument driver controls, and instructions for modification for a particular instrument.

Interface Syntax

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

VXI VXI::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board][::GPIB-VXI primary address]::VXI logical

address[::INSTR]

Optional Parameter Default Value

board 0

secondary address none

GPIB-VXI primary address 1

Chapter 33 Instrument Driver Template VIs

© National Instruments Corporation 33-5 LabVIEW Function and VI Reference Manual

PREFIX Register-Based Template
The PREFIX Register-Based Template VI is a template for creating a register-based VI
for your particular instrument.

PREFIX Reset
All LabVIEW instrument drivers have a Reset VI that places the instrument in a default
state. The default state that the Reset VI places the instrument in should be documented
in the help information for the Reset VI. In an IEEE 488.2 instrument, this VI sends the
command string *RST to the instrument. When you reset the instrument from the
Initialize VI, this VI is called. Also, you can call the Reset VI separately.

PREFIX Revision Query
LabVIEW instrument drivers have a Revision Query VI. This VI outputs the following:

• The revision of the instrument driver.

• The firmware revision of the instrument being used. (If the instrument firmware
revision cannot be queried, the Revision Query VI should return the literal string Not
Available.)

PREFIX Self-Test
If an instrument has self-test capability, the LabVIEW instrument driver should contain
a Self-test VI to instruct the instrument to perform a self-test and return the result of that
self-test.

Chapter 33 Instrument Driver Template VIs

LabVIEW Function and VI Reference Manual 33-6 © National Instruments Corporation

PREFIX Utility Clean UP Initialize
Closes an open VISA session in the event that there is an error during initialization. This
VI should be called only from the Initialize VI.

PREFIX Utility Default Instrument Setup
Sends a default command string to the instrument whenever a new VISA session is
opened, or the instrument is reset. Use this VI as a subVI for the Initialize and Reset VIs.

PREFIX VI Tree
The VI Tree VI is a non-executable VI that shows the functional structure of the
instrument driver. It contains the Getting Started VI, application VIs, and all of the
component VIs.

© National Instruments Corporation 34-1 LabVIEW Function and VI Reference Manual

Chapter

34VISA Library Reference

This chapter contains descriptions of the VISA Library Reference
operations and attributes.

The following figure shows the VISA palette, which you access by
selecting Functions»Instrument I/O»VISA:

The Visa palette includes the following subpalettes:

• Event Handling Functions

• High-Level Event Access

• Low-Level Registry Access

Chapter 34 VISA Library Reference

LabVIEW Function and VI Reference Manual 34-2 © National Instruments Corporation

Operations

This section describes the VISA Library Reference operations.

VISA Library Reference Parameters
Most of the VISA Library Operations use the following parameters:

• VISA session is a unique logical identifier to a session. It is produced
by the VISA Open function and used by the VISA primitives. dup
VISA session is the VISA session passed to a function. The dup
simplifies dataflow programming and is similar to the dup file refnums
provided by file I/O functions.

The VISA session drops by default with class Instr. You can
change the class by popping up on it at edit time. The following
classes are currently supported:

– Instr

– GPIB Instr

– VXI/GPIB-VXI RBD Instr

– VXI/GPIB-VXI MBD Instr

– Serial Instr

– Generic Event

– Service Request Event

– Trigger Event

– VXI Signal Event

– VXI/VME Interrupt Event

– Resource Manager

Note: The Generic Event, Service Request Event, Trigger Event, VXI Signal

Event, VXI/VME Interrupt Event, and Resource Manager classes work

only with the VISA Close function and the VISA Attribute Node.

VISA functions vary in the class of VISA session which can be
wired to them. The valid classes for each function are indicated in
the documentation. For example, the functions on the High Level
and Low Level Register Access palettes do not accept VISA
sessions of class GPIB Instr or Serial Instr. If you wire a VISA
session to a function that does not accept the class of the session,
or if you wire two VISA sessions of differing classes together, your

Chapter 34 VISA Library Reference

© National Instruments Corporation 34-3 LabVIEW Function and VI Reference Manual

diagram will be broken and the error will be reported as a Class

Conflict.

• error in and error out terminals comprise the error clusters in each
VISA function. The error cluster contains three fields. The status field
is a Boolean which is TRUE when an error occurs, FALSE when no
error occurs. The code field will be a VISA error code value if an
error occurs during a VISA function. Appendix D lists the VISA
Reference Library error codes. The source field is a string which
describes where the error has occurred. By wiring the error out of
each function to the error in of the next function, the first error
condition is recorded and propagated to the end of the diagram
where it is reported in only one place.

VISA Operation Descriptions

These functions appear on the main VISA palette. The valid classes for these functions
are: Instr (default), GPIB Instr, Serial Instr, VXI/GPIB-VXI RBD Instr, and
VXI/GPIB-VXI MBD Instr.

VISA Assert Trigger
Asserts a software or hardware trigger, depending on the interface type.

Note: The Serial Instr class is not valid for VISA Assert Trigger.

VISA Clear
Performs an IEEE 488.1-style clear of the device. For VXI, this is the Word Serial Clear
command; for GPIB systems, this is the Selected Device Clear command.

Note: The Serial Instr class is not valid for VISA Clear.

Chapter 34 VISA Library Reference

LabVIEW Function and VI Reference Manual 34-4 © National Instruments Corporation

VISA Close
Closes a specified device session or event object. VISA Close accepts all available
classes. For a listing of available classes, see the VISA Operation Parameters section
earlier in this chapter.

VISA Find Resource
Queries the system to locate the devices associated with a specified interface.

VISA Lock
Establishes exclusive access to the specified source.

VISA Open
Opens a session to the specified device and returns a session identifier that can be used
to call any other operations of that device.

The following table shows the grammar for the address string. Optional parameters are
shown in square brackets ([]).

Interface Grammar

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

Chapter 34 VISA Library Reference

© National Instruments Corporation 34-5 LabVIEW Function and VI Reference Manual

The GPIB keyword can be used to establish communication with a GPIB device. The
GPIB-VXI keyword is used for a GPIB-VXI controller. The VXI keyword is used for
VXI instruments via either embedded or MXIbus controllers. The Serial keyword is used
to establish communication with an asynchronous serial (such as RS-232) device.

The INSTR keyword specifies a VISA resource of the type INSTR.

The following table shows the default value for optional parameters.

The following table shows examples of address strings.

See the VISAClose description earlier in this chapter.

VXI VXI[board]::VXI logical address[::INSTR]

Serial ASRL[board][::INSTR]

Optional Parameter Default Value

board 0

secondary address none

Address String Description

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary address
0 in GPIB interface 0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI controlled
VXI system.

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface VXI0.

ASRL0::INSTR A serial device located on port 0.

Interface Grammar

Chapter 34 VISA Library Reference

LabVIEW Function and VI Reference Manual 34-6 © National Instruments Corporation

VISA Read
Reads data from a device. On UNIX platforms data is read synchronously; on all other
platforms data is read asynchronously.

VISA Read STB
Reads a service request status from a message-based device. For example, on the IEEE
488.2 interface, the message is read by polling devices. For other types of interfaces, a
message is sent in response to a service request to retrieve status information. If the status
information is only one byte long, the most significant byte is returned with the zero
value.

Note: The Serial Instr class is not valid for VISA Read STB.

VISA Status Description
Retrieves a user-readable string that describes the status code presented in error in.

VISA Unlock
Relinquishes the lock previously obtained using the VISA Lock function.

Chapter 34 VISA Library Reference

© National Instruments Corporation 34-7 LabVIEW Function and VI Reference Manual

VISA Write
Writes data to the device. On UNIX platforms data is written synchronously; on all other
platforms data is written asynchronously.

Event Handling Functions

The following section describes the VISA Event Handling functions. Valid classes for
these functions are: Instr (default), GPIB Instr, Serial Instr, VXI/GPIB-VXI RBD Instr,
and VXI/GPIB-VXI MBD Instr.

You access the VISA Event Handling functions through the VISA palette, which you
access by selecting Functions»Instrument I/O»VISA.

VISA Disable Event
Disables servicing of an event. This operation prevents new event occurrences from being
queued. However, event occurrences already queued are not lost; use VISA Discard
Events if you want to discard queued events.

Chapter 34 VISA Library Reference

LabVIEW Function and VI Reference Manual 34-8 © National Instruments Corporation

VISA Discard Events
Discards all pending occurrences of the specified event types and mechanisms from the
specified session.

VISA Enable Event
Enables notification of a specified event.

VISA Wait On Event
Suspends execution of a thread of application and waits for an event Event Type for a
time period not to exceed that specified by timeout. Refer to individual event descriptions
for context definitions. If the specified event type is All Events, the operation waits for
any event that is enabled for the given session.

High Level Register Access Functions

The following section describes the VISA High Level Register Access functions. Valid
classes for these functions are: Instr (default), VXI/GPIB-VXI RBD Instr, and

Chapter 34 VISA Library Reference

© National Instruments Corporation 34-9 LabVIEW Function and VI Reference Manual

VXI/GPIB-VXI MBD Instr. To access the VISA High Level Register Access functions,
pop up on the High Level icon on the VISA palette.

VISA In8 / In16 / In32
Reads in 8-bits, 16-bits, or 32-bits of data, respectively, from the specified memory space
(assigned memory base + offset).

VISA Memory Allocation
Returns an offset into a device’s region that has been allocated for use by the session. The
memory can be allocated on either the device itself or on the computer’s system memory.

Chapter 34 VISA Library Reference

LabVIEW Function and VI Reference Manual 34-10 © National Instruments Corporation

VISA Memory Free
Frees the memory previously allocated by the VISA Memory Allocation function.

VISA Move In8 / Move In16 / Move In32
Moves a block of data from device memory to local memory in accesses of 8-bits, 16-bits,
or 32-bits, respectively.

VISA Move Out8 / Move Out16 / Move Out32
Moves a block of data from local memory to device memory in accesses of 8-bits, 16-bits,
or 32-bits, respectively.

Chapter 34 VISA Library Reference

© National Instruments Corporation 34-11 LabVIEW Function and VI Reference Manual

VISA Out8 / Out16 / Out32
Writes 8-bits, 16-bits, or 32-bits of data, respectively, to the specified memory space
(assigned memory base + offset).

Low Level Register Access Functions

The following section describes the VISA Low Level Register Access functions. Valid
classes for these functions are: Instr (default), VXI/GPIB-VXI RBD Instr, and
VXI/GPIB-VXI MBD Instr.To access the VISA Low Level Register Access functions,
pop up on the Low Level icon on the VISA palette:

Chapter 34 VISA Library Reference

LabVIEW Function and VI Reference Manual 34-12 © National Instruments Corporation

VISA Map Address
Maps in a specified memory space.

VISA Memory Allocation
For information on the VISA Memory Allocation function, see the High Level Register

Access Functions section of this chapter.

VISA Memory Free
For information on the VISA Memory Free function, see the High Level Register Access

Functions section of this chapter.

VISA Peek8 / Peek16 / Peek32
Reads an 8-bit, 16-bit, or 32-bit value, respectively, from the specified address.

VISA Poke8 / Poke16 / Poke32
Writes an 8-bit, 16-bit, or 32-bit value, respectively, to the specified address.

Chapter 34 VISA Library Reference

© National Instruments Corporation 34-13 LabVIEW Function and VI Reference Manual

VISA Unmap Address
Unmaps memory space previously mapped by VISA Map Address.

VISA Attribute Node

This section describes the VISA Library attributes. The VISA Attribute
Node gets and/or sets the indicated attributes. The node is growable;
evaluation starts from the top and proceeds downward until an error, or
until the final evaluation, occurs.

To access the attribute node, select Functions»Instrument I/O»
VISA. Then select the Attribute Node icon located on the bottom row
of the VISA palette.

The VISA Attribute Node only displays attributes for the class of the
session that is wired to it. You can change the class of a VISA Attribute
Node as long as you have not wired it to a VISA session. Once a VISA
session is wired to a VISA Attribute Node, it adapts to the class of the
session and any displayed attributes which are not valid for that class
become invalid (this is indicated by turning the attribute item black).

Chapter 34 VISA Library Reference

LabVIEW Function and VI Reference Manual 34-14 © National Instruments Corporation

VISA Attribute Node Descriptions

Each attribute description includes the attribute’s range of values, default value, and
access privilege. Local applies the current session only. Global refers to all sessions to
the same VISA resource.

Fast Data Channel Mode
Specifies which FDC mode to use (either normal or stream mode).

Fast Data Channel Number
Determines which fast data channel (FDC) will be used to transfer the buffer.

Fast Data Channel Pairs
Specifies use of a channel pair for transferring data; (otherwise, only one channel will be
used).

Fast Data Channel Signal Enable
Lets the servant send a signal when control of the FDC channel is passed back to the
commander. This action frees the commander from having to poll the FDC header while
engaging in an FDC transfer.

GPIB Primary Address
Specifies the primary address of the GPIB device used by the given session.

GPIB Secondary Address
Specifies the secondary address of the GPIB device used by the given session.

IO Protocol
Specifies which protocol to use. In VXI systems you can choose between normal word
serial or fast data channel (FDC). In GPIB, you can choose between normal and
high-speed (HS488) data transfers.

Immediate Servant
Determines if the VXI device is an immediate servant of the local controller.

Increment Destination Count
Specifies the number of elements by which to increment the destination address on block
move operations.

Chapter 34 VISA Library Reference

© National Instruments Corporation 34-15 LabVIEW Function and VI Reference Manual

Increment Source Count
Specifies the number of elements by which to increment the source address on block
move operations.

Interface Number
Specifies the board number for the given interface.

InterfaceType
Specifies the interface type of the given session.

Mainframe Logical Address
Specifies the lowest logical address in the mainframe. If the logical address is not known,
UNKNOWN LA is returned.

Manufacturer ID
The manufacturer identification number of the VXIbus device.

Maximum Queue Length
Specifies the maximum number of events that can be queued at any time on the given
session. This attribute is Read/Write until the first time Enable Event is called on a
session. Thereafter, this attribute is Read Only.

Model Code
Specifies the model code for the VXIbus device.

Resource Lock State
Reflects the current locking state of the resource that is associated with the given session.

Resource Manufacturer Identification
A value corresponding to the VXI manufacturer ID of the manufacturer that created the
implementation.

Resource Manufacturer Name
A string that corresponds to the VXI manufacturer name of the manufacturer that created
the implementation.

Resource Name
Unique identifier for a resource.

Chapter 34 VISA Library Reference

LabVIEW Function and VI Reference Manual 34-16 © National Instruments Corporation

The address structure is shown in the following table. Optional parameters are shown in
square brackets:

Send End Enable
Specifies whether to assert END during the transfer of the last byte of the buffer.

Slot
Specifies the physical slot location of the VXIbus device. If the slot number is not known,
UNKNOWN SLOT is returned.

Suppress End Enable
Specifies whether to suppress the END bit termination. If this attribute is set to TRUE, the
END bit does not terminate read operations. If this attribute is set to FALSE, the END bit
terminates read operations.

Interface Grammar

GPIB GPIB[board]::primary address[::secondary

address][::INSTR]

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

VXI VXI[board]::VXI logical address[::INSTR]

Serial ASRL[board][::INSTR]

Address String Description

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary
address 0 in GPIB interface 0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI controlled
VXI system.

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface VXI0.

ASRL0::INSTR A serial device located on port 0.

Chapter 34 VISA Library Reference

© National Instruments Corporation 34-17 LabVIEW Function and VI Reference Manual

Termination Character
The termination character. When the termination character is read and Termination

Character Enable is enabled during a read operation, the read operation terminates. See the
description for Termination Character Enable listed below.

Termination Character Enable
Determines whether the read operation should terminate when a termination character is
received.

Timeout Value
Specifies the timeout value to use (in milliseconds) when accessing the device associated
with the given session. A timeout value of TMO IMMEDIATE means that operations should
never wait for the device to respond. A timeout value of TMO INFINITE disables the
timeout mechanism.

Trigger Identifier
Identifier for the current triggering mechanism.

Note: Trigger ID is Read/Write when the corresponding session is not enabled to

receive trigger events. When the session is enabled to receive trigger events,

the attribute is Read Only.

User Data
Used privately by the application for a particular session. This data is not used by VISA
for any purposes. It is provided to the application for its own use.

Version of Implementation
Uniquely identifies each of the different revisions or implementations of a resource. This
attribute value is defined by the individual manufacturer and increments with each new
revision. The format of the value has the upper 12 bits as the major number of the version,
the next lower 12 bits as the minor number of the version, and the lowest 8 bits as the
sub-minor number of the version.

Version of Specification
Uniquely identifies the version of the VISA specification to which the implementation is
compliant. The format of the value has the upper 12 bits as the major number of the
version, the next lower 12 bits as the minor number of the version, and the lowest 8 bits
as the sub-minor number of the version.

VXI Commander Logical Address
The logical address of the commander of the VXI device.

Chapter 34 VISA Library Reference

LabVIEW Function and VI Reference Manual 34-18 © National Instruments Corporation

VXI Logical Address
Specifies the logical address of the VXI device used by the given session.

VXI Memory Address Space
Specifies the VXIbus address space used by the device. The three types are A16 only,
A16/A24, or A16/A32 memory address space.

VXI Memory Base Address
Specifies the base address of the device in VXIbus memory address space. This base
address is applicable to A24 or A32 address space.

VXI Memory Size
Specifies the size of memory requested by the device in VXIbus address space.

Window Access
Specifies the modes in which the current window may be accessed.

Window Base Address
Specifies the base address of the interface bus to which this window is mapped.

Window Size
Specifies the size of the region mapped to this window.

© National Instruments Corporation 35-1 LabVIEW Function and VI Reference Manual

Chapter

35Traditional GPIB Functions

This chapter describes the Traditional GPIB functions.

The following figure shows the Traditional GPIB Functions palette
which you access by selecting Functions»Instrument I/O»GPIB.

For examples of how to use the Traditional GPIB functions, see
examples\instr\smplgpib.llb.

Traditional GPIB Function Parameters

Most of the Traditional GPIB functions use the following parameters:

• address string contains the address of the GPIB device with which
the function communicates. You can input both the primary and

Chapter 35 Traditional GPIB Functions

LabVIEW Function and VI Reference Manual 35-2 © National Instruments Corporation

secondary addresses in address string by using the form
primary+secondary. Both primary and secondary are decimal
values, so if primary is 2 and secondary is 3, address string is 2+3.

If you do not specify an address, the functions do not perform
addressing before they attempt to read and write the string. They
assume you have either sent these commands another way or that
another Controller is in charge and therefore responsible for the
addressing. If the Controller is supposed to address the device but
does not do so before the time limit expires, the functions terminate
with GPIB error 6 (timeout) and set bit 14 in status. If the GPIB is
not the Controller-In-Charge, you must not specify an address
string.

When there are multiple GPIB Controllers that LabVIEW can use,
a prefix to the address string in the form ID:address (or ID: if
no address is necessary) determines the Controller that a specific
function uses. If a Controller ID is not present, the functions
assume Controller (or bus) 0.

• status is a 16-bit Boolean array in which each bit describes a state
of the GPIB Controller. If an error occurs, bit 15 is set. The error
code field of the error out cluster is a GPIB error code only if bit
15 of status is set. Refer to GPIB Status in the GPIB Function

Descriptions section of this chapter for status bit error codes.

• error in and error out terminals comprise the error clusters in
each Traditional GPIB function. The error cluster contains three
fields. The status field is a Boolean which is TRUE when an error
occurs, FALSE when no error occurs. The code field will be a
GPIB error code value if an error occurs during a GPIB function.
Table 6-3 lists the GPIB error codes. The source field is a string
which describes where the error has occurred. If the status field of
the error in parameter to a function is set, the function is not
executed and the same error cluster is passed out. By wiring the
error out of each function to the error in of the next function, the
first error condition is recorded and propagated to the end of the
diagram where it is reported in only one place.

Traditional GPIB Function Behavior

The GPIB Read and GPIB Write functions leave the device in the
addressed state when they finish executing. If your device cannot
tolerate being left in the addressed state, use the GPIB Misc function to

Chapter 35 Traditional GPIB Functions

© National Instruments Corporation 35-3 LabVIEW Function and VI Reference Manual

send the appropriate unaddress message or configure the NI-488.2
software to unaddress automatically for all devices on the GPIB.

The Traditional GPIB Read and Write functions can execute
asynchronously. This means other LabVIEW activity can continue
while these GPIB functions are operating. When set to execute
asynchronously, a small wristwatch icon appears as part of the function
icons. A popup item on the Traditional GPIB Read and GPIB Write
functions allows for switching their behavior to and from asynchronous
operation.

Traditional GPIB Function Descriptions

The following Traditional GPIB functions are available.

GPIB Clear
Sends either SDC (Selected Device Clear) or DCL (Device Clear).

Chapter 35 Traditional GPIB Functions

LabVIEW Function and VI Reference Manual 35-4 © National Instruments Corporation

GPIB Initialization
Configures the GPIB interface at address string.

GPIB Misc
Performs the GPIB operation indicated by command string. Use this low-level function
when the previously described high-level functions are not suitable.

Table 35-1. Command String Functions

Device Functions Description

loc address Go to local.

off address Take device offline.

pct address Pass control.

ppc byte address Parallel poll configure (enable or disable).

GPIB Controller Functions Description

cac 0/1 Become active Controller.

cmd string Send IEEE 488 commands.

dma 0/1 Set DMA mode or programmed I/O mode.

gts 0/1 Go from active Controller to standby.

ist 0/1 Set individual status bit.

Chapter 35 Traditional GPIB Functions

© National Instruments Corporation 35-5 LabVIEW Function and VI Reference Manual

To specify the GPIB Controller used by this function, use a command

string in the form ID: xxx, where ID is the GPIB Controller (bus
number) and xxx is the three-character command and its corresponding
arguments, if any. If you do not specify a Controller ID, LabVIEW
assumes 0.

GPIB Read
Reads byte count number of bytes from the GPIB device at address string.

You use the SetTimeOut function to change the default value (the 488.2 global timeout)
of timeout ms. Initially, timeout ms defaults to 10,000. See the description of the
SetTimeOut function in Chapter 36, GPIB 488.2 Functions, for more information.

llo Local lockout.

loc Place Controller in local state.

off Take controller offline.

ppc byte Parallel poll configure (enable or disable).

ppu Parallel poll unconfigure all devices.

rpp Conduct parallel poll.

rsc 0/1 Request or release system control.

rsv byte Request service and/or set the serial poll status byte.

sic Send interface clear.

sre 0/1 Set or clear remote enable.

Table 35-1. Command String Functions (Continued)

Device Functions Description

Chapter 35 Traditional GPIB Functions

LabVIEW Function and VI Reference Manual 35-6 © National Instruments Corporation

GPIB Serial Poll
Performs a serial poll of the device indicated by address string.

GPIB Status
Shows the status of the GPIB Controller indicated by address string after the previous
GPIB operation.

GPIB Trigger
Sends GET (Group Execute Trigger) to the device indicated by address string.

GPIB Wait
Waits for the state(s) indicated by wait state vector at the device indicated by
address string.

Wait for GPIB RQS
Waits for the device indicated by address string to assert SRQ.

Chapter 35 Traditional GPIB Functions

© National Instruments Corporation 35-7 LabVIEW Function and VI Reference Manual

GPIB Write
Writes data to the GPIB device identified by address string.

GPIB Device and Controller Functions

This section describes the functions listed in the GPIB Misc function
description. The device functions send configuration information to a
specific instrument (device). The GPIB Controller functions configure
the Controller or send IEEE 488 commands to which all instruments
respond. Notice that there are both device and Controller versions of the
ppc and loc commands. The syntax and use of the commands are
slightly different for each version.

You can use these functions with all GPIB Controllers accessible by
LabVIEW, unless stated otherwise in the function description below.
An ECMD error (17) results when you execute a function for a GPIB
Controller without the specified capability. The function syntax is
strict. Each function recognizes only lowercase characters and allows
only one space between the function name and the arguments.

Device Functions

loc – Go to local

syntax loc address

loc temporarily moves devices from a remote program mode to a
local mode.

address is the GPIB address of the device. This argument indicates both
primary and secondary addresses if you use the form
primary+secondary, where primary and secondary are the decimal
values of the primary and secondary addresses. For example, if primary
is 2 and secondary is 3, then address is 2+3.

loc sends the GTL (Go To Local) message to the GPIB device.

Chapter 35 Traditional GPIB Functions

LabVIEW Function and VI Reference Manual 35-8 © National Instruments Corporation

off – Take device offline

syntax off address

off takes the device at the specified GPIB address offline. This is only
needed when sharing a device with another application which is using
the NI 488 GPIB Library.

address is the GPIB address of the device. This argument indicates both
primary and secondary addresses if you use the form
primary+secondary, where primary and secondary are the decimal
values of the primary and secondary addresses. For example, if primary
is 2 and secondary is 3, then address is 2+3.

pct – Pass control

syntax pct address

pct passes Controller-in-Charge (CIC) authority to the device at the
specified address. The GPIB Controller automatically goes into an idle
state. The function assumes that the device to which pct passes control
has Controller capability.

address is the GPIB address of the device. This argument indicates both
primary and secondary addresses if you use the form
primary+secondary, where primary and secondary are the decimal
values of the primary and secondary addresses. For example, if primary
is 2 and secondary is 3, then address is 2+3.

pct sends the following command sequence:

1. Talk address of the device

2. Secondary address of the device, if applicable

3. Take Control (TCT)

ppc – Parallel poll configure

syntax ppc byte address

ppc enables the instrument to respond to parallel polls.

byte is 0 or a valid parallel poll enable (PPE) command. If byte is 0, the
parallel poll disable (PPD) byte 0x70 is sent to disable the device from
responding to a parallel poll. Each of the 16 PPE messages selects a
GPIB data line (DIO1 through DIO8) and sense (1 or 0) that the device
must use when it responds to the Identify (IDY) message during a

Chapter 35 Traditional GPIB Functions

© National Instruments Corporation 35-9 LabVIEW Function and VI Reference Manual

parallel poll. The device compares the ist sense and drives the indicated
DIO line TRUE or FALSE.

address is the GPIB address of the device. This argument indicates both
primary and secondary addresses if you use the form
primary+secondary, where primary and secondary are the decimal
values of the primary and secondary addresses. For example, if primary
is 2 and secondary is 3, then address is 2+3.

Controller Functions

cac – Become active Controller

syntax cac 0 (take control synchronously)

cac 1 (take control immediately)

cac takes control either synchronously or immediately (and in some
cases asynchronously). You generally do not need to use the cac
function because other functions, such as cmd and rpp, take control
automatically.

If you try to take control synchronously when a data handshake is in
progress, the function postpones the take control action until the
handshake is complete. If a handshake is not in progress, the function
executes the take control action immediately. Synchronous take control
is not guaranteed if a read or write operation completes with a timeout
or other error.

You should take control asynchronously when it is impossible to gain
control synchronously (for example, after a timeout error).

The ECIC error results if the GPIB Controller is not CIC.

cmd – Send IEEE 488 commands

syntax cmd string

cmd sends GPIB command messages. These command messages
include device talk and listen addresses, secondary addresses, serial and
parallel poll configuration messages, and device clear and trigger
messages.

Chapter 35 Traditional GPIB Functions

LabVIEW Function and VI Reference Manual 35-10 © National Instruments Corporation

You do not use cmd to transmit programming instructions to devices.
The GPIB Read and GPIB Write functions transmit programming
instructions and other device-dependent information.

string contains the command bytes the Controller sends. ASCII
characters represent these bytes in cmd string. If you must send
nondisplayable characters, you can enable backslash codes on the string
control or string constant or you can use a format function to list the
commands in hexadecimal.

dma – Set DMA mode or programmed I/O mode

syntax dma 0 (use programmed I/O)

dma 1 (use DMA)

dma indicates whether data transfers use DMA.

Some GPIB boards do not have DMA capability. If you try to execute
dma 1, the function returns GPIB error 11 to indicate no capability.

gts – Go from active Controller to standby

syntax gts 0 (no shadow handshaking)

gts 1 (shadow handshaking)

Description:

gts sets the GPIB Controller to the Controller Standby state and
unasserts the ATN signal if it is the active Controller. Normally, the
GPIB Controller is involved in the data transfer. gts permits GPIB
devices to transfer data without involving the GPIB Controller.

If shadow handshaking is active, the GPIB Controller participates in the
GPIB transfer as a Listener, but does not accept any data. When it
detects the END message, the GPIB Controller asserts the Not Ready
For Data (NRFD) to create a handshake holdoff state.

If shadow handshaking is not active, the GPIB Controller performs
neither shadow handshaking nor a handshake holdoff.

If you activate the shadow handshake option, the GPIB Controller
participates in a data handshake as a Listener without actually reading
the data. It monitors the transfer for the END message and stops
subsequent transfers. This mechanism allows the GPIB Controller to

Chapter 35 Traditional GPIB Functions

© National Instruments Corporation 35-11 LabVIEW Function and VI Reference Manual

take control synchronously on subsequent operations such as cmd or
rpp.

After sending the gts command, you should always wait for END before
you initiate another GPIB command. You can do this with the GPIB
Wait function.

The ECIC error results if the GPIB Controller is not CIC.

ist – Set individual status bit

syntax ist 0 (individual status bit is cleared)

ist 1 (individual status bit is set)

ist sets the sense of the individual status (ist) bit.

You use ist when the GPIB Controller is not the CIC but participates in
a parallel poll conducted by a device that is the active Controller. The
CIC conducts a parallel poll by asserting the EOI and ATN signals,
which send the Identify (IDY) message. While this message is active,
each device that you configured to participate in the poll responds by
asserting a predetermined GPIB data line either TRUE or FALSE,
depending on the value of its local ist bit. For example, you can assign
the GPIB Controller to drive the DIO3 data line TRUE if ist is 1 and
FALSE if ist is 0. Conversely, you can assign it to drive DIO3 TRUE if
ist is 0 and FALSE if ist is 1.

The Parallel Poll Enable (PPE) message in effect for each device
determines the relationship among the value of ist, the line that is
driven, and the sense at which the line is driven. The Controller is
capable of receiving this message either locally via ppc or remotely via
a command from the CIC. Once the PPE message executes, ist changes
the sense at which the GPIB Controller drives the line during the
parallel poll, and the GPIB Controller can convey a one-bit,
device-dependent message to the Controller.

llo – Local lockout

syntax llo

llo places all devices in local lockout state. This action usually inhibits
recognition of inputs from the front panel of the device.

llo sends the Local Lockout (LLO) command.

Chapter 35 Traditional GPIB Functions

LabVIEW Function and VI Reference Manual 35-12 © National Instruments Corporation

loc – Place Controller in local state

syntax loc

loc places the GPIB Controller in a local state by sending the local
message Return To Local (RTL) if it is not locked in remote mode
(indicated by the LOK bit of status). You use loc to simulate a front
panel RTL switch when you use a computer to simulate an instrument.

off – Take controller offline

syntax off

off takes the controller offline. This is only needed when sharing the
controller with another application which is using the NI 488 Library.

ppc – Parallel poll configure (enable and disable)

syntax ppc byte

ppc configures the GPIB Controller to participate in a parallel poll by
setting its Local Poll Enable (LPE) message to the value of byte. If the
value of byte is 0, the GPIB Controller unconfigures itself.

Each of the 16 Parallel Poll Enable (PPE) messages selects the GPIB
data line (DIO1 through DIO8) and sense (1 or 0) that the device must
use when responding to the Identify (IDY) message during a parallel
poll. The device interprets the assigned message and the current value
of the individual status (ist) bit to determine if the selected line is driven
TRUE or FALSE. For example, if PPE=0x64, DIO5 is driven TRUE if
ist is 0 and FALSE if ist is 1. If PPE=0x68, DIO1 PPE message is in
effect. You must know which PPE and PPD messages are sent and
determine what the responses indicate.

ppu – Parallel poll unconfigure

syntax ppu

ppu disables all devices from responding to parallel polls.

ppu sends the Parallel Poll Unconfigure (PPU) command.

rpp – Conduct parallel poll

syntax rpp

Chapter 35 Traditional GPIB Functions

© National Instruments Corporation 35-13 LabVIEW Function and VI Reference Manual

rpp conducts a parallel poll of previously configured devices by
asserting the ATN and EOI signals, which sends the IDY message.

rpp places the parallel poll response in the output string as ASCII
characters.

rsc – Release or request system control

syntax rsc 0 (release system control)

rsc 1 (request system control)

rsc releases or requests the capability of the GPIB Controller to send the
Interface Clear (IFC) and Remote Enable (REN) messages to GPIB
devices using the sic and sre functions. For the GPIB Controller to
respond to IFC sent by another Controller, the GPIB Controller must
not be the System Controller.

In most applications, the GPIB Controller is always the System
Controller. You use rsc only if the computer is not the System
Controller for the duration of the program execution.

rsv – Request service and/or set the serial poll status byte

syntax rsv byte

rsv sets the serial poll status byte of the GPIB Controller to byte. If the
0x40 bit is set in byte, the GPIB Controller also requests service from
the Controller by asserting the GPIB SRQ line. For instance, if you want
to assert the GPIB SRQ line, send the ASCII character @, in which the
0x40 bit is set.

You use rsv to request service from the Controller using the Service
Request (SRQ) signal and to provide a system-dependent status byte
when the Controller serial polls the GPIB port.

sic – Send interface clear

syntax sic

sic causes the Controller to assert the IFC signal for at least 100 msec if
the Controller has System Controller authority. This action initializes
the GPIB and makes the Controller port CIC. You generally use sic
when you want a device to become CIC or to clear a bus fault condition.

Chapter 35 Traditional GPIB Functions

LabVIEW Function and VI Reference Manual 35-14 © National Instruments Corporation

The IFC signal resets only the GPIB functions of bus devices; it does
not reset internal device functions. The Device Clear (DCL) and
Selected Device Clear (SDC) commands reset the device functions.
Consult the instrument documentation to determine the effect of these
messages.

sre – Unassert or assert remote enable

syntax sre 0 (unassert Remote Enable)

sre 1 (assert Remote Enable)

sre unasserts or asserts the GPIB REN line. Devices monitor REN when
they select between local and remote modes of operation. A device does
not actually enter remote mode until it receives its listen address.

The ESAC error occurs if the Controller is not System Controller.

© National Instruments Corporation 36-1 LabVIEW Function and VI Reference Manual

Chapter

36GPIB 488.2 Functions

This chapter describes the IEEE 488.2 (GPIB) Functions.

The following figure shows the GPIB 488.2 palette which you access by
selecting Functions»Instrument I/O»GPIB 488.2.

For examples of how to use the GPIB 488.2 Functions, see
examples\instr\smplgpib.llb.

GPIB 488.2 Common Function Parameters

Most of the GPIB 488.2 Functions use the following parameters:

• address contains the primary address of the GPIB device with
which the function communicates. If a secondary address is
required, use the MakeAddr function to put the primary and
secondary addresses in the proper format. Unless specified
otherwise, address and address list are data types integer and
integer array, respectively.

• The default primary address of the GPIB board is 0, with no
secondary address. It is designated as System Controller. The

Chapter 36 GPIB 488.2 Functions

LabVIEW Function and VI Reference Manual 36-2 © National Instruments Corporation

default timeout value for the functions is 10 seconds. If you want
to change any of these parameters, use the configuration utility
included with your GPIB board. You can also use the GPIB Init and
SetTimeOut functions to set the primary address and to change the
default timeout value at run time, but these functions affect the
interface only when you use it with LabVIEW. For more
information, see the documentation supplied with your hardware
interface.

• bus refers to the GPIB bus number. If you have only one GPIB
interface in your computer, the default bus number is 0. For
additional GPIB interfaces, see the software installation
instructions included with your GPIB board.

• byte count refers to the number of bytes that pass over the GPIB.

• status is a Boolean array in which each bit describes a state of the
GPIB Controller. If an error occurs, the GPIB functions set bit 15.
GPIB error is valid only if bit 15 of status is set. See the status bit
and GPIB error tables in the GPIB Status function description in
Chapter 35, Traditional GPIB Functions.

• error in; error out. See the GPIB Traditional Function Parameters

section of Chapter 35, Traditional GPIB Functions.

GPIB 488.2 Function Descriptions (Single-Device Functions)

Single-device functions perform GPIB I/O and control operations with a single GPIB
device. In general, each function accepts a single-device address as one of its inputs.

DevClear
Clears a single device. To send the Selected Device Clear (SDC) message to several
GPIB devices, use the DevClearList function.

Chapter 36 GPIB 488.2 Functions

© National Instruments Corporation 36-3 LabVIEW Function and VI Reference Manual

PPollConfig
Configures a device for parallel polls.

PassControl
Passes control to another device with Controller capability.

ReadStatus
Serial polls a single device to get its status byte.

Receive
Reads data bytes from a GPIB device.

Receive terminates when the function does one of the following:

• reads the number of bytes requested

• detects an error

• exceeds the time limit

• detects the END message (EOI asserted)

• detects the EOS character (assuming the value supplied to mode has enabled
this option)

Chapter 36 GPIB 488.2 Functions

LabVIEW Function and VI Reference Manual 36-4 © National Instruments Corporation

Send
Sends data bytes to a single GPIB device.

Trigger
Triggers a single device. To send a single message that triggers several GPIB devices,
use the TriggerList function.

GPIB 488.2 Multiple-Device Function Descriptions

The multiple-device functions perform GPIB I/O and control operations with several
GPIB devices at once. In general, each function accepts an array of addresses as one of
its inputs.

AllSPoll
Serial polls all devices.

Although the AllSPoll function is general enough to serial poll any number of GPIB
devices, you should use the ReadStatus function when you serial poll only one GPIB
device.

DevClearList
Clears multiple devices simultaneously.

Chapter 36 GPIB 488.2 Functions

© National Instruments Corporation 36-5 LabVIEW Function and VI Reference Manual

EnableLocal
Enables local mode for multiple devices.

EnableRemote
Enables remote programming of multiple GPIB devices.

FindRQS
Determines which device is requesting service.

PPoll
Performs a parallel poll.

PPollUnconfig
Unconfigures devices for parallel polls. The function unconfigures the GPIB devices
whose addresses are contained in the address list array for parallel polls; that is, they no
longer participate in polls.

Chapter 36 GPIB 488.2 Functions

LabVIEW Function and VI Reference Manual 36-6 © National Instruments Corporation

SendList
Sends data bytes to multiple GPIB devices. This function is similar to Send, except that
SendList sends data to multiple Listeners with only one transmission.

TriggerList
Triggers multiple devices simultaneously.

GPIB 488.2 Bus Management Function Descriptions

The bus management functions perform system-wide functions or report system-wide
status.

FindLstn
Finds all Listeners on the GPIB. You normally use this function to detect the presence of
devices at particular addresses because most GPIB devices have the ability to listen.
When you detect them, you can usually interrogate the devices with to determine their
identity.

ResetSys
Performs bus initialization, message exchange initialization, and device initialization.
First, the function asserts Remote Enable (REN), followed by Interface Clear (IFC),
unaddressing all devices and making the GPIB board (the System Controller) the
Controller-in-Charge.

Chapter 36 GPIB 488.2 Functions

© National Instruments Corporation 36-7 LabVIEW Function and VI Reference Manual

Second, the function sends the Device Clear (DCL) message to all connected devices.
This ensures that all IEEE 488.2-compatible devices can receive the Reset (RST)
message that follows.

Third, the function sends the *RST message to all devices whose addresses are contained
in the address list array. This message initializes device-specific functions within each
device.

SendIFC

Clears the GPIB functions with Interface Clear (IFC). When you issue the GPIB Device
IFC message, the interface functions of all connected devices return to their cleared
states.

You should use this function as part of a GPIB initialization. It forces the GPIB board to
be Controller of the GPIB and ensures that the connected devices are all unaddressed and
that the interface functions of the devices are in their idle states.

SendLLO
Sends the Local Lockout (LLO) message to all devices. When the function sends the
GPIB Local Lockout message, a device cannot independently choose the local or remote
state. While Local Lockout is in effect, only the Controller can alter the local or remote
state of the devices by sending the appropriate GPIB messages.You should use SendLLO
only in unusual local/remote situations, particularly those in which you must lock all
devices into local programming state. Use the SetRWLS Function when you want to
place devices in Remote Mode With Lockout State.

SetRWLS
Places particular devices in the Remote With Lockout State. The function sends Remote
Enable (REN) to the GPIB devices listed in address list. It also places all devices in

Chapter 36 GPIB 488.2 Functions

LabVIEW Function and VI Reference Manual 36-8 © National Instruments Corporation

Lockout State, which prevents them from independently returning to local programming
mode without intervention by the Controller.

TestSRQ
Determines the current state of the SRQ line. This function is similar in format to the
WaitSRQ function, except that WaitSRQ suspends itself while it waits for an occurrence
of SRQ, and TestSRQ immediately returns the current SRQ state.

TestSys
Directs multiple devices to conduct IEEE 488.2 self-tests.

WaitSRQ
Waits until a device asserts Service Request. The function suspends execution until a
GPIB device connected on the GPIB asserts the Service Request (SRQ) line.

This function is similar in format to TestSRQ, except that TestSRQ returns the SRQ
status immediately, whereas WaitSRQ suspends the program for the duration of the
timeout period (but no longer) waiting for an SRQ to occur.

GPIB 488.2 Low-Level I/O Function Descriptions

The low-level functions let you create a more specific, detailed program than higher-level
functions. You use low-level functions for unusual situations or for situations requiring
additional flexibility.

Chapter 36 GPIB 488.2 Functions

© National Instruments Corporation 36-9 LabVIEW Function and VI Reference Manual

RcvRespMsg
Reads data bytes from a previously addressed device. This function assumes that another
function, such as ReceiveSetup, Receive, or SendCmds, has already addressed the GPIB
Talkers and Listeners. You use RcvRespMsg specifically to skip the addressing step of
GPIB management. You normally use the Receive function to perform the entire
sequence of addressing and then to receive the data bytes.

ReceiveSetup
Prepares a device to send data bytes and prepares the GPIB board to read data bytes. After
you call this function, you can use a function such as RcvRespMsg to transfer the data
from the Talker. In this way, you eliminate the need to re-address the devices between
blocks of reads.

SendCmds
Sends GPIB command bytes.

You normally do not need to use SendCmds for GPIB operation. You use it when
specialized command sequences, not provided for in other functions, must be sent over
the GPIB.

SendDataBytes
Sends data bytes to previously addressed devices.

Chapter 36 GPIB 488.2 Functions

LabVIEW Function and VI Reference Manual 36-10 © National Instruments Corporation

SendSetup
Prepares particular devices to receive data bytes. You normally follow a call to this
function with a call to a function such as SendDataBytes to actually transfer the data to
the Listeners. This sequence eliminates the need to re-address the devices between blocks
of sends.

GPIB 488.2 General Function Descriptions

The general functions are useful for special situations.

MakeAddr
Combines primary address and secondary address in a specially formatted packed
address for devices that require both a primary and secondary GPIB address.

SetTimeOut
Changes the global timeout period for all GPIB 488.2 Functions. This function also sets
the default timeout period for all GPIB functions.

© National Instruments Corporation 37-1 LabVIEW Function and VI Reference Manual

Chapter

37Serial Port VIs

This chapter describes the VIs for serial port operations.

The following figure shows the Serial palette which you access by
selecting Functions»Instrument I/O»Serial.

For examples of how to use the Serial Port VIs, see
examples\instr\smplserl.llb.

Common Serial Port VI Parameters

The following are common Serial Port VI parameters.

Port Number
When you use the serial port VIs under Windows 95 and Windows 3.x,
the port number parameter can have the following values:

0: COM1 5: COM6 10: LPT1

1: COM2 6: COM7 11: LPT2

2: COM3 7: COM8 12: LPT3

3: COM4 8: COM9 13: LPT4

4: COM5

Chapter 37 Serial Port VIs

LabVIEW Function and VI Reference Manual 37-2 © National Instruments Corporation

When you use the serial port VIs under Windows 95 or Windows NT,
the port number parameter is 0 for COM1, 1 for COM2, and so on.

On a Sun SPARCstation under Solaris 1 and on Concurrent
PowerMAX, the port number parameter for the serial port VIs is 0 for
/dev/ttya, 1 for /dev/ttyb, and so on. Under Solaris 2, port 0 refers
to /dev/cua/a, 1 to /dev/cua/b, and so on. Under HP-UX port
number 0 refers to /dev/tty00, 1 to /dev/tty01, and so on.

On the Macintosh, port 0 is the modem, using the drivers .ain and
.aout. Port 1 is the printer, using the drivers.bin and .bout. To get
more ports on a Macintosh, you must install other boards, with the
accompanying drivers.

Because other vendor’s serial port boards can have arbitrary device
names, LabVIEW has developed an easy interface to keep the
numbering of ports simple. In LabVIEW for Sun, HP-UX, and
Concurrent PowerMAX, a configuration option exists to tell LabVIEW
how to address the serial ports. LabVIEW supports any board that uses
standard UNIX devices. Some manufacturers suggest using cua rather
than tty device nodes with their boards. LabVIEW can address both
types of nodes.

The file .labviewrc contains the LabVIEW configuration options. To
set the devices the serial port VIs use, set the configuration option
labview.serialDevices to the list of devices you intend to use. For
example, the default is:

labview.serialDevices:/dev/ttya:/dev/ttyb:/dev/ttyc:...

:/dev/ttyz.

Note: This requires that any third party serial board installation include a

method of creating a standard /dev file (node) and that the user knows the

name of that file.

Handshaking Modes
A common problem in serial communications is ensuring that both
sender and receiver keep up with data transmission. The serial port
driver can buffer incoming/outgoing information, but that buffer is of a
finite size. When it becomes full, the computer ignores new data until
you have read enough data out of the buffer to make room for new
information.

Chapter 37 Serial Port VIs

© National Instruments Corporation 37-3 LabVIEW Function and VI Reference Manual

Handshaking helps prevent this buffer from overflowing. With
handshaking, the sender and the receiver notify each other when their
buffers fill up. The sender can then stop sending new information until
the other end of the serial communication is ready for new data.

You can perform two kinds of handshaking in LabVIEW—software
handshaking and hardware handshaking. You can turn both of these
forms of handshaking on or off using the Serial Port Init VI. By default,
the VIs do not use handshaking.

Software Handshaking–XON/XOFF
XON/XOFF is a software handshaking protocol you can use to avoid
overflowing serial port buffers. When the receive buffer is nearly full,
the receiver sends XOFF (<control-S> [decimal 19]) to tell the other
device to stop sending data. When the receive buffer is sufficiently
empty, the receiver sends XON (<control-Q> [decimal 17]) to indicate
that transmission can begin again. When you enable XON/XOFF, the
devices always interpret <control-Q> and <control-S> as XON and
XOFF characters, never as data. When you disable XON/XOFF, you
can send <control-Q> and <control-S> as data. Do not use XON/XOFF
with binary data transfers because <control-Q> or <control-S> may be
embedded in the data, and the devices will interpret them as XON and
XOFF instead of as data.

Error Codes
You can connect the error code parameter to one of the error handler
VIs. These VIs can describe the error and give you options on how to
proceed when an error occurs. For more information on using the error
handler VIs, refer to the Error Handling Overview section in Chapter 10,
Time, Dialog and Error Functions.

Some error codes returned by the serial port VIs are platform-specific.
Please refer to your system documentation for a list of error codes.

Serial Port VI Descriptions

The following Serial Port VIs are available.

Chapter 37 Serial Port VIs

LabVIEW Function and VI Reference Manual 37-4 © National Instruments Corporation

Bytes at Serial Port
Returns in byte count the number of bytes in the input buffer of the serial port indicated
in port number.

Serial Port Break
Sends a break on the output port specified by port number for a period of time at least
as long as the delay input requests.

Serial Port Init
Initializes the selected serial port to the specified settings.

Serial Port Read
Reads the number of characters specified by requested byte count from the serial port
indicated in port number.

Serial Port Write
Writes the data in string to write to the serial port indicated in port number.

© National Instruments Corporation 38-1 LabVIEW Function and VI Reference Manual

Chapter

38
Introduction to Analysis
in LabVIEW

This chapter contains an overview of data analysis and of the LabVIEW
analysis VIs, a description of how the VIs are organized, instructions
for accessing the VIs and obtaining online help, and a description of
analysis VI error reporting.

To access the analysis VIs from the block diagram window, choose
Functions»Analysis and proceed through the hierarchical menus, and
select the VI you want. You can place the icon corresponding to that VI
in the block diagram and then wire it.

Chapter 38 Introduction to Analysis in LabVIEW

LabVIEW Function and VI Reference Manual 38-2 © National Instruments Corporation

The Importance of Data Analysis

Modern, high-speed floating-point numerical and digital signal
processors have become increasingly important to real-time and
analysis systems. A few of the many possible applications include
biomedical data processing, speech synthesis and recognition, and
digital audio and image processing.

The importance of integrating analysis libraries into engineering
stations is that the raw data, as shown in the following figure, does not
always immediately convey useful information. Often you must
transform the signal, remove noise disturbances, correct for data
corrupted by faulty equipment, or compensate for environmental
effects, such as temperature and humidity.

By analyzing and processing the digital data, you can extract the useful
information from the noise and present it in a form more
comprehensible than the raw data. The following figure shows the
processed data.

Chapter 38 Introduction to Analysis in LabVIEW

© National Instruments Corporation 38-3 LabVIEW Function and VI Reference Manual

The LabVIEW block diagram programming approach and the extensive
set of LabVIEW analysis VIs simplify the development of analysis
applications.

The LabVIEW analysis VIs give you the most recent data analysis
techniques using VIs that you can wire together, as shown in the
preceding figure, to analyze data. Instead of worrying about
implementation details for analysis routines, as you do in conventional
programming languages, you can concentrate on solving your data
analysis problems.

Full Development System

The base analysis VI library is a subset of the advanced analysis VI
library. The base analysis library includes VIs for statistical analysis,
linear algebra, and numerical analysis. The advanced analysis library
includes more VIs in these areas as well as VIs for signal generation,
time and frequency-domain algorithms, windowing routines, digital
filters, evaluations, and regressions.

If the VIs in the base analysis library do not satisfy your needs, then you
can add the LabVIEW Advanced Analysis Libraries to the G Base
Package. Once you upgrade, you will have all the analysis tools
available in the Full Development System.

Refer to the chapters that introduce each section for information on how
to access a particular Function or VI palette.

Analysis VI Overview

The LabVIEW analysis VIs efficiently process blocks of information
represented in digital form. They cover the following major processing
areas:

• Pattern generation

• Digital signal processing

• Measurement-based analysis

• Digital filtering

• Smoothing windows

• Probability and Statistical analysis

• Curve fitting

Chapter 38 Introduction to Analysis in LabVIEW

LabVIEW Function and VI Reference Manual 38-4 © National Instruments Corporation

• Linear algebra

• Numerical analysis

The analysis VIs perform numerical operations using the central
processing unit (CPU) and a floating-point coprocessor (FPU). Many of
the VIs take advantage of the concurrent processing capabilities of the
CPU and the FPU, thereby minimizing execution time of data analysis
tasks.

The analysis VIs use in-place data processing algorithms. That is, the
algorithms allocate minimal data space and process the data within that
space. In-place processing minimizes memory requirements, so you can
process larger data blocks. The only memory limitation for these VIs is
the amount of RAM available in your computer. Refer to your LabVIEW

User Manual for instructions on configuring the memory allocation for
LabVIEW.

The analysis VIs are powerful enough for experts to build sophisticated
analysis applications quickly and efficiently. At the same time, they are
simple enough for novices to analyze data without being expert
programmers in DSP, digital filters, statistics, or numerical analysis.

Analysis VI Organization

After installation, the ten analysis VI libraries appear in the Functions
palette. These libraries cover the following major processing areas:

• Signal Generation contains VIs that generate digital patterns and
waveforms.

• Digital Signal Processing contains VIs that perform frequency
domain transformations, frequency domain analysis, time domain
analysis, and other transforms such as the Hartley and Hilbert
transforms.

• Measurement contains VIs that perform measurement-oriented
functions such as single-sided spectrums, scaled windowing, and
peak power and frequency estimation.

• Filters contains VIs that perform IIR, FIR, and nonlinear, digital
filtering functions.

• Windows contains VIs that perform data windowing.

• Probability and Statistics contains VIs that perform descriptive
statistics functions, such as identifying the mean or the standard

Chapter 38 Introduction to Analysis in LabVIEW

© National Instruments Corporation 38-5 LabVIEW Function and VI Reference Manual

deviation of a set of data, as well as inferential statistics functions
for probability and analysis of variance (ANOVA).

• Curve Fitting contains VIs that perform curve fitting functions and
interpolations.

• Linear Algebra contains VIs that perform algebraic functions for
real and complex vectors and matrices.

• Array Operations contains VIs that perform common, one- and
two-dimensional numerical array operations, such as linear
evaluation and scaling.

• Additional Numerical Methods contains VIs that use numerical
methods to perform root-finding, numerical integration, and peak
detection.

You can reorganize the folders and the VIs to suit your needs and
applications. You can also rebuild the original structure by removing
the VIs from your hard disk and then reinstalling them from the
distribution disks.

Notation and Naming Conventions

To help you identify the type of parameters and operations, this section
of the manual uses the following notation and naming conventions
unless otherwise specified in a VI description. Although there are a few
scalar functions and operations, most of the analysis VIs process large
blocks of data in the form of one-dimensional arrays (or vectors) and
two-dimensional arrays (or matrices).

Normal lower case letters represent scalars or constants. For example,

a,

π,

b = 1.234.

Capital letters represent arrays. For example,

X,

A,

Y = a X + b.

In general, X and Y denote 1D arrays, and A, B, and C represent
matrices.

Chapter 38 Introduction to Analysis in LabVIEW

LabVIEW Function and VI Reference Manual 38-6 © National Instruments Corporation

Array indexes in LabVIEW are zero-based. The index of the first
element in the array, regardless of its dimension, is zero. The following
sequence of numbers represents a 1D array X containing n elements.

The following scalar quantity represents the ith element of the sequence
X.

The first element in the sequence is x
0
 and the last element in the

sequence is xn-1, for a total of n elements.

The following sequence of numbers represents a 2D array containing n
rows and m columns.

The total number of elements in the 2D array is the product of n and m.
The first index corresponds to the row number, and the second index
corresponds to the column number. The following scalar quantity
represents the element located on the ith row and the jth column.

ai j,0 ≤ i < n and 0 ≤ j < m

The first element in A is a
0 0

 and the last element is an-1 m-1.

Unless otherwise specified, this manual uses the following simplified
array operation notations.

Setting the elements of an array to a scalar constant is represented by

X = a,

which corresponds to the sequence

X = {a, a, a, …, a}

X x0 x1 x2 ... xn 1–, , , ,{ }=

xi 0 i n<≤,

A

a00 a01 a02 ... a0m 1–

a10 a11 a12 ... a1m 1–

a20 a21 a22 ... a2m 1–

: : : : :

an 10– an 11– an 2– ... an 1m– 1–

=

Chapter 38 Introduction to Analysis in LabVIEW

© National Instruments Corporation 38-7 LabVIEW Function and VI Reference Manual

and is used instead of

xi = a, for i = 0, 1, 2, …, n-1.

Multiplying the elements of an array by a scalar constant is represented
by

Y = a X,

which corresponds to the sequence

Y = {a x0, a x1, a x2, …, a xn-1}

and is used instead of

yi = a xi, for i = 0, 1, 2, …, n-1.

Similarly, multiplying a 2D array by a scalar constant is represented by

B = k A,

which corresponds to the sequence

and is used instead of

b
i j

 = k a
i j

, for i = 0, 1, 2, …, n-1 and j = 0, 1, 2, …, m-1.

Empty arrays are possible in LabVIEW. An array with no elements is
an empty array and is represented by

Empty = NULL = Ø = { } .

In general, operations on empty arrays result in empty, output arrays or
undefined results.

B

ka00 ka01 ka02 ... ka0m 1–

ka10 ka11 ka12 ... ka1m 1–

ka20 ka21 ka22 ... ka2m 1–

: : : : :

kan 10– kan 11– kan 12– ... kan 1m– 1–

=

Chapter 38 Introduction to Analysis in LabVIEW

LabVIEW Function and VI Reference Manual 38-8 © National Instruments Corporation

Sampling Signals

To use digital signal processing techniques, you must convert an analog
signal into its digital representation. This section includes only a brief
discussion of the notation that represents a digital signal. This section
does not discuss the mathematical background or problems associated
with sampling techniques.

Consider an analog signal x(t) and the sampling interval ∆t. The signal
x(t) can be represented by the discrete sequence of samples

{x(0), x(∆t), x(2∆t), x(3∆t), …, x(k∆t), … }.

Because ∆t establishes only the sampling rate and has no bearing on the
actual sampled (digitized) value, the sample at

t = i∆t, for i = 0, 1, 2, …

corresponds to the ith element in the sequence.

Thus,

xi = x(i∆t)

and x(t) can be represented by the sequence X whose values are

X = {x0, x1, x2, x3, …, xk, … }.

If n samples are obtained from the signal x(t), then the sequence

X = {x0, x1, x2, x3, …, xn-1 }

is the digital representation or the sampled version of x(t).

© National Instruments Corporation 39-1 LabVIEW Function and VI Reference Manual

Chapter

39
Analysis
Signal Generation VIs

This chapter describes the VIs that generate one-dimensional arrays
with specific waveform patterns.

You can combine these VIs with the arithmetic functions discussed in
Chapter 4, Numeric Functions, to generate more elaborate waveforms.
For example, if you want to generate an amplitude modulated pulse, you
multiply a pulse pattern by a sinusoidal pattern.

To access the Signal Analysis palette, select
Function»Analysis»Signal Generation. The following illustration
shows the options that are available on the Signal Analysis palette.

For examples of how to use the signal generation VIs, see the examples
located in examples\analysis\sigxmpl.llb.

Normalized Frequency

Some of the Signal Generation VIs use an input frequency control (f)
that is assumed to use normalized frequency units of cycles per sample.
Its reciprocal (1/f) gives you the number of times that the signal is
sampled in one cycle. This frequency ranges from 0 to 1.0, which

Chapter 39 Analysis Signal Generation VIs

LabVIEW Function and VI Reference Manual 39-2 © National Instruments Corporation

corresponds to a real frequency range of 0 to the sampling rate. This
frequency also wraps around 1.0, so that a normalized frequency of 1.1
is equivalent to 0.1.

For example, if a signal is sampled at the Nyquist rate (fs/2), it is
sampled twice per cycle. This corresponds to a normalized frequency of
1/2 samples/cycle that is less than or equal to 0.5 cycles/sample.

If you use some of these VIs, you must convert your frequency units to
the normalized units of cycles/sample. You must use these normalized
units with the following VIs:

• Sine Wave

• Square Wave

• Sawtooth Wave

• Triangle Wave

• Arbitrary Wave

• Chirp Pattern

If you are used to working in frequency units of cycles, you can convert
cycles to cycles/sample by dividing cycles by the number of samples
generated. The following illustration shows an example of the Sine
Wave VI generating two cycles of a sine wave.

Chapter 39 Analysis Signal Generation VIs

© National Instruments Corporation 39-3 LabVIEW Function and VI Reference Manual

The following illustration shows the block diagram for converting
cycles to cycles/sample.

However, you may need to use frequency units of Hz (cycles/s). If you
need to convert to Hz (or cycles/s) to cycles/sample, divide your
frequency in cycles/s by the sampling rate given in samples/s. The
following illustration shows an example of the Sine Wave VI
generating a 60 Hz sine signal.

Figure 39-1. Front Panel Example

Chapter 39 Analysis Signal Generation VIs

LabVIEW Function and VI Reference Manual 39-4 © National Instruments Corporation

The following illustration shows the block diagram for generating a sine
signal.

Figure 39-2. Block Diagram example

For example, build a VI with the Front Panel and Block Diagram, as
illustrated in the Figures 39-1 and Figure 39-2 above. Select a frequency
of 2 cycles and the number of samples of 100. 2 cycles appear on the
plot. Change the number of samples to 150, 200, and 250 and 2 cycles
remain. If you keep the number of samples equal to 100 and the number
of cycles to 3, 4, and 5, there are 3, 4, and 5 cycles, respectively.
Therefore, when you choose the frequency in number of cycles, you
will see that many cycles within the plot.

Signal Generation VI Descriptions

The following Signal Generation VIs are available.

Arbitrary Wave
Generates an array containing an arbitrary wave.

Chapter 39 Analysis Signal Generation VIs

© National Instruments Corporation 39-5 LabVIEW Function and VI Reference Manual

If the sequence y represents Arbitrary Wave, then the VI generates the pattern according
to the following formula:

y[i] = a * arb(phase[i]), for i = 0, 1, 2,..., n-1,

where a is the amplitude, n is the number of samples,

arb(phase[i]) = WT(phase[i] modulo 360)*m/360)

where m is the size of the Wave Table array

If interpolation = 0 (no interpolation), then WT(x) = Wave Table[int(x)].

If interpolation = 1 (linear interpolation), then WT(x) is equal to the linearly interpolated
value of Wave Table[int(x)] and Wave Table[(int(x)+1) modulo m].

phase[i] = initial_phase + f*360.0*i, where f is the frequency in normalized units of
cycles/sample, initial_phase is phase in if reset phase is true, or initial_phase is the
phase out from the previous execution of this VI if reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from an
arbitrary wave function generator. If the input control reset phase is false, subsequent
calls to a specific instance of this VI produce the output Arbitrary Wave array
containing the next samples of the arbitrary wave.

phase out is set to phase[n], and this reentrant VI uses this value as its new phase in if
reset phase is false the next time the VI executes.

Chirp Pattern
Generates an array containing a chirp pattern.

If the sequence Y represents Chirp Pattern, the VI generates the pattern according to the
following formula:

yi = A* sin((a/2 i + b) i), for i = 0, 1, 2,..., n-1,

where A is the amplitude, a = 2π(f2-f1)/n, b = 2πf1, f1 is the beginning frequency in
normalized units of cycles/sample, f2 is the ending frequency in normalized units of
cycles/sample, and n is the number of samples.

Chapter 39 Analysis Signal Generation VIs

LabVIEW Function and VI Reference Manual 39-6 © National Instruments Corporation

Gaussian White Noise
Generates a Gaussian-distributed, pseudorandom pattern whose statistical profile
is (µ, σ) = (0, s), where s is the absolute value of the specified standard deviation.

To generate the pattern, the VI uses a modified version of the Very-Long-Cycle random
number generator algorithm based upon the Central Limit Theorem. Given that the
probability density function, f(x), of the Gaussian-distributed Gaussian Noise Pattern is:

,

where s is the absolute value of the specified standard deviation and that you can
compute the expected values, E{•}, using the formula:

,

then the expected mean value, µ, and the expected standard deviation value, σ, of the
pseudorandom sequence are:

µ = E{x} = 0,

.

The pseudorandom sequence produces approximately 290 samples before the pattern
repeats itself.

Impulse Pattern
Generates an array containing an impulse pattern.

f x()
1

2πs
-------------e

1
2
---– 

  x

s
-- 

 
2

=

E x() x f x()()dx

∞–

∞

∫=

σ E x µ–()2{ }[]
1 2⁄

s= =

Chapter 39 Analysis Signal Generation VIs

© National Instruments Corporation 39-7 LabVIEW Function and VI Reference Manual

If the Impulse Pattern is represented by the sequence X, the VI generates the pattern
according to the following formula:

where a is the amplitude, d is the delay, and n is the number of samples.

Periodic Random Noise
Generates an array containing periodic random noise (PRN).

The output array contains all frequencies which can be represented with an integral
number of cycles in the requested number of samples. Each frequency-domain
component has a magnitude of spectral amplitude and random phase.

You can think of the output array of PRN as a summation of sinusoidal signals with the
same amplitudes but with random phases. The unit of spectral amplitude is the same as
the output Periodic Random Noise, and is a linear measure of amplitude, similar to other
signal generation VIs.

The VI generates the same periodic random sequence for a given positive seed value. The
VI does not reseed the random phase generator if seed is negative.

The output sequence is bounded by an amplitude of .

You can use PRN to compute the frequency response of a linear system in one time record
instead of averaging the frequency response over several time records, as you must for
nonperiodic random noise sources.

You do not need to window PRN before performing spectral analysis; PRN is
self-windowing and, therefore, has no spectral leakage because PRN contains only
integral-cycle sinusoids.

xi

a if i d for i = 0, 1, 2, . . ., n-1=

0 elsewhere




=

spectral amplitude *
samples

2

Chapter 39 Analysis Signal Generation VIs

LabVIEW Function and VI Reference Manual 39-8 © National Instruments Corporation

Pulse Pattern
Generates an array containing a pulse pattern.

If the sequence X represents Pulse Pattern, the VI generates the pattern according to the
following formula:

where a is the amplitude, d is the delay, w is the width, and n is the number of samples.

Ramp Pattern
Generates an array containing a ramp pattern.

If the sequence X represents Ramp Pattern, the VI generates the pattern according to the
formula:

 for i = 0, 1, 2,…, n-1,

where , xn-1 is the end, x0 is the start, and n is the number of samples.

The does not impose conditions on the relationship between start and end. Therefore, it
can generate ramp-up and ramp-down patterns.

xi

a if d i d w+()< for i = 0, 1, 2, . . ., n-1.≤

0.0 elsewhere





=

xi x0 i x∆+=

x∆
xn 1– x0–

n 1–
----------------------=

Chapter 39 Analysis Signal Generation VIs

© National Instruments Corporation 39-9 LabVIEW Function and VI Reference Manual

Sawtooth Wave
Generates an array containing a sawtooth wave.

If the sequence Y represents Sawtooth Wave, the VI generates the pattern according to
the following formula:

y[i] = a * sawtooth(phase[i]), for i = 0, 1, 2,..., n-1,

where a is the amplitude, n is the number of samples,

p = phase[i] modulo 360.0, phase[i] = initial_phase + f*360.0*i, f is the frequency in
normalized units of cycles/sample; initial_phase is phase in if reset phase is true; or
initial_phase is the phase out from the previous execution of this instance of the VI if
reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a sawtooth
wave function generator. If the input control reset phase is false, subsequent calls to a
specific instance of the VI produce the output Sawtooth Wave array containing the next
samples of a sawtooth wave.

phase out is set to phase[n], and, if reset phase is false, the next time the VI executes
this reentrant VI uses this value as its new phase in.

Sinc Pattern
Generates an array containing a sinc pattern.

sawtooth phase i[]()

p

180.0
------------- 0 p 180<≤

p

180.0
------------- 2.0 180 p 360<≤–






=

Chapter 39 Analysis Signal Generation VIs

LabVIEW Function and VI Reference Manual 39-10 © National Instruments Corporation

If the sequence Y represents Sinc Pattern, the VI generates the pattern according to the
following formula:

, for i = 0, 1, 2,…, n-1,

where , a is the amplitude, ∆t is the sampling interval delta t, d is

the delay, and n is the number of samples.

The main lobe of the sinc function, sinc(x), is the part of the sinc curve bounded by the
region -1 ≤ x ≤ 1.

When |x| = 1, the sinc(x) = 0.0, and the peak value of the sinc function occurs when
x = 0. Using l'Hôpital's Rule, you can show that sinc(0) = 1 and is its peak value. Thus,
the main lobe is the region of the sinc curve encompassed by the first set of zeros to the
left and the right of the sinc value.

Sine Pattern
Generates an array containing a sinusoidal pattern.

If the sequence Y represents Sinusoidal Pattern, the VI generates the pattern according
to the following formula:

 for i = 0, 1, 2,…, n-1,

where

, a is the amplitude, k is the number of cycles in the pattern,

 is the initial phase (degrees), and n is the number of samples.

Sine Wave
Generates an array containing a sine wave.

Chapter 39 Analysis Signal Generation VIs

© National Instruments Corporation 39-11 LabVIEW Function and VI Reference Manual

If the sequence Y represents Sine Wave, the VI generates the pattern according to the
following formula:

yi = a * sin(phase[i]), for i = 0, 1, 2,..., n-1,

where a is the amplitude and phase[i] = initial_phase + f*360.0*i; f is the frequency in
normalized units of cycles/sample; initial_phase is phase in if reset phase is true; or
initial_phase is the phase out from the previous execution of this instance of the VI if
reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a sine
wave function generator. If the input control reset phase is false, subsequent calls to a
specific instance of the VI produce the output Sine Wave array containing the next
samples of a sine wave.

phase out is set to phase[n], and if reset phase is false the next time the VI executes, this
reentrant VI uses this value as the new phase in.

Square Wave

Generates an array containing a square wave.

If the sequence Y represents Square Wave, the VI generates the pattern according to the
following formula:

yi = a * square(phase[i]), for i = 0, 1, 2,..., n-1,

where a is the amplitude; n is the number of samples;

,

where p = phase[i] modulo 360.0, duty = duty cycle,
phase[i] = initial_phase + f*360.0*i; f is the frequency in normalized units of

square phase i[]()
1.0 0 p <≤

duty
100
----------360 

 

1.0
duty
100
----------360 

  p 360<≤–







=

Chapter 39 Analysis Signal Generation VIs

LabVIEW Function and VI Reference Manual 39-12 © National Instruments Corporation

cycles/sample, initial_phase is phase in if reset phase is true; or initial_phase is the
phase out from the previous execution of this instance of the VI if reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a square
wave function generator. If the input control reset phase is false, subsequent calls to a
specific instance of this VI produce the output Square Wave array containing the next
samples of a square wave.

phase out is set to phase[n], and if reset phase is false the next time the VI executes, this
reentrant VI uses this value as its new phase in.

Triangle Wave
Generates an array containing a triangle wave.

If the sequence Y represents Triangle Wave, the VI generates the pattern according to
the following formula:

yi = a * tri(phase[i]), for i = 0, 1, 2,..., n-1

where a is the amplitude; n is the number of samples;

where p = (phase[i] modulo 360.0); phase[i] = initial_phase + f*360.0*i; f is the
frequency in normalized units of cycles/sample; initial_phase is phase in if reset phase
is true; or initial_phase is the phase out from the previous execution of this instance of
the VI if reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a triangle
wave function generator. If the input control reset phase is false, subsequent calls to a

tri phase ι[]()

p

90
------ 0 p 90<≤

2
p

90
------ 90 p 270<≤–

p

90
------ 4 270 p 360<≤+











=

Chapter 39 Analysis Signal Generation VIs

© National Instruments Corporation 39-13 LabVIEW Function and VI Reference Manual

specific instance of the VI produce the output Triangle Wave array containing the next
samples of a triangle wave.

phase out is set to phase[n], and if reset phase is false the next time the VI executes, this
reentrant VI uses this value as its new phase in.

Uniform White Noise
Generates a uniformly distributed, pseudorandom pattern whose values are in the range
[-a:a], where a is the absolute value of amplitude.

The VI generates the pseudorandom sequence using a modified version of the
Very-Long-Cycle random number generator algorithm. Given that the probability
density function, f(x), of the uniformly distributed Uniform White Noise is

where a is the absolute value of the specified amplitude, and given that you can compute
the expected values, E{•}, using the formula:

, then the expected mean value, µ, and the expected standard
deviation value, σ, of the pseudorandom sequence are:

µ = E{x} = 0,

.

The pseudorandom sequence produces approximately 290 samples before the pattern
repeats itself.

f x()

1
2a
------ if a x a≤ ≤–

0 elsewhere





=

E x() x f x()()dx

∞–

∞

∫=

σ E x µ–()2{ }[]
1 2⁄

=
a

3
------- 0.57735a≈=

© National Instruments Corporation 40-1 LabVIEW Function and VI Reference Manual

Chapter

40
Analysis Digital Signal
Processing VIs

This chapter describes the VIs that process and analyze an acquired or
simulated signal. The digital signal processing VIs perform frequency
domain transformations, frequency domain analysis, time domain
analysis, and other transforms, such as the Fourier, Hartley, and Hilbert
transforms.

To access the Digital Signal Processing palette, select
Function»Analysis»Digital Signal Processing. The following
illustration shows the options that are available on the Signal Analysis
palette.

For examples of how to use the digital signal processing VIs, see the
examples located in examples\analysis\dspxmpl.llb.

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-2 © National Instruments Corporation

The Fast Fourier Transform (FFT)

The Fourier transform establishes the relationship between a signal and
its representation in the frequency domain. The Fourier transform is a
powerful analysis tool for spectral analysis, applied mechanics,
acoustics, medical imaging, numerical analysis, instrumentation, and
telecommunications.

The definition of the Fourier transform of a signal x(t) is

, (40-1)

and the inverse Fourier transform of a signal X(f) is

. (40-2)

A notation often used to indicate that the signals x(t) and X(f) are a
Fourier transform pair and are related via the Fourier transform is:

x(t) ⇔ X(f). (40-3)

To derive the discrete representation of the Fourier transform equations,
equations (40-1) and (40-2), sample the Fourier transform pair in
equation (40-3) using the following sampling relationships:

where ∆t is the sampling interval, ∆f is the frequency resolution, is
the sampling frequency, and n is the number of samples in both the time
and frequency domain.

Thus, the discrete transform pair

xi ⇔ Xk (40-4)

is obtained and the discrete Fourier transform is given by

X f() F x t{ }() x t()e
j2πft–

td

∞–

∞

∫= =

x t() F
1–

X f(){ } X f()e
j2πft

td

∞–

∞

∫= =

t∆ 1
fs

---= f∆
fs

n
---=

fs

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-3 LabVIEW Function and VI Reference Manual

(40-5)

and the inverse by

. (40-6)

Xk in equation (40-5) represents an amplitude spectral density. Multiply
the right-hand side of equation (40-5) by the frequency resolution ∆f to
arrive at the amplitude spectrum. This amplitude spectrum is the final
form of the DFT and inverse DFT, given by equations (40-7) and (40-8),
respectively. Notice that the DFT is independent of the sampling rate.

 for k = 0, 1, 2, …, n-1 (40-7)

 for i = 0, 1, 2, …, n-1. (40-8)

Direct implementation of the DFT requires approximately n2 complex
operations, and until recently, it was a time-consuming process.
However, when the size of the sequence is

n = 2m for m = 1, 2, 3,…,

you can implement the computation of the DFT with approximately
n log2(n) operations. DSP literature refers to these algorithms as fast
Fourier transforms (FFTs).

Note: The advantages of the FFT include its speed and memory efficiency

because the VI performs the transform in place. The size of the input

sequence, however, must be a power of 2. The DFT can efficiently process

any size sequence, but the DFT is slower than the FFT and uses more

memory, because it must store intermediate results during processing.

Xk xie
j2πik n⁄–

t∆

i 0=

n 1–

∑=

xi Xke
j2πik n⁄

f∆

i 0=

n 1–

∑=

Xk xie
j2πik n⁄–

i 0=

n 1–

∑=

xi

1
n
--- Xke

j2πik n⁄

k 0=

n 1–

∑=

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-4 © National Instruments Corporation

Furthermore, with the aid of the FFT, you can find the DFT of any size
sequence in approximately 3nlog2(n) operations where n is the next
power of 2 that accommodates intermediate results. You can find a
more detailed explanation of FFT theory in most introductory texts on
DSP.

The algorithm implemented in the LabVIEW analysis VIs is known as
the split-radix algorithm. This algorithm has a form similar to the
radix-4 algorithms with the efficiency of radix-8 algorithms. The
split-radix algorithm requires the least number of multiplications
among the radix-2, radix-4, and mixed-radix algorithms.

This manual uses the following notation to denote the discrete Fourier
transform of a sequence x:

X = F{x},

and

x = F-1{X}

to denote the discrete inverse Fourier transform. The Fourier transform
always results in a complex output sequence, and the input sequence
can be either real or complex. Unless otherwise specified, two real
sequences represent the complex sequences. If X is a complex sequence,
then:

XRe = Re{X}

represents the real part of the complex sequence X,

XIm = Im{X}

represents the imaginary part of the complex sequence X, and

X = XRe + j XIm = Re{X} + j Im{X}.

If the i/p signal is real, the FT is symmetric.

If the i/p signal is complex, the FT is not symmetric.

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-5 LabVIEW Function and VI Reference Manual

If n=8, let . The following table shows the format of the complex

output sequence.

Array Element Interpretation

Y0 DC component

Y1 1st harmonic or fundamental

Y2 2nd harmonic

Y3 3rd harmonic

.

.

.

.

.

.

Yk-2 (k-2)th harmonic

Yk-1 (k-1)th harmonic

Yk Nyquist harmonic

Yk+1 = Yn-(k-1) = Y-(k-1) - (k-1)th harmonic*

Yk+2 = Yn-(k-2) = Y-(k-2) - (k-2)th harmonic*

.

.

.

.

.

.

Yn-3 - 3rd harmonic*

Yn-2 - 2nd harmonic*

Yn-1 - 1st harmonic*

*These entries represent negative harmonics.

k
n

2
---=

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-6 © National Instruments Corporation

The following illustration represents this complex sequence.

If n=7, let . The following table shows the format of the

complex output sequence Y.

Array Element Interpretation

Y0 DC component

Y1 1st harmonic or fundamental

Y2 2nd harmonic

Y3 3rd harmonic

.

.

.

.

.

.

128 256 3840 512

50

100

150

200

0

250 | FFT {X} |

DC

Component

Nyquist

Component

Positive

Harmonics

"Negative"

Harmonics

k
n 1–

2
------------=

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-7 LabVIEW Function and VI Reference Manual

The following illustration represents the preceding table.

This format is an accepted standard in digital signal processing
applications. It is convenient because it simplifies performing the
inverse transform to obtain the final, processed result.

Yk-1 kth-1 harmonic

Yk kth harmonic

Yk+1 = Yn-k = Y-k -kth harmonic*

Yk+2 = Yn-(k-1) = Y-(k-1) - (k-1)th harmonic*

.

.

.

.

.

.

Yn-3 - 3rd harmonic*

Yn-2 - 2nd harmonic*

Yn-1 - 1st harmonic*

*These entries represent negative harmonics.

Array Element Interpretation

125 250 3750 500

50

100

150

200

0

250 | FFT {X} |

DC

Component

Positive

Harmonics

"Negative"

Harmonics

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-8 © National Instruments Corporation

Signal Processing VI Descriptions

The following Signal Processing VIs are available.

AutoCorrelation
Computes the autocorrelation of the input sequence X.

The autocorrelation Rxx(t) of a function x(t) is defined as

,

where the symbol ⊗ denotes correlation.

For the discrete implementation of this VI, let Y represent a sequence whose indexing can
be negative, let n be the number of elements in the input sequence X, and assume that the
indexed elements of X that lie outside its range are equal to zero,

xj = 0, j < 0 or j ≥ n.

Then the VI obtains the elements of Y using

 for j = -(n-1), -(n-2),…, -2, -1, 0, 1, 2,…, n-1.

The elements of the output sequence Rxx are related to the elements in the sequence Y by:

Rxxi = yi-(n-1) for i = 0, 1, 2,…, 2n-2.

Notice that the number of elements in the output sequence Rxx is 2n - 1. Because you
cannot use negative numbers to index LabVIEW arrays, the corresponding correlation
value at t = 0 is the nth element of the output sequence Rxx. Therefore, Rxx represents

Rxx t() x t() x t()⊗ x τ()x t τ+() td

∞–

∞

∫= =

yj xkxj k+

k 0=

n 1–

∑=

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-9 LabVIEW Function and VI Reference Manual

the correlation values that the VI shifted n times in indexing. The following block
diagram shows one way to display the correct indexing for the autocorrelation function.

The following graph is the result of the preceding block diagram.

Complex FFT
Computes the Fourier transform of the input sequence X.

You can use this VI to perform an FFT on an array of complex numeric representations.

If Y represents the complex output sequence, then

Y = F{X}.

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-10 © National Instruments Corporation

You also can use this VI to perform the following operations when X has one of the
complex LabVIEW data types.

• The FFT of a complex-valued sequence X

• The DFT of a complex-valued sequence X

This VI first analyzes the input data, and based on this analysis, it calculates the Fourier
transform of the data by executing one of the preceding options. All these routines take
advantage of the concurrent processing capabilities of the CPU and FPU.

When the number of samples in the input sequence X is a valid power of 2,

n = 2m for m = 1, 2, 3,…, 23,

where n is the number of samples, the VI computes the fast Fourier transform by applying
the split-radix algorithm. The largest complex FFT the VI can compute is
223 = 8,388,608 (8M).

When the number of samples in the input sequence X is not a valid power of 2,

n ≠ 2m for m = 1, 2, 3,…, 23,

where n is the number of samples, the VI computes the discrete Fourier transform by
applying the chirp-z algorithm. The largest complex DFT that can be computed is
222-1 = 4,194,303 (4M - 1).

Note: Because the VI performs the transform in place, advantages of the FFT

include speed and memory efficiency. The size of the input sequence,

however, must be a power of 2. The DFT can efficiently process any size

sequence, but the DFT is slower than the FFT and uses more memory,

because it must store intermediate results during processing.

Let Y be the complex output sequence and n be the number of samples in it. Using
equation (40-7), you can show that

Yn-i = Y-i

which means you can interpret the (n-i)th element of Y as the -ith element of the sequence,
if it could be physically realized, which represents the negative ith harmonic.

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-11 LabVIEW Function and VI Reference Manual

Convolution
Computes the convolution of the input sequences X and Y.

The convolution h(t), of the signals x(t) and y(t) is defined as

where the symbol * denotes convolution.

For the discrete implementation of the convolution, let h represent the output sequence
X * Y, let n be the number of elements in the input sequence X, and let m be the number
of elements in the input sequence Y. Assuming that indexed elements of X and Y that lie
outside their range are zero,

xi = 0, i < 0 or i ≥ n

and

yj = 0, j < 0 or j ≥ m,

then you obtain the elements of h using

 for i = 0, 1, 2,…, size-1,

size = n + m - 1,

where size denotes the total number of elements in the output sequence X * Y.

h t() x t()*y t() x τ()y t τ–() τd

∞–

∞

∫= =

hi xkyi k–

k 0=

n 1–

∑=

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-12 © National Instruments Corporation

Cross Power
Computes the cross power spectrum of the input sequences X and Y.

The cross power, Sxy(f), of the signals x(t) and y(t) is defined as

Sxy(f) = X*(f)Y(f)

where X*(f) is the complex conjugate of X(f), X(f) = F{x(t)}, and Y(f) = F{y(t)}.

This VI uses the FFT or DFT routine to compute the cross power spectrum, which is
given by

,

where Sxy represents the complex output sequence Sxy, and n is the number of samples
that can accommodate both input sequences X and Y.

The largest cross power that the VI can compute via the FFT is 223 (8,388,608 or 8M).

When the number of samples in X and Y are equal and are a valid power of 2,

n = m = 2k for k = 1, 2, 3, …, 23,

where n is the number of samples in X, and m is the number of samples in Y, the VI makes
direct calls to the FFT routine to compute the complex, cross power sequence. This
method is extremely efficient in both execution time and memory management because
the VI performs the operations in place.

When the number of samples in X and Y are not equal,

n ≠ m,

where n is the number of samples in X, and m is the number of samples in Y, the VI first
resizes the smaller sequence by padding it with zeros to match the size of the larger
sequence. If this size is a valid power of 2,

max(n,m) = 2k for k = 1, 2, 3, …, 23,

Sxy

1

n
2

-----F∗ X{ } F Y{ }=

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-13 LabVIEW Function and VI Reference Manual

the VI computes the cross power spectrum using the FFT; otherwise the VI uses the
slower DFT to compute the cross power spectrum. Thus, the size of the complex output
sequence is

size = max(n,m).

CrossCorrelation
Computes the cross correlation of the input sequences X and Y.

The cross correlation Rxy(t) of the signals x(t) and y(t) is defined as

,

where the symbol ⊗ denotes correlation.

For the discrete implementation of this VI, let h represent a sequence whose indexing can
be negative, let n be the number of elements in the input sequence X, let m be the number
of elements in the sequence Y, and assume that the indexed elements of X and Y that lie
outside their range are equal to zero,

xj = 0, j < 0 or j ≥ n,

and

yj = 0, j < 0 or j ≥ m.

Then the VI obtains the elements of h using

 for j = -(n-1), -(n-2),…, -2, -1, 0, 1, 2,…, m-1.

Rxy t() x t() y t()⊗ x τ()y t τ+() τd

∞–

∞

∫= =

hj xkyj k+

k 0=

n 1–

∑=

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-14 © National Instruments Corporation

The elements of the output sequence Rxy are related to the elements in the sequence h by

Rxyi = hi-(n-1) for i = 0, 1, 2, …, size-1,

size = n + m - 1

where size is the number of elements in the output sequence Rxy.

Because you cannot index LabVIEW arrays with negative numbers, the corresponding
cross correlation value at t = 0 is the nth element of the output sequence Rxy. Therefore,
Rxy represents the correlation values that the VI shifted n times in indexing.

The following block diagram shows one way to index the CrossCorrelation VI.

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-15 LabVIEW Function and VI Reference Manual

The following graph is the result of the preceding block diagram.

Decimate
Decimates the input sequence X by the decimating factor and the averaging binary
control.

If Y represents the output sequence Decimated Array, the VI obtains the elements of the
sequence Y using

 for i = 0, 1, 2,..., size-1

,

where n is the number of elements in X, m is the decimating factor, ave is the averaging
option, and size is the number of elements in the output sequence Decimated Array.

yi

xim if ave is false

1
m
---- x im k+() if ave is true

k 0=

m 1–

∑







=

size trunc
n

m
---- 

 =

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-16 © National Instruments Corporation

Deconvolution
Computes the deconvolution of the input sequences X * Y and Y.

The VI can use Fourier identities to realize the convolution operation because

x(t) * y(t) ⇔ X(f) Y(f)

is a Fourier transform pair, where the symbol * denotes convolution, and the
deconvolution is the inverse of the convolution operation. If h(t) is the signal resulting
from the deconvolution of the signals x(t) and y(t), the VI obtains h(t) using the equation

,

where X(f) is the Fourier transform of x(t), and Y(f) is the Fourier transform of y(t).

The VI performs the discrete implementation of the deconvolution using the following
steps:

1. Compute the Fourier transform of the input sequence X * Y.

2. Compute the Fourier transform of the input sequence Y.

3. Divide the Fourier transform of X * Y by the Fourier transform of Y. Call the new
sequence H.

4. Compute the inverse Fourier transform of H to obtain the deconvoluted sequence X.

Note: The deconvolution operation is a numerically unstable operation, and it is

not always possible to solve the system numerically. Computing the

deconvolution via FFTs is perhaps the most stable generic algorithm not

requiring sophisticated DSP techniques. However, it is not free of errors

(for example, when there are zeros in the Fourier transform of the input

sequence Y).

h t() F
1– X f()

Y f()
--------- 

 =

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-17 LabVIEW Function and VI Reference Manual

Derivative x(t)
Performs a discrete differentiation of the sampled signal X.

The differentiation f(t) of a function F(t) is defined as

.

Let Y represent the sampled output sequence dX/dt. The discrete implementation is given
by

 for i = 0, 1, 2, …, n-1,

where n is the number of samples in x(t),

x-1 is specified by initial condition when i = 0, and

xn is specified by final condition when i = n-1.

The initial condition and final condition minimize the error at the boundaries.

Fast Hilbert Transform
Computes the fast Hilbert transform of the input sequence X.

The Hilbert transform of a function x(t) is defined as

.

f t()
d

td
----F t()=

yi

1
2 td
-------- xi 1+ xi 1––()=

h t() H x t(){ }
1
π---

x τ()
t τ–
---------- τd

∞–

∞

∫–= =

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-18 © National Instruments Corporation

Using Fourier identities, you can show the Fourier transform of the Hilbert transform of
x(t) is

h(t) ⇔ H(f) = - j sgn(f) X(f)

where x(t) ⇔ X(f) is a Fourier transform pair and

The VI completes the following steps to perform the discrete implementation of the
Hilbert transform with the aid of the FFT routines based upon the h(t) ⇔ H(f) Fourier
transform pair (refer to the output format of the FFT VI for more information):

1. Fourier transform the input sequence X: Y = F{X}.

2. Set the DC component to zero: Y0 = 0.

3. If the sequence Y is an even size, set the Nyquist component to zero: YNyq = 0.

4. Multiply the positive harmonics by -j.

5. Multiply the negative harmonics by j. Call the new sequence H, which is of the form
Hk = -j sgn(k) Yk.

6. Inverse Fourier transform H to obtain the Hilbert transform of X.

You use the Hilbert transform to extract instantaneous phase information, obtain the
envelope of an oscillating signal, obtain single-sideband spectra, detect echoes, and
reduce sampling rates.

Note: Because the VI sets the DC and Nyquist components to zero when the

number of elements in the input sequence is even, you cannot always

recover the original signal with an inverse Hilbert transform. The Hilbert

transform works well with bandpass limited signals, which exclude the DC

and the Nyquist components.

FHT
Computes the fast Hartley transform (FHT) of the input sequence X.

f()sgn
1 f 0>
0 f 0=
1 f 0<–







=

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-19 LabVIEW Function and VI Reference Manual

The Hartley transform of a function x(t) is defined as

where cas(x) = cos(x) + sin(x).

If Y represents the output sequence Hartley{X} obtained via the FHT, then Y is obtained
through the discrete implementation of the Hartley integral:

, for k = 0, 1, 2, …, n-1.

where n is the number of elements in X.

FHT maps real-valued sequences into real-valued frequency domain sequences. You can
use it instead of the Fourier transform to convolve signals, deconvolve signals, correlate
signals, and find the power spectrum. You can also derive the Fourier transform from the
Hartley transform.

When the sequences to be processed are real-valued sequences, the Fourier transform
produces complex-valued sequences in which half of the information is redundant. The
advantage of using the FHT instead of the FFT transform is that the FHT uses half the
memory to produce the same information the FFT produces. Further, the FHT is
calculated in place and is as efficient as the FFT. The disadvantage of the FHT is that the
size of the input sequence must be a valid power of 2.

Integral x(t)
Performs the discrete integration of the sampled signal X.

The integral F(t) of a function f(t) is defined as

X f() x t()cas 2πft() td

∞–

∞

∫=

Yk Xicas
2πik

n
----------- 

 

i 0=

n 1–

∑=

F t() f t() td∫=

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-20 © National Instruments Corporation

Let Y represent the sampled output sequence Integral X. The VI obtains the elements of
Y using

 for i = 0, 1, 2, …, n-1,

where n is the number of elements in X, x-1 is specified by initial condition when i = 0,
and xn is specified by final condition when i = n-1.

The initial condition and final condition minimize the overall error by increasing the
accuracy at the boundaries, especially when the number of samples is small. Determining
boundary conditions before the fact enhances accuracy.

Inverse Complex FFT
Computes the inverse Fourier transform of the complex input sequence FFT {X}.

You can use this VI to perform an inverse FFT on an array of one of the LabVIEW
complex numeric representations.

If Y represents the output sequence, then

Y = F-1{X}.

You can use this VI to perform the following operations when FFT {X} has one of the
complex LabVIEW data types:

• The inverse FFT of a complex-valued sequence X

• The inverse DFT of a complex-valued sequence X

This FFT VI first analyzes the input data and, based on this analysis, inverse Fourier
transforms the data by executing one of the preceding options. All these routines take
advantage of the concurrent processing capabilities of the CPU and FPU.

When the number of samples in the input sequence X is a valid power of 2,

n = 2m for m = 1, 2, 3,…, 23,

yi

1
6
--- xj 1– 4xj xj 1++ +() td

j 0=

i

∑=

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-21 LabVIEW Function and VI Reference Manual

where n is the number of samples, the VI computes the inverse FFT by applying the
split-radix algorithm. The longest sequence with an inverse complex FFT that the VI can
compute is 223=8,388,608 (8M).

When the number of samples in the input sequence X is not a valid power of 2,

n ≠ 2m for m = 1, 2, 3, …, 23,

where n is the number of samples, the VI computes the inverse DFT by applying the
chirp-z algorithm. The longest sequence with an inverse complex DFT that the VI can
compute is 222-1 (4,194,303 or 4M - 1).

Note: Because the VI performs the transform in place, advantages of the FFT

include speed and memory efficiency. The size of the input sequence,

however, must be a power of 2. The DFT can efficiently process any size

sequence, but the DFT is slower than the FFT and uses more memory,

because it must store intermediate results during processing.

Inverse Fast Hilbert Transform
Computes the inverse fast Hilbert transform of the input sequence X.

The inverse Hilbert transform of a function h(t) is defined as

.

Using the definition of the Hilbert transform

,

you obtain the inverse Hilbert transform by negating the forward Hilbert transform

x(t) = H-1{h(t)} = - H{h(t)}.

h t() H
1–

h t(){ }
1
π---

h τ()
t τ–
---------- τd

∞–

∞

∫= =

h t() H x t(){ }
1
π---

x τ()
t τ–
---------- τd

∞–

∞

∫–= =

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-22 © National Instruments Corporation

The VI completes the following steps to perform the discrete implementation of the
inverse Hilbert transform with the aid of the Hilbert transform.

1. Hilbert transform the input sequence X: Y = H{X}.

2. Negate Y to obtain the inverse Hilbert transform: H-1{X} = -Y.

For more information on the algorithm this VI uses, refer to the description of the Fast

Hilbert Transform section in this chapter.

Inverse FHT
Computes the inverse fast Hartley transform of the input sequence X.

The inverse Hartley transform of a function X(f) is defined as

where cas(x) = cos(x) + sin(x).

If Y represents the output sequence Inv FHT {X}, the VI calculates Y through the discrete
implementation of the inverse Hartley integral:

, for k = 0, 1, 2,…, n-1.

where n is the number of elements in X.

The inverse Hartley transform maps real-valued frequency sequences into real-valued
sequences. You can use it instead of the inverse Fourier transform to convolve,
deconvolve, and correlate signals. You can also derive the Fourier transform from the
Hartley transform.

See the FHT section for a comparison of the Fourier and Hartley transforms.

x t() X f()cas 2πft() fd

∞–

∞

∫=

Yk

1
n
--- Xicas

2πik

n

i 0=

n 1–

∑=

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-23 LabVIEW Function and VI Reference Manual

Inverse Real FFT
Computes the Inverse Real Fast Fourier Transform (FFT) or the Inverse Real Discrete
Fourier Transform (DFT) of the input sequence FFT{X}.

The input sequence is complex-valued. This VI automatically determines the following
options:

• Inverse Real FFT of a complex-valued sequence if the size is a power of 2.

• Inverse Real DFT of a complex-valued sequence if the size is not a power of 2.

This VI executes inverse FFT routines if the size of the input sequence is a valid power
of 2:

size = 2m, m = 1, 2,..., 23.

If the size of the input sequence is not a power of 2, this VI calls an efficient Inverse DFT
routine.

The output sequence X = Inverse Real FFT [FFT{X}] is real and it returns in one real
array.

Power Spectrum
Computes the power spectrum of the input sequence X.

The Power Spectrum Sxx(f) of a function x(t) is defined as

Sxx(f) = X*(f)X(f) = | X(f) | 2

where X(f) = F{x(t)}, and X*(f) is the complex conjugate of X(f).

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-24 © National Instruments Corporation

This VI uses the FFT and DFT routines to compute the power spectrum, which is given by

,

where Sxx represents the output sequence Power Spectrum, and n is the number of
samples in the input sequence X.

When the number of samples, n, in the input sequence X is a valid power of 2,

n = 2m for m = 1, 2, 3, …, 23,

this VI computes the FFT of a real-valued sequence using the split-radix algorithm and
efficiently scales the magnitude square. The largest power spectrum the VI can compute
using the FFT is 223 (8,388,608 or 8M).

When the number of samples in the input sequence X is not a valid power of 2,

n ≠ 2m for m = 1, 2, 3,…, 23,

where n is the number of samples, this VI computes the discrete Fourier transform of a
real-valued sequence using the chirp-z algorithm and scales the magnitude square. The
largest power spectrum the VI can compute using the fast DFT is 222-1 (4,194,303 or
4M - 1).

The FFT computation of the power spectrum is time and memory efficient because the
transform is real and done in the same space. However, the size of the input sequence
must be exactly a power of 2. The DFT version efficiently computes the power spectrum
of any size sequence. The DFT version is slower than the FFT version, uses more
memory, and is not as efficient in scaling.

Let Y be the Fourier transform of the input sequence X and let n be the number of samples
in it. Using equation (40-7), you can show that

.

You can interpret the power in the (n-i)th element of Y as the power in the -ith element of
the sequence, which represents the power in the negative ith harmonic. You can find the
total power for the ith harmonic (DC and Nyquist component not included) using

.

Sxx

1

n
2

----- F X{ } 2
=

Yn i–
2

Y i–
2

=

Power in i
th

harmonic 2 Yi
2 Yi

2 Yn i–
2, 0 i

n

2
---< <+= =

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-25 LabVIEW Function and VI Reference Manual

The total power in the DC and Nyquist components are and , respectively.

If n is even, let . The following table shows the format of the output sequence Sxx

corresponding to the power spectrum.

The following illustration represents the preceding table information.

Array Element Interpretation

Sxx0 Power in DC component

Sxx1 = Sxx(n-1) Power in 1st harmonic or fundamental

Sxx2 = Sxx(n-2) Power in 2nd harmonic

Sxx3 = Sxx(n-3) Power in 3rd harmonic

.

.

.

.

.

.

Sxxk-2 = Sxxn-(k-2) Power in (k-2)th harmonic

Sxxk-1 = Sxxn-(k-1) Power in (k-1)th harmonic

Sxxk Power in Nyquist harmonic

Y0
2

Yn 2⁄
2

k
n

2
---=

128 256 3840 512

0.05

0.10

0.15

0.20

0.00

0.25 Power Spectrum

Nyquist

Component

DC

Component

Positive

Harmonics

"Negative"

Harmonics

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-26 © National Instruments Corporation

If n is odd, let . The following table shows the format of the output sequence

Sxx corresponding to the power spectrum.

The following illustration represents the preceding table information.

The format described in the preceding tables is an accepted standard in digital signal
processing applications.

Array Element Interpretation

Sxx0 Power in DC component

Sxx1 = Sxx(n-1) Power in 1st harmonic or fundamental

Sxx2 = Sxx(n-2) Power in 2nd harmonic

Sxx3 = Sxx(n-3) Power in 3rd harmonic

.

.

.

.

.

.

Sxxk-2 = Sxxn-(k-2) Power in (k-2)th harmonic

Sxxk-1 = Sxxn-(k-1) Power in (k-1)th harmonic

Sxxk = Sxxn-k Power in kth harmonic

k
n 1–

2
------------=

125 250 3750 500

0.05

0.10

0.15

0.20

0.00

0.25 Power Spectrum

DC

Component

Positive

Harmonics

"Negative"

Harmonics

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-27 LabVIEW Function and VI Reference Manual

Real FFT
Computes the Real Fast Fourier Transform (FFT) or the Real Discrete Fourier Transform
(DFT) of the input sequence X.

The input sequence is real-valued. The Real FFT VI automatically determines the
options, which are the following:

• FFT of a real-valued sequence

• DFT of a real-valued sequence

The Real FFT VI executes FFT routines if the size of the input sequence is a valid power
of 2:

size = 2m, m = 1, 2,..., 23.

If the size of the input sequence is not a power of 2, the Real FFT VI calls an efficient
Real DFT routine.

The output sequence Y = Real FFT[X] is complex and returns in one complex array:

Y = YRe + jYIm

Unwrap Phase
Unwraps the Phase array by eliminating discontinuities whose absolute values exceed Π.

Y[i] = Clip {X[i]}
Clips the elements of Input Array to within the bounds specified by upper limit and
lower limit.

Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-28 © National Instruments Corporation

Let the sequence Y represent the output sequence Clipped Array; then the elements of Y
are related to the elements of Input Array by

 for i = 0, 1, 2,…, n-1,

where n is the number of elements in Input Array, a is the upper limit, and b is the
lower limit.

Y[i] = X[i-n]
Shifts the elements in the Input Array by the specified number of shifts.

Let the sequence Y represent the output sequence Shifted Array; then the elements of Y
are related to the elements of X by

where n is the number of elements in Input Array.

Note: This VI does not rotate the elements in the array. The VI disposes of the

elements of the input sequence shifted outside the range, and you cannot

recover them by shifting the array in the opposite direction.

Zero Padder
Resizes the input sequence Input Array to the next higher valid power of 2, sets the new
trailing elements of the sequence to zero, and leaves the first n elements unchanged,
where n is the number of samples in the input sequence.

yi

a xi a>

xi b xi a≤ ≤

b xi b<





=

yi

xi shifts– if 0 i shifts n for i = 0, 1, 2, . . ., n-1 ,<–≤

0 elsewhere






=

Chapter 40 Analysis Digital Signal Processing VIs

© National Instruments Corporation 40-29 LabVIEW Function and VI Reference Manual

This VI is useful when the size of the acquired data buffers is not a power of 2, and you
want to take advantage of fast processing algorithms in the analysis VIs. These
algorithms include Fourier transforms, power spectrum, and FHTs, which are extremely
efficient for buffer sizes that are a power of 2.

© National Instruments Corporation 41-1 LabVIEW Function and VI Reference Manual

Chapter

41Analysis Measurement VIs

This chapter describes the measurement VIs, which are streamlined to
perform DFT-based and FFT-based analysis with signal acquisition for
frequency measurement applications as seen in typical frequency
measurement instruments, such as dynamic signal analyzers.

To access the Analysis Measurement palette, select
Function»Analysis»Measurement. The following illustration shows
the options that are available on the Measurement palette.

For examples of how to use the measurement VIs, see the examples
using data acquisition located in
examples\analysis\measure\daqmeas.llb (Windows and
Macintosh) and using simulated signals in
examples\analysis\measure\measxmpl.llb.

Chapter 41 Analysis Measurement VIs

LabVIEW Function and VI Reference Manual 41-2 © National Instruments Corporation

Introduction to Measurement VIs

Several measurement VIs perform commonly used time domain to
frequency-domain transformations such as amplitude and phase
spectrum, signal power spectrum, network transfer function, and so on.
Other measurement VIs interact with VIs that perform such functions as
scaled time domain windowing and power and frequency estimation.

You can use the measurement VIs for the following applications:

• Spectrum analysis applications

– Amplitude and phase spectrum

– Power spectrum

– Scaled time domain window

– Power and frequency estimate

– Harmonic analysis and total harmonic distortion (THD)
measurements

• Network (frequency response) and dual channel analysis
applications

– Transfer function

– Impulse response function

– Network functions (including coherence)

– Cross power spectrum

The DFT, FFT, and power spectrum are useful for measuring the
frequency content of stationary or transient signals. The FFT provides
the average frequency content of the signal over the entire time that the
signal was acquired. For this reason, you use the FFT mostly for
stationary signal analysis (when the signal is not significantly changing
in frequency content over the time that the signal is acquired), or when
you want only the average energy at each frequency line. A large class
of measurement problems fall in this category. For measuring
frequency information that changes during the acquisition, you should
use joint time-frequency analysis VIs, such as the Gabor Spectrogram.

The measurement VIs are built on top of the signal processing VIs and
have the following characteristics, which model the behavior of
traditional, benchtop frequency analysis instruments.

• Real-world, time-domain signal input is assumed.

Chapter 41 Analysis Measurement VIs

© National Instruments Corporation 41-3 LabVIEW Function and VI Reference Manual

• Outputs are in magnitude and phase, scaled, and in units where
appropriate, ready for immediate graphing.

• Single-sided spectrums from DC to .

• Sampling period to frequency interval conversion for graphing with
appropriate X axis units (in Hz).

• Corrections for the windows being used are applied where
appropriate.

• Windows are scaled so that each window gives the same peak
spectrum amplitude result within its amplitude accuracy
constraints.

Views power or amplitude spectrums in various unit formats, including
decibels and spectral density units, such as , , and so on.

In general, you can directly connect the measurement VIs to the output
of data acquisition VIs and to graphs through the axis cluster, as the
following spectrum analyzer diagram shows.

The measurement examples include the following:

• Amplitude Spectrum Example

• Simulated Dynamic Signal Analysis Example

• Total Harmonic Distortion (THD) Example

(Windows and Macintosh) You can use the following examples with
National Instruments hardware.

• Simple Spectrum Analyzer and Spectrum Analyzer–Both work
with any analog input hardware (use dynamic signal acquisition
hardware for good quality measurements).

Sampling Frequency
2

V
2

Hz⁄ V Hz⁄

Chapter 41 Analysis Measurement VIs

LabVIEW Function and VI Reference Manual 41-4 © National Instruments Corporation

• Dynamic Signal Analyzer and Network Analyzer–Both work with
dynamic signal acquisition hardware. The Network Analyzer
requires the AT-DSP2200 board.

Measurement VI Descriptions

The following Measurement VIs are available.

AC & DC Estimator
Computes an estimation of the AC and DC levels of the input signal.

Amplitude and Phase Spectrum
Computes the single-sided, scaled amplitude spectrum magnitude and phase of a real
time-domain signal.

The VI computes the amplitude spectrum as

where N is the number of points in the Signal array. The VI then converts the amplitude
spectrum to single-sided rms magnitude and phase spectra.

Auto Power Spectrum
Computes the single-sided, scaled, auto power spectrum of a time-domain signal.

FFT(Signal)
N

Chapter 41 Analysis Measurement VIs

© National Instruments Corporation 41-5 LabVIEW Function and VI Reference Manual

This VI computes the power spectrum as

where N is the number of points in the Signal array and * denotes complex conjugate.
The VI then converts the power spectrum into a single-sided power spectrum result.

Cross Power Spectrum
Computes the single-sided, scaled, cross power spectrum of two real-time signals. The
cross power spectrum gives the product of the amplitude of the signals X and Y and the
difference between their phases (phase of Y minus phase of X).

This VI computes the cross power spectrum as

where N is the number of points in Signal X or Signal Y arrays. The VI then converts the
cross power spectrum to single-sided magnitude and phase spectra.

Harmonic Analyzer
Finds the fundamental and harmonic components (amplitude and frequency) present in
the input Auto Power Spectrum, and computes the percent of total harmonic distortion
(%THD) and the total harmonic distortion plus noise (%THD + Noise).

You must pass the windowed, auto power spectrum of your signal to this VI for it to
function correctly. You should pass your time-domain signal through the scaled time
domain window and then through the Auto Power Spectrum, connecting the Auto Power
Spectrum output to this VI.

FFT*(Signal) x FFT(Signal)

N2
--

FFT*(Signal X) x FFT(Signal Y)

N2
--

Chapter 41 Analysis Measurement VIs

LabVIEW Function and VI Reference Manual 41-6 © National Instruments Corporation

 The following illustration shows an example of using this VI.

Impulse Response Function
Computes the impulse response of a network based on real signals X (Signal X Stimulus)
and Y (Signal Y Response).

The Impulse Response is in the time domain, so you do not need to convert time units
to frequency units. The Impulse Response is the inverse transform of the transfer
function.

This VI computes Impulse Response as

.

Network Functions (avg)
Computes several network response functions of two, real time-domain signals X
(Stimulus Signal) and Y (Response Signal).

The signals X (Stimulus Signal) and Y (Response Signal) include coherence, averaged
cross power spectrum magnitude and phase, averaged transfer function (Frequency
Response), and averaged Impulse Response.

Inverse FFT
Cross Power(Stimulus, Response)

Power Spectrum(Stimulus)

Chapter 41 Analysis Measurement VIs

© National Instruments Corporation 41-7 LabVIEW Function and VI Reference Manual

You usually compute these functions on the stimulus and response signals from a
network under test. The coherence function shows the frequency content of the Response
Signal Y due to Stimulus Signal X and measures the validity of the network frequency
response measurement.

You can use this VI to measure the coherence between any two signals. The VI averages
multiple stimulus and response signals to get valid coherence measurements. Cross
Power Spectrum and Impulse Response are the rms averaged versions of the similarly
named VIs. Frequency Response is the rms averaged version of the frequency response
outputs of the Transfer Function VI.

Peak Detector
For information on this VI, see Chapter 48, Analysis Additional Numerical Method VIs, in
this manual.

Power & Frequency Estimate
Computes the estimated power and frequency around a peak in the power spectrum of a
time-domain signal.

With this VI, you can achieve good frequency estimates for measured frequencies that lie
between frequency lines on the spectrum. The VI makes corrections for the window
function you use.

Pulse Parameters
Analyzes the input sequence X for a pulse pattern and determines the best set of pulse
parameters that describes the pulse.

Chapter 41 Analysis Measurement VIs

LabVIEW Function and VI Reference Manual 41-8 © National Instruments Corporation

The waveform-related parameters are slew rate, overshoot, topline (top), amplitude,
baseline (base), and undershoot. The time-related parameters are risetime, falltime,
width (duration), and delay.

This VI completes the following steps to calculate the output parameters:

1. Find the maximum and minimum values in the input sequence X.

2. Generate the histogram of the pulse with 1% range resolution.

3. Determine the upper and lower modes to establish the top and base values.

4. Find the overshoot, amplitude, and undershoot from top, base, maximum, and
minimum values.

5. Scan X and determine the slew rate, risetime, falltime, width, and delay.

The VI interpolates width and delay to obtain a more accurate result not only of width
and delay, but also of slew rate, risetime, and falltime.

If X contains a train of pulses, the VI uses the train to determine overshoot, top,
amplitude, base, and undershoot, but uses only the first pulse in the train to establish
slew rate, risetime, falltime, width, and delay.

Note: Because pulses commonly occur in the negative direction, this VI can

discriminate between positive and negative pulses and can analyze the X

sequence correctly. You do not need to process the sequence before

analyzing it.

Scaled Time Domain Window
Applies the selected window to the time-domain signal.

The VI scales the result so that when the power or amplitude spectrum of the Windowed
Waveform is computed, all windows provide the same level within the accuracy
constraints of the window. This VI also returns important Window Constants for the
selected window. These constants are useful when you use VIs that perform
computations on the power spectrum, such as the Power & Frequency Estimate and
Spectrum Unit Conversion VIs.

Chapter 41 Analysis Measurement VIs

© National Instruments Corporation 41-9 LabVIEW Function and VI Reference Manual

Spectrum Unit Conversion
Converts either the power, amplitude, or gain (amplitude ratio) spectrum to alternate
formats including Log (decibel and dbm) and spectral density.

Threshold Peak Detector
For information on the this VI, see Chapter 48, Analysis Additional Numerical Method VIs,
of this manual.

Transfer Function
Computes the transfer function (also known as the frequency response) from the
time-domain Stimulus Signal and Response Signal from a network under test.

This VI computes the transfer function of a system based on the real signals X (Stimulus
Signal) and Y (Response Signal). The output is the amplitude gain of the network, which
is unitless.

The VI computer frequency response is:

.
Cross Power(Stimulus, Response)

Power Spectrum(Stimulus)

© National Instruments Corporation 42-1 LabVIEW Function and VI Reference Manual

Chapter

42Analysis Filter VIs

This chapter contains a brief discussion of digital filter theory and
describes the VIs that implement IIR, FIR, and nonlinear filters.

To access the Analysis Filter palette, select
Function»Analysis»Filters. The following illustration shows the
options that are available on the Filter palette.

For examples of how to use the filter VIs, see the examples located in
examples\analysis\fltrxmpl.llb.

Introduction to Digital Filtering Functions

Analog filter design is one of the most important areas of electronic
design. Although analog filter design books featuring simple, tested
filter designs exist, filter design is often reserved for specialists because
it requires advanced mathematical knowledge and understanding of the
processes involved in the system affecting the filter.

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-2 © National Instruments Corporation

Modern sampling and digital signal processing tools have made it
possible to replace analog filters with digital filters in applications that
require flexibility and programmability. These applications include
audio, telecommunications, geophysics, and medical monitoring.

Digital filters have the following advantages over their analog
counterparts:

• They are software programmable.

• They are stable and predictable.

• They do not drift with temperature or humidity or require precision
components.

• They have a superior performance-to-cost ratio.

You can use digital filters in LabVIEW to control parameters such as
filter order, cutoff frequencies, amount of ripple, and stopband
attenuation.

The digital filter VIs described in this section follow the virtual
instrument philosophy. The VIs handle all the design issues,
computations, memory management, and actual data filtering
internally, and are transparent to the user. You do not have to be an
expert in digital filters or digital filter theory to process the data.

The following discussion of sampling theory is intended to give you a
better understanding of the filter parameters and how they relate to the
input parameters.

The sampling theorem states that you can reconstruct a continuous-time
signal from discrete, equally spaced samples if the sampling frequency
is at least twice that of the highest frequency in the time signal. Assume
you can sample the time signal of interest at ∆t equally spaced intervals
without losing information. The ∆t parameter is the sampling interval.

You can obtain the sampling rate or sampling frequency fs from the
sampling interval

,

which means that, according to the sampling theorem, the highest
frequency that the digital system can process is

fs

1
t∆-----=

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-3 LabVIEW Function and VI Reference Manual

.

The highest frequency the system can process is known as the Nyquist
frequency. This also applies to digital filters. For example, if your
sampling interval is

∆t = 0.001 sec,

then the sampling frequency is

fs = 1000 Hz,

and the highest frequency that the system can process is

fNyq = 500 Hz.

The following types of filtering operations are based upon filter design
techniques:

• Smoothing windows

• Infinite impulse response (IIR) or recursive digital filters

• Finite impulse response (FIR) or nonrecursive digital filters

• Nonlinear filters

The rest of this chapter presents a brief theoretical background on the
IIR, FIR, and nonlinear techniques and discusses the digital filter VIs
corresponding to each technique. Refer to Chapter 43, Window VIs, for
information about the VIs that implement smoothing windows.

Infinite Impulse Response Filters

Infinite impulse response filters (IIR) are digital filters with impulse
responses that can theoretically be infinite in length (duration). The
general difference equation characterizing IIR filters is

(42-1)

where Nb is the number of forward coefficients (bj) and Na is the
number of reverse coefficients (ak).

fNyq

fs

2
---=

yi

1
a0
----- bjxi j–

j 0=

Nb 1–

∑ akyi k–

k 1=

Na 1–

∑–

 
 
 
 

=

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-4 © National Instruments Corporation

In most IIR filter designs (and in all of the LabVIEW IIR filters),
coefficient a0 is 1. The output sample at the present sample index i is
the sum of scaled present and past inputs (xi and xi - j when ≠ 0) and
scaled past outputs (yi-k). Because of this, IIR filters are also known as
recursive filters or autoregressive moving-average (ARMA) filters.

The response of the general IIR filter to an impulse (x0 = 1 and xi = 0
for all i ≠ 0) is called the impulse response of the filter. The impulse
response of the filter described by equation (42-1) is indeed of infinite
length for nonzero coefficients. In practical filter applications,
however, the impulse response of stable IIR filters decays to near zero
in a finite number of samples.

IIR filters in LabVIEW contain the following properties:

• Negative indices resulting from equation (42-1) are assumed to be
zero the first time you call the VI.

• Because the initial filter state is assumed to be zero (negative
indices), a transient proportional to the filter order occurs before
the filter reaches a steady state. The duration of the transient
response, or delay, for lowpass and highpass filters is equal to the
filter order.

• Delay = order.

• The duration of the transient response for bandpass and bandstop
filters is twice the filter order

• Delay = 2 * order.

You can eliminate this transient response on successive calls by
enabling state memory. To enable state memory, set the init/cont
control of the VI to TRUE (continuous filtering).

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-5 LabVIEW Function and VI Reference Manual

The number of elements in the filtered sequence equals the number of
elements in the input sequence.

The filter retains the internal filter state values when the filtering
completes.

The advantage of digital IIR filters over finite impulse response (FIR)
filters is that IIR filters usually require fewer coefficients to perform
similar filtering operations. Thus, IIR filters execute much faster and do
not require extra memory, because they execute in place.

The disadvantage of IIR filters is that the phase response is nonlinear.
If the application does not require phase information, such as simple
signal monitoring, IIR filters may be appropriate. You should use FIR
filters for those applications requiring linear phase responses.

Cascade Form IIR Filtering
Filters implemented using the structure defined by equation (42-2)
directly are known as direct form IIR filters. Direct form
implementations are often sensitive to errors introduced by coefficient
quantization and by computational, precision limits. Additionally, a
filter designed to be stable can become unstable with increasing
coefficient length, which is proportional to filter order.

A less sensitive structure can be obtained by breaking up the direct form
transfer function into lower order sections, or filter stages. The direct

Original Signal
Filtered Signal

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-6 © National Instruments Corporation

form transfer function of the filter given by equation (42-2) (with a0 =
1) can be written as a ratio of z transforms, as follows:

. (42-2)

By factoring equation (42-2) into second-order sections, the transfer
function of the filter becomes a product of second-order filter functions

(42-3)

where is the largest integer < Na/2, and Na > Nb. (Ns is the
number of stages.) This new filter structure can be described as a
cascade of second-order filters.

Each individual stage is implemented using the direct form II filter
structure because it requires a minimum number of arithmetic
operations and a minimum number of delay elements (internal filter
states). Each stage has one input, one output, and two past internal states
(sk[i-1] and sk[i-2]).

If n is the number of samples in the input sequence, the filtering
operation proceeds as in the following equations:

y0[i] = x[i],

sk[i] = yk–1[i–1] – a1ksk[i–1] – a2ksk[i-2], k = 1, 2,..., Ns

yk[i] = bOksk[i] + b1ksk[i-1] + b2ksk[i-2], k = 1, 2,..., Ns

y[i] = yNs[i]

for each sample i = 0, 1, 2,...,n-1.

H z()
b0 b1z 1– … bNb 1– z

Nb 1–()–+ + +

1 a1z 1– … aNa 1– z
Na 1–()–+ + +

--=

H z()
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

Ns

∏=

Ns Na 2⁄=

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-7 LabVIEW Function and VI Reference Manual

For filters with a single cutoff frequency (lowpass and highpass),
second-order filter stages can be designed directly. The overall IIR
lowpass or highpass filter contains cascaded second-order filters.

For filters with two cutoff frequencies (bandpass and bandstop),
fourth-order filter stages are a more natural form. The overall IIR
bandpass or bandstop filter is cascaded fourth-order filters. The
filtering operation for fourth-order stages proceeds as in the following
equations:

y0[i] = x[i],

sk[i] = yk–1[i–1] – a1ksk[i–1] – a2ksk[i-2] – a3ksk[i–3] – a4ksk[i–4],

k = 1, 2,..., Ns

yk[i] = b0ksk[i] + b1ksk[i-1] + b2ksk[i-2] + b3ksk[i-3] + b4ksk[i-4],

k = 1, 2,..., Ns

y[i] = yNs[i].

Notice that in the case of fourth-order filter stages, .

Butterworth Filters
A smooth response at all frequencies a nd a monotonic decrease from
the specified cutoff frequencies characterize the frequency response of
Butterworth filters. Butterworth filters are maximally flat—the ideal
response of unity in the passband and zero in the stopband. The half
power frequency or the 3-dB down frequency corresponds to the
specified cutoff frequencies.

The following illustration shows the response of a lowpass Butterworth
filter. The advantage of Butterworth filters is a smooth, monotonically
decreasing frequency response. After you set the cutoff frequency,
LabVIEW sets the steepness of the transition proportional to the filter

Ns Na 1+() 4⁄=

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-8 © National Instruments Corporation

order. Higher order Butterworth filters approach the ideal lowpass filter
response.

Chebyshev Filters
Butterworth filters do not always provide a good approximation of the
ideal filter response because of the slow rolloff between the passband
(the portion of interest in the spectrum) and the stopband (the unwanted
portion of the spectrum).

Chebyshev filters minimize peak error in the passband by accounting
for the maximum absolute value of the difference between the ideal
filter and the filter response you want (the maximum tolerable error in
the passband). The frequency response characteristics of Chebyshev
filters have an equiripple magnitude response in the passband,
monotonically decreasing magnitude response in the stopband, and a
sharper rolloff than Butterworth filters.

The following graph shows the response of a lowpass Chebyshev filter.
Notice that the equiripple response in the passband is constrained by the
maximum tolerable ripple error and that the sharp rolloff appears in the
stopband. The advantage of Chebyshev filters over Butterworth filters
is that Chebyshev filters have a sharper transition between the passband
and the stopband with a lower order filter. This produces smaller
absolute errors and higher execution speeds.

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-9 LabVIEW Function and VI Reference Manual

Chebyshev II or Inverse Chebyshev Filters
Chebyshev II, also known as inverse Chebyshev or Type II Chebyshev
filters, are similar to Chebyshev filters, except that Chebyshev II filters
distribute the error over the stopband (as opposed to the passband), and
Chebyshev II filters are maximally flat in the passband (as opposed to
the stopband).

Chebyshev II filters minimize peak error in the stopband by accounting
for the maximum absolute value of the difference between the ideal
filter and the filter response you want. The frequency response
characteristics of Chebyshev II filters are equiripple magnitude
response in the stopband, monotonically decreasing magnitude
response in the passband, and a rolloff sharper than Butterworth filters.

The following graph plots the response of a lowpass Chebyshev II filter.
Notice that the equiripple response in the stopband is constrained by the
maximum tolerable error and that the smooth monotonic rolloff appears
in the stopband. The advantage of Chebyshev II filters over Butterworth
filters is that Chebyshev II filters give a sharper transition between the
passband and the stopband with a lower order filter. This difference
corresponds to a smaller, absolute error and higher execution speed.
One advantage of Chebyshev II filters over regular Chebyshev filters is

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-10 © National Instruments Corporation

that Chebyshev II filters distribute the error in the stopband instead of
the passband.

Elliptic (or Cauer) Filters
Elliptic filters minimize the peak error by distributing it over the
passband and the stopband. Equi-ripples in the passband and the
stopband characterize the magnitude response of elliptic filters.
Compared with the same order Butterworth or Chebyshev filters, the
elliptic design provides the sharpest transition between the passband
and the stopband. For this reason, elliptic filters are used widely.

The following graph plots the response of a lowpass elliptic filter.
Notice that the ripple in both the passband and stopband is constrained
by the same maximum tolerable error (as specified by ripple amount in
dB). Also, notice the sharp transition edge for even low-order elliptic
filters.

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-11 LabVIEW Function and VI Reference Manual

Bessel Filters
You can use Bessel filters to reduce nonlinear phase distortion inherent
in all IIR filters. In higher order filters and those with a steeper rolloff,
this condition is more pronounced, especially in the transition regions
of the filters. Bessel filters have maximally flat response in both
magnitude and phase. Furthermore, the phase response in the passband
of Bessel filters, which is the region of interest, is nearly linear. Like
Butterworth filters, Bessel filters require high-order filters to minimize
the error and, for this reason, are not widely used. You can also obtain
linear phase response using FIR filter designs.The following graphs
plot the response of a lowpass Bessel filter. Notice that the response is
smooth at all frequencies, as well as monotonically decreasing in both
magnitude and phase. Also, notice that the phase in the passband is
nearly linear.

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-12 © National Instruments Corporation

Finite Impulse Response Filters

Finite impulse response (FIR) filters are digital filters, which have a
finite impulse response. FIR filters are also known as nonrecursive
filters, convolution filters, or moving-average (MA) filters because you
can express the output of an FIR filter as a finite convolution

where x represents the input sequence to be filtered, y represents the
output filtered sequence, and h represents the FIR filter coefficients.

The following list gives the most important characteristics of FIR
filters:

• They can achieve linear phase because of filter coefficient
symmetry in the realization.

• They are always stable.

• You can perform the filtering function using the convolution and,
as such, generally associate a delay with the output sequence

,

where n is the number of FIR filter coefficients.

The following graphs plot a typical magnitude and phase response of
FIR filters versus normalized frequency.

yi hkxi k–

k 0=

n 1–

∑=

delay
n 1–

2
------------=

0.10 0.20 0.30 0.400.00 0.50

0.20

0.40

0.60

0.80

1.00

0.00

1.20 Magnitude (dB)

f (Hz)

Magnitude (dB)

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-13 LabVIEW Function and VI Reference Manual

The discontinuities in the phase response arise from the discontinuities
introduced when you compute the magnitude response using the
absolute value. Notice that the discontinuities in phase are on the order
of pi. The phase, however, is clearly linear. See Appendix D,
References, for material that can give you more information on this
topic.

You design FIR filters by approximating a specified, desired frequency
response of a discrete-time system. The most common techniques
approximate the desired magnitude response while maintaining a
linear-phase response.

Designing FIR Filters by Windowing
The simplest method for designing linear-phase FIR filters is the
window design method. To design a FIR filter by windowing, you start
with an ideal frequency response, calculate its impulse response, and
then truncate the impulse response to produce a finite number of
coefficients. To meet the linear-phase constraint, by maintain symmetry
about the center point of the coefficients. The truncation of the ideal
impulse response results in the effect known as the Gibbs phenomenon
– oscillatory behavior near abrupt transitions (cutoff frequencies) in the
FIR filter frequency response.

You can reduce the effects of the Gibbs phenomenon by smoothing the
truncation of the ideal impulse response using a smoothing window
function. By tapering the FIR coefficients at each end, you can diminish
the height of the side lobes in the frequency response. The disadvantage
to this method, however, is that the main lobe widens, resulting in a
wider transition region at the cutoff frequencies. The selection of a
window function, then, is similar to the choice between Chebyshev and

0.10 0.20 0.30 0.400.00 0.50

-10.0

-8.0

-6.0

-4.0

-2.0

-12.0

0.0 Phase (radians)

f (Hz)

Phase (radians)

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-14 © National Instruments Corporation

Butterworth IIR filters in that it is a trade-off between side lobe levels
near the cutoff frequencies and width of the transition region.

Designing FIR filters by windowing is simple and computationally
inexpensive. It is therefore the fastest way to design FIR filters. It is not
necessarily, however, the best FIR filter design method.

Designing Optimum FIR Filters using the Parks-McClellan Algorithm
The Parks-McClellan algorithm offers an optimum FIR filter design
technique that attempts to design the best filter possible for a given
number of coefficients. Such a design reduces the adverse effects at the
cutoff frequencies. It also offers more control over the approximation
errors in different frequency bands—control that is not possible with
the window method.

Using the Parks-McClellan algorithm to design FIR filters is
computationally expensive. This method, however, produces optimum
FIR filters by applying time-consuming iterative techniques.

Designing Narrowband FIR Filters
When you use conventional techniques to design FIR filters with
especially narrow bandwidths, the resulting filter lengths may be very
long. FIR filters with long filter lengths often require lengthy design
and implementation times, and are more susceptible to numerical
inaccuracy. In some cases, conventional filter design techniques, such
as the Parks-McClellan algorithm, may fail the design altogether.

You can use a very efficient algorithm, called the Interpolated Finite
Impulse Response (IFIR) filter design technique, to design narrowband
FIR filters. Using this technique produces narrowband filters that
require far fewer coefficients (and therefore fewer computations) than
those filters designed by the direct application of the Parks-McClellan
algorithm. LabVIEW also uses this technique to produce wideband,
lowpass (cutoff frequency near Nyquist) and highpass filters (cutoff
frequency near zero). For more information about IFIR filter design, see
Multirate Systems and Filter Banks by P.P. Vaidyanathan, or the paper
on interpolated finite impulse response filters by Neuvo, et al., listed in
Appendix D, References, of this manual.

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-15 LabVIEW Function and VI Reference Manual

Windowed FIR Filters
You use the filter type parameter of the FIR VIs to select the type of
windowed FIR filter you want: lowpass, highpass, bandpass, or
bandstop. The following list gives the two related FIR VIs:

• FIR Windowed Coefficients—Generates the windowed
(or unwindowed) coefficients.

• FIR Windowed Filters—Filters the input using windowed
(or unwindowed) coefficients.

Optimum FIR Filters
You can use the Parks-McClellan algorithm to design optimum,
linear-phase, FIR filter coefficients in the sense that the resulting filter
optimally matches the filter specifications for a given number of
coefficients. The Parks-McClellan VI takes as input an array of band
descriptions, each containing information describing the response you
want for the given band. The VI outputs the FIR coefficients along with
computed ripple, which is a measure of the deviation of the resulting
filter from the ideal filter specifications.

Four VIs use the Parks-McClellan VI to implement filters whose
stopband and passband ripple level are equal: Equiripple LowPass,
Equiripple HighPass, Equiripple BandPass, and Equiripple BandStop.

FIR Narrowband Filters
You can design narrowband FIR filters using the FIR Narrowband
Coefficients VI, and then implement the filtering using the FIR
Narrowband Filter VI. The design and implementation are separate
operations because many narrowband filters require lengthy design
times, while the actual filtering process is very fast and efficient. Keep
this in mind when creating your narrowband filtering diagrams.

The parameters required for narrowband filter specification are filter
type, sampling rate, passband and stopband frequencies, passband
ripple (linear scale), and stopband attenuation (decibels). For bandpass
and bandstop filters, passband and stopband frequencies refer to
bandwidths, and you must specify an additional center frequency
parameter. You can also design wideband lowpass filters (cutoff
frequency near Nyquist) and wideband highpass filters (cutoff
frequency near zero) using the narrowband filter VIs.

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-16 © National Instruments Corporation

The following illustration shows how to use the FIR Narrowband
Coefficients VI and the FIR Narrowband Filter VI to estimate the
response of a narrowband filter to an impulse.

Nonlinear Filters

Smoothing windows, IIR filters, and FIR filters are linear because they
satisfy the superposition and proportionality principles

L {ax(t) + by(t)} = aL {x(t)} + bL{y(t)},

where a and b are constants, x(t) and y(t) are signals, L{•} is a linear
filtering operation, and their inputs and outputs are related via the
convolution operation.

A nonlinear filter does not meet the preceding conditions and you
cannot obtain its output signals via the convolution operation, because
a set of coefficients cannot characterize the impulse response of the
filter. Nonlinear filters provide specific filtering characteristics that are
difficult to obtain using linear techniques. The median filter is a
nonlinear filter that combines lowpass filter characteristics (to remove
high-frequency noise) and high-frequency characteristics (to detect
edges).

Filter VI Descriptions

The following Filter VIs are available.

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-17 LabVIEW Function and VI Reference Manual

Bessel Coefficients
Generates the set of filter coefficients to implement an IIR filter as specified by the
Bessel filter model. You can then pass these coefficients to the IIR Filter VI.

The Bessel Coefficients VI is a subVI of the Bessel Filter VI.

Bessel Filter
Generates a digital, Bessel filter using the filter type, sampling frequency, high cutoff
frequency, low cutoff frequency, and order by calling the Bessel Coefficients VI. The VI
then calls the IIR filter to filter the X sequence using this model to obtain a Bessel
Filtered X sequence.

Butterworth Coefficients
Generates the set of filter coefficients to implement an IIR filter as specified by the
Butterworth filter model. You can pass these filter coefficients (IIR Filter Cluster) to the
IIR Cascade Filter VI to filter a sequence of data.

This VI is a subVI of the Butterworth Filter VI.

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-18 © National Instruments Corporation

Butterworth Filter
Generates a digital Butterworth filter using the sampling frequency, low cutoff
frequency, high cutoff frequency, order, and filter type by calling the Butterworth
Coefficients VI. The Butterworth Filter VI then calls the IIR Filter VI to filter the X
sequence using this model to get a Butterworth Filtered X sequence.

Cascade—>Direct Coefficients
Converts IIR filter coefficients from the cascade form to the direct form.

As an example, you can convert a cascade filter, composed of two second-order stages,
to a direct form filter as follows:

Reverse Coefficients:

{a11,a21,a12,a22} ->{1.0,a1,a2,a3,a4}

Forward Coefficients:

{b01,b11,b21,b02,b12,b22} ->{b0,b1,b2,b3,b4}

See the IIR Cascade Filter VI for information about cascade form filtering, the IIR Filter
VI for information on direct form filtering, and the About Digital Filtering Functions
section of this chapter for a discussion of both filter forms.

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-19 LabVIEW Function and VI Reference Manual

Chebyshev Coefficients
Generates the set of filter coefficients to implement an IIR filter as specified by the
Chebyshev filter model. You can pass these coefficients to the IIR Filter VI to filter a
sequence of data.

The Chebyshev Coefficients VI is a subVI of the Chebyshev Filter VI.

Chebyshev Filter
Generates a digital, Chebyshev filter using the sampling frequency, lower cutoff
frequency, upper cutoff frequency, ripple, order, and filter type by calling the Chebyshev
Coefficients VI. The Chebyshev Filter VI filters the X sequence using this model to
obtain a Chebyshev Filtered X sequence by calling the IIR Filter VI.

Convolution
For information on Convolution, see Chapter 40, Analysis Digital Signal Processing VIs,
in this manual.

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-20 © National Instruments Corporation

Elliptic Coefficients
Generates the set of filter coefficients to implement a digital elliptic IIR filter. You can
pass these coefficients to the IIR Filter VI.

The Elliptic Coefficients VI is a subVI of the Elliptic Filter VI.

Elliptic Filter
Generates a digital, elliptic filter using the sampling frequency, lower cutoff
frequency, upper cutoff frequency, filter type, passband ripple, stopband
attenuation, and order by calling the Elliptic Coefficients VI. The Elliptic Filter VI then
calls the IIR Filter VI to filter the X sequence using this model to obtain an elliptic
Filtered X sequence.

Equiripple BandPass
Generates a bandpass FIR filter with equi-ripple characteristics using the
Parks-McClellan algorithm and the higher pass frequency, lower pass frequency, # of
taps, lower stop frequency, higher stop frequency, and sampling frequency. The VI then

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-21 LabVIEW Function and VI Reference Manual

filters the input sequence X to obtain the bandpass, filtered, linear-phase sequence
Filtered Data.

The first stopband of the filter region goes from zero (DC) to the lower stop frequency.
The passband region goes from the lower pass frequency to the higher pass frequency,
and the second stopband region goes from the higher stop frequency to the Nyquist
frequency.

Equiripple BandStop
Generates a bandstop FIR digital filter with equi-ripple characteristics using the
Parks-McClellan algorithm and higher pass frequency, lower pass frequency, # of taps,
lower stop frequency, higher stop frequency, and sampling frequency. The VI then
filters the input sequence X to obtain the bandstop, filtered, linear-phase sequence
Filtered Data.

The first passband region of the filter goes from zero (DC) to the lower pass frequency.
The stopband region goes from the lower stop frequency to the higher stop frequency,
and the second passband region goes from the higher pass frequency to the Nyquist
frequency.

Equiripple HighPass
Generates a highpass FIR filter with equi-ripple characteristics using the
Parks-McClellan algorithm and the # of taps, stop frequency, high frequency, and

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-22 © National Instruments Corporation

sampling frequency. The VI then filters the input sequence X to obtain the highpass,
filtered, linear-phase sequence Filtered Data.

The stopband of the filter goes from zero (DC) to the stop frequency. The transition band
goes from the stop frequency to the high frequency, and the passband goes from the high
frequency to the Nyquist frequency.

Equiripple LowPass
Generates a lowpass FIR filter with equiripple characteristics using the Parks-McClellan
algorithm and the # of taps, pass frequency, stop frequency, and sampling frequency.
The VI then filters the input sequence X to obtain the lowpass filtered, linear-phase
sequence Filtered Data.

The passband of the filter goes from zero (DC) to pass freq. The transition band goes
from pass freq to stop freq, and the stopband goes from stop freq to the Nyquist
frequency.

FIR Narrowband Coefficients
Generates a set of filter coefficients to implement a digital interpolated FIR filter. You
can pass these coefficients to the FIR Narrowband Filter VI to filter the data.

The following figures show how the narrowband filter parameters define the lowpass,
highpass, bandpass, and bandstop filters. The filter response on the y axis is shown on a

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-23 LabVIEW Function and VI Reference Manual

linear scale. For this reason, the stopband attenuation Ar was mapped to a linear
attenuation using the following equations:

.

Figure 42-1. Lowpass Filter

Figure 42-2. Highpass Filter

Ar 20 δA〈 〉log–=

δA 10
Ar–
20

---------=

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-24 © National Instruments Corporation

Figure 42-3. Bandpass Filter

Figure 42-4. Bandstop Filter

FIR Narrowband Filter
Filters the input sequence X using the IFIR filter specified by IFIR Coefficients as
designed by the FIR Narrowband Filter Coefficients VI.

Note: The overall filter is a linear-phase FIR filter. The delay for this filter is

NG 1–() M NI+•[]

2

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-25 LabVIEW Function and VI Reference Manual

where NG is the number of elements in the array Model Filter, NI is the

number of elements in the array Image Suppressor, and M is the value of

interpolation in the cluster IFIR Coefficients.

FIR Windowed Coefficients
Generates the set of filter coefficients you need to implement a FIR windowed filter.

FIR Windowed Filter
Filters the input data sequence, X, using the set of windowed FIR filter coefficients
specified by the sampling frequency, cutoff frequency, and number of taps.

IIR Cascade Filter
Filters the input sequence X using the cascade form of the IIR filter specified by the IIR
Filter Cluster.

This IIR implementation is called cascade because it is a cascade of second- or
fourth-order filter stages. The output of one filter stage is the input to the next filter stage
for all Ns filter stages.

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-26 © National Instruments Corporation

Second-Order Filtering

Each second-order stage (stage number k = 1,2,...Ns) has two reverse coefficients
(a1k,a2k), and three forward coefficients (b0k,b1k,b2k). The total number of reverse
coefficients is 2Ns and the total number of forward coefficients is 3Ns. The Reverse
Coefficients and the Forward Coefficients array contain the coefficients for one stage
followed by the coefficients for the next stage, and so on. For example, an IIR filter
composed of two second-order stages must have a total of four reverse coefficients and
six forward coefficients, as follows:

Reverse Coefficients = {a11, a21,a12, a22}

Forward Coefficients = {b01, b11, b21, b02, b12, b22}

Fourth-Order Filtering

For fourth order cascade stages, the filtering is implemented in the same manner as in the
second-order stages, but each stage must have four reverse coefficients (a1k...a4k) and
five forward coefficients (b0k...b4k).

IIR Cascade Filter with Integrated Circuit
Filters the input sequence, X, using the cascade form of the IIR filter specified by the IIR
Filter Cluster.

IIR Filter
Filters the input sequence X using the direct form IIR filter specified by Reverse
Coefficients and Forward Coefficients.

If y represents the output sequence Filtered X, the VI obtains the elements of y using

,yi

1
a0
----- bjxi j–

j 0=

n 1–

∑ akyi k–

k 1=

m 1–

∑–

 
 
 
 

=

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-27 LabVIEW Function and VI Reference Manual

where n is the number of Forward Coefficients (represented by bj), and m is the number
of Reverse Coefficients (represented by ak).

IIR Filter with Integrated Circuit
Filters the input sequence X using the direct form IIR filter specified by Reverse
Coefficients and Forward Coefficients.

If y represents the output sequence Filtered X, the VI obtains the elements of y using

,

where n is the number of Forward Coefficients (represented by bj), and m is the number
of Reverse Coefficients (represented by ak).

Inv Chebyshev Coefficients
Generates the set of filter coefficients to implement an IIR filter as specified by the
Chebyshev II Filter model. You can pass these coefficients to the IIR Filter VI to filter a
sequence of data.

The Inv Chebyshev Coefficients VI is a subVI of the Inverse Chebyshev Filter VI.

Inverse Chebyshev Filter
Generates a digital, Chebyshev II filter using the specified sampling frequency, cutoff
frequencies, attenuation in decibels, filter type, and filter order by calling the Inv
Chebyshev Coefficients VI. The Inverse Chebyshev Filter VI filters the input sequence

yi

1
a0
----- bjxi j–

j 0=

n 1–

∑ akyi k–

k 1=

m 1–

∑–

 
 
 
 

=

Chapter 42 Analysis Filter VIs

LabVIEW Function and VI Reference Manual 42-28 © National Instruments Corporation

X using this model to obtain a Chebyshev II Filtered X sequence by calling the IIR
Filter VI.

Median Filter
Applies a median filter of rank to the input sequence X.

If Y represents the output sequence Filtered Data, and if Ji represents a subset of the
input sequence X centered about the ith element of X

Ji = {xi-r, xi-r+1, …, xi-1, xi, xi+1, …, xi+r-1, xi+r},

and if the indexed elements outside the range of X equal zero, the VI obtains the elements
of y using

yi = Median(Ji) for i = 0, 1, 2,…, n-1,

where n is the number of elements in the input sequence X, and r is the filter rank.

Parks-McClellan
Generates a set of linear-phase FIR multiband digital filter coefficients using the number
of taps, sampling frequency, Band Parameters, and filter type.

Note: This VI finds the coefficients using iterative techniques based upon an

error criterion. Although you specify valid filter parameters, the algorithm

may fail to converge.

Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-29 LabVIEW Function and VI Reference Manual

This VI generates only the filter coefficients. It does not perform the filtering function.
To filter a sequence X using the set of FIR filter coefficients h, use the Convolution VI
with X and h as the input sequences.

The equiripple filters use a similar technique to filter the data.

© National Instruments Corporation 43-1 LabVIEW Function and VI Reference Manual

Chapter

43Analysis Window VIs

This chapter describes the VIs that implement smoothing windows.

To access the Window palette, select Function»Analysis»Windows.
The following illustration shows the options that are available on the
Windows palette.

For examples of how to use the window VIs, see the examples located
in examples\analysis\windxmpl.llb.

Introduction to Smoothing Windows

In practical, signal-sampling applications, you can obtain only a finite
record of the signal, even when you carefully observe the sampling
theorem and sampling conditions. Unfortunately for the discrete-time
system, the finite sampling record results in a truncated waveform that
has different spectral characteristics from the original continuous-time
signal. These discontinuities produce leakage of spectral information,
resulting in a discrete-time spectrum that is a smeared version of the
original continuous-time spectrum.

Chapter 43 Analysis Window VIs

LabVIEW Function and VI Reference Manual 43-2 © National Instruments Corporation

A simple way to improve the spectral characteristics of a sampled signal
is to apply smoothing windows. When performing Fourier or spectral
analysis on finite-length data, you can use windows to minimize the
transition edges of your truncated waveforms, thus reducing spectral
leakage. When used in this manner, smoothing windows act like
predefined, narrowband, lowpass filters.

Windows for Spectral Analysis versus Windows
for Coefficient Design

The window VIs implemented in the Analysis library in LabVIEW are
designed for spectral analysis applications. In these applications, the
input signal is windowed by passing it through one of the window VIs.
The windowed signal is then passed to a DFT-based VI for
frequency-domain display and analysis.

The window functions designed for spectral analysis must be
DFT-even, a term defined by Fredric J. Harris in his paper On the Use

of Windows for Harmonic Analysis with the Discrete Fourier

Transform (Proceedings of the IEEE, Volume 66, No.1, January 1978).
A window function is DFT-even if its dot product (inner product) with
integral cycles of sine sequences is identically zero. Another way to
think of a DFT-even sequence is that its DFT has no imaginary
component.

The following figures illustrate the Hanning window and one cycle of a
sine pattern for a sample size of 8. The figures below show that the
DFT-even Hanning window is not symmetric about its midpoint and its

Chapter 43 Analysis Window VIs

© National Instruments Corporation 43-3 LabVIEW Function and VI Reference Manual

last point is not equal to its first point, much like one complete cycle of
a sine pattern.

Finally, the DFT considers input sequences to be periodic—that the
signal being analyzed is actually a concatenation of the input signal.
The following illustration shows three such cycles of the previous

Chapter 43 Analysis Window VIs

LabVIEW Function and VI Reference Manual 43-4 © National Instruments Corporation

sequences, demonstrating the smooth periodic extension of the
DFT-even window and the single-cycle sine pattern.

Another type of window application is that of FIR filter design (see the
descriptions of FIR Windowed Coefficients and FIR Windowed Filter).
This application requires windows that are symmetric about their
midpoint.

The following equations of the Hanning window function illustrate the
difference between the DFT-even window function (spectral analysis)
and the symmetrical window function (coefficient design).

Hanning window function for spectral analysis:

 for i=0,1, 2, ..., N–1

Hanning window function for symmetrical coefficient design:

 for i=0, 1, 2, ..., N–1

The two equations above show that you can implement the symmetrical
window functions by slightly modifying the use of the DFT-even
window functions. The following illustration shows a block diagram

w i[] 0.5 1
2πi

N 
 


cos–

=

w i[] 0.5 1
2πi

N 1– 
 


cos–

=

Chapter 43 Analysis Window VIs

© National Instruments Corporation 43-5 LabVIEW Function and VI Reference Manual

that uses the Hanning Window VI to implement symmetrical
windowing of filter coefficients.

See Appendix D, References, for more information on smoothing
windows.

Window VI Descriptions

The following Window VIs are available.

Blackman Window
Applies a Blackman window to the input sequence X.

If y represents the output sequence Blackman{X}, the VI obtains the elements of y from

yi = xi [0.42 – 0.50 cos(w) + 0.08 cos(2w)] for i = 0, 1, 2, …, n–1,

,

where n is the number of elements in X.

Blackman-Harris Window
Applies a three-term, Blackman-Harris window to the input sequence X.

w
2πi

n
--------=

Chapter 43 Analysis Window VIs

LabVIEW Function and VI Reference Manual 43-6 © National Instruments Corporation

If Y represents the output sequence Blackman-Harris{X}, the VI obtains the elements of
Y from

yi = xi [0.42323 – 0.49755 cos(w) + 0.07922 cos(2w)]

for i = 0, 1, 2, …, n–1

,

where n is the number of elements in X.

Cosine Tapered Window
Applies a cosine tapered window to the input sequence X.

If Y represents the output sequence Cosine Tapered{X}, the VI obtains the elements of
Y from

where ,

, and

where n is the number of elements in the input sequence X.

Using this window is the equivalent of applying the Hanning window to the first and last
10% of the input sequence X.

Exact Blackman Window
Applies an Exact Blackman window to the input sequence X.

w
2πi

n
--------=

yi

0.5xi 1 wcos–()

xi

 for i = 0, 1, 2,..., m-1, and for i = n-m, n-m+1,..., n-1

elsewhere
=

w
2πi

n
--------=

m round
n

10
------ 

 =

Chapter 43 Analysis Window VIs

© National Instruments Corporation 43-7 LabVIEW Function and VI Reference Manual

If Y represents the output sequence Exact Blackman{X}, the VI obtains the elements of
Y from

yi = xi [a0 – a1 cos(w) + a2 cos(2w)]

for i = 0, 1, 2, …, n–1

,

where n is the number of elements in X, a0 = 7938/18608, a1 = 9240/18608, and
a2 = 1430/18608.

Exponential Window
Applies an exponential window to the input sequence X.

If y represents the output sequence Exponential{X}, the VI obtains the elements of y
from

yi = xi exp(ai) for i = 0, 1, 2, …, n–1,

,

where f is the final value, and n is the number of samples in X.

You can use this VI to analyze transients.

Flat Top Window
Applies a flat top window to the input sequence X.

If Y represents the output sequence Flattop{X}, the VI obtains the elements of Y from

yi = xi [0.2810639 – 0.5208972 cos(w) + 0.1980399 cos(2w)]

w
2πi

n
--------=

a
ln f()
n 1–
------------=

Chapter 43 Analysis Window VIs

LabVIEW Function and VI Reference Manual 43-8 © National Instruments Corporation

for i = 0, 1, 2, …, n–1

,

where n is the number of elements in X.

Force Window
Applies a force window to the input sequence X.

If Y represents the output sequence Force{X}, the VI obtains the elements of Y from

d = (0.01)(n)(duty cycle), where n is the number of elements in X.

You also can use this VI to analyze transients.

General Cosine Window
Applies a general, cosine window to the input sequence X.

.

If a represents the Cosine Coefficients input sequence and y represents the output
sequence GenCos{X}, the VI obtains the elements of y from

 for i = 0, 1, 2, …, n–1

w
2πi

n
--------=

yi

xi if 0 i d≤ ≤()
for i = 0, 1, 2, ..., n-1

0 elsewhere







=

yi xi 1–()k
ak kw()cos

k 0=

m 1–

∑=

Chapter 43 Analysis Window VIs

© National Instruments Corporation 43-9 LabVIEW Function and VI Reference Manual

,

where n is the number of elements in X, and m is the number of Cosine Coefficients.

Hamming Window
Applies a Hamming window to the input sequence X.

If y represents the output sequence Hamming{X}, the VI obtains the elements of y from

yi = xi [0.54 – 0.46 cos(w)] for i = 0, 1, 2, …, n–1,

,

where n is the number of elements in the input sequence X.

Hanning Window
Applies a Hanning window to the input sequence X.

If Y represents the output sequence Hanning {X}, the VI obtains the elements of Y using

yi = 0.5 xi [1 – cos(w)] for i = 0, 1, 2, …, n–1,

,

where n is the number of elements in X.

w
2πi

n
--------=

w
2πi

n
--------=

w
2πi

n
--------=

Chapter 43 Analysis Window VIs

LabVIEW Function and VI Reference Manual 43-10 © National Instruments Corporation

Kaiser-Bessel Window
Applies a Kaiser-Bessel window to the input sequence X(t).

If y represents the output sequence, Kaiser-Bessel{X(t)}, the VI obtains the elements of
y from

 for i = 0, 1, 2, … n – 1

,

,

where n is the number of elements in X(t), and Io(•) is the zero-order modified Bessel
function.

Triangle Window
Applies a triangular window to the input sequence X.

Note: The triangle smoothing window is also known as the Bartlett smoothing

window.

If y represents the output sequence Triangle{X}, the VI obtains the elements of y from

yi = xi tri(w) for i = 0, 1, 2, …, n–1,

,

where tri(w) = 1 – |w|, and n is the number of elements in X.

yi xi

Io β 1.0 a
2

–()
Io β()------------------------------------=

a
i k–

k
----------=

k
n 1–

2
------------=

w
2i n–

n
--------------=

© National Instruments Corporation 44-1 LabVIEW Function and VI Reference Manual

Chapter

44Analysis Curve-Fitting VIs

This chapter describes the VIs that perform curve fitting analysis or
regression.

To access the Curve-Fitting palette, choose
Functions»Analysis»Curve Fitting, as shown in the following
illustration.

For examples of how to use the regression VIs, see the examples located
in examples\analysis\regressn.llb.

Introduction to Curve Fitting

Curve fitting analysis is a technique for extracting a set of curve
parameters or coefficients from the data set to obtain a functional
description of the data set. The algorithm that fits a curve to a particular
data set is known as the Least Squares Method and is discussed in most
introductory textbooks in probability and statistics. The error is
defined as

e(a) = [f(x,a) – y(x)]2, (44-1)

Chapter 44 Analysis Curve-Fitting VIs

LabVIEW Function and VI Reference Manual 44-2 © National Instruments Corporation

where e(a) is the error, y(x) is the observed data set, f(x,a) is the
functional description of the data set, and a is the set of curve
coefficients which best describes the curve.

For example, let a = {a0, a1}. Then the functional description of a line is

f(x,a) = a0 + a1 x.

The least squares algorithm finds a by solving the system

(44-2)

To solve this system, you set up and solve the Jacobian system
generated by expanding equation (44-2). After you solve the system for
a, you can obtain an estimate of the observed data set for any value of
x using the functional description f(x, a).

In LabVIEW, the curve fitting VIs automatically set up and solve the
Jacobian system and return the set of coefficients that best describes
your data set. You can concentrate on the functional description of your
data and not worry about solving the system in equation (44-2).

Two input sequences, Y Values and X Values, represent the data set
y(x). A sample or point in the data set is

(xi, yi),

where xi is the ith element of the sequence X Values, and yi is the ith
element of the sequence Y Values.

In general, for each predefined type of curve fit, there are two types of
VIs, unless otherwise specified. One type returns only the coefficients,
so that you can further manipulate the data. The other type returns the
coefficients, the corresponding expected or fitted curve, and the mean
squared error (MSE). Because it is a discrete system, the VI calculates
the MSE, which is a relative measure of the residuals between the
expected curve values and the actual observed values, using the formula

(44-3)

∂
∂a
------e a() 0=

MSE
1
n
--- fi yi–()2

i 0=

n 1–

∑=

Chapter 44 Analysis Curve-Fitting VIs

© National Instruments Corporation 44-3 LabVIEW Function and VI Reference Manual

where f is the sequence representing the fitted values, y is the sequence
representing the observed values, and n is the number of sample points
observed.

Curve Fitting VI Descriptions

The following Curve Fitting VIs are available.

Exponential Fit
Finds the exponential curve values and the set of exponential coefficients amplitude and
damping, which describe the exponential curve that best represents the input data set.

The general form of the exponential fit is given by

F = aeτX,

where F is the output sequence Best Exponential Fit, X is the input sequence X Values,
a is the amplitude, and τ is the damping constant.

The VI obtains mse using the formula

,

where f is the output sequence Best Exponential Fit, y is the input sequence Y Values,
and n is the number of data points.

Exponential Fit Coefficients
Finds the set of exponential coefficients amplitude and damping, which describe the
exponential curve that best represents the input data set.

mse
1
n
--- fi yi–()2

i 0=

n 1–

∑=

Chapter 44 Analysis Curve-Fitting VIs

LabVIEW Function and VI Reference Manual 44-4 © National Instruments Corporation

This VI is a subVI of the Exponential Fit VI.

The general form of the exponential fit is given by

F = aeτX,

where F is the sequence representing the best fitted values, X represents the input
sequence X Values, a is the amplitude, and τ is the damping constant.

General LS Linear Fit
Finds the Best Fit k-dimensional plane and the set of linear coefficients using the least
chi-square method for observation data sets

 where i = 0, 1,…, n – 1. n is the number of your observation data
sets.

You can use this VI to solve multiple linear regression problems. You can also use it to
solve for the linear coefficients in a multiple-function equation. Before beginning the
formal description of this VI, consider both of the following, simple examples. The first
example uses the General LS Linear Fit VI to perform multiple regression analysis based
entirely on tabulated observation data. The second solves for the linear coefficients in a
multiple-function equation.

Example 1: Predicting Cost

Suppose you want to estimate the total cost (in dollars) of a production of baked scones;
using the quantity produced, X1, and the price of one pound of flour, X2. To keep things
simple, the following five data points form this sample data table.

Cost (dollars)
Y

Quantity
X1

Flour Price
X2

$150 295 3.00

$75 100 3.20

$120 200 3.10

xi0 xi1 …xik 1– yi,, ,{ }

Chapter 44 Analysis Curve-Fitting VIs

© National Instruments Corporation 44-5 LabVIEW Function and VI Reference Manual

You want to estimate the coefficients to the equation:

Y = b0 + b1X1 + b2X2.

The only parameters that you need to build are H (observation matrix) and Y Values.
Each column of H is the observed data for each independent variable: the first column is
one because the coefficient b0 is not associated with any independent variable.
H should be filled in as:

In LabVIEW, the observed data would normally appear in three arrays (Y, X1, and X2).
The following block diagram demonstrates how to build H using the General LS Linear
Fit VI.

$300 700 2.80

$50 60 2.50

Cost (dollars)
Y

Quantity
X1

Flour Price
X2

H

1 295 3.00

1 100 3.20

1 200 3.10

1 700 2.80

1 60 2.50

=

Chapter 44 Analysis Curve-Fitting VIs

LabVIEW Function and VI Reference Manual 44-6 © National Instruments Corporation

After running this VI, the following coefficients are obtained.

The resulting equation for the total cost of scone production is therefore:

Y = –20.34 + 0.38X1 + 19.05X2.

Example 2: Linear Combinations

Suppose that you have collected samples from a transducer (Y Values) and you want to
solve for the coefficients of the model:

To build H, you set each column to the independent functions evaluated at each x value.
Assuming there are 100 x values, H is:

Given that you have the independent X Values and observed Y Values, the following
block diagram demonstrates how to build H and use the General LS Linear Fit VI.

y bo b1 ωx()sin b2 ωx()cos b3x
2

+ + +=

H

1 ωx0()sin ωx0()cos x0
2

1 ωx1()sin ωx1()cos x1
2

1 ωx2()sin ωx2()cos x2
2

… … … …

1 ωx99()sin ωx99()cos x99
2

=

Chapter 44 Analysis Curve-Fitting VIs

© National Instruments Corporation 44-7 LabVIEW Function and VI Reference Manual

The General LS Linear Fit Problem can be described as follows.

Given a set of observation data, find a set of coefficients that fit the linear “model.”

 i=0, 1,...,n–1, (44-4)

where B is the set of Coefficients, n is the number of elements in Y Values and the
number of rows of H, and k is the number of Coefficients.

 is your observation data, which is contained in H.

Equation (44-3) can also be written as Y = HB.

This is a multiple linear regression model, which uses several variables ,
to predict one variable yi. In contrast, the Linear Fit, Exponential Fit, and Polynomial Fit
VIs are all based on a single predictor variable, which uses one variable to predict another
variable.

In most cases, we have more observation data than coefficients. The equations in (44-4)
may not have the solution. The fit problem becomes to find the coefficient B that
minimizes the difference between the observed data, yi and the predicted value:

.

This VI uses the least chi-square plane method to obtain the coefficients in (44-4), that
is, finding the solution, B, which minimizes the quantity:

yi boxi0 … bk 1– xik 1–+ +=

bjxij

j 0=

k 1–

∑=

xij

H

x00 x01… x0k 1–

x10 x11… x1k 1–

.

.

.

.

xn 10– xn 12– … xn 1k– 1–

=

xi0 xi1 … xik 1–, , ,

zi bjxij

j 0=

k 1–

∑=

Chapter 44 Analysis Curve-Fitting VIs

LabVIEW Function and VI Reference Manual 44-8 © National Instruments Corporation

 = |H0B–Y0|2 (44-5)

where , , i=0, 1,..., n–1; j=0, 1,..., k–1.

In this equation, is the Standard Deviation. If the measurement errors are independent
and normally distributed with constant standard deviation , the preceding
equation is also the least square estimation.

There are different ways to minimize . One way to minimize is to set the partial
derivatives of to zero with respect to b0, b1,..., bk–1.

The preceding equations can be derived to:

(44-6)

Where is the transpose of H0.

The equations in (44-6) are also called normal equations of the least-square problems.
You can solve them using LU or Cholesky factorization algorithms, but the solution from
the normal equations is susceptible to roundoff error.

An alternative, and preferred way to minimize is to find the least-square solution of
equations

H0B=Y0.

χ2
yi z–

i

σi

 
 
 

2

i 0=

n 1–

∑
yi bjxij

j 0=

∑–

σi

 
 
 
 
 
 
 
 

i 0=

n 1–

∑= =

hoij

xij

σi

-----= yoi

yi

σi

-----=

σi

σi σ=

χ2 χ2

χ2

∂χ2

∂b0
-------- 0=

∂χ2

∂b1
--------- 0=

.

.

.

.

∂χ2

∂bk 1–
-------------- 0=

















H0
TH0B H0

TY=

H0
T

χ2

Chapter 44 Analysis Curve-Fitting VIs

© National Instruments Corporation 44-9 LabVIEW Function and VI Reference Manual

You can use QR or SVD factorization to find the solution, B. For QR factorization, you
can choose Householder, Givens, and Givens2 (also called fast Givens).

Different algorithms can give you different precision, and in some cases, if one algorithm
cannot solve the equation, perhaps another algorithm can. You can try different
algorithms to find the best one based on your observation data.

The Covariance matrix C is computed as

.

The Best Fit Z is given by

The mse is obtained using the following formula:

The polynomial fit that has a single predictor variable can be thought of as a special case
of multiple regression. If the observation data sets are where i = 0, 1, …, n–1,
the model for polynomial fit is

(44-7)

i = 0, 1, 2,..., n – 1.

Comparing equations (44-4) and (44-7) shows that . In other words,

,

In this case, you can build H as follows:

C H0
TH0() 1–

=

zi bjxij

j 0=

k 1–

∑=

mse
1
n

yi z–
i

σi

------------- 
 

2

i 0=

n 1–

∑=

xi yi,{ }

yi bjxi

j

j 0=

k 1–

∑= b0 b1xi b2xi
2 … bk 1– xi

k 1–+ + + +=

xij xj
i=

xi0 xi

0
=

1=

xi1 xi= xi2, x2
i … xik 1–, xk 1–

i= =

Chapter 44 Analysis Curve-Fitting VIs

LabVIEW Function and VI Reference Manual 44-10 © National Instruments Corporation

Instead of using , you can also choose another function formula to fit the data
sets . In general, you can select . Here, is the function
model that you choose to fit your observation data. In polynomial fit, .

In general, you can build H as follows:

Your fit model is:

.

General Polynomial Fit
Finds the polynomial curve values and the set of Polynomial Fit Coefficients, which
describe the polynomial curve that best represents the input data set.

The general form of the polynomial fit is given by

H

1 x0 x2
0 … xk 1–

0

1 x1 x2
1 … xk 1–

1

.

.

.

.

1 xn 1– x2
n 1– … xk 1–

n 1– 
 
 
 
 
 
 
 
 
 
 
 
 

=

xij xi
j=

xi,yi{ } xij fj xi()= fj xi()
fj xi() xj

i
=

H

f0 x0() f1 x0() f2 x0() … fk 1– x0()

f0 x1() f1 x1() f2 x1() … fk 1– x1()

.

.

.

.

f0 xn 1–() f1 xn 1–() f2 xn 1–() … fk 1– xn 1–()
 
 
 
 
 
 
 
 
 
 
 
 
 

=

yi b0f
0

x() b1f
1

x() … bk 1– f
k 1–

x()+ + +=

Chapter 44 Analysis Curve-Fitting VIs

© National Instruments Corporation 44-11 LabVIEW Function and VI Reference Manual

where F represents the output sequence Best Polynomial Fit, X represents the input
sequence X Values, A represents the Polynomial Fit Coefficients, and m is the
polynomial order.

The VI obtains mse using the formula

where y represents the input sequence Y Values, and n is the number of data points.

General Polynomial Fit is a special case of the General LS Linear Fit. The General
Polynomial Fit VI uses the General LS Linear Fit VI as a subVI. This VI builds the H
matrix internally using input X Values for the General LS Linear Fit VI.

The formula used to build H is as follows:

 For example,

For more information about the General LS Linear Fit VI and the difference among
different algorithms, please refer to the description of General LS Linear Fit VI.

fi ajxi

j

j 0=

m

∑=

mse
1
n
--- fi yi–()2,

j 0=

n 1–

∑=

hij fj xi() xi

j
= =

i 0 1 . . . n 1–, , ,=

j 0 1 . . . m, , ,=

H

1 x0 x0
m

1 x1 x1
m

.

.

.

1 xn 1– xn 1–
m

=

Chapter 44 Analysis Curve-Fitting VIs

LabVIEW Function and VI Reference Manual 44-12 © National Instruments Corporation

Linear Fit
Finds the line values and the set of linear coefficients slope and intercept, which describe
the line that best represents the input data set.

The general form of the linear fit is given by

F = mX + b,

where F represents the output sequence Best Linear Fit, X represents the input sequence
X Values, m is the slope, and b is the intercept.

The VI obtains mse using the formula

,

where F represents the output sequence Best Linear Fit, y represents the input sequence
Y Values, and n is the number of data points.

Linear Fit Coefficients
Finds the set of linear coefficients slope and intercept, which describe the line that best
represents the input data set.

This VI is a subVI of the Linear Fit VI.

The general form of the linear fit is given by

F = mX + b,

where F is the sequence representing the best fitted values. X represents the input
sequence X Values, m is the slope, and b is the intercept.

mse
1
n
--- fi yi–()2

i 0=

n 1–

∑=

Chapter 44 Analysis Curve-Fitting VIs

© National Instruments Corporation 44-13 LabVIEW Function and VI Reference Manual

Nonlinear Lev-Mar Fit
Uses the Levenberg-Marquardt method to determine a nonlinear set of coefficients that
minimize a chi-square quantity.

This VI determines the set of coefficients that minimize the chi-square quantity:

(44-8)

In this equation, (xi, yi) are the input data points, and f(xi;a1...aM) = f(X, A) is the
nonlinear function where a1...aM are coefficients. If the measurement errors are
independent and normally distributed with constant, standard deviation , this is
also the least-square estimation.

You must specify the nonlinear function f = f(X, A) in the Formula Node on the block
diagram of the Target Fnc & Deriv NonLin VI, which is a subVI of the Nonlinear
Lev-Mar Fit VI. You can access the Target Fnc & Deriv NonLin VI by selecting it from
the menu that appears when you select Project»This VI's SubVIs.

This VI provides two ways to calculate the Jacobian (partial derivatives with respect to
the coefficients) needed in the algorithm. These two methods follow:

• Numerical calculation – Uses a numerical approximation to compute the Jacobian.

• Formula calculation – Uses a formula to compute the Jacobian. You need to specify
the Jacobian function in the Formula Node on the block diagram of the Target
Fnc & Deriv NonLin VI, as well as the nonlinear function f = f(X, A). This is a more
efficient computation than the numerical calculation, because it does not require a
numerical approximation to the Jacobian.

The input arrays X and Y define the set of input data points. The VI assumes that you
have prior knowledge of the nonlinear relationship between the x and y coordinates. That
is, f = f(X, A), where the set of coefficients, A, is determined by the Levenberg-Marquardt
algorithm.

Using this function successfully sometimes depends on how close your initial guess
coefficients are to the solution. Therefore, it is always worth taking effort and time to

χ2 yi f xi a1…aM;()–

σi

-- 
 

2

i 0=

N 1–

∑=

σi σ=

∂f ∂A⁄

Chapter 44 Analysis Curve-Fitting VIs

LabVIEW Function and VI Reference Manual 44-14 © National Instruments Corporation

obtain good initial guess coefficients to the solution from any available resources before
using the function.

Polynomial Interpolation
Interpolates or extrapolates the function f at x, given a set of n points (x

i
, y

i
), where f(x

i
) =

y
i
, f is any function, and given a number, x. The VI calculates output interpolation value

Pn–1(x), where Pn–1 is the unique polynomial of degree n–1 that passes through the n
points (x

i
, y

i
).

Rational Interpolation
Interpolates or extrapolates f at x using a rational function.

The rational function

passes through all the points formed by Y Array and X Array. P and Q are polynomials,
and the rational function is unique, given a set of n points (x

i
, y

i
),

where f(x
i
) = y

i
, f is any function, and given a number x in the range of the x

i
 values. This

VI calculates the output interpolation value y using . If the number of points

is odd, the degrees of freedom of P and Q are . If the number of points is even, the

degrees of freedom of P are , and the degrees of freedom of Q are , where n is the

total number of points formed by Y Array and X Array.

P xi()
Q xi()-------------

p0 p1xi … pmxm
i

+ ++

q0 q1xi … qv+ + xv+
---=

y
P x()
Q x()------------=

n 1–
2

n

2
--- 1–

n

2

Chapter 44 Analysis Curve-Fitting VIs

© National Instruments Corporation 44-15 LabVIEW Function and VI Reference Manual

Spline Interpolant
Returns an array Interpolant of length n, which contains the second derivatives of the
spline interpolating function g(x) at the tabulated points x

i
, where i = 0, 1,..., n–1. Input

arrays X Array and Y Array are of length n and contain a tabulated function, y
i
 = f(x

i
),

with x0<x1<...xn–1. initial boundary and final boundary are the first derivative of the
interpolating function g(x) at points 0 and n–1, respectively.

If initial boundary and final boundary are equal to or greater than 1030, the VI sets the
corresponding boundary condition for a natural spline, with zero second derivative on
that boundary.

The interpolating function g(x) passes through all the points

{xi,yi}, g(xi) = yi

where i = 0, 1,..., n–1.

The VI obtains the interpolating function g(x) by interpolating every interval [xi, xi+1]
with a cubic polynomial function p

i
(x) that meets the following conditions:

• pi(xi) = yi

• pi(xi+1) = yi+1

• g(x) has continuous first and second derivatives everywhere in the range [x0,xn–1]:

–

–

For the preceding conditions, i = 0, 1,..., n–2.

From the last condition, , we derive the following equations:

 i=1, 2,...n–2 (44-9)

p'
i

xi() p'
i+1

xi()=

p''
i

xi() p''
i+1

xi()=

p''
i

xi() p''
i+1

xi()=

xi xi 1––

6
--------------------g'' xi 1–()

xi 1+ xi 1––

3
--------------------------g'' xi()

xi 1+ xi–

6
--------------------g'' xi 1+()+ +

=
yi 1+ yi–

xi 1+ xi–

yi yi 1––

xi xi 1––
--------------------–

Chapter 44 Analysis Curve-Fitting VIs

LabVIEW Function and VI Reference Manual 44-16 © National Instruments Corporation

These are n–2 linear equations with n unknowns

i = 0, 1,…, n – 1. This VI computes , from initial boundary and final

boundary using the formula

.

Here

You can derive this formula from the preceding conditions numbered 1–3. This VI then

uses , in equation (44-1) to solve all the , for i = 1, … n–2.

 is the output Interpolant. You can use Interpolant as an input to the Spline

Interpolation VI to interpolate y at any value of .

Spline Interpolation
Performs a cubic spline interpolation of f at x, given a tabulated function.

This VI performs cubic spline interpolation using a tabulated function in the form of
y

i
 = f(x

i
) for i = 0, 1,..., n–1, and given the second derivatives Interpolant that the VI

obtains from the Spline Interpolant VI. The value of x must be in the range of X values.
The points are formed by the input arrays X and Y, and n is the total number of points.

On the interval , the output interpolation value y is defined by

,

and

g'' xi()

g'' x0() g'' xn 1–()

g' x()
yi 1+ yi–

xi 1+ xi–

3A2 1–
6

------------------ xi 1+ xi–()g'' xi()+=

3B2 1–
6

------------------+ xi 1+ xi–()g'' xi 1+()

A
xi 1+ x–

xi 1+ xi–
--------------------= B 1 A–

x xi–

xi 1+ xi–
--------------------= =

g'' x0() g'' xn 1–() g'' xi()

g'' xi()

x0 x xn 1–≤ ≤

xi xi 1+,[]

y Ayi Byi 1 Cy''i Dy''i 1+ + + ++=

Chapter 44 Analysis Curve-Fitting VIs

© National Instruments Corporation 44-17 LabVIEW Function and VI Reference Manual

,

B = 1 – A,

,

.

A
xi 1+ x–

xi 1+ xi–
--------------------=

C
1
6
--- A

3
A–() xi 1+ xi–()2

=

D
1
6
--- B

3
B–() xi 1+ xi–()2

=

© National Instruments Corporation 45-1 LabVIEW Function and VI Reference Manual

Chapter

45
Analysis Probability
and Statistics VIs

This chapter describes the VIs that perform probability, descriptive
statistics, analysis of variance, and interpolation functions.

To access the Probability and Statistics palette, choose
Functions»Analysis»Probability and Statistics, as shown in the
following illustration.

For examples of how to use the statistics VIs, see the examples located
in examples\analysis\statxmpl.llb.

Note: These VIs are not available in the Base Analysis package.

Probability and Statistics VI Descriptions

The following Probability and Statistic VIs are available.

Chapter 45 Analysis Probability and Statistics VIs

LabVIEW Function and VI Reference Manual 45-2 © National Instruments Corporation

1D ANOVA
Takes an array, X, of experimental observations made at various levels of a factor, with
at least one observation per level, and performs a one-way analysis of variance in the
fixed effect model. In the one-way analysis of variance, the VI tests whether the level of
the factor has an effect on the experimental outcome.

Factors and Levels

A factor is a basis for categorizing data. For example, if you count the number of sit-ups
individuals can do, one basis of categorization is age. For age, you might have the
following levels:

Level 0: 6 years old to 10 years old

Level 1: 11 years old to 15 years old

Level 2: 16 years old to 20 years old

Now, suppose that you make a series of observations to see how many sit-ups people can
do. If you take a random sampling of five people, you might find the following results:

Person 1 8 years old (level 0) 10 sit-ups

Person 2 12 years old (level 1) 15 sit-ups

Person 3 16 years old (level 2) 20 sit-ups

Person 4 20 years old (level 2) 25 sit-ups

Person 5 13 years old (level 1) 17 sit-ups

Notice that you have made at least one observation per level. To perform an analysis of
variance, you must make at least one observation per level.

To perform the analysis of variance, you specify an array X of observations, with values
10, 15, 20, 25, and 17. The array Index specifies the level (or category) to which each
observation applies. In this case, Index has the values 0, 1, 2, 2, and 1. Finally, there are
three possible levels, so you pass in a value of 3 for the # of levels parameter.

Chapter 45 Analysis Probability and Statistics VIs

© National Instruments Corporation 45-3 LabVIEW Function and VI Reference Manual

2D ANOVA
Takes an array of experimental observations made at various levels of two factors and
performs a two-way analysis of variance.

Factors, Levels, and Cells

A factor is a basis for categorizing data. For example, if you count the number of sit-ups
individuals can do, one basis of categorization is age. For age, you might have the
following levels:

Level 0: 6 years old to 10 years old

Level 1: 11 years old to 15 years old

Another possible factor is weight, with the following levels:

Level 0: less than 50 kg

Level 1: between 50 and 75 kg

Level 2: more than 75 kg

Now, suppose that you made a series of observations to see how many sit-ups people
could do. If you took a random sampling of n people, you might find the following
results:

Person 1 8 years old (level 0) 30 kg (level 0) 10 sit-ups

Person 2 12 years old (level 1) 40 kg (level 0) 15 sit-ups

Person 3 15 years old (level 1)7 6 kg (level 2) 20 sit-ups

Person 4 14 years old (level 1) 60 kg (level 1) 25 sit-ups

Person 5 9 years old (level 0) 51 kg (level 1) 17 sit-ups

Person 6 10 years old (level 0) 80 kg (level 2) 4 sit ups

and so on.

Chapter 45 Analysis Probability and Statistics VIs

LabVIEW Function and VI Reference Manual 45-4 © National Instruments Corporation

If you plot observations as a function of factor A and factor B, they fall into cells of a
matrix with factor A as rows and factor B as columns. Each cell must contain at least one
observation, and each cell must contain the same number of observations.

To perform the analysis of variance, you specify an array X of observations, with values
10, 15, 20, 25, 17, and 4. The array Index A specifies the level (or category) of factor A
to which each observation applies. In this case, the array would have the values 0, 1, 1,
1, 0, and 0.

The array Index B specifies the level (or category) of factor B to which each observation
applies. In this case, the array would have the values 0, 0, 2, 1, 1, and 2. Finally, there are
two possible levels for factor A and three possible levels for factor B, so you pass in a
value of 2 for the A levels parameter, and a value of 3 for the B levels parameter.

You can apply any one of the following models, where L is the specified observations
per cell:

• Model 1: Fixed-effects with no interaction and one observation per cell (per
specified levels x and y of the factors A and B, respectively).

• Model 2: Fixed-effects with interaction and L>1 observations per cell.

• Model 3: Either of the mixed-effects models with interaction and L>1 observations
per cell.

• Model 4: Random-effects with interaction and L>1 observations per cell.

3D ANOVA
Takes an array of experimental observations made at various levels of three factors and
performs a three-way analysis of variance. In any ANOVA, you look for evidence that
the factors or interactions among factors have a significant effect on experimental
outcomes. What varies with each model is the method used to do this.

The three-way ANOVA models are as follows, where L is the number of observations
per cell:

• Fixed-effects with interaction and L>1 observations per cell.

• Any of the six mixed-effects models with interaction and L>1 observations per cell.

• Random-effects with interaction and L>1 observations per cell.

Chapter 45 Analysis Probability and Statistics VIs

© National Instruments Corporation 45-5 LabVIEW Function and VI Reference Manual

A factor is a basis for categorizing data. A cell of data consists of all those experimental
observations that fall in particular levels of the three factors. The number of observations
that fall in a cell must be some constant number L, which does not vary between cells.
See the description of factors, levels, and cells in the 2D ANOVA VI description.
Remember that a cell in this 3D ANOVA VI is the intersection of three factors instead of
two as described in the 2D ANOVA VI description.

Chi Square Distribution
Computes the one-sided probability, p, of the χ2 distributed random variable, x, with the
specified degrees of freedom.

p = Prob {X < x},

where X is χ2 distributed with n degrees of freedom, p is the probability, n is degrees
of freedom, and x is the value.

Contingency Table
Classifies and tallies objects of experimentation according to two schemes of
categorization.

With the χ2 test of homogeneity, the VI takes a random sample of some fixed size from
each of the categories in one categorization scheme. For each of the samples, the VI
categorizes the objects of experimentation according to the second scheme, and tallies
them. The VI tests the hypothesis to determine whether the populations from which each
sample is taken are identically distributed with respect to the second categorization
scheme.

With the χ2 test of independence, the VI takes only one sample from the total population.
The VI then categorizes each object and tallies it in two categorization schemes. The VI
tests the hypothesis that the categorization schemes are independent.

You must choose a level of significance for each test. This is how likely you want it to
be that the VI rejects the hypothesis when it is true. Ordinarily, you do not want it to be
very likely. So you should use a small number (0.05 or 5 percent is a common choice) to
determine the level of significance. The output parameter probability is the level of

Chapter 45 Analysis Probability and Statistics VIs

LabVIEW Function and VI Reference Manual 45-6 © National Instruments Corporation

significance at which the hypothesis is rejected. Thus, if probability is less than the level
of significance, you must reject the hypothesis.

erf(x)
Evaluates the error function at the input value.

erfc(x)
Evaluates the complementary error function at the input value.

F Distribution
Computes the one-sided probability, p, of the F-distributed random variable, F, with the
specified n and m degrees of freedom

p = Prob {F
n,m

< x},

where F is F-distributed, p is the probability, n specifies the first degree of freedom, m
specifies the second degree of freedom, and x is the value.

General Histogram
Finds the discrete histogram of the input sequence X based on the given bin
specifications.

The VI obtains the Histogram as follows. The VI establishes all the intervals (also called
bins) based on the information in the input array Bins first. The intervals (bins) are:

Chapter 45 Analysis Probability and Statistics VIs

© National Instruments Corporation 45-7 LabVIEW Function and VI Reference Manual

∆i = (Bins[i].lower: Bins[i].upper) i = 0, 1, 2,..., k–1

where

Bins[i].lower is the value lower in the ith cluster of array Bins, Bins[i].upper is the value
upper in the ith cluster of array Bins, k is the number of elements in Bins, which consists
of the number of total intervals (bins).

Whether the two ending points Bins[i].lower and Bins[i].upper of each interval (bin) are
included in the interval (bin) ∆i depends on the value of bin inclusion in the corresponding
cluster i of the Bins.

Histogram
Finds the discrete histogram of the input sequence X. The histogram is a frequency count
of the number of times that a specified interval occurs in the input sequence.

If the input sequence is

X = {0, 1, 3, 3, 4, 4, 4, 5, 5, 8},

then the Histogram: h(x) of X for eight intervals is

h(X) = {h
0
, h

1
, h

2
, h

3
, h

4
, h

5
, h

6
, h

7
} = {1, 1, 0, 2, 3, 2, 0, 1}.

Notice that the histogram of the input sequence X is a function of X.

The VI obtains Histogram: h(x) as follows. The VI scans the input sequence X to
determine the range of values in it. Then the VI establishes the interval width, ýx,
according to the specified number of intervals,

,

where max is the maximum value found in the input sequence X, min is the minimum
value found in the input sequence X, and m is the specified number of intervals.

Let χ represent the output sequence X Values, because the histogram is a function of X.
The VI evaluates elements of χ using

 for i = 0, 1, 2, …, m–1.

x∆ max min–
m

-------------------------=

χ i min 0.5∆x i∆x+ +=

Chapter 45 Analysis Probability and Statistics VIs

LabVIEW Function and VI Reference Manual 45-8 © National Instruments Corporation

The VI defines the ith interval ∆i to be the range of values from χ
i
 – 0.5 ∆x up to but not

including χ
i
 + 0.5 ∆x,

∆i = [χi – 0.5 ∆x : χi + 0.5 ∆x), for i = 0, 1, 2,…, m–1,

and defines the function yi(x) to be

.

The function has unity value if the value of x falls within the specified interval. Otherwise
it is zero. Notice that the interval ∆i is centered about χ

i
, and its width is ∆x.

The last interval, ∆m–1, is defined as [χm–ι– 0.5∆x : χm–ι + 0.5∆x]. In other words, if a
value is equal to max, it is counted as belonging to the last interval.

Finally, the VI evaluates the histogram sequence H using

 for i = 0, 1, 2,..., m–1,

where hi represents the elements of the output sequence Histogram: h(x), and n is the
number of elements in the input sequence X.

Inv Chi Square Distribution
Computes the value of x such that the condition

p = Prob {X ≤ x}

is satisfied, given the probability value, p, of a X2 -distributed random variable, X, with
n degrees of freedom.

Inv F Distribution
Computes the value of x such that the condition

yi x()
1 ifx ∆i⊇∈

0 elsewhere






=

hi yi xj()

j 0=

n 1–

∑=

Chapter 45 Analysis Probability and Statistics VIs

© National Instruments Corporation 45-9 LabVIEW Function and VI Reference Manual

is satisfied, given the probability value p of an F-distributed random variable, F, with n
and m degrees of freedom.

Inv Normal Distribution
Computes the value of x such that the condition

p = Prob {X ≤ x}

is satisfied, given the probability value, p, of a Normally distributed random variable, X.

Inv T Distribution
Computes the value of x such that the condition

p = Prob {Tn ≤ x}

is satisfied, given the probability value, p, of a T-distributed random variable, T, with n
degrees of freedom.

Mean
Computes the mean (average) of the values in the input sequence X.

This VI computes mean (µ) using the following formula:

p Prob{ n m, X }≤=

Chapter 45 Analysis Probability and Statistics VIs

LabVIEW Function and VI Reference Manual 45-10 © National Instruments Corporation

,

where n is the number of elements in X.

Median
Finds the median value of the input sequence X by sorting the values of X and selecting
the middle element(s) of the sorted array.

Let n be the number of elements in the input sequence X, and let S be the sorted sequence
of X. The VI finds median using the following identity:

where ,

and .

Mode
Finds the mode of the input sequence X.

Moment About Mean
Computes the moment about the mean of the input sequence X using the specified order.

Let m be the desired order. The VI computes the m
th

-order moment using the formula:

µ
1
n
--- xi

i 0=

n 1–

∑=

median

si ifn is odd

0.5 sk 1– sk+() ifn is even






=

i
n 1–

2
------------=

k
n

2
---=

Chapter 45 Analysis Probability and Statistics VIs

© National Instruments Corporation 45-11 LabVIEW Function and VI Reference Manual

,

where σ
x

m
 is the m

th
-order moment, and n is the number of elements in the input

sequence X.

MSE
Computes the mean squared error (mse) of the input sequences X Values and Y Values.

The VI uses the following formula to find mse:

,

where n is the number of data points.

Normal Distribution
Computes the one-sided probability, p, of the normally distributed random variable, x,

p = Prob {X < x},

where X is standard Normally distributed, p is the probability, and x is the value.

RMS
Computes the root mean square (rms) of the input sequence X.

σx

m 1
n
--- xi µ–()m

i 0=

n 1–

∑=

mse
1
n
--- xi yi–()2

i 0=

n 1–

∑=

Chapter 45 Analysis Probability and Statistics VIs

LabVIEW Function and VI Reference Manual 45-12 © National Instruments Corporation

Sample Variance
Computes the mean and sample variance of the values in the input sequence X.

Note: If you need to compute the sample standard deviation of X, take the square

root of sample variance.

Standard Deviation
Computes the mean value and the standard deviation of the values in the input
sequence X.

This VI computes standard deviation (σx) and mean (µ) using the following formula:

,

where , and n is the number of elements in X.

T Distribution
Computes the one-sided probability, p, of the t-distributed random variable, T

n
, with the

specified degrees of freedom

p = Prob {T
n
 ≤ x},

where T is t-distributed, p is the probability, n is degrees of freedom, and x is the value.

σx

1
n
--- xi µ–()2

i 0=

n 1–

∑=

µ
1
n
--- xi

i 0=

n 1–

∑=

Chapter 45 Analysis Probability and Statistics VIs

© National Instruments Corporation 45-13 LabVIEW Function and VI Reference Manual

Variance
Computes the variance and the mean value of the input sequence X.

This VI computes variance (σx
2) and mean (µ) using the following formula:

,

where , and n is the number of elements in X.

σx

2 1
n
--- xi µ–()2

i 0=

n 1–

∑=

µ
1
n
--- xi

i 0=

n 1–

∑=

© National Instruments Corporation 46-1 LabVIEW Function and VI Reference Manual

Chapter

46Analysis Linear Algebra VIs

This chapter describes the VIs that perform matrix related computation
and analysis, and provides overviews on the following:

• Basic Matrix Manipulations

• Solving Linear Equations and Matrix Inverses

• Eigenvalues and Eigenvectors

• Matrix Analysis

It includes both real and complex matrices.

To access the Linear Algebra palette, choose
Functions»Analysis»Linear Algebra, as shown in the following
illustration.

This chapter is divided into the following groups:

• Matrix factorization

• Solving linear equations and matrix inverses

• Eigenvalues and Eigenvectors problems

• Matrix analysis

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-2 © National Instruments Corporation

A matrix is represented by a 2D array:

A is an m-by-n matrix that contains m rows and n columns.

A matrix is called a rectangular matrix in general. When m=n, it is
called a square matrix.

Basic Matrix Manipulations Functions

This section provides an overview of Basic Matrix Manipulations.

Addition

A, B, and C have the same dimension size.

Matrix-Matrix Multiplication

If A is a n-by-r matrix, and B is a r-by-m matrix, then C is a n-by-m matrix.

Scalar-Matrix Multiplication

C and A have the same dimension size.

Transposition
For a real matrix:

A

a
00

a
01

… a
0n 1–

a
10

a
11

… a1n 1–

… … … …

am 10– am 11–
… am 1n– 1–

=

C A B cij ai j bi j+=⇒+=

C AB cij aikb
kj

k 0=

r 1–

∑=⇒=

C αA ci j αai j=⇒=

C A
T

ci j⇒ aji= =

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-3 LabVIEW Function and VI Reference Manual

For a complex matrix, it is the complex conjugate transposition:

Complex conjugate: if , then conjugate . If A is an m-by-n matrix,

then C is an n-by-m matrix and is called the transpose of A.

Common Matrices

This section describes the Common Matrices.

Identity Matrix

, when , when .

A is a square matrix.

Diagonal Matrix

, when .

Hermitian Matrix
If a complex matrix A satisfies , A is called a Hermitian matrix.

Symmetric Matrix
Matrix A is called a symmetric matrix if , that is .

C A
H

ci j⇒ a∗
j i= =

a x iy+= a∗ x iy–=

A

1 0 … 0

0 1 … 0

0 0 … 1

=
ai j 0= i j≠ ai j 1= i j=

A

a00 0 … 0

0 a11 … 0

0 0 … am 1n 1––

= ai j 0= i j≠

A A
H

=

ai j aj i= A A
T

=

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-4 © National Instruments Corporation

Upper Triangular Matrix

, when i>j.

Lower Triangular Matrix

, when i<j.

Orthogonal Matrix
Matrix A is called orthogonal if , and I is an identity matrix.

Permutation Matrix
A permutation matrix is an identity matrix with some rows or columns exchanged. A
permutation matrix is an orthogonal matrix.

Positive Definite Matrix
A real matrix is positive definite if and only if it is symmetric; that is, , and the
quadratic form for all nonzero vectors X.

A complex matrix is positive definite if and only if it is Hermitian; that is, and
 for all nonzero, complex vectors X.

Matrix Factorization

A matrix can be factored into the multiplication of several, simpler
matrices. You can use these factored, simple matrices to solve some
matrix problems, such as solving a linear equation, inverting a matrix,
and finding the determinant of a matrix.

The common factorization methods include LU, Cholesky, QR, and
Singular Value Decomposition (SVD).

A

a00 a01 … a0n 1–

0 a11 … a1n 1–

0 0 … am 1n– 1–

= aij 0=

A

a00 0 … 0

a10 a11 … 0

am 10– am 11– … am 1n– 1–

= ai j 0=

A
T

A I=

A A
T

=

X
T

AX 0>

A A
H

=

X
H

AX 0>

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-5 LabVIEW Function and VI Reference Manual

• LU Factorization—Factors a square matrix into two matrices. One
is an upper triangular matrix U, and the other is a lower triangular
matrix L that has ones on the diagonal, so that PA=LU. P is a
permutation matrix.

• When a square matrix is positive definite, you can factor it into
, if A is a real matrix, and , if A is a complex

matrix, where R is an upper triangular matrix. This is called
Cholesky factorization. Cholesky factorization only needs half of
the operations of LU factorization.

• QR Factorization–Factors a matrix as the product of an orthogonal
matrix Q and an upper triangular matrix R: A=QR. QR factorization
is useful for both square and rectangular matrices.

• SVD—Decomposes a matrix into the product of three matrices:
, where U and V are orthogonal matrices and S is a

diagonal matrix whose diagonal values are called the singular
values of A. SVD is useful for solving analysis problems involving
matrices. In addition to its common uses, you can use SVD for
operations such as pseudoinverse, rank, norm, and condition
number.

Solving Linear Equations and Matrix Inverses

To Solve the linear equation AX=Y, you must find solution X when you
know the given values of A and Y. A is a m-by-n matrix, X is a vector
with n elements, and Y is a vector with m elements.

Using LU factorization, if m=n and A is a square matrix, A can be
factored into triangular matrices L and U, so that A=LU. AX=Y becomes
LUX=Y and you can solve Z for LZ=Y where Z=UX. You can then solve
for X in UX=Z.

In the Cholesky case, and .

Triangular systems are easy to solve using recursive techniques.

If , the number of equations are different from the number of
unknowns and A is not a square matrix, A can be factored into an
orthogonal matrix Q and an upper triangular matrix R, so that A=QR.
AX=Y becomes QRX=Y and you can solve for X by using .

When m>n, and the system has more equations than unknowns, it is
called an overdetermined system. The solution that satisfies AX=Y may

A R
T
R= A R

H
R=

A USV
T

=

L R
T

= U R=

m n≠

RX Q
T
Y=

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-6 © National Instruments Corporation

not exist. The solution above finds the least square solution that
minimizes .

When m<n, and the system has more unknowns than equations, it is
called an underdetermined system. It may have infinite solutions that
satisfy AX=Y. The previous solution finds one of these solutions.

Inverting a square matrix A means that you find that satisfies
, where I is an identity matrix. is called the inverse of

matrix A. You can solve for by solving n linear equations .

When A is not a square matrix, or when A is singular, does not
exist. You can compute the pseudoinverse of A instead. If the m-by-n
matrix A+ satisfies the following four Moore-Penrose conditions:
AA+A=A

A+AA+=A+

AA+ is a Hermitian matrix if A is a complex matrix. AA+ is a symmetric
matrix if A is real matrix.
A+A is a Hermitian matrix if A is a complex matrix. A+A is a symmetric
matrix if A is real matrix.
Then, A+ is called the pseudoinverse of matrix A. You can compute for
A+ using SVD.

Eigenvalues and Eigenvectors

This Eigenvalue problem is to determine the nontrivial solutions to the
equation , where A is an n-by-n matrix, X is a vector with

elements, and is a scalar. The values of that satisfy the equation
are called eigenvalues of A, and the corresponding values of X are called
the right eigenvectors of A.

Matrix Analysis

Matrix Analysis VIs can compute the matrix determinant, condition
number, norm, and rank. Typically, you use these parameters to analyze
a matrix property.

Linear Algebra VI Descriptions

The following Linear Algebra VIs are available.

AX Y– AX()i yi–[] 2∑=

A
1–

AA
1–

I= A
1–

A
1–

AA
1–

I=

A
1–

AX λX=

n λ n λ

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-7 LabVIEW Function and VI Reference Manual

A x B

Performs the matrix multiplication of two input matrices.

If A is an n-by-k matrix and B is a k-by-m matrix, the matrix multiplication of A and B, C
= AB, results in a matrix, C, whose dimensions are n-by-m. Let A represent the 2D input
array A matrix, B represent the 2D input array B matrix, and C represent the 2D output
array A x B. The VI obtains the elements of C using the formula

,

where n is the number of rows in A matrix, k is the number of columns in A matrix and
the number of rows in B matrix, and m is the number of columns in B matrix.

Note: The A x B VI performs a strict matrix multiplication and not an

element-by-element 2D multiplication. To perform an element-by-element

multiplication, you must use the LabVIEW Multiply function. In general,

AB ¦ BA.

A x Vector
Performs the multiplication of an input matrix and an input vector.

If A is an n-by-k matrix, and X is a vector with k elements, the multiplication of A and X,
Y = AX, results in a vector Y with n elements. Let Y represent the output A x Vector. The
VI obtains the elements of Y using the formula

, for i = 0, 1, 2, …, n–1,

cij ai lblj

l 0=

k 1–

∑ for
i 0 1 2 ... n 1–, , , ,=

j 0 1 2 ... m 1–, , , ,=






=

yi aijxj

j 0=

k 1–

∑=

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-8 © National Instruments Corporation

where n is the number of rows in A, and k is the number of columns in A and the number
of elements in X.

Cholesky Factorization

Performs Cholesky factorization for a real, positive definite matrix A.

If the real, square matrix A is positive definite, you can factor it as , where is
an upper triangular matrix, and is the transpose of .

Complex A x B
Performs the matrix multiplication of two input complex matrices.

If A is an n-by-k matrix and B is a k-by-m matrix, the matrix multiplication of A and B, C
= AB, results in a matrix, C, whose dimensions are n-by-m. Let A represent the 2D input
array A matrix, B represent the 2D input array B matrix, and C represent the 2D output
array A x B. The VI obtains the elements of C using the formula

,

where n is the number of rows in A matrix, k is the number of columns in A matrix and
the number of rows in B matrix, and m is the number of columns in B matrix.

Note: The Complex A x B VI performs a strict matrix multiplication and not an

element-by-element 2D multiplication. To perform an element-by-element

multiplication, you must use the LabVIEW Multiply function. In general,

.

A R
T
R= R

R
T

R

cij ai lblj

l 0=

k 1–

∑ for
i 0 1 2 ... n 1–, , , ,=

j 0 1 2 ... m 1–, , , ,=






=

AB BA≠

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-9 LabVIEW Function and VI Reference Manual

Complex A x Vector

Performs the multiplication of a complex input matrix and a complex input vector.

If A is an n-by-k matrix, and X is a vector with k elements, the multiplication of A and X,
Y = AX, results in a vector Y with n elements. Let Y represent the output A x Vector, X
represents the input vector. The VI obtains the elements of Y using the formula

, for i = 0, 1, 2, …, n–1,

where n is the number of rows in A, and k is the number of columns in A and the number
of elements in X.

Complex Cholesky Factorization
Performs Cholesky factorization of a complex, positive definite matrix A.

If the complex square matrix A is positive definite, it can be factored as , where
R is an upper triangular matrix and is the complex conjugate transpose of R.

Complex Determinant
Finds the determinant of a complex, square matrix Input Matrix.

Let A denote a square matrix that represents the Input Matrix, and let L and U be the
lower and upper triangular matrices, respective, of A such that

A = LU,

yi aijxj

j 0=

k 1–

∑=

A R
H

R=

R
H

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-10 © National Instruments Corporation

where the main diagonal elements of the lower triangular matrix L are arbitrarily set to
one. The VI finds the determinant of A by the product of the main diagonal elements of
the upper triangular matrix U:

,

where is the determinant of A, and n is the dimension of A.

Complex Dot Product
Computes the dot product of complex X Vector and Y Vector.

Let X represent the input sequence X Vector and Y represent the input sequence Y
Vector. The VI obtains the dot product X*Y using the formula:

,

where n is the number of data points. Notice that the output value X*Y is a complex
scalar value.

Complex Eigenvalues & Vectors
Finds the Eigenvalues and right Eigenvectors of a square complex Input Matrix A.

The eigenvalue problem is to determine the nontrivial solutions for the equation:

A uii

i 0=

n 1–

∏=

A

X∗ Y xiyi

i 0=

n 1–

∑=

AX λX=

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-11 LabVIEW Function and VI Reference Manual

where A represents an n-by-n Input Matrix, X represents a vector with n elements, and
 is a scalar. The n values of that satisfy the equation are the Eigenvalues of A and the

corresponding values of X are the right Eigenvectors of A. A Hermitian matrix always
has real eigenvalues.

Complex Inverse Matrix

Finds the Inverse Matrix of a complex matrix Input Matrix.

Let A be the Input Matrix and I be the identity matrix. You obtain the Inverse Matrix
by solving the system AB = I for B.

If A is a nonsingular matrix, you can show that the solution to the preceding system is
unique and that it corresponds to the inverse matrix of A

B = A–1,

and B is therefore the Inverse Matrix. A nonsingular matrix is a matrix in which no row
or column contains a linear combination of any other row or column, respectively.

Note: You cannot always determine beforehand whether the matrix is singular,

especially with large systems. The Complex Inverse Matrix VI detects

singular matrices and returns an error, so you do not need to verify

whether you have a valid system before using this VI.

The numerical implementation of the matrix inversion is not only

numerically intensive but, because of its recursive nature, it is also highly

sensitive to round-off error introduced by the floating point, numeric

coprocessor. Although the computations use the maximum possible

accuracy, the VI cannot always solve for the system.

Complex LU Factorization
Performs the LU factorization of a complex, square matrix A.

λ λ

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-12 © National Instruments Corporation

LU factorization factors the square matrix A into two triangular matrices; one is a lower
triangular matrix L with ones on the diagonal, and the other is an upper triangular matrix
U, so that

PA = LU

where P is a permutation matrix, which consists of the identity matrix with some rows
exchanged.

Factorization is the key step for inverting a matrix, computing the determinant of a
matrix, and solving a linear equation.

Complex Matrix Condition Number

Computes the condition number of a complex matrix Input Matrix.

The condition number of a matrix measures the sensitivity of the solution of a system of
linear equations to errors in the data. It gives an indication of the accuracy of the results
from the matrix inversion and linear equation solutions.

Complex Matrix Norm
Computes the norm of a complex matrix Input Matrix.

The norm of a matrix is a scalar that gives some measure of the magnitude of the
elements of the matrix. Let A represent the Input Matrix, represent the norm of A,
where p can be 1,2,f, . Different values of p mean different types of norms that are
computed.

A p

∞

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-13 LabVIEW Function and VI Reference Manual

Complex Matrix Rank

Computes the rank of a rectangular, complex matrix Input Matrix.

rank is the number of singular values of the Input Matrix that are larger than the
tolerance. rank is the maximum number of independent rows or columns of the Input
Matrix.

Complex Matrix Trace
Finds the trace of Input Matrix.

Let A be a square matrix that represents Input Matrix and tr(A) be trace. The trace of
A is the sum of the main diagonal elements of A

,

where n is the dimension of Input Matrix.

Complex Outer Product
Computes the outer product of a complex X Vector and Y Vector.

Let X represent the input sequence X Vector and Y represent the input sequence Y
Vector. The VI obtains Outer Product using the formula:

tr A() aii

i 0=

n 1–

∑=

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-14 © National Instruments Corporation

aij = xi yj, for ,

where A represents the 2D output sequence Outer Product, n is the number of elements
in the input sequence X Vector, and m is the number of elements in the input sequence
Y Vector.

Complex PseudoInverse Matrix
Finds the PseudoInverse Matrix of a rectangular, complex matrix Input Matrix.

An SVD algorithm computes PseudoInverse Matrix A+, and treats any singular values
less than the tolerance as zeros. For a definition of the PseudoInverse of a matrix, see the
Solving Linear Equations and Matrix Inverses section at the beginning of this chapter.

If Input matrix A is square and not singular, A+ is the same as A–1, but using the Complex
Inverse Matrix VI to compute A–1 is more efficient than using this VI.

Complex QR Factorization
Performs QR factorization for a complex matrix A.

QR factorization is also called orthogonal-triangular factorization. It factors a complex
matrix A into two matrices; one is an orthogonal matrix Q, the other is an upper triangular
matrix R, so that A = QR. This VI provides three methods for the factorization:
Householder, Givens, and Fast Givens.

You can use QR factorization to solve linear systems that contain less or more equations
than unknowns.

i 0 1 2 ... n 1–, , , ,=

j 0 1 2 ... m 1–, , , ,=






Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-15 LabVIEW Function and VI Reference Manual

Complex SVD Factorization

Performs the singular value decomposition (SVD) of a given m-by-n, complex matrix A
with m>n.

SVD produces three matrices U, S, and V, so that A = US0VH, where U and V are
orthogonal matrices, S0 is an n-by-n diagonal matrix with the elements of array S on the
diagonal in decreasing order. The diagonal elements are the singular values of A.

Create Special Complex Matrix
Generates a special, complex matrix based on the matrix type.

Let n represent matrix size, X represent Input Vector1, nx represent the size of X, and Y
represent Input Vector2, ny represent the size of Y, and B represent the output Special
Matrix.

Create Special Matrix
Generates a real, special matrix based on the matrix type.

Let n represent matrix size, X represent Input Vector1, nx represent the size of X, and Y
represent Input Vector2, ny represent the size of Y, and B represent the output Special
Matrix.

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-16 © National Instruments Corporation

Determinant

Computes the determinant of a real, square matrix Input Matrix.

Let A be a square matrix that represents the Input Matrix, and let L and U represent the
lower and upper triangular matrices, respectively, of A such that

A = LU,

where the main diagonal elements of the lower triangular matrix L are arbitrarily set to
one. The VI finds the determinant of A by the product of the main diagonal elements of
the upper triangular matrix U

,

where is the determinant of X, and n is the dimension of X.

Dot Product

Computes the dot product of X Vector and Y Vector.

Let X represent the input sequence X Vector and Y represent the input sequence
Y Vector. The VI obtains the dot product X*Y using the formula:

,

where n is the number of data points. Notice that the output value X*Y is a scalar value.

A uii

i 0=

n 1–

∏=

A

X∗ Y xiyi

i 0=

n 1–

∑=

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-17 LabVIEW Function and VI Reference Manual

EigenValues & Vectors

Finds the eigenvalues and eigenvectors right of a square, real Input Matrix.

The eigenvalue problem is to determine the nontrivial solutions to the equation:

where A is a n-by-n Input Matrix, X is a vector with n elements, and is a scalar. The n
values of that satisfy the equation are the Eigenvalues of A and the corresponding
values of X are the right Eigenvectors of A. A symmetric, real matrix always has real
eigenvalues and eigenvectors.

Inverse Matrix
Finds the Inverse Matrix of the Input Matrix.

Let A be the Input Matrix and I be the identity matrix. You obtain the Inverse Matrix
value by solving the system AB = I for B.

If A is a nonsingular matrix, you can show that the solution to the preceding system is
unique and that it corresponds to the Inverse Matrix of A:

B = A–1,

and B is therefore an Inverse Matrix. A nonsingular matrix is a matrix in which no row
or column contains a linear combination of any other row or column, respectively.

Note: The numerical implementation of the matrix inversion is not only

numerically intensive but, because of its recursive nature, is also highly

sensitive to round-off errors introduced by the floating-point numeric

coprocessor. Although the computations use the maximum possible

accuracy, the VI cannot always solve for the system.

AX λX=

λ
λ

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-18 © National Instruments Corporation

You cannot always determine beforehand whether the matrix is singular,

especially with large systems. The Inverse Matrix VI detects singular

matrices and returns an error, so you do not need to verify whether you

have a valid system before using this VI.

LU Factorization

Performs the LU factorization of a real, square matrix A.

LU factorization factors the square matrix A into two triangular matrices; one is a lower
triangular matrix L with ones on the diagonal, and the other is an upper triangular matrix
U, so that , where P is a permutation matrix, which serves as the identity matrix
with some rows exchanged.

Factorization serves as a key step for inverting a matrix, computing the determinant of a
matrix, and solving a linear equation.

Matrix Condition Number
Computes the condition number of a real matrix Input Matrix.

The condition number of a matrix measures the sensitivity of a system solution of linear
equations to errors in the data. It gives an indication of the accuracy of the results from
a matrix inversion and a linear equation solution.

Matrix Norm
Computes the norm of a real matrix Input Matrix.

PA LU=

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-19 LabVIEW Function and VI Reference Manual

The norm of a matrix is a scalar that gives some measure of the magnitude of the elements
in the matrix. Let A represent the Input Matrix, the norm of A is represented by ,
where p can be 1,2,F, . Different values of p mean different types of norms that are
computed.

Matrix Rank

Computes the rank of a rectangular, real matrix Input Matrix.

Matrix rank is the number of singular values in the Input Matrix that are larger than the
tolerance. rank is the maximum number of independent rows or columns in the Input
Matrix.

Outer Product
Computes the outer product of X Vector and Y Vector.

Let X represent the input sequence X Vector and Y represent the input sequence
Y Vector. The VI obtains Outer Product using the formula:

aij = xi yj, for ,

where A represents the 2D output sequence Outer Product, n is the number of elements
in the input sequence X Vector, and m is the number of elements in the input sequence
Y Vector.

A p

∞

i 0 1 2 ... n 1–, , , ,=

j 0 1 2 ... m 1–, , , ,=






Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-20 © National Instruments Corporation

PseudoInverse Matrix

Finds the PseudoInverse Matrix of a rectangular, real matrix Input Matrix.

You compute PseudoInverse Matrix A+ by using the SVD algorithm and any singular
value less than the tolerance, which are set to zero. For a definition of the PseudoInverse
of a matrix, see the Solving Linear Equations and Matrix Inverses section at the beginning
of this chapter.

If Input matrix A is square and not singular, A+ is the same as A–1, but using the Inverse
Matrix VI to compute A–1 is more efficient than using this VI.

Note: This VI is not available with Base packages of LabVIEW.

QR Factorization
Performs the QR factorization of a real matrix A.

QR factorization is also called orthogonal-triangular factorization. It factors a real matrix
A into two matrices. One is an orthogonal matrix Q, and the other is an upper triangular
matrix R, so that . This VI provides three methods for the factorization:
householder, givens, and fast givens.

You can use QR factorization to solve linear systems with more equations than
unknowns.

Note: This VI is not available with Base packages of LabVIEW.

Solve Complex Linear Equations
Solves a complex, linear system AX=Y.

A QR=

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-21 LabVIEW Function and VI Reference Manual

Let A represent the m-by-n Input Matrix, Y represent the set of m elements in the Known
Vector, and X represent the set of n elements in the Solution Vector that solves for the
system

AX = Y.

When , the system has more equations than unknowns, so it is an overdetermined
system. Since the solution that satisfies AX=Y may not exist, the VI finds the least square
solution X, which minimizes ||AX–Y||.

When m<n, the system has more unknowns than equations, so it is an underdetermined
system. It might have infinite solutions that satisfy AX=Y. The VI then selects one of
these solutions.

When m=n, if A is a nonsingular matrix—no row or column is a linear combination of
any other row or column, respectively—then you can solve the system for X by
decomposing the Input Matrix A into its lower and upper triangular matrices, L and U,
such that

AX = LZ = Y,

and

Z = UX

can be an alternate representation of the original system. Notice that Z is also an n
element vector.

Triangular systems are easy to solve using recursive techniques. Consequently, when you
obtain the L and U matrices from A, you can find Z from the LZ = Y system and X from
the UX = Z system.

When , A can be decomposed to an orthogonal matrix Q, and an upper triangular
matrix R, so that A=QR, and the linear system can be represented by QRX=Y. You can
then solve RX=QHY.

You can easily solve this triangular system to get X using recursive techniques.

Note: You cannot always determine beforehand whether the matrix is singular,

especially with large systems. The Inverse Matrix VI detects singular

matrices and returns an error, so you do not need to verify whether you

have a valid system before using this VI.

The numerical implementation of the matrix inversion is numerically intensive and,
because of its recursive nature, is also highly sensitive to round-off error introduced by

m n>

m n≠

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-22 © National Instruments Corporation

the floating-point numeric coprocessor. Although the computations use the maximum
possible accuracy, the VI cannot always solve for the system.

Note: This VI is not available with Base packages of LabVIEW.

Solve Linear Equations
Solves a real linear system AX=Y.

Let A be an m-by-n matrix that represents the Input Matrix, Y be the set of m coefficients
in Known Vector, and X be the set of n elements in Solution Vector that solves the
system

AX = Y.

When m>n, the system has more equations than unknowns, so it is an overdetermined
system. The solution that satisfies AX=Y may not exist, so the VI finds the least square
solution X, which minimizes .

When m<n, the system has more unknowns than equations, so it is an underdetermined
systems. It may have infinite solutions that satisfy AX=Y. The VI finds one of these
solutions.

In the case of m=n, if A is a nonsingular matrix–no row or column is a linear combination
of any other row or column, respectively–then you can solve the system for X by
decomposing the input matrix A into its lower and upper triangular matrices, L and U,
such that

AX = LZ = Y,

and

Z = UX

can be an alternate representation of the original system. Notice that Z is also an n
element vector.

Triangular systems are easy to solve using recursive techniques. Consequently, when you
obtain the L and U matrices from A, you can find Z from the LZ = Y system and X from
the UX = Z system.

AX Y–

Chapter 46 Analysis Linear Algebra VIs

© National Instruments Corporation 46-23 LabVIEW Function and VI Reference Manual

In the case of , A can be decomposed to an orthogonal matrix Q and an upper
triangular matrix R, so that A=QR. The linear system can then be represented by QRX=Y.
You can then solve RX=QTY.

You can easily solve this triangular system to get x using recursive techniques.

Note: You cannot always determine beforehand whether the matrix is singular,

especially with large systems. The Inverse Matrix VI detects singular

matrices and returns an error, so you do not need to verify whether you

have a valid system before using this VI.

The numerical implementation of the matrix inversion is numerically intensive and,
because of its recursive nature, is also highly sensitive to round-off error introduced by
the floating-point numeric coprocessor. Although the computations use the maximum
possible accuracy, the VI cannot always solve the system.

SVD Factorization

Performs the singular value decomposition (SVD) of a given m-by-n real matrix A, with
m>n.

SVD produces three matrices U,S0, and V so that A = US0VT, where U and VT are
orthogonal matrices, S0 is an n-by-n diagonal matrix with the elements of array S on the
diagonal in decreasing order.

Test Complex Positive Definite
Tests whether the Input Matrix is a Positive Definite matrix.

m n≠

Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-24 © National Instruments Corporation

Test Positive Definite

Tests whether the Input Matrix is a Positive Definite matrix.

Trace

Finds the trace of Input Matrix.

Let A be a square matrix that represents Input Matrix and tr(A) be trace. The trace of
A is the sum of the main diagonal elements of A

,

where n is the dimension of Input Matrix.

tr A() aii

i 0=

n 1–

∑=

© National Instruments Corporation 47-1 LabVIEW Function and VI Reference Manual

Chapter

47Analysis Array Operation VIs

This chapter describes the VIs that perform common, one- and
two-dimensional numerical array operations.

The following illustration shows the Array Operations palette, which
you access by selecting Functions»Analysis»Array Operations.

Array Operation VI Descriptions

The following Array Operation VIs are available.

Chapter 47 Analysis Array Operation VIs

LabVIEW Function and VI Reference Manual 47-2 © National Instruments Corporation

1D Linear Evaluation
Performs a linear evaluation of the input array X.

The output array Y[i] = X[i]*a + b is given by

,

where a is the multiplicative scale constant, and b is the additive constant offset.

1D Polar To Rectangular
Converts two arrays of polar coordinates into two arrays of rectangular coordinates,
according to the following formulas:

x = magnitude cos(phase)

y = magnitude sin(phase).

Note: This VI is not available with Base packages of LabVIEW.

1D Polynomial Evaluation
Performs a polynomial evaluation of X using Coefficients: a.

The output array Y is given by

,

where m denotes the polynomial order.

Y aX b+=

Y anX
n

n 0=

m

∑=

Chapter 47 Analysis Array Operation VIs

© National Instruments Corporation 47-3 LabVIEW Function and VI Reference Manual

1D Rectangular To Polar
Converts two arrays of rectangular coordinates into two arrays of polar coordinates,
according to the following formulas:

magnitude =

phase = tan–1 .

2D Linear Evaluation
Performs a linear evaluation of the two-dimensional input array X.

The two-dimensional output array Y = X*a + b is given by

,

where a denotes the multiplicative constant, and b denotes the additive constant.

2D Polynomial Evaluation
Performs a polynomial evaluation of the two-dimensional input array X using
Coefficients a.

The two-dimensional output array Y is given by

,

where m denotes the polynomial order.

x2 y2+

y

x
-- 

 

Y Xa b+=

Y anX
n

n 0=

m

∑=

Chapter 47 Analysis Array Operation VIs

LabVIEW Function and VI Reference Manual 47-4 © National Instruments Corporation

Normalize Matrix
Normalizes the 2D input Matrix using its statistical profile (µ, σ), where µ is the mean
and σ is the standard deviation, to obtain a Normalized Matrix whose statistical profile
is (0,1).

The VI obtains Normalized Matrix using

,

,

,

where B represents the 2D output sequence Normalized Matrix, A represents the 2D
input sequence Matrix with n rows and m columns, and aij is the element of A on the ith
row and jth column.

Normalize Vector
Normalizes the input Vector using its statistical profile (µ,σ), where µ is the mean and
σ is the standard deviation, to obtain a Normalized Vector whose statistical profile is
(0,1).

The VI obtains Normalized Vector using

B
A µ–

σ-------------=

µ

aij

j 0=

m 1–

∑
i 0=

n 1–

∑
n • m

--------------------------=

σ j 0=

m 1–

∑ aij µ–()2

i 0=

n 1–

∑
n • m

--=

Chapter 47 Analysis Array Operation VIs

© National Instruments Corporation 47-5 LabVIEW Function and VI Reference Manual

,

,

,

where Y represents the output sequence Normalized Vector, and X represents the input
sequence Vector of length n, and xi is the ith element of X.

Quick Scale 1D

Determines the maximum absolute value of the input array X and then scales X using this
value.

The output array Y[i] = X[i]/Max|X| is given by

,

where s is the maximum absolute value in X.

You can use this VI to normalize sequences within the range [–1:1]. This VI is
particularly useful if the sequence is a zero mean sequence.

Y
X µ–

σ-------------=

µ

xi

i 0=

∑
n

-------------=

σ i 0=

n 1–

∑ xi µ–()2

n
---------------------------------=

Y
X

s
---=

Chapter 47 Analysis Array Operation VIs

LabVIEW Function and VI Reference Manual 47-6 © National Instruments Corporation

Quick Scale 2D
Determines the maximum absolute value of the input array X and then scales X using this
value.

The output array Yij = Xij/Max{X} is given by

,

where s denotes the maximum absolute value in X.

You can use this VI to normalize sequences within the range [–1:1]. This VI is
particularly useful if the sequence is a zero mean sequence.

Scale 1D
Determines scale and offset and then scales the input array X using these values.

The output array Y is given by

,

scale = 0.5(max – min), and offset = min + scale, where max denotes the maximum value
in X, and min denotes the minimum value in X.

You can use this VI to normalize any numerical sequence with the assurance that the
range of the output sequence is [–1:1].

Y
X

s
---=

Y
X offset–

scale
------------------------=

Chapter 47 Analysis Array Operation VIs

© National Instruments Corporation 47-7 LabVIEW Function and VI Reference Manual

Scale 2D
Determines scale and offset and then scales X using these values.

The two-dimensional output array Y = (X – offset)/scale is given by

,

scale = 0.5(max – min), and offset = min + 0.5 scale, where max denotes the maximum
value in X, and min denotes the minimum value in X.

You can use this VI to normalize any numerical sequence with the assurance that the
range of the output sequence is [–1:1].

Unit Vector
Finds the norm of the Input Vector and obtains its corresponding Unit Vector by
normalizing the original Input Vector with its norm.

Let X represent the input Input Vector; norm is given by

,

where ||X|| is norm, and the VI calculates Unit Vector, U, using

.

Y
X offset–

scale
-----------------------=

X x0
2

x1
2

... xn 1–
2

+ + +=

U
X

X
--------=

© National Instruments Corporation 48-1 LabVIEW Function and VI Reference Manual

Chapter

48
Analysis Additional
Numerical Method VIs

This chapter describes the VIs that use numerical methods to perform
root-finding, numerical integration, and peak detection.

The following illustration shows the Additional Numerical Methods
palette, which you access by selecting
Functions»Analysis»Additional Numerical Methods.

Additional Numerical Method VI Descriptions

The following Additional Numerical Method VIs are available.

Complex Polynomial Roots
Finds the complex roots of a complex polynomial.

Chapter 48 Analysis Additional Numerical Method VIs

LabVIEW Function and VI Reference Manual 48-2 © National Instruments Corporation

This VI uses a modified, complex Newton method to determine the n complex roots
(some of which may be real, with a zero imaginary part), of the general complex
polynomial:

a0+a1x+a2x2+...+an–1xn–1+anxn.

Numeric Integration
Performs a numeric integration on the input array of data using one of four, popular
numeric integration methods.

Note: If the number of points provided for a certain chosen method does not

contain an integral number of partial sums, then the method is applied for

all possible points. For the remaining points, the next possible lower order

method is used. For example, if the Bode method is selected, the following

table shows what this VI evaluates for different numbers of points:

So, if 227 points were provided and the Bode Method was chosen, the VI would arrive at
the result by performing 56 Bode Method partial evaluations and one Simpsons’ 3/8
Method evaluation.

Each of the methods depend on the sampling interval (dt) and compute the integral using
successive applications of a basic formula in order to perform partial evaluations, which
depend on some number of adjacent points. The number of points used in each partial
evaluation represents the order of the method. The result is the summation of these
successive partial evaluations.

Number of Points Partial Evaluations Performed

224 56 Bode

225 56 Bode, 1 Trapezoidal

226 56 Bode, 1 Simpsons’

227 56 Bode, 1 Simpsons’ 3/8

228 57 Bode

Chapter 48 Analysis Additional Numerical Method VIs

© National Instruments Corporation 48-3 LabVIEW Function and VI Reference Manual

 ,

where j is a range dependent on the number of points and the method of integration.

The basic formulas for the computation of the partial sum of each rule in ascending
method order are:

Trapezoidal: (x[i] + x[i+1])*dt, k = 1

Simpsons’: (x[2i] + 4x[2i+1] + x[2i+2])*dt/3, k = 2

Simpsons’ 3/8: (3x[3i] + 9x[3i+1] + 9x[3i+2] + 3x[3i+3]) * dt/8, k = 3

Bode: (14x[4i] + 64x[4i+1] + 24x[4i+2] + 64x[4i+3] + 14x[4i+4])*dt/45, k = 4
 for i = 0, k, 2k, 3k, 4k..., Integral Part of [(N–1)/k]

where N is the number of data points, k is an integer dependent on the method, and x is
the input array.

Peak Detector
Finds the location, amplitude, and second derivative of peaks or valleys in the input array.

The data set can be passed to the VI as a single array or as consecutive blocks of data.

This VI is based on an algorithm that fits a quadratic polynomial to sequential groups of
data points. The number of data points used in the fit is specified by width.

For each peak or valley, the quadratic fit is tested against the threshold level: peaks with
heights lower than the threshold or valleys with troughs higher than the threshold are
ignored. peaks/valleys are detected only after approximately width/2 data points have
been processed beyond peaks/valleys locations. This delay has implications only for real
time processing.

result f t()dt

t0

t1

∫ partial sums

j

∑≈
 
 
 
 

=

Chapter 48 Analysis Additional Numerical Method VIs

LabVIEW Function and VI Reference Manual 48-4 © National Instruments Corporation

The VI must be notified when the first and last blocks are passed into the VI, so that the
VI can initialize and then release data internal to the peak detection algorithm.

Threshold Peak Detector
Analyzes the input sequence X for valid peaks and keeps a count of the number of peaks
encountered and a record of Indices, which locates the points that exceed the threshold
in a valid peak. A peak is valid where the elements of X exceed the threshold and then
return to a value less than or equal to the threshold, and the number of elements that
exceed the threshold is at least equal to width.

© National Instruments Corporation 49-1 LabVIEW Function and VI Reference Manual

Chapter

49
Introduction to LabVIEW
Communication VIs and
Functions

This chapter introduces the way LabVIEW handles networking and
interapplication communications, and introduces the Communication
functions and VIs, descriptions of which comprise Chapter 50 to
Chapter 55.

You can find the Communication VIs in the Functions palette from your
block diagram in LabVIEW. The Communication VIs are located near
the middle of the Functions palette.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-2 © National Instruments Corporation

To access the Communications palette, select
Functions»Communications, as shown in the following illustration.

The Communications palette consists of the following subpalettes:

• TCP

• UDP

• DDE (Windows only)

• OLE (Windows only)

• HiQ

If you have LabVIEW for the Macintosh, the following additional
subpalettes are available:

• Apple Event

• Program to Program Communications

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-3 LabVIEW Function and VI Reference Manual

If you have a computer running a UNIX operating system and
LabVIEW, the following additional subpalette is available:

• Named Pipes

LabVIEW for Windows and LabVIEW for UNIX also include the
System Exec VI.

You can find information about these LabVIEW features online by
using the LabVIEW Help window (Help»Show Help). When you place
the cursor on a VI icon, the wiring diagram and parameter names for
that VI appear in the Help window. You can also find information for
front panel controls or indicators by placing the cursor over the control
or indicator with the Help window open.

In addition to the Help window, LabVIEW has more extensive online
information available. To access this information, select Help»Online
Reference. For most block diagram objects, you can select Online
Reference from the object’s pop-up menu to access the online
description.

LabVIEW Communication VIs and Functions Overview

For the purpose of this discussion, networking refers to communication
between multiple processes. The processes can optionally run on
separate computers. This communication usually occurs over a
hardware network, such as ethernet or LocalTalk.

One main use for networking in software applications is to allow one or
more applications to use the services of another application. For
example, the application providing services (the server) could be either
a data collection application running on a dedicated computer, or a
database program providing information for other applications.

The purpose of this discussion is to introduce you to the terminology
used in networking and communication applications, and to give you an
overview of how to program networked applications.

Introduction to Communication Protocols

For communication between processes to work, the processes must use
a common communications language, referred to as a protocol.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-4 © National Instruments Corporation

A communication protocol lets you specify the data that you want to
send or receive and the location of the destination or source, without
having to worry about how the data gets there. The protocol translates
your commands into data that network drivers can accept. The network
drivers then take care of transferring data across the network as
appropriate.

Several networking protocols have emerged as accepted standards for
communications. In general, one protocol is not compatible with a
different protocol. Thus, in communication applications, one of the first
things you must do is decide which protocol to use. If you want to
communicate with an existing, off the shelf application, then you have
to work within the protocols supported by that application.

When you are actually writing the application, you have more
flexibility in choosing a protocol. Factors that affect your protocol
choice include the type of machines the processes will run on, the kind
of hardware network you have available, and the complexity of the
communication that your application will need.

Several protocols are built into LabVIEW, some of which are specific
to a type of computer. LabVIEW uses the following protocols to
communicate between computers:

• TCP—Available on all computers

• UDP—Available on all computers

• DDE—Available on the PC, for communication between Windows
applications

• OLE—Available for use with Windows 95 and Windows NT

• AppleEvents—Available on the Macintosh, for sending messages
between Macintosh applications

• PPC—Available on the Macintosh, for sending and receiving data
between Macintosh applications

Each protocol is different, especially in the way they refer to the
network location of a remote application. They are incompatible with
each other, so if you want to communicate between a Macintosh and a
PC, you must use a protocol compatible with both, such as TCP.

Other communication options provided by LabVIEW include:

• System Exec VI, which allows you to execute a system level
command. There are actually two System Exec VIs, one for use
with all versions of Windows, the other with Sun and HP-UX.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-5 LabVIEW Function and VI Reference Manual

• Named Pipes, available on UNIX only

• HiQ®, available on the Macintosh and PC only

File Sharing vs Communication Protocols

Before you get too deeply involved in communication protocols,
consider whether another approach is more appropriate for your
application. For instance, consider an application where a dedicated
system acquires data and you want the data recorded on a different
computer.

You could write an application that uses networking protocols to send
data from the acquisition computer to the data repository machine,
where a separate application collects the data and stores it on disk.

A simpler method is to use the filesharing capabilities available on most
networked computers. With filesharing, drivers that are part of the
operating system let you connect to other machines. The remote
machine’s disk storage is treated as an extension of your own disk
storage. Once you connect two systems, filesharing usually makes this
connection transparent, so that any application can write to the remote
disk as if connected locally.

Filesharing is frequently the simplest method for transferring data
between machines.

Client/Server Model

The client/server model is a common model for networked applications.
In the client/server model, one set of processes (clients) request services
from another set of processes (servers).

For example, in your application you could set up a dedicated computer
for acquiring measurements from the real world. The computer acts as
a server when it provides data to other computers on request. It acts as
a client when it requests another application, such as a database
program, to record the data that it acquires.

In LabVIEW, you can use client and server applications with all
protocols except Macintosh AppleEvents. You can use AppleEvents to
send commands to other applications. You cannot set up a command

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-6 © National Instruments Corporation

server in LabVIEW using AppleEvents. If you need server capabilities
on the Macintosh, use either TCP, UDP or PPC.

A General Model for a Client
The following block diagram shows what a simplified model for a client
looks like in LabVIEW.

In the preceding diagram, LabVIEW first opens a connection to a
server. It then sends a command to the server, gets a response back, and
closes the connection to the server. Finally, it reports any errors that
occurred during the communication process.

For higher performance, you can process multiple commands once the
connection is open. After the commands are executed, you can close the
connection.

This basic block diagram structure serves as a model and is used
elsewhere in this manual to demonstrate how to implement a given
protocol in LabVIEW.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-7 LabVIEW Function and VI Reference Manual

A General Model for a Server
The following block diagram shows a simplified model for a server in
LabVIEW.

In the preceding diagram, LabVIEW first initializes the server. If the
initialization is successful, LabVIEW goes into a loop, where it waits
for a connection. Once the connection is made, LabVIEW waits to
receive a command. LabVIEW executes the command and returns the
results. The connection is then closed. LabVIEW repeats this entire
process until it is shut down locally by pressing a stop button on the
front panel, or remotely by sending a command to shut the VI down.

This VI does not report errors. It may send back a response indicating
that a command is invalid, but it does not display a dialog when an error
occurs. Because a server might be unattended, consider carefully how
the server should handle errors. You probably do not want a dialog box
to be displayed, because that requires user interaction at the server
(someone would have to press the OK button). However, you might
want LabVIEW to write a log of transactions and errors to a file or a
string.

You can increase performance by allowing the connection to stay open,
so that you can receive multiple commands, but this blocks others
clients from connecting until the current client disconnects. If the
protocol supports multiple simultaneous connections, you can

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-8 © National Instruments Corporation

restructure LabVIEW to handle multiple clients simultaneously, as
shown in the following diagram.

The preceding diagram uses LabVIEW’s multitasking capabilities to
run two loops simultaneously. One loop continuously waits for a
connection. When a connection is received, it is added to a queue. The
other loop checks each of the open connections and executes any
commands that have been received. If an error occurs on one of the
connections, the connection is disconnected. When the user aborts the
server, all open connections are closed. This basic block diagram
structure is a model which is used elsewhere in this manual to
demonstrate how to implement a given protocol in LabVIEW.

TCP/IP (all platforms)

TCP/IP is a suite of communication protocols, originally developed for
the Defense Advanced Research Projects Agency (DARPA). Since its
development, it has become widely accepted, and is available on a
number of computer systems.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-9 LabVIEW Function and VI Reference Manual

The name TCP/IP comes from two of the best known protocols of the
suite, the Transmission Control Protocol (TCP) and the Internet
Protocol (IP). TCP, IP, and the User Datagram Protocol (UDP) are the
basic tools for network communication.

TCP/IP enables communication over single networks or multiple
interconnected networks, which are known as an internetwork or
internet. The individual networks can be separated by great
geographical distances. TCP/IP routes data from one network or
internet computer to another. Because TCP/IP is available on most
computers, it can transfer information between diverse systems.

Internet Protocol (IP) transmits data across the network. This low level
protocol takes data of a limited size and sends it as a datagram across
the network. IP is rarely used directly by applications, because it does
not guarantee that the data will arrive at the other end. Also, when you
send several datagrams they sometimes arrive out of order, or are
delivered multiple times, depending on how the network transfer
occurs. UDP, which is built on top of IP, has similar problems.

TCP is a higher level protocol that uses IP to transfer data. TCP breaks
data into components that IP can manage. It also provides error
detection and ensures that data arrives in order without duplication. For
these reasons, TCP is usually the best choice for network applications.

Internet Addresses
Each host on an IP network has a unique 32-bit internet address. This
address identifies the network on the internet to which the host is
attached, and the specific computer on that network. You use this
address to identify the sender or receiver of data. IP places the address
in the datagram headers, so that each datagram is routed correctly.

One way of describing this 32-bit address is the IP dotted decimal
notation. This divides the 32-bit address into four 8-bit numbers. The
address is written as the four integers, separated by decimal points. For
example, the 32-bit address

10000100 00001101 00000010 00011110

is written in dotted decimal notation as

132.13.2.30

Another way of using the 32-bit address is by names that are mapped to
the IP address. Network drivers usually perform this mapping by

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-10 © National Instruments Corporation

consulting a local hosts file that contains name to address mappings, or
consulting a larger database using the Domain Name System to query
other computer systems for the address for a given name. Your network
configuration dictates the exact mechanism for this process, which is
known as hostname resolution.

Setup

Before you can use TCP/IP, you need to make sure that you have the
right setup. This setup varies, depending on the computer you use.

Setup for Your System

UNIX
TCP/IP support is built-in. Assuming your network is configured
properly, no additional setup for LabVIEW is necessary.

Macintosh
TCP/IP is built in to Macintosh operating system version 7.5 and later.
To use TCP/IP with an earlier system, you need to install the MacTCP
driver software, available from the Apple Programmer Developer
Association (APDA). You can contact APDA at (800) 282-2732 for
information on licensing the MacTCP driver. LabVIEW also works
with Open Transport.

Windows 3.x
To use TCP/IP, you must install an ethernet board along with its
low-level driver. In addition, you must purchase and install TCP/IP
software that includes a Windows Sockets (WinSock) DLL conforming
to standard 1.1. WinSock is a standard interface that enables application
communication with a variety of network drivers. Several vendors
provide network software that includes the WinSock DLL. Install the
ethernet board, the board drivers, and the WinSock DLL according to
the software vendor instructions.

Several vendors supply WinSock drivers that work with a number of
boards. You can contact the vendor of your board to inquire if they offer
a WinSock DLL you can use with the board. Install the WinSock DLL
according to vendor instructions.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-11 LabVIEW Function and VI Reference Manual

National Instruments has tested a number of WinSock DLLs to verify
which work correctly. These tests showed that many DLLs do not fully
comply with the standard, so you may want to try a demo version of a
DLL before you buy the real version. You can usually obtain a demo
version from the manufacturer. Most demo versions are fully
functional, but they expire after a certain amount of time.

If you have access to the internet, several of these demos are available
by anonymous ftp from sunsite.unc.edu. in the directory
/pub/micro/pc-stuff/ms-windows/winsock/packages. Refer to
your LabVIEW Release Notes for a detailed list of WinSock DLLs
tested by National Instruments.

Windows 95 and Windows NT
TCP support is built-in to Windows NT. You do not need to use a
third-party DLL to communicate using TCP.

LabVIEW and TCP/IP
You can use the TCP/IP suite of protocols with LabVIEW on all
platforms. LabVIEW has a set of TCP and UDP VIs that you can use to
create client or server VIs.

TCP versus UDP
If you are writing both the client and server, and your system can use
TCP/IP, then TCP is probably the best protocol to use because it is a
reliable, connection-based protocol. UDP is a connectionless protocol
with higher performance, but it does not ensure reliable transmission of
data.

TCP Client Example
The following discussion is a generalized description of how to use the
components of the Client block diagram model with the TCP protocol.

Use the TCP Open Connection VI to open a connection to a server. You
must specify the internet address of the server, as well as the port for
the server. The address identifies a computer on the network. The port
is an additional number that identifies a communication channel on the
computer that the server uses to listen for communication requests.
When you create a TCP server, you specify the port that you want the
server to use for communication.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-12 © National Instruments Corporation

To execute a command on the server, use the TCP Write VI to send the
command to the server. You then use the TCP Read VI to read back
results from the server. With the TCP Read VI, you must specify the
number of characters you want to read. This can be awkward, because
the length of the response may vary. The server can have the same
problem with the command, because the length of a command can vary.

The following are several methods you can use to address varying sized
commands:

• Precede the command and the result with a fixed size parameter that
specifies the size of the command or result. In this case, read the
size parameter, and then read the number of characters specified by
the size. This option is efficient and flexible.

• Make each command and result a fixed size. When a command is
smaller than the size, you can pad it out to the fixed size.

• Follow each command and result with a specific terminating
character. To read the data, you then need to read data in small
chunks until you get the terminating character.

Use the TCP Close Connection VI to close the connection to the server.

Timeouts and Errors
The preceding section discussed communication protocol for the server.
When you design a network application consider carefully what should
happen if something fails. For example, if the server crashes, how
would each of the client VIs handle it?

One solution is to make sure that each VI has a timeout. This way, if
something fails to produce results, after a certain amount of time, the
client will continue execution. In continuing, the client can try to
reestablish execution, or it can report the error, and if necessary, shut
the client application down gracefully.

TCP Server Example
The following discussion explains how you can use TCP to fulfill each
component of the general server model.

No initialization is necessary with TCP, so this step can be left out.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-13 LabVIEW Function and VI Reference Manual

Use the TCP Listen VI to wait for a connection. You must specify the
port that will be used for communication. This port must be the same
port that the client will attempt to connect. For more information, see
the TCP Client Example section in this chapter.

If a connection is established, read from that port to retrieve a
command. As discussed in the TCP Client example, you must decide the
format for commands. If commands are preceded by a length field, first
read the length field, and then read the amount of data indicated by the
length field.

Execution of a command should be protocol independent, because it is
done on the local computer. When finished, pass the results to the next
stage, where they are transmitted to the client.

Use the TCP Write VI to return results. As discussed in the TCP Client
example, the data must be in a form that the client can accept.

Use the TCP Close Connection VI to close the connection.

This step can be left out with TCP, because everything is finished after
you close the connection.

TCP Server with Multiple Connections
TCP handles multiple connections easily. You can use the methods
described in the preceding section to implement the components of a
server with multiple connections.

DDE (Windows Only)

Dynamic Data Exchange (DDE) is a protocol for exchanging data
between Windows applications.

In TCP/IP communications, applications open a line of communication
and then transfer raw data. DDE works at a higher level, where
applications send messages to each other to exchange information. One
simple message is to send a command to another application. Most of
the other messages deal with transferring data, where the data is
referenced by name.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-14 © National Instruments Corporation

A DDE client initiates a conversation with another application (a DDE
server) by sending a connect message. After establishing a connection,
the client can send commands to the server and change or request the
value of data that the server manages.

A client can request data from a server by a request or an advise. The
client uses a request to ask for the current value of the data. If a client
wants to monitor a value over a period of time, the client must request
to be advised of changes. By asking to be advised of data value, the
client establishes a link between the client and server through which the
server notifies the client when the data changes. The client can stop
monitoring the value of the data by telling the server to stop the advise
link.

When the DDE communication for a conversation is complete, the
client sends a close conversation message to the server.

DDE is most appropriate for communication with standard off the shelf
applications such as Microsoft Excel.

With LabVIEW you can create VIs that act as clients to other
applications (meaning they request or send data to other applications).
You can also create VIs that act as servers that provide named
information for access by other applications. As a server, LabVIEW
does not use connection-based communication. Instead, you provide
named information to other applications, which can then read or set the
values of that information by name.

Services, Topics, and Data Items
With TCP/IP, you identify the process you want to talk to by its
computer address and a port number. With DDE, you identify the
application you want to talk to by referencing the name of a service and
a topic. The server decides on arbitrary service and topic names. A
given server generally uses its application name for the service, but not
necessarily. That server can offer several topics that it is willing to
communicate. With Excel, for example, the topic might be the name of
a spreadsheet.

To communicate with a server, first find the names of the service and
topic that you want to discuss. Then open a conversation using these
two names to identify the server.

Unless you are going to send a command to the server, you usually work
with data items that the server is willing to talk about. You can treat

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-15 LabVIEW Function and VI Reference Manual

these as a list of variables that the server lets you manipulate. You can
change variables by name, supplying a new value for the variable. Or,
you can request the values of variables by name.

Examples of Client Communication with Excel
Each application that supports DDE has a different set of services,
topics, and data items that it can talk about. For example, two different
spreadsheet programs can take very different approaches to how they
specify spreadsheet cells. To find out what a given application supports,
consult the documentation that came with that application.

Microsoft Excel, a popular spreadsheet program for Windows, has DDE
support. You can use DDE to send commands to Excel. You can also
manipulate and read spreadsheet data by name. For more information
on how to use DDE with Excel, refer to the Microsoft Excel User’s

Guide 2.

With Excel, the service name is Excel. For the topic, you use the name
of an open document, such as spreadsheet document, or the word
System.

If you use the name System, you can request information about the
status of Excel, or send general commands to Excel (commands that are
not directed to a specific spreadsheet). For instance, for the topic
System, Excel will talk about items such as Status, which will have a
value of Busy if Excel is busy, or Ready if Excel is ready to execute
commands). Another, more useful data item you can use when the topic
is Status is Topics, which returns a list of topics Excel will talk about,
including all open spreadsheet documents and the System topic.

The following VI shows how you can use the Topics command in
LabVIEW. The value returned is a string containing the names of the
open spreadsheets and the work Excel.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-16 © National Instruments Corporation

Another way you can use the System topic with Excel is to instruct
Excel to open a specific document. To do this, you use the DDE
Execute.vi to send an Excel Macro to Excel that instructs Excel to open
the document, as shown in the following LabVIEW diagram.

After you open a spreadsheet file, you can send commands to the
spreadsheet to read cell values. In this case, your topic is the
spreadsheet document name. The item is the name of a cell, a range of
cells, or a named section of a spreadsheet. For example, in the following
diagram LabVIEW can retrieve the value in the cell at row one column
one. It then acquires a sample from the specified channel, and sends the
resulting sample back to Excel.

LabVIEW VIs as DDE Servers
You can create LabVIEW VIs that act as servers for data items. The
general concept is that a LabVIEW VI indicates that it is willing to
provide information regarding a specific service in topic. LabVIEW can
use any name for the service and topic name. It might specify the
service name to be the name of the application (LabVIEW), and the topic
name to be either the name of the Server VI, or a general classification
for the data it provides, such as Lab Data.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-17 LabVIEW Function and VI Reference Manual

The Server VI then registers data items for a given service that it will
talk about. LabVIEW remembers the data names and their values, and
handles communication with other applications regarding the data.
When the server VI changes the value of data that is registered for DDE
communication, LabVIEW notifies any client applications that have
requested notification concerning that data. In the same way, if another
application sends a Poke message to change the value of a data item,
LabVIEW changes this value.

You cannot use the DDE Execute Command with a LabVIEW VI acting
as a server. If you want to send a command to a VI, you must send the
command using data items.

Also, notice that LabVIEW does not currently have anything like the
System topic that Excel provides. The LabVIEW application is not
itself a server to which you can send commands or request status
information. It is important to understand that LabVIEW VIs act as
servers and that at this time LabVIEW does not itself provide any
services to other applications.

The following example shows how to create a DDE Server VI that
provides data to other client applications. In this case, the data is a
random number. You can easily replace the random number with real
world data from data acquisition boards or devices connected to the
computer by GPIB, VXI, or serial connections.

The VI in the preceding diagram registers a server with LabVIEW. The
VI registers an item that it is willing to provide to clients. In the loop,
the VI periodically sets the value of the item. As mentioned earlier,
LabVIEW notifies other applications that data is available. When the
loop is complete, the VI finishes by unregistering the item and
unregistering the server.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-18 © National Instruments Corporation

The clients for this VI can be any applications that understand DDE,
including other LabVIEW VIs. The following diagram illustrates a
client to the VI shown in the previous diagram. It is important that the
service, topic, and item names are the same as the ones used by the
server.

Requesting Data versus Advising Data
The previous client example used the DDE Request VI in a loop to
retrieve data. With DDE Request, the data is retrieved immediately,
regardless of whether you have seen the data before. If the server and
the client do not loop at exactly the same rate, you can duplicate or miss
data.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-19 LabVIEW Function and VI Reference Manual

One way to avoid duplicating data is to use the DDE Advise VIs to
request notification of changes in the value of a data item. The
following diagram shows how you can implement this scheme.

In the preceding diagram, LabVIEW opens a conversation. It then uses
the DDE Advise Start VI to request notification of changes in the value
of a data item. Every time through the loop, LabVIEW calls the DDE
Advise Check VI, which waits for a data item to change its value. When
the loop is finished, LabVIEW ends the advise loop by calling the DDE
Advise Stop VI, and closing the conversation.

Synchronization of Data
The client server examples in the preceding section work well for
monitoring data. However, in these examples there is no assurance that
the client receives all the data that the server sends. Even with the DDE
Advise loop, if the client does not check for a data change frequently
enough, the client can miss a data value that the server provided.

In some applications, missed data is not a problem. For example, if you
are monitoring a data acquisition system, missed data may not cause
problems when you are observing general trends. In other applications,
you may want to ensure that no data is missed.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-20 © National Instruments Corporation

One major difference between TCP and DDE is that TCP queues data
so that you do not miss it and you get it in the correct order. DDE does
not provide this service.

In DDE, you can set up a separate item, which the client uses to
acknowledge that it has received the latest data. You then update the
acquired data item to contain a new point only when the client
acknowledges receipt of the previous data.

For example, you can modify the server example shown in the
Requesting Data versus Advising Data section of this chapter to set a
state item to a specific value after it has updated the acquired data item.
The server then monitors the state item until the client acknowledges
receipt of data. This modification is shown in the following block
diagram.

A client for this server, as shown in the following diagram, monitors the
state item until it changes to data available. At that point, the client

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-21 LabVIEW Function and VI Reference Manual

reads the data from the acquired data item provided by the server, and
then updates the state item to data read value.

This technique makes it possible to synchronize data transfer between a
server and a single client. However, it has some shortcomings. First,
you can have only one client. Multiple clients can conflict with one
another. For example, one client might receive the data and
acknowledge it before the other client notices that new data is
available.You can build more complicated DDE diagrams to deal with
this problem, but they quickly become awkward. For applications that
involve only a single client, this is not a problem.

 Another problem with this technique of synchronizing communication
is that the speed of your acquisition becomes controlled by the rate at
which you transfer data. You can address this issue by breaking the
acquisition and the transmission into separate loops. The acquisition
can queue data which the transmission loop would send. This is similar
to the TCP Server example in which the server handles multiple
connections.

If your application needs reliable synchronization of data transfer, you
may want to use TCP/IP instead, because it provides queueing,

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-22 © National Instruments Corporation

acknowledgment of data transfer, and support for multiple connections
at the driver level.

Networked DDE
You can use DDE to communicate with applications on the same
computer or to communicate over the network with applications on
different computers. To use networked DDE, you must be running
Windows for Workgroups 3.1 or greater, Windows 95, or Windows NT.
The standard version of Windows 3.1 does not support networked DDE.

Each computer under Windows for Workgroups has a network
computer name. You configure this name using the Network control
panel.

When you communicate over the network, the meaning of the service
and topic strings change. The service name changes to indicate that you
want to use networked DDE, and includes the name of the computer you
want to communicate with. The service name is of the following form:

\\computer-name\ndde$

You can supply any arbitrary name for the topic. You then edit the
SYSTEM.INI file to associate this topic name with the actual service and
topic that will be used on the remote computer. This configuration also
includes parameters that configure the network connection. Following
is an example of what this section would look like:

[DDE Shares]

topicname = appname, realtopic, ,31,,0,,0,0,0

The topicname is the name that your client VI uses for the topic.
Appname is the name of the remote application. With networked DDE,
this must be the same as the service name. Realtopic is the topic to use
on the remote computer. The remaining parameters configure the way
DDE works. Use the parameters as listed in the preceding example. The
meaning of these parameters is not documented by Microsoft.

For example, if you want two computers running LabVIEW to
communicate using networked DDE, the server needs to use LabVIEW
for the service name, and a name, such as labdata, for the topic.

Assuming the server computer name is Lab, the client tries to open a
conversation using the \\Lab\ndde$ for the service. For the topic, the
client can use a name of remotelab.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-23 LabVIEW Function and VI Reference Manual

For this to work, you must edit the SYSTEM.INI file of the server
computer to have the following line in the [DDEShares] section:

remotelab=LabVIEW,labdata,,31,,0,,0,0,0

For Windows NT, launch DDEShare.exe, which is located in the
winnt/system 32 directory. Choose Shares»DDE Shares… and then
select Add a Share… to register the service name and topic name on the
server.For more information, see the Using NetDDE section of
Chapter 52, DDE VIs.

OLE Automation (Windows Only)

OLE (Object Linking and Embedding) Automation is a protocol for
accessing the functions and methods of one Windows application and
making them available for use by another Windows application. OLE
Automation works with Windows 95 and Windows NT only, not
Windows 3.x.

If an application exposes objects and provides a method of operating on
those objects, it is called an OLE automation server. Applications that
use the methods exposed by another application are OLE automation

clients/controllers.

LabVIEW contains VIs that enable it to become an automation client.
Helper VIs are provided.

AppleEvents (Macintosh Only)

AppleEvents is a Macintosh specific protocol that allows applications
to communicate with each other. As with DDE, it is a protocol in which
applications use a message to request actions or return information from
other applications. An application can send a message to itself, an
application on the same computer, or an application running on a
computer elsewhere on the network.

You can use AppleEvents to send other commands to other
applications, such as open or print, or to send data requests, such as
spreadsheet information.

LabVIEW contains VIs for sending some of commands common to
most applications. The VIs are easy to use, and do not require detailed
knowledge of how AppleEvents work.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-24 © National Instruments Corporation

These VIs use the low level AESend VI to send AppleEvents. Apple has
defined a large vocabulary for messages to help standardize
AppleEvent communication. You can combine words in this vocabulary
to build complex messages. You can use this VI to send arbitrary
AppleEvents to other applications. However, creating and sending
AppleEvents at this level is complicated and requires detailed
understanding of AppleEvents. See Inside Macintosh and the AppleEvent

Registry.

Client Server Model
You cannot use the AppleEvent VIs to create LabVIEW diagrams that
behave as servers. The VIs are used to send messages to other
applications. If you need diagram-based server capabilities, you must
use TCP or PPC.

LabVIEW itself acts as an AppleEvent server, in that it understands and
responds to a set of AppleEvents. Specifically, using AppleEvents, you
can instruct LabVIEW to open VIs, print them, run them, and close
them. You can ask LabVIEW whether a given VI is running. You can
also tell LabVIEW to quit.

Using these server capabilities, you can instruct other LabVIEW
applications to run VIs, and control LabVIEW remotely. You can also
command LabVIEW to send messages to itself, instructing the loading
of specific VIs. For example, in large applications where memory is
limited, you can replace subVI calls with calls to the AESend Open,
Run, Close VI to load and run VIs as necessary. Notice that when you
run a VI this way its front panel opens, just as if you had selected
File»Open....

AppleEvent Client Examples

Launching Other Applications
To send a message to an application, that application must be running.
You can use the AESend Finder Open VI to launch another application.
This VI sends a message to the Finder. The Finder is, in itself, an
application that understands a limited number of AppleEvents. The

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-25 LabVIEW Function and VI Reference Manual

following simple example shows how you can use AppleEvents to
launch Teach Text with a specific text file.

If the application is on a remote computer, then you must specify the
location of that computer. You can use inputs to the AESend Finder
Open VI to specify the network zone and the server name of the
computer with which you want to communicate. If the network zone
and server name are not specified, as in the preceding application, they
default to those of the current computer.

Notice that if you try to send messages to another computer, you are
automatically prompted to log onto that computer. There is no method
for avoiding this prompt, because it is built-in to the operating system.
This can cause problems when you want your application to run on an
unattended computer system.

Sending Events to Other Applications
Once an application is running, you can send messages to that
application using other AppleEvents. Not all applications support
AppleEvents, and those that do may not support every published
AppleEvent. To find out which AppleEvents an application supports,
consult the documentation that comes with that application.

If the application understands AppleEvents, you call an AppleEvent VI
with the Target ID for the application. A Target ID is a cluster that
describes a target location on the network (zone, server, and supporting
application). You do not need to worry about the exact structure of this
cluster because LabVIEW provides VIs that you can use to generate a
Target ID.

There are two ways to create a Target ID. You can use the Get Target
ID VI to programmatically create a Target ID based upon the
application name and network location. Or, you can use the PPC
Browser VI, which displays a dialog box listing applications on the
network that are aware of AppleEvents. You interactively select from
this list to create a Target ID.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-26 © National Instruments Corporation

You can also use the PPC Browser VI to find out if another application
uses AppleEvents. If you run the VI and select the computer that is
running the application, the dialog box will list the application if it is
AppleEvent aware.

In the following diagram, LabVIEW interactively selects an
AppleEvent aware application on the network and tells it to open a
document. In this case, LabVIEW is telling the application to open a VI.

Dynamically Loading and Running a VI
The AESend Open, Run, Close VI sends messages asking LabVIEW to
run a VI. First, it sends the Open Document Message and LabVIEW
opens a VI. Then, the Open Run Close VI sends the LabVIEW Run VI
message and LabVIEW runs the specified VI. Next, Open Run Close
sends the VI Active? message, and LabVIEW returns the status of a
specified VI, until the VI is no longer running. Finally, the VI sends the
Close VI message.

Assuming the target LabVIEW is on another computer, you could use
the following diagram to load and run the VI. If you are sending it to the
current LabVIEW, you do not need the PPC Browser VI.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-27 LabVIEW Function and VI Reference Manual

PPC (Macintosh Only)

Program to Program Communication (PPC) is a Macintosh protocol for
transferring blocks of data between applications. You can use it to
create VIs that act as clients or servers. Although supported by all
Macintoshes running System 7.x, it is not commonly used by most
Macintosh applications. Instead, most Macintosh applications use
AppleEvents, a high-level protocol for sending commands between
applications, to communicate.

Although PPC is not as commonly supported as AppleEvents, it does
provide some advantages. Because it is at a lower level, it provides
better performance than AppleEvents. Also, in LabVIEW you can
create VIs that use PPC to act as clients or servers. You cannot create
diagrams that act as AppleEvent servers.

PPC is similar in structure to TCP, in terms of both server and client
applications. The PPC method for specifying a remote application is
different from the TCP method. Other than that, the two protocols
provide similar performance and features. Both protocols handle
queueing and reliable transmission of data. You can use both protocols
with multiple open connections.

In deciding between TCP and PPC, the main point to consider is which
platforms you plan to run your VIs on, and with which platforms you
will communicate. If your application is Macintosh only, PPC is a good
choice, because it is built-in to the operating system. TCP is built-in to
Macintosh operating system version 7.5. To use TCP with an earlier
system you must buy a separate TCP/IP driver from Apple. If buying
the separate driver is not an issue, then you may want to use TCP,
because the TCP interface is simpler than PPC. PPC uses some fairly
complicated data structures to describe addresses.

If your application must communicate with other platforms or run on
other platforms, then you should use TCP/IP.

Ports, Target IDs, and Sessions
To communicate using PPC, both clients and servers must open ports
that they use for subsequent communication. The Open Port VI opens
the port using a cluster that contains, among other things, the name that
you want to use for the port.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-28 © National Instruments Corporation

Ports are used to distinguish between different services that an
application provides. Each application can have multiple ports open
simultaneously.

Each port can support several simultaneous sessions or conversations.
To open a session, a client uses a Target ID indicating the location of
the server. PPC uses the same type of Target ID that the AppleEvent VIs
use. You can use the PPC Browser or the Get Target ID VIs to generate
the Target ID for the remote application.

A server waits for clients to attempt to open a session by using the PPC
Inform Session VI. The server can accept or reject the session by using
the PPC Accept Session VI.

A client can attempt to open a session with a server by using the PPC
Start Session VI.

After the session is started, you can use the PPC Read and PPC Write
VIs to transfer data. You can close a session using PPC End Session,
and you can close a port using the PPC Close Port VI.

PPC Client Example
The following discussion explains how you can use PPC to fulfill each
component of the general Client model.

Use the PPC Open Connection and PPC Open Session VIs to open a
connection to a server. This requires that you specify the Target ID of
the server, which you can get by using either the PPC Browser VI or the
Get Target ID VI. The end result is a port refnum and a session refnum,
which are used to communicate with the server.

To execute a command on the server, use the PPC Write VI to send the
command to the server. Next, use the PPC Read VI to read the results
from the server. With the PPC Read VI, you must specify the number
of characters you want to read. As with TCP, this can be awkward,
because the length of the response can vary. The server can have a
similar problem, because the length of a command may vary.

Following are several methods for addressing the problem of varying
sized commands. These methods can also be used with TCP.

• Precede the command and the result with a fixed size parameter that
specifies the size of the command or result. In this case, read the

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-29 LabVIEW Function and VI Reference Manual

size parameter, and then read the number of characters specified by
the size. This option is efficient and flexible.

• Make each command and result a fixed size. When a command is
smaller than the size, you can pad it out to the fixed size.

• Follow each command and result with a specific terminating
character. To read the data, you then need to read data in small
chunks until you get the terminating character.

Use the PPC Close Session and PPC Close Connection VIs to close the
connection to the server.

PPC Server Example
The following discussion explains how you can use PPC to fulfill each
component of the general Server.

Use PPC Open Port in the initialization phase to open a communication
port.

Use the PPC Inform Session VI to wait for a connection. With PPC, you
can either automatically accept incoming connections, or you can
choose to accept or reject the session by using the PPC Accept Session
VI. This process of waiting for a session and then approving the session
allows you to screen connections.

When a connection is established, you can read from that session to
retrieve a command. As was discussed in the PPC Client Example
section, you must decide the format for commands. If commands are
preceded by a length field, then you need to first read the length field,
and then read that amount of data.

Execution of a command should be protocol independent, because it is
something done on the local computer. When finished, you pass the
results to the next stage, where they are transmitted to the client.

Use the PPC Write VI to return the result. As discussed in the PPC

Client Example section, the data must be formatted in a form that the
client can accept.

Use the PPC Close Session VI to close the connection.

Chapter 49 Introduction to LabVIEW Communication VIs and Functions

LabVIEW Function and VI Reference Manual 49-30 © National Instruments Corporation

Finally, when the server is finished, Use the PPC Close Port VI to close
the port that you opened in the initialization phase.

PPC Server with Multiple Connections
PPC handles multiple sessions and multiple ports easily. The methods
for implementing each component of a server, as described in the
preceding section, also work for a server with multiple connections.

© National Instruments Corporation 50-1 LabVIEW Function and VI Reference Manual

Chapter

50TCP VIs

This chapter discusses Internet Protocol (IP), Transmission Control
Protocol (TCP), and internet addresses, and describes the LabVIEW
TCP VIs. Refer to Chapter 49, Introduction to LabVIEW Communication

VIs and Functions, for an overview of TCP/IP and examples of TCP
client/server applications.

The following illustration shows the TCP palette, which you access by
selecting Functions»Communication»TCP.

For examples of how to use the TCP VIs, see the examples in
examples\comm\tcpex.llb.

Internet Protocol (IP)

Internet Protocol (IP) performs the low-level service of packaging data
into components called datagrams. A datagram contains, among other
things, the data and a header indicating the source and destination
addresses. IP determines the correct path for the datagram to take across
the network or internet, and sends the data to the specified destination.

The original host may not know the complete path that the data will
take. Using the header, any host on the network can route the data to the
destination, either directly or by forwarding it to another host. Because
some systems have different transfer capabilities, IP can fragment

Chapter 50 TCP VIs

LabVIEW Function and VI Reference Manual 50-2 © National Instruments Corporation

datagrams into smaller segments as necessary; when the data arrives at
the destination, IP automatically reassembles the data into its original
form.

IP makes a best-effort attempt to deliver data, but cannot guarantee
delivery. Also, because IP routes each datagram separately, they may
arrive out of sequence. In fact, IP may deliver a single packet more than
once if it is duplicated in transmission. IP does not determine the order
of packets. Instead, higher-level protocols layered above IP order the
packets and ensure reliable delivery. For this reason, IP is rarely used
directly; instead, TCP and UDP, which are built on top of IP, are most
often used to transfer information.

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) ensures reliable transmission
across networks, delivering data in sequence without errors, loss, or
duplication. When you pass data to TCP, it attaches additional
information and gives the data to IP, which puts the data into datagrams
and transmits it. This process reverses at the receiving end, with TCP
checking the data for errors, ordering the data correctly, and
acknowledging successful transmissions. If the sending TCP does not
receive an acknowledgment, it retransmits the data segment.

Using TCP

TCP is a connection-based protocol, which means that sites must
establish a connection before transferring data. TCP permits multiple
simultaneous connections.

You initiate a connection either by waiting for an incoming connection
or by actively seeking a connection with a specified address. In
establishing TCP connections, you have to specify both the address and
a port at that address. A port is represented by a number between 0 and
65535. With UNIX, port numbers less than 1024 are reserved for
privileged applications. Different ports at a given address identify
different services at that address, and make it easier to manage multiple
simultaneous connections.

You can actively establish a connection with a specific address and port
using the TCP Open Connection VI. Using this VI, you specify the
address and port with which you want to communicate. If the

Chapter 50 TCP VIs

© National Instruments Corporation 50-3 LabVIEW Function and VI Reference Manual

connection is successful, the VI returns a connection ID that uniquely
identifies that connection. Use this connection ID to refer to the
connection in subsequent VI calls.

You can use two methods to wait for an incoming connection:

• With the first method, you use the TCP Listen VI to create a listener
and wait for an accepted TCP connection at a specified port. If the
connection is successful, the VI returns a connection ID and the
address and port of the remote TCP.

• With the second method, you use the TCP Create Listener VI to
create a listener, and then use the Wait on Listener VI to listen for
and accept new connections. Wait on Listener returns the same
listener ID that was passed to the VI, as well as the connection ID
for a connection. When you are finished waiting for new
connections, you can use TCP Close to close a listener. You can not
read from or write to a listener.

The advantage of using the second method is that you can cancel a listen
operation by calling TCP Close. This is useful in the case where you
want to listen for a connection without using a timeout, but you want to
cancel the listen when some other condition becomes true (for example,
when the user presses a button).

When a connection is established, you can read and write data to the
remote application using the TCP Read and TCP Write VIs.

Finally, use the TCP Close Connection VI to close the connection to the
remote application. Note that if there is unread data and the connection
closes, that data may be lost. Connected parties should use a higher
level protocol to determine when to close the connection. Once a
connection is closed, you may not read or write from it again.

Chapter 50 TCP VIs

LabVIEW Function and VI Reference Manual 50-4 © National Instruments Corporation

TCP Errors

The TCP VIs report errors in clusters as the following illustration
shows. See the Error Codes manual for a list of the TCP error codes and
their descriptions.

TCP VI Descriptions

The following TCP VIs are available.

IP To String

Converts an IP network address to a string.

String To IP

Converts a string to an IP network address.

Chapter 50 TCP VIs

© National Instruments Corporation 50-5 LabVIEW Function and VI Reference Manual

TCP Close Connection
Closes the connection associated with connection ID.

TCP Create Listener
Creates a listener for a TCP connection.

TCP Listen
Creates a listener and waits for an accepted TCP connection at the specified port.

When a listen on a given port begins, you may not use another TCP Listen VI to listen on
the same port. For example, suppose a VI has two TCP Listen VIs on its block diagram.
If you start a listen on port 2222 with the first TCP Listen VI, any attempts to listen on
port 2222 with the second TCP Listen VI fail.

TCP Open Connection
Attempts to open a TCP connection with the specified address and port.

Chapter 50 TCP VIs

LabVIEW Function and VI Reference Manual 50-6 © National Instruments Corporation

TCP Read
Receives up to bytes to read bytes from the specified TCP connection, returning the
results in data out.

TCP Wait on Listener
Waits for an accepted TCP connection at the specified port.

TCP Write
Writes the string data in to the specified TCP connection.

© National Instruments Corporation 51-1 LabVIEW Function and VI Reference Manual

Chapter

51UDP VIs

This chapter describes a set of VIs that you can use with User Datagram
Protocol (UDP), a protocol in the TCP/IP suite for communicating
across a single network or an interconnected set of networks.

The following illustration shows the UDP VI palette, which you access
by selecting Functions»Communication»UDP.

UDP Overview

UDP transmits data across networks. UDP can communicate to specific
processes on a computer. When a process opens a network connection
to a particular port it only receives datagrams that are addressed to that
port on that computer. When a process sends a datagram, it must specify
the computer and port as the destination.

There are several reasons why UDP is rarely used directly. UDP does
not guarantee data delivery. Each datagram is routed separately, so
datagrams may arrive out of order, be delivered more than once or not
delivered at all.

Typically, UDP is used in applications where reliability is not critical.
For example, an application might transmit informative data to a
destination frequently enough that a few lost segments of data are not
problematic.

Chapter 51 UDP VIs

LabVIEW Function and VI Reference Manual 51-2 © National Instruments Corporation

Using UDP
UDP is not a connection-based protocol like TCP. This means that a
connection does not need to be established with a destination before
sending or receiving data. Instead, the destination for the data is
specified when each datagram is sent. The system does not report
transmission errors.

You can use the UDP Open VI to create a connection. A port must be
associated with a connection when it is created so that incoming data
can be sent to the appropriate application. The number of
simultaneously open UDP connections depends on the system. UDP
Open returns a Network Connection refnum, an opaque token used in
all subsequent operations pertaining to that connection.

You can use the UDP Write VI to send data to a destination and the UDP
Read VI to read it. Each write requires a destination address and port.
Each read contains the source address and port. Packet boundaries are
preserved. That is, a read never contains data sent in two separate write
operations.

In theory, you should be able to send data packets of any size. If
necessary, a packet is disassembled into smaller pieces and sent on its
way. At their destination, the pieces are reassembled and the packet is
presented to the requesting process. In practice, systems only allocate a
certain amount of memory to reassemble packets. A packet that cannot
be reassembled is thrown away. The largest size packet that can be sent
without dissassembly depends on the network hardware.

When LabVIEW finishes all communications, calling the UDP Close
VI frees system resources.

UDP VI Descriptions

The following UDP VIs are available.

UDP Close
Closes the UDP connection specified by connection ID.

Chapter 51 UDP VIs

© National Instruments Corporation 51-3 LabVIEW Function and VI Reference Manual

UDP Open
Attempts to open a UDP connection on the given port. Connection ID is an opaque token
used in all subsequent operations relating to the connection.

UDP Read
Returns a datagram in the string data out that has been received on the UDP connection
specified by connection ID.

UDP Write
Writes the string data in to the remote UDP connection specified by address and port.

© National Instruments Corporation 52-1 LabVIEW Function and VI Reference Manual

Chapter

52DDE VIs

This chapter describes the LabVIEW VIs for Dynamic Data Exchange
(DDE) for Windows 3.1, Windows 95, and Windows NT. These VIs
execute DDE functions for sharing data with other applications that
accept DDE connections.

The following illustration shows the DDE VI palette, which you access
by selecting Functions»Communication»DDE.

The DDE palette includes the DDE Server subpalette.

For examples of how to use the DDE VIs, see the examples in
examples\comm\DDEexamp.llb.

DDE Overview

DDE is a client-controlled message passing protocol. One application,
the client, passes messages to another application, the server.

Both applications must be running, and both must give Windows their
callback function address before DDE communication can begin. The

Chapter 52 DDE VIs

LabVIEW Function and VI Reference Manual 52-2 © National Instruments Corporation

callback function accepts any DDE messages that Windows sends to the
application.

The client initiates a conversation with the server by sending a DDE
connect message. After establishing the conversation, the client can
send commands or data to the server, or request data from the server.

A client can request data from a server by a request or an advise. A
request is a single transfer of data. An advise establishes an active link
between the two applications. The server then informs the client every
time the advise value changes. When the client no longer needs the
changed values, it sends an advise stop message to the server.

When all the DDE communication for the conversation is complete, the
client sends a close conversation message to the server.

Using DDE as a Client
The Dynamic Data Exchange VIs give LabVIEW full DDE client
capability.

To use DDE, you must first establish a conversation using the DDE
Open Conversation VI. The VI must specify the service and the topic.
The service usually corresponds to the name of the server application
and the topic to the active file. DDE messages then carry data to or from
specific locations in the active file. For more information on how a
specific application handles topic names and data item locations,
consult the documentation for that application.

When you have established a conversation, you can send data using the
DDE Poke VI, send commands using the DDE Execute VI, obtain data
with the DDE Request VI, or initiate an advise protocol with the DDE
Advise Start VI.

The DDE Request VI sends a DDE message to the server every time you
call it. The server must then check the data requested and return it in
another DDE message. If your VI checks the value frequently, an advise
protocol might be more efficient than a request.

The DDE Advise Start VI creates a local copy of the data value you are
interested in. When you call the DDE Advise Check VI, the VI returns
this value without sending any DDE messages. At the same time, the
server application sends DDE messages every time the value changes,
so that the local value is always current. If the value seldom changes but

Chapter 52 DDE VIs

© National Instruments Corporation 52-3 LabVIEW Function and VI Reference Manual

is often needed, an advise can significantly reduce the required number
of DDE messages.

Caution: During a conversation, you must pass the conversation refnum to all other

DDE VIs involved in that conversation. Windows uses these refnums to

identify the conversation. If you alter the conversation refnum, or do not

specify or wire the conversation refnum, the VI will fail. The same is true

for the advise refnum. If you alter advise refnum, or do not specify or wire

advise refnum for the DDE Advise Check VI or the DDE Advise Stop VI,

the VIs will fail and may cause a system failure.

The DDE protocol used by LabVIEW is ASCII based, and the
transmission is terminated when a null byte is reached. If the binary data
has a null byte (00) in it, the transmission will end.

To send a number to another application, you must convert that number
to a string. In the same way, you must convert numbers received
through a request or advise from the string format. Use the conversion
VIs from Functions»String. See Chapter 6, String Functions, earlier in
this manual for further information on how to use string conversion VIs.

Stop all advises and close all conversations using DDE Advise Stop and
DDE Close Conversation after all DDE commands have executed. This
releases the system resources associated with these VIs.

Using DDE as a Server
The first step to becoming a DDE server is to use the DDE Srv Register
Service VI to tell Windows what your service name and topic are going
to be. At this point other applications can open DDE conversations with
your service.

You can call the DDE Srv Register Service VI multiple times with
different service names to establish multiple services or multiple times
with the same service name but different topic names to establish
multiple topics for one service.

After specifying your service and topic names, you can define items for
that service using the DDE Srv Register Item VI. After this call, other
applications can request or poke the item, as well as initiate advises on
that item. LabVIEW fully manages all these transactions.

To change the value of an item, call the DDE Srv Set Item VI. This VI
changes the value and informs all clients that have advises on them.

Chapter 52 DDE VIs

LabVIEW Function and VI Reference Manual 52-4 © National Instruments Corporation

To monitor whether a client has changed an item with a poke, call the
DDE Srv Check Item VI. This VI either returns the current value
immediately or waits until a client changes the value. If a client pokes
the value before DDE Srv Check Item is called with wait for poke true,
DDE Srv Check Item returns immediately and reports that the value was
poked.

You call the DDE Srv Unregister Item VI and the DDE Srv Unregister
Service VI to close down your DDE server when you are finished.
LabVIEW automatically disconnects any client conversations
connected to your server when DDE Srv Unregister Service is called.

Using NetDDE
NetDDE is built into Windows for WorkGroups 3.11, Windows 95 and
Windows NT. It is also available for Windows 3.1 with an add-on
package from WonderWare. If you are using Windows 3.1 with the
WonderWare package, consult the WonderWare documentation on how
to use NetDDE.

If you are using Windows for WorkGroups, Windows 95, or Windows
NT, use the following instructions:

SERVER MACHINE

Windows for Workgroups

Add the following line to the [DDE Shares] section of the file
system.ini on the server (application receiving DDE commands):

lvdemo = service_name,topic_name,,31,,0,,0,0,0

where

lvdemo can be any name.

service_name is typically the name of the application, such as excel.

topic_name is typically the specific file name, such as sheet1.

Enter other commas and numbers as shown.

Chapter 52 DDE VIs

© National Instruments Corporation 52-5 LabVIEW Function and VI Reference Manual

Windows 95

Note: NetDDE is not automatically started by Windows 95. You need to run the

program\WINDOWS\NETDDE.EXE. (This can be added to the startup

folder so that it is always started.)

To set up a NetDDE server on Windows 95:

• Run\WINDOWS\REGEDIT.EXE.

• In the tree display, open the folder My Computer\
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

NetDDE\DDE Shares.

• Create a new DDE Share by selecting Edit»New»Key and give it
the name lvdemo.

• With the lvdemo key selected, add the required values to the share
as follows. (For future reference, these keys are just being copied
from the CHAT$ share but REDEGIT does not allow you cut, copy, or
paste keys or values.) Use Edit»New to add new values. When you
create the key, there will a default value named (Default) and a
value of (value not set). Leave these values alone and add the
following:

Table 52-1. Values to Add in Place of Default

Value Type Name Value

Binary Additional item count 00 00 00 00

String Application service_name

String Item service_name

String Password1 service_name

String Password2 service_name

Binary Permissions1 1f 00 00 00

Binary Permissions2 00 00 00 00

String Topic topic_name

Chapter 52 DDE VIs

LabVIEW Function and VI Reference Manual 52-6 © National Instruments Corporation

• Close REGEDIT.

• Restart the machine. (NetDDE must be restarted for changes to take
affect.)

Windows NT

Launch DDEShare.exe, found in the winnt\system32 directory.
Select from the Shares»DDE Shares»Add a Share... to register the
service name and topic name on the server.

CLIENT MACHINE

On the client machine (application initiating DDE conversation) no
configuration changes are necessary.

Use the following inputs to DDE Open Conversation.vi:

Service: \\machine_name\ndde$

Topic: lvdemo

where:
machine_name specifies the name of the server machine

lvdemo matches the name specified in the [DDE Shares] section on
the server.

Consider the examples Chart Client.vi and Chart Server.vi
found in examples\network\ddeexamp.llb. To use those VIs to pass
information between two computers using NetDDE, you should do the
following:

Server Machine:

1. Do not modify any front panel values.

2. In the system.ini file of the Server machine, add the following
line in the [DDEShares] section:
lvdemo = TestServer,Chart,,31,,0,,0,0,0

Client Machine:

On the front panel, set the controls to the following:
Service = \\machine_name\ndde$
Topic = lvdemo
Item = Random

Chapter 52 DDE VIs

© National Instruments Corporation 52-7 LabVIEW Function and VI Reference Manual

DDE Client VI Descriptions

The following DDE Client VIs are available.

DDE Advise Check
Checks an advise value previously established by DDE Advise Start.

DDE Advise Start
Initiates an advise link.

DDE Advise Stop
Cancels an advise link, previously established by DDE Advise Start.

DDE Close Conversation
Closes a DDE conversation.

Chapter 52 DDE VIs

LabVIEW Function and VI Reference Manual 52-8 © National Instruments Corporation

DDE Execute
Tells the DDE server to execute command.

DDE Open Conversation
Establishes a connection between LabVIEW and another application. You must call this
VI before you use any other DDE VIs (except Server VIs).

DDE Poke
Tells the DDE server to put the value data at item.

DDE Request
Initiates a DDE message exchange to obtain the current value of item.

Chapter 52 DDE VIs

© National Instruments Corporation 52-9 LabVIEW Function and VI Reference Manual

DDE Server VI Descriptions

You access by selecting Functions»Communication»DDE»DDE Server.

DDE Srv Check Item
Sets the value of a previously defined DDE Item.

DDE Srv Register Item
Establishes a DDE item for the service specified by service refnum.

DDE Srv Register Service
Establishes a DDE service to which clients can connect.

DDE Srv Set Item
Sets the value of a previously defined DDE Item.

Chapter 52 DDE VIs

LabVIEW Function and VI Reference Manual 52-10 © National Instruments Corporation

DDE Srv Unregister Item
Removes the specified item from its service.

Note: DDE clients can no longer access the item after this VI completes.

DDE Srv Unregister Service
Removes the specified service. DDE clients can no longer connect to this service and all
current conversations will be closed.

© National Instruments Corporation 53-1 LabVIEW Function and VI Reference Manual

Chapter

53OLE Automation VIs

This chapter discusses the LabVIEW VIs for Object Linking and
Embedding (OLE) Automation, a feature which allows LabVIEW to
access objects exposed by automation servers in the system.

The OLE Automation VI Library contains two levels of VIs. VIs that
are available on the Communication palette represent the higher level
of functionality. These VIs use lower level VIs which are hidden from
the user, providing for a higher level of encapsulation. Helper VIs are
provided.

Note: These VIs work under Windows NT and Windows 95 only.

The following illustration shows the OLE Automation VI palette,
which you access by selecting Functions»Communication»OLE.

For examples of how to use the OLE Automation VIs, see the examples
in examples\comm\OLE-xxx.llb.

Chapter 53 OLE Automation VIs

LabVIEW Function and VI Reference Manual 53-2 © National Instruments Corporation

OLE Automation Concepts

In the context of Object Linking and Embedding, objects are defined as
data abstractions exported by an application. You can manipulate these
objects by using another Windows application. Linking and Embedding
are two of the methods used to access OLE objects.

You can use OLE Automation to make the functions and methods of one
application available for use by other applications. You then access
these functions or methods, which are usually grouped into objects.

An application supports automation either as a server or a client.
Applications that expose objects and provide methods for operating on
those objects are called OLE automation servers. Applications that use
the methods exposed by another application are called OLE automation

clients/controllers. The OLE VIs enable LabVIEW to become an
automation client.

Using LabVIEW to Implement OLE Automation

An OLE object exposes both methods and properties. Methods have the
ability to modify a wide range of values, whereas properties can set or
get the value of a specific characteristic of the object. Some servers
provide a type library listing all exposed objects and the methods and
properties of each object.

The typical steps in creating a client application using C are as follows:

• Get the IDispatch interface of the Object whose methods you want
to access.

• Get the DispatchID of the method of that object.

• Invoke the method using the Invoke functions of the IDispatch
interface, packing all parameters into the parameter list.

In LabVIEW, do as follows:

• Use the Create Automation Refnum VI to get an Automation
refnum which uniquely defines the IDispatch interface.

• Use the Execute Method VI to execute a method belonging to that
object. If there is just one parameter, it can be flattened. The type
descriptors and the flattened string are then passed in as input
parameters. If there are multiple outputs, they are bundled in a

Chapter 53 OLE Automation VIs

© National Instruments Corporation 53-3 LabVIEW Function and VI Reference Manual

cluster. The resultant cluster is then flattened and wired to the
correct input of the VI.

The implementation uses DLLs to perform the actual OLE calls.
Parameters are passed to these DLLs as flattened data.

OLE Automation VI Descriptions

The following OLE Automation VIs are available.

Create Automation Refnum
Given the object name (registered class name) of an OLE object, returns an Automation
Refnum uniquely identifying the instantiation.

Execute Method
Executes a method.

Get Property
Gets the value of a property.

List Methods or Properties
Lists all the methods or properties of an object.

Chapter 53 OLE Automation VIs

LabVIEW Function and VI Reference Manual 53-4 © National Instruments Corporation

List Objects in Type Library
Lists all the objects in a type library.

Release Refnum
Releases the refnum passed in as input.

Set Property
Sets the value of a property.

© National Instruments Corporation 54-1 LabVIEW Function and VI Reference Manual

Chapter

54AppleEvent VIs

This chapter discusses the LabVIEW VIs for interapplication
communication (IAC), a feature of Apple Macintosh system software
version 7 by which Macintosh applications can communicate with each
other. You can use LabVIEW with two forms of IAC, AppleEvents and
program-to-program communication (PPC).

AppleEvents are a high-level method of communication in which
applications use messages to request other applications to perform
actions or return information. An application can send these messages
to itself, other applications on the same machine, or other applications
located anywhere on a network. Apple has defined a large vocabulary
for messages to help standardize this form of interapplication
communication. You can combine words in this vocabulary to form
very complex messages. This vocabulary is described in detail in the
AppleEvent Registry, a document available from Apple. Most
applications written for System 7, including LabVIEW, respond to
some subset of AppleEvents.

PPC is a low-level form of IAC by which applications send and receive
blocks of data. PPC provides higher performance than AppleEvents,
because the overhead required to transmit information is lower.
However, because PPC does not define what kinds of information you
can transfer, many applications do not support it. PPC is the best way
to send large amounts of information between applications that support
PPC. See Chapter 55, Program to Program Communication VIs, for more
information about PPC.

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-2 © National Instruments Corporation

The following illustration shows the AppleEvent VI palette, which you
access by selecting Functions:Communication:AppleEvent.

Note: For applications to communicate with IAC, the computer must use system

software version 7.0 or greater with Program Linking enabled.

For examples of how to use the AppleEvent VIs, see the examples
located in examples\comm\AE Examples.llb.

AppleEvents

LabVIEW can send and respond to AppleEvents. You can use
AppleEvent VIs to send AppleEvents. LabVIEW responds to two types
of AppleEvents: LabVIEW-defined events and a subset of standard
AppleEvents. See the Sending AppleEvents section of this chapter for
more information.

Some of the ways you can use AppleEvents in LabVIEW applications
are listed on the following page:

• You can command LabVIEW to tell another application (even an
application on another computer connected by a network) to
perform an action. For example, LabVIEW can tell a spreadsheet
program to create a graph. See the Sending AppleEvents section in
this chapter for details.

• You can use a program such as HyperCard as a front end to instruct
LabVIEW to run specific VIs.

• You can communicate with and control LabVIEW applications on
other machines connected by a network by sending them
instructions to perform specific operations. See the Sending

AppleEvents section in this chapter for details.

• You can command LabVIEW to send messages to itself, instructing
itself to load, run, and unload specific VIs. For example, in large

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-3 LabVIEW Function and VI Reference Manual

applications where memory is tight, you can replace subVI calls
with a utility VI (the AESend Open, Run, Close VI) and
dynamically load, run, and unload the VIs. See the Sending

AppleEvents section in this chapter for details.

The following sections describe in detail how LabVIEW sends and
receives AppleEvents.

Sending AppleEvents
The Communication subpalette of the Functions palette contains VIs
for sending AppleEvents. With these VIs, you can select a target
application for an AppleEvent, create AppleEvents, and send the
AppleEvents to the target application.

The AppleEvent VIs palette of the Communication subpalette
contains VIs that send specific AppleEvent messages. These VIs let you
send several standard AppleEvents (Open Document, Print Document,
and Close Application) and all the LabVIEW custom AppleEvents.
These high-level VIs require little understanding of AppleEvent
programming details. Their diagrams also serve as good examples of
how to create and send AppleEvents.

You can use the low-level AESend VI if you want to send an
AppleEvent for which LabVIEW provides no VI. The AppleEvent VIs
palette of the Communication subpalette also contains VIs that can
help you create an AppleEvent. However, creating and sending an
AppleEvent at this level requires detailed understanding of
AppleEvents as described in Inside Macintosh, Volume VI and the
AppleEvent Registry.

General AppleEvent VI Behavior
When sending an AppleEvent, you must specify the target application
for the event. To receive the AppleEvent, the target application must be
open. You can use the AESend Finder Open VI to open an application.

The User Identity Dialog Box
Before you send an AppleEvent to another computer, you must use the
Users & Groups control panel utility on the destination computer to set
up a user name and password for yourself. The first time you send an
AppleEvent to an application or Finder on the destination computer, a
dialog box prompts you to enter your name and password. The system

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-4 © National Instruments Corporation

compares this information to the configuration of the Users & Groups
control panel utility on the destination computer.

The current design of the AppleEvent Manager does not include a
programmatic method for bypassing this dialog box, so you should take
this into account when designing VIs that use IAC. For example, you
cannot command an unattended remote computer to send an
AppleEvent to a third computer; someone must enter user information
into the User Identity Dialog Box that appears on the remote computer.
The PPC VIs allow for unauthenticated sessions if guest access is
enabled on the computer with which you wish to communicate, so you
may find the PPC VIs more useful for certain kinds of LabVIEW-to-
LabVIEW communication.

Target ID
Most VIs that send AppleEvents need a description of the target
application that will receive the AppleEvent. The target ID is a
complex cluster of information, defined by Apple Computer Inc.,
describing the target application and its location. The following VIs
generate the target ID, so you do not need to create this cluster on the
diagram.

• PPC Browser creates the target ID by displaying a dialog box by
which you interactively select AppleEvent-aware applications on
the network.

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-5 LabVIEW Function and VI Reference Manual

• Get Target ID creates the target ID programmatically based on the
application's name and network location.

These VIs are discussed in more detail in the Targeting VIs section of
this chapter.

You need to look at the target ID cluster only if you want to pass target
information from one VI to another. To create a target ID cluster for
the front panel of a VI that passes target information to another VI or to
an AppleEvent, you can copy the target ID cluster from the front panel
of one of the AppleEvent VIs.

Send Options
Many of the VIs that send an AppleEvent have a send options input,
which specifies whether the target application can interact with the user
and the length of the AppleEvent timeout.

Targeting VI Descriptions

The following Targeting VIs are available.

Get Target ID
Returns a target ID for a specified application based on its name and location. You can
either specify the application's name and location or the VI searches the entire network
for the application.

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-6 © National Instruments Corporation

The following table summarizes the operation of Search entire network, Zone, and
Server:

PPC Browser
Invokes the PPC Browser dialog box for selecting an application on a network or on the
same computer.

To search the following
locations: Use the following parameters:

The current computer Zone and Server must be unwired. Search entire network must
be FALSE.

A specific computer on
the network

Zone and Server must specify the target computer’s zone and
server. (If you do not wire Zone, the VI searches the current
zone.) Search entire network must be FALSE.

A specific zone Zone must specify the zone to be searched. Server must be
unwired. Search entire network must be FALSE.

The entire network Search entire network must be TRUE. The VI ignores Zone
and Server.

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-7 LabVIEW Function and VI Reference Manual

You can use this standard Macintosh dialog box to select a zone from the network, an
object in that zone (in System 7, this is typically the name of a person's computer), and
an application. The VI then returns the target ID cluster.

AppleEvent VI Descriptions

The following AppleEvent VIs are available.

AESend Do Script
Sends the Do Script AppleEvent to a specified target application.

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-8 © National Instruments Corporation

AESend Finder Open
Sends the AppleEvent to open specified applications or documents to the System 7 Finder
on the specified machine.

Note: Apple may change the set of AppleEvents to which the Finder responds so

that they more closely conform to the standard set of AppleEvents. As a

result, the AppleEvent that AESend Finder Open sends to the Finder may

not be supported in future versions of the system software.

AESend Open
Sends the Open AppleEvent to a specified target application.

AESend Open Document
Sends the Open Document AppleEvent to the specified target application, telling the
application to open the specified document.

AESend Print Document
Sends the Print Document AppleEvent to the specified target application, telling the
application to print the specified document.

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-9 LabVIEW Function and VI Reference Manual

AESend Quit Application

Sends the Quit Application AppleEvent to a specified target application.

LabVIEW Specific AppleEvent VIs

LabVIEW specific AppleEvent VIs send messages that only LabVIEW applications
(standard and run-time systems) recognize. To access the LabVIEW Specific Apple
Events VIs, select Functions:Communication: LabVIEW Specific Apple Events.

You should use these VIs only when communicating with LabVIEW applications. You
can send these messages either to the current LabVIEW application or to a LabVIEW
application on a network. See the AppleEvent Error Codes section of the Error Codes

manual for error information.

AESend Abort VI

Sends the Abort VI AppleEvent to the specified target LabVIEW application.

AESend Close VI

Sends the Close VI AppleEvent to the specified target LabVIEW application.

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-10 © National Instruments Corporation

AESend Open, Run, Close VI
Uses the Open Document, Run VI, VI Active?, and Close VI AppleEvent VIs to make a
specified LabVIEW application open, run, and close a VI.

For this VI, you must specify the complete pathname of the VI you want to run. See
Chapter 13, Path Controls and Refnums, of your LabVIEW User Manual for a description
of path controls and indicators available in the Controls palette.

AESend Run VI
Sends the Run VI AppleEvent to the target LabVIEW application.

AESend VI Active?
Sends the VI Active? AppleEvent to the specified target LabVIEW application. VI
running? is a Boolean indicating whether the VI is currently executing.

Advanced Topics

This section describes some of the advanced programming you can do
with AppleEvent VIs.

Constructing and Sending Other AppleEvents
In addition to VIs that send common AppleEvents, you can use
lower-level VIs to send any AppleEvent. Using these VIs requires more
knowledge of AppleEvents than using the VIs described earlier in this
chapter. If you are interested in using these VIs, you should be familiar
with the discussion of AppleEvents in Inside Macintosh, Volume VI,
and the AppleEvent Registry.

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-11 LabVIEW Function and VI Reference Manual

When sending an AppleEvent, you must include several pieces of
information. The event class and event ID identify the AppleEvent you
are sending. The event class is a four-letter code which identifies the
AppleEvent group. For example, an event class of core identifies an
AppleEvent as belonging to the set of core AppleEvents. The event ID
is another four-letter code that identifies the specific AppleEvent that
you wish to send. For example, odoc is the four-letter code for the Open
Documents AppleEvent, one of the core AppleEvents. To send an
AppleEvent using the AESend VI, concatenate the event class and event
ID together as an eight-character string. For example, to send the Open
Documents AppleEvent, pass the AESend VI the eight-character code
coreodoc.

If you are sending the AppleEvent to another application, you have to
specify target ID and send options, as described earlier in this chapter.

You can also specify an array of parameters if the target application
needs additional information to execute the specified AppleEvent.
Because the data structure for AppleEvent parameters is inconvenient
for use in LabVIEW diagrams, the AESend VI accepts these parameters
as ASCII strings. These strings must conform to the grammar described
in the next section. You can use this grammar to describe any
AppleEvent parameter. The AESend VI interprets this string to create
the appropriate data structure for an AppleEvent, and then sends the
event to the specified target.

Creating AppleEvent Parameters
In many cases, an AppleEvent parameter is a single value; however, it
can be quite complex, with a hierarchical structure containing
components that in turn can contain other components. In LabVIEW, a
parameter is constructed as a string, which has a simple grammar with
which you can describe all kinds of data that an AppleEvent parameter
can be, including complex structures.

An AppleEvent parameter string begins with a keyword, a four-letter
code describing the parameter's meaning. For example, if the parameter
is a direct parameter (one of the most common types of parameters) you
must specify that the keyword is a keyDirectObject by using the
four-letter code ---- (four dashes). Other examples of keywords
include savo, short for save options, which is used when sending the
Close VI AppleEvent to LabVIEW. Documentation detailing an
application's supported AppleEvents should indicate the keywords used
for each parameter. See the Sending AppleEvents to LabVIEW from Other

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-12 © National Instruments Corporation

Applications section of this chapter for a list of the AppleEvents that you
can use with LabVIEW.

Following the keyword, you must specify the parameter data as a string.
You can use AppleEvents with many different data types, including
strings and numbers. When you specify the data string, the AESend VI
converts it to a desired data type based upon the way the data is
formatted and optional directives that can be embedded in the string.
Each piece of data has a four-letter type code associated with it,
indicating its data type. The target application uses this code to interpret
the data. For example, if comma-separated items are enclosed in
brackets, a list of AE Descriptors is created, and the list has a data type
of list; each of the comma-separated items could in turn be other
items, including lists.

You can use a number of VIs in the AppleEvents VI palette to create
some of the more common parameter strings, including aliases, which
are used when referencing files in parameters, and descriptor lists,
which are used to specify a list of items as a parameter. You can
concatenate or cascade these strings together to create a more complex
parameter.

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-13 LabVIEW Function and VI Reference Manual

Table 6-1 describes the format of AppleEvent descriptor strings and
indicates VIs that can create the descriptor, where appropriate.

Table 54-1. AppleEvent Descriptor String Formats

To send data as: Format the string as:
Parameter is of

code type: Examples:

 VI that can
construct

string:

an integer A series of decimal digits,
optionally preceded by a
minus sign.

long or shor 1234
–5678

n/a

enumerated data A four-letter code.
If it is too long, it is
truncated; if it is too short,
it is padded with spaces.
If you put single quotes (')
around it, it can contain
any characters; otherwise,
it cannot contain:
@ ' : - , ([{ }]) and
cannot begin with a digit.

enum whos
'@all'
long
>=
'86it'

n/a

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-14 © National Instruments Corporation

a string Enclose the desired
sequence of characters
within open and close
curly quotes (“entered
with option-[and” entered
with option-shift-[).
Notice that the string is
not null-terminated.

TEXT “put x into
card field
5”
“Hi There”

n/a

an AE record Enclose a comma-
separated list of elements
in curly braces, where
each element consists of a
keyword (a typecode)
followed by a colon,
followed by a value,
which can be any of the
types listed in this table.

reco {x:100, y:–
100}
{'origin':
{x:100, y:–
100},
extent:
{x:500,
y:500},
cont:[1,5,2
5]}

AECreate
Record

an AE descriptor list Enclose a comma-
separated list of
descriptors in square
brackets.

list [123, –58,
“test”]

AECreate
Descriptor
List

hex data Enclose an even number
of hex digits between
French quotes («entered
with option-\ and»
entered with option-shift-
\).

?? (must be
coerced – see
next item)

«01 57 64
fe AB C1»

(Hex data is a
component of
the string
produced by
Make Alias)

Table 54-1. AppleEvent Descriptor String Formats (Continued)

To send data as: Format the string as:
Parameter is of

code type: Examples:

 VI that can
construct

string:

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-15 LabVIEW Function and VI Reference Manual

Low-Level AppleEvent VIs

You can use the VIs in this section to construct AppleEvent parameters and send the
AppleEvent. The high-level VIs for sending AppleEvents, described earlier in this
chapter, are based on the AESend VI, and are good examples of creating AppleEvents
and their parameters.

To access the Low Level Apple Events palette, pop up on the Low Level Apple Events
icon.

some other data type Embed data created in
one of the types of this
table in parentheses and
put the desired type code
before it. If the data is a
numeric, LabVIEW
coerces the data to the
specified type if possible
and returns the
errAECoercionFail
error code if it cannot. If
the data is of a different
type, LabVIEW replaces
the old typecode with the
specified type code.

The specified
type code

sing(1234)
alis(«hex

dump of an

alias»)

type(line)
rang{star:
5, stop: 6}

n/a
Make Alias
creates a hex
dump of a file
description.

n/a
n/a

null data Coerce an empty string to
no type.

null () n/a

Table 54-1. AppleEvent Descriptor String Formats (Continued)

To send data as: Format the string as:
Parameter is of

code type: Examples:

 VI that can
construct

string:

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-16 © National Instruments Corporation

AESend
Sends an AppleEvent specified in parameters to the specified target application.

Make Alias
Creates a unique description of a file from its pathname and location on the network. You
can use this description with the AESend VI when sending an AppleEvent that refers to
a file.

An alias is a data structure used by the Macintosh toolbox to describe file system objects
(files, directories and volumes). Do not confuse this with a Finder™ alias file. A minimal
alias contains a full path name to the file and possibly the zone and server that the file
resides on. A full alias contains more information, such as creation date, file type, and
creator. (The complete description of the structure of an alias is confidential to Apple
Computer.) Aliases are the most common way to specify a file system object as a
parameter to an AppleEvent.

Creating AppleEvent Parameters Using Object Specifiers
Apple has created a high-level interface for creating AppleEvents called the Object
Support Library. This interface is actually layered on top of the AppleEvent parameter
data structures described earlier in this chapter. This interface helps create common types
of parameters, including range specifications. LabVIEW object support VIs are located
on the Low Level Apple Events pop up palette.

AECreate Comp Descriptor
Creates a string describing an AppleEvent comparison record, which specifies how to
compare AppleEvent objects with another AppleEvent object or a descriptor record.

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-17 LabVIEW Function and VI Reference Manual

For example, you can use the output comparison descriptor string as an argument to the
AESend VI, or as an argument to AECreate Object Specifier to build a more complex
descriptor string. See the Object Support VI Example section of this chapter for an example
of its use.

AECreate Logical Descriptor
Creates a string describing an AppleEvent logical descriptor, which you use with the
AESend VI.

AppleEvent logical records describe logical, or Boolean expressions of multiple terms,
such as the AND of two AppleEvent comparison records. For example, you can use the
output logical descriptor string as an argument to the AESend VI, or as an argument to
AECreate Object Specifier VI to build a more complex descriptor string. See the Object

Support VI Example in this chapter for an example of its use.

AECreate Object Specifier
Creates a string describing an AppleEvent object, which you use with the AESend VI.

An object specifier is an AppleEvent record whose type is obj and describes a specific
object. It has four elements: the class of the object, the containing object, a code
indicating the form of the description, and the description of the object.

AECreate Range Descriptor
Creates a string describing an AppleEvent range descriptor record, which you use with
the AESend VI.

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-18 © National Instruments Corporation

Range descriptor records are used in object specifiers whose key form is formRange
(rang). They describe a range of objects with two object specifiers: the start and the end
of the range

AECreate Descriptor List
Creates a string describing a list of AppleEvent descriptors, which you can then use with
the AESend VI. You commonly use Descriptor lists when you create the operands for a
logical descriptor

AECreate Record
Creates a string describing an AppleEvent descriptor record, which can then be used with
the AESend VI. You can use a record descriptor to bundle descriptors of different types.
Each descriptor has its own keyword, or name, and value

Object Support VI Example

The following example creates an AppleEvent parameter using the object support VIs.
This example creates an AppleEvent parameter to be sent to a word processor, asking the

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-19 LabVIEW Function and VI Reference Manual

word processor to return the first line of a specified document whose first word is April
and whose second word is is.

The following string that the previous diagram creates is quite complicated; tabs are
added to make the string easier to read. For further information about the Object Support
Library consult the AppleEvent Registry.

obj {

want: type(‘line’),

from: obj {

want: type('line'),

from: Doc Name,

form: test,

seld: logi {

term:[

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-20 © National Instruments Corporation

cmpd{

relo:=,

obj1:“April”,

obj2:obj {

want: type('word'),

from: exmn(),

form: indx,

seld: 1

}

},

cmpd{

relo:=,

obj1:“is”,

obj2:obj {

want: type('word'),

from: exmn(),

form: indx,

seld: 2

}

}

],

 logc: AND

}

},

form: indx,

seld: 1

}

Sending AppleEvents to LabVIEW from Other
Applications

LabVIEW responds to required AppleEvents, which Apple expects all
System 7 applications to support, and to LabVIEW specific

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-21 LabVIEW Function and VI Reference Manual

AppleEvents, designed specifically for LabVIEW. Both categories are
described in the following sections.

Required AppleEvents
LabVIEW responds to the required AppleEvents, which are Open
Application, Open Documents, Print Documents, and Quit Application.
These events are described in Inside Macintosh, Volume VI.

LabVIEW Specific AppleEvents
LabVIEW also responds to the LabVIEW specific AppleEvents Run VI,
Abort VI, VI Active?, and Close VI. With these events and the Open
Documents AppleEvent, you can use other applications to
programmatically tell LabVIEW to open a VI, run it, and close it when
it is finished. A thorough understanding of AppleEvents, as described
in Inside Macintosh, Volume VI, and the AppleEvent Registry is a
prerequisite for sending these AppleEvents to LabVIEW from other
applications. You can send these events between two or more LabVIEW
applications by using the utility VIs described in the Sending
AppleEvents section in Chapter 49, Communication Applications in

LabVIEW.

The LabVIEW specific AppleEvents are described in later sections, in
a format similar to that used in the AppleEvent Registry.

Replies to AppleEvents
If LabVIEW is unable to perform an AppleEvent, the reply will contain
an error code. If the error is not a standard AppleEvent error, the reply
will also contain a string describing the error. The Error Codes manual
summarizes the LabVIEW specific errors that can be returned in a reply
to an AppleEvent.

Event: Run VI

Description

Tells LabVIEW to run the specified VI(s). Before executing this event,
the LabVIEW application must be running, and the VI must be open
(you can open the VI using the Open Documents AppleEvent).

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-22 © National Instruments Corporation

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Event ID

GoVI ----

Event Parameters

Reply Parameters

Description Keyword Default Type

VI or List of VIs keyDirectObject (----) typeChar (char)
(required)or list of
typeChar (list)

Description Keyword Default Type

none

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-23 LabVIEW Function and VI Reference Manual

Possible Errors

Event: Abort VI

Description

Tells LabVIEW to abort the specified VI(s). Before executing this
event, the LabVIEW application must be running, and the VI must be
open (you can open the VI using the Open Documents AppleEvent).
This message can only be sent to VIs that are executed from the top
level (subVIs are aborted only if the calling VI is aborted).

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Event ID

RsVI

Error Value Description

kLVE_InvalidState 1000 The VI is in a state that does not
allow it to run.

kLVE_FPNotOpen 1001 The VI front panel is not open.

kLVE_CtrlErr 1002 The VI has controls on its front
panel that are in an error state.

kLVE_VIBad 1003 The VI is broken.

kLVE_NotInMem 1004 The VI is not in memory.

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-24 © National Instruments Corporation

Event Parameters

Reply Parameters

Possible Errors

Event: VI Active?

Description

Requests information on whether a specific VI is currently running.
Before executing this event, the LabVIEW application must be running,
and the VI must be open (you can open the VI using the Open
Documents AppleEvent). The reply indicates whether the VI is
currently running.

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Description Keyword Default Type

VI or List of VIs keyDirectObject (----) typeChar (char)
(required)or list of
typeChar (list)

Description Required? Keyword Default Type

none

Error Value Description

kLVE_InvalidState 1000 The VI is in a state that does not
allow it to run.

kLVE_FPNotOpen 1001 The VI front panel is not open.

kLVE_NotInMem 1004 The VI is not in memory.

Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-25 LabVIEW Function and VI Reference Manual

Event ID

VIAc

Event Parameters

Reply Parameters

Possible Errors.

Event: Close VI

Description

Tells LabVIEW to close the specified VI(s). Before executing this
event, the LabVIEW application must be running, and the VI must be
open (you can open the VI using the Open Documents AppleEvent).

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Description Keyword Default Type

VI Name
(required)

keyDirectObject (----) typeChar (char)

Description Keyword Default Type

Active? (required) keyDirectObject (----) typeBoolean
(bool)

Error Value Description

kAEvtErrFPNotOpen 1001 The VI front panel is not open.

kLVE_NotInMem 1004 The VI is not in memory.

Chapter 54 AppleEvent VIs

LabVIEW Function and VI Reference Manual 54-26 © National Instruments Corporation

Event ID

ClVI

Event Parameters

Reply Parameters

Possible Errors.

Description Keyword Default Type

VI or List of VIs keyDirectObject (----) typeChar (char)
(required)or list of
typeChar (list)

Save Options
(not required)

keyAESaveOptions
(savo)

typeEnum (enum)
possible values: yes
and no

Description Keyword Default Type

none

Error Value Description

kAEvtErrFPNotOpen 1001 The VI front panel is not open.

kLVE_NotInMem 1004 The VI is not in memory.

cancelError 43 The user cancelled the close
operation

© National Instruments Corporation 55-1 LabVIEW Function and VI Reference Manual

Chapter

55
Program to Program
Communication VIs

This chapter describes the LabVIEW VIs for program-to-program
communication (PPC), a low-level form of Apple interapplication
communication (IAC) by which Macintosh applications send and
receive blocks of data.

The following illustration shows the PPC VI palette, which you access
by selecting Functions»Communication»PPC.

For examples of how to use the PPC VIs, see the examples located in
examples:comm:PPC Examples.llb.

Introduction to PPC

PPC is a higher performance protocol than Apple Events because PPC
requires less overhead to transmit information. However, because PPC
does not define the form or meaning of information that it transfers, it
is more complicated to use and many applications do not support it.

LabVIEW VIs can use PPC to send and receive large amounts of
information between applications on the same computer or different
computers on a network. For two applications to communicate with
PPC, they must both be running and prepared to send or receive
information. To launch an application remotely, you can use the

Chapter 55 Program to Program Communication VIs

LabVIEW Function and VI Reference Manual 55-2 © National Instruments Corporation

AESend Finder Open VI, which is described in the AppleEvents section
of Chapter 49, Communication Applications in LabVIEW.

General PPC Behavior

To communicate using PPC, each application must open a named port,
over which communication sessions are established, as shown in
Figure 55-1. The application that requests communication is the client;
and the application with which the client communicates is the server.
The server application makes its availability known by issuing a PPC
Inform Session operation. The client requests a session with the server
application, which can either accept or reject the request. If the server
application accepts the request, then the system establishes a session
and the two applications can send and receive blocks of information
between them. When the applications finish communicating, you
should end the session. You may also want to close the port if you do
not want to establish more sessions with that port.

You use the PPC Open Port VI to open a port for communication. PPC
Open Port returns a port reference number, which you use in subsequent
operations relating to that port. You can have multiple ports open
simultaneously, as long as they each have a different name. Each port
can support multiple sessions.

You can initiate a session using the PPC Start Session VI. You pass PPC
Start Session a target ID (see the General Apple Event VI Behavior

section of Chapter 54, Apple Event VIs) and the port reference number
through which you want to communicate. If the target application
accepts the session, PPC Start Session returns a session reference
number, which you use in subsequent communication for that session.
PPC Start Session also incorporates an authentication (password)
mechanism.

To receive session requests, use the PPC Inform Session VI. You can
configure this VI to accept all requests automatically, or you can decide
whether to accept or reject the request based on the information about
the requesting application that this VI returns. You should accept or
reject the request using the PPC Accept Session VI immediately,
because the other computer waits (hangs) until you accept or reject its
attempt to initiate a session, or until an error occurs.

When a session is established, you can use the PPC Write and PPC Read
VIs to communicate with the other application. When you are finished

Chapter 55 Program to Program Communication VIs

© National Instruments Corporation 55-3 LabVIEW Function and VI Reference Manual

with a session, you should execute the PPC End Session VI and close
the port using the PPC Close Port VI.

Figure 55-1 illustrates the order in which you use the PPC VIs.

Figure 55-1. PPC VI Execution Order (Used by permission of Apple Computer, Inc.)

PPC VI Descriptions

The following PPC VIs are available.

PPC Accept Session
Accepts or rejects a PPC session request based on the Boolean accept?.

Chapter 55 Program to Program Communication VIs

LabVIEW Function and VI Reference Manual 55-4 © National Instruments Corporation

You should accept or reject the request using the PPC Accept Session VI immediately,
because the other computer waits (hangs) until the VI accepts or rejects its attempt to
initiate a session or an error occurs.

PPC Browser
For information on the PPC Browser VI, see Chapter 54, Apple Events VIs, of this manual.

Close All PPC Ports
Closes all the PPC ports that the PPC Open Port VI opened.

Closing a port terminates all outstanding calls associated with the port with a
portClosedErr (error –916).

You can use the Close All PPC Ports to handle abnormal conditions that leave ports open.
An example of an abnormal condition is when a VI is aborted before it can terminate
normally and close the PPC port. You can use the Close All PPC Ports VI during VI
development, when such mistakes are more likely to be made, or as a precaution at the
beginning of any program that opens ports.

PPC Close Port
Closes the specified PPC port.

Closing a port terminates all outstanding calls associated with the port with a
portClosedErr (error –916).

PPC End Session
Ends the specified PPC session.

Ending a session causes all outstanding calls associated with the session (PPC Read and
PPC Write calls) to finish with a sessClosedErr (error -917).

Chapter 55 Program to Program Communication VIs

© National Instruments Corporation 55-5 LabVIEW Function and VI Reference Manual

Get Target ID
For information on the Get Target ID VI, see Chapter 54, Apple Event VIs, of this manual.

PPC Inform Session
Waits for a PPC session request.

PPC Open Port
Opens a port for PPC communication and returns a unique port reference number in port
refnum. You can use a single port for multiple sessions.

When opening a port using PPC Open Port, you must specify a portName cluster.

Refer to the LabVIEW online help for more information on this VI.

Chapter 55 Program to Program Communication VIs

LabVIEW Function and VI Reference Manual 55-6 © National Instruments Corporation

PPC Read
Reads a block of information from a specified session. If a timeout occurs or the VI aborts
before completing execution, the port that port refnum represents closes.

PPC Read executes asynchronously by starting to read the specified data and then polling
until the read is finished.

PPC Start Session
Attempts to start a session with the application specified by target ID through the
specified port. If a timeout occurs or the VI aborts before completing execution, the port
represented by port refnum closes.

PPC Write
Writes a block of information to the specified session. If a timeout occurs or the VI aborts
before completing execution, the port represented by port refnum is closed. PPC Write
executes asynchronously by starting to write the specified data and then polling until the
write is finished.

© National Instruments Corporation A-1 LabVIEW Function and VI Reference Manual

Appendix

ADAQ Hardware Capabilities

This appendix contains tables that summarize the analog and digital
I/O capabilities of National Instruments data acquisition (DAQ)
devices. The devices in this appendix are grouped into categories. The
DAQ device categories for these tables include the following.

• MIO and AI Devices

• Lab and 1200 Series and Portable Devices

• 54xx Series Devices

• SCXI Modules

• Dynamic Signal Acquisition Devices

• Analog Output Only Devices

• Digital Only Devices

• Timing Only Devices

• 5102 Devices Hardware Capabilities

Note: (Macintosh) When a NuBus device indicates it supports DMA transfers, a

DMA device (such as an NB-DMA2800) is also required.

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-2 © National Instruments Corporation

MIO and AI Device Hardware Capabilities

“By device” means you select the value of a parameter with hardware
jumpers, and the selection affects any group of channels on the device.
“By group” means you program the selection through software, and the
selection affects all the channels used at the same time. “By channel”
means you program the selection with hardware jumpers or through
software on a per channel basis. When a specific value for a parameter
is shown, that parameter value is fixed.

Table A-1. Analog Input Configuration Programmability—MIO and AI Devices

Device Gain Range Polarity SE/DIFF Coupling

All MIO-E Series Devices

All AI-E Series Devices

By Channel By Channel By Channel By Channel DC

AT-MIO-16F-5 By Channel By Group By Group By Group DC

AT-MIO-64F-5

AT-MIO-16X

By Channel By Channel By Channel By Channel DC

AT-MIO-16/16D

NB-MIO-16

NB-MIO-16X

By Channel By Device By Device By Device DC

Table A-2. Analog Input Characteristics—MIO and AI Devices (Part 1)

Device

Number of

Channels Resolution Gains1
Range (V)

1
Input FIFO

(words) Scanning2

AT-MIO-16E-1

AT-MIO-16E-2

AT-MIO-16E-10

AT-MIO-16DE-10

NEC-MIO-16E-4

PCI-MIO-16E-1

PCI-MIO-16E-4

NEC-AI-16E-4

16SE, 8DI 12 bits 0.5, 1, 2,

5, 10, 20,

50, 100

±5, 0 to 10 512; E-1:

8,192; E-2 and

E4: 2,048

Up to 512

AT-MIO-64E-3* 64SE, 32DI 12 bits 0.5, 1, 2,

5, 10, 20,

50, 100

±5, 0 to 10 2,048 Up to 512

PCI-MIO-16XE-10 16SE, 8DI 16 bits 1, 2, 5,

10, 20,

50,100

±10, 0 to 10 512 Up to 512

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-3 LabVIEW Function and VI Reference Manual

NEC-MIO-16XE-50

NEC-AI-16XE-50

AT-MIO-16XE-50

DAQPad-MIO-16XE-50

PCI-MIO-16XE-50

16SE, 8DI 16 bits 1, 2,10,

100

±10, 0 to 10 512 Up to 512

AT-MIO-16F-5

AT-MIO-64F-5**

16SE, 8DI

64SE, 32DI

12 bits 0.5, 1, 2,

5, 10, 20,

50, 100

±5, ±10, 0 to

10

16F-5: 256;

64F-5: 512

Up to 512

AT-MIO-16X 16SE, 8DI 16 1, 2, 5,

10, 20,

50, 100

±10, 0 to 10 512 Up to 512

AT-MIO-16(L)

AT-MIO-16(H)

AT-MIO-16D(L)

AT-MIO-16D(H)

16SE, 8DI 12 (L) 1, 10,

100,

500; (H):

1, 2, 4, 8

±5, ±10, 0 to

10

16 (L,H);

512 (DL, DH)

Up to 16

NB-MIO-16

NB-MIO-16X

16SE, 8DI MIO-16:

12;

MIO-16X:

16

(L) 1, 10,

100,

500; (H)

1, 2, 4, 8

±10, ±5, 0 to

10, 0 to 5

16; MIO-16,

Rev. G:

512

Up to 16;

MIO-16:

groups of 2,

4, 8, and 16

1
You can determine the limit settings of your device by multiplying the range and the voltage values together. For more

information on limit settings in LabVIEW, refer to the Basics LabVIEW Data Acquisition Concepts chapter in the LabVIEW

Data Acquisition Basics Manual.

2
Scanning = channels, in any order.

*The valid channels for the AT-MIO-64E-3 in Differential Mode are 0-7, 16-23, 32-39, and 48-55.

**The valid channels for the AT-MIO-64F-5 in Differential Mode are 0-7 and 16-39.

Table A-2. Analog Input Characteristics—MIO and AI Devices (Part 1) (Continued)

Device

Number of

Channels Resolution Gains
1

Range (V)
1

Input FIFO

(words) Scanning
2

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-4 © National Instruments Corporation

.

Note: For NB-MIO devices, software triggering is actually done in the interrupt

service routine (interrupts only) and is different than conditional retrieval.

Table A-3. Analog Input Characteristics—MIO and AI Devices (Part 2)

Device Triggers
1

Max Sampling Rate (S/s) Transfer Method

AT-MIO-16E-1

AT-MIO-16E-2

AT-MIO-64E-3

AT-MIO-16E-10

AT-MIO-16DE-10

PCI-MIO-16E-1

PCI-MIO-16XE-10

NEC-AI-16E-4

NEC-MIO-16E-4

PCI-MIO-16E-4

SW, Pre, Post, (and

Analog on E-1, E-2,

E-3, and E-4 only)

E-1: 1 M,

E-2 and E-3: 500 k,

E-4: 250 k,

E-10 and DE-10: 100 k

DMA, interrupts

All MIO-16XE-50 Devices

NEC-AI-16XE-50

SW, Pre, Post 20 k DMA, (interrupts on

DAQPad-MIO-16XE-50)

AT-MIO-16F-5

AT-MIO-64F-5

SW, Pre, Post 200 k DMA, interrupts

AT-MIO-16X

AT-MIO-16/16D

SW, Pre, Post 100 k DMA, interrupts

NB-MIO-16 SW, Post 111 k (L-9 or H-9),

67 k (L-15 or H-15),

40 k (L-25 or H-25)

DMA, interrupts

NB-MIO-16X SW, Post 55 k (L-18 or H-18),

24 k (L-42 or H-42)

DMA, interrupts

1
 SW=Software Triggering (also called conditional retrieval), Pre=Pretrigger, Post=Posttrigger.

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-5 LabVIEW Function and VI Reference Manual

Table A-4. Analog Output Characteristics—MIO and AI Devices

Device

C
h

a
n

n
el

 N
u

m
b

er
s

D
A

C
 T

y
p

e

O
u

tp
u

t
L

im
it

s

U
p

d
a

te
 C

lo
ck

s

W
a

v
ef

o
rm

 G
ro

u
p

in
g

T
ra

n
sf

er
 M

et
h

o
d

All MIO-16E Devices

AT-MIO-16DE-10

AT-MIO-64 E-3

AT-MIO-16XE-50

DAQPad-MIO-16XE-50

PCI-MIO-16E-1

PCI-MIO-16E-4

PCI-MIO-16XE-50

0, 1 12-bit double

buffered

(E-1, E-2,

64E-3, and E-4:

2 K FIFO)

0 to 10, ±10,

±Vref, 0 to

Vref (only

±10 on XE-50

devices)

Update clock

1 or external

update.

0, 1, or 0

and 1

DMA,

interrupts

PCI-MIO-16XE-10 16-bit ±10,

0 to 10

AT-MIO-16F-5

AT-MIO-64F-5

0, 1 12-bit double

buffered

(64F-5: 2 K

FIFO)

0 to 10, ±10,

±Vref, 0 to

Vref

Update clock

1 is first

available of

ctr 5, 2, 1 or

external

update.

Default is 5.

Timebase

signal range is

5,000,000,

1,000,000,

100,000,

10,000,

1,000, and

100.

0, 1, or 0

and 1

DMA,

interrupts

AT-MIO-16X 0, 1 16-bit double

buffered

(2 K FIFO)

±10, 0 to 10,

±Vref, 0 to

Vref

Update clock

1 is first

available on

ctr 5, 2, 1, or

external

update.

Timebase

signal range is

5,000,000,

1,000,000,

100,000,

10,000,

1,000, 100.

0, 1, or 0

and 1

DMA,

interrupts

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-6 © National Instruments Corporation

AT-MIO-16/16D 0, 1 12-bit double

buffered

0 to 10, ±10,

±Vref, 0 to

Vref

Update clock

1 is ctr2 or

external

update.

Timebase

signal range is

1,000,000,

100,000,

10,000,

1,000, and

100.

0, 1, or 0

and 1

Interrupts

NB-MIO-16/16X 0, 1 MIO-16:

12-bit ;

MIO-16X:

12-bit double

buffered

0 to 10, ±10,

±Vref, 0 to

Vref

Update clock

1, external

update

(MIO-16X

only).

Timebase

signal range is

1,000,000,

100,000,

10,000,

1,000, and

100.

0, 1, or 0

and 1

MIO-16:

DMA;

MIO-16X:

DMA,

interrupts

Table A-4. Analog Output Characteristics—MIO and AI Devices (Continued)

Device

C
h

a
n

n
el

 N
u

m
b

er
s

D
A

C
 T

y
p

e

O
u

tp
u

t
L

im
it

s

U
p

d
a

te
 C

lo
ck

s

W
a

v
ef

o
rm

 G
ro

u
p

in
g

T
ra

n
sf

er
 M

et
h

o
d

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-7 LabVIEW Function and VI Reference Manual

Table A-5. Digital I/O Hardware Capabilities—MIO and AI Devices

Device

Port

Type

Port

Numbers

Handshake

Modes Direction

DIO

Clocks

Transfer

Method

All MIO-16 Devices

AT-MIO-16D
1

AT-MIO-64F-5

4-bit

ports

0, 1 No handshaking Read or write None Software

polling

All MIO-16E Devices

All NEC-E Series Devices

AT-MIO-64E-3

AT-MIO-16DE-10
1

AT-MIO-16XE-50

DAQPad-MIO-16XE-50

PCI-MIO-16XE-50

8-bit

ports

0 No handshaking Bit-wise

direction

control

None Software

polling

AT-MIO-16D
1

AT-MIO-16DE-10
1

8-bit

ports

2, 3 Handshaking on

or off

Read or write,

port 2 may be

bi-directional

None Interrupts

8-bit

ports

4 No handshaking;

Unusable if port

2 or 3 uses

handshaking

Read or write None Software

polling

1
These devices appear more than once in this table, because they have enhanced digital functionality.

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-8 © National Instruments Corporation

Table A-6. Counter Characteristics—MIO and AI Devices

Device

C
o

u
n

te
r

C
h

ip
 U

se
d

#
 o

f
G

en
er

al
 P

u
rp

os
e

C
o

u
n

te
rs

 A
v

a
il

a
b

le

T
im

eb
a

se
s

A
v

a
il

a
b

le

N
u

m
b

er
 o

f
B

it
s

G
a

te
 M

o
d

es
 A

v
a

il
a

b
le

O
u

t-
p

u
ts

 A
v

a
il

a
b

le

O
u

tp
u

t
M

o
d

es

A
va

il
ab

le

C
o

u
n

t
D

ir
ec

ti
o

n
1

E Series Devices DAQ-STC 2 2 internal: 20

MHz or 100

kHz; external

24 rising-edge,

falling-edge,

high-level,

low-level

2 up or down,

can be SW- or

HW-controlled

AT-MIO-16F-5

AT-MIO-64F-5

AT-MIO-16/16D

NB-MIO-16/16X

Am-9513 3 5 or 6 internal: 5

MHz (only on

CTR2 of 16F-5,

64F-5, and

AT-MIO-16X),

1 MHz, 100

kHz, 10 kHz, 1

kHz, 100 Hz;

external

16 rising-edge,

falling-edge,

high-level,

low-level

2 TC

pulse

or TC

toggle

Up

1
SW = Software; HW = Hardware.

Table A-7. Counter Usage for Analog Input and Output—MIO and AI Devices

Device name

Counter Chip

Used

AI Channel

Clock

AI Sample

Counter AI Scan Clock AO Update Clock

E Series Devices DAQ-STC The DAQ-STC chip uses dedicated clocks for these purposes.

AT-MIO-16F-5

AT-MIO-64F-5

AT-MIO-16X

Am9513 Ctr 3 Ctr 4 (& 5)
1

Ctr 2 (or 1)
2

Ctr 5, 2 or 1

AT-MIO-16/16D

NB-MIO-16X

Am9513 Ctr 3 Ctr 4 (& 5)
1

Ctr 2 (or 1)
2

Ctr 2 (and via

DMA for

NB-MIO-16X)

NB-MIO-16 Am9513 Ctr 3 Ctr 4 (& 5)
1

None (or 1)
2

(via DMA)

1
If the total number of samples is less than 65535, only the first counter is used. If the number of samples exceeds 65536,

the first counter is used together with the second counter as a 32-bit sample counter.

2
Ctr 2 (or no counter for NB-MIO-16) is used for normal scanning operations, and Ctr 1 is used for AMUX-64T and SCXI

hardware scanning.

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-9 LabVIEW Function and VI Reference Manual

Lab and 1200 Series and Portable Devices Hardware
Capabilities

Note: “By device” means you select the value of a parameter with hardware

jumpers, and the selection affects any group of channels on the device. “By

group” means you program the selection through software, and the

selection affects all the channels used at the same time. “By channel”

means you program the selection with hardware jumpers or through

software on a per channel basis. When a specific value for a parameter is

shown, that parameter value is fixed.

Table A-8. Analog Input Configuration Programmability—Lab and 1200 Series and Portable Devices

Device Gain Range Polarity SE/DIFF Coupling

Lab-LC

Lab-NB

By group By device By device SE DC

Lab-PC+ By group By group By device By device DC

SCXI-1200

DAQPad-1200

DAQCard-1200

PCI-1200

By group By group By group By group DC

DAQCard-500 1 Only 1 range available Bipolar SE DC

DAQCard-516/PC-5

16

1 Only 1 range available Bipolar By group DC

DAQCard-700 1 By group Bipolar By group DC

PC-LPM-16 1 By device Bipolar SE DC

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-10 © National Instruments Corporation

Table A-9. Analog Input Characteristics—Lab and 1200 Series and Portable Devices (Part 1)

Device

Number of

Channels

Resolution

(bits) Gains
1

Range (V)
1

Input FIFO

(samples)

Lab-LC

Lab-NB

8SE 12 1, 2, 5, 10, 20, 50, 100 ±5, 0 to 10 16

Lab-PC+

SCXI-1200

DAQPad-1200

DAQCard-1200

PCI-1200

8SE, 4DI 12 1, 2, 5, 10 20, 50, 100 ±5, 0 to 10 2,048;

Lab-PC: 512

DAQCard-500 8SE 12 1 ±5 16

DAQCard 516

PC516

8SE,4DI 16 1 +/-5 512

DAQCard-700 16SE, 8DI 12 1 ±10, ±5, ±2.5 512

PC-LPM-16 16SE 12 1 ±5, ±2.5, 0 to 10,

0 to 5

16

1
 You can determine the limit settings of your device by multiplying the range and the voltage values together. For more

information on limit settings in LabVIEW, refer to the Basics LabVIEW Data Acquisition Concepts chapter in the LabVIEW

Data Acquisition Basics Manual.

Table A-10. Analog Input Characteristics—Lab and 1200 Series and Portable Devices (Part 2)

Device Scanning Triggers

Max

Sampling

Rate (S/s)

Transfer

Method

Lab-LC

Lab-NB

Any single channel; for

multiple channels, N

through 0, where N<=7

Software trigger, pretrigger, and

posttrigger with digital trigger

62.5 k Interrupts

Lab-PC+

SCXI-1200

DAQPad-1200

DAQCard-1200

Any single channel; for

multiple channels, N

through 0, where N<=7.

Software trigger, pretrigger, and

posttrigger with digital trigger

100 k;

Lab-PC+:

83 k

Interrupts;

Lab-PC+:

Interrupts,

DMA

DAQCard-500

DAQCard 516

PC-516

Any single channel; for

multiple channels, N

through 0, where N<=7

Software trigger only 50 k Interrupts

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-11 LabVIEW Function and VI Reference Manual

Note: The DAQCard-516 and PC 516 devices do not have analog output.

DAQCard-700 Any single channel; for

multiple channels, N

through 0, where N#15

Software trigger only 100 k Interrupts

PC-LPM-16 Any single channel; for

multiple channels, N

through 0, where N#15

Software trigger only 50 k Interrupts

Table A-11. Analog Output Characteristics—Lab and 1200 Series and Portable Devices

Device

Channel

#s

DAC

Type

Output

Limits

(V) Update Clocks

Waveform

Grouping

Transfer

Methods

Lab-NB

Lab-LC

0, 1 12-bit

double-

buffered

0 to 10, ±5 Update clock 1 is

ctrA2 or external

update; timebase is 1

MHz or ctrB0

0, 1, or 0 and 1 Interrupts

Lab-PC+

SCXI-1200

DAQPad-1200

DAQCard-1200

PCI-1200

0, 1 12-bit

double-

buffered

0 to 10, ±5 Update clock 1 is

ctrA2 or external

update; timebase

signal range is

1,000,000, 100,000,

10,000, 1,000, and 100

0, 1, or 0 and 1 Interrupts

Table A-10. Analog Input Characteristics—Lab and 1200 Series and Portable Devices (Part 2) (Continued)

Device Scanning Triggers

Max

Sampling

Rate (S/s)

Transfer

Method

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-12 © National Instruments Corporation

Table A-12. Counter Usage for Analog Input and Output—Lab Series and Portable Devices

Device Name

Counter

Chip Used

AI Channel

Clock

AI Sample

Counter

AI Scan

Clock

AO Update

Clock

Lab-NB, Lab-LC 82C53 Ctr A0 (& B0)
1

Ctr A1 None Ctr A2

Lab-PC+, DAQPad-1200,

SCXI-1200, DAQCard-1200,

PCI-1200

82C53 Ctr A0 (& B0)
1

Ctr A1 Ctr B1 Ctr A2

DAQCard-500, DAQCard-700, 8254 Ctr 0 (software) None None

DAQCard 516

PC-516

82C54 Ctr0 SW None None

PC-LPM-16 82C53 Ctr 0 (software) None None

1
 The second counter is used as an extended timebase for timed analog input or output when sample interval exceeds

65.535 ms.

Table A-13. Digital I/O Hardware Capabilities—Lab and 1200 Series and Portable Devices

Device

Port

Type

Port

Numbers

Handshake

Modes Direction

DIO

Clocks

Transfer

Method

Lab-NB

Lab-LC

Lab-PC+

SCXI-1200

DAQCard-1200

DAQPad-1200

PCI-1200

8-bit

port

0, 1 Handshaking on

or off

Read or write,

port 0 may be

bidirectional

None Interrupts

8-bit

port

2 No handshaking;

unusable if port 0

or 1 uses

handshaking

Read or write None Software

polling

PC-LPM-16 8-bit

ports

0, 1 No handshaking 0: read or write None Software

polling

DAQCard-500 4-bit

ports

0, 1 No handshaking 0: write, 1: read None Software

polling

DAQCard-700 8-bit

ports

0, 1 No handshaking 0: write, 1: read None Software

polling

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-13 LabVIEW Function and VI Reference Manual

54xx Devices

Table A-14. Analog Output and Digital Output Characteristics—54XX Series Devices

Characteristics AT-5411, PCI-5411

Channel Numbers 0

Maximum Update Rate 40 MHz.

Update Interval 1 to 65535.

DAC Type 12-bit, double buffered.

Output Limits (V)

(Internal reference only)

±5 into 50 Ω load

±10 into unterminated (high input impedance) load.

Update Clocks Update clock 1.

Triggers On rising TTL edge, at trigger input connector or RTSI pin. Can

be also generated internally by software.

RTSI Trigger Bus Yes

Digital Outputs 16-bits with clock signal

Waveform Grouping 0

Waveform Memory Depth

-ARB Mode

-Direct Digital Synthesis (DDS) Mode

2,000,000 16-bit samples (standard)

16,384 16-bit samples maximum

Maximum Waveform Stages 290

Buffer Numbers 1 to 1,000.

Buffer Iterations 1 to 65,535

Buffer Sample Count

-ARB Mode

256 samples minimum

Memory depth maximum

Note: Buffer size should be a multiple of 8 samples.

- DDS Mode Must be equal to 16,384 samples. If you load less number of

samples then you will see the contents of unfilled sections of

memory also appearing in the waveform generation.

Marker Output TTL level, One available for every stage

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-14 © National Instruments Corporation

Note: Refer to your hardware user reference manual for default settings of your

device.

DDS Accumulator Size 32-bit

Maximum Output Frequency 16 MHz

Output Frequency Resolution (DDS Mode only) 9.31 mHz

Output Attenuation (after the DAC) 0 through 74.000 dB (Decibels) in 0.001 dB steps

SYNC Output Duty Cycle (% High) TTL level, 20% to 80%.

PLL Reference Clock 1 MHz, 10 MHz or 20 MHz

Output Enable software switchable to ON or OFF

Output Impedance 50Ω or 75Ω (video), software selectable

Low-Pass Filter 16 MHz, software switchable to ON or OFF

Digital Half-Band Interpolating Filter 80 MSPS, software switchable to ON or OFF

Trigger Operation Modes Single, Continuous, Stepped and Burst

Table A-14. Analog Output and Digital Output Characteristics—54XX Series Devices (Continued)

Characteristics AT-5411, PCI-5411

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-15 LabVIEW Function and VI Reference Manual

SCXI Module Hardware Capabilities

Table A-15. Counter/Timer Characteristics -- Lab and 1200 Series and Portable Devices

Device

C
o

u
n

te
r

C
h

ip
 U

se
d

#
 o

f
G

en
.
P

u
rp

o
se

C
o

u
n

te
rs

 A
v

a
il

a
b

le

T
im

eb
a

se
s

A
v

a
il

a
b

le

N
u

m
b

er
 o

f
B

it
s

G
a

te
 M

o
d

es
 A

v
a

il
a

b
le

O
u

tp
u

ts
 A

v
a

il
a

b
le

O
u

tp
u

t
M

o
d

es

A
va

il
ab

le

C
o

u
n

t
D

ir
ec

ti
o

n

Lab-NB

Lab-LC

Lab-PC+

SCXI-1200

DAQCard-1200

DAQPad-1200

PC-LPM-16

PCI-1200

8253 3 (2 with

SOURCE

input at I/O

Connector)

Internal:

1 MHz;

(PC-LPM-1

6: only on

CTRB0)

external

16 high-level

or

rising-edge

depending

on output

mode

3 Refer to

ICTRControl

VI description

on modes in

Chapter 19,

Advanced

Counter VIs.

down

DAQCard-500

DAQCard 516

DAQCard-700

PC-516

8254 3 (2 with

SOURCE

input at I/O

Connector)

Internal:

1 MHz only

on CTRB0;

external

16 high-level

or

rising-edge

depending

on output

mode

3 (2 for

DAQCard

-500)

Refer to

ICTRControl

VI description

on modes in

Chapter 19,

Advanced

Counter VIs.

down

Table A-16. Analog Input Characteristics—SCXI Modules (Part 1)

Module

Number of

Channels

Input

Voltage

Range (V) Gains
1

Filter
1

Excitation

Channels
1

Mode Support

SCXI-1100 32 DI ±10 1, 2, 5, 10, 20,

50, 100, 200,

500, 1,000,

2,000

(SW/M)
1

 lowpass filter

(or no filter)

with 10 kHz or

4 Hz cutoff

frequency

(JS/M)
1

— multiplexed

SCXI-1102 32 DI ±10 1, 100 (SW/C)
1

1 Hz lowpass

on each

channel

— multiplexed

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-16 © National Instruments Corporation

SCXI-1120

SCXI-1121

8 DI

(SCXI-1120)

4 DI

(SCXI-1121)

±5 1, 2, 5, 10, 20,

50, 100, 200,

500, 1,000, and

2,000

(JS/C)
1

lowpass filter

with 10 kHz or

4 Hz cutoff

frequency

(JS/C)
1

SCXI-1121

only: 4

voltage or

current

excitation

JS/C
 1

(channels)

multiplexed or

parallel

SCXI-1120D 8 DI

(SCXI-1120)

4 DI

(SCXI-1121)

±5 0.5, 1, 2.5, 5,

10, 25, 50, 100,

250, 500, 1,000

4,500,

24,500 Hz

SCXI-1121

only: 4

voltage or

current

excitation

JS/C
1

(channels)

multiplexed or

parallel

SCXI-1122 16 DI or 8 DI

and 8

excitation

SW/M1

channels

±10 0.01, 0.02,

0.05, 0.1, 0.2,

0.5, 1, 2, 5, 10,

20, 50, 100,

200, 500,

1,000, 2,000

(SW/M)
1

lowpass filter

with 4kHz or 4

Hz cutoff

frequency

8 voltage or

current

excitation

channels in

4-wire

scanning

mode

multiplexed

SCXI-1140 8 DI, sample

and hold

±10 1, 10, 100, 200,

500

(DS/C)
1

none — multiplexed or

parallel

SCXI-1141 8 DI ±5 1, 2, 5, 10, 20,

50, 100

(SW/C)
1

elliptic lowpass

filter with

10Hz to 25KHz

cutoff

frequency
2

(SW/M)
1

(disabled on a

per channel

basis)

— multiplexed or

parallel

1
DS/C = dip switch-selectable per channel, JS/C = jumper-selectable per channel, JS/M = jumper-selectable per module,

SW/C = software-selectable per channel, SW/M = software-selectable per module

2
 The SCXI-1141 has an automatic filter setting. LabVIEW sets the filter frequency based on the scan rates used with the

module.

Table A-16. Analog Input Characteristics—SCXI Modules (Part 1) (Continued)

Module

Number of

Channels

Input

Voltage

Range (V) Gains
1

Filter
1

Excitation

Channels
1

Mode Support

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-17 LabVIEW Function and VI Reference Manual

Table A-17. Analog Output Characteristics—SCXI Modules

Module Number of

Channels Output Voltage Range (V or mA) Mode Support

SCXI-1124 6 voltage or

current

0 to1, 0 to 5, 0 to 10, ±1, ±5, ±10 (software-selectable)

or 0 to 0.20 mA

multiplexed

Table A-18. Relay Characteristics—SCXI Modules

Module

Number of

Channels
1

Latched or

Non-latched Start-up Relay Position
1

Mode Support

SCXI-1160 16 Latched Leave relays in the position at power-down. multiplexed

SCXI-1161 8 Non-latched Switch to the Normally Closed (NC) position—

when the hardware reset is set on the module.

multiplexed

1
You can set or reset each SCXI relay individually without affecting other relays, or you can change all of the relays

at once.

Table A-19. Digital Input and Output Characteristics—SCXI Modules

Module Type of Module Number of Channels
1

Input Voltage Range Mode Support

SCXI-1162 Input 32 (optically-isolated) 0 to 5 V Parallel support—when

connected to a DIO-24,

DIO-96, or DIO-32F

device. Multiplexed

support with any DAQ

device supporting SCXI.

SCXI-1162HV Input 32 (optically-isolated) AC or DC signals up
to ±240 V

Parallel support—when

connected to a DIO-24,

DIO-96, or DIO-32F

device. Multiplexed

support with any DAQ

device supporting SCXI.

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-18 © National Instruments Corporation

SCXI-1163 Output 32 (optically-isolated) 0 to 5 V Parallel support—when

connected to a DIO-24,

DIO-96, or DIO-32F

device. Multiplexed

support with any DAQ

device supporting SCXI.

SCXI-1163R* Output 32 (optically-isolated) ±240 V Parallel support—when

connected to a DIO-24,

DIO-96, or DIO-32F

device. Multiplexed

support with any DAQ

device supporting SCXI.

1
Functionally equivalent to the SCXI-1163, but incorporates solid-state relays in place of digital outputs.

Table A-20. Terminal Block Selection Guide—SCXI Modules

SCXI Module Terminal Blocks Cold-Junction Compensation Sensor (CJC)

SCXI-1100

SCXI-1102

SCXI-1303

SCXI-1300

Thermistor

IC Sensor

SCXI-1120

SCXI-1121

SCXI-1320

SCXI-13211

SCXI-1327

SCXI-1328

IC Sensor

IC Sensor

Thermistor

Thermistor

SCXI-1122 SCXI-1322 Thermistor

SCXI-1124 SCXI-1325 —

SCXI-1140 SCXI-1301

SCXI-1304

—

—

SCXI-1141 SCXI-1304 —

SCXI-1160 SCXI-1324 —

SCXI-1161 None–screw terminals located in

module.

—

Table A-19. Digital Input and Output Characteristics—SCXI Modules (Continued)

Module Type of Module Number of Channels
1

Input Voltage Range Mode Support

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-19 LabVIEW Function and VI Reference Manual

Note: “By device” means you select the value of a parameter with hardware

jumpers, and the selection affects any group of channels on the device. “By

group” means you program the selection through software, and the

selection affects all the channels used at the same time. “By channel”

means you program the selection with hardware jumpers or through

software on a per channel basis. When a specific value for a parameter is

shown, that parameter value is fixed.

SCXI-1162

SCXI-1162HV

SCXI-1163

SCXI-1163R

SCXI-1326 —

SCXI-1180 SCXI-1302 —

SCXI-1181 SCXI-1300

SCXI-1301

IC Sensor

—

SCXI-1200 SCXI-1302

CB-50

—

—

1 SCXI-1121 only

Table A-21. Analog Input Configuration Programmability

Device Gain Coupling

5102 devices by channel by channel

Table A-22. Analog Input Configuration Programmability

Device

Number of

Channels Resolution Gains Range (V)

Input FIFO

(words) Scanning

5102 devices 2 8 bits 1, 5, 20, 100 +/- 5 663546 1 or 2

channels in

any order

without

repetitions

Table A-20. Terminal Block Selection Guide—SCXI Modules (Continued)

SCXI Module Terminal Blocks Cold-Junction Compensation Sensor (CJC)

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-20 © National Instruments Corporation

Analog Output Only Devices Hardware Capabilities

Table A-23. Analog Output Characteristics--Analog Output Only Devices

Device Channel #s DAC Type

Output

Limits (V) Update Clocks

Waveform

Grouping

Transfer

Method

AT-AO-6

AT-AO-10

NB-AO-6

0 through 5, 6

through 9*

12-bit

double-buffer

ed

with 1 K FIFO

for update

clock 1

channels

±10, ±Vref1, 0

to 10, 0 to

Vref1, 4 to 20

mA, 4 to

Update clock

1 is ctr0 or

external

update.

Update clock

1 channels are

0, 1, 2, 3, 4, 5,

6*, 7*, 8*, 9*,

0 to 1, 0 to 3,

0 to 5, 0 to 7*,

0 to 9*.

Update clock

2 is ctr1.

Update clock

2 channels are

2, 3, 4, 5, 6*,

7*, 8*, 9*, 2 to

3, 2 to 5, 2 to

7*, 2 to 9*;

timebase

signal range is

1,000,000,

100,000,

10,000,

1,000, 100

For update

clock 1

channels are

any one

channel N or

set of channel

pairs: 0-N; for

update clock 2

channels are

2-N, same

rules as above:

N#6, N#10*

Update clock

1 channels:

DMA,

interrupts;

update clock 2

channels:

interrupts

PC-AO-2DC

(Plug and

Play)

0, 1 0 to 10, ±5,

0-20mA sink

software-selec

table

DAQCard-A

O-2DC

0, 1 0 to 10, ±5,

0-10mA sink

software-selec

table

*AT-AO-10 only

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-21 LabVIEW Function and VI Reference Manual

Dynamic Signal Acquisition Devices Hardware
Capabilities

Note: “By device” means you select the value of a parameter with hardware

jumpers, and the selection affects any group of channels on the device. “By

group” means you program the selection through software, and the

selection affects all the channels used at the same time. “By channel”

means you program the selection with hardware jumpers or through

software on a per channel basis. When a specific value for a parameter is

shown, that parameter value is fixed.

Table A-24. Analog Input Configuration Programmability—Dynamic Signal Acquisition Devices

Device Gain Range (V) Polarity SE/DIFF Coupling

EISA-A2000

NB-A2000

1 ±5 Bipolar SE By channel

NB-A2100

AT-DSP2200

1 ±2.828 Bipolar SE By group

NB-A2150

AT-A2150

1 ±2.828 Bipolar SE By channel pair 0 and 1, 2

and 3

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-22 © National Instruments Corporation

Table A-25. Analog Input Characteristics—Dynamic Signal Acquisition Devices

Device

N
u

m
b

er
 o

f
C

h
a

n
n

el
s

R
es

o
lu

ti
o

n

R
a

n
g

e
(V

)

In
p

u
t

F
IF

O

(w
o

rd
s)

T
ri

g
ge

rs

S
ca

n
n

in
g

M
a

x
 S

a
m

p
li

n
g

R
a

te
 (

S
/s

)

T
ra

n
sf

er

M
et

h
o

d

EISA-A2000

NB-A2000

4 SE 12

bits

±5 EISA:

512;

NB:

1,024

Software trigger,

pretrigger, and

posttrigger with

digital or analog

triggering and

posttrigger delay

0, 1, 2, 3, 0

and 1, 2 and

3, 0 to 3.

1M DMA,

interrupts

NB-A2100

NB-A2150

2 SE 16

bits

±2.828 32 Software trigger,

pretrigger, and

posttrigger with

digital or analog

triggering

A2150:

0, 1, 2, 3, 0

and 1, 2 and

3, 0 to 3;

A2100:

0, 1, 0 and 1

2100:

48 k, 2150:

24 k,

2150C:

48 k,

2150S:

51.2 k

DMA,

interrupts

AT-A2150 4 SE 16

bits

±2.828 — Software trigger,

pretrigger, and

posttrigger with

digital or analog

triggering

0, 1, 2, 3, 0

and 1, 2 and

3, 0 and 3

2150:

24 k

2150:

51.2 k

DMA,

interrupts

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-23 LabVIEW Function and VI Reference Manual

Digital Only Devices Hardware Capabilities

Table A-26. Digital Hardware Capabilities—Digital I/O Devices

Device

Port

Type Port #s Handshake Modes Direction DIO Clocks

Transfer

Method

AT-DIO-32F

NB-DIO-32F

8-bit

ports

0, 1, 2,

3

8-bit port

Handshaking on

or off; extensive

handshaking

modes

Read or write Two

clocks

available

16-bit

with

variable

timebase

DMA for each

group; dual

channel DMA for

groups

containing port 0

2-bit

ports

4 No handshaking Read or write None Software polling

PC-DIO-24

NB-DIO-24

DAQCard-DIO-24

8-bit

port

0, 1 Handshaking on

or off

Read or write,

port 0 may be

bidirectional

None Interrupts

8-bit

port

2 No handshaking;

unusable if port 0

or 1 uses

handshaking

Read or write None Software polling

PC-DIO-96

PCI-DIO-96

NB-DIO-96

8-bit

port

0, 1, 3,

4, 6, 7,

9, 10

Handshaking on

or off

Read or write,

ports 0, 3, 6, and

9 may be

bidirectional

None Interrupts

8-bit

port

2, 5, 8,

11

No handshaking;

unusable if port A

and B of the 8255

chip use

handshaking

Read or write None Software polling

PC-OPDIO-16 (Plug

and Play)

Opti-

cally-

isolated

8-bit

port

0, 1 — Port 0 is output

(write); port 1 is

input (read)

None Programmed I/O

Appendix A DAQ Hardware Capabilities

LabVIEW Function and VI Reference Manual A-24 © National Instruments Corporation

Timing Only Devices Hardware Capabilities

Table A-27. Digital Hardware Capabilities—Timing Only Devices

Device

Port

Type

Port

Numbers

Handshake

Modes Direction

DIO

Clocks

Transfer

Method

PC-TIO-10

NB-TIO-10

8-bit

ports

0, 1 No handshaking Bit-wise direction

control

None Software

polling

Table A-28. Counter/Timer Characteristics—Timing Only Devices

Device

C
o

u
n

te
r

C
h

ip

U
se

d

of

 G
en

er
a

l
P

u
rp

o
se

C
o

u
n

te
rs

 A
v

a
il

a
b

le

T
im

eb
a

se
s

A
v

a
il

a
b

le

#
 o

f
B

it
s

G
a
te

 M
o
d

es
 A

v
a
il

a
b

le

O
u

t-
p

u
ts

 A
v

a
il

-a
b

le

O
u

tp
u

t
M

o
d

es

A
v
a
il

-a
b

le

C
o

u
n

t
D

ir
ec

ti
o

n

PC-TIO-10

NB-TIO-10

Am-9513 10 (8 have

SOURCE

inputs at the

I/O

connector)

Internal: 5 MHz

(only on CTR5 and

CTR10), 1 MHz,

100 kHz, 10 kHz,

1 kHz, 100 Hz;

external

16 high-level,

low-level,

rising-edge,

falling-edge

10 TC

pulse,

TC

toggle

Up or

Down

Appendix A DAQ Hardware Capabilities

© National Instruments Corporation A-25 LabVIEW Function and VI Reference Manual

5102 Devices Hardware Capabilities

Table A-29. Analog input configuration programmability

Device Gain Coupling

5102 devices by channel by channel

Table A-30. Analog input characteristics

Device

Number

of Channels Resolution Gains Range (V)

Input FIFO

Words) Scanning

5102

devices

2 8 bits 1, 5, 20, 100 +/- 5 663,000 1 or 2 channels,

in any order

without

repetitions

Table A-31. Analog input characteristics, Part 2

Device Triggers Maximum Sampling Rate (S/s)

5102 devices SW, Pre, Post, Analog 20,000,000 real time

© National Instruments Corporation B-1 LabVIEW Function and VI Reference Manual

Appendix

B
Multiline Interface
Messages

This appendix lists multiline interface messages, which are commands
that IEEE 488 defines. Multiline interface message manage the GPIB—
they perform tasks such as initializing the bus, addressing and
unaddressing devices, and setting device modes for local or remote
programming. These multiline interface messages are sent and received
with ATN TRUE. The following list includes the mnemonics and
messages that correspond to the interface functions.

For more information on these messages, refer to the ANSI/IEEE
Standard 488.1-1987, IEEE Standard Digital Interface for

Programmable Instrumentation.

Hex Oct Dec ASCII Hex Oct Dec ASCII

00 000 0 NUL 20 040 32 SP

01 001 1 SOH 21 041 33 !

02 002 2 STX 22 042 34 "

03 003 3 ETX 23 043 35 #

04 004 4 EOT 24 044 36 $

05 005 5 ENQ 25 045 37 %

06 006 6 ACK 26 046 38 &

07 007 7 BEL 27 047 39 '

08 010 8 BS 28 050 40 (

09 011 9 HT 29 051 41)

0A 012 10 LF 2A 052 42 *

0B 013 11 VT 2B 053 43 +

Appendix B Multiline Interface Messages

LabVIEW Function and VI Reference Manual B-2 © National Instruments Corporation

0C 014 12 FF 2C 054 44 ,

0D 015 13 CR 2D 055 45 -

0E 016 14 SO 2E 056 46 .

0F 017 15 SI 2F 057 47 /

10 020 16 DLE 30 060 48 0

11 021 17 DC1 31 061 49 1

12 022 18 DC2 32 062 50 2

13 023 19 DC3 33 063 51 3

14 024 20 DC4 34 064 52 4

15 025 21 NAK 35 065 53 5

16 026 22 SYN 36 066 54 6

17 027 23 ETB 37 067 55 7

18 030 24 CAN 38 070 56 8

19 031 25 EM 39 071 57 9

1A 032 26 SUB 3A 072 58 :

1B 033 27 ESC 3B 073 59 ;

1C 034 28 FS 3C 074 60 <

1D 035 29 GS 3D 075 61 =

1E 036 30 RS 3E 076 62 >

1F 037 31 US 3F 077 63 ?

40 100 64 @ 60 140 96 `

41 101 65 A 61 141 97 a

Hex Oct Dec ASCII Hex Oct Dec ASCII

Appendix B Multiline Interface Messages

© National Instruments Corporation B-3 LabVIEW Function and VI Reference Manual

42 102 66 B 62 142 98 b

43 103 67 C 63 143 99 c

44 104 68 D 64 144 100 d

45 105 69 E 65 145 101 e

46 106 70 F 66 146 102 f

47 107 71 G 67 147 103 g

48 110 72 H 68 150 104 h

49 111 73 I 69 151 105 i

4A 112 74 J 6A 152 106 j

4B 113 75 K 6B 153 107 k

4C 114 76 L 6C 154 108 l

4D 115 77 M 6D 155 109 m

4E 116 78 N 6E 156 110 n

4F 117 79 O 6F 157 111 o

50 120 80 P 70 160 112 p

51 121 81 Q 71 161 113 q

52 122 82 R 72 162 114 r

53 123 83 S 73 163 115 s

54 124 84 T 74 164 116 t

55 125 85 U 75 165 117 u

56 126 86 V 76 166 118 v

57 127 87 W 77 167 119 w

Hex Oct Dec ASCII Hex Oct Dec ASCII

Appendix B Multiline Interface Messages

LabVIEW Function and VI Reference Manual B-4 © National Instruments Corporation

58 130 88 X 78 170 120 x

59 131 89 Y 79 171 121 y

5A 132 90 Z 7A 172 122 z

5B 133 91 [7B 173 123 {

5C 134 92 \ 7C 174 124 |

5D 135 93] 7D 175 125 }

5E 136 94 ^ 7E 176 126 ~

5F 137 95 _ 7F 177 127 DEL

Hex Oct Dec ASCII Hex Oct Dec ASCII

© National Instruments Corporation C-1 LabVIEW Function and VI Reference Manual

Appendix

COperation of the GPIB

This appendix describes basic concepts you need to understand to
operate the GPIB. It also contains a description of the physical and
electrical characteristics of the GPIB and configuration requirements of
the GPIB.

Types of Messages

The GPIB carries device-dependent messages and interface messages.

• Device-dependent messages, often called data or data messages,
contain device-specific information such as programming
instructions, measurement results, machine status, and data files.

• Interface messages manage the bus itself. They are usually called
commands or command messages. Interface messages perform such
tasks as initializing the bus, addressing and unaddressing devices,
and setting device modes for remote or local programming.

Do not confuse the term command as used here with some device
instructions, which can also be called commands. These device-specific
instructions are actually data messages.

Talkers, Listeners, and Controllers

GPIB devices can be Talkers, Listeners, and/or Controllers. A digital
voltmeter, for example, is a Talker and may be a Listener as well. A
Talker sends data messages to one or more Listeners. The Controller
manages the flow of information on the GPIB by sending commands to
all devices.

The GPIB is like an ordinary computer bus, except that the computer
has its circuit cards interconnected via a backplane bus, whereas the
GPIB has stand-alone devices interconnected via a cable bus.

The role of the GPIB Controller is similar to the role of the CPU of a
computer, but a better analogy is to the switching center of a city
telephone system. The switching center (Controller) monitors the

Appendix C Operation of the GPIB

LabVIEW Function and VI Reference Manual C-2 © National Instruments Corporation

communications network (GPIB). When the center (Controller) notices
that a party (device) wants to make a call (send a data message), it
connects the caller (Talker) to the receiver (Listener).

The Controller addresses a Talker and a Listener before the Talker can
send its message to the Listener. After the Talker transmits the message,
the Controller may unaddress both devices.

Some bus configurations do not require a Controller. For example, one
device may always be a Talker (called a Talk-only device) and there
may be one or more Listen-only devices.

A Controller is necessary when you must change the active or addressed
Talker or Listener. A computer usually handles the Controller function.

With the GPIB board and its software, your personal computer plays all
three roles:

• Controller—to manage the GPIB

• Talker—to send data

• Listener—to receive data

The Controller-In-Charge and System Controller

Although there can be multiple Controllers on the GPIB, only one
Controller at a time is active or Controller-In-Charge (CIC). You can
pass active control from the current CIC to an idle Controller. Only one
device on the bus—the System Controller—can make itself the CIC.
The GPIB board is usually the System Controller.

GPIB Signals and Lines

The interface system consists of 16 signal lines and 8 ground-return or
shield-drain lines.

The 16 signal lines are divided into three groups:

• Eight data lines

• Three handshake lines

• Five interface management lines

Appendix C Operation of the GPIB

© National Instruments Corporation C-3 LabVIEW Function and VI Reference Manual

Data Lines
The eight data lines, DIO1 through DIO8, carry both data and command
messages. All commands and most data use the 7-bit ASCII or
International Standards Organization (ISO) code set, in which case the
eighth bit, DIO8, is unused or is used for parity.

Handshake Lines
Three lines asynchronously control the transfer of message bytes among
devices. This process is called a three-wire interlocked handshake, and
it guarantees that message bytes on the data lines are sent and received
without transmission error.

NRFD (not ready for data)
NRFD indicates whether a device is ready to receive a message byte.
All devices drive NRFD when they receive commands, and Listeners
drive it when they receive data messages.

NDAC (not data accepted)
NDAC indicates whether a device has accepted a message byte. All
devices drive NDAC when they receive commands, and Listeners drive
it when they receive data messages.

DAV (data valid)
DAV tells whether the signals on the data lines are stable (valid) and
whether devices can accept them safely. The Controller drives DAV
when sending commands, and the Talker drives it when sending data
messages.

Interface Management Lines
Five lines manage the flow of information across the interface.

ATN (attention)
The Controller drives ATN true when it uses the data lines to send
commands and drives ATN false when a Talker can send data messages.

Appendix C Operation of the GPIB

LabVIEW Function and VI Reference Manual C-4 © National Instruments Corporation

IFC (interface clear)
The System Controller drives the IFC line to initialize the bus and
become CIC.

REN (remote enable)
The System Controller drives the REN line, which places devices in
remote or local program mode.

SRQ (service request)
Any device can drive the SRQ line to asynchronously request service
from the Controller.

EOI (end or identify)
The EOI line has two purposes. The Talker uses the EOI line to mark
the end of a message string. The Controller uses the EOI line to tell
devices to respond in a parallel poll.

Physical and Electrical Characteristics

You usually connect devices with a cable assembly consisting of a
shielded 24-conductor cable which has both a plug and a receptacle
connector at each end. With this design, you can link devices in either
a linear or a star configuration, or a combination of the two.

The standard connector is the Amphenol or Cinch Series 57
Microribbon or Amp Champ type. You can use an adapter cable with a
non-standard cable and/or connector for special interconnection
applications.

Appendix C Operation of the GPIB

© National Instruments Corporation C-5 LabVIEW Function and VI Reference Manual

The GPIB uses negative logic with standard transistor-transistor logic
(TTL) level. When DAV is true, for example, it is a TTL low level
(≤ 0.8 V), and when DAV is false, it is a TTL high level (≥ 2.0 V).

Figure C-1. GPIB Connector Showing Signal Assignment

Appendix C Operation of the GPIB

LabVIEW Function and VI Reference Manual C-6 © National Instruments Corporation

Figure C-2. Linear Configuration

GPIB Cables

Device A

Device C

Device B

Appendix C Operation of the GPIB

© National Instruments Corporation C-7 LabVIEW Function and VI Reference Manual

Figure C-3. Star Configuration

Configuration Requirements

To achieve the high data transfer rate for which the GPIB was designed,
the physical distance between devices and the number of devices on the
bus must be limited. The following restrictions are typical:

• A maximum separation of 4 m between any two devices and an
average separation of 2 m over the entire bus.

• A maximum total cable length of 20 m.

• No more than 15 devices connected to each bus, with at least
two-thirds powered on.

GPIB Cables

Device A

Device C

Device D

Device B

Appendix C Operation of the GPIB

LabVIEW Function and VI Reference Manual C-8 © National Instruments Corporation

Contact National Instruments for bus extenders if your requirements
exceed these limits.

© National Instruments Corporation D-1 LabVIEW Function and VI Reference Manual

Appendix

DReferences

This appendix lists the reference material used to produce the Analysis
VIs in this manual. These references contain more information on the
theories and algorithms implemented in the analysis library.

1. Baher, H. Analog & Digital Signal Processing. New York: John
Wiley & Sons. 1990.

2. Bates, D.M. and Watts, D.G. Nonlinear Regression Analysis and its

Applications. New York: John Wiley & Sons. 1988.

3. Bracewell, R.N. “Numerical Transforms.” Science. Science-248.
11 May 1990.

4. Burden, R.L. & Faires, J.D. Numerical Analysis. Third Edition.
Boston: Prindle, Weber & Schmidt. 1985.

5. Chen, C.H. et al. Signal Processing Handbook. New York: Marcel
Decker, Inc. 1988.

6. DeGroot, M. Probability and Statistics 2nd ed. Reading,
Massachusetts: Addison-Wesley Publishing Co. 1986.

7. Dowdy, S. and Wearden, S. Statistics for Research 2nd ed. New
York: John Wiley & Sons. 1991.

8. Dudewicz, E.J. and Mishra, S.N. Modern Mathematical Statistics
New York: John Wiley & Sons, 1988.

9. Duhamel, P. et al. “On Computing the Inverse DFT.” IEEE
Transactions on ASSP. ASSP-34 (1986): 1 (February).

10. Dunn, O. and Clark, V. Applied Statistics: Analysis of Variance and

Regression 2nd ed. New York: John Wiley & Sons. 1987.

11. Elliot, D.F. Handbook of Digital Signal Processing Engineering

Applications. San Diego: Academic Press. 1987.

12. Harris, Fredric J. “On the Use of Windows for Harmonic Analysis
with the Discrete Fourier Transform,” Proceedings of the IEEE-66
(1978)-1.

13. Maisel, J.E. “Hilbert Transform Works With Fourier Transforms to
Dramatically Lower Sampling Rates.” Personal Engineering and
Instrumentation News. PEIN-7 (1990): 2 (February).

Appendix D References

LabVIEW Function and VI Reference Manual D-2 © National Instruments Corporation

14. Miller, I. and Freund, J.E. Probability and Statistics for Engineers.
Englewood Cliffs, N.J.: Prentice-Hall, Inc. 1987.

15. Neter, J. et al. Applied Linear Regression Models. Richard D.
Irwin, Inc. 1983.

16. Neuvo, Y., Dong, C.-Y., and Mitra, S.K. “Interpolated Finite
Impulse Response Filters,” IEEE Transactions on ASSP. ASSP-32
(1984): 6 (June).

17. O’Neill, M.A. “Faster Than Fast Fourier.” BYTE. (1988) (April).

18. Oppenheim, A.V. & Schafer, R.W. Discrete-Time Signal

Processing. Englewood Cliffs, New Jersey: Prentice Hall. 1989.

19. Parks, T.W. and Burrus, C.S. Digital Filter Design. John Wiley &
Sons, Inc.: New York. 1987.

20. Pearson, C.E. Numerical Methods in Engineering and Science.
New York: Van Nostrand Reinhold Co. 1986.

21. Press, W.H. et al. Numerical Recipes in C: The Art of Scientific

Computing. Cambridge: Cambridge University Press. 1988.

22. Rabiner, L.R. & Gold, B. Theory and Application of Digital Signal

Processing. Englewood Cliffs, New Jersey: Prentice Hall. 1975.

23. Sorensen, H.V. et al. “On Computing the Split-Radix FFT.” IEEE
Transactions on ASSP. ASSP-34 (1986):1 (February).

24. Sorensen, H.V. et al. “Real-Valued Fast Fourier Transform
Algorithms.” IEEE Transactions on ASSP. ASSP-35 (1987):
6 (June).

25. Stoer, J. and Bulirsch, R. Introduction to Numerical Analysis. New
York: Springer-Verlag. 1987.

26. Vaidyanathan, P.P. Multirate Systems and Filter Banks.
Englewood Cliffs, New Jersey: Prentice Hall. 1993.

27. Wichman, B. and Hill, D. “Building a Random-Number Generator:
A pascal routine for very-long-cycle random-number sequences.”
BYTE, March 1987, pp. 127-128.

© National Instruments Corporation E-1 LabVIEW Function and VI Reference Manual

Appendix

ECustomer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form
and the configuration form, if your manual contains one, about your system configuration to
answer your questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
quickly provide the information you need. Our electronic services include a bulletin board
service, an FTP site, a fax-on-demand system, and e-mail support. If you have a hardware or
software problem, first try the electronic support systems. If the information available on these
systems does not answer your questions, we offer fax and telephone support through our technical
support centers, which are staffed by applications engineers.

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded instructions
on how to use the bulletin board and FTP services and for BBS automated information, call (512)
795-6990. You can access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use
your Internet address, such as joesmith@anywhere.com, as your password. The support files
and documents are located in the /support directories.

Bulletin Board Support

FTP Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
wide range of technical information. You can access Fax-on-Demand from a touch-tone
telephone at (512) 418-1111.

You can submit technical support questions to the applications engineering team through e-mail
at the Internet address listed below. Remember to include your name, address, and phone number
so we can contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country,
contact the source from which you purchased your software to obtain support.

Telephone Fax

Australia 02 9874 4100 02 9874 4455
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 527 2321 09 502 2930
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 06 5729961 06 57284309
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 31 348 43 34 66 31 348 43 06 73
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Fax-on-Demand Support

E-Mail Support (currently U.S. only)

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of this form as a reference for your current configuration. Completing
this form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___)___________________ Phone (___) _______________________________________

Computer brand ________________ Model ________________ Processor___________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB _____________________________ Display adapter

Mouse ___yes ___no Other adapters installed _______________________________________

Hard disk capacity _____MB __Brand

Instruments used ___

National Instruments hardware product model __________________________________ Revision

Configuration ___

National Instruments software product ___ Version

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem:__

LabVIEW Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each
item. Complete a new copy of this form each time you revise your software or hardware
configuration, and use this form as a reference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

National Instruments Products

DAQ hardware __

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware ___

Programming choice __

HiQ, NI-DAQ, LabVIEW, or LabWindows version _____________________________________

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Other Products

Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our
products. This information helps us provide quality products to meet your needs.

Title: LabVIEW Function and VI Reference Overview

Edition Date: May 1997

Part Number: 321526A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

Phone (___)__________________________ Fax (___) ________________________________

Mail to: Technical Publications Fax to: Technical Publications

National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation I-1 LabVIEW Function and VI Reference Manual

Index

1200 Calibrate, 28-2

1D ANOVA, 45-2

1D Linear Evaluation, 47-2

1D Polar To Rectangular, 47-2

1D Polynomial Evaluation, 47-2

1D Rectangular To Polar, 47-3

2D ANOVA, 45-3

2D Linear Evaluation, 47-3

2D Polynomial Evaluation, 47-3

3D ANOVA, 45-4

A x B, 46-7

A x Vector, 46-7

A2000 Calibrate, 28-2

A2000 Configure, 28-3

A2100 Calibrate (Macintosh), 28-4

A2100 Config (Macintosh), 28-4

A2150 Calibrate (Windows), 28-5

A2150 Config (Macintosh), 28-4

Abort Instrument, 12-11

AC & DC Estimator, 41-4

Access Rights, 11-15

Addition, 46-2

Additional User Definable Constants, 4-22

Adjacent Counters, 26-2

AECreate Comp Descriptor, 54-16

AECreate Descriptor List, 54-18

AECreate Logical Descriptor, 54-17

AECreate Object Specifier, 54-17

AECreate Range Descriptor, 54-17

AECreate Record, 54-18

AESend Abort VI, 54-9

AESend Close VI, 54-9

AESend Do Script, 54-7

AESend Finder Open, 54-8

AESend Open Document, 54-8

AESend Open, 54-8

AESend Open, Run, Close VI, 54-10

AESend Print Document, 54-8

AESend Quit Application, 54-9

AESend Run VI, 54-10

AESend VI Active?, 54-10

AESend, 54-16

AI Acquire Waveform, 14-1

AI Acquire Waveforms, 14-2

AI Buffer Config, 17-1

AI Buffer Read, 17-3

AI Clear, 15-2

AI Clock Config, 17-3

AI Config, 15-3

AI Continuous Scan, 16-2

AI Control, 17-5

AI Group Config, 17-6

AI Hardware Config, 17-8

AI Parameter, 17-13

AI Read One Scan, 16-3

AI Read, 15-3

AI Sample Channel, 14-2

AI Sample Channels, 14-3

AI Single Scan, 15-4

AI SingleScan, 17-13

AI Start, 15-5

AI Trigger Config, 17-14

AI Waveform Scan, 16-4

AllSPoll, 36-4

Amplitude and Phase Spectrum, 41-4

And Array Elements, 5-3

And, 5-2

AO Buffer Config, 21-1

AO Buffer Write, 21-2

AO Clear, 19-2

AO Clock Config, 21-3

AO Config, 19-2

AO Continuous Gen, 20-2

AO Control, 21-3

AO Generate Waveform, 18-1

AO Generate Waveforms, 18-2

AO Group Config, 21-3

AO Hardware Config, 21-4

AO Parameter, 21-4

AO Single Update, 21-4

AO Start, 19-3

AO Trigger and Gate Config (Windows), 21-5

AO Update Channel, 18-2

AO Update Channels, 18-2

AO Wait, 19-3

AO Waveform Gen, 20-3

Index

LabVIEW Function and VI Reference Manual I-2 © National Instruments Corporation

AO Write One Update, 20-4

AO Write, 19-3

AO-6/10 Calibrate (Windows), 28-5

Arbitrary Wave, 39-4

Array Max & Min, 7-3

Array Of Strings To Path, 11-15

Array Of Strings To Path, 6-19

Array Size, 7-4

Array Subset, 7-4

Array To Cluster, 7-4

Array To Cluster, 8-3

Array To Spreadsheet String, 6-6

Auto Power Spectrum, 41-4

AutoCorrelation, 40-8

Beep, 12-2

Bessel Coefficients, 42-17

Bessel Filter, 42-17

Blackman Window, 43-5

Blackman-Harris Window, 43-5

Boolean Array To Number, 4-10

Boolean Array To Number, 5-3

Boolean Constant, 5-5

Boolean To (0,1), 4-10

Boolean To (0,1), 5-3

Build Array, 7-4

Build Cluster Array, 8-3

Build Path, 11-6

Bundle By Name, 8-4

Bundle, 8-4

Butterworth Coefficients, 42-17

Butterworth Filter, 42-18

Byte Array To String, 4-10

Byte Array To String, 6-20

Bytes at Serial Port, 37-4

cac – Become active Controller, 35-9

Call Chain, 12-2

Call Instrument, 12-12

Call Library Function, 12-3

Carriage Return, 6-21

Cascade—>Direct Coefficients, 42-18

Case Structure, 3-2

Cast Unit Bases, 4-11

Channel To Index, 28-6

Chebyshev Coefficients, 42-19

Chebyshev Filter, 42-19

Chi Square Distribution, 45-5

Chirp Pattern, 39-5

Cholesky Factorization, 46-8

Close All PPC Ports, 55-4

Close File, 11-6

Close Panel No Abort, 12-12

Close Panel, 12-12

Cluster To Array, 7-5

Cluster To Array, 8-4

cmd – Send IEEE488 commands, 35-9

Code Interface Node, 12-2

Complex A x B, 46-8

Complex A x Vector, 46-9

Complex Cholesky Factorization, 46-9

Complex Conjugate, 4-20

Complex Determinant, 46-9

Complex Dot Product, 46-10

Complex Eigenvalues & Vectors, 46-10

Complex FFT, 40-9

Complex Inverse Matrix, 46-11

Complex LU Factorization, 46-11

Complex Matrix Condition Number, 46-12

Complex Matrix Norm, 46-12

Complex Matrix Rank, 46-13

Complex Matrix Trace, 46-13

Complex Outer Product, 46-13

Complex Polynomial Roots, 48-1

Complex PseudoInverse Matrix, 46-14

Complex QR Factorization, 46-14

Complex SVD Factorization, 46-15

Complex To Polar, 4-21

Complex To Re/Im, 4-21

Compound Arithmetic, 5-3

Concatenate Strings, 6-6

Contingency Table, 45-5

Continuous Pulse Generator Config, 26-2

Control Help Window, 12-8

Control Online Help, 12-8

Convert RTD Reading, 29-2

Convert Strain Gauge Reading, 29-3

Convert Thermistor Reading, 29-7

Convert Thermocouple Buffer, 29-9

Convert Thermocouple Reading, 29-9

Convert Unit, 4-11

Convolution, 40-11

Convolution, 42-19

Copy, 11-15

Cosecant, 4-14

Cosine Tapered Window, 43-6

Cosine, 4-14

Cotangent, 4-14

Count Events or Time, 25-2

Counter Read, 26-3

Counter Start, 26-3

Counter Stop, 26-3

Create Automation Refnum, 53-3

Create Special Complex Matrix, 46-15

Create Special Matrix, 46-15

Index

© National Instruments Corporation I-3 LabVIEW Function and VI Reference Manual

Creating AppleEvent Parameters Using Object Specifiers,

54-16

Cross Power Spectrum, 41-5

Cross Power, 40-12

CrossCorrelation, 40-13

CTR Buffer Config, 27-2

CTR Buffer Read, 27-2

CTR Control, 27-11

CTR Group Config, 27-3

CTR Mode Config, 27-4

CTR Pulse Config, 27-10

Current VI's Path Constant, 11-21

DAQ Occurrence Config (Windows), 28-8

Date/Time To Seconds, 10-6

DDE Advise Check, 52-7

DDE Advise Start, 52-7

DDE Advise Stop, 52-7

DDE Close Conversation, 52-7

DDE Execute, 52-8

DDE Open Conversation, 52-8

DDE Poke, 52-8

DDE Request, 52-8

DDE Srv Check Item, 52-9

DDE Srv Register Item, 52-9

DDE Srv Register Service, 52-9

DDE Srv Set Item, 52-9

DDE Srv Unregister Item, 52-10

DDE Srv Unregister Service, 52-10

Decimal Digit?, 9-6

Decimate 1D Array, 7-5

Decimate, 40-15

Deconvolution, 40-16

Default Directory Constant, 11-21

Delayed Pulse Generator Config, 26-3

Delete, 11-15

Derivative x(t), 40-17

Determinant, 46-16

DevClear, 36-2

DevClearList, 36-4

Device Reset, 28-9

Diagonal Matrix, 46-3

Digital Buffer Config, 24-3

Digital Buffer Control, 24-4

Digital Buffer Read, 24-4

Digital Buffer Write, 24-4

Digital Clock Config, 24-5

Digital Group Config, 24-5

Digital Mode Config, 24-6

Digital Single Read, 24-7

Digital Single Write, 24-7

Digital Trigger Config, 24-7

DIO Clear, 23-2

DIO Config, 23-2

DIO Parameter, 24-6

DIO Port Config, 24-2

DIO Port Read, 24-3

DIO Port Write, 24-3

DIO Read, 23-3

DIO Single Read/Write, 23-3

DIO Start, 23-4

DIO Wait, 23-4

DIO Write, 23-4

dma – Set DMA mode or programmed I/O mode, 35-10

Dot Product, 46-16

Down Counter or Divider Config, 26-4

DSP2200 Calibrate (Windows), 28-9

DSP2200 Configure (Windows), 28-10

EigenValues & Vectors, 46-17

Elliptic Coefficients, 42-20

Elliptic Filter, 42-20

Empty Path, 11-21

Empty String, 6-21

Empty String/Path?, 9-6

EnableLocal, 36-5

EnableRemote, 36-5

End of Line, 6-21

EOF, 11-16

Equal To 0?, 9-6

Equal?, 9-6

Equiripple BandPass, 42-20

Equiripple BandStop, 42-21

Equiripple HighPass, 42-21

Equiripple LowPass, 42-22

erf(x), 45-6

erfc(x), 45-6

E-Series Calibrate (Windows), 28-10

Event or Time Counter Config, 26-4

Exact Blackman Window, 43-6

Exclusive Or, 5-4

Execute Method, 53-3

Exponential (Arg) –1, 4-18

Exponential Fit Coefficients, 44-3

Exponential Fit, 44-3

Exponential Window, 43-7

Exponential, 4-18

F Distribution, 45-6

Fast Data Channel Mode, 34-14

Fast Data Channel Number, 34-14

Fast Data Channel Pairs, 34-14

Fast Data Channel Signal Enable, 34-14

Fast Hilbert Transform, 40-17

FHT, 40-18

File Dialog, 11-16

File/Directory Info, 11-16

Index

LabVIEW Function and VI Reference Manual I-4 © National Instruments Corporation

Find First Error, 10-9

FindLstn, 36-6

FindRQS, 36-5

FIR Narrowband Coefficients, 42-22

FIR Narrowband Filter, 42-24

FIR Windowed Coefficients, 42-25

FIR Windowed Filter, 42-25

Fixed Constants, 4-22

Flat Top Window, 43-7

Flatten To String, 12-5

Flush File, 11-17

For Loop, 3-2

Force Window, 43-8

Format & Append, 6-16

Format & Strip, 6-16

Format Into String, 6-7

Formula Node, 3-3

From Decimal, 6-17

From Exponential/Fract/Eng, 6-17

From Hexadecimal, 6-17

From Octal, 6-17

Gaussian White Noise, 39-6

General Cosine Window, 43-8

General Error Handler, 10-10

General Histogram, 45-6

General LS Linear Fit, 44-4

General Polynomial Fit, 44-10

Generate Delayed Pulse, 25-2

Generate Occurrence, 12-9

Generate Pulse Train, 25-3

Get DAQ Channel Names (Windows), 28-17

Get DAQ Device Information, 28-12

Get Date/Time In Seconds, 10-7

Get Date/Time String, 10-7

Get Help Window Status, 12-9

Get Instrument State, 12-13

Get Panel Size, 12-13

Get Property, 53-3

Get SCXI Information, 28-12

Get Target ID, 54-5

Get Target ID, 55-5

Global Variable, 3-3

GPIB Clear, 35-3

GPIB Initialization, 35-4

GPIB Misc, 35-4

GPIB Primary Address, 34-14

GPIB Read, 35-5

GPIB Secondary Address, 34-14

GPIB Serial Poll, 35-6

GPIB Status, 35-6

GPIB Trigger, 35-6

GPIB Wait, 35-6

GPIB Write, 35-7

Greater Or Equal To 0?, 9-7

Greater Or Equal?, 9-7

Greater Than 0?, 9-7

Greater?, 9-7

gts – Go from active Controller to standby, 35-10

Hamming Window, 43-9

Hanning Window, 43-9

Harmonic Analyzer, 41-5

Hermitian Matrix, 46-3

Hex Digit?, 9-7

Histogram, 45-7

Hyperbolic Cosine, 4-15

Hyperbolic Sine, 4-15

Hyperbolic Tangent, 4-15

ICTR Control, 26-5

ICTRControl, 27-11

Identity Matrix, 46-3

IIR Cascade Filter with Integrated Circuit, 42-26

IIR Cascade Filter, 42-25

IIR Filter with Integrated Circuit, 42-27

IIR Filter, 42-26

Immediate Servant, 34-14

Implies, 5-4

Impulse Pattern, 39-6

Impulse Response Function, 41-6

In Port (Windows 3.1 and Windows 95), 12-10

Increment Destination Count, 34-14

Increment Source Count, 34-15

Index & Append, 6-8

Index & Bundle Cluster Array, 8-5

Index & Strip, 6-8

Index Array, 7-5

Initialize Array, 7-5

Integral x(t), 40-19

Interface Number, 34-15

InterfaceType, 34-15

Interleave 1D Arrays, 7-6

Interpolate 1D Array, 7-6

Inv Chebyshev Coefficients, 42-27

Inv Chi Square Distribution, 45-8

Inv F Distribution, 45-8

Inv Normal Distribution, 45-9

Inv T Distribution, 45-9

Inverse Chebyshev Filter, 42-27

Inverse Complex FFT, 40-20

Inverse Cosine, 4-15

Inverse Fast Hilbert Transform, 40-21

Inverse FHT, 40-22

Inverse Hyperbolic Cosine, 4-15

Inverse Hyperbolic Sine, 4-16

Inverse Hyperbolic Tangent, 4-16

Index

© National Instruments Corporation I-5 LabVIEW Function and VI Reference Manual

Inverse Matrix, 46-17

Inverse Real FFT, 40-23

Inverse Sine, 4-16

Inverse Tangent (2 Input), 4-16

Inverse Tangent, 4-16

IO Protocol, 34-14

IP To String, 50-4

ist – Set individual status bit, 35-11

Join Numbers, 12-5

Kaiser-Bessel Window, 43-10

Less Or Equal To 0?, 9-8

Less Or Equal?, 9-8

Less Than 0?, 9-8

Less?, 9-8

Lexical Class, 9-9

Line Feed, 6-21

Linear Fit Coefficients, 44-12

Linear Fit, 44-12

List Directory, 11-17

List Methods or Properties, 53-3

List Objects in Type Library, 53-4

llo – Local lockout, 35-11

loc – Go to local, 35-7

loc – Place Controller in local state, 35-12

Local Variable, 3-3

Lock Range, 11-17

Logarithm Base 10, 4-19

Logarithm Base 2, 4-18

Logarithm Base X, 4-19

Logical Shift, 12-5

Lower Triangular Matrix, 46-4

LPM-16 Calibrate, 28-12

LU Factorization, 46-18

Mainframe Logical Address, 34-15

Make Alias, 54-16

MakeAddr, 36-10

Mantissa & Exponent, 12-6

Manufacturer ID, 34-15

Master Slave Config, 28-13

Match Pattern, 6-9

Matrix Condition Number, 46-18

Matrix Norm, 46-18

Matrix Rank, 46-19

Matrix-Matrix Multiplication, 46-2

Max & Min, 9-9

Maximum Queue Length, 34-15

Mean, 45-9

Measure Frequency, 25-3

Measure Pulse Width or Period, 25-4

Median Filter, 42-28

Median, 45-10

MIO Calibrate (Windows), 28-13

MIO Configure (Windows), 28-14

Mode, 45-10

Model Code, 34-15

Moment About Mean, 45-10

Move, 11-18

MSE, 45-11

n Range?, 9-7

Natural Logarithm (Arg +1), 4-19

Natural Logarithm, 4-19

Network Functions (avg), 41-6

New Directory, 11-18

New File, 11-18

Nonlinear Lev-Mar Fit, 44-13

Normal Distribution, 45-11

Normalize Matrix, 47-4

Normalize Vector, 47-4

Not A Number/Path/Refnum?, 9-9

Not A Path, 11-22

Not A Refnum, 11-22

Not And, 5-4

Not Equal To 0?, 9-10

Not Equal?, 9-10

Not Exclusive Or, 5-4

Not Or, 5-4

Not, 5-4

Number To Boolean Array, 4-11

Number To Boolean Array, 5-5

Numeric Integration, 48-2

Octal Digit?, 9-10

off – Take controller offline, 35-12

off – Take device offline, 35-8

One Button Dialog Box, 10-7

Open File, 11-18

Open Panel, 12-13

Open/Create/Replace File, 11-7

Or Array Elements, 5-5

Or, 5-5

Orthogonal Matrix, 46-4

Out Port (Windows 3.1 and Windows 95), 12-11

Outer Product, 46-19

Out-of-Range Index Values, 7-3

Parks-McClellan, 42-28

PassControl, 36-3

Path Constant, 11-22

Path To Array Of Strings, 11-19

Path To Array Of Strings, 6-20

Path To String, 11-19

Path To String, 6-20

Path Type, 11-19

pct – Pass control, 35-8

Peak Detector, 41-7

Peak Detector, 48-3

Index

LabVIEW Function and VI Reference Manual I-6 © National Instruments Corporation

Periodic Random Noise, 39-7

Permutation Matrix, 46-4

Pick Line & Append, 6-11

Polar To Complex, 4-21

Polynomial Interpolation, 44-14

Positive Definite Matrix, 46-4

Power & Frequency Estimate, 41-7

Power Of 10, 4-20

Power Of 2, 4-19

Power Of X, 4-20

Power Spectrum, 40-23

ppc – Parallel poll configure (enable and disable), 35-12

ppc – Parallel poll configure, 35-8

PPC Accept Session, 55-3

PPC Browser, 54-6

PPC Browser, 55-4

PPC Close Port, 55-4

PPC End Session, 55-4

PPC Inform Session, 55-5

PPC Open Port, 55-5

PPC Read, 55-6

PPC Start Session, 55-6

PPC Write, 55-6

PPoll, 36-5

PPollConfig, 36-3

PPollUnconfig, 36-5

ppu – Parallel poll unconfigure, 35-12

PREFIX Close, 33-2

PREFIX Error Message, 33-3

PREFIX Error Query, Error Query (Multiple) and Error

Message, 33-3

PREFIX Initialize and PREFIX Initialize (VXI,

Reg-based), 33-3

PREFIX Message-Based Template and Register-Based

Template, 33-4

PREFIX Register-Based Template, 33-5

PREFIX Reset, 33-5

PREFIX Revision Query, 33-5

PREFIX Self-Test, 33-5

PREFIX Utility Clean UP Initialize, 33-6

PREFIX Utility Default Instrument Setup, 33-6

PREFIX VI Tree, 33-6

Preload Instrument, 12-13

Printable?, 9-10

PseudoInverse Matrix, 46-20

Pulse Parameters, 41-7

Pulse Pattern, 39-8

Pulse Width or Period Meas Config, 26-5

Pulse Width or Period Meas Config, 26-7

QR Factorization, 46-20

Quick Scale 1D, 47-5

Quick Scale 2D, 47-6

Quit, 12-4

Ramp Pattern, 39-8

Rational Interpolation, 44-14

RcvRespMsg, 36-9

Re/Im To Complex, 4-21

Read Characters From File, 11-7

Read File, 11-7

Read from Digital Line, 22-2

Read from Digital Port, 22-2

Read From I16 File, 11-13

Read From SGL File, 11-13

Read From Spreadsheet File, 11-10

Read Lines From File, 11-11

ReadStatus, 36-3

Real FFT, 40-27

Receive, 36-3

ReceiveSetup, 36-9

Refnum To Path, 11-19

Refnum To Path, 6-20

Release Instrument, 12-14

Release Refnum, 53-4

Replace Array Element, 7-6

ResetSys, 36-6

Reshape Array, 7-6

Resize Panel, 12-14

Resource Lock State, 34-15

Resource Manufacturer Identification, 34-15

Resource Manufacturer Name, 34-15

Resource Name, 34-15

Reverse 1D Array, 7-6

Reverse String, 6-11

RMS, 45-11

Rotate 1D Array, 7-7

Rotate Left With Carry, 12-6

Rotate Right With Carry, 12-6

Rotate String, 6-12

Rotate, 12-6

Route Signal, 28-14

rpp – Conduct parallel poll, 35-12

rsc – Release or request system control, 35-13

rsv – Request service and/or set the serial poll status byte,

35-13

RTSI Control, 28-15

Run Instrument, 12-14

Sample Variance, 45-12

Sawtooth Wave, 39-9

Scalar-Matrix Multiplication, 46-2

Scale 1D, 47-6

Scale 2D, 47-7

Scaled Time Domain Window, 41-8

Scaling Constant Tuner, 29-9

Scan From String, 6-12

Index

© National Instruments Corporation I-7 LabVIEW Function and VI Reference Manual

SCXI Cal Constants, 28-15

SCXI Temperature Scan, 29-11

Search 1D Array, 7-7

Secant, 4-17

Seconds To Date/Time, 10-7

Seek, 11-19

Select & Append, 6-14

Select & Strip, 6-14

Select, 9-10

Send End Enable, 34-16

Send, 36-4

SendCmds, 36-9

SendDataBytes, 36-9

SendIFC, 36-7

SendList, 36-6

SendLLO, 36-7

SendSetup, 36-10

Sequence Structure, 3-2

Serial Port Break, 37-4

Serial Port Init, 37-4

Serial Port Read, 37-4

Serial Port Write, 37-4

Set DAQ Configuration File (Windows), 28-17

Set DAQ Device Information, 28-16

Set Occurrence, 12-10

Set Property, 53-4

Set SCXI Information, 28-16

SetRWLS, 36-7

SetTimeOut, 36-10

sic – Send interface clear, 35-13

Simple Error Handler, 10-10

Sinc Pattern, 39-9

Sinc, 4-17

Sine & Cosine, 4-17

Sine Pattern, 39-10

Sine Wave, 39-10

Sine, 4-17

Slot, 34-16

Solve Complex Linear Equations, 46-20

Solve Linear Equations, 46-22

Sort 1D Array, 7-7

Spectrum Unit Conversion, 41-9

Spline Interpolant, 44-15

Spline Interpolation, 44-16

Split 1D Array, 7-7

Split Number, 12-6

Split String, 6-14

Spreadsheet String To Array, 6-14

Square Wave, 39-11

sre – Unassert or assert remote enable, 35-14

Standard Deviation, 45-12

Stop, 12-4

String Constant, 6-21

String Length, 6-15

String Subset, 6-15

String To Byte Array, 4-12

String To Byte Array, 6-20

String To IP, 50-4

String To Path, 11-20

String To Path, 6-21

Strip Path, 11-11

Suppress End Enable, 34-16

SVD Factorization, 46-23

Swap Bytes, 12-7

Swap Words, 12-7

Symmetric Matrix, 46-3

T Distribution, 45-12

Tab, 6-21

Tangent, 4-17

TCP Close Connection, 50-5

TCP Create Listener, 50-5

TCP Listen, 50-5

TCP Open Connection, 50-5

TCP Read, 50-6

TCP Wait on Listener, 50-6

TCP Write, 50-6

Temporary Directory Constant, 11-22

Termination Character Enable, 34-17

Termination Character, 34-17

Test Complex Positive Definite, 46-23

Test Positive Definite, 46-24

TestSRQ, 36-8

TestSys, 36-8

Threshold 1D Array, 7-7

Threshold Peak Detector, 41-9

Threshold Peak Detector, 48-4

Tick Count (ms), 10-7

Timeout Value, 34-17

To Byte Integer, 4-12

To Decimal, 6-18

To Double Precision Complex, 4-12

To Double Precision Float, 4-12

To Engineering, 6-18

To Exponential, 6-18

To Extend Precision Complex, 4-12

To Extended Precision Float, 4-12

To Fractional, 6-18

To Hexadecimal, 6-19

To Long Integer, 4-13

To Lower Case, 6-15

To Octal, 6-19

To Single Precision Complex, 4-13

To Single Precision Float, 4-13

To Unsigned Byte Integer, 4-13

Index

LabVIEW Function and VI Reference Manual I-8 © National Instruments Corporation

To Unsigned Long Integer, 4-13

To Unsigned Word Integer, 4-13

To Upper Case, 6-15

To Word Integer, 4-14

Trace, 46-24

Transfer Function, 41-9

Transpose 2D Array, 7-8

Transposition, 46-2

Triangle Wave, 39-12

Triangle Window, 43-10

Trigger Identifier, 34-17

Trigger, 36-4

TriggerList, 36-6

Two Button Dialog Box, 10-8

Type and Creator, 11-20

Type Cast, 12-7

UDP Close, 51-2

UDP Open, 51-3

UDP Read, 51-3

UDP Write, 51-3

Unbundle By Name, 8-5

Unbundle, 8-5

Unflatten From String, 12-8

Uniform White Noise, 39-13

Unit Vector, 47-7

Unwrap Phase, 40-27

Upper Triangular Matrix, 46-4

User Data, 34-17

User Definable Arithmetic Constants, 4-8

Variance, 45-13

Version of Implementation, 34-17

Version of Specification, 34-17

VI Library Constant, 11-22

VISA Assert Trigger, 34-3

VISA Clear, 34-3

VISA Close, 34-4

VISA Disable Event, 34-7

VISA Discard Events, 34-8

VISA Enable Event, 34-8

VISA Find Resource, 34-4

VISA In8 / In16 / In32, 34-9

VISA Lock, 34-4

VISA Map Address, 34-12

VISA Memory Allocation, 34-12

VISA Memory Allocation, 34-9

VISA Memory Free, 34-10

VISA Memory Free, 34-12

VISA Move In8 / Move In16 / Move In32, 34-10

VISA Move Out8 / Move Out16 / Move Out32, 34-10

VISA Open, 34-4

VISA Out8 / Out16 / Out32, 34-11

VISA Peek8 / Peek16 / Peek32, 34-12

VISA Poke8 / Poke16 / Poke32, 34-12

VISA Read STB, 34-6

VISA Read, 34-6

VISA Status Description, 34-6

VISA Unlock, 34-6

VISA Unmap Address, 34-13

VISA Wait On Event, 34-8

VISA Write, 34-7

Volume Info, 11-20

VXI Commander Logical Address, 34-17

VXI Logical Address, 34-18

VXI Memory Address Space, 34-18

VXI Memory Base Address, 34-18

VXI Memory Size, 34-18

Wait (ms), 10-8

Wait for GPIB RQS, 35-6

Wait On Occurrence, 12-10

Wait Until Next ms Multiple, 10-8

Wait+ (ms), 26-7

WaitSRQ, 36-8

While Loop, 3-3

White Space?, 9-11

Window Access, 34-18

Window Base Address, 34-18

Window Size, 34-18

Write Characters To File, 11-11

Write File, 11-11

Write to Digital Line, 22-3

Write to Digital Port, 22-3

Write To I16 File, 11-13

Write To SGL File, 11-14

Write To Spreadsheet File, 11-12

Y[i] = Clip {X[i]}, 40-27

Y[i] = X[i-n], 40-28

Zero Padder, 40-28

	LabVIEW Function and VI Reference Manual
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (U.S.)
	International Offices
	National Instruments Corporate Headquarters

	About This Manual
	Organization of the Product User Manual
	Conventions Used in This Manual
	Related Documentation
	Related Online Documentation
	Customer Communication

	Table of Contents
	Chapter 1 - Introduction to the LabVIEW Functions and VIs
	Locating the G Functions and VIs
	Function and VI Overviews
	Structures
	Numeric Functions
	Boolean Functions
	String Functions
	Array Functions
	Cluster Functions
	Comparison Functions
	Time and Dialog Functions
	File I/O Functions
	Advanced Functions
	DAQ
	Instrument I/O
	Communication
	Analysis VIs
	Select A VI...
	Tutorial
	Instrument Driver Library
	User Library

	Chapter 2 - G Function and VI Reference Overview
	G Functions Overview
	Introduction to Polymorphism
	Polymorphism
	Unit Polymorphism
	Numeric Conversion
	Overflow and Underflow
	Wire Styles

	Chapter 3 - Structures
	Structures Overview
	Case Structure
	Sequence Structure
	For Loop
	While Loop
	Formula Node
	Global Variable
	Local Variable

	Chapter 4 - Numeric Functions
	Polymorphism for Numeric Functions
	Polymorphism for Trig Functions
	Polymorphism for Logarithmic Functions
	Polymorphism for Conversion Functions
	Polymorphism for Complex Functions
	Arithmetic Function Descriptions
	Conversion Functions Descriptions
	Trigonometric Functions Descriptions
	Logarithmic Functions Descriptions
	Complex Function Descriptions
	Additional Numeric Constants Descriptions

	Chapter 5 - Boolean Functions
	Polymorphism for Boolean Functions
	Boolean Function Descriptions

	Chapter 6 - String Functions
	Overview of Polymorphism for String Functions
	Polymorphism for String Functions
	Polymorphism for Additional String to Number Funct...
	Polymorphism for String Conversion Functions

	Format Strings Overview
	String Function Descriptions
	Additional String To Number Function Descriptions
	String Conversion Function Descriptions
	String Fixed Constants

	Chapter 7 - Array Functions
	Array Function Overview
	Polymorphism for Array Functions
	Array Function Descriptions

	Chapter 8 - Cluster Functions
	Cluster Function Overview
	Polymorphism for Cluster Functions
	Setting the Order of Cluster Elements
	Cluster Function Descriptions

	Chapter 9 - Comparison Functions
	Comparison Function Overview
	Compare Boolean
	Compare Strings
	Compare Clusters
	Compare Modes
	Character Comparison

	Polymorphism for Comparison Functions
	Comparison Function Descriptions

	Chapter 10 - Time, Dialog, and Error Functions
	Time, Dialog, and Error Functions Overview
	Timing Functions
	Error Handling Overview
	Error I/O and the Error State Cluster

	Time and Dialog Function Descriptions
	Error Handling VI Descriptions

	Chapter 11 - File Functions
	File I/O VI and Function Overview
	High-Level VIs
	Low-Level File VIs and File Functions
	Byte Stream and Datalog Files
	Flow-Through Parameters
	Error I/O in File I/O Functions
	Permissions
	File I/O Function and VI Descriptions
	Binary File VI Descriptions
	Advanced File Function Descriptions
	File Constants Descriptions

	Chapter 12 - Advanced Functions
	Advanced Function Descriptions
	Data Manipulation Function Descriptions
	Help Function Descriptions
	Occurrence Function Descriptions
	Memory VI Descriptions
	VI Control VI Descriptions

	Chapter 13 - Introduction to the LabVIEW Data Acquisition VIs
	Finding Help Online for the DAQ VIs
	The Analog Input VIs
	Easy Analog Input VIs
	Intermediate Analog Input VIs
	Analog Input Utility VIs
	Advanced Analog Input VIs
	Locating Analog Input VI Examples

	Analog Output VIs
	Easy Analog Output VIs
	Intermediate Analog Output VIs
	Analog Output Utility VIs
	Advanced Analog Output VIs
	Locating Analog Output VI Examples

	Digital Function VIs
	Easy Digital I/O VIs
	Intermediate Digital I/O VIs
	Advanced Digital I/O VIs
	Locating Digital I/O VI Examples

	Counter VIs
	Easy Counter VIs
	Intermediate Counter Input VIs
	Advanced Counter VIs
	Locating Counter VI Examples

	Calibration and Configuration VIs
	Signal Conditioning VIs

	Chapter 14 - Easy Analog Input VIs
	Easy Analog Input VI Descriptions

	Chapter 15 - Intermediate Analog Input VIs
	Handling Errors
	Intermediate Analog Input VI Descriptions

	Chapter 16 - Analog Input Utility VIs
	Handling Errors
	Analog Input Utility VI Descriptions

	Chapter 17 -Advanced Analog Input VIs
	Advanced Analog Input VI Descriptions

	Chapter 18 - Easy Analog Output VIs
	Easy Analog Output VI Descriptions

	Chapter 19 - Intermediate Analog Output VIs
	Handling Errors
	Analog Output VI Descriptions

	Chapter 20 - Analog Output Utility VIs
	Handling Errors
	Analog Output Utility VI Descriptions

	Chapter 21 - Advanced Analog Output VIs
	Advanced Analog Output VI Descriptions

	Chapter 22 - Easy Digital I/O VIs
	Easy Digital I/O Descriptions

	Chapter 23 - Intermediate Digital I/O VIs
	Handling Errors
	Intermediate Digital I/O VI Descriptions

	Chapter 24 - Advanced Digital I/O VIs
	Digital Port VI Descriptions
	Digital Group VI Descriptions

	Chapter 25 - Easy Counter VIs
	Easy Counter VI Descriptions

	Chapter 26 - Intermediate Counter VIs
	Handling Errors
	Intermediate Counter VI Descriptions

	Chapter 27 - Advanced Counter VIs
	Advanced Counter VI Descriptions

	Chapter 28 - Calibration and Configuration VIs
	Calibration and Configuration VI Descriptions
	Channel Configuration VIs

	Chapter 29 - Signal Conditioning VIs
	Signal Conditioning VI Descriptions

	Chapter 30 - Introduction to LabVIEW Instrument Driver VIs
	Instrument Drivers Overview
	Instrument Driver Distribution
	CD-ROM Instrument Driver Distribution

	Instrument Driver Template VIs

	Introduction to VISA Library
	Introduction to GPIB
	History of the GPIB
	The IEEE�488.2 Standard
	Compatible GPIB Hardware
	LabVIEW for Windows 95 and Windows 95-Japanese
	LabVIEW for Windows NT
	LabVIEW for Windows 3.1
	LabVIEW for Mac OS
	LabVIEW for HP-UX
	LabVIEW for Sun (Solaris)
	LabVIEW for Concurrent PowerMAX

	LabVIEW Traditional GPIB Functions
	GPIB 488.2 Functions
	Single-Device Functions
	Multiple-Device Functions
	Bus Management Functions
	Low-Level Functions
	General Functions

	Serial Port VI Overview

	Chapter 31 - LabVIEW Instrument Driver Models
	LabVIEW Instrument Driver External Interface Model...
	Functional Body
	Interactive Developer Interface
	Programmatic Developer Interface
	I/O Interface
	Subroutine Interface

	LabVIEW Instrument Driver Internal Design Model
	Instrument Driver Application VIs
	Instrument Driver Component VIs
	Error Reporting
	Additional VIs Distributed with the Instrument Dri...
	The Getting Started VI
	The VI Tree VI

	Chapter 32 - LabVIEW Instrument Driver Development
	Development Procedure
	Designing the Instrument Driver Structure
	Instrument Driver Structure and VI Hierarchy
	Guidelines and Recommendations
	Design Example

	Modifying the Instrument Driver Templates
	Adding Instrument Driver Component VI VIs
	Modifying the Menu Files to Create Function Sub-Pa...

	Tips for Developing a LabVIEW Instrument Driver
	Loop Termination Conditions
	Assembling Command Strings
	Data Dependency
	Guidelines
	Front Panel
	Required Front Panel Controls
	Block Diagram
	Icon
	Connector Pane

	Error Reporting
	Online Help Information
	VI Descriptions
	Control and Indicator Descriptions

	Application VIs

	LabVIEW Instrument Driver Standards Checklist

	Chapter 33 - Instrument Driver Template VIs
	Introduction to Instrument Driver Template VIs
	Instrument Driver Template VI Descriptions

	Chapter 34 - VISA Library Reference
	Operations
	VISA Library Reference Parameters
	VISA Operation Descriptions
	Event Handling Functions
	High Level Register Access Functions
	Low Level Register Access Functions

	VISA Attribute Node
	VISA Attribute Node Descriptions

	Chapter 35 - Traditional GPIB Functions
	Traditional�GPIB Function Parameters
	Traditional GPIB Function Behavior
	Traditional GPIB Function Descriptions

	GPIB Device and Controller Functions
	Device Functions
	Controller Functions

	Chapter 36 - GPIB 488.2 Functions
	GPIB 488.2 Common Function Parameters
	GPIB 488.2 Function Descriptions (Single-Device Fu...
	GPIB 488.2 Multiple-Device Function Descriptions
	GPIB 488.2 Bus Management Function Descriptions
	GPIB 488.2 Low-Level I/O Function Descriptions
	GPIB 488.2 General Function Descriptions

	Chapter 37 - Serial Port VIs
	Common Serial Port VI Parameters
	Port Number
	Handshaking Modes
	Software Handshaking–XON/XOFF
	Error Codes
	Serial Port VI Descriptions

	Chapter 38 - Introduction to Analysis in LabVIEW
	The Importance of Data Analysis
	Full Development System
	Analysis VI Overview
	Analysis VI Organization
	Notation and Naming Conventions
	Sampling Signals

	Chapter 39 - Analysis Signal Generation VIs
	Normalized Frequency
	Signal Generation VI Descriptions

	Chapter 40 - Analysis Digital Signal Processing VIs
	The Fast Fourier Transform (FFT)
	Signal Processing VI Descriptions

	Chapter 41 - Analysis Measurement VIs
	Introduction to Measurement VIs
	Measurement VI Descriptions

	Chapter 42 - Analysis Filter VIs
	Introduction to Digital Filtering Functions
	Infinite Impulse Response Filters
	Cascade Form IIR Filtering
	Butterworth Filters
	Chebyshev Filters
	Chebyshev II or Inverse Chebyshev Filters
	Elliptic (or Cauer) Filters
	Bessel Filters

	Finite Impulse Response Filters
	Designing FIR Filters by Windowing
	Designing Optimum FIR Filters using the Parks-McCl...
	Designing Narrowband FIR Filters
	Windowed FIR Filters
	Optimum FIR Filters
	FIR Narrowband Filters

	Nonlinear Filters
	Filter VI Descriptions

	Chapter 43 - Analysis Window VIs
	Introduction to Smoothing Windows
	Windows for Spectral Analysis versus Windows for�C...
	Window VI Descriptions

	Chapter 44 - Analysis Curve-Fitting VIs
	Introduction to Curve Fitting
	Curve Fitting VI Descriptions

	Chapter 45 - Analysis Probability and Statistics VIs
	Probability and Statistics VI Descriptions

	Chapter 46 - Analysis Linear Algebra VIs
	Basic Matrix Manipulations Functions
	Common Matrices
	Matrix Factorization
	Solving Linear Equations and Matrix Inverses
	Eigenvalues and Eigenvectors
	Matrix Analysis
	Linear Algebra VI Descriptions

	Chapter 47 - Analysis Array Operation VIs
	Array Operation VI Descriptions

	Chapter 48 - Analysis Additional Numerical Method VIs
	Additional Numerical Method VI Descriptions

	Chapter 49 - Introduction to LabVIEW Communication VIs and Func...
	LabVIEW Communication VIs and Functions Overview
	Introduction to Communication Protocols
	File Sharing vs Communication Protocols
	Client/Server Model
	A General Model for a Client
	A General Model for a Server

	TCP/IP (all platforms)
	Internet Addresses

	Setup
	Setup for Your System
	UNIX
	Macintosh
	Windows 3.x
	Windows 95 and Windows NT

	LabVIEW and TCP/IP
	TCP versus UDP
	TCP Client Example
	Timeouts and Errors
	TCP Server Example
	TCP Server with Multiple Connections

	DDE (Windows Only)
	Services, Topics, and Data Items
	Examples of Client Communication with Excel
	LabVIEW VIs as DDE Servers
	Requesting Data versus Advising Data
	Synchronization of Data
	Networked DDE

	OLE Automation (Windows Only)
	AppleEvents (Macintosh Only)
	Client Server Model
	AppleEvent Client Examples
	Launching Other Applications
	Sending Events to Other Applications
	Dynamically Loading and Running a VI

	PPC (Macintosh Only)
	Ports, Target IDs, and Sessions
	PPC Client Example
	PPC Server Example
	PPC Server with Multiple Connections

	Chapter 50 - TCP VIs
	Internet Protocol (IP)
	Transmission Control Protocol (TCP)
	Using TCP
	TCP Errors
	TCP VI Descriptions

	Chapter 51 - UDP VIs
	UDP Overview
	Using UDP
	UDP VI Descriptions

	Chapter 52 - DDE VIs
	DDE Overview
	Using DDE as a Client
	Using DDE as a Server
	Using NetDDE
	DDE Client VI Descriptions
	DDE Server VI Descriptions

	Chapter 53 - OLE Automation VIs
	OLE Automation Concepts
	Using LabVIEW to Implement OLE Automation
	OLE Automation VI Descriptions

	Chapter 54 - AppleEvent VIs
	AppleEvents
	Sending AppleEvents
	General AppleEvent VI Behavior
	The User Identity Dialog Box
	Target ID
	Send Options

	Targeting VI Descriptions
	AppleEvent VI Descriptions
	LabVIEW Specific AppleEvent VIs

	Advanced Topics
	Constructing and Sending Other AppleEvents
	Creating AppleEvent Parameters
	Low-Level AppleEvent VIs
	Object Support VI Example

	Sending AppleEvents to LabVIEW from Other Applicat...
	Required AppleEvents
	LabVIEW Specific AppleEvents
	Replies to AppleEvents
	Event: Run VI
	Event: Abort VI
	Event: VI Active?
	Event: Close VI

	Chapter 55 - Program to Program Communication VIs
	Introduction to PPC
	General PPC Behavior
	PPC VI Descriptions

	Appendix A - DAQ Hardware Capabilities
	MIO and AI Device Hardware Capabilities
	Lab and 1200 Series and Portable Devices Hardware ...
	54xx Devices
	SCXI Module Hardware Capabilities
	Analog Output Only Devices Hardware Capabilities
	Dynamic Signal Acquisition Devices Hardware Capabi...
	Digital Only Devices Hardware Capabilities
	Timing Only Devices Hardware Capabilities
	5102 Devices Hardware Capabilities

	Appendix B - Multiline Interface Messages
	Appendix C - Operation of the GPIB
	Types of Messages
	Talkers, Listeners, and Controllers
	The Controller-In-Charge and System Controller
	GPIB Signals and Lines
	Data Lines
	Handshake Lines
	Interface Management Lines

	Physical and Electrical Characteristics
	Configuration Requirements

	Appendix D - References
	Appendix E - Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	LabVIEW Hardware and Software Configuration Form
	National Instruments Products
	Other Products

	Documentation Comment Form

	Index
	Figures
	Figure 26�1.
	Figure 26�2.
	Figure 26�3.
	Figure 26�4.
	Figure 26�5.
	Figure 26�6.
	Figure 27�1. Unbuffered Mode 2 and 3 Counting
	Figure 27�2. Buffered Mode 3 Counting
	Figure 27�3. Unbuffered Mode 4 High Pulse Width Me...
	Figure 27�4. Buffered Mode 4 Rising-Edge Pulse Wid...
	Figure 27�5. Unbuffered Mode 4 Rising-Edge Period ...
	Figure 27�6. Buffered Mode 4 Rising-Edge Pulse Wid...
	Figure 27�7. Unbuffered Mode 6 High Pulse Width Me...
	Figure 27�8. Buffered Mode 6 High Pulse Width Meas...
	Figure 27�9. Buffered Mode 7 Semi-Period Measureme...
	Figure 29�1. Strain Gauge Bridge Completion Networ...
	Figure 29�2. Strain Gauge Bridge Completion Networ...
	Figure 29�3. Strain Gauge Bridge Completion Networ...
	Figure 29�4. Circuit Diagram of a Thermistor in a ...
	Figure 29�5. Circuit Diagram of a Thermistor with ...
	Figure 31�1. General Model of Instrument Drivers i...
	Figure 31�2. LabVIEW Instrument Driver Internal De...
	Figure 31�3. Tek VX4790 Example VI
	Figure 31�4. VIs in Tek VX4790 Example Diagram
	Figure 31�5. Tek VX4790 Config Std Wave Diagram
	Figure 32�1. LabVIEW Instrument Driver VIs for the...
	Figure 32�2. Incorrect Mechanism for Escaping from...
	Figure 32�3. Correct Mechanism for Escaping from W...
	Figure 32�4. Range Test VI (Front Panel and Block ...
	Figure 32�5. Simple Trigger VI with Programmatic R...
	Figure 32�6. Simple Trigger VI without Programmati...
	Figure 32�7. Simple Trigger VI Front Panel (See Fi...
	Figure 32�8. Simple Trigger Block Diagram
	Figure 39�1. Front Panel Example
	Figure 39�2. Block Diagram example
	Figure 42�1. Lowpass Filter
	Figure 42�2. Highpass Filter
	Figure 42�3. Bandpass Filter
	Figure 42�4. Bandstop Filter
	Figure 55�1. PPC VI Execution Order (Used by permi...
	Figure C�1. GPIB Connector Showing Signal Assignme...
	Figure C�2. Linear Configuration
	Figure C�3. Star Configuration

	Tables
	Table 6�1. Special Escape Codes�
	Table 6�2. String Syntax (Continued)
	Table 6�3. Possible Format Into String Errors�
	Table 6�4. Format Specifiers�
	Table 6�5. Special Characters for Match Pattern (C...
	Table 6�6. Strings for the Match Pattern Examples ...
	Table 6�7. Scan From String Errors (Continued)
	Table 6�8. Scan from String Examples�
	Table 9�1. Lexical Class Number Descriptions�
	Table 10�1. Order of 32-bit Integers in TIming Fun...
	Table 17�1. AI Buffer Config VI Device-Specific Se...
	Table 17�2. Device-Specific Settings and Ranges fo...
	Table 17�3. Device-Specific Settings and Ranges fo...
	Table 17�4. Device-Specific Settings and Ranges fo...
	Table 17�5. AI Hardware Config Channel Configurati...
	Table 17�6. Device-Specific Settings and Ranges fo...
	Table 17�7. Device-Specific Settings and Ranges fo...
	Table 17�8. Restrictions for Analog Triggering on ...
	Table 17�9. Digital Trigger Sources for Devices wi...
	Table 17�10. Device-Specific Settings and Ranges f...
	Table 17�11. Device-Specific Settings and Ranges f...
	Table 17�12. Device-Specific Settings and Ranges f...
	Table 24�1. Physical Port Widths of Digital Ports ...
	Table 24�2. Device specific parameters and legal r...
	Table 27�1. Counter Chips and Their Available DAQ ...
	Table 27�2. Valid Counter Numbers for CTR Group Co...
	Table 27�3. Adjacent Counters.
	Table 28�1. Channel to Index VI Parameter Examples...
	Table 28�2. Channel to Index VI Parameter Examples...
	Table 32�1. Instrument Driver Organization Example...
	Table 32�2. Command Summary from Tektronix VX4790�...
	Table 35�1. Command String Functions (Continued)
	Table 52�1. Values to Add in Place of Default
	Table 54�1. AppleEvent Descriptor String Formats (...
	Table A�1. Analog Input Configuration Programmabil...
	Table A�2. Analog Input Characteristics—MIO and AI...
	Table A�3. Analog Input Characteristics—MIO and AI...
	Table A�4. Analog Output Characteristics—MIO and A...
	Table A�5. Digital I/O Hardware Capabilities—MIO a...
	Table A�6. Counter Characteristics—MIO and AI Devi...
	Table A�7. Counter Usage for Analog Input and Outp...
	Table A�8. Analog Input Configuration Programmabil...
	Table A�9. Analog Input Characteristics—Lab and 12...
	Table A�10. Analog Input Characteristics—Lab and 1...
	Table A�11. Analog Output Characteristics—Lab and ...
	Table A�12. Counter Usage for Analog Input and Out...
	Table A�13. Digital I/O Hardware Capabilities—Lab ...
	Table A�14. Analog Output and Digital Output Chara...
	Table A�15. Counter/Timer Characteristics -- Lab a...
	Table A�16. Analog Input Characteristics—SCXI Modu...
	Table A�17. Analog Output Characteristics—SCXI Mod...
	Table A�18. Relay Characteristics—SCXI Modules�
	Table A�19. Digital Input and Output Characteristi...
	Table A�20. Terminal Block Selection Guide—SCXI Mo...
	Table A�21. Analog Input Configuration Programmabi...
	Table A�22. Analog Input Configuration Programmabi...
	Table A�23. Analog Output Characteristics--Analog ...
	Table A�24. Analog Input Configuration Programmabi...
	Table A�25. Analog Input Characteristics—Dynamic S...
	Table A�26. Digital Hardware Capabilities—Digital ...
	Table A�27. Digital Hardware Capabilities—Timing O...
	Table A�28. Counter/Timer Characteristics—Timing O...
	Table A�29. Analog input configuration programmabi...
	Table A�30. Analog input characteristics�

