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About

This

Manual

The LabVIEW Function and VI Reference Manual contains descriptions 
of all virtual instruments (VIs) available for LabVIEW, including the 
following:

• G functions and VIs

• VIs that support the devices for data acquisition

• VIs for GPIB, VXIbus, and serial port I/O operation

• digital signal processing, filtering, and numerical and 
statistical VIs

• networking and interapplication communications VIs

This manual is a supplement to the LabVIEW User Manual and assumes 
that you are familiar with that material. You should also know how to 
operate LabVIEW, and your computer and operating system.

This manual provides an overview of each function and VI available in 
LabVIEW. However, for more specific information regarding each 
function and VI (e.g. for specific parameter information), refer to the 
LabVIEW Online Reference, which you can access by selecting 
Online Reference from the LabVIEW Help menu, or Help, which you 
access by selecting Show Help from the LabVIEW Help menu.

Organization of the Product User Manual

This manual covers five subject areas G Functions, Data Acquisition 
VIs, Instrument I/O VIs, Analysis VIs, and Communications VIs. 
Chapter 1 introduces the LabVIEW Functions and VIs, which comprise 
the sections in this manual. 

• Section 1, G Functions and VIs, includes Chapters 2 through 12, 
which describe the functions unique to the G programming 
language. 

• Section 2, Data Acquisition VIs, includes Chapters 13 through 29, 
which describe the Data Acquisition (DAQ) VIs. 
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• Section 3, Instrument I/O Functions and VIs, includes Chapters 30 
through 37, which describe the Instrument I/O VIs and functions.

• Section 4, Analysis VIs, includes Chapters 38 through 48, which 
describe the Analysis VIs. 

• Section 5, Communications VI and Functions, includes Chapters 49 
through 55, which describe the Communication VIs.

In addition, this manual includes the following appendices and index:

• Appendix A, DAQ Hardware Capabilities, includes tables that 
summarize the analog and digital I/O capabilities of National 
Instruments data acquisition devices.

• Appendix B, Multiline Interface Messages, lists commands that 
IEEE 488 defines.

• Appendix C, Operation of the GPIB, describes basic concepts you 
need to understand to operate the GPIB.

• Appendix D, References, lists the reference material used to 
produce the Analysis VIs described in this manual.

• Appendix E, Customer Communication, contains forms to help you 
gather the information necessary to help us solve your technical 
problems and a form you can use to comment on the product 
documentation.

• The Index contains an alphabetical list of VIs described in this 
manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

< > Angle brackets enclose the name of a key on the keyboard (for example, 
<option>). Angle brackets containing numbers separated by an ellipsis 
represent a range of values associated with a bit or signal name (for 
example, DBIO<3…0>).

[ ] Square brackets enclose optional items (for example, [response]).

- A hyphen between two or more key names enclosed in angle brackets 
denotes that you should simultaneously press the named keys–for 
example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box 
options to a final action. The sequence File»Page Setup»Options» 
Substitute Fonts directs you to pull down the File menu, select the 
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Page Setup item, select Options, and finally select the Substitute Fonts 
options from the last dialog box.

♦  The ♦  symbol indicates that the text following it applies only to a 
specific product, a specific operating system, or a specific software 
version.

bold Bold text denotes the names of menus, menu items, parameters, dialog 
box, dialog box buttons or options, icons, windows, Windows 95 tabs, 
or LEDs.

bold italic Bold italic text denotes a note, caution, or warning.

bold Bold text in this font denotes the messages and responses that the
monospace computer automatically prints to the screen. This font also emphasizes 

lines of code that are different from the other examples.

CTRL Key names are in all capital letters.

italic Italic text denotes emphasis, a cross reference, or an introduction to a 
key concept. This font also denotes text from which you supply the 
appropriate word or value, as in Windows 3.x.

italic Italic text in this font denotes that you must supply the appropriate
monospace words or values in the place of these items.

monospace Text in this font denotes text or characters that should literally enter 
from the keyboard, sections of code, programming examples, and 
syntax examples. This font is also used for the proper names of disk 
drives, paths, directories, programs, subprograms, subroutines, device 
names, functions, operations, variables, filenames and extensions, and 
for statements and comments taken from programs.

paths Paths in this manual are denoted using backslashes (\) to separate drive 
names, directories, folders, and files.

The Glossary lists abbreviations, acronyms, metric prefixes, 
mnemonics, symbols, and terms.

Related Documentation

You might find the following documents helpful as you read this 
manual:

• LabVIEW User Manual

• LabVIEW Error Codes

• LabVIEW Getting Started Card

• LabVIEW QuickStart Guide
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• LabVIEW Release Notes

• LabVIEW Upgrade Notes

• G Quick Reference Card

Related Online Documentation

The following related documents are available through the LabVIEW 
Online Reference, which you access by selecting 
Help»OnlineReference.

• Communications Common Questions

• LabVIEW Glossary

Customer Communication

National Instruments wants to receive your comments on our products 
and manuals. We are interested in the applications you develop with our 
products, and we want to help if you have problems with them. To make 
it easy for you to contact us, this manual contains comment and 
configuration forms for you to complete. These forms are in 
Appendix E, Customer Communication, at the end of this manual.
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Chapter

1
Introduction to the LabVIEW 
Functions and VIs

This chapter contains basic information about the functions and virtual 
instruments (VIs) that are available with LabVIEW.

LabVIEW includes collections of VIs that work with your G 
programming language, data acquisition (DAQ) hardware devices, 
instrument input and output devices, analysis instruments, and 
communication devices.

Locating the G Functions and VIs

You can find the G functions and VIs on the Functions palette. To 
access the Functions palette, access a block diagram in LabVIEW. 
When you put your cursor over each of the icons in the Functions 
palette, LabVIEW displays the name of the icon palette.

Functions are elementary nodes in the G programming language. They 
are analogous to operators or library functions in conventional 
languages. Functions are not VIs and therefore do not have front panels 
or block diagrams. When compiled, functions generate inline machine 
code.

You select functions from the Functions palette, in the block diagram. 
When the block diagram window is active, select 
Windows»Show Functions Palette. You also can access the 
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Functions palette by popping up on the area in the block diagram 
window where you want to place the function.

Many Function palette chapters include information about function 
examples. 

The paths for these examples for LabVIEW begin with examples\.

Function and VI Overviews

The following functions and VIs are available.

Structures
G Structures include While Loop, For Loop, Case and Sequence 
structures. This palette also contains the global and local variable 
nodes.
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Numeric Functions
Numeric functions perform arithmetic operations, conversions, 
trigonometric, logarithmic, and complex mathematical functions. This 
palette also contains additional numeric constants, such as Pi.

Boolean Functions
Boolean functions perform Boolean and logical operations.

String Functions
String functions manipulate strings and convert numbers to and from 
strings. This palette also includes the subpalettes Additional String To 
Number Functions and String Conversion Functions.

Array Functions
Array functions assemble, disassemble, and process arrays.
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Cluster Functions
Use Cluster functions to assemble, access, and change elements in a 
cluster.

Comparison Functions
Comparison functions compare data (greater than, less than, and so on) 
and operations that are based on a comparison, such as finding the 
minimum and maximum ranges for two values.

Time and Dialog Functions
Time and Dialog functions can be used to manipulate time functions 
and display dialog boxes. This palette also includes the functions that 
perform error handling.

File I/O Functions
File I/O functions manipulate files and directories. This palette also 
contains the subpalettes Advanced File Functions, Binary File VIs, and 
File Constants.

Advanced Functions
Advanced functions are functions that do not fit into any other category. 
The Code Interface Node is an example of an advanced function. The 



Chapter 1 Introduction to the LabVIEW Functions and VIs

© National Instruments Corporation 1-5 LabVIEW Function and VI Reference Manual

Advanced Functions palette also contains Help Window functions, VI 
Control VIs, Data Manipulation functions, and Occurrences functions.

DAQ
DAQ VIs acquire and generate real-time analog and digital data as well 
as perform counting operations. See Chapter 13, Introduction to the 

LabVIEW Data Acquisition VIs, for more information.

Instrument I/O
Instrument I/O VIs communicate with instruments using GPIB, VISA, 
or serial communication. See Chapter 30, Introduction to LabVIEW 

Instrument Driver VIs, for more information.

Communication
Communication VIs network to other applications using TCP/IP, DDE, 
OLE, Apple Events, PPC, or UDP. See Chapter 49, Introduction to 

LabVIEW Communication VIs and Functions, for more information.

Analysis VIs
Analysis VIs perform measurement, signal generation, digital signal 
processing, filtering, windowing, probability and statistics, curve 
fitting, linear algebra, array operations, and VIs which perform 
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additional numerical methods. See Chapter 38, Introduction to Analysis 

in LabVIEW, for more information. 

Select A VI...
When you select Functions»Select a VI..., LabVIEW displays a file 
dialog box. From there, you can select any VI and place it on a diagram. 

Tutorial
Selecting Functions»Tutorial accesses the Tutorial VIs. You call these 
VIs while working through the LabVIEW Tutorial Manual.

Instrument Driver Library
Instrument drivers are a set of VIs for GPIB, VISA, Serial, and CAMAC 
instruments. National Instruments, as well as other vendors, distribute 
these instrument drivers. Any drivers you place in the instr.lib 
appear in the palette.
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User Library
This palette automatically includes any VIs in your user.lib 
directory, making it more convenient to gain access to commonly used 
sub-VIs you have written.
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Chapter

2
G Function and VI 
Reference Overview

This chapter introduces the G Functions and VIs, descriptions of which 
comprise Chapter 3 through Chapter 12.

Functions are elementary nodes in the G programming language. They 
are analogous to operators or library functions in conventional 
languages. Functions are not VIs and therefore do not have front panels 
or block diagrams. When compiled, functions generate inline machine 
code.

VIs are “virtual instruments,” so called because they model the 
appearance functions of a physical instrument. 

You select G Functions from the Functions palette, in the block 
diagram. When the block diagram window is active, you can display the 
Functions palette by selecting Windows»Show Functions Palette. 
You also can access the Functions palette by popping up on the area in 
the block diagram window where you want to place the function.

Many Functions palette chapters include information about function 
examples. The paths for these examples for LabVIEW begin 
examples\. 
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G Functions Overview

For brief descriptions of each of the 10 G Function and VI palettes 
available refer to Chapter 1, Introduction to LabVIEW Functions and VIs.

Introduction to Polymorphism

The following sections provide some general information about 
Polymorphism in G functions.

Polymorphism
Polymorphism is the ability of a function to adjust to input data of 
different types or representations. Most functions are polymorphic. VIs 
are not polymorphic. All functions that take numeric input can accept 
any numeric representation (except some functions that do not accept 
complex numbers). 

Functions are polymorphic to varying degrees; none, some, or all of 
their inputs may be polymorphic. Some function inputs accept numbers 
or Boolean values. Some accept numbers or strings. Some accept not 
only scalar numbers but also arrays of numbers, clusters of numbers, 
arrays of clusters of numbers, and so on. Some accept only 
one-dimensional arrays although the array elements may be of any type. 
Some functions accept all types of data, including complex numbers. 

Unit Polymorphism
If you want to create a VI that computes the root, mean square value of 
a waveform, you have to define the unit associated with the waveform. 
You would need a separate VI for voltage waveforms, current 
waveforms, temperature waveforms, and so on. LabVIEW has 
polymorphic unit capability so that one VI can perform the same 
calculation, regardless of the units received by the inputs.

You create a polymorphic unit by entering $x, where x is a number (for 
example, $1). You can think of this as a placeholder for the actual unit. 
When LabVIEW calls the VI, the program substitutes the units you pass 
in for all occurrences of $x in that VI.

LabVIEW treats a polymorphic unit as a unique unit. You cannot 
convert a polymorphic unit to any other unit, and polymorphic units 
propagate throughout the diagram, just as other units do. When the unit 
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connects to an indicator that also has the abbreviation $1, the units 
match and the VI can then compile.

You can use $1 in combinations just like any other unit. For example, 
if the input is multiplied by 3 seconds and then wired to an indicator, 
the indicator must be $1 s units. If the indicator has different units, the 
block diagram shows a bad wire. If you need to use more than one 
polymorphic unit, you can use the abbreviations $2, $3, and so on. 

A call to a subVI containing polymorphic units computes output units 
based on the units received by its inputs. For example, suppose you 
create a VI that has two inputs with the polymorphic units $1 and $2 
that creates an output in the form $1 $2 / s. If a call to the VI receives 
inputs with the unit m/s to the $1 input and kg to the $2 input, LabVIEW 
computes the output unit as kg m / s^2.

Suppose a different VI has two inputs of $1 and $1/s, and computes an 
output of $1^2. If a call to this VI receives inputs of m/s to the $1 input 
and m/s^2 to the $1/s input, LabVIEW computes the output unit as m^2 
/ s^2. If this VI receives inputs of m to the $1 input and kg to the $1/s 
input, however, LabVIEW declares one of the inputs as a unit conflict 
and computes (if possible) the output from the other input.

A polymorphic VI can have a polymorphic subVI because LabVIEW 
keeps the respective units distinct.

Numeric Conversion
You can convert any numeric representation to any other numeric 
representation. When you wire two or more numeric inputs of different 
representations to a function, the function usually returns output in the 
larger or wider format. The functions coerce the smaller representations 
to the widest representation before execution. 

Some functions, such as Divide, Sine, and Cosine, always produce 
floating-point output. If you wire integers to their inputs, these 
functions convert the integers to double-precision, floating-point 
numbers before performing the calculation.

For floating-point, scalar quantities, it is usually best to use 
double-precision, floating-point numbers. Single-precision, 
floating-point numbers save little memory, little or no time, and 
overflow much more easily. You should only use extended-precision, 
floating-point numbers when necessary. The performance and precision 
of extended-precision arithmetic varies among the platforms.
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For integers, it is usually best to use a long integer.

If you wire an output to a destination that has a different numeric 
representation from the source, LabVIEW converts the data according 
to the following rules: 

• Signed or unsigned integer to floating-point number—Conversion 
is exact, except for long integers to single-precision, floating-point 
numbers. In this case, LabVIEW reduces the precision from 32 bits 
to 24 bits.

• Floating-point number to signed or unsigned integer—LabVIEW 
moves out-of-range values to the integer's minimum or maximum 
value. In most integer objects, such as the iteration terminal of a For 
Loop, LabVIEW rounds floating-point numbers. LabVIEW rounds 
a fractional part of 0.5 to the nearest even integer—for example, 
LabVIEW rounds 6.5 to 6 rather than 7. 

• Integer to integer—LabVIEW does not move out-of-range values 
to the integer’s minimum or maximum value. If the source is 
smaller than the destination, LabVIEW extends the sign of a signed 
source and places zeros in the extra bits of an unsigned source. If 
the source is larger than the destination, LabVIEW copies only the 
low order bits of the value.

On the block diagram, LabVIEW places a coercion dot on the border of 
a terminal where the conversion takes place to indicate that automatic 
numeric conversion occurred, as in the following example.
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Because VIs and functions can have many terminals, a coercion dot can 
appear inside an icon if the wire crosses an internal terminal boundary 
before it leaves the icon/connector, as the following illustration shows. 

Moving a wired icon stretches the wire. Coercion dots can cause a VI to 
use more memory and time. You should try to keep data types 
consistent in your VIs. For more information on coercion dots, see 
Chapter 8, Customizing Your LabVIEW Environment, in the LabVIEW 

User Manual.

Overflow and Underflow
LabVIEW does not check for overflow or underflow conditions on 
integer values. Overflow and underflow for floating-point numbers is in 
accordance with IEEE 488 Standard 754 for binary, floating-point 
arithmetic.

Floating-point operations propagate not-a-number (NaN) and +/-Inf 
faithfully. When you explicitly or implicitly convert NaN or +/-Inf to 
an integer or Boolean value, however, you get a value that looks 
reasonable, but is meaningless. For example, dividing by zero produces 
+/-Inf, but converting that value to a word integer gives the value 
32,768, which is the largest value that can be represented in the 
destination format.

Wire Styles
The wire style represents the data type for each terminal, as the 
following table shows. Polymorphic functions show the wire style for 
the most commonly used data type.
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Chapter

3Structures

This chapter describes the Structures available through LabVIEW.

To access the Structures palette, select Functions»Structures. The 
following illustration shows the options that are available on the 
Structures palette.

See examples\general\structs.llb for examples of how 
these structures are used in LabVIEW.
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Structures Overview

The following Structures are available in LabVIEW.

Case Structure
Has one or more subdiagrams, or cases, exactly one of which executes when the structure 
executes. Whether or not it executes depends on the value of the Boolean or numeric 
scalar you wire to the external side of the terminal or selector.

For more information on how to use the Case structure in LabVIEW, see Chapter 19, 
Structures, in the LabVIEW User Manual.

Sequence Structure
Consists of one or more subdiagrams, or frames, that execute sequentially. As an option, 
you can add sequence locals that allow you to pass information from one frame to 
subsequent frames by popping up on the edge of the structure.

For more information on how to use the Sequence structure in LabVIEW, see Chapter 19, 
Structures, in the LabVIEW User Manual.

For Loop
Executes its subdiagram count times, where the count equals the value contained in the 
count terminal. As an option, you can add shift registers so you can pass information from 
one iteration to the next by popping up on the edge of the structure.

For more information on how to use For Loop in LabVIEW, see Chapter 19, Structures, 
in the LabVIEW User Manual.
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While Loop
Executes its subdiagram until a Boolean value you wire to the conditional terminal is 
FALSE. As an option, you can add shift registers so you can pass information from one 
iteration to the next by popping up on the edge of the structure.

For more information on how to use While Loop in LabVIEW, see Chapter 19, 
Structures, in the LabVIEW User Manual.

Formula Node
Executes mathematical formulas on the block diagram.

For more information on the Formula Node, see Chapter 20, The Formula Node, in the 
LabVIEW User Manual.

Global Variable
A built-in LabVIEW object that you define by creating a special kind of VI, with front 
panel controls that define the datatype of the global variable.

 

For more information on the global variable, see Chapter 22, Global and Local Variables, 
in the LabVIEW User Manual.

Local Variable
Lets you read or write one of the controls or indicators on the front panel of your VI. 
Writing to a local variable has the same result as passing data to a terminal, except that 
you can write to it even though it is a control, or read from it even though it is an 
indicator.
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For more information on the local variable, see Chapter 22, Global and Local Variables, 
in the LabVIEW User Manual.
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Chapter

4Numeric Functions

This chapter describes the functions that perform arithmetic operations, 
complex, conversion, logarithmic, and trigonometric operations. It also 
describes the commonly used constants like the numeric constant, 
enumerated constant, and ring constant as well additional numeric 
constants.

To access the Numeric palette, select Functions»Numeric. The 
following illustration shows the options that are available on the 
Numeric palette.

The Numeric palette includes the following subpalettes:

• Additional Numeric Constants

• Complex 

• Conversion

• Logarithmic 

• Trigonometric
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For examples of some of the arithmetic functions, see 
examples\general\structs.llb.

Polymorphism for Numeric Functions

The arithmetic functions accept numeric input data. With some 
exceptions noted in the function descriptions, the output has the same 
numeric representation as the input, or if the inputs have different 
representations, the output is the wider of the inputs.

The arithmetic functions work on numbers, arrays of numbers, clusters 
of numbers, arrays of clusters of numbers, complex numbers, and so on. 
A formal and recursive definition of the allowable input type is as 
follows:

Numeric type = numeric scalar || array [numeric type] || cluster 
[numeric types]

The numeric scalars can be a floating-point, integer or complex, 
number. G does not allow you to use arrays of arrays.

Arrays can have any number of dimensions of any size. Clusters can 
have any number of elements. For functions with one input, the 
functions operate on each element of the structure.

For functions with two inputs, you can use the following input 
combinations:

• Similar—both inputs have the same structure, and the output has 
the same structure as the inputs.

• One scalar—one input is a numeric scalar, the other is an array or 
cluster, and the output is an array or cluster.

• Array of—one input is a numeric array, the other is the numeric 
type itself, and the output is an array.

For similar inputs, G performs the function on the respective elements 
of the structures. For example, G can add two arrays 
element-by-element. Both arrays must have the same dimensionality. 
You can add arrays with differing numbers of elements; the output of 
such an addition has the same number of elements as the smallest input. 
Clusters also must have the same number of elements, and the 
respective elements must have the same structure.

Note: You cannot use the multiply function to do matrix multiplication. If you 

use the multiply function with two matrices, G takes the first number in the 
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first row of the first matrix, multiplies it by the first number in the first row 

of the second matrix, and so on. 

For operations involving a scalar and an array or cluster, G performs the 
function on the scalar and the respective elements of the structure. For 
example, G can subtract a number from all elements of an array, 
regardless of the dimensionality of the array.

For operations that involve a numeric type and an array of that type, G 
performs the function on each array element. For example, a graph is an 
array of points, and a point is a cluster of two numeric types, x and y. 
To offset a graph by 5 units in the x direction and 8 units in the y 
direction, you can add a point, (5, 8), to the graph.

See the Polymorphic Combinations example below illustrates some of 
the possible polymorphic combinations of the Add function.

Polymorphism for Trig Functions
The trigonometric functions accept numeric input data. If the input is an 
integer, the output is a double-precision, floating-point number. 
Otherwise, the output has the same numeric representation as the input. 

These functions work on numbers, arrays of numbers, clusters of 
numbers, arrays of clusters of numbers, complex numbers, and so on.

Polymorphism for Logarithmic Functions
The logarithmic functions accept numeric input data. If the input is an 
integer, the output is a double-precision, floating-point number. 
Otherwise, the output has the same numeric representation as the input. 

These functions work on numbers, arrays of numbers, clusters of 
numbers, arrays of clusters of numbers, complex numbers, and so on.
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Polymorphism for Conversion Functions
All the conversion functions except Byte Array to String, String to Byte 
Array, Convert Unit, and Cast Unit Bases are polymorphic. That is, the 
polymorphic functions work on scalar values, arrays of scalars, clusters 
of scalars, arrays of clusters of scalars, and so on. The output has the 
same numeric representation as the input but with the new type.

Polymorphism for Complex Functions
The complex functions work on scalar values, arrays of scalars, clusters 
of scalars, arrays of clusters of scalars, and so on. The output has the 
same composition as the input but with the new type.

Arithmetic Function Descriptions

The following functions are available.

Absolute Value

Returns the absolute value of the input.

Add

Computes the sum of the inputs.

Add Array Elements

Returns the sum of all the elements in numeric array.
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Compound Arithmetic

Performs arithmetic on two or more numeric, cluster, or Boolean inputs. 

You select the operation (multiply, AND, or OR) by popping up on the function and 
selecting Change Mode.

You can invert the inputs or the output of this function by popping up on the individual 
terminals, and selecting Invert. For Add, select Invert to negate an input or the output. 
For Multiply, select Invert to use the reciprocal of an input or to produce the reciprocal 
of the output. For AND or OR, select Invert to logically negate an input or the output.

Note: You add inputs to this node by popping up on an input and selecting Add 

Input or by placing the Positioning tool in the lower left or right corner of 

the node and dragging it.

Decrement

Subtracts 1 from the input value.

Divide

Computes the quotient of the inputs.

Increment

Adds 1 to the input value.
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Multiply

Returns the product of the inputs.

Multiply Array Elements

Returns the product of all the elements in numeric array.

Negate

Negates the input value.

Quotient & Remainder

Computes the integer quotient and the remainder of the inputs. 

With integer input values for y of zero, the quotient is zero and the remainder is the 
dividend x. For floating point inputs, if y is zero, the quotient is infinity and the remainder 
defaults to NaN.

Random Number (0–1)

Produces a double-precision floating-point number between 0 and 1 exclusive, or not 
including 0 and 1. The distribution is uniform.
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Reciprocal

Divides 1 by the input value. 

Round To +Infinity

Rounds the input to the next highest integer. For example, if the input is 3.1, the result 
is 4. If the input is –3.1, the result is –3.

Round To –Infinity

Rounds the input to the next lowest integer. For example, if the input is 3.8, the result is 
3. If the input is –3.8, the result is –4.

Round To Nearest

Rounds the input to the nearest integer. If the value of the input is midway between two 
integers (for example, 1.5 or 2.5), the function returns the nearest even integer (2).

Scale By Power Of 2

Multiplies one input (x) by 2 raised to the power of the other input (n). If n is 
floating-point, this function rounds n prior to scaling x (0.5 rounds to 0; 0.51 rounds 
to 1). If x is an integer, this function is the equivalent of an arithmetic shift.
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Sign

Returns 1 if the input value is greater than 0, returns 0 if the input value is equal to 0, and 
returns –1 if the input value is less than 0. Other programming languages typically call 
this function the signum or sgn function.

Square Root

Computes the square root of the input value. If x is negative, the square root is not a 
number (NaN) unless x is complex.

Subtract

Computes the difference of the inputs.

User Definable Arithmetic Constants
You can define the following constants.

Numeric Constant

Use this to supply a constant numeric value to the block diagram. Set this value by 
clicking inside the constant with the Operating tool and typing in a value. You can change 
the data format and representation. 

The value of the numeric constant cannot be changed while the VI executes. You can 
assign a label to this constant.

Enumerated Constant

Enumerated values associate unsigned integers to strings. If you display a value from an 
enumerated constant the string displays instead of the number associated with it. If you 
need a set of strings that will not change, then use this constant. Set the value by clicking 
inside the constant with the Operating Tool. Set the string with the Labeling Tool and 
enter the string. To add another item, click on the constant and choose Add Item Before 
or Add Item After.
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The value of the enumerated constant cannot be changed while the VI executes. You can 
assign a label to this constant.

Ring Constant

Rings can be used to associate unsigned integers to strings. If you display a value from a 
ring constant the number displays instead of the string associated with it. If you need a 
set of strings that will not change, then use this constant. Set the value by clicking inside 
the constant with the Operating Tool. Set the string with the Labeling Tool and enter the 
string. To add another item, pop up on the constant and choose Add Item Before or Add 
Item After.

The value of the ring constant cannot be changed while the VI executes. You can assign 
a label to this constant.

Conversion Functions Descriptions

The following illustration shows the options that are available on the Conversion 
subpalette.

The following functions convert a numeric input into a specific representation:

• To Byte Integer

• To Double Precision Complex

• To Double Precision Float

• To Extended Complex

• To Extended Precision Float

• To Long Integer

• To Single Precision Complex

• To Single Precision Float

• To Unsigned Byte Integer
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• To Unsigned Word Integer

• To Unsigned Long Integer

• To Word Integer

When these functions convert a floating-point number to an integer, they round the output 
to the nearest integer, or the nearest even integer if the fractional part is 0.5. If the result 
is out of range for the integer, these functions return the minimum or maximum value for 
the integer type. When these functions convert an integer to a smaller integer, they copy 
the least significant bits without checking for overflow. When they convert an integer to 
a larger integer, they extend the sign of a signed integer and pad an unsigned integer with 
zeros.

Use caution when you convert numbers to smaller representations, particularly when 
converting integers, because the G conversion routines do not check for overflow.

Boolean Array To Number
Converts Boolean array to an unsigned long integer by interpreting it as the two’s 
complement representation of an integer with the 0th element of the array being the least 
significant bit. 

Boolean To (0,1) 
Converts a Boolean value to a word integer— 0 and 1 for the input values FALSE and 
TRUE, respectively.

Boolean can be a scalar, an array, or a cluster of Boolean values, an array of clusters of 
Boolean values, and so on. See the Polymorphism for Boolean Functions section in 
Chapter 5, Boolean Functions.

Byte Array To String
Converts an array of unsigned bytes into a string.
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Cast Unit Bases
Changes the units associated with the input to the units associated with unit and returns 
the results at the output terminal. Use this function with extreme care. Because the Cast 
Unit Bases function works with bases, you must understand the conversion from an 
arbitrary unit to its bases before you can effectively use this function. This function can 
change base units, such as changing meters to grams.

Convert Unit
Converts a physical number (a number that has a unit) to a pure number (a number with 
no units) or a pure number to a physical number.

You can edit the string inside of the unit by highlighting the string with an Operating tool 
and then entering the text.

If the input is a pure number, the output receives the specified units. For example, given 
an input of 13 and a unit specification of seconds(s), the resulting value is 13 seconds.

If the input is a physical number, and unit is a compatible unit, the output is the input 
measured in the specified units. For example, if you specify 37 meters(m), and a unit is 
m, the result is 37 with no associated units. If unit is feet (ft), the result is 121.36 with 
no associated units.

Number To Boolean Array 
Converts an integer number to a Boolean array of 8, 16, or 32 elements, where the 0th 
element corresponds to the least significant bit (LSB) of the two’s complement 
representation of the integer. 
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String To Byte Array
Converts a string into an array of unsigned bytes.

To Byte Integer
Converts number to an 8-bit integer in the range –128 to 127.

To Double Precision Complex
Converts a number to a double-precision complex number. 

To Double Precision Float
Converts number to a double-precision floating-point number.

To Extend Precision Complex
Converts a number to an extended-precision complex number. 

To Extended Precision Float
Converts number to an extended-precision floating-point number.
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To Long Integer
Converts number to a 32-bit integer in the range –231 to 231–1

To Single Precision Complex
Coverts a number to a single-precision complex number.

To Single Precision Float
Converts number to a single-precision floating-point number.

To Unsigned Byte Integer
Converts number to an 8-bit unsigned integer in the range 0 to 255.

To Unsigned Long Integer
Converts number to a 32-bit unsigned integer in the range 0 to 232 –1.

To Unsigned Word Integer
Converts number to a 16-bit unsigned integer in the range 0 to 65,535.
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To Word Integer
Converts number to a 16-bit integer in the range –32,768 to 32,767.

Trigonometric Functions Descriptions

The following illustration shows the options for the Trigonometric subpalette. 
 

Cosecant
Computes the cosecant of x, where x is in radians. Cosecant is the reciprocal of sine. 

Cosine
Computes the cosine of x, where x is in radians.

Cotangent
Computes the cotangent of x, where x is in radians. Cotangent is the reciprocal of tangent. 
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Hyperbolic Cosine
Computes the hyperbolic cosine of x, where x is in radians. 

Hyperbolic Sine
Computes the hyperbolic sine of x, where x is in radians.

Hyperbolic Tangent
Computes the hyperbolic tangent of x, where x is in radians. 

Inverse Cosine
Computes the arccosine of x in radians. If x is not complex and is less than –1 or greater 
than +1, the result is NaN.

Inverse Hyperbolic Cosine
Computes the hyperbolic argcosine of x in radians. If x is not complex and is less than 1, 
the result is NaN.
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Inverse Hyperbolic Sine
Computes the hyperbolic argsine of x in radians.

Inverse Hyperbolic Tangent
Computes the hyperbolic argtangent of x in radians. If x is not complex and is less than 
–1 or greater than 1, the result is NaN.

Inverse Sine
Computes the arcsine of x in radians. If x is not complex and is less than –1 or greater 
than +1, the result is NaN.

Inverse Tangent
Computes the arctangent of x in radians (which can be between –Π/2 and Π/2).

Inverse Tangent (2 Input)
Computes the arctangent of y/x in radians. This function can compute the arctangent for 
angles in any of the four quadrants of the x,y plane, whereas the Inverse Tangent function 
computes the arctangent in only two quadrants.
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Secant
Computes the secant of x, where x is in radians. 

Sinc
Computes the sine of x divided by x, where x is in radians.

Sine
Computes the sine of x, where x is in radians.

Sine & Cosine
Computes both the sine and cosine of x, where x is in radians. Use this function only 
when you need both results.

Tangent
Computes the tangent of x, where x is in radians.
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Logarithmic Functions Descriptions

The following illustration shows the options for the Logarithmic subpalette.
 

Exponential
Computes the value of e raised to the x power.

Exponential (Arg) –1
Computes 1 less than the value of e raised to the x power. When x is very small, this 
function is more accurate than using the Exponential function and then subtracting 1 from 
the output.

Logarithm Base 2
Computes the base 2 logarithm of x. If x is 0, log2(x) is –∞. If x is not complex and is 
less than 0, log2(x) is NaN.
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Logarithm Base 10
Computes the base 10 logarithm of x. If x is 0, log(x) is –∞. If x is not complex and is 
less than 0, log(x) is NaN.

Logarithm Base X
Computes the base x logarithm of y (x>0, y>0). If y is 0, the output is –∞. When x and y 
are both not complex and x is less than or equal to 0, or y is less than 0, the output is NaN.

Natural Logarithm
Computes the natural base e logarithm of x, that is, the logarithm of x. If x is 0, ln(x) is 
–∞. If x is not complex and is less than 0, ln(x) is NaN.

Natural Logarithm (Arg +1)
Computes the natural logarithm of (x + 1). When x is near 0, this function is more 
accurate than adding 1 to x and then using the Natural Logarithm function. If x is equal 
to –1, the result is –∞. If x is not complex and is less than –1, the result is NaN.

Power Of 2
Computes 2 raised to the x power.
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Power Of 10
Computes 10 raised to the x power.

Power Of X
Computes x raised to the y power. If x is not complex, it must be greater than zero unless 
y is an integer value. Otherwise, the result is NaN. If y is zero, x^y is 1 for all values of 
x, including zero.

Complex Function Descriptions

The following illustration displays the options available on the Complex subpalette. 

The functions Polar To Complex and Re/Im To Complex create complex numbers from 
two values given in rectangular or polar notation, and the functions Complex To Polar 
and Complex To Re/Im break a complex number into its rectangular or polar 
components.

Complex Conjugate
Produces the complex conjugate of x + iy. 
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Complex To Polar
Breaks a complex number into its polar components. 

Complex To Re/Im
Breaks a complex number into its rectangular components. 

Polar To Complex
Creates a complex number from two values in polar notation.

Re/Im To Complex
Creates a complex number from two values in rectangular notation.
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Additional Numeric Constants Descriptions

The following illustration displays the options available on the Additional Numeric 
Constants subpalette. 

Additional User Definable Constants
You can define the following constants.

Listbox Symbol Ring Constant

This ring constant assigns symbols to items in a listbox control. Typically, you wire this 
constant into the Item Symbols attribute.

Color Box Constant

Use this to supply a constant color value to the block diagram. Set this value by clicking 
on the constant with the Operating tool and choosing the desired color.

The value of the color box constant cannot be changed while the VI executes. You can 
assign a label to this constant.

Error Ring Constant

This constant is a predefined ring of errors specific to memory usage, networking, 
printing, and file I/O. Errors related to DAQ, GPIB, VISA, and Serial VIs and functions 
are not options in this ring.

Fixed Constants
The following constants are fixed.
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Avogadro Constant (1/mol)

Returns the value 6.0220e23.

Base 10 Logarithm of e

Returns the value 0.43429448190325183.

Elementary Charge (c)

Returns the value 1.6021892e–19.

Gravitational Constant (Nm2/kg2)

Returns the value 6.6720e–11.

Molar Gas Constant (J/mol K)

Returns the value 8.31441.

e

Returns the value 2.7182818284590452e+0.

Natural Logarithm of Pi

Returns the value 1.14472988584940020.

Natural Logarithm of 2

Returns the value 0.69314718055994531.

Natural Logarithm of 10

Returns the value 2.30234095236904570.

Negative Infinity

Returns the value –∞.

Pi

Returns the value 3.14159265358979320.

Pi divided by 2

Returns the value 1.57079632679489660.

Pi multiplied by 2

Returns the value 6.28318530717958650.
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Planck’s Constant (J/Hz)

Returns the value 6.6262e–34.

Positive Infinity

Returns the value +∞.

Reciprocal of e

Returns the value 0.36787944117144232.

Reciprocal of Pi

Returns the value 0.31830988618379067.

Rydberg Constant (/m)

Returns the value 1.097373177e7.

Speed of Light in Vacuum (m/sec)

Returns the value 299,792,458.
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Chapter

5Boolean Functions

This chapter describes the functions that perform logical operations. 

The following illustration shows the Boolean palette, which you access 
by selecting Functions»Boolean. 

For examples of some of the Boolean functions, see
examples\general\structs.llb.

Polymorphism for Boolean Functions

The logical functions take either Boolean or numeric input data. If the 
input is numeric, G performs a bit-wise operation. If the input is an 
integer, the output has the same representation. If the input is a 
floating-point number, G rounds it to a long integer, and the output is 
long integer.

The logical functions work on arrays of numbers or Boolean values, 
clusters of numbers or Boolean values, arrays of clusters of numbers or 
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Boolean values, and so on. A formal and recursive definition of the 
allowable input type is as follows. 

Logical type = Boolean scalar || numeric scalar || array [logical type] || 
cluster [logical types] 

except that complex numbers and arrays of arrays are not allowed.

Logical functions with two inputs can have the same input 
combinations as the arithmetic functions. However, the logical 
functions have the further restriction that the base operations can only 
be between two Boolean values or two numbers. For example, you 
cannot have an AND between a Boolean value and a number. See the 
example below for an illustration of some combinations of Boolean 
values for the AND function.

Boolean Function Descriptions

The following Boolean functions are available.

And
Computes the logical AND of the inputs.

Note: This function performs bit-wise operations on numeric inputs.
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And Array Elements
Returns TRUE if all the elements in Boolean array are true; otherwise it returns FALSE.

Boolean Array To Number
Converts Boolean array to an unsigned long integer by interpreting it as the two’s 
complement representation of an integer with the 0th element of the array being the least 
significant bit. 

Boolean To (0,1) 
Converts a Boolean value to a word integer--0 and 1 for the input values FALSE and 
TRUE, respectively.

Compound Arithmetic
Performs arithmetic on two or more numeric, cluster, or Boolean inputs. 

You select the operation (multiply, AND, or OR) by popping up on the function and 
selecting Change Mode.

You can invert the inputs or the output of this function by popping up on the individual 
terminals, and selecting Invert. For Add, select Invert to negate an input or the output. 
For Multiply, select Invert to use the reciprocal of an input or to produce the reciprocal 
of the output. For AND or OR, select Invert to logically negate an input or the output.

Note: You add inputs to this node by popping up on an input and selecting Add 

Input or by placing the Positioning tool in the lower left or right corner of 

the node and dragging it.
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Exclusive Or
Computes the logical Exclusive OR of the inputs.

Implies
Computes the logical OR of y and of the logical negation of x. That is, the function 
negates x and then computes the logical OR of y and of the negated x. 

Not
Computes the logical negation of the input.

Not And
Computes the logical NAND of the inputs.

Not Exclusive Or
Computes the logical negation of the logical exclusive OR of the inputs.

Not Or
Computes the logical NOR of the inputs.
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Number To Boolean Array 
Converts number to a Boolean array of 8, 16, or 32 elements, where the 0th element 
corresponds to the least significant bit (LSB) of the two's complement representation of 
the integer. 

Or
Computes the logical OR of the inputs.

Or Array Elements
Returns FALSE if all the elements in Boolean array are false; otherwise it returns 
TRUE.

Boolean Constant
Use this to supply a constant true/false value to the block diagram. Set this value by 
clicking on the T or F portion of the constant with the Operating tool. This value cannot 
be changed while the VI executes.

You can assign a label to this constant.
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Chapter

6String Functions

This chapter describes the string functions, including those that convert 
strings to numbers and numbers to strings. 

The following illustration shows the String palette, which you access 
by selecting Functions»String.

Overview of Polymorphism for String Functions

This section provides descriptions of polymorphism for String 
functions, Additional String to Number functions, and String 
Conversion functions.
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Polymorphism for String Functions
String Length, To Upper Case, To Lower Case, Reverse String, and 
Rotate String accept strings, clusters, arrays of strings, and arrays of 
clusters. To Upper Case and To Lower Case also accept numbers, 
clusters of numbers, and arrays of numbers, interpreting them as ASCII 
codes for characters (refer to the Appendix B, Multiline Interface 

Messages, later in this manual, for the numbers that correspond to each 
character). Width and precision inputs must be scalar.

Polymorphism for Additional String to Number Functions
To Decimal, To Hex, To Octal, To Engineering, To Fractional, and To 
Exponential accept clusters and arrays of numbers and produce clusters 
and arrays of strings. From Decimal, From Hex, From Octal, and From 
Exponential/Fract/Sci accept clusters and arrays of strings and produce 
clusters and arrays of numbers. Width and precision inputs must be 
scalar.

Polymorphism for String Conversion Functions
The Path To String and String To Path functions are polymorphic. That 
is, they work on scalar values, arrays of scalars, clusters of scalars, 
arrays of clusters of scalars, and so on. The output has the same 
composition as the input but with the new type.

Format Strings Overview

Many G functions accept a format string input, which controls the 
behavior of the function. A format string is composed of one or more 
format specifiers, which determine what action to take to process a 
given parameter. The Format Into String and Scan From String 
functions can use multiple format specifiers in the format string, one for 
each resizable input or output to the function. Characters in the string 
that are not part of the format specifier are copied verbatim to the output 
string (in the case of Format Into String) or are matched exactly in the 
input string (in the case of Scan From String), with the exception of 
special escape codes. You can use these codes to insert nondisplayable 
characters, the backslash, and percent characters within any format 
string. These codes are similar to those used in the C programming 
language. 
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Table 6-1 displays the special escape codes. A code does not exist for 
the platform-dependent end-of-line (eol) character. If you need to 
append one, use the End-of-Line constant from the String palette.

Notice also that for the Scan From String and Format & Strip functions, 
a space in the format string matches any amount of whitespace (spaces, 
tabs, and form feeds) in the input string.

The Format & Append, Format & Strip, Array To Spreadsheet String, 
and Spreadsheet String To Array functions use only one format 
specifier in the format string, because these functions have only one 
input that can be converted. Any extraneous specifiers inserted into 
these functions are treated as literal strings with no special meaning.

For functions that output a string, such as Format Into String, Format & 
Append, and Array To Spreadsheet String, a format specifier has the 
following syntax. Double brackets ( [ ] ) enclose optional elements.

%[–][+][^][0][Width][.Precision][{unit}]Conversion Code

Table 6-1.  Special Escape Codes

Code Meaning

\r Carriage Return

\t Tab

\b Backspace

\n Newline

\f Form Feed

\s space

\xx character with hexadecimal ASCII code xx (using 0 
through 9 and upper case A through F)

\\ \

%% %
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For functions that scan a string, such as Scan From String, Format & 
Strip, and Spreadsheet String to Array, a format specifier has the 
following, simplified syntax:

%[Width]Conversion Code

Table 6-2 displays the string syntax available.

Table 6-2.  String Syntax

Syntax Element Description

% Begins the formatting specification.

– (optional) Causes the parameter to be left justified rather 
than right justified within its width.

+ (optional) For numeric parameters, includes the sign even 
when the number is positive.

^ (optional When used with the e or g conversion codes, 
uses engineering notation (exponent is always a 
multiple of 3).

0 (optional) Pads any excess space to the left of a numeric 
parameter with 0s rather than spaces.

Width (optional) When scanning, specifies an exact field width to 
use. G scans only the specified number of 
characters when processing the parameter.

When formatting, specifies the minimum 
character field width of the output. This is not a 
maximum width; G uses as many characters as 
necessary to format the parameter without 
truncating it. G pads the field to the left or right of 
the parameter with spaces, depending on 
justification. If Width is missing or zero, the 
output is only as long as necessary to contain the 
converted input parameter. 

. Separates Width from Precision. 



Chapter 6 String Functions

© National Instruments Corporation 6-5 LabVIEW Function and VI Reference Manual

The Conversion Codes used in G are similar to those used in the C 
programming language. However, G uses conversion codes to 
determine the textual format of the parameter, not the datatype of the 
parameter. 

You can use the d, x, o, b, f, e and g conversion codes to process any 
numeric G data type, including complex numbers and enums.

Precision (optional) For floating-point parameters, specifies the 
number of digits to the right of the decimal point. 
If Width is not followed by a period, G inserts a 
fractional part of six digits. If Width is followed 
by a period, and Precision is missing or 0, G does 
not insert a fractional part.

For string parameters, specifies the maximum 
width of the field. G truncates strings longer than 
this length.

{unit} (optional) Overrides the choice of unit of a VI when 
converting a physical quantity (a value with an 
associated unit). Must be a valid unit.

Conversion Codes Single character that specifies how to convert 
number, as follows
d to decimal integer
x to hex integer
o to octal integer
b to binary integer
f to floating-point number with

fractional format

e to floating-point number with 
scientific notation

g to floating-point number using e 
format if the exponential is less 
than –4 or greater than Precision, 
or f format otherwise

s to string 

Table 6-2.  String Syntax (Continued)

Syntax Element Description
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For complex numbers, you can use the format specifier to process both 
the real and imaginary parts as a single parameter.

You can use the s conversion code to process string or path parameters 
or enums.

Notice that you can use either a numeric or string conversion code with 
an enum, depending on whether you want the numeric value or 
symbolic (string) value of the enum.

For compatibility with C, G treats a u conversion code (unsigned 
integer) the same as a d, and ignores an l or L preceding the conversion 
code. However, in G it is the datatype of the parameter that determines 
the size of an integer and whether the integer is signed or unsigned. 

For examples of format string usage, see the Format Into String and 
Scan From String function descriptions later in this chapter.

String Function Descriptions

The following string functions are available.

Array To Spreadsheet String
Converts an array of any dimension to spreadsheet string. spreadsheet string is a table 
in string form, containing delimiter-separated column elements, a platform-dependent 
EOL character separating rows, and, for arrays of three or more dimensions, pages are 
separated. 

Concatenate Strings
Concatenates input strings and one-dimensional arrays of strings into a single, output 
string. For array inputs, this function concatenates each element of the array.
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Format Into String
Converts input arguments into resulting string, whose format is determined by format 
string. You increase the number of parameters by popping up on the node and selecting 
Add Parameter or by placing the Positioning tool over the lower left or right corner of 
the node and then stretching it until you reach the desired number of arguments.

Table 6-3 shows the possible errors which may be produced in error out by Format Into 
String.

Note: If an error occurs, the source component of the error out cluster contains 

a string of the form “Format Into String (arg n),” where n is the first 

argument for which the error occurred.

If you wire a block diagram constant string to format string, G checks for errors in format 
string at compile time. Such errors must be corrected before you can run the VI. In this 
case, no errors can occur at run time.

Table 6-3.  Possible Format Into String Errors

Error Code Description

Format specifier type 
mismatch

81 The datatype of a format specifier in the format string 
does not match the datatype of the corresponding 
input argument.

Unknown format 
specifier

82 The format string contains an invalid format specifier.

Too few format 
specifiers

83 There are more arguments than format specifiers.

Too many format 
specifiers

84 There are more format specifiers than arguments.
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Format Specifier Examples

In Table 6-4, the underline character (_) represent spaces in the output. The last three 
entries are examples of physical quantity inputs. 

The last table entry shows the output when the unit in the format specifier is in conflict 
with the input unit.

Index & Append
Selects a string specified by index from string array and appends that string to string.

Index & Strip
Compares each string in string array with the beginning of string until there is a match. 

Table 6-4.  Format Specifiers

Format String Argument(s) Resulting String

score= %2d%% 87 score= 87%

level= \n%–7.2e V 0.03642 level= 3.64e–2 V

Name: %s, %s. Smith John Name: Smith, John.

Temp: %05.1f %s 96.793 Fahrenheit Temp: 096.8 Fahrenheit

String: %10.5s. Hello, World String:_____Hello.

%5.3f 5.67 N 5.670 N

%5.3{mN}f 5.67 N 5670.000 mN

%5.3{kg}f 5.67 N 5.670 ?kg



Chapter 6 String Functions

© National Instruments Corporation 6-9 LabVIEW Function and VI Reference Manual

Match Pattern 
Searches for regular expression in string beginning at offset, and if it finds a match, 
splits string into three substrings.

Table 6-5.  Special Characters for Match Pattern

Special Character Interpreted by the Match Pattern Function as...

. Matches any character.

? Matches zero or one instances of the expression preceding ?. 

\ Cancels the interpretation of special characters (for example, \? 
matches a question mark). You can also use the following 
constructions for the space and nondisplayable characters

\b backspace

\f  form feed

\n newline

\s space

\r carriage return

\xx any character, where xx is the hex code
using 0 through 9 and upper case A
through F

\t  tab

^ If ̂  is the first character of regular expression, it anchors the match 
to the offset in string. The match fails unless regular expression 
matches that portion of string that begins with the character at 
offset. If ^ is not the first character, it is treated as a regular 
character.
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Table 6-6 shows examples of the Strings for the Match Pattern functions.

[ ] Encloses alternates. For example, [abc] matches a, b, or c. The 
following character has special significance when used within the 
brackets in the following manner.

– (dash)Indicates a range when used between digits, or lowercase or 
uppercase letters (for example, [0–5],[a–g], or [L–Q])

The following characters have significance only when they are the 
first character within the brackets.

~ Excludes the set of characters, including nondisplayable 
characters. [~0–9] matches any character other than 0 through 9.

^ Excludes the set with respect to all the displayable characters (and 
the space characters). [^0–9] gives the space characters and all 
displayable characters except 0 through 9.

+ Matches the longest number of instances of the expression 
preceding +; there must be at least one instance to constitute a 
match.

* Matches the longest number of instances of the expression 
preceding * in regular expression, including zero instances. 

$ If $ is the last character of regular expression, it anchors the match 
to the last element of string. The match fails unless regular 
expression matches up to and including the last character in the 
string. If $ is not last, it is treated as a regular character.

Table 6-6.  Strings for the Match Pattern Examples

Characters to Be Matched Regular Expression

VOLTS VOLTS

All uppercase and lowercase versions of 
volts, that is, VOLTS, Volts, volts, and so 
on

[Vv][Oo][Ll][Tt][Ss]

Table 6-5.  Special Characters for Match Pattern (Continued)

Special Character Interpreted by the Match Pattern Function as...
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Pick Line & Append
Chooses a line from multi-line string and appends that line to string. 

Reverse String
Produces a string whose characters are in reverse order of those in string.

A space, a plus sign, or a minus sign [+–]

A sequence of one or more digits [0–9]+

Zero or more Spaces \s* or * (that is, a space followed by an 
asterisk)

One or more Spaces, Tabs, Newlines, or 
Carriage Returns

[\t \r \n \s]+

One or more characters other than digits [~0–9]+

The word Level only if it begins at the 
offset position in the string

^Level

The word Volts only if it appears at the end 
of the string

Volts$

The longest string within parentheses (.*)

The longest string within parentheses but 
not containing any parentheses within it

([~( )]*)

The character, [ [ [ ]

Table 6-6.  Strings for the Match Pattern Examples (Continued)

Characters to Be Matched Regular Expression
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Rotate String
Places the first character of string in the last position of first char last, shifting the other 
characters forward one position. For example, the string abcd becomes bcda.

Scan From String
Scans the input string and converts the string according to format string. You increase 
the number of parameters by popping up on the node and selecting Add Parameter or 
by placing the Positioning tool over the lower left or right corner of the node and then 
stretching it until you reach the desired number of parameters.

Use Scan From String when you know the exact format of the input string.

Table 6-7 lists the Scan from String errors.

Table 6-7.  Scan From String Errors

Error Code Description

Format specifier type mismatch 81 The datatype of a format specifier 
in the format string does not match 
the datatype of the corresponding 
output.

Unknown format specifier 82 The format string contains an 
invalid format specifier.

Too few format specifiers 83 There are more arguments than 
format specifiers.



Chapter 6 String Functions

© National Instruments Corporation 6-13 LabVIEW Function and VI Reference Manual

Note: If an error occurs, the source component of the error out cluster contains 

a string of the form “Scan From String (arg n),” where n is the first 

argument for which the error occurred.

If you wire a block diagram constant string to format string, G checks for errors in format 
string at compile time. You must correct these errors before you can run the VI. In this 
case, only Scan failed can occur at run time.

Table 6-8 lists Scan From String examples.

Too many format specifiers 84 There are more format specifiers 
than arguments.

Scan failed 85 Scan From String was unable to 
convert the input string into the 
datatype indicated by the format 
specifier. 

Table 6-8.  Scan from String Examples

Input String Format String Default(s) Output(s)
Remaining 

String

abc xyz
12.3+56i 7200

%s 
%s%f%2d

abc
xyz
12.3+56i
72

00

Q+1.27E–3 tail Q%f t 1.27E–3 ail

0123456789 %3d%3d 12
345

6789

X:9.860 Z:3.450 X:%fY:%f 100 (I32)
100.0 (DBL)

10
100.0

Z: 3450

set49.4.2 set%d 49 .4.2

Table 6-7.  Scan From String Errors (Continued)

Error Code Description
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Select & Append
Selects either a false string or true string according to a Boolean selector and appends 
that string to string. 

Select & Strip
Examines the beginning of string to see whether it matches true string or false string. 
This function returns a Boolean TRUE or FALSE value in selection, depending on 
whether string matches true string or false string. 

Split String
Splits the string at offset or searches for the first occurrence of search char in the string, 
beginning at offset, and splits the string at that point. 

Spreadsheet String To Array
Converts the spreadsheet string to a numeric array of the dimension and representation 
of array type. This function works for arrays of strings as well as arrays of numbers.
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String Length
Returns in length the number of characters (bytes) in string. 

String Subset
Returns the substring of the original string beginning at offset and containing length 
number of characters. 

To Lower Case
Converts all alphabetic characters in string to lowercase characters. This function does 
not affect nonalphabetic characters.

To Upper Case
Converts all alphabetic characters in string to uppercase characters. This function does 
not affect nonalphabetic characters.

Additional String To Number Function Descriptions

For general information about Additional String to Number functions, see Polymorphism 

for Additional String to Number Functions, earlier in this chapter. 
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The following illustration displays the options available on the Additional String to 
Number Functions subpalette.

Format & Append
Converts number into a regular string according to the format specified in format 
string, and appends this to string.

Note: The Format Into String function has the same functionality as Format & 

Append but can use multiple inputs, so that you can convert information 

simultaneously. You should consider using Format Into String instead of 

this function: in many cases, this can simplify your block diagram.

Format & Strip
Looks for format string at the beginning of string, formats any number in this string 
portion according to the conversion codes in format string, and returns the converted 
number in number and the remainder of string after the match in output string. 
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From Decimal
Converts the numeric characters in string, starting at offset, to a decimal integer and 
returns it in number. 

From Exponential/Fract/Eng
Interprets the characters 0 through 9, plus, minus, e, E, and the decimal point (usually 
period) in string starting at offset as a floating-point number in engineering notation, or 
exponential or fractional format and returns it in number. 

Note: If you wire the characters Inf or NaN to string, this function returns the G 

values Inf and NaN, respectively. 

From Hexadecimal
Interprets the characters 0 through 9, A through F, and a through f in string starting at 
offset as a hex integer and returns it in number. 

From Octal
Interprets the characters 0 through 7 in string starting at offset as an octal integer and 
returns it in number. This function also returns the index in string of the first character 
following the number. 
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To Decimal
Converts number to a string of decimal digits width characters wide, or wider if 
necessary. 

To Engineering
Converts number to an engineering format, floating-point string width characters wide, 
or wider if necessary. Engineering format is similar to E format, except the exponent is 
a multiple of three (–3, 0, 3, 6). 

To Exponential
Converts number to an E-format (exponential notation), floating-point string width 
characters wide, or wider if necessary. 

To Fractional
Converts number to an F-format (fractional notation), floating-point string width 
characters wide, or wider if necessary. 
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To Hexadecimal
Converts number to a string of hexadecimal digits width characters wide, or wider if 
necessary. 

To Octal
Converts number to a string of octal digits width characters wide, or wider if necessary. 

String Conversion Function Descriptions

For general information about String Conversion functions, see Overview of 

Polymorphism for String Functions earlier in this chapter.

The following illustration shows the String Conversion subpalette.

Array Of Strings To Path accepts one-dimensional (1D) arrays of strings, Path To Array 
Of Strings accepts paths, Path To String accepts paths, and String To Path accepts strings.

Array Of Strings To Path
Converts an array of strings into a relative or absolute path.
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If you have an empty string in the array the directory location before the empty string is 
deleted in the path output. Think of this as moving up a level in directory hierarchy.

Byte Array To String
Converts an array of unsigned bytes into a string.

Path To Array Of Strings
Converts a path into an array of strings and indicates whether the path is relative.

Path To String
Converts path into a string describing a path in the standard format of the platform.

Refnum To Path
Returns the path associated with the specified refnum. 

String To Byte Array
Converts a string into an array of unsigned bytes.
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String To Path
Converts a string, describing a path in the standard format for the current platform, to a 
path.

String Fixed Constants

The following String Fixed Constants are available.

String Constant
Use this to supply a constant ASCII value to the block diagram. Set this value by clicking 
inside the constant with the Operating tool and typing in the value. You can change the 
display mode so you can see non-displayable characters or the hex equivalent to the 
characters. You can also set the constant in password display mode so “*” are displayed 
when you type in characters.

The value of the string constant cannot be changed while the VI executes. You can assign 
a label to this constant.

Carriage Return
Consists of a constant string containing the ASCII CR value.

Empty String
Consists of a constant string that is empty. Length is zero.

End of Line
Consists of a constant string containing the platform-dependent, end of line value. For 
Windows, the value is CRLF; for Macintosh, the value is CR; and on UNIX, the value 
is LF.

Line Feed
Consists of a constant string containing the ASCII LF value.

Tab
Consists of a constant string containing the ASCII HT (horizontal tab) value.
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Chapter

7Array Functions

This topic describes the functions for array operations.

The following illustration shows the Array palette which you access by 
selecting Functions»Array.
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Some of the array functions are also available from the Array Tools 
palette of most terminal or wire pop-up menus. The illustration below 
shows the pop-up menu. 

If you select the functions from this palette, they appear with the correct 
number of terminals to wire to the object on which you popped up.

For examples of array functions, see 
examples\general\arrays.llb.

Array Function Overview

Some of the array functions have a variable number of terminals. When 
you drop a new function of this kind, it appears on the block diagram 
with only one or two terminals. You can add and remove terminals by 
using the pop-up menu Add Element Input or Add Array Input and 
Remove Input commands (the actual names depend on the function) or 
by resizing the node vertically from any corner. If you want to add 
terminals by popping up, you must place your cursor on the input 
terminals to access the pop-up menu.

You can shrink the node if doing so does not delete wired terminals. The 
Add Element Input or Add Array Input command inserts a terminal 
directly after the one on which you popped up. The Remove Input 
command removes the terminal on which you popped up, even if it is 
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wired. The following illustration shows the two ways to add more 
terminals to the Build Array function.

Out-of-Range Index Values
Attempting to index an array beyond its bounds results in a default 
value determined by the array element type.

Polymorphism for Array Functions

Most of the array functions accept n-dimensional arrays of any type, 
however the wiring diagrams in the function descriptions show numeric 
arrays as the default data type.

Array Function Descriptions

The following Array functions are available.

Array Max & Min
Searches for the first maximum and minimum values in numeric array. This function 
also returns the indices where it finds the maximum and minimum values.
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The function compares each datatype according to the rules referred to in Chapter 9, 
Comparison Functions.

Array Size
Returns the number of elements in each dimension of array. 

Array Subset
Returns a portion of array starting at index and containing length elements. 

Array To Cluster
Converts a 1D array to a cluster of elements of the same type as the array elements. Pop 
up on the node to set the number of elements in the cluster. The default is nine. The 
maximum cluster size for this function is 256.

For more information on clusters, see Chapter 8, Cluster Functions.

Build Array
Appends any number of array or element inputs in top-to-bottom order to create array 
with appended element.

To change an element input to an array input, pop up on the input and select Change to 
Array. In general, to build an array of n-dimensions, each array input must be of the 
same dimension, n, and each element input must have n–1 dimensions. To create a 1D 
array, connect scalar values to the element inputs and 1D arrays to the array inputs. To 
build a 2D array, connect 1D arrays to element inputs and 2D arrays to the array inputs.
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Cluster To Array 
Converts a cluster of identically typed components to a 1D array of elements of the same 
type. 

For more information on clusters, see Chapter 8, Cluster Functions.

Decimate 1D Array
Divides the elements of array into the output arrays. 

Index Array
Returns the element of array at index. If array is multidimensional, you must add 
additional index terminals for each dimension of the array. 

In addition to extracting an element of the array, you can slice out a higher dimensional 
component by disabling one or more of the index terminals.

Initialize Array
Creates an n-dimensional array in which every element is initialized to the value of 
element. 
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Interleave 1D Arrays
Interleaves corresponding elements from the input arrays into a single output array. 

Interpolate 1D Array
Uses the integer part of the fractional index of x to index the array and the fractional part 
of fractional index of x to linearly interpolate between the values of the indexed element 
and its adjacent element. 

Replace Array Element
Replaces the element in array at index with the new element. 

Reshape Array
Changes the dimension of an array according to the value of dimension size. For 
example, you can use this function to change a 1D array into a 2D array or vice versa. 
You can also use it to increase and decrease the size of a 1D array.

Reverse 1D Array
Reverses the order of the elements in array. 
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Rotate 1D Array
Rotates the elements of array by the number of places and in the direction indicated by n. 

Search 1D Array
Searches for element in 1D array starting at start index. 

Sort 1D Array
Returns a sorted version of array with the elements arranged in ascending order. The 
rules for comparing each datatype are described in Chapter 9, Comparison Functions. 

Split 1D Array
Divides array at index and returns the two portions. 

Threshold 1D Array
Compares threshold y to the values in array of numbers or points starting at start 
index until it finds a pair of consecutive elements such that threshold y is greater than 
the value of the first element and less than or equal to the value of the second element. 

The function then calculates the fractional distance between the first value and threshold 
y and returns the fractional index at which threshold y would be placed within array of 
numbers or points using linear interpolation. 
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For example, suppose array of numbers or points is an array of four numbers [4, 5, 5, 
6], start index is 0, and threshold y is 5. The fractional index or x is 1, corresponding 
to the index of the first value of 5 the function finds. Suppose the array elements are 6, 
5, 5, 7, 6, 6, the start index is 0, and the threshold y is 6 or less. The output is 0. If 
threshold y is greater than 7 for the same set of numbers, the output is 5. If threshold y 
is 14.2, start index is 5, and the values in the array starting at index 5 are 9.1, 10.3, 12.9, 
and 15.5, threshold y falls between elements 7 and 8 because 14.2 is midway between 
12.9 and 15.5. The value for fractional index or x is 7.5, that is, halfway between 7 and 
8.

If the array input consists of an array of points where each point is a cluster of x and y 
coordinates, the output is the interpolated x value corresponding to the interpolated 
position of threshold y rather than the fractional index of the array. If the interpolated 
position of threshold y is midway between indices 4 and 5 of the array with x values of 
–2.5 and 0 respectively, the output is not an index value of 4.5 as it would be for a 
numeric array, but rather an x value of –1.25. 

Transpose 2D Array
Rearranges the elements of 2D array such that 2D array[i,j] becomes transposed 
array[j,i].
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Chapter

8Cluster Functions

This chapter describes the functions for cluster operations.

The following illustration shows the Cluster palette, which you access 
by selecting Functions»Cluster.

 

Some of the cluster functions are also available from the Cluster Tools 
palette of most terminal or wire pop-up menus. The following 
illustration shows the pop-up menu. 

If you select the functions from this palette, they appear with the correct 
number of terminals to wire to the object on which you popped up.
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Cluster Function Overview

Some of the cluster functions have a variable number of terminals. 
When you drop a new function of this kind, it appears on the block 
diagram with only one or two terminals. You can add and remove 
terminals by using the pop-up menu Add Input or Remove Input 
options or by resizing the node using the Positioning tool. If you want 
to add terminals by popping up, you must place your cursor on the input 
terminal to access the pop-up menu.

You can shrink the node if doing so does not delete wired terminals. The 
Add Input option inserts a terminal directly after the one on which you 
popped up. The Remove Input option removes the terminal on which 
you popped up, even if it is wired. 

The following illustration shows the two ways to add more terminals to 
the Bundle function.

Polymorphism for Cluster Functions

The Bundle and Unbundle functions do not show the datatype for their 
individual input or output terminals until you wire objects to these 
terminals. When you wire them, these terminals look similar to the 
datatypes of the corresponding front panel control or indicator 
terminals.
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Setting the Order of Cluster Elements
Cluster elements have a logical order that is unrelated to their positions 
within the shell. The first object you insert in the cluster is element 0, 
the second is 1, and so on. If you delete an element, the order adjusts 
automatically. You can change the current order by selecting the 
Cluster Order... option from the cluster pop-up menu. 

Clicking on an element with the cluster order cursor sets the elements 
place in the cluster order to the number displayed inside the Tools 
palette. You change this order by typing a new number into that field. 
When the order is as you want it, click on the Enter button to set it and 
exit the cluster order edit mode. Click on the X button to revert to the 
old order.

The cluster order determines the order in which the elements appear as 
terminals on the Bundle and Unbundle functions in the block diagram.

The Bundle By Name and Unbundle By Name functions give you more 
flexible access to data in clusters. With these functions, you can access 
specific elements in clusters by name and access only the elements you 
want to access. Because these functions reference components by name 
and not by cluster position, you can change the data structure of a 
cluster without breaking wires, as long as you do not change the name 
of or remove the component you reference on the block diagram.

 Cluster Function Descriptions

The following cluster functions are available. 

Array To Cluster
Converts a 1D array to a cluster of elements of the same type as the array elements. Pop 
up on the node or resize it to set the number of elements in the cluster. The default is nine. 
The maximum cluster size for this function is 256.

Build Cluster Array
Assembles all the component inputs in top-down order into an array of clusters of that 
component. If the input is four, single-precision, floating-point components, the output 
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is a four-element array of clusters containing one single-precision, floating-point 
number. Element 0 of the array has the value of the top component, and so on.

Bundle
Assembles all the individual input components into a single cluster. 

Bundle By Name
Replaces components in an existing cluster. After you wire the node to a cluster, you 
pop-up on the name terminals to choose from the list of components of the cluster.

You must always wire the cluster input. If you are creating a cluster for a cluster 
indicator, you can wire a local variable of that indicator to the cluster input. If you are 
creating a cluster for a cluster control of a subVI, you can place a copy of that control 
(possibly hidden) on the front panel of the VI and wire the control to the cluster input.

Cluster To Array 
Converts a cluster of identically typed components to a 1D array of elements of the same 
type. 



Chapter 8 Cluster Functions

© National Instruments Corporation 8-5 LabVIEW Function and VI Reference Manual

Index & Bundle Cluster Array
Indexes a set of arrays and creates a cluster array in which the ith element contains the 

ith element of each input array. 

This function is equivalent to the following block diagram and is useful for converting a 
cluster of arrays to an array of clusters.

Unbundle
Disassembles a cluster into its individual components. 

Unbundle By Name
Returns the cluster elements whose names you specify. You select the element you want 
to access by popping up on the name output terminals and selecting a name from the list 
of elements in the cluster.
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Chapter

9Comparison Functions

This chapter describes the functions that perform comparisons or 
conditional tests.

The following illustration shows the Comparison palette, which you 
access by selecting Functions»Comparison. 

For examples of comparison functions, see 
examples\general\struct.llb.

Comparison Function Overview

This section introduces the Comparison functions.
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Compare Boolean
For the Compare Boolean functions, the Boolean value TRUE is greater 
than the Boolean value FALSE.

Compare Strings
These functions compare strings according to the numerical equivalent 
of the ASCII characters. Thus, a (with a decimal value of 97) is greater 
than A (65), which is greater than the numeral 0 (48), which is greater 
than the space character (32). These functions compare characters one 
by one from the beginning of the string until an inequality occurs, at 
which time the comparison ends. For example, LabVIEW evaluates the 
strings abcd and abef until it finds c, which is greater than the value of 
e. The presence of a character is greater than the absence of one. Thus, 
the string abcd is greater than abc because the first string is longer.
Most of the comparison functions test one input or compare two inputs 
and return a Boolean value. The functions convert numbers to the same 
representation before comparing them. Comparisons with a value of 
NaN (not a number) return a value that indicates inequality. 

The functions that test the category of a string character (for example, 
the Decimal Digit? and Printable? functions) evaluate only the first 
character of the string. 

Compare Clusters
The comparison functions compare clusters the same way they compare 
strings, one element at a time starting with the 0th element until an 
inequality occurs. Clusters must have the same number of elements, of 
the same type, and in the same order if you want to compare them. 

Compare Modes
Some of the comparison functions have two modes for comparing 
arrays or clusters. In the Compare Aggregates mode, if you compare 
two arrays or clusters, the function returns a single value. In the 
Compare Elements mode, the function compares the elements 
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individually and then returns an array or cluster of Boolean values. The 
following illustration shows the two modes.

You change the comparison mode by selecting Compare Elements or 
Compare Aggregates in the pop-up menu for the node, as shown in the 
following illustrations.

When you compare two arrays of unequal lengths in the Compare 
Elements mode, LabVIEW ignores each element in the larger array 
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whose index is greater than the index of the last element in the smaller 
array. 

When you use the Compare Aggregates mode to compare two arrays, 
the following occurs: (1) LabVIEW searches for the first set of 
corresponding elements in the two inputs that differ, and uses those to 
determine the results of the comparison. (2) If all elements are identical 
except that one has more elements, LabVIEW considers the longer 
array to be greater than the shorter array. (3) If no elements of the two 
arrays differ, and the arrays have the same length, the arrays are equal. 
Thus, LabVIEW considers the array [1,2,3] to be greater than the array 
[1,2] and returns a single Boolean value in the Compare Aggregates 
mode. 

When comparing clusters using the Compare Aggregates mode, 
LabVIEW goes by cluster order instead of array order. The two clusters 
LabVIEW compares are always the same length.

In the Compare Elements mode, LabVIEW returns a Boolean for each 
of the first two elements and ignores the last element of the larger array, 
as in the preceding example. 

Arrays must have the same dimension size (for example, both 
two-dimensional), and for the comparison between multidimensional 
arrays to make sense, each dimension must have the same size.

The comparison functions that do not have the Compare Aggregates or 
Compare Elements modes compare arrays in the same manner as 
strings—one element at a time starting with the 0th element until an 
inequality occurs.

Character Comparison 
You can use the functions that compare characters to determine a 
character’s type. The following functions are character comparison 
functions.

• Decimal Digit? 

• Hex Digit? 

• Lexical Class 

• Octal Digit? 

• Printable? 

• White Space? 
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If the input is a string, the functions test the first character. If the input 
is an empty string, the result is FALSE. If the input is a number, the 
functions interpret it as a code for an ASCII character. 

See Appendix B, Multiline Interface Messages, for the numbers that 
correspond to each character. 

Polymorphism for Comparison Functions

The functions Equal?, Not Equal?, and Select take inputs of any type, 
as long as the inputs are the same type.

The functions Greater or Equal?, Less or Equal?, Less?, Greater?, 
Max & Min, and In Range? take inputs of any type except complex, 
path, or refnum, as long as the inputs are the same type. You can 
compare numbers, strings, Booleans, arrays of strings, clusters of 
numbers, clusters of strings, and so on. You cannot, however, compare 
a number to a string or a string to a Boolean, and so on. 

The functions that compare values to zero accept numeric scalars, 
clusters, and arrays of numbers. These functions output Boolean values 
in the same data structure as the input.

The Not A Number/Path/Refnum function accepts the same input types 
as functions that compare values to zero. This function also accepts 
paths and refnums. Not A Number/Path/Refnum outputs Boolean 
values in corresponding structures. See Chapter 30, Introduction to 

LabVIEW Instrument Driver VIs, and Chapter 11, File Functions, for 
more information on these functions.

The functions Decimal Digit?, Hex Digit?, Octal Digit?, Printable?, and 
White Space? accept a scalar string or number input, clusters of strings 
or non-complex numbers, arrays of strings or non-complex numbers, 
and so on. The output consists of Boolean values in the same data 
structure as the input.

The function Empty String/Path? accepts a path, a scalar string, clusters 
of strings, arrays of strings, and so on. The output consists of Boolean 
values in the same data structure as the input. 

You can use the Equal?, Not Equal?, Not A Number/Path/Refnum?, 
Empty String/Path?, and Select functions with paths and refnums, but 
no other comparison functions accept paths or refnums as inputs.
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Comparison functions that use arrays and clusters normally produce 
Boolean arrays and clusters of the same structure. You can pop-up and 
change to compare aggregates, in which case the function outputs a 
single Boolean value. The function compares aggregates by comparing 
the first set of elements to produce the output, unless the first elements 
are equal, in which case the function compares the second set of 
elements, and so on.

Comparison Function Descriptions

The following Comparison functions are available.

Decimal Digit?
Returns TRUE if char is a decimal digit ranging from 0 through 9. Otherwise, this 
function returns FALSE.

Empty String/Path?
Returns TRUE if string/path is an empty string or path. Otherwise, this function returns 
FALSE.

Equal?
Returns TRUE if x is equal to y. Otherwise, this function returns FALSE. 

Equal To 0?
Returns TRUE if x is equal to 0. Otherwise, this function returns FALSE.
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Greater?
Returns TRUE if x is greater than y. Otherwise, this function returns FALSE.

Greater Or Equal?
Returns TRUE if x is greater than or equal to y. Otherwise, this function returns FALSE.

Greater Or Equal To 0?
Returns TRUE if x is greater than or equal to 0. Otherwise, this function returns FALSE.

Greater Than 0?
Returns TRUE if x is greater than 0. Otherwise, this function returns FALSE.

Hex Digit?
Returns TRUE if char is a hex digit ranging from 0 through 9, A through F, or a through 
f. Otherwise, this function returns FALSE.

n Range?
Returns TRUE if x is greater than or equal to lo and less than hi. Otherwise, this function 
returns FALSE.
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Note: This function always operates in the Compare Aggregates mode. To 

produce a Boolean array as an output, you must execute this function in a 

loop structure. 

Less?
Returns TRUE if x is less than y. Otherwise, this function returns FALSE.

Less Or Equal?
Returns TRUE if x is less than or equal to y. Otherwise, this function returns FALSE.

Less Or Equal To 0?
Returns TRUE if x is less than or equal to 0. Otherwise, this function returns FALSE.

Less Than 0?
Returns TRUE if x is less than 0. Otherwise, this function returns FALSE.
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Lexical Class
Returns the class number for char.

Max & Min
Compares x and y and returns the larger value at the top output terminal and the smaller 
value at the bottom output terminal.

Not A Number/Path/Refnum?
Returns TRUE if number/path/refnum is not a numeric value, path, or refnum. 
Otherwise, this function returns FALSE. NaN can be the result of dividing by 0, the 
square root of a negative number, and so on.

Table 9-1.  Lexical Class Number Descriptions

Class Number Lexical Class

0 Extended characters with a Command- or Option- key prefix (codes 128 
through 255)

1 Nondisplayable ASCII characters (codes 0 to 31 excluding 9 through 13)

2 White space characters: Space, Tab, Carriage Return, Form Feed, 
Newline, and Vertical Tab (codes 32, 9, 13, 12, 10, and 11, respectively)

3 Digits 0 through 9

4 Uppercase characters A through Z

5 Lowercase characters a through z

6 All printable ASCII nonalphanumeric characters
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Not Equal?
Returns TRUE if x is not equal to y. Otherwise, this function returns FALSE. 

Not Equal To 0?
Returns TRUE if x is not equal to 0. Otherwise, this function returns FALSE.

Octal Digit?
Returns TRUE if char is an octal digit ranging from 0 through 7. Otherwise, this function 
returns FALSE.

Printable?
Returns TRUE if char is a printable ASCII character. Otherwise, this function returns 
FALSE.

Select
Returns the value connected to the t input or f input, depending on the value of s. If s is 
TRUE, this function returns the value connected to t. If s is FALSE, this function returns 
the value connected to f.
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White Space?
Returns TRUE if char is a white space character, such as space, Tab, Newline, Carriage 
Return, Form Feed, or Vertical Tab. Otherwise, the function returns FALSE.
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Chapter

10
Time, Dialog, and 
Error Functions

This chapter describes the timing functions, which you can use to get 
the current time, measure elapsed time, or suspend an operation for a 
specific period of time. Error Handling also is covered in this chapter.

The following illustration shows the Time & Dialog palette, which you 
access by selecting Functions»Time & Dialog.

 

For examples of time and dialog functions, see 
examples\general\viopts.llb.

Time, Dialog, and Error Functions Overview

This section introduces the Timing, Dialog, and Error Functions.
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Timing Functions
The Date/Time To Seconds and the Seconds To Date/Time functions 
have a parameter called date time rec, which is a cluster that consists 
of signed 32-bit integers in the following order. 

The Wait (ms) and Wait Until Next ms Multiple functions make 
asynchronous system calls, but the nodes themselves function 
synchronously. That is, they do not complete execution until the 
specified time has elapsed. The functions use asynchronous calls so that 
other nodes can execute while the timing nodes wait.

Note: National Instruments can only guarantee correct time values across all 

platforms for the range 2082844800 to 4230328447 seconds or 12:00 a.m., 

Jan. 1, 1970, Universal Time to 3:14 a.m., Jan. 19, 2038, Universal Time.

Error Handling Overview
Every time you design a program, you should consider the possibility 
that something can go wrong and, if it does, you should consider how 
your program should manage the problem. LabVIEW automatically 

Table 10-1.  Order of 32-bit Integers in TIming Functions

Time Value and Range

0 (second) 0 to 59

1 (minute) 0 to 59

2 (hour) 0 to 23

3 (day of month) 1 to 31 as output from the function;1 to 366 as 
input

4 (month) 1 to 12

5 (year) 1904 to 2040

6 (day of week) 1 to 7 (Sunday to Saturday)

7 (day of year) 1 to 366

8 (DST) 0 to 1 (0 for Standard Time, 1 for Daylight 
Savings Time) 
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notifies you with a dialog box only when a few run-time errors occur, 
mostly for file dialog operations. It does not report all errors. If it were 
to report all errors, you would lose the flexibility to determine what to 
do when an error occurs and how and when to inform the user of the 
error in your program.

Rigorous error checking, especially for I/O operations (file, serial, 
GPIB, data acquisition, and communication), is invaluable in all phases 
of a project. This section describes three I/O situations in which errors 
can occur. 

The first error can occur when you have initialized your 
communications incorrectly or have written improper data to your 
external device. This type of problem usually occurs during program 
development and disappears once you finish debugging your program. 
However, you can spend a lot of time tracking down a simple 
programming mistake because you have not incorporated error checks. 
Without error checks, all you know is that your program does not work. 
You do not know why the error occurred or where it is. 

The second type of error can occur because your external device may be 
powered off, broken down, or otherwise unable to do what it normally 
does. This type of problem can occur at any time, but if you have 
incorporated error checking, your program notifies you immediately 
when such operational failures occur. 

The third kind of error can occur when you upgrade LabVIEW or your 
operating system software, and you notice a bug in either a G program 
or a system program. This type of error means you should check errors 
that you may have felt safe ignoring, such as those from functions that 
close files or clear DAQ operations. The bottom line is, check all I/O 
operations for errors.

It may feel easier to ignore error checking when you have to add error 
handling code to test and report errors. The VIs described here are 
designed to make it easier for you to create programs with error 
checking and handling. 

G functions and library VIs return errors in one of two ways—with 
numeric error codes or with an error state cluster. Typically, functions 
output error codes while VIs incorporate the error cluster, usually 
within a framework called error input/output or error I/O.
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Error I/O and the Error State Cluster
The concept of error I/O is natural to the G dataflow architecture. If data 
information can flow from one node to another, so can error state 
information. Each node that needs to know about errors tests the 
incoming error state and responds appropriately. If no error exists, the 
node executes normally. If an error does exist, the node detects an error, 
skips execution, and then passes its error state out to the next node, 
which responds in the same way. In this fashion, notice of the first error 
that occurs in a sequence of operations is passed through all the nodes, 
with each node responding to the error. At the end of the flow, your 
program reports the error to the user. 

Error I/O has an additional benefit—you can use it to control the 
execution order of independent operations. While you can use the DAQ 
taskID to control the order of DAQ operations for one group, you 
cannot use it to control the order for multiple groups. The DAQ taskID 
does not work with other types of I/O operations such as file operations. 

The following diagram from the File Utility VI, Read Characters 
From File, shows how error I/O is implemented in a simple VI.

The operation starts at Open File+.vi. If it opens the file 
successfully, Read File+ (string).vi reads the file and Close 
File+.vi closes the file. If you pass in an invalid path, Open 
File+.vi detects the error and passes the error state through the other 
two VIs to the General Error Handler, which reports it. Notice that the 
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only presence of error handling on this block diagram is the error wire 
and the General Error Handler. It is neither cumbersome nor distracting.

The error state consists of three pieces of information, which are 
combined into the error cluster. The status is a Boolean value—TRUE 
if an error exists, FALSE if it does not. The code consists of an unsigned 
32-bit integer that identifies the error. In some cases, a non-zero error 
code coupled with a FALSE error status signals a warning rather than 
a fatal error. For example, a DAQ timeout event (code 10800) is 
typically reported as a warning. The source consists of a string that 
identifies where the error occurred. 

The error in and error out state clusters for the Open File+ VI, where 
the error shown in the preceding example originated, are shown in the 
following illustration. The error in cluster, whose default value is no 

error does not need to be wired if it is the first in the chain.

You can find the error in and error out clusters by selecting 
Controls»Array & Cluster on the front panel.
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The following illustration shows the message you receive from the 
General Error Handler if you pass in an invalid path. 

General Error Handler is one of the three error handling utility VIs. It 
contains a database of error codes and descriptions, from which it 
creates messages like the previous one. The Simple Error Handler 
performs the same basic operation but has fewer options. The third VI, 
Find First Error, creates the error I/O cluster from functions or VIs that 
output only scalar error codes.

Time and Dialog Function Descriptions

The following Time and Dialog functions are available.

Date/Time To Seconds
Converts a cluster of nine, signed 32-bit integers assumed to specify the local time 
(second, minute, hour, day, month, year, day of the week, day of the year, and Standard 
or Daylight Savings Time) in the configured time zone for your computer into a 
time-zone-independent number of seconds that have elapsed since 12:00 a.m., Friday, 
January 1, 1904, Universal Time.

If the year and month integers are out of range, the results are unpredictable. G ignores 
the day of the week and day of the year integers. The other five integers can be any value. 
Thus, you can specify Julian dates by setting the month to January and the current day to 
the day of the year. For example, use January 150 for the 150th day of the year.
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Get Date/Time In Seconds
Returns a time-zone-independent number that contains the number of seconds that have 
elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time.

Get Date/Time String
Converts a time-zone-independent number assumed to be the number of seconds that 
have elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a date and 
time string in the configured time zone for your computer. 

One Button Dialog Box
Displays a dialog box that contains a message and a single button. The button name is 
the name displayed on the dialog box button. 

Seconds To Date/Time
Converts a time-zone-independent number assumed to be the number of seconds that 
have elapsed since 12:00 a.m., Friday, January 1, 1904, Universal Time, to a cluster of 
nine, signed 32-bit integers that specify (second, minute, hour, day of the month, number 
of month (1–12), year, day of the week, day of the year, and Standard or Daylight Savings 
Time) in the configured time zone for your computer.

Tick Count (ms)
Returns the value of the millisecond timer. The base reference time (millisecond zero) is 
undefined; that is, you cannot convert millisecond timer value to a real-world time or 
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date. Be careful when you use this function in comparisons, because the value of the 
millisecond timer wraps from 232–1 to 0. 

Two Button Dialog Box
Displays a dialog box that contains a message and two buttons. T button name and F 
button name are the names displayed on the buttons of the dialog box. 

Wait (ms)
Waits the specified number of milliseconds and then returns the value of the millisecond 
timer. 

Wait Until Next ms Multiple
Waits until the value of the millisecond timer becomes a multiple of the specified 
millisecond multiple. You can use this function to synchronize activities. You can call 
this function in a loop to control the loop execution rate. However, it is possible that the 
first loop period may be short. 

Error Handling VI Descriptions

The following Error Handling VIs are available.
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Find First Error
Tests the error status of one or more low-level functions or subVIs that output a numeric 
error code. 

If this VI finds an error, it sets the parameters in the error out cluster. You can wire this 
cluster to the Simple or General Error Handler to identify the error and describe it to the 
user.

Find First Error Example

The following illustration shows how you can use Find First Error in the example VI 
Write Binary File. Find First Error creates the error cluster from individual error 
numbers, and Simple Error Handler reports any errors to the user.
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General Error Handler
Determines whether an error has occurred. If an error occurred, this VI creates a 
description of the error and optionally displays a dialog box.

Simple Error Handler
Determines whether an error occurred. If it finds an error, this VI creates a description of 
the error and optionally displays a dialog box. 

Simple Error Handler calls General Error Handler and has the same basic functionality 
as General Error Handler, but with fewer options.
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Chapter

11File Functions

This topic describes the low-level functions that manipulate files and 
directories. This topic also describes file constants and the high-level 
file VIs. 

You access these functions, constants, and VIs by selecting 
Functions»File I/O. 

The File I/O palette includes the following subpalettes:

• Advanced File Functions 

• Binary File VIs 

• File Constants 

For examples of File functions and VIs, see examples\file.



Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-2 © National Instruments Corporation

File I/O VI and Function Overview

This section introduces the high-level and low-level File VIs, and the 
File functions.

High-Level VIs
You can use the high-level File VIs to write or read the following types 
of data:

• Strings to text files

• One-dimensional (1D) or two-dimensional (2D) arrays of 
single-precision numbers to spreadsheet text files. 

• 1D or 2D arrays of single-precision or signed word integers to byte 
stream files.

The high-level File VIs described here call the low-level functions to 
perform complete, easy-to-use file operations. These VIs open or create 
a file, write or read to it, and close it. If an error occurs, these VIs 
display a dialog box that describes the problem and gives you the option 
to halt execution or to continue.

The high-level File VIs are located on the top row of the palette and 
consist of the following VIs:

• Write Characters to File

• Write to Spreadsheet File

• Read Characters from File

• Read from Spreadsheet File

• Read Lines from File

• Binary File VIs—located in the subpalette.

Low-Level File VIs and File Functions
The low-level File functions perform one file operation at a time. These 
VIs and functions perform error detection in addition to their other 
functions. The most commonly used low-level file functions and VIs 
are located on the second row of the palette. The remaining low-level 
functions are located in the Advanced File Functions subpalette.

The principal low-level file operations involve a three-step process. 
First, you create or open a file. Then you write data to the file or read 
data from the file. Finally, you close the file. Other file operations 
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include creating directories; moving, copying, or deleting files; flushing 
files; listing directory contents; changing file characteristics; and 
manipulating paths.

When creating or opening a file, you must specify its location. Different 
computers describe the location of files in different ways, but most 
computer systems use a hierarchical system to specify the location of 
files. In a hierarchical file system, the computer system superimposes a 
hierarchy on the storage media. You can store files inside directories, 
which can contain other directories.

When you specify a file or directory in a hierarchical file system, you 
must indicate the name of the file or directory, as well as its location in 
the hierarchy. In addition, some file systems support the connection of 
multiple discrete media, called volumes. For example, Windows 
systems support multiple drives connected to a system; for most of 
these systems, you must include the name of the volume to create a 
complete specification for the location of a file. On other systems, such 
as UNIX, you do not need to specify the storage media locations for 
files because the operating system hides the physical implementation of 
the file system from you. 

The method of identifying the target of a file function varies depending 
on whether the target is an open file. If the target is not an open file, or 
if it is a directory, you specify a target using the path of the target. The 
path describes the volume containing the target, the directories between 
the top-level and the target, and the name of the target. If the target is 
an open file, you use a file refnum to identify the file that G is supposed 
to manipulate. The file refnum is an identifier that G associates with the 
file when you open it. When you close the file, the file manager 
dissociates the file refnum from the file. In other words, the refnum is 
obsolete once the file is closed.

See, Strings and File I/O, Chapter 6 of the Tutorial Manual, and Path 

Controls and Refnum in that section for more information on path 
specification in G and for file function examples.

Byte Stream and Datalog Files
G can make and access two types of files—byte stream and 
datalog files.

A byte stream file, as the name implies, is a file whose fundamental unit 
is a byte. A byte stream file can contain anything from a homogeneous 
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set of one G datatype to an arbitrary collection of datatypes—
characters, numbers, Booleans, arrays, strings, clusters, and so on. An 
ASCII text file, a file containing this paragraph, for example, is perhaps 
the simplest byte stream file. A similar byte stream file is a basic 
spreadsheet text file, which consists of rows of ASCII numbers, with 
the numbers separated by tabs and the rows separated by 
carriage returns. 

Another simple byte stream file is an array of binary 16-bit integers or 
single-precision, floating point numbers, which you acquire from a data 
acquisition (DAQ) program. A more complicated byte stream file is one 
in which an array of binary 16-bit integers or single-precision, floating 
point numbers is preceded by a header of ASCII text that describes how 
and when you acquired the data. That header could alternatively be a 
cluster of acquisition parameters, such as arrays of channels and scale 
factors, the scan rate, and so forth. 

An Excel worksheet file, as opposed to an Excel text file, is also a more 
complicated form of byte stream file because it contains text 
interspersed with Excel-specific formatting data that does not make 
sense when you read it as text. In summary, you can make a byte stream 
file that consists of one each of all of G datatypes. Byte stream files can 
be created using high-level VIs and low-level functions.

A datalog file, on the other hand, consists of a sequence of 
identically-structured records. Like byte stream files, the components 
of a datalog record can be any G datatype. The difference is that all the 
datalog records must be the same type. Datalog files can only be created 
using low-level file functions.

You write a byte stream file typically by appending new strings, 
numbers, or arrays of numbers of any length to the file. You can also 
overwrite data anywhere within the file. You write a datalog file by 
appending one record at a time. You cannot overwrite the record.

You read a byte stream file by specifying the byte offset or index and 
the number of instances of the specified byte stream type you want to 
read. You read a datalog file by specifying the record offset or index and 
the number of records you want to read.

You use byte stream files typically for text or spreadsheet data that 
other applications may need to read. You can use byte stream files to 
record continuously acquired data that you need to read sequentially or 
randomly in arbitrary amounts. You use datalog files typically to record 
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multiple test results or waveforms that you read one at a time and treat 
individually. Datalog files are difficult to read from non-G applications.

Flow-Through Parameters
Many file functions contain flow-through parameters, which return the 
same value as an input parameter. You can use these parameters to 
control the execution order of the functions. By wiring the flow-through 
output of the first node you want to execute to the corresponding input 
of the next node you want to execute, you create artificial data 
dependency. Without these flow-through parameters, you would often 
have to use Sequence structures to ensure that file I/O operations take 
place in the correct order.

Error I/O in File I/O Functions
G uses error I/O clusters, consisting of error in and error out, in all of 
its file I/O functions. With error I/O clusters you can string together 
several functions. When an error occurs in a function, that function 
passes the error along to the next function. When the error passes to 
subsequent functions, the subsequent function does not execute and 
passes the error along to the following function, and so on. The 
following illustration displays an example of the error in and error out 
clusters.

Although the error I/O clusters specify whether an error has occurred, 
you may want to use error handlers to report the error to the user. For 
more information on error I/O, see Chapter 10, Time, Dialog, and 

Error Functions, in this manual.

Permissions
Some of the File Functions have a 32-bit integer parameter called 
permissions or new permissions. G uses only the least significant nine 
bits of the 32-bit integer to determine file and directory access 
permissions.
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(Windows) G ignores the permissions for directories. For files, only bit 7 
(the UNIX user write permission bit) is used. If this bit is clear, the file 
is read-only. Otherwise, you can write to the file.

(Macintosh) G uses all 9 bits of permissions for directories. The bits 
which control read, write, and execute permissions, respectively, on a 
UNIX system are used to control See Files, Make Changes, and See 
Folders access rights, respectively, on the Macintosh. For files, only bit 
7 (the UNIX user write permission bit) is used. If this bit is clear, the 
file is locked. Otherwise, the file is not locked.

(UNIX) The nine bits of permissions correspond exactly to nine UNIX 
permission bits governing read, write, and execute permissions for 
users, groups, and others. The following illustration shows the 
permission bits on a UNIX system.

File I/O Function and VI Descriptions

The following functions and VIs are available from the File I/O palette.

Build Path
Creates a new path by appending a name (or relative path) to an existing path.

Close File
Writes all buffers of the file identified by refnum to disk, updates the directory entry of 
the file, closes the file, and voids refnum for subsequent file operations.
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Note: Error I/O functions uniquely in the Close File function, which closes 

regardless of whether an error occurred in a preceding operation, insuring 

that files are closed correctly.

Open/Create/Replace File
Opens an existing file, creates a new file, or replaces an existing file, programmatically 
or interactively using a file dialog box. You can optionally specify a dialog prompt, 
default file name, start path, or filter pattern. Use this VI with the intermediate Write 
File or Read File functions.

Read Characters From File
Reads a specified number of characters from a byte stream file beginning at a specified 
character offset. The VI opens the file before reading from it and closes it afterwards.

Read File
Reads data from the file specified by refnum and returns it in data. Reading begins at a 
location specified by pos mode and pos offset and depends on the format of the specified 
file.
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Reading Byte Stream Files

If refnum is a byte stream file refnum, the Read File function reads data from the byte 
stream file specified by refnum. You can wire either line mode or byte stream type 
when you read byte stream files, but you cannot wire both. If you do not wire byte stream 
type, Read File assumes the data that begins at the designated byte offset is a string of 
characters. If you wire byte stream type, the function interprets data starting at the 
designated byte offset to be count instances of that type. Following the read operation, 
the function sets the file mark to the byte following the last byte read. If the function 
encounters end of file before reading all of the requested data, it returns as many whole 
instances of the designated byte stream type as it finds.

Reading Characters

To read characters from a byte stream file (typically a text file) do not wire the byte 
stream type. The following paragraphs describe the manner in which the line mode, 
count, convert eol, and data parameters function when reading from a byte stream file.

line mode, in conjunction with count, determines when the read stops. 

If line mode is TRUE, and if you do not wire count or count equals 0, Read File reads 
until it encounters an end of line marker—a carriage return, a line feed, or a carriage 
return followed by a line feed, or it encounters end of file. If line mode is TRUE, and 
count is greater than 0, Read File reads until it encounters an end of line marker, it 
encounters end of file, or it reads count characters. 

If line mode is FALSE, Read File reads count characters. In this case, if you do not wire 
count, it defaults to 0. line mode defaults to FALSE. 

convert eol (F) determines whether the function converts the end of line markers it reads 
into G end of line markers. The system-specific end of line marker is a carriage return 
followed by a line feed on Windows, a carriage return on Macintosh, and a line feed on 
UNIX. The G end of line marker is a line feed. 

If convert eol is TRUE, the function converts all end of line markers it encounters into 
line feeds. If convert eol is FALSE, the function does not convert the end of line markers 
it reads. convert eol defaults to FALSE. 

data is the string of characters read from the file.

Reading Binary Data

To read binary data from a byte stream file, wire the type of the data to byte stream type. 
In this case, count, and data function in the manner described in the following 
paragraphs, and you do not have to wire line mode or convert eol.
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byte stream type can be any datatype. Read File interprets the data starting at the 
designated byte offset to be count instances of that type. If the type is variable-length, 
that is, an array, a string, or a cluster containing an array or string, the function assumes 
that each instance of the type contains the length or dimensions of that instance. If they 
do not, the function misinterprets the data. If G determines that the data does not match 
the type, it sets the value of data to the default value for its type and returns an error.

count is the number of instances of the byte stream type to read. If count is unwired, 
the function returns a single instance of the byte stream type.

If you wire count, it can be a scalar number, in which case the function returns a 1-D 
array of instances of the byte stream type. Or it can be a cluster of N scalar numbers, in 
which case the function returns an N-dimension array of instances of the byte stream 
type.

If the wired count is a scalar number and the byte stream type is something other than 
an array, the function returns that number of instances in a 1D array. For example, if the 
type is a single-precision, floating point number, the function returns an array of three, 
single-precision, floating point numbers. However, if the type is an array, the function 
returns the instances in a cluster array, because G does not have arrays of arrays. 
Therefore, if the type is an array of single-precision, floating point numbers and count 
is 3, the function returns a cluster array of three, single-precision, floating point number 
arrays. 

If the wired count is a cluster of N numbers, the function returns an N-dimension array 
of instances of the type. The size of each dimension is the value of the corresponding 
number according to its cluster order. The number of instances returned in this manner is 
the product of the N numbers. Thus, you can return 20, single-precision, floating point 
numbers as a 2D array of two columns and ten rows by wiring a two-element cluster with 
element 0 =  2 and element 1 = 10 to count.

data contains the data read from the file. Refer to the previous description of count for 
an explanation of the structures data can have.

Reading Datalog Files

If refnum is a datalog file refnum, the Read File function reads records from the datalog 
file specified by refnum. If the data in the file does not match the datatype associated 
with the datalog file, this function returns an error.

The number of records read can be less than specified by count if this function encounters 
the end of the file. The function sets the file mark to the record following the last record 
read. (You should never encounter a partial record; if you do, the file is corrupt.)
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Do not wire convert eol, line mode, and byte stream type. They do not pertain to 
datalog files. The count and data parameters function in the following manner.

count is the number of records to read and may be wired or unwired. If you do not wire 
count, the function returns a single record of the datalog type specified when the file is 
created or opened. For example, if the type is a 16-bit integer, the function returns one 
16-bit integer. If the type is an array of 16-bit integers, the functions returns one array of 
16-bit integers. (Your records typically consist of clusters of diverse elements, but the 
rules for simple types used in these examples apply to those as well.)

If you wire count, it can be a scalar number, in which case the function returns a 1D array 
of records. Or it can be a cluster of N scalar numbers, in which case the function returns 
an N-dimension array of records. 

If the wired count is a scalar number, and the datalog type is something other than an 
array, the function returns that number of records in a 1D array. For example, if the type 
is a single-precision, floating-point number and count is 3, the array contains three, 
single-precision, floating-point numbers. However, if the type is an array, the function 
returns the records in a cluster array (because G does not have arrays of arrays). 
Therefore, if the datalog type is an array of single-precision, floating-point numbers and 
count is 3, the function returns a cluster array of three, single-precision, floating-point 
number arrays. 

If the wired count is a cluster of N numbers, the function returns an N-dimension array 
of records. The size of each dimension is the value of the corresponding number 
according to its cluster order. The number of records returned in this manner is the 
product of the N numbers. Therefore, you can return 20 records as a 2D array of two 
columns and ten rows by wiring a two-element cluster with element 0 = 2 and element 
1 = 10 to count.

Read From Spreadsheet File
Reads a specified number of lines or rows from a numeric text file beginning at a 
specified character offset and converts the data to a 2D, single-precision array of 
numbers. Optionally, you can transpose the array. The VI opens the file before reading 
from it and closes it afterwards. You can use this VI to read a spreadsheet file saved in 
text format. This VI calls the Spreadsheet String to Array function to convert the data.
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Read Lines From File
Reads a specified number of lines from a byte stream file beginning at a specified 
character offset. The VI opens the file before reading from it and closes it afterwards. 

Strip Path
Returns the name of the last component of a path and the stripped path that leads to that 
component.

Write Characters To File
Writes a character string to a new byte stream file or appends the string to an existing file. 
The VI opens or creates the file before writing to it and closes it afterwards.

Write File
Writes data to the file specified by refnum. Writing begins at a location specified by pos 
mode and pos offset for byte stream file and at the end of file for datalog files. data, 
header, and the format of the specified file determine the amount of data written. 
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Writing Byte Stream Files

If refnum is a byte stream file refnum, the Write File function writes to a location 
specified by pos mode and pos offset in the byte stream file specified by refnum. If the 
top-level datatype of data is of variable length (that is, a string or an array), Write File 
can write a header to the file that specifies the size of the data. G sets the file mark to the 
byte following the last byte written. convert eol determines whether the function 
converts the end-of-line markers it writes into system-specific end-of-line markers. You 
can wire convert eol only if data is a string. The system-specific end-of-line marker is a 
carriage return followed by a line feed on Windows, a line feed on UNIX, and a carriage 
return on Macintosh. If header is true, G ignores convert eol.

Writing Datalog Files

If refnum is a datalog file refnum, the Write File function writes data as records to the 
datalog file specified by refnum. Writing always starts at the end of the datalog file 
(datalog files are append-only). G sets the file mark to the record following the last record 
written. The convert eol, header, pos mode, and pos offset parameters do not apply with 
datalog files, and you cannot wire them. The data parameter functions in the following 
manner for datalog files.

data must be either a datatype that matches the datatype specified when you open or 
create the file, or an array of such datatypes. In the former case, this function writes data 
as a single record in the datalog file. Representation of numeric data is coerced to the 
representation of the datatype if necessary. In the latter case, this function writes each 
element of data as a separate record in the datalog file in row-major order. 

Write To Spreadsheet File
Converts a 2D or 1D array of single-precision (SGL) numbers to a text string and writes 
the string to a new byte stream file or appends the string to an existing file. You can 
optionally transpose the data. This VI opens or creates the file before writing to it and 
closes it afterwards. You can use this VI to create a text file readable by most spreadsheet 
applications. This VI calls the Array to Spreadsheet String function to convert the data.
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Binary File VI Descriptions

The following VIs are available on the Binary File VIs subpalette.
 

Read From I16 File
Reads a 2D or 1D array of data from a byte stream file of signed, word integers (I16). The 
VI opens the file before reading from it and closes it afterwards. You can use this VI to 
read unscaled or binary data acquired from data acquisition VIs and written to a file with 
Write To I16 File.

Read From SGL File
Reads a 2D or 1D array of data from a byte stream file of single-precision numbers 
(SGL). The VI opens the file before reading from it and closes it afterwards. You can use 
this VI to read scaled data acquired from data acquisition VIs and written to a file with 
Write To SGL File.

Write To I16 File
Writes a 2D or 1D array of signed word integers (I16) to a new byte stream file or appends 
the data to an existing file. The VI opens or creates the file before writing to it and closes 
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it afterwards. You can use this VI to write unscaled or binary data from data acquisition 
VIs.

Write To SGL File
Writes a 2D or 1D array of single-precision numbers (SGL) to a new byte stream file or 
appends the data to an existing file. The VI opens or creates the file before writing to it 
and closes it afterwards. You can use this VI to write scaled data from data acquisition 
VIs without changing the representation.

Advanced File Function Descriptions

The following functions are available on the Advanced File Functions subpalette.
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Access Rights
Sets and returns the owner, group, and permissions of the file or directory specified by 
path. If you do not specify new owner, new group, or new permissions, this function 
returns the current settings unchanged.

(Windows) The Access Rights function ignores new owner and new group and returns 
empty strings for owner and group because Windows does not support owners and 
groups.

(Macintosh) If path refers to a file, the Access Rights function ignores new owner and 
new group and returns empty strings for owner and group because Macintosh does not 
support owners or groups for files.

Array Of Strings To Path
Converts an array of strings into a relative or absolute path.

Copy
Copies the file or directory specified by source path to the location specified by target 
path. If you copy a directory, this function copies all its contents recursively. 

Delete
Deletes the file or directory specified by path. If path specifies a directory that is not 
empty or if you do not have write permission for both the file or directory specified by 
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path and its parent directory, this function does not remove the directory and returns an 
error.

EOF
Sets and returns the logical EOF (end-of-file) of the file identified by refnum. pos mode 
and pos offset specify the new location of the EOF. If you do not specify pos mode or 
pos offset, this function returns the current unchanged EOF. This function always returns 
the location of the EOF relative to the beginning of the file.

You cannot set the EOF of a datalog file. If refnum identifies a datalog file, you cannot 
wire pos mode and pos offset. However, you still can get the EOF of a datalog file, which 
tells you how many records exist in the file.

File Dialog 
Displays a dialog box with which you can specify the path to a file or directory. You can 
use this dialog box to select existing files or directories or to select a location and name 
for a new file or directory. 

File/Directory Info
Returns information about the file or directory specified by path, including its size, its 
last modification date, and whether it is a directory.
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Flush File
Writes all buffers of the file identified by refnum to disk and updates the directory entry 
of the file associated with refnum. The file remains open, and refnum remains valid.

Data written to a file often resides in a buffer until the buffer fills up or until you close 
the file. This function forces the operating system to write any buffer data to the file.

List Directory
Returns two arrays of strings listing the names of all files and directories found in 
directory path, filtering both arrays based upon pattern and filtering the file names 
array based upon the specified datalog type. 

Lock Range
Locks or unlocks a range of a file specified by refnum. Locking a range of a file prevents 
both reading and writing by other users, overriding permissions for the file, and the deny 
mode associated with refnum. See File I/O VI and Function Overview earlier in this 
manual for a full discussion of permissions. Unlocking a range of a file removes the 
override caused by locking a range, so that the file's permissions and the deny mode 
associated with refnum determine whether other users can read from or write to that 
range of the file.

You cannot lock a range of a datalog file. 



Chapter 11 File Functions

LabVIEW Function and VI Reference Manual 11-18 © National Instruments Corporation

Move
Moves the file or directory specified by source path to the location specified by target 
path. 

New Directory
Programmatically creates the directory specified by directory path. If a file or directory 
already exists at the specified location, this function returns an error instead of 
overwriting the existing file or directory.

New File
Creates the file specified by file path and opens it for reading and writing (regardless of 
permissions). 

Open File
Opens the file specified by file path for reading and/or writing.
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Path To Array Of Strings
Converts a path into an array of strings and indicates whether the path is relative.

Path To String
Converts path into a string describing a path in the standard format of the platform.

Path Type
Returns the type of the specified path, indicating whether it is an absolute, relative, or 
invalid path. This function checks only the format of the path, not whether the path refers 
to an existing file or directory. Therefore, this function only indicates an invalid path for 
Not A Path.

Refnum To Path
Returns the path associated with the specified refnum. 

Seek
Moves the current file mark of the file identified by refnum to the position indicated by 
pos offset according to the mode chosen by pos mode. 
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String To Path
Converts a string, describing a path in the standard format for the current platform, to a 
path.

Type and Creator
Reads and sets the type and creator of the file specified by path. File type and creator are 
four-character strings. If you do not specify new type or new creator, this function 
returns the current settings unchanged.

Windows and UNIX do not support file types and creators. Trying to set the type or 
creator of a file in these platforms results in an error; however, you can get the file type 
and creator in these platforms. If the specified file has a name ending with characters that 
LabVIEW recognizes as specifying a file type (such as .vi for the LVIN file type and 
.llb for the LVAR file type), this function returns that type in type and LBVW in creator. 
Otherwise, the function returns ???? in both type and creator.

Volume Info
Returns information about the volume containing the file or directory specified by path, 
including the total storage space provided by the volume, the amount used, and the 
amount free in bytes.
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File Constants Descriptions

The following constants are the options available on the File Constants subpalette.
 

Current VI's Path Constant
Returns the path to the file containing the VI in which this function appears. If the VI is 
incorporated into an application (using the Application Builder libraries), the function 
returns the path to the VI in the application file, and treats the application file as a VI 
library.

Default Directory Constant
Returns the path to your default directory. The default directory is the directory which 
the file dialog displays initially. The G Preferences dialog box, under Paths, defines this 
directory.

Empty Path 
Returns an empty path.
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Not A Path
Returns a path whose value is Not A Path. You can use this path as an output from 
structures and subVIs when an error occurs.

Not A Refnum
Returns a refnum whose value is Not A Refnum. You can use this refnum as an output 
from structures and subVIs when an error occurs.

Path Constant
Use this to supply a constant directory or file path to the block diagram. Set this value by 
clicking inside the constant with the Operating tool and typing in the value. Use the 
standard file path syntax for a given platform.

The value of the path constant cannot be changed while the VI executes. You can assign 
a label to this constant. 

Temporary Directory Constant
Returns the path to your temporary directory. The temporary directory is the directory in 
which you store temporary information that you expect the user or the operating system 
to delete periodically. The Preferences dialog box, under Paths, defines this directory.

VI Library Constant
Returns the path to the VI library directory for the current G on the current computer. The 
G Preferences dialog box (Edit»Preferences) defines this directory. If you build an 
application using the Application Builder libraries, this path is the path of the directory 
containing the application.
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Chapter

12Advanced Functions

This chapter describes the functions that perform advanced operations. 
This chapter also describes the Help, Data Manipulation, and 
Occurrence Functions, and the VI Control and Memory VISA.

To access the Advanced palette, shown in the following illustration, 
select Functions»Advanced. 

The Advanced Functions include the following subpalettes:

• Data Manipulation 

• Help 

• Memory 
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• Occurrences 

• VI Controls 

Advanced Function Descriptions

The following Advanced Functions are available.

Beep
Causes the system to issue an audible tone. You can specify the tone frequency in Hertz, 
the duration in milliseconds, and the intensity as a value from 0 to 255, with 255 being 
the loudest. Although this VI appears on all platforms, the frequency, duration, and 
intensity parameters work only on the Macintosh. 

Call Chain
Returns the chain of callers from this VI to the top-level VI as an array of strings.

Code Interface Node
With a Code Interface Node (CIN), you can call code written in a conventional 
programming language, such as C, directly from a block diagram. CINs make it possible 
for you to use algorithms written in another language or to access platform-specific 
features or hardware that G does not directly support. 

Code Interface Nodes are resizable and show datatypes for the connected inputs and 
outputs, similar to the Bundle function. The following illustration shows the CIN 
function.



Chapter 12 Advanced Functions

© National Instruments Corporation 12-3 LabVIEW Function and VI Reference Manual

LabVIEW’s interface to external code is very powerful. You can pass any number of 
parameters to or from external code, and each parameter can be of any arbitrary G 
datatype. LabVIEW provides several libraries of routines that make working with G 
datatypes easier. These routines support memory allocation, file manipulation, and 
datatype conversion.

If you convert a VI that contains a CIN to another platform, you need to recompile the 
code for the new platform, because CINs use code compiled in another programming 
language. You can write source code for a CIN so that it is machine-independent, 
requiring only a recompile to convert it to another platform. 

For examples of CINs, see examples\cins.

For more information on the Code Interface Node see the Code Interface Reference 

Manual.

Call Library Function
With the Call Library Function node, you can call standard libraries without writing a 
Code Interface Node (CIN). Under Windows, you can call a dynamic link library (DLL) 
function directly. In Macintosh and UNIX, you can call a shared library function directly. 
On the Macintosh 68K, you must have the CFM-68K system extension installed for the 
Call Library Function node to operate.

This node supports a large number of datatypes and calling conventions. You should be 
able to use it to call functions from most standard and custom-made libraries. 

The Call Library Function node, shown in the following illustration, looks similar to a 
Code Interface Node. 

The Call Library Function consists of paired input/output terminals with input on the left 
and output on the right. You can use one or both. The return value for the function is 
returned in the right terminal of the top pair of terminals of the node. If there is no return 
value, then this pair of terminals is unused. Each additional pair of terminals corresponds 
to a parameter in the functions parameter list. You pass a value to the function by wiring 
to the left terminal of a terminal pair. You read the value of a parameter after the function 
call by wiring from the right terminal of a terminal pair.

If you select Configure... from the pop-up menu of the node, you see a Call Library 
Function dialog box from which you can specify the library name or path, function name, 
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calling conventions, parameters, and return value for the node. When you click on OK, 
the node automatically increases in size to have the correct number of terminals. It then 
sets the terminals to the correct datatypes. For more information on Call Library Function 
refer to Chapter 24, Calling Code From Other Languages, in the LabVIEW User Manual.

Quit
Stops all executing VIs and ends the current session of LabVIEW. This function shuts 
down only LabVIEW; the function does not power down the system or affect other 
applications. The function stops running VIs the same way the Stop function does.

Stop 
Stops the VI in which it executes, just as if you clicked the stop button in the toolbar. If 
you wired the input, stop occurs only if the input value is TRUE. If you leave the input 
unwired, the stop occurs as soon as the node that is currently executing finishes. 

If you need to abort execution of all VIs in a hierarchy from the block diagram, you can 
use this function, but you must use it with caution. Before you call the Stop function with 
a TRUE input, be sure to complete all final tasks for the VI first, such as closing files, 
setting save values for devices being controlled, and so on. If you put the Stop function 
in a subVI, you should make its behavior clear to other users of the VI, because this 
function causes their VI hierarchies to abort execution.

In general, you should avoid using the Stop function when you have a built-in terminator 
protocol in your VI. For example, I/O operations should be performed in While Loops so 
that the VI can terminate the loop on an I/O error. You should also consider using a front 
panel Stop Boolean control to terminate the loop at the request of the user rather than 
using the Stop function.
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Data Manipulation Function Descriptions

The following illustration displays the options available on the Data Manipulation 
subpalette.

 

Flatten To String
Converts anything to a string of binary values. type string is a type descriptor that 
describes the datatype of anything. data string is the flattened form of anything. For more 
information on type descriptors and flattened data, see Flattened Data, in Appendix A, 
Data Storage Formats, of the LabVIEW User Manual.

Join Numbers
Creates a number from the component bytes or words. 

Logical Shift
Shifts x the number of bits specified by y.



Chapter 12 Advanced Functions

LabVIEW Function and VI Reference Manual 12-6 © National Instruments Corporation

Mantissa & Exponent
Returns the mantissa and exponent of the input numeric value such that number = 
mantissa * 2 exponent. If number is 0, both mantissa and exponent are 0. Otherwise, the 
value of mantissa is greater than or equal to 1 and less than 2, and the value of exponent 
is an integer.

Rotate
Rotates x the number of bits specified by y. 

Rotate Left With Carry
Rotates each bit in the input value to the left (from least significant to most significant 
bit), inserts carry in the low-order bit, and returns the most significant bit. 

Rotate Right With Carry
Rotates each bit in value to the right (from most significant to least significant), inserts 
carry in the high-order bit, and returns the least significant bit. 

Split Number
Breaks a number into its component bytes or words. 
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The following illustration shows an example of how to use the Split Number function. 
The function splits the signed 32-bit number 100,000 into the high word component, 1, 
and the low word component, 34,464.

Swap Bytes
Swaps the high-order 8 bits and the low-order 8 bits for every word in anything.

Swap Words
Swaps the high-order 16 bits and the low-order 16 bits for every long integer in anything.

Type Cast
Casts x to the datatype, type. 



Chapter 12 Advanced Functions

LabVIEW Function and VI Reference Manual 12-8 © National Instruments Corporation

Casting data to a string converts it into machine-independent, big endian form. That is, 
the function puts the most significant byte or word first and the least significant byte or 
word last, removes alignment, and converts extended-precision numbers to 16 bytes. 
Casting a string to a 1D array converts the string from machine-independent form to the 
native form for that platform. 

Unflatten From String
Converts binary string to the type wired to type. This function performs the inverse of 
Flatten To String. binary string should contain flattened data of the type wired to type. 
For more information on type descriptors and flattened data, see Flattened Data, in 
Appendix A, Data Storage Formats, of the LabVIEW User Manual.

Help Function Descriptions

The following illustration displays the options available on the Help subpalette.
 

Control Help Window
Modifies the Help window by showing, hiding, or repositioning the window.

Control Online Help
Controls the online help system by displaying the table of contents of a help file, jumping 
to a specific point in a help file, or closing the online help system.
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Get Help Window Status
Returns the status and the position information for the Help window.

Occurrence Function Descriptions

You can use the occurrence functions to control separate, synchronous activities. In 
particular, you use these functions when you want one VI or part of a block diagram to 
wait until another VI or part of a block diagram finishes a task without forcing LabVIEW 
to poll.

You can perform the same task using global variables, with one loop polling the value of 
the global until its value changes. However, global variables add overhead, because the 
loop that waits uses execution time. With occurrences, the polling loop is replaced with 
a Wait on Occurrence function and does not use processor time. When some diagram sets 
the occurrence, LabVIEW activates all Wait on Occurrence functions in any block 
diagrams that are waiting for the specified occurrence. 

The following illustration displays the options available on the Occurrences subpalette. 

Generate Occurrence
Creates an occurrence that you can pass to the Wait on Occurrence and Set Occurrence 
functions. 

Ordinarily, only one Generate Occurrence node is connected to any set of Wait on 
Occurrence and Set Occurrence functions. You can connect a Generate Occurrence 
function to any number of Wait on Occurrence and Set Occurrence functions. You do not 
have to have the same number of Wait on Occurrence and Set Occurrence functions.
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Each Generate Occurrence function on a block diagram represents a single, unique 
occurrence. In this way, you can think of the Generate Occurrence function as a constant. 
When a VI is running, every time a Generate Occurrence function executes, the node 
produces the same value. For example, if you place a Generate Occurrence function 
inside of a loop, the value produced by Generate Occurrence is the same for every 
iteration of the loop. If you place a Generate Occurrence function on the block diagram 
of a reentrant VI, Generate Occurrence produces a different value for each caller. 

Set Occurrence
Triggers the specified occurrence. All block diagrams that are waiting for this 
occurrence stop waiting.

Wait On Occurrence
Waits for the Set Occurrence function to set or trigger the given occurrence. 

Memory VI Descriptions

The following illustration displays the options available on the Memory subpalette. 

In Port (Windows 3.1 and Windows 95)
Reads a byte or word integer from a specific register address. Because this VI is not 
available on all platforms, VIs using this subVI are not portable.
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Out Port (Windows 3.1 and Windows 95)
Writes a byte or word integer to a specific register address. Because this VI is not 
available on all platforms, VIs using this subVI are not portable.

VI Control VI Descriptions

You can use the VI Control VIs to dynamically load, call, and close other VIs. When you 
call a VI dynamically, you specify whether or not the called VI opens its front panel and 
then closes the front panel when it finishes executing. You can also pass parameters to 
and from the dynamically called VI.

All of these VIs use error cluster inputs and outputs to make error handling easier. If an 
incoming error is set, the VI does not do anything. The Release Instrument VI, however, 
releases the specified VI from memory regardless of incoming errors. 

The following illustration displays the options available on the VI Control subpalette. 

Abort Instrument
Aborts the execution of the specified VI, just as if you clicked the stop button in the 
specified VI’s toolbar.
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Call Instrument
Loads and then calls another VI as long as the VI you are calling is not currently in the 
VI hierarchy of any running VI, including your main VI. For example, if you have the 
Serial Port Read VI on your block diagram, you cannot use Call Instrument to call Serial 
Port Read directly, because it is already in the main VI’s hierarchy. However, you can 
call the Serial Port Read VI if you create a VI that is not part of the main VI’s hierarchy. 
If the called VI has not already been loaded, LabVIEW loads it before the call, and 
unloads the VI when the call is finished. If you do not want to incur the speed penalty of 
loading the VI at the time of the call, use the Preload Instrument VI to preload the VI, 
and then use the Release Instrument VI when you are finished with it. If error in contains 
an error, LabVIEW does not call the VI.

Note: You can pass data to any control (excluding indicators) on the front panel 

of the called VI; the controls do not have to be on the connector pane of the 

called VI.

Close Panel
Closes the front panel of a specified VI. If the VI is running it will be aborted.

Close Panel No Abort
Closes the front panel of the specified VI. If the VI is running and was loaded using 
Preload Instrument VI, it will not be aborted. If the VI is running, but it has not been 
preloaded, it will be aborted.
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Get Instrument State
Returns the VI execution state (Broken, Idle, or Running) and the panel window state 
(Closed, Open, or Open and Active). If the VI is not in memory, the error out will be 
File Not Found.

Get Panel Size
Read the size of the panel of a VI that is already in memory. The VI must be in memory 
but its panel does not need to be open.

Open Panel
Opens the front panel of the specified VI. The specified VI must already be in memory, 
either because it was loaded using the Preload Instrument VI, or because it is the subVI 
of another VI.

Preload Instrument
You can use this VI to load another VI into memory. The front panel of the specified VI 
is not visible when it is loaded. If you want the front panel to be visible, call either Open 
Panel VI or use the appropriate call mode for the Call Instrument VI.

If you execute a Preload Instrument VI, and it does not return an error, make sure you 
call the Release Instrument VI when you are finished to remove the loaded VI from 
memory. If you call the Preload Instrument VI multiple times, you need to balance the 
calls with Release Instrument VI calls.
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Release Instrument
Use this VI to unload a VI that was loaded using the Preload Instrument VI. If you call 
Preload Instrument more than once; the specified VI is not unloaded until you call 
Release Instrument an equal number of times.

Resize Panel
Resizes and/or moves the front panel of a VI that is already in memory. The VI must be 
in memory, but its front panel does not have to be open. Consequently, you can size or 
position a front panel before opening it.

Run Instrument
You can use this VI to run another VI that is in memory with the front panel of the VI in 
memory open. Run Instrument is different from Call Instrument in that Run Instrument 
returns immediately after starting the specified VI running, whereas Call Instrument 
waits for the called VI to complete execution and can pass parameters to and from the 
called VI. Run Instrument works just as if you selected Operate»Run, while Call 
Instrument functions more like a subVI call.
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Chapter

13
Introduction to the LabVIEW 
Data Acquisition VIs

This chapter contains basic information about the data acquisition 
(DAQ) VIs and shows where you can find them in LabVIEW. 
Descriptions of these VIs comprise Chapter 14 through Chapter 29.

LabVIEW includes a collection of VIs that work with your DAQ 
hardware devices. With LabVIEW’s DAQ VIs you can develop 
acquisition and control applications. 

You can find the DAQ VIs in the Functions palette from your block 
diagram in LabVIEW. The DAQ VIs are located near the bottom of the 
Functions palette.

To access the Data Acquisition palette, choose Functions»Data 
Acquisition, as shown in the following illustration.
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The Data Acquisition palette contains six subpalette icons that take you 
to the different classes of DAQ VIs. The following illustration shows 
what each of the icons in the Data Acquisition palette means. 

This section of the manual is organized in the order that the DAQ VI 
icons appear in the Data Acquisition palette from left to right. For 
example, in this section, the Analog Input VI chapters are followed by 
the Analog Output VI chapters, which are followed by the Digital I/O 
VI chapters, and so on. Most often, there are several chapters devoted 
to one class of DAQ VI in the palette, because many of the VI palettes 
also contain several subpalettes.

Finding Help Online for the DAQ VIs

You can find helpful information about individual VIs online by using 
the LabVIEW Help window (Help»Show Help). When you place the 
cursor on a VI icon, the wiring diagram and parameter names for that 
VI appear in the Help window. You can also find information for front 
panel controls or indicators by placing the cursor over the control or 
indicator with the Help window open. For more information on the 
LabVIEW Help window, refer to the Getting Help section in Chapter 2, 
Creating VIs, of the LabVIEW User Manual.

In addition to the Help window, LabVIEW has more extensive online 
information available. To access this information, select Help»Online 
Reference. For most block diagram objects, you can select Online 
Reference from the object’s pop-up menu to access the online 
description. You can also access this information by pressing the button 
shown to the left, which is located at the bottom of LabVIEW’s Help 
window. For information on creating your own online reference files, 

Analog Input VIs

Analog Output VIs Digital I/O VIs

Counter VIs

Signal Conditioning VIs

Calibration and
Configuration VIs
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see the Creating Your Own Help Files section in Chapter 25, Managing 

Your Applications of the LabVIEW User Manual.

Note: Use only the inputs that you need on each VI. LabVIEW sets all unwired 

inputs to their default values. Many of the DAQ function inputs are 

optional and do not appear in the Simple Diagram Help window. These 

inputs typically specify rarely-used options. If an input is required, your VI 

wiring remains “broken” until a value is wired to the input. Required 

inputs appear in bold in the Help window, recommended inputs appear in 

plain text, and optional inputs are in gray text. The default values for 

inputs appear in parentheses beside the input name in the Help window.

Note: Some DAQ VIs use an enumerated data type as a control or indicator 

terminal. If you connect a numeric value to an enumerated indicator, 

LabVIEW converts the number to the closest enumeration item. If you 

connect an enumerated control to a number value, the value is the 

enumeration index. To wire an enumerated control to an enumerated 

indicator, the enumerated items must match exactly, or you will get a 

broken wire. 

The Analog Input VIs

These VIs perform analog input operations.

The Analog Input VIs can be found by choosing 
Functions»Data Acquisition»Analog Input. When you click on the 
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Analog Input icon in the Data Acquisition palette, the Analog Input 
palette pops up, as shown in the following illustration.

There are four classes of Analog Input VIs found in the Analog Input 
palette. The Easy Analog Input VIs, Intermediate Analog Input VIs, 
Analog Input Utility VIs, and Advanced Analog Input VIs. The 
following illustrates these VI classes. 

Easy Analog Input VIs
The Easy Analog Input VIs perform simple analog input operations. 
You can run these VIs from the front panel or use them as subVIs in 
basic applications.

Easy Analog Input VIs

Intermediate
Analog Input VIs

Advanced 
Analog Input VIs

Analog Input Utility VIs
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You can use each VI alone to perform a basic analog operation. Unlike 
intermediate- and advanced-level VIs, Easy Analog Input VIs 
automatically alert you to errors with a dialog box that asks you to stop 
the execution of the VI or to ignore the error. 

The Easy Analog Input VIs are actually composed of Intermediate 
Analog Input VIs, which are in turn composed of Advanced Analog 
Input VIs. The Easy Analog Input VIs provide a basic, convenient 
interface with only the most commonly used inputs and outputs. For 
more complex applications, you should use the intermediate- or 
advanced-level VIs for more functionality and performance.

Refer to Chapter 14, Easy Analog Input VIs, for specific VI information.

Intermediate Analog Input VIs
You can find intermediate-level Analog Input VIs in two different 
places in the Analog Input palette. You can find the Intermediate 
Analog Input VIs in the second row of the Analog Input palette. The 
other intermediate-level VIs are in the Analog Input Utilities palette, 
which will be discussed later. The Intermediate Analog Input VIs—AI 
Config, AI Start, AI Read, AI Single Scan, and AI Clear—are in turn 
built from the fundamental building block layer, called the Advanced 
Analog Input VIs. These VIs offer almost as much power as the 
advanced-level VIs, and they conveniently group the advanced-level 
VIs into a tidy, logical sequence. 

Refer to Chapter 15, Intermediate Analog Input VIs, for specific VI 
information.

Analog Input Utility VIs
You can access the Analog Input Utilities palette by choosing the 
Analog Input Utility icon from the Analog Input palette. The Analog 
Input Utility VIs—AI Read One Scan, AI Waveform Scan, and AI 
Continuous Scan—are single-VI solutions to common analog input 
problems. These VIs are convenient, but they lack flexibility. These 
three VIs are built from the Intermediate Analog Input VIs in the 
Analog Input palette. 

Refer to Chapter 16, Analog Input Utility VIs, for specific VI 
information.

Analog Input
Utility Icon
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Advanced Analog Input VIs
You can access the Advanced Analog Input palette by choosing the 
Advanced Analog Input icon from the Analog Input palette. These VIs 
are the interface to the NI-DAQ data acquisition software and are the 
foundation of the Easy, Utility, and Intermediate Analog Input VIs. 

Refer to Chapter 17, Advanced Analog Input VIs, for specific VI 
information.

Locating Analog Input VI Examples
For examples of how to use the analog input VIs, see 
examples\daq\anlogin\anlogin.llb

Analog Output VIs

These VIs perform analog output operations.

The Analog Output VIs can be found by choosing Functions»Data 
Acquisition»Analog Output. When you click on the Analog Output 
icon in the Data Acquisition palette, the Analog Output palette pops up, 
as shown in the following illustration.

There are four classes of Analog Output VIs found in the Analog 
Output palette: the Easy Analog Output VIs, Intermediate Analog 

Advanced Analog
Input Icon
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Output VIs, Analog Output Utility VIs, and the Advanced Analog 
Output VIs. The following illustrates these VI classes. 

Easy Analog Output VIs
The Easy Analog Output VIs perform simple analog output operations. 
You can run these VIs from the front panel or use them as subVIs in 
basic applications.

You can use each VI by itself to perform a basic analog output 
operation. Unlike intermediate- and advanced-level VIs, Easy Analog 
Output VIs automatically alert you to errors with a dialog box that asks 
you to stop the execution of the VI or to ignore the error. 

The Easy Analog Output VIs are actually composed of Intermediate 
Analog Output VIs, which are in turn composed of Advanced Analog 
Output VIs. The Easy Analog Output VIs provide a basic, convenient 
interface with only the most commonly used inputs and outputs. For 
more complex applications, you should use the intermediate- or 
advanced-level VIs for more functionality and performance.

Refer to Chapter 18, Easy Analog Output VIs, for specific VI 
information.

Intermediate Analog Output VIs
You can find intermediate-level Analog Output VIs in two different 
places in the Analog Output palette. You can find the Intermediate 
Analog Output VIs in the second row of the Analog Output palette. The 
other intermediate-level VIs are in the Analog Output Utilities palette, 

Easy Analog Output VIs

Intermediate
Analog Output VIs

Advanced 
Analog Output VIs

Analog Output Utility VIs
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which will be discussed later. The Intermediate Analog Output VIs—
AO Config, AO Write, AO Start, AO Wait, and AO Clear—are in turn 
built from the fundamental building block layer, called the Advanced 
Analog Output VIs. These VIs offer almost as much power as the 
advanced-level VIs, and they conveniently group the advanced-level 
VIs into a tidy, logical sequence. 

Refer to Chapter 19, Intermediate Analog Output VIs, for specific VI 
information.

Analog Output Utility VIs
You can access the Analog Output Utilities palette by choosing the 
Analog Output Utility icon from the Analog Output palette. The 
Analog Output Utility VIs—AI Read One Scan, AI Waveform Scan, 
and AI Continuous Scan—are single-VI solutions to common analog 
output problems. These VIs are convenient, but they lack flexibility. 
These three VIs are built from the Intermediate Analog Output VIs in 
the Analog Output palette. 

Refer to Chapter 20, Analog Output Utility VIs, for specific VI 
information.

Advanced Analog Output VIs
You can access the Advanced Analog Output palette by choosing the 
Advanced Analog Output icon from the Analog Output palette. These 
VIs are the interface to the NI-DAQ software and are the foundation of 
the Easy, Utility, and Intermediate Analog Output VIs. 

Because all these VIs rely on the advanced-level VIs, you can refer to 
Chapter 21, Advanced Analog Output VIs, for additional information on 
the inputs and outputs and how they work.

Locating Analog Output VI Examples
For examples of how to use the analog output VIs, see the examples in 
examples\daq\anlogout\anlogout.llb.

Analog Output
Utility Icon

Advanced Analog
Output Icon
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Digital Function VIs

These VIs perform digital operations.

The Digital I/O VIs can be found by choosing Functions»Data 
Acquisition»Digital I/O. When you click on the Digital I/O icon in the 
Data Acquisition palette, the Digital I/O palette pops up, as shown in 
the following illustration.

There are three classes of Digital I/O VIs found in the Digital I/O 
palette. The Easy Digital I/O VIs, Intermediate Digital I/O VIs, and 
Advanced Digital I/O VIs. The following illustrates these VI classes. 

Easy Digital I/O VIs
The Easy Digital I/O VIs perform simple digital operations. You can 
run these VIs from the front panel or use them as subVIs in basic 
applications.

Easy Digital I/O VIs

Intermediate
Digital I/O VIs

Advanced 
Digital I/O VIs
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You can use each VI by itself to perform a basic digital operation. 
Unlike intermediate- and advanced-level VIs, Easy Digital I/O VIs 
automatically alert you to errors with a dialog box that asks you to stop 
the execution of the VI or to ignore the error. 

The Easy Digital I/O VIs are actually composed of Intermediate Digital 
I/O VIs, which are in turn composed of Advanced Digital I/O VIs. The 
Easy Digital I/O VIs provide a basic, convenient interface with only the 
most commonly used inputs and outputs. For more complex 
applications, you should use the intermediate- or advanced-level VIs for 
more functionality and performance.

Refer to Chapter 22, Easy Digital I/O VIs, for specific VI information.

Intermediate Digital I/O VIs
You can find intermediate-level Digital I/O VIs in the second and third 
rows of the Digital I/O palette. The Intermediate Digital I/O VIs are in 
turn built from the fundamental building block layer, called the 
Advanced Digital I/O VIs. These VIs offer almost as much power as the 
advanced-level VIs, and they conveniently group the advanced-level 
VIs into a tidy, logical sequence. 

Refer to Chapter 23, Intermediate Digital I/O VIs, for specific VI 
information.

Advanced Digital I/O VIs
You can access the Advanced Digital I/O palette by choosing the 
Advanced Digital I/O icon from the Digital I/O palette. These VIs are 
the interface to the NI-DAQ software and are the foundation of the 
Easy, Utility, and Intermediate Digital I/O VIs. 

Because all these VIs rely on the advanced-level VIs, you can refer to 
Chapter 24, Advanced Digital I/O VIs, for additional information on the 
inputs and outputs and how they work.

Locating Digital I/O VI Examples
For examples of how to use the Digital I/O VIs, see the examples in 
examples\daq\digital\digital.llb. 
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Counter VIs

These VIs perform counting operations.

The Counter VIs can be found by choosing Functions»Data 
Acquisition»Counter. When you click on the Counter icon in the Data 
Acquisition palette, the Counter palette pops up, as shown in the 
following illustration.

There are three classes of Counter VIs found in the Counter palette: the 
Easy, Intermediate, and Advanced Counter VIs. The following 
illustrates these VI classes. 

Easy Counter VIs
The Easy Counter VIs perform simple counting operations. You can run 
these VIs from the front panel or use them as subVIs in basic 
applications.

Easy Counter VIs

Advanced 
Counter VIs

Intermediate Counter VIs



Chapter 13 Introduction to the LabVIEW Data Acquisition VIs

LabVIEW Function and VI Reference Manual 13-12 © National Instruments Corporation

You can use each VI by itself to perform a basic counting operation. 
Unlike intermediate- and advanced-level VIs, Easy Counter VIs 
automatically alert you to errors with a dialog box that asks you to stop 
the execution of the VI or to ignore the error. 

The Easy Counter VIs are actually composed of Intermediate Counter 
VIs, which are in turn composed of Advanced Counter VIs. The Easy 
Counter VIs provide a basic, convenient interface with only the most 
commonly used inputs and outputs. For more complex applications, you 
should use the intermediate- or advanced-level VIs for more 
functionality and performance.

Note: An important basic data acquisition concept is to use only the inputs that 

you need on each VI. Leave the rest of the inputs unwired, and LabVIEW 

sets them to their default values. In the Help window, the most important 

terminals are labeled in bold, and the least commonly used are in brackets. 

Values given in parentheses are default values.

Refer to Chapter 25, Easy Counter VIs, for specific VI information.

Intermediate Counter Input VIs
You can find the Intermediate Counter VIs in the second row of the 
Counter palette. The Intermediate Counter VIs are in turn built from the 
fundamental building block layer, called the Advanced Counter VIs. 
These VIs offer almost as much power as the advanced-level VIs, and 
they conveniently group the advanced-level VIs into a tidy, logical 
sequence. 

Refer to Chapter 26, Intermediate Counter VIs, for specific VI 
information.

Advanced Counter VIs
You can access the Advanced Counter palette by choosing the 
Advanced Counter icon from the Counter palette. These VIs are the 
interface to the NI-DAQ software and are the foundation of the Easy 
and Intermediate Counter VIs. 

Because all these VIs rely on the advanced-level VIs, you can refer to 
Chapter 27, Advanced Counter VIs, for additional information on the 
inputs and outputs and how they work.

Intermediate 
Counter VI Icon

Ad d
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Locating Counter VI Examples
For examples of how to use the Counter VIs, open the example library 
by opening examples\daq\counter\counter.llb. 

Calibration and Configuration VIs

These VIs calibrate specific devices and set and return configuration 
information.

See Chapter 28, Calibration and Configuration VIs, for information on 
locating these VIs and examples.

Signal Conditioning VIs

These VIs convert analog input voltages read from resistance 
temperature detectors (RTDs), strain gauges, or thermocouples into 
units of strain or temperature.

See Chapter 29, Signal Conditioning VIs, for information on locating 
these VIs and examples.
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Chapter

14Easy Analog Input VIs

This chapter describes the Easy Analog Input VIs, which perform 
simple analog input operations. You can run these VIs from the front 
panel or use them as subVIs in basic applications.

You can access the Easy Analog Input VIs by choosing Functions»Data 
Acquisition»Analog Input. The Easy Analog Input VIs are the VIs on 
the top row of the Analog Input palette, as shown below.

Easy Analog Input VI Descriptions

The following Easy Analog Input VIs are available.

AI Acquire Waveform
Acquires a specified number of samples at a specified sample rate from a single input 
channel and returns the acquired data.

Easy Analog Input VIs
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The AI Acquire Waveform VI performs a hardware-timed measurement of a waveform 
(multiple voltage readings at a specified sampling rate) on a single analog input channel. 
If an error occurs, a dialog box appears, giving you the option to stop the VI or continue. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and input 
limits available with your DAQ device. 

AI Acquire Waveforms
Acquires data from the specified channels and samples the channels at the specified scan 
rate.

The AI Acquire Waveforms VI performs a timed measurement of multiple waveforms on 
the specified analog input channels. If an error occurs, a dialog box appear, giving you 
the option to abort the operation or continue execution. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and input 
limits available with your DAQ device. 

AI Sample Channel
Measures the signal attached to the specified channel and returns the measured voltage.

The AI Sample Channel VI performs a single, untimed measurement of a channel. If an 
error occurs, a dialog box appears giving you the option to stop the VI or continue. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and input 
limits available with your DAQ device. 
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AI Sample Channels
Performs a single voltage reading from each of the specified channels.

The AI Sample Channels VI measures a single voltage from each of the specified analog 
input channels. If an error occurs, a dialog box appears, giving you the option to stop the 
VI or continue. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and input 
limits available with your DAQ device. 
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Chapter

15
Intermediate 
Analog Input VIs

This chapter describes the Intermediate Analog Input VIs. These VIs 
are convenient, but they lack flexibility. 

You can access the Intermediate Analog Input VIs by choosing 
Functions»Data Acquisition»Analog Input. The Intermediate Analog 
Input VIs are the VIs on the second row of the Analog Input palette, as 
shown below.

Handling Errors

LabVIEW makes error handling easy with the Intermediate Analog 
Input VIs. Each intermediate-level VI has an error in input cluster and 
an error out output cluster. The clusters contain a Boolean that 
indicates whether an error occurred, the error code for the error, and the 
name of the VI that returned the error. If error in indicates an error, the 
VI returns the error information in error out and does not continue to 
run. 

Note: The AI Clear VI is an exception to this rule—this VI always clears the 

acquisition regardless of whether error in indicates an error.

When you use any of the Intermediate Analog Input VIs in a While 
Loop, you should stop the loop if the status in the error out cluster 

Intermediate
Analog Input VIs
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reads TRUE. If you wire the error cluster to the General Error Handler 
VI, the VI deciphers the error information and describes the error to 
you. 

The General Error Handler VI is in Functions»Time and Dialog in 
LabVIEW. 

Intermediate Analog Input VI Descriptions

The following Intermediate Analog Input VIs are available.

AI Clear
Clears the analog input task associated with taskID in.

The AI Clear VI stops an acquisition associated with taskID in and release associated 
internal resources, including buffers. Before beginning a new acquisition, you must call 
the AI Config VI. Refer to Chapter 17, Advanced Analog Input VIs, for description of the 
AI Control VI. 

Note: The AI Clear VI always clears the acquisition regardless of whether error 

in indicates that an error occurred.

When you use any of the Intermediate Analog Input VIs in a While Loop, you should stop 
the loop if the status in the error out cluster reads TRUE. If you wire the error cluster to 
the General Error Handler VI, the VI deciphers the error information and describes the 
error to you. 

The General Error Handler VI is in Functions»Time and Dialog in LabVIEW. For more 
information on this VI, refer to your LabVIEW User Manual.
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AI Config
Configures an analog input operation for a specified set of channels. This VI configures 
the hardware and allocates a buffer for a buffered analog input operation. 

You can allocate more than one buffer only with the following devices.

• (Macintosh) NB-A2000, NB-A2100, and NB-A2150

• (Windows) EISA-A2000, AT-A2150, and AT-DSP2200

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits, 
and scanning order you can use with your National Instruments DAQ device. 

AI Read
Reads data from a buffered data acquisition.

The AI Read VI calls the AI Buffer Read VI to read data from a buffered analog input 
acquisition. 
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AI Single Scan 
Returns one scan of data from a previously configured group of channels.

If you have already started an acquisition with the AI Start VI, this VI reads one scan 
from the acquisition buffer data, or the onboard FIFO if the acquisition is not buffered. 
If you have not started an acquisition, this VI starts an acquisition, retrieves a scan of 
data, and then terminates the acquisition. The group configuration determines the 
channels the VI samples. 

If you do not call the AI Start VI, this VI initiates a single scan using the fastest safe 
channel clock rate. You can alter the channel clock rate with the AI Config VI. 

If you run the AI Start VI, a clock signal initiates the scans.

You must use the AI Start VI to set the clock source to external, for externally-clocked 
conversions. 

If clock sources are internal and you do not allocate memory, a timed nonbuffered 
acquisition begins when you run the AI Start VI. You use this type of acquisition for 
synchronizing analog inputs and outputs in a point-to-point control application. The 
following devices do not support timed, nonbuffered acquisitions.

• (Macintosh) NB-A2000, NB-A2100, and NB-A2150

• (Windows) AT-DSP2200, EISA-A2000, and AT-A2150

Note: LabVIEW restarts the device in the event of a FIFO overflow during a 

timed, nonbuffered acquisition. 

When you set opcode to 1 for a nonbuffered acquisition, the VI reads one scan from the 
FIFO and returns the data. If opcode is 2, the VI reads the FIFO until it is empty and 
returns the last scan read.
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AI Start
Starts a buffered analog input operation. This VI sets the scan rate, the number of scans 
to acquire, and the trigger conditions. The VI then starts an acquisition.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits, 
scanning order, triggers, clocks and you can use with your National Instruments DAQ 
device. 
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Chapter

16Analog Input Utility VIs

This chapter describes the Analog Input Utility VIs. These VIs—AI 
Read One Scan, AI Waveform Scan, and AI Continuous Scan—are 
single-VI solutions to common analog input problems. The Analog 
Input Utility VIs are intermediate-level VIs, so they rely on the 
advanced-level VIs. You can refer to Chapter 17, Advanced Analog 

Input VIs, for additional information on the inputs and outputs and how 
they work.

You can access the Analog Input Utilities palette by choosing 
Functions»Data Acquisition»Analog Input»Analog Input Utilities. 
The icon that you must select to access the Analog Input Utility VIs is 
on the bottom row of the Analog Input palette, as shown below.

Handling Errors

LabVIEW makes error handling easy with the intermediate-level 
Analog Input Utility VIs. Each intermediate-level VI has an error in 
input cluster and an error out output cluster. The clusters contain a 
Boolean that indicates whether an error occurred, the error code for the 
error, and the name of the VI that returned the error. If error in 
indicates an error, the VI returns the error information in error out and 
does not continue to run. 

Analog Input Utility VIs
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When you use any of the Analog Input Utility VIs in a While Loop, you 
should stop the loop if the status in the error out cluster reads TRUE. If 
you wire the error cluster to the General Error Handler VI, the VI 
deciphers the error information and describes the error to you. 

The General Error Handler VI is in Functions»Time and Dialog in 
LabVIEW. For more information on this VI, refer to your LabVIEW 

User Manual.

Analog Input Utility VI Descriptions

The following VIs are available through the Analog Input Utility subpalette.

AI Continuous Scan
Makes continuous, time-sampled measurements of a group of channels, stores the data in 
a circular buffer, and returns a specified number of scan measurements on each call.

The AI Continuous Scan VI scans a group of channels indefinitely, as 
you might do in data logging applications. Place the VI in a While Loop 
and wire the loop’s iteration terminal to the VI iteration input. 

Also wire the condition that terminates the loop to the clear acquisition input, inverting 
the signal if necessary so that it reads TRUE on the last iteration. On iteration 0, the VI 
calls the AI Config VI to configure the channel group and hardware and allocates a data 
buffer; the VI calls the AI Start VI to set the scan rate and start the acquisition. On each 
iteration, the VI calls the AI Read VI to retrieve the number of measurements specified 
by number of scans to read, scales them, and returns the data as an array of voltages. 
On the last iteration (when clear acquisition is TRUE) or if an error occurs, the VI calls 
the AI Clear VI to clear any acquisition in progress. You should not need to call the AI 
Continuous Scan VI outside of a loop, but if you do, you can leave the iteration and clear 
acquisition inputs unwired.

When calling the AI Continuous Scan VI in a loop to read portions of the data from the 
ongoing acquisition, you must read the data fast enough so that newly acquired data does 

iteration
terminal
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not overwrite it. The scan backlog output tells you how much data acquired by the VI, 
but remains unread. If the backlog increases steadily, your new data may eventually 
overwrite old data. Retrieve data more often, or adjust the buffer size, the scan rate, or 
the number of scans to read to fix this problem 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits, 
and scanning order you can use with your National Instruments DAQ device. 

AI Read One Scan
Measures the signals on the specified channels and returns the measurements in an array 
of voltages or binary values.

The AI Read One Scan VI performs an immediate measurement of a 
group of one or more channels. If you place the VI in a loop to take 
multiple measurements from a group of channels, wire the loop iteration 
terminal to the VI iteration parameter. 

On iteration 0, this VI calls the AI Config VI to configure the channel group and 
hardware, then calls the AI Single Scan VI to measure and report the results. On 
subsequent iterations, the VI avoids unnecessary configuration and calls only the AI 
Single Scan VI. If you call the AI Read One Scan VI once to take a single measurement 
from the group of channels, the iteration parameter can remain unwired.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits, 
and scanning order available with your DAQ device.

iteration
terminal
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AI Waveform Scan
Acquires the specified number of scans at the specified scan rate and returns all the data 
acquired. You can trigger the acquisition.

The AI Waveform Scan VI acquires a specified number of scans from a 
channel group at a specified scan rate. If you place this VI in a loop to 
take multiple acquisitions from the same group of channels, wire the 
iteration terminal of the loop to the VI iteration input. 

Also wire the condition that terminates the loop to the VI clear acquisition input, 
inverting the signal if necessary so that it reads TRUE on the last iteration. On iteration 
zero, this VI calls the AI Config VI to configure the channel group and hardware and 
allocate a data buffer. On each iteration, this VI calls the AI Start and AI Read VIs. The 
AI Start VI sets the scan rate and trigger conditions and starts the acquisition. The VI 
stores the measurements in the buffer as they are acquired, and the AI Read VI retrieves 
them from the buffer, scales them, and returns all the data as an array of voltages. On the 
last iteration (when clear acquisition is TRUE) or if an error occurs, the VI also calls the 
AI Clear VI to clear the acquisition in progress. If you call the AI Waveform Scan VI 
only once, you can leave iteration and clear acquisition unwired. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits, 
scanning order, triggers, and clocks you can use with your National Instruments DAQ 
device. 

Note: These VIs use an uninitialized shift register as local memory to remember 

the taskID for the group of channels between VI calls. You normally use 

one VI in one place on your diagram, but if you use it more than once, the 

multiple instances of the VI share the same taskID. All calls to one of these 

VIs configure, read data from, or clear the same acquisition. Occasionally 

you may want to use each VI in multiple places and have each instance 

refer to a different taskID (for example, when you measure two devices 

iteration
terminal
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simultaneously). Save a copy of the VI with a new name (for example, 

AI Waveform Scan R) and make your new VI reentrant. 

Note: For all Analog Input Utility VIs, if your program iterates more than 231 - 1 

times, do not wire the iteration input to the loop iteration terminal. Instead, 

set iteration to 0 on the first loop, then to any positive value on all other 

iterations. The VI reconfigures and restarts if iteration ≤0.
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Chapter

17Advanced Analog Input VIs

This chapter contains reference descriptions of the Advanced Analog 
Input VIs. These VIs are the interface to the NI-DAQ software and are 
the foundation of the Easy, Utility and Intermediate Analog Input VIs.

You can access the Advanced Analog Input palette by choosing 
Functions»Data Acquisition»Analog Input»Advanced Analog Input. 
The icon that you must select to access the Advanced Analog Input VIs 
is on the bottom row of the Analog Input palette, as shown below.

Advanced Analog Input VI Descriptions

The following Advanced Analog Input VIs are available.

AI Buffer Config
Allocates memory for LabVIEW to store analog input data until the AI Buffer Read VI 
can deliver it to you. LabVIEW refers to the buffer(s) allocated by the AI Buffer Config 
VI as internal buffers because you do not have direct access to them.

Advanced
Analog Input VIs
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Note: (Macintosh) If you are using an NB-A2000 with an NB-DMA2800, buffer 
size and total scans to acquire are both multiples of 32, and your computer 

has block-mode memory, the driver will automatically use block-mode 

DMA transfers.

Note: When you run the AI Control VI with control code set to 4 (clear), the VI 

performs the equivalent of running the AI Buffer Config VI with allocation 

mode set to 1. That is, both VIs deallocate the internal analog input data 

buffers. However, acquisitions that use DSP or expansion card memory are 

an exception. The AI Control VI does not deallocate DSP memory when 

clearing an acquisition. You must explicitly call the AI Buffer Config VI to 

deallocate DSP acquisition buffers. 

Table  17-1 lists default settings and ranges for the AI Buffer Config VI. The first row 
gives the values for most devices, and the other rows give the values for devices that are 
exceptions to the rule. 

Table 17-1.  AI Buffer Config VI Device-Specific Settings and Ranges

Device
Scans per Buffer Number of Buffers Allocation Mode

Default
Setting Range

Default
Setting Range

Default
Setting Range

Most devices 100 0, n≥3 1 0, 1 2 1, 2

Lab-NB
Lab-LC

100 n≥3 1 0, 1 2 1, 2

AT-DSP2200 100 n≥0 1 n≥0 2 1≤n≤4

NB-A2000
EISA-A2000
NB-A2100
NB-A2150
AT-A2150

100 n≥0 1 n≥0 2 1, 2

5102 devices 100 n≥3 1 1 2 1, 2
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AI Buffer Read
Returns analog input data from the internal data buffer(s).

Note: When the VI reads from the trigger mark, it does not return data until the 

acquisition completes for the buffer containing the trigger. 

AI Clock Config
Sets the channel and scan clock rates. 

Refer to Appendix A, DAQ Hardware Capabilities, for the clocks available with your 
DAQ device. 

For devices that have only a channel clock (Lab-LC, Lab-NB, NB-MIO-16, Lab-PC+, 
PCI-1200, PC-LPM-16, DAQCard-500, DAQCard-700, and DAQCard-1200), you 
cannot set independent channel and scan clock rates. Setting one resets the other because 
the channel rate equals scan rate/number of channels to scan. 

For devices that have no channel clock (NB-A2000, NB-A2100, NB-A2150, 
EISA-A2000, AT-A2150, and AT-DSP2200), setting the channel clock produces an 
error.

If you specify a value of 0 for the scan clock rate, interval scanning turns off, and channel 
scanning (or round-robin scanning) proceeds at the channel clock rate. This option is 
meaningful only for devices with independent channel and scan clocks.

The clock rate is the rate at which LabVIEW samples data or acquires scans. You can 
express the clock rate three ways—with clock frequency, with clock period, or with 
timebase source, timebase signal, and timebase divisor. The VI searches these 
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parameters in that order and sets the clock rate using the first one with a value not equal 
to –1.

Table  17-2 lists default settings and ranges for the controls of the AI Clock Config VI. 

Table 17-2.  Device-Specific Settings and Ranges for Controls in the AI Clock Config VI 

Device

Configuration
Mode

Retrigger
Mode Which Clock Clock Source

Default
Setting Range

Default
Setting

Default
Setting Range

Default
Setting Range

AT-MIO-16E-2
AT-MIO-64E-3
NEC-MIO-16E-4
PCI-MIO-16E-1
PCI-MIO-16E-4
PCI-MIO-16XE-10

1 1, 3 no 
support

1 1, 2 1 1, 2
4≤n≤11

AT-MIO-16E-10
AT-MIO-16DE-10
AT-MIO-16XE-50
PCI-MIO-16XE-50

1 1, 3 no 
support

1 1, 2 1 1, 2
4≤n≤9

AT-A2150
NB-A2150
NB-A2100
NB-A2000
AT-DSP2200
EISA-A2000

1 1, 3 no 
support

1 1 1 1≤n≤3

PC-LPM-16
DAQCard-500
DAQCard-700
Lab-PC

1 1, 3 no 
support

1 1, 2 1 1, 2

Lab-LC
Lab-NB
NB-MIO-16

1 1, 3 no 
support

1 2 1 1, 2

All Other Devices 1 1, 3 no 
support

1 1, 2 1 1≤n≤3
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AI Control
Controls the analog input tasks and specifies the amount of data to acquire. 

Note: You cannot use this VI to start an acquisition when you use a Lab and 1200 

Series device, PC-LPM-16, DAQCard-500, or a DAQCard-700 device to 

scan multiple SCXI channels in multiplexed mode. For this special case, 

you must use the AI SingleScan VI to acquire data. (For more information 

about the AI SingleScan VI, refer to its description in this chapter.) 

However, you can use the AI Control VI for a Lab and 1200 Series device, 

PC-LPM-16, DAQCard-500, or DAQCard-700 device when you scan SCXI 

channels in parallel mode or sample a single SCXI channel in multiplexed 

mode. You can use this VI for an MIO device scanning SCXI channels in 

either mode.

Note: Nonbuffered acquisitions are not supported for the following devices.

• (Macintosh) NB-A2000, NB-A2100, or NB-A2150

• (Windows) AT-DSP2200, EISA-A2000, or AT-A2150 
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Table  17-3 lists default settings and ranges for the AI Control VI. 

AI Group Config
Defines what channels belong to a group and assigns them.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges and scanning 
order available with your DAQ device. 

Table 17-3.  Device-Specific Settings and Ranges for the AI Control VI

Device Control 
Code

Total Scans
to Acquire

Minimum
Pretrigger
Scans to
Acquire

Number of
Buffers to
Acquire

D S* R* DS* R* DS* R* DS* R*

AT-DSP2200, 
EISA-A2000, 
AT-A2150, 
NB-A2000, 
NB-A2150, 

0 0, 1, 4 0 0, n≥0 0 0, n≥3 1 n≥0

PC-LPM-16, 
DAQCard-500, 
DAQCard-700

0 0, 1, 4 0 0, n≥3 0 no 
support

1 1

MIO-E Series 0 0, 1, 4 0 0, n≥3 0 0, n≥3 1 1

5102 Devices 0 0, 1, 4 0 n≥0 0 n≥0 1 1

All Other Devices 0 0, 1,4 0 0, n≥3 0 n≥0 1 1

* DS = Default Setting; R = Range
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Table  17-4 lists default settings and ranges for the AI Group Config VI. The first row of 
the table gives the values for most devices, and the other rows give the values for devices 
that are exceptions to the rule. 

Note: The Lab-LC, Lab-NB, Lab-PC+, PCI-1200, PC-LPM-16, DAQCard-500, 

DAQCard-700, and DAQCard-1200 must scan channel lists containing 

multiple channels from channel n (n ≥ 0) to channel 0 in sequential order, 

including all channels between n and 0. The NB-A2000, NB-A2150, 

EISA-A2000, and AT-A2150 allow only the following scan lists: (0), (1), 

(2), (3), (0, 1), (2, 3), and (0, 1, 2, 3). The NB-A2100 allows the following 

scan lists: (0), (1), (0, 1), and (1, 0).

The channel scan list range shown above is for single-ended mode. Please 

refer to Appendix A, DAQ Hardware Capabilities, to determine the valid 

range for channels in differential mode.

Table 17-4.  Device-Specific Settings and Ranges for the AI Group Config VI

Device
Group Channel Scan List

Default
Setting Range Default Setting Range

Most Windows Devices 0 0≤n≤15 all channels 0≤n≤15

Most Macintosh Devices 0 0≤n≤15 all channels 0≤n≤15

AT-MIO-64F-5
AT-MIO-64E-3

0 0≤n≤15 all channels 0≤n≤63

AT-A2150, EISA-A2000 0 0≤n≤15 all channels 0≤n≤3

AT-DSP2200 0 0≤n≤15 all channels 0, 1

Lab-PC+, PCI-1200, 
DAQCard-1200

0 0≤n≤15 all channels 0≤n≤7

Lab-LC, Lab-NB 0 0≤n≤15 all channels 0≤n≤7

NB-A2000, NB-A2150 0 0≤n≤15 all channels 0≤n≤3

NB-A2100 0 0≤n≤15 all channels 0, 1

5102 Devices 0 0≤n≤15 all channels 0, 1
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SCXI modules in multiplexed mode must scan channels in ascending consecutive order, 
starting from any channel on the module. The module order you specify can be arbitrary. 
SCXI modules in parallel mode must follow the DAQ device restrictions on the order of 
channel scan lists. Refer to the Channel, Port, and Counter Addressing section of 
Chapter 3, Basic LabVIEW Data Acquisition Concepts, in the LabVIEW Data Acquisition 

Basics Manual for information about SCXI channel string syntax. 

AI Hardware Config
Configures either the upper and lower input limits or the range, polarity, and gain. The 
AI Hardware Config VI also configures the coupling, input mode, and number of 
AMUX-64T devices. The configuration utility determines the default settings for the 
parameters of this VI.

You can use this VI to retrieve the current settings by wiring taskID only or by wiring 
both taskID and channel list. If channel list is empty, the VI configures channels on a 
per group basis. This means that the configuration applies to all the channels in the 
group. When you specify one or more channels in channel list, the VI configures 
channels on a per channel basis. This means that the configuration applies only to the 
channels you specify. This VI always returns the current settings for the entire group. 

When the configuration is on a per channel basis, channel list can contain one or more 
channels. The channels in channel list must belong to the group named by taskID. You 
specify channels the same way you specify them for the AI Group Config VI. If you take 
multiple samples of a channel within a scan and you want to change the hardware 
configuration for that channel at each sample, you must supply the settings for each 
instance of the channel within the scan. If an element of channel list specifies more than 
one channel, the corresponding element of the other arrays applies to all those channels.

The VI applies the values contained in the configuration arrays (upper input limits, 
lower input limits, coupling, range, polarity, gain, and mode) to the channels in the 
group (if you configured on a per group basis) or the channels in channel list (if you 
configured on a per channel basis) in the following way. The VI applies the values listed 
first in the arrays (at index 0) to the first channel in the group or the channel(s) listed in 
index 0 of channel list. The VI applies the values listed second in the configuration 
arrays (at index 1) to the second channel in the group or channel(s) listed in index 1 of 
channel list. The VI continues to apply the values in this fashion until the arrays are 
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exhausted. If channels in the group or channel list remain unconfigured, the VI applies 
the final values in the arrays to all the remaining unconfigured channels.

Table  17-5 gives examples of this method. The parameter channel scan list, which is 
part of the AI Group Config VI, is used in the following table.

Table 17-5.  AI Hardware Config Channel Configuration

Configuration
Basis Array Values Results

Group Group channel scan list = 1, 3, 4, 5, 7
channel list is empty
lower input limit [0] = –1.0
upper input limit [0] = +1.0

All channels in the group have 
input limits of –1.0 to +1.0.

Group Group channel scan list = 1, 3, 4, 5, 7
channel list is empty
lower input limit [0] = –1.0
upper input limit [0] = +1.0
lower input limit [1] = 0.0
upper input limit [1] = +5.0
lower input limit [2] = –10.0
upper input limit [2] = +10.0

Channel 1 has input limits of 
–1.0 to +1.0. Channel 3 has 
input limits 0.0 to +5.0. 
Channels 4, 5, and 7 have input 
limits of –10.0 to +10.0.

Channel Group channel scan list = 1, 3, 4, 5, 7
channel list [0] = 1
channel list [1] = 3:5
lower input limit [0] = –1.0
upper input limit [0] = +1.0

Channels 1, 3, 4, and 5 have 
input limits of –1.0 to +1.0. 
Channel 7 has the default input 
limits set by the configuration 
utility. It is unchanged because 
it is not listed in channel list.



Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-10 © National Instruments Corporation

The range, polarity, and gain determine the lower and upper input limits. When you 
wire valid input limit arrays (that is, arrays of lengths greater than zero) the VI chooses 
suitable input ranges, polarities, and gains to achieve these input limits. The VI ignores 
the range, polarity, and gain arrays.

If you do not wire the input limit arrays, the VI checks range, polarity, and gain. Where 
the VI finds an array, it sets the corresponding input property to the values in the array. 
Where the VI does not find an array, it leaves the corresponding input property 
unchanged.

For some devices and SCXI modules, onboard jumpers set range, polarity, and/or gain. 
LabVIEW does not alter the settings of jumpered parameters when you specify input 
limits. If LabVIEW cannot achieve the desired input limits using the current jumpered 
settings, it returns a warning.

To override the current jumper values, you must call the AI Hardware Config VI and 
specify range, polarity, and/or gain explicitly. The configuration utility determines the 
initial setting for these parameters (the default value is the factory jumper setting).

If a pair of input limits values are both 0, the VI does not change the input limits.

Channel Group channel scan list = 1, 3, 4, 5, 7
channel list [0] = 1
channel list [1] = 3:5
lower input limit [0] = –1.0
upper input limit [0] = +1.0
lower input limit [1] = 0.0
upper input limit [1] = +5.0

Channel 1 has input limits of 
–1.0 to +1.0. Channels 3, 4, 
and 5 have input limits of 0.0 
to +5.0. Channel 7 has the 
default input limits set by the 
configuration utility. 

Group Group channel scan list = 0, 1, 0, 1
channel list is empty
lower input limit [0] = –1.0
upper input limit [0] = +1.0
lower input limit [1] = –1.0
upper input limit [1] = +1.0
lower input limit [2] = –10.0
upper input limit [2] = +10.0
lower input limit [3] = –10.0
upper input limit [3] = +10.0

Channels 0 and 1 have input 
limits of –1.0 to +1.0 the first 
time they are sampled and 
input limits of –10.0 to +10.0 
the second time they are 
sampled.

Table 17-5.  AI Hardware Config Channel Configuration (Continued)

Configuration
Basis Array Values Results
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SCXI channel hardware configurations are actually a combination of SCXI module and 
DAQ device settings and require special considerations. The way you specify channels 
indicates whether LabVIEW alters the SCXI module settings and/or the DAQ device 
settings. The input limits parameter always applies to the entire acquisition path.

When you configure on a per group basis, LabVIEW may alter both SCXI module and 
DAQ device settings. In this case, gain applies to the entire path and is the product of the 
SCXI channel gain and acquisition device channel gain. LabVIEW sets the highest gain 
needed on the SCXI module, then adds DAQ device gain if necessary.

When configuration is on a per channel basis, you can specify the channels in one of three 
ways. The first way is to specify the entire path, as in the following example.

OB0!SC1!MD1!CH0:7

(Windows) Also, you can specify the path using channel names configured in the DAQ 
Channel Wizard, as in the following example.

temperature

If you use either of these methods, LabVIEW can alter both SCXI and DAQ device 
settings, and gain applies to the product of the SCXI channel gain and the DAQ device 
gain. LabVIEW sets the highest gain needed on the SCXI module, then adds DAQ device 
gain if necessary.

The second method is to specify the SCXI channel only, as in the following example.

SC1!MD1!CH0:7

This specification indicates that LabVIEW should alter SCXI settings only. Additionally, 
gain applies only to the SCXI channel.

The third way is to specify the acquisition device channel only, as in the following 
example.

OB0

In this case, LabVIEW alters only DAQ device settings. The gain parameter applies to 
the onboard channel only.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, input limits, 
and scanning order available with your DAQ device. 

Tables  17-6 through 17-9 list default settings and ranges for the AI Hardware Config VI. 
A tilde (~) indicates that the parameter is configurable on a per group basis only. This 
means you cannot configure it by channel. The first row of these tables give the values 
for most devices, and the other rows give the values for devices that are exceptions to the 
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rule. If you did not set the default settings with the configuration utility, use the default 
settings shown in these tables.

Note: Channels 0 and 1 and channels 2 and 3 must have the same coupling for 

the NB-A2150, AT-DSP2200, and AT-A2150.

Table 17-6.  Device-Specific Settings and Ranges for the AI Hardware Config VI

Device

Channel Input
Configuration Cluster

Number 
of AMUX

Channel 
ListCoupling Input Mode ~

DS* R* DS* R* DS* R* DS*

Most Devices 1 1 1 1 ≤n≤3 0 0 ≤n≤4 empty

EISA-A2000, 
NB-A2000

2 1, 2 2 2 0 0 empty

PC-LPM-16, 
Lab-LC, Lab-NB

1 1 2 2 0 0 empty

Lab and 1200 
Series devices

1 1 2 1 ≤n≤3 0 0 empty

AT-MIO-16X, 
AT-MIO-64F-5

1 1 1 (no ~) 1 ≤n≤3 0 0 ≤n≤4 empty

AT-A2150, 
AT-DSP-2200, 
NB-A2100, 
NB-A2150

1 1, 2 2 2 0 0 empty

DAQCard-500, 
DAQCard-700

1 1 2 1, 2 0 0 empty

5102 Devices 5 1,2 2 2 0 0 empty

* DS = Default Setting; R = Range
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AI Parameter
Configures and retrieves miscellaneous parameters associated with Analog Input of an 
operation of a device that are not covered with other AI VIs.

AI SingleScan 
Returns one scan of data. If you started an acquisition with the AI Control VI, this VI 
reads one scan of the data from the internal buffer. On the Macintosh and in Windows, 
the VI reads from the onboard FIFO if the acquisition is nonbuffered. If you have not 
started an acquisition, this VI starts an acquisition, retrieves a scan of data, and then 
terminates the acquisition. The group configuration determines the channels the VI 
sample. This VI does not support 5102 devices.

If you do not call the AI Control VI, this VI initiates a single scan using the fastest and 
most safe channel clock rate. You can, however, alter the channel clock rate with the AI 
Clock Config VI. 

If you run the AI Control VI with control code set to 0 (Start), a clock signal initiates the 
scans.

If you want externally clocked conversions, you must use the AI Clock Config VI to set 
the clock source to external. 

If clock sources are internal and you do not allocate memory, a timed, nonbuffered 
acquisition begins when you run the AI Control VI with control code set to 0. This type 
of acquisition is useful for synchronizing analog inputs and outputs in a point-to-point 



Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-14 © National Instruments Corporation

control application. The following devices do not support timed, nonbuffered 
acquisitions.

• (Macintosh) Lab-NB, Lab-LC, NB-A2000, NB-A2100, and NB-A2150

• (Windows) AT-DSP2200, EISA-A2000, and AT-A2150

Note: In the event of a FIFO overflow during a timed, nonbuffered acquisition, 

LabVIEW restarts the device. 

Table  17-7 lists default settings and ranges for the AI SingleScan VI. 

AI Trigger Config
Configures the trigger conditions for starting the scan and channel clocks and the scan 
counter. 

Refer to Appendix A, DAQ Hardware Capabilities, for information on the triggers 
available with your DAQ device. Refer to your E Series device user manual for a detailed 
description of the triggering capabilities of the device.

The following is a detailed description of trigger types 1 (analog trigger), 2 (digital 
trigger A), and 3 (digital trigger B) as they apply to three types of applications: 
posttrigger, pretrigger with software start, and pretrigger with hardware start. The other 
trigger types are discussed at the end of this section.

Table 17-7.  Device-Specific Settings and Ranges for the AI SingleScan VI 

Device
Output Type Opcode Time Limit

DS R DS R DS R

AT-DSP2200, EISA-A2000, 
AT-A2150, NB-A2000, 
NB-A2100, NB-A2150

1 1≤n≤3 1 1 variable n≥0

All Other Devices 1 1≤n≤3 1 1≤n≤4 1≤n≤4 n≥0
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Application Type 1: Posttriggered Acquisition (Start 

Trigger Only)

If total scans to acquire is ≥ 0 and pretrigger scans to acquire is 0, you are performing 
a posttriggered acquisition. A trigger type of 1 or 2 (analog trigger or digital trigger A, 
respectively) starts the acquisition (digital trigger B is illegal). You provide a start 
trigger. Refer to Table  17-10, parts 2 and 3, to determine the default pin to which you 
connect your trigger signal.On some devices you can specify an alternative source 
through the trigger source parameter.

With E Series devices, if you are using an analog trigger and the analog signal is 
connected to one of the analog input channels, that channel must be first in the scan list. 
This restriction does not apply if you connect the analog signal to PFI0.

In the above illustration, total scans to acquire is 1000 and pretrigger scans to acquire 
is 0. The start trigger can come from digital trigger A or an analog trigger (trigger or 
pause condition =1: Trigger on a rising edge or slope, level = 5.5, window size = 0.2).

Application Type 2: Pretriggered Acquisition (for all 

trigger types)

If total scans to acquire and pretrigger scans to acquire are both > 0, a trigger type 
of 1 or 2 (analog trigger or digital trigger A, respectively) starts the acquisition of 
posttrigger data after the pretrigger data is acquired. The trigger is called a stop trigger 

because the acquisition does not stop until the trigger occurs. A software strobe starts the 
acquisition. This is a software start pretrigger acquisition. You provide the stop trigger. 
Refer to Table  17-10, parts 2 and 3, to determine the default pin to which you connect 
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your trigger signal. On some devices, you can specify an alternative source through the 
trigger source parameter.

In the above illustration, total scans to acquire is 1000 and pretrigger scans to acquire 
is 900. The stop trigger can come from digital trigger A or an analog trigger (trigger or 
pause condition = 1: Trigger on rising edge or slope, level = 3.7, window size = 0.5).

With E Series devices, if you are using an analog trigger and the analog signal is 
connected to an analog input channel, that channel must be the only channel in the scan 
list (no multiple channel scan allowed). This restriction does not apply if you connect the 
analog signal to PFI0.

Application Type 3: Pretriggered Acquisition (Start and 

Stop Trigger)

Application Type 3 is used infrequently. Unless you plan to provide both a start trigger 
and a stop trigger, skip this section.

On MIO devices, you can enable both the start trigger and the stop trigger. (You must call 
the AI Trigger Config VI twice to do this.) In this case, a digital or analog trigger signal 
starts the acquisition rather than a software strobe. This is a hardware start pretriggered 
acquisition. You provide both the start trigger (as described in Application Type 1) and the 
stop trigger (as described in Application Type 2). Refer to Table 17-10 , parts 2 and 3, to 
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determine the default pin to which you connect your trigger signal. On some devices, you 
can specify an alternative source through the trigger source parameter.

In the above illustration, total scans to acquire is 1000 and pretrigger scans to acquire 
is 900. The start trigger can come from digital trigger B or an analog trigger (trigger or 
pause condition = 1: Trigger on rising edge or slope, level = 5.5, window size = 0.2). 
The stop trigger can come from digital trigger A or an analog trigger (trigger or pause 
condition = 1: Trigger on rising edge or slope, level = 4.0, window size = 0.2). Notice 
that some of the data after the start trigger has been discarded, because all 900 pretrigger 
scans have been collected and the stop trigger is more than 900 scans away from the start 
trigger. 

When using analog triggering on E Series devices, there are several restrictions that 
apply, as shown in Table  17-8.

Table 17-8.  Restrictions for Analog Triggering on E Series Devices 

Start
Trigger

Stop
Trigger Restrictions

Digital A Digital B None

Digital B Analog Analog signal must be connected to PFI0, unless you are 
scanning only one channel, in which case the input to that 
channel can be used.

Analog Digital A Analog signal must be first in scan list if it is connected to an 
analog input channel.



Chapter 17 Advanced Analog Input VIs

LabVIEW Function and VI Reference Manual 17-18 © National Instruments Corporation

A trigger type of 4 (digital scan clock gating) enables an external TTL signal to gate the 
scan clock on and off, effectively pausing and resuming an acquisition. 

Channel clock and scan clock are the same on the NB-MIO-16. Therefore, if the scan 
clock gate becomes FALSE, the current scan does not complete and the scan clock ceases 
operation. When the scan clock gate becomes TRUE, the scan clock immediately begins 
operation again, where it left off previously. You wire your signal to the EXTGATE pin.

A trigger type of 5 (analog scan clock gating) enables an external analog signal to gate 
the scan clock on and off, effectively pausing and resuming an acquisition. A trigger type 
of 6 allows you to use the output of the analog trigger circuitry (ATCOUT) as a general 
purpose signal. For example, you can use ATCOut to start an analog output operation, or 
you can count the number of analog triggers appearing at ATCOut. 

Note: Trigger types 1, 5, and 6 on E Series devices use the same analog trigger 

circuitry. All three types can be enabled at the same time, but the last one 

enabled dictates how the analog trigger circuitry behaves. The 

E Series restrictions described in the trigger applications apply to all three 

trigger types.

Trigger type 5 on E Series devices uses the digital scan clock gate and the analog trigger 
circuitry. Therefore, enabling trigger type 5 overwrites any settings made for trigger type 
4.

For some devices, digital triggering is supported, but for these devices the source is 
predetermined. Therefore, the trigger source parameter is invalid. Table  17-9 shows the 
pin names on the I/O connector to which you should connect your digital trigger signal.

Table 17-9.  Digital Trigger Sources for Devices with Fixed Digital Trigger Sources

Device
Posttriggering Pretriggering

Start
Trigger Pin

Start
Trigger Pin

Stop
Trigger Pin

MIO-16L/H, MIO-16DL/DH STARTTRIG* STARTTRIG* STOPTRIG

NB-MIO-16L/H STARTTRIG* no support no support

AT-MIO-16X, AT-MIO-16F-5, 
AT-MIO-64F-5

EXTTRIG* EXTTRIG* EXTTRIG*

Lab and 1200 Series devices EXTTRIG no support EXTTRIG
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Table  17-10 lists the default settings and ranges for the AI Trigger Config VI. The first 
row of each table gives the values for most devices, and the other rows give the values 
for devices that are exceptions to the rule.

PC-LPM-16, DAQCard-500, 
DAQCard-700

no support no support no support

AT-DSP2200, EISA-A2000, 
AT-A2150, NB-A2000, 
NB-A2100, NB-A2150

EXTTRIG* no support EXTTRIG*

* On the AT-MIO-16X, AT-MIO-16F-5, and AT-MIO-64F-5, the same pin is used for 
both the start trigger and the stop trigger. Refer to your hardware user manual for more 
details

Table 17-10.  Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 1

Device
Trigger 

Type Mode

Trigger or
Pause

Condition Level

DS* R* DS* R* DS* R* DS* R*

Most Devices 2 2, 3 1 1≤n≤ 3 no support no support

AT-MIO-16E-10, 
AT-MIO-16DE-10,
AT-MIO-16XE-50,
PCI-MIO-16XE-50

2 2≤n≤4 1 1≤n≤ 3 1 1, 2, 7, 
8

no support

AT-MIO-16E-2, 
AT-MIO-64E-3, 
NEC-MIO-16E-4

2 1≤n≤6 1 1≤n ≤3 1 1≤n≤8 0 –10
≤n≤
10

Lab and 1200 
Series devices

2 2 1 1≤n≤ 3 no
 support

no 
support

Table 17-9.  Digital Trigger Sources for Devices with Fixed Digital Trigger Sources (Continued)

Device
Posttriggering Pretriggering

Start
Trigger Pin

Start
Trigger Pin

Stop
Trigger Pin
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PC-LPM-16, 
DAQCard-500, 
DAQCard-700

no support no support no support no support

AT-DSP2200, 
AT-A2150, 
NB-A2100, 
NB-A2150

1 1, 2 1 1≤n≤3 1 1, 2 0 –2.828
≤n≤

2.828

EISA-A2000, 
NB-A2000

1 1, 2 1 1≤n ≤3 1 1, 2 0 –5.12
≤n≤
5.12

* DS = Default Setting; R = Range

Table 17-11.  Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 2

Device
Trigger Source

(Analog)

Additional Trigger Specifications
Cluster

Window Size Coupling

Default
Setting Range

Default
Setting Range

Default
Setting Range

AT-MIO-16E-2
NEC-MIO-16E-4

0 0≤n≤15,
PFI0

0 0≤n≤20 no support

AT-MIO-64E-3 0 0≤n≤63,
PFI0

0 0≤n≤20 no support

EISA-A2000, 
NB-A2000

0 0 ≤n≤ 3 no support 2 1, 2

AT-A2150, 
NB-A2100, NB-A2150

0 0 ≤n ≤3 0 0 ≤n≤ 
5.656

1 1, 2

Table 17-10.  Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 1 (Continued)

Device
Trigger 

Type Mode

Trigger or
Pause

Condition Level

DS* R* DS* R* DS* R* DS* R*
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AT-DSP2200 0 0, 1 0 0 ≤n≤ 
5.656

1 1, 2

All Other Devices, no support no support no support

Device Trigger Source (Digital)

DS R

E Series Start Trigger PFI0 PFI 0~9, RTSI 0~6, GPCTR0

E Series Stop Trigger PFI1 PFI 0~9, RTSI 0~6

E Series Digital Scan Clock Gate PFI0 PFI 0~9, RTSI 0~6

All Other Devices no support*

* See Table  17-9 for devices with fixed digital trigger sources.

Table 17-12.  Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 4

Device

Additional Trigger Specifications 
Cluster

Delay Skip 
Count

Time 
Limit

DS R DS R DS R

EISA-A2000, NB-A2000 0 0≤n≤655.35 no 
support

no 
support

AT-A2150 0 0≤n≤2.05 no 
support

no 
support

Table 17-11.  Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 2 (Continued)

Device
Trigger Source

(Analog)

Additional Trigger Specifications
Cluster

Window Size Coupling

Default
Setting Range

Default
Setting Range

Default
Setting Range
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NB-A2100, NB-A2150S 0 0≤n≤32.77 no 
support

no 
support

NB-A2150C 0 0≤n≤16.38 no 
support

no 
support

NB-A2150F 0 0≤n≤17.05 no 
support

no 
support

AT-DSP2200 0 no support no 
support

no 
support

All Other Devices no support no 
support

no 
support

Table 17-12.  Device-Specific Settings and Ranges for the AI Trigger Config VI—Part 4 (Continued)

Device

Additional Trigger Specifications 
Cluster

Delay Skip 
Count

Time 
Limit

DS R DS R DS R
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Chapter

18Easy Analog Output VIs

This chapter describes the Easy Analog Output VIs in LabVIEW, which 
perform simple analog output operations. You can run these VIs from 
the front panel or use them as subVIs in basic applications.

You can access the Easy Analog Output VIs by choosing 
Functions»Data Acquisition»Analog Output. The Easy Analog Output 
VIs are the VIs on the top row of the Analog Output palette, as shown 
below.

Easy Analog Output VI Descriptions

The following Easy Analog Output VIs are available.

AO Generate Waveform
Generates a voltage waveform on an analog output channel at the specified update rate.

The AO Generate Waveform VI generates a multipoint voltage waveform on a specified 
analog output channel. If an error occurs, a dialog box appears, giving you the option to 
stop the VI or continue. 

Easy Analog Output VIs
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AO Generate Waveforms
Generates multiple voltage waveforms on the specified analog output channels at the 
specified update rate.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers you can use 
with your DAQ device. 

AO Update Channel
Writes a specified voltage value to an analog output channel.

The AO Update Channel VI writes a single update to an analog output channel. If an error 
occurs, a dialog box appears, giving you the option to stop the VI or continue.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers and output 
limits available with your DAQ device. 

AO Update Channels
Writes voltage values to each of the specified analog output channels.

The AO Update Channels VI updates multiple analog output channels with single voltage 
values. If an error occurs, a dialog box appears, giving you the option to stop the VI or 
continue. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel numbers you can use 
with your DAQ device. 
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Chapter

19
Intermediate 
Analog Output VIs

This chapter describes the Intermediate Analog Output VIs. These 
VIs—AO Write One Update, AO Waveform Gen, and AO Continuous 
Gen—are single VI solutions to common analog output problems. The 
intermediate-level VIs are convenient, but they lack flexibility. Because 
all the VIs in this chapter rely on the advanced layer, you can refer to 
Chapter 21, Advanced Analog Output VIs, for additional information on 
the inputs and outputs and how they work. 

You can access the Intermediate Analog Output VIs by choosing 
Functions»Data Acquisition»Analog Output. The Intermediate Analog 
Output VIs are the VIs on the second row of the Analog Output palette, 
as shown below.

Handling Errors

LabVIEW makes error handling easy with the Intermediate Analog 
Output VIs. Each intermediate-level VI has an error in input cluster 
and an error out output cluster. The clusters contain a Boolean that 
indicates whether an error occurred, the error code for the error, and the 
name of the VI that returned the error. If error in indicates an error, the 
VI returns the error information in error out and does not continue 
to run. 

Intermediate
Analog Output VIs
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Note: The AO Clear VI is an exception to this rule—this VI always clears the 

acquisition regardless of whether error in indicates an error.

When you use any of the Intermediate Analog Output VIs in a While 
Loop, you should stop the loop if the status in the error out cluster 
reads TRUE. If you wire the error cluster to the General Error Handler 
VI, the VI deciphers the error information and describes the error to 
you. 

The General Error Handler VI is in Functions»Time and Dialog in 
LabVIEW. For more information on this VI, refer to your LabVIEW 

User Manual. 

Analog Output VI Descriptions

The following Analog Output VIs are available.

AO Clear
Clears the analog output task associated with taskID in.

The AO Clear VI always clears the generation regardless of whether error in indicates 
an error.

AO Config
Configures the channel list and output limits, and allocates a buffer for analog output 
operation.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges and output 
limits available with your DAQ device. 
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AO Start
Starts a buffered analog output operation. This VI sets the update rate and then starts the 
generation.

AO Wait
Waits until the waveform generation of the task completes before returning.

Use the AO Wait VI to wait for a buffered, finite waveform generation to finish before 
calling the AO Clear VI. The AO Wait VI checks the status of the task at regular intervals 
by calling the AO Write VI and checking its generation complete output. The AO Wait 
VI waits asynchronously between intervals to free the processor for other operations. The 
VI calculates the wait interval by dividing the check every N updates input by the update 
rate. You should not use the AO Wait VI when you generate data continuously, because 
the generation never finishes. The AO Clear VI stops a continuous waveform generation.

AO Write
Writes data into the buffer for a buffered analog output operation.
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Chapter

20Analog Output Utility VIs

This chapter describes the Analog Output Utility VIs. The VIs—AO 
Continuous Generation, AO Waveform Generation, and AO Write One 
Update—are single-VI solutions to common analog output problems. 
The Analog Output Utility VIs are intermediate-level VIs, so they rely 
on the advanced-level VIs. You can refer to Chapter 21, Advanced 

Analog Output VIs, for additional information on the inputs and outputs 
and how they work.

You can access the Analog Output Utilities palette by choosing 
Functions»Data Acquisition»Analog Output»Analog Output Utilities. 
The icon that you must select to access the Analog Output Utility VIs is 
on the bottom row of the Analog Output palette, as shown below.

Handling Errors

LabVIEW makes error handling easy with the intermediate-level 
Analog Output Utility VIs. Each intermediate-level VI has an error in 
input cluster and an error out output cluster. The clusters contain a 
Boolean that indicates whether an error occurred, the error code for the 
error, and the name of the VI that returned the error. If error in 
indicates an error, the VI returns the error information in error out and 
does not continue to run. 

Analog Output Utility VIs
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When you use any of the Analog Output Utility VIs in a While Loop, 
you should stop the loop if the status in the error out cluster reads 
TRUE. If you wire the error cluster to the General Error Handler VI, the 
VI deciphers the error information and describes the error to you. 

The General Error Handler VI is in Functions»Utilities in LabVIEW. 
For more information on this VI, refer to your LabVIEW User Manual.

Analog Output Utility VI Descriptions

The following Analog Output Utility VIs are available.

AO Continuous Gen
Generates a continuous, timed, circular-buffered waveform for the given output channels 
at the specified update rate. The VI updates the output buffer continuously as it generates 
the data. If you simply want to generate the same data continuously, use the AO 
Waveform Gen VI instead.

You use the AO Continuous Gen VI when your waveform data resides 
on disk and is too large to hold in memory, or when you must create 
your waveform in real time. Place the VI in a While Loop and wire the 
iteration terminal to the VI iteration input. 

Note: If your program iterates more than 231–1 times, do not wire this VI 

iteration terminal to the loop iteration terminal. Instead, set iteration to 0 

on the first loop, then to any positive value on all other iterations. The VI 

reconfigures and restarts if iteration ≤0.

Also wire the condition that terminates the loop to the VI's clear acquisition input, 
inverting the signal if necessary so that it is TRUE on the last iteration. On iteration 0, the 
VI calls the AO Config VI to configure the channel group and hardware and to allocate 
a buffer for the data. It also calls the AO Write VI to write the given voltage data into the 
buffer, and then the AO Start VI to set the update rate and start the signal generation. On 
each subsequent iteration, the VI calls the AO Write VI to write the next portion of data 

iteration
terminal
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into the buffer at the current write position. On the last iteration (when clear generation 
is TRUE) or if an error occurs, the VI also calls the AO Clear VI to clear any generation 
in progress. Although it is not normally necessary, you can call the AO Continuous Gen 
VI outside of a loop (that is, to call it only once). But if you do, leave the iteration and 
clear generation inputs unwired.

The first call to the AO Write VI sets allow regeneration to TRUE, so that the same data 
can be generated more than once. If you change allow regeneration to FALSE, you must 
write new data fast enough that new data is always available to be generated. If you do 
not fill the buffer fast enough, you get a regeneration error. To correct this problem, 
decrease the update rate, increase the buffer size, increase the amount of data written 
each time, or write data more often. 

(Windows) If you set allow regeneration to FALSE, and your device has an analog output 
FIFO, your buffer size must be at least twice as big as your FIFO.

If an error occurs, the VI calls the AO Clear VI to clear any generation in progress, then 
passes the unmodified error information to error out. If an error occurs inside the AO 
Continuous Gen VI, the AO Clear VI clears any generation in progress and passes its 
error information out. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges and output 
limits available with your DAQ device. 

Note: The AO Continuous Gen VI uses an uninitialized shift register as local 

memory to remember the taskID of the output operation between calls. You 

normally use this VI in one place on a diagram, but if you use it in more 

than one place, the multiple instances of the VI share the same taskID. All 

calls to this VI configure, write data, or clear the same generation. 

Occasionally, you may want to use this VI in multiple places on the 

diagram but have each instance refer to a different taskID (for example, 

when you want to generate waveforms with two devices simultaneously). 

Save a copy of this VI with a new name (for example, AO Continuous Gen 

R) and make your new VI reentrant. 

AO Waveform Gen
Generates a timed, simple-buffered or circular-buffered waveform for the given output 
channels at the specified update rate. Unless you perform indefinite generation, the VI 
returns control to the LabVIEW diagram only when the generation completes.
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If you place this VI in a loop to generate multiple waveforms with the 
same group of channels, wire the iteration terminal to the VI iteration 
input. 

Note: If your program iterates more than 231–1 times, do not wire this VI 

iteration terminal to the loop iteration terminal. Instead, set the iteration 

value to 0 on the first loop, then to any positive value on all other iterations. 

The VI reconfigures and restarts if iteration ≤0.

On iteration 0, the VI calls the AO Config VI to configure the channel group and 
hardware and to allocate a buffer for the data. On each iteration, the VI calls the AO Write 
VI to write the data into the buffer, then the AO Start VI to set the update rate and start 
the generation. If you call the AO Waveform Gen VI only once, you can leave iteration 
unwired. The iteration parameter defaults to 0, which tells the VI to configure the device 
before starting the waveform generation.

If an error occurs, the VI calls the AO Clear VI to clear any generation in progress, then 
passes the error information unmodified through error out. If an error occurs inside the 
AO Waveform Gen VI, it clears any generation in progress and passes its error 
information out. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, output limits, 
and scanning order available with your DAQ device. 

Note: The AO Waveform Gen VI uses an uninitialized shift register as local 

memory to remember the taskID of the output operation between calls. You 

normally use this VI in one place on your diagram, but if you use it in 

multiple places, all instances of the VI share the same taskID. All calls to 

this VI configure, write data, or clear the same generation. Occasionally, 

you may want to use this VI in multiple places on the diagram, but have 

each instance refer to a different taskID. Save a copy of this VI with a new 

name (for example, AO Waveform Gen R) and make the new VI reentrant. 

AO Write One Update
Writes a single voltage value to each of the specified analog output channels.

iteration
terminal



Chapter 20 Analog Output Utility VIs

© National Instruments Corporation 20-5 LabVIEW Function and VI Reference Manual

The AO Write One Update VI performs an immediate, untimed update 
of a group of one or more channels. If you place the VI in a loop to write 
more than one value to the same group of channels, wire the iteration 
terminal to the VI iteration input. 

Note: If your program iterates more than 231–1 times, do not wire this VI 

iteration terminal to the loop iteration terminal. Instead, set the iteration 

value to 0 on the first loop, then to any positive value on all other iterations. 

The VI reconfigures and restarts if iteration ≤0.

On iteration 0, the VI calls the AO Config VI to configure the channel group and 
hardware, then calls the AO Single Update VI to write the voltage to the output channels. 
On future iterations, the VI calls only the AO Single Update VI, avoiding unnecessary 
configuration. If you call the AO Write One Update VI only once to write a single value 
to each channel, leave the iteration input unwired. Its default value of 0 tells the VI to 
perform the configuration before writing any data.

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, output limits, 
and scanning order available with your DAQ device. 

Note: The AO Write One Update VI uses an uninitialized shift register as local 

memory to remember the taskID for the group of channels when calling 

between VIs. Usually, this VI appears in one place on your diagram. 

However, if you use it in more than one place, the multiple instances of the 

VI share the same taskID. All calls to this VI configure or write data to the 

same group. If you want to use this VI in more than one place on your 

diagram, and want each instance to refer to a different taskID (for 

example, to write data with two devices at the same time), you should save 

a copy of this VI with a new name (for example, AO Write One Update R) 

and make your new VI reentrant. 

iteration
terminal
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Chapter

21Advanced Analog Output VIs

This chapter contains reference descriptions of the Advanced Analog 
Output VIs. These VIs are the interface to the NI-DAQ software and are 
the foundation of the Easy, Utility and Intermediate Analog Output VIs.

You can access the Advanced Analog Output palette by choosing 
Functions»Data Acquisition»Analog Output»Advanced Analog 
Output. The icon that you must select to access the Advanced Analog 
Output VIs is on the bottom row of the Analog Output palette, as shown 
below.

Advanced Analog Output VI Descriptions

The following Advanced Analog Output VIs are available.

AO Buffer Config
Allocates memory for an analog output buffer. If you are using interrupts, you can 
allocate a series of analog output buffers and assign them to a group by calling the AO 
Buffer Config VI multiple times. Each buffer can have its own size. If you are using 
DMA, you may allocate only one buffer. 

Note: (Macintosh) If you are using the NB-A2100 with the NB-DMA2800, the AO 

Buffer Write VI restricts the amount of data that can be put into the VI to 

one-half of the buffer size specified in the AO Buffer Config VI.

Advanced
Analog Output VIs
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Use the number you assign to the buffer with this VI when you need to refer to this buffer 
for other VIs.

AO Buffer Write
Writes analog output data to buffers created by the AO Buffer Config VI. 

You wire the new data to one of three inputs—voltage/current data, binary data, or 
DSP memory handle. The VI searches these inputs in that order for the first array with 
a length greater than zero. The VI then writes the data from this array to the output buffer. 
The length of the voltage/current data or binary data arrays determines the number of 
updates the VI writes. If DSP memory handle points to the source of the data, updates 
to write must indicate how many updates the VI is to write. When no data is wired, this 
VI is still useful for reporting update progress information.

The total number of updates written to a buffer before you start it can be less than the 
number of updates you allocated the buffer to hold when you called the AO Buffer Config 
VI. LabVIEW generates only the updates written to the buffer.
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AO Clock Config
Configures an update or interval clock for analog output.

Refer to Appendix A, DAQ Hardware Capabilities, for the clocks available with your 
DAQ device. 

You can express clock rates three ways—with ticks per second, seconds per tick, or the 
three timebase parameters. The VI searches these parameters in that order and expresses 
clock rates on the first parameter with a wired valid input. When you configure an update 
clock, one tick equals one update. When you configure the interval clock, one tick equals 
one interval.

AO Control
Starts, pauses, resumes, and clears analog output tasks.

AO Group Config
Assigns a list of analog output channels to a group number and produces the taskID that 
all the other analog output VIs use.

Refer to Appendix A, DAQ Hardware Capabilities, for the channels available with your 
DAQ device. 
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AO Hardware Config
Configures the reference voltage level, output polarity, and the unit of measure for the 
data of a given channel (volts or milliamperes). This VI always returns the current 
settings for all the channels in the group. 

Refer to Appendix A, DAQ Hardware Capabilities, for the channel ranges, and output 
limits available with your DAQ device. 

AO Parameter
Sets miscellaneous parameters associated with the Analog Output operation of the 
devices that are not covered with other Analog Output VIs.

AO Single Update
Performs an immediate update of the channels in the group.
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AO Trigger and Gate Config (Windows)
Configures the trigger and gate conditions for analog output operations on E Series 
devices 5411 devices.
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Chapter

22Easy Digital I/O VIs

This chapter describes the Easy Digital I/O VIs, which perform simple 
digital I/O operations. You can run these VIs from the front panel or use 
them as subVIs in basic applications.

Access the Easy Digital I/O VIs by choosing Functions»Data 
Acquisition»Digital I/O. 

The Easy Digital I/O VIs are the VIs on the top row of the Digital I/O 
palette. For examples of how to use the Easy Digital I/O VIs, open the 
example library by opening examples\daq\digital\digital.llb.

Note: You must define the high and low limit settings for your board when using 

the Easy I/O DAQ VIs.

Easy Digital I/O Descriptions

The following Easy Digital I/Os are available.
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Read from Digital Line 
Reads the logical state of a digital line on a port that you configure.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note: When you call this VI on a digital I/O port that is part of an 8255 PPI when 

your iteration terminal is left at 0, the 8255 PPI goes through a 

configuration phase, where all the ports within the same PPI chip get reset 

to logic low, regardless of the data direction. The data direction on other 

ports, however, is maintained. To avoid this effect, connect a value other 

than 0 to the iteration terminal once you have configured the desired ports.

Read from Digital Port 
Reads a digital port that you configure.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note: When you call this VI on a digital I/O port that is part of an 8255 PPI when 

your iteration terminal is left at 0, the 8255 PPI goes through a 

configuration phase, where all the ports within the same PPI chip get reset 

to logic low, regardless of the data direction. To avoid this effect, connect 

a value other than 0 to the iteration terminal once you have configured the 

desired ports.
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Write to Digital Line 
Sets the output logic state of a digital line to high or low on a digital port that you specify.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note: When you call this VI on a digital I/O port that is part of an 8255 PPI when 

your iteration terminal is left at 0, the 8255 PPI goes through a 

configuration phase, where all the ports within the same PPI chip get reset 

to logic low, regardless of the data direction. The data direction on other 

ports, however, is maintained. To avoid this effect, connect a value other 

than 0 to the iteration terminal once you have configured the desired ports.

Write to Digital Port 
Outputs a decimal pattern to a digital port that you specify.

If an error occurs, a dialog box appears, giving you the option to stop the VI or continue.

Note: When you call this VI on a digital I/O port that is part of an 8255 PPI when 

your iteration terminal is left at 0, the 8255 PPI goes through a 

configuration phase, where all the ports within the same PPI chip get reset 

to logic low, regardless of the data direction. The data direction on other 

ports, however, is maintained. To avoid this effect, connect a value other 

than 0 to the iteration terminal once you have configured the desired ports.
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Chapter

23Intermediate Digital I/O VIs

This chapter describes the Intermediate Digital I/O VIs. These VIs are 
single VI solutions to common digital problems. 

For example, the DIO Single Read/Write VI is a single VI solution for 
non-buffered reads and writes to the ports in your group. The DIO 
Single Read/Write VI works with any device with digital ports. 

You combine the other VIs—DIO Config, DIO Start, DIO Read, DIO 
Write, DIO Wait, and DIO Clear—to build more demanding 
applications using buffered digital reads and writes. Your device must 
support handshaking to use this group of VIs, with the exception of the 
DIO Single Read/Write VI. 

All the VIs described in this chapter are built from the fundamental 
building block layer, the advanced-level VIs. 

You can access the Intermediate Digital I/O VIs by choosing 
Functions»Data Acquisition»Digital I/O. The Intermediate Digital I/O 
VIs are the VIs on the second and third rows of the Digital palette, as 
shown below.

Intermediate
Digital I/O VIs
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Handling Errors

LabVIEW makes error handling easy with the Intermediate Digital I/O 
VIs. Each intermediate-level VI has an error in input cluster and an 
error out output cluster. The clusters contain a Boolean that indicates 
whether an error occurred, the error code for the error, and the name of 
the VI that returned the error. If error in indicates an error, the VI 
returns the error information in error out and does not continue to run. 

Note: The DIO Clear VI is an exception to this rule—this VI always clears the 

acquisition regardless of whether error in indicates an error.

When you use any of the Intermediate Digital I/O VIs in a While Loop, 
you should stop the loop if the status in the error out cluster reads 
TRUE. If you wire the error cluster to the General Error Handler VI, the 
VI deciphers the error information and describes the error to you. 

The General Error Handler VI is in Functions»Time and Function in 
LabVIEW. For more information on this VI, refer to your LabVIEW 

User Manual. 

Intermediate Digital I/O VI Descriptions

The following Intermediate Digital I/O VIs are available.

DIO Clear 
Calls the Digital Group Buffer Control VI to halt a transfer and clear the group.

DIO Config
The DIO Config VI calls the advanced Digital Group Config VI to assign a list of ports 
to the group, establish the group's direction, and produce the taskID. The VI then calls 
the Digital Mode Config VI to establish the handshake parameters, which only affect the 
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operation of the DIO-32 devices. Finally, the VI calls the Digital Buffer Config VI to 
allocate a buffer to hold the scans as they are read or the updates to be written. 

Refer to Appendix A, DAQ Hardware Capabilities, for the ports and directions available 
with your DAQ device. 

DIO Read 
Calls the Digital Buffer Read VI to read data from the internal transfer buffer and returns 
the data read in pattern.

DIO Single Read/Write
Reads or writes digital data to the ports specified in the port list. This single VI configures 
and transfers data. When you use this VI in a loop, wire the iteration counter to the 
iteration input so that port configuration takes place only once. 
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DIO Start 
Starts a buffered digital I/O operation. This VI calls the Digital Clock Config VI to set 
the clock rate if the internal clock produces the handshake signals, and then starts the data 
transfer by calling the Digital Buffer Control VI.

DIO Wait
Waits until the digital buffered input or output operation completes before returning. For 
input, the VI detects completion when the acquisition state returned by the Digital Buffer 
Read VI finishes with or without backlog. For output, the VI detects completion when 
the generation complete indicator of the DIO Write VI is TRUE.

Refer to Appendix A, DAQ Hardware Capabilities, for the handshake modes available 
with your DAQ device. 

DIO Write
Calls the Digital Buffer Write VI to write to the internal transfer buffer. 

(Macintosh) You must fill the buffer with data before you use the DIO Start VI to begin the 
digital output operation. You can call the DIO Write VI after the transfer begins to 
retrieve status information.
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24Advanced Digital I/O VIs

This chapter describes the Advanced Digital I/O VIs, which include the 
digital port and digital group VIs. You use the digital port VIs for 
immediate reads and writes to digital lines and ports. You use the digital 
group VIs for immediate, handshaked, or clocked I/O for multiple ports. 
These VIs are the interface to the NI-DAQ software and the foundation 
of the Easy and Intermediate Digital I/O VIs.

You can access the Advanced Digital I/O palette by choosing 
Functions»Data Acquisition»Digital I/O»Advanced Digital I/O. The 
icon that you must select to access the Advanced Digital I/O VIs is on 
the bottom row of the Digital I/O palette, as shown below.

Digital Port VI Descriptions

The digital port VIs perform immediate digital reads and writes only. 

Advanced
Digital I/O VIs
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DIO Port Config
Establishes a port configuration. You can use the taskID that this VI returns only in 
digital port VIs. 

Refer to Appendix A, DAQ Hardware Capabilities, for the ports and directions available 
with your DAQ device. 

Table  24-1 shows the physical port widths you can use. 

Table 24-1.  Physical Port Widths of Digital Ports

Device Ports Physical Port Width

MIO-16L/H 0, 1 4 bits

AT-MIO-16D 0, 1
2, 3, 4

4 bits
8 bits

Most E Series Devices 0 8 bits

AT-MIO-10DE-10 0, 2, 3, 4 8 bits

AT-AO-6/10 0, 1 4 bits

PC-TIO-10, NB-TIO-10, AO-2DC Devices 0, 1 8 bits

PC-LPM-16, PC-LPM-16PnP, 
DAQCard-700

0, 1 8 bits (cannot be combined)

DAQCard-500, 516 Devices 0, 1 4 bits

Lab and 1200 Series Devices, DIO-24 
Devices

0, 1, 2 8 bits

DIO-96 Devices 0 through 11 8 bits

AT-DIO-32F, NB-DIO-32F 0 through 3 8 bits

4 3 bits (cannot be combined)
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DIO Port Read
Reads the port identified by taskID and returns the pattern read in pattern.

DIO Port Write
Writes the value in pattern to the port identified by taskID.

Digital Group VI Descriptions

The digital group VIs perform immediate, handshaked, or clocked digital I/O. 

Digital Buffer Config
Allocates memory for a digital input or output buffer. 

DIO32HS

SCXI-1160 0 16 bits 

SCXI-1161 0 8 bits

SCXI-1162, SCXI-1162HV, SCXI-1163, 
SCXI-1163R

0 32 bits

Table 24-1.  Physical Port Widths of Digital Ports (Continued)

Device Ports Physical Port Width
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Digital Buffer Control
 Starts an input or output operation.

Digital Buffer Read
Returns digital input data from the internal data buffer. 

Digital Buffer Write
Writes digital output data to the buffer created by the Digital Buffer Config VI. The write 
always begins at the write mark. After a write, the write mark points to the update 
following the last update written.

(Macintosh) Fill the buffer with data before you use the Digital Buffer Control VI to begin 
the digital output operation. You can call the Digital Buffer Write VI after the transfer 
begins to retrieve status information.

The total number of updates written to a buffer before you start it can be less than the 
number of updates you allocated the buffer to hold when you called the Digital Buffer 
Config VI. The VI generates only the updates written to the buffer.
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Digital Clock Config
Configures a DIO-32 device to produce handshake signals based on the output of a clock 
for timed digital I/O.

Refer to Appendix A, DAQ Hardware Capabilities, for the clocks available with your 
DAQ device. 

The following example illustrates how to use the three timebase parameters to specify a 
clock rate. Assume these parameters have the following settings:

timebase source: 1
timebase signal: 1,000,000.0 Hz
timebase divisor: 25

In this case, the ticks per second rate is 1,000,000.0 divided by 25, so LabVIEW updates 
the digital group 40,000 times per second.

Digital Group Config
Defines a digital input or output group. You can use the taskID this VI returns only in 
the digital group VIs.

Refer to Appendix A, DAQ Hardware Capabilities, for the ports and directions available 
with your DAQ device. 

Note: The same port cannot belong to two different groups. If you configure a 

group to use a specified port, that port must be one that is not already 

defined in another group or you will get an error.

MIO devices (except for the AT-MIO-16D and the AT-MIO-16DE-10), as well as the 
NB-TIO-10, LPM devices, DAQCard-500, 516 devices, DAQCard-700, PC-TIO-10, 
AO-2DC devices, PC-OPDIO-16, and AT-AO-6/10, do not allow handshaking. The 
digital port VIs are more appropriate for these devices. The AT-MIO-16D and 
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AT-MIO-16DE-10 do not allow handshaking if port list includes ports 0, 1, and/or 4. The 
DIO-96 devices do not allow handshaking if port list includes ports 2, 5, 8, and/or 11. 
The DIO-24 and Lab and 1200 Series devices do not allow handshaking if port list 
includes port 2. The DIO-32F allows handshaking for the following configurations only:

• A group containing any one port

• A group containing ports 0 and 1, or ports 2 and 3, in that order

• A group containing ports 0, 1, 2, and 3, in that order

Digital Mode Config
Configures the handshaking characteristics for DIO-32 devices.

Refer to Appendix A, DAQ Hardware Capabilities, for the handshake modes available 
with your DAQ device. 

DIO Parameter
Configures and retrieves miscellaneous parameters associated with digital input and 
output that are not configured by other DIO VIs.
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Table 24-2 lists device specific parameters and legal ranges for devices.

Digital Single Read
Reads the ports that belong to the group identified by taskID and returns the 
patterns read.

Digital Single Write
Writes the data in pattern array to the ports that belong to the group identified by 
taskID.

Digital Trigger Config
Configures the trigger condition for starting and/or stopping a digital pattern generation 
operation. This VI is only valid when the Digital Clock Config VI has its handshake 
source parameter set to 1 or 4 (internal or external pattern generation w/ external clock).

Table 24-2.  Device specific parameters and legal ranges for devices

Device
Parameter

Name Support
Setting
Possible

Input/output
you should

use
Legal
Values

Default
Value

VXI-DI
O-128

0: Input 
Port Logic 
Threshold

per input 
port

yes channels, 
float in, float 
out

N/A N/A
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The Easy Counter VIs perform simple counting operations. You can run 
these VIs from the front panel or use them as subVIs in basic 
applications.

You can access the Easy Counter VIs by choosing Functions»Data 
Acquisition»Counter. The Easy Counter VIs are the VIs on the top row 
of the Counter palette. 

This chapter describes the high-level VIs for programming counters on 
the MIO, TIO, and other devices with the Am9513 or DAQ-STC 
counter/timer chips. These VIs call the Intermediate Counter VIs to 
generate a single delayed TTL pulse, a finite or continuous train of 
pulses, and to measure the frequency, pulse width, or period of a 
TTL signal. 

Note: These VIs do not work with Lab and 1200 Series devices, DAQCards, and 

other devices that have the 8253 chip. Use the intermediate-level ICTR 

Control for those devices. Refer to Chapter 26, Intermediate Counter VIs 

for more information on the ICTR Control VI.

Some of these VIs use other counters in addition to the one specified. 
In this case, a logically adjacent counter is chosen, which is referred to 
as counter+1 when it is the adjacent, logically higher counter and 
counter–1 when it is the adjacent, logically lower counter. 

For a device with the Am9513 chip, if the counter is 1, then counter+1 
is counter 2 and counter–1 is counter 5. 
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See the Adjacent Counters VI described in Chapter 26, Intermediate 

Counter VIs, for more information.

For examples of how to use the Easy Counter VIs, open the example 
library by opening examples\daq\counter\counter.llb. 

Easy Counter VI Descriptions

The following Easy Counter VIs are available.

Count Events or Time
Configures one or two counters to count external events or elapsed time. An external 
event is a high or low signal transition on the specified SOURCE pin of the counter.

To count events, set the event source/timebase to 0.0 and connect the signal you want to 
count to the SOURCE pin of the counter. To count time, set this control to the timebase 
frequency you want to use.

Generate Delayed Pulse
Configures and starts a counter to generate a single pulse with the specified delay and 
pulse width on the counter’s OUT pin. A single pulse consists of a delay phase (phase 1), 
followed by a pulse phase (phase 2), and than a return to the phase 1 level. If an internal 
timebase is chosen, the VI selects the highest resolution timebase for the counter to 
achieve the desired characteristics. If an external timebase signal is chosen, the user 
indicates the delay and width as cycles of that signal. Execute the Counter Start VI with 
this VI’s taskID to generate another pulse. You can optionally gate or trigger the pulse 
with a signal on the counter’s GATE pin.
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Generate Pulse Train
Configures the specified counter to generate a continuous pulse train on the counter's 
OUT pin, or to generate a finite-length pulse train using the specified counter and an 
adjacent counter. The signal has the prescribed frequency, duty cycle, and polarity. Each 
cycle of the pulse train consist of a delay phase (phase 1) followed by a pulse phase 
(phase 2).

This VI uses only the specified counter to generates a continuous pulse. For a 
finite-length pulse, the VI also uses counter–1 to generate a minimum-delayed pulse to 
gate counter. To generate another pulse train, execute the intermediate Counter Start VI 
with the taskIDs supplied by this VI. To stop a continuous pulse train, execute the 
intermediate Counter Stop VI or execute this counter again to generate one, short pulse. 
You must externally wire counter–1’s OUT pin to counter's GATE pin for a finite-length 
pulse train. You can optionally gate or trigger the start of the train with a signal on the 
counter–1’s GATE pin.

Note: A pulse train consists of a series of delayed pulses, where phase 1 or the 

first phase of each pulse is the inactive state of the output (low for a high 

pulse) and the phase 2 of the second phase is the pulse itself. Refer to the 

following illustration of a high polarity pulse train.

Measure Frequency
Measures the frequency of a TTL signal on the specified counter’s SOURCE pin by 
counting positive edges of the signal during a specified period of time. In addition to this 
connection, you must wire the counter’s GATE pin to the OUT pin of counter–1. This VI 
is useful for relatively high frequency signals, when many cycles of the signal occur 
during the timing period. Use the Measure Pulse Width or Period VI for relatively low 
frequency signals. Keep in mind that period(s) = 1/frequency (Hz). 
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This VI configures the specified counter and counter+1 (optional) as event counters to 
count rising edges of the signal on counter's SOURCE pin. The VI also configures 
counter–1 to generate a minimum-delayed pulse to gate the event counter, starts the event 
counter and then the gate counter, waits the expected gate period, and then reads the gate 
counter until its output state is low. Next the VI reads the event counter and computes the 
signal frequency (number of events/actual gate pulse width) and stops the counters. 
You can optionally gate or trigger the operation with a signal on counter–1’s GATE pin.

Measure Pulse Width or Period
Measures the pulse width (length of time a signal is high or low) or period (length of time 
between adjacent rising or falling edges) of a TTL signal connected to the counter’s 
GATE pin. The method used gates an internal timebase clock with the signal being 
measured. This VI is useful in measuring the period or frequency (1/period) of relatively 
low frequency signals, when many timebase cycles occur during the gate. Use the 
Measure Frequency VI to measure the period or frequency of relatively high frequency 
signals.

The VI iterates until a valid measurement, timeout, or counter overflow occurs. A valid 
measurement exists when count ( 4 without a counter overflow. If counter overflow 
occurs, lower the timebase.   If you start a pulse width measurement during the phase you 
want to measure, you get an incorrect low measurement. Therefore, make sure the pulse 
does not occur until after the counter is started. This restriction does not apply to period 
measurements.
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26Intermediate Counter VIs

This chapter describes Intermediate Counter VIs you can use to 
program counters on MIO, TIO, and other devices with the Am9513 or 
DAQ-STC counter chips. These VIs call the Advanced Counter VIs to 
configure the counters for common operations and to start, read, and 
stop the counters. You can configure these VIs to generate single pulses 
and continuous pulse trains, to count events or elapsed time, to divide 
down a signal, and to measure pulse width or period. The Easy Counter 
VIs call these Intermediate VIs for several pulse generation, counting, 
and measurement operations. 

This chapter also describes the ICTR Control VI that you use with Lab 
and 1200 Series and PC-LPM devices that contain the 8253 
counter/timer chip.

You can access the Intermediate Counter VIs by choosing 
Functions»Data Acquisition»Counter. The Intermediate Counter VIs 
are the VIs on the second row of the Counter palette, as shown below.

Handling Errors

LabVIEW makes error handling easy with the Intermediate Counter 
VIs. Each intermediate-level VI has an error in input cluster and an 
error out output cluster. The clusters contain a Boolean that indicates 
whether an error occurred, the error code for the error, and the name of 
the VI that returned the error. If error in indicates an error, the VI 
returns the error information in error out and does not continue to run. 

Intermediate Counter VIs
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When you use any of the Intermediate Counter VIs in a While Loop, 
you should stop the loop if the status in the error out cluster reads 
TRUE. If you wire the error cluster to the General Error Handler VI, the 
VI deciphers the error information and describes the error to you. 

The General Error Handler VI is in Functions»Utilities in LabVIEW. 
For more information on this VI, refer to your LabVIEW User Manual. 

Intermediate Counter VI Descriptions

The following Intermediate Counter VIs are available.

Adjacent Counters
This VI identifies the counters logically adjacent to a specified counter of an MIO or TIO 
device. It also returns the counter size (number of bits) and the timebases.

Devices with the Am9513 chip have one or two sets of five, 16-bit counters (1–5, 6–10) 
that can be connected in a circular fashion. For example, the next higher counter to 
counter 1 (called counter+1) is 2 and the next lower one (called counter–1) is 5. 

Continuous Pulse Generator Config
Configures a counter to generate a continuous TTL pulse train on its OUT pin.

The signal is created by repeatedly decrementing the counter twice, first for the delay to 
the pulse (phase 1), then for the pulse itself (phase two). The VI selects the highest 
resolution timebase to achieve the desired characteristics. You can optionally gate or 
trigger the operation with a signal on the counter’s GATE pin. Call the Counter Start VI 
to start the pulse train or to enable it to be gated.
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Counter Read
Reads the counter or counters identified by taskID.

The VI is designed to read one counter or two concatenated counters of an Am9513 
counter chip or to read one counter of a DAQ-STC counter chip. 

Counter Start
Starts the counters identified by taskID.

Counter Stop
Stops a count operation immediately or conditionally on an input error.

Delayed Pulse Generator Config
Configures a counter to generate a single, delayed TTL pulse on its OUT pin.

The signal is created by decrementing the counter twice, first for the delay to the pulse 
(called phase 1), then for the pulse itself (phase 2). If an internal timebase is chosen, the 
VI selects the highest resolution timebase for the counter to achieve the desired 
characteristics. If an external timebase signal is chosen, the user designates the delay and 
width as cycles of that signal. You can optionally gate or trigger the operation with a 
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signal on the counter’s GATE pin. Call the Counter Start VI to start the pulse or enable 
it to be gated.

Down Counter or Divider Config
Configures the specified counter to count down or divide a signal on the counter’s 
SOURCE pin or on an internal timebase signal using a count value called the timebase 
divisor. The result is that the signal on the counter’s OUT pin is equal to the frequency 
of the input signal/timebase divisor.

You can use this VI to generate finite pulse trains by enabling a continuous pulse 
generator until the desired number of pulses has occurred. You can also use it in place of 
the Continuous Pulse Generator Config VI to generate a train of strobe or trigger signals.

Event or Time Counter Config
Configures one or two counters to count edges in the signal on the specified counter’s 
SOURCE pin or the number of cycles of a specified internal timebase signal.

When the internal timebase is used, this VI works like the Tick Count (ms) function but 
uses a hardware counter on the DAQ device with programmable resolution. You can 
optionally gate or trigger the operation with a signal on the counter’s GATE pin. Call the 
Counter Start VI to start the operation or enable it to be gated.
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Pulse Width or Period Meas Config
Configures the specified counter to measure the pulse width or period of a TTL signal 
connected to its GATE pin. 

The measurement is done by counting the number of cycles of the specified timebase 
between the appropriate starting and ending events. To accurately measure pulse width, 
the pulse must occur after the counter is started. Call the Counter Start VI to start the 
operation. You can also use this VI to measure the frequency of low frequency signals. 
For more accurate measurements, use a faster timebase.

ICTR Control
Controls counters the following devices that use the 8253 chip:

• Lab and 1200 Series devices, DAQCard-500, and DAQCard 700

• (Windows) LPM devices, 516 devices

In setup mode 0, as shown in Figure 26-1, the output becomes low after the mode set 
operation, and the counter begins to count down while the gate input is high. The output 
becomes high when counter reaches the TC (that is, when the counter decreases to 0) and 
stays high until you set the selected counter to a different mode.

Figure 26-1.  

In setup mode 1, as shown in Figure 26-2, the output becomes low on the count following 
the leading edge of the gate input and becomes high on TC.
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Figure 26-2.  

In setup mode 2, as shown in Figure 26-3, the output becomes low for one period of the 
clock input. The count indicates the period between output pulses.

Figure 26-3.  

In setup mode 3, the output stays high for one-half of the count clock pulses and stays 
low for the other half. Refer to Figure 26-4.

Figure 26-4.  

In setup mode 4, as in Figure 26-5, the output is initially high, and the counter begins to 
count down while the gate input is high. On TC, the output becomes low for one clock 
pulse, then becomes high again.

Figure 26-5.  

Setup mode 5 is similar to mode 4, except that the gate input triggers the count to start. 
See Figure 26-6 for an illustration of mode 5.

Figure 26-6.  

See the 8253 Programmable Interval Timer data sheet in your Lab device user manual for 
details on these modes and their associated timing diagrams.
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Pulse Width or Period Meas Config
Configures the specified counter to measure the pulse width or period of a TTL signal 
connected to its GATE pin. 

The measurement is done by counting the number of cycles of the specified timebase 
between the appropriate starting and ending events. To accurately measure pulse width, 
the pulse must occur after the counter is started. Call the Counter Start VI to start the 
operation. You can also use this VI to measure the frequency of low frequency signals. 
For more accurate measurements, use a faster timebase.

Wait+ (ms)
Calls the Wait (ms) function only if no input error exists. 

This VI is useful when you want to wait between calls to I/O subVIs that use the error 
I/O mechanism; without it you need to use a Sequence Structure to control the execution 
order. 



© National Instruments Corporation 27-1 LabVIEW Function and VI Reference Manual

Chapter

27Advanced Counter VIs

This chapter describes the VIs that configure and control hardware 
counters. You can use these VIs to generate variable duty cycle square 
waves, to count events, and to measure periods and frequencies. 

You can access the Advanced Counter palette by choosing 
Functions»Data Acquisition»Counter»Advanced Analog Input. The 
icon that you must select to access the Advanced Counter VIs is on the 
bottom row of the Counter palette, as shown below.

Note: An important basic data acquisition concept is to use only the inputs that 

you need on each VI. Leave the rest of the inputs unwired, and LabVIEW 

sets them to their default values. In the Help window, the most important 

terminals are labeled in bold, and the least commonly used are in brackets. 

Values given in parentheses are default values.

The following lists the type of counter chips that your device must have 
to work with your version of LabVIEW:

• Am9513, 8253, or DAQ-STC Counter Chip

• DAQ-STC Counter Chip

The ICTRControl VI works with devices that contain the 8253 counter 
chip. 

Advanced 
Counter VIs
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Refer to Table 27-1 for the counter chips used with the various devices.

Advanced Counter VI Descriptions

The following Advanced Counter VIs are available.

CTR Buffer Config
Allocates memory where LabVIEW stores counter data. The CTR Buffer Config VI also 
configures the specified group to perform buffered counter operations instead of the 
normal single point operations.

CTR Buffer Read
Returns data from the buffer allocated by CTR Buffer Config.

Table 27-1.  Counter Chips and Their Available DAQ Devices

Counter 
Chip

DAQ Device

Am9513 AT-MIO-16, AT-MIO-16D, AT-MIO-16F-5, 
AT-MIO-16X, AT-MIO-64F-5, PC-TIO-10, All 
AO-2DC Devices, EISA-A2000, NB-MIO-16, 
NB-MIO-16X, NB-DMA-8-G, NB-DMA2800, 
NB-TIO-10, NB-A2000

DAQ-STC All E Series Devices, 5102 Devices

8253 All Lab and 1200 Series Devices, DAQCard-500, 
DAQCard-700, LPM Devices, 516 Devices
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Note: Incremental reading from the count buffer is not supported at this time. 

Therefore, you must allow the buffer to fill before you read from it and then 

you must read all of it. Until incremental reading and circular use of the 

buffer are implemented, leave number to read unwired (with a value

of –1) or set it to the value of counts per buffer.

CTR Group Config
Collects one or more counters into a group. You can use counter groups containing more 
than one counter to start, stop, or read multiple counters simultaneously. DAQ-STC 
devices do not currently support multiple counter groups.

Table 27-2 contains valid counter numbers for devices supported by this VI.

Table 27-2.  Valid Counter Numbers for CTR Group Config Devices

Device Type Valid Numbers

DAQ-STC Devices 0 and 1

Am9513 MIO Devices 1, 2, and 5

NB-DMA-8-G, NB-DMA2800 1 through 5

PC-TIO-10, NB-TIO-10 1 through 10

EISA-A2000, NB-A2000 2
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CTR Mode Config
Configures one or more counters for a designated counter operation and selects the 
source signal, gating mode, and output behavior on terminal count (TC).

This VI does not start the counters. Use CTR Control VI with control code 1 (Start) to 
start the counters. If you are using a counter for pulse generation, you do not have to call 
this VI unless you want to change the gate mode or output behavior.

Modes 3, 4, and 6 can be used with or without buffered counting. Mode 7 must be used 
with buffered counting. With buffered counting, call the CTR Buffer Config VI before or 
after the CTR Mode Config VI and before the CTR Control VI to start the operation, then 
call the CTR Buffer Read VI to read the buffered count values. With buffered or 
unbuffered operations, call the CTR Control VI to read the most recently acquired, 
unbuffered count value. 

Unless otherwise stated, the following figures show timing and counter values for 
operations in which the gate mode is set to high-level or rising-edge and the source edge 
is set to rising-edge.

Use mode 1 to reset all the CTR Mode Config VI parameters to their default settings. This 
mode overrides any conflicting parameter settings.

Use mode 2 to count transitions of the selected signal and to stop at the first TC. The 
overflow status bit is set at TC. Use the CTR Control VI to read the overflow status. This 
mode is available only with Am9513 devices. Mode 2 counting is unbuffered. 
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Figure 27-1 shows the count values you would read with this mode using three gate mode 
settings (gating off; high-level gating; and rising-edge gating). 

Figure 27-1.  Unbuffered Mode 2 and 3 Counting

Use mode 3 to count transitions of the selected signal continuously, rolling over at TC 
and then continuing on. Figure 27-1 shows unbuffered mode 3 counting. Figure 27-2 
illustrates a buffered mode 3 operation with rising-edge gating. This buffered operation 
is available only with DAQ-STC devices. With buffered mode 3 operation, LabVIEW 
stores the current count value into the buffer on each selected edge of the source signal.

Figure 27-2.  Buffered Mode 3 Counting

Use mode 4 with level gating to measure pulse width and with edge gating to measure the 
period of the selected gate signal. 

Note: For the following descriptions of pulse width measurements (modes 4, 6, 

and 7), a high pulse is defined simply as the high-level phase of a signal 

when gate mode is set to high-level gating. This definition differs from that 

of a high pulse using pulse generation (mode 5), which consists of a low 
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level delay phase followed by a high level pulse phase. (Low pulses are 

similarly defined by switching the words high and low.)

To measure pulse width, set the gate mode to high or low level. Figure 27-3 shows 
unbuffered mode 4 pulse width measurements. You can start an Am9513 counter at any 
time, and it will measure pulses until you stop it. If you start it in the middle of the pulse 
you want to measure (for example, during a high pulse for high-level gating), LabVIEW 
returns a short count for that measurement. You must start a DAQ-STC counter only 
when the signal is in the opposite polarity from the selected gate level (for example, a 
low-level phase for high-level gating). Otherwise, the VI returns error number –10890. 
With unbuffered counting, the DAQ-STC stops counting after one measurement. Mode 
5 configures the counter for pulse generation. Use the CTR Pulse Config VI to specify 
the pulse you want to generate.

Figure 27-3.  Unbuffered Mode 4 High Pulse Width Measurement

Figure 27-4 shows the buffered mode 4 pulse width measurement, which is available only 
with DAQ-STC devices. The measured value is stored into the buffer at the end of each 
pulse. See mode 6 for another way to measure pulse width with a DAQ-STC device.

Figure 27-4.  Buffered Mode 4 Rising-Edge Pulse Width Measurement

To measure period, set the gate mode to rising or falling edge. Figure 27-5 shows 
unbuffered mode 4 pulse width measurement.

You may start either an Am9513 or a DAQ-STC counter at any time. The counter begins 
counting at the start of the next period. The Am9513 counter measures periods 
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continuously. With unbuffered counting, the DAQ-STC stops counting after one 
measurement.

Figure 27-5.  Unbuffered Mode 4 Rising-Edge Period Measurement

Figure 27-6 shows buffered mode 4 period measurement, which is available only with 
DAQ-STC devices. The measured value is stored into the buffer at the end of each period. 

Figure 27-6.  Buffered Mode 4 Rising-Edge Pulse Width Measurement

Use mode 5 to configure for pulse generation when you also need to configure the gate 
mode, output type, or output polarity to non-default values. Otherwise, avoid calling 
the CTR Mode Config VI and use only the CTR Pulse Config VI for pulse generation. 
See the CTR Pulse Config VI more additional information about this operation.

Use mode 6 with level gating to measure the pulse width of the selected signal. This mode 
is available only with DAQ-STC devices. Mode 6 differs from mode 4 in that the 
measurement of a high (low) pulse does not begin until the first falling (rising) edge of 
the signal after you start the counter. If you use unbuffered counting, the counter 
continues to measure pulses until you call the CTR Control VI to read the most recently 
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measured value, at which time the counter stops. Unbuffered mode 6 counting is 
illustrated in Figure 27-7.

Figure 27-7.  Unbuffered Mode 6 High Pulse Width Measurement

With buffered mode 6 counting, the measured value is stored into the buffer at the end of 
each pulse, as illustrated with Figure 27-8. Call the CTR Buffer Read VI to read the 
values.

Figure 27-8.  Buffered Mode 6 High Pulse Width Measurement (Count on Rising Edge of Source)

Use mode 7 to measure every phase of the selected signal using buffered counting. This 
mode is available only with DAQ-STC devices. The count value is stored in the buffer 
on each low-to-high and high-to-low transition. Use the CTR Buffer Read VI to read the 
values. To measure period with this mode, sum successive pairs of signals. To measure 
phase, use every other value. LabVIEW ignores the value of gate mode with mode 7, 
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which means that you cannot tell whether the first measurement starts at a rising or falling 
edge.

Figure 27-9.  Buffered Mode 7 Semi-Period Measurement

Table 27-3 shows the legal values and default settings for timebase signal. A value of -1 
tells LabVIEW to use the default settings. When the table says counter, it refers to the 
counter being configured. If there are multiple counters, LabVIEW configures each 
counter successively.



Chapter 27 Advanced Counter VIs

LabVIEW Function and VI Reference Manual 27-10 © National Instruments Corporation

Refer to Table 27-3 to determine what is the next higher or lower consecutive counter.

CTR Pulse Config
Specifies the parameters for pulse generation. This VI configures the counters but does 
not start them. Use the CTR Control VI with control code 1 (Start) to produce the pulse.

Table 27-3.  Adjacent Counters.

Device
Type

Next
Lower

Counter Counter

Next
Higher

Counter

Am9513

5 1 2

1 2 3

2 3 4

3 4 5

4 5 1

10 6 7

6 7 8

7 8 9

8 9 10

9 10 6

DAQ-STC
1 0 1

0 1 0
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Use this VI to specify the characteristics of your pulses. You can also use the CTR Mode 
Config VI to set your desired gate modes, output polarity, and output type. Use the CTR 
Pulse Config VI to specify timebase source and timebase signal for pulse generation, 
because LabVIEW ignores these values specified in the CTR Mode Config VI. 

CTR Control
Controls and reads groups of counters. Control operations include starting, stopping, and 
setting the output state.

ICTRControl
Controls counters on devices that use the 8253 chip (Lab and 1200 Series devices, 
516_devices PC-LPM-16, DAQCard-500, and DAQCard 700).
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Chapter

28
Calibration and 
Configuration VIs

This chapter describes the VIs that calibrate specific devices and set and 
return configuration information. 

This chapter also includes a VI for controlling the RTSI bus, which is a 
triggering and timing bus you can use to synchronize, time, and trigger 
multiple DAQ devices.

(Windows) There is also a VI you can use to set up data acquisition event 
occurrences.

You can calibrate certain DAQ devices with the device-specific VIs, but 
this is not always necessary because National Instruments calibrates all 
devices at the factory. 

You can access the Calibration and Configuration VIs by choosing 
Functions»Data Acquisition»Calibration and Configuration as shown 
below.
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Calibration and Configuration VI Descriptions

The following Calibration and Configuration VIs are available.

1200 Calibrate
This VI calibrates the gain and offset values for the ADCs and DACs on 1200 Series 
devices (i.e., DAQPad-1200, DAQCard-1200, etc.).

You can perform a new calibration (and optionally save the new calibration constants in 
one of four user areas in the onboard EEPROM) or load an existing set of calibration 
constants by copying them from their storage location in the onboard EEPROM. 
LabVIEW automatically loads the calibration constants stored in the onboard EEPROM 
load area when LabVIEW launches or when you reset the device. By default the 
EEPROM load area contains a copy of the calibration constants in the factory area

A2000 Calibrate
Calibrates the NB-A2000 or EISA-A2000 A/D gain and offset values or restores them to 
the original factory-set values. 

You can calibrate your NB-A2000 or EISA-A2000 to adjust the accuracy of the readings 
from the four analog input channels. LabVIEW automatically loads the stored calibration 
values when it launches or when you reset your NB-A2000 or EISA-A2000.

Warning: This VI is supported only up to NI-DAQ version 4.9.0 and has been 

removed from the Calibration and Configuration palette. This VI is still 

included in the DAQ VI Library for compatibility only, therefore if you are 

using NI-DAQ version 5.0 or later, this VI will return the following 

message: deviceSupportError. If you wish to use this VI, please 

re-install NI-DAQ version 4.9.0 or an earlier version.
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Refer to Appendix A, DAQ Hardware Capabilities, for more information on the 
NB-A2000 or EISA-A2000 DAQ devices. 

Warning: Read the calibration chapter in the NB-A2000 or EISA-A2000 User Manual 

before using the A2000 Calibrate VI.

If you set save new values to 1, then this VI stores the gain and offset calibration values 
in an EEPROM on the NB-A2000 or EISA-A2000 device, which does not lose its data 
even if the device loses power. LabVIEW reads these EEPROM values and loads them 
into the NB-A2000 or EISA-A2000, you can choose to replace the permanent copies of 
the gain and offset EEPROM values and use the new values until the next calibration, 
even if you reinitialize the device. You can also choose not to replace the EEPROM 
values, but to use the new values until the next calibration or initialization. 

For example, if you consistently get inaccurate readings from one or more input channels 
after you reset the device, you can calibrate and save the new gain and offset values as 
permanent copies in the EEPROM. However, if acquisition results are accurate after 
initialization but start to drift after a few hours of device operation when the device 
temperature increases, you can calibrate the device at this operating temperature and 
retain the current EEPROM values to use after the next initialization.

A2000 Configure
Configures dithering and whether to drive the SAMPCLK* line for the NB-A2000 or 
EISA-A2000. 

Warning: This VI is supported only up to NI-DAQ version 4.9.0 and has been 

removed from the Calibration and Configuration palette. This VI is still 

included in the DAQ VI Library for compatibility only, therefore if you are 

using NI-DAQ version 5.0 or later, this VI will return the following 

message: deviceSupportError. If you wish to use this VI, please 

re-install NI-DAQ version 4.9.0 or an earlier version.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the 
NB-A2000 or EISA-A2000 DAQ devices. 

After system startup, LabVIEW configures the NB-A2000 or EISA-A2000 as follows.

• sample clock drive = 0: Sample clock signal does not drive SAMPCLK* line.

• dither = 0: Dither disabled.
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A2100 Calibrate (Macintosh)
Selects the desired calibration reference and performs an offset calibration cycle on the 
ADCs on the NB-A2100 or the NB-A2150.

NI-DAQ driver software calibrates the two A/D channels using the analog input ground 
as the reference for each channel when you turn on the computer.

A2100 Config (Macintosh)
Selects the signal source used to provide data to the DACs and lets you configure the 
external digital trigger to be shared by data acquisition and waveform generation 
operations on the NB-A2100.

If LabVIEW acquires multiple data acquisition frames and generates multiple waveform 
cycles with a trigger required at the beginning of each cycle, then the external trigger 
recognition synchronizes so that each trigger simultaneously initiates the acquisition of 
the next data frame while generating the output of the next waveform cycle.

A2150 Config (Macintosh)
Selects whether or not LabVIEW should drive an internally generated trigger to the 
NB-A2150 I/O connector. This VI also determines whether LabVIEW should drive the 
NB-A2150 sampling clock signal over the RTSI bus to other devices for multiple-device 
synchronized data acquisition.

Enable io trigger drive only if you have executed the RTSI Control VI to receive the 
RTSITRIG* signal over the RTSI bus, or if you have enabled the analog level trigger 
using the AI Trigger Config VI. In these cases, you can monitor the signal being sent to 
the A/D trigger circuitry at the EXTTRIG* line of the I/O connector after starting the 
acquisition. A high-to-low edge of the signal triggers the data acquisition.
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The NB-A2150 uses signals over the RTSI bus for sampling clock synchronization 
between two or more NB-A2150 devices. The sampling clock synchronization circuitry 
makes simultaneous sampling possible on more than four channels using additional 
NB-A2150 devices. If master clock is 1, slave list should contain the list of devices that 
accept the sampling clock from device. After you run A2150 Config with master clock 
equal to 1 and number of slaves greater than 0, you cannot use the AI Clock Config to 
set the scan rate for devices in slave list until you run A2150 Config again on device with 
master clock equal to 1 and number of slaves equal to 0. 

Note: Executing A2150 Config with master clock equal to 1 and number of slaves 

equal to 0 deconfigures the devices previously in the slave list and sets them 

up to use their own sampling clock signal.

A2150 Calibrate (Windows)
Performs offset calibrations on the ADCs of the specified AT-A2150.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the 
AT-A2150 DAQ device. 

When you launch LabVIEW, or when you reset the AT-A2150, LabVIEW performs an 
offset calibration using the analog ground as the reference. Use this VI only for device 
calibration to an external reference or for device recalibration for ground reference after 
using an external reference.

AO-6/10 Calibrate (Windows)
Loads a set of calibration constants into the calibration DACs or copies a set of 
calibration constants from one of four EEPROM areas to EEPROM area 1.

You can load an existing set of calibration constants into the calibration DACs from a 
storage area in the onboard EEPROM. You can copy EEPROM storage areas 2 through 5 
to storage area 1. EEPROM area 5 contains the factory calibration constants. LabVIEW 
automatically loads the calibration constants stored in EEPROM area 1 upon start-up or 
when you reset the AT-AO-6/10.
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Note: You can also use the calibration utility provided with the AT-AO-6/10 to 

perform a calibration procedure. Refer to the calibration chapter in the 

AT-AO-6/10 User Manual for more information. 

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the 
AT-AO-6/10 DAQ devices. 

When LabVIEW initializes the AT-AO-6/10, the DAC calibration constants stored in 
EEPROM location 1 (user calibration area 1) provide the gain and offset values that 
ensure proper device operation. So, this initialization is the same as running the 
AO-6/10 Calibrate VI with operation set to 1 and EEPROM location set to 1. When the 
AT-AO-6/10 leaves the factory, EEPROM location 1 contains a copy of the calibration 
constants stored in EEPROM location 5 (factory calibration).

A calibration procedure performed in bipolar mode is not valid for unipolar mode and 
vice versa. See the calibration chapter of the AT-AO-6/10 User Manual for more 
information. 

Channel To Index
Uses the current group configuration for the specified task to produce a list of indices into 
the group’s scan or update list for each channel specified in the channel list.

You can use this list of channel indices to locate data for a particular channel within a 
multiple channel buffer. You can also use the indices to read or write to a group subset 
with the buffer read and write VIs.

Refer to your specific device information in Appendix A, DAQ Hardware Capabilities, for 
the channel limitations that apply to your device. 
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Table 28-1 shows possible values for the channel scan list, channel list, and channel 
indices parameters. Table 28-2 shows the possible values for the Sun. The channel scan 
list parameter is an input for the group configuration VIs. 

Table 28-1.  Channel to Index VI Parameter Examples 

Channel Scan List Channel List Channel Indices

1, 3, 4, 5, 7 channel list[0] = 5 channel indices[0] = 3. 
Data for channel 5 is at position 3 
within a scan. Indices are 
zero-based.

1, 3, 4, 5, 7 channel list is of 0 length. channel indices is of 0 length. 
(In this case, status is non-zero.)

1, 2, 1, 3, 1, 4 
(The device samples 
channel 1 three times 
during a scan.)

channel list[0] = 1, 1, 1 channelindices[0] = 0, 
channelindices[1] = 2, and 
channelindices[2] = 4. 
The first occurrence of channel 1 
within a scan is at index 0, the 
second at index 2, and the third at 
index 4

0, 1, 3, 4
(For this example, 
channel scan list is a 
digital input group.)

channel list[0] = 3 channel indices[0] = 2. 
The eight bits of data from port 3 
are at index 2 in the scan list.

0:3

(One AMUX-64T in 
use.)

channel list[0] = AM1!9 channel indices[0] = 9. 
Data obtained from channel 9 on 
AMUX-64T device number 1 is at 
index 9 in the data buffer. 

SC1!MD1!CH0:7,

SC1!MD2!CH0:4

channel list[0] = 
SC1!MD2!CH3

channel indices[0] = 11.
Data obtained from channel 3 of 
the SCXI module in slot 2 is at 
index 11 in the data buffer.
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DAQ Occurrence Config (Windows)
Creates occurrences that are set by data acquisition events. 

A DAQ event can be the completion of an acquisition, the acquisition of a certain number 
of scans, an analog signal meeting certain trigger conditions, a periodic event, an 
aperiodic (externally driven) event, or a digital pattern match or mismatch. Your VI can 
sleep while waiting for an occurrence to be set, freeing your computer to execute other 
VIs.

When you set the create/clear control to 1 (create) and call the VI, this VI creates an 
occurrence. Use the DAQ event control to select the event that sets the occurrence. Wire 
the occurrence this VI produces to the Wait on Occurrence function. Anything you wire 
to the output of the Wait on Occurrence function does not execute until the occurrence is 
set. The occurrence is set each time the event occurs. The occurrence does not clear until 
you set the create/clear control to 0 (clear) and call this VI, or call the Device Reset VI 
for the device. 

Table 28-2.  Channel to Index VI Parameter Examples for Sun

channel scan list channel list channel indices

1, 3, 4, 5, 7 channel list[0] = 5 channel indices[0] = 3. 
Data for channel 5 is at position 3 
within a scan. Indices are 
zero-based.

1, 3, 4, 5, 7 channel list is of 0 length. channel indices is of 0 length. (In 
this case, status is non-zero.)

1, 2, 1, 3, 1, 4 
(The device samples 
channel 1 three times 
during a scan.)

channel list[0] = 1, 1, 1 channel indices[0] = 0, 
channel indices[1] = 2, and 
channel indices[2] = 4. 
The first occurrence of channel 1 
within a scan is at index 0, the 
second at index 2, and the third at 
index 4
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LabVIEW returns a Not a Refnum file I/O constant along with a non-zero status code if 
it cannot create the occurrence.

For each computer platform, LabVIEW limits the number of occurrences per second that 
you can set. Although this limit depends on the speed of your computer, avoid exceeding 
500 occurrences per second. 

For some of the events, you must perform your operation using interrupts instead of 
DMA. Refer to the description of the DAQ event control in this section for more 
information.

Device Reset
Resets either an entire device or the particular function identified by taskID.

Resetting a taskID function has the same result as calling the control VI for that function 
with control code set to clear. When you reset the entire device, LabVIEW clears all 
tasks and changes all device settings to their default values. 

DSP2200 Calibrate (Windows)
Performs offset calibrations on the analog input and/or analog output of the 
AT-DSP2200.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the 
AT-DSP2200 DAQ device. 

When you launch LabVIEW or reset the AT-DSP2200, LabVIEW performs an offset 
calibration on both the analog input and output using analog ground as the reference.

You can use this VI to calibrate the analog input using an external reference or to 
recalibrate the AT-DSP2200 to compensate for configuration or environmental changes.
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DSP2200 Configure (Windows)
Specifies data translation and demultiplexing operations that the AT-DSP2200 performs 
on analog input and output data.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the 
AT-DSP2200 DAQ device. 

Because software running locally on the AT&T WE DSP32C DSP chip reads data from 
the ADCs and writes data to the DACs, you can manipulate the data during these 
transfers. When you write analog input data to DSP memory, you can write the data as 
unscaled 16-bit integers, unscaled 32C floating-point numbers, or scaled 32C 
floating-point voltages. You can use the demux option only when you write analog input 
data to DSP memory. When you enable demux, the device writes data from channel 0 
consecutively into DSP memory, beginning at the start of each buffer, and writes channel 
1 data consecutively beginning at the half-way point of each buffer. When the device 
writes analog input data to PC memory, it can write the data as unscaled 16-bit integers, 
unscaled IEEE single-precision floating-point numbers, or scaled IEEE single-precision 
voltages. 

The analog output translations in the opposite directions from the analog input 
translations. If aotranslate is 0, the source data must be in a format suitable for the DACs 
(16-bit integer DAC values). If aotranslate is 1 or 3, the source data are DAC values in 
32C format in DSP memory or in IEEE single-precision format in PC memory. If 
aotranslate is 2 or 4, the source data are voltages in 32C format in DSP memory or in 
IEEE single-precision format in PC memory.

E-Series Calibrate (Windows)
Use this VI to calibrate your E Series device and to select a set of calibration constants 
to be used by LabVIEW.

Warning: Read the calibration chapter in your device user manual before using the 

E-Series Calibrate VI.
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Your device contains calibration D/A converters (calDACs) that are used for fine-tuning 
the analog circuitry. The calDACs must be programmed (loaded) with certain numbers, 
called calibration constants. Those constants are stored in non-volatile memory 
(EEPROM) on your device or are maintained by LabVIEW. To achieve specification 
accuracy, you should perform an internal calibration of your device just before a 
measurement session, but after your computer and the device have been powered on and 
allowed to warm up for at least 15 minutes. Frequent calibration produces the most stable 
and repeatable measurement performance. The device is not harmed in any way if you 
recalibrate it as often as you like.

Two sets of calibration constants can reside in two areas inside the EEPROM, called load 

areas. One set of constants is programmed at the factory, the other is left for the user. 
One load area in the EEPROM corresponds to one set of constants. The load area 
LabVIEW uses for loading calDACs with calibration constants is called the default load 
areas. When you get the device from the factory, the default load area is the area that 
contains the calibration constants obtained by calibrating the device in the factory. 
LabVIEW automatically loads the relevant calibration constants stored in the load area 
the first time you call a VI that requires them.

Note: Calibration of your E Series device takes some time. Do not be alarmed if 

the VI takes several seconds to execute.

Warning: When you run this VI with the operation set to self calibrate or external 

calibrate, LabVIEW will abort any ongoing operations the device is 

performing and set all configurations to their defaults. Therefore, you 

should run this VI before any other DAQ VIs or when no other operations 

are running.

12-bit E Series Devices

• Connect the positive output of your reference voltage source to the analog input 
channel 8.

• Connect the negative output of your reference voltage source to the AISENSE line.

• Connect DAC0 line (analog output channel 0) with analog input channel 0.

• If your reference voltage source and your computer are floating with respect to each 
other, connect the AISENSE line with the AIGND line as well as with the negative 
output of your reference voltage source.

16-bit E Series Devices

• Connect the positive output of your reference voltage source to the analog input 
channel 0.
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• Connect the negative output of your reference voltage source to the analog output 
channel 8 (by performing those two connections you supply reference voltage to the 
analog input channel 0, which is configured for differential operation.)

• If your reference voltage source and your computer are floating with respect to each 
other, connect the negative output of your reference voltage source to the AIGND 
line, as well as to the analog input channel 8.

Get DAQ Device Information
Returns information about a DAQ device. 

Refer to Appendix A, DAQ Hardware Capabilities, for the transfer methods available with 
your DAQ device.

Get SCXI Information
Returns the SCXI chassis configuration information that you set using the configuration 
utility or the Set SCXI Information VI.

LPM-16 Calibrate 
Calibrates the PC-LPM-16 or PC-LPM-16PnP converter. The calibration calculates the 
correct offset voltage for the voltage comparator, adjusts positive linearity and full-scale 
errors to less than ±0.5 LSB each, and adjusts zero error to less than ±1 LSB.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the 
PC-LPM-16, DAQCard-500, or DAQCard-700 device. 
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Master Slave Config
Configures one device as a master device and any remaining devices as slave devices for 
multiple-buffered analog input operations.

Warning: This VI is supported only up to NI-DAQ version 4.9.0 and has been 

removed from the Calibration and Configuration palette. This VI is still 

included in the DAQ VI Library for compatibility only, therefore if you are 

using NI-DAQ version 5.0 or later, this VI will return the following 

message: deviceSupportError. If you wish to use this VI, please 

re-install NI-DAQ version 4.9.0 or an earlier version.

Makes sure LabVIEW always re-enables the slave devices before the master device in a 
multiple-buffer analog input operation. Only the following devices, which support 
multiple buffered acquisitions, can use this VI.

• (Macintosh) NB-A2000, NB-A2100, and NB-A2150.

The master device sends a trigger or clock signal to the slave device(s) to control the 
slave device sampling. In a multiple-buffer acquisition, you must enable the slave device 
before the master device to make sure the slave device always responds to a master 
signal. If you enable the master device first, it can send a signal to the slave devices 
before they can respond. You are responsible for the initial startup order. You should 
always start the master device last. The Master Slave Configuration VI makes sure 
LabVIEW arms the master device last for each subsequent buffer acquired during a 
multiple-buffer acquisition.

MIO Calibrate (Windows)
Calibrates the AT-MIO-16F-5, AT-MIO-64F-5, and AT-MIO-16X gain and offset values 
for the ADCs and the DACs. You can either perform a new calibration or use an existing 
set of calibration constants by copying the constants from their storage location in the 
onboard EEPROM. You can store several sets of calibration constants. LabVIEW 
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automatically loads the calibration constants stored in the EEPROM load area during 
startup or when you reset the device.

The load area for the AT-MIO-16F-5 is user area 5. The load area for the AT-MIO-64F-5 
and AT-MIO-16X is user area 8.

Warning: Read the calibration chapter in your device user manual before using the 

MIO Calibrate VI.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the 
AT-MIO-16F-5, AT-MIO-64F-5, and AT-MIO-16X DAQ devices. 

Note: You should always calibrate the ADC and the DACs after you calibrate the 

internal reference voltage.

Note: If the device takes analog input measurements with the wrong set of 

calibration constants loaded, you may get erroneous data.

MIO Configure (Windows)
Turns dithering on and off. This VI supports the following devices: AT-MIO-16F-5, 
AT-MIO-64F-5, all 12-bit E Series devices, and all 1200 Series devices.

Refer to Appendix A, DAQ Hardware Capabilities, for more information on the devices 
supported by this VI.

Route Signal
Use this VI to route an internal signal to the specified I/O connector or RTSI bus line, or 
to enable clock sharing through the RTSI bus clock line.
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Note: This VI is supported by E Series and 54XX Series devices only.

RTSI Control
Connects or disconnects trigger and timing signals between DAQ devices along the 
Real-Time System Integration (RTSI) bus.

This VI is not supported for E Series devices. For E Series devices, multiple RTSI 
connections can be set directly in the analog input, analog output, and counter VIs and 
used along with the Route Signal VI. Other RTSI connections must be made using the 
Route Signal VI.

SCXI Cal Constants
Calculates calibration constants for the given channel and range or gain using measured 
voltage/binary pairs. You can use this VI with any SCXI module.



Chapter 28 Calibration and Configuration VIs

LabVIEW Function and VI Reference Manual 28-16 © National Instruments Corporation

Set DAQ Device Information
Sets the data transfer mode for different types of operations.

Refer to Appendix A, DAQ Hardware Capabilities, for the transfer methods available with 
your DAQ device. 

Set SCXI Information
Sets the SCXI chassis configuration information.

Use this VI to override the configuration already set with the configuration utility You 
can use this VI instead of using the configuration utility to enter the chassis configuration 
information. If you do not use this VI, the first VI that accesses an SCXI chassis 
automatically tries to load information from the configuration file.

Channel Configuration VIs

The following illustration shows the Channel Configurations VIs palette.
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Set DAQ Configuration File (Windows)
Sets the default DAQ Configuration file, which the NI-DAQ driver uses. 

Note: This VI is specific to computers running Windows with NI-DAQ 5.0 or 

later. LabVIEW returns an UnsupportedError message if you attempt to 

run this VI on computers not running Windows.

Get DAQ Channel Names (Windows)
Returns the an array of all the channel names in the default configuration file. A 
corresponding array of the channels' configured physical units is also returned.

Note: This VI is specific to computers running Windows with NI-DAQ 5.0 or 

later. LabVIEW returns an UnsupportedError message if you attempt to 

run this VI on computers not running Windows.
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Chapter

29Signal Conditioning VIs

This chapter describes the data acquisition Signal Conditioning VIs, 
which you use to convert analog input voltages read from resistance 
temperature detectors (RTDs), strain gauges, or thermocouples into 
units of strain or temperature. 

You can edit the conversion formulas used in these VIs or replace them 
with your own to meet the specific accuracy requirements of your 
application. If you edit or replace the formulas, you should save the new 
VI in one of your own directories or folders outside of vi.lib. 

You can access the Signal Conditioning VIs by choosing 
Functions»Data Acquisition»Signal Conditioning, as shown below.
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Signal Conditioning VI Descriptions

The following Signal Conditioning VIs are available.

Convert RTD Reading 
Converts a voltage you read from an RTD into temperature in Celsius.

This VI first finds the RTD resistance by dividing RTDVolts by Iex. The VI then 
converts the resistance to temperature using the following solution to the Callendar 
Van-Dusen equation for RTDs:

Rt = Ro[1 + At + Bt2 + C(t–100)t3]

For temperatures above 0° C, the C coefficient is 0, and the preceding equation reduces 
to a quadratic equation for which the algorithm implemented in the VI gives the 
appropriate root. So, this conversion VI is accurate only for temperatures above 0° C.

Your RTD documentation should give you Ro and the A and B coefficients for the 
Callendar Van-Dusen equation. The most common RTDs are 100-Ω platinum RTDs that 
either follow the European temperature curve (DIN 43760) or the American curve. The 
following table gives the values for A and B for the European and American curves.

Some RTD documentation gives values for α and ∂, from which you can calculate A and 
B using the following equations:

A = α(1 + ∂/100)

B = –α∂/1002

European Curve (DIN 43760) American Curve

A = 3.90802e–03
B = –5.80195e–07
(α = 0.00385; ∂ = 1.492)

A = 3.9784e–03
B = –5.8408e–07
(α = 0.00392; ∂ = 1.492)
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Convert Strain Gauge Reading 
Converts a voltage you read from a strain gauge to units of strain.

The conversion formula the VI uses is based solely on the bridge configuration. 
Figures 29-1 through 29-3 show the seven bridge configurations you can use and the 
corresponding formulas. For all bridge configurations, the VI uses the following formula 
to obtain Vr:

Vr = (Vsg – Vinit) / Vex

In the circuit diagrams, VOUT is the voltage you measure and pass to the conversion VI 
as the Vsg parameter. In the quarter-bridge and half-bridge configurations, R1 and R2 are 
dummy resistors that are not directly incorporated into the conversion formula. The 
SCXI-1121 and SCXI-1122 modules provide R1 and R2 for a bridge-completion network, 
if needed. 

Refer to your Getting Started with SCXI manual for more information on 
bridge-completion networks and voltage excitation.
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Figures 29-1 through 29-3 illustrate the bridge-completion networks available.

Figure 29-1.  Strain Gauge Bridge Completion Networks (Quarter-Bridge Configuration)
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Figure 29-2.  Strain Gauge Bridge Completion Networks (Half-Bridge Configuration)
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Figure 29-3.  Strain Gauge Bridge Completion Networks (Full-Bridge Configuration)
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Convert Thermistor Reading
Converts a thermistor voltage into temperature. This VI has two different modes of 
operation for voltage-excited and current-excited thermistors.

This VI has two modes of operation for use with different types of thermistor circuits. 
Figure 29-4 shows how the thermistor can be connected to a voltage reference. This is 
the setup used in the SCXI-1303, SCXI-1322, SCXI-1327, and SCXI-1328 terminal 
blocks, which use an onboard thermistor for cold-junction compensation.

Figure 29-4.  Circuit Diagram of a Thermistor in a Voltage Divider

Figure 29-5 shows a circuit where the thermistor is excited by a constant current source. 
An example of this setup would be the use of the DAQPad-MIO-16XE-50, which 

 



Chapter 29 Signal Conditioning VIs

LabVIEW Function and VI Reference Manual 29-8 © National Instruments Corporation

provides a constant current output. The DAQPad-TB-52 has a thermistor for 
cold-junction sensing.

Figure 29-5.  Circuit Diagram of a Thermistor with Current Excitation

If the thermistor is excited by voltage, the following shows equation relating the 
thermistor resistance, RT, to the input values:

If the thermistor is current excited, the equation is

The following equation is the standard formula the VI uses for converting a thermistor 
resistance to temperature: 

The values used by this VI for a, b, and c are given below. These values are correct for 
the thermistors provided on the SCXI and DAQPad-TB-52 terminal blocks. If you are 
using a thermistor with different values for a, b, and c (refer to your thermistor data 
sheet), you can edit the VI diagram to use your own a, b, and c values.

a =  1.295361E–3
b =  2.343159E–4
c =  1.018703E–7

The VI produces a temperature in degrees Celsius. Therefore, TC = TK – 273.15.
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Convert Thermocouple Buffer 
Converts a voltage buffer read from a thermocouple into a temperature buffer value in 
degrees Celsius.

Convert Thermocouple Reading
Converts a voltage read from a thermocouple into a temperature value in degrees Celsius. 

Scaling Constant Tuner
Adjusts the scaling constants, which LabVIEW uses to account for offset and non-ideal 
gain, to convert analog input binary data to voltage data.

To use this VI correctly, you must first take two analog input readings—a zero offset 
reading and a known-voltage reading.

The default binary offset for each channel in the group is 0. To determine the actual 
binary offset for a channel path, ground the channel inputs and take a binary reading, or 
take multiple binary readings and average them to get fractional LSBs of the offset. 

If you use SCXI, ground the inputs of the SCXI channels to measure the offset of the 
entire signal path, including both the SCXI module and the DAQ device. The SCXI-1100, 
SCXI-1122, and SCXI-1141 modules have an internal switch you can use to ground the 
amplifier inputs without actually wiring the terminals to ground. To use this feature, type 
the special SCXI string CALGND in your SCXI channel string as described in the Amplifier 

Offset section of Chapter 19, Common SCXI Applications, in the LabVIEW Data 

Acquisition Basics Manual. Use intermediate or advanced analog input VIs to get binary 
data instead of voltage data. 
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Note: If your device supports dithering, you should enable dither on your DAQ 

device when you take multiple readings and average them.

LabVIEW assumes the DAQ devices gain settings and SCXI modules are ideal when it 
scales binary readings to voltage, unless you use this VI to determine actual gain values 
for the channels. Apply a known precision voltage to each channel and take a binary 
reading, or take multiple readings from each channel and compute an average binary 
reading for each channel. Your precision voltage should be about ten times as accurate 
as the resolution of your DAQ device to produce meaningful results. When you wire 
binary readings, precision voltages, and binary offsets to this VI, LabVIEW 
determines the actual gain using the following formula:

In this formula, the voltage resolution value expressed in volts per LSB and is a value 
that varies depending on the DAQ device type, the polarity setting, and the input range 
setting. For example, the voltage resolution for a PCI-MIO-16E-1 device in bipolar mode 
with an input range of +5 to –5 V is 2.44 mV. The VI returns an array of the actual gain 
values that the VI stores for each channel.

Note: When you take readings to determine the offset and actual gain, you should 

use the same input limits settings and clock rates that you use to measure 

your input signals.

LabVIEW uses the following equation to scale binary readings to voltage: 

When you run the AI Group Config VI, it sets the attributes of all the channels in the 
group to their defaults, including the binary offset and gain values.

You can wire channel list if you want to adjust the scaling constants for a subset of the 
channels in the group. If you leave channel list unwired, the VI adjusts the scaling 
constants for all channels in the group. The VI uses the same method as the AI Hardware 
Config VI to apply values in the binary offsets, precision voltages, and binary readings 
input arrays That is, if you wired channel list first (at index 0) of the input arrays apply 
to the channels listed at index 0 of channel list if you wired channel list, or to the 
channels listed at index 0 of channel list. If you leave channel list unwired, the first 
values of the input arrays apply to the first channel in the group. The VI applies the values 
of each input array to channel list channels or the group in this manner until the VI 

actual gain
voltage resolution * binary reading binary offset–( )

precision voltage
-----------------------------------------------------------------------------------------------------------------------------=

voltage
voltage resolution * binary reading binary offset–( )

gain
-----------------------------------------------------------------------------------------------------------------------------=
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exhausts the arrays. If channels in channel list or in the group remain unconfigured, the 
VI applies the final values in the arrays to all the remaining unconfigured channels.

If you want to adjust only the channel offsets, and you want to assume the gain settings 
on the DAQ device and SCXI modules are ideal, wire only binary offsets and leave 
precision voltages and binary readings unwired.

You can also use this VI to retrieve the binary offset and actual gain values for all the 
channels in the group by wiring taskID only.

After you use this VI to adjust the scaling constants for a channel path, any analog input 
VIs that return voltage data use the adjusted constants for scaling. You can use the AI 
Group Config VI to reset the scaling constants for each channel in the group to their 
default values (zero offset and ideal gain). 

SCXI Temperature Scan
This VI returns a single scan of temperature data from a list of SCXI channel. The SCXI 
Temperature Scan VI uses averaging to reduce 60 Hz and 50 Hz noise, performs 
thermocouple linearization, and performs offset compensation for the SCXI-1100 
module.
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Chapter

30
Introduction to LabVIEW 
Instrument Driver VIs

This chapter includes an overview of LabVIEW instrument drivers and 
the GPIB, serial port, instrument driver template, and VISA VIs and 
functions. It also contains a history of the GPIB, and an explanation of 
GPIB improvements and standards. Descriptions of the VIs and 
functions comprise Chapter 31 through Chapter 37.

You can find the Instrument Driver VIs in the Functions palette from 
your block diagram in LabVIEW. The Instrument Driver VIs are 
located near the bottom of the Functions palette.

To access the Instrument I/O palette, choose 
Functions»Instrument I/O, as shown in the following illustration. 

The Instrument I/O palette consists of the following subpalettes:

• VISA

• Traditional GPIB
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• GPIB 488.2

• Serial

You can find helpful information about individual VIs online by using 
the LabVIEW Help window (Help»Show Help). When you place the 
cursor on a VI icon, the wiring diagram and parameter names for that 
VI appear in the Help window. You can also find information for front 
panel controls or indicators by placing the cursor over the control or 
indicator with the Help window open. For more information on the 
LabVIEW Help window, refer to the Getting Help section in Chapter 2, 
Creating VIs, of the LabVIEW User Manual.

In addition to the Help window, LabVIEW has more extensive online 
information available. To access this information, select Help»Online 
Reference. For most block diagram objects, you can select Online 
Reference from the object’s pop-up menu to access the online 
description. For information on creating your own online reference 
files, see the Creating Your Own Help Files section in Chapter 25, 
Managing Your Applications of the LabVIEW User Manual.

Instrument Drivers Overview

A LabVIEW instrument driver is a set of VIs that control a 
programmable instrument. Each VI corresponds to a programmatic 
operation such as configuring, reading from, writing to, or triggering 
the instrument. LabVIEW instrument drivers simplify instrument 
control and reduce test program development time by eliminating the 
need to learn the low-level programming protocol for each instrument. 

The LabVIEW instrument driver library contains instrument drivers for 
a variety of programmable instrumentation, including GPIB, VXI, and 
serial. If a driver for your instrument is in the library, you can use it as 
is to control your instrument. Instrument drivers are distributed with 
their block diagram source code, so you can customize them for your 
specific application. If a driver for your particular instrument does not 
exist, you can:

• Try using a driver for a similar instrument. Often similar 
instruments from the same manufacturer have similar if not 
identical instrument drivers.

• Modify the Instrument Driver Template VIs to create a new driver 
for your instrument.
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• Use either the GPIB, VXI, Serial, or VISA I/O libraries provided 
with LabVIEW to send commands directly to your instrument.

Instrument Driver Distribution
LabVIEW instrument drivers are distributed in a variety of media 
including electronic via bulletin board and internet and CD-ROM.

You can download the latest versions of the LabVIEW instrument 
drivers from one of the National Instruments bulletin boards and, if you 
have internet access, you can download the latest instrument driver files 
from the National Instrument File Transfer Protocol site. See the 
Bulletin Board Support and FTP Support sections of Appendix E, 
Customer Communication.

CD-ROM Instrument Driver Distribution
The entire library of LabVIEW instrument drivers is available on 
CD-ROM. The instrument driver CD-ROM is available from National 
Instruments at no charge.

You can retrieve the latest instrument driver list on a touch-tone phone 
by calling the National Instruments automated fax system, Fax-on-
Demand, at (512) 418-1111 or by calling National Instruments.

Instrument Driver Template VIs
The LabVIEW instrument driver templates are the foundation for all 
LabVIEW instrument driver development. The templates have a simple, 
flexible structure and a common set of instrument driver VIs that you 
can use for driver development. The VIs establish a standard format for 
all LabVIEW drivers and each has instructions for modifying it for a 
particular instrument. 

The LabVIEW instrument driver templates are predefined instrument 
driver VIs that perform common operations such as initialization, 
self-test, reset, error query, and so on. Instead of developing your own 
VIs to accomplish these tasks, you should use the LabVIEW instrument 
driver template VIs, which already conform to the LabVIEW standards 
for instrument drivers. 

Chapter 33, Instrument Driver Template VIs, provides more information 
on the Instrument Driver Template VIs.
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Introduction to VISA Library

VISA (Virtual Instrument Software Architecture) is a single interface 
library for controlling VXI, GPIB, RS-232, and other types of 
instruments. The VISA Library provides a standard set of I/O routines 
used by all LabVIEW instrument drivers. Using the VISA functions, 
you can construct a single instrument driver VI which controls a 
particular instrument model across different I/O interfaces. 

An instrument descriptor string is passed to the VISA Open function in 
order to select which kind of I/O will be used to communicate with the 
instrument. Once the session with the instrument is open, functions such 
as VISA Read and VISA Write perform the instrument I/O activities in 
a generic manner such that the program is not tied to any specific GPIB 
or VXI functions.   Such an instrument driver is considered to be 
interface independent and can be used as is in different systems.

Instrument drivers which use the VISA functions perform activities 
specific to the instrument, not to the communication interface. This 
creates more opportunities for using the instrument driver in many 
diverse situations.

For more information on VISA functions, see Chapter 34, VISA Library 

Reference.

Introduction to GPIB

The General Purpose Interface Bus (GPIB) is a link, or interface 
system, through which interconnected electronic devices communicate.

History of the GPIB
Hewlett-Packard designed the GPIB (originally called the HP-IB) to 
interconnect and control its line of programmable instruments. The 
GPIB was soon applied to other applications such as intercomputer 
communication and peripheral control because of its 1 Mbytes/s 
maximum data transfer rates. It was later accepted as IEEE Standard 
488-1975 and has since evolved into ANSI/IEEE Standard 488.2-1987. 
The versatility of the system prompted the name General Purpose 
Interface Bus. For a basic description of the GPIB, see Appendix C, 
Operation of the GPIB.
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National Instruments brought the GPIB to users of 
non-Hewlett-Packard computers and devices, specializing in both 
high-performance, high-speed hardware interfaces and comprehensive, 
full-function software. The GPIB functions for LabVIEW follow the 
IEEE 488.2 specification.

The IEEE 488.2 Standard
The ANSI/IEEE Standard 488.2-1987 expanded on the earlier 
IEEE 488.1 standard to describe exactly how the Controller should 
manage the GPIB, including the standard messages that compliant 
devices should understand, the mechanisms for reporting device errors 
and other status information, and the various protocols that discover and 
configure compliant devices connected to the bus. 

The original standard, renamed IEEE 488.1, addressed only the 
hardware specifications of the GPIB cable and basic protocols. Its main 
shortcoming was that it left the interpretation of the standard as it 
applied to GPIB devices up to the instrument manufacturers. Thus, each 
GPIB instrument had a unique command set. To integrate each 
instrument into a particular GPIB system, programmers had to learn 
programming particulars for each device, a time-consuming and 
frustrating process. IEEE 488.2 specifically states how compliant 
devices must communicate. This standard, along with Standard 
Commands for Programmable Instruments (SCPI), which defines 
specific function-dependent command sets, makes instrument 
programming more uniform. 

The IEEE 488.2 standard also addresses Controller issues, such as the 
capabilities a compatible Controller must have. For example, the ability 
to monitor any of the bus lines at any time is crucial for detecting active 
devices (Talkers and Listeners) on the GPIB. IEEE 488.2 also defines 
the bus commands and protocols a Controller must use. The new 
standard also lists minimum functionality requirements, which directly 
influence the style of the NI-488.2 software in general and the GPIB 
488.2 functions for LabVIEW in particular. Appendix C, Operation of 

the GPIB, for more information on Talkers, Listeners, and Controllers.
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Compatible GPIB Hardware
The following National Instruments GPIB hardware products are 
compatible with LabVIEW:

LabVIEW for Windows 95 and Windows 95-Japanese

• AT-GPIB/TNT, AT-GPIB/TNT (PnP), AT-GPIB/TNT+ ² PCI-
GPIB

• PCMCIA-GPIB, PCMCIA-GPIB+

• GPIB-ENET

• EISA-GPIB

• VXIpc Model 850

• NEC-GPIB/TNT, NEC-GPIB/TNT (PnP)

• GPIB-PCII/IIA

• PC/104-GPIB

• CPCI-GPIB

• GPIB-ENET

• PMC-GPIB

LabVIEW for Windows NT

• AT-GPIB, AT-GPIB/TNT

• PCMCIA-GPIB

• PCI-GPIB

• VXIpc Model 850

• GPIB-ENET

LabVIEW for Windows 3.1

• AT-GPIB, AT-GPIB/TNT, AT-GPIB/TNT (PnP), AT-GPIB/TNT+ 
PCI-GPIB

• PCMCIA-GPIB, PCMCIA-GPIB+

• GPIB-ENET

• EISA-GPIB

• VXIpc Model 850

• NEC-GPIB/TNT (Japanese), NEC-GPIB/TNT (PnP) (Japanese) ² 
GPIB-PCII/IIA

• GPIB-232CT-A
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• GPIB-485CT-A

• GPIB-1284CT

• PCII/IIA

• STD-GPIB

• EXM-GPIB

• MC-GPIB

LabVIEW for Mac OS

• PCI-GPIB

• NB-GPIB/TNT, NB-GPIB-P/TNT

• PCMCIA-GPIB

• LC-GPIB

• GPIB-ENET

• GPIB-232CT-A

• GPIB-SCSI-A

• PC/104-GPIB

• NB-DMA2800 (Traditional GPIB VI's only)

LabVIEW for HP-UX

• GPIB-ENET

• EISA-GPIB

• AT-GPIB/TNT

LabVIEW for Sun (Solaris)

• GPIB-ENET

• GPIB-SCSI-A

• SB-GPIB/TNT

LabVIEW for Concurrent PowerMAX

• GPIB-1014

• GPIB-1014D

• GPIB-1014P

• GPIB-1014DP
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LabVIEW Traditional GPIB Functions
The traditional GPIB functions are compatible with all the GPIB boards 
listed in the Compatible GPIB Hardware section of this chapter. 

These traditional GPIB functions are compatible with both IEEE 488 
and IEEE 488.2 devices and are suffcient for most applications. For 
more complex applications, such as using several devices and more than 
one GPIB interface, you can use the GPIB IEE 488.2 functions.

For more information on the LabVIEW Traditional GPIB functions, see 
Chapter 35, Traditional GPIB Functions.

GPIB 488.2 Functions
Using GPIB 488.2 functions together with IEEE 488.2-compatible 
devices improves the predictability of instrument and software behavior 
and lessens programming differences between instruments of different 
manufacturers.

The latest revisions of many National Instruments GPIB boards are 
fully compatible with the IEEE 488.2 specification for Controllers. The 
LabVIEW package also contains functions that make use of 
IEEE 488.2. By using these functions, your programming interface will 
strictly adhere to the IEEE 488.2 standard for command and data 
sequences.

The GPIB 488.2 functions contain the same basic functionality as the 
traditional GPIB functions, and include the following enhancements 
and additions:

• You specify the GPIB device address with an integer instead of a 
string. Further, you specify the bus number with an additional 
numeric control, which makes dealing with multiple GPIB 
interfaces easier.

• You can determine the GPIB status, error, and/or byte count 
immediately from the connector pane of each GPIB 488.2 function. 
You no longer need to use the GPIB Status Function to obtain error 
and other information.

• The FindLstn Function implements the IEEE 488.2 Find All 
Listeners protocol. You can use this function at the beginning of an 
application to determine which devices are present on the bus 
without knowing their addresses.

• The GPIB Misc Function is still available, but it is no longer 
necessary in most cases. IEEE 488.2 specifies routines for most 
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GPIB application needs, which are implemented as functions. 
However, you can mix the GPIB Misc Function, as well as other 
GPIB functions, with the GPIB 488.2 functions if you need to.

• There are GPIB 488.2 functions with low-level as well as 
high-level functionality, to suit any GPIB application. You can use 
the low-level functions in Non-Controller situations or when you 
need additional flexibility.

• Although you must use an IEEE 488.2-compatible Controller to use 
these functions, they can control both IEEE 488.1 and IEEE 488.2 
devices. The GPIB 488.2 functions are divided into five functional 
categories: single-device, multiple-device, bus management, 
low-level, and general.

Single-Device Functions
The single-device functions perform GPIB I/O and control operations 
with a single GPIB device. In general, each function accepts a 
single-device address as one of its inputs.

For more information on Single-Device Functions, see Chapter 36, 
GPIB 488.2 Functions.

Multiple-Device Functions
The multiple-device functions perform GPIB I/O and control operations 
with several GPIB devices at once. In general, each function accepts an 
array of addresses as one of its inputs.

For more information on Multiple Device Functions, see Chapter 36, 
GPIB 488.2 Functions.

Bus Management Functions
The bus management functions perform system-wide functions or 
report system-wide status. 

For more information on Bus Management functions, see Chapter 36, 
GPIB 488.2 Functions.

Low-Level Functions
The low-level functions let you create a more specific, detailed program 
than higher-level functions. You use low-level functions for unusual 
situations or for situations requiring additional flexibility.
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For more information on Low-Level functions, see Chapter 36,
GPIB 488.2 Functions.

General Functions
The general functions are useful for special situations. The following 
table lists the general functions:

For more information on General functions, see Chapter 36,
GPIB 488.2 Functions.

Serial Port VI Overview

The serial port VIs configure the serial port of your computer and 
conduct I/O using that port. 

For more information on serial port functions, see Chapter 37,
Serial Port VIs.
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Chapter

31
LabVIEW Instrument Driver 
Models

This chapter contains an overview of the LabVIEW instrument driver 
external interface model and the LabVIEW Instrument Driver Internal 
Design Model.

The following two conceptual models help define a standard for 
LabVIEW instrument driver software design, development and use. The 
first model, the instrument driver external interface model, shows how 
the instrument driver interfaces with other system components. The 
second model, the instrument driver internal design model, defines the 
internal organization of an instrument driver software module. 

LabVIEW Instrument Driver External Interface Model

The following figure shows a general model of how a LabVIEW 
instrument driver interfaces with the rest of the system.

Figure 31-1.  General Model of Instrument Drivers in LabVIEW
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Functional Body
The functional body is the actual code for the instrument driver. Refer 
to the LabVIEW Instrument Driver Internal Design Model section of this 
chapter, for more information.

The most successful instrument driver products historically have been 
developed by using a standard programming language for the functional 
body. This is the approach LabVIEW instrument drivers take. The 
advantages include greater developer control over the driver, more 
robust drivers, and increased functionality. LabVIEW instrument 
drivers are written using the standard LabVIEW graphical 
programming environment. 

The functional body of a LabVIEW instrument driver is a set of VIs that 
control a specific instrument. The source code for these VIs are block 
diagrams consisting of executable icons connected by data flow wires. 
Because the functional body is developed with the standard tools 
provided in LabVIEW, users can view instrument driver source code 
easily and optimize it for their application.

Interactive Developer Interface
The interactive developer interface of a LabVIEW instrument driver is 
the front panel. It is analogous to a physical instrument panel and is the 
interactive user interface of the VI. On the panel, controls and 
indicators graphically represent the inputs and outputs of the VI. With 
the LabVIEW front panel, users can operate individual instrument 
driver VIs interactively and verify communication.

Programmatic Developer Interface
The icon/connector is the programmatic interface of the LabVIEW 
instrument driver VI. It consists of a graphical representation of the VI 
(icon) and a definition of the input and output terminals for the VI 
(connector). When you call or execute a VI from another VI, you place 
a copy of the subVI icon/connector in the block diagram of the calling 
VI. Information passes between the two VIs through the connector 
terminals. There are several benefits to this approach. You can assemble 
test systems easily using LabVIEW instrument drivers by combining a 
few instrument driver VIs, each using multiple parameters. The 
instrument driver interface in the user program is modular and easy to 
identify, and you can recall the VI front panels during debugging to 
understand how the program uses the instrument driver.
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I/O Interface
An important consideration for instrument drivers is how they perform 
I/O to and from instruments. The I/O interfaces for LabVIEW 
instrument drivers are the VISA and GPIB function libraries, and the 
VXI and Serial VI libraries. These libraries contain sets of functions 
and VIs that cover the capabilities of GPIB, VXIbus, and Serial bus 
capabilities, including both message-based and register-based 
programming, interrupt and event handling, and direct access to the 
VXI backplane.

VISA, an acronym for Virtual Interface Software Architecture, is a 
single interface library for controlling VXI, GPIB, RS-232, and other 
types of instruments. Refer to Chapter 34, VISA Library Reference, for 
further information.

Subroutine Interface
Because you write LabVIEW instrument drivers in standard LabVIEW 
graphical code, an instrument driver has the same capabilities as any 
other LabVIEW VI. While some VIs (such as instrument drivers) 
perform only simple I/O to and from an instrument, other VIs might 
control multiple instruments or use support libraries to integrate data 
analysis or other measurement-specific operations. With LabVIEW, 
you can build virtual instruments that combine hardware and software 
capabilities. You can develop and package complete, high-level tests as 
single VIs, which other test developers can reuse. 

By ensuring compatibility with the virtual instrument concept, the 
LabVIEW instrument driver standard has unlimited potential for 
delivering baseline as well as sophisticated application-specific 
instrument drivers. The LabVIEW instrument driver standard defined in 
this document applies both to instrument drivers that control only a 
single instrument, and to virtual instrument drivers that combine 
features of multiple instruments and add software processing.

LabVIEW Instrument Driver Internal Design Model

The LabVIEW instrument driver internal design model, shown in the 
following figure, defines the organization of the LabVIEW instrument 
driver functional body. Because development guidelines and all 
LabVIEW instrument drivers are based on this model, it is important to 
both developers and end users of instrument drivers. When you 
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understand the model and how to use one instrument driver, you can use 
that knowledge across numerous instrument drivers.

Figure 31-2.  LabVIEW Instrument Driver Internal Design Model 

The functional body of a LabVIEW instrument driver consists of two 
main categories of VIs. The first category is a collection of component 

VIs, which are individual software modules that each control a specific 
type of instrument function. The second category is a collection of 
higher-level application VIs that illustrate how to combine the 
component VIs to perform basic test and measurement operations with 
the instrument.

The internal design model of LabVIEW instrument drivers is built on a 
proven methodology. With this model, you have the necessary 
granularity to control instruments properly in your software 
applications. You can, for example, initialize all instruments once at the 
beginning, configure multiple instruments, and then trigger several 
instruments simultaneously. As another example, you can initialize and 
configure an instrument once, and then trigger and read from the 
instrument several times. 

Instrument Driver Application VIs
The application VIs are at the highest level of the instrument driver 
hierarchy. They are written in LabVIEW block diagram source code and 
control the most commonly used instrument configurations and 
measurements. These VIs serve as a code example for how to configure 
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the instrument for a common operation, trigger the instrument, and take 
measurements. Because the application VIs are standard VIs, with icons 
and connector panes, you can call them from any high-level application 
when you want a single, measurement-oriented interface to the driver. 
For many developers, the application VIs are the only instrument driver 
VIs needed for instrument control. The Tek VX4790 Example VI, 
shown in the following figure, demonstrates an application VI front 
panel.

Figure 31-3.  Tek VX4790 Example VI

The application VIs are built from a low-level set of instrument driver 
component VIs.

Instrument Driver Component VIs
LabVIEW instrument drivers have component VIs, which are a modular 
set of VIs that contain all of the instrument configuration and 
measurement capabilities. The component VIs fit into six categories: 
initialize, configuration, action/status, data, utility, and close. 

All LabVIEW instrument drivers should have an initialize VI. It is the 
first instrument driver VI called, and establishes communication with 
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the instrument. Additionally, it can perform any necessary actions to 
place the instrument either in its default power on state or in some other 
specific state.

The configuration VIs are a collection of software routines that 
configure the instrument to perform the desired operation. There may 
be numerous configuration VIs, depending on the particular instrument. 
After these VIs are called, the instrument is ready to take measurements 
or stimulate a system. 

The action/status category contains two types of VIs. Action VIs cause 
the instrument to initiate or terminate test and measurement operations. 
These operations can include arming the trigger system or generating a 
stimulus. These VIs are different from the configuration VIs because 
they do not change the instrument settings, but only order the 
instrument to carry out an action based on its current configuration. 
Status VIs obtain the current status of the instrument or the status of 
pending operations. The specific routines in this category and the actual 
operations they perform are left up to you.

Data VIs transfer data to or from the instrument. Examples include VIs 
for reading a measured value or waveform from a measurement 
instrument, VIs for downloading waveforms or digital patterns to a 
source instrument, and so on. The specific routines in this category and 
the actual operations performed by those routines are left up to you.

Utility VIs can perform a variety of operations that are auxiliary to the 
most often used instrument driver VIs. These VIs include the majority 
of the instrument driver template VIs such as reset, self-test, revision 
query, error query, and error message and may include other custom 
instrument driver VIs, such as calibration or storing and recalling 
setups.

All LabVIEW instrument drivers should include a close VI. The close 
VI terminates the software connection to the instrument and deallocates 
system resources. 

Each of these categories, with the exception of the initialize and close 
VIs, consists of several modular VIs. Most of the critical work in 
developing an instrument driver lies in the initial design and 
organization of the instrument driver component VIs. The specific 
routines in each category are further categorized as either template VIs 
or developer-specified VIs.
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The template VIs are instrument driver VIs that you can use as templates 
or examples. These VIs perform common operations such as initialize, 
close, reset, self-test, and revision query. The template VIs contain 
modification instructions for their use in a specific instrument driver for 
a particular instrument. For more information, refer to Chapter 33, 

Instrument Driver Template VIs.

The remainder of instrument driver VIs are known as 
developer-specified VIs, and the actual operations performed by those 
routines are left up you. Although all instruments will have 
configuration VIs, some instruments can have a different number of 
configuration VIs depending on the unique capabilities of the 
instrument.

Figure 31-4 shows how the Tek VX4790 Example application VI 
diagram uses the instrument driver component VIs:

Figure 31-4.  VIs in Tek VX4790 Example Diagram

The block diagram of the instrument driver component VIs uses 
standard LabVIEW VIs, as well as VISA VIs to build command strings 
and send them to the instrument. In the following figure, the Tek 
VX4790 Config Std Wave component VI block diagram assembles the 
command string and wires it into the VISA Write function. This function 
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performs the necessary I/O, checks for errors, and updates the 
appropriate error indicators.

Figure 31-5.  Tek VX4790 Config Std Wave Diagram

Error Reporting
LabVIEW instrument drivers use error clusters to report all errors. 
Inside the cluster, a Boolean error indicator, a numeric error code, and 
an error source string indicator report if there is an error, the specific 
error condition, and the source (name) of the VI in which the error 
occurred. Additional comments may also be included. Each instrument 
driver VI has an error in and an error out terminal defined on its 
connector pane in the lower left and lower right terminals respectively. 
By wiring the error out cluster of one VI to the error in cluster of another 
VI, you can pass error information all the way through your instrument 
driver and out to your full application. 

Another benefit of error input/output is that data dependency is added 
to VIs that are not otherwise data dependent.

Additional VIs Distributed with the Instrument Driver
In addition to the VIs described by the internal model, include a Getting 
Started VI and a VI Tree VI with your instrument driver files.
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The Getting Started VI
The Getting Started VI allows the user to use the instrument without 
wiring a subVI on the block diagram. This is generally the first VI the 
end user runs to verify communication with the instrument. This VI 
generally consists of three sub-VIs: the initialize VI, an Application VI 
and the Close VI. The front panel of the Getting Started VI then 
resembles the application VI’s front panel that it calls. Instead of having 
the user provide the VISA resource name, the user should only provide 
the GPIB address, VXI logical address or communications port. For 
example, instead of requiring the resource name “GPIB0::24”, the 
Getting Started VI would require the user supply a GPIB address of 
“24.” The front panel and block diagram of the Getting Started VI for 
the HP34401A are shown below.
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The VI Tree VI
In order for customers to view the entire instrument driver hierarchy at 
once, a VI Tree VI is required. This VI is a non-executable VI that is 
designed to show the functional structure of the VI. If an end user does 
not install the palette menu files for the instrument, the VI Tree is the 
only resource to understanding the structure. An example of a VI tree 
VI is shown below.
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Chapter

32
LabVIEW Instrument Driver 
Development

This chapter describes the procedure for developing a LabVIEW 
instrument driver. The ideal LabVIEW instrument driver has full 
function control of the instrument. Rather than mandate the required 
functionality of all instrument types, such as DMMs, counter/timers, 
and so on, this chapter focuses on the architectural guidelines of all 
drivers. With this information, driver developers can implement 
functionality unique to a particular instrument, and still organize, 
package and use all drivers in the same way.

Development Procedure

The best way to develop a LabVIEW Instrument Driver is to follow a 
three-step process. In step one, you design the instrument driver 
structure. In step two, you modify the instrument driver templates VIs. 
In step three, you add developer defined VIs.

Designing the Instrument Driver Structure
The ideal instrument driver does what the user needs—no more and no 
less. No particular type of driver design is perfect for everyone, but by 
carefully studying the instrument and grouping controls into modular 
VIs, you can satisfy most users. 

When the number of programmable controls in an instrument increases, 
so does the need for modular instrument driver design since a single VI 
cannot access all features. However, when an instrument driver 
contains hundreds of VIs, each controlling a single instrument feature, 
more instrument rules regarding command order and interaction apply. 
Modular design simplifies the tasks of controlling the instrument and 
modifying VIs to meet special requirements.

Ideally, you should devise the overall structure of your instrument 
driver before you build the individual VIs. A useful instrument driver is 
more than a series of VIs; it is a tool to help users develop application 
programs. You should design an instrument driver with the application 
and end user in mind. 
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You must create some instrument driver VIs that control unique 
instrument features. However, you can use template VIs for common 
operations. For more information about template VIs see Chapter 33, 
Instrument Driver Template VIs.

Instrument Driver Structure and VI Hierarchy
When you develop a LabVIEW instrument driver, it is important to 
clearly define the structure and VI hierarchy of the driver. First, define 
the primary VIs and develop a modular VI hierarchy. This hierarchy is 
the design document for a LabVIEW instrument driver. 

Useful instrument drivers come from an in-depth knowledge of the 
instrument operation and use in test applications. The following steps 
outline one approach to developing the structure for the LabVIEW 
instrument drivers:

1. Familiarize yourself with the instrument operation. Read the 
operating manual thoroughly. Typically the foundation of the 
driver hierarchy is in the instrument programming manual. Learn 
how to use the instrument interactively before you attempt any 
programming. 

2. Use the instrument in an actual test set-up to get practical 
experience. (The operating manual may explain how to set up a 
simple test.) 

3. Study the programming section of the manual. Skim the instruction 
set to see which controls and functions are available and how the 
features are organized. Decide which features are best suited for 
programmatic use.

4. Examine instrument drivers for similar instruments. Often 
instruments from the same family have the same programming 
command set and you can easily modify their corresponding 
instrument drivers.

5. Determine which LabVIEW template VIs are suitable for use with 
your instrument.

6. Develop a structure for the driver by looking for controls that are 
used together to perform a single task or function. The sections of 
a well organized manual often correspond to the functional 
groupings of an instrument driver.
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Instrument Driver VI Organization

After you have developed your Instrument Driver structure, you can 
develop a VI hierarchy to organize the VIs that will be necessary to 
create the driver.

The VI organization of an instrument driver defines the hierarchy and 
overall relationship of the instrument driver component VIs. 

You define the majority of instrument driver VIs and design them to 
access the unique capabilities of a particular instrument. However, 
many operations common to all types of instrumentation are performed 
by the template instrument driver VIs: initialize, close, reset, self-test, 
revision query, error query, and error message. 

The template VIs for LabVIEW instrument drivers include prewritten 
VIs to perform these common instrument operations. The command 
strings are based on the VISA functions. To include these VIs in your 
instrument driver, modify the command strings as required for your 
instrument. If the instrument is IEEE 488.2 compliant, little or no 
modifications are needed. If you are developing a driver for a non-IEEE 
488.2 compliant or a register-based device, you will develop equivalent 
VIs for your instrument.

A class is a group of VIs that perform similar operations. Common 
classes of VIs are configuration, action/status, data, and utility. 

The following table shows an example instrument driver organization 
for an oscilloscope. At the highest level of the hierarchy, you see the 
template VIs, initialize and close and the typical classes of VIs.

Table 32-1.     Instrument Driver Organization Example

VI Hierarchy Type

Initialize VI (Template)

Application VIs
• Autosetup and Read Waveform
• Rise-Time/Fall-Time Measurement

(Developer Defined) 
(Developer Defined)
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Guidelines and Recommendations

• Design an instrument driver VI front panel that contains all the 
controls required to perform the VI task. 

For example, a configure measurement VI would contain only the 
necessary controls to configure the instrument to take the 
measurement. It would not take the measurement or configure any 
other features. Other VIs included in the instrument driver perform 
these tasks.

• Design a modular instrument driver that contains a set of VIs, each 
performing a logical task or function such as configuring the 
instrument or taking a measurement. 

A modular instrument driver is flexible and easy to use. For 
example, consider a digital multimeter driver design that uses a 
single VI to both configure the instrument and read a measurement. 

Configuration VIs
• Configure Vertical
• Configure Horizontal
• Configure Trigger
• Configure Acquisition Mode
• Autosetup

(Developer Defined)
(Developer Defined)
(Developer Defined
(Developer Defined)
(Developer Defined)

Action VIs
• Acquire Data (Developer Defined)

Data VIs
• Read Waveform
• Voltmeter Measurement
• Counter/Timer Measurement

(Developer Defined)
(Developer Defined)
(Developer Defined)

Utilities VIs
• Reset
• Self-Test
• Revision Query
• Error Query
• Error Message

(Template)
(Template)
(Template)
(Template)
(Template)

Close VI (Template)

Table 32-1.     Instrument Driver Organization Example (Continued)

VI Hierarchy Type
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The user cannot read multiple measurements without reconfiguring 
the meter each time the VI executes. A better approach is to build 
two VIs: one to configure the instrument, and one to read a 
measurement. Then the user can configure the meter once and take 
multiple measurements.

• Concentrate on the correct level of granularity of driver VIs and 
how these VIs will be used in a system. 

An instrument driver with a few very high-level VIs may not give 
the user enough control of the instrument operation. Conversely, an 
instrument driver with many low-level VIs is difficult for users 
unfamiliar with instrument rules regarding command order and 
interaction. For example, when using a measurement device such as 
an oscilloscope, the user typically configures the instrument once 
and takes many measurements. In this case, you should write 
high-level configuration VIs for the device. On the other hand, 
when using a stimulus device such as a pulse generator, the user 
may want to vary individual parameters of the pulse to test the 
boundary conditions of his system, or perform frequency response 
tests. In this case, you should write lower-level VIs, so that users 
can access individual instrument capabilities instead of 
reconfiguring each time they want to change one component of the 
output.

• Consider the relationship of the driver with other instrument drivers 
in the system. 

Typically, test designers want to initialize all of the instruments in 
a system at once, then configure them, take measurements, and 
finally close them at the end of the test. Good driver design includes 
logical division of operations.

• Create an instrument driver design (both in appearance and 
functional structure) that is similar to other instruments of the 
same type. 

Instrument drivers across a family of similar instruments should be 
consistent in appearance, structure, and style. For example, all 
oscilloscope drivers should resemble each other, as should all 
multimeters, scanners, and sources. If possible, modify a copy of an 
existing driver of a similar instrument. 

• Design an instrument driver that optimizes the programming 
capability of the instrument. 

You can sometimes exclude documented functions that are not 
well-suited for programmatic use.
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• Design each VI to be independent of other VIs. 

If two or more VIs must always be used together, consolidate them 
into one VI.

• Minimize redundant parameters. 

For example, the parameters for each channel of a multi-channel 
oscilloscope are similar or identical. Rather than duplicate the 
programming controls for each channel, you can include a VI 
control for selecting which channel to configure. The user can use 
this VI to change the settings for an individual channel, rather than 
configuring every channel each time the VI is called.

Design Example
Deciding which parameters to include in an instrument driver VI is one 
of the greatest challenges facing the instrument driver developer. 
Fortunately, organizational information is often available in the 
instrument’s manuals. In particular, the programming section of the 
manual may group the commands into sections such as configuring a 
measurement, triggering, reading measurements, and so on. These 
groupings can serve as a model for a driver hierarchy. Begin to develop 
a structure for the driver by looking for controls that are used together 
to perform a single task or function. A modular driver will contain 
individual VIs for each of the control groups.
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The following table shows how the command summary from the 
Tektronix VX4790 Arbitrary Waveform Generator Operating Manual 
relates to developer specified instrument driver VIs.

While the instrument manual can provide a great deal of information 
about how to structure the instrument driver, you should not rely on it 
exclusively. Your knowledge of the instrument and how it is used 
should be the ultimate guide. The preceding table shows manual 

Table 32-2.     Command Summary from Tektronix VX4790

Instrument Manual Section Instrument Driver VI

Setup Commands
• External clock input enable
• External trigger source
• Sync pulse control
• Isolation relay control

TKVX4790 Setup

Pre-Programmed Waveform 
Commands
• Sine wave
• Square wave
• Triangle wave
• Sawtooth wave

TKVX4790 Config Std. 
Waveform

Frequency Commands
• Frequency
• Period
• Divide
• Low-Pass filters

TKVX4790 Config Sample 
Frequency

Voltage/Attenuator Commands
• Voltage control
• Attenuator enable
• Attenuation level

TKVX4790 Config Volt/Atten.

Arbitrary Waveform Commands
• Sample voltage
• Breakpoint/Last commands

TKVX4790 Download Arb. 
Waveform

Trigger Commands
• Start location
• Breakpoint/last commands

TKVX4790 Run/Stop
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sections that map nicely to VIs found in the instrument driver. There are 
instances when it is more appropriate to place commands from several 
different command groups in your VI.

Conversely, it is often necessary to take one group of commands and 
divide it into two or more VIs. Consider how an instrument manual 
groups the trigger configuration commands with the commands that 
actually perform the trigger arming and execution. In this case, you 
should separate the commands into two VIs; one to configure the 
trigger, and one that arms or triggers the instrument.

The following figure shows the LabVIEW instrument driver VIs for the 
Tektronix VX4790 Arbitrary Function Generator.

Figure 32-1.  LabVIEW Instrument Driver VIs for the Tektronix VX4790

Modifying the Instrument Driver Templates
After you design the LabVIEW instrument driver structure, the next 
step is to modify the template VIs to represent your instrument. Most of 
the modifications involve the instrument prefix. The prefix is a unique 
identifier for the instrument driver, and is used as the filename for all 
files associated with the driver and as the prefix to all instrument VI 
names. Typically, the prefix is the combination of an abbreviation for 

Application VI

Configuration VIs

Initialize VI

Action VIs

Close VI

Data VI

Utility VIs
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the instrument vendor name and the model number. For example, the 
instrument prefix for the Tektronix VX4790 instrument driver is 
tkvx4790. As a default, the template instrument drivers use PREFIX as 
the instrument prefix.

Use the following procedure for modifying the LabVIEW instrument 
driver template:

1. Open the PREFIX Initialize template in the file CoreDrv.llb.

2. Save the VI into a new VI library file by using the prefix for your 
instrument as the filename of the.llb file. Save the VI replacing 
PREFIX in the VI name with the prefix for your instrument.

3. Follow the instructions in the Modification Instructions 
string control on the initialize panel to modify the VI for your 
particular instrument. 

4. Edit all Show VI Info... and control and indicator descriptions.

5. Edit the icon. Create an icon for each of the color modes of the icon: 
Black and White, 16-Color, and 256-Color.

6. Delete the Modification Instructions string control after you 
have completed the modifications.

7. Resize the front panel and save the VI.

8. Repeat steps 1 through 7 for PREFIX Close VI and the remaining 
template VIs that your instrument uses. All LabVIEW instrument 
drivers should have initialize, close, reset, revision query, error 
message, self test and error query and error message (multiple) VIs. 
If the instrument does not support some of the utility functions, the 
VI should return a “not supported” warning.

After completing this procedure, you have a base-level driver that 
implements all template instrument driver VIs and is a good framework 
from which you can create the rest of your driver.

In addition to CoreDrv.llb, there is one more instrument driver 
template library, CoreDr_U.llb. This library can contain support VIs 
that the instrument driver uses internally, but which you do not intend 
the end user to call. Two examples of support files, PREFIX Utility 
Clean Up Initialize and PREFIX Utility Default Instrument Setup, are 
included in the CoreDr_U.llb file. If you intend the instrument driver 
to use these files, you should rename and modify them like those in 
CoreDrv.llb.
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Adding Instrument Driver Component VI VIs
The final step in developing a LabVIEW instrument driver is to add the 
developer defined component VIs that define the functionality of the 
instrument driver and access the unique capabilities of your instrument. 
The VIs that you create will be added to the source code along with the 
template VIs in the file prefix.llb.

You can use the following procedure to add your new VIs:

1. Open either the PREFIX Message-Based or PREFIX 
Register-Based templates VI in CoreDrv.llb. Use the PREFIX 
Message-Based template VI for message-based operations. Use 
the PREFIX Register-Based template VI for register-based 
operations.

2. Edit the VI front panel. Create the controls and indicators for 
the VI. 

3. Edit all control and indicator Help information. Edit the Show VI 
Info... description.

4. Edit the icon. Create an icon for each of the color modes of the icon: 
Black and White, 16-Color, and 256-Color.

5. Edit the connector pane. Select an appropriate connector pattern 
and wire all controls and indicators to the terminals.

6. Edit the block diagram. Program all operations necessary to carry 
out the functionality of the instrument driver VI.

7. Save the VI.

8. Test the instrument driver VI.

9. Repeat these steps for every instrument driver component VI and 
application VI that you define for your instrument.

10. Edit the instrument driver .llb by selecting File»Edit VI 
Library... from the menu. Edit the Functions and Controls names. 
Edit the arrangement of icons in the Functions and Controls 
palettes.

Editing the block diagram source code is the most difficult step in 
adding a component VI to the instrument driver. Defining a block 
diagram structure makes it easier to edit the block diagram source code. 
You can divide this process into the following steps:

1. Place the appropriate I/O routines in the block diagram.

2. Wire the error in cluster terminal to the first I/O VI error input 
connector. Then wire the error out connector of that VI to the error 
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in connector of the next VI. Continue this process for all of the I/O 
VIs. Then wire the error out connector of the last VI to the error 
out terminal of the icon.

3. Wire the VISA session to every I/O VI.

4. Use the LabVIEW string VIs to assemble a command string based 
on the VI inputs.

5. Wire the command string to the VISAWrite function.

6. Use the VISA Read function to read the response if an instrument 
response is generated. 

7. Use the string VIs to parse the response and wire it to the 
appropriate indicator terminals.

Modifying the Menu Files to Create Function Sub-Palettes
After you complete all the required VIs, component VIs, Application 
VIs and the Getting Started VI, organize them into subpalettes that the 
end user can access. This involves editing the template menu files as 
follows:

1. Copy the CoreDrv directory to another directory and rename the 
new directory PREFIX. This directory should be a subdirectory of 
Instr.lib.

2. Relaunch LabVIEW so that the new template subpalettes appear in 
the function palette under instrument drivers.

3. Select Edit Controls and Function Palettes. . . from the File menu 
in LabVIEW.

4. Edit the instrument driver’s palette icon and change the name to 
PREFIX.

5. Access the instrument driver’s subpalette window to view the 
hierarchy of the driver. For each subpalette, insert the VIs which 
correspond to that category. You will need to replace the template 
files with the completed version.

6. Save your changes. Your menu files will now contain the added 
component VIs.
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The resulting menu palettes should resemble the following subpalette:

Tips for Developing a LabVIEW Instrument Driver

Loop Termination Conditions
When you use looping structures in instrument driver block diagrams, 
you must include a way to escape from While Loops if an error occurs. 
This escape method is important if you are using a While Loop 
containing I/O routines and the loop termination depends on the result 
of the I/O.

If there is an error, the I/O routines automatically shut down and 
LabVIEW may be stuck in an endless loop. Therefore, always test the 
error cluster status in conjunction with your normal loop termination 
condition to determine when to terminate the loop. Figure 32-2 below 
shows the incorrect mechanisms for terminating a While Loop.

Figure 32-2.  Incorrect Mechanism for Escaping from While Loop
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Figure 32-3 below shows the correct mechanisms for terminating a 
While Loop

Figure 32-3.  Correct Mechanism for Escaping from While Loop

Assembling Command Strings
After you develop your front panel, the next step is to create the block 
diagram which performs the function required by the VI. Each type of 
front panel control has a corresponding block diagram string VI that 
simplifies the task of building command strings. 

You can use Pick Line & Append to choose from a selection of strings 
and concatenate it to another string in a single step. This procedure is 
easier than using a Case structure and Concatenate Strings.

You can use Format & Append to format and concatenate simple 
numeric values. This procedure is easier than using one of the To 

Use this block diagram... rather than this one...
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Decimal or To Exponential type conversion VIs in conjunction with 
Concatenate Strings.

By using Select & Append you can select a string constant and 
concatenate it to another string in a single step. This procedure is easier 
than using Select and Concatenate Strings.

Data Dependency
Carefully consider the control flow when you build your diagrams. 
LabVIEW does not necessarily execute in a left-to-right, top-to-bottom 
fashion. Data dependency automatically determines execution order. 
Add artificial data dependency wherever appropriate (see the LabVIEW 

User Manual for more information). By using the clusters to chain I/O 
VIs together, you can define the execution order without using Case or 
Sequence structures, as illustrated in Figure 31-3, in Chapter 31, 

LabVIEW Instrument Driver Models. Sequence structures, which hide 
parts of the diagram, are also effective at controlling execution order. 
Whichever method you use, make sure that you clearly define control 
flow so that the correct branch of the diagram executes first

Use this block diagram... rather than this one...

Use this block diagram... rather than this one...
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.

Figure 32-4.  Range Test VI (Front Panel and Block Diagram)

Programmatic range checking can easily double the size of your VI and 
add some execution speed penalties. Figure 32-5 and Figure 32-6 show 
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the changes made to the Simple Trigger VI to programmatically check 
the ranges of the numeric inputs.

Figure 32-5.  Simple Trigger VI with Programmatic Range Testing

Figure 32-6.  Simple Trigger VI without Programmatic Range Testing

Guidelines
Like the LabVIEW VI, the standard components of an instrument driver 
VI are the front panel, block diagram, and icon/connector pane. Special 



Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-17 LabVIEW Function and VI Reference Manual

guidelines concerning these components, as well as error reporting and 
on-line help information, are described in the following sections.

Front Panel
Each VI in your instrument driver should contain a front panel that 
groups all the necessary controls together to perform the function of the 
VI. When you develop an instrument driver VI, decide which control 
styles best represent the instrument commands and options. Typically, 
you can categorize instrument commands into three types of control 
styles: Boolean, digital numeric, and text or ring numeric. 

For example, you can represent any instrument command that has two 
options (such as TRIG:MODE:AUTO | NORMAL) on the front panel 
with a Boolean switch. In this case, label the switch Trigger Mode and 
add a free label showing the options: auto or normal. For commands 
that have a discrete number of options (such as TRIG:COUP:AC | DC | 
HFREJ), use a text ring or an enumerated type ring rather than a digital 
numeric because the ring control labels each numeric value with the 
command it represents. Any command requiring a numeric parameter 
whose value varies over a wide range and might be represented with a 
digital numeric.

Note: You might prefer to use the enumerated type ring controls because 

selections for case structures are self-documenting when wired directly to 

a enumerated-type control or constant. Also, by using the “Create 

Constant” popup feature in LabVIEW, end users generate an enumerated 

type ring constant rather than a numeric constant.

You can use Boolean, numeric, and text ring controls to represent most 
instrument commands on the front panels of your VIs. In addition, block 
diagram string functions specifically designed for use with these 
controls exist. These features can simplify string formatting and append 
instrument commands into command messages, as discussed in the 
Assembling Command Strings and Block Diagram sections of this 
chapter.
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Required Front Panel Controls
In addition to the controls required to operate the instrument, your front 
panel must also have the following controls.

VISA session (except for the initialize VI) input is a unique identifier 
reference to a device I/O session. It identifies the device with which the 
VI communicates and all configuration information necessary to 
perform the I/O.

dup VISA session output is a unique identifier reference to a device 
I/O session. It identifies the device with which the VI communicates 
and all configuration information necessary to perform the I/O. 

error in describes error conditions that occur before this VI executes. 
The default input of this cluster is no error.

error out is a cluster containing error information. If error in indicates 
an error, the status, code, and source elements of error out have the 
same values as the corresponding elements of error in. If error in does 
not indicate an error, error out describes the error encountered by the 
VI. Refer to the LabVIEW Error Codes manual for a description of the 
possible error codes.

To gain consistency with other LabVIEW instrument drivers, place the 
VISA session control and dup VISA session indicator in the upper left 
and upper right corners of the front panel, and the error out cluster in 
the lower right corner. Place the error in cluster outside the panel’s 
visible window because it has no interactive use and is only needed for 
programmatic use.

Control Guidelines

When placing controls on your front panels, use the following style 
guidelines to ensure uniformity with other LabVIEW Instrument Driver 
VI front panels:
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• Use the default font (Application) for all LabVIEW instrument 
driver front panel control labels.The application font is available on 
all LabVIEW platforms.

• Use bold text for control name labels that denote important or 
primary controls, and reserve plain text for secondary controls.

Note: In most cases, all instrument driver controls are primary and require bold 

text. If you are finding yourself placing many secondary or auxiliary 

controls on panels, this may indicate the need to subdivide your VI into two 

or more VIs.

• Capitalize initial letters in all words, except abbreviations or 
acronyms, which require caps (such as ID or GPIB) and error in, 
error out and dup VISA session labels.

• Place labels above the associated control or indicator and color the 
label background transparent.

• Enclose control default information in parentheses in the control 
name.

By including default information in the control name, users access 
that information through the help window. This feature is helpful 
when you are using the VI in higher-level applications. 

For example, Function (0:DCV) would be an appropriate label for 
a function selector ring control whose default is DC voltage and 
item zero in the ring. The abel for a Boolean mode switch that 
defaults to true indicating automatic would be Mode (T:Auto). 
(Notice that the default information is in plain text).

• Align and distribute the controls and indicators for a well balanced 
panel. 
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The following figures shows the simple trigger VI after modification to 
meet the style guidelines.

Figure 32-7.  Simple Trigger VI Front Panel (See Figure 32-8 for Diagram)

Figure 32-8.  Simple Trigger Block Diagram

Block Diagram
Proper wiring style improves the diagram appearance and eases 
understanding. The following are recommendations for developing 
your instrument driver block diagrams: 

• Add text labels to each frame of Case and Sequence structures.

• Label control and indicator nodes with normal text.
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• Use bold text to make your free label comments stand out. 

• Leave room for labels and wires. Do not crowd the diagram. Do not 
cover wires with loops, cases, labels, or other diagram objects. 

• Reduce the number of bends in the wires by aligning data terminals 
whenever possible. You can use the cursor keys to move objects 
one pixel width at a time. Use the Align and Distribute options in 
the Edit menu to add symmetry and straight lines to your diagram.

• Label long wires and complex operations to increase 
understandability.

Icon
When you use an instrument driver VI programmatically, the icon 
graphically represents the function (much like the function name of a C 
library call). Use meaningful icons for every VI. Include text in the icon 
that identifies the instrument model controlled by the VI. If you are 
unable to create an icon to express the function of the VI, you can use 
text only.

You can borrow icons from similar VIs in other instrument drivers. 
These sample icons are available in the file insticon.llb.

Connector Pane
When you use an instrument driver programmatically, the connector 
pane defines how to pass parameters to and from the VI. Use the 
following rules when creating your instrument driver connector panes:

• Place the VISA session input and dup VISA session output in the 
upper left and upper right terminals of the LabVIEW instrument 
driver connector pane.

• Place the error in and error out clusters in the lower left and lower 
right terminals of the LabVIEW instrument driver connector pane 
respectively.

• Place inputs on the left and outputs on the right of the connector 
pane whenever possible. This promotes a left-to-right data flow 
when the VI is used in a block diagram.

Note: It is acceptable to choose a connector pane pattern that has extra terminals 

in case you make unforeseen control or indicator additions to your 

instrument driver VIs in the future. This procedure prevents you from 

having to change the pattern and replace all instances of calls to a modified 

VI. 
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Error Reporting
Refer to the document, LabVIEW Error Codes, for a list of error codes 
reserved for LabVIEW instrument drivers. 

Online Help Information
LabVIEW has two types of help mechanisms available to users: VI 

Descriptions and Control Descriptions. You should implement both VI 

Descriptions and Control Descriptions for all LabVIEW instrument 
driver VIs and controls that you develop.

VI Descriptions
Users can access VI Description help from the description box of the 
information window by selecting Windows»Show VI Info..., as shown 
in the following figure. 

This dialog box should contain the following information:
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• A general description of the instrument driver VI

• Control usage rules

• VI interaction with other instrument driver VIs

• Important information concerning the use of the VI

Control and Indicator Descriptions
Control and indicator help is the information most frequently viewed by 
the user. You can obtain control or indicator help by selecting Data 
Operations»Description... from the control or indicator pop-up menu, 
as shown in the following figure.

The control and indicator help information should contain the 
following:

• Name of the parameter

• Brief description of the parameter

• Valid range

• Default value

• Interaction with other controls

Be sure to include information showing index numbers and 
corresponding settings for all ring and slide controls, and settings 
corresponding to True/False positions on Boolean controls.
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Application VIs 
The application VIs demonstrate a common use of the instrument and 
show how the component VIs are used programmatically to perform a 
task. For example, an oscilloscope application VI would configure the 
vertical and horizontal amplifiers, trigger the instrument, acquire a 
waveform, and report errors. Consider the following points when 
developing application VIs for your instrument driver:

• Concentrate on building simple, quality examples that can serve as 
general models for users. It is not necessary to make your 
application VIs perform every function found in your instrument 
driver.

• Build the instrument driver top-level examples from the instrument 
driver component VIs, and perform common test- and 
measurement-oriented operations for this particular instrument.

• Do not use the instrument driver application VIs to call the 
initialize or close instrument driver VIs, because doing so will 
make the application VIs less useful to higher level applications.

LabVIEW Instrument Driver Standards Checklist

All LabVIEW instrument drivers should conform to recommendations 
for programming style, error handling, front panels, block diagrams, 
and online help described in this section. Use the following checklist to 
verify that your instrument driver complies with library standards:

I. Files and Documents you submit: 

 A. Prefix.zip containing the instrument driver files. 

 1) Prefix.llb, your main instrument driver library. (e.g., 
hp16500b.llb, fl45.llb)

 2) Palette menu files. (dir.mnu, acstat.mnu, 
data.mnu, applic.mnu, util.mnu. config.mnu)

 3) (optional/recommended) Prefix_u.llb. (e.g., 
hp1650_u.llb, fl45_u.llb).

 4) (optional) Prefix.txt.

 B. Manufacturer’s instrument manual or manual set.

 C. A completed checklist.
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II. General Issues:

 A. The instrument driver must use VISA for all instrument I/O:

 B. All VIs are designed for programmatic use, so there are no 
pop-up VIs or dialog boxes, and no interactive inputs. All controls and 
indicators are wired to the connector pane.

 C. All VIs are multi-instance, so there are no uninitialized shift 
registers, and no global storage VIs unless specifically designed to work 
with multiple instruments simultaneously.

 D. All VIs are fully documented including Show VI Info and 
control descriptions.

 E. Driver follows the instrument internal and external driver 
model: The driver must include the following VIs: Initialize, Close, 
Getting Started, Application and VI Tree. In addition, all other VIs must 
be grouped into the following categories: Configure, Action/Status, 
Data, Utility, or support.

 F. All VIs use the error I/O clusters, error in and error out.

 G. The instrument driver contains the following required Utility 
functions: Revision Query, Self Test, Reset, Error Query (single and/or 
multiple), and Error Message.

 H. The required utility VIs return a VISA NSUP warning code if 
the instrument does not support the requested operation.

 I. The instrument driver uses VISA session, dup VISA session, 
error in, and error out to channel data flow, and force data 
dependency. Do not use sequences or case structures for this purpose 
because they slow execution speed and make it harder to debug the 
driver.

III. Prefix.llb:

 A. Prefix.llb contains all the instrument driver VIs that you 
want the end user to access directly.

 B. All VIs are saved with meaningful names including 
instrument prefix and description, and include only alpha-numeric 
characters (no special characters). Use Initial Capital Letter form (e.g., 
Fluke 45 Read Measurement). VIs that are of the same type should be 
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named so that they start with a common name. For example, all 
configuration VIs should start with “Prefix Config.”

 C. The VI Tree is contained in prefix.llb and is named 
Prefix VI Tree.vi. The front panel of the VI contains a message 
instructing the users to “See the diagram for the VI Tree”. The diagram 
contains all of the driver's VIs that are designed for the user to access. 
These VIs are arranged by functional grouping, such as Getting Started, 
Application, Initialize, Configuration, Action/Status, Data, Utility, 
and Close.

 D. All instrument drivers have at least one Application VI. These 
VIs are programmatic examples that demonstrate how to use the 
instrument driver component VIs to perform a common task or tasks.

 E. All instrument drivers must have a Getting Started VI. This VI 
calls the Initialize VI, one or more application VIs, followed by the 
Close VI.

 F. Getting Started, Application and VI Tree VIs are given 
top-level status in the VI library.

IV. Prefix_U.llb (Recommended/Optional):

 A. Prefix_U.llb contains all the support VIs the end user 
should not access directly, but are used by the instrument driver.

V. Palette Menu Files:

 A. The function menu palettes are well organized and follow the 
format of the instrument driver template.

 B. Palette Menu files include dir.mnu, 
applic.mnu,config.mnu, acstat.mnu, data.mnu, and 
util.mnu.

VI. VI Front Panels

 A. Contains VISA session, dup VISA session, error in and 
error out controls/indicators.

 B. Front panel Show VI Info description is complete, 
informative, and contains any additional information that helps the end 
user successfully operate the instrument driver.
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 C. Show VI Info for the Revision Query VI includes the 
following:

 1) The Instrument Driver Revision Number

 2) The Firmware Revision of the Instrument used when 
creating the instrument

 3) The date the driver will be released on the next Instrument 
Driver CD (month/year)

 4) The instrument manufacturer's name

 5) The instrument model number

 6) The instrument type (Digital Multi-Meter, Oscilloscope, 
Function Generator, etc.)

 7) The instrument driver developer’s name

 D. (optional/recommended). The same information that is 
included in the revision query VI is included in the Show VI Info 
documentation of the VI Tree VI.

 E. VI History is updated with comments as needed.

 F. Controls and Indicators

 1) All control and indicator descriptions are complete. This 
includes valid ranges, default values and items within a ring 
control.

 2) Labels are placed at the upper left of controls and the 
background color of labels is transparent. Size to Text feature used.

 3) Default Application Font is used and the initial letters of 
control names are capitalized. Use bold for primary controls and 
plain text for secondary controls. Use plain text to indicate default 
values.

 4) Proper defaults are set for each control. Default values are 
included in the control name.

 5) Proper data type and display format is used.

 6) Enumerated text rings used instead of regular test rings, 
whenever possible.

 G. Align and distribute the controls for an appealing panel 
layout. Do not overlap controls. Set Panel Order so that users can tab 
through the controls in a logical sequence.
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 H. Use color sparingly or use standard gray. If color is desired, 
use only the 16 basic colors.

VII. Icon/Connector Pane/VI Setup

 A. Create meaningful icons for all VIs.

 1) Place the instrument Prefix at the top of the icon. Place a 
text description at the bottom of the icon.

 2) Try to keep a common theme for all VIs of a particular 
driver or group within a driver.

 3) Black and white icons are required, 16 and 256 color icons 
are recommended/optional.

 B. Select an appropriate connector pane.

 1) For ease of wiring it is recommended that the following 
connector pane is used, whenever possible: 

 2) Whenever possible, input terminals should be kept to the 
left and top while outputs are on the bottom and right.

 3) VISA session must be assigned to the upper left terminal 
and dup VISA session is assigned to the upper right terminal. 
Similarly, error in and error out are assigned to the lower left and 
lower right terminals, respectively.

 4) If future modifications are expected, a connector pane 
with extra unused terminals is acceptable.

 C. Use caution when using VI Setup options. Do not select 
options to make the panel automatically shown or run.

VIII. Block Diagram:

 A. Use bold text labels with 14 point application font to describe 
each case or sequence frame. These descriptions should be left-justified 
with the background colored transparent.

 B. Use plain text labels for controls/indicators with the default 
application font. For control terminals, place labels below or on the left. 
For indicator terminals, palce the labels below or on the right. If you 



Chapter 32 LabVIEW Instrument Driver Development

© National Instruments Corporation 32-29 LabVIEW Function and VI Reference Manual

place labels to the left of the terminal, make them right justified, 
otherwise use left-justification. Make label backgrounds transparent.

 C. Do not crowd the diagram. Do not cover wires with labels, 
objects, or structures.

 D. When possible, try to wire the VIs the way that they appear in 
the LabVIEW Help Window.

 E. Try to lay out the diagram with a left-right, top-down 
data flow.

 F. For functions and VIs that are chained together using the VISA 
sessions and error clusters, try to align the wires between sequences to 
be on the same horizontal level.

 G. Try to align and distribute terminals, VIs and functions within 
your block diagram to give it a well-balanced look. Eliminate 
unnecessary bends in the wires.

 H. Use proper error I/O wiring techniques. Use the correct error 
codes for error reporting.

 I. Save diagrams with the first or most important frames and 
cases visible. Place bold-text descriptive free labels in each case 
and frame.

 J. Avoid using sequence structures because they slow execution 
of your VI and make it harder to understand the diagram.

 K. Avoid using the Concatenate Strings function when another 
string function is more appropriate. Use other string handling functions 
such as Pick Line & Append, Select & Append and Format into String.
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Chapter

33
Instrument Driver 
Template VIs

This chapter describes the Instrument Driver Template VIs. These VIs 
are located in examples\instr\insttmpl.llb.

Introduction to Instrument Driver Template VIs

The LabVIEW instrument driver templates are the foundation for all 
LabVIEW instrument driver development. The templates have a simple, 
flexible structure and a common set of instrument driver VIs that you 
can use for driver development. The templates establish a standard 
format for all LabVIEW drivers and each has instructions for modifying 
it for a particular instrument. The LabVIEW instrument driver 
templates contain the following 11 predefined template component VIs:

• PREFIX Initialize

• PREFIX Initialize (VXI, Reg-based)

• PREFIX Close

• PREFIX Reset

• PREFIX Self Test

• PREFIX Error Query

• PREFIX Error Query (Multiple)

• PREFIX Error Message

• PREFIX Revision Query

• PREFIX Message-Based Template

• PREFIX Register-Based Template

The templates contain the following support VIs:

• PREFIX Revision Query

• PREFIX Message-Based Template

They also contain the following VI Example Tree:

• PREFIX Message-Based Template
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Rather than developing your own VIs to accomplish these tasks, you 
should use the LabVIEW instrument driver template VIs which already 
conform to the LabVIEW standards for instrument drivers. The 
template VIs are IEEE 488.2 compatible and work with IEEE 488.2 
instruments with minimal modifications. For non-IEEE 488.2 
instruments, use the template VIs as a shell or pattern, which you can 
modify by substituting your corresponding instrument-specific 
commands where applicable. After modifying the VIs, you will have the 
base level driver that implements all of the template instrument driver 
VIs for your particular instrument.

Additionally, LabVIEW instrument drivers developed from the 
template VIs will be similar to other instrument drivers in the library. 
Therefore, you will have a higher level of familiarity and understanding 
when you work with multiple instrument drivers.

Instrument Driver Template VI Descriptions

The following Instrument Driver Template VIs are available.

Note: To develop your own Instrument Driver VI, follow the instructions on the 

front panel of the Template VI.

PREFIX Close
All LabVIEW instrument drivers should include a Close VI. The Close VI is the last VI 
called when controlling an instrument. It terminates the software connection to the 
instrument and deallocates system resources. Additionally, you can choose to place the 
instrument in an idle state. For example, if you are developing a switch driver, you can 
disconnect all switches when closing the instrument driver..
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PREFIX Error Message
The PREFIX Error Message VI is a template for creating an Error Message VI for your 
particular instrument. It translates the error status information returned from a LabVIEW 
instrument driver VI to a user-readable string.

PREFIX Error Query, Error Query (Multiple) and Error Message
If an instrument has error query capability, the LabVIEW instrument driver has Error 

Query and Error Message VIs. The Error Query VI queries the instrument and returns the 
instrument-specific error information. The Error Message VI translates the error status 
information returned from a LabVIEW instrument driver VI into a user-readable string.

PREFIX Initialize and PREFIX Initialize (VXI, Reg-based)
The Initialize VI is the first VI called when you are accessing an instrument driver. It 
configures the communications interface, manages handles, and sends a default 
command to the instrument. Typically, the default setup configures the instrument 
operation for the rest of the driver (including turning headers on or off, or using long or 
short form for queries). After successful operation, the Initialize VI returns a VISA 
session that addresses the instrument in all subsequent instrument driver VIs. The 
Initialize VI is a template for message-based instruments while Initialize (VXI, 
Reg-based) is for register-based instruments.

The VI has an instrument descriptor string as an input. Based on the syntax of this input, 
the VI configures the I/O interface and generates an instrument handle for all other 
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instrument driver VIs. The following table shows the grammar for the instrument 
descriptor. Optional parameters are shown in square brackets ([]).

The GPIB keyword is used with GPIB instruments. The VXI keyword is used for either 
embedded or MXIbus controllers. The GPIB-VXI keyword is used for a National 
Instruments GPIB-VXI controller.

The following table shows the default values for optional parameters:

Additionally, the Initialize VI can perform selectable ID query and reset operations. In 
other words, you can disable the ID query when you are attempting to use the driver with 
a similar but different instrument without modifying the driver source code. Also, you 
can enable or disable the reset operation. This feature is useful for debugging when 
resetting would take the instrument out of the state you were trying to test.

PREFIX Message-Based Template and Register-Based Template
The Message-Based and Register-Based template VIs are the starting point for 
developing your own instrument driver VIs. The template VIs have all required 
instrument driver controls, and instructions for modification for a particular instrument.

Interface Syntax

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

VXI VXI::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board][::GPIB-VXI primary address]::VXI logical 

address[::INSTR]

Optional Parameter Default Value

board 0

secondary address none

GPIB-VXI primary address 1
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PREFIX Register-Based Template
The PREFIX Register-Based Template VI is a template for creating a register-based VI 
for your particular instrument. 

PREFIX Reset
All LabVIEW instrument drivers have a Reset VI that places the instrument in a default 
state. The default state that the Reset VI places the instrument in should be documented 
in the help information for the Reset VI. In an IEEE 488.2 instrument, this VI sends the 
command string *RST to the instrument. When you reset the instrument from the 
Initialize VI, this VI is called. Also, you can call the Reset VI separately.

PREFIX Revision Query
LabVIEW instrument drivers have a Revision Query VI. This VI outputs the following:

• The revision of the instrument driver.

• The firmware revision of the instrument being used. (If the instrument firmware 
revision cannot be queried, the Revision Query VI should return the literal string Not 
Available.)

PREFIX Self-Test
If an instrument has self-test capability, the LabVIEW instrument driver should contain 
a Self-test VI to instruct the instrument to perform a self-test and return the result of that 
self-test.
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PREFIX Utility Clean UP Initialize
Closes an open VISA session in the event that there is an error during initialization. This 
VI should be called only from the Initialize VI.

PREFIX Utility Default Instrument Setup
Sends a default command string to the instrument whenever a new VISA session is 
opened, or the instrument is reset. Use this VI as a subVI for the Initialize and Reset VIs.

PREFIX VI Tree
The VI Tree VI is a non-executable VI that shows the functional structure of the 
instrument driver. It contains the Getting Started VI, application VIs, and all of the 
component VIs.
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Chapter

34VISA Library Reference

This chapter contains descriptions of the VISA Library Reference 
operations and attributes. 

The following figure shows the VISA palette, which you access by 
selecting Functions»Instrument I/O»VISA:

The Visa palette includes the following subpalettes:

• Event Handling Functions

• High-Level Event Access

• Low-Level Registry Access
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Operations

This section describes the VISA Library Reference operations. 

VISA Library Reference Parameters
Most of the VISA Library Operations use the following parameters:

• VISA session is a unique logical identifier to a session. It is produced 
by the VISA Open function and used by the VISA primitives. dup 
VISA session is the VISA session passed to a function. The dup 
simplifies dataflow programming and is similar to the dup file refnums 
provided by file I/O functions.

The VISA session drops by default with class Instr. You can 
change the class by popping up on it at edit time. The following 
classes are currently supported:

– Instr

– GPIB Instr

– VXI/GPIB-VXI RBD Instr

– VXI/GPIB-VXI MBD Instr

– Serial Instr

– Generic Event

– Service Request Event

– Trigger Event

– VXI Signal Event

– VXI/VME Interrupt Event

– Resource Manager

Note: The Generic Event, Service Request Event, Trigger Event, VXI Signal 

Event, VXI/VME Interrupt Event, and Resource Manager classes work 

only with the VISA Close function and the VISA Attribute Node.

VISA functions vary in the class of VISA session which can be 
wired to them. The valid classes for each function are indicated in 
the documentation. For example, the functions on the High Level 
and Low Level Register Access palettes do not accept VISA 
sessions of class GPIB Instr or Serial Instr. If you wire a VISA 
session to a function that does not accept the class of the session, 
or if you wire two VISA sessions of differing classes together, your 
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diagram will be broken and the error will be reported as a Class 

Conflict.

• error in and error out terminals comprise the error clusters in each 
VISA function. The error cluster contains three fields. The status field 
is a Boolean which is TRUE when an error occurs, FALSE when no 
error occurs. The code field will be a VISA error code value if an 
error occurs during a VISA function. Appendix D lists the VISA 
Reference Library error codes. The source field is a string which 
describes where the error has occurred. By wiring the error out of 
each function to the error in of the next function, the first error 
condition is recorded and propagated to the end of the diagram 
where it is reported in only one place. 

VISA Operation Descriptions

These functions appear on the main VISA palette. The valid classes for these functions 
are: Instr (default), GPIB Instr, Serial Instr, VXI/GPIB-VXI RBD Instr, and 
VXI/GPIB-VXI MBD Instr. 

VISA Assert Trigger
Asserts a software or hardware trigger, depending on the interface type. 

Note: The Serial Instr class is not valid for VISA Assert Trigger.

VISA Clear
Performs an IEEE 488.1-style clear of the device. For VXI, this is the Word Serial Clear 
command; for GPIB systems, this is the Selected Device Clear command. 

Note: The Serial Instr class is not valid for VISA Clear.
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VISA Close
Closes a specified device session or event object. VISA Close accepts all available 
classes. For a listing of available classes, see the VISA Operation Parameters section 
earlier in this chapter.

VISA Find Resource
Queries the system to locate the devices associated with a specified interface. 

VISA Lock
Establishes exclusive access to the specified source.

VISA Open
Opens a session to the specified device and returns a session identifier that can be used 
to call any other operations of that device. 

The following table shows the grammar for the address string. Optional parameters are 
shown in square brackets ([ ]).

Interface Grammar

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]
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The GPIB keyword can be used to establish communication with a GPIB device. The 
GPIB-VXI keyword is used for a GPIB-VXI controller. The VXI keyword is used for 
VXI instruments via either embedded or MXIbus controllers. The Serial keyword is used 
to establish communication with an asynchronous serial (such as RS-232) device.

The INSTR keyword specifies a VISA resource of the type INSTR. 

The following table shows the default value for optional parameters.

The following table shows examples of address strings.

See the VISAClose description earlier in this chapter. 

VXI VXI[board]::VXI logical address[::INSTR]

Serial ASRL[board][::INSTR]

Optional Parameter Default Value

board 0

secondary address none

Address String Description

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary address 
0 in GPIB interface 0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI controlled 
VXI system.

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface VXI0.

ASRL0::INSTR A serial device located on port 0.

Interface Grammar
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VISA Read
Reads data from a device. On UNIX platforms data is read synchronously; on all other 
platforms data is read asynchronously.

VISA Read STB
Reads a service request status from a message-based device. For example, on the IEEE 
488.2 interface, the message is read by polling devices. For other types of interfaces, a 
message is sent in response to a service request to retrieve status information. If the status 
information is only one byte long, the most significant byte is returned with the zero 
value. 

Note: The Serial Instr class is not valid for VISA Read STB.

VISA Status Description
Retrieves a user-readable string that describes the status code presented in error in. 

VISA Unlock
Relinquishes the lock previously obtained using the VISA Lock function.
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VISA Write
Writes data to the device. On UNIX platforms data is written synchronously; on all other 
platforms data is written asynchronously.

Event Handling Functions

The following section describes the VISA Event Handling functions. Valid classes for 
these functions are: Instr (default), GPIB Instr, Serial Instr, VXI/GPIB-VXI RBD Instr, 
and VXI/GPIB-VXI MBD Instr.

You access the VISA Event Handling functions through the VISA palette, which you 
access by selecting Functions»Instrument I/O»VISA.

VISA Disable Event
Disables servicing of an event. This operation prevents new event occurrences from being 
queued. However, event occurrences already queued are not lost; use VISA Discard 
Events if you want to discard queued events.
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VISA Discard Events
Discards all pending occurrences of the specified event types and mechanisms from the 
specified session. 

VISA Enable Event
Enables notification of a specified event. 

VISA Wait On Event
Suspends execution of a thread of application and waits for an event Event Type for a 
time period not to exceed that specified by timeout. Refer to individual event descriptions 
for context definitions. If the specified event type is All Events, the operation waits for 
any event that is enabled for the given session.

High Level Register Access Functions

The following section describes the VISA High Level Register Access functions. Valid 
classes for these functions are: Instr (default), VXI/GPIB-VXI RBD Instr, and 
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VXI/GPIB-VXI MBD Instr. To access the VISA High Level Register Access functions, 
pop up on the High Level icon on the VISA palette.

VISA In8 / In16 / In32
Reads in 8-bits, 16-bits, or 32-bits of data, respectively, from the specified memory space 
(assigned memory base + offset). 

VISA Memory Allocation
Returns an offset into a device’s region that has been allocated for use by the session. The 
memory can be allocated on either the device itself or on the computer’s system memory.
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VISA Memory Free
Frees the memory previously allocated by the VISA Memory Allocation function.

VISA Move In8 / Move In16 / Move In32
Moves a block of data from device memory to local memory in accesses of 8-bits, 16-bits, 
or 32-bits, respectively.

VISA Move Out8 / Move Out16 / Move Out32
Moves a block of data from local memory to device memory in accesses of 8-bits, 16-bits, 
or 32-bits, respectively.
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VISA Out8 / Out16 / Out32
Writes 8-bits, 16-bits, or 32-bits of data, respectively, to the specified memory space 
(assigned memory base + offset).

Low Level Register Access Functions

The following section describes the VISA Low Level Register Access functions. Valid 
classes for these functions are: Instr (default), VXI/GPIB-VXI RBD Instr, and 
VXI/GPIB-VXI MBD Instr.To access the VISA Low Level Register Access functions, 
pop up on the Low Level icon on the VISA palette:
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VISA Map Address
Maps in a specified memory space. 

VISA Memory Allocation
For information on the VISA Memory Allocation function, see the High Level Register 

Access Functions section of this chapter.

VISA Memory Free
For information on the VISA Memory Free function, see the High Level Register Access 

Functions section of this chapter.

VISA Peek8 / Peek16 / Peek32
Reads an 8-bit, 16-bit, or 32-bit value, respectively, from the specified address. 

VISA Poke8 / Poke16 / Poke32
Writes an 8-bit, 16-bit, or 32-bit value, respectively, to the specified address. 
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VISA Unmap Address
Unmaps memory space previously mapped by VISA Map Address.

VISA Attribute Node

This section describes the VISA Library attributes. The VISA Attribute 
Node gets and/or sets the indicated attributes. The node is growable; 
evaluation starts from the top and proceeds downward until an error, or 
until the final evaluation, occurs.

To access the attribute node, select Functions»Instrument I/O»
VISA. Then select the Attribute Node icon located on the bottom row 
of the VISA palette.

The VISA Attribute Node only displays attributes for the class of the 
session that is wired to it. You can change the class of a VISA Attribute 
Node as long as you have not wired it to a VISA session. Once a VISA 
session is wired to a VISA Attribute Node, it adapts to the class of the 
session and any displayed attributes which are not valid for that class 
become invalid (this is indicated by turning the attribute item black). 
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VISA Attribute Node Descriptions

Each attribute description includes the attribute’s range of values, default value, and 
access privilege. Local applies the current session only. Global refers to all sessions to 
the same VISA resource.

Fast Data Channel Mode
Specifies which FDC mode to use (either normal or stream mode).

Fast Data Channel Number
Determines which fast data channel (FDC) will be used to transfer the buffer.

Fast Data Channel Pairs
Specifies use of a channel pair for transferring data; (otherwise, only one channel will be 
used).

Fast Data Channel Signal Enable
Lets the servant send a signal when control of the FDC channel is passed back to the 
commander. This action frees the commander from having to poll the FDC header while 
engaging in an FDC transfer.

GPIB Primary Address
Specifies the primary address of the GPIB device used by the given session. 

GPIB Secondary Address
Specifies the secondary address of the GPIB device used by the given session.

IO Protocol
Specifies which protocol to use. In VXI systems you can choose between normal word 
serial or fast data channel (FDC). In GPIB, you can choose between normal and 
high-speed (HS488) data transfers. 

Immediate Servant
Determines if the VXI device is an immediate servant of the local controller.

Increment Destination Count
Specifies the number of elements by which to increment the destination address on block 
move operations.
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Increment Source Count
Specifies the number of elements by which to increment the source address on block 
move operations.

Interface Number
Specifies the board number for the given interface. 

InterfaceType
Specifies the interface type of the given session.

Mainframe Logical Address
Specifies the lowest logical address in the mainframe. If the logical address is not known, 
UNKNOWN LA is returned.

Manufacturer ID
The manufacturer identification number of the VXIbus device.

Maximum Queue Length
Specifies the maximum number of events that can be queued at any time on the given 
session. This attribute is Read/Write until the first time Enable Event is called on a 
session. Thereafter, this attribute is Read Only. 

Model Code
Specifies the model code for the VXIbus device.

Resource Lock State
Reflects the current locking state of the resource that is associated with the given session.

Resource Manufacturer Identification
A value corresponding to the VXI manufacturer ID of the manufacturer that created the 
implementation.

Resource Manufacturer Name
A string that corresponds to the VXI manufacturer name of the manufacturer that created 
the implementation.

Resource Name
Unique identifier for a resource.
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The address structure is shown in the following table. Optional parameters are shown in 
square brackets:  

Send End Enable
Specifies whether to assert END during the transfer of the last byte of the buffer. 

Slot
Specifies the physical slot location of the VXIbus device. If the slot number is not known, 
UNKNOWN SLOT is returned.

Suppress End Enable
Specifies whether to suppress the END bit termination. If this attribute is set to TRUE, the 
END bit does not terminate read operations. If this attribute is set to FALSE, the END bit 
terminates read operations.

Interface Grammar

GPIB GPIB[board]::primary address[::secondary 

address][::INSTR]

GPIB-VXI GPIB-VXI[board]::VXI logical address[::INSTR]

VXI VXI[board]::VXI logical address[::INSTR]

Serial ASRL[board][::INSTR]

Address String Description

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary 
address 0 in GPIB interface 0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI controlled 
VXI system.

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface VXI0.

ASRL0::INSTR A serial device located on port 0.
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Termination Character
The termination character. When the termination character is read and Termination 

Character Enable is enabled during a read operation, the read operation terminates. See the 
description for Termination Character Enable listed below.

Termination Character Enable
Determines whether the read operation should terminate when a termination character is 
received. 

Timeout Value
Specifies the timeout value to use (in milliseconds) when accessing the device associated 
with the given session. A timeout value of TMO IMMEDIATE means that operations should 
never wait for the device to respond. A timeout value of TMO INFINITE disables the 
timeout mechanism.

Trigger Identifier
Identifier for the current triggering mechanism.

Note: Trigger ID is Read/Write when the corresponding session is not enabled to 

receive trigger events. When the session is enabled to receive trigger events, 

the attribute is Read Only.

User Data
Used privately by the application for a particular session. This data is not used by VISA 
for any purposes. It is provided to the application for its own use.

Version of Implementation
Uniquely identifies each of the different revisions or implementations of a resource. This 
attribute value is defined by the individual manufacturer and increments with each new 
revision. The format of the value has the upper 12 bits as the major number of the version, 
the next lower 12 bits as the minor number of the version, and the lowest 8 bits as the 
sub-minor number of the version.

Version of Specification
Uniquely identifies the version of the VISA specification to which the implementation is 
compliant. The format of the value has the upper 12 bits as the major number of the 
version, the next lower 12 bits as the minor number of the version, and the lowest 8 bits 
as the sub-minor number of the version.

VXI Commander Logical Address
The logical address of the commander of the VXI device.
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VXI Logical Address
Specifies the logical address of the VXI device used by the given session.

VXI Memory Address Space
Specifies the VXIbus address space used by the device. The three types are A16 only, 
A16/A24, or A16/A32 memory address space.

VXI Memory Base Address
Specifies the base address of the device in VXIbus memory address space. This base 
address is applicable to A24 or A32 address space.

VXI Memory Size
Specifies the size of memory requested by the device in VXIbus address space.

Window Access
Specifies the modes in which the current window may be accessed.

Window Base Address
Specifies the base address of the interface bus to which this window is mapped.

Window Size
Specifies the size of the region mapped to this window.
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Chapter

35Traditional GPIB Functions

This chapter describes the Traditional GPIB functions.

The following figure shows the Traditional GPIB Functions palette 
which you access by selecting Functions»Instrument I/O»GPIB.

For examples of how to use the Traditional GPIB functions, see 
examples\instr\smplgpib.llb.

Traditional GPIB Function Parameters

Most of the Traditional GPIB functions use the following parameters:

• address string contains the address of the GPIB device with which 
the function communicates. You can input both the primary and 
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secondary addresses in address string by using the form 
primary+secondary. Both primary and secondary are decimal 
values, so if primary is 2 and secondary is 3, address string is 2+3.

If you do not specify an address, the functions do not perform 
addressing before they attempt to read and write the string. They 
assume you have either sent these commands another way or that 
another Controller is in charge and therefore responsible for the 
addressing. If the Controller is supposed to address the device but 
does not do so before the time limit expires, the functions terminate 
with GPIB error 6 (timeout) and set bit 14 in status. If the GPIB is 
not the Controller-In-Charge, you must not specify an address 
string.

When there are multiple GPIB Controllers that LabVIEW can use, 
a prefix to the address string in the form ID:address (or ID: if 
no address is necessary) determines the Controller that a specific 
function uses. If a Controller ID is not present, the functions 
assume Controller (or bus) 0.

• status is a 16-bit Boolean array in which each bit describes a state 
of the GPIB Controller. If an error occurs, bit 15 is set. The error 
code field of the error out cluster is a GPIB error code only if bit 
15 of status is set. Refer to GPIB Status in the GPIB Function 

Descriptions section of this chapter for status bit error codes.

• error in and error out terminals comprise the error clusters in 
each Traditional GPIB function. The error cluster contains three 
fields. The status field is a Boolean which is TRUE when an error 
occurs, FALSE when no error occurs. The code field will be a 
GPIB error code value if an error occurs during a GPIB function. 
Table 6-3 lists the GPIB error codes. The source field is a string 
which describes where the error has occurred. If the status field of 
the error in parameter to a function is set, the function is not 
executed and the same error cluster is passed out. By wiring the 
error out of each function to the error in of the next function, the 
first error condition is recorded and propagated to the end of the 
diagram where it is reported in only one place. 

Traditional GPIB Function Behavior

The GPIB Read and GPIB Write functions leave the device in the 
addressed state when they finish executing. If your device cannot 
tolerate being left in the addressed state, use the GPIB Misc function to 
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send the appropriate unaddress message or configure the NI-488.2 
software to unaddress automatically for all devices on the GPIB. 

The Traditional GPIB Read and Write functions can execute 
asynchronously. This means other LabVIEW activity can continue 
while these GPIB functions are operating. When set to execute 
asynchronously, a small wristwatch icon appears as part of the function 
icons. A popup item on the Traditional GPIB Read and GPIB Write 
functions allows for switching their behavior to and from asynchronous 
operation.

Traditional GPIB Function Descriptions

The following Traditional GPIB functions are available.

GPIB Clear
Sends either SDC (Selected Device Clear) or DCL (Device Clear). 
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GPIB Initialization
Configures the GPIB interface at address string.

GPIB Misc
Performs the GPIB operation indicated by command string. Use this low-level function 
when the previously described high-level functions are not suitable. 

Table 35-1.     Command String Functions

Device Functions Description

loc address Go to local.

off address Take device offline.

pct address Pass control.

ppc byte address Parallel poll configure (enable or disable).

GPIB Controller Functions Description

cac 0/1 Become active Controller.

cmd string Send IEEE 488 commands.

dma 0/1 Set DMA mode or programmed I/O mode. 

gts 0/1 Go from active Controller to standby.

ist 0/1 Set individual status bit.
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To specify the GPIB Controller used by this function, use a command 

string in the form ID: xxx, where ID is the GPIB Controller (bus 
number) and xxx is the three-character command and its corresponding 
arguments, if any. If you do not specify a Controller ID, LabVIEW 
assumes 0.

GPIB Read
Reads byte count number of bytes from the GPIB device at address string. 

You use the SetTimeOut function to change the default value (the 488.2 global timeout) 
of timeout ms. Initially, timeout ms defaults to 10,000. See the description of the 
SetTimeOut function in Chapter 36, GPIB 488.2 Functions, for more information.

llo Local lockout.

loc Place Controller in local state.

off Take controller offline.

ppc byte Parallel poll configure (enable or disable).

ppu Parallel poll unconfigure all devices.

rpp Conduct parallel poll.

rsc 0/1 Request or release system control.

rsv byte Request service and/or set the serial poll status byte.

sic Send interface clear.

sre 0/1 Set or clear remote enable.

Table 35-1.     Command String Functions (Continued)

Device Functions Description
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GPIB Serial Poll
Performs a serial poll of the device indicated by address string. 

GPIB Status
Shows the status of the GPIB Controller indicated by address string after the previous 
GPIB operation. 

GPIB Trigger
Sends GET (Group Execute Trigger) to the device indicated by address string.

GPIB Wait
Waits for the state(s) indicated by wait state vector at the device indicated by 
address string. 

Wait for GPIB RQS
Waits for the device indicated by address string to assert SRQ. 
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GPIB Write
Writes data to the GPIB device identified by address string. 

GPIB Device and Controller Functions

This section describes the functions listed in the GPIB Misc function 
description. The device functions send configuration information to a 
specific instrument (device). The GPIB Controller functions configure 
the Controller or send IEEE 488 commands to which all instruments 
respond. Notice that there are both device and Controller versions of the 
ppc and loc commands. The syntax and use of the commands are 
slightly different for each version.

You can use these functions with all GPIB Controllers accessible by 
LabVIEW, unless stated otherwise in the function description below. 
An ECMD error (17) results when you execute a function for a GPIB 
Controller without the specified capability. The function syntax is 
strict. Each function recognizes only lowercase characters and allows 
only one space between the function name and the arguments.

Device Functions

loc – Go to local

syntax loc address

loc temporarily moves devices from a remote program mode to a 
local mode.

address is the GPIB address of the device. This argument indicates both 
primary and secondary addresses if you use the form 
primary+secondary, where primary and secondary are the decimal 
values of the primary and secondary addresses. For example, if primary 
is 2 and secondary is 3, then address is 2+3.

loc sends the GTL (Go To Local) message to the GPIB device. 
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off – Take device offline

syntax off address

off takes the device at the specified GPIB address offline. This is only 
needed when sharing a device with another application which is using 
the NI 488 GPIB Library.

address is the GPIB address of the device. This argument indicates both 
primary and secondary addresses if you use the form 
primary+secondary, where primary and secondary are the decimal 
values of the primary and secondary addresses. For example, if primary 
is 2 and secondary is 3, then address is 2+3.

pct – Pass control 

syntax pct address

pct passes Controller-in-Charge (CIC) authority to the device at the 
specified address. The GPIB Controller automatically goes into an idle 
state. The function assumes that the device to which pct passes control 
has Controller capability.

address is the GPIB address of the device. This argument indicates both 
primary and secondary addresses if you use the form 
primary+secondary, where primary and secondary are the decimal 
values of the primary and secondary addresses. For example, if primary 
is 2 and secondary is 3, then address is 2+3.

pct sends the following command sequence:

1. Talk address of the device

2. Secondary address of the device, if applicable

3. Take Control (TCT)

ppc – Parallel poll configure

syntax ppc byte address

ppc enables the instrument to respond to parallel polls.

byte is 0 or a valid parallel poll enable (PPE) command. If byte is 0, the 
parallel poll disable (PPD) byte 0x70 is sent to disable the device from 
responding to a parallel poll. Each of the 16 PPE messages selects a 
GPIB data line (DIO1 through DIO8) and sense (1 or 0) that the device 
must use when it responds to the Identify (IDY) message during a 
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parallel poll. The device compares the ist sense and drives the indicated 
DIO line TRUE or FALSE. 

address is the GPIB address of the device. This argument indicates both 
primary and secondary addresses if you use the form 
primary+secondary, where primary and secondary are the decimal 
values of the primary and secondary addresses. For example, if primary 
is 2 and secondary is 3, then address is 2+3.

Controller Functions

cac – Become active Controller

syntax cac 0 (take control synchronously)

cac 1 (take control immediately)

cac takes control either synchronously or immediately (and in some 
cases asynchronously). You generally do not need to use the cac 
function because other functions, such as cmd and rpp, take control 
automatically.

If you try to take control synchronously when a data handshake is in 
progress, the function postpones the take control action until the 
handshake is complete. If a handshake is not in progress, the function 
executes the take control action immediately. Synchronous take control 
is not guaranteed if a read or write operation completes with a timeout 
or other error.

You should take control asynchronously when it is impossible to gain 
control synchronously (for example, after a timeout error).

The ECIC error results if the GPIB Controller is not CIC.

cmd – Send IEEE 488 commands

syntax cmd string

cmd sends GPIB command messages. These command messages 
include device talk and listen addresses, secondary addresses, serial and 
parallel poll configuration messages, and device clear and trigger 
messages. 
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You do not use cmd to transmit programming instructions to devices. 
The GPIB Read and GPIB Write functions transmit programming 
instructions and other device-dependent information.

string contains the command bytes the Controller sends. ASCII 
characters represent these bytes in cmd string. If you must send 
nondisplayable characters, you can enable backslash codes on the string 
control or string constant or you can use a format function to list the 
commands in hexadecimal.

dma – Set DMA mode or programmed I/O mode

syntax dma 0    (use programmed I/O)

dma 1    (use DMA)

dma indicates whether data transfers use DMA. 

Some GPIB boards do not have DMA capability. If you try to execute 
dma 1, the function returns GPIB error 11 to indicate no capability.

gts – Go from active Controller to standby

syntax gts 0   (no shadow handshaking)

gts 1   (shadow handshaking)

Description:

gts sets the GPIB Controller to the Controller Standby state and 
unasserts the ATN signal if it is the active Controller. Normally, the 
GPIB Controller is involved in the data transfer. gts permits GPIB 
devices to transfer data without involving the GPIB Controller.

If shadow handshaking is active, the GPIB Controller participates in the 
GPIB transfer as a Listener, but does not accept any data. When it 
detects the END message, the GPIB Controller asserts the Not Ready 
For Data (NRFD) to create a handshake holdoff state. 

If shadow handshaking is not active, the GPIB Controller performs 
neither shadow handshaking nor a handshake holdoff.

If you activate the shadow handshake option, the GPIB Controller 
participates in a data handshake as a Listener without actually reading 
the data. It monitors the transfer for the END message and stops 
subsequent transfers. This mechanism allows the GPIB Controller to 
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take control synchronously on subsequent operations such as cmd or 
rpp. 

After sending the gts command, you should always wait for END before 
you initiate another GPIB command. You can do this with the GPIB 
Wait function. 

The ECIC error results if the GPIB Controller is not CIC.

ist – Set individual status bit

syntax ist 0 (individual status bit is cleared)

ist 1 (individual status bit is set)

ist sets the sense of the individual status (ist) bit.

You use ist when the GPIB Controller is not the CIC but participates in 
a parallel poll conducted by a device that is the active Controller. The 
CIC conducts a parallel poll by asserting the EOI and ATN signals, 
which send the Identify (IDY) message. While this message is active, 
each device that you configured to participate in the poll responds by 
asserting a predetermined GPIB data line either TRUE or FALSE, 
depending on the value of its local ist bit. For example, you can assign 
the GPIB Controller to drive the DIO3 data line TRUE if ist is 1 and 
FALSE if ist is 0. Conversely, you can assign it to drive DIO3 TRUE if 
ist is 0 and FALSE if ist is 1. 

The Parallel Poll Enable (PPE) message in effect for each device 
determines the relationship among the value of ist, the line that is 
driven, and the sense at which the line is driven. The Controller is 
capable of receiving this message either locally via ppc or remotely via 
a command from the CIC. Once the PPE message executes, ist changes 
the sense at which the GPIB Controller drives the line during the 
parallel poll, and the GPIB Controller can convey a one-bit, 
device-dependent message to the Controller.

llo – Local lockout

syntax llo

llo places all devices in local lockout state. This action usually inhibits 
recognition of inputs from the front panel of the device.

llo sends the Local Lockout (LLO) command. 
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loc – Place Controller in local state

syntax loc

loc places the GPIB Controller in a local state by sending the local 
message Return To Local (RTL) if it is not locked in remote mode 
(indicated by the LOK bit of status). You use loc to simulate a front 
panel RTL switch when you use a computer to simulate an instrument.

off – Take controller offline

syntax off

off takes the controller offline. This is only needed when sharing the 
controller with another application which is using the NI 488 Library.

ppc – Parallel poll configure (enable and disable)

syntax ppc byte

ppc configures the GPIB Controller to participate in a parallel poll by 
setting its Local Poll Enable (LPE) message to the value of byte. If the 
value of byte is 0, the GPIB Controller unconfigures itself. 

Each of the 16 Parallel Poll Enable (PPE) messages selects the GPIB 
data line (DIO1 through DIO8) and sense (1 or 0) that the device must 
use when responding to the Identify (IDY) message during a parallel 
poll. The device interprets the assigned message and the current value 
of the individual status (ist) bit to determine if the selected line is driven 
TRUE or FALSE. For example, if PPE=0x64, DIO5 is driven TRUE if 
ist is 0 and FALSE if ist is 1. If PPE=0x68, DIO1 PPE message is in 
effect. You must know which PPE and PPD messages are sent and 
determine what the responses indicate. 

ppu – Parallel poll unconfigure 

syntax ppu 

ppu disables all devices from responding to parallel polls.

ppu sends the Parallel Poll Unconfigure (PPU) command.

rpp – Conduct parallel poll

syntax rpp
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rpp conducts a parallel poll of previously configured devices by 
asserting the ATN and EOI signals, which sends the IDY message. 

rpp places the parallel poll response in the output string as ASCII 
characters. 

rsc – Release or request system control

syntax rsc 0 (release system control)

rsc 1 (request system control)

rsc releases or requests the capability of the GPIB Controller to send the 
Interface Clear (IFC) and Remote Enable (REN) messages to GPIB 
devices using the sic and sre functions. For the GPIB Controller to 
respond to IFC sent by another Controller, the GPIB Controller must 
not be the System Controller.

In most applications, the GPIB Controller is always the System 
Controller. You use rsc only if the computer is not the System 
Controller for the duration of the program execution. 

rsv – Request service and/or set the serial poll status byte

syntax rsv byte

rsv sets the serial poll status byte of the GPIB Controller to byte. If the 
0x40 bit is set in byte, the GPIB Controller also requests service from 
the Controller by asserting the GPIB SRQ line. For instance, if you want 
to assert the GPIB SRQ line, send the ASCII character @, in which the 
0x40 bit is set. 

You use rsv to request service from the Controller using the Service 
Request (SRQ) signal and to provide a system-dependent status byte 
when the Controller serial polls the GPIB port.

sic – Send interface clear

syntax sic

sic causes the Controller to assert the IFC signal for at least 100 msec if 
the Controller has System Controller authority. This action initializes 
the GPIB and makes the Controller port CIC. You generally use sic 
when you want a device to become CIC or to clear a bus fault condition.
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The IFC signal resets only the GPIB functions of bus devices; it does 
not reset internal device functions. The Device Clear (DCL) and 
Selected Device Clear (SDC) commands reset the device functions. 
Consult the instrument documentation to determine the effect of these 
messages.

sre – Unassert or assert remote enable

syntax sre 0 (unassert Remote Enable)

sre 1 (assert Remote Enable)

sre unasserts or asserts the GPIB REN line. Devices monitor REN when 
they select between local and remote modes of operation. A device does 
not actually enter remote mode until it receives its listen address. 

The ESAC error occurs if the Controller is not System Controller.
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Chapter

36GPIB 488.2 Functions

This chapter describes the IEEE 488.2 (GPIB) Functions. 

The following figure shows the GPIB 488.2 palette which you access by 
selecting Functions»Instrument I/O»GPIB 488.2.

For examples of how to use the GPIB 488.2 Functions, see 
examples\instr\smplgpib.llb.

GPIB 488.2 Common Function Parameters

Most of the GPIB 488.2 Functions use the following parameters:

• address contains the primary address of the GPIB device with 
which the function communicates. If a secondary address is 
required, use the MakeAddr function to put the primary and 
secondary addresses in the proper format. Unless specified 
otherwise, address and address list are data types integer and 
integer array, respectively. 

• The default primary address of the GPIB board is 0, with no 
secondary address. It is designated as System Controller. The 
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default timeout value for the functions is 10 seconds. If you want 
to change any of these parameters, use the configuration utility 
included with your GPIB board. You can also use the GPIB Init and 
SetTimeOut functions to set the primary address and to change the 
default timeout value at run time, but these functions affect the 
interface only when you use it with LabVIEW. For more 
information, see the documentation supplied with your hardware 
interface. 

• bus refers to the GPIB bus number. If you have only one GPIB 
interface in your computer, the default bus number is 0. For 
additional GPIB interfaces, see the software installation 
instructions included with your GPIB board.

• byte count refers to the number of bytes that pass over the GPIB.

• status is a Boolean array in which each bit describes a state of the 
GPIB Controller. If an error occurs, the GPIB functions set bit 15. 
GPIB error is valid only if bit 15 of status is set. See the status bit 
and GPIB error tables in the GPIB Status function description in 
Chapter 35, Traditional GPIB Functions.

• error in; error out. See the GPIB Traditional Function Parameters 

section of Chapter 35, Traditional GPIB Functions.

GPIB 488.2 Function Descriptions (Single-Device Functions)

Single-device functions perform GPIB I/O and control operations with a single GPIB 
device. In general, each function accepts a single-device address as one of its inputs.

DevClear
Clears a single device. To send the Selected Device Clear (SDC) message to several 
GPIB devices, use the DevClearList function.
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PPollConfig
Configures a device for parallel polls. 

PassControl
Passes control to another device with Controller capability. 

ReadStatus
Serial polls a single device to get its status byte.

Receive
Reads data bytes from a GPIB device.

Receive terminates when the function does one of the following:

• reads the number of bytes requested

• detects an error

• exceeds the time limit

• detects the END message (EOI asserted)

• detects the EOS character (assuming the value supplied to mode has enabled 
this option)
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Send
Sends data bytes to a single GPIB device.

Trigger
Triggers a single device. To send a single message that triggers several GPIB devices, 
use the TriggerList function.

GPIB 488.2 Multiple-Device Function Descriptions

The multiple-device functions perform GPIB I/O and control operations with several 
GPIB devices at once. In general, each function accepts an array of addresses as one of 
its inputs.

AllSPoll
Serial polls all devices. 

Although the AllSPoll function is general enough to serial poll any number of GPIB 
devices, you should use the ReadStatus function when you serial poll only one GPIB 
device.

DevClearList
Clears multiple devices simultaneously. 
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EnableLocal
Enables local mode for multiple devices. 

EnableRemote
Enables remote programming of multiple GPIB devices.

FindRQS
Determines which device is requesting service. 

PPoll
Performs a parallel poll. 

PPollUnconfig
Unconfigures devices for parallel polls. The function unconfigures the GPIB devices 
whose addresses are contained in the address list array for parallel polls; that is, they no 
longer participate in polls. 
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SendList
Sends data bytes to multiple GPIB devices. This function is similar to Send, except that 
SendList sends data to multiple Listeners with only one transmission.

TriggerList
Triggers multiple devices simultaneously. 

GPIB 488.2 Bus Management Function Descriptions

The bus management functions perform system-wide functions or report system-wide 
status.

FindLstn
Finds all Listeners on the GPIB. You normally use this function to detect the presence of 
devices at particular addresses because most GPIB devices have the ability to listen. 
When you detect them, you can usually interrogate the devices with to determine their 
identity.

ResetSys
Performs bus initialization, message exchange initialization, and device initialization. 
First, the function asserts Remote Enable (REN), followed by Interface Clear (IFC), 
unaddressing all devices and making the GPIB board (the System Controller) the 
Controller-in-Charge. 



Chapter 36 GPIB 488.2 Functions

© National Instruments Corporation 36-7 LabVIEW Function and VI Reference Manual

Second, the function sends the Device Clear (DCL) message to all connected devices. 
This ensures that all IEEE 488.2-compatible devices can receive the Reset (RST) 
message that follows. 

Third, the function sends the *RST message to all devices whose addresses are contained 
in the address list array. This message initializes device-specific functions within each 
device.

SendIFC

Clears the GPIB functions with Interface Clear (IFC). When you issue the GPIB Device 
IFC message, the interface functions of all connected devices return to their cleared 
states.

You should use this function as part of a GPIB initialization. It forces the GPIB board to 
be Controller of the GPIB and ensures that the connected devices are all unaddressed and 
that the interface functions of the devices are in their idle states.

SendLLO
Sends the Local Lockout (LLO) message to all devices. When the function sends the 
GPIB Local Lockout message, a device cannot independently choose the local or remote 
state. While Local Lockout is in effect, only the Controller can alter the local or remote 
state of the devices by sending the appropriate GPIB messages.You should use SendLLO 
only in unusual local/remote situations, particularly those in which you must lock all 
devices into local programming state. Use the SetRWLS Function when you want to 
place devices in Remote Mode With Lockout State.

SetRWLS
Places particular devices in the Remote With Lockout State. The function sends Remote 
Enable (REN) to the GPIB devices listed in address list. It also places all devices in 
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Lockout State, which prevents them from independently returning to local programming 
mode without intervention by the Controller. 

TestSRQ
Determines the current state of the SRQ line. This function is similar in format to the 
WaitSRQ function, except that WaitSRQ suspends itself while it waits for an occurrence 
of SRQ, and TestSRQ immediately returns the current SRQ state.

TestSys
Directs multiple devices to conduct IEEE 488.2 self-tests.

WaitSRQ
Waits until a device asserts Service Request. The function suspends execution until a 
GPIB device connected on the GPIB asserts the Service Request (SRQ) line. 

This function is similar in format to TestSRQ, except that TestSRQ returns the SRQ 
status immediately, whereas WaitSRQ suspends the program for the duration of the 
timeout period (but no longer) waiting for an SRQ to occur.

GPIB 488.2 Low-Level I/O Function Descriptions

The low-level functions let you create a more specific, detailed program than higher-level 
functions. You use low-level functions for unusual situations or for situations requiring 
additional flexibility.
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RcvRespMsg
Reads data bytes from a previously addressed device. This function assumes that another 
function, such as ReceiveSetup, Receive, or SendCmds, has already addressed the GPIB 
Talkers and Listeners. You use RcvRespMsg specifically to skip the addressing step of 
GPIB management. You normally use the Receive function to perform the entire 
sequence of addressing and then to receive the data bytes.

ReceiveSetup
Prepares a device to send data bytes and prepares the GPIB board to read data bytes. After 
you call this function, you can use a function such as RcvRespMsg to transfer the data 
from the Talker. In this way, you eliminate the need to re-address the devices between 
blocks of reads. 

SendCmds
Sends GPIB command bytes. 

You normally do not need to use SendCmds for GPIB operation. You use it when 
specialized command sequences, not provided for in other functions, must be sent over 
the GPIB.

SendDataBytes
Sends data bytes to previously addressed devices. 
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SendSetup
Prepares particular devices to receive data bytes. You normally follow a call to this 
function with a call to a function such as SendDataBytes to actually transfer the data to 
the Listeners. This sequence eliminates the need to re-address the devices between blocks 
of sends.

GPIB 488.2 General Function Descriptions

The general functions are useful for special situations.

MakeAddr
Combines primary address and secondary address in a specially formatted packed 
address for devices that require both a primary and secondary GPIB address. 

SetTimeOut
Changes the global timeout period for all GPIB 488.2 Functions. This function also sets 
the default timeout period for all GPIB functions.
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Chapter

37Serial Port VIs

This chapter describes the VIs for serial port operations. 

The following figure shows the Serial palette which you access by 
selecting Functions»Instrument I/O»Serial.

For examples of how to use the Serial Port VIs, see 
examples\instr\smplserl.llb.

Common Serial Port VI Parameters

The following are common Serial Port VI parameters.

Port Number
When you use the serial port VIs under Windows 95 and Windows 3.x, 
the port number parameter can have the following values:

0: COM1 5: COM6 10: LPT1

1: COM2 6: COM7 11: LPT2

2: COM3 7: COM8 12: LPT3

3: COM4 8: COM9 13: LPT4

4: COM5
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When you use the serial port VIs under Windows 95 or Windows NT, 
the port number parameter is 0 for COM1, 1 for COM2, and so on. 

On a Sun SPARCstation under Solaris 1 and on Concurrent 
PowerMAX, the port number parameter for the serial port VIs is 0 for 
/dev/ttya, 1 for /dev/ttyb, and so on. Under Solaris 2, port 0 refers 
to /dev/cua/a, 1 to /dev/cua/b, and so on. Under HP-UX port 
number 0 refers to /dev/tty00, 1 to /dev/tty01, and so on.

On the Macintosh, port 0 is the modem, using the drivers .ain and 
.aout. Port 1 is the printer, using the drivers.bin and .bout. To get 
more ports on a Macintosh, you must install other boards, with the 
accompanying drivers.

Because other vendor’s serial port boards can have arbitrary device 
names, LabVIEW has developed an easy interface to keep the 
numbering of ports simple. In LabVIEW for Sun, HP-UX, and 
Concurrent PowerMAX, a configuration option exists to tell LabVIEW 
how to address the serial ports. LabVIEW supports any board that uses 
standard UNIX devices. Some manufacturers suggest using cua rather 
than tty device nodes with their boards. LabVIEW can address both 
types of nodes.

The file .labviewrc contains the LabVIEW configuration options. To 
set the devices the serial port VIs use, set the configuration option 
labview.serialDevices to the list of devices you intend to use. For 
example, the default is:

labview.serialDevices:/dev/ttya:/dev/ttyb:/dev/ttyc:...

:/dev/ttyz.

Note: This requires that any third party serial board installation include a 

method of creating a standard /dev file (node) and that the user knows the 

name of that file.

Handshaking Modes
A common problem in serial communications is ensuring that both 
sender and receiver keep up with data transmission. The serial port 
driver can buffer incoming/outgoing information, but that buffer is of a 
finite size. When it becomes full, the computer ignores new data until 
you have read enough data out of the buffer to make room for new 
information.
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Handshaking helps prevent this buffer from overflowing. With 
handshaking, the sender and the receiver notify each other when their 
buffers fill up. The sender can then stop sending new information until 
the other end of the serial communication is ready for new data.

You can perform two kinds of handshaking in LabVIEW—software 
handshaking and hardware handshaking. You can turn both of these 
forms of handshaking on or off using the Serial Port Init VI. By default, 
the VIs do not use handshaking.

Software Handshaking–XON/XOFF
XON/XOFF is a software handshaking protocol you can use to avoid 
overflowing serial port buffers. When the receive buffer is nearly full, 
the receiver sends XOFF (<control-S> [decimal 19]) to tell the other 
device to stop sending data. When the receive buffer is sufficiently 
empty, the receiver sends XON (<control-Q> [decimal 17]) to indicate 
that transmission can begin again. When you enable XON/XOFF, the 
devices always interpret <control-Q> and <control-S> as XON and 
XOFF characters, never as data. When you disable XON/XOFF, you 
can send <control-Q> and <control-S> as data. Do not use XON/XOFF 
with binary data transfers because <control-Q> or <control-S> may be 
embedded in the data, and the devices will interpret them as XON and 
XOFF instead of as data.

Error Codes
You can connect the error code parameter to one of the error handler 
VIs. These VIs can describe the error and give you options on how to 
proceed when an error occurs. For more information on using the error 
handler VIs, refer to the Error Handling Overview section in Chapter 10, 
Time, Dialog and Error Functions.

Some error codes returned by the serial port VIs are platform-specific. 
Please refer to your system documentation for a list of error codes.

Serial Port VI Descriptions

The following Serial Port VIs are available.
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Bytes at Serial Port
Returns in byte count the number of bytes in the input buffer of the serial port indicated 
in port number.

Serial Port Break
Sends a break on the output port specified by port number for a period of time at least 
as long as the delay input requests.

Serial Port Init
Initializes the selected serial port to the specified settings.

Serial Port Read
Reads the number of characters specified by requested byte count from the serial port 
indicated in port number. 

Serial Port Write
Writes the data in string to write to the serial port indicated in port number. 
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Chapter

38
Introduction to Analysis 
in LabVIEW 

This chapter contains an overview of data analysis and of the LabVIEW 
analysis VIs, a description of how the VIs are organized, instructions 
for accessing the VIs and obtaining online help, and a description of 
analysis VI error reporting.

To access the analysis VIs from the block diagram window,  choose 
Functions»Analysis and proceed through the hierarchical menus, and 
select the VI you want. You can place the icon corresponding to that VI 
in the block diagram and then wire it.
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The Importance of Data Analysis

Modern, high-speed floating-point numerical and digital signal 
processors have become increasingly important to real-time and 
analysis systems. A few of the many possible applications include 
biomedical data processing, speech synthesis and recognition, and 
digital audio and image processing.

The importance of integrating analysis libraries into engineering 
stations is that the raw data, as shown in the following figure, does not 
always immediately convey useful information. Often you must 
transform the signal, remove noise disturbances, correct for data 
corrupted by faulty equipment, or compensate for environmental 
effects, such as temperature and humidity.

By analyzing and processing the digital data, you can extract the useful 
information from the noise and present it in a form more 
comprehensible than the raw data. The following figure shows the 
processed data.



Chapter 38 Introduction to Analysis in LabVIEW

© National Instruments Corporation 38-3 LabVIEW Function and VI Reference Manual

The LabVIEW block diagram programming approach and the extensive 
set of LabVIEW analysis VIs simplify the development of analysis 
applications.

The LabVIEW analysis VIs give you the most recent data analysis 
techniques using VIs that you can wire together, as shown in the 
preceding figure, to analyze data. Instead of worrying about 
implementation details for analysis routines, as you do in conventional 
programming languages, you can concentrate on solving your data 
analysis problems.

Full Development System

The base analysis VI library is a subset of the advanced analysis VI 
library. The base analysis library includes VIs for statistical analysis, 
linear algebra, and numerical analysis. The advanced analysis library 
includes more VIs in these areas as well as VIs for signal generation, 
time and frequency-domain algorithms, windowing routines, digital 
filters, evaluations, and regressions. 

If the VIs in the base analysis library do not satisfy your needs, then you 
can add the LabVIEW Advanced Analysis Libraries to the G Base 
Package. Once you upgrade, you will have all the analysis tools 
available in the Full Development System. 

Refer to the chapters that introduce each section for information on how 
to access a particular Function or VI palette.

Analysis VI Overview

The LabVIEW analysis VIs efficiently process blocks of information 
represented in digital form. They cover the following major processing 
areas:

• Pattern generation

• Digital signal processing

• Measurement-based analysis

• Digital filtering

• Smoothing windows

• Probability and Statistical analysis

• Curve fitting
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• Linear algebra

• Numerical analysis

The analysis VIs perform numerical operations using the central 
processing unit (CPU) and a floating-point coprocessor (FPU). Many of 
the VIs take advantage of the concurrent processing capabilities of the 
CPU and the FPU, thereby minimizing execution time of data analysis 
tasks.

The analysis VIs use in-place data processing algorithms. That is, the 
algorithms allocate minimal data space and process the data within that 
space. In-place processing minimizes memory requirements, so you can 
process larger data blocks. The only memory limitation for these VIs is 
the amount of RAM available in your computer. Refer to your LabVIEW 

User Manual for instructions on configuring the memory allocation for 
LabVIEW.

The analysis VIs are powerful enough for experts to build sophisticated 
analysis applications quickly and efficiently. At the same time, they are 
simple enough for novices to analyze data without being expert 
programmers in DSP, digital filters, statistics, or numerical analysis.

Analysis VI Organization

After installation, the ten analysis VI libraries appear in the Functions 
palette. These libraries cover the following major processing areas:

• Signal Generation contains VIs that generate digital patterns and 
waveforms.

• Digital Signal Processing contains VIs that perform frequency 
domain transformations, frequency domain analysis, time domain 
analysis, and other transforms such as the Hartley and Hilbert 
transforms.

• Measurement contains VIs that perform measurement-oriented 
functions such as single-sided spectrums, scaled windowing, and 
peak power and frequency estimation.

• Filters contains VIs that perform IIR, FIR, and nonlinear, digital 
filtering functions.

• Windows contains VIs that perform data windowing.

• Probability and Statistics contains VIs that perform descriptive 
statistics functions, such as identifying the mean or the standard 
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deviation of a set of data, as well as inferential statistics functions 
for probability and analysis of variance (ANOVA).

• Curve Fitting contains VIs that perform curve fitting functions and 
interpolations.

• Linear Algebra contains VIs that perform algebraic functions for 
real and complex vectors and matrices.

• Array Operations contains VIs that perform common, one- and 
two-dimensional numerical array operations, such as linear 
evaluation and scaling.

• Additional Numerical Methods contains VIs that use numerical 
methods to perform root-finding, numerical integration, and peak 
detection.

You can reorganize the folders and the VIs to suit your needs and 
applications. You can also rebuild the original structure by removing 
the VIs from your hard disk and then reinstalling them from the 
distribution disks.

Notation and Naming Conventions

To help you identify the type of parameters and operations, this section 
of the manual uses the following notation and naming conventions 
unless otherwise specified in a VI description. Although there are a few 
scalar functions and operations, most of the analysis VIs process large 
blocks of data in the form of one-dimensional arrays (or vectors) and 
two-dimensional arrays (or matrices).

Normal lower case letters represent scalars or constants. For example, 

a,

π,

b = 1.234.

Capital letters represent arrays. For example, 

X,

A,

Y = a X + b.

In general, X and Y denote 1D arrays, and A, B, and C represent 
matrices. 
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Array indexes in LabVIEW are zero-based. The index of the first 
element in the array, regardless of its dimension, is zero. The following 
sequence of numbers represents a 1D array X containing n elements. 

The following scalar quantity represents the ith element of the sequence 
X. 

The first element in the sequence is x
0
 and the last element in the 

sequence is xn-1, for a total of n elements.

The following sequence of numbers represents a 2D array containing n 
rows and m columns. 

The total number of elements in the 2D array is the product of n and m. 
The first index corresponds to the row number, and the second index 
corresponds to the column number. The following scalar quantity 
represents the element located on the ith row and the jth column. 

ai j,0 ≤ i < n and 0 ≤ j < m

The first element in A is a
0 0

 and the last element is an-1 m-1.

Unless otherwise specified, this manual uses the following simplified 
array operation notations.

Setting the elements of an array to a scalar constant is represented by

X = a,

which corresponds to the sequence

X = {a, a, a, …, a} 

X x0 x1 x2 ... xn 1–, , , ,{ }=

xi 0 i n<≤,

A

a00 a01 a02 ... a0m 1–

a10 a11 a12 ... a1m 1–

a20 a21 a22 ... a2m 1–

: : : : :

an 10– an 11– an 2– ... an 1m– 1–

=
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and is used instead of

xi = a,   for i = 0, 1, 2, …, n-1.

Multiplying the elements of an array by a scalar constant is represented 
by

Y = a X,

which corresponds to the sequence

Y = {a x0, a x1, a x2, …, a xn-1}

and is used instead of

yi = a xi,   for i = 0, 1, 2, …, n-1.

Similarly, multiplying a 2D array by a scalar constant is represented by

B = k A,

which corresponds to the sequence

and is used instead of

b
i j

 = k a
i j 

, for i = 0, 1, 2, …, n-1 and j = 0, 1, 2, …, m-1.

Empty arrays are possible in LabVIEW. An array with no elements is 
an empty array and is represented by

Empty = NULL = Ø = { } .

In general, operations on empty arrays result in empty, output arrays or 
undefined results.

B

ka00 ka01 ka02 ... ka0m 1–

ka10 ka11 ka12 ... ka1m 1–

ka20 ka21 ka22 ... ka2m 1–

: : : : :

kan 10– kan 11– kan 12– ... kan 1m– 1–

=
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Sampling Signals

To use digital signal processing techniques, you must convert an analog 
signal into its digital representation. This section includes only a brief 
discussion of the notation that represents a digital signal. This section 
does not discuss the mathematical background or problems associated 
with sampling techniques. 

Consider an analog signal x(t) and the sampling interval ∆t. The signal 
x(t) can be represented by the discrete sequence of samples

{x(0), x(∆t), x(2∆t), x(3∆t), …, x(k∆t), … }.

Because ∆t establishes only the sampling rate and has no bearing on the 
actual sampled (digitized) value, the sample at

t = i∆t, for i = 0, 1, 2, …

corresponds to the ith element in the sequence.

Thus,

xi = x(i∆t) 

and x(t) can be represented by the sequence X whose values are

X = {x0, x1, x2, x3, …, xk, … }.

If n samples are obtained from the signal x(t), then the sequence

X = {x0, x1, x2, x3, …, xn-1 }

is the digital representation or the sampled version of x(t).
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Chapter

39
Analysis 
Signal Generation VIs

This chapter describes the VIs that generate one-dimensional arrays 
with specific waveform patterns. 

You can combine these VIs with the arithmetic functions discussed in 
Chapter 4, Numeric Functions, to generate more elaborate waveforms. 
For example, if you want to generate an amplitude modulated pulse, you 
multiply a pulse pattern by a sinusoidal pattern.

To access the Signal Analysis palette, select 
Function»Analysis»Signal Generation. The following illustration 
shows the options that are available on the Signal Analysis palette.

For examples of how to use the signal generation VIs, see the examples 
located in examples\analysis\sigxmpl.llb.

Normalized Frequency

Some of the Signal Generation VIs use an input frequency control (f) 
that is assumed to use normalized frequency units of cycles per sample. 
Its reciprocal (1/f) gives you the number of times that the signal is 
sampled in one cycle. This frequency ranges from 0 to 1.0, which 
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corresponds to a real frequency range of 0 to the sampling rate. This 
frequency also wraps around 1.0, so that a normalized frequency of 1.1 
is equivalent to 0.1.

For example, if a signal is sampled at the Nyquist rate (fs/2), it is 
sampled twice per cycle. This corresponds to a normalized frequency of 
1/2 samples/cycle that is less than or equal to 0.5 cycles/sample.

If you use some of these VIs, you must convert your frequency units to 
the normalized units of cycles/sample. You must use these normalized 
units with the following VIs:

• Sine Wave

• Square Wave

• Sawtooth Wave

• Triangle Wave

• Arbitrary Wave

• Chirp Pattern

If you are used to working in frequency units of cycles, you can convert 
cycles to cycles/sample by dividing cycles by the number of samples 
generated. The following illustration shows an example of the Sine 
Wave VI generating two cycles of a sine wave.
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The following illustration shows the block diagram for converting 
cycles to cycles/sample.

However, you may need to use frequency units of Hz (cycles/s). If you 
need to convert to Hz (or cycles/s) to cycles/sample, divide your 
frequency in cycles/s by the sampling rate given in samples/s. The 
following illustration shows an example of the Sine Wave VI 
generating a 60 Hz sine signal.

Figure 39-1.  Front Panel Example
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The following illustration shows the block diagram for generating a sine 
signal.

Figure 39-2.  Block Diagram example

For example, build a VI with the Front Panel and Block Diagram, as 
illustrated in the Figures 39-1 and Figure 39-2 above. Select a frequency 
of 2 cycles and the number of samples of 100. 2 cycles appear on the 
plot. Change the number of samples to 150, 200, and 250 and 2 cycles 
remain. If you keep the number of samples equal to 100 and the number 
of cycles to 3, 4, and 5, there are 3, 4, and 5 cycles, respectively. 
Therefore, when you choose the frequency in number of cycles, you 
will see that many cycles within the plot.

Signal Generation VI Descriptions

The following Signal Generation VIs are available.

Arbitrary Wave
Generates an array containing an arbitrary wave. 
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If the sequence y represents Arbitrary Wave, then the VI generates the pattern according 
to the following formula:

y[i] = a * arb(phase[i]),   for i = 0, 1, 2,..., n-1,

where a is the amplitude, n is the number of samples,

arb(phase[i]) = WT(phase[i] modulo 360)*m/360)

where m is the size of the Wave Table array

If interpolation = 0 (no interpolation), then WT(x) = Wave Table[int(x)]. 

If interpolation = 1 (linear interpolation), then WT(x) is equal to the linearly interpolated 
value of Wave Table[int(x)] and Wave Table[(int(x)+1) modulo m].

phase[i] = initial_phase + f*360.0*i, where f is the frequency in normalized units of 
cycles/sample, initial_phase is phase in if reset phase is true, or initial_phase is the 
phase out from the previous execution of this VI if reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from an 
arbitrary wave function generator. If the input control reset phase is false, subsequent 
calls to a specific instance of this VI produce the output Arbitrary Wave array 
containing the next samples of the arbitrary wave.

phase out is set to phase[n], and this reentrant VI uses this value as its new phase in if 
reset phase is false the next time the VI executes.

Chirp Pattern 
Generates an array containing a chirp pattern. 

If the sequence Y represents Chirp Pattern, the VI generates the pattern according to the 
following formula:

yi = A* sin((a/2 i + b) i),   for i = 0, 1, 2,..., n-1,

where A is the amplitude, a = 2π(f2-f1)/n, b = 2πf1, f1 is the beginning frequency in 
normalized units of cycles/sample, f2 is the ending frequency in normalized units of 
cycles/sample, and n is the number of samples.
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Gaussian White Noise
Generates a Gaussian-distributed, pseudorandom pattern whose statistical profile 
is (µ, σ) = (0, s), where s is the absolute value of the specified standard deviation.

To generate the pattern, the VI uses a modified version of the Very-Long-Cycle random 
number generator algorithm based upon the Central Limit Theorem. Given that the 
probability density function, f(x), of the Gaussian-distributed Gaussian Noise Pattern is:

,

where s is the absolute value of the specified standard deviation and that you can 
compute the expected values, E{•}, using the formula:

,

then the expected mean value, µ, and the expected standard deviation value, σ, of the 
pseudorandom sequence are:

µ = E{x} = 0,

.

The pseudorandom sequence produces approximately 290 samples before the pattern 
repeats itself.

Impulse Pattern
Generates an array containing an impulse pattern. 

f x( )
1

2πs
-------------e

1
2
---– 

  x

s
-- 

 
2

=

E x( ) x f x( )( )dx

∞–

∞

∫=

σ E x µ–( )2{ }[ ]
1 2⁄

s= =
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If the Impulse Pattern is represented by the sequence X, the VI generates the pattern 
according to the following formula:

 

where a is the amplitude, d is the delay, and n is the number of samples.

Periodic Random Noise
Generates an array containing periodic random noise (PRN).

The output array contains all frequencies which can be represented with an integral 
number of cycles in the requested number of samples. Each frequency-domain 
component has a magnitude of spectral amplitude and random phase.

You can think of the output array of PRN as a summation of sinusoidal signals with the 
same amplitudes but with random phases. The unit of spectral amplitude is the same as 
the output Periodic Random Noise, and is a linear measure of amplitude, similar to other 
signal generation VIs.

The VI generates the same periodic random sequence for a given positive seed value. The 
VI does not reseed the random phase generator if seed is negative.

The output sequence is bounded by an amplitude of .

You can use PRN to compute the frequency response of a linear system in one time record 
instead of averaging the frequency response over several time records, as you must for 
nonperiodic random noise sources.

You do not need to window PRN before performing spectral analysis; PRN is 
self-windowing and, therefore, has no spectral leakage because PRN contains only 
integral-cycle sinusoids.

xi

a  if i d for i = 0, 1, 2, . . ., n-1=

0 elsewhere




=

spectral amplitude *
samples

2
--------------------
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Pulse Pattern
Generates an array containing a pulse pattern. 

If the sequence X represents Pulse Pattern, the VI generates the pattern according to the 
following formula:

 

where a is the amplitude, d is the delay, w is the width, and n is the number of samples.

Ramp Pattern
Generates an array containing a ramp pattern.

If the sequence X represents Ramp Pattern, the VI generates the pattern according to the 
formula:

 for i = 0, 1, 2,…, n-1,

where , xn-1 is the end, x0 is the start, and n is the number of samples.

The does not impose conditions on the relationship between start and end. Therefore, it 
can generate ramp-up and ramp-down patterns.

xi

a if d i d w+( )< for i = 0, 1, 2, . . ., n-1.≤

0.0 elsewhere





=

xi x0 i x∆+=

x∆
xn 1– x0–

n 1–
----------------------=
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Sawtooth Wave
Generates an array containing a sawtooth wave. 

If the sequence Y represents Sawtooth Wave, the VI generates the pattern according to 
the following formula:

y[i] = a * sawtooth(phase[i]), for i = 0, 1, 2,..., n-1,

where a is the amplitude, n is the number of samples,

 

p = phase[i] modulo 360.0, phase[i] = initial_phase + f*360.0*i, f is the frequency in 
normalized units of cycles/sample; initial_phase is phase in if reset phase is true; or 
initial_phase is the phase out from the previous execution of this instance of the VI if 
reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a sawtooth 
wave function generator. If the input control reset phase is false, subsequent calls to a 
specific instance of the VI produce the output Sawtooth Wave array containing the next 
samples of a sawtooth wave.

phase out is set to phase[n], and, if reset phase is false, the next time the VI executes 
this reentrant VI uses this value as its new phase in.

Sinc Pattern
Generates an array containing a sinc pattern.

sawtooth phase i[ ]( )

p

180.0
------------- 0 p 180<≤

p

180.0
------------- 2.0 180 p 360<≤–






=
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If the sequence Y represents Sinc Pattern, the VI generates the pattern according to the 
following formula:

, for i = 0, 1, 2,…, n-1,

where , a is the amplitude, ∆t is the sampling interval delta t, d is 

the delay, and n is the number of samples.

The main lobe of the sinc function, sinc(x), is the part of the sinc curve bounded by the 
region -1 ≤ x ≤ 1.

When |x| = 1, the sinc(x) = 0.0, and the peak value of the sinc function occurs when 
x = 0. Using l'Hôpital's Rule, you can show that sinc(0) = 1 and is its peak value. Thus, 
the main lobe is the region of the sinc curve encompassed by the first set of zeros to the 
left and the right of the sinc value.

Sine Pattern
Generates an array containing a sinusoidal pattern. 

If the sequence Y represents Sinusoidal Pattern, the VI generates the pattern according 
to the following formula:

 for i = 0, 1, 2,…, n-1,

where

, a is the amplitude, k is the number of cycles in the pattern,

 is the initial phase (degrees), and n is the number of samples.

Sine Wave
Generates an array containing a sine wave. 
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If the sequence Y represents Sine Wave, the VI generates the pattern according to the 
following formula:

yi = a * sin(phase[i]), for i = 0, 1, 2,..., n-1,

where a is the amplitude and phase[i] = initial_phase + f*360.0*i; f is the frequency in 
normalized units of cycles/sample; initial_phase is phase in if reset phase is true; or 
initial_phase is the phase out from the previous execution of this instance of the VI if 
reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a sine 
wave function generator. If the input control reset phase is false, subsequent calls to a 
specific instance of the VI produce the output Sine Wave array containing the next 
samples of a sine wave.

phase out is set to phase[n], and if reset phase is false the next time the VI executes, this 
reentrant VI uses this value as the new phase in.

Square Wave

Generates an array containing a square wave. 

If the sequence Y represents Square Wave, the VI generates the pattern according to the 
following formula:

yi = a * square(phase[i]), for i = 0, 1, 2,..., n-1,

where a is the amplitude; n is the number of samples; 

,

where p = phase[i] modulo 360.0, duty = duty cycle, 
phase[i] = initial_phase + f*360.0*i; f is the frequency in normalized units of 

square phase i[ ]( )
1.0 0 p <≤

duty
100
----------360 

 

1.0
duty
100
----------360 

  p 360<≤–







=
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cycles/sample, initial_phase is phase in if reset phase is true; or initial_phase is the 
phase out from the previous execution of this instance of the VI if reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a square 
wave function generator. If the input control reset phase is false, subsequent calls to a 
specific instance of this VI produce the output Square Wave array containing the next 
samples of a square wave.

phase out is set to phase[n], and if reset phase is false the next time the VI executes, this 
reentrant VI uses this value as its new phase in.

Triangle Wave
Generates an array containing a triangle wave. 

If the sequence Y represents Triangle Wave, the VI generates the pattern according to 
the following formula:

yi = a * tri(phase[i]), for i = 0, 1, 2,..., n-1

where a is the amplitude; n is the number of samples;

 

where p = (phase[i] modulo 360.0); phase[i] = initial_phase + f*360.0*i; f is the 
frequency in normalized units of cycles/sample; initial_phase is phase in if reset phase 
is true; or initial_phase is the phase out from the previous execution of this instance of 
the VI if reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a triangle 
wave function generator. If the input control reset phase is false, subsequent calls to a 

tri phase ι[ ]( )

p

90
------ 0 p 90<≤

2
p

90
------ 90 p 270<≤–

p

90
------ 4 270 p 360<≤+



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




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specific instance of the VI produce the output Triangle Wave array containing the next 
samples of a triangle wave.

phase out is set to phase[n], and if reset phase is false the next time the VI executes, this 
reentrant VI uses this value as its new phase in.

Uniform White Noise
Generates a uniformly distributed, pseudorandom pattern whose values are in the range 
[-a:a], where a is the absolute value of amplitude. 

The VI generates the pseudorandom sequence using a modified version of the 
Very-Long-Cycle random number generator algorithm. Given that the probability 
density function, f(x), of the uniformly distributed Uniform White Noise is

 

where a is the absolute value of the specified amplitude, and given that you can compute 
the expected values, E{•}, using the formula:

, then the expected mean value, µ, and the expected standard 
deviation value, σ, of the pseudorandom sequence are:

µ = E{x} = 0,

.

The pseudorandom sequence produces approximately 290 samples before the pattern 
repeats itself.

f x( )

1
2a
------ if a x a≤ ≤–

0 elsewhere

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Chapter

40
Analysis Digital Signal 
Processing VIs

This chapter describes the VIs that process and analyze an acquired or 
simulated signal. The digital signal processing VIs perform frequency 
domain transformations, frequency domain analysis, time domain 
analysis, and other transforms, such as the Fourier, Hartley, and Hilbert 
transforms.

To access the Digital Signal Processing palette, select 
Function»Analysis»Digital Signal Processing. The following 
illustration shows the options that are available on the Signal Analysis 
palette.

For examples of how to use the digital signal processing VIs, see the 
examples located in examples\analysis\dspxmpl.llb.



Chapter 40 Analysis Digital Signal Processing VIs

LabVIEW Function and VI Reference Manual 40-2 © National Instruments Corporation

The Fast Fourier Transform (FFT)

The Fourier transform establishes the relationship between a signal and 
its representation in the frequency domain. The Fourier transform is a 
powerful analysis tool for spectral analysis, applied mechanics, 
acoustics, medical imaging, numerical analysis, instrumentation, and 
telecommunications.

The definition of the Fourier transform of a signal x(t) is

, (40-1)

and the inverse Fourier transform of a signal X(f) is

. (40-2)

A notation often used to indicate that the signals x(t) and X(f) are a 
Fourier transform pair and are related via the Fourier transform is:

x(t)  ⇔ X(f). (40-3)

To derive the discrete representation of the Fourier transform equations, 
equations (40-1) and (40-2), sample the Fourier transform pair in 
equation (40-3) using the following sampling relationships:

  

where ∆t is the sampling interval, ∆f is the frequency resolution,  is 
the sampling frequency, and n is the number of samples in both the time 
and frequency domain.

Thus, the discrete transform pair

xi  ⇔ Xk (40-4)

is obtained and the discrete Fourier transform is given by

X f( ) F x t{ }( ) x t( )e
j2πft–

td

∞–

∞

∫= =

x t( ) F
1–

X f( ){ } X f( )e
j2πft

td

∞–

∞

∫= =

t∆ 1
fs

---= f∆
fs

n
---=

fs
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(40-5)

and the inverse by

. (40-6)

Xk in equation (40-5) represents an amplitude spectral density. Multiply 
the right-hand side of equation (40-5) by the frequency resolution ∆f to 
arrive at the amplitude spectrum. This amplitude spectrum is the final 
form of the DFT and inverse DFT, given by equations (40-7) and (40-8), 
respectively. Notice that the DFT is independent of the sampling rate.

 for k = 0, 1, 2, …, n-1 (40-7)

 for i = 0, 1, 2, …, n-1. (40-8)

Direct implementation of the DFT requires approximately n2 complex 
operations, and until recently, it was a time-consuming process. 
However, when the size of the sequence is

n = 2m   for m = 1, 2, 3,…,

you can implement the computation of the DFT with approximately 
n log2(n) operations. DSP literature refers to these algorithms as fast 
Fourier transforms (FFTs).

Note: The advantages of the FFT include its speed and memory efficiency 

because the VI performs the transform in place. The size of the input 

sequence, however, must be a power of 2. The DFT can efficiently process 

any size sequence, but the DFT is slower than the FFT and uses more 

memory, because it must store intermediate results during processing.

Xk xie
j2πik n⁄–
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xi Xke
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Furthermore, with the aid of the FFT, you can find the DFT of any size 
sequence in approximately 3nlog2(n) operations where n is the next 
power of 2 that accommodates intermediate results. You can find a 
more detailed explanation of FFT theory in most introductory texts on 
DSP.

The algorithm implemented in the LabVIEW analysis VIs is known as 
the split-radix algorithm. This algorithm has a form similar to the 
radix-4 algorithms with the efficiency of radix-8 algorithms. The 
split-radix algorithm requires the least number of multiplications 
among the radix-2, radix-4, and mixed-radix algorithms.

This manual uses the following notation to denote the discrete Fourier 
transform of a sequence x:

X = F{x},

and

x = F-1{X} 

to denote the discrete inverse Fourier transform. The Fourier transform 
always results in a complex output sequence, and the input sequence 
can be either real or complex. Unless otherwise specified, two real 
sequences represent the complex sequences. If X is a complex sequence, 
then:

XRe = Re{X} 

represents the real part of the complex sequence X,

XIm = Im{X} 

represents the imaginary part of the complex sequence X, and

X = XRe + j XIm = Re{X} + j Im{X}.

If the i/p signal is real, the FT is symmetric.

If the i/p signal is complex, the FT is not symmetric.
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If n=8, let . The following table shows the format of the complex 

output sequence.

Array Element Interpretation

Y0 DC component

Y1 1st harmonic or fundamental

Y2 2nd harmonic

Y3 3rd harmonic

.

.

.

.

.

.

Yk-2 (k-2)th harmonic

Yk-1 (k-1)th harmonic

Yk Nyquist harmonic

Yk+1 = Yn-(k-1) = Y-(k-1) - (k-1)th harmonic*

Yk+2 = Yn-(k-2) = Y-(k-2) - (k-2)th harmonic*

.

.

.

.

.

.

Yn-3 - 3rd harmonic*

Yn-2 - 2nd harmonic*

Yn-1 - 1st harmonic*

*These entries represent negative harmonics.

k
n

2
---=
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The following illustration represents this complex sequence.

If n=7, let . The following table shows the format of the 

complex output sequence Y.

Array Element Interpretation

Y0 DC component

Y1 1st harmonic or fundamental

Y2 2nd harmonic

Y3 3rd harmonic

.

.

.

.

.

.

128 256 3840 512

50

100

150

200

0

250 | FFT {X} |

DC 

Component

Nyquist 

Component

Positive 

Harmonics

"Negative" 

Harmonics

k
n 1–

2
------------=
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The following illustration represents the preceding table.

This format is an accepted standard in digital signal processing 
applications. It is convenient because it simplifies performing the 
inverse transform to obtain the final, processed result.

Yk-1 kth-1 harmonic

Yk kth harmonic

Yk+1 = Yn-k = Y-k -kth harmonic*

Yk+2 = Yn-(k-1) = Y-(k-1) - (k-1)th harmonic*

.

.

.

.

.

.

Yn-3 - 3rd harmonic*

Yn-2 - 2nd harmonic*

Yn-1 - 1st harmonic*

*These entries represent negative harmonics.

Array Element Interpretation

125 250 3750 500

50

100

150

200

0

250 | FFT {X} |

DC 

Component

Positive 

Harmonics

"Negative" 

Harmonics
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Signal Processing VI Descriptions

The following Signal Processing VIs are available.

AutoCorrelation
Computes the autocorrelation of the input sequence X. 

The autocorrelation Rxx(t) of a function x(t) is defined as

,

where the symbol ⊗  denotes correlation.

For the discrete implementation of this VI, let Y represent a sequence whose indexing can 
be negative, let n be the number of elements in the input sequence X, and assume that the 
indexed elements of X that lie outside its range are equal to zero,

xj = 0,   j < 0   or   j ≥ n.

Then the VI obtains the elements of Y using

   for j = -(n-1), -(n-2),…, -2, -1, 0, 1, 2,…, n-1.

The elements of the output sequence Rxx are related to the elements in the sequence Y by:

Rxxi = yi-(n-1) for i = 0, 1, 2,…, 2n-2.

Notice that the number of elements in the output sequence Rxx is 2n - 1. Because you 
cannot use negative numbers to index LabVIEW arrays, the corresponding correlation 
value at t = 0 is the nth element of the output sequence Rxx. Therefore, Rxx represents 

Rxx t( ) x t( ) x t( )⊗ x τ( )x t τ+( ) td

∞–

∞

∫= =

yj xkxj k+

k 0=

n 1–
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the correlation values that the VI shifted n times in indexing. The following block 
diagram shows one way to display the correct indexing for the autocorrelation function.

The following graph is the result of the preceding block diagram.

Complex FFT
Computes the Fourier transform of the input sequence X. 

You can use this VI to perform an FFT on an array of complex numeric representations. 

If Y represents the complex output sequence, then

Y = F{X}.
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You also can use this VI to perform the following operations when X has one of the 
complex LabVIEW data types.

• The FFT of a complex-valued sequence X

• The DFT of a complex-valued sequence X

This VI first analyzes the input data, and based on this analysis, it calculates the Fourier 
transform of the data by executing one of the preceding options. All these routines take 
advantage of the concurrent processing capabilities of the CPU and FPU.

When the number of samples in the input sequence X is a valid power of 2,

n = 2m for m = 1, 2, 3,…, 23,

where n is the number of samples, the VI computes the fast Fourier transform by applying 
the split-radix algorithm. The largest complex FFT the VI can compute is
223 = 8,388,608 (8M).

When the number of samples in the input sequence X is not a valid power of 2,

n ≠ 2m for m = 1, 2, 3,…, 23,

where n is the number of samples, the VI computes the discrete Fourier transform by 
applying the chirp-z algorithm. The largest complex DFT that can be computed is 
222-1 = 4,194,303 (4M - 1).

Note: Because the VI performs the transform in place, advantages of the FFT 

include speed and memory efficiency. The size of the input sequence, 

however, must be a power of 2. The DFT can efficiently process any size 

sequence, but the DFT is slower than the FFT and uses more memory, 

because it must store intermediate results during processing.

Let Y be the complex output sequence and n be the number of samples in it. Using 
equation (40-7), you can show that

Yn-i = Y-i 

which means you can interpret the (n-i)th element of Y as the -ith element of the sequence, 
if it could be physically realized, which represents the negative ith harmonic.
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Convolution
Computes the convolution of the input sequences X and Y. 

The convolution h(t), of the signals x(t) and y(t) is defined as

where the symbol * denotes convolution.

For the discrete implementation of the convolution, let h represent the output sequence 
X * Y, let n be the number of elements in the input sequence X, and let m be the number 
of elements in the input sequence Y. Assuming that indexed elements of X and Y that lie 
outside their range are zero,

xi = 0,   i < 0   or   i ≥ n

and

yj = 0,   j < 0   or   j ≥ m,

then you obtain the elements of h using

   for i = 0, 1, 2,…, size-1,

size = n + m - 1,

where size denotes the total number of elements in the output sequence X * Y.

h t( ) x t( )*y t( ) x τ( )y t τ–( ) τd

∞–

∞

∫= =

hi xkyi k–

k 0=

n 1–

∑=
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Cross Power
Computes the cross power spectrum of the input sequences X and Y. 

The cross power, Sxy(f), of the signals x(t) and y(t) is defined as

Sxy(f) = X*(f)Y(f)

where X*(f) is the complex conjugate of X(f), X(f) = F{x(t)}, and Y(f) = F{y(t)}.

This VI uses the FFT or DFT routine to compute the cross power spectrum, which is 
given by

,

where Sxy represents the complex output sequence Sxy, and n is the number of samples 
that can accommodate both input sequences X and Y.

The largest cross power that the VI can compute via the FFT is 223 (8,388,608 or 8M).

When the number of samples in X and Y are equal and are a valid power of 2,

n = m = 2k for k = 1, 2, 3, …, 23,

where n is the number of samples in X, and m is the number of samples in Y, the VI makes 
direct calls to the FFT routine to compute the complex, cross power sequence. This 
method is extremely efficient in both execution time and memory management because 
the VI performs the operations in place.

When the number of samples in X and Y are not equal,

n ≠ m,

where n is the number of samples in X, and m is the number of samples in Y, the VI first 
resizes the smaller sequence by padding it with zeros to match the size of the larger 
sequence. If this size is a valid power of 2,

max(n,m) = 2k for k = 1, 2, 3, …, 23,

Sxy

1

n
2

-----F∗ X{ } F Y{ }=
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the VI computes the cross power spectrum using the FFT; otherwise the VI uses the 
slower DFT to compute the cross power spectrum. Thus, the size of the complex output 
sequence is

size = max(n,m).

CrossCorrelation
Computes the cross correlation of the input sequences X and Y. 

The cross correlation Rxy(t) of the signals x(t) and y(t) is defined as

,

where the symbol ⊗  denotes correlation.

For the discrete implementation of this VI, let h represent a sequence whose indexing can 
be negative, let n be the number of elements in the input sequence X, let m be the number 
of elements in the sequence Y, and assume that the indexed elements of X and Y that lie 
outside their range are equal to zero,

xj = 0,   j < 0   or   j ≥ n,

and

yj = 0,   j < 0   or   j ≥ m. 

Then the VI obtains the elements of h using

   for j = -(n-1), -(n-2),…, -2, -1, 0, 1, 2,…, m-1.

Rxy t( ) x t( ) y t( )⊗ x τ( )y t τ+( ) τd

∞–

∞

∫= =

hj xkyj k+

k 0=

n 1–

∑=
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The elements of the output sequence Rxy are related to the elements in the sequence h by

Rxyi = hi-(n-1)   for i = 0, 1, 2, …, size-1,

size = n + m - 1

where size is the number of elements in the output sequence Rxy.

Because you cannot index LabVIEW arrays with negative numbers, the corresponding 
cross correlation value at t = 0 is the nth element of the output sequence Rxy. Therefore, 
Rxy represents the correlation values that the VI shifted n times in indexing. 

The following block diagram shows one way to index the CrossCorrelation VI.
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The following graph is the result of the preceding block diagram.

Decimate
Decimates the input sequence X by the decimating factor and the averaging binary 
control. 

If Y represents the output sequence Decimated Array, the VI obtains the elements of the 
sequence Y using

 for i = 0, 1, 2,..., size-1

,

where n is the number of elements in X, m is the decimating factor, ave is the averaging 
option, and size is the number of elements in the output sequence Decimated Array.

yi

xim if ave is false

1
m
---- x im k+( ) if ave is true

k 0=

m 1–

∑







=

size trunc
n

m
---- 

 =
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Deconvolution
Computes the deconvolution of the input sequences X * Y and Y. 

The VI can use Fourier identities to realize the convolution operation because

x(t) * y(t) ⇔ X(f) Y(f)

is a Fourier transform pair, where the symbol * denotes convolution, and the 
deconvolution is the inverse of the convolution operation. If h(t) is the signal resulting 
from the deconvolution of the signals x(t) and y(t), the VI obtains h(t) using the equation

,

where X(f) is the Fourier transform of x(t), and Y(f) is the Fourier transform of y(t).

The VI performs the discrete implementation of the deconvolution using the following 
steps:

1. Compute the Fourier transform of the input sequence X * Y.

2. Compute the Fourier transform of the input sequence Y.

3. Divide the Fourier transform of X * Y by the Fourier transform of Y. Call the new 
sequence H.

4. Compute the inverse Fourier transform of H to obtain the deconvoluted sequence X.

Note: The deconvolution operation is a numerically unstable operation, and it is 

not always possible to solve the system numerically. Computing the 

deconvolution via FFTs is perhaps the most stable generic algorithm not 

requiring sophisticated DSP techniques. However, it is not free of errors 

(for example, when there are zeros in the Fourier transform of the input 

sequence Y).

h t( ) F
1– X f( )

Y f( )
--------- 

 =
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Derivative x(t)
Performs a discrete differentiation of the sampled signal X. 

The differentiation f(t) of a function F(t) is defined as

.

Let Y represent the sampled output sequence dX/dt. The discrete implementation is given 
by

 for i = 0, 1, 2, …, n-1,

where n is the number of samples in x(t),

x-1 is specified by initial condition when i = 0, and

xn is specified by final condition when i = n-1.

The initial condition and final condition minimize the error at the boundaries.

Fast Hilbert Transform
Computes the fast Hilbert transform of the input sequence X. 

The Hilbert transform of a function x(t) is defined as

.

f t( )
d

td
----F t( )=

yi

1
2 td
-------- xi 1+ xi 1––( )=

h t( ) H x t( ){ }
1
π---

x τ( )
t τ–
---------- τd

∞–

∞

∫–= =
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Using Fourier identities, you can show the Fourier transform of the Hilbert transform of 
x(t) is

h(t)  ⇔ H(f) = - j sgn(f) X(f)

where x(t)  ⇔ X(f) is a Fourier transform pair and 

 

The VI completes the following steps to perform the discrete implementation of the 
Hilbert transform with the aid of the FFT routines based upon the h(t) ⇔ H(f) Fourier 
transform pair (refer to the output format of the FFT VI for more information): 

1. Fourier transform the input sequence X:   Y = F{X}.

2. Set the DC component to zero:   Y0 = 0.

3. If the sequence Y is an even size, set the Nyquist component to zero: YNyq = 0.

4. Multiply the positive harmonics by -j.

5. Multiply the negative harmonics by j. Call the new sequence H, which is of the form 
Hk = -j sgn(k) Yk.

6. Inverse Fourier transform H to obtain the Hilbert transform of X.

You use the Hilbert transform to extract instantaneous phase information, obtain the 
envelope of an oscillating signal, obtain single-sideband spectra, detect echoes, and 
reduce sampling rates.

Note: Because the VI sets the DC and Nyquist components to zero when the 

number of elements in the input sequence is even, you cannot always 

recover the original signal with an inverse Hilbert transform. The Hilbert 

transform works well with bandpass limited signals, which exclude the DC 

and the Nyquist components.

FHT
Computes the fast Hartley transform (FHT) of the input sequence X. 

f( )sgn
1 f 0>
0 f 0=
1 f 0<–







=
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The Hartley transform of a function x(t) is defined as

where cas(x) = cos(x) + sin(x).

If Y represents the output sequence Hartley{X} obtained via the FHT, then Y is obtained 
through the discrete implementation of the Hartley integral:

, for k = 0, 1, 2, …, n-1.

where n is the number of elements in X.

FHT maps real-valued sequences into real-valued frequency domain sequences. You can 
use it instead of the Fourier transform to convolve signals, deconvolve signals, correlate 
signals, and find the power spectrum. You can also derive the Fourier transform from the 
Hartley transform.

When the sequences to be processed are real-valued sequences, the Fourier transform 
produces complex-valued sequences in which half of the information is redundant. The 
advantage of using the FHT instead of the FFT transform is that the FHT uses half the 
memory to produce the same information the FFT produces. Further, the FHT is 
calculated in place and is as efficient as the FFT. The disadvantage of the FHT is that the 
size of the input sequence must be a valid power of 2.

Integral x(t)
Performs the discrete integration of the sampled signal X. 

The integral F(t) of a function f(t) is defined as

X f( ) x t( )cas 2πft( ) td

∞–

∞

∫=

Yk Xicas
2πik

n
----------- 

 

i 0=

n 1–

∑=

F t( ) f t( ) td∫=
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Let Y represent the sampled output sequence Integral X. The VI obtains the elements of 
Y using

 for i = 0, 1, 2, …, n-1,

where n is the number of elements in X, x-1 is specified by initial condition when i = 0, 
and xn is specified by final condition when i = n-1.

The initial condition and final condition minimize the overall error by increasing the 
accuracy at the boundaries, especially when the number of samples is small. Determining 
boundary conditions before the fact enhances accuracy.

Inverse Complex FFT
Computes the inverse Fourier transform of the complex input sequence FFT {X}. 

You can use this VI to perform an inverse FFT on an array of one of the LabVIEW 
complex numeric representations.

If Y represents the output sequence, then

Y = F-1{X}.

You can use this VI to perform the following operations when FFT {X} has one of the 
complex LabVIEW data types:

• The inverse FFT of a complex-valued sequence X

• The inverse DFT of a complex-valued sequence X

This FFT VI first analyzes the input data and, based on this analysis, inverse Fourier 
transforms the data by executing one of the preceding options. All these routines take 
advantage of the concurrent processing capabilities of the CPU and FPU.

When the number of samples in the input sequence X is a valid power of 2,

n = 2m  for m = 1, 2, 3,…, 23,

yi

1
6
--- xj 1– 4xj xj 1++ +( ) td

j 0=

i

∑=
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where n is the number of samples, the VI computes the inverse FFT by applying the 
split-radix algorithm. The longest sequence with an inverse complex FFT that the VI can 
compute is 223=8,388,608 (8M).

When the number of samples in the input sequence X is not a valid power of 2,

n ≠ 2m for m = 1, 2, 3, …, 23,

where n is the number of samples, the VI computes the inverse DFT by applying the 
chirp-z algorithm. The longest sequence with an inverse complex DFT that the VI can 
compute is 222-1 (4,194,303 or 4M - 1).

Note: Because the VI performs the transform in place, advantages of the FFT 

include speed and memory efficiency. The size of the input sequence, 

however, must be a power of 2. The DFT can efficiently process any size 

sequence, but the DFT is slower than the FFT and uses more memory, 

because it must store intermediate results during processing.

Inverse Fast Hilbert Transform
Computes the inverse fast Hilbert transform of the input sequence X. 

The inverse Hilbert transform of a function h(t) is defined as

.

Using the definition of the Hilbert transform

,

you obtain the inverse Hilbert transform by negating the forward Hilbert transform

x(t) = H-1{h(t)} = - H{h(t)}.

h t( ) H
1–

h t( ){ }
1
π---

h τ( )
t τ–
---------- τd

∞–

∞

∫= =

h t( ) H x t( ){ }
1
π---

x τ( )
t τ–
---------- τd

∞–

∞

∫–= =
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The VI completes the following steps to perform the discrete implementation of the 
inverse Hilbert transform with the aid of the Hilbert transform. 

1. Hilbert transform the input sequence X:   Y = H{X}.

2. Negate Y to obtain the inverse Hilbert transform:   H-1{X} = -Y.

For more information on the algorithm this VI uses, refer to the description of the Fast 

Hilbert Transform section in this chapter. 

Inverse FHT
Computes the inverse fast Hartley transform of the input sequence X. 

The inverse Hartley transform of a function X(f) is defined as

where cas(x) = cos(x) + sin(x).

If Y represents the output sequence Inv FHT {X}, the VI calculates Y through the discrete 
implementation of the inverse Hartley integral:

, for k = 0, 1, 2,…, n-1.

where n is the number of elements in X.

The inverse Hartley transform maps real-valued frequency sequences into real-valued 
sequences. You can use it instead of the inverse Fourier transform to convolve, 
deconvolve, and correlate signals. You can also derive the Fourier transform from the 
Hartley transform.

See the FHT section for a comparison of the Fourier and Hartley transforms.

x t( ) X f( )cas 2πft( ) fd

∞–

∞

∫=

Yk

1
n
--- Xicas

2πik

n
-----------

i 0=

n 1–
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Inverse Real FFT
Computes the Inverse Real Fast Fourier Transform (FFT) or the Inverse Real Discrete 
Fourier Transform (DFT) of the input sequence FFT{X}. 

The input sequence is complex-valued. This VI automatically determines the following 
options:

• Inverse Real FFT of a complex-valued sequence if the size is a power of 2.

• Inverse Real DFT of a complex-valued sequence if the size is not a power of 2.

This VI executes inverse FFT routines if the size of the input sequence is a valid power 
of 2:

size = 2m, m = 1, 2,..., 23.

If the size of the input sequence is not a power of 2, this VI calls an efficient Inverse DFT 
routine.

The output sequence X = Inverse Real FFT [FFT{X}] is real and it returns in one real 
array.

Power Spectrum
Computes the power spectrum of the input sequence X. 

The Power Spectrum Sxx(f) of a function x(t) is defined as

Sxx(f) = X*(f)X(f) = | X(f) | 2 

where X(f) = F{x(t)}, and X*(f) is the complex conjugate of X(f).
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This VI uses the FFT and DFT routines to compute the power spectrum, which is given by

,

where Sxx represents the output sequence Power Spectrum, and n is the number of 
samples in the input sequence X.

When the number of samples, n, in the input sequence X is a valid power of 2,

n = 2m for m = 1, 2, 3, …, 23,

this VI computes the FFT of a real-valued sequence using the split-radix algorithm and 
efficiently scales the magnitude square. The largest power spectrum the VI can compute 
using the FFT is 223 (8,388,608 or 8M).

When the number of samples in the input sequence X is not a valid power of 2,

n ≠ 2m for m = 1, 2, 3,…, 23,

where n is the number of samples, this VI computes the discrete Fourier transform of a 
real-valued sequence using the chirp-z algorithm and scales the magnitude square. The 
largest power spectrum the VI can compute using the fast DFT is 222-1 (4,194,303 or 
4M - 1).

The FFT computation of the power spectrum is time and memory efficient because the 
transform is real and done in the same space. However, the size of the input sequence 
must be exactly a power of 2. The DFT version efficiently computes the power spectrum 
of any size sequence. The DFT version is slower than the FFT version, uses more 
memory, and is not as efficient in scaling.

Let Y be the Fourier transform of the input sequence X and let n be the number of samples 
in it. Using equation (40-7), you can show that

.

You can interpret the power in the (n-i)th element of Y as the power in the -ith element of 
the sequence, which represents the power in the negative ith harmonic. You can find the 
total power for the ith harmonic (DC and Nyquist component not included) using

.

Sxx

1

n
2

----- F X{ } 2
=

Yn i–
2

Y i–
2

=

Power in i
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harmonic 2 Yi
2 Yi

2 Yn i–
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The total power in the DC and Nyquist components are  and , respectively.

If n is even, let . The following table shows the format of the output sequence Sxx 

corresponding to the power spectrum.

The following illustration represents the preceding table information.

Array Element Interpretation

Sxx0 Power in DC component

Sxx1 = Sxx(n-1) Power in 1st harmonic or fundamental

Sxx2 = Sxx(n-2) Power in 2nd harmonic

Sxx3 = Sxx(n-3) Power in 3rd harmonic

.

.

.

.

.

.

Sxxk-2 = Sxxn-(k-2) Power in (k-2)th harmonic

Sxxk-1 = Sxxn-(k-1) Power in (k-1)th harmonic

Sxxk Power in Nyquist harmonic

Y0
2

Yn 2⁄
2

k
n

2
---=

128 256 3840 512

0.05

0.10

0.15

0.20

0.00

0.25 Power Spectrum

Nyquist 

Component

DC 

Component

Positive 

Harmonics

"Negative" 

Harmonics
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If n is odd, let . The following table shows the format of the output sequence 

Sxx corresponding to the power spectrum.

The following illustration represents the preceding table information.

The format described in the preceding tables is an accepted standard in digital signal 
processing applications. 

Array Element Interpretation

Sxx0 Power in DC component

Sxx1 = Sxx(n-1) Power in 1st harmonic or fundamental

Sxx2 = Sxx(n-2) Power in 2nd harmonic

Sxx3 = Sxx(n-3) Power in 3rd harmonic

.

.

.

.

.

.

Sxxk-2 = Sxxn-(k-2) Power in (k-2)th harmonic

Sxxk-1 = Sxxn-(k-1) Power in (k-1)th harmonic

Sxxk = Sxxn-k Power in kth harmonic

k
n 1–

2
------------=

125 250 3750 500

0.05

0.10

0.15

0.20

0.00

0.25 Power Spectrum

DC 
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Harmonics

"Negative" 

Harmonics
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Real FFT
Computes the Real Fast Fourier Transform (FFT) or the Real Discrete Fourier Transform 
(DFT) of the input sequence X. 

The input sequence is real-valued. The Real FFT VI automatically determines the 
options, which are the following:

• FFT of a real-valued sequence

• DFT of a real-valued sequence

The Real FFT VI executes FFT routines if the size of the input sequence is a valid power 
of 2:

size = 2m, m = 1, 2,..., 23.

If the size of the input sequence is not a power of 2, the Real FFT VI calls an efficient 
Real DFT routine.

The output sequence Y = Real FFT[X] is complex and returns in one complex array:

Y = YRe + jYIm

Unwrap Phase
Unwraps the Phase array by eliminating discontinuities whose absolute values exceed Π.

Y[i] = Clip {X[i]}
Clips the elements of Input Array to within the bounds specified by upper limit and 
lower limit.
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Let the sequence Y represent the output sequence Clipped Array; then the elements of Y 
are related to the elements of Input Array by

 for i = 0, 1, 2,…, n-1,

where n is the number of elements in Input Array, a is the upper limit, and b is the 
lower limit.

Y[i] = X[i-n]
Shifts the elements in the Input Array by the specified number of shifts.

Let the sequence Y represent the output sequence Shifted Array; then the elements of Y 
are related to the elements of X by

 

where n is the number of elements in Input Array.

Note: This VI does not rotate the elements in the array. The VI disposes of the 

elements of the input sequence shifted outside the range, and you cannot 

recover them by shifting the array in the opposite direction.

Zero Padder
Resizes the input sequence Input Array to the next higher valid power of 2, sets the new 
trailing elements of the sequence to zero, and leaves the first n elements unchanged, 
where n is the number of samples in the input sequence.

yi

a xi a>
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b xi b<
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This VI is useful when the size of the acquired data buffers is not a power of 2, and you 
want to take advantage of fast processing algorithms in the analysis VIs. These 
algorithms include Fourier transforms, power spectrum, and FHTs, which are extremely 
efficient for buffer sizes that are a power of 2.
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Chapter

41Analysis Measurement VIs

This chapter describes the measurement VIs, which are streamlined to 
perform DFT-based and FFT-based analysis with signal acquisition for 
frequency measurement applications as seen in typical frequency 
measurement instruments, such as dynamic signal analyzers. 

To access the Analysis Measurement palette, select 
Function»Analysis»Measurement. The following illustration shows 
the options that are available on the Measurement palette. 

For examples of how to use the measurement VIs, see the examples 
using data acquisition located in 
examples\analysis\measure\daqmeas.llb (Windows and 
Macintosh) and using simulated signals in 
examples\analysis\measure\measxmpl.llb.
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Introduction to Measurement VIs

Several measurement VIs perform commonly used time domain to 
frequency-domain transformations such as amplitude and phase 
spectrum, signal power spectrum, network transfer function, and so on. 
Other measurement VIs interact with VIs that perform such functions as 
scaled time domain windowing and power and frequency estimation. 

You can use the measurement VIs for the following applications:

• Spectrum analysis applications

– Amplitude and phase spectrum

– Power spectrum

– Scaled time domain window

– Power and frequency estimate

– Harmonic analysis and total harmonic distortion (THD) 
measurements

• Network (frequency response) and dual channel analysis 
applications

– Transfer function

– Impulse response function

– Network functions (including coherence)

– Cross power spectrum

The DFT, FFT, and power spectrum are useful for measuring the 
frequency content of stationary or transient signals. The FFT provides 
the average frequency content of the signal over the entire time that the 
signal was acquired. For this reason, you use the FFT mostly for 
stationary signal analysis (when the signal is not significantly changing 
in frequency content over the time that the signal is acquired), or when 
you want only the average energy at each frequency line. A large class 
of measurement problems fall in this category. For measuring 
frequency information that changes during the acquisition, you should 
use joint time-frequency analysis VIs, such as the Gabor Spectrogram.

The measurement VIs are built on top of the signal processing VIs and 
have the following characteristics, which model the behavior of 
traditional, benchtop frequency analysis instruments. 

• Real-world, time-domain signal input is assumed.
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• Outputs are in magnitude and phase, scaled, and in units where 
appropriate, ready for immediate graphing.

• Single-sided spectrums from DC to .

• Sampling period to frequency interval conversion for graphing with 
appropriate X axis units (in Hz).

• Corrections for the windows being used are applied where 
appropriate.

• Windows are scaled so that each window gives the same peak 
spectrum amplitude result within its amplitude accuracy 
constraints.

Views power or amplitude spectrums in various unit formats, including 
decibels and spectral density units, such as , , and so on.

In general, you can directly connect the measurement VIs to the output 
of data acquisition VIs and to graphs through the axis cluster, as the 
following spectrum analyzer diagram shows.

The measurement examples include the following:

• Amplitude Spectrum Example 

• Simulated Dynamic Signal Analysis Example

• Total Harmonic Distortion (THD) Example

(Windows and Macintosh) You can use the following examples with 
National Instruments hardware. 

• Simple Spectrum Analyzer and Spectrum Analyzer–Both work 
with any analog input hardware (use dynamic signal acquisition 
hardware for good quality measurements).

Sampling Frequency
2

-------------------------------------------------

V
2

Hz⁄ V Hz⁄
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• Dynamic Signal Analyzer and Network Analyzer–Both work with 
dynamic signal acquisition hardware. The Network Analyzer 
requires the AT-DSP2200 board.

Measurement VI Descriptions

The following Measurement VIs are available.

AC & DC Estimator
Computes an estimation of the AC and DC levels of the input signal.

Amplitude and Phase Spectrum
Computes the single-sided, scaled amplitude spectrum magnitude and phase of a real 
time-domain signal.

The VI computes the amplitude spectrum as

where N is the number of points in the Signal array. The VI then converts the amplitude 
spectrum to single-sided rms magnitude and phase spectra.

Auto Power Spectrum
Computes the single-sided, scaled, auto power spectrum of a time-domain signal.

FFT(Signal)
N

-----------------------------
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This VI computes the power spectrum as

where N is the number of points in the Signal array and * denotes complex conjugate. 
The VI then converts the power spectrum into a single-sided power spectrum result.

Cross Power Spectrum
Computes the single-sided, scaled, cross power spectrum of two real-time signals. The 
cross power spectrum gives the product of the amplitude of the signals X and Y and the 
difference between their phases (phase of Y minus phase of X).

This VI computes the cross power spectrum as 

where N is the number of points in Signal X or Signal Y arrays. The VI then converts the 
cross power spectrum to single-sided magnitude and phase spectra.

Harmonic Analyzer
Finds the fundamental and harmonic components (amplitude and frequency) present in 
the input Auto Power Spectrum, and computes the percent of total harmonic distortion 
(%THD) and the total harmonic distortion plus noise (%THD + Noise).

You must pass the windowed, auto power spectrum of your signal to this VI for it to 
function correctly. You should pass your time-domain signal through the scaled time 
domain window and then through the Auto Power Spectrum, connecting the Auto Power 
Spectrum output to this VI.

FFT*(Signal) x FFT(Signal)

N2
--------------------------------------------------------------------

FFT*(Signal X) x FFT(Signal Y)

N2
--------------------------------------------------------------------------------
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 The following illustration shows an example of using this VI.

Impulse Response Function
Computes the impulse response of a network based on real signals X (Signal X Stimulus) 
and Y (Signal Y Response). 

The Impulse Response is in the time domain, so you do not need to convert time units 
to frequency units. The Impulse Response is the inverse transform of the transfer 
function.

This VI computes Impulse Response as

.

Network Functions (avg)
Computes several network response functions of two, real time-domain signals X 
(Stimulus Signal) and Y (Response Signal). 

The signals X (Stimulus Signal) and Y (Response Signal) include coherence, averaged 
cross power spectrum magnitude and phase, averaged transfer function (Frequency 
Response), and averaged Impulse Response.

Inverse FFT
Cross Power(Stimulus, Response)

Power Spectrum(Stimulus)
---------------------------------------------------------------------------------
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You usually compute these functions on the stimulus and response signals from a 
network under test. The coherence function shows the frequency content of the Response 
Signal Y due to Stimulus Signal X and measures the validity of the network frequency 
response measurement. 

You can use this VI to measure the coherence between any two signals. The VI averages 
multiple stimulus and response signals to get valid coherence measurements. Cross 
Power Spectrum and Impulse Response are the rms averaged versions of the similarly 
named VIs. Frequency Response is the rms averaged version of the frequency response 
outputs of the Transfer Function VI. 

Peak Detector
For information on this VI, see Chapter 48, Analysis Additional Numerical Method VIs, in 
this manual.

Power & Frequency Estimate
Computes the estimated power and frequency around a peak in the power spectrum of a 
time-domain signal.

With this VI, you can achieve good frequency estimates for measured frequencies that lie 
between frequency lines on the spectrum. The VI makes corrections for the window 
function you use.

Pulse Parameters
Analyzes the input sequence X for a pulse pattern and determines the best set of pulse 
parameters that describes the pulse.
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The waveform-related parameters are slew rate, overshoot, topline (top), amplitude, 
baseline (base), and undershoot. The time-related parameters are risetime, falltime, 
width (duration), and delay.

This VI completes the following steps to calculate the output parameters: 

1. Find the maximum and minimum values in the input sequence X.

2. Generate the histogram of the pulse with 1% range resolution.

3. Determine the upper and lower modes to establish the top and base values.

4. Find the overshoot, amplitude, and undershoot from top, base, maximum, and 
minimum values.

5. Scan X and determine the slew rate, risetime, falltime, width, and delay.

The VI interpolates width and delay to obtain a more accurate result not only of width 
and delay, but also of slew rate, risetime, and falltime.

If X contains a train of pulses, the VI uses the train to determine overshoot, top, 
amplitude, base, and undershoot, but uses only the first pulse in the train to establish 
slew rate, risetime, falltime, width, and delay.

Note: Because pulses commonly occur in the negative direction, this VI can 

discriminate between positive and negative pulses and can analyze the X 

sequence correctly. You do not need to process the sequence before 

analyzing it.

Scaled Time Domain Window
Applies the selected window to the time-domain signal. 

The VI scales the result so that when the power or amplitude spectrum of the Windowed 
Waveform is computed, all windows provide the same level within the accuracy 
constraints of the window. This VI also returns important Window Constants for the 
selected window. These constants are useful when you use VIs that perform 
computations on the power spectrum, such as the Power & Frequency Estimate and 
Spectrum Unit Conversion VIs.
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Spectrum Unit Conversion
Converts either the power, amplitude, or gain (amplitude ratio) spectrum to alternate 
formats including Log (decibel and dbm) and spectral density.

Threshold Peak Detector
For information on the this VI, see Chapter 48, Analysis Additional Numerical Method VIs, 
of this manual.

Transfer Function
Computes the transfer function (also known as the frequency response) from the 
time-domain Stimulus Signal and Response Signal from a network under test. 

This VI computes the transfer function of a system based on the real signals X (Stimulus 
Signal) and Y (Response Signal). The output is the amplitude gain of the network, which 
is unitless.

The VI computer frequency response is:

.
Cross Power(Stimulus, Response)

Power Spectrum(Stimulus)
---------------------------------------------------------------------------------
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Chapter

42Analysis Filter VIs

This chapter contains a brief discussion of digital filter theory and 
describes the VIs that implement IIR, FIR, and nonlinear filters.

To access the Analysis Filter palette, select 
Function»Analysis»Filters. The following illustration shows the 
options that are available on the Filter palette.

For examples of how to use the filter VIs, see the examples located in 
examples\analysis\fltrxmpl.llb. 

Introduction to Digital Filtering Functions

Analog filter design is one of the most important areas of electronic 
design. Although analog filter design books featuring simple, tested 
filter designs exist, filter design is often reserved for specialists because 
it requires advanced mathematical knowledge and understanding of the 
processes involved in the system affecting the filter.
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Modern sampling and digital signal processing tools have made it 
possible to replace analog filters with digital filters in applications that 
require flexibility and programmability. These applications include 
audio, telecommunications, geophysics, and medical monitoring.

Digital filters have the following advantages over their analog 
counterparts:

• They are software programmable.

• They are stable and predictable.

• They do not drift with temperature or humidity or require precision 
components.

• They have a superior performance-to-cost ratio.

You can use digital filters in LabVIEW to control parameters such as 
filter order, cutoff frequencies, amount of ripple, and stopband 
attenuation.

The digital filter VIs described in this section follow the virtual 
instrument philosophy. The VIs handle all the design issues, 
computations, memory management, and actual data filtering 
internally, and are transparent to the user. You do not have to be an 
expert in digital filters or digital filter theory to process the data.

The following discussion of sampling theory is intended to give you a 
better understanding of the filter parameters and how they relate to the 
input parameters. 

The sampling theorem states that you can reconstruct a continuous-time 
signal from discrete, equally spaced samples if the sampling frequency 
is at least twice that of the highest frequency in the time signal. Assume 
you can sample the time signal of interest at ∆t equally spaced intervals 
without losing information. The ∆t parameter is the sampling interval.

You can obtain the sampling rate or sampling frequency fs from the 
sampling interval

,

which means that, according to the sampling theorem, the highest 
frequency that the digital system can process is

fs

1
t∆-----=
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.

The highest frequency the system can process is known as the Nyquist 
frequency. This also applies to digital filters. For example, if your 
sampling interval is

∆t = 0.001 sec,

then the sampling frequency is

fs = 1000 Hz,

and the highest frequency that the system can process is

fNyq = 500 Hz.

The following types of filtering operations are based upon filter design 
techniques:

• Smoothing windows

• Infinite impulse response (IIR) or recursive digital filters

• Finite impulse response (FIR) or nonrecursive digital filters

• Nonlinear filters

The rest of this chapter presents a brief theoretical background on the 
IIR, FIR, and nonlinear techniques and discusses the digital filter VIs 
corresponding to each technique. Refer to Chapter 43, Window VIs, for 
information about the VIs that implement smoothing windows.

Infinite Impulse Response Filters

Infinite impulse response filters (IIR) are digital filters with impulse 
responses that can theoretically be infinite in length (duration). The 
general difference equation characterizing IIR filters is

(42-1)

where Nb is the number of forward coefficients (bj) and Na is the 
number of reverse coefficients (ak).

fNyq

fs

2
---=

yi

1
a0
----- bjxi j–

j 0=

Nb 1–

∑ akyi k–

k 1=

Na 1–

∑–

 
 
 
 

=
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In most IIR filter designs (and in all of the LabVIEW IIR filters), 
coefficient a0 is 1. The output sample at the present sample index i is 
the sum of scaled present and past inputs (xi and xi - j when ≠ 0) and 
scaled past outputs (yi-k). Because of this, IIR filters are also known as 
recursive filters or autoregressive moving-average (ARMA) filters. 

The response of the general IIR filter to an impulse (x0 = 1 and xi = 0 
for all i ≠ 0) is called the impulse response of the filter. The impulse 
response of the filter described by equation (42-1) is indeed of infinite 
length for nonzero coefficients. In practical filter applications, 
however, the impulse response of stable IIR filters decays to near zero 
in a finite number of samples.

IIR filters in LabVIEW contain the following properties: 

• Negative indices resulting from equation (42-1) are assumed to be 
zero the first time you call the VI.

• Because the initial filter state is assumed to be zero (negative 
indices), a transient proportional to the filter order occurs before 
the filter reaches a steady state. The duration of the transient 
response, or delay, for lowpass and highpass filters is equal to the 
filter order.

• Delay = order.

• The duration of the transient response for bandpass and bandstop 
filters is twice the filter order

• Delay = 2 * order.

You can eliminate this transient response on successive calls by 
enabling state memory. To enable state memory, set the init/cont 
control of the VI to TRUE (continuous filtering).
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The number of elements in the filtered sequence equals the number of 
elements in the input sequence.

The filter retains the internal filter state values when the filtering 
completes.

The advantage of digital IIR filters over finite impulse response (FIR) 
filters is that IIR filters usually require fewer coefficients to perform 
similar filtering operations. Thus, IIR filters execute much faster and do 
not require extra memory, because they execute in place.

The disadvantage of IIR filters is that the phase response is nonlinear. 
If the application does not require phase information, such as simple 
signal monitoring, IIR filters may be appropriate. You should use FIR 
filters for those applications requiring linear phase responses.

Cascade Form IIR Filtering
Filters implemented using the structure defined by equation (42-2) 
directly are known as direct form IIR filters. Direct form 
implementations are often sensitive to errors introduced by coefficient 
quantization and by computational, precision limits. Additionally, a 
filter designed to be stable can become unstable with increasing 
coefficient length, which is proportional to filter order.

A less sensitive structure can be obtained by breaking up the direct form 
transfer function into lower order sections, or filter stages. The direct 

Original Signal 
Filtered  Signal
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form transfer function of the filter given by equation (42-2) (with a0 = 
1) can be written as a ratio of z transforms, as follows:

. (42-2)

By factoring equation (42-2) into second-order sections, the transfer 
function of the filter becomes a product of second-order filter functions

(42-3)

where  is the largest integer < Na/2, and Na > Nb. (Ns is the 
number of stages.) This new filter structure can be described as a 
cascade of second-order filters.

Each individual stage is implemented using the direct form II filter 
structure because it requires a minimum number of arithmetic 
operations and a minimum number of delay elements (internal filter 
states). Each stage has one input, one output, and two past internal states 
(sk[i-1] and sk[i-2]).

If n is the number of samples in the input sequence, the filtering 
operation proceeds as in the following equations:

y0[i] = x[i],

sk[i] = yk–1[i–1] – a1ksk[i–1] – a2ksk[i-2], k = 1, 2,..., Ns 

yk[i] = bOksk[i] + b1ksk[i-1] + b2ksk[i-2], k = 1, 2,..., Ns

y[i] = yNs[i]

for each sample i = 0, 1, 2,...,n-1.

H z( )
b0 b1z 1– … bNb 1– z

Nb 1–( )–+ + +

1 a1z 1– … aNa 1– z
Na 1–( )–+ + +

--------------------------------------------------------------------------------=

H z( )
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
----------------------------------------------------

k 1=

Ns

∏=

Ns Na 2⁄=
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For filters with a single cutoff frequency (lowpass and highpass), 
second-order filter stages can be designed directly. The overall IIR 
lowpass or highpass filter contains cascaded second-order filters.

For filters with two cutoff frequencies (bandpass and bandstop), 
fourth-order filter stages are a more natural form. The overall IIR 
bandpass or bandstop filter is cascaded fourth-order filters. The 
filtering operation for fourth-order stages proceeds as in the following 
equations:

y0[i] = x[i],

sk[i] = yk–1[i–1] – a1ksk[i–1] – a2ksk[i-2] – a3ksk[i–3] – a4ksk[i–4],

k = 1, 2,..., Ns

yk[i] = b0ksk[i] + b1ksk[i-1] + b2ksk[i-2] + b3ksk[i-3] + b4ksk[i-4],

k = 1, 2,..., Ns

y[i] = yNs[i].

Notice that in the case of fourth-order filter stages, .

Butterworth Filters
A smooth response at all frequencies a nd a monotonic decrease from 
the specified cutoff frequencies characterize the frequency response of 
Butterworth filters. Butterworth filters are maximally flat—the ideal 
response of unity in the passband and zero in the stopband. The half 
power frequency or the 3-dB down frequency corresponds to the 
specified cutoff frequencies.

The following illustration shows the response of a lowpass Butterworth 
filter. The advantage of Butterworth filters is a smooth, monotonically 
decreasing frequency response. After you set the cutoff frequency, 
LabVIEW sets the steepness of the transition proportional to the filter 

Ns Na 1+( ) 4⁄=
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order. Higher order Butterworth filters approach the ideal lowpass filter 
response.

Chebyshev Filters
Butterworth filters do not always provide a good approximation of the 
ideal filter response because of the slow rolloff between the passband 
(the portion of interest in the spectrum) and the stopband (the unwanted 
portion of the spectrum).

Chebyshev filters minimize peak error in the passband by accounting 
for the maximum absolute value of the difference between the ideal 
filter and the filter response you want (the maximum tolerable error in 
the passband). The frequency response characteristics of Chebyshev 
filters have an equiripple magnitude response in the passband, 
monotonically decreasing magnitude response in the stopband, and a 
sharper rolloff than Butterworth filters.

The following graph shows the response of a lowpass Chebyshev filter. 
Notice that the equiripple response in the passband is constrained by the 
maximum tolerable ripple error and that the sharp rolloff appears in the 
stopband. The advantage of Chebyshev filters over Butterworth filters 
is that Chebyshev filters have a sharper transition between the passband 
and the stopband with a lower order filter. This produces smaller 
absolute errors and higher execution speeds.
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Chebyshev II or Inverse Chebyshev Filters
Chebyshev II, also known as inverse Chebyshev or Type II Chebyshev 
filters, are similar to Chebyshev filters, except that Chebyshev II filters 
distribute the error over the stopband (as opposed to the passband), and 
Chebyshev II filters are maximally flat in the passband (as opposed to 
the stopband).

Chebyshev II filters minimize peak error in the stopband by accounting 
for the maximum absolute value of the difference between the ideal 
filter and the filter response you want. The frequency response 
characteristics of Chebyshev II filters are equiripple magnitude 
response in the stopband, monotonically decreasing magnitude 
response in the passband, and a rolloff sharper than Butterworth filters.

The following graph plots the response of a lowpass Chebyshev II filter. 
Notice that the equiripple response in the stopband is constrained by the 
maximum tolerable error and that the smooth monotonic rolloff appears 
in the stopband. The advantage of Chebyshev II filters over Butterworth 
filters is that Chebyshev II filters give a sharper transition between the 
passband and the stopband with a lower order filter. This difference 
corresponds to a smaller, absolute error and higher execution speed. 
One advantage of Chebyshev II filters over regular Chebyshev filters is 
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that Chebyshev II filters distribute the error in the stopband instead of 
the passband.

Elliptic (or Cauer) Filters
Elliptic filters minimize the peak error by distributing it over the 
passband and the stopband. Equi-ripples in the passband and the 
stopband characterize the magnitude response of elliptic filters. 
Compared with the same order Butterworth or Chebyshev filters, the 
elliptic design provides the sharpest transition between the passband 
and the stopband. For this reason, elliptic filters are used widely.

The following graph plots the response of a lowpass elliptic filter. 
Notice that the ripple in both the passband and stopband is constrained 
by the same maximum tolerable error (as specified by ripple amount in 
dB). Also, notice the sharp transition edge for even low-order elliptic 
filters.
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Bessel Filters
You can use Bessel filters to reduce nonlinear phase distortion inherent 
in all IIR filters. In higher order filters and those with a steeper rolloff, 
this condition is more pronounced, especially in the transition regions 
of the filters. Bessel filters have maximally flat response in both 
magnitude and phase. Furthermore, the phase response in the passband 
of Bessel filters, which is the region of interest, is nearly linear. Like 
Butterworth filters, Bessel filters require high-order filters to minimize 
the error and, for this reason, are not widely used. You can also obtain 
linear phase response using FIR filter designs.The following graphs 
plot the response of a lowpass Bessel filter. Notice that the response is 
smooth at all frequencies, as well as monotonically decreasing in both 
magnitude and phase. Also, notice that the phase in the passband is 
nearly linear.
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Finite Impulse Response Filters

Finite impulse response (FIR) filters are digital filters, which have a 
finite impulse response. FIR filters are also known as nonrecursive 
filters, convolution filters, or moving-average (MA) filters because you 
can express the output of an FIR filter as a finite convolution

where x represents the input sequence to be filtered, y represents the 
output filtered sequence, and h represents the FIR filter coefficients.

The following list gives the most important characteristics of FIR 
filters:

• They can achieve linear phase because of filter coefficient 
symmetry in the realization.

• They are always stable.

• You can perform the filtering function using the convolution and, 
as such, generally associate a delay with the output sequence

,

where n is the number of FIR filter coefficients.

The following graphs plot a typical magnitude and phase response of 
FIR filters versus normalized frequency. 

yi hkxi k–
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n 1–

∑=

delay
n 1–

2
------------=

0.10 0.20 0.30 0.400.00 0.50

0.20

0.40

0.60

0.80

1.00

0.00

1.20 Magnitude (dB)

f (Hz)

Magnitude (dB)



Chapter 42 Analysis Filter VIs

© National Instruments Corporation 42-13 LabVIEW Function and VI Reference Manual

The discontinuities in the phase response arise from the discontinuities 
introduced when you compute the magnitude response using the 
absolute value. Notice that the discontinuities in phase are on the order 
of pi. The phase, however, is clearly linear. See Appendix D, 
References, for material that can give you more information on this 
topic.

You design FIR filters by approximating a specified, desired frequency 
response of a discrete-time system. The most common techniques 
approximate the desired magnitude response while maintaining a 
linear-phase response.

Designing FIR Filters by Windowing
The simplest method for designing linear-phase FIR filters is the 
window design method. To design a FIR filter by windowing, you start 
with an ideal frequency response, calculate its impulse response, and 
then truncate the impulse response to produce a finite number of 
coefficients. To meet the linear-phase constraint, by maintain symmetry 
about the center point of the coefficients. The truncation of the ideal 
impulse response results in the effect known as the Gibbs phenomenon 
– oscillatory behavior near abrupt transitions (cutoff frequencies) in the 
FIR filter frequency response. 

You can reduce the effects of the Gibbs phenomenon by smoothing the 
truncation of the ideal impulse response using a smoothing window 
function. By tapering the FIR coefficients at each end, you can diminish 
the height of the side lobes in the frequency response. The disadvantage 
to this method, however, is that the main lobe widens, resulting in a 
wider transition region at the cutoff frequencies. The selection of a 
window function, then, is similar to the choice between Chebyshev and 
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Butterworth IIR filters in that it is a trade-off between side lobe levels 
near the cutoff frequencies and width of the transition region.

Designing FIR filters by windowing is simple and computationally 
inexpensive. It is therefore the fastest way to design FIR filters. It is not 
necessarily, however, the best FIR filter design method.

Designing Optimum FIR Filters using the Parks-McClellan Algorithm
The Parks-McClellan algorithm offers an optimum FIR filter design 
technique that attempts to design the best filter possible for a given 
number of coefficients. Such a design reduces the adverse effects at the 
cutoff frequencies. It also offers more control over the approximation 
errors in different frequency bands—control that is not possible with 
the window method. 

Using the Parks-McClellan algorithm to design FIR filters is 
computationally expensive. This method, however, produces optimum 
FIR filters by applying time-consuming iterative techniques.

Designing Narrowband FIR Filters
When you use conventional techniques to design FIR filters with 
especially narrow bandwidths, the resulting filter lengths may be very 
long. FIR filters with long filter lengths often require lengthy design 
and implementation times, and are more susceptible to numerical 
inaccuracy. In some cases, conventional filter design techniques, such 
as the Parks-McClellan algorithm, may fail the design altogether.

You can use a very efficient algorithm, called the Interpolated Finite 
Impulse Response (IFIR) filter design technique, to design narrowband 
FIR filters. Using this technique produces narrowband filters that 
require far fewer coefficients (and therefore fewer computations) than 
those filters designed by the direct application of the Parks-McClellan 
algorithm. LabVIEW also uses this technique to produce wideband, 
lowpass (cutoff frequency near Nyquist) and highpass filters (cutoff 
frequency near zero). For more information about IFIR filter design, see 
Multirate Systems and Filter Banks by P.P. Vaidyanathan, or the paper 
on interpolated finite impulse response filters by Neuvo, et al., listed in 
Appendix D, References, of this manual.
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Windowed FIR Filters
You use the filter type parameter of the FIR VIs to select the type of 
windowed FIR filter you want: lowpass, highpass, bandpass, or 
bandstop. The following list gives the two related FIR VIs:

• FIR Windowed Coefficients—Generates the windowed 
(or unwindowed) coefficients.

• FIR Windowed Filters—Filters the input using windowed 
(or unwindowed) coefficients.

Optimum FIR Filters
You can use the Parks-McClellan algorithm to design optimum, 
linear-phase, FIR filter coefficients in the sense that the resulting filter 
optimally matches the filter specifications for a given number of 
coefficients. The Parks-McClellan VI takes as input an array of band 
descriptions, each containing information describing the response you 
want for the given band. The VI outputs the FIR coefficients along with 
computed ripple, which is a measure of the deviation of the resulting 
filter from the ideal filter specifications.

Four VIs use the Parks-McClellan VI to implement filters whose 
stopband and passband ripple level are equal: Equiripple LowPass, 
Equiripple HighPass, Equiripple BandPass, and Equiripple BandStop.

FIR Narrowband Filters
You can design narrowband FIR filters using the FIR Narrowband 
Coefficients VI, and then implement the filtering using the FIR 
Narrowband Filter VI. The design and implementation are separate 
operations because many narrowband filters require lengthy design 
times, while the actual filtering process is very fast and efficient. Keep 
this in mind when creating your narrowband filtering diagrams. 

The parameters required for narrowband filter specification are filter 
type, sampling rate, passband and stopband frequencies, passband 
ripple (linear scale), and stopband attenuation (decibels). For bandpass 
and bandstop filters, passband and stopband frequencies refer to 
bandwidths, and you must specify an additional center frequency 
parameter. You can also design wideband lowpass filters (cutoff 
frequency near Nyquist) and wideband highpass filters (cutoff 
frequency near zero) using the narrowband filter VIs.
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The following illustration shows how to use the FIR Narrowband 
Coefficients VI and the FIR Narrowband Filter VI to estimate the 
response of a narrowband filter to an impulse.

Nonlinear Filters

Smoothing windows, IIR filters, and FIR filters are linear because they 
satisfy the superposition and proportionality principles

L {ax(t) + by(t)} = aL {x(t)} + bL{y(t)},

where a and b are constants, x(t) and y(t) are signals, L{•} is a linear 
filtering operation, and their inputs and outputs are related via the 
convolution operation.

A nonlinear filter does not meet the preceding conditions and you 
cannot obtain its output signals via the convolution operation, because 
a set of coefficients cannot characterize the impulse response of the 
filter. Nonlinear filters provide specific filtering characteristics that are 
difficult to obtain using linear techniques. The median filter is a 
nonlinear filter that combines lowpass filter characteristics (to remove 
high-frequency noise) and high-frequency characteristics (to detect 
edges).

Filter VI Descriptions

The following Filter VIs are available.
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Bessel Coefficients
Generates the set of filter coefficients to implement an IIR filter as specified by the 
Bessel filter model. You can then pass these coefficients to the IIR Filter VI.

The Bessel Coefficients VI is a subVI of the Bessel Filter VI.

Bessel Filter
Generates a digital, Bessel filter using the filter type, sampling frequency, high cutoff 
frequency, low cutoff frequency, and order by calling the Bessel Coefficients VI. The VI 
then calls the IIR filter to filter the X sequence using this model to obtain a Bessel 
Filtered X sequence.

Butterworth Coefficients
Generates the set of filter coefficients to implement an IIR filter as specified by the 
Butterworth filter model. You can pass these filter coefficients (IIR Filter Cluster) to the 
IIR Cascade Filter VI to filter a sequence of data.

This VI is a subVI of the Butterworth Filter VI.
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Butterworth Filter
Generates a digital Butterworth filter using the sampling frequency, low cutoff 
frequency, high cutoff frequency, order, and filter type by calling the Butterworth 
Coefficients VI. The Butterworth Filter VI then calls the IIR Filter VI to filter the X 
sequence using this model to get a Butterworth Filtered X sequence.

Cascade—>Direct Coefficients
Converts IIR filter coefficients from the cascade form to the direct form.

As an example, you can convert a cascade filter, composed of two second-order stages, 
to a direct form filter as follows:

Reverse Coefficients:

{a11,a21,a12,a22} ->{1.0,a1,a2,a3,a4} 

Forward Coefficients:

{b01,b11,b21,b02,b12,b22} ->{b0,b1,b2,b3,b4} 

See the IIR Cascade Filter VI for information about cascade form filtering, the IIR Filter 
VI for information on direct form filtering, and the About Digital Filtering Functions 
section of this chapter for a discussion of both filter forms.
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Chebyshev Coefficients
Generates the set of filter coefficients to implement an IIR filter as specified by the 
Chebyshev filter model. You can pass these coefficients to the IIR Filter VI to filter a 
sequence of data.

The Chebyshev Coefficients VI is a subVI of the Chebyshev Filter VI.

Chebyshev Filter
Generates a digital, Chebyshev filter using the sampling frequency, lower cutoff 
frequency, upper cutoff frequency, ripple, order, and filter type by calling the Chebyshev 
Coefficients VI. The Chebyshev Filter VI filters the X sequence using this model to 
obtain a Chebyshev Filtered X sequence by calling the IIR Filter VI.

Convolution
For information on Convolution, see Chapter 40, Analysis Digital Signal Processing VIs, 
in this manual.
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Elliptic Coefficients
Generates the set of filter coefficients to implement a digital elliptic IIR filter. You can 
pass these coefficients to the IIR Filter VI.

The Elliptic Coefficients VI is a subVI of the Elliptic Filter VI.

Elliptic Filter
Generates a digital, elliptic filter using the sampling frequency, lower cutoff 
frequency, upper cutoff frequency, filter type, passband ripple, stopband 
attenuation, and order by calling the Elliptic Coefficients VI. The Elliptic Filter VI then 
calls the IIR Filter VI to filter the X sequence using this model to obtain an elliptic 
Filtered X sequence.

Equiripple BandPass
Generates a bandpass FIR filter with equi-ripple characteristics using the 
Parks-McClellan algorithm and the higher pass frequency, lower pass frequency, # of 
taps, lower stop frequency, higher stop frequency, and sampling frequency. The VI then 
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filters the input sequence X to obtain the bandpass, filtered, linear-phase sequence 
Filtered Data.

The first stopband of the filter region goes from zero (DC) to the lower stop frequency. 
The passband region goes from the lower pass frequency to the higher pass frequency, 
and the second stopband region goes from the higher stop frequency to the Nyquist 
frequency.

Equiripple BandStop
Generates a bandstop FIR digital filter with equi-ripple characteristics using the 
Parks-McClellan algorithm and higher pass frequency, lower pass frequency, # of taps, 
lower stop frequency, higher stop frequency, and sampling frequency. The VI then 
filters the input sequence X to obtain the bandstop, filtered, linear-phase sequence 
Filtered Data.

The first passband region of the filter goes from zero (DC) to the lower pass frequency. 
The stopband region goes from the lower stop frequency to the higher stop frequency, 
and the second passband region goes from the higher pass frequency to the Nyquist 
frequency.

Equiripple HighPass
Generates a highpass FIR filter with equi-ripple characteristics using the 
Parks-McClellan algorithm and the # of taps, stop frequency, high frequency, and 
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sampling frequency. The VI then filters the input sequence X to obtain the highpass, 
filtered, linear-phase sequence Filtered Data.

The stopband of the filter goes from zero (DC) to the stop frequency. The transition band 
goes from the stop frequency to the high frequency, and the passband goes from the high 
frequency to the Nyquist frequency.

Equiripple LowPass
Generates a lowpass FIR filter with equiripple characteristics using the Parks-McClellan 
algorithm and the # of taps, pass frequency, stop frequency, and sampling frequency. 
The VI then filters the input sequence X to obtain the lowpass filtered, linear-phase 
sequence Filtered Data.

The passband of the filter goes from zero (DC) to pass freq. The transition band goes 
from pass freq to stop freq, and the stopband goes from stop freq to the Nyquist 
frequency.

FIR Narrowband Coefficients
Generates a set of filter coefficients to implement a digital interpolated FIR filter. You 
can pass these coefficients to the FIR Narrowband Filter VI to filter the data. 

The following figures show how the narrowband filter parameters define the lowpass, 
highpass, bandpass, and bandstop filters. The filter response on the y axis is shown on a 
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linear scale. For this reason, the stopband attenuation Ar was mapped to a linear 
attenuation using the following equations:

.

Figure 42-1.  Lowpass Filter

Figure 42-2.  Highpass Filter

Ar 20 δA〈 〉log–=

δA 10
Ar–
20

---------=
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Figure 42-3.  Bandpass Filter

Figure 42-4.  Bandstop Filter

FIR Narrowband Filter
Filters the input sequence X using the IFIR filter specified by IFIR Coefficients as 
designed by the FIR Narrowband Filter Coefficients VI.

Note: The overall filter is a linear-phase FIR filter. The delay for this filter is

 
NG 1–( ) M NI+•[ ]

2
-------------------------------------------------
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where NG is the number of elements in the array Model Filter, NI is the 

number of elements in the array Image Suppressor, and M is the value of 

interpolation in the cluster IFIR Coefficients.

FIR Windowed Coefficients
Generates the set of filter coefficients you need to implement a FIR windowed filter. 

FIR Windowed Filter
Filters the input data sequence, X, using the set of windowed FIR filter coefficients 
specified by the sampling frequency, cutoff frequency, and number of taps.

IIR Cascade Filter
Filters the input sequence X using the cascade form of the IIR filter specified by the IIR 
Filter Cluster.

This IIR implementation is called cascade because it is a cascade of second- or 
fourth-order filter stages. The output of one filter stage is the input to the next filter stage 
for all Ns filter stages.
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Second-Order Filtering

Each second-order stage (stage number k = 1,2,...Ns) has two reverse coefficients 
(a1k,a2k), and three forward coefficients (b0k,b1k,b2k). The total number of reverse 
coefficients is 2Ns and the total number of forward coefficients is 3Ns. The Reverse 
Coefficients and the Forward Coefficients array contain the coefficients for one stage 
followed by the coefficients for the next stage, and so on. For example, an IIR filter 
composed of two second-order stages must have a total of four reverse coefficients and 
six forward coefficients, as follows:

Reverse Coefficients = {a11, a21,a12, a22}

Forward Coefficients = {b01, b11, b21, b02, b12, b22}

Fourth-Order Filtering

For fourth order cascade stages, the filtering is implemented in the same manner as in the 
second-order stages, but each stage must have four reverse coefficients (a1k...a4k) and 
five forward coefficients (b0k...b4k).

IIR Cascade Filter with Integrated Circuit
Filters the input sequence, X, using the cascade form of the IIR filter specified by the IIR 
Filter Cluster.

IIR Filter
Filters the input sequence X using the direct form IIR filter specified by Reverse 
Coefficients and Forward Coefficients. 

If y represents the output sequence Filtered X, the VI obtains the elements of y using

,yi

1
a0
----- bjxi j–

j 0=

n 1–

∑ akyi k–

k 1=

m 1–

∑–

 
 
 
 

=
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where n is the number of Forward Coefficients (represented by bj), and m is the number 
of Reverse Coefficients (represented by ak).

IIR Filter with Integrated Circuit
Filters the input sequence X using the direct form IIR filter specified by Reverse 
Coefficients and Forward Coefficients. 

If y represents the output sequence Filtered X, the VI obtains the elements of y using

,

where n is the number of Forward Coefficients (represented by bj), and m is the number 
of Reverse Coefficients (represented by ak).

Inv Chebyshev Coefficients
Generates the set of filter coefficients to implement an IIR filter as specified by the 
Chebyshev II Filter model. You can pass these coefficients to the IIR Filter VI to filter a 
sequence of data. 

The Inv Chebyshev Coefficients VI is a subVI of the Inverse Chebyshev Filter VI.

Inverse Chebyshev Filter
Generates a digital, Chebyshev II filter using the specified sampling frequency, cutoff 
frequencies, attenuation in decibels, filter type, and filter order by calling the Inv 
Chebyshev Coefficients VI. The Inverse Chebyshev Filter VI filters the input sequence 

yi

1
a0
----- bjxi j–

j 0=

n 1–

∑ akyi k–

k 1=

m 1–

∑–

 
 
 
 

=
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X using this model to obtain a Chebyshev II Filtered X sequence by calling the IIR 
Filter VI.

Median Filter
Applies a median filter of rank to the input sequence X. 

If Y represents the output sequence Filtered Data, and if Ji represents a subset of the 
input sequence X centered about the ith element of X

Ji = {xi-r, xi-r+1, …, xi-1, xi, xi+1, …, xi+r-1, xi+r},

and if the indexed elements outside the range of X equal zero, the VI obtains the elements 
of y using

yi = Median(Ji)   for i = 0, 1, 2,…, n-1,

where n is the number of elements in the input sequence X, and r is the filter rank.

Parks-McClellan
Generates a set of linear-phase FIR multiband digital filter coefficients using the number 
of taps, sampling frequency, Band Parameters, and filter type.

Note: This VI finds the coefficients using iterative techniques based upon an 

error criterion. Although you specify valid filter parameters, the algorithm 

may fail to converge.
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This VI generates only the filter coefficients. It does not perform the filtering function. 
To filter a sequence X using the set of FIR filter coefficients h, use the Convolution VI 
with X and h as the input sequences.

The equiripple filters use a similar technique to filter the data.
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Chapter

43Analysis Window VIs

This chapter describes the VIs that implement smoothing windows.

To access the Window palette, select Function»Analysis»Windows. 
The following illustration shows the options that are available on the 
Windows palette.

For examples of how to use the window VIs, see the examples located 
in examples\analysis\windxmpl.llb. 

Introduction to Smoothing Windows

In practical, signal-sampling applications, you can obtain only a finite 
record of the signal, even when you carefully observe the sampling 
theorem and sampling conditions. Unfortunately for the discrete-time 
system, the finite sampling record results in a truncated waveform that 
has different spectral characteristics from the original continuous-time 
signal. These discontinuities produce leakage of spectral information, 
resulting in a discrete-time spectrum that is a smeared version of the 
original continuous-time spectrum.
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A simple way to improve the spectral characteristics of a sampled signal 
is to apply smoothing windows. When performing Fourier or spectral 
analysis on finite-length data, you can use windows to minimize the 
transition edges of your truncated waveforms, thus reducing spectral 
leakage. When used in this manner, smoothing windows act like 
predefined, narrowband, lowpass filters.

Windows for Spectral Analysis versus Windows 
for Coefficient Design

The window VIs implemented in the Analysis library in LabVIEW are 
designed for spectral analysis applications. In these applications, the 
input signal is windowed by passing it through one of the window VIs. 
The windowed signal is then passed to a DFT-based VI for 
frequency-domain display and analysis.

The window functions designed for spectral analysis must be 
DFT-even, a term defined by Fredric J. Harris in his paper On the Use 

of Windows for Harmonic Analysis with the Discrete Fourier 

Transform (Proceedings of the IEEE, Volume 66, No.1, January 1978). 
A window function is DFT-even if its dot product (inner product) with 
integral cycles of sine sequences is identically zero. Another way to 
think of a DFT-even sequence is that its DFT has no imaginary 
component.

The following figures illustrate the Hanning window and one cycle of a 
sine pattern for a sample size of 8. The figures below show that the 
DFT-even Hanning window is not symmetric about its midpoint and its 
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last point is not equal to its first point, much like one complete cycle of 
a sine pattern.

Finally, the DFT considers input sequences to be periodic—that the 
signal being analyzed is actually a concatenation of the input signal. 
The following illustration shows three such cycles of the previous 
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sequences, demonstrating the smooth periodic extension of the 
DFT-even window and the single-cycle sine pattern.

Another type of window application is that of FIR filter design (see the 
descriptions of FIR Windowed Coefficients and FIR Windowed Filter). 
This application requires windows that are symmetric about their 
midpoint.

The following equations of the Hanning window function illustrate the 
difference between the DFT-even window function (spectral analysis) 
and the symmetrical window function (coefficient design).

Hanning window function for spectral analysis:

 for i=0,1, 2, ..., N–1

Hanning window function for symmetrical coefficient design:

 for i=0, 1, 2, ..., N–1

The two equations above show that you can implement the symmetrical 
window functions by slightly modifying the use of the DFT-even 
window functions. The following illustration shows a block diagram 

w i[ ]  0.5 1
2πi

N 
 


cos–

=

w i[ ]  0.5 1
2πi

N 1– 
 


cos–

=
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that uses the Hanning Window VI to implement symmetrical 
windowing of filter coefficients.

See Appendix D, References, for more information on smoothing 
windows.

Window VI Descriptions

The following Window VIs are available.

Blackman Window
Applies a Blackman window to the input sequence X. 

If y represents the output sequence Blackman{X}, the VI obtains the elements of y from 

yi = xi [0.42 – 0.50 cos(w) + 0.08 cos(2w)]   for i = 0, 1, 2, …, n–1,

, 

where n is the number of elements in X.

Blackman-Harris Window
Applies a three-term, Blackman-Harris window to the input sequence X.

w
2πi

n
--------=
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If Y represents the output sequence Blackman-Harris{X}, the VI obtains the elements of 
Y from 

yi = xi [0.42323 – 0.49755 cos(w) + 0.07922 cos(2w)]

for i = 0, 1, 2, …, n–1 

,

where n is the number of elements in X.

Cosine Tapered Window
Applies a cosine tapered window to the input sequence X. 

If Y represents the output sequence Cosine Tapered{X}, the VI obtains the elements of 
Y from

where ,

, and

where n is the number of elements in the input sequence X. 

Using this window is the equivalent of applying the Hanning window to the first and last 
10% of the input sequence X.

Exact Blackman Window
Applies an Exact Blackman window to the input sequence X. 

w
2πi

n
--------=

yi

0.5xi 1 wcos–( )    

xi

 for i = 0, 1, 2,..., m-1, and for i = n-m, n-m+1,..., n-1

elsewhere
=

w
2πi

n
--------=

m round
n

10
------ 

 =
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If Y represents the output sequence Exact Blackman{X}, the VI obtains the elements of 
Y from 

yi = xi [a0 – a1 cos(w) + a2 cos(2w)]

for i = 0, 1, 2, …, n–1 

, 

where n is the number of elements in X, a0 = 7938/18608, a1 = 9240/18608, and 
a2 = 1430/18608.

Exponential Window
Applies an exponential window to the input sequence X.

If y represents the output sequence Exponential{X}, the VI obtains the elements of y 
from

yi = xi exp(ai)      for i = 0, 1, 2, …, n–1, 

,

where f is the final value, and n is the number of samples in X.

You can use this VI to analyze transients.

Flat Top Window
Applies a flat top window to the input sequence X. 

If Y represents the output sequence Flattop{X}, the VI obtains the elements of Y from

yi = xi [0.2810639 – 0.5208972 cos(w) + 0.1980399 cos(2w)]

w
2πi

n
--------=

a
ln f( )
n 1–
------------=
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for i = 0, 1, 2, …, n–1 

, 

where n is the number of elements in X.

Force Window
Applies a force window to the input sequence X. 

If Y represents the output sequence Force{X}, the VI obtains the elements of Y from

d = (0.01)(n)(duty cycle), where n is the number of elements in X.

You also can use this VI to analyze transients.

General Cosine Window
Applies a general, cosine window to the input sequence X. 

. 

If a represents the Cosine Coefficients input sequence and y represents the output 
sequence GenCos{X}, the VI obtains the elements of y from

   for i = 0, 1, 2, …, n–1 

w
2πi

n
--------=

yi

xi if 0 i d≤ ≤( )
for i = 0, 1, 2, ..., n-1

0 elsewhere







=

yi xi 1–( )k
ak kw( )cos

k 0=

m 1–

∑=
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,

where n is the number of elements in X, and m is the number of Cosine Coefficients.

Hamming Window
Applies a Hamming window to the input sequence X. 

If y represents the output sequence Hamming{X}, the VI obtains the elements of y from

yi = xi [0.54 – 0.46 cos(w)]   for i = 0, 1, 2, …, n–1,

, 

where n is the number of elements in the input sequence X.

Hanning Window
Applies a Hanning window to the input sequence X. 

If Y represents the output sequence Hanning {X}, the VI obtains the elements of Y using

yi = 0.5 xi [1 – cos(w)] for i = 0, 1, 2, …, n–1,

, 

where n is the number of elements in X.

w
2πi

n
--------=

w
2πi

n
--------=

w
2πi

n
--------=
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Kaiser-Bessel Window
Applies a Kaiser-Bessel window to the input sequence X(t). 

If y represents the output sequence, Kaiser-Bessel{X(t)}, the VI obtains the elements of 
y from

 for i = 0, 1, 2, … n – 1

,

,

where n is the number of elements in X(t), and Io(•) is the zero-order modified Bessel 
function.

Triangle Window
Applies a triangular window to the input sequence X. 

Note: The triangle smoothing window is also known as the Bartlett smoothing 

window.

If y represents the output sequence Triangle{X}, the VI obtains the elements of y from

yi = xi tri(w) for i = 0, 1, 2, …, n–1,

,

where tri(w) = 1 – |w|, and n is the number of elements in X.

yi xi

Io β 1.0 a
2

–( )
Io β( )------------------------------------=

a
i k–

k
----------=

k
n 1–

2
------------=

w
2i n–

n
--------------=
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Chapter

44Analysis Curve-Fitting VIs

This chapter describes the VIs that perform curve fitting analysis or 
regression. 

To access the Curve-Fitting palette, choose 
Functions»Analysis»Curve Fitting, as shown in the following 
illustration.

For examples of how to use the regression VIs, see the examples located 
in examples\analysis\regressn.llb. 

Introduction to Curve Fitting

Curve fitting analysis is a technique for extracting a set of curve 
parameters or coefficients from the data set to obtain a functional 
description of the data set. The algorithm that fits a curve to a particular 
data set is known as the Least Squares Method and is discussed in most 
introductory textbooks in probability and statistics. The error is 
defined as

e(a) = [f(x,a) – y(x)]2, (44-1)
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where e(a) is the error, y(x) is the observed data set, f(x,a) is the 
functional description of the data set, and a is the set of curve 
coefficients which best describes the curve.

For example, let a = {a0, a1}. Then the functional description of a line is

f(x,a)   = a0 + a1 x.

The least squares algorithm finds a by solving the system

(44-2)

To solve this system, you set up and solve the Jacobian system 
generated by expanding equation (44-2). After you solve the system for 
a, you can obtain an estimate of the observed data set for any value of 
x using the functional description f(x, a).

In LabVIEW, the curve fitting VIs automatically set up and solve the 
Jacobian system and return the set of coefficients that best describes 
your data set. You can concentrate on the functional description of your 
data and not worry about solving the system in equation (44-2).

Two input sequences, Y Values and X Values, represent the data set 
y(x). A sample or point in the data set is

(xi, yi),

where xi is the ith element of the sequence X Values, and yi is the ith 
element of the sequence Y Values.

In general, for each predefined type of curve fit, there are two types of 
VIs, unless otherwise specified. One type returns only the coefficients, 
so that you can further manipulate the data. The other type returns the 
coefficients, the corresponding expected or fitted curve, and the mean 
squared error (MSE). Because it is a discrete system, the VI calculates 
the MSE, which is a relative measure of the residuals between the 
expected curve values and the actual observed values, using the formula

(44-3)

∂
∂a
------e a( ) 0=

MSE
1
n
--- fi yi–( )2

i 0=

n 1–

∑=
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where f is the sequence representing the fitted values, y is the sequence 
representing the observed values, and n is the number of sample points 
observed.

Curve Fitting VI Descriptions

The following Curve Fitting VIs are available.

Exponential Fit
Finds the exponential curve values and the set of exponential coefficients amplitude and 
damping, which describe the exponential curve that best represents the input data set. 

The general form of the exponential fit is given by

F = aeτX,

where F is the output sequence Best Exponential Fit, X is the input sequence X Values, 
a is the amplitude, and τ is the damping constant.

The VI obtains mse using the formula

,

where f is the output sequence Best Exponential Fit, y is the input sequence Y Values, 
and n is the number of data points.

Exponential Fit Coefficients
Finds the set of exponential coefficients amplitude and damping, which describe the 
exponential curve that best represents the input data set.

mse
1
n
--- fi yi–( )2

i 0=

n 1–

∑=
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This VI is a subVI of the Exponential Fit VI.

The general form of the exponential fit is given by

F = aeτX,

where F is the sequence representing the best fitted values, X represents the input 
sequence X Values, a is the amplitude, and τ is the damping constant.

General LS Linear Fit
Finds the Best Fit k-dimensional plane and the set of linear coefficients using the least 
chi-square method for observation data sets

 where i = 0, 1,…, n – 1. n is the number of your observation data 
sets. 

You can use this VI to solve multiple linear regression problems. You can also use it to 
solve for the linear coefficients in a multiple-function equation. Before beginning the 
formal description of this VI, consider both of the following, simple examples. The first 
example uses the General LS Linear Fit VI to perform multiple regression analysis based 
entirely on tabulated observation data. The second solves for the linear coefficients in a 
multiple-function equation.

Example 1: Predicting Cost

Suppose you want to estimate the total cost (in dollars) of a production of baked scones; 
using the quantity produced, X1, and the price of one pound of flour, X2. To keep things 
simple, the following five data points form this sample data table.

Cost (dollars)
Y

Quantity
X1

Flour Price 
X2

$150 295 3.00

$75 100 3.20

$120 200 3.10

xi0 xi1 …xik 1– yi,, ,{ }
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You want to estimate the coefficients to the equation:

Y = b0 + b1X1 + b2X2.

The only parameters that you need to build are H (observation matrix) and Y Values. 
Each column of H is the observed data for each independent variable: the first column is 
one because the coefficient b0 is not associated with any independent variable. 
H should be filled in as:

In LabVIEW, the observed data would normally appear in three arrays (Y, X1, and X2). 
The following block diagram demonstrates how to build H using the General LS Linear 
Fit VI.

$300 700 2.80

$50 60 2.50

Cost (dollars)
Y

Quantity
X1

Flour Price 
X2

H

1 295 3.00

1 100 3.20

1 200 3.10

1 700 2.80

1 60 2.50

=
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After running this VI, the following coefficients are obtained.

The resulting equation for the total cost of scone production is therefore:

Y = –20.34 + 0.38X1 + 19.05X2.

Example 2: Linear Combinations

Suppose that you have collected samples from a transducer (Y Values) and you want to 
solve for the coefficients of the model:

To build H, you set each column to the independent functions evaluated at each x value. 
Assuming there are 100 x values, H is:

Given that you have the independent X Values and observed Y Values, the following 
block diagram demonstrates how to build H and use the General LS Linear Fit VI.

y bo b1 ωx( )sin b2 ωx( )cos b3x
2

+ + +=

H

1 ωx0( )sin ωx0( )cos x0
2

1 ωx1( )sin ωx1( )cos x1
2

1 ωx2( )sin ωx2( )cos x2
2

… … … …

1 ωx99( )sin ωx99( )cos x99
2

=
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The General LS Linear Fit Problem can be described as follows.

Given a set of observation data, find a set of coefficients that fit the linear “model.”

 i=0, 1,...,n–1, (44-4)

where B is the set of Coefficients, n is the number of elements in Y Values and the 
number of rows of H, and k is the number of Coefficients.

 is your observation data, which is contained in H.

Equation (44-3) can also be written as Y = HB.

This is a multiple linear regression model, which uses several variables , 
to predict one variable yi. In contrast, the Linear Fit, Exponential Fit, and Polynomial Fit 
VIs are all based on a single predictor variable, which uses one variable to predict another 
variable.

In most cases, we have more observation data than coefficients. The equations in (44-4) 
may not have the solution. The fit problem becomes to find the coefficient B that 
minimizes the difference between the observed data, yi and the predicted value:

.

This VI uses the least chi-square plane method to obtain the coefficients in (44-4), that 
is, finding the solution, B, which minimizes the quantity:

yi boxi0 … bk 1– xik 1–+ +=

bjxij     

j 0=

k 1–

∑=

xij

H

x00 x01… x0k 1–

x10 x11… x1k 1–

.

.

.

.

xn 10– xn 12– … xn 1k– 1–

=

xi0 xi1 … xik 1–, , ,

zi bjxij

j 0=

k 1–

∑=
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 = |H0B–Y0|2 (44-5)

where , , i=0, 1,..., n–1; j=0, 1,..., k–1.

In this equation,  is the Standard Deviation. If the measurement errors are independent 
and normally distributed with constant standard deviation , the preceding 
equation is also the least square estimation.

There are different ways to minimize . One way to minimize  is to set the partial 
derivatives of  to zero with respect to b0, b1,..., bk–1.

The preceding equations can be derived to:

(44-6)

Where  is the transpose of H0.

The equations in (44-6) are also called normal equations of the least-square problems. 
You can solve them using LU or Cholesky factorization algorithms, but the solution from 
the normal equations is susceptible to roundoff error.

An alternative, and preferred way to minimize  is to find the least-square solution of 
equations 

H0B=Y0.

χ2
yi z–

i

σi

--------------
 
 
 

2

i 0=

n 1–

∑
yi bjxij

j 0=

∑–

σi

------------------------------

 
 
 
 
 
 
 
 

i 0=

n 1–

∑= =

hoij

xij

σi

-----= yoi

yi

σi

-----=

σi

σi σ=

χ2 χ2

χ2

∂χ2

∂b0
-------- 0=

∂χ2

∂b1
--------- 0=

.

.

.

.

∂χ2

∂bk 1–
-------------- 0=

















H0
TH0B H0

TY=

H0
T

χ2
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You can use QR or SVD factorization to find the solution, B. For QR factorization, you 
can choose Householder, Givens, and Givens2 (also called fast Givens).

Different algorithms can give you different precision, and in some cases, if one algorithm 
cannot solve the equation, perhaps another algorithm can. You can try different 
algorithms to find the best one based on your observation data.

The Covariance matrix C is computed as

. 

The Best Fit Z is given by

The mse is obtained using the following formula:

The polynomial fit that has a single predictor variable can be thought of as a special case 
of multiple regression. If the observation data sets are  where i = 0, 1, …, n–1, 
the model for polynomial fit is

(44-7)

i = 0, 1, 2,..., n – 1.

Comparing equations (44-4) and (44-7) shows that . In other words, 

,

In this case, you can build H as follows:

C H0
TH0( ) 1–

=

zi bjxij

j 0=

k 1–

∑=

mse
1
n
---

yi z–
i

σi

------------- 
 

2

i 0=

n 1–

∑=

xi yi,{ }

yi bjxi

j

j 0=

k 1–

∑= b0 b1xi b2xi
2 … bk 1– xi

k 1–+ + + +=

xij xj
i=

xi0 xi

0
=

1=

xi1 xi= xi2, x2
i … xik 1–, xk 1–

i= =
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Instead of using , you can also choose another function formula to fit the data 
sets . In general, you can select . Here,  is the function 
model that you choose to fit your observation data. In polynomial fit, .

In general, you can build H as follows:

Your fit model is:

.

General Polynomial Fit
Finds the polynomial curve values and the set of Polynomial Fit Coefficients, which 
describe the polynomial curve that best represents the input data set.

The general form of the polynomial fit is given by

H

1 x0 x2
0 … xk 1–

0

1 x1 x2
1 … xk 1–

1

.

.

.

.

1 xn 1– x2
n 1– … xk 1–

n 1– 
 
 
 
 
 
 
 
 
 
 
 
 

=

xij xi
j=

xi,yi{ } xij fj xi( )= fj xi( )
fj xi( ) xj

i
=

H

f0 x0( ) f1 x0( ) f2 x0( ) … fk 1– x0( )

f0 x1( ) f1 x1( ) f2 x1( ) … fk 1– x1( )

.

.

.

.

f0 xn 1–( ) f1 xn 1–( ) f2 xn 1–( ) … fk 1– xn 1–( )
 
 
 
 
 
 
 
 
 
 
 
 
 

=

yi b0f
0

x( ) b1f
1

x( ) … bk 1– f
k 1–

x( )+ + +=
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where F represents the output sequence Best Polynomial Fit, X represents the input 
sequence X Values, A represents the Polynomial Fit Coefficients, and m is the 
polynomial order.

The VI obtains mse using the formula

where y represents the input sequence Y Values, and n is the number of data points.

General Polynomial Fit is a special case of the General LS Linear Fit. The General 
Polynomial Fit VI uses the General LS Linear Fit VI as a subVI. This VI builds the H 
matrix internally using input X Values for the General LS Linear Fit VI.

The formula used to build H is as follows:

 For example, 

For more information about the General LS Linear Fit VI and the difference among 
different algorithms, please refer to the description of General LS Linear Fit VI.

fi ajxi

j

j 0=

m

∑=

mse
1
n
--- fi yi–( )2,

j 0=

n 1–

∑=

hij fj xi( ) xi

j
= =

i 0 1 . . . n 1–, , ,=

j 0 1 . . . m, , ,=

H

1 x0 . . . . x0
m

1 x1 . . . . x1
m

.

.

.

1 xn 1– . . . . xn 1–
m

=
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Linear Fit
Finds the line values and the set of linear coefficients slope and intercept, which describe 
the line that best represents the input data set. 

The general form of the linear fit is given by

F = mX + b,

where F represents the output sequence Best Linear Fit, X represents the input sequence 
X Values, m is the slope, and b is the intercept.

The VI obtains mse using the formula

,

where F represents the output sequence Best Linear Fit, y represents the input sequence 
Y Values, and n is the number of data points.

Linear Fit Coefficients
Finds the set of linear coefficients slope and intercept, which describe the line that best 
represents the input data set. 

This VI is a subVI of the Linear Fit VI.

The general form of the linear fit is given by

F = mX + b,

where F is the sequence representing the best fitted values. X represents the input 
sequence X Values, m is the slope, and b is the intercept.

mse
1
n
--- fi yi–( )2

i 0=

n 1–

∑=
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Nonlinear Lev-Mar Fit
Uses the Levenberg-Marquardt method to determine a nonlinear set of coefficients that 
minimize a chi-square quantity.

This VI determines the set of coefficients that minimize the chi-square quantity:

(44-8)

In this equation, (xi, yi) are the input data points, and f(xi;a1...aM) = f(X, A) is the 
nonlinear function where a1...aM are coefficients. If the measurement errors are 
independent and normally distributed with constant, standard deviation , this is 
also the least-square estimation.

You must specify the nonlinear function f = f(X, A) in the Formula Node on the block 
diagram of the Target Fnc & Deriv NonLin VI, which is a subVI of the Nonlinear 
Lev-Mar Fit VI. You can access the Target Fnc & Deriv NonLin VI by selecting it from 
the menu that appears when you select Project»This VI's SubVIs. 

This VI provides two ways to calculate the Jacobian (partial derivatives with respect to 
the coefficients) needed in the algorithm. These two methods follow:

• Numerical calculation – Uses a numerical approximation to compute the Jacobian.

• Formula calculation – Uses a formula to compute the Jacobian. You need to specify 
the Jacobian function  in the Formula Node on the block diagram of the Target 
Fnc & Deriv NonLin VI, as well as the nonlinear function f = f(X, A). This is a more 
efficient computation than the numerical calculation, because it does not require a 
numerical approximation to the Jacobian.

The input arrays X and Y define the set of input data points. The VI assumes that you 
have prior knowledge of the nonlinear relationship between the x and y coordinates. That 
is, f = f(X, A), where the set of coefficients, A, is determined by the Levenberg-Marquardt 
algorithm. 

Using this function successfully sometimes depends on how close your initial guess 
coefficients are to the solution. Therefore, it is always worth taking effort and time to 

χ2 yi f xi a1…aM;( )–

σi

------------------------------------------ 
 

2

i 0=

N 1–

∑=

σi σ=

∂f ∂A⁄
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obtain good initial guess coefficients to the solution from any available resources before 
using the function.

Polynomial Interpolation
Interpolates or extrapolates the function f at x, given a set of n points (x

i
, y

i
), where f(x

i
) = 

y
i
, f is any function, and given a number, x. The VI calculates output interpolation value 

Pn–1(x), where Pn–1 is the unique polynomial of degree n–1 that passes through the n 
points (x

i
, y

i
). 

Rational Interpolation
Interpolates or extrapolates f at x using a rational function.

The rational function

passes through all the points formed by Y Array and X Array. P and Q are polynomials, 
and the rational function is unique, given a set of n points (x

i
, y

i
), 

where f(x
i
) = y

i
, f is any function, and given a number x in the range of the x

i
 values. This 

VI calculates the output interpolation value y using . If the number of points 

is odd, the degrees of freedom of P and Q are . If the number of points is even, the 

degrees of freedom of P are , and the degrees of freedom of Q are , where n is the 

total number of points formed by Y Array and X Array. 

P xi( )
Q xi( )-------------

p0 p1xi … pmxm
i

+ ++

q0 q1xi … qv+ + xv+
-------------------------------------------------------=

y
P x( )
Q x( )------------=

n 1–
2

------------

n

2
--- 1–

n

2
---
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Spline Interpolant
Returns an array Interpolant of length n, which contains the second derivatives of the 
spline interpolating function g(x) at the tabulated points x

i
, where i = 0, 1,..., n–1. Input 

arrays X Array and Y Array are of length n and contain a tabulated function, y
i
 = f(x

i
), 

with x0<x1<...xn–1. initial boundary and final boundary are the first derivative of the 
interpolating function g(x) at points 0 and n–1, respectively.

If initial boundary and final boundary are equal to or greater than 1030, the VI sets the 
corresponding boundary condition for a natural spline, with zero second derivative on 
that boundary.

The interpolating function g(x) passes through all the points

{xi,yi}, g(xi) = yi

where i = 0, 1,..., n–1.

The VI obtains the interpolating function g(x) by interpolating every interval [xi, xi+1] 
with a cubic polynomial function p

i
(x) that meets the following conditions:

• pi(xi) = yi

• pi(xi+1) = yi+1

• g(x) has continuous first and second derivatives everywhere in the range [x0,xn–1]:

–

–

For the preceding conditions, i = 0, 1,..., n–2.

From the last condition, , we derive the following equations:

 i=1, 2,...n–2 (44-9)

p'
i

xi( ) p'
i+1

xi( )=

p''
i

xi( ) p''
i+1

xi( )=

p''
i

xi( ) p''
i+1

xi( )=

xi xi 1––

6
--------------------g'' xi 1–( )

xi 1+ xi 1––

3
--------------------------g'' xi( )

xi 1+ xi–

6
--------------------g'' xi 1+( )+ +

=
yi 1+ yi–

xi 1+ xi–
--------------------

yi yi 1––

xi xi 1––
--------------------–



Chapter 44 Analysis Curve-Fitting VIs

LabVIEW Function and VI Reference Manual 44-16 © National Instruments Corporation

These are n–2 linear equations with n unknowns 

i = 0, 1,…, n – 1. This VI computes ,  from initial boundary and final 

boundary using the formula

.

Here

You can derive this formula from the preceding conditions numbered 1–3. This VI then 

uses ,  in equation (44-1) to solve all the , for i = 1, … n–2.   

 is the output Interpolant. You can use Interpolant as an input to the Spline 

Interpolation VI to interpolate y at any value of . 

Spline Interpolation
Performs a cubic spline interpolation of f at x, given a tabulated function.

This VI performs cubic spline interpolation using a tabulated function in the form of 
y

i
 = f(x

i
)   for i = 0, 1,..., n–1, and given the second derivatives Interpolant that the VI 

obtains from the Spline Interpolant VI. The value of x must be in the range of X values. 
The points are formed by the input arrays X and Y, and n is the total number of points.

On the interval , the output interpolation value y is defined by

,

and

g'' xi( )

g'' x0( ) g'' xn 1–( )

g' x( )
yi 1+ yi–

xi 1+ xi–
--------------------

3A2 1–
6

------------------ xi 1+ xi–( )g'' xi( )+=

3B2 1–
6

------------------+ xi 1+ xi–( )g'' xi 1+( )

A
xi 1+ x–

xi 1+ xi–
--------------------= B 1 A–

x xi–

xi 1+ xi–
--------------------= =

g'' x0( ) g'' xn 1–( ) g'' xi( )

g'' xi( )

x0 x xn 1–≤ ≤

xi xi 1+,[ ]

y Ayi Byi 1 Cy''i Dy''i 1+ + + ++=
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,

B = 1 – A,

,

.

A
xi 1+ x–

xi 1+ xi–
--------------------=

C
1
6
--- A

3
A–( ) xi 1+ xi–( )2

=

D
1
6
--- B

3
B–( ) xi 1+ xi–( )2

=
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Chapter

45
Analysis Probability 
and Statistics VIs

This chapter describes the VIs that perform probability, descriptive 
statistics, analysis of variance, and interpolation functions.

To access the Probability and Statistics palette, choose 
Functions»Analysis»Probability and Statistics, as shown in the 
following illustration.

For examples of how to use the statistics VIs, see the examples located 
in examples\analysis\statxmpl.llb.

Note: These VIs are not available in the Base Analysis package.

Probability and Statistics VI Descriptions

The following Probability and Statistic VIs are available.
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1D ANOVA
Takes an array, X, of experimental observations made at various levels of a factor, with 
at least one observation per level, and performs a one-way analysis of variance in the 
fixed effect model. In the one-way analysis of variance, the VI tests whether the level of 
the factor has an effect on the experimental outcome. 

Factors and Levels

A factor is a basis for categorizing data. For example, if you count the number of sit-ups 
individuals can do, one basis of categorization is age. For age, you might have the 
following levels:

Level 0: 6 years old to 10 years old

Level 1: 11 years old to 15 years old

Level 2: 16 years old to 20 years old

Now, suppose that you make a series of observations to see how many sit-ups people can 
do. If you take a random sampling of five people, you might find the following results:

Person 1 8 years old (level 0) 10 sit-ups

Person 2 12 years old (level 1) 15 sit-ups

Person 3 16 years old (level 2) 20 sit-ups

Person 4 20 years old (level 2) 25 sit-ups

Person 5 13 years old (level 1) 17 sit-ups

Notice that you have made at least one observation per level. To perform an analysis of 
variance, you must make at least one observation per level. 

To perform the analysis of variance, you specify an array X of observations, with values 
10, 15, 20, 25, and 17. The array Index specifies the level (or category) to which each 
observation applies. In this case, Index has the values 0, 1, 2, 2, and 1. Finally, there are 
three possible levels, so you pass in a value of 3 for the # of levels parameter.
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2D ANOVA
Takes an array of experimental observations made at various levels of two factors and 
performs a two-way analysis of variance. 

Factors, Levels, and Cells

A factor is a basis for categorizing data. For example, if you count the number of sit-ups 
individuals can do, one basis of categorization is age. For age, you might have the 
following levels:

Level 0: 6 years old to 10 years old

Level 1: 11 years old to 15 years old

Another possible factor is weight, with the following levels:

Level 0: less than 50 kg

Level 1: between 50 and 75 kg

Level 2: more than 75 kg

Now, suppose that you made a series of observations to see how many sit-ups people 
could do. If you took a random sampling of n people, you might find the following 
results:

Person 1 8 years old (level 0) 30 kg (level 0) 10 sit-ups

Person 2 12 years old (level 1) 40 kg (level 0) 15 sit-ups

Person 3 15 years old (level 1)7 6 kg (level 2) 20 sit-ups

Person 4 14 years old (level 1) 60 kg (level 1) 25 sit-ups

Person 5 9 years old (level 0) 51 kg (level 1) 17 sit-ups

Person 6 10 years old (level 0) 80 kg (level 2) 4 sit ups

and so on.
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If you plot observations as a function of factor A and factor B, they fall into cells of a 
matrix with factor A as rows and factor B as columns. Each cell must contain at least one 
observation, and each cell must contain the same number of observations. 

To perform the analysis of variance, you specify an array X of observations, with values 
10, 15, 20, 25, 17, and 4. The array Index A specifies the level (or category) of factor A 
to which each observation applies. In this case, the array would have the values 0, 1, 1, 
1, 0, and 0. 

The array Index B specifies the level (or category) of factor B to which each observation 
applies. In this case, the array would have the values 0, 0, 2, 1, 1, and 2. Finally, there are 
two possible levels for factor A and three possible levels for factor B, so you pass in a 
value of 2 for the A levels parameter, and a value of 3 for the B levels parameter.

You can apply any one of the following models, where L is the specified observations 
per cell: 

• Model 1: Fixed-effects with no interaction and one observation per cell (per 
specified levels x and y of the factors A and B, respectively).

• Model 2: Fixed-effects with interaction and L>1 observations per cell.

• Model 3: Either of the mixed-effects models with interaction and L>1 observations 
per cell.

• Model 4: Random-effects with interaction and L>1 observations per cell.

3D ANOVA
Takes an array of experimental observations made at various levels of three factors and 
performs a three-way analysis of variance. In any ANOVA, you look for evidence that 
the factors or interactions among factors have a significant effect on experimental 
outcomes. What varies with each model is the method used to do this. 

The three-way ANOVA models are as follows, where L is the number of observations 
per cell:

• Fixed-effects with interaction and L>1 observations per cell.

• Any of the six mixed-effects models with interaction and L>1 observations per cell.

• Random-effects with interaction and L>1 observations per cell.
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A factor is a basis for categorizing data. A cell of data consists of all those experimental 
observations that fall in particular levels of the three factors. The number of observations 
that fall in a cell must be some constant number L, which does not vary between cells. 
See the description of factors, levels, and cells in the 2D ANOVA VI description. 
Remember that a cell in this 3D ANOVA VI is the intersection of three factors instead of 
two as described in the 2D ANOVA VI description.

Chi Square Distribution
Computes the one-sided probability, p, of the χ2 distributed random variable, x, with the 
specified degrees of freedom.

p = Prob {X < x},

where X is χ2 distributed with n degrees of freedom, p is the probability, n is degrees 
of freedom, and x is the value.

Contingency Table
Classifies and tallies objects of experimentation according to two schemes of 
categorization.

With the χ2 test of homogeneity, the VI takes a random sample of some fixed size from 
each of the categories in one categorization scheme. For each of the samples, the VI 
categorizes the objects of experimentation according to the second scheme, and tallies 
them. The VI tests the hypothesis to determine whether the populations from which each 
sample is taken are identically distributed with respect to the second categorization 
scheme. 

With the χ2 test of independence, the VI takes only one sample from the total population. 
The VI then categorizes each object and tallies it in two categorization schemes. The VI 
tests the hypothesis that the categorization schemes are independent.

You must choose a level of significance for each test. This is how likely you want it to 
be that the VI rejects the hypothesis when it is true. Ordinarily, you do not want it to be 
very likely. So you should use a small number (0.05 or 5 percent is a common choice) to 
determine the level of significance. The output parameter probability is the level of 
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significance at which the hypothesis is rejected. Thus, if probability is less than the level 
of significance, you must reject the hypothesis.

erf(x)
Evaluates the error function at the input value.

erfc(x)
Evaluates the complementary error function at the input value.

F Distribution
Computes the one-sided probability, p, of the F-distributed random variable, F, with the 
specified n and m degrees of freedom

p = Prob {F
n,m

< x},

where F is F-distributed, p is the probability, n specifies the first degree of freedom, m 
specifies the second degree of freedom, and x is the value.

General Histogram
Finds the discrete histogram of the input sequence X based on the given bin 
specifications.

The VI obtains the Histogram as follows. The VI establishes all the intervals (also called 
bins) based on the information in the input array Bins first. The intervals (bins) are:
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∆i = (Bins[i].lower: Bins[i].upper) i = 0, 1, 2,..., k–1

where

Bins[i].lower is the value lower in the ith cluster of array Bins, Bins[i].upper is the value 
upper in the ith cluster of array Bins, k is the number of elements in Bins, which consists 
of the number of total intervals (bins).

Whether the two ending points Bins[i].lower and Bins[i].upper of each interval (bin) are 
included in the interval (bin) ∆i depends on the value of bin inclusion in the corresponding 
cluster i of the Bins.

Histogram
Finds the discrete histogram of the input sequence X. The histogram is a frequency count 
of the number of times that a specified interval occurs in the input sequence. 

If the input sequence is

X = {0, 1, 3, 3, 4, 4, 4, 5, 5, 8},

then the Histogram: h(x) of X for eight intervals is

h(X) = {h
0
, h

1
, h

2
, h

3
, h

4
, h

5
, h

6
, h

7
} = {1, 1, 0, 2, 3, 2, 0, 1}.

Notice that the histogram of the input sequence X is a function of X.

The VI obtains Histogram: h(x) as follows. The VI scans the input sequence X to 
determine the range of values in it. Then the VI establishes the interval width, ýx, 
according to the specified number of intervals,

,

where max is the maximum value found in the input sequence X, min is the minimum 
value found in the input sequence X, and m is the specified number of intervals.

Let χ represent the output sequence X Values, because the histogram is a function of X. 
The VI evaluates elements of χ using

 for i = 0, 1, 2, …, m–1.

x∆ max min–
m

-------------------------=

χ i min 0.5∆x i∆x+ +=
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The VI defines the ith interval ∆i to be the range of values from χ
i
 – 0.5 ∆x up to but not 

including  χ
i
 + 0.5 ∆x,

∆i = [χi – 0.5 ∆x : χi + 0.5 ∆x), for i = 0, 1, 2,…, m–1,

and defines the function yi(x) to be

.

The function has unity value if the value of x falls within the specified interval. Otherwise 
it is zero. Notice that the interval ∆i is centered about χ

i
, and its width is ∆x.

The last interval, ∆m–1, is defined as [χm–ι– 0.5∆x : χm–ι  + 0.5∆x]. In other words, if a 
value is equal to max, it is counted as belonging to the last interval.

Finally, the VI evaluates the histogram sequence H using

 for i = 0, 1, 2,..., m–1,

where hi represents the elements of the output sequence Histogram: h(x), and n is the 
number of elements in the input sequence X.

Inv Chi Square Distribution
Computes the value of x such that the condition

p = Prob {X ≤ x}

is satisfied, given the probability value, p, of a X2 -distributed random variable, X, with 
n degrees of freedom.

Inv F Distribution
Computes the value of x such that the condition

yi x( )
1 ifx ∆i⊇∈

0 elsewhere






=

hi yi xj( )

j 0=

n 1–

∑=



Chapter 45 Analysis Probability and Statistics VIs

© National Instruments Corporation 45-9 LabVIEW Function and VI Reference Manual

is satisfied, given the probability value p of an F-distributed random variable, F, with n 
and m degrees of freedom.

Inv Normal Distribution
Computes the value of x such that the condition

p = Prob {X ≤ x}

is satisfied, given the probability value, p, of a Normally distributed random variable, X.

Inv T Distribution
Computes the value of x such that the condition

p = Prob {Tn ≤ x} 

is satisfied, given the probability value, p, of a T-distributed random variable, T, with n 
degrees of freedom.

Mean
Computes the mean (average) of the values in the input sequence X.

This VI computes mean (µ) using the following formula:

p Prob{ n m, X }≤=
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,

where n is the number of elements in X.

Median
Finds the median value of the input sequence X by sorting the values of X and selecting 
the middle element(s) of the sorted array. 

Let n be the number of elements in the input sequence X, and let S be the sorted sequence 
of X. The VI finds median using the following identity:

where ,

and .

Mode
Finds the mode of the input sequence X. 

Moment About Mean
Computes the moment about the mean of the input sequence X using the specified order.

Let m be the desired order. The VI computes the m
th

-order moment using the formula: 

µ
1
n
--- xi

i 0=

n 1–

∑=

median

si ifn is odd

0.5 sk 1– sk+( ) ifn is even






=

i
n 1–

2
------------=

k
n

2
---=
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,

where σ
x

m
 is the m

th
-order moment, and n is the number of elements in the input 

sequence X.

MSE
Computes the mean squared error (mse) of the input sequences X Values and Y Values. 

The VI uses the following formula to find mse:

,

where n is the number of data points.

Normal Distribution
Computes the one-sided probability, p, of the normally distributed random variable, x,

p = Prob {X < x},

where X is standard Normally distributed, p is the probability, and x is the value.

RMS
Computes the root mean square (rms) of the input sequence X. 

σx

m 1
n
--- xi µ–( )m

i 0=

n 1–

∑=

mse
1
n
--- xi yi–( )2

i 0=

n 1–

∑=
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Sample Variance
Computes the mean and sample variance of the values in the input sequence X.

Note: If you need to compute the sample standard deviation of X, take the square 

root of sample variance.

Standard Deviation
Computes the mean value and the standard deviation of the values in the input 
sequence X. 

This VI computes standard deviation (σx) and mean (µ) using the following formula:

,

where , and n is the number of elements in X.

T Distribution
Computes the one-sided probability, p, of the t-distributed random variable, T

n
, with the 

specified degrees of freedom

p = Prob {T
n
 ≤ x},

where T is t-distributed, p is the probability, n is degrees of freedom, and x is the value.

σx

1
n
--- xi µ–( )2

i 0=

n 1–

∑=

µ
1
n
--- xi

i 0=

n 1–

∑=
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Variance
Computes the variance and the mean value of the input sequence X.

This VI computes variance (σx
2) and mean (µ) using the following formula:

,

where , and n is the number of elements in X.

σx

2 1
n
--- xi µ–( )2

i 0=

n 1–

∑=

µ
1
n
--- xi

i 0=

n 1–

∑=
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Chapter

46Analysis Linear Algebra VIs

This chapter describes the VIs that perform matrix related computation 
and analysis, and provides overviews on the following:

• Basic Matrix Manipulations

• Solving Linear Equations and Matrix Inverses 

• Eigenvalues and Eigenvectors

• Matrix Analysis

It includes both real and complex matrices. 

To access the Linear Algebra palette, choose 
Functions»Analysis»Linear Algebra, as shown in the following 
illustration.

This chapter is divided into the following groups:

• Matrix factorization

• Solving linear equations and matrix inverses

• Eigenvalues and Eigenvectors problems

• Matrix analysis
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A matrix is represented by a 2D array:

A is an m-by-n matrix that contains m rows and n columns. 

A matrix is called a rectangular matrix in general. When m=n, it is 
called a square matrix.

Basic Matrix Manipulations Functions

This section provides an overview of Basic Matrix Manipulations.

Addition

A, B, and C have the same dimension size.

Matrix-Matrix Multiplication

If A is a n-by-r matrix, and B is a r-by-m matrix, then C is a n-by-m matrix.

Scalar-Matrix Multiplication

C and A have the same dimension size.

Transposition
For a real matrix:

A

a
00

a
01

… a
0n 1–

a
10

a
11

… a1n 1–

… … … …

am 10– am 11–
… am 1n– 1–

=

C A B cij ai j bi j+=⇒+=

C AB cij aikb
kj

k 0=

r 1–

∑=⇒=

C αA ci j αai j=⇒=

C A
T

ci j⇒ aji= =
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For a complex matrix, it is the complex conjugate transposition:

Complex conjugate: if , then conjugate . If A is an m-by-n matrix, 

then C is an n-by-m matrix and is called the transpose of A.

Common Matrices

This section describes the Common Matrices.

Identity Matrix

,  when ,  when .

A is a square matrix.

Diagonal Matrix

,  when .

Hermitian Matrix
If a complex matrix A satisfies , A is called a Hermitian matrix.

Symmetric Matrix
Matrix A is called a symmetric matrix if , that is .

C A
H

ci j⇒ a∗
j i= =

a x iy+= a∗ x iy–=

A

1 0 … 0

0 1 … 0

0 0 … 1

=
ai j 0= i j≠ ai j 1= i j=

A

a00 0 … 0

0 a11 … 0

0 0 … am 1n 1––

= ai j 0= i j≠

A A
H

=

ai j aj i= A A
T

=
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Upper Triangular Matrix

,  when i>j.

Lower Triangular Matrix

,  when i<j.

Orthogonal Matrix
Matrix A is called orthogonal if , and I is an identity matrix.

Permutation Matrix
A permutation matrix is an identity matrix with some rows or columns exchanged. A 
permutation matrix is an orthogonal matrix.

Positive Definite Matrix
A real matrix is positive definite if and only if it is symmetric; that is, , and the 
quadratic form  for all nonzero vectors X. 

A complex matrix is positive definite if and only if it is Hermitian; that is,  and 
 for all nonzero, complex vectors X.

Matrix Factorization

A matrix can be factored into the multiplication of several, simpler 
matrices. You can use these factored, simple matrices to solve some 
matrix problems, such as solving a linear equation, inverting a matrix, 
and finding the determinant of a matrix.

The common factorization methods include LU, Cholesky, QR, and 
Singular Value Decomposition (SVD). 

A

a00 a01 … a0n 1–

0 a11 … a1n 1–

0 0 … am 1n– 1–

= aij 0=

A

a00 0 … 0

a10 a11 … 0

am 10– am 11– … am 1n– 1–

= ai j 0=

A
T

A I=

A A
T

=

X
T

AX 0>

A A
H

=

X
H

AX 0>
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• LU Factorization—Factors a square matrix into two matrices. One 
is an upper triangular matrix U, and the other is a lower triangular 
matrix L that has ones on the diagonal, so that PA=LU. P is a 
permutation matrix.

• When a square matrix is positive definite, you can factor it into 
, if A is a real matrix, and , if A is a complex 

matrix, where R is an upper triangular matrix. This is called 
Cholesky factorization. Cholesky factorization only needs half of 
the operations of LU factorization. 

• QR Factorization–Factors a matrix as the product of an orthogonal 
matrix Q and an upper triangular matrix R: A=QR. QR factorization 
is useful for both square and rectangular matrices.

• SVD—Decomposes a matrix into the product of three matrices: 
, where U and V are orthogonal matrices and S is a 

diagonal matrix whose diagonal values are called the singular 
values of A. SVD is useful for solving analysis problems involving 
matrices. In addition to its common uses, you can use SVD for 
operations such as pseudoinverse, rank, norm, and condition 
number.

Solving Linear Equations and Matrix Inverses

To Solve the linear equation AX=Y, you must find solution X when you 
know the given values of A and Y. A is a m-by-n matrix, X is a vector 
with n elements, and Y is a vector with m elements.

Using LU factorization, if m=n and A is a square matrix, A can be 
factored into triangular matrices L and U, so that A=LU. AX=Y becomes 
LUX=Y and you can solve Z for LZ=Y where Z=UX. You can then solve 
for X in UX=Z.

In the Cholesky case,  and .

Triangular systems are easy to solve using recursive techniques.

If , the number of equations are different from the number of 
unknowns and A is not a square matrix, A can be factored into an 
orthogonal matrix Q and an upper triangular matrix R, so that A=QR. 
AX=Y becomes QRX=Y and you can solve for X by using . 

When m>n, and the system has more equations than unknowns, it is 
called an overdetermined system. The solution that satisfies AX=Y may 

A R
T
R= A R

H
R=

A USV
T

=

L R
T

= U R=

m n≠

RX Q
T
Y=
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not exist. The solution above finds the least square solution that 
minimizes .

When m<n, and the system has more unknowns than equations, it is 
called an underdetermined system. It may have infinite solutions that 
satisfy AX=Y. The previous solution finds one of these solutions.

Inverting a square matrix A means that you find  that satisfies 
, where I is an identity matrix.  is called the inverse of 

matrix A. You can solve for  by solving n linear equations .

When A is not a square matrix, or when A is singular,  does not 
exist. You can compute the pseudoinverse of A instead. If the m-by-n 
matrix A+ satisfies the following four Moore-Penrose conditions:
AA+A=A

A+AA+=A+

AA+ is a Hermitian matrix if A is a complex matrix. AA+ is a symmetric 
matrix if A is real matrix.
A+A is a Hermitian matrix if A is a complex matrix. A+A is a symmetric 
matrix if A is real matrix.
Then, A+ is called the pseudoinverse of matrix A. You can compute for 
A+ using SVD.

Eigenvalues and Eigenvectors

This Eigenvalue problem is to determine the nontrivial solutions to the 
equation , where A is an n-by-n matrix, X is a vector with 

elements, and  is a scalar. The  values of  that satisfy the equation 
are called eigenvalues of A, and the corresponding values of X are called 
the right eigenvectors of A.

Matrix Analysis

Matrix Analysis VIs can compute the matrix determinant, condition 
number, norm, and rank. Typically, you use these parameters to analyze 
a matrix property.

Linear Algebra VI Descriptions

The following Linear Algebra VIs are available.

AX Y– AX( )i yi–[ ] 2∑=

A
1–

AA
1–

I= A
1–

A
1–

AA
1–

I=

A
1–

AX λX=

n λ n λ
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A x B

Performs the matrix multiplication of two input matrices. 

If A is an n-by-k matrix and B is a k-by-m matrix, the matrix multiplication of A and B, C 
= AB, results in a matrix, C, whose dimensions are n-by-m. Let A represent the 2D input 
array A matrix, B represent the 2D input array B matrix, and C represent the 2D output 
array A x B. The VI obtains the elements of C using the formula

,

where n is the number of rows in A matrix, k is the number of columns in A matrix and 
the number of rows in B matrix, and m is the number of columns in B matrix.

Note: The A x B VI performs a strict matrix multiplication and not an 

element-by-element 2D multiplication. To perform an element-by-element 

multiplication, you must use the LabVIEW Multiply function. In general, 

AB ¦ BA.

A x Vector
Performs the multiplication of an input matrix and an input vector. 

If A is an n-by-k matrix, and X is a vector with k elements, the multiplication of A and X, 
Y = AX, results in a vector Y with n elements. Let Y represent the output A x Vector. The 
VI obtains the elements of Y using the formula

, for i = 0, 1, 2, …, n–1,

cij ai lblj

l 0=

k 1–

∑ for
i 0 1 2 ... n 1–, , , ,=

j 0 1 2 ... m 1–, , , ,=






=

yi aijxj

j 0=

k 1–

∑=
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where n is the number of rows in A, and k is the number of columns in A and the number 
of elements in X.

Cholesky Factorization

Performs Cholesky factorization for a real, positive definite matrix A.

If the real, square matrix A is positive definite, you can factor it as , where  is 
an upper triangular matrix, and  is the transpose of .

Complex A x B 
Performs the matrix multiplication of two input complex matrices.

If A is an n-by-k matrix and B is a k-by-m matrix, the matrix multiplication of A and B, C 
= AB, results in a matrix, C, whose dimensions are n-by-m. Let A represent the 2D input 
array A matrix, B represent the 2D input array B matrix, and C represent the 2D output 
array A x B. The VI obtains the elements of C using the formula

,

where n is the number of rows in A matrix, k is the number of columns in A matrix and 
the number of rows in B matrix, and m is the number of columns in B matrix.

Note: The Complex A x B VI performs a strict matrix multiplication and not an 

element-by-element 2D multiplication. To perform an element-by-element 

multiplication, you must use the LabVIEW Multiply function. In general, 

.

A R
T
R= R

R
T

R

cij ai lblj

l 0=

k 1–

∑ for
i 0 1 2 ... n 1–, , , ,=

j 0 1 2 ... m 1–, , , ,=






=

AB BA≠
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Complex A x Vector 

Performs the multiplication of a complex input matrix and a complex input vector.

If A is an n-by-k matrix, and X is a vector with k elements, the multiplication of A and X, 
Y = AX, results in a vector Y with n elements. Let Y represent the output A x Vector, X 
represents the input vector. The VI obtains the elements of Y using the formula

, for i = 0, 1, 2, …, n–1,

where n is the number of rows in A, and k is the number of columns in A and the number 
of elements in X.

Complex Cholesky Factorization 
Performs Cholesky factorization of a complex, positive definite matrix A.

If the complex square matrix A is positive definite, it can be factored as , where 
R is an upper triangular matrix and  is the complex conjugate transpose of R.

Complex Determinant 
Finds the determinant of a complex, square matrix Input Matrix.

Let A denote a square matrix that represents the Input Matrix, and let L and U be the 
lower and upper triangular matrices, respective, of A such that

A = LU,

yi aijxj

j 0=

k 1–

∑=

A R
H

R=

R
H
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where the main diagonal elements of the lower triangular matrix L are arbitrarily set to 
one. The VI finds the determinant of A by the product of the main diagonal elements of 
the upper triangular matrix U:

,

where  is the determinant of A, and n is the dimension of A.

Complex Dot Product 
Computes the dot product of complex X Vector and Y Vector.

Let X represent the input sequence X Vector and Y represent the input sequence Y 
Vector. The VI obtains the dot product X*Y using the formula:

,

where n is the number of data points. Notice that the output value X*Y is a complex 
scalar value.

Complex Eigenvalues & Vectors 
Finds the Eigenvalues and right Eigenvectors of a square complex Input Matrix A.

The eigenvalue problem is to determine the nontrivial solutions for the equation: 

A uii

i 0=

n 1–

∏=

A

X∗ Y xiyi

i 0=

n 1–

∑=

AX λX=
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where A represents an n-by-n Input Matrix, X represents a vector with n elements, and 
 is a scalar. The n values of  that satisfy the equation are the Eigenvalues of A and the 

corresponding values of X are the right Eigenvectors of A. A Hermitian matrix always 
has real eigenvalues.

Complex Inverse Matrix

Finds the Inverse Matrix of a complex matrix Input Matrix.

Let A be the Input Matrix and I be the identity matrix. You obtain the Inverse Matrix 
by solving the system AB = I for B.

If A is a nonsingular matrix, you can show that the solution to the preceding system is 
unique and that it corresponds to the inverse matrix of A

B = A–1,

and B is therefore the Inverse Matrix. A nonsingular matrix is a matrix in which no row 
or column contains a linear combination of any other row or column, respectively.

Note: You cannot always determine beforehand whether the matrix is singular, 

especially with large systems. The Complex Inverse Matrix VI detects 

singular matrices and returns an error, so you do not need to verify 

whether you have a valid system before using this VI.

The numerical implementation of the matrix inversion is not only 

numerically intensive but, because of its recursive nature, it is also highly 

sensitive to round-off error introduced by the floating point, numeric 

coprocessor. Although the computations use the maximum possible 

accuracy, the VI cannot always solve for the system. 

Complex LU Factorization 
Performs the LU factorization of a complex, square matrix A.

λ λ
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LU factorization factors the square matrix A into two triangular matrices; one is a lower 
triangular matrix L with ones on the diagonal, and the other is an upper triangular matrix 
U, so that 

PA = LU

where P is a permutation matrix, which consists of the identity matrix with some rows 
exchanged. 

Factorization is the key step for inverting a matrix, computing the determinant of a 
matrix, and solving a linear equation.

Complex Matrix Condition Number 

Computes the condition number of a complex matrix Input Matrix.

The condition number of a matrix measures the sensitivity of the solution of a system of 
linear equations to errors in the data. It gives an indication of the accuracy of the results 
from the matrix inversion and linear equation solutions.

Complex Matrix Norm 
Computes the norm of a complex matrix Input Matrix.

The norm of a matrix is a scalar that gives some measure of the magnitude of the 
elements of the matrix. Let A represent the Input Matrix,  represent the norm of A, 
where p can be 1,2,f, . Different values of p mean different types of norms that are 
computed.

A p

∞
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Complex Matrix Rank

Computes the rank of a rectangular, complex matrix Input Matrix.

rank is the number of singular values of the Input Matrix that are larger than the 
tolerance. rank is the maximum number of independent rows or columns of the Input 
Matrix.

Complex Matrix Trace
Finds the trace of Input Matrix. 

Let A be a square matrix that represents Input Matrix and tr(A) be trace. The trace of 
A is the sum of the main diagonal elements of A

,

where n is the dimension of Input Matrix.

Complex Outer Product 
Computes the outer product of a complex X Vector and Y Vector.

Let X represent the input sequence X Vector and Y represent the input sequence Y 
Vector. The VI obtains Outer Product using the formula:

tr A( ) aii

i 0=

n 1–

∑=
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aij = xi yj, for ,

where A represents the 2D output sequence Outer Product, n is the number of elements 
in the input sequence X Vector, and m is the number of elements in the input sequence 
Y Vector.

Complex PseudoInverse Matrix 
Finds the PseudoInverse Matrix of a rectangular, complex matrix Input Matrix.

An SVD algorithm computes PseudoInverse Matrix A+, and treats any singular values 
less than the tolerance as zeros. For a definition of the PseudoInverse of a matrix, see the 
Solving Linear Equations and Matrix Inverses section at the beginning of this chapter. 

If Input matrix A is square and not singular, A+ is the same as A–1, but using the Complex 
Inverse Matrix VI to compute A–1 is more efficient than using this VI.

Complex QR Factorization 
Performs QR factorization for a complex matrix A.

QR factorization is also called orthogonal-triangular factorization. It factors a complex 
matrix A into two matrices; one is an orthogonal matrix Q, the other is an upper triangular 
matrix R, so that A = QR. This VI provides three methods for the factorization: 
Householder, Givens, and Fast Givens. 

You can use QR factorization to solve linear systems that contain less or more equations 
than unknowns.

i 0 1 2 ... n 1–, , , ,=

j 0 1 2 ... m 1–, , , ,=





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Complex SVD Factorization 

Performs the singular value decomposition (SVD) of a given m-by-n, complex matrix A 
with m>n.

SVD produces three matrices U, S, and V, so that A = US0VH, where U and V are 
orthogonal matrices, S0 is an n-by-n diagonal matrix with the elements of array S on the 
diagonal in decreasing order. The diagonal elements are the singular values of A.

Create Special Complex Matrix 
Generates a special, complex matrix based on the matrix type.

Let n represent matrix size, X represent Input Vector1, nx represent the size of X, and Y 
represent Input Vector2, ny represent the size of Y, and B represent the output Special 
Matrix.

Create Special Matrix
Generates a real, special matrix based on the matrix type.

Let n represent matrix size, X represent Input Vector1, nx represent the size of X, and Y 
represent Input Vector2, ny represent the size of Y, and B represent the output Special 
Matrix.
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Determinant

Computes the determinant of a real, square matrix Input Matrix.

Let A be a square matrix that represents the Input Matrix, and let L and U represent the 
lower and upper triangular matrices, respectively, of A such that

A = LU,

where the main diagonal elements of the lower triangular matrix L are arbitrarily set to 
one. The VI finds the determinant of A by the product of the main diagonal elements of 
the upper triangular matrix U

,

where  is the determinant of X, and n is the dimension of X.

Dot Product

Computes the dot product of X Vector and Y Vector. 

Let X represent the input sequence X Vector and Y represent the input sequence 
Y Vector. The VI obtains the dot product X*Y using the formula:

,

where n is the number of data points. Notice that the output value X*Y is a scalar value.

A uii

i 0=

n 1–

∏=

A

X∗ Y xiyi

i 0=

n 1–

∑=
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EigenValues & Vectors

Finds the eigenvalues and eigenvectors right of a square, real Input Matrix.

The eigenvalue problem is to determine the nontrivial solutions to the equation:

where A is a n-by-n Input Matrix, X is a vector with n elements, and  is a scalar. The n 
values of  that satisfy the equation are the Eigenvalues of A and the corresponding 
values of X are the right Eigenvectors of A. A symmetric, real matrix always has real 
eigenvalues and eigenvectors.

Inverse Matrix
Finds the Inverse Matrix of the Input Matrix.

Let A be the Input Matrix and I be the identity matrix. You obtain the Inverse Matrix 
value by solving the system AB = I for B.

If A is a nonsingular matrix, you can show that the solution to the preceding system is 
unique and that it corresponds to the Inverse Matrix of A:

B = A–1,

and B is therefore an Inverse Matrix. A nonsingular matrix is a matrix in which no row 
or column contains a linear combination of any other row or column, respectively.

Note: The numerical implementation of the matrix inversion is not only 

numerically intensive but, because of its recursive nature, is also highly 

sensitive to round-off errors introduced by the floating-point numeric 

coprocessor. Although the computations use the maximum possible 

accuracy, the VI cannot always solve for the system. 

AX λX=

λ
λ
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You cannot always determine beforehand whether the matrix is singular, 

especially with large systems. The Inverse Matrix VI detects singular 

matrices and returns an error, so you do not need to verify whether you 

have a valid system before using this VI.

LU Factorization

Performs the LU factorization of a real, square matrix A.

LU factorization factors the square matrix A into two triangular matrices; one is a lower 
triangular matrix L with ones on the diagonal, and the other is an upper triangular matrix 
U, so that , where P is a permutation matrix, which serves as the identity matrix 
with some rows exchanged.

Factorization serves as a key step for inverting a matrix, computing the determinant of a 
matrix, and solving a linear equation.

Matrix Condition Number
Computes the condition number of a real matrix Input Matrix.

The condition number of a matrix measures the sensitivity of a system solution of linear 
equations to errors in the data. It gives an indication of the accuracy of the results from 
a matrix inversion and a linear equation solution.

Matrix Norm
Computes the norm of a real matrix Input Matrix.

PA LU=
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The norm of a matrix is a scalar that gives some measure of the magnitude of the elements 
in the matrix. Let A represent the Input Matrix, the norm of A is represented by , 
where p can be 1,2,F, . Different values of p mean different types of norms that are 
computed.

Matrix Rank

Computes the rank of a rectangular, real matrix Input Matrix.

Matrix rank is the number of singular values in the Input Matrix that are larger than the 
tolerance. rank is the maximum number of independent rows or columns in the Input 
Matrix.

Outer Product
Computes the outer product of X Vector and Y Vector.

Let X represent the input sequence X Vector and Y represent the input sequence 
Y Vector. The VI obtains Outer Product using the formula:

aij = xi yj, for ,

where A represents the 2D output sequence Outer Product, n is the number of elements 
in the input sequence X Vector, and m is the number of elements in the input sequence 
Y Vector.

A p

∞

i 0 1 2 ... n 1–, , , ,=

j 0 1 2 ... m 1–, , , ,=








Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-20 © National Instruments Corporation

PseudoInverse Matrix

Finds the PseudoInverse Matrix of a rectangular, real matrix Input Matrix.

You compute PseudoInverse Matrix A+ by using the SVD algorithm and any singular 
value less than the tolerance, which are set to zero. For a definition of the PseudoInverse 
of a matrix, see the Solving Linear Equations and Matrix Inverses section at the beginning 
of this chapter. 

If Input matrix A is square and not singular, A+ is the same as A–1, but using the Inverse 
Matrix VI to compute A–1 is more efficient than using this VI.

Note: This VI is not available with Base packages of LabVIEW. 

QR Factorization
Performs the QR factorization of a real matrix A.

QR factorization is also called orthogonal-triangular factorization. It factors a real matrix 
A into two matrices. One is an orthogonal matrix Q, and the other is an upper triangular 
matrix R, so that . This VI provides three methods for the factorization: 
householder, givens, and fast givens.

You can use QR factorization to solve linear systems with more equations than 
unknowns.

Note: This VI is not available with Base packages of LabVIEW. 

Solve Complex Linear Equations 
Solves a complex, linear system AX=Y.

A QR=
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Let A represent the m-by-n Input Matrix, Y represent the set of m elements in the Known 
Vector, and X represent the set of n elements in the Solution Vector that solves for the 
system

AX = Y.

When , the system has more equations than unknowns, so it is an overdetermined 
system. Since the solution that satisfies AX=Y may not exist, the VI finds the least square 
solution X, which minimizes ||AX–Y||.

When m<n, the system has more unknowns than equations, so it is an underdetermined 
system. It might have infinite solutions that satisfy AX=Y. The VI then selects one of 
these solutions.

When m=n, if A is a nonsingular matrix—no row or column is a linear combination of 
any other row or column, respectively—then you can solve the system for X by 
decomposing the Input Matrix A into its lower and upper triangular matrices, L and U, 
such that

AX = LZ = Y,

and

Z = UX

can be an alternate representation of the original system. Notice that Z is also an n 
element vector.

Triangular systems are easy to solve using recursive techniques. Consequently, when you 
obtain the L and U matrices from A, you can find Z from the LZ = Y system and X from 
the UX = Z system.

When , A can be decomposed to an orthogonal matrix Q, and an upper triangular 
matrix R, so that A=QR, and the linear system can be represented by QRX=Y. You can 
then solve RX=QHY. 

You can easily solve this triangular system to get X using recursive techniques.

Note: You cannot always determine beforehand whether the matrix is singular, 

especially with large systems. The Inverse Matrix VI detects singular 

matrices and returns an error, so you do not need to verify whether you 

have a valid system before using this VI.

The numerical implementation of the matrix inversion is numerically intensive and, 
because of its recursive nature, is also highly sensitive to round-off error introduced by 

m n>

m n≠



Chapter 46 Analysis Linear Algebra VIs

LabVIEW Function and VI Reference Manual 46-22 © National Instruments Corporation

the floating-point numeric coprocessor. Although the computations use the maximum 
possible accuracy, the VI cannot always solve for the system.

Note: This VI is not available with Base packages of LabVIEW. 

Solve Linear Equations
Solves a real linear system AX=Y. 

Let A be an m-by-n matrix that represents the Input Matrix, Y be the set of m coefficients 
in Known Vector, and X be the set of n elements in Solution Vector that solves the 
system

AX = Y.

When m>n, the system has more equations than unknowns, so it is an overdetermined 
system. The solution that satisfies AX=Y may not exist, so the VI finds the least square 
solution X, which minimizes . 

When m<n, the system has more unknowns than equations, so it is an underdetermined 
systems. It may have infinite solutions that satisfy AX=Y. The VI finds one of these 
solutions.

In the case of m=n, if A is a nonsingular matrix–no row or column is a linear combination 
of any other row or column, respectively–then you can solve the system for X by 
decomposing the input matrix A into its lower and upper triangular matrices, L and U, 
such that

AX = LZ = Y,

and

Z = UX

can be an alternate representation of the original system. Notice that Z is also an n 
element vector.

Triangular systems are easy to solve using recursive techniques. Consequently, when you 
obtain the L and U matrices from A, you can find Z from the LZ = Y system and X from 
the UX = Z system. 

AX Y–
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In the case of , A can be decomposed to an orthogonal matrix Q and an upper 
triangular matrix R, so that A=QR. The linear system can then be represented by QRX=Y. 
You can then solve RX=QTY.

You can easily solve this triangular system to get x using recursive techniques.

Note: You cannot always determine beforehand whether the matrix is singular, 

especially with large systems. The Inverse Matrix VI detects singular 

matrices and returns an error, so you do not need to verify whether you 

have a valid system before using this VI.

The numerical implementation of the matrix inversion is numerically intensive and, 
because of its recursive nature, is also highly sensitive to round-off error introduced by 
the floating-point numeric coprocessor. Although the computations use the maximum 
possible accuracy, the VI cannot always solve the system.

SVD Factorization

Performs the singular value decomposition (SVD) of a given m-by-n real matrix A, with 
m>n.

SVD produces three matrices U,S0, and V so that A = US0VT, where U and VT are 
orthogonal matrices, S0 is an n-by-n diagonal matrix with the elements of array S on the 
diagonal in decreasing order.

Test Complex Positive Definite 
Tests whether the Input Matrix is a Positive Definite matrix.

m n≠
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Test Positive Definite

Tests whether the Input Matrix is a Positive Definite matrix.

Trace

Finds the trace of Input Matrix. 

Let A be a square matrix that represents Input Matrix and tr(A) be trace. The trace of 
A is the sum of the main diagonal elements of A

,

where n is the dimension of Input Matrix.

tr A( ) aii

i 0=

n 1–

∑=
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Chapter

47Analysis Array Operation VIs

This chapter describes the VIs that perform common, one- and 
two-dimensional numerical array operations. 

The following illustration shows the Array Operations palette, which 
you access by selecting Functions»Analysis»Array Operations.

Array Operation VI Descriptions

The following Array Operation VIs are available.
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1D Linear Evaluation
Performs a linear evaluation of the input array X. 

The output array Y[i] = X[i]*a + b is given by

,

where a is the multiplicative scale constant, and b is the additive constant offset.

1D Polar To Rectangular
Converts two arrays of polar coordinates into two arrays of rectangular coordinates, 
according to the following formulas:

x = magnitude cos(phase)

y = magnitude sin(phase).

Note: This VI is not available with Base packages of LabVIEW. 

1D Polynomial Evaluation
Performs a polynomial evaluation of X using Coefficients: a.

The output array Y is given by

,

where m denotes the polynomial order. 

Y aX b+=

Y anX
n

n 0=

m

∑=
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1D Rectangular To Polar
Converts two arrays of rectangular coordinates into two arrays of polar coordinates, 
according to the following formulas:

magnitude = 

phase = tan–1 . 

2D Linear Evaluation
Performs a linear evaluation of the two-dimensional input array X. 

The two-dimensional output array Y = X*a + b is given by

,

where a denotes the multiplicative constant, and b denotes the additive constant.

2D Polynomial Evaluation
Performs a polynomial evaluation of the two-dimensional input array X using 
Coefficients a. 

The two-dimensional output array Y is given by

,

where m denotes the polynomial order.

x2 y2+

y

x
-- 

 

Y Xa b+=

Y anX
n

n 0=

m

∑=
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Normalize Matrix
Normalizes the 2D input Matrix using its statistical profile (µ, σ), where µ is the mean 
and σ is the standard deviation, to obtain a Normalized Matrix whose statistical profile 
is (0,1).

The VI obtains Normalized Matrix using

,

,

,

where B represents the 2D output sequence Normalized Matrix, A represents the 2D 
input sequence Matrix with n rows and m columns, and aij is the element of A on the ith 
row and jth column.

Normalize Vector
Normalizes the input Vector using its statistical profile (µ,σ), where µ is the mean and 
σ is the standard deviation, to obtain a Normalized Vector whose statistical profile is 
(0,1).

The VI obtains Normalized Vector using

B
A µ–

σ-------------=

µ

aij

j 0=

m 1–

∑
i 0=

n 1–

∑
n • m

--------------------------=

σ j 0=

m 1–

∑ aij µ–( )2

i 0=

n 1–

∑
n • m

------------------------------------------------=
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,

,

,

where Y represents the output sequence Normalized Vector, and X represents the input 
sequence Vector of length n, and xi is the ith element of X.

Quick Scale 1D

Determines the maximum absolute value of the input array X and then scales X using this 
value.

The output array Y[i] = X[i]/Max|X| is given by

,

where s is the maximum absolute value in X.

You can use this VI to normalize sequences within the range [–1:1]. This VI is 
particularly useful if the sequence is a zero mean sequence.

Y
X µ–

σ-------------=

µ

xi

i 0=

∑
n

-------------=

σ i 0=

n 1–

∑ xi µ–( )2

n
---------------------------------=

Y
X

s
---=
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Quick Scale 2D
Determines the maximum absolute value of the input array X and then scales X using this 
value. 

The output array Yij = Xij/Max{X} is given by

,

where s denotes the maximum absolute value in X.

You can use this VI to normalize sequences within the range [–1:1]. This VI is 
particularly useful if the sequence is a zero mean sequence.

Scale 1D
Determines scale and offset and then scales the input array X using these values. 

The output array Y is given by

,

scale = 0.5(max – min), and offset = min + scale, where max denotes the maximum value 
in X, and min denotes the minimum value in X.

You can use this VI to normalize any numerical sequence with the assurance that the 
range of the output sequence is [–1:1].

Y
X

s
---=

Y
X offset–

scale
------------------------=
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Scale 2D
Determines scale and offset and then scales X using these values. 

The two-dimensional output array Y = (X – offset)/scale is given by

,

scale = 0.5(max – min), and offset = min + 0.5 scale, where max denotes the maximum 
value in X, and min denotes the minimum value in X.

You can use this VI to normalize any numerical sequence with the assurance that the 
range of the output sequence is [–1:1].

Unit Vector
Finds the norm of the Input Vector and obtains its corresponding Unit Vector by 
normalizing the original Input Vector with its norm.

Let X represent the input Input Vector; norm is given by

,

where ||X|| is norm, and the VI calculates Unit Vector, U, using

.

Y
X offset–

scale
-----------------------=

X x0
2

x1
2

... xn 1–
2

+ + +=

U
X

X
--------=
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Chapter

48
Analysis Additional 
Numerical Method VIs

This chapter describes the VIs that use numerical methods to perform 
root-finding, numerical integration, and peak detection.

The following illustration shows the Additional Numerical Methods 
palette, which you access by selecting 
Functions»Analysis»Additional Numerical Methods.

Additional Numerical Method VI Descriptions

The following Additional Numerical Method VIs are available.

Complex Polynomial Roots
Finds the complex roots of a complex polynomial.
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This VI uses a modified, complex Newton method to determine the n complex roots 
(some of which may be real, with a zero imaginary part), of the general complex 
polynomial:

a0+a1x+a2x2+...+an–1xn–1+anxn.

Numeric Integration
Performs a numeric integration on the input array of data using one of four, popular 
numeric integration methods.

Note: If the number of points provided for a certain chosen method does not 

contain an integral number of partial sums, then the method is applied for 

all possible points. For the remaining points, the next possible lower order 

method is used. For example, if the Bode method is selected, the following 

table shows what this VI evaluates for different numbers of points: 

So, if 227 points were provided and the Bode Method was chosen, the VI would arrive at 
the result by performing 56 Bode Method partial evaluations and one Simpsons’ 3/8 
Method evaluation.

Each of the methods depend on the sampling interval (dt) and compute the integral using 
successive applications of a basic formula in order to perform partial evaluations, which 
depend on some number of adjacent points. The number of points used in each partial 
evaluation represents the order of the method. The result is the summation of these 
successive partial evaluations.

Number of Points Partial Evaluations Performed 

224 56 Bode 

225 56 Bode, 1 Trapezoidal

226 56 Bode, 1 Simpsons’

227 56 Bode, 1 Simpsons’ 3/8

228 57 Bode
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 ,

where j is a range dependent on the number of points and the method of integration.

The basic formulas for the computation of the partial sum of each rule in ascending 
method order are:

Trapezoidal: (x[i] + x[i+1])*dt, k = 1

Simpsons’: (x[2i] + 4x[2i+1] + x[2i+2])*dt/3, k = 2

Simpsons’ 3/8: (3x[3i] + 9x[3i+1] + 9x[3i+2] + 3x[3i+3]) * dt/8, k = 3

Bode: (14x[4i] + 64x[4i+1] + 24x[4i+2] + 64x[4i+3] + 14x[4i+4])*dt/45, k = 4
 for i = 0, k, 2k, 3k, 4k..., Integral Part of [(N–1)/k]

where N is the number of data points, k is an integer dependent on the method, and x is 
the input array. 

Peak Detector
Finds the location, amplitude, and second derivative of peaks or valleys in the input array.

The data set can be passed to the VI as a single array or as consecutive blocks of data.

This VI is based on an algorithm that fits a quadratic polynomial to sequential groups of 
data points. The number of data points used in the fit is specified by width.

For each peak or valley, the quadratic fit is tested against the threshold level: peaks with 
heights lower than the threshold or valleys with troughs higher than the threshold are 
ignored. peaks/valleys are detected only after approximately width/2 data points have 
been processed beyond peaks/valleys locations. This delay has implications only for real 
time processing.

result f t( )dt

t0

t1

∫ partial sums

j

∑≈
 
 
 
 

=
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The VI must be notified when the first and last blocks are passed into the VI, so that the 
VI can initialize and then release data internal to the peak detection algorithm.

Threshold Peak Detector
Analyzes the input sequence X for valid peaks and keeps a count of the number of peaks 
encountered and a record of Indices, which locates the points that exceed the threshold 
in a valid peak. A peak is valid where the elements of X exceed the threshold and then 
return to a value less than or equal to the threshold, and the number of elements that 
exceed the threshold is at least equal to width.
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Chapter

49
Introduction to LabVIEW 
Communication VIs and 
Functions

This chapter introduces the way LabVIEW handles networking and 
interapplication communications, and introduces the Communication 
functions and VIs, descriptions of which comprise Chapter 50 to 
Chapter 55.

You can find the Communication VIs in the Functions palette from your 
block diagram in LabVIEW. The Communication VIs are located near 
the middle of the Functions palette.
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To access the Communications palette, select 
Functions»Communications, as shown in the following illustration.

The Communications palette consists of the following subpalettes:

• TCP

• UDP

• DDE (Windows only)

• OLE (Windows only)

• HiQ

If you have LabVIEW for the Macintosh, the following additional 
subpalettes are available:

• Apple Event

• Program to Program Communications
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If you have a computer running a UNIX operating system and 
LabVIEW, the following additional subpalette is available:

• Named Pipes

LabVIEW for Windows and LabVIEW for UNIX also include the 
System Exec VI.

You can find information about these LabVIEW features online by 
using the LabVIEW Help window (Help»Show Help). When you place 
the cursor on a VI icon, the wiring diagram and parameter names for 
that VI appear in the Help window. You can also find information for 
front panel controls or indicators by placing the cursor over the control 
or indicator with the Help window open. 

In addition to the Help window, LabVIEW has more extensive online 
information available. To access this information, select Help»Online 
Reference. For most block diagram objects, you can select Online 
Reference from the object’s pop-up menu to access the online 
description.

LabVIEW Communication VIs and Functions Overview

For the purpose of this discussion, networking refers to communication 
between multiple processes. The processes can optionally run on 
separate computers. This communication usually occurs over a 
hardware network, such as ethernet or LocalTalk.

One main use for networking in software applications is to allow one or 
more applications to use the services of another application. For 
example, the application providing services (the server) could be either 
a data collection application running on a dedicated computer, or a 
database program providing information for other applications.

The purpose of this discussion is to introduce you to the terminology 
used in networking and communication applications, and to give you an 
overview of how to program networked applications.

Introduction to Communication Protocols

For communication between processes to work, the processes must use 
a common communications language, referred to as a protocol.
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A communication protocol lets you specify the data that you want to 
send or receive and the location of the destination or source, without 
having to worry about how the data gets there. The protocol translates 
your commands into data that network drivers can accept. The network 
drivers then take care of transferring data across the network as 
appropriate.

Several networking protocols have emerged as accepted standards for 
communications. In general, one protocol is not compatible with a 
different protocol. Thus, in communication applications, one of the first 
things you must do is decide which protocol to use. If you want to 
communicate with an existing, off the shelf application, then you have 
to work within the protocols supported by that application.

When you are actually writing the application, you have more 
flexibility in choosing a protocol. Factors that affect your protocol 
choice include the type of machines the processes will run on, the kind 
of hardware network you have available, and the complexity of the 
communication that your application will need.

Several protocols are built into LabVIEW, some of which are specific 
to a type of computer. LabVIEW uses the following protocols to 
communicate between computers:

• TCP—Available on all computers

• UDP—Available on all computers

• DDE—Available on the PC, for communication between Windows 
applications

• OLE—Available for use with Windows 95 and Windows NT

• AppleEvents—Available on the Macintosh, for sending messages 
between Macintosh applications

• PPC—Available on the Macintosh, for sending and receiving data 
between Macintosh applications

Each protocol is different, especially in the way they refer to the 
network location of a remote application. They are incompatible with 
each other, so if you want to communicate between a Macintosh and a 
PC, you must use a protocol compatible with both, such as TCP. 

Other communication options provided by LabVIEW include:

• System Exec VI, which allows you to execute a system level 
command. There are actually two System Exec VIs, one for use 
with all versions of Windows, the other with Sun and HP-UX. 
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• Named Pipes, available on UNIX only

• HiQ®, available on the Macintosh and PC only

File Sharing vs Communication Protocols

Before you get too deeply involved in communication protocols, 
consider whether another approach is more appropriate for your 
application. For instance, consider an application where a dedicated 
system acquires data and you want the data recorded on a different 
computer.

You could write an application that uses networking protocols to send 
data from the acquisition computer to the data repository machine, 
where a separate application collects the data and stores it on disk.

A simpler method is to use the filesharing capabilities available on most 
networked computers. With filesharing, drivers that are part of the 
operating system let you connect to other machines. The remote 
machine’s disk storage is treated as an extension of your own disk 
storage. Once you connect two systems, filesharing usually makes this 
connection transparent, so that any application can write to the remote 
disk as if connected locally.

Filesharing is frequently the simplest method for transferring data 
between machines.

Client/Server Model 

The client/server model is a common model for networked applications. 
In the client/server model, one set of processes (clients) request services 
from another set of processes (servers).

For example, in your application you could set up a dedicated computer 
for acquiring measurements from the real world. The computer acts as 
a server when it provides data to other computers on request. It acts as 
a client when it requests another application, such as a database 
program, to record the data that it acquires.

In LabVIEW, you can use client and server applications with all 
protocols except Macintosh AppleEvents. You can use AppleEvents to 
send commands to other applications. You cannot set up a command 
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server in LabVIEW using AppleEvents. If you need server capabilities 
on the Macintosh, use either TCP, UDP or PPC.

A General Model for a Client
The following block diagram shows what a simplified model for a client 
looks like in LabVIEW.

In the preceding diagram, LabVIEW first opens a connection to a 
server. It then sends a command to the server, gets a response back, and 
closes the connection to the server. Finally, it reports any errors that 
occurred during the communication process.

For higher performance, you can process multiple commands once the 
connection is open. After the commands are executed, you can close the 
connection.

This basic block diagram structure serves as a model and is used 
elsewhere in this manual to demonstrate how to implement a given 
protocol in LabVIEW.



Chapter 49 Introduction to LabVIEW Communication VIs and Functions

© National Instruments Corporation 49-7 LabVIEW Function and VI Reference Manual

A General Model for a Server
The following block diagram shows a simplified model for a server in 
LabVIEW.

In the preceding diagram, LabVIEW first initializes the server. If the 
initialization is successful, LabVIEW goes into a loop, where it waits 
for a connection. Once the connection is made, LabVIEW waits to 
receive a command. LabVIEW executes the command and returns the 
results. The connection is then closed. LabVIEW repeats this entire 
process until it is shut down locally by pressing a stop button on the 
front panel, or remotely by sending a command to shut the VI down.

This VI does not report errors. It may send back a response indicating 
that a command is invalid, but it does not display a dialog when an error 
occurs. Because a server might be unattended, consider carefully how 
the server should handle errors. You probably do not want a dialog box 
to be displayed, because that requires user interaction at the server 
(someone would have to press the OK button). However, you might 
want LabVIEW to write a log of transactions and errors to a file or a 
string.

You can increase performance by allowing the connection to stay open, 
so that you can receive multiple commands, but this blocks others 
clients from connecting until the current client disconnects. If the 
protocol supports multiple simultaneous connections, you can 
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restructure LabVIEW to handle multiple clients simultaneously, as 
shown in the following diagram.

The preceding diagram uses LabVIEW’s multitasking capabilities to 
run two loops simultaneously. One loop continuously waits for a 
connection. When a connection is received, it is added to a queue. The 
other loop checks each of the open connections and executes any 
commands that have been received. If an error occurs on one of the 
connections, the connection is disconnected. When the user aborts the 
server, all open connections are closed. This basic block diagram 
structure is a model which is used elsewhere in this manual to 
demonstrate how to implement a given protocol in LabVIEW.

TCP/IP (all platforms)

TCP/IP is a suite of communication protocols, originally developed for 
the Defense Advanced Research Projects Agency (DARPA). Since its 
development, it has become widely accepted, and is available on a 
number of computer systems.
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The name TCP/IP comes from two of the best known protocols of the 
suite, the Transmission Control Protocol (TCP) and the Internet 
Protocol (IP). TCP, IP, and the User Datagram Protocol (UDP) are the 
basic tools for network communication.

TCP/IP enables communication over single networks or multiple 
interconnected networks, which are known as an internetwork or 
internet. The individual networks can be separated by great 
geographical distances. TCP/IP routes data from one network or 
internet computer to another. Because TCP/IP is available on most 
computers, it can transfer information between diverse systems.

Internet Protocol (IP) transmits data across the network. This low level 
protocol takes data of a limited size and sends it as a datagram across 
the network. IP is rarely used directly by applications, because it does 
not guarantee that the data will arrive at the other end. Also, when you 
send several datagrams they sometimes arrive out of order, or are 
delivered multiple times, depending on how the network transfer 
occurs. UDP, which is built on top of IP, has similar problems. 

TCP is a higher level protocol that uses IP to transfer data. TCP breaks 
data into components that IP can manage. It also provides error 
detection and ensures that data arrives in order without duplication. For 
these reasons, TCP is usually the best choice for network applications.

Internet Addresses
Each host on an IP network has a unique 32-bit internet address. This 
address identifies the network on the internet to which the host is 
attached, and the specific computer on that network. You use this 
address to identify the sender or receiver of data. IP places the address 
in the datagram headers, so that each datagram is routed correctly.

One way of describing this 32-bit address is the IP dotted decimal 
notation. This divides the 32-bit address into four 8-bit numbers. The 
address is written as the four integers, separated by decimal points. For 
example, the 32-bit address

10000100     00001101     00000010    00011110

is written in dotted decimal notation as 

132.13.2.30

Another way of using the 32-bit address is by names that are mapped to 
the IP address. Network drivers usually perform this mapping by 
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consulting a local hosts file that contains name to address mappings, or 
consulting a larger database using the Domain Name System to query 
other computer systems for the address for a given name. Your network 
configuration dictates the exact mechanism for this process, which is 
known as hostname resolution.

Setup

Before you can use TCP/IP, you need to make sure that you have the 
right setup. This setup varies, depending on the computer you use.

Setup for Your System

UNIX
TCP/IP support is built-in. Assuming your network is configured 
properly, no additional setup for LabVIEW is necessary.

Macintosh
TCP/IP is built in to Macintosh operating system version 7.5 and later. 
To use TCP/IP with an earlier system, you need to install the MacTCP 
driver software, available from the Apple Programmer Developer 
Association (APDA). You can contact APDA at (800) 282-2732 for 
information on licensing the MacTCP driver. LabVIEW also works 
with Open Transport.

Windows 3.x
To use TCP/IP, you must install an ethernet board along with its 
low-level driver. In addition, you must purchase and install TCP/IP 
software that includes a Windows Sockets (WinSock) DLL conforming 
to standard 1.1. WinSock is a standard interface that enables application 
communication with a variety of network drivers. Several vendors 
provide network software that includes the WinSock DLL. Install the 
ethernet board, the board drivers, and the WinSock DLL according to 
the software vendor instructions.

Several vendors supply WinSock drivers that work with a number of 
boards. You can contact the vendor of your board to inquire if they offer 
a WinSock DLL you can use with the board. Install the WinSock DLL 
according to vendor instructions.
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National Instruments has tested a number of WinSock DLLs to verify 
which work correctly. These tests showed that many DLLs do not fully 
comply with the standard, so you may want to try a demo version of a 
DLL before you buy the real version. You can usually obtain a demo 
version from the manufacturer. Most demo versions are fully 
functional, but they expire after a certain amount of time.

If you have access to the internet, several of these demos are available 
by anonymous ftp from sunsite.unc.edu. in the directory 
/pub/micro/pc-stuff/ms-windows/winsock/packages. Refer to 
your LabVIEW Release Notes for a detailed list of WinSock DLLs 
tested by National Instruments.

Windows 95 and Windows NT
TCP support is built-in to Windows NT. You do not need to use a 
third-party DLL to communicate using TCP.

LabVIEW and TCP/IP
You can use the TCP/IP suite of protocols with LabVIEW on all 
platforms. LabVIEW has a set of TCP and UDP VIs that you can use to 
create client or server VIs.

TCP versus UDP
If you are writing both the client and server, and your system can use 
TCP/IP, then TCP is probably the best protocol to use because it is a 
reliable, connection-based protocol. UDP is a connectionless protocol 
with higher performance, but it does not ensure reliable transmission of 
data. 

TCP Client Example
The following discussion is a generalized description of how to use the 
components of the Client block diagram model with the TCP protocol.

Use the TCP Open Connection VI to open a connection to a server. You 
must specify the internet address of the server, as well as the port for 
the server. The address identifies a computer on the network. The port 
is an additional number that identifies a communication channel on the 
computer that the server uses to listen for communication requests. 
When you create a TCP server, you specify the port that you want the 
server to use for communication.
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To execute a command on the server, use the TCP Write VI to send the 
command to the server. You then use the TCP Read VI to read back 
results from the server. With the TCP Read VI, you must specify the 
number of characters you want to read. This can be awkward, because 
the length of the response may vary. The server can have the same 
problem with the command, because the length of a command can vary.

The following are several methods you can use to address varying sized 
commands:

• Precede the command and the result with a fixed size parameter that 
specifies the size of the command or result. In this case, read the 
size parameter, and then read the number of characters specified by 
the size. This option is efficient and flexible. 

• Make each command and result a fixed size. When a command is 
smaller than the size, you can pad it out to the fixed size.

• Follow each command and result with a specific terminating 
character. To read the data, you then need to read data in small 
chunks until you get the terminating character.

Use the TCP Close Connection VI to close the connection to the server.

Timeouts and Errors
The preceding section discussed communication protocol for the server. 
When you design a network application consider carefully what should 
happen if something fails. For example, if the server crashes, how 
would each of the client VIs handle it? 

One solution is to make sure that each VI has a timeout. This way, if 
something fails to produce results, after a certain amount of time, the 
client will continue execution. In continuing, the client can try to 
reestablish execution, or it can report the error, and if necessary, shut 
the client application down gracefully.

TCP Server Example
The following discussion explains how you can use TCP to fulfill each 
component of the general server model.

No initialization is necessary with TCP, so this step can be left out.
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Use the TCP Listen VI to wait for a connection. You must specify the 
port that will be used for communication. This port must be the same 
port that the client will attempt to connect. For more information, see 
the TCP Client Example section in this chapter.

If a connection is established, read from that port to retrieve a 
command. As discussed in the TCP Client example, you must decide the 
format for commands. If commands are preceded by a length field, first 
read the length field, and then read the amount of data indicated by the 
length field.

Execution of a command should be protocol independent, because it is 
done on the local computer. When finished, pass the results to the next 
stage, where they are transmitted to the client.

Use the TCP Write VI to return results. As discussed in the TCP Client 
example, the data must be in a form that the client can accept.

Use the TCP Close Connection VI to close the connection.

This step can be left out with TCP, because everything is finished after 
you close the connection.

TCP Server with Multiple Connections
TCP handles multiple connections easily. You can use the methods 
described in the preceding section to implement the components of a 
server with multiple connections.

DDE (Windows Only)

Dynamic Data Exchange (DDE) is a protocol for exchanging data 
between Windows applications.

In TCP/IP communications, applications open a line of communication 
and then transfer raw data. DDE works at a higher level, where 
applications send messages to each other to exchange information. One 
simple message is to send a command to another application. Most of 
the other messages deal with transferring data, where the data is 
referenced by name.
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A DDE client initiates a conversation with another application (a DDE 
server) by sending a connect message. After establishing a connection, 
the client can send commands to the server and change or request the 
value of data that the server manages.

A client can request data from a server by a request or an advise. The 
client uses a request to ask for the current value of the data. If a client 
wants to monitor a value over a period of time, the client must request 
to be advised of changes. By asking to be advised of data value, the 
client establishes a link between the client and server through which the 
server notifies the client when the data changes. The client can stop 
monitoring the value of the data by telling the server to stop the advise 
link.

When the DDE communication for a conversation is complete, the 
client sends a close conversation message to the server.

DDE is most appropriate for communication with standard off the shelf 
applications such as Microsoft Excel.

With LabVIEW you can create VIs that act as clients to other 
applications (meaning they request or send data to other applications). 
You can also create VIs that act as servers that provide named 
information for access by other applications. As a server, LabVIEW 
does not use connection-based communication. Instead, you provide 
named information to other applications, which can then read or set the 
values of that information by name. 

Services, Topics, and Data Items
With TCP/IP, you identify the process you want to talk to by its 
computer address and a port number. With DDE, you identify the 
application you want to talk to by referencing the name of a service and 
a topic. The server decides on arbitrary service and topic names. A 
given server generally uses its application name for the service, but not 
necessarily. That server can offer several topics that it is willing to 
communicate. With Excel, for example, the topic might be the name of 
a spreadsheet.

To communicate with a server, first find the names of the service and 
topic that you want to discuss. Then open a conversation using these 
two names to identify the server.

Unless you are going to send a command to the server, you usually work 
with data items that the server is willing to talk about. You can treat 
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these as a list of variables that the server lets you manipulate. You can 
change variables by name, supplying a new value for the variable. Or, 
you can request the values of variables by name.

Examples of Client Communication with Excel
Each application that supports DDE has a different set of services, 
topics, and data items that it can talk about. For example, two different 
spreadsheet programs can take very different approaches to how they 
specify spreadsheet cells. To find out what a given application supports, 
consult the documentation that came with that application.

Microsoft Excel, a popular spreadsheet program for Windows, has DDE 
support. You can use DDE to send commands to Excel. You can also 
manipulate and read spreadsheet data by name. For more information 
on how to use DDE with Excel, refer to the Microsoft Excel User’s 

Guide 2.

With Excel, the service name is Excel. For the topic, you use the name 
of an open document, such as spreadsheet document, or the word 
System.

If you use the name System, you can request information about the 
status of Excel, or send general commands to Excel (commands that are 
not directed to a specific spreadsheet). For instance, for the topic 
System, Excel will talk about items such as Status, which will have a 
value of Busy if Excel is busy, or Ready if Excel is ready to execute 
commands). Another, more useful data item you can use when the topic 
is Status is Topics, which returns a list of topics Excel will talk about, 
including all open spreadsheet documents and the System topic.

The following VI shows how you can use the Topics command in 
LabVIEW. The value returned is a string containing the names of the 
open spreadsheets and the work Excel.
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Another way you can use the System topic with Excel is to instruct 
Excel to open a specific document. To do this, you use the DDE 
Execute.vi to send an Excel Macro to Excel that instructs Excel to open 
the document, as shown in the following LabVIEW diagram.

After you open a spreadsheet file, you can send commands to the 
spreadsheet to read cell values. In this case, your topic is the 
spreadsheet document name. The item is the name of a cell, a range of 
cells, or a named section of a spreadsheet. For example, in the following 
diagram LabVIEW can retrieve the value in the cell at row one column 
one. It then acquires a sample from the specified channel, and sends the 
resulting sample back to Excel.

LabVIEW VIs as DDE Servers
You can create LabVIEW VIs that act as servers for data items. The 
general concept is that a LabVIEW VI indicates that it is willing to 
provide information regarding a specific service in topic. LabVIEW can 
use any name for the service and topic name. It might specify the 
service name to be the name of the application (LabVIEW), and the topic 
name to be either the name of the Server VI, or a general classification 
for the data it provides, such as Lab Data.
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The Server VI then registers data items for a given service that it will 
talk about. LabVIEW remembers the data names and their values, and 
handles communication with other applications regarding the data. 
When the server VI changes the value of data that is registered for DDE 
communication, LabVIEW notifies any client applications that have 
requested notification concerning that data. In the same way, if another 
application sends a Poke message to change the value of a data item, 
LabVIEW changes this value.

You cannot use the DDE Execute Command with a LabVIEW VI acting 
as a server. If you want to send a command to a VI, you must send the 
command using data items.

Also, notice that LabVIEW does not currently have anything like the 
System topic that Excel provides. The LabVIEW application is not 
itself a server to which you can send commands or request status 
information. It is important to understand that LabVIEW VIs act as 
servers and that at this time LabVIEW does not itself provide any 
services to other applications.

The following example shows how to create a DDE Server VI that 
provides data to other client applications. In this case, the data is a 
random number. You can easily replace the random number with real 
world data from data acquisition boards or devices connected to the 
computer by GPIB, VXI, or serial connections.

The VI in the preceding diagram registers a server with LabVIEW. The 
VI registers an item that it is willing to provide to clients. In the loop, 
the VI periodically sets the value of the item. As mentioned earlier, 
LabVIEW notifies other applications that data is available. When the 
loop is complete, the VI finishes by unregistering the item and 
unregistering the server.
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The clients for this VI can be any applications that understand DDE, 
including other LabVIEW VIs. The following diagram illustrates a 
client to the VI shown in the previous diagram. It is important that the 
service, topic, and item names are the same as the ones used by the 
server.

Requesting Data versus Advising Data
The previous client example used the DDE Request VI in a loop to 
retrieve data. With DDE Request, the data is retrieved immediately, 
regardless of whether you have seen the data before. If the server and 
the client do not loop at exactly the same rate, you can duplicate or miss 
data.
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One way to avoid duplicating data is to use the DDE Advise VIs to 
request notification of changes in the value of a data item. The 
following diagram shows how you can implement this scheme.

In the preceding diagram, LabVIEW opens a conversation. It then uses 
the DDE Advise Start VI to request notification of changes in the value 
of a data item. Every time through the loop, LabVIEW calls the DDE 
Advise Check VI, which waits for a data item to change its value. When 
the loop is finished, LabVIEW ends the advise loop by calling the DDE 
Advise Stop VI, and closing the conversation.

Synchronization of Data
The client server examples in the preceding section work well for 
monitoring data. However, in these examples there is no assurance that 
the client receives all the data that the server sends. Even with the DDE 
Advise loop, if the client does not check for a data change frequently 
enough, the client can miss a data value that the server provided.

In some applications, missed data is not a problem. For example, if you 
are monitoring a data acquisition system, missed data may not cause 
problems when you are observing general trends. In other applications, 
you may want to ensure that no data is missed.
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One major difference between TCP and DDE is that TCP queues data 
so that you do not miss it and you get it in the correct order. DDE does 
not provide this service.

In DDE, you can set up a separate item, which the client uses to 
acknowledge that it has received the latest data. You then update the 
acquired data item to contain a new point only when the client 
acknowledges receipt of the previous data. 

For example, you can modify the server example shown in the 
Requesting Data versus Advising Data section of this chapter to set a 
state item to a specific value after it has updated the acquired data item. 
The server then monitors the state item until the client acknowledges 
receipt of data. This modification is shown in the following block 
diagram.

A client for this server, as shown in the following diagram, monitors the 
state item until it changes to data available. At that point, the client 
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reads the data from the acquired data item provided by the server, and 
then updates the state item to data read value.

This technique makes it possible to synchronize data transfer between a 
server and a single client. However, it has some shortcomings. First, 
you can have only one client. Multiple clients can conflict with one 
another. For example, one client might receive the data and 
acknowledge it before the other client notices that new data is 
available.You can build more complicated DDE diagrams to deal with 
this problem, but they quickly become awkward. For applications that 
involve only a single client, this is not a problem.

 Another problem with this technique of synchronizing communication 
is that the speed of your acquisition becomes controlled by the rate at 
which you transfer data. You can address this issue by breaking the 
acquisition and the transmission into separate loops. The acquisition 
can queue data which the transmission loop would send. This is similar 
to the TCP Server example in which the server handles multiple 
connections.

If your application needs reliable synchronization of data transfer, you 
may want to use TCP/IP instead, because it provides queueing, 
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acknowledgment of data transfer, and support for multiple connections 
at the driver level.

Networked DDE
You can use DDE to communicate with applications on the same 
computer or to communicate over the network with applications on 
different computers. To use networked DDE, you must be running 
Windows for Workgroups 3.1 or greater, Windows 95, or Windows NT. 
The standard version of Windows 3.1 does not support networked DDE.

Each computer under Windows for Workgroups has a network 
computer name. You configure this name using the Network control 
panel.

When you communicate over the network, the meaning of the service 
and topic strings change. The service name changes to indicate that you 
want to use networked DDE, and includes the name of the computer you 
want to communicate with. The service name is of the following form:

\\computer-name\ndde$

You can supply any arbitrary name for the topic. You then edit the 
SYSTEM.INI file to associate this topic name with the actual service and 
topic that will be used on the remote computer. This configuration also 
includes parameters that configure the network connection. Following 
is an example of what this section would look like:

[DDE Shares]

topicname = appname, realtopic, ,31,,0,,0,0,0

The topicname is the name that your client VI uses for the topic. 
Appname is the name of the remote application. With networked DDE, 
this must be the same as the service name. Realtopic is the topic to use 
on the remote computer. The remaining parameters configure the way 
DDE works. Use the parameters as listed in the preceding example. The 
meaning of these parameters is not documented by Microsoft.

For example, if you want two computers running LabVIEW to 
communicate using networked DDE, the server needs to use LabVIEW 
for the service name, and a name, such as labdata, for the topic.

Assuming the server computer name is Lab, the client tries to open a 
conversation using the \\Lab\ndde$ for the service. For the topic, the 
client can use a name of remotelab.
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For this to work, you must edit the SYSTEM.INI file of the server 
computer to have the following line in the [DDEShares] section:

remotelab=LabVIEW,labdata,,31,,0,,0,0,0

For Windows NT, launch DDEShare.exe, which is located in the 
winnt/system 32 directory. Choose Shares»DDE Shares… and then 
select Add a Share… to register the service name and topic name on the 
server.For more information, see the Using NetDDE section of 
Chapter 52, DDE VIs.

OLE Automation (Windows Only)

OLE (Object Linking and Embedding) Automation is a protocol for 
accessing the functions and methods of one Windows application and 
making them available for use by another Windows application. OLE 
Automation works with Windows 95 and Windows NT only, not 
Windows 3.x.

If an application exposes objects and provides a method of operating on 
those objects, it is called an OLE automation server. Applications that 
use the methods exposed by another application are OLE automation 

clients/controllers. 

LabVIEW contains VIs that enable it to become an automation client. 
Helper VIs are provided.

AppleEvents (Macintosh Only)

AppleEvents is a Macintosh specific protocol that allows applications 
to communicate with each other. As with DDE, it is a protocol in which 
applications use a message to request actions or return information from 
other applications. An application can send a message to itself, an 
application on the same computer, or an application running on a 
computer elsewhere on the network.

You can use AppleEvents to send other commands to other 
applications, such as open or print, or to send data requests, such as 
spreadsheet information.

LabVIEW contains VIs for sending some of commands common to 
most applications. The VIs are easy to use, and do not require detailed 
knowledge of how AppleEvents work.
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These VIs use the low level AESend VI to send AppleEvents. Apple has 
defined a large vocabulary for messages to help standardize 
AppleEvent communication. You can combine words in this vocabulary 
to build complex messages. You can use this VI to send arbitrary 
AppleEvents to other applications. However, creating and sending 
AppleEvents at this level is complicated and requires detailed 
understanding of AppleEvents. See Inside Macintosh and the AppleEvent 

Registry.

Client Server Model
You cannot use the AppleEvent VIs to create LabVIEW diagrams that 
behave as servers. The VIs are used to send messages to other 
applications. If you need diagram-based server capabilities, you must 
use TCP or PPC.

LabVIEW itself acts as an AppleEvent server, in that it understands and 
responds to a set of AppleEvents. Specifically, using AppleEvents, you 
can instruct LabVIEW to open VIs, print them, run them, and close 
them. You can ask LabVIEW whether a given VI is running. You can 
also tell LabVIEW to quit.

Using these server capabilities, you can instruct other LabVIEW 
applications to run VIs, and control LabVIEW remotely. You can also 
command LabVIEW to send messages to itself, instructing the loading 
of specific VIs. For example, in large applications where memory is 
limited, you can replace subVI calls with calls to the AESend Open, 
Run, Close VI to load and run VIs as necessary. Notice that when you 
run a VI this way its front panel opens, just as if you had selected 
File»Open....

AppleEvent Client Examples

Launching Other Applications
To send a message to an application, that application must be running. 
You can use the AESend Finder Open VI to launch another application. 
This VI sends a message to the Finder. The Finder is, in itself, an 
application that understands a limited number of AppleEvents. The 
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following simple example shows how you can use AppleEvents to 
launch Teach Text with a specific text file.

If the application is on a remote computer, then you must specify the 
location of that computer. You can use inputs to the AESend Finder 
Open VI to specify the network zone and the server name of the 
computer with which you want to communicate. If the network zone 
and server name are not specified, as in the preceding application, they 
default to those of the current computer.

Notice that if you try to send messages to another computer, you are 
automatically prompted to log onto that computer. There is no method 
for avoiding this prompt, because it is built-in to the operating system. 
This can cause problems when you want your application to run on an 
unattended computer system.

Sending Events to Other Applications
Once an application is running, you can send messages to that 
application using other AppleEvents. Not all applications support 
AppleEvents, and those that do may not support every published 
AppleEvent. To find out which AppleEvents an application supports, 
consult the documentation that comes with that application.

If the application understands AppleEvents, you call an AppleEvent VI 
with the Target ID for the application. A Target ID is a cluster that 
describes a target location on the network (zone, server, and supporting 
application). You do not need to worry about the exact structure of this 
cluster because LabVIEW provides VIs that you can use to generate a 
Target ID.

There are two ways to create a Target ID. You can use the Get Target 
ID VI to programmatically create a Target ID based upon the 
application name and network location. Or, you can use the PPC 
Browser VI, which displays a dialog box listing applications on the 
network that are aware of AppleEvents. You interactively select from 
this list to create a Target ID.
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You can also use the PPC Browser VI to find out if another application 
uses AppleEvents. If you run the VI and select the computer that is 
running the application, the dialog box will list the application if it is 
AppleEvent aware.

In the following diagram, LabVIEW interactively selects an 
AppleEvent aware application on the network and tells it to open a 
document. In this case, LabVIEW is telling the application to open a VI.

Dynamically Loading and Running a VI
The AESend Open, Run, Close VI sends messages asking LabVIEW to 
run a VI. First, it sends the Open Document Message and LabVIEW 
opens a VI. Then, the Open Run Close VI sends the LabVIEW Run VI 
message and LabVIEW runs the specified VI. Next, Open Run Close 
sends the VI Active? message, and LabVIEW returns the status of a 
specified VI, until the VI is no longer running. Finally, the VI sends the 
Close VI message.

Assuming the target LabVIEW is on another computer, you could use 
the following diagram to load and run the VI. If you are sending it to the 
current LabVIEW, you do not need the PPC Browser VI.
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PPC (Macintosh Only)

Program to Program Communication (PPC) is a Macintosh protocol for 
transferring blocks of data between applications. You can use it to 
create VIs that act as clients or servers. Although supported by all 
Macintoshes running System 7.x, it is not commonly used by most 
Macintosh applications. Instead, most Macintosh applications use 
AppleEvents, a high-level protocol for sending commands between 
applications, to communicate.

Although PPC is not as commonly supported as AppleEvents, it does 
provide some advantages. Because it is at a lower level, it provides 
better performance than AppleEvents. Also, in LabVIEW you can 
create VIs that use PPC to act as clients or servers. You cannot create 
diagrams that act as AppleEvent servers. 

PPC is similar in structure to TCP, in terms of both server and client 
applications. The PPC method for specifying a remote application is 
different from the TCP method. Other than that, the two protocols 
provide similar performance and features. Both protocols handle 
queueing and reliable transmission of data. You can use both protocols 
with multiple open connections.

In deciding between TCP and PPC, the main point to consider is which 
platforms you plan to run your VIs on, and with which platforms you 
will communicate. If your application is Macintosh only, PPC is a good 
choice, because it is built-in to the operating system. TCP is built-in to 
Macintosh operating system version 7.5. To use TCP with an earlier 
system you must buy a separate TCP/IP driver from Apple. If buying 
the separate driver is not an issue, then you may want to use TCP, 
because the TCP interface is simpler than PPC. PPC uses some fairly 
complicated data structures to describe addresses.

If your application must communicate with other platforms or run on 
other platforms, then you should use TCP/IP.

Ports, Target IDs, and Sessions
To communicate using PPC, both clients and servers must open ports 
that they use for subsequent communication. The Open Port VI opens 
the port using a cluster that contains, among other things, the name that 
you want to use for the port.
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Ports are used to distinguish between different services that an 
application provides. Each application can have multiple ports open 
simultaneously.

Each port can support several simultaneous sessions or conversations. 
To open a session, a client uses a Target ID indicating the location of 
the server. PPC uses the same type of Target ID that the AppleEvent VIs 
use. You can use the PPC Browser or the Get Target ID VIs to generate 
the Target ID for the remote application.

A server waits for clients to attempt to open a session by using the PPC 
Inform Session VI. The server can accept or reject the session by using 
the PPC Accept Session VI. 

A client can attempt to open a session with a server by using the PPC 
Start Session VI.

After the session is started, you can use the PPC Read and PPC Write 
VIs to transfer data. You can close a session using PPC End Session, 
and you can close a port using the PPC Close Port VI.

PPC Client Example
The following discussion explains how you can use PPC to fulfill each 
component of the general Client model.

Use the PPC Open Connection and PPC Open Session VIs to open a 
connection to a server. This requires that you specify the Target ID of 
the server, which you can get by using either the PPC Browser VI or the 
Get Target ID VI. The end result is a port refnum and a session refnum, 
which are used to communicate with the server.

To execute a command on the server, use the PPC Write VI to send the 
command to the server. Next, use the PPC Read VI to read the results 
from the server. With the PPC Read VI, you must specify the number 
of characters you want to read. As with TCP, this can be awkward, 
because the length of the response can vary. The server can have a 
similar problem, because the length of a command may vary.

Following are several methods for addressing the problem of varying 
sized commands. These methods can also be used with TCP.

• Precede the command and the result with a fixed size parameter that 
specifies the size of the command or result. In this case, read the 
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size parameter, and then read the number of characters specified by 
the size. This option is efficient and flexible. 

• Make each command and result a fixed size. When a command is 
smaller than the size, you can pad it out to the fixed size.

• Follow each command and result with a specific terminating 
character. To read the data, you then need to read data in small 
chunks until you get the terminating character.

Use the PPC Close Session and PPC Close Connection VIs to close the 
connection to the server.

PPC Server Example
The following discussion explains how you can use PPC to fulfill each 
component of the general Server.

Use PPC Open Port in the initialization phase to open a communication 
port.

Use the PPC Inform Session VI to wait for a connection. With PPC, you 
can either automatically accept incoming connections, or you can 
choose to accept or reject the session by using the PPC Accept Session 
VI. This process of waiting for a session and then approving the session 
allows you to screen connections.

When a connection is established, you can read from that session to 
retrieve a command. As was discussed in the PPC Client Example 
section, you must decide the format for commands. If commands are 
preceded by a length field, then you need to first read the length field, 
and then read that amount of data.

Execution of a command should be protocol independent, because it is 
something done on the local computer. When finished, you pass the 
results to the next stage, where they are transmitted to the client.

Use the PPC Write VI to return the result. As discussed in the PPC 

Client Example section, the data must be formatted in a form that the 
client can accept.

Use the PPC Close Session VI to close the connection.
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Finally, when the server is finished, Use the PPC Close Port VI to close 
the port that you opened in the initialization phase.

PPC Server with Multiple Connections
PPC handles multiple sessions and multiple ports easily. The methods 
for implementing each component of a server, as described in the 
preceding section, also work for a server with multiple connections.
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Chapter

50TCP VIs

This chapter discusses Internet Protocol (IP), Transmission Control 
Protocol (TCP), and internet addresses, and describes the LabVIEW 
TCP VIs. Refer to Chapter 49, Introduction to LabVIEW Communication 

VIs and Functions, for an overview of TCP/IP and examples of TCP 
client/server applications. 

The following illustration shows the TCP palette, which you access by 
selecting Functions»Communication»TCP.

For examples of how to use the TCP VIs, see the examples in 
examples\comm\tcpex.llb.

Internet Protocol (IP)

Internet Protocol (IP) performs the low-level service of packaging data 
into components called datagrams. A datagram contains, among other 
things, the data and a header indicating the source and destination 
addresses. IP determines the correct path for the datagram to take across 
the network or internet, and sends the data to the specified destination.

The original host may not know the complete path that the data will 
take. Using the header, any host on the network can route the data to the 
destination, either directly or by forwarding it to another host. Because 
some systems have different transfer capabilities, IP can fragment 
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datagrams into smaller segments as necessary; when the data arrives at 
the destination, IP automatically reassembles the data into its original 
form.

IP makes a best-effort attempt to deliver data, but cannot guarantee 
delivery. Also, because IP routes each datagram separately, they may 
arrive out of sequence. In fact, IP may deliver a single packet more than 
once if it is duplicated in transmission. IP does not determine the order 
of packets. Instead, higher-level protocols layered above IP order the 
packets and ensure reliable delivery. For this reason, IP is rarely used 
directly; instead, TCP and UDP, which are built on top of IP, are most 
often used to transfer information.

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) ensures reliable transmission 
across networks, delivering data in sequence without errors, loss, or 
duplication. When you pass data to TCP, it attaches additional 
information and gives the data to IP, which puts the data into datagrams 
and transmits it. This process reverses at the receiving end, with TCP 
checking the data for errors, ordering the data correctly, and 
acknowledging successful transmissions. If the sending TCP does not 
receive an acknowledgment, it retransmits the data segment.

Using TCP

TCP is a connection-based protocol, which means that sites must 
establish a connection before transferring data. TCP permits multiple 
simultaneous connections.

You initiate a connection either by waiting for an incoming connection 
or by actively seeking a connection with a specified address. In 
establishing TCP connections, you have to specify both the address and 
a port at that address. A port is represented by a number between 0 and 
65535. With UNIX, port numbers less than 1024 are reserved for 
privileged applications. Different ports at a given address identify 
different services at that address, and make it easier to manage multiple 
simultaneous connections.

You can actively establish a connection with a specific address and port 
using the TCP Open Connection VI. Using this VI, you specify the 
address and port with which you want to communicate. If the 
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connection is successful, the VI returns a connection ID that uniquely 
identifies that connection. Use this connection ID to refer to the 
connection in subsequent VI calls.

You can use two methods to wait for an incoming connection:

• With the first method, you use the TCP Listen VI to create a listener 
and wait for an accepted TCP connection at a specified port. If the 
connection is successful, the VI returns a connection ID and the 
address and port of the remote TCP. 

• With the second method, you use the TCP Create Listener VI to 
create a listener, and then use the Wait on Listener VI to listen for 
and accept new connections. Wait on Listener returns the same 
listener ID that was passed to the VI, as well as the connection ID 
for a connection. When you are finished waiting for new 
connections, you can use TCP Close to close a listener. You can not 
read from or write to a listener. 

The advantage of using the second method is that you can cancel a listen 
operation by calling TCP Close. This is useful in the case where you 
want to listen for a connection without using a timeout, but you want to 
cancel the listen when some other condition becomes true (for example, 
when the user presses a button).

When a connection is established, you can read and write data to the 
remote application using the TCP Read and TCP Write VIs. 

Finally, use the TCP Close Connection VI to close the connection to the 
remote application. Note that if there is unread data and the connection 
closes, that data may be lost. Connected parties should use a higher 
level protocol to determine when to close the connection. Once a 
connection is closed, you may not read or write from it again.
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TCP Errors 

The TCP VIs report errors in clusters as the following illustration 
shows. See the Error Codes manual for a list of the TCP error codes and 
their descriptions.

TCP VI Descriptions

The following TCP VIs are available.

IP To String

Converts an IP network address to a string.

String To IP

Converts a string to an IP network address.
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TCP Close Connection
Closes the connection associated with connection ID.

TCP Create Listener
Creates a listener for a TCP connection.

TCP Listen
Creates a listener and waits for an accepted TCP connection at the specified port.

When a listen on a given port begins, you may not use another TCP Listen VI to listen on 
the same port. For example, suppose a VI has two TCP Listen VIs on its block diagram. 
If you start a listen on port 2222 with the first TCP Listen VI, any attempts to listen on 
port 2222 with the second TCP Listen VI fail.

TCP Open Connection
Attempts to open a TCP connection with the specified address and port.
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TCP Read
Receives up to bytes to read bytes from the specified TCP connection, returning the 
results in data out.

TCP Wait on Listener
Waits for an accepted TCP connection at the specified port.

TCP Write
Writes the string data in to the specified TCP connection.
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Chapter

51UDP VIs

This chapter describes a set of VIs that you can use with User Datagram 
Protocol (UDP), a protocol in the TCP/IP suite for communicating 
across a single network or an interconnected set of networks.

The following illustration shows the UDP VI palette, which you access 
by selecting Functions»Communication»UDP.

UDP Overview

UDP transmits data across networks. UDP can communicate to specific 
processes on a computer. When a process opens a network connection 
to a particular port it only receives datagrams that are addressed to that 
port on that computer. When a process sends a datagram, it must specify 
the computer and port as the destination.

There are several reasons why UDP is rarely used directly. UDP does 
not guarantee data delivery. Each datagram is routed separately, so 
datagrams may arrive out of order, be delivered more than once or not 
delivered at all.

Typically, UDP is used in applications where reliability is not critical. 
For example, an application might transmit informative data to a 
destination frequently enough that a few lost segments of data are not 
problematic.
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Using UDP
UDP is not a connection-based protocol like TCP. This means that a 
connection does not need to be established with a destination before 
sending or receiving data. Instead, the destination for the data is 
specified when each datagram is sent. The system does not report 
transmission errors.

You can use the UDP Open VI to create a connection. A port must be 
associated with a connection when it is created so that incoming data 
can be sent to the appropriate application. The number of 
simultaneously open UDP connections depends on the system. UDP 
Open returns a Network Connection refnum, an opaque token used in 
all subsequent operations pertaining to that connection.

You can use the UDP Write VI to send data to a destination and the UDP 
Read VI to read it. Each write requires a destination address and port. 
Each read contains the source address and port. Packet boundaries are 
preserved. That is, a read never contains data sent in two separate write 
operations.

In theory, you should be able to send data packets of any size. If 
necessary, a packet is disassembled into smaller pieces and sent on its 
way. At their destination, the pieces are reassembled and the packet is 
presented to the requesting process. In practice, systems only allocate a 
certain amount of memory to reassemble packets. A packet that cannot 
be reassembled is thrown away. The largest size packet that can be sent 
without dissassembly depends on the network hardware.

When LabVIEW finishes all communications, calling the UDP Close 
VI frees system resources.

UDP VI Descriptions

The following UDP VIs are available.

UDP Close
Closes the UDP connection specified by connection ID.
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UDP Open
Attempts to open a UDP connection on the given port. Connection ID is an opaque token 
used in all subsequent operations relating to the connection.

UDP Read
Returns a datagram in the string data out that has been received on the UDP connection 
specified by connection ID.

UDP Write
Writes the string data in to the remote UDP connection specified by address and port.
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Chapter

52DDE VIs

This chapter describes the LabVIEW VIs for Dynamic Data Exchange 
(DDE) for Windows 3.1, Windows 95, and Windows NT. These VIs 
execute DDE functions for sharing data with other applications that 
accept DDE connections. 

The following illustration shows the DDE VI palette, which you access 
by selecting Functions»Communication»DDE. 

The DDE palette includes the DDE Server subpalette.

For examples of how to use the DDE VIs, see the examples in 
examples\comm\DDEexamp.llb.

DDE Overview

DDE is a client-controlled message passing protocol. One application, 
the client, passes messages to another application, the server. 

Both applications must be running, and both must give Windows their 
callback function address before DDE communication can begin. The 
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callback function accepts any DDE messages that Windows sends to the 
application. 

The client initiates a conversation with the server by sending a DDE 
connect message. After establishing the conversation, the client can 
send commands or data to the server, or request data from the server. 

A client can request data from a server by a request or an advise. A 
request is a single transfer of data. An advise establishes an active link 
between the two applications. The server then informs the client every 
time the advise value changes. When the client no longer needs the 
changed values, it sends an advise stop message to the server.

When all the DDE communication for the conversation is complete, the 
client sends a close conversation message to the server.

Using DDE as a Client
The Dynamic Data Exchange VIs give LabVIEW full DDE client 
capability. 

To use DDE, you must first establish a conversation using the DDE 
Open Conversation VI. The VI must specify the service and the topic. 
The service usually corresponds to the name of the server application 
and the topic to the active file. DDE messages then carry data to or from 
specific locations in the active file. For more information on how a 
specific application handles topic names and data item locations, 
consult the documentation for that application.

When you have established a conversation, you can send data using the 
DDE Poke VI, send commands using the DDE Execute VI, obtain data 
with the DDE Request VI, or initiate an advise protocol with the DDE 
Advise Start VI. 

The DDE Request VI sends a DDE message to the server every time you 
call it. The server must then check the data requested and return it in 
another DDE message. If your VI checks the value frequently, an advise 
protocol might be more efficient than a request. 

The DDE Advise Start VI creates a local copy of the data value you are 
interested in. When you call the DDE Advise Check VI, the VI returns 
this value without sending any DDE messages. At the same time, the 
server application sends DDE messages every time the value changes, 
so that the local value is always current. If the value seldom changes but 
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is often needed, an advise can significantly reduce the required number 
of DDE messages.

Caution: During a conversation, you must pass the conversation refnum to all other 

DDE VIs involved in that conversation. Windows uses these refnums to 

identify the conversation. If you alter the conversation refnum, or do not 

specify or wire the conversation refnum, the VI will fail. The same is true 

for the advise refnum. If you alter advise refnum, or do not specify or wire 

advise refnum for the DDE Advise Check VI or the DDE Advise Stop VI, 

the VIs will fail and may cause a system failure.

The DDE protocol used by LabVIEW is ASCII based, and the 
transmission is terminated when a null byte is reached. If the binary data 
has a null byte (00) in it, the transmission will end. 

To send a number to another application, you must convert that number 
to a string. In the same way, you must convert numbers received 
through a request or advise from the string format. Use the conversion 
VIs from Functions»String. See Chapter 6, String Functions, earlier in 
this manual for further information on how to use string conversion VIs. 

Stop all advises and close all conversations using DDE Advise Stop and 
DDE Close Conversation after all DDE commands have executed. This 
releases the system resources associated with these VIs.

Using DDE as a Server
The first step to becoming a DDE server is to use the DDE Srv Register 
Service VI to tell Windows what your service name and topic are going 
to be. At this point other applications can open DDE conversations with 
your service.

You can call the DDE Srv Register Service VI multiple times with 
different service names to establish multiple services or multiple times 
with the same service name but different topic names to establish 
multiple topics for one service.

After specifying your service and topic names, you can define items for 
that service using the DDE Srv Register Item VI. After this call, other 
applications can request or poke the item, as well as initiate advises on 
that item. LabVIEW fully manages all these transactions.

To change the value of an item, call the DDE Srv Set Item VI. This VI 
changes the value and informs all clients that have advises on them.
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To monitor whether a client has changed an item with a poke, call the 
DDE Srv Check Item VI. This VI either returns the current value 
immediately or waits until a client changes the value. If a client pokes 
the value before DDE Srv Check Item is called with wait for poke true, 
DDE Srv Check Item returns immediately and reports that the value was 
poked.

You call the DDE Srv Unregister Item VI and the DDE Srv Unregister 
Service VI to close down your DDE server when you are finished. 
LabVIEW automatically disconnects any client conversations 
connected to your server when DDE Srv Unregister Service is called.

Using NetDDE
NetDDE is built into Windows for WorkGroups 3.11, Windows 95 and 
Windows NT. It is also available for Windows 3.1 with an add-on 
package from WonderWare. If you are using Windows 3.1 with the 
WonderWare package, consult the WonderWare documentation on how 
to use NetDDE. 

If you are using Windows for WorkGroups, Windows 95, or Windows 
NT, use the following instructions:

SERVER MACHINE

Windows for Workgroups

Add the following line to the [DDE Shares] section of the file 
system.ini on the server (application receiving DDE commands):

lvdemo = service_name,topic_name,,31,,0,,0,0,0

where

lvdemo can be any name.

service_name is typically the name of the application, such as excel.

topic_name is typically the specific file name, such as sheet1.

Enter other commas and numbers as shown.
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Windows 95

Note: NetDDE is not automatically started by Windows 95. You need to run the 

program\WINDOWS\NETDDE.EXE. (This can be added to the startup 

folder so that it is always started.) 

To set up a NetDDE server on Windows 95:

• Run\WINDOWS\REGEDIT.EXE.

• In the tree display, open the folder My Computer\
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

NetDDE\DDE Shares.

• Create a new DDE Share by selecting Edit»New»Key and give it 
the name lvdemo.

• With the lvdemo key selected, add the required values to the share 
as follows. (For future reference, these keys are just being copied 
from the CHAT$ share but REDEGIT does not allow you cut, copy, or 
paste keys or values.) Use Edit»New to add new values. When you 
create the key, there will a default value named (Default) and a 
value of (value not set). Leave these values alone and add the 
following:

Table 52-1.  Values to Add in Place of Default

Value Type Name Value

Binary Additional item count 00 00 00 00

String Application service_name

String Item service_name

String Password1 service_name

String Password2 service_name

Binary Permissions1 1f 00 00 00

Binary Permissions2 00 00 00 00

String Topic topic_name
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• Close REGEDIT.

• Restart the machine. (NetDDE must be restarted for changes to take 
affect.)

Windows NT

Launch DDEShare.exe, found in the winnt\system32 directory. 
Select from the Shares»DDE Shares»Add a Share... to register the 
service name and topic name on the server.

CLIENT MACHINE 

On the client machine (application initiating DDE conversation) no 
configuration changes are necessary.

Use the following inputs to DDE Open Conversation.vi:

Service: \\machine_name\ndde$

Topic: lvdemo

where:
machine_name specifies the name of the server machine

lvdemo matches the name specified in the [DDE Shares] section on 
the server.

Consider the examples Chart Client.vi and Chart Server.vi 
found in examples\network\ddeexamp.llb. To use those VIs to pass 
information between two computers using NetDDE, you should do the 
following:

Server Machine: 

1. Do not modify any front panel values.

2. In the system.ini file of the Server machine, add the following 
line in the [DDEShares] section:
lvdemo = TestServer,Chart,,31,,0,,0,0,0

Client Machine:

On the front panel, set the controls to the following:
Service = \\machine_name\ndde$
Topic = lvdemo
Item = Random
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DDE Client VI Descriptions

The following DDE Client VIs are available.

DDE Advise Check
Checks an advise value previously established by DDE Advise Start.

DDE Advise Start
Initiates an advise link.

DDE Advise Stop
Cancels an advise link, previously established by DDE Advise Start.

DDE Close Conversation
Closes a DDE conversation.
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DDE Execute
Tells the DDE server to execute command.

DDE Open Conversation
Establishes a connection between LabVIEW and another application. You must call this 
VI before you use any other DDE VIs (except Server VIs).

DDE Poke
Tells the DDE server to put the value data at item.

DDE Request
Initiates a DDE message exchange to obtain the current value of item.
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DDE Server VI Descriptions

You access by selecting Functions»Communication»DDE»DDE Server.

DDE Srv Check Item
Sets the value of a previously defined DDE Item.

DDE Srv Register Item
Establishes a DDE item for the service specified by service refnum.

DDE Srv Register Service
Establishes a DDE service to which clients can connect.

DDE Srv Set Item
Sets the value of a previously defined DDE Item.
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DDE Srv Unregister Item
Removes the specified item from its service. 

Note: DDE clients can no longer access the item after this VI completes.

DDE Srv Unregister Service
Removes the specified service. DDE clients can no longer connect to this service and all 
current conversations will be closed.
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Chapter

53OLE Automation VIs

This chapter discusses the LabVIEW VIs for Object Linking and 
Embedding (OLE) Automation, a feature which allows LabVIEW to 
access objects exposed by automation servers in the system. 

The OLE Automation VI Library contains two levels of VIs. VIs that 
are available on the Communication palette represent the higher level 
of functionality. These VIs use lower level VIs which are hidden from 
the user, providing for a higher level of encapsulation. Helper VIs are 
provided. 

Note: These VIs work under Windows NT and Windows 95 only.

The following illustration shows the OLE Automation VI palette, 
which you access by selecting Functions»Communication»OLE. 

For examples of how to use the OLE Automation VIs, see the examples 
in examples\comm\OLE-xxx.llb.
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OLE Automation Concepts

In the context of Object Linking and Embedding, objects are defined as 
data abstractions exported by an application. You can manipulate these 
objects by using another Windows application. Linking and Embedding 
are two of the methods used to access OLE objects. 

You can use OLE Automation to make the functions and methods of one 
application available for use by other applications. You then access 
these functions or methods, which are usually grouped into objects. 

An application supports automation either as a server or a client. 
Applications that expose objects and provide methods for operating on 
those objects are called OLE automation servers. Applications that use 
the methods exposed by another application are called OLE automation 

clients/controllers. The OLE VIs enable LabVIEW to become an 
automation client. 

Using LabVIEW to Implement OLE Automation 

An OLE object exposes both methods and properties. Methods have the 
ability to modify a wide range of values, whereas properties can set or 
get the value of a specific characteristic of the object. Some servers 
provide a type library listing all exposed objects and the methods and 
properties of each object.

The typical steps in creating a client application using C are as follows:

• Get the IDispatch interface of the Object whose methods you want 
to access.

• Get the DispatchID of the method of that object.

• Invoke the method using the Invoke functions of the IDispatch 
interface, packing all parameters into the parameter list.

In LabVIEW, do as follows:

• Use the Create Automation Refnum VI to get an Automation 
refnum which uniquely defines the IDispatch interface.

• Use the Execute Method VI to execute a method belonging to that 
object. If there is just one parameter, it can be flattened. The type 
descriptors and the flattened string are then passed in as input 
parameters. If there are multiple outputs, they are bundled in a 
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cluster. The resultant cluster is then flattened and wired to the 
correct input of the VI.

The implementation uses DLLs to perform the actual OLE calls. 
Parameters are passed to these DLLs as flattened data.

OLE Automation VI Descriptions

The following OLE Automation VIs are available.

Create Automation Refnum
Given the object name (registered class name) of an OLE object, returns an Automation 
Refnum uniquely identifying the instantiation.

Execute Method
Executes a method.

Get Property
Gets the value of a property.

List Methods or Properties
Lists all the methods or properties of an object.
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List Objects in Type Library
Lists all the objects in a type library.

Release Refnum
Releases the refnum passed in as input.

Set Property
Sets the value of a property.
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Chapter

54AppleEvent VIs

This chapter discusses the LabVIEW VIs for interapplication 
communication (IAC), a feature of Apple Macintosh system software 
version 7 by which Macintosh applications can communicate with each 
other. You can use LabVIEW with two forms of IAC, AppleEvents and 
program-to-program communication (PPC). 

AppleEvents are a high-level method of communication in which 
applications use messages to request other applications to perform 
actions or return information. An application can send these messages 
to itself, other applications on the same machine, or other applications 
located anywhere on a network. Apple has defined a large vocabulary 
for messages to help standardize this form of interapplication 
communication. You can combine words in this vocabulary to form 
very complex messages. This vocabulary is described in detail in the 
AppleEvent Registry, a document available from Apple. Most 
applications written for System 7, including LabVIEW, respond to 
some subset of AppleEvents.

PPC is a low-level form of IAC by which applications send and receive 
blocks of data. PPC provides higher performance than AppleEvents, 
because the overhead required to transmit information is lower. 
However, because PPC does not define what kinds of information you 
can transfer, many applications do not support it. PPC is the best way 
to send large amounts of information between applications that support 
PPC. See Chapter 55, Program to Program Communication VIs, for more 
information about PPC. 
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The following illustration shows the AppleEvent VI palette, which you 
access by selecting Functions:Communication:AppleEvent.

Note: For applications to communicate with IAC, the computer must use system 

software version 7.0 or greater with Program Linking enabled.

For examples of how to use the AppleEvent VIs, see the examples 
located in examples\comm\AE Examples.llb.

AppleEvents

LabVIEW can send and respond to AppleEvents. You can use 
AppleEvent VIs to send AppleEvents. LabVIEW responds to two types 
of AppleEvents: LabVIEW-defined events and a subset of standard 
AppleEvents. See the Sending AppleEvents section of this chapter for 
more information. 

Some of the ways you can use AppleEvents in LabVIEW applications 
are listed on the following page:

• You can command LabVIEW to tell another application (even an 
application on another computer connected by a network) to 
perform an action. For example, LabVIEW can tell a spreadsheet 
program to create a graph. See the Sending AppleEvents section in 
this chapter for details.

• You can use a program such as HyperCard as a front end to instruct 
LabVIEW to run specific VIs.

• You can communicate with and control LabVIEW applications on 
other machines connected by a network by sending them 
instructions to perform specific operations. See the Sending 

AppleEvents section in this chapter for details.

• You can command LabVIEW to send messages to itself, instructing 
itself to load, run, and unload specific VIs. For example, in large 
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applications where memory is tight, you can replace subVI calls 
with a utility VI (the AESend Open, Run, Close VI) and 
dynamically load, run, and unload the VIs. See the Sending 

AppleEvents section in this chapter for details.

The following sections describe in detail how LabVIEW sends and 
receives AppleEvents.

Sending AppleEvents
The Communication subpalette of the Functions palette contains VIs 
for sending AppleEvents. With these VIs, you can select a target 
application for an AppleEvent, create AppleEvents, and send the 
AppleEvents to the target application.

The AppleEvent VIs palette of the Communication subpalette 
contains VIs that send specific AppleEvent messages. These VIs let you 
send several standard AppleEvents (Open Document, Print Document, 
and Close Application) and all the LabVIEW custom AppleEvents. 
These high-level VIs require little understanding of AppleEvent 
programming details. Their diagrams also serve as good examples of 
how to create and send AppleEvents.

You can use the low-level AESend VI if you want to send an 
AppleEvent for which LabVIEW provides no VI. The AppleEvent VIs 
palette of the Communication subpalette also contains VIs that can 
help you create an AppleEvent. However, creating and sending an 
AppleEvent at this level requires detailed understanding of 
AppleEvents as described in Inside Macintosh, Volume VI and the 
AppleEvent Registry.

General AppleEvent VI Behavior
When sending an AppleEvent, you must specify the target application 
for the event. To receive the AppleEvent, the target application must be 
open. You can use the AESend Finder Open VI to open an application.

The User Identity Dialog Box
Before you send an AppleEvent to another computer, you must use the 
Users & Groups control panel utility on the destination computer to set 
up a user name and password for yourself. The first time you send an 
AppleEvent to an application or Finder on the destination computer, a 
dialog box prompts you to enter your name and password. The system 
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compares this information to the configuration of the Users & Groups 
control panel utility on the destination computer. 

The current design of the AppleEvent Manager does not include a 
programmatic method for bypassing this dialog box, so you should take 
this into account when designing VIs that use IAC. For example, you 
cannot command an unattended remote computer to send an 
AppleEvent to a third computer; someone must enter user information 
into the User Identity Dialog Box that appears on the remote computer. 
The PPC VIs allow for unauthenticated sessions if guest access is 
enabled on the computer with which you wish to communicate, so you 
may find the PPC VIs more useful for certain kinds of LabVIEW-to-
LabVIEW communication.

Target ID
Most VIs that send AppleEvents need a description of the target 
application that will receive the AppleEvent. The target ID is a 
complex cluster of information, defined by Apple Computer Inc., 
describing the target application and its location. The following VIs 
generate the target ID, so you do not need to create this cluster on the 
diagram. 

• PPC Browser creates the target ID by displaying a dialog box by 
which you interactively select AppleEvent-aware applications on 
the network.
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• Get Target ID creates the target ID programmatically based on the 
application's name and network location.

These VIs are discussed in more detail in the Targeting VIs section of 
this chapter.

You need to look at the target ID cluster only if you want to pass target 
information from one VI to another. To create a target ID cluster for 
the front panel of a VI that passes target information to another VI or to 
an AppleEvent, you can copy the target ID cluster from the front panel 
of one of the AppleEvent VIs.

Send Options
Many of the VIs that send an AppleEvent have a send options input, 
which specifies whether the target application can interact with the user 
and the length of the AppleEvent timeout. 

Targeting VI Descriptions

The following Targeting VIs are available.

Get Target ID
Returns a target ID for a specified application based on its name and location. You can 
either specify the application's name and location or the VI searches the entire network 
for the application.
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The following table summarizes the operation of Search entire network, Zone, and 
Server:

PPC Browser
Invokes the PPC Browser dialog box for selecting an application on a network or on the 
same computer.

To search the following 
locations: Use the following parameters:

The current computer Zone and Server must be unwired. Search entire network must 
be FALSE.

A specific computer on 
the network

Zone and Server must specify the target computer’s zone and 
server. (If you do not wire Zone, the VI searches the current 
zone.) Search entire network must be FALSE. 

A specific zone Zone must specify the zone to be searched. Server must be 
unwired. Search entire network must be FALSE.

The entire network Search entire network must be TRUE. The VI ignores Zone 
and Server.



Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-7 LabVIEW Function and VI Reference Manual

You can use this standard Macintosh dialog box to select a zone from the network, an 
object in that zone (in System 7, this is typically the name of a person's computer), and 
an application. The VI then returns the target ID cluster.

AppleEvent VI Descriptions

The following AppleEvent VIs are available.

AESend Do Script
Sends the Do Script AppleEvent to a specified target application.
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AESend Finder Open
Sends the AppleEvent to open specified applications or documents to the System 7 Finder 
on the specified machine.

Note: Apple may change the set of AppleEvents to which the Finder responds so 

that they more closely conform to the standard set of AppleEvents. As a 

result, the AppleEvent that AESend Finder Open sends to the Finder may 

not be supported in future versions of the system software.

AESend Open
Sends the Open AppleEvent to a specified target application.

AESend Open Document
Sends the Open Document AppleEvent to the specified target application, telling the 
application to open the specified document.

AESend Print Document
Sends the Print Document AppleEvent to the specified target application, telling the 
application to print the specified document.
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AESend Quit Application

Sends the Quit Application AppleEvent to a specified target application.

LabVIEW Specific AppleEvent VIs

LabVIEW specific AppleEvent VIs send messages that only LabVIEW applications 
(standard and run-time systems) recognize. To access the LabVIEW Specific Apple 
Events VIs, select Functions:Communication: LabVIEW Specific Apple Events.

You should use these VIs only when communicating with LabVIEW applications. You 
can send these messages either to the current LabVIEW application or to a LabVIEW 
application on a network. See the AppleEvent Error Codes section of the Error Codes 

manual for error information.

AESend Abort VI

Sends the Abort VI AppleEvent to the specified target LabVIEW application.

AESend Close VI

Sends the Close VI AppleEvent to the specified target LabVIEW application.
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AESend Open, Run, Close VI
Uses the Open Document, Run VI, VI Active?, and Close VI AppleEvent VIs to make a 
specified LabVIEW application open, run, and close a VI.

For this VI, you must specify the complete pathname of the VI you want to run. See 
Chapter 13, Path Controls and Refnums, of your LabVIEW User Manual for a description 
of path controls and indicators available in the Controls palette.

AESend Run VI
Sends the Run VI AppleEvent to the target LabVIEW application. 

AESend VI Active?
Sends the VI Active? AppleEvent to the specified target LabVIEW application. VI 
running? is a Boolean indicating whether the VI is currently executing.

Advanced Topics

This section describes some of the advanced programming you can do 
with AppleEvent VIs.

Constructing and Sending Other AppleEvents
In addition to VIs that send common AppleEvents, you can use 
lower-level VIs to send any AppleEvent. Using these VIs requires more 
knowledge of AppleEvents than using the VIs described earlier in this 
chapter. If you are interested in using these VIs, you should be familiar 
with the discussion of AppleEvents in Inside Macintosh, Volume VI, 
and the AppleEvent Registry.
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When sending an AppleEvent, you must include several pieces of 
information. The event class and event ID identify the AppleEvent you 
are sending. The event class is a four-letter code which identifies the 
AppleEvent group. For example, an event class of core identifies an 
AppleEvent as belonging to the set of core AppleEvents. The event ID 
is another four-letter code that identifies the specific AppleEvent that 
you wish to send. For example, odoc is the four-letter code for the Open 
Documents AppleEvent, one of the core AppleEvents. To send an 
AppleEvent using the AESend VI, concatenate the event class and event 
ID together as an eight-character string. For example, to send the Open 
Documents AppleEvent, pass the AESend VI the eight-character code 
coreodoc.

If you are sending the AppleEvent to another application, you have to 
specify target ID and send options, as described earlier in this chapter.

You can also specify an array of parameters if the target application 
needs additional information to execute the specified AppleEvent. 
Because the data structure for AppleEvent parameters is inconvenient 
for use in LabVIEW diagrams, the AESend VI accepts these parameters 
as ASCII strings. These strings must conform to the grammar described 
in the next section. You can use this grammar to describe any 
AppleEvent parameter. The AESend VI interprets this string to create 
the appropriate data structure for an AppleEvent, and then sends the 
event to the specified target.

Creating AppleEvent Parameters
In many cases, an AppleEvent parameter is a single value; however, it 
can be quite complex, with a hierarchical structure containing 
components that in turn can contain other components. In LabVIEW, a 
parameter is constructed as a string, which has a simple grammar with 
which you can describe all kinds of data that an AppleEvent parameter 
can be, including complex structures.

An AppleEvent parameter string begins with a keyword, a four-letter 
code describing the parameter's meaning. For example, if the parameter 
is a direct parameter (one of the most common types of parameters) you 
must specify that the keyword is a keyDirectObject by using the 
four-letter code ---- (four dashes). Other examples of keywords 
include savo, short for save options, which is used when sending the 
Close VI AppleEvent to LabVIEW. Documentation detailing an 
application's supported AppleEvents should indicate the keywords used 
for each parameter. See the Sending AppleEvents to LabVIEW from Other 
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Applications section of this chapter for a list of the AppleEvents that you 
can use with LabVIEW. 

Following the keyword, you must specify the parameter data as a string. 
You can use AppleEvents with many different data types, including 
strings and numbers. When you specify the data string, the AESend VI 
converts it to a desired data type based upon the way the data is 
formatted and optional directives that can be embedded in the string. 
Each piece of data has a four-letter type code associated with it, 
indicating its data type. The target application uses this code to interpret 
the data. For example, if comma-separated items are enclosed in 
brackets, a list of AE Descriptors is created, and the list has a data type 
of list; each of the comma-separated items could in turn be other 
items, including lists.

You can use a number of VIs in the AppleEvents VI palette to create 
some of the more common parameter strings, including aliases, which 
are used when referencing files in parameters, and descriptor lists, 
which are used to specify a list of items as a parameter. You can 
concatenate or cascade these strings together to create a more complex 
parameter.
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Table 6-1 describes the format of AppleEvent descriptor strings and 
indicates VIs that can create the descriptor, where appropriate.

Table 54-1.  AppleEvent Descriptor String Formats

To send data as: Format the string as:
Parameter is of 

code type: Examples:

 VI that can 
construct 

string:

an integer A series of decimal digits, 
optionally preceded by a 
minus sign.

long or shor 1234
–5678

n/a

enumerated data A four-letter code. 
If it is too long, it is 
truncated; if it is too short, 
it is padded with spaces. 
If you put single quotes (') 
around it, it can contain 
any characters; otherwise, 
it cannot contain: 
@ ' : - , ( [ { } ] ) and 
cannot begin with a digit.

enum whos
'@all'
long
>=
'86it'

n/a
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a string Enclose the desired 
sequence of characters 
within open and close 
curly quotes (“entered 
with option-[and” entered 
with option-shift-[). 
Notice that the string is 
not null-terminated.

TEXT “put x into 
card field 
5”
“Hi There”

n/a

an AE record Enclose a comma-
separated list of elements 
in curly braces, where 
each element consists of a 
keyword (a typecode) 
followed by a colon, 
followed by a value, 
which can be any of the 
types listed in this table.

reco {x:100, y:–
100} 
{'origin':
{x:100, y:–
100}, 
extent:
{x:500, 
y:500}, 
cont:[1,5,2
5]}

AECreate 
Record 

an AE descriptor list Enclose a comma-
separated list of 
descriptors in square 
brackets.

list [123, –58, 
“test”]

AECreate 
Descriptor 
List

hex data Enclose an even number 
of hex digits between 
French quotes («entered 
with option-\ and» 
entered with option-shift-
\).

?? (must be 
coerced – see 
next item)

«01 57 64 
fe AB C1»

(Hex data is a 
component of 
the string 
produced by 
Make Alias)

Table 54-1.  AppleEvent Descriptor String Formats (Continued)

To send data as: Format the string as:
Parameter is of 

code type: Examples:

 VI that can 
construct 

string:
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Low-Level AppleEvent VIs

You can use the VIs in this section to construct AppleEvent parameters and send the 
AppleEvent. The high-level VIs for sending AppleEvents, described earlier in this 
chapter, are based on the AESend VI, and are good examples of creating AppleEvents 
and their parameters. 

To access the Low Level Apple Events palette, pop up on the Low Level Apple Events 
icon.

some other data type Embed data created in 
one of the types of this 
table in parentheses and 
put the desired type code 
before it. If the data is a 
numeric, LabVIEW 
coerces the data to the 
specified type if possible 
and returns the 
errAECoercionFail 
error code if it cannot. If 
the data is of a different 
type, LabVIEW replaces 
the old typecode with the 
specified type code.

The specified 
type code

sing(1234)
alis(«hex 

dump of an 

alias»)

type(line)
rang{star: 
5, stop: 6}

n/a
Make Alias 
creates a hex 
dump of a file 
description.

n/a
n/a

null data Coerce an empty string to 
no type.

null ( ) n/a

Table 54-1.  AppleEvent Descriptor String Formats (Continued)

To send data as: Format the string as:
Parameter is of 

code type: Examples:

 VI that can 
construct 

string:
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AESend
Sends an AppleEvent specified in parameters to the specified target application.

Make Alias
Creates a unique description of a file from its pathname and location on the network. You 
can use this description with the AESend VI when sending an AppleEvent that refers to 
a file.

An alias is a data structure used by the Macintosh toolbox to describe file system objects 
(files, directories and volumes). Do not confuse this with a Finder™ alias file. A minimal 
alias contains a full path name to the file and possibly the zone and server that the file 
resides on. A full alias contains more information, such as creation date, file type, and 
creator. (The complete description of the structure of an alias is confidential to Apple 
Computer.) Aliases are the most common way to specify a file system object as a 
parameter to an AppleEvent.

Creating AppleEvent Parameters Using Object Specifiers
Apple has created a high-level interface for creating AppleEvents called the Object 
Support Library. This interface is actually layered on top of the AppleEvent parameter 
data structures described earlier in this chapter. This interface helps create common types 
of parameters, including range specifications. LabVIEW object support VIs are located 
on the Low Level Apple Events pop up palette.

AECreate Comp Descriptor
Creates a string describing an AppleEvent comparison record, which specifies how to 
compare AppleEvent objects with another AppleEvent object or a descriptor record.
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For example, you can use the output comparison descriptor string as an argument to the 
AESend VI, or as an argument to AECreate Object Specifier to build a more complex 
descriptor string. See the Object Support VI Example section of this chapter for an example 
of its use.

AECreate Logical Descriptor
Creates a string describing an AppleEvent logical descriptor, which you use with the 
AESend VI.

AppleEvent logical records describe logical, or Boolean expressions of multiple terms, 
such as the AND of two AppleEvent comparison records. For example, you can use the 
output logical descriptor string as an argument to the AESend VI, or as an argument to 
AECreate Object Specifier VI to build a more complex descriptor string. See the Object 

Support VI Example in this chapter for an example of its use.

AECreate Object Specifier
Creates a string describing an AppleEvent object, which you use with the AESend VI.

An object specifier is an AppleEvent record whose type is obj and describes a specific 
object. It has four elements: the class of the object, the containing object, a code 
indicating the form of the description, and the description of the object.

AECreate Range Descriptor
Creates a string describing an AppleEvent range descriptor record, which you use with 
the AESend VI.
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Range descriptor records are used in object specifiers whose key form is formRange 
(rang). They describe a range of objects with two object specifiers: the start and the end 
of the range

AECreate Descriptor List
Creates a string describing a list of AppleEvent descriptors, which you can then use with 
the AESend VI. You commonly use Descriptor lists when you create the operands for a 
logical descriptor

AECreate Record
Creates a string describing an AppleEvent descriptor record, which can then be used with 
the AESend VI. You can use a record descriptor to bundle descriptors of different types. 
Each descriptor has its own keyword, or name, and value

Object Support VI Example

The following example creates an AppleEvent parameter using the object support VIs. 
This example creates an AppleEvent parameter to be sent to a word processor, asking the 
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word processor to return the first line of a specified document whose first word is April 
and whose second word is is.

The following string that the previous diagram creates is quite complicated; tabs are 
added to make the string easier to read. For further information about the Object Support 
Library consult the AppleEvent Registry.

obj {

want: type(‘line’),

from: obj {

want: type('line'),

from: Doc Name,

form: test,

seld: logi {

term:[
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cmpd{

relo:=,

obj1:“April”,

obj2:obj {

want: type('word'),

from: exmn( ),

form: indx,

seld: 1

}

},

cmpd{

relo:=,

obj1:“is”,

obj2:obj {

want: type('word'),

from: exmn( ),

form: indx,

seld: 2

}

}

],

 logc: AND

}

},

form: indx,

seld: 1 

}

Sending AppleEvents to LabVIEW from Other 
Applications

LabVIEW responds to required AppleEvents, which Apple expects all 
System 7 applications to support, and to LabVIEW specific 



Chapter 54 AppleEvent VIs

© National Instruments Corporation 54-21 LabVIEW Function and VI Reference Manual

AppleEvents, designed specifically for LabVIEW. Both categories are 
described in the following sections.

Required AppleEvents
LabVIEW responds to the required AppleEvents, which are Open 
Application, Open Documents, Print Documents, and Quit Application. 
These events are described in Inside Macintosh, Volume VI.

LabVIEW Specific AppleEvents
LabVIEW also responds to the LabVIEW specific AppleEvents Run VI, 
Abort VI, VI Active?, and Close VI. With these events and the Open 
Documents AppleEvent, you can use other applications to 
programmatically tell LabVIEW to open a VI, run it, and close it when 
it is finished. A thorough understanding of AppleEvents, as described 
in Inside Macintosh, Volume VI, and the AppleEvent Registry is a 
prerequisite for sending these AppleEvents to LabVIEW from other 
applications. You can send these events between two or more LabVIEW 
applications by using the utility VIs described in the Sending 
AppleEvents section in Chapter 49, Communication Applications in 

LabVIEW.

The LabVIEW specific AppleEvents are described in later sections, in 
a format similar to that used in the AppleEvent Registry.

Replies to AppleEvents
If LabVIEW is unable to perform an AppleEvent, the reply will contain 
an error code. If the error is not a standard AppleEvent error, the reply 
will also contain a string describing the error. The Error Codes manual 
summarizes the LabVIEW specific errors that can be returned in a reply 
to an AppleEvent.

Event: Run VI

Description

Tells LabVIEW to run the specified VI(s). Before executing this event, 
the LabVIEW application must be running, and the VI must be open 
(you can open the VI using the Open Documents AppleEvent).
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Event Class

LBVW (Custom events use the Applications creator type for the 
event class)

Event ID

GoVI ----

Event Parameters

Reply Parameters

Description Keyword Default Type

VI or List of VIs keyDirectObject (----) typeChar (char) 
(required)or list of 
typeChar (list)

Description Keyword Default Type

none
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Possible Errors

Event: Abort VI

Description

Tells LabVIEW to abort the specified VI(s). Before executing this 
event, the LabVIEW application must be running, and the VI must be 
open (you can open the VI using the Open Documents AppleEvent). 
This message can only be sent to VIs that are executed from the top 
level (subVIs are aborted only if the calling VI is aborted).

Event Class

LBVW (Custom events use the Applications creator type for the 
event class)

Event ID

RsVI

Error Value Description

kLVE_InvalidState 1000 The VI is in a state that does not 
allow it to run.

kLVE_FPNotOpen 1001 The VI front panel is not open. 

kLVE_CtrlErr 1002 The VI has controls on its front 
panel that are in an error state.

kLVE_VIBad 1003 The VI is broken.

kLVE_NotInMem 1004 The VI is not in memory.
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Event Parameters

Reply Parameters

Possible Errors

Event: VI Active?

Description

Requests information on whether a specific VI is currently running. 
Before executing this event, the LabVIEW application must be running, 
and the VI must be open (you can open the VI using the Open 
Documents AppleEvent). The reply indicates whether the VI is 
currently running.

Event Class

LBVW (Custom events use the Applications creator type for the 
event class)

Description Keyword Default Type

VI or List of VIs keyDirectObject (----) typeChar (char) 
(required)or list of 
typeChar (list)

Description Required? Keyword Default Type

none

Error Value Description

kLVE_InvalidState 1000 The VI is in a state that does not 
allow it to run.

kLVE_FPNotOpen 1001 The VI front panel is not open. 

kLVE_NotInMem 1004 The VI is not in memory.
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Event ID

VIAc

Event Parameters

Reply Parameters

Possible Errors.

Event: Close VI

Description

Tells LabVIEW to close the specified VI(s). Before executing this 
event, the LabVIEW application must be running, and the VI must be 
open (you can open the VI using the Open Documents AppleEvent).

Event Class

LBVW (Custom events use the Applications creator type for the 
event class)

Description Keyword Default Type

VI Name 
(required)

keyDirectObject (----) typeChar (char)

Description Keyword Default Type

Active? (required) keyDirectObject (----) typeBoolean 
(bool)

Error Value Description

kAEvtErrFPNotOpen 1001 The VI front panel is not open.

kLVE_NotInMem 1004 The VI is not in memory.
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Event ID

ClVI

Event Parameters

Reply Parameters

Possible Errors.

Description Keyword Default Type

VI or List of VIs keyDirectObject (----) typeChar (char) 
(required)or list of 
typeChar (list)

Save Options 
(not required)

keyAESaveOptions 
(savo)

typeEnum (enum) 
possible values: yes 
and no

Description Keyword Default Type

none

Error Value Description

kAEvtErrFPNotOpen 1001 The VI front panel is not open.

kLVE_NotInMem 1004 The VI is not in memory.

cancelError 43 The user cancelled the close 
operation
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Chapter

55
Program to Program 
Communication VIs

This chapter describes the LabVIEW VIs for program-to-program 
communication (PPC), a low-level form of Apple interapplication 
communication (IAC) by which Macintosh applications send and 
receive blocks of data. 

The following illustration shows the PPC VI palette, which you access 
by selecting Functions»Communication»PPC.

For examples of how to use the PPC VIs, see the examples located in 
examples:comm:PPC Examples.llb. 

Introduction to PPC

PPC is a higher performance protocol than Apple Events because PPC 
requires less overhead to transmit information. However, because PPC 
does not define the form or meaning of information that it transfers, it 
is more complicated to use and many applications do not support it. 

LabVIEW VIs can use PPC to send and receive large amounts of 
information between applications on the same computer or different 
computers on a network. For two applications to communicate with 
PPC, they must both be running and prepared to send or receive 
information. To launch an application remotely, you can use the 
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AESend Finder Open VI, which is described in the AppleEvents section 
of Chapter 49, Communication Applications in LabVIEW.

General PPC Behavior

To communicate using PPC, each application must open a named port, 
over which communication sessions are established, as shown in 
Figure 55-1. The application that requests communication is the client; 
and the application with which the client communicates is the server. 
The server application makes its availability known by issuing a PPC 
Inform Session operation. The client requests a session with the server 
application, which can either accept or reject the request. If the server 
application accepts the request, then the system establishes a session 
and the two applications can send and receive blocks of information 
between them. When the applications finish communicating, you 
should end the session. You may also want to close the port if you do 
not want to establish more sessions with that port.

You use the PPC Open Port VI to open a port for communication. PPC 
Open Port returns a port reference number, which you use in subsequent 
operations relating to that port. You can have multiple ports open 
simultaneously, as long as they each have a different name. Each port 
can support multiple sessions.

You can initiate a session using the PPC Start Session VI. You pass PPC 
Start Session a target ID (see the General Apple Event VI Behavior 

section of Chapter 54, Apple Event VIs) and the port reference number 
through which you want to communicate. If the target application 
accepts the session, PPC Start Session returns a session reference 
number, which you use in subsequent communication for that session. 
PPC Start Session also incorporates an authentication (password) 
mechanism.

To receive session requests, use the PPC Inform Session VI. You can 
configure this VI to accept all requests automatically, or you can decide 
whether to accept or reject the request based on the information about 
the requesting application that this VI returns. You should accept or 
reject the request using the PPC Accept Session VI immediately, 
because the other computer waits (hangs) until you accept or reject its 
attempt to initiate a session, or until an error occurs. 

When a session is established, you can use the PPC Write and PPC Read 
VIs to communicate with the other application. When you are finished 
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with a session, you should execute the PPC End Session VI and close 
the port using the PPC Close Port VI.

Figure 55-1 illustrates the order in which you use the PPC VIs.

Figure 55-1.  PPC VI Execution Order (Used by permission of Apple Computer, Inc.)

PPC VI Descriptions

The following PPC VIs are available.

PPC Accept Session
Accepts or rejects a PPC session request based on the Boolean accept?. 
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You should accept or reject the request using the PPC Accept Session VI immediately, 
because the other computer waits (hangs) until the VI accepts or rejects its attempt to 
initiate a session or an error occurs.

PPC Browser
For information on the PPC Browser VI, see Chapter 54, Apple Events VIs, of this manual.

Close All PPC Ports
Closes all the PPC ports that the PPC Open Port VI opened. 

Closing a port terminates all outstanding calls associated with the port with a 
portClosedErr (error –916).

You can use the Close All PPC Ports to handle abnormal conditions that leave ports open. 
An example of an abnormal condition is when a VI is aborted before it can terminate 
normally and close the PPC port. You can use the Close All PPC Ports VI during VI 
development, when such mistakes are more likely to be made, or as a precaution at the 
beginning of any program that opens ports.

PPC Close Port
Closes the specified PPC port.

Closing a port terminates all outstanding calls associated with the port with a 
portClosedErr (error –916).

PPC End Session
Ends the specified PPC session.

Ending a session causes all outstanding calls associated with the session (PPC Read and 
PPC Write calls) to finish with a sessClosedErr (error -917).
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Get Target ID
For information on the Get Target ID VI, see Chapter 54, Apple Event VIs, of this manual.

PPC Inform Session
Waits for a PPC session request.

PPC Open Port
Opens a port for PPC communication and returns a unique port reference number in port 
refnum. You can use a single port for multiple sessions.

When opening a port using PPC Open Port, you must specify a portName cluster. 

Refer to the LabVIEW online help for more information on this VI.
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PPC Read
Reads a block of information from a specified session. If a timeout occurs or the VI aborts 
before completing execution, the port that port refnum represents closes. 

PPC Read executes asynchronously by starting to read the specified data and then polling 
until the read is finished.

PPC Start Session
Attempts to start a session with the application specified by target ID through the 
specified port. If a timeout occurs or the VI aborts before completing execution, the port 
represented by port refnum closes. 

PPC Write
Writes a block of information to the specified session. If a timeout occurs or the VI aborts 
before completing execution, the port represented by port refnum is closed. PPC Write 
executes asynchronously by starting to write the specified data and then polling until the 
write is finished. 
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Appendix

ADAQ Hardware Capabilities

This appendix contains tables that summarize the analog and digital 
I/O capabilities of National Instruments data acquisition (DAQ) 
devices. The devices in this appendix are grouped into categories. The 
DAQ device categories for these tables include the following.

• MIO and AI Devices

• Lab and 1200 Series and Portable Devices

• 54xx Series Devices

• SCXI Modules

• Dynamic Signal Acquisition Devices

• Analog Output Only Devices

• Digital Only Devices

• Timing Only Devices

• 5102 Devices Hardware Capabilities

Note: (Macintosh) When a NuBus device indicates it supports DMA transfers, a 

DMA device (such as an NB-DMA2800) is also required.
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MIO and AI Device Hardware Capabilities 

“By device” means you select the value of a parameter with hardware 
jumpers, and the selection affects any group of channels on the device. 
“By group” means you program the selection through software, and the 
selection affects all the channels used at the same time. “By channel” 
means you program the selection with hardware jumpers or through 
software on a per channel basis. When a specific value for a parameter 
is shown, that parameter value is fixed.

Table A-1.  Analog Input Configuration Programmability—MIO and AI Devices

Device Gain Range Polarity SE/DIFF Coupling

All MIO-E Series Devices

All AI-E Series Devices 

By Channel By Channel By Channel By Channel DC

AT-MIO-16F-5 By Channel By Group By Group By Group DC

AT-MIO-64F-5

AT-MIO-16X

By Channel By Channel By Channel By Channel DC

AT-MIO-16/16D

NB-MIO-16

NB-MIO-16X

By Channel By Device By Device By Device DC

Table A-2.  Analog Input Characteristics—MIO and AI Devices (Part 1)

Device

Number of

Channels Resolution Gains1
Range (V)

1
Input FIFO

(words) Scanning2

AT-MIO-16E-1

AT-MIO-16E-2

AT-MIO-16E-10

AT-MIO-16DE-10

NEC-MIO-16E-4

PCI-MIO-16E-1

PCI-MIO-16E-4

NEC-AI-16E-4

16SE, 8DI 12 bits 0.5, 1, 2, 

5, 10, 20, 

50, 100

±5, 0 to 10 512; E-1: 

8,192; E-2 and 

E4: 2,048

Up to 512

AT-MIO-64E-3* 64SE, 32DI 12 bits 0.5, 1, 2, 

5, 10, 20, 

50, 100

±5, 0 to 10 2,048 Up to 512

PCI-MIO-16XE-10 16SE, 8DI 16 bits 1, 2, 5, 

10, 20, 

50,100

±10, 0 to 10 512 Up to 512
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NEC-MIO-16XE-50

NEC-AI-16XE-50

AT-MIO-16XE-50

DAQPad-MIO-16XE-50

PCI-MIO-16XE-50

16SE, 8DI 16 bits 1, 2,10, 

100

±10, 0 to 10 512 Up to 512

AT-MIO-16F-5

AT-MIO-64F-5**

16SE, 8DI

64SE, 32DI

12 bits 0.5, 1, 2, 

5, 10, 20, 

50, 100 

±5, ±10, 0 to 

10 

16F-5: 256; 

64F-5: 512

Up to 512

AT-MIO-16X 16SE, 8DI 16 1, 2, 5, 

10, 20, 

50, 100 

±10, 0 to 10 512 Up to 512

AT-MIO-16(L)

AT-MIO-16(H)

AT-MIO-16D(L)

AT-MIO-16D(H)

16SE, 8DI 12 (L) 1, 10, 

100, 

500; (H): 

1, 2, 4, 8

±5, ±10, 0 to 

10

16 (L,H); 

512 (DL, DH)

Up to 16

NB-MIO-16

NB-MIO-16X

16SE, 8DI MIO-16: 

12; 

MIO-16X: 

16

(L) 1, 10, 

100, 

500; (H) 

1, 2, 4, 8 

±10, ±5, 0 to 

10, 0 to 5

16; MIO-16, 

Rev. G:

512

Up to 16; 

MIO-16: 

groups of 2, 

4, 8, and 16

1
You can determine the limit settings of your device by multiplying the range and the voltage values together. For more 

information on limit settings in LabVIEW, refer to the Basics LabVIEW Data Acquisition Concepts chapter in the LabVIEW 

Data Acquisition Basics Manual. 

2
Scanning = channels, in any order.

*The valid channels for the AT-MIO-64E-3 in Differential Mode are 0-7, 16-23, 32-39, and 48-55.

**The valid channels for the AT-MIO-64F-5 in Differential Mode are 0-7 and 16-39.

Table A-2.  Analog Input Characteristics—MIO and AI Devices (Part 1) (Continued)

Device

Number of

Channels Resolution Gains
1

Range (V)
1

Input FIFO

(words) Scanning
2
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.

Note: For NB-MIO devices, software triggering is actually done in the interrupt 

service routine (interrupts only) and is different than conditional retrieval.

Table A-3.  Analog Input Characteristics—MIO and AI Devices (Part 2)

Device Triggers
1

Max Sampling Rate (S/s) Transfer Method

AT-MIO-16E-1

AT-MIO-16E-2

AT-MIO-64E-3

AT-MIO-16E-10

AT-MIO-16DE-10

PCI-MIO-16E-1

PCI-MIO-16XE-10

NEC-AI-16E-4

NEC-MIO-16E-4

PCI-MIO-16E-4

SW, Pre, Post, (and 

Analog on E-1, E-2, 

E-3, and E-4 only)

E-1: 1 M, 

E-2 and E-3: 500 k, 

E-4: 250 k, 

E-10 and DE-10: 100 k

DMA, interrupts

All MIO-16XE-50 Devices

NEC-AI-16XE-50

SW, Pre, Post 20 k DMA, (interrupts on 

DAQPad-MIO-16XE-50)

AT-MIO-16F-5

AT-MIO-64F-5

SW, Pre, Post 200 k DMA, interrupts

AT-MIO-16X

AT-MIO-16/16D

SW, Pre, Post 100 k DMA, interrupts

NB-MIO-16 SW, Post 111 k (L-9 or H-9), 

67 k (L-15 or H-15), 

40 k (L-25 or H-25)

DMA, interrupts

NB-MIO-16X SW, Post 55 k (L-18 or H-18), 

24 k (L-42 or H-42)

DMA, interrupts

1
 SW=Software Triggering (also called conditional retrieval), Pre=Pretrigger, Post=Posttrigger.
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Table A-4.  Analog Output Characteristics—MIO and AI Devices

Device
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n
el

 N
u

m
b

er
s

D
A

C
 T

y
p

e

O
u

tp
u

t 
L

im
it

s 

U
p

d
a

te
 C

lo
ck

s

W
a

v
ef

o
rm

 G
ro

u
p

in
g

T
ra

n
sf

er
 M

et
h

o
d

All MIO-16E Devices

AT-MIO-16DE-10

AT-MIO-64 E-3

AT-MIO-16XE-50

DAQPad-MIO-16XE-50

PCI-MIO-16E-1

PCI-MIO-16E-4

PCI-MIO-16XE-50

0, 1 12-bit double 

buffered

(E-1, E-2, 

64E-3, and E-4: 

2 K FIFO)

0 to 10, ±10, 

±Vref, 0 to 

Vref (only 

±10 on XE-50 

devices)

Update clock 

1 or external 

update.

0, 1, or 0 

and 1

DMA, 

interrupts

PCI-MIO-16XE-10 16-bit ±10,

0 to 10

AT-MIO-16F-5

AT-MIO-64F-5

0, 1 12-bit double 

buffered 

(64F-5: 2 K 

FIFO)

0 to 10, ±10, 

±Vref, 0 to 

Vref

Update clock 

1 is first 

available of 

ctr 5, 2, 1 or 

external 

update. 

Default is 5. 

Timebase 

signal range is 

5,000,000, 

1,000,000, 

100,000, 

10,000, 

1,000, and 

100.

0, 1, or 0 

and 1

DMA, 

interrupts

AT-MIO-16X 0, 1 16-bit double 

buffered

(2 K FIFO)

±10, 0 to 10, 

±Vref, 0 to 

Vref 

Update clock 

1 is first 

available on 

ctr 5, 2, 1, or 

external 

update. 

Timebase 

signal range is 

5,000,000, 

1,000,000, 

100,000, 

10,000, 

1,000, 100.

0, 1, or 0 

and 1

DMA, 

interrupts
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AT-MIO-16/16D 0, 1 12-bit double 

buffered 

0 to 10, ±10, 

±Vref, 0 to 

Vref 

Update clock 

1 is ctr2 or 

external 

update. 

Timebase 

signal range is 

1,000,000, 

100,000, 

10,000, 

1,000, and 

100.

0, 1, or 0 

and 1

Interrupts

NB-MIO-16/16X 0, 1 MIO-16:

12-bit ; 

MIO-16X: 

12-bit double 

buffered 

0 to 10, ±10, 

±Vref, 0 to 

Vref 

Update clock 

1, external 

update 

(MIO-16X 

only). 

Timebase 

signal range is 

1,000,000, 

100,000, 

10,000, 

1,000, and 

100.

0, 1, or 0 

and 1

MIO-16:

DMA; 

MIO-16X: 

DMA, 

interrupts

Table A-4.  Analog Output Characteristics—MIO and AI Devices (Continued)

Device
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Table A-5.  Digital I/O Hardware Capabilities—MIO and AI Devices

Device

Port 

Type

Port 

Numbers

Handshake 

Modes Direction

DIO 

Clocks

Transfer 

Method

All MIO-16 Devices

AT-MIO-16D
1

AT-MIO-64F-5

4-bit 

ports

0, 1 No handshaking Read or write None Software 

polling

All MIO-16E Devices

All NEC-E Series Devices

AT-MIO-64E-3

AT-MIO-16DE-10
1

AT-MIO-16XE-50

DAQPad-MIO-16XE-50

PCI-MIO-16XE-50

8-bit 

ports

0 No handshaking Bit-wise 

direction 

control

None Software 

polling

AT-MIO-16D
1

AT-MIO-16DE-10
1

8-bit 

ports

2, 3 Handshaking on 

or off

Read or write, 

port 2 may be 

bi-directional

None Interrupts

8-bit 

ports 

4 No handshaking;

Unusable if port 

2 or 3 uses 

handshaking

Read or write None Software 

polling

1 
These devices appear more than once in this table, because they have enhanced digital functionality.
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Table A-6.  Counter Characteristics—MIO and AI Devices

Device

C
o

u
n

te
r 

C
h

ip
 U

se
d

#
 o

f 
G

en
er

al
 P

u
rp

os
e

C
o

u
n

te
rs

 A
v

a
il

a
b

le

T
im

eb
a

se
s 

A
v

a
il

a
b

le

N
u

m
b

er
 o

f 
B

it
s

G
a

te
 M

o
d

es
 A

v
a

il
a

b
le

O
u

t-
p

u
ts

 A
v

a
il

a
b

le

O
u

tp
u

t 
M

o
d

es

A
va

il
ab

le

C
o

u
n

t 
D

ir
ec

ti
o

n
1

E Series Devices DAQ-STC 2 2 internal: 20 

MHz or 100 

kHz; external

24 rising-edge, 

falling-edge, 

high-level, 

low-level

2 up or down, 

can be SW- or 

HW-controlled

AT-MIO-16F-5

AT-MIO-64F-5

AT-MIO-16/16D

NB-MIO-16/16X

Am-9513 3 5 or 6 internal: 5 

MHz (only on 

CTR2 of 16F-5, 

64F-5, and 

AT-MIO-16X), 

1 MHz, 100 

kHz, 10 kHz, 1 

kHz, 100 Hz; 

external

16 rising-edge, 

falling-edge, 

high-level, 

low-level

2 TC 

pulse 

or TC 

toggle

Up

1
SW = Software; HW = Hardware.

Table A-7.  Counter Usage for Analog Input and Output—MIO and AI Devices

Device name

Counter Chip 

Used

AI Channel

Clock

AI Sample 

Counter AI Scan Clock AO Update Clock

E Series Devices DAQ-STC The DAQ-STC chip uses dedicated clocks for these purposes.

AT-MIO-16F-5

AT-MIO-64F-5

AT-MIO-16X

Am9513 Ctr 3 Ctr 4 (& 5)
1

Ctr 2 (or 1)
2

Ctr 5, 2 or 1

AT-MIO-16/16D

NB-MIO-16X

Am9513 Ctr 3 Ctr 4 (& 5)
1

Ctr 2 (or 1)
2

Ctr 2 (and via 

DMA for 

NB-MIO-16X)

NB-MIO-16 Am9513 Ctr 3 Ctr 4 (& 5)
1

None (or 1)
2

(via DMA)

1
If the total number of samples is less than 65535, only the first counter is used. If the number of samples exceeds 65536, 

the first counter is used together with the second counter as a 32-bit sample counter.

2
Ctr 2 (or no counter for NB-MIO-16) is used for normal scanning operations, and Ctr 1 is used for AMUX-64T and SCXI 

hardware scanning.
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Lab and 1200 Series and Portable Devices Hardware 
Capabilities 

Note: “By device” means you select the value of a parameter with hardware 

jumpers, and the selection affects any group of channels on the device. “By 

group” means you program the selection through software, and the 

selection affects all the channels used at the same time. “By channel” 

means you program the selection with hardware jumpers or through 

software on a per channel basis. When a specific value for a parameter is 

shown, that parameter value is fixed.

Table A-8.  Analog Input Configuration Programmability—Lab and 1200 Series and Portable Devices

Device Gain Range Polarity SE/DIFF Coupling

Lab-LC

Lab-NB

By group By device By device SE DC

Lab-PC+ By group By group By device By device DC

SCXI-1200

DAQPad-1200

DAQCard-1200

PCI-1200

By group By group By group By group DC

DAQCard-500 1 Only 1 range available Bipolar SE DC

DAQCard-516/PC-5

16

1 Only 1 range available Bipolar By group DC

DAQCard-700 1 By group Bipolar By group DC

PC-LPM-16 1 By device Bipolar SE DC
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Table A-9.  Analog Input Characteristics—Lab and 1200 Series and Portable Devices (Part 1)

Device

Number of

Channels

Resolution

(bits) Gains
1

Range (V)
1

Input FIFO

(samples)

Lab-LC

Lab-NB

8SE 12 1, 2, 5, 10, 20, 50, 100 ±5, 0 to 10 16

Lab-PC+

SCXI-1200

DAQPad-1200

DAQCard-1200

PCI-1200

8SE, 4DI 12 1, 2, 5, 10 20, 50, 100 ±5, 0 to 10 2,048; 

Lab-PC: 512

DAQCard-500 8SE 12 1 ±5 16

DAQCard 516

PC516

8SE,4DI 16 1 +/-5 512

DAQCard-700 16SE, 8DI 12 1 ±10, ±5, ±2.5 512

PC-LPM-16 16SE 12 1 ±5, ±2.5, 0 to 10, 

0 to 5

16

1
 You can determine the limit settings of your device by multiplying the range and the voltage values together. For more 

information on limit settings in LabVIEW, refer to the Basics LabVIEW Data Acquisition Concepts chapter in the LabVIEW 

Data Acquisition Basics Manual.

Table A-10.  Analog Input Characteristics—Lab and 1200 Series and Portable Devices (Part 2)

Device Scanning Triggers

Max

Sampling

Rate (S/s)

Transfer 

Method

Lab-LC

Lab-NB

Any single channel; for 

multiple channels, N 

through 0, where N<=7

Software trigger, pretrigger, and 

posttrigger with digital trigger

62.5 k Interrupts

Lab-PC+

SCXI-1200

DAQPad-1200

DAQCard-1200

Any single channel; for 

multiple channels, N 

through 0, where N<=7.

Software trigger, pretrigger, and 

posttrigger with digital trigger

100 k; 

Lab-PC+: 

83 k

Interrupts; 

Lab-PC+: 

Interrupts, 

DMA

DAQCard-500 

DAQCard 516

PC-516

Any single channel; for 

multiple channels, N 

through 0, where N<=7

Software trigger only 50 k Interrupts
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Note: The DAQCard-516 and PC 516 devices do not have analog output.

DAQCard-700 Any single channel; for 

multiple channels, N 

through 0, where N#15

Software trigger only 100 k Interrupts

PC-LPM-16 Any single channel; for 

multiple channels, N 

through 0, where N#15

Software trigger only 50 k Interrupts

Table A-11.  Analog Output Characteristics—Lab and 1200 Series and Portable Devices

Device

Channel

#s

DAC

Type

Output

Limits

(V) Update Clocks

Waveform

Grouping

Transfer

Methods

Lab-NB

Lab-LC

0, 1 12-bit 

double-

buffered

0 to 10, ±5 Update clock 1 is 

ctrA2 or external 

update; timebase is 1 

MHz or ctrB0

0, 1, or 0 and 1 Interrupts

Lab-PC+

SCXI-1200

DAQPad-1200

DAQCard-1200

PCI-1200

0, 1 12-bit 

double-

buffered

0 to 10, ±5 Update clock 1 is 

ctrA2 or external 

update; timebase 

signal range is 

1,000,000, 100,000, 

10,000, 1,000, and 100

0, 1, or 0 and 1 Interrupts

Table A-10.  Analog Input Characteristics—Lab and 1200 Series and Portable Devices (Part 2) (Continued)

Device Scanning Triggers

Max

Sampling

Rate (S/s)

Transfer 

Method
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Table A-12.  Counter Usage for Analog Input and Output—Lab Series and Portable Devices

Device Name

Counter

Chip Used

AI Channel

Clock

AI Sample

Counter

AI Scan

Clock

AO Update

Clock

Lab-NB, Lab-LC 82C53 Ctr A0 (& B0)
1

Ctr A1 None Ctr A2

Lab-PC+, DAQPad-1200, 

SCXI-1200, DAQCard-1200, 

PCI-1200

82C53 Ctr A0 (& B0)
1

Ctr A1 Ctr B1 Ctr A2

DAQCard-500, DAQCard-700, 8254 Ctr 0 (software) None None

DAQCard 516

PC-516

82C54 Ctr0 SW None None

PC-LPM-16 82C53 Ctr 0 (software) None None

1
 The second counter is used as an extended timebase for timed analog input or output when sample interval exceeds 

65.535 ms.

Table A-13.  Digital I/O Hardware Capabilities—Lab and 1200 Series and Portable Devices

Device

Port

Type

Port

Numbers

Handshake

Modes Direction

DIO

Clocks

Transfer

Method

Lab-NB

Lab-LC

Lab-PC+

SCXI-1200

DAQCard-1200

DAQPad-1200

PCI-1200

8-bit 

port

0, 1 Handshaking on 

or off

Read or write, 

port 0 may be 

bidirectional

None Interrupts

8-bit 

port

2 No handshaking;

unusable if port 0 

or 1 uses 

handshaking

Read or write None Software 

polling

PC-LPM-16 8-bit 

ports

0, 1 No handshaking 0: read or write None Software 

polling

DAQCard-500 4-bit 

ports

0, 1 No handshaking 0: write, 1: read None Software 

polling

DAQCard-700 8-bit 

ports

0, 1 No handshaking 0: write, 1: read None Software 

polling
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54xx Devices

Table A-14.  Analog Output and Digital Output Characteristics—54XX Series Devices

Characteristics AT-5411, PCI-5411

Channel Numbers 0

Maximum Update Rate 40 MHz.

Update Interval 1 to 65535.

DAC Type 12-bit, double buffered.

Output Limits (V)

(Internal reference only)

±5 into 50 Ω load

±10 into unterminated (high input impedance) load.

Update Clocks Update clock 1.

Triggers On rising TTL edge, at trigger input connector or RTSI pin. Can 

be also generated internally by software.

RTSI Trigger Bus Yes

Digital Outputs 16-bits with clock signal

Waveform Grouping 0

Waveform Memory Depth

-ARB Mode

-Direct Digital Synthesis (DDS)  Mode

2,000,000 16-bit samples (standard)

16,384 16-bit samples maximum

Maximum Waveform Stages 290

Buffer Numbers 1 to 1,000.

Buffer Iterations 1 to 65,535

Buffer Sample Count

-ARB Mode

256 samples minimum

Memory depth maximum

Note: Buffer size should be a multiple of 8 samples.

- DDS Mode Must be equal to 16,384 samples. If you load less number of 

samples then you will see the contents of unfilled sections of 

memory also appearing in the waveform generation.

Marker Output TTL level, One available for every stage
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Note: Refer to your hardware user reference manual for default settings of your 

device. 

DDS Accumulator Size 32-bit

Maximum Output Frequency 16 MHz

Output Frequency Resolution (DDS Mode only) 9.31 mHz

Output Attenuation (after the DAC) 0 through 74.000 dB (Decibels) in 0.001 dB steps

SYNC Output Duty Cycle (% High) TTL level, 20% to 80%.

PLL Reference Clock 1 MHz, 10 MHz or 20 MHz

Output Enable software switchable to ON or OFF

Output Impedance 50Ω or 75Ω (video),  software selectable

Low-Pass Filter 16 MHz, software switchable to ON or OFF

Digital Half-Band Interpolating Filter 80 MSPS, software switchable to ON or OFF

Trigger Operation Modes Single, Continuous, Stepped and Burst

Table A-14.  Analog Output and Digital Output Characteristics—54XX Series Devices (Continued)

Characteristics AT-5411, PCI-5411
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SCXI Module Hardware Capabilities

Table A-15.  Counter/Timer Characteristics -- Lab and 1200 Series and Portable Devices

Device
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Lab-NB

Lab-LC

Lab-PC+

SCXI-1200

DAQCard-1200

DAQPad-1200

PC-LPM-16

PCI-1200

8253 3 (2 with 

SOURCE 

input at I/O 

Connector)

Internal: 

1 MHz; 

(PC-LPM-1

6: only on 

CTRB0) 

external

16 high-level 

or 

rising-edge

depending

on output 

mode

3 Refer to 

ICTRControl 

VI description 

on modes in 

Chapter 19, 

Advanced 

Counter VIs.

down

DAQCard-500

DAQCard 516

DAQCard-700 

PC-516

8254 3 (2 with 

SOURCE 

input at I/O 

Connector)

Internal: 

1 MHz only 

on CTRB0; 

external

16 high-level  

or 

rising-edge

depending

on output 

mode

3 (2 for 

DAQCard

-500)

Refer to 

ICTRControl 

VI description 

on modes in 

Chapter 19, 

Advanced 

Counter VIs.

down

Table A-16.  Analog Input Characteristics—SCXI Modules (Part 1)

Module

Number of 

Channels

Input 

Voltage 

Range (V) Gains
1

Filter
1

Excitation 

Channels
1

Mode Support

SCXI-1100 32 DI ±10 1, 2, 5, 10, 20, 

50, 100, 200, 

500, 1,000, 

2,000 

(SW/M)
1

 lowpass filter 

(or no filter) 

with 10 kHz or 

4 Hz cutoff 

frequency

(JS/M)
1

— multiplexed

SCXI-1102 32 DI ±10 1, 100 (SW/C)
1

1 Hz lowpass 

on each 

channel

— multiplexed
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SCXI-1120

SCXI-1121

8 DI

(SCXI-1120)

4 DI

(SCXI-1121)

±5 1, 2, 5, 10, 20, 

50, 100, 200, 

500, 1,000, and 

2,000

(JS/C)
1

lowpass filter 

with 10 kHz or 

4 Hz cutoff 

frequency 

(JS/C)
1

SCXI-1121 

only: 4 

voltage or 

current 

excitation 

JS/C
 1

 

(channels)

multiplexed or 

parallel

SCXI-1120D 8 DI

(SCXI-1120)

4 DI

(SCXI-1121)

±5 0.5, 1, 2.5, 5, 

10, 25, 50, 100, 

250, 500, 1,000

4,500, 

24,500 Hz

SCXI-1121 

only: 4 

voltage or 

current 

excitation 

JS/C 
1

 

(channels)

multiplexed or 

parallel

SCXI-1122 16 DI or 8 DI 

and 8 

excitation 

SW/M1 

channels

±10 0.01, 0.02, 

0.05, 0.1, 0.2, 

0.5, 1, 2, 5, 10, 

20, 50, 100, 

200, 500, 

1,000, 2,000

(SW/M)
1

lowpass filter 

with 4kHz or 4 

Hz cutoff 

frequency

8 voltage or 

current 

excitation 

channels in

4-wire 

scanning 

mode

multiplexed

SCXI-1140 8 DI, sample 

and hold

±10 1, 10, 100, 200, 

500 

(DS/C)
1

none — multiplexed or 

parallel

SCXI-1141 8 DI ±5 1, 2, 5, 10, 20, 

50, 100 

(SW/C)
1

elliptic lowpass 

filter with 

10Hz to 25KHz 

cutoff 

frequency
2

 

(SW/M)
1

 

(disabled on a 

per channel 

basis)

— multiplexed or 

parallel

1
DS/C = dip switch-selectable per channel, JS/C = jumper-selectable per channel, JS/M = jumper-selectable per module, 

SW/C = software-selectable per channel, SW/M = software-selectable per module

2
 The SCXI-1141 has an automatic filter setting. LabVIEW sets the filter frequency based on the scan rates used with the 

module.

Table A-16.  Analog Input Characteristics—SCXI Modules (Part 1) (Continued)

Module

Number of 

Channels

Input 

Voltage 

Range (V) Gains
1

Filter
1

Excitation 

Channels
1

Mode Support
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Table A-17.  Analog Output Characteristics—SCXI Modules

Module Number of 

Channels Output Voltage Range (V or mA) Mode Support

SCXI-1124 6 voltage or 

current

0 to1, 0 to 5, 0 to 10, ±1, ±5, ±10 (software-selectable)

or 0 to 0.20 mA

multiplexed

Table A-18.  Relay Characteristics—SCXI Modules

Module

Number of 

Channels
1

Latched or 

Non-latched Start-up Relay Position
1

Mode Support

SCXI-1160 16 Latched Leave relays in the position at power-down. multiplexed

SCXI-1161 8 Non-latched Switch to the Normally Closed (NC) position—

when the hardware reset is set on the module.

multiplexed

1
You can set or reset each SCXI relay individually without affecting other relays, or you can change all of the relays 

at once.

Table A-19.  Digital Input and Output Characteristics—SCXI Modules

Module Type of Module Number of Channels
1

Input Voltage Range Mode Support

SCXI-1162 Input 32 (optically-isolated) 0 to 5 V Parallel support—when 

connected to a DIO-24, 

DIO-96, or DIO-32F 

device. Multiplexed 

support with any DAQ 

device supporting SCXI.

SCXI-1162HV Input 32 (optically-isolated) AC or DC signals up 
to ±240 V

Parallel support—when 

connected to a DIO-24, 

DIO-96, or DIO-32F 

device. Multiplexed 

support with any DAQ 

device supporting SCXI.
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SCXI-1163 Output 32 (optically-isolated) 0 to 5 V Parallel support—when 

connected to a DIO-24, 

DIO-96, or DIO-32F 

device. Multiplexed 

support with any DAQ 

device supporting SCXI.

SCXI-1163R* Output 32 (optically-isolated) ±240 V Parallel support—when 

connected to a DIO-24, 

DIO-96, or DIO-32F 

device. Multiplexed 

support with any DAQ 

device supporting SCXI.

1
Functionally equivalent to the SCXI-1163, but incorporates solid-state relays in place of digital outputs.

Table A-20.  Terminal Block Selection Guide—SCXI Modules

SCXI Module Terminal Blocks Cold-Junction Compensation Sensor (CJC)

SCXI-1100

SCXI-1102

SCXI-1303

SCXI-1300

Thermistor

IC Sensor

SCXI-1120

SCXI-1121

SCXI-1320

SCXI-13211

SCXI-1327

SCXI-1328

IC Sensor

IC Sensor

Thermistor

Thermistor

SCXI-1122 SCXI-1322 Thermistor

SCXI-1124 SCXI-1325 —

SCXI-1140 SCXI-1301

SCXI-1304

—

—

SCXI-1141 SCXI-1304 —

SCXI-1160 SCXI-1324 —

SCXI-1161 None–screw terminals located in 

module.

—

Table A-19.  Digital Input and Output Characteristics—SCXI Modules (Continued)

Module Type of Module Number of Channels
1

Input Voltage Range Mode Support
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Note: “By device” means you select the value of a parameter with hardware 

jumpers, and the selection affects any group of channels on the device. “By 

group” means you program the selection through software, and the 

selection affects all the channels used at the same time. “By channel” 

means you program the selection with hardware jumpers or through 

software on a per channel basis. When a specific value for a parameter is 

shown, that parameter value is fixed.

SCXI-1162

SCXI-1162HV

SCXI-1163

SCXI-1163R

SCXI-1326 —

SCXI-1180 SCXI-1302 —

SCXI-1181 SCXI-1300

SCXI-1301

IC Sensor

—

SCXI-1200 SCXI-1302

CB-50

—

—

1 SCXI-1121 only

Table A-21.  Analog Input Configuration Programmability

Device Gain Coupling

5102 devices by channel by channel

Table A-22.  Analog Input Configuration Programmability

Device

Number of 

Channels Resolution Gains Range (V)

Input FIFO

(words) Scanning

5102 devices 2 8 bits 1, 5, 20, 100  +/- 5 663546 1 or 2 

channels in 

any order 

without 

repetitions

Table A-20.  Terminal Block Selection Guide—SCXI Modules (Continued)

SCXI Module Terminal Blocks Cold-Junction Compensation Sensor (CJC)
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Analog Output Only Devices Hardware Capabilities

Table A-23.  Analog Output Characteristics--Analog Output Only Devices

Device Channel #s DAC Type

Output

Limits (V) Update Clocks

Waveform 

Grouping

Transfer 

Method

AT-AO-6

AT-AO-10

NB-AO-6

0 through 5, 6 

through 9*

12-bit 

double-buffer

ed

with 1 K FIFO 

for update 

clock 1 

channels

±10, ±Vref1, 0 

to 10, 0 to 

Vref1, 4 to 20 

mA, 4 to 

Update clock 

1 is ctr0 or 

external 

update. 

Update clock 

1 channels are 

0, 1, 2, 3, 4, 5, 

6*, 7*, 8*, 9*, 

0 to 1, 0 to 3, 

0 to 5, 0 to 7*, 

0 to 9*. 

Update clock 

2 is ctr1. 

Update clock 

2 channels are 

2, 3, 4, 5, 6*, 

7*, 8*, 9*, 2 to 

3, 2 to 5, 2 to 

7*, 2 to 9*; 

timebase 

signal range is 

1,000,000, 

100,000, 

10,000, 

1,000, 100

For update 

clock 1 

channels are 

any one 

channel N or 

set of channel 

pairs: 0-N; for 

update clock 2 

channels are 

2-N, same 

rules as above: 

N#6, N#10*

Update clock 

1 channels: 

DMA, 

interrupts; 

update clock 2 

channels: 

interrupts

PC-AO-2DC 

(Plug and 

Play)

0, 1 0 to 10, ±5, 

0-20mA sink 

software-selec

table

DAQCard-A

O-2DC

0, 1 0 to 10, ±5, 

0-10mA sink 

software-selec

table

*AT-AO-10 only
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Dynamic Signal Acquisition Devices Hardware 
Capabilities

Note:  “By device” means you select the value of a parameter with hardware 

jumpers, and the selection affects any group of channels on the device. “By 

group” means you program the selection through software, and the 

selection affects all the channels used at the same time. “By channel” 

means you program the selection with hardware jumpers or through 

software on a per channel basis. When a specific value for a parameter is 

shown, that parameter value is fixed.

Table A-24.  Analog Input Configuration Programmability—Dynamic Signal Acquisition Devices

Device Gain Range (V) Polarity SE/DIFF Coupling

EISA-A2000

NB-A2000

1 ±5 Bipolar SE By channel

NB-A2100

AT-DSP2200

1 ±2.828 Bipolar SE By group

NB-A2150

AT-A2150

1 ±2.828 Bipolar SE By channel pair 0 and 1, 2 

and 3
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Table A-25.  Analog Input Characteristics—Dynamic Signal Acquisition Devices

Device

N
u

m
b

er
 o

f 
C

h
a

n
n

el
s

R
es

o
lu

ti
o

n

R
a

n
g

e 
(V

)

In
p

u
t 

F
IF

O

(w
o

rd
s)

T
ri

g
ge

rs

S
ca

n
n

in
g

M
a

x
 S

a
m

p
li

n
g

R
a

te
 (

S
/s

)

T
ra

n
sf

er

M
et

h
o

d

EISA-A2000

NB-A2000

4 SE 12 

bits

±5 EISA:

512; 

NB:

1,024

Software trigger, 

pretrigger, and 

posttrigger with 

digital or analog 

triggering and 

posttrigger delay

0, 1, 2, 3, 0 

and 1, 2 and 

3, 0 to 3. 

1M DMA, 

interrupts

NB-A2100

NB-A2150

2 SE 16 

bits

±2.828 32 Software trigger, 

pretrigger, and 

posttrigger with 

digital or analog 

triggering

A2150:

0, 1, 2, 3, 0 

and 1, 2 and 

3, 0 to 3;

A2100:

0, 1, 0 and 1

2100:

48 k, 2150:

24 k, 

2150C:

48 k, 

2150S:

51.2 k

DMA, 

interrupts

AT-A2150 4 SE 16 

bits

±2.828 — Software trigger, 

pretrigger, and 

posttrigger with 

digital or analog 

triggering

0, 1, 2, 3, 0 

and 1, 2 and 

3, 0 and 3

2150:

24 k

2150:

51.2 k

DMA, 

interrupts
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Digital Only Devices Hardware Capabilities

Table A-26.  Digital Hardware Capabilities—Digital I/O Devices

Device

Port

Type Port #s Handshake Modes Direction DIO Clocks

Transfer

Method

AT-DIO-32F

NB-DIO-32F

8-bit 

ports

0, 1, 2, 

3

8-bit port 

Handshaking on 

or off; extensive 

handshaking 

modes

Read or write Two 

clocks 

available 

16-bit 

with 

variable 

timebase

DMA for each 

group; dual 

channel DMA for 

groups 

containing port 0

2-bit 

ports

4 No handshaking Read or write None Software polling

PC-DIO-24

NB-DIO-24

DAQCard-DIO-24

8-bit 

port

0, 1 Handshaking on 

or off

Read or write, 

port 0 may be 

bidirectional

None Interrupts

8-bit 

port

2 No handshaking; 

unusable if port 0 

or 1 uses 

handshaking

Read or write None Software polling

PC-DIO-96

PCI-DIO-96

NB-DIO-96

8-bit 

port

0, 1, 3, 

4, 6, 7, 

9, 10

Handshaking on 

or off

Read or write, 

ports 0, 3, 6, and 

9 may be 

bidirectional 

None Interrupts

8-bit 

port

2, 5, 8, 

11

No handshaking; 

unusable if port A 

and B of the 8255 

chip use 

handshaking

Read or write None Software polling

PC-OPDIO-16 (Plug 

and Play)

Opti-

cally-

isolated

8-bit 

port

0, 1 — Port 0 is output 

(write); port 1 is 

input (read)

None Programmed I/O
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Timing Only Devices Hardware Capabilities

Table A-27.  Digital Hardware Capabilities—Timing Only Devices

Device

Port 

Type

Port 

Numbers

Handshake

Modes Direction

DIO

Clocks

Transfer

Method

PC-TIO-10

NB-TIO-10

8-bit 

ports

0, 1 No handshaking Bit-wise direction 

control

None Software 

polling

Table A-28.  Counter/Timer Characteristics—Timing Only Devices

Device

C
o

u
n
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r 

C
h

ip

U
se

d

# 
of

 G
en
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a

l 
P

u
rp

o
se

C
o

u
n

te
rs

 A
v

a
il

a
b

le

T
im

eb
a

se
s 

A
v

a
il

a
b

le

#
 o

f 
B

it
s

G
a
te

 M
o
d

es
 A

v
a
il

a
b

le

O
u

t-
p

u
ts

 A
v

a
il

-a
b

le

O
u

tp
u

t 
M

o
d

es

A
v
a
il

-a
b

le

C
o

u
n

t 
D

ir
ec

ti
o

n

PC-TIO-10

NB-TIO-10

Am-9513 10 (8 have 

SOURCE 

inputs at the 

I/O 

connector)

Internal: 5 MHz 

(only on CTR5 and 

CTR10), 1 MHz,

100 kHz, 10 kHz,

1 kHz, 100 Hz; 

external

16 high-level, 

low-level, 

rising-edge, 

falling-edge

10 TC 

pulse, 

TC 

toggle

Up or 

Down
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5102 Devices Hardware Capabilities

Table A-29.  Analog input configuration programmability

Device Gain Coupling

5102 devices by channel by channel

Table A-30.  Analog input characteristics

Device

Number

of Channels Resolution Gains Range (V)

Input FIFO

Words) Scanning

5102 

devices

2 8 bits 1, 5, 20, 100 +/- 5 663,000 1 or 2 channels, 

in any order 

without 

repetitions

Table A-31.  Analog input characteristics, Part 2

Device Triggers Maximum Sampling Rate (S/s)

5102 devices SW, Pre, Post, Analog 20,000,000 real time
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Appendix

B
Multiline Interface 
Messages

This appendix lists multiline interface messages, which are commands 
that IEEE 488 defines. Multiline interface message manage the GPIB—
they perform tasks such as initializing the bus, addressing and 
unaddressing devices, and setting device modes for local or remote 
programming. These multiline interface messages are sent and received 
with ATN TRUE. The following list includes the mnemonics and 
messages that correspond to the interface functions.

For more information on these messages, refer to the ANSI/IEEE 
Standard 488.1-1987, IEEE Standard Digital Interface for 

Programmable Instrumentation.

Hex Oct Dec ASCII Hex Oct Dec ASCII

00 000 0 NUL 20 040 32 SP

01 001 1 SOH 21 041 33 !

02 002 2 STX 22 042 34 "

03 003 3 ETX 23 043 35 #

04 004 4 EOT 24 044 36 $

05 005 5 ENQ 25 045 37 %

06 006 6 ACK 26 046 38 &

07 007 7 BEL 27 047 39 '

08 010 8 BS 28 050 40 (

09 011 9 HT 29 051 41 )

0A 012 10 LF 2A 052 42 *

0B 013 11 VT 2B 053 43 +
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0C 014 12 FF 2C 054 44 ,

0D 015 13 CR 2D 055 45 - 

0E 016 14 SO 2E 056 46 .

0F 017 15 SI 2F 057 47 /

10 020 16 DLE 30 060 48 0

11 021 17 DC1 31 061 49 1

12 022 18 DC2 32 062 50 2

13 023 19 DC3 33 063 51 3

14 024 20 DC4 34 064 52 4

15 025 21 NAK 35 065 53 5

16 026 22 SYN 36 066 54 6

17 027 23 ETB 37 067 55 7

18 030 24 CAN 38 070 56 8

19 031 25 EM 39 071 57 9

1A 032 26 SUB 3A 072 58 :

1B 033 27 ESC 3B 073 59 ;

1C 034 28 FS 3C 074 60 <

1D 035 29 GS 3D 075 61 =

1E 036 30 RS 3E 076 62 >

1F 037 31 US 3F 077 63 ?

40 100 64 @ 60 140 96 `

41 101 65 A 61 141 97 a

Hex Oct Dec ASCII Hex Oct Dec ASCII
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42 102 66 B 62 142 98 b

43 103 67 C 63 143 99 c

44 104 68 D 64 144 100 d

45 105 69 E 65 145 101 e

46 106 70 F 66 146 102 f

47 107 71 G 67 147 103 g

48 110 72 H 68 150 104 h

49 111 73 I 69 151 105 i

4A 112 74 J 6A 152 106 j

4B 113 75 K 6B 153 107 k

4C 114 76 L 6C 154 108 l

4D 115 77 M 6D 155 109 m

4E 116 78 N 6E 156 110 n

4F 117 79 O 6F 157 111 o

50 120 80 P 70 160 112 p

51 121 81 Q 71 161 113 q

52 122 82 R 72 162 114 r

53 123 83 S 73 163 115 s

54 124 84 T 74 164 116 t

55 125 85 U 75 165 117 u

56 126 86 V 76 166 118 v

57 127 87 W 77 167 119 w

Hex Oct Dec ASCII Hex Oct Dec ASCII
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58 130 88 X 78 170 120 x

59 131 89 Y 79 171 121 y

5A 132 90 Z 7A 172 122 z

5B 133 91 [ 7B 173 123 {

5C 134 92 \ 7C 174 124 |

5D 135 93 ] 7D 175 125 }

5E 136 94 ^ 7E 176 126 ~

5F 137 95 _ 7F 177 127 DEL

Hex Oct Dec ASCII Hex Oct Dec ASCII
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Appendix

COperation of the GPIB

This appendix describes basic concepts you need to understand to 
operate the GPIB. It also contains a description of the physical and 
electrical characteristics of the GPIB and configuration requirements of 
the GPIB.

Types of Messages

The GPIB carries device-dependent messages and interface messages.

• Device-dependent messages, often called data or data messages, 
contain device-specific information such as programming 
instructions, measurement results, machine status, and data files.

• Interface messages manage the bus itself. They are usually called 
commands or command messages. Interface messages perform such 
tasks as initializing the bus, addressing and unaddressing devices, 
and setting device modes for remote or local programming.

Do not confuse the term command as used here with some device 
instructions, which can also be called commands. These device-specific 
instructions are actually data messages.

Talkers, Listeners, and Controllers

GPIB devices can be Talkers, Listeners, and/or Controllers. A digital 
voltmeter, for example, is a Talker and may be a Listener as well. A 
Talker sends data messages to one or more Listeners. The Controller 
manages the flow of information on the GPIB by sending commands to 
all devices.

The GPIB is like an ordinary computer bus, except that the computer 
has its circuit cards interconnected via a backplane bus, whereas the 
GPIB has stand-alone devices interconnected via a cable bus.

The role of the GPIB Controller is similar to the role of the CPU of a 
computer, but a better analogy is to the switching center of a city 
telephone system. The switching center (Controller) monitors the 
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communications network (GPIB). When the center (Controller) notices 
that a party (device) wants to make a call (send a data message), it 
connects the caller (Talker) to the receiver (Listener).

The Controller addresses a Talker and a Listener before the Talker can 
send its message to the Listener. After the Talker transmits the message, 
the Controller may unaddress both devices.

Some bus configurations do not require a Controller. For example, one 
device may always be a Talker (called a Talk-only device) and there 
may be one or more Listen-only devices.

A Controller is necessary when you must change the active or addressed 
Talker or Listener. A computer usually handles the Controller function.

With the GPIB board and its software, your personal computer plays all 
three roles:

• Controller—to manage the GPIB

• Talker—to send data

• Listener—to receive data

The Controller-In-Charge and System Controller

Although there can be multiple Controllers on the GPIB, only one 
Controller at a time is active or Controller-In-Charge (CIC). You can 
pass active control from the current CIC to an idle Controller. Only one 
device on the bus—the System Controller—can make itself the CIC. 
The GPIB board is usually the System Controller.

GPIB Signals and Lines

The interface system consists of 16 signal lines and 8 ground-return or 
shield-drain lines.

The 16 signal lines are divided into three groups:

• Eight data lines

• Three handshake lines

• Five interface management lines
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Data Lines
The eight data lines, DIO1 through DIO8, carry both data and command 
messages. All commands and most data use the 7-bit ASCII or 
International Standards Organization (ISO) code set, in which case the 
eighth bit, DIO8, is unused or is used for parity.

Handshake Lines
Three lines asynchronously control the transfer of message bytes among 
devices. This process is called a three-wire interlocked handshake, and 
it guarantees that message bytes on the data lines are sent and received 
without transmission error.

NRFD (not ready for data)
NRFD indicates whether a device is ready to receive a message byte. 
All devices drive NRFD when they receive commands, and Listeners 
drive it when they receive data messages.

NDAC (not data accepted)
NDAC indicates whether a device has accepted a message byte. All 
devices drive NDAC when they receive commands, and Listeners drive 
it when they receive data messages.

DAV (data valid)
DAV tells whether the signals on the data lines are stable (valid) and 
whether devices can accept them safely. The Controller drives DAV 
when sending commands, and the Talker drives it when sending data 
messages.

Interface Management Lines
Five lines manage the flow of information across the interface.

ATN (attention)
The Controller drives ATN true when it uses the data lines to send 
commands and drives ATN false when a Talker can send data messages.
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IFC (interface clear)
The System Controller drives the IFC line to initialize the bus and 
become CIC.

REN (remote enable)
The System Controller drives the REN line, which places devices in 
remote or local program mode.

SRQ (service request)
Any device can drive the SRQ line to asynchronously request service 
from the Controller.

EOI (end or identify)
The EOI line has two purposes. The Talker uses the EOI line to mark 
the end of a message string. The Controller uses the EOI line to tell 
devices to respond in a parallel poll.

Physical and Electrical Characteristics

You usually connect devices with a cable assembly consisting of a 
shielded 24-conductor cable which has both a plug and a receptacle 
connector at each end. With this design, you can link devices in either 
a linear or a star configuration, or a combination of the two.

The standard connector is the Amphenol or Cinch Series 57 
Microribbon or Amp Champ type. You can use an adapter cable with a 
non-standard cable and/or connector for special interconnection 
applications.
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The GPIB uses negative logic with standard transistor-transistor logic 
(TTL) level. When DAV is true, for example, it is a TTL low level 
( ≤ 0.8 V), and when DAV is false, it is a TTL high level ( ≥ 2.0 V).

Figure C-1.  GPIB Connector Showing Signal Assignment
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Figure C-2.  Linear Configuration

GPIB Cables

Device A

Device C

Device B



Appendix C Operation of the GPIB

© National Instruments Corporation C-7 LabVIEW Function and VI Reference Manual

Figure C-3.  Star Configuration

Configuration Requirements

To achieve the high data transfer rate for which the GPIB was designed, 
the physical distance between devices and the number of devices on the 
bus must be limited. The following restrictions are typical:

• A maximum separation of 4 m between any two devices and an 
average separation of 2 m over the entire bus.

• A maximum total cable length of 20 m.

• No more than 15 devices connected to each bus, with at least 
two-thirds powered on.

GPIB Cables

Device A

Device C

Device D

Device B
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Contact National Instruments for bus extenders if your requirements 
exceed these limits.
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Appendix

ECustomer Communication

For your convenience, this appendix contains forms to help you gather the information necessary 
to help us solve your technical problems and a form you can use to comment on the product 
documentation.  When you contact us, we need the information on the Technical Support Form 
and the configuration form, if your manual contains one, about your system configuration to 
answer your questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to 
quickly provide the information you need.  Our electronic services include a bulletin board 
service, an FTP site, a fax-on-demand system, and e-mail support.  If you have a hardware or 
software problem, first try the electronic support systems.  If the information available on these 
systems does not answer your questions, we offer fax and telephone support through our technical 
support centers, which are staffed by applications engineers.  

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of 
files and documents to answer most common customer questions.  From these sites, you can also 
download the latest instrument drivers, updates, and example programs.  For recorded instructions 
on how to use the bulletin board and FTP services and for BBS automated information, call (512) 
795-6990. You can access these services at:

United States:  (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom:  01635  551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France:  01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com, as  anonymous and use 
your Internet address, such as joesmith@anywhere.com, as your password.  The support files 
and documents are located in the /support directories.

Bulletin Board Support

FTP Support



Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a 
wide range of technical information.  You can access Fax-on-Demand from a touch-tone 
telephone at (512) 418-1111.

You can submit technical support questions to the applications engineering team through e-mail 
at the Internet address listed below.  Remember to include your name, address, and phone number 
so we can contact you with solutions and suggestions. 

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world.  Use the list below to find the technical 
support number for your country.  If there is no National Instruments office in your country, 
contact the source from which you purchased your software to obtain support.

Telephone  Fax

Australia 02 9874 4100 02 9874 4455
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 527 2321 09 502 2930
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 06 5729961 06 57284309
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 31 348 43 34 66 31 348 43 06 73
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden  08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Fax-on-Demand Support

E-Mail Support (currently U.S. only)



Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and 
use the completed copy of this form as a reference for your current configuration.  Completing 
this form accurately before contacting National Instruments for technical support helps our 
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, 
include the configuration forms from their user manuals.  Include additional pages if necessary.

Name __________________________________________________________________________

Company _______________________________________________________________________

Address ________________________________________________________________________

_______________________________________________________________________________

Fax ( ___ )___________________ Phone ( ___ ) _______________________________________

Computer brand ________________ Model ________________ Processor___________________

Operating system (include version number) ____________________________________________

Clock speed ______MHz   RAM _____MB _____________________________  Display adapter 

Mouse ___yes   ___no     Other adapters installed _______________________________________

Hard disk capacity _____MB __________________________________________________Brand 

Instruments used _________________________________________________________________

_______________________________________________________________________________

National Instruments hardware product model __________________________________  Revision

Configuration ___________________________________________________________________

National Instruments software product _________________________________________ Version 

Configuration ___________________________________________________________________

The problem is: __________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

List any error messages: ___________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

The following steps reproduce the problem:____________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________



LabVIEW Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each 
item.  Complete a new copy of this form each time you revise your software or hardware 
configuration, and use this form as a reference for your current configuration.  Completing this 
form accurately before contacting National Instruments for technical support helps our 
applications engineers answer your questions more efficiently.

National Instruments Products

DAQ hardware __________________________________________________________________

Interrupt level of hardware _________________________________________________________

DMA channels of hardware ________________________________________________________

Base I/O address of hardware _______________________________________________________

Programming choice ______________________________________________________________

HiQ, NI-DAQ, LabVIEW, or LabWindows version _____________________________________

Other boards in system ____________________________________________________________

Base I/O address of other boards ____________________________________________________

DMA channels of other boards _____________________________________________________

Interrupt level of other boards ______________________________________________________

Other Products

Computer make and model ________________________________________________________

Microprocessor __________________________________________________________________

Clock frequency or speed __________________________________________________________

Type of video board installed _______________________________________________________

Operating system version __________________________________________________________

Operating system mode ___________________________________________________________

Programming language ___________________________________________________________

Programming language version _____________________________________________________

Other boards in system ____________________________________________________________

Base I/O address of other boards ____________________________________________________

DMA channels of other boards _____________________________________________________

Interrupt level of other boards ______________________________________________________



Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our 
products.  This information helps us provide quality products to meet your needs.

Title: LabVIEW Function and VI Reference Overview

Edition Date: May 1997

Part Number: 321526A-01

Please comment on the completeness, clarity, and organization of the manual.

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

If you find errors in the manual, please record the page numbers and describe the errors.

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

Thank you for your help.

Name _________________________________________________________________________

Title __________________________________________________________________________

Company _______________________________________________________________________

Address ________________________________________________________________________

_______________________________________________________________________________

Phone ( ___ )__________________________  Fax ( ___ ) ________________________________

Mail to: Technical Publications Fax to: Technical Publications

National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX  78730-5039
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1200 Calibrate, 28-2

1D ANOVA, 45-2

1D Linear Evaluation, 47-2

1D Polar To Rectangular, 47-2

1D Polynomial Evaluation, 47-2

1D Rectangular To Polar, 47-3

2D ANOVA, 45-3

2D Linear Evaluation, 47-3

2D Polynomial Evaluation, 47-3

3D ANOVA, 45-4

A x B, 46-7

A x Vector, 46-7

A2000 Calibrate, 28-2

A2000 Configure, 28-3

A2100 Calibrate (Macintosh), 28-4

A2100 Config (Macintosh), 28-4

A2150 Calibrate (Windows), 28-5

A2150 Config (Macintosh), 28-4

Abort Instrument, 12-11

AC & DC Estimator, 41-4

Access Rights, 11-15

Addition, 46-2

Additional User Definable Constants, 4-22

Adjacent Counters, 26-2

AECreate Comp Descriptor, 54-16

AECreate Descriptor List, 54-18

AECreate Logical Descriptor, 54-17

AECreate Object Specifier, 54-17

AECreate Range Descriptor, 54-17

AECreate Record, 54-18

AESend Abort VI, 54-9

AESend Close VI, 54-9

AESend Do Script, 54-7

AESend Finder Open, 54-8

AESend Open Document, 54-8

AESend Open, 54-8

AESend Open, Run, Close VI, 54-10

AESend Print Document, 54-8

AESend Quit Application, 54-9

AESend Run VI, 54-10

AESend VI Active?, 54-10

AESend, 54-16

AI Acquire Waveform, 14-1

AI Acquire Waveforms, 14-2

AI Buffer Config, 17-1

AI Buffer Read, 17-3

AI Clear, 15-2

AI Clock Config, 17-3

AI Config, 15-3

AI Continuous Scan, 16-2

AI Control, 17-5

AI Group Config, 17-6

AI Hardware Config, 17-8

AI Parameter, 17-13

AI Read One Scan, 16-3

AI Read, 15-3

AI Sample Channel, 14-2

AI Sample Channels, 14-3

AI Single Scan, 15-4

AI SingleScan, 17-13

AI Start, 15-5

AI Trigger Config, 17-14

AI Waveform Scan, 16-4

AllSPoll, 36-4

Amplitude and Phase Spectrum, 41-4

And Array Elements, 5-3

And, 5-2

AO Buffer Config, 21-1

AO Buffer Write, 21-2

AO Clear, 19-2

AO Clock Config, 21-3

AO Config, 19-2

AO Continuous Gen, 20-2

AO Control, 21-3

AO Generate Waveform, 18-1

AO Generate Waveforms, 18-2

AO Group Config, 21-3

AO Hardware Config, 21-4

AO Parameter, 21-4

AO Single Update, 21-4

AO Start, 19-3

AO Trigger and Gate Config (Windows), 21-5

AO Update Channel, 18-2

AO Update Channels, 18-2

AO Wait, 19-3

AO Waveform Gen, 20-3
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AO Write One Update, 20-4

AO Write, 19-3

AO-6/10 Calibrate (Windows), 28-5

Arbitrary Wave, 39-4

Array Max & Min, 7-3

Array Of Strings To Path, 11-15

Array Of Strings To Path, 6-19

Array Size, 7-4

Array Subset, 7-4

Array To Cluster, 7-4

Array To Cluster, 8-3

Array To Spreadsheet String, 6-6

Auto Power Spectrum, 41-4

AutoCorrelation, 40-8

Beep, 12-2

Bessel Coefficients, 42-17

Bessel Filter, 42-17

Blackman Window, 43-5

Blackman-Harris Window, 43-5

Boolean Array To Number, 4-10

Boolean Array To Number, 5-3

Boolean Constant, 5-5

Boolean To (0,1), 4-10

Boolean To (0,1), 5-3

Build Array, 7-4

Build Cluster Array, 8-3

Build Path, 11-6

Bundle By Name, 8-4

Bundle, 8-4

Butterworth Coefficients, 42-17

Butterworth Filter, 42-18

Byte Array To String, 4-10

Byte Array To String, 6-20

Bytes at Serial Port, 37-4

cac – Become active Controller, 35-9

Call Chain, 12-2

Call Instrument, 12-12

Call Library Function, 12-3

Carriage Return, 6-21

Cascade—>Direct Coefficients, 42-18

Case Structure, 3-2

Cast Unit Bases, 4-11

Channel To Index, 28-6

Chebyshev Coefficients, 42-19

Chebyshev Filter, 42-19

Chi Square Distribution, 45-5

Chirp Pattern, 39-5

Cholesky Factorization, 46-8

Close All PPC Ports, 55-4

Close File, 11-6

Close Panel No Abort, 12-12

Close Panel, 12-12

Cluster To Array, 7-5

Cluster To Array, 8-4

cmd – Send IEEE488 commands, 35-9

Code Interface Node, 12-2

Complex A x B, 46-8

Complex A x Vector, 46-9

Complex Cholesky Factorization, 46-9

Complex Conjugate, 4-20

Complex Determinant, 46-9

Complex Dot Product, 46-10

Complex Eigenvalues & Vectors, 46-10

Complex FFT, 40-9

Complex Inverse Matrix, 46-11

Complex LU Factorization, 46-11

Complex Matrix Condition Number, 46-12

Complex Matrix Norm, 46-12

Complex Matrix Rank, 46-13

Complex Matrix Trace, 46-13

Complex Outer Product, 46-13

Complex Polynomial Roots, 48-1

Complex PseudoInverse Matrix, 46-14

Complex QR Factorization, 46-14

Complex SVD Factorization, 46-15

Complex To Polar, 4-21

Complex To Re/Im, 4-21

Compound Arithmetic, 5-3

Concatenate Strings, 6-6

Contingency Table, 45-5

Continuous Pulse Generator Config, 26-2

Control Help Window, 12-8

Control Online Help, 12-8

Convert RTD Reading, 29-2

Convert Strain Gauge Reading, 29-3

Convert Thermistor Reading, 29-7

Convert Thermocouple Buffer, 29-9

Convert Thermocouple Reading, 29-9

Convert Unit, 4-11

Convolution, 40-11

Convolution, 42-19

Copy, 11-15

Cosecant, 4-14

Cosine Tapered Window, 43-6

Cosine, 4-14

Cotangent, 4-14

Count Events or Time, 25-2

Counter Read, 26-3

Counter Start, 26-3

Counter Stop, 26-3

Create Automation Refnum, 53-3

Create Special Complex Matrix, 46-15

Create Special Matrix, 46-15
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Creating AppleEvent Parameters Using Object Specifiers, 

54-16

Cross Power Spectrum, 41-5

Cross Power, 40-12

CrossCorrelation, 40-13

CTR Buffer Config, 27-2

CTR Buffer Read, 27-2

CTR Control, 27-11

CTR Group Config, 27-3

CTR Mode Config, 27-4

CTR Pulse Config, 27-10

Current VI's Path Constant, 11-21

DAQ Occurrence Config (Windows), 28-8

Date/Time To Seconds, 10-6

DDE Advise Check, 52-7

DDE Advise Start, 52-7

DDE Advise Stop, 52-7

DDE Close Conversation, 52-7

DDE Execute, 52-8

DDE Open Conversation, 52-8

DDE Poke, 52-8

DDE Request, 52-8

DDE Srv Check Item, 52-9

DDE Srv Register Item, 52-9

DDE Srv Register Service, 52-9

DDE Srv Set Item, 52-9

DDE Srv Unregister Item, 52-10

DDE Srv Unregister Service, 52-10

Decimal Digit?, 9-6

Decimate 1D Array, 7-5

Decimate, 40-15

Deconvolution, 40-16

Default Directory Constant, 11-21

Delayed Pulse Generator Config, 26-3

Delete, 11-15

Derivative x(t), 40-17

Determinant, 46-16

DevClear, 36-2

DevClearList, 36-4

Device Reset, 28-9

Diagonal Matrix, 46-3

Digital Buffer Config, 24-3

Digital Buffer Control, 24-4

Digital Buffer Read, 24-4

Digital Buffer Write, 24-4

Digital Clock Config, 24-5

Digital Group Config, 24-5

Digital Mode Config, 24-6

Digital Single Read, 24-7

Digital Single Write, 24-7

Digital Trigger Config, 24-7

DIO Clear, 23-2

DIO Config, 23-2

DIO Parameter, 24-6

DIO Port Config, 24-2

DIO Port Read, 24-3

DIO Port Write, 24-3

DIO Read, 23-3

DIO Single Read/Write, 23-3

DIO Start, 23-4

DIO Wait, 23-4

DIO Write, 23-4

dma – Set DMA mode or programmed I/O mode, 35-10

Dot Product, 46-16

Down Counter or Divider Config, 26-4

DSP2200 Calibrate (Windows), 28-9

DSP2200 Configure (Windows), 28-10

EigenValues & Vectors, 46-17

Elliptic Coefficients, 42-20

Elliptic Filter, 42-20

Empty Path, 11-21

Empty String, 6-21

Empty String/Path?, 9-6

EnableLocal, 36-5

EnableRemote, 36-5

End of Line, 6-21

EOF, 11-16

Equal To 0?, 9-6

Equal?, 9-6

Equiripple BandPass, 42-20

Equiripple BandStop, 42-21

Equiripple HighPass, 42-21

Equiripple LowPass, 42-22

erf(x), 45-6

erfc(x), 45-6

E-Series Calibrate (Windows), 28-10

Event or Time Counter Config, 26-4

Exact Blackman Window, 43-6

Exclusive Or, 5-4

Execute Method, 53-3

Exponential (Arg) –1, 4-18

Exponential Fit Coefficients, 44-3

Exponential Fit, 44-3

Exponential Window, 43-7

Exponential, 4-18

F Distribution, 45-6

Fast Data Channel Mode, 34-14

Fast Data Channel Number, 34-14

Fast Data Channel Pairs, 34-14

Fast Data Channel Signal Enable, 34-14

Fast Hilbert Transform, 40-17

FHT, 40-18

File Dialog, 11-16

File/Directory Info, 11-16
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Find First Error, 10-9

FindLstn, 36-6

FindRQS, 36-5

FIR Narrowband Coefficients, 42-22

FIR Narrowband Filter, 42-24

FIR Windowed Coefficients, 42-25

FIR Windowed Filter, 42-25

Fixed Constants, 4-22

Flat Top Window, 43-7

Flatten To String, 12-5

Flush File, 11-17

For Loop, 3-2

Force Window, 43-8

Format & Append, 6-16

Format & Strip, 6-16

Format Into String, 6-7

Formula Node, 3-3

From Decimal, 6-17

From Exponential/Fract/Eng, 6-17

From Hexadecimal, 6-17

From Octal, 6-17

Gaussian White Noise, 39-6

General Cosine Window, 43-8

General Error Handler, 10-10

General Histogram, 45-6

General LS Linear Fit, 44-4

General Polynomial Fit, 44-10

Generate Delayed Pulse, 25-2

Generate Occurrence, 12-9

Generate Pulse Train, 25-3

Get DAQ Channel Names (Windows), 28-17

Get DAQ Device Information, 28-12

Get Date/Time In Seconds, 10-7

Get Date/Time String, 10-7

Get Help Window Status, 12-9

Get Instrument State, 12-13

Get Panel Size, 12-13

Get Property, 53-3

Get SCXI Information, 28-12

Get Target ID, 54-5

Get Target ID, 55-5

Global Variable, 3-3

GPIB Clear, 35-3

GPIB Initialization, 35-4

GPIB Misc, 35-4

GPIB Primary Address, 34-14

GPIB Read, 35-5

GPIB Secondary Address, 34-14

GPIB Serial Poll, 35-6

GPIB Status, 35-6

GPIB Trigger, 35-6

GPIB Wait, 35-6

GPIB Write, 35-7

Greater Or Equal To 0?, 9-7

Greater Or Equal?, 9-7

Greater Than 0?, 9-7

Greater?, 9-7

gts – Go from active Controller to standby, 35-10

Hamming Window, 43-9

Hanning Window, 43-9

Harmonic Analyzer, 41-5

Hermitian Matrix, 46-3

Hex Digit?, 9-7

Histogram, 45-7

Hyperbolic Cosine, 4-15

Hyperbolic Sine, 4-15

Hyperbolic Tangent, 4-15

ICTR Control, 26-5

ICTRControl, 27-11

Identity Matrix, 46-3

IIR Cascade Filter with Integrated Circuit, 42-26

IIR Cascade Filter, 42-25

IIR Filter with Integrated Circuit, 42-27

IIR Filter, 42-26

Immediate Servant, 34-14

Implies, 5-4

Impulse Pattern, 39-6

Impulse Response Function, 41-6

In Port (Windows 3.1 and Windows 95), 12-10

Increment Destination Count, 34-14

Increment Source Count, 34-15

Index & Append, 6-8

Index & Bundle Cluster Array, 8-5

Index & Strip, 6-8

Index Array, 7-5

Initialize Array, 7-5

Integral x(t), 40-19

Interface Number, 34-15

InterfaceType, 34-15

Interleave 1D Arrays, 7-6

Interpolate 1D Array, 7-6

Inv Chebyshev Coefficients, 42-27

Inv Chi Square Distribution, 45-8

Inv F Distribution, 45-8

Inv Normal Distribution, 45-9

Inv T Distribution, 45-9

Inverse Chebyshev Filter, 42-27

Inverse Complex FFT, 40-20

Inverse Cosine, 4-15

Inverse Fast Hilbert Transform, 40-21

Inverse FHT, 40-22

Inverse Hyperbolic Cosine, 4-15

Inverse Hyperbolic Sine, 4-16

Inverse Hyperbolic Tangent, 4-16
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Inverse Matrix, 46-17

Inverse Real FFT, 40-23

Inverse Sine, 4-16

Inverse Tangent (2 Input), 4-16

Inverse Tangent, 4-16

IO Protocol, 34-14

IP To String, 50-4

ist – Set individual status bit, 35-11

Join Numbers, 12-5

Kaiser-Bessel Window, 43-10

Less Or Equal To 0?, 9-8

Less Or Equal?, 9-8

Less Than 0?, 9-8

Less?, 9-8

Lexical Class, 9-9

Line Feed, 6-21

Linear Fit Coefficients, 44-12

Linear Fit, 44-12

List Directory, 11-17

List Methods or Properties, 53-3

List Objects in Type Library, 53-4

llo – Local lockout, 35-11

loc – Go to local, 35-7

loc – Place Controller in local state, 35-12

Local Variable, 3-3

Lock Range, 11-17

Logarithm Base 10, 4-19

Logarithm Base 2, 4-18

Logarithm Base X, 4-19

Logical Shift, 12-5

Lower Triangular Matrix, 46-4

LPM-16 Calibrate, 28-12

LU Factorization, 46-18

Mainframe Logical Address, 34-15

Make Alias, 54-16

MakeAddr, 36-10

Mantissa & Exponent, 12-6

Manufacturer ID, 34-15

Master Slave Config, 28-13

Match Pattern, 6-9

Matrix Condition Number, 46-18

Matrix Norm, 46-18

Matrix Rank, 46-19

Matrix-Matrix Multiplication, 46-2

Max & Min, 9-9

Maximum Queue Length, 34-15

Mean, 45-9

Measure Frequency, 25-3

Measure Pulse Width or Period, 25-4

Median Filter, 42-28

Median, 45-10

MIO Calibrate (Windows), 28-13

MIO Configure (Windows), 28-14

Mode, 45-10

Model Code, 34-15

Moment About Mean, 45-10

Move, 11-18

MSE, 45-11

n Range?, 9-7

Natural Logarithm (Arg +1), 4-19

Natural Logarithm, 4-19

Network Functions (avg), 41-6

New Directory, 11-18

New File, 11-18

Nonlinear Lev-Mar Fit, 44-13

Normal Distribution, 45-11

Normalize Matrix, 47-4

Normalize Vector, 47-4

Not A Number/Path/Refnum?, 9-9

Not A Path, 11-22

Not A Refnum, 11-22

Not And, 5-4

Not Equal To 0?, 9-10

Not Equal?, 9-10

Not Exclusive Or, 5-4

Not Or, 5-4

Not, 5-4

Number To Boolean Array, 4-11

Number To Boolean Array, 5-5

Numeric Integration, 48-2

Octal Digit?, 9-10

off – Take controller offline, 35-12

off – Take device offline, 35-8

One Button Dialog Box, 10-7

Open File, 11-18

Open Panel, 12-13

Open/Create/Replace File, 11-7

Or Array Elements, 5-5

Or, 5-5

Orthogonal Matrix, 46-4

Out Port (Windows 3.1 and Windows 95), 12-11

Outer Product, 46-19

Out-of-Range Index Values, 7-3

Parks-McClellan, 42-28

PassControl, 36-3

Path Constant, 11-22

Path To Array Of Strings, 11-19

Path To Array Of Strings, 6-20

Path To String, 11-19

Path To String, 6-20

Path Type, 11-19

pct – Pass control, 35-8

Peak Detector, 41-7

Peak Detector, 48-3
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Periodic Random Noise, 39-7

Permutation Matrix, 46-4

Pick Line & Append, 6-11

Polar To Complex, 4-21

Polynomial Interpolation, 44-14

Positive Definite Matrix, 46-4

Power & Frequency Estimate, 41-7

Power Of 10, 4-20

Power Of 2, 4-19

Power Of X, 4-20

Power Spectrum, 40-23

ppc – Parallel poll configure (enable and disable), 35-12

ppc – Parallel poll configure, 35-8

PPC Accept Session, 55-3

PPC Browser, 54-6

PPC Browser, 55-4

PPC Close Port, 55-4

PPC End Session, 55-4

PPC Inform Session, 55-5

PPC Open Port, 55-5

PPC Read, 55-6

PPC Start Session, 55-6

PPC Write, 55-6

PPoll, 36-5

PPollConfig, 36-3

PPollUnconfig, 36-5

ppu – Parallel poll unconfigure, 35-12

PREFIX Close, 33-2

PREFIX Error Message, 33-3

PREFIX Error Query, Error Query (Multiple) and Error 

Message, 33-3

PREFIX Initialize and PREFIX Initialize (VXI, 

Reg-based), 33-3

PREFIX Message-Based Template and Register-Based 

Template, 33-4

PREFIX Register-Based Template, 33-5

PREFIX Reset, 33-5

PREFIX Revision Query, 33-5

PREFIX Self-Test, 33-5

PREFIX Utility Clean UP Initialize, 33-6

PREFIX Utility Default Instrument Setup, 33-6

PREFIX VI Tree, 33-6

Preload Instrument, 12-13

Printable?, 9-10

PseudoInverse Matrix, 46-20

Pulse Parameters, 41-7

Pulse Pattern, 39-8

Pulse Width or Period Meas Config, 26-5

Pulse Width or Period Meas Config, 26-7

QR Factorization, 46-20

Quick Scale 1D, 47-5

Quick Scale 2D, 47-6

Quit, 12-4

Ramp Pattern, 39-8

Rational Interpolation, 44-14

RcvRespMsg, 36-9

Re/Im To Complex, 4-21

Read Characters From File, 11-7

Read File, 11-7

Read from Digital Line, 22-2

Read from Digital Port, 22-2

Read From I16 File, 11-13

Read From SGL File, 11-13

Read From Spreadsheet File, 11-10

Read Lines From File, 11-11

ReadStatus, 36-3

Real FFT, 40-27

Receive, 36-3

ReceiveSetup, 36-9

Refnum To Path, 11-19

Refnum To Path, 6-20

Release Instrument, 12-14

Release Refnum, 53-4

Replace Array Element, 7-6

ResetSys, 36-6

Reshape Array, 7-6

Resize Panel, 12-14

Resource Lock State, 34-15

Resource Manufacturer Identification, 34-15

Resource Manufacturer Name, 34-15

Resource Name, 34-15

Reverse 1D Array, 7-6

Reverse String, 6-11

RMS, 45-11

Rotate 1D Array, 7-7

Rotate Left With Carry, 12-6

Rotate Right With Carry, 12-6

Rotate String, 6-12

Rotate, 12-6

Route Signal, 28-14

rpp – Conduct parallel poll, 35-12

rsc – Release or request system control, 35-13

rsv – Request service and/or set the serial poll status byte, 

35-13

RTSI Control, 28-15

Run Instrument, 12-14

Sample Variance, 45-12

Sawtooth Wave, 39-9

Scalar-Matrix Multiplication, 46-2

Scale 1D, 47-6

Scale 2D, 47-7

Scaled Time Domain Window, 41-8

Scaling Constant Tuner, 29-9

Scan From String, 6-12
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SCXI Cal Constants, 28-15

SCXI Temperature Scan, 29-11

Search 1D Array, 7-7

Secant, 4-17

Seconds To Date/Time, 10-7

Seek, 11-19

Select & Append, 6-14

Select & Strip, 6-14

Select, 9-10

Send End Enable, 34-16

Send, 36-4

SendCmds, 36-9

SendDataBytes, 36-9

SendIFC, 36-7

SendList, 36-6

SendLLO, 36-7

SendSetup, 36-10

Sequence Structure, 3-2

Serial Port Break, 37-4

Serial Port Init, 37-4

Serial Port Read, 37-4

Serial Port Write, 37-4

Set DAQ Configuration File (Windows), 28-17

Set DAQ Device Information, 28-16

Set Occurrence, 12-10

Set Property, 53-4

Set SCXI Information, 28-16

SetRWLS, 36-7

SetTimeOut, 36-10

sic – Send interface clear, 35-13

Simple Error Handler, 10-10

Sinc Pattern, 39-9

Sinc, 4-17

Sine & Cosine, 4-17

Sine Pattern, 39-10

Sine Wave, 39-10

Sine, 4-17

Slot, 34-16

Solve Complex Linear Equations, 46-20

Solve Linear Equations, 46-22

Sort 1D Array, 7-7

Spectrum Unit Conversion, 41-9

Spline Interpolant, 44-15

Spline Interpolation, 44-16

Split 1D Array, 7-7

Split Number, 12-6

Split String, 6-14

Spreadsheet String To Array, 6-14

Square Wave, 39-11

sre – Unassert or assert remote enable, 35-14

Standard Deviation, 45-12

Stop, 12-4

String Constant, 6-21

String Length, 6-15

String Subset, 6-15

String To Byte Array, 4-12

String To Byte Array, 6-20

String To IP, 50-4

String To Path, 11-20

String To Path, 6-21

Strip Path, 11-11

Suppress End Enable, 34-16

SVD Factorization, 46-23

Swap Bytes, 12-7

Swap Words, 12-7

Symmetric Matrix, 46-3

T Distribution, 45-12

Tab, 6-21

Tangent, 4-17

TCP Close Connection, 50-5

TCP Create Listener, 50-5

TCP Listen, 50-5

TCP Open Connection, 50-5

TCP Read, 50-6

TCP Wait on Listener, 50-6

TCP Write, 50-6

Temporary Directory Constant, 11-22

Termination Character Enable, 34-17

Termination Character, 34-17

Test Complex Positive Definite, 46-23

Test Positive Definite, 46-24

TestSRQ, 36-8

TestSys, 36-8

Threshold 1D Array, 7-7

Threshold Peak Detector, 41-9

Threshold Peak Detector, 48-4

Tick Count (ms), 10-7

Timeout Value, 34-17

To Byte Integer, 4-12

To Decimal, 6-18

To Double Precision Complex, 4-12

To Double Precision Float, 4-12

To Engineering, 6-18

To Exponential, 6-18

To Extend Precision Complex, 4-12

To Extended Precision Float, 4-12

To Fractional, 6-18

To Hexadecimal, 6-19

To Long Integer, 4-13

To Lower Case, 6-15

To Octal, 6-19

To Single Precision Complex, 4-13

To Single Precision Float, 4-13

To Unsigned Byte Integer, 4-13
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To Unsigned Long Integer, 4-13

To Unsigned Word Integer, 4-13

To Upper Case, 6-15

To Word Integer, 4-14

Trace, 46-24

Transfer Function, 41-9

Transpose 2D Array, 7-8

Transposition, 46-2

Triangle Wave, 39-12

Triangle Window, 43-10

Trigger Identifier, 34-17

Trigger, 36-4

TriggerList, 36-6

Two Button Dialog Box, 10-8

Type and Creator, 11-20

Type Cast, 12-7

UDP Close, 51-2

UDP Open, 51-3

UDP Read, 51-3

UDP Write, 51-3

Unbundle By Name, 8-5

Unbundle, 8-5

Unflatten From String, 12-8

Uniform White Noise, 39-13

Unit Vector, 47-7

Unwrap Phase, 40-27

Upper Triangular Matrix, 46-4

User Data, 34-17

User Definable Arithmetic Constants, 4-8

Variance, 45-13

Version of Implementation, 34-17

Version of Specification, 34-17

VI Library Constant, 11-22

VISA Assert Trigger, 34-3

VISA Clear, 34-3

VISA Close, 34-4

VISA Disable Event, 34-7

VISA Discard Events, 34-8

VISA Enable Event, 34-8

VISA Find Resource, 34-4

VISA In8 / In16 / In32, 34-9

VISA Lock, 34-4

VISA Map Address, 34-12

VISA Memory Allocation, 34-12

VISA Memory Allocation, 34-9

VISA Memory Free, 34-10

VISA Memory Free, 34-12

VISA Move In8 / Move In16 / Move In32, 34-10

VISA Move Out8 / Move Out16 / Move Out32, 34-10

VISA Open, 34-4

VISA Out8 / Out16 / Out32, 34-11

VISA Peek8 / Peek16 / Peek32, 34-12

VISA Poke8 / Poke16 / Poke32, 34-12

VISA Read STB, 34-6

VISA Read, 34-6

VISA Status Description, 34-6

VISA Unlock, 34-6

VISA Unmap Address, 34-13

VISA Wait On Event, 34-8

VISA Write, 34-7

Volume Info, 11-20

VXI Commander Logical Address, 34-17

VXI Logical Address, 34-18

VXI Memory Address Space, 34-18

VXI Memory Base Address, 34-18

VXI Memory Size, 34-18

Wait (ms), 10-8

Wait for GPIB RQS, 35-6

Wait On Occurrence, 12-10

Wait Until Next ms Multiple, 10-8

Wait+ (ms), 26-7

WaitSRQ, 36-8

While Loop, 3-3

White Space?, 9-11

Window Access, 34-18

Window Base Address, 34-18

Window Size, 34-18

Write Characters To File, 11-11

Write File, 11-11

Write to Digital Line, 22-3

Write to Digital Port, 22-3

Write To I16 File, 11-13

Write To SGL File, 11-14

Write To Spreadsheet File, 11-12

Y[i] = Clip {X[i]}, 40-27

Y[i] = X[i-n], 40-28

Zero Padder, 40-28
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