

 GPIB-232CT-A

https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-232CT-A?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-232CT-A?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-232CT-A?aw_referrer=pdf

© Copyright 1991, 1994 National Instruments Corporation.
All Rights Reserved.

NI-488
®

 and NI-488.2
™

Subroutines for Pascal

November 1993 Edition

Part Number 320375-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices:
Australia (03) 879 9422, Austria (0662) 435986, Belgium 02/757.00.20,
Canada (Ontario) (519) 622-9310, Canada (Québec) (514) 694-8521,
Denmark 45 76 26 00, Finland (90) 527 2321, France (1) 48 14 24 24,
Germany 089/741 31 30, Italy 02/48301892, Japan (03) 3788-1921,
Netherlands 03480-33466, Norway 32-848400, Spain (91) 640 0085,
Sweden 08-730 49 70, Switzerland 056/20 51 51, U.K. 0635 523545

Limited Warranty

The media on which you receive National Instruments software are
warranted not to fail to execute programming instructions, due to defects in
materials and workmanship, for a period of 90 days from date of shipment,
as evidenced by receipts or other documentation. National Instruments will,
at its option, repair or replace software media that do not execute
programming instructions if National Instruments receives notice of such
defects during the warranty period. National Instruments does not warrant
that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the
factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will
pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this manual is
accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National
Instruments reserves the right to make changes to subsequent editions of
this document without prior notice to holders of this edition. The reader
should consult National Instruments if errors are suspected. In no event
shall National Instruments be liable for any damages arising out of or
related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES , EXPRESS OR IMPLIED , AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER 'S RIGHT TO RECOVER DAMAGES
CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE
PAID BY THE CUSTOMER . NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA , PROFITS,
USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES ,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the
liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of
action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner's failure to follow the National Instruments

installation, operation, or maintenance instructions; owner's modification of
the product; owner's abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or
transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in
whole or in part, without the prior written consent of National Instruments
Corporation.

Trademarks

NI-488® and NI-488.2™ are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their
respective companies.

Warning Regarding Medical and Clinical Use
of National Instruments Products

National Instruments products are not designed with components and testing
intended to ensure a level of reliability suitable for use in treatment and
diagnosis of humans. Applications of National Instruments products
involving medical or clinical treatment can create a potential for accidental
injury caused by product failure, or by errors on the part of the user or
application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed
by properly trained and qualified medical personnel, and all traditional
medical safeguards, equipment, and procedures that are appropriate in the
particular situation to prevent serious injury or death should always continue
to be used when National Instruments products are being used. National
Instruments products are NOT intended to be a substitute for any form of
established process, procedure, or equipment used to monitor or safeguard
human health and safety in medical or clinical treatment.

© National Instruments Corp. v Pascal

Preface

This manual contains information for programming the NI-488.2 routines
and the NI-488 functions in Pascal. The term Pascal as used in this manual,
includes IBM Pascal, Microsoft Pascal, Microsoft QuickPascal, Turbo
Pascal and Turbo Pascal for Windows.

This manual assumes that the software is installed and that you are familiar
with the software operation. Programming knowledge in a Pascal language
and familiarity with the compiler are also assumed.

Organization of This Manual

This manual is organized as follows:

• Chapter 1, General Information, lists the terms and mnemonics used in
this manual, lists the distribution files relevant to programming in
Pascal languages, and explains programming preparations. This
chapter also discusses several special functions and parameters and
summarizes how to use the NI-488.2 routine and NI-488 function calls
that are explained at length in Chapter 2 and Chapter 3.

• Chapter 2, NI-488.2 Routine Descriptions, contains a detailed
description of each NI-488.2 routine with examples. The descriptions
are listed alphabetically for easy reference.

• Chapter 3, NI-488 Function Descriptions , contains a detailed
description of each NI-488 function with examples. The descriptions
are listed alphabetically for easy reference.

• Appendix A, Multiline Interface Messages , contains an interface
message reference list, which describes the mnemonics and messages
that correspond to the interface functions.

• Appendix B, Applications Monitor, explains how to use, install, and
configure the Applications Monitor, a resident program that is useful in
debugging sequences of NI-488 and NI-488.2 calls from within your
MS-DOS application.

Preface

Pascal vi © National Instruments Corp.

• Appendix C, Customer Communication, contains forms for you to
complete to facilitate communication with National Instruments
concerning our products.

Conventions Used in This Manual

The following conventions are used to distinguish elements of text
throughout this manual.

italic Italic text denotes emphasis, a cross reference, or
an introduction to a key concept.

monospace Lowercase text in this font denotes text or
characters that are literally input from the
keyboard, sections of code, programming
examples, and syntax examples. This font is
also used for the proper names of disk drives,
paths, directories, programs, subprograms,
subroutines, device names, functions, variables,
filenames, and extensions, and for statements
and comments taken from program code.

<> Angle brackets enclose the name of a key on the
keyboard–for example, <PageDown>.

<Control> Key names are capitalized.

The following terms are used in this manual:

Term Reference

IBM/MS Pascal IBM and Microsoft Pascal

QuickPascal Microsoft QuickPascal

Turbo Pascal Borland Turbo Pascal

Turbo Pascal for Windows Borland Turbo Pascal for Windows

Pascal All the Pascal languages supported

MS-DOS Pascal Excludes Borland Turbo Pascal for
Windows

Preface

© National Instruments Corp. vii Pascal

Abbreviations

The following metric system prefixes are used with abbreviations for units of
measure in this manual:

Prefix Meaning Value

n

µ
m

M

nano-

micro-

milli-

mega-

10-9

10-6

10-3

106

The following abbreviations are used in this manual:

Hz hertz
hex hexadecimal
M megabytes
sec second

Acronyms

The following acronyms are used in this manual:

AC alternating current
ANSI American National Standards Institute
ASCII American Standard Code for Information

Exchange
DIO digital input/output
DMA direct memory access
DVM digital voltmeter
GPIB General Purpose Interface (IEEE-488) bus
IEEE Institute of Electrical and Electronic Engineers
I/O input/output
PC personal computer
RAM random-access memory
T/L Talker/Listener
VAC volts alternating current

Preface

Pascal viii © National Instruments Corp.

Related Documents

The following documents contain information that you may find helpful as
you read this manual:

• NI-488.2 Software Reference Manual for MS-DOS (National
Instruments Corporation Part Number 320282-01)

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1987, IEEE Standard Codes, Formats,
Protocols, and Common Commands

Customer Communication

National Instruments wants to receive your comments on our products and
manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendix C, Customer
Communication , at the end of this manual.

© National Instruments Corp. ix Pascal

Contents

Chapter 1
General Information ... 1-1

Terms and Mnemonics Used in This Manual 1-1
Using the Distribution Files ... 1-3

IBM Pascal and Microsoft Pascal Files 1-3
Microsoft QuickPascal Files 1-3
Turbo Pascal Files .. 1-4
Turbo Pascal for Windows Files 1-4

Programming Preparations... 1-5
MS-DOS Pascal Preparations 1-5
IBM/MS Pascal Preparations 1-5
QuickPascal Preparations .. 1-6
Turbo Pascal Preparations 1-6
Turbo Pascal for Windows Preparations 1-7

Using ibsrq for "ON SRQ" Capability 1-7
Using ibsta to Test the Status Word....................................... 1-8
Using ibcnt and ibcntl as Count Variables............................. 1-8
Using I/O Variable Parameters .. 1-8

MS-DOS Pascal I/O Variable Parameters 1-9
Turbo Pascal for Windows I/O Variable
Parameters .. 1-9
Pascal NI-488.2 I/O Variable Parameters 1-10

Using the NI-488.2 Routine and NI-488 Function Calls 1-10
Using Functions that Reconfigure Board or Device
Characteristics .. 1-15

Chapter 2
NI-488.2 Routine Descriptions .. 2-1

AllSpoll .. 2-2
DevClear .. 2-3
DevClearList .. 2-4
EnableLocal ... 2-5
EnableRemote .. 2-6
FindLstn ... 2-7
FindRQS .. 2-9
PassControl .. 2-10
PPoll ... 2-11
PPollConfig .. 2-12
PPollUnconfig .. 2-13

Contents

Pascal x © National Instruments Corp.

RcvRespMsg .. 2-14
ReadStatusByte .. 2-15
Receive... 2-16
ReceiveSetup .. 2-17
ResetSys ... 2-18
Send .. 2-19
SendCmds .. 2-20
SendDataBytes ... 2-22
SendIFC ... 2-24
SendList ... 2-25
SendLLO .. 2-27
SendSetup .. 2-28
SetRWLS ... 2-30
TestSRQ ... 2-31
TestSys ... 2-32
Trigger .. 2-33
TriggerList ... 2-34
WaitSRQ .. 2-35
NI-488.2 Example Programs.. 2-36

IBM/MS Pascal Program – NI-488.2 Routines 2-38
QuickPascal Program – NI-488.2 Routines............. 2-46
Turbo Pascal Program – NI-488.2 Routines 2-54
Turbo Pascal for Windows Program –
NI-488.2 Routines .. 2-62

Chapter 3
NI-488 Function Descriptions .. 3-1

IBASK .. 3-2
IBBNA ... 3-13
IBCAC ... 3-14
IBCLR .. 3-16
IBCMD .. 3-17
IBCMDA .. 3-22
IBCONFIG... 3-27
IBDEV ... 3-37
IBDMA .. 3-40
IBEOS .. 3-41
IBEOT .. 3-45
IBEVENT .. 3-47
IBFIND .. 3-49
IBGTS .. 3-52
IBIST .. 3-54
IBLINES .. 3-55

Contents

© National Instruments Corp. xi Pascal

IBLN .. 3-58
IBLOC .. 3-61
IBONL ... 3-63
IBPAD .. 3-66
IBPCT .. 3-68
IBPPC .. 3-69
IBRD .. 3-72
IBRDA .. 3-76
IBRDF .. 3-81
IBRDI... 3-84
IBRDIA .. 3-86
IBRPP .. 3-89
IBRSC .. 3-92
IBRSP .. 3-93
IBRSV .. 3-95
IBSAD .. 3-97
IBSIC ... 3-99
IBSRE .. 3-100
IBSRQ .. 3-102
IBSTOP .. 3-106
IBTMO... 3-107
IBTRAP ... 3-110
IBTRG .. 3-112
IBWAIT ... 3-113
IBWRT... 3-116
IBWRTA .. 3-121
IBWRTF .. 3-127
IBWRTI ... 3-131
IBWRTIA .. 3-133
GPIB Example Programs ... 3-136

IBM/MS Pascal Program – Device Functions......... 3-138
IBM/MS Pascal Program – Board Functions 3-144
QuickPascal Program – Device Functions 3-152
QuickPascal Program – Board Functions 3-158
Turbo Pascal Program – Device Functions 3-165
Turbo Pascal Program – Board Functions 3-171
Turbo Pascal for Windows Program –
Device Functions ... 3-178
Turbo Pascal for Windows Program –
Board Functions... 3-183

Appendix A
Multiline Interface Messages ... A-1

Contents

Pascal xii © National Instruments Corp.

Appendix B
Applications Monitor .. B-1

Using the Applications Monitor ... B-1
Installing the Applications Monitor B-2
IBTRAP ... B-2
Applications Monitor Options ... B-5
Main Commands .. B-6
Session Summary Screen ... B-7
Configuring the Trap Mask .. B-7
Configuring the Monitor Mode .. B-7
Hiding and Showing the Applications Monitor B-8
Exiting Directly to DOS... B-8

Appendix C
Customer Communication .. C-1

Figure

Figure B-1. Applications Monitor Pop-Up Screen B-1

Tables

Table 1-1. Terms Used in This Manual .. 1-1
Table 1-2. Mnemonics Used in This Manual 1-2
Table 1-3. Pascal NI-488.2 Routines .. 1-11
Table 1-4. Pascal NI-488 Functions ... 1-13
Table 1-5. Functions That Alter Default Characteristics 1-15

Table 3-1. ibask Board Configuration Parameter Options 3-2
Table 3-2. ibask Device Configuration Parameter Options 3-10
Table 3-3. ibconfig Board Configuration Parameter Options 3-27
Table 3-4. ibconfig Device Configuration Parameter Options 3-32
Table 3-5. Data Transfer Termination Method 3-41
Table 3-6. Parallel Poll Commands .. 3-90
Table 3-7. Timeout Code Values .. 3-107
Table 3-8. IBTRAP Mode .. 3-110
Table 3-9. IBTRAP Errors.. 3-110
Table 3-10. Wait Mask Layout ... 3-113

© National Instruments Corp. 1-1 Pascal

Chapter 1
General Information

This chapter lists the terms and mnemonics used in this manual, lists the
distribution files relevant to programming in Pascal languages, and explains
programming preparations. This chapter also discusses several special
functions and parameters and summarizes how to use the NI-488.2 routine
and NI-488 function calls that are explained at length in Chapter 2 and
Chapter 3.

Terms and Mnemonics Used in This Manual

Table 1-1 lists the terms used in this manual.

Table 1-1. Terms Used in This Manual

Term Reference

IBM/MS Pascal IBM and Microsoft Pascal

QuickPascal Microsoft QuickPascal

Turbo Pascal Borland Turbo Pascal

Turbo Pascal for Windows Borland Turbo Pascal for Windows

Pascal All the Pascal languages supported

MS-DOS Pascal Excludes Borland Turbo Pascal for
Windows

General Information Chapter 1

Pascal 1-2 © National Instruments Corp.

Table 1-2 lists the mnemonics used in this manual.

Table 1-2. Mnemonics Used in This Manual

Mnemonic Full Name

ATN Attention

CACS Controller Active State

CIC Controller-In-Charge

CIDS Controller Idle State

CMPL Complete

DAV Data Valid

DCAS Device Clear Active State

DTAS Device Trigger Active State

EOI end or identify

EOS end of string

ERR Error Bit

IDY Identify

IFC Interface Clear

LACS Listener Active State

LOK Lockout Bit

LPE Local Poll Enable

MAV Message Available

NDAC Not Data Accepted

NRFD Not Ready For Data

REM Remote Bit

REN Remote Enable

RST Reset

RQS Request Service

RTL Return To Local

SPOLL Serial Poll

SRQ Service Request

SRQI Service Request Input Bit

TACS Talker Active State

TIMO Timeout

Chapter 1 General Information

© National Instruments Corp. 1-3 Pascal

Using the Distribution Files

Your kit includes supplemental distribution disks for either IBM/MS Pascal
and QuickPascal, Turbo Pascal, or Turbo Pascal for Windows. Each
supplemental disk contains files relevant to programming in the
corresponding Pascal language. Copy the distribution files that you need to
your work area and store the originals in a safe place.

IBM Pascal and Microsoft Pascal Files

The NI-488.2 Supplemental Disk for MS-DOS Driver IBM/MS Pascal and
MS QuickPascal Language Interface contains five files relevant to
programming in IBM/MS Pascal:

• DECL .PAS is a file containing declarations.

• PIB .OBJ is the Pascal language interface that gives your application
program access to the software.

• DPSAMP .PAS is a sample program using device calls.

• BPSAMP .PAS is a sample program using board calls.

• PSAMP488 .PAS is a sample program using NI-488.2 calls.

Microsoft QuickPascal Files

The NI-488.2 Supplemental Disk for MS-DOS Driver IBM/MS Pascal and
MS QuickPascal Language Interface contains five files relevant to
programming in QuickPascal:

• QPDECL .PAS is a file containing declarations.

• PIB .OBJ is the Pascal language interface that gives your application
program access to the software.

• DQPSAMP .PAS is a sample program using device calls.

• BQPSAMP .PAS is a sample program using board calls.

• QSAMP488 .PAS is a sample program using NI-488.2 calls.

General Information Chapter 1

Pascal 1-4 © National Instruments Corp.

Turbo Pascal Files

The NI-488.2 Supplemental Disk for MS-DOS Driver Turbo Pascal
Language Interface contains six files relevant to programming in Turbo
Pascal:

• TPDECL .TPU is a unit containing required variable, procedure, and
constant declarations and initializations. Compiled for Turbo Pascal
6.0.

• TPDECL .PAS is the Turbo Pascal source code for TPDECL .TPU .

• TPIB .OBJ is the Pascal language interface that gives your application
program access to the software.

• DTPSAMP .PAS is a sample program using device calls.

• BTPSAMP .PAS is a sample program using board calls.

• TSAMP488 .PAS is a sample program using NI-488.2 calls.

Turbo Pascal for Windows Files

The NI-488.2 Supplemental Disk for MS-Windows Turbo Pascal for
Windows Language Interface contains five files relevant to programming in
Turbo Pascal for Windows:

• TPWGPIB .TPU is a unit containing constant declaration and
initialization, function and procedure prototypes, and direct entry
points to the dynamic link library gpib.dll .

• TPWGPIB .PAS is the Turbo Pascal for Windows source code for
TPWGPIB .TPU .

• DTPWSAMP .PAS is the sample program using device calls.

• BTPWSAMP .PAS is the sample program using board calls.

• WSAMP488 .PAS is the sample program using NI-488.2 calls.

Chapter 1 General Information

© National Instruments Corp. 1-5 Pascal

Programming Preparations

After you have copied the distribution files that you need to your work area,
include the declaration files in your application program by following the
instructions for your particular Pascal language.

MS-DOS Pascal Preparations

In the MS-DOS Pascal programming languages, array variables defined by
the user must be of the same type as the parameters in the subroutine
declarations. In order to conform to this strict type checking, array types
have been defined in the header files (DECL.PAS , QPDECL.PAS , and
TPDECL.PAS) for typecasting file name parameters, board or device name
parameters, and command buffer parameters. You must declare these types
of variables as follows:

file name buffers typed flbuf(array[1..50] of char)

board/device buffers typed nbuf(array[1..7] of

char)

command buffers typed cbuf(array[1..255] of char)

Note : Board or device names must be arrays of seven characters. Use
blanks to pad the name.

Example: var bdname : nbuf;

bdname := 'GPIB0 ';

IBM/MS Pascal Preparations

Place the following IBM/MS Pascal statement at the beginning of your
application program to include DECL .PAS :

{$INCLUDE: 'DECL .PAS'}

The file PIB .OBJ is the IBM/MS Pascal language interface to the NI-488.2
software for MS-DOS. Link the file PIB .OBJ to the GPIB application
program written in Pascal to produce an executable file.

Note: The file PIB .OBJ must not be the first file named in the link when
linking with the application program.

General Information Chapter 1

Pascal 1-6 © National Instruments Corp.

QuickPascal Preparations

Place the following QuickPascal directive at the beginning of your
application program to include QPDECL .PAS :

{$I QPDECL .PAS}

The LINK directive is used in QPDECL .PAS to link PIB .OBJ with your
application program. The FAR CALLS compiler option is enabled in
TPDECL .PAS .

Turbo Pascal Preparations

Place the following Turbo Pascal statement at the beginning of your
application program:

uses TPDECL;

If you have Turbo Pascal 5.x, compile TPDECL .PAS to create a new
TPDECL .TPU for your compiler. The file TPDECL .TPU contains essential
Pascal declarations and initializations. The LINK directive is used in
TPDECL .PAS to link PIB .OBJ with your application program. Do not
redeclare global variables in your application program if they are declared
in TPDECL.PAS .

The formal parameters that correspond to read or write buffers are untyped
parameters. You can define new data types for these buffers or use type
cbuf (defined in TPDECL.PAS as array [1..255] of char;).

Use the command tpc to create TPDECL .TPU or to create the executable
form of your application program, as shown in the following examples:

Create TPDECL .TPU : tpc tpdecl.pas

or

Create.exe fle : tpc yourprogramname.pas

Chapter 1 General Information

© National Instruments Corp. 1-7 Pascal

Turbo Pascal for Windows Preparations

Place the following Turbo Pascal for Windows statement at the beginning
of your application program:

uses TPWGPIB ;

The formal parameters for board or device names and filenames are of type
PChar . Therefore, the corresponding actual parameters must be of type
PChar .

Example: var ud:integer

bdname:PChar;

bdname:='GPIB0';

ud:=ibfind(bdname);

(* or ud := ibfind('GPIB0');)

Because formal parameters for command, read, and write buffers are
untyped, Turbo Pascal variables of a user-specified array type or of type
cbuf are compatible with the Turbo Pascal for Windows language
interface. Turbo Pascal application programs that use parameter types
nbuf and flbuf must be changed to use the Turbo Pascal for Windows
predefined array type PChar .

Note: The Turbo Pascal for Windows language interface cannot be used
for protected-mode application programs.

Using ibsrq for "ON SRQ" Capability

Pascal application programs can be interrupted by the GPIB SRQ signal.
You can cause the program to go to a user-specified service routine when
the interrupt occurs. A special board function, ibsrq , receives the address
of the user-specified service routine and makes the NI-488.2 for MS-DOS
driver check for the occurrence of an SRQ after each GPIB function has
completed. When SRQ is asserted, ibsrq sends the program to the user-
specified routine. Refer to the IBSRQ function in Chapter 3 for a complete
description and programming examples. ibsrq is not supported in Turbo
Pascal for Windows.

General Information Chapter 1

Pascal 1-8 © National Instruments Corp.

Using ibsta to Test the Status Word

Testing the value of the status word (ibsta) aids in error recovery and
diagnostic routines. Notice that the ERR bit is the highest order position of
the status word and is therefore the sign bit of the status word. To
determine if an error has occurred, test whether the value of ibsta is less
than zero with the following statement:

if (ibsta < 0) then error

where error is a user-written error handling routine.

You can also test for particular bits in the status word. The following is an
example of testing for the CMPL bit:

if ((ibsta AND CMPL) <> 0) then...

Note: Explicit code that tests the status word is not necessary in MS-
DOS Pascal if you are using the applications monitor. For
information on the applications monitor refer to Appendix B.

Using ibcnt and ibcntl as Count Variables

The count variables are updated after each read, write, or command
function with the number of bytes actually transferred by the operation.
These variables are also updated by many of the NI-488.2 routines. ibcnt
is an integer value (16 bits wide) and ibcntl is a long integer value (32
bits wide). ibcntl is not available for IBM Pascal application programs.

Using I/O Variable Parameters

The variables you use in input/output calls must be consistent with the
parameters defined for your particular Pascal language. The parameters are
defined in the declaration header files for each Pascal language.

Chapter 1 General Information

© National Instruments Corp. 1-9 Pascal

MS-DOS Pascal I/O Variable Parameters

The most commonly used I/O calls are ibrd and ibwrt . In IBM/MS
Pascal and QuickPascal these functions read and write from a character
array of type cbuf . The following declaration is in the header files
DECL .PAS and QPDECL .PAS :

cbuf = array [1..255] of char;

In addition, integer I/O calls (ibrdi and ibwrti for example) are for
users who need to perform arithmetic operations on the data and want to
avoid the overhead of converting the character bytes of ibrd and ibwrt
into integer format and back again. The integer array type for integer I/O
calls, ibuf , is defined in the header files DECL.PAS and QPDECL.PAS
as follows:

ibuf = array [1..512] of integer;

Internally, the ibwrti function sends each integer to the GPIB in low
byte, high byte order. The ibrdi function reads a series of data bytes
from the GPIB and stores them into the integer array in low byte, high byte
order. The asynchronous functions ibrdia and ibwrtia perform
asynchronous integer reads and writes.

Note: ibrdi and ibwrti are not necessary in Turbo Pascal. ibrd and
ibwrt receive data of a user-defined integer or character array of
the type cbuf (defined in TPDECL.PAS as array[1..255]
of char).

Turbo Pascal for Windows I/O Variable Parameters

The I/O calls ibrd and ibwrt receive data of either a user-defined integer
or character array, type cbuf (defined in TPWGPIB.PAS as
array[1..255] of char), or type PChar . Literal strings cannot be
used as actual parameters in the subroutine call because the corresponding
formal parameters are untyped. If a variable is declared as type PChar , it
must be referenced in the subroutine call statement by using the pointer
symbol (^) after the variable name.

General Information Chapter 1

Pascal 1-10 © National Instruments Corp.

Example:

var wrt: PChar;

wrt := 'VAL1?';

ibwrt(dvm,wrt^,5);

User-defined arrays and arrays of type cbuf are referenced by name only.
Using the pointer symbol (^) after these variables is an error.

Pascal NI-488.2 I/O Variable Parameters

For the NI-488.2 subroutines requiring arrays of GPIB addresses, the
following array type is defined in the header files DECL.PAS ,
QPDECL.PAS , TPDECL.PAS , and TPWGPIB.PAS :

addrlist : array[0..255] of integer;

All the parameters of the NI-488.2 subroutines indicated in Chapter 2 of
this manual as arrays of GPIB addresses must be declared as type
addrlist . You must use the value NOADDR (defined in the header files
as -1) to terminate an array of addresses that is being sent over the GPIB.

Using the NI-488.2 Routine and NI-488 Function
Calls

Numerous examples are provided with the NI-488 function descriptions in
this manual. By including the declaration file, you can pattern your
program code after the examples provided.

The first argument of all calls and functions except ibdev , ibfind ,
ibsrq , and ibtrap is the integer variable ud . This serves as a general
unit descriptor to show the format of the calls. In practice, ud refers to the
board or device to which the command is directed. Refer to the IBFIND
and IBDEV function descriptions in this chapter and to Chapter 3 to
determine the type of unit descriptor to use.

The routines and functions are listed alphabetically by name in Chapters 2
and 3, respectively. Tables 1-3 and 1-4 list the Pascal NI-488.2 routines
and NI-488 functions, respectively, along with a brief descriptions of each
routine and function. The format is identical for IBM/MS Pascal,
QuickPascal, Turbo Pascal, and Turbo Pascal for Windows.

Chapter 1 General Information

© National Instruments Corp. 1-11 Pascal

Table 1-3. Pascal NI-488.2 Routines

Call Syntax Description

AllSpoll (board,addresslist,

 resultlist)
Serial poll all devices

DevClear (board,address) Clear a single device

DevClearList (board,addresslist) Clear multiple devices

EnableLocal (board,addresslist) Enable operations from the
front of a device

EnableRemote (board,addresslist) Enable remote GPIB
programming of devices

FindLstn (board,addresslist,

 resultlist,limit)
Find all Listeners

FindRQS (board,addresslist,result) Determine which device is
requesting service

PassControl (board,address) Pass control to another
device with Controller
capability

PPoll (board,result) Perform a parallel poll

PPollConfig

(board,address,dataline,

 sense)

Configure a device for
parallel polls

PPollUnconfig (board,addresslist) Unconfigure devices for
parallel polls

RcvRespMsg (board,data,count,

 termination)
Read data bytes from
already addressed device

ReadStatusByte (board,address,

 result)
Serial poll a single device
to get its status byte

Receive (board,address,data,count,

 termination)
Read data bytes from a
GPIB device

ReceiveSetup (board,address) Prepare a particular device
to send data bytes and
prepare the GPIB board to
read them

ResetSys (board,addresslist) Initialize a GPIB system on
three levels

(continues)

General Information Chapter 1

Pascal 1-12 © National Instruments Corp.

Table 1-3. Pascal NI-488.2 Routines (continued)

Call Syntax Description

Send (board,address,data,count,

 eotmode)
Send data bytes to a single
GPIB device

SendCmds (board,commands,count) Send GPIB command
bytes

SendDataBytes (board,data,count,

 eotmode)
Send data bytes to already
addressed devices

SendIFC (board) Clear the GPIB interface
functions with IFC

SendList (board,addresslist,data,

 count,eotmode)
Send data bytes to multiple
GPIB devices

SendLLO (board) Send the local lockout
message to all devices

SendSetup (board,addresslist) Prepare particular devices
to receive data bytes

SetRWLS (board,addresslist) Place particular devices in
the Remote with Lockout
state

TestSRQ (board,result) Determine the current state
of the SRQ line

TestSys (board,addresslist,

 resultlist)
Cause devices to conduct
self-tests

Trigger (board,address) Trigger a single device

TriggerList(board,addresslist) Trigger multiple devices

WaitSRQ (board,result) Wait until a device asserts
Service Request

Table 1-4 gives a brief description of each NI-488 function. The first
argument of all function calls except ibfind , ibdev , ibsrq , and
ibtrap is the integer variable ud , which serves as a unit descriptor. Refer
to the IBFIND and IBDEV function descriptions in Chapter 3 to determine
the type of unit descriptor to use.

Note: In function syntax descriptions in this manual, the ud argument
can also be represented by bd , brd , or dev .

Chapter 1 General Information

© National Instruments Corp. 1-13 Pascal

Table 1-4. Pascal NI-488 Functions

Call Syntax Description

ibbna (ud,bname) Change access board of device

ibcac (ud,v) Become Active Controller

ibclr (ud) Clear specified device

ibcmd (ud,cmd,cnt) Send commands from string

ibcmda (ud,cmd,cnt) Send commands asynchronous from
string

ibconfig (ud,option,value) Configure the software

ibdev (bdindex,pad,sad,tmo,

 eot,eos)
Open an unused device when device
name is unknown

ibdma (ud,v) Enable/disable DMA

ibeos (ud,v) Change/disable EOS mode

ibeot (ud,v) Enable/disable END message (write)

ibevent (ud,event) Return the next event

ibfind(udname) Open device and return unit
descriptor

ibgts (ud,v) Go from Active Controller to
Standby

ibist (ud,v) Set/clear individual status bit for
Parallel Polls

iblines (ud,clines) Get status for GPIB lines

ibln (ud,pad,sad,listen) Check for presence of a device on
bus

ibloc (ud) Go to local

ibonl (ud,v) Place device online/offline

ibpad (ud,v) Change Primary Address

ibpct (ud) Pass Control

ibppc (ud,v) Parallel Poll Configure

ibrd (ud,rd,cnt) Read data to string

ibrda (ud,rd,cnt) Read data asynchronously to string

ibrdf (ud,flname) Read data to file

(continues)

General Information Chapter 1

Pascal 1-14 © National Instruments Corp.

Table 1-4. Pascal NI-488 Functions (continued)

Call Syntax Description

ibrdi (ud,iarr,cnt) Read data to integer array

ibrdia (ud,iarr,cnt) Read data asynchronously to integer
array

ibrpp (ud,ppr) Conduct a Parallel Poll

ibrsc (ud,v) Request/release System Control

ibrsp (ud,spr) Return serial poll byte

ibrsv (ud,v) Request service, set/change serial
poll status byte

ibsad (ud,v) Change Secondary Address

ibsic (ud) Send Interface Clear for 100 µsec

ibsre (ud,v) Set/clear Remote Enable line

ibsrq (@ func) Register an SRQ "interrupt routine"

ibstop (ud) Abort asynchronous operation

ibtmo (ud,v) Change/disable time limit

ibtrap (mask,mode) Alter applications monitor trap and
display modes

ibtrg (ud) Trigger selected device

ibwait (ud,mask) Wait for selected event

ibwrt (ud,wrt,cnt) Write data from string

ibwrta (ud,wrt,cnt) Write data asynchronously from
string

ibwrtf (ud,flname) Write data from file

ibwrti (ud,iarr,cnt) Write data from integer array

ibwrtia (ud,iarr,cnt) Write data asynchronously from
integer array

Chapter 1 General Information

© National Instruments Corp. 1-15 Pascal

Using Functions that Reconfigure Board or Device
Characteristics

Some functions can be called during the execution of an application
program to dynamically change some of the configured values. These
functions are shown in Table 1-5.

Table 1-5. Functions That Alter Default Characteristics

Characteristic Dynamically Changed by

Change board assignment ibbna

Enable or disable DMA ibdma

End-Of-String (EOS)byte ibeos

7-bit or 8-bit compare on EOS ibeos

Set EOI with EOS on Write ibeos

Terminate a Read on EOS ibeos

Set EOI with last byte of Write ibeot

Set/clear individual status bit ibist

Primary GPIB address ibpad

Request/release system control ibrsc

Set/change serial poll status byte ibrsv

Secondary GPIB address ibsad

Set/clear Remote Enable line ibsre

Change or disable time limit ibtmo

© National Instruments Corp. 2-1 Pascal

Chapter 2
NI-488.2 Routine Descriptions

This chapter contains a detailed description of each NI-488.2 routine with
examples. The descriptions are listed alphabetically for easy reference.

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-2 © National Instruments Corp.

AllSpoll AllSpoll

Purpose: Serial Poll all devices.

Format: AllSpoll (board,addresslist,resultlist)

board represents a board number. The parameters addresslist and
resultlist are arrays of type addrlist , as defined in the declaration
files. addresslist must be terminated by the value NOADDR . The
GPIB devices whose addresses are contained in the addresslist array
are serial polled, and the responses are stored in the corresponding elements
of the resultlist array.

If any of the specified devices times-out instead of responding to the poll,
the error code EABO is returned in iberr , and ibcnt contains the index
of the timed-out device.

Although the AllSpoll routine is general enough to serial poll any
number of GPIB devices, the ReadStatusByte routine should be used
in the case of polling exactly one GPIB device.

Example:

Serial poll two devices connected to board 0 whose GPIB addresses are
8 and 9.

var addresslist : addrlist;

 resultlist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

AllSpoll (0,addresslist,resultlist);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-3 Pascal

DevClear DevClear

Purpose: Clear a single device.

Format: DevClear (board,address)

board represents a board number. The GPIB Selected Device Clear
(SDC) message is sent to the device at the given address. The parameter
address contains in its low byte the primary GPIB address of the device
to be cleared. The high byte should be 0 if the device has no secondary
address. Otherwise, it should contain the desired secondary address. If
address contains the constant value NOADDR , the universal Device Clear
message is sent to all devices on the GPIB.

The DevClear routine is used to clear either exactly one GPIB device or
all GPIB devices. To send a single message that clears several particular
GPIB devices, use the DevClearList routine.

Example:

Clear a digital voltmeter connected to board 0 whose primary GPIB
address is 9 and whose secondary GPIB address is 97 .

var address : integer;

address := 9 + 256 * 97;

DevClear (0,address);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-4 © National Instruments Corp.

DevClearList DevClearList

Purpose: Clear multiple devices.

Format: DevClearList (board,addresslist)

board represents a board number. The GPIB devices whose addresses are
contained in the address array are cleared. The parameter addresslist
is an array of type addrlist , as defined in the declaration files, and must
be terminated by the value NOADDR .

Although the DevClearList routine is general enough to clear any
number of GPIB devices, the DevClear routine should be used in the
common case of clearing exactly one GPIB device.

If the array contains the value NOADDR , the universal Device Clear message
is sent to all devices on the GPIB.

Example:

Clear two devices connected to board 0 whose GPIB addresses are 8
and 9.

var addresslist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

DevClearList (0,addresslist);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-5 Pascal

EnableLocal EnableLocal

Purpose: Enable operations from the front panel of a device.

Format: EnableLocal (board,addresslist)

board represents a board number. The GPIB devices whose addresses are
contained in the addresslist array are placed in local mode by
addressing them as Listeners and sending the GPIB Go To Local command.
The parameter addresslist is an array of type addrlist , as defined
in the declaration files, and must be terminated by the value NOADDR .

If the array contains only the value NOADDR , Remote Enable (REN)
becomes unasserted, immediately placing all GPIB devices in local mode.

Example:

Place the devices at GPIB addresses 8 and 9 in local mode.

var addresslist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

EnableLocal (0,addresslist);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-6 © National Instruments Corp.

EnableRemote EnableRemote

Purpose: Enable remote GPIB programming of devices.

Format: EnableRemote (board,addresslist)

board represents a board number. The GPIB devices whose addresses are
contained in the addresslist array are placed in remote mode by
asserting Remote Enable (REN) and addressing the devices as Listeners.
The parameter addresslist is an array of type addrlist , as defined
in the declaration files, and must be terminated by the value NOADDR .

If the array contains only the value NOADDR no addressing is performed,
and REN becomes asserted.

Example:

Place the devices at GPIB addresses 8 and 9 in remote mode.

var addresslist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

EnableRemote (0,addresslist);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-7 Pascal

FindLstn FindLstn

Purpose: Find all Listeners.

Format: FindLstn (board,addresslist,resultlist,limit)

board represents a board number. addresslist contains a list of
primary GPIB addresses, terminated by the value NOADDR . These
addresses are tested in turn for the presence of a listening device. If found,
the addresses are entered into the resultlist . If no listening device is
detected at a particular primary address, all the secondary addresses
associated with that primary address are tested, and detected Listeners are
entered into resultlist . The limit argument specifies how many
entries should be placed into the resultlist array. If more Listeners
are present on the bus, the list is truncated after limit entries have been
detected, and the error ETAB will be reported in iberr. The variable
ibcnt will contain the number of addresses placed into resultlist .

Because there can be multiple secondary addresses that respond as Listeners
for any given primary address, the resultlist array should, in general,
be larger than the addresslist array. In any event, the resultlist
array (with limit being the maximum possible results) must be large
enough to accommodate all expected listening devices, because no check is
made for overflow of the array. addresslist and resultlist are of
type addrlist , as defined in the declaration files.

Because most GPIB devices have the ability to listen, this routine is
normally used to detect the presence of devices at particular addresses.
Once detected, they can usually be interrogated by identification messages
to determine what devices they are.

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-8 © National Instruments Corp.

FindLstn (continued) FindLstn

Example:

Determine which of the devices at addresses 8 , 9, and 10 are present
on the GPIB.

var addresslist : addrlist;

 resultlist : addrlist;

 limit : integer;

(* Because there are three primary GPIB *)

(* addresses, 93 separate GPIB devices could *)

(* be detected at all the secondary addresses. *)

(* This example assumes that there are, at *)

(* most, five devices connected to the GPIB. *)

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := 10;

addresslist[3] := NOADDR;

limit := 5;

FindLstn (0,addresslist,resultlist,limit);

Following this call, the resultlist might contain the following
values:

resultlist [0] 9

resultlist [1] 10 + 96*256

resultlist [2] 10 + 99*256

These results indicate that three GPIB devices were detected. One was
found at address 9 with no secondary address, no GPIB devices were
detected at primary address 8 , and at address 10 , two devices with
secondary addresses were found. Because only primary GPIB
addresses 8, 9, and 10 were tested, it is possible that more GPIB
devices are connected at other addresses.

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-9 Pascal

FindRQS FindRQS

Purpose: Determine which device is requesting service.

Format: FindRQS (board,addresslist,result)

board represents a board number. addresslist contains a list of
primary GPIB addresses. Starting from the beginning of the
addresslist , the indicated devices are serial polled until one is found
asserting SRQ. The status byte for this device is returned in the variable
result . In addition, the index of the device’s address in addresslist
is returned in the global variable ibcnt . addresslist is of type
addrlist , as defined in the declaration files, and must be terminated by
the value NOADDR .

If none of the specified devices is requesting service, the error code ETAB
is returned in iberr , and ibcnt contains the index of the NOADDR entry
of the list.

If a device times-out while responding to its serial poll, the error code
EABO is returned in iberr , and the index of the timed-out device will
appear in ibcnt .

Example:

Determine which one of the devices at addresses 8 , 9, and 10 is
requesting service.

var addresslist : addrlist;

 result : integer;

result := 0;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := 10;

addresslist[3] := NOADDR;

FindRQS (0,addresslist,result);

Following this call, result might contain the value hex 40 (the serial
poll response), and ibcnt might contain the value 2 , indicating that
the device at addresslist[2] was the first device in the list found
to be asserting SRQ.

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-10 © National Instruments Corp.

PassControl PassControl

Purpose: Pass control to another device with Controller capability.

Format: PassControl (board,address)

board represents a board number. The GPIB Device Take Control
message is sent to the device at the given address. The parameter
address contains in its low byte the primary GPIB address of the device
to be passed control. The high byte should be 0 if the device has no
secondary address. Otherwise, it should contain the desired secondary
address.

Example:

Pass control to a Controller connected to board 0 whose primary GPIB
address is 9.

PassControl (0,9);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-11 Pascal

PPoll PPoll

Purpose: Perform a parallel poll.

Format: PPoll (board,result)

board represents a board number. A parallel poll is conducted, and the
eight-bit result is stored into result . Only the lower eight bits of
result are affected. The upper byte contains whatever value it did before
the call was made.

Each bit of the poll result returns one bit of status information from each
device that has been configured for parallel polls. The state of each bit (0 or
1), and the interpretation of these states are based on the latest parallel poll
configuration sent to the devices and the individual status of the devices.

Example:

Perform a parallel poll on board 0 .

var result : integer;

PPoll (0,result);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-12 © National Instruments Corp.

PPollConfig PPollConfig

Purpose: Configure a device for parallel polls.

Format: PPollConfig (board,address,dataline,sense)

board represents a board number. The GPIB device at address is
configured for parallel polls according to the dataline and sense
parameters. dataline is the data line (1 through 8) on which the device
is to respond, and sense indicates the condition under which the data line
is to be asserted or unasserted. The device is expected to compare this
sense value (0 or 1) to its individual status bit, and respond accordingly.

Devices have the option of configuring themselves for parallel polls, in
which case they are to ignore attempts by the Controller to configure them.
You should determine whether the device is locally or remotely
configurable before using PPollConfig or PPollUnconfig .

Example:

Configure a device connected to board 0 at address 8 so that it
responds to parallel polls on data line 5 with sense 0 (assert the line if
the individual status is 0, unassert the line if the individual status is 1).

PPollConfig (0,8,5,0);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-13 Pascal

PPollUnconfig PPollUnconfig

Purpose: Unconfigure devices for parallel polls.

Format: PPollUnconfig (board,addresslist)

board represents a board number. The GPIB devices whose addresses are
contained in the addresslist array are unconfigured for parallel polls–
that is, they no longer participate in polls. The parameter addresslist
is an array of type addrlist , as defined in the declaration files, and must
be terminated by the value NOADDR .

If the array contains only the value NOADDR , the GPIB Parallel Poll
Unconfigure (PPU) message is sent, unconfiguring all devices.

Example:

Unconfigure two devices connected to board 0 whose GPIB addresses
are 8 and 9.

var addresslist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

PPollUnconfig (0,addresslist);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-14 © National Instruments Corp.

RcvRespMsg RcvRespMsg

Purpose: Read instruction bytes from already addressed device.

Format: RcvRespMsg (board,data,count,termination)

board represents a board number. Up to count instruction bytes are read
from the GPIB and placed into the pre-allocated array data . The count
argument is of type integer4 in Microsoft Pascal and is of type
longINT in QuickPascal, Turbo Pascal, and Turbo Pascal for Windows.
count is of type integer in IBM Pascal. termination is a flag used
to describe the method of signaling the end of the data. If it is a value
between 0 and hex 00FF, the ASCII character with the corresponding hex
value is considered the termination character, and the read is stopped when
the character is detected. If termination is the constant STOPend
(defined in the header files DECL .PAS , QPDECL .PAS , and TPDECL .PAS),
the read is stopped when EOI is detected.

RcvRespMsg assumes that the GPIB Talker and Listeners have already
been addressed by a prior call to routines such as ReceiveSetup ,
Receive , or SendCmds . Thus, it is used specifically to skip the
addressing step of GPIB management. The Receive routine is normally
used to accomplish the entire sequence of addressing devices and then
receiving instruction bytes.

Example:

Receive 100 bytes from an already addressed Talker. The transmission
should be terminated when a linefeed character (hex 0A) is detected.

Pascal

var data : cbuf;

RcvRespMsg (0,data,100,10);

Turbo Pascal for Windows

var data : array[0..99] of char;

RcvRespMsg(0,data,100,10);

(* input into a null-terminated string *)

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-15 Pascal

ReadStatusByte ReadStatusByte

Purpose: Serial poll a single device to get its status byte.

Format: ReadStatusByte (board,address,result)

board represents a board number. The indicated device is serial polled,
and its status byte is placed into the variable result . Only the lower byte
of result is affected. The upper byte contains whatever value it did
before the call was made.

Example:

Serial poll the device at address 8 and return its status byte.

var result : integer;

ReadStatusByte (0,8,result);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-16 © National Instruments Corp.

Receive Receive

Purpose: Read instruction bytes from a GPIB device.

Format: Receive (board,address,data,count,termination)

board represents a board number. The GPIB device at the indicated
address is addressed, and up to count instruction bytes are read from
that device and placed into a pre-allocated array data . The count value
is of type integer4 in Microsoft Pascal and of type longINT in
QuickPascal, Turbo Pascal, and Turbo Pascal for Windows. Even though it
is a long value in these languages, integer values may also be passed.
count is of type integer in IBM Pascal. termination is a value
used to describe the method of signaling the end of the data. If it is a value
between 0 and hex 00FF, the ASCII character with the corresponding hex
value is considered the termination character, and the read is stopped when
the character is detected. If termination is the constant STOPend
(defined in the declaration files), the read is stopped when END is detected.

Example:

Receive 100 bytes from the device at address 8 . The transmission
should be terminated when END is detected.

Pascal

var data : cbuf;

Receive (0,8,data,100,STOPend);

Turbo Pascal for Windows

var data : array[0..100] of char;

Receive(0,8,data,100,STOPend);

(* input into a null-terminated string *)

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-17 Pascal

ReceiveSetup ReceiveSetup

Purpose: Prepare a particular device to send instruction bytes and
prepare the GPIB interface board to read them.

Format: ReceiveSetup (board,address)

board represents a board number. The indicated GPIB device is addressed
as a Talker, and the indicated board is addressed as a Listener. Following
this routine, it is common to call a routine such as RcvRespMsg to
actually transfer the data from the Talker.

This routine is useful to initially address devices in preparation for receiving
data. It can be followed by multiple calls of RcvRespMsg to receive
multiple blocks of data, thus eliminating the need to re-address the devices
between blocks. Alternatively, the Receive routine could be used to send
the first data block, followed by RcvRespMsg for all the subsequent
blocks.

Example:

Prepare a GPIB device at address 8 to send instruction bytes to board
0. Then, receive messages of up to 100 bytes from the device. The
message is terminated with END.

Pascal

var message : cbuf;

ReceiveSetup (0,8);

RcvRespMsg (0,message,100,STOPend);

Turbo Pascal for Windows

var message : array[0..100] of char;

ReceiveSetup(0,8);

RcvRespMsg(0,message,100,STOPend);

(* input into a null-terminated string *)

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-18 © National Instruments Corp.

ResetSys ResetSys

Purpose: Initialize a GPIB system on three levels.

Format: ResetSys (board,addresslist)

board represents a board number. You must terminate addresslist
with the value NOADDR . ResetSys initializes the GPIB system on the
following three levels:

• Bus initialization: Remote Enable (REN) is asserted, followed by
Interface Clear (IFC), causing all devices to
become unaddressed and the GPIB interface
board (the System Controller) to become the
Controller-In-Charge.

• Message exchange
initialization: The Device Clear (DCL) message is sent to all

connected devices. This ensures that all
IEEE-488.2 compatible devices can receive
the Reset (RST) message that follows.

• Device initialization: *RST message is sent to all devices whose
addresses are contained in the addresslist
argument. This causes device-specific
functions within each device to be initialized.

Example:

Completely reset a GPIB system containing devices at addresses 8, 9,
and 10 .

var addresslist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := 10;

addresslist[3] := NOADDR;

ResetSys (0,addresslist);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-19 Pascal

Send Send

Purpose: Send instruction bytes to a single GPIB device.

Format: Send (board,address,data,count,eotmode)

board represents a board number. The GPIB device is addressed as a
Listener, the indicated board is addressed as a Talker, and count
instruction bytes contained in the pre-allocated array data are sent. The
count value is of type integer4 in Microsoft Pascal and of type
longINT in QuickPascal, Turbo Pascal, and Turbo Pascal for Windows.
count is of type integer in IBM Pascal. eotmode is a flag used to
describe the method of signaling the end of the data to the Listener. Set it to
one of the following constants:

• NLend Send NL (linefeed) with EOI after the instruction bytes.

• DABend Send EOI with the last data byte in the string.

• NULLend Do nothing to mark the end of the transfer.

These constants are defined in the declaration files DECL .PAS ,
QPDECL .PAS , TPDECL .PAS , and TPWGPIB.PAS .

Example:

Send an identification query to the GPIB device at address 8.
Terminate the transmission using a linefeed character with END.

Pascal

var data : cbuf;

data[1] := '*';

data[2] := 'I';

data[3] := 'D';

data[4] := 'N';

data[5] := '?';

Send (0,8,data,5,NLend);

Turbo Pascal for Windows

var data : PChar;

data := '*IDN?';

Send(0,8,data^,5,NLend);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-20 © National Instruments Corp.

SendCmds SendCmds

Purpose: Send GPIB command bytes.

Format: SendCmds (board,commands,count)

board represents a board number. The pre-allocated array commands
contains command bytes to be sent onto the GPIB. The number of bytes to
be sent from the string is indicated by the argument count . The count
value is of type integer4 in Microsoft Pascal and of type longINT in
QuickPascal, Turbo Pascal, and Turbo Pascal for Windows. count is of
type integer in IBM Pascal.

SendCmds is not normally required for GPIB operation. Use it when
specialized command sequences, which are not provided for in other
routines, must be sent onto the GPIB.

Example:

Controller at address 0 simultaneously triggers GPIB devices at
addresses 8 and 9, and immediately places them into local mode.

IBM/MS Pascal

var commands : cbuf;

commands[1] := chr(16#3F);

commands[2] := chr(16#40);

commands[3] := chr(16#28);

commands[4] := chr(16#29);

commands[5] := chr(16#04);

commands[6] := chr(16#01);

SendCmds (0,commands,6);

QuickPascal/Turbo Pascal

var commands : cbuf;

commands[1] := chr($3F);

commands[2] := chr($40);

commands[3] := chr($28);

commands[4] := chr($29);

commands[5] := chr($04);

commands[6] := chr($01);

SendCmds (0,commands,6);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-21 Pascal

SendCmds (continued) SendCmds

Turbo Pascal for Windows

var commands : PChar;

commands := #3F#40#28#29#04#01;

SendCmds(0,commands^,6);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-22 © National Instruments Corp.

SendDataBytes SendDataBytes

Purpose: Send instruction bytes to already addressed devices.

Format: SendDataBytes (board,data,count,eotmode)

board represents a board number. The pre-allocated array data contains
instruction bytes to be sent onto the GPIB. The number of bytes to be sent
from the string is indicated by the argument count . The count value is
of type integer4 in Microsoft Pascal and of type longINT in
QuickPascal, Turbo Pascal, and Turbo Pascal for Windows. Even though it
is a long value in these languages, integer values may also be passed.
count is of type integer in IBM Pascal. eotmode is a flag used to
describe the method of signaling the end of the data to the Listeners. Set it
to one of the following constants:

• NLend Send NL (linefeed) with EOI after the instruction bytes.

• DABend Send EOI with the last data byte in the string.

• NULLend Do nothing to mark the end of the transfer.

These constants are defined in the header files DECL .PAS , QPDECL .PAS ,
TPDECL .PAS , and TPWGPIB.PAS .

SendDataBytes assumes that all GPIB Listeners have already been
addressed by a prior call to functions such as SendSetup , Send , or
SendCmds . Thus, it is used specifically to skip the addressing step of
GPIB management . The Send routine is normally used to accomplish the
entire sequence of addressing followed by the transmission of instruction
bytes.

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-23 Pascal

SendDataBytes (continued) SendDataBytes

Example:

Send an identification query to all addressed Listeners. The
transmission should be terminated with a linefeed character with END.

Pascal

var data : cbuf;

data[1] := '*';

data[2] := 'I';

data[3] := 'D';

data[4] := 'N';

data[5] := '?';

SendDataBytes (0,data,5,NLend);

Turbo Pascal for Windows

var data : PChar;

data := '*IDN?';

SendDataBytes(0,data^,5,NLend);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-24 © National Instruments Corp.

SendIFC SendIFC

Purpose: Clear the GPIB interface functions with IFC.

Format: SendIFC (board)

board represents a board number. When the GPIB Device IFC message is
issued, the interface functions of all connected devices return to their
cleared states.

This function is used as part of GPIB initialization. It forces the GPIB
interface board to be Controller of the GPIB and ensures that the connected
devices are all unaddressed and that the interface functions of the devices
are in their idle states.

Example:

Clear the interface functions of the devices connected to board 0.

SendIFC (0);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-25 Pascal

SendList SendList

Purpose: Send instruction bytes to multiple GPIB devices.

Format: SendList

(board,addresslist,data,count,eotmode)

board represents a board number. addresslist contains a list of
primary GPIB addresses, and must be terminated by the value NOADDR .
The GPIB devices whose addresses are contained in the address array are
addressed as Listeners, the indicated board is addressed as a Talker, and
count instruction bytes contained in the pre-allocated array data are sent.
addresslist is of type addrlist as defined in the header files. The
count value is of type integer4 in Microsoft Pascal and of type
longINT in QuickPascal, Turbo Pascal, and Turbo Pascal for Windows.
count is of type integer in IBM Pascal. eotmode is a flag used to
describe the method of signaling the end of the data to the Listener. It
should be set to one of the following constants:

• NLend Send NL (linefeed) with EOI after the instruction bytes.

• DABend Send EOI with the last data byte in the string.

• NULLend Do nothing to mark the end of the transfer.

These constants are defined in the header files DECL .PAS , QPDECL .PAS ,
TPDECL .PAS , and TPWGPIB.PAS .

This routine is similar to Send , except that multiple Listeners are able to
receive the data with only one transmission.

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-26 © National Instruments Corp.

SendList (continued) SendList

Example:

Send an identification query to the GPIB devices at addresses 8 and 9.
The transmission should be terminated using a linefeed character with
EOI.

Pascal

var addresslist : addrlist;

 data : cbuf;

addresslist [0] := 8;

addresslist [1] := 9;

addresslist [2] := NOADDR;

data[1] := '*';

data[2] := 'I';

data[3] := 'D';

data[4] := 'N';

data[5] := '?';

SendList (0,addresslist,data,5,NLend);

Turbo Pascal for Windows

var addresslist : addrlist;

 data : PChar;

addresslist [0] := 8;

addresslist [1] := 9;

addresslist [2] := NOADDR;

data := '*IDN?';

SendList (0,addresslist,data^,5,NLend);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-27 Pascal

SendLLO SendLLO

Purpose: Send the Local Lockout message to all devices.

Format: SendLLO (board)

board represents a board number. The GPIB Local Lockout message is
sent to all devices, so that the devices cannot independently choose the local
or remote states. While Local Lockout is in effect, only the Controller can
alter the local or remote state of the devices by sending appropriate GPIB
messages.

SendLLO is reserved for use in unusual local/remote situations, particularly
those in which all devices are to be locked into local programming state. In
the typical case of placing devices in Remote Mode With Lockout state, the
SetRWLS routine should be used.

Example:

Send the Local Lockout message to all devices connected to board 0.

SendLLO (0);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-28 © National Instruments Corp.

SendSetup SendSetup

Purpose: Prepare particular devices to receive instruction bytes.

Format: SendSetup (board,addresslist)

board represents a board number. The GPIB devices whose addresses are
contained in the addresslist array are addressed as Listeners, and the
indicated board is addressed as a Talker. Following this call, it is common
to call a routine such as SendDataBytes to actually transfer the data to
the Listeners. The parameter addresslist is an array of type
addrlist , as defined in the declaration files, and must be terminated by
the value NOADDR .

This command would be useful to initially address devices in preparation
for sending data, followed by multiple calls of SendDataBytes to send
multiple blocks of data, thus eliminating the need to re-address the devices
between blocks. Alternatively, the Send routine could be used to send the
first data block, followed by SendDataBytes for all the subsequent
blocks.

Example:

Prepare GPIB devices at addresses 8 and 9 to receive instruction bytes.
Then, send both devices the five messages stored in a string array. EOI
is to be sent along with the last byte of the last message.

Pascal

var data : array[1..5] of array[1..9] of

char;

 eotmode,k,i : integer;

 addresslist : addrlist;

 message : cbuf;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

eotmode := NULLend;

data[1] := 'Message 1';

data[2] := 'Message 2';

data[3] := 'Message 3';

data[4] := 'Message 4';

data[5] := 'Message 5';

SendSetup (0,addresslist);

(continued)

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-29 Pascal

SendSetup (continued) SendSetup

For k := 1 to 5 do

begin

For i := 1 to 9 do

message[i] := data[k,i];

If k = 5 then eotmode := NLend;

SendDataBytes (0,message,9,eotmode);

end;

Turbo Pascal for Windows

var data : array[1..5] of PChar;

 eotmode,i : integer;

 addresslist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

eotmode := NULLend;

data[1] := 'Message 1';

data[2] := 'Message 2';

data[3] := 'Message 3';

data[4] := 'Message 4';

data[5] := 'Message 5';

SendSetup (0,addresslist);

For i := 1 to 5 do

begin

If i = 5 then eotmode := NLend;

SendDataBytes (0,data[i]^,9,eotmode);

end;

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-30 © National Instruments Corp.

SetRWLS SetRWLS

Purpose: Place particular devices in the Remote With Lockout State.

Format: SetRWLS (board,addresslist)

board represents a board number. The GPIB devices whose addresses are
contained in the addresslist array are placed in remote mode by
asserting Remote Enable (REN) and addressing the devices as Listeners. In
addition, all devices are placed in Lockout State, which prevents them from
independently returning to local programming mode without passing
through the Controller. The parameter addresslist is an array of type
addrlist , as defined in the declaration files, and must be terminated by
the value NOADDR .

Example:

Place the devices at GPIB addresses 8 and 9 in Remote With Lockout
State.

var addresslist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

SetRWLS (0,addresslist);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-31 Pascal

TestSRQ TestSRQ

Purpose: Determine the current state of the SRQ line.

Format: TestSRQ (board,result)

board represents a board number. This call places the value 1 in the
variable result if the GPIB SRQ line is asserted. Otherwise, it places the
value 0 into result .

This routine is similar in format to the WaitSRQ routine, except that
WaitSRQ suspends the program while waiting for an occurrence of SRQ.
TestSRQ returns immediately with the current SRQ state.

Example:

Determine the current state of SRQ.

var result : integer;

TestSRQ (0,result);

If result := 1 then

(* SRQ is asserted. *)

else

(* No SRQ at this time. *)

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-32 © National Instruments Corp.

TestSys TestSys

Purpose: Cause devices to conduct self-tests.

Format: TestSys (board,addresslist,resultlist)

board represents a board number. The GPIB devices whose addresses are
contained in the addresslist array are simultaneously sent a message
that instructs them to conduct their self-test procedures. Each device returns
an integer code signifying the results of its tests, and these codes are placed
into the corresponding elements of the resultlist array.
addresslist and resultlist are arrays of type addrlist as
defined in the declaration files. addresslist must be terminated by the
value NOADDR .

The IEEE-488.2 standard specifies that a result code of 0 indicates that the
device passed its tests, and any other value indicates that the tests resulted in
an error. The variable ibcnt contains the number of devices that failed
their tests.

Example:

Instruct two devices connected to board 0 whose GPIB addresses are 8
and 9 to perform their self-tests.

var addresslist,resultlist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

TestSys (0,addresslist,resultlist);

(* If any of the results are non-zero, the *)

(* corresponding device has failed the test. *)

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-33 Pascal

Trigger Trigger

Purpose: Trigger a single device.

Format: Trigger (board,address)

board represents a board number. The GPIB Group Execute Trigger
message is sent to the device at the given address. The parameter
address contains in its low byte the primary GPIB address of the device
to be cleared. The high byte should be 0 if the device has no secondary
address. Otherwise, it should contain the desired secondary address. If the
address is NOADDR , the Group Execute Trigger message is sent with no
addressing and triggers all previously addressed Listeners.

The Trigger routine is used to trigger exactly one GPIB device. To send
a single message that triggers several particular GPIB devices, use the
TriggerList function.

Example:

Trigger a digital voltmeter connected to board 0 whose primary GPIB
address is 9 and whose secondary GPIB address is 97 .

var address : integer;

address := 9 + 256 * 97;

Trigger (0,address);

NI-488.2 Routine Descriptions Chapter 2

Pascal 2-34 © National Instruments Corp.

TriggerList TriggerList

Purpose: Trigger multiple devices.

Format: TriggerList (board,addresslist)

board represents a board number. The GPIB devices whose addresses are
contained in the address array are triggered simultaneously. The parameter
addresslist is an array of type addrlist , defined in the declaration
files. addresslist must be terminated by the value NOADDR . If the
array contains only the value NOADDR or NULL , the Group Execute Trigger
message is sent without addressing and triggers all previously addressed
Listeners.

Although the TriggerList routine is general enough to trigger any
number of GPIB devices, the Trigger function should be used in the
common case of triggering exactly one GPIB device.

Example:

Trigger simultaneously two devices connected to board 0 whose GPIB
addresses are 8 and 9.

var addresslist : addrlist;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := NOADDR;

TriggerList (0,addresslist);

Chapter 2 NI-488.2 Routine Descriptions

© National Instruments Corp. 2-35 Pascal

WaitSRQ WaitSRQ

Purpose: Wait until a device asserts Service Request.

Format: WaitSRQ (board,result)

board represents a board number. This routine is used to suspend
execution of the program until a GPIB device connected to the indicated
board asserts the Service Request (SRQ) line. If the SRQ occurs within the
timeout period, the variable result will be set to the value 1 . If no SRQ
is detected before the timeout period expires, result will be set to 0 .

Notice that this call is similar in format to the TestSRQ routine, except that
TestSRQ returns immediately with SRQ status. WaitSRQ suspends the
program for, at most, the duration of the timeout period while waiting for an
SRQ to occur.

Example:

Wait for a GPIB device to request service, and then determine which of
three devices at addresses 8 , 9, and 10 requested the service.

var addresslist,resultlist : addrlist;

 result : integer;

addresslist[0] := 8;

addresslist[1] := 9;

addresslist[2] := 10;

addresslist[3] := NOADDR;

WaitSRQ (0,result);

If result = 1 then

AllSpoll (0,addresslist,resultlist);

(* resultlist now contains the serial poll *)

(* responses for the three devices. *)

NI-488.2 Routine Descriptions Chapter 2

NI-488.2 Example Programs

You can take full advantage of the ANSI/IEEE Standard 488.2-1987 by
using the NI-488.2 routines. These routines are completely compatible with
the controller commands and protocols defined in IEEE-488.2.

The NI-488.2 routines are easy to learn and use. Only a few routines are
needed for most application programs.

These examples illustrate the programming steps that you can follow to
program a representative IEEE-488.2 instrument from your personal
computer using the NI-488.2 routines. The applications are written in
IBM/MS Pascal, QuickPascal, Turbo Pascal, and Turbo Pascal for
Windows. The target instrument is a digital voltmeter (DVM). This
instrument is otherwise unspecified–that is, it is not a DVM manufactured
by any particular manufacturer. The following steps explain how to use the
driver to execute NI-488.2 programming and control sequences, without
explaining how to determine those sequences.

1. Load the definitions of the NI-488.2 routines from the header files that
are on your distribution diskette.

2. Initialize the IEEE-488 bus and the interface board Controller circuitry
so that the IEEE-488 interface for each device is quiescent, and so that
the interface board is Controller-In-Charge and is in the Active
Controller State (CACS).

3. Find all of the Listeners.

a. Find all of the instruments attached to the IEEE-488 bus.

b. Create an array that contains all of the IEEE-488 primary addresses
that could possibly be connected to the IEEE-488 bus.

c. Find out which, if any, device or devices are connected.

4. Send an identification query to each device for identification.

Chapter 2 NI-488.2 Routine Descriptions

5. Initialize the instrument as follows:

a. Clear the multimeter.

b. Send the IEEE-488.2 Reset command to the meter.

6. Instruct the meter to measure volts alternating current (VAC) using
auto-ranging (AUTO), to wait for a trigger from the Controller before
starting a measurement (TRIGGER 2), and to assert the IEEE-488
Service Request signal line (SRQ) when the measurement has been
completed and the meter is ready to send the result (*SRE 16).

7. For each measurement:

a. Send the TRIGGER command to the multimeter. The command
"VAL1?" instructs the meter to send the next triggered reading to
its IEEE-488.2 output buffer.

b. Wait until the DVM asserts Service Request (SRQ) to indicate that
the measurement is ready to be read.

c. Read the status byte to determine if the measured data is valid or if
a fault condition exists. You can find out by checking the message
available (MAV) bit, bit 4 in the status byte.

d. If the data is valid, read 10 bytes from the DVM.

8. End the session.

Note: For a more detailed description of each step, refer to the Writing an
Advanced Program Using NI-488.2 Routines section in the getting
started manual that you received with your interface board.

The NI-488.2 driver supports four interface boards. These boards are
referenced by number from your application program. The reference
number is 0 for the first board, 1 for the second board, and so on. If you
installed two boards in your computer, and you do not know which board is
0 and which board is 1, run the configuration utility, ibconf . ibconf
will show you the relationship between the board number and the base
address of the board and identify the board by its base address. Refer to
Chapter 2 of the NI-488.2 Software Reference Manual for MS-DOS for
additional information about running and using ibconf . For NI-488.2 for
Windows users, the configuration utility is named wibconf .

NI-488.2 Routine Descriptions Chapter 2

IBM/MS Pascal Program – NI-488.2 Routines

PROGRAM PSAMP488(input,output);

{$INCLUDE: 'decl.pas'}

type

 string30 = lstring(30);

var

 cmd : cbuf; (* Array of commands. cbuf is *)

 (* defined in DECL.PAS as a *)

 (* character array. *)

 reading : cbuf; (* Data received from the *)

 (* Fluke 45. *)

 buffer : string30; (* Assigned the value of rd. *)

 (* Will be converted to *)

 (* numeric. *)

 sendstr : string30; (* GPIB command string. *)

 instruments : AddrList; (* Array of primary addresses. *)

 (* AddrList is defined in *)

 (* DECL.PAS as an integer *)

 (* array. *)

 result : AddrList; (* Array of listen addresses. *)

 fluke : integer; (* Primary address of the *)

 (* Fluke 45. *)

 statusByte : integer; (* Serial poll response byte. *)

 m, i : integer; (* FOR loop counters. *)

 SRQasserted : integer; (* Set to indicate if SRQ *)

 (* asserted. *)

 num_listeners : integer; (* Number of Listeners on *)

 (* GPIB. *)

 pad : byte; (* Primary address of *)

 (* Listener. *)

 num : real4; (* Numeric conversion of *)

 (* Reading. *)

 sum : real4; (* Accumulator of *)

 (* measurements. *)

(* ==

 * Procedure gpiberr

 * The gpiberr procedure notifies you that an NI-488.2 routine

 * failed by printing an error message. The status variable

 * ibsta is printed in decimal along with the mnemonic meaning

 * of the bit position. The status variable iberr is printed

 * in decimal along with the mnemonic meaning of the decimal

 * value. The status variable ibcnt is printed in decimal.

 *

 * The NI-488 function ibonl is called to disable the hardware

 * and software.

 * === *)

procedure gpiberr(msg:string30);

begin

Chapter 2 NI-488.2 Routine Descriptions

 writeln(msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcnt);

(* Call the ibonl function to disable the hardware and *)

(* software. *)

 ibonl(0,0);

end;

(* ==

 * Procedure Found

 * The Found procedure is called if the Fluke 45 has been

 * identified as a Listener in the array result.

 * The variable fluke is the primary address of the

 * Fluke 45. Ten measurements are read from the Fluke 45

 * and the average of the sum is calculated.

 *

 * The return statement terminates this procedure.

 * == *)

procedure Found(fluke:integer);

NI-488.2 Routine Descriptions Chapter 2

begin

(* Reset the Fluke 45 using the routines DevClear and Send. *)

(* DevClear sends the GPIB Selected Device Clear (SDC) *)

(* message to the Fluke 45. If the error bit (ERR) is set *)

(* in ibsta, call gpiberr with an error message. *)

 DevClear(0, fluke);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('DevClear Error');

 return;

 end;

(* Use the routine Send to send the NI-488.2 Reset command *)

(* to the Fluke 45. Copy the string into the command array .*)
(* The constant NLend, defined in DECL.PAS, instructs Send *)

(* to append a linefeed character with EOI asserted to the *)

(* end of the message. If the error bit (ERR) is set in *)

(* ibsta, call gpiberr with an error message. *)

 sendstr := '*RST';

 for i := 1 to 4 do

 cmd[i] := sendstr[i];

 Send(0, fluke, cmd, 4, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send *RST Error');

 return;

 end;

(* Use the routine Send to send device configuration *)

(* commands to the Fluke 45. Instruct the Fluke 45 to *)

(* measure volts alternating current (VAC) using auto- *)

(* ranging (AUTO), to wait for a trigger from the GPIB *)

(* interface board (TRIGGER 2), and to assert the IEEE-488 *)

(* Service Request signal line, SRQ, when the measurement *)

(* has been completed and the Fluke 45 is ready to send the *)

(* result (*SRE 16). Copy the string into the command array .*)
(* If the error bit (ERR) is set, call gpiberr with an *)

(* error message. *)

 sendstr := 'VAC; AUTO; TRIGGER 2; *SRE 16';

 for i := 1 to 29 do

 cmd[i] := sendstr[i];

 Send(0, fluke, cmd, 29, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Setup Error');

 return;

 end;

(* Initialize the accumulator of the 10 measurements to *)

(* zero. *)

 sum := 0.0;

Chapter 2 NI-488.2 Routine Descriptions

(* Establish a FOR loop to read the 10 measurements. *)

(* The variable m serves as the counter for the FOR loop. *)

 for m := 1 to 10 do

 begin

(* Trigger the Fluke 45 by sending the trigger *)

(* command (*TRG) and request a measurement by *)

(* sending the command "VAL1?". Copy the string *)

(* into the command array. If the error bit (ERR) *)

(* is set in ibsta, call gpiberr with an error *)

(* message. *)

 sendstr := '*TRG; VAL1?';

 for i := 1 to 11 do

 cmd[i] := sendstr[i];

 Send(0, fluke, cmd, 11, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Trigger Error');

 return;

 end;

(* Wait for the Fluke 45 to assert SRQ, meaning it *)

(* is ready to send a measurement. If SRQ is not *)

(* asserted within the timeout period, call *)

(* gpiberr with an error message. The timeout *)

(* period, by default, is 10 seconds. *)

 WaitSRQ(0, SRQasserted);

 if SRQasserted = 0 then

 begin

 gpiberr('WaitSRQ Error');

 return;

 end;

(* Read the serial poll status byte of the Fluke *)

(* 45. If the error bit (ERR) is set in ibsta, *)

(* call gpiberr with an error message. *)

 ReadStatusByte(0, fluke, statusByte);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('ReadStatusByte Error');

 return;

 end;

(* Check if the Message Available Bit (bit 4) of *)

(* the return status is set. If this bit is not *)

(* set, print the status byte and call gpiberr *)

(* with an error message. *)

 if (statusByte and 16#10) <> 16#10 then

 begin

 gpiberr('Improper Status Byte');

 writeln('Status byte: ', statusByte);

 return;

 end;

NI-488.2 Routine Descriptions Chapter 2

(* Read the Fluke 45 measurement. Store the *)

(* measurement in the array Reading. The constant *)

(* STOPend, defined in DECL.PAS, instructs the *)

(* routine Receive to terminate the read when END *)

(* is detected. If the error bit (ERR) is set in *)

(* ibsta, call the gpiberr with an error message. *)

 Receive (0, fluke, Reading, 10, STOPend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Receive Error');

 return;

 end;

(* Assign the array Reading to the string buffer. *)

(* Remove spaces in buffer. Print the measurement. *)

 buffer.len := lobyte(ibcnt) - 1;

 for i := 1 to (ibcnt - 1) do

 buffer[i] := reading[i];

 writeln('Reading: ', buffer);

 writeln;

(* Convert the measurement to its numeric value. *)

(* If there is an error during the conversion, *)

(* terminate this program. If an error does not *)

(* occur during the conversion, add the value to *)

(* the accumulator. *)

 if decode(buffer,num) then

 sum := sum + num

 else

 return;

 end; (* Continue the FOR loop until 10 measurements *)

 (* are read. *)

(* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ==

 * FindFluke

 *

 * The FindFluke procedure is called from the MAIN body of

 * this program to determine if the Fluke 45 is a Listener on

 * the GPIB.

 *

 * The return statement terminates this procedure.

 * == *)

procedure FindFluke;

Chapter 2 NI-488.2 Routine Descriptions

begin

(* Send the *IDN? command to each device that was found. *)

(* Your board is at address 0 by default. Your board does *)

(* not respond to *IDN?, so skip it. Load the command *)

(* into the command array. *)

 cmd[1] := '*';

 cmd[2] := 'I';

 cmd[3] := 'D';

 cmd[4] := 'N';

 cmd[5] := '?';

(* Establish a FOR loop to determine if the Fluke 45 is a *)

(* Listener on the GPIB. The variable i serves as the *)

(* counter of the FOR loop and as the index to the array *)

(* result. *)

 for i := 1 to num_listeners do

 begin

(* Send the identification query to each listen *)

(* address in the array result. The constant *)

(* NLend, defined in DECL.PAS, instructs the *)

(* routine Send to append a linefeed character *)

(* with EOI asserted to the end of the message. *)

(* If the error bit (ERR) is set in ibsta, call *)

(* gpiberr with an error message. *)

 Send(0, result[i], cmd, 5, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Error');

 return;

 end;

(* Read the name identification response returned *)

(* from each device. Store the response in the *)

(* array Reading. The constant STOPend, declared *)

(* in DECL.PAS, instructs the routine Receive to *)

(* terminate the read when END is detected. If *)

(* the error bit (ERR) is set in ibsta, call *)

(* gpiberr with an error message. *)

 Receive(0, result[i], Reading, 10, STOPend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Receive Error');

 return;

 end;

(* The low byte of the listen address is the *)

(* primary address. Assign the primary address *)

(* of this device to the variable pad. *)

 pad := lobyte(result[i]);

NI-488.2 Routine Descriptions Chapter 2

(* Assign the array Reading to the string buffer. *)

(* Print the primary address and the name *)

(* identification of the device. *)

 buffer.len := lobyte(ibcnt);

 for m := 1 to ibcnt do

 buffer[m] := reading[m];

 write('The instrument at address ', pad);

 writeln('is: ', buffer);

(* Determine if the name identification is the *)

(* Fluke 45. If it is the Fluke 45, assign the *)

(* primary address to fluke, print a message that *)

(* the Fluke 45 has been found, call the procedure*)

(* Found, return to the MAIN body of the program. *)

 if buffer = 'FLUKE, 45,' then

 begin

 fluke := result[i];

 writeln('**** We found the Fluke 45 ****');

 Found(fluke);

 return;

 end;

 end; (* End of FOR loop *)

(* Print a message that the Fluke 45 was not found. *)

 writeln('Did not find the Fluke!')

end;

(* ==

 * MAIN

 * == *)

BEGIN

(* Your board must be the Controller-In-Charge to find all *)

(* Listeners on the GPIB. To accomplish this, call the *)

(* routine SendIFC. If the error bit (ERR) is set in ibsta,*)
(* call gpiberr with an error message. *)

 SendIFC(0);

 if (ibsta and ERR) <> 0 THEN

 begin

 gpiberr('SendIFC Error');

 return;

 end;

(* Create an array containing all valid GPIB primary *)

(* addresses. This array (instruments) is given to the *)

(* routine FindLstn to find all Listeners. The constant *)

(* NOADDR, defined in DECL.PAS, signifies the end of the *)

(* array. *)

 for i := 0 to 30 do

 instruments[i] := i;

 instruments[31] := NOADDR;

Chapter 2 NI-488.2 Routine Descriptions

(* Print a message to inform the user that the program is *)

(* searching for all active Listeners. Find all of the *)

(* Listeners on the bus. Store the listen addresses in the *)

(* array result. If the error bit (ERR) is set in ibsta, *)

(* call gpiberr with an error message. *)

 writeln('Finding all listeners on the bus...');

 writeln;

 FindLstn (0, instruments, result, 31);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('FindLstn Error');

 return;

 end;

(* Assign the value of ibcnt to the variable num_listeners *)

(* The GPIB interface board is detected as a Listener on *)

(* the bus; however, it is not included in the final count *)

(* of the number of Listeners. Print the number of *)

(* Listeners found. *)

 num_listeners := ibcnt - 1;

 writeln('No. of instruments found = ', num_listeners);

(* Call the procedure FindFluke to determine if the Fluke *)

(* 45 is a Listener on the GPIB. *)

 FindFluke;

(* Call the ibonl function to disable the hardware and *)

(* software. *)

 ibonl(0,0);

END.

NI-488.2 Routine Descriptions Chapter 2

QuickPascal Program – NI-488.2 Routines

PROGRAM QSAMP488(input,output);

{$I qpdecl.pas}

const

 maxlen = 10; (* Maximum length of data array. *)

var

 cmd : cbuf; (* Array of commands. cbuf is *)

 (* defined in QPDECL.PAS as a *)

 (* character array. *)

 reading : cbuf; (* Data received from the Fluke *)

 (* 45. *)

 buffer : string[maxlen];(* Assigned the value of rd. *)

 (* Will be converted to numeric. *)

 sendstr : string[30];(* GPIB command string. *)

 instruments: AddrList; (* Array of primary addresses. *)

 (* AddrList is defined in *)

 (* QPDECL.PAS as an integer array .*)
 result : AddrList; (* Array of listen addresses. *)

 fluke : integer; (* Primary address of the Fluke *)

 (* 45. *)

 statusByte : integer; (* Serial poll response byte. *)

 m, i : integer; (* FOR loop counters. *)

 SRQasserted : integer; (* Set to indicate if SRQ *)

 (* asserted. *)

 num_listeners : integer; (* Number of Listeners on GPIB. *)

 pad : integer; (* Primary address of Listener. *)

 code : integer; (* Procedure VAL parameter. VAL *)

 (* is Turbo Pascal conversion *)

 (* procedure. *)

 num : real; (* Numeric conversion of Reading. *)

 sum : real; (* Accumulator of measurements. *)

(* ===

 * Procedure gpiberr

 * The gpiberr procedure notifies you that an NI-488.2
 * routine failed by printing an error message. The status

 * variable ibsta is printed in decimal along with the

 * mnemonic meaning of the bit position. The status variable

 * iberr is printed in decimal along with the mnemonic

 * meaning of the decimal value. The status variable ibcntl

 * is printed in decimal.

 *

 * The NI-488 function ibonl is called to disable the hardware

 * and software.

 * == *)

procedure gpiberr(msg:string);

Chapter 2 NI-488.2 Routine Descriptions

begin

 writeln(msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcntl);

(* Call the ibonl function to disable the hardware and *)

(* software. *)

 ibonl(0,0);

end;

(* ==

 * Procedure Found
 * The Found procedure is called if the Fluke 45 has been

 * identified as a Listener in the array result. The variable

 * fluke is the primary address of the Fluke 45. Ten

 * measurements are read from the Fluke 45 and the average

 * of the sum is calculated.

 *

 * The halt procedure stops execution of this program.

 *

 * The exit procedure terminates this procedure.

 * == *)

procedure Found(fluke:integer);

NI-488.2 Routine Descriptions Chapter 2

begin

(* Reset the Fluke 45 using the routines DevClear and Send. *)

(* DevClear sends the GPIB Selected Device Clear (SDC) *)

(* message to the Fluke 45. If the error bit (ERR) is set *)

(* in ibsta, call gpiberr with an error message. *)

 DevClear(0, fluke);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('DevClear Error');

 halt;

 end;

(* Use the routine Send to send the NI-488.2 Reset command *)

(* to the Fluke 45. Copy the string into the command array.*)
(* The constant NLend, defined in QPDECL.PAS, instructs *)

(* Send to append a linefeed character with EOI asserted to *)

(* the end of the message. If the error bit (ERR) is set *)

(* in set inibsta, call gpiberr with an error message. *)

 sendstr := '*RST';

 for i := 1 to 4 do

 cmd[i] := sendstr[i];

 Send(0, fluke, cmd, 4, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send *RST Error');

 halt;

 end;

(* Use the routine Send to send device configuration *)

(* commands to the Fluke 45. Instruct the Fluke 45 to *)

(* measure volts alternating current (VAC) using auto- *)

(* ranging (AUTO), to wait for a trigger from the GPIB *)

(* interface board (TRIGGER 2), and to assert the IEEE-488 *)

(* Service Request signal line, SRQ, when the measurement *)

(* has been completed and the Fluke 45 is ready to send *)

(* the result (*SRE 16). Copy the string into the command *)

(* array. If the error bit (ERR) is set, call gpiberr *)

(* with an error message. *)

 sendstr := 'VAC; AUTO; TRIGGER 2; *SRE 16';

 for i := 1 to 29 do

 cmd[i] := sendstr[i];

 Send(0, fluke, cmd, 29, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Setup Error');

 halt;

 end;

(* Initialize the accumulator of the 10 measurements to *)

(* zero. *)

 sum := 0.0;

Chapter 2 NI-488.2 Routine Descriptions

(* Establish a FOR loop to read the 10 measurements. *)

(* The variable m serves as the counter for the FOR loop. *)

 for m := 1 to 10 do

 begin

(* Trigger the Fluke 45 by sending the trigger *)

(* command (*TRG) and request measurement by *)

(* sending the command "VAL1?". Copy the string *)

(* into the command array. If the error bit (ERR) *)

(* is set in ibsta, call gpiberr with an error *)

(* message. *)

 sendstr := '*TRG; VAL1?';

 for i := 1 to 11 do

 cmd[i] := sendstr[i];

 Send(0, fluke, cmd, 11, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Trigger Error');

 halt;

 end;

(* Wait for the Fluke 45 to assert SRQ, meaning it *)

(* is ready with the measurement. If SRQ is not *)

(* asserted within the timeout period, call *)

(* gpiberr with an error message. The timeout *)

(* period, by default, is 10 seconds. *)

 WaitSRQ(0, SRQasserted);

 if SRQasserted = 0 then

 begin

 gpiberr('WaitSRQ Error');

 halt;

 end;

(* Read the serial poll status byte of the Fluke *)

(* 45. If the error bit (ERR) is set in ibsta, *)

(* call gpiberr with an error message. *)

 ReadStatusByte(0, fluke, statusByte);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('ReadStatusByte Error');

 halt;

 end;

(* Check if the Message Available Bit (bit 4) of *)

(* the return status is set. If this bit is not *)

(* set, print the status byte and call gpiberr *)

(* with an error message. *)

 if (statusByte and $10) <> $10 then

 begin

 gpiberr('Improper Status Byte');

 writeln('Status byte: ', statusByte);

 halt;

 end;

NI-488.2 Routine Descriptions Chapter 2

(* Read the Fluke 45 measurement. Store the *)

(* measurement in the array Reading. The constant *)

(* STOPend, defined in QPDECL.PAS, instructs the *)

(* routine Receive to terminate the read when END *)

(* is detected. If the error bit (ERR) is set in *)

(* ibsta, call the gpiberr with an error message. *)

 Receive (0, fluke, Reading, 10, STOPend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Receive Error');

 halt;

 end;

(* Assign the array Reading to the string buffer. *)

(* Remove spaces in buffer. Print the measurement. *)

 for i:= 1 to (ibcnt - 1) do

 buffer[i] := reading[i];

 buffer[0] := chr(ibcnt - 1);

 delete(buffer, ibcnt, maxlen - ibcnt + 1);

 writeln('Reading: ', buffer);

 writeln;

(* Convert the measurement to its numeric value. *)

(* If there is an error during the conversion, *)

(* print the index of the character that did not *)

(* convert and terminate this program. If an *)

(* error does not occur during the conversion, add *)

(* the value to the accumulator. *)

 val(buffer, num, code);

 if code <> 0 then

 begin

 writeln('Error at position: ', code);

 exit;

 end

 else

 sum := sum + num;

 end; (* Continue the FOR loop until 10 measurements *)

(* are read. *)

(* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ==

 * FindFluke

 * The FindFluke procedure is called from the MAIN body of

 * this program to determine if the Fluke 45 is a Listener

 * on the GPIB.

 *

 * The halt procedure stops execution of this program.

 *

 * The exit procedure terminates this procedure.

 * ===*)

procedure FindFluke;

Chapter 2 NI-488.2 Routine Descriptions

begin

(* Send the *IDN? command to each device that was found. *)

(* Your board is at address 0 by default. Your board does *)

(* not respond to *IDN?, so skip it. Load the command *)

(* into the command array. *)

 cmd[1] := '*';

 cmd[2] := 'I';

 cmd[3] := 'D';

 cmd[4] := 'N';

 cmd[5] := '?';

(* Establish a FOR loop to determine if the Fluke 45 is a *)

(* Listener on the GPIB. The variable i serves as the *)

(* counter of the FOR loop and as the index to the array *)

(* result. *)

 for i := 1 to num_listeners do

 begin

(* Send the identification query to each listen *)

(* address in the array result. The constant *)

(* NLend, defined in QPDECL.PAS, instructs the *)

(* routine Send to append a linefeed character *)

(* with EOI asserted to the end of the message. *)

(* If the error bit (ERR) is set in ibsta, call *)

(* gpiberr with an error message. *)

 Send(0, result[i], cmd, 5, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Error');

 halt;

 end;

(* Read the name identification response returned *)

(* from each device. Store the response in the *)

(* array Reading. The constant STOPend, declared *)

(* in QPDECL.PAS, instructs the routine Receive to *)

(* terminate the read when END is detected. If *)

(* the error bit (ERR) is set in ibsta, call *)

(* gpiberr with an error message. *)

 Receive(0, result[i], Reading, 10, STOPend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Receive Error');

 halt;

 end;

(* The low byte of the listen address is the *)

(* primary address. Assign the primary address *)

(* of this device to the variable pad. *)

 pad := Lo(result[i]);

NI-488.2 Routine Descriptions Chapter 2

(* Assign the array Reading to the string buffer. *)

(* Print the primary address and the name *)

(* identification of the device. *)

 buffer := reading;

 write('The instrument at address ', pad);

 writeln(' is: ', buffer);

(* Determine if the name identification is the *)

(* Fluke 45. If it is the Fluke 45, assign pad to *)

(* fluke, print a message that the Fluke 45 has *)

(* been found, call the procedure Found, and *)

(* return to the MAIN body of the program. *)

 if buffer = 'FLUKE, 45,' then

 begin

 fluke := pad;

 writeln('**** We found the Fluke 45 ****');

 Found(fluke);

 exit;

 end;

 end; (* End of FOR loop *)

(* Print a message that the Fluke 45 was not found. *)

 writeln('Did not find the Fluke!')

end;

(* ==

 * MAIN

 * ===*)

BEGIN

(* Your board must be the Controller-In-Charge to find all *)

(* Listeners on the GPIB. To accomplish this, the routine *)

(* SendIFC is called. If the error bit (ERR) is set in *)

(* ibsta, call gpiberr with an error message. *)

 SendIFC(0);

 if (ibsta and ERR) <> 0 THEN

 begin

 gpiberr('SendIFC Error');

 halt;

 end;

(* Create an array containing all valid GPIB primary *)

(* addresses. This array (instruments) will be given to *)

(* the routine FindLstn to find all Listeners. *)

(* The constant NOADDR, defined in QPDECL.PAS, signifies *)

(* the end of the array. *)

 for i := 0 to 30 do

 instruments[i] := i;

 instruments[31] := NOADDR;

Chapter 2 NI-488.2 Routine Descriptions

(* Print a message to inform the user that the program is *)

(* searching for all active Listeners. Find all of the *)

(* Listeners on the bus. Store the listen addresses in the *)

(* array result. If the error bit (ERR) is set in ibsta, *)

(* call gpiberr with an error message. *)

 writeln('Finding all listeners on the bus...');

 writeln;

 FindLstn (0, instruments, result, 31);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('FindLstn Error');

 halt;

 end;

(* Assign the value of ibcnt to the variable num_listeners. *)

(* The GPIB interface board is detected as a Listener on *)

(* the bus; however, it is not included in the final *)

(* count of the number of Listeners. Print the number *)

(* of Listeners found. *)

 num_listeners := ibcnt - 1;

 writeln('No. of instruments found = ', num_listeners);

(* Call the procedure FindFluke to determine if the *)

(* Fluke 45 is a Listener on the GPIB. *)

 FindFluke;

(* Call the ibonl function to disable the hardware and *)

(* software. *)

 ibonl(0,0);

END.

NI-488.2 Routine Descriptions Chapter 2

Turbo Pascal Program – NI-488.2 Routines

PROGRAM TSAMP488(input,output);

uses tpdecl;

const

 maxlen = 10; (* Maximum length of data array. *)

var

 cmd : cbuf; (* Array of commands. cbuf is *)

 (* defined in TPDECL.PAS as a *)

 (* character array. *)

 reading : cbuf; (* Data received from the Fluke *)

 (* 45. *)

 buffer : string[maxlen];(* Assigned the value of rd. *)

 (* Will be converted to numeric. *)

 sendstr : string[30];(* GPIB command string. *)

 instruments : AddrList; (* Array of primary addresses. *)

 (* AddrList is defined in *)

 (* TPDECL.PAS as an integer array .*)
 result : AddrList; (* Array of listen addresses. *)

 fluke : integer; (* Primary address of the Fluke *)

 (* 45. *)

 statusByte : integer; (* Serial poll response byte. *)

 m, i : integer; (* FOR loop counters. *)

 SRQasserted : integer; (* Set to indicate if SRQ *)

 (* asserted. *)

 num_listeners: integer; (* Number of Listeners on GPIB. *)

 pad : integer; (* Primary address of Listener. *)

 code : integer; (* Procedure VAL parameter. VAL *)

 (* is Turbo Pascal conversion *)

 (* procedure. *)

 num : real; (* Numeric conversion of Reading. *)

 sum : real; (* Accumulator of measurements. *)

(* ==

 * Procedure gpiberr

 * The gpiberr procedure notifies you that an NI-488.2 routine

 * failed by printing an error message. The status variable

 * ibsta is printed in decimal along with the mnemonic meaning

 * of the bit position. The status variable iberr is printed

 * in decimal along with the mnemonic meaning of the decimal

 * value. The status variable ibcnt is printed in decimal.

 *

 * The NI-488 function ibonl is called to disable the hardware

 * and software.

 * ===*)

procedure gpiberr(msg:string);

Chapter 2 NI-488.2 Routine Descriptions

begin

 writeln(msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcntl);

(* Call the ibonl function to disable the hardware and *)

(* software. *)

 ibonl(0,0);

end;

(* ==

 * Procedure Found

 * The Found procedure is called if the Fluke 45 has been

 * identified as a Listener in the array result. The variable

 * fluke is the primary address of the Fluke 45. Ten

 * measurements are read from the Fluke 45 and the average of

 * the sum is calculated.

 *

 * The return statement terminates this procedure.

 * ===*)

procedure Found(fluke:integer);

NI-488.2 Routine Descriptions Chapter 2

begin

(* Reset the Fluke 45 using the routines DevClear and Send. *)

(* DevClear sends the GPIB Selected Device Clear (SDC) *)

(* message to the Fluke 45. If the error bit (ERR) is set *)

(* in ibsta, call gpiberr with an error message. *)

 DevClear(0, fluke);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('DevClear Error');

 halt;

 end;

(* Use the routine Send to send the NI-488.2 Reset command *)

(* to the Fluke 45. Copy the string into the command array. *)
(* The constant NLend, defined TPDECL.PAS, instructs Send *)

(* to append a linefeed character with EOI asserted to the *)

(* end of the message. If the error bit (ERR) is set in , *)

(* ibsta call gpiberr with an error message. *)

 sendstr := '*RST';

 for i := 1 to 4 do

 cmd[i] := sendstr[i];

 Send(0, fluke, cmd, 4, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send *RST Error');

 halt;

 end;

(* Use the routine Send to send device configuration *)

(* commands to the Fluke 45. Instruct the Fluke 45 to *)

(* measure volts alternating current (VAC) using auto- *)

(* ranging (AUTO), to wait for a trigger from the GPIB *)

(* interface board (TRIGGER 2), and to assert the *)

(* IEEE-488 Service Request signal line, SRQ, *)

(* when the measurement has been completed and the Fluke *)

(* 45 is ready to send the result (*SRE 16). Copy the *)

(* string into the command array. If the error bit (ERR) *)

(* is set, call gpiberr with an error message. *)

 sendstr := 'VAC; AUTO; TRIGGER 2; *SRE 16';

 for i := 1 to 29 do

 cmd[i] := sendstr[i];

 Send(0, fluke, cmd, 29, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Setup Error');

 halt;

 end;

(* Initialize the accumulator of the 10 measurements to *)

(* zero. *)

 sum := 0.0;

Chapter 2 NI-488.2 Routine Descriptions

(* Establish a FOR loop to read the 10 measurements. The *)

(* variable m serves as the counter for the FOR loop. *)

 for m := 1 to 10 do

 begin

(* Trigger the Fluke 45 by sending the trigger *)

(* command (*TRG) and request a measurement by *)

(* sending the command "VAL1?". Copy the string *)

(* into the command array. If the error bit *)

(* (ERR) is set in ibsta, call gpiberr with an *)

(* error message. *)

 sendstr := '*TRG; VAL1?';

 for i := 1 to 11 do

 cmd[i] := sendstr[i];

 Send(0, fluke, cmd, 11, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Trigger Error');

 halt;

 end;

(* Wait for the Fluke 45 to assert SRQ, meaning it *)

(* is ready with the measurement. If SRQ is not *)

(* asserted within the timeout period, call *)

(* gpiberr with an error message. The timeout *)

(* period by default is 10 seconds. *)

 WaitSRQ(0, SRQasserted);

 if SRQasserted = 0 then

 begin

 gpiberr('WaitSRQ Error');

 halt;

 end;

(* Read the serial poll status byte of the Fluke *)

(* 45. If the error bit (ERR) is set in ibsta, *)

(* call gpiberr with an error message. *)

 ReadStatusByte(0, fluke, statusByte);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('ReadStatusByte Error');

 halt;

 end;

(* Check if the Message Available Bit (bit 4) of *)

(* the return status is set. If this bit is not *)

(* set, print the status byte and call gpiberr *)

(* with an error message. *)

 if (statusByte and $10) <> $10 then

 begin

 gpiberr('Improper Status Byte');

 writeln('Status byte: ', statusByte);

 halt;

 end;

NI-488.2 Routine Descriptions Chapter 2

(* Read the Fluke 45 measurement. Store *)

(* measurement in the array Reading. The constant *)

(* STOPend, defined in TPDECL.PAS, instructs the *)

(* routine Receive to terminate the read when END *)

(* is detected. If the error bit (ERR) is set in *)

(* ibsta, call the gpiberr with an error message. *)

 Receive (0, fluke, Reading, 10, STOPend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Receive Error');

 halt;

 end;

(* Assign the array Reading to the string buffer. *)

(* Remove spaces in buffer. Print the measurement.*)

 for i:= 1 to (ibcnt - 1) do

 buffer[i] := reading[i];

 buffer[0] := chr(ibcnt - 1);

 writeln('Reading: ', buffer);

 writeln;

(* Convert the measurement to its numeric value. *)

(* If there is an error during the conversion, *)

(* terminate this program. If an error does not *)

(* occur during the conversion, add the value to *)

(* the accumulator. *)

 val(buffer, num, code);

 if code <> 0 then

 begin

 writeln('Error at position: ', code);

 exit;

 end

 else

 sum := sum + num;

 end; (* Continue the FOR loop until 10 measurements *)

(* are read. *)

(* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ==

 * FindFluke

 * The FindFluke procedure is called from the MAIN body of

 * this program to determine if the Fluke 45 is a Listener

 * on the GPIB.

 *

 * The halt procedure stops execution of this program.

 *

 * The exit procedure terminates this procedure.

 * == *)

procedure FindFluke;

Chapter 2 NI-488.2 Routine Descriptions

begin

(* Send the *IDN? command to each device that was found. *)

(* Your board is at address 0 by default. Your board does *)

(* not respond to *IDN?, so skip it. Load the command into *)

(* the command array. *)

 cmd[1] := '*';

 cmd[2] := 'I';

 cmd[3] := 'D';

 cmd[4] := 'N';

 cmd[5] := '?';

(* Establish a FOR loop to determine if the Fluke 45 is a *)

(* Listener on the GPIB. The variable i serves as the *)

(* counter of the FOR loop and as the index to the array *)

(* result. *)

 for i := 1 to num_listeners do

 begin

(* Send the identification query to each listen *)

(* address in the array result. The constant *)

(* NLend, defined in TPDECL.PAS, instructs the *)

(* routine Send to append a linefeed character *)

(* with EOI asserted to the end of the message. *)

(* If the error bit (ERR) is set in ibsta, call *)

(* gpiberr with an error message. *)

 Send(0, result[i], cmd, 5, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Error');

 halt;

 end;

(* Read the name identification response returned *)

(* from each device. Store the response in the *)

(* array Reading. The constant STOPend, declared *)

(* in TPDECL.PAS, instructs the routine Receive to *)

(* terminate the read when END is detected. If the *)

(* error bit is set in ibsta, call gpiberr with an *)

(* error message. *)

 Receive(0, result[i], Reading, 10, STOPend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Receive Error');

 halt;

 end;

(* The low byte of the listen address is the *)

(* primary address. Assign the primary address of *)

(* this device to the variable pad. *)

 pad := Lo(result[i]);

NI-488.2 Routine Descriptions Chapter 2

(* Assign the array Reading to the string buffer. *)

(* Print the primary address and the name *)

(* identification of the device. *)

 buffer := reading;

 write('The instrument at address ', pad);

 writeln(' is: ', buffer);

(* Determine if the name identification is the *)

(* Fluke 45. If it is the Fluke 45, assign the *)

(* primary address to fluke, print a message that *)

(* the Fluke 45 has been found, call the procedure *)

(* Found, return to the MAIN body of the program. *)

 if buffer = 'FLUKE, 45,' then

 begin

 fluke := pad;

 writeln('**** We found the Fluke 45 ****');

 Found(fluke);

 exit;

 end;

 end; (* End of FOR loop *)

(* Print a message that the Fluke 45 was not found. *)

 writeln('Did not find the Fluke!')

end;

(* ==

 * MAIN

 * ===*)

BEGIN

(* Your board must be the Controller-In-Charge to find all *)

(* Listeners on the GPIB. To accomplish this, the routine *)

(* SendIFC is called. If the error bit (ERR) is set in *)

(* ibsta, call gpiberr with an error message. *)

 SendIFC(0);

 if (ibsta and ERR) <> 0 THEN

 begin

 gpiberr('SendIFC Error');

 halt;

 end;

(* Create an array containing all valid GPIB primary *)

(* addresses. This array (instruments) will be given to the *)

(* routine FindLstn to find all Listeners. The constant *)

(* NOADDR, defined in TPDECL.PAS, signifies the end of the *)

(* array. *)

 for i := 0 to 30 do

 instruments[i] := i;

 instruments[31] := NOADDR;

Chapter 2 NI-488.2 Routine Descriptions

(* Print a message to tell the user that the program is *)

(* searching for all active Listeners. Find all of the *)

(* Listeners on the bus. Store the listen addresses in *)

(* the array result. If the error bit (ERR) is set in *)

(* ibsta, call gpiberr with an error message. *)

 writeln('Finding all listeners on the bus...');

 writeln;

 FindLstn (0, instruments, result, 31);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('FindLstn Error');

 halt;

 end;

(* Assign the value of ibcnt to the variable num_listeners. *)

(* The GPIB interface board is detected as a Listener on *)

(* the bus; however, it is not included in the final count *)

(* of the number of Listeners. Print the number of *)

(* Listeners found. *)

 num_listeners := ibcnt - 1;

 writeln('No. of instruments found = ', num_listeners);

(* Call the procedure FindFluke to determine if the *)

(* Fluke 45 is a Listener on the GPIB. *)

 FindFluke;

(* Call the ibonl function to disable the hardware and *)

(* software. *)

 ibonl(0,0);

END.

NI-488.2 Routine Descriptions Chapter 2

Turbo Pascal for Windows Program – NI-488.2 Routines

PROGRAM WSAMP488(input,output);

uses wincrt, tpwgpib;

const

 flukename : array [0..10] of char = 'FLUKE, 45,';

var

 cmd : PChar; (* Commands sent to *)

 (* the Fluke 45. *)

 reading : array[0..10] of char; (* Data received from *)

 (* the Fluke 45. *)

 instruments : AddrList; (* Array of primary *)

 (* addresses. *)

 (* AddrList is defined *)

 (* in TPWGPIB.PAS *)

 (* as an integer array. *)

 result : AddrList; (* Array of listen *)

 (* addresses. *)

 fluke : integer; (* Primary address of *)

 (* the Fluke 45. *)

 statusByte : integer; (* Serial poll response *)

 (* byte. *)

 m, i : integer; (* FOR loop counters. *)

 SRQasserted : integer; (* Set to indicate if *)

 (* SRQ asserted. *)

 num_listeners: integer; (* Number of listeners *)

 (* on GPIB. *)

 pad : integer; (* Primary address of *)

 (* listener. *)

 code : integer; (* Procedure VAL *)

 (* parameter. VAL is *)

 (* Turbo Pascal *)

 (* conversion procedure. *)

 num : real; (* Numeric conversion *)

 (* of READING. *)

 sum : real; (* Accumulator of *)

 (* measurements. *)

(* ==

 * Procedure GPIBERR

 * This procedure will notify you that a NI-488.2 function

 * failed by printing an error message. The status variable

 * IBSTA will be printed in decimal along with the mnemonic

 * meaning of the bit position. Thestatus variable IBERR will

 * be printed in decimal along with the mnemonic meaning of

 * the decimal value. The status variable IBCNTL will be

 * printed in decimal.

 *

 * The NI-488 function IBONL is called to disable the hardware

 * and software.

 * ==*)

procedure gpiberr(msg:string);

Chapter 2 NI-488.2 Routine Descriptions

begin

 writeln(msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcntl);

(* Call the IBONL function to disable the hardware and *)

(* software. *)

 ibonl(0,0);

end;

NI-488.2 Routine Descriptions Chapter 2

(* ==

 * Procedure FOUND

 * This procedure is called if the Fluke 45 has been identified

 * as a listener in the array RESULT. The variable FLUKE is

 * the primary address of the Fluke 45. Ten measurements are

 * read from the Fluke 45 and the average of the sum is

 * calculated.

 *

 * The HALT procedure stops execution of this program.

 *

 * The EXIT procedure terminates this procedure.

 * ==*)

procedure Found(fluke:integer);

begin

(* Reset the Fluke 45 using the subroutines DevClear and *)

(* Send. *)

(* DevClear will send the GPIB Selected Device Clear (SDC) *)

(* message to the Fluke 45. If the error bit ERR is set *)

(* in IBSTA, call GPIBERR with an error message. *)

 DevClear(0, fluke);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('DevClear Error');

 halt;

 end;

(* Use the subroutine Send to send the 488.2 Reset command *)

(* to the Fluke 45. The constant NLend, defined TPWGPIB.PAS, *)

(* instructs Send to append a linefeed character with EOI *)

(* asserted to the end of the message. If the error bit ERR *)

(* is set in IBSTA, call GPIBERR with an error message. *)

 cmd := '*RST';

 Send(0, fluke, cmd^, 4, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send *RST Error');

 halt;

 end;

(* Use the subroutine Send to send device configuration *)

(* commands to the Fluke 45. Instruct the Fluke 45 to *)

(* measure volts alternating current (VAC) using auto- *)

(* ranging (AUTO), to wait for a trigger from the GPIB *)

(* interface board (TRIGGER 2), and to assert the IEEE-488 *)

(* Service Request signal line, SRQ, when the measurement *)

(* has been completed and the Fluke 45 is ready to send the *)

(* result (*SRE 16). If the error bit ERR is set, call *)

(* GPIBERR with an error message. *)

Chapter 2 NI-488.2 Routine Descriptions

 cmd := 'VAC; AUTO; TRIGGER 2; *SRE 16';

 Send(0, fluke, cmd^, 29, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Setup Error');

 halt;

 end;

(* Initialize the accumulator of the 10 measurements to *)

(* zero. *)

 sum := 0.0;

(* Establish FOR loop to read the 10 measurements. The *)

(* variable m will serve as the counter for the FOR loop. *)

 for m := 1 to 10 do

 begin

 (* Trigger the Fluke 45 by sending the trigger *)

 (* command (*TRG) and request measurement by *)

 (* sending the command "VAL1?". If the error bit *)

 (* ERR is set in IBSTA, call GPIBERR with an error *)

 (* message. *)

 cmd := '*TRG; VAL1?';

 Send(0, fluke, cmd^, 11, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Trigger Error');

 halt;

 end;

 (* Wait for the Fluke 45 to assert SRQ, meaning it *)

 (* is ready with the measurement. If SRQ is not *)

 (* asserted within the timeout period, call GPIBERR *)

 (* with an error message. The timeout period by *)

 (* default is 10 seconds. *)

 WaitSRQ(0, SRQasserted);

 if SRQasserted = 0 then

 begin

 gpiberr('WaitSRQ Error');

 halt;

 end;

 (* Read the serial poll status byte of the Fluke *)

 (* 45. If the error bit ERR is set in IBSTA, call *)

 (* GPIBERR with an error message. *)

 ReadStatusByte(0, fluke, statusByte);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('ReadStatusByte Error');

 halt;

 end;

NI-488.2 Routine Descriptions Chapter 2

 (* Check if the Message Available Bit (bit 4) of *)

 (* the return status is set. If this bit is not *)

 (* set, print the status byte and call GPIBERR with *)

 (* an error message. *)

 if (statusByte and $10) <> $10 then

 begin

 gpiberr('Improper Status Byte');

 writeln('Status byte: ', statusByte);

 halt;

 end;

 (* Read the Fluke 45 measurement. Store *)

 (* measurement in the array READING. The constant *)

 (* STOPend, defined in TPWGPIB.PAS, instructs the *)

 (* subroutine Receive to terminate the read when *)

 (* END is detected. If the error bit ERR is set in *)

 (* IBSTA, call the GPIBERR with an error message. *)

 Receive (0, fluke, Reading, 10, STOPend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Receive Error');

 halt;

 end;

 (* Remove Spaces in READING. Print the measurement. *)

 reading[ibcnt-1] := #0;

 writeln('Reading: ', reading);

 writeln;

 (* Convert the measurement to its numeric value. *)

 (* If there is an error during the conversion, *)

 (* print the index of the character that did not *)

 (* convert and terminate this program. If an error *)

 (* does not occur during the conversion, add the *)

 (* value to the accumulator. *)

 val(reading, num, code);

 if code <> 0 then

 begin

 writeln('Error at position: ', code);

 exit;

 end

 else

 sum := sum + num;

 end; (* Continue FOR loop until 10 measurements are read. *)

(* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

Chapter 2 NI-488.2 Routine Descriptions

(* ==

 * PROCEDURE FINDFLUKE

 *

 * This procedure is called from the MAIN body of this program

 * to determine if the Fluke 45 is a listener on the GPIB.

 *

 * The HALT procedure stops execution of this program.

 *

 * The EXIT procedure terminates this procedure.

 * ==*)

procedure FindFluke;

begin

(* Send the *IDN? command to each of the devices that was *)

(* found. Your board is at address 0 by default. Your *)

(* board does not respond to *IDN?, so skip it. *)

(* Establish FOR loop to determine if the Fluke 45 is a *)

(* listener on the GPIB. The variable i will serve as the *)

(* counter of the FOR loop and as the index to the array *)

(* RESULT. *)

 for i := 1 to num_listeners do

 begin

 (* Send the identification query to each listen *)

 (* address in the array RESULT. The constant NLend, *)

 (* defined in TPWGPIB.PAS, instructs the subroutine *)

 (* Send to append a linefeed character with EOI *)

 (* asserted to the end of the message. If the error *)

 (* bit is set in IBSTA, call GPIBERR with an error *)

 (* message. *)

 cmd := '*IDN?';

 Send(0, result[i], cmd^, 5, NLend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Send Error');

 halt;

 end;

 (* Read the name identification response returned *)

 (* from each device. Store response in the array *)

 (* READING. The constant STOPend, declared in *)

 (* TPWGPIB.PAS, instructs the subroutine Receive to *)

 (* terminate the read when END is detected. If the *)

 (* error bit is set in IBSTA, call GPIBERR with an *)

 (* error message. *)

 Receive(0, result[i], Reading, 10, STOPend);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Receive Error');

 halt;

 end;

NI-488.2 Routine Descriptions Chapter 2

 (* The low byte of the listen address is the primary *)

 (* address. Assign the variable PAD the primary *)

 (* address of this device. *)

 pad := Lo(result[i]);

 (* Print the primary address and the name *)

 (* identification of the device. *)

 writeln('The instrument at address ', pad ,

 ' is: ', reading);

 (* Determine if the name identification is the *)

 (* Fluke 45. If it is the Fluke 45, assign PAD to *)

 (* FLUKE, print message that the Fluke 45 has been *)

 (* found, call the procedure FOUND, return to MAIN *)

 (* body of the program. *)

 if reading = flukename then

 begin

 fluke := pad;

 writeln('**** We found the Fluke 45 ****');

 Found(fluke);

 exit;

 end;

 end; (* End of FOR loop *)

(* Print message the Fluke 45 was not found. *)

 writeln('Did not find the Fluke!')

end;

(* ===

 * MAIN

 * ===*)

BEGIN

(* Your board needs to be the Controller-In-Charge in order *)

(* to find all listeners on the GPIB. To accomplish this, *)

(* the subroutine SendIFC is called. If the error bit ERR *)

(* is set in IBSTA, call GPIBERR with an error message. *)

 SendIFC(0);

 if (ibsta and ERR) <> 0 THEN

 begin

 gpiberr('SendIFC Error');

 halt;

 end;

Chapter 2 NI-488.2 Routine Descriptions

(* Create an array containing all valid GPIB primary *)

(* addresses. This array (INSTRUMENTS) will be given to *)

(* the subroutine FindLstn to find all listeners. The *)

(* constant NOADDR, defined in TPWGPIB.PAS, signifies the *)

(* end of the array. *)

 for i := 0 to 30 do

 instruments[i] := i;

 instruments[31] := NOADDR;

(* Print message to tell user that the program is searching *)

(* for all active listeners. Find all of the listeners on *)

(* the bus. Store the listen addresses in the array RESULT. *)

(* If the error bit ERR is set in IBSTA, call GPIBERR with *)

(* an error message. *)

 writeln('Finding all listeners on the bus...');

 writeln;

 FindLstn (0, instruments, result, 31);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('FindLstn Error');

 halt;

 end;

(* Assign the value of IBCNT to the variable NUM_LISTENERS. *)

(* The GPIB interface board is detected as a listener on *)

(* the bus; however, it is not included in the final count *)

(* of the number of listeners. Print the number of *)

(* listeners found. *)

 num_listeners := ibcnt - 1;

 writeln('No. of instruments found = ', num_listeners);

(* Call the procedure FINDFLUKE to determine if the Fluke 45 *)

(* is a listener on the GPIB. *)

 FindFluke;

(* Call the IBONL function to disable the hardware and *)

(* software. *)

 ibonl(0,0);

END.

© National Instruments Corp. 3-1 Pascal

Chapter 3
NI-488 Function Descriptions

This chapter contains a detailed description of each NI-488 function with
examples. The descriptions are listed alphabetically for easy reference.

NI-488 Function Descriptions Chapter 3

Pascal 3-2 © National Instruments Corp.

IBASK IBASK

Purpose: Return information about software configuration parameters.

Format: ibask (ud,option,value)

ud represents a GPIB interface board or a device. The selected configuration
item is returned in the integer specified by value. Table 3-1 and Table 3-2 list
the valid configurations parameter options for ibask .

Table 3-1. ibask Board Configuration Parameter Options

IbaPAD $0001 The current primary address of the board.

See ibpad .

IbaSAD $0002 The current secondary address of the
board.

See ibsad .

IbaTMO $0003 The current I/O timeout of the board.

See ibtmo .

IbaEOT $0004 zero = The GPIB EOI line is not asserted
at the end of a write operation.

non-zero = EOI is asserted at the end of a
write.

See ibeot .

IbaPPC $0005 The current parallel poll configuration
information of the board. See ibppc .

(continues)

Options
(Constants)

Options
(Values) Returned Information

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-3 Pascal

IBASK (continued) IBASK

Table 3-1. ibask Board Configuration Parameter Options (continued)

IbaAUTOPOLL $0007 zero = Automatic serial polling is
disabled.

non-zero = Automatic serial polling is
enabled.

Refer to the NI-488.2 user manual for
more information about automatic serial
polling.

IbaCICPROT $0008 zero = The CIC protocol is disabled.

non-zero = The CIC protocol is enabled.

Refer to the NI-488.2 user manual for
more information about device-level calls
and bus management.

IbaIRQ $0009 zero = Interrupts are not enabled.

non-zero = Interrupts are enabled.

IbaSC $000A zero = The board is not the GPIB System
Controller.

non-zero = The board is the System
Controller.

See ibrsc .

IbaSRE $000B zero = The board does not automatically
assert the GPIB REN line when it
becomes the System Controller.

non-zero = The board automatically
asserts REN when it becomes the System
Controller.

See ibrsc and ibsre .

(continues)

Options
(Constants)

Options
(Values) Returned Information

NI-488 Function Descriptions Chapter 3

Pascal 3-4 © National Instruments Corp.

IBASK (continued) IBASK

Table 3-1. ibask Board Configuration Parameter Options (continued)

IbaEOSrd $000C zero = The EOS character is ignored
during read operations.

non-zero = Read operation is terminated
by the EOS character.

See ibeos .

IbaEOSwrt $000D zero = The EOI line is not asserted when
the EOS character is sent during a write
operation.

non-zero = The EOI line is asserted when
the EOS character is sent during a write
operation.

See ibeos .

IbaEOScmp $000E zero = A 7-bit compare is used for all
EOS comparisons.

non-zero = An 8-bit compare is be used
for all EOS comparisons.

See ibeos .

IbaEOSchar $000F The current EOS character of the board.

See ibeos .

IbaPP2 $0010 zero = The board is in PP1 mode–remote
parallel poll configuration.

non-zero = The board is in PP2 mode–
local parallel poll configuration.

Refer to the NI-488.2 user manual for
more information about parallel polls.

(continues)

Options
(Constants)

Options
(Values) Returned Information

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-5 Pascal

IBASK (continued) IBASK

Table 3-1. ibask Board Configuration Parameter Options (continued)

IbaTIMING $0011 The current bus timing of the board.

1 = Normal timing (T1 delay of 2 µs.)

2 = High speed timing (T1 delay of
500 ns.)

3 = Very high speed timing (T1 delay of
350 ns.)

IbaDMA $0012 zero = The board will not use DMA for
GPIB transfers.

non-zero = The board will use DMA for
GPIB transfers.

See ibdma .

IbaReadAdjust $0013 0 = Read operations do not have pairs of
bytes swapped.

1 = Read operations have each pair of
bytes swapped.

IbaWriteAdjust $0014 0 = Write operations do not have pairs of
bytes swapped.

1 = Write operations have each pair of
bytes swapped.

IbaEventQueue $0015 zero = The event queue is disabled.

non-zero = The event queue is enabled.

See ibevent .

(continues)

Options
(Constants)

Options
(Values) Returned Information

NI-488 Function Descriptions Chapter 3

Pascal 3-6 © National Instruments Corp.

IBASK (continued) IBASK

Table 3-1. ibask Board Configuration Parameter Options (continued)

IbaSpollBit $0016 zero = The SPOLL bit of ibsta is
disabled.

non-zero = The SPOLL bit of ibsta is
enabled.

See the NI-488.2 user manual for
information about Talker/Listener
applications.

IbaSendLLO $0017 zero = The GPIB LLO command is not
sent when a device is put online-ibfind
or ibdev .

non-zero = The LLO command is sent.

IbaPPollTime $0019 0 = The board uses the standard duration
(2 µs) when conducting a parallel poll.

1 to 17 = The board uses a variable length
duration when conducting a parallel poll.
The duration values correspond to the
ibtmo timing values.

IbaEndBitIsNormal $001A zero = The END bit of ibsta is set only
when EOI or EOI plus the EOS character
is received. If the EOS character is
received without EOI, the END bit is not
set.

non-zero = The END bit is set whenever
EOI, EOS, or EOI plus EOS is received.

(continues)

Options
(Constants)

Options
(Values) Returned Information

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-7 Pascal

IBASK (continued) IBASK

Table 3-1. ibask Board Configuration Parameter Options (continued)

IbaHSCableLength $001F 0 = High-speed data transfer (HS488) is
disabled.

1 to 15 = High-speed data transfer
(HS488) is enabled. The number returned
represents the number of meters of GPIB
cable in your system.

See the NI-488.2 user manual for
information about high-speed data
transfers (HS488).

IbaBaseAddr $0201 The base I/O address of the board.

IbaDmaChannel $0202 The DMA channel that the board is
configured to use. If the board is not
configured to use DMA, the error ECAP
is returned.

IbaIrqLevel $0203 The interrupt level that the board is
configured to use. If the board is not
configured to use interrupts, the error
ECAP is returned.

IbaBaud $0204 If your GPIB interface is GPIB-232CT-A,
then this option returns the baud rate that
the NI-488.2 software is configured to use
when communicating with the interface.

IbaParity $0205 If your GPIB interface is GPIB-232CT-A,
then this option returns the parity that the
NI-488.2 software is configured to use
when communicating with the interface.

(continues)

Options
(Constants)

Options
(Values) Returned Information

NI-488 Function Descriptions Chapter 3

Pascal 3-8 © National Instruments Corp.

IBASK (continued) IBASK

Table 3-1. ibask Board Configuration Parameter Options (continued)

IbaStopBits $0206 If your GPIB interface is GPIB-232CT-A,
then this option returns the number of
stop bits that the NI-488.2 software is
configured to use when communicating
with the interface.

IbaDataBits $0207 If your GPIB interface is GPIB-232CT-A,
then this option returns the number of
data bits that the NI-488.2 software is
configured to use when communicating
with the interface.

IbaComPort $0208 If your GPIB interface is GPIB-232CT-A,
then this option returns the COM port
number that the NI-488.2 software is
configured to use when communicating
with the interface.

IbaComIrqLevel $0209 If your GPIB interface is GPIB-232CT-A,
then this option returns the interrupt level
that the NI-488.2 software is configured
to use when communicating with your
computer serial port. If the software is not
directly accessing the serial port, the error
ECAP is returned.

(continues)

Options
(Constants)

Options
(Values) Returned Information

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-9 Pascal

IBASK (continued) IBASK

Table 3-1. ibask Board Configuration Parameter Options (continued)

IbaComPortBase $020A If your GPIB interface is GPIB-232CT-A,
then this option returns the base I/O
address that the NI-488.2 software is
configured to use when communicating
with your computer serial port. If the
software is not directly accessing the
serial port, the error ECAP is returned.

IbaSingleCycleDma $020B If your GPIB interface is an AT-GPIB,
then this option returns the DMA transfer
mode that the NI-488.2 software is
configured to use when performing DMA
transfers.

zero = demand mode DMA

non-zero = single cycle DMA

See your getting started manual for more
information.

IbaSocketNumber $020C If your GPIB interface is PCMCIA-GPIB,
this option returns the number of the
socket where the interface is inserted.

Options
(Constants)

Options
(Values) Returned Information

NI-488 Function Descriptions Chapter 3

Pascal 3-10 © National Instruments Corp.

IBASK (continued) IBASK

Table 3-2. ibask Device Configuration Parameter Options

IbaPAD $0001 The current primary address of the device.
See ibpad .

IbaSAD $0002 The current secondary address of the
device.
See ibsad .

IbaTMO $0003 The current I/O timeout of the device.
See ibtmo .

IbaEOT $0004 zero = The GPIB EOI line is not asserted
at the end of a write operation.

non-zero = EOI is asserted at the end of a
write operation.

See ibeot .

IbaREADDR $0006 zero = No unnecessary addressing is
performed between device-level read and
write operations.

non-zero = Addressing is always
performed before a device-level read or
write operation.

See ibeot .

IbaEOSrd $000C zero = The EOS character is ignored
during read operations.

non-zero = Read operation is terminated
by the EOS character.

See ibeos .

(continues)

Options
(Constants)

Options
(Values) Returned Information

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-11 Pascal

IBASK (continued) IBASK

Table 3-2. ibask Device Configuration Parameter Options (continued)

IbaEOSwrt $000D zero = The EOI line is not asserted when
the EOS character is sent during a write
operation.

non-zero = The EOI line is asserted when
the EOS character is sent during a write
operation.

See ibeos .

IbaEOScmp $000E zero = A 7-bit compare is used for all
EOS comparisons.

non-zero = An 8-bit compare is used for
all EOS comparisons.

See ibeos .

IbaEOSchar $000F The current EOS character of the device.

See ibeos .

IbaReadAdjust $0013 0 = Read operations do not have pairs of
bytes swapped.

1 = Read operations have each pair of
bytes swapped.

IbaWriteAdjust $0014 0 = Write operations do not have pairs of
bytes swapped.

1 = Write operations have each pair of
bytes swapped.

(continues)

Options
(Constants)

Options
(Values) Returned Information

NI-488 Function Descriptions Chapter 3

Pascal 3-12 © National Instruments Corp.

IBASK (continued) IBASK

Table 3-2. ibask Device Configuration Parameter Options (continued)

IbaSPollTime $0018 The length of time the driver waits for a
serial poll response when polling the
device. The length of time is represented
by the ibtmo timing values.

IbaEndBitIsNormal $001A zero = The END bit of ibsta is set only
when EOI or EOI plus the EOS character
is received. If the EOS character is
received without EOI, the END bit is not
set.

non-zero = The END bit is set whenever
EOI, EOS, or EOI plus EOS is received.

IbaUnAddr $001B zero = The GPIB commands Untalk
(UNT) and Unlisten (UNL) are not sent
after each device-level read and write
operation.

non-zero = The UNT and UNL
commands are sent after each
device-level read and write operation.

IbaBNA $0200 The index of the GPIB access board used
by the given device descriptor.

Options
(Constants)

Options
(Values) Returned Information

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-13 Pascal

IBBNA IBBNA

Purpose: Change access board of device.

Format: ibbna (ud,bname)

ud represents a device. bname is the new access board to be used in all
device calls to that device. For MS-DOS Pascal bname is of type nbuf as
defined in the declaration files. For Turbo Pascal for Windows, bname is of
type PChar .

ibbna is needed only to alter the board assignment from its configuration
setting. The assigned board is used in all subsequent device functions used
with that device until ibbna is called again, ibonl or ibfind is called, or
the system is restarted.

Device Function Example:

Associate the device dvm with the interface board GPIB0 .

MS-DOS Pascal

var devname,bdname : nbuf;

 dvm : integer;

devname := 'DVM ';

dvm := ibfind (devname);

(* Set GPIB0 as the access board for device dvm. *)

bdname := 'GPIB0 ';

ibbna (dvm,bdname);

Turbo Pascal for Windows

var devname,bdname : PChar;

 dvm : integer;

devname := 'DVM';

dvm := ibfind (devname);

(* Set GPIB0 as the access board for device dvm. *)

bdname := 'GPIB0';

ibbna (dvm,bdname);

NI-488 Function Descriptions Chapter 3

Pascal 3-14 © National Instruments Corp.

IBCAC IBCAC

Purpose: Become Active Controller.

Format: ibcac (ud,v)

ud represents an interface board. If v is zero, the GPIB board takes control
immediately (asynchronously); otherwise, the GPIB board takes control
synchronously with respect to data transfer operations.

To take control synchronously, the GPIB board asserts the ATN signal
without the transfer of corrupting data. If a data handshake is in progress, the
take control action is postponed until the handshake is complete; if a
handshake is not in progress, the take control action is done immediately.
Synchronous take control is not guaranteed if an ibrd or ibwrt operation
completed with a timeout error.

Asynchronous take control should be used in situations where it appears
impossible to gain control synchronously (for example, after a timeout error).

It is generally not necessary to use the ibcac function in most applications.
The GPIB board automatically takes control in functions such as ibcmd and
ibrpp .

The ECIC error results if the GPIB board is not Controller-In-Charge (CIC).

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-15 Pascal

IBCAC (continued) IBCAC

Board Function Examples:

1. Take control immediately without regard to any data handshake in
progress.

var brd0 : integer;

ibcac (brd0,0); (* ibsta should show *)

(* that the interface *)

(* board is now CAC *)

(* (CIC with ATN) *)

2. Take control synchronously and assert ATN following a read operation.

MS-DOS Pascal

var rd : cbuf;

 bdname : nbuf;

 brd0 : integer;

bdname := 'GPIB0 ';

brd0 := ibfind (bdname);

ibrd (brd0,rd,255);

ibcac (brd0,1);

Turbo Pascal for Windows

var rd : array[0..256] of char;

 bdname : PChar;

 brd0 : integer;

bdname := 'GPIB0';

brd0 := ibfind (bdname);

ibrd (brd0,rd,255);

ibcac (brd0,1);

NI-488 Function Descriptions Chapter 3

Pascal 3-16 © National Instruments Corp.

IBCLR IBCLR

Purpose: Clear specified device.

Format: ibclr (ud)

ud represents a device.

The ibclr function clears the internal or device functions of a specified
device. ibclr calls the board function ibcmd to send each of the following
commands using the designated access board:

• Talk address of access board

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device, if applicable

• Selected Device Clear (SDC)

Other command bytes may be sent as necessary.

Device Function Example:

Clear the device vmtr.

MS-DOS Pascal

var devname : nbuf;

 vmtr : integer;

devname := 'DEV3 '; (* open voltmeter *)

vmtr := ibfind (devname);

ibclr (vmtr); (* clear voltmeter *)

Turbo Pascal for Windows

var devname : PChar;

 vmtr : integer;

devname := 'DEV3'; (* open voltmeter *)

vmtr := ibfind (devname);

ibclr (vmtr); (* clear voltmeter *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-17 Pascal

IBCMD IBCMD

Purpose: Send GPIB command messages.

Format: ibcmd (ud,cmd,cnt)

ud represents an interface board. The pre-allocated array cmd contains the
commands to be sent over the GPIB. cnt is the number of commands sent.
The cnt value is of type integer4 in Microsoft Pascal, and of type
longINT in QuickPascal, Turbo Pascal, and Turbo Pascal for Windows.
The cnt value is of type integer in IBM Pascal.

The ibcmd function is used to transmit interface messages (commands) over
the GPIB. These commands are listed in Appendix A. The ibcmd function
is also used to pass GPIB control to another device. This function is not used
to transmit programming instructions to devices. Programming instructions
are transmitted with the ibrd and ibwrt functions.

The ibcmd operation terminates on any of the following events:

• All commands are successfully transferred.

• An error is detected.

• The time limit is exceeded.

• A Take Control (TCT) command is sent.

• An Interface Clear (IFC) message is received from the System
Controller.

The transfer count may be less than the requested count on any of the
terminating events listed above except the first.

An ECIC error results if the GPIB board is not CIC. If the GPIB board is not
Active Controller, it takes control and asserts ATN before sending the
command bytes. The GPIB board remains Active Controller after sending the
command bytes.

In the examples that follow, GPIB commands and addresses are coded as
printable ASCII characters. If values correspond to printable ASCII
characters, it is simplest to use the ASCII characters corresponding to a

NI-488 Function Descriptions Chapter 3

Pascal 3-18 © National Instruments Corp.

IBCMD (continued) IBCMD

numeric value. Refer to Appendix A for ASCII characters and corresponding
numeric values.

Board Function Examples:

1. Unaddress all Listeners with the Unlisten (UNL or ASCII ?) command
and address a Talker at hex 46 (ASCII F) and a Listener at hex 31
(ASCII 1).

Pascal

var cmd : cbuf;

cmd[1] := chr(UNL); (* GPIB Unlisten command *)

cmd[2] := 'F'; (* talk address *)

cmd[3] := '1'; (* listen address *)

ibcmd (brd0,cmd,3);

Turbo Pascal for Windows

var cmd : PChar;

cmd := '?F1';

ibcmd (brd0,cmd^,3);

2. Same as Example 1, except the Listener has a secondary address of hex
6E (ASCII n).

Pascal

var cmd : cbuf;

cmd[1] := chr(UNL); (* GPIB Unlisten command *)

cmd[2] := 'F'; (* talk address *)

cmd[3] := '1'; (* listen address *)

cmd[4] := 'n'; (* secondary address *)

ibcmd (brd0,cmd,4);

Turbo Pascal for Windows

var cmd : PChar;

cmd := '?F1n';

ibcmd (brd0,cmd^,4);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-19 Pascal

IBCMD (continued) IBCMD

3. Clear all GPIB devices (that is, reset internal functions) with the Device
Clear (DCL or hex 14) command.

Pascal

var cmd : cbuf;

cmd[1] := chr(DCL);

ibcmd (brd0,cmd,1);

Turbo Pascal for Windows

var cmd : PChar;

cmd := #14;

ibcmd (brd0,cmd^,1);

4. Clear two devices with listen addresses of hex 21 (ASCII !) and hex 28
(ASCII ([left parenthesis]) with the Selected Device Clear (SDC or hex
04) command.

Pascal

var cmd : cbuf;

cmd[1] := chr(UNL); (* GPIB Unlisten command *)

cmd[2] := '!'; (* First listen address *)

cmd[3] := '('; (* Second listen address *)

cmd[4] := chr(SDC); (* Selected Device Clear *)

ibcmd (brd0,cmd,4);

Turbo Pascal for Windows

var cmd : PChar;

cmd := '?!('#04;

ibcmd (brd0,cmd^,4);

NI-488 Function Descriptions Chapter 3

Pascal 3-20 © National Instruments Corp.

IBCMD (continued) IBCMD

5. Trigger any devices previously addressed to listen with the Group
Execute Trigger (GET or hex 08) command.

Pascal

var cmd : cbuf;

cmd[1] := chr(GET);

ibcmd (brd0,cmd,1);

Turbo Pascal for Windows

var cmd : PChar;

cmd := #08;

ibcmd (brd0,cmd^,1);

6. Unaddress all Listeners and serial poll a device at talk address hex 52
(ASCII R) using the Serial Poll Enable (SPE or hex 18) and Serial Poll
Disable (SPD or hex 19) commands (the GPIB board listen address is
hex 20 or ASCII space).

Pascal

var rd, cmd : cbuf;

cmd[1] := chr(UNL); (* GPIB Unlisten command *)

cmd[2] := 'R'; (* talk address *)

cmd[3] := ' '; (* listen address *)

cmd[4] := chr(SPE); (* Serial Poll Enable *)

ibcmd (brd0,cmd,4);

ibrd (brd0,rd,1);

(* After checking the status byte in rd, *)

(* disable this device and unaddress it with *)

(* the Untalk (UNT or ASCII _) command before *)

(* polling the next one. *)

cmd[1] := chr(SPD); (* Serial Poll Disable *)

cmd[2] := chr(UNT); (* GPIB Untalk command *)

ibcmd (brd0,cmd,2);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-21 Pascal

IBCMD (continued) IBCMD

Turbo Pascal for Windows

var rd : array[1..10] of char;

 cmd : PChar;
cmd := '?R '#18;

ibcmd (brd0,cmd^,4);

ibrd (brd0,rd,1);

(* After checking the status byte in rd, *)

(* disable this device and unaddress it with *)

(* the Untalk (UNT or ASCII _) command before *)

(* polling the next one. *)

cmd := #19'_';

ibcmd (brd0,cmd^,2);

NI-488 Function Descriptions Chapter 3

Pascal 3-22 © National Instruments Corp.

IBCMDA IBCMDA

Purpose: Send commands asynchronously from string.

Format: ibcmda (ud,cmd,cnt)

ud represents an interface board. The pre-allocated array cmd contains the
commands to be sent over the GPIB. cnt is the number of commands sent.
The cnt value is of type integer4 in Microsoft Pascal, and of type
longINT in QuickPascal, Turbo Pascal, and Turbo Pascal for Windows.
The cnt value is of type integer in IBM Pascal.

The ibcmda function is used to transmit interface messages (commands)
over the GPIB. These commands are listed in Appendix A. The ibcmda
function can also be used to pass GPIB control to another device. This
function is not used to transmit programming instructions to devices. These
instructions and other device-dependent information are transmitted with the
ibrd and ibwrt functions.

Use ibcmda instead of ibcmd if the application program must perform
other functions while processing the GPIB command. ibcmda returns
immediately after starting the I/O operation.

The three asynchronous I/O calls (ibcmda , ibrda , and ibwrta) are
designed to allow an application to perform other functions (non-GPIB
functions) while processing the I/O. Once an asynchronous I/O call has been
initiated, further GPIB calls involving the device or access board are not
allowed until the I/O has completed and the GPIB driver and the application
have been resynchronized.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-23 Pascal

IBCMDA (continued) IBCMDA

Resynchronization can be accomplished by using one of the following three
functions:

Note: Resynchronization is successful only if the ibsta returned contains
CMPL.

• ibwait (mask
contains CMPL) - The driver and application are synchronized.

• ibstop - The asynchronous I/O is canceled, and the driver
and application are synchronized.

• ibonl - The asynchronous I/O is canceled, the interface has
been reset, and the driver and application are
synchronized.

The only other GPIB call that is allowed during asynchronous I/O is the
ibwait function (mask is arbitrary). Any other GPIB call involving the
device or access board returns the EOIP error.

An ECIC error results if the GPIB board is not CIC. If the GPIB board is not
Active Controller, it takes control and asserts ATN before sending the
command bytes. It remains Active Controller after the commands bytes are
sent. The ENOL error will be returned if there are no other devices on the
IEEE-488 bus.

NI-488 Function Descriptions Chapter 3

Pascal 3-24 © National Instruments Corp.

IBCMDA (continued) IBCMDA

Board Function Example:

Address several devices for a broadcast message to follow while testing
for a high priority event to occur.

IBM/MS Pascal

var brd0 : integer;

 bdname : nbuf;

 cmd : cbuf;

 mask : word;

(* The interface board brd0, at talk address *)

(* hex 40 (ASCII @), addresses nine Listeners *)

(* at addresses hex 31-hex 39 (ASCII 1-9) to *)

(* receive the broadcast message. *)

bdname := 'GPIB0 ';

brd0 := ibfind (bdname);

cmd[1] := '?'; (* GPIB Unlisten command *)

cmd[2] := '@'; (* my talk address *)

cmd[3] := '1'; (* listen address 1 *)

cmd[4] := '2'; (* listen address 2 *)

cmd[5] := '3'; (* listen address 3 *)

cmd[6] := '4'; (* listen address 4 *)

cmd[7] := '5'; (* listen address 5 *)

cmd[8] := '6'; (* listen address 6 *)

cmd[9] := '7'; (* listen address 7 *)

cmd[10] := '8'; (* listen address 8 *)

cmd[11] := '9'; (* listen address 9 *)

ibcmda (brd0,cmd,11);

While ibsta and 16#100 <> 16#100 do

Begin

eventtst; (* Unspecified routine *)

(* to test and process *)

(* a high priority *)

ibwait (brd0,0); (* event. Set mask to *)

(* return immediately. *)

IF ibsta < 0 then error;

End;

writeln ('Asynchronous commands sent!');

mask :=16#4100;

ibwait (brd0, mask);

write ('Asynchronous transfer properly terminated');

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-25 Pascal

IBCMDA (continued) IBCMDA

QuickPascal/Turbo Pascal

var brd0 : integer;

 bdname : nbuf;

 cmd : cbuf;

 mask : word;

(* $40, addresses nine Listeners at addresses *)

(* $31 through $39 to receive the broadcast *)

(* message. *)

bdname := 'GPIB0 ';

brd0 := ibfind (bdname);

cmd[1] := '?'; (* GPIB Unlisten command *)

cmd[2] := '@'; (* my talk address *)

cmd[3] := '1'; (* listen address 1 *)

cmd[4] := '2'; (* listen address 2 *)

cmd[5] := '3'; (* listen address 3 *)

cmd[6] := '4'; (* listen address 4 *)

cmd[7] := '5'; (* listen address 5 *)

cmd[8] := '6'; (* listen address 6 *)

cmd[9] := '7'; (* listen address 7 *)

cmd[10] := '8'; (* listen address 8 *)

cmd[11] := '9'; (* listen address 9 *)

ibcmda (brd0,cmd,11);

While ibsta and $100 <> $100 do

Begin

eventtst; (* Unspecified routine *)

(* to test and process *)

(* a high priority *)

ibwait (brd0,0); (* event. Set mask to *)

(* return immediately. *)

IF ibsta < 0 then error;

End;

writeln ('Asynchronous commands sent!');

mask := $4100;

ibwait (brd0, mask);

write ('Asynchronous transfer properly terminated');

NI-488 Function Descriptions Chapter 3

Pascal 3-26 © National Instruments Corp.

IBCMDA (continued) IBCMDA

Turbo Pascal for Windows

var brd0 : integer;

 bdname,cmd : PChar;

 mask : word;

(* The interface board brd0, at talk address *)

(* $40 (ASCII @), addresses nine Listeners *)

(* at addresses $31-$39 (ASCII 1-9) to *)

(* receive the broadcast message. *)

bdname := 'GPIB0';

brd0 := ibfind (bdname);

(* GPIB Unlisten command my talk address *)

(* listen address 1 through listen address 9 *)

cmd := '?@123456789';

ibcmda (brd0,cmd^,11);

While (ibsta and $100) <> $100 do

Begin

eventtst; (* Unspecified routine *)

(* to test and process *)

(* a high priority *)

ibwait (brd0,0); (* event. Set mask to *)

(* return immediately. *)

IF ibsta < 0 then error;

End;

writeln ('Asynchronous commands sent!');

mask := $4100;

ibwait (brd0, mask);

writeln ('Asynchronous transfer properly terminated');

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-27 Pascal

IBCONFIG IBCONFIG

Purpose: Change the driver configuration parameters.

Format: ibconfig (ud,option,value)

ud represents a GPIB interface board or a device. option is used to select
the configurable item in the driver. The configurable item is set to the
contents of value . The previous contents of the configurable item are
returned in iberr . Table 3-3 shows the values of option and value that
are available when ud is a GPIB interface board descriptor. Table 3-4 shows
the values that are available when ud is a device descriptor.

Table 3-3. ibconfig Board Configuration Parameter Options

Options
(Constants)

Options
(Values) Legal Values

IbcPAD $0001 Changes the primary address of the board.
Identical to ibpad .

Default determined by ibconf .

IbcSAD $0002 Changes the secondary address of the
board. Identical to ibsad .

Default determined by ibconf .

IbcTMO $0003 Changes the I/O timeout limit of the
board. Identical to ibtmo .

Default determined by ibconf .

IbcEOT $0004 Changes the data termination mode for
write operations. Identical to ibeot .

Default determined by ibconf .

IbcPPC $0005 Configures the board for parallel polls.
Identical to board-level ibppc .

Default: zero.

(continues)

NI-488 Function Descriptions Chapter 3

Pascal 3-28 © National Instruments Corp.

IBCONFIG (continued) IBCONFIG

Table 3-3. ibconfig Board Configuration Parameter Options (continued)

Options
(Constants)

Options
(Values) Legal Values

IbcAUTOPOLL $0007 zero = Disable automatic serial polling.

non-zero = Enable automatic serial
polling.

Default determined by ibconf .

Refer to the NI-488.2 user manual for
more information about automatic serial
polling.

IbcCICPROT $0008 zero = Disable the CIC protocol.

non-zero = Enable the CIC protocol.

Default determined by ibconf .

Refer to the NI-488.2 user manual for
more information about the CIC protocol.

IbcIRQ $0009 zero = Do not use interrupts.

non-zero = Use interrupts-use the
hardware interrupt level configured
through ibconf .

Default determined by ibconf .

IbcSC $000A Request or release system control.
Identical to ibrsc .

Default determined by ibconf .

IbcSRE $000B Assert the Remote Enable (REN) line.
Identical to ibsre .

Default: zero.

IbcEOSrd $000C zero = Ignore EOS character during read
operations.

non-zero = Terminate reads when the
EOS character is read match occurs.

Default determined by ibconf .

(continues)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-29 Pascal

IBCONFIG (continued) IBCONFIG

Table 3-3. ibconfig Board Configuration Parameter Options (continued)

Options
(Constants)

Options
(Values) Legal Values

IbcEOSwrt $000D zero = Do not assert EOI with the EOS
character during write operations.

non-zero = Assert EOI with the EOS
character during writes operations.

Default determined by ibconf .

IbcEOScmp $000E zero = Use 7 bits for the EOS character
comparison.

non-zero = Use 8 bits for the EOS
character comparison.

Default determined by ibconf .

IbcEOSchar $000F Any 8-bit value. This byte becomes the
new EOS character.

Default determined by ibconf .

IbcPP2 $0010 zero = PP1 mode-remote parallel poll
configuration.

non-zero = PP2 mode-local parallel poll
configuration.

Default: zero. Refer to the NI-488.2 user
manual for more information about
parallel polling.

IbcTIMING $0011 1 = Normal timing (T1 delay of 2 µs).

2 = High-speed timing (T1 delay of
500 ns).

3 = Very high-speed timing (T1 delay of
350 ns).

Default determined by ibconf .

The T1 delay is the GPIB source
handshake timing.

(continues)

NI-488 Function Descriptions Chapter 3

Pascal 3-30 © National Instruments Corp.

IBCONFIG (continued) IBCONFIG

Table 3-3. ibconfig Board Configuration Parameter Options (continued)

Options
(Constants)

Options
(Values) Legal Values

IbcDMA $0012 Identical to ibdma .

Default determined by ibconf.

IbcReadAdjust $0013 0 = No byte swapping.

1 = Swap pairs of bytes during a read.

Default: zero.

IbcWriteAdjust $0014 0 = No byte swapping.

1 = Swap pairs of bytes during a write.

Default: zero.

IbcEventQueue $0015 zero = The event queue is disabled.

non-zero = The event queue is enabled.

Default: zero. See ibevent.

IbcSpollBit $0016 zero = The SPOLL bit of ibsta is
disabled.

non-zero = The SPOLL bit of ibsta is
enabled.

Default: zero. See NI-488.2 user manual
for information about Talker/Listener
applications.

IbcSendLLO $0017 zero = Do not send LLO when putting a
device online –ibfind or ibdev .

non-zero = Send LLO when putting a
device online–ibfind or ibdev .

Default: zero.

(continues)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-31 Pascal

IBCONFIG (continued) IBCONFIG

Table 3-3. ibconfig Board Configuration Parameter Options (continued)

Options
(Constants)

Options
(Values) Legal Values

IbcPPollTime $0019 0 = Use the standard duration (2 µs) when
conducting a parallel poll.

1 to 17 = Use a variable length duration
when conduct ing a parallel poll. The
duration represented by 1 to 17
corresponds to the ibtmo values.

Default: zero.

IbcEndBitIsNormal $001A zero = Do not set the END bit of ibsta
when an EOS match occurs during a read.

non-zero = Set the END bit of ibsta
when an EOS match occurs during a read.

Default: non-zero.

IbcHSCableLength $001F 0 = High-speed data transfer (HS488) is
disabled.

1 to 15 = The number of meters of GPIB
cable in your system. The NI-488.2
software uses this information to select
the appropriate high-speed data transfer
(HS488) mode.

Default determined by ibconf . See the
NI-488.2 user manual for information
about high-speed data transfers (HS488).

NI-488 Function Descriptions Chapter 3

Pascal 3-32 © National Instruments Corp.

IBCONFIG (continued) IBCONFIG

Table 3-4. ibconfig Device Configuration Parameter Options

Options
(Constants)

Options
(Values

)
Legal Values

IbcPAD $0001 Changes the primary address of the
device. Identical to ibpad . Default
determined by ibconf .

IbcSAD $0002 Changes the secondary address of the
device. Identical to ibsad . Default
determined by ibconf .

IbcTMO $0003 Changes the device I/O timeout limit.
Identical to ibtmo . Default determined
by ibconf .

IbcEOT $0004 Changes the data termination method for
writes. Identical to ibeot . Default
determined by ibconf .

IbcREADDR $0006 zero = No unnecessary readdressing is
performed between device-level reads
and writes.

non-zero = Addressing is always
performed before a device-level read or
write.

Default determined by ibconf .

IbcEOSrd $000C non-zero = Terminate reads when the
EOS character is read.

Default determined by ibconf .

IbcEOSwrt $000D zero = Do not send EOI with the EOS
character during write operations.

non-zero = Send EOI with the EOS
character during writes.

Default determined by ibconf .

(continues)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-33 Pascal

IBCONFIG (continued) IBCONFIG

Table 3-4. ibconfig Device Configuration Parameter Options (continued)

IbcEOScmp $000E zero = Use seven bits for the EOS
character comparison.

non-zero = Use 8 bits for the EOS
character comparison.

Default determined by ibconf .

IbcEOSchar $000F Any 8-bit value. This byte becomes the
new EOS character.

Default determined by ibconf .

IbcReadAdjust $0013 0 = No byte swapping.

1 = Swap pairs of bytes during a read.

Default: zero.

IbcWriteAdjust $0014 0 = No byte swapping.

1 = Swap pairs of bytes during a write.

Default: zero.

IbcSPollTime $0018 0 to 17 = Sets the length of time the
driver waits for a serial poll response
byte when polling the given device. The
length of time represented by 0 to 17
corresponds to the ibtmo values.

Default: 11.

IbcEndBitIsNormal $001A zero = Do not set END bit of ibsta
when EOS match occurs during a read.

non-zero = Set END bit of ibsta when
EOS match occurs during a read.

Default: non-zero.

IbcUnAddr $001B zero = Do not send Untalk (UNT)and
Unlisten (UNL)–at the end of device-
level reads and writes.

non-zero = Send UNT and UNL at the
end of device-level reads and writes.

Default: zero.

NI-488 Function Descriptions Chapter 3

Pascal 3-34 © National Instruments Corp.

Device Function Example:

Set up various configurable parameters in preparation for a device read.

MS-DOS Pascal

var dvm : integer;

 devname : nbuf;

devname := 'Dev1 ';

dvm := ibfind (devname);

(* Enable repeat addressing. *)

ibconfig (dvm,6,1);

(* Set linefeed as the EOS character. *)

ibconfig (dvm,15,10);

(* Use 7-bit comparison for EOS character. *)

ibconfig (dvm,14,0);

(* Terminate reads on EOS. *)

ibconfig (dvm,12,1);

Turbo Pascal for Windows

var dvm : integer;

 devname : PChar;

devname := 'Dev1';

dvm := ibfind (devname);

(* Enable repeat addressing. *)

ibconfig (dvm,6,1);

(* Set linefeed as the EOS character. *)

ibconfig (dvm,15,10);

(* Use 7-bit comparison for EOS character. *)

ibconfig (dvm,14,0);

(* Terminate reads on EOS. *)

ibconfig (dvm,12,1);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-35 Pascal

IBCONFIG (continued) IBCONFIG

Board Function Examples:

1. Set up various configurable parameters in preparation for a board read.

MS-DOS Pascal

var brd0 : integer;

 bdname : nbuf;

bdname := 'gpib0 ';

brd0 := ibfind (bdname);

(* Enable DMA transfers. *)

ibconfig (brd0,IbcDMA,1);

(* Turn off autopolling. *)

ibconfig (brd0,IbcAUTOPOLL,0);

(* Turn on interrupts. *)

ibconfig (brd0,IbcIRQ,1);

Turbo Pascal for Windows

var brd0 : integer;

brd0 := ibfind ('gpib0');

(* Enable DMA transfers. *)

ibconfig (brd0,IbcDMA,1);

(* Turn off autopolling. *)

ibconfig (brd0,IbcAUTOPOLL,0);

(* Turn on interrupts. *)

ibconfig (brd0,IbcIRQ,1);

2. Enable automatic byte swapping of binary integer data.

IBM/MS Pascal/QuickPascal

var array : ibuf;

 header : cbuf;

(* Read in unswapped header data. *)

ibrd (ud,header,10);

(* Arrange for byte swapping. *)

ibconfig (ud,IbcReadAdjust,1);

(* Read 1,000 bytes with automatic swapping. *)

ibrdi (ud,array,1000);

(* Disable swapping for subsequent reads. *)

ibconfig (ud,IbcReadAdjust,0);

NI-488 Function Descriptions Chapter 3

Pascal 3-36 © National Instruments Corp.

IBCONFIG (continued) IBCONFIG

Turbo Pascal/Turbo Pascal for Windows

var array : array[1..500] of integer;

 header : array[1..10] of char;

(* Read in unswapped header data. *)

ibrd (ud,header,10);

(* Arrange for byte swapping. *)

ibconfig (ud,IbcReadAdjust,1);

(* Read 1,000 bytes with automatic swapping. *)

ibrd (ud,array,1000);

(* Disable swapping for subsequent reads. *)

ibconfig (ud,IbcReadAdjust,0);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-37 Pascal

IBDEV IBDEV

Purpose: Open and initialize an unused device when the device name is
unknown.

Format: ud = ibdev (bdindex,pad,sad,tmo,eot,eos)

bdindex is an index from 0 to [(number of boards) - 1] of the access board
with which the device descriptor must be associated. The arguments pad ,
sad , tmo , eot , and eos dynamically set the software configuration for the
NI-488 I/O functions. These arguments configure the primary address,
secondary address, I/O timeout, asserting EOI on last byte of data sourced,
and the End-Of-String mode and byte, respectively. (Refer to IBPAD ,
IBSAD , IBTMO , IBEOT, and IBEOS for more information on each argument.)
The device descriptor is returned in the variable ud .

The ibdev command selects an unopened device, opens it, and initializes it.
You can use this function in place of ibfind .

ibdev returns a device descriptor of the first unopened user-configurable
device that it finds. For this reason, it is very important to use ibdev only
after all of your ibfind calls have been made. This is the only way to
ensure that ibdev does not use a device that you plan to use via an ibfind
call. The ibdev function performs the equivalent of the ibonl function to
open the device.

Note: The device descriptor of the NI-488.2 driver can remain open across
invocations of an application, so be sure to return the device
descriptor to the pool of available devices by calling ibonl with
v = 0 when you are finished using the device. If you do not, that
device will not be available for the next ibdev call.

If the ibdev call fails, a negative number is returned in place of the device
descriptor. There are two distinct errors that can occur with the ibdev call:

• If no device is available or the specified board index refers to a non-
existent board, ibdev returns the EDVR or ENEB error.

• If one of the last five parameters is an illegal value, ibdev returns with
a good board descriptor and the EARG error.

NI-488 Function Descriptions Chapter 3

Pascal 3-38 © National Instruments Corp.

IBDEV (continued) IBDEV

Board/Device Function Example:

ibdev opens an available device and assigns it to access gpib0
(board = 0) with a primary address of 6 (pad = 6), a secondary address
of hex 67 (sad = 16#67 or $67), a timeout of 10 msec (tmo = 7), the
END message enabled (eot = 1) and the EOS mode disabled
(eos = 0).

IBM/MS Pascal

(* Get a device descriptor associated with *)

(* board 0. *)

ud := ibdev (0,6,16#67,T10s,1,0);

if ud < 0 then

begin

(* Handle GPIB error here. *)

if iberr = EDVR then

begin

(* Bd is not correct or no devices are *)

(* available. *)

end

else

if iberr = EARG then

begin

(* The call succeeded, but at least *)

(* one of pad, sad, tmo, eos, or eot is *)

(* incorrect. *)

end;

end;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-39 Pascal

IBDEV (continued) IBDEV

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

(* Get a device descriptor associated with *)

(* board 0. *)

ud := ibdev (0,6,$67,T10s,1,0);

if ud < 0 then

begin

(* Handle GPIB error here. *)

if iberr = EDVR then

begin

(* Bd is not correct or no devices are *)

(* available. *)

end

else

if iberr = EARG then

begin

(* The call succeeded, but at least *)

(* one of pad, sad, tmo, eos, or eot is *)

(* incorrect. *)

end;

end;

NI-488 Function Descriptions Chapter 3

Pascal 3-40 © National Instruments Corp.

IBDMA IBDMA

Purpose: Enable or disable DMA.

Format: ibdma (ud,v)

ud represents an interface board. If v is non-zero, DMA transfers between
the GPIB board and memory are used for read and write operations. If v is
zero (0), programmed I/O is used.

If you enabled DMA at configuration time, this function can be used to
switch between programmed I/O and the selected DMA channel. If you
disabled DMA at configuration time or if your computer does not have DMA
capability, calling this function with v equal to a non-zero value results in an
ECAP error.

The assignment made by this function remains in effect until either ibdma is
called again, the ibonl or ibfind function is called, or the system is
restarted.

When ibdma is called and an error does not occur, the previous value of v is
stored in iberr .

Board Function Examples:

1. Enable DMA transfers using the previously configured channel.

var v : integer;

v := 1; (* Any non-zero value will do. *)

ibdma (brd0,v);

2. Disable DMAs and use programmed I/O exclusively.

var v : integer;

v := 0;

ibdma (brd0,v);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-41 Pascal

IBEOS IBEOS

Purpose: Change or disable End-Of-String termination mode.

Format: ibeos (ud,v)

ud represents a device or an interface board. v specifies the EOS character
and the data transfer termination method according to Table 3-5. ibeos is
needed only to alter the value from its configuration setting.

The assignment made by this function remains in effect until either ibeos is
called again, the ibonl or ibfind function is called, or the system is
restarted.

When ibeos is called and an error does not occur, the previous value of v is
stored in iberr .

Table 3-5 Data Transfer Termination Method

Value of v

Method High Byte Low Byte

A. Terminate read when EOS is
detected. 00000100 EOS

B. Set EOI with EOS on write
function. 00001000 EOS

C. Compare all 8 bits of EOS byte
rather than low 7 bits
(all read and write functions). 00010000 EOS

Methods A and C determine how read operations terminate. If Method A
alone is chosen, reads terminate when the low seven bits of the byte that is
read match the low seven bits of the EOS character. If Methods A and C are
chosen, a full 8-bit comparison is used.

Methods B and C together determine when write operations send the END
message. If Method B alone is chosen, the END message is sent
automatically with the EOS byte when the low seven bits of that byte match
the low seven bits of the EOS character. If Methods B and C are chosen, a
full 8-bit comparison is used.

NI-488 Function Descriptions Chapter 3

Pascal 3-42 © National Instruments Corp.

IBEOS (continued) IBEOS

Note: Defining an EOS byte for a device or board does not cause the driver
to automatically send that byte when performing writes. Your
application program must include the EOS byte in the data string it
defines.

Device IBEOS Function

If ud is a device, the options coded in v are used for all device reads and
writes in which that device is specified.

Board IBEOS Function

If ud is a board, the options coded in v become associated with all board
reads and writes.

Device Function Example:

Send END when the linefeed character (hex 0A) is written to the device
dvm .

var dvm,v : integer;

 wrt : cbuf;

v := XEOS + LF; (* EOS information *)

(* for IBEOS *)

ibeos (dvm,v);

wrt [1] := '1'; (* Data bytes to be *)

wrt [2] := '2'; (* written *)

wrt [3] := '3';

wrt [4] := chr (LF); (* The EOS character *)

(* is the last byte. *)

ibwrt (dvm,wrt,4);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-43 Pascal

IBEOS (continued) IBEOS

Board Function Examples:

1. Program the interface board brd0 to terminate a read on detection of the
linefeed character (hex 0A) that is expected to be received within 200
bytes.

var v : integer;

 rd : cbuf;

v := REOS + LF; (* The END bit in *)

ibeos (brd0,v); (* ibsta is set if *)

ibrd (brd0,rd,200); (* the read *)

(* terminated on *)

(* the EOS *)

(* character. *)

(* Assume board has *)

(* been addressed *)

(* to do board *)

(* read. *)

2. Program the interface board brd0 to terminate read operations on the 8-
bit value hex 82 rather than the 7-bit character hex 0A. Change v used in
Example 1.

IBM/MS Pascal

var v : integer;

 rd : cbuf;

v := BIN + REOS + 16#82;

ibeos (brd0,v);

ibrd (brd0,rd,200);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

 rd : cbuf;

v := BIN + REOS + $82;

ibeos (brd0,v);

ibrd (brd0,rd,200);

NI-488 Function Descriptions Chapter 3

Pascal 3-44 © National Instruments Corp.

IBEOS (continued) IBEOS

3. Disable read termination on receiving the EOS character for operations
involving the interface board brd0 . Change v used in Example 1.

var v : integer;

 rd : cbuf;

v := 0; (* No EOS modes enabled. *)

ibeos (brd0,v);

ibrd (brd0,rd,200);

4. Send END when the linefeed character is written for operations involving
the interface board brd0 .

var v : integer;

 wrt : cbuf;

v := XEOS + LF; (* EOS information for *)

(* IBEOS. *)

ibeos (brd,v);

wrt[1] := '1'; (* Data bytes to be *)

wrt[2] := '2'; (* written. *)

wrt[3] := '3';

wrt[4] := chr(LF); (* EOS character is the *)

(* last byte. *)

ibwrt (brd0,wrt,4);

5. Send END with linefeeds and terminate reads on linefeeds for operations
involving the interface board brd0 . Change v used in Example 4.

var v : integer;

 wrt : cbuf;

v := REOS + XEOS + LF; (* EOS information *)

(* for IBEOS. *)

ibeos (brd0,v);

wrt[1] := '1'; (* Data bytes to be *)

wrt[2] := '2'; (* written. *)

wrt[3] := '3';

wrt[4] := chr(LF); (* EOS character is *)

(* the last byte. *)

ibwrt (brd0,wrt,4);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-45 Pascal

IBEOT IBEOT

Purpose: Enable/disable END message on write operations.

Format: ibeot (ud,v)

ud represents a device or an interface board. If v is non-zero, the END
message is sent automatically with the last byte of each write operation. If v
is zero (0), END is not automatically sent.

The END message is the assertion of the GPIB EOI signal. If the automatic
END termination message is enabled (v is non-zero), it is not necessary to
use the EOS character to identify the last byte of a data string. Sending END
with the EOS character is controlled by the ibeos function and is not
affected by ibeot .

ibeot is used to send variable length data or to alter the value from the
default configuration setting. (In the default configuration, this feature is
enabled.) The assignment made by this function remains in effect until either
ibeot is called again, the ibonl or ibfind function is called, or the
system is restarted.

When ibeot is called and an error does not occur, iberr is returned with a
one (1) if automatic END message was previously enabled, or with a zero (0)
if it was previously disabled.

Device IBEOT Function

If ud is a device, the END termination message method that is selected is
used on all device I/O write operations to that device.

Board IBEOT Function

If ud is an interface board, the END termination message method that is
selected is used on all board I/O write operations, regardless of the device.

NI-488 Function Descriptions Chapter 3

Pascal 3-46 © National Instruments Corp.

IBEOT (continued) IBEOT

Device Function Example:

Send the END message with the last byte of all subsequent writes to the
device plotter .

var wrt : cbuf;

ibeot (plotter,1);

(* It is assumed that wrt *)

(* contains the data to be *)

(* written to the GPIB. *)

ibwrt (plotter,wrt,3);

Board Function Examples:

1. Stop sending END with the last byte for calls directed to the interface
board brd0 .

ibeot (brd0,0);

2. Send the END message with the last byte of all subsequent write
operations directed to the interface board brd0 .

var wrt : cbuf;

ibeot (brd0,1);

(* It is assumed that *)

(* wrt contains the data *)

(* to be written and *)

(* that all Listeners *)

ibwrt (brd0,wrt,3); (* have been addressed. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-47 Pascal

IBEVENT IBEVENT

Purpose: Return the next event.

Format: ibevent (ud,event)

ud specifies an interface board. event stores the event code.

The ibevent function is used to determine which GPIB event (Device
Clear or Device Trigger) occurred. It is normally called when the EVENT bit
has been set in ibsta . The variable event is filled in with one of the
following values:

0 = No events are in the event queue.

1 = A Device Clear message was received.

2 = A Device Trigger message was received.

Upon returning from this function, ibcnt contains the number of events that
remain in the event queue.

This function is typically used in talker/listener (T/L) applications, not
controller applications. Often a T/L application must determine the order in
which Device Clear and Device Trigger messages are received by the
interface board. The usual DCAS and DTAS bits of ibsta are not sufficient
in determining the order of the events. When the event queue is enabled (by
using the ibconfig function to enable the EVENT bit of ibsta), any time
the driver receives a DCAS or DTAS message, the event is stored in the event
queue of the board and the EVENT bit is set in ibsta . If any I/O is in
progress, it is stopped with the error EABO. The application program can
then call ibevent to determine which event or events occurred and process
those events. The event queue must be empty (the EVENT must not be in
ibsta) before any more I/O can be started.

If the event queue fills up, a call to ibevent returns the ETAB error along
with the oldest event in the queue.

NI-488 Function Descriptions Chapter 3

Pascal 3-48 © National Instruments Corp.

IBEVENT (continued) IBEVENT

Board Function Example:

Determine which GPIB event occurred

var mask : word;

 event : integer;

mask := TIMO or EVENT; (* mnemonics defined *)

(* in header files *)

ibwait (brd0,mask);

IF(ibsta and EVENT) <> 0 then ibevent (brd0,event);

(* event contains the event code *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-49 Pascal

IBFIND IBFIND

Purpose: Open device and return the unit descriptor associated with the
given name.

Format: ud := ibfind (udname)

ud is a variable containing the unit descriptor returned by ibfind . The
number referred to throughout this manual as a unit descriptor is returned
here in the variable ud . udname is a string containing a default or
configured device or board name. The name used in the udname argument
must match the default or configured device or board name. udname is of
type nbuf as defined in the MS-DOS Pascal header files. For Turbo Pascal
for Windows udname is of type PChar .

ibfind returns a number that is used in each function to identify the
particular device or board that is used for that function. Calling ibfind is
required to associate a variable name in the application program with a
particular device or board name. Use a variable name close to the actual
name of the device or board to simplify programming effort.

Note: For board calls, the unit descriptor may be substituted with an
integer board index of zero (0) or one (1). This feature allows any
of the NI-488 board functions to be used compatibly with the
NI-488.2 routines described in Chapter 2.

ibfind performs the equivalent of ibonl to open the specified device or
board and to initialize software parameters to their default configuration
settings. The unit descriptor returned in ud is valid until ibonl is used to
place that device or interface board offline.

If the ibfind call fails, a negative number is returned in place of the unit
descriptor. The most probable reason for a failure is that the string
argument passed into ibfind does not exactly match the default or
configured device or board name.

NI-488 Function Descriptions Chapter 3

Pascal 3-50 © National Instruments Corp.

IBFIND (continued) IBFIND

Device Function Example:

Assign the unit descriptor associated with the device DEV4 (Device
number 4) to dvm.

MS-DOS Pascal

var dvm : integer;

 devname : nbuf;

devname := 'DEV4 '; (* Device name *)

(* assigned at *)

(* configuration *)

(* time. *)

dvm := ibfind (devname); (* If dvm < 0, an *)

if dvm < 0 then error; (* error occurred. *)

Turbo Pascal for Windows

var dvm : integer;

 devname : PChar;

devname := 'DEV4'; (* Device name *)

(* assigned at *)

(* configuration *)

(* time. *)

dvm := ibfind (devname); (* If dvm < 0, an *)

if dvm < 0 then error; (* error occurred. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-51 Pascal

IBFIND (continued) IBFIND

Board Function Example:

Assign the unit descriptor associated with the interface board GPIB0 to
the variable brd0 .

MS-DOS Pascal

var brd0 : integer;

 bdname : nbuf;

bdname := 'GPIB0 '; (* Factory default *)

(* board name. *)

brd0 := ibfind (bdname);

if brd0 < 0 then error; (* If brd0 < 0, an *)

(* error occurred. *)

Turbo Pascal for Windows

var brd0 : integer;

 bdname : PChar;

bdname := 'GPIB0'; (* Factory default *)

(* board name. *)

brd0 := ibfind (bdname);

if brd0 < 0 then error; (* If brd0 < 0, an *)

(* error occurred. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-52 © National Instruments Corp.

IBGTS IBGTS

Purpose: Go from Active Controller to Standby.

Format: ibgts (ud,v)

ud represents an interface board. If v is non-zero, the GPIB board shadow
handshakes the data transfer as an Acceptor, and when the END message is
detected, the GPIB board enters a Not Ready For Data (NRFD) handshake
holdoff state on the GPIB. If v is zero (0), no shadow handshake or holdoff
occurs.

The ibgts function makes the GPIB board go to the Controller Standby
state and unasserts the ATN signal if the board is already the Active
Controller. ibgts permits the GPIB Controller board to go to standby,
allowing transfers between GPIB devices without intervention.

If the shadow handshake option is activated, the GPIB board participates in
data handshake as an Acceptor without actually reading the data. The board
monitors the transfers for the END message and holds off subsequent
transfers. In this way, the GPIB board can take control synchronously on a
subsequent operation such as ibcmd or ibrpp .

Before performing an ibgts with a shadow handshake, call the ibeos
function to establish the proper EOS character or to disable EOS detection.

The ECIC error results if the GPIB board is not CIC.

In the example that follows, GPIB commands and addresses are coded as
printable ASCII characters.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-53 Pascal

IBGTS (continued) IBGTS

Board Function Example:

Turn the ATN line off with the ibgts function after unaddressing all
Listeners with the Unlisten (UNL or ASCII ?) command, addressing a
Talker at hex 46 (ASCII F) and addressing a Listener at hex 31
(ASCII 1) to allow the Talker to send data messages.

Pascal

var cmd : cbuf;

cmd[1] := chr (UNL); (* Unlisten *)

cmd[2] := 'F'; (* talk address *)

cmd[3] := '1'; (* listen address *)

ibcmd (brd0,cmd,3);

ibgts (brd0,1); (* Listen in *)

(* continuous mode. *)

Turbo Pascal for Windows

var cmd : PChar;

cmd := '?F1';

ibcmd (brd0,cmd^,3); (* Unlisten *)

(* talk address *)

(* listen address. *)

ibgts (brd0,1); (* Listen in *)

(* continuous mode. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-54 © National Instruments Corp.

IBIST IBIST

Purpose: Set or clear individual status bit for Parallel Polls.

Format: ibist (ud,v)

ud represents an interface board. If v is non-zero, the individual status bit
is set. If v is zero (0), the bit is cleared.

The ibist function is used when the GPIB board participates in a parallel
poll that is conducted by another device that is the Active Controller. The
Active Controller conducts a parallel poll by asserting the EOI signal to
send the Identify (IDY) message. While this message is active, each device
which has been configured to participate in the poll responds by asserting a
predetermined GPIB data line either true or false, depending on the value of
its local ist bit. The GPIB board, for example, can be assigned to drive the
DIO3 data line true if ist = 1 and false if ist = 0; conversely, it can be
assigned to drive DIO3 true if ist = 0 and false if ist = 1.

The relationship between the value of ist, the line that is driven, and the
sense at which the line is driven is determined by the Parallel Poll Enable
(PPE) message in effect for each device. The GPIB board is capable of
receiving this message either locally, via the ibppc function, or remotely,
via a command from the Active Controller. Once the PPE message is
executed, the ibist function changes the sense at which the line is driven
during the parallel poll, and in this fashion the GPIB board can convey a
one-bit, device-dependent message to the Controller.

When ibist is called and an error does not occur, the previous value of ist
is stored in iberr .

Board Function Examples:

1. Set the individual status bit.

var v : integer;

v := 1; (* Any non-zero value will do. *)

ibist (brd0,v);

2. Clear the individual status bit.

var v : integer;

v := 0;

ibist (brd0,v);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-55 Pascal

IBLINES IBLINES

Purpose: Return the status of the GPIB control lines.

Format: iblines (ud,clines)

ud represents a board descriptor. A valid mask is returned along with the
GPIB control line state information in clines . The low-order byte (bits 0
through 7) of clines contains a mask indicating the capability of the
GPIB interface board to sense the status of each GPIB control line. The
upper byte (bits 8 through 15) contains the GPIB control line state
information. The pattern is the same for both the low-order and upper byte,
and is as follows:

7 6 5 4 3 2 1 0

EOI ATN SRQ REN IFC NRFD NDAC DAV

To determine if a GPIB control line is asserted, first check the appropriate
bit in the lower byte to determine if the line can be monitored. If it can be
monitored (indicated by a 1 in the appropriate bit position), then check the
corresponding bit in the upper byte. If the bit in the upper byte is set (1),
the corresponding control line is asserted. If the bit is clear (0), the control
line is unasserted.

NI-488 Function Descriptions Chapter 3

Pascal 3-56 © National Instruments Corp.

IBLINES (continued) IBLINES

Device/Board Function Example:

Test for Remote Enable (REN).

IBM/MS Pascal

var brd0 : integer;

 bdname : cbuf;

 clines : integer;

bdname := 'GPIB0 ';

brd0 := ibfind (bdname);

if brd0 < 0 then error;

iblines (0,clines);

if (ibsta and ERR) <> 0 then error;

if (clines and 16#10) <> 16#10 then

begin

writeln ('GPIB board cannot monitor REN!');

return;

end;

if (clines and 16#1000) = 16#1000 then

begin

writeln ('REN is asserted.');

return;

end;

writeln ('REN is not asserted.');

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-57 Pascal

IBLINES (continued) IBLINES

QuickPascal/Turbo Pascal

var brd0 : integer;

 bdname : cbuf;

 clines : integer;

bdname := 'GPIB0 ';

brd0 := ibfind (bdname);

if brd0 < 0 then error;

iblines (0,clines);

if (ibsta and ERR) <> 0 then error;

if (clines and $10) <> $10 then

begin

writeln ('GPIB board cannot monitor REN!');

halt;

end;

if (clines and $1000) = $1000 then

begin

writeln ('REN is asserted.');

halt;

end;

writeln ('REN is not asserted.');

(* Exit to DOS *)

Turbo Pascal for Windows

var brd0 : integer;

 bdname : PChar;

 clines : integer;

bdname := 'GPIB0';

brd0 := ibfind (bdname);

if brd0 < 0 then error;

iblines (0,clines);

if (ibsta and ERR) <> 0 then error;

if (clines and $10) <> $10 then

begin

writeln ('GPIB board cannot monitor REN!');

halt;

end;

if (clines and $1000) = $1000 then

begin

writeln ('REN is asserted.');

halt;

end;

writeln ('REN is not asserted.');

NI-488 Function Descriptions Chapter 3

Pascal 3-58 © National Instruments Corp.

IBLN IBLN

Purpose: Check for the presence of a device on the bus.

Format: ibln (ud,pad,sad,listen)

ud represents a board or device descriptor. pad (legal values are 0 to 30) is
the primary GPIB address of the device. The function ibln returns a non-
zero value in the variable listen if a Listener is at the specified GPIB
address. sad (legal values are hex 60 to 7e, NO_SAD , or ALL_SAD) is the
secondary GPIB address of the device. The two special constants that can
be used in place of a secondary address are defined in the declaration files
as follows:

NO_SAD = 0

ALL_SAD = -1

You can test for a Listener using only GPIB primary addressing by making
sad = NO_SAD , or you can test all secondary addresses associated with a
single primary address (a total of 31 device addresses) when you set sad =
ALL_SAD . In this case, ibln sends the primary address and all secondary
addresses before waiting for NDAC to settle. If the listen flag is true,
you must search only the 31 secondary addresses associated with a single
primary address to locate the Listener. If ud is a device, ibln tests for a
Listener on the board associated with that device.

Device Function Example:

Test for a GPIB Listener at pad 2 and sad hex 60:

IBM/MS Pascal

var ud,listen : integer;

 bdname : nbuf;

bdname := 'dev1 ';

ud := ibfind (bdname);

ibln (ud,2,16#60,listen);

if (listen = 0) then

begin

(* Error: No device is at the address. *)

end;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-59 Pascal

IBLN (continued) IBLN

QuickPascal/Turbo Pascal

var ud,listen : integer;

 bdname : nbuf;

bdname := 'dev1 ';

ud := ibfind (bdname);

ibln (ud,2,$60,listen);

if (listen = 0) then

begin

(* Error: No device is at the address. *)

end;

Turbo Pascal for Windows

var ud,listen : integer;

ud := ibfind ('dev1');

ibln (ud,2,$60,listen);

if (listen = 0) then

begin

(* Error: No device is at the address. *)

end;

Board Function Example:

Test for a GPIB Listener at pad 2 and sad hex 60:

IBM/MS Pascal

var ud,listen : integer;

 bdname : nbuf;

bdname := 'gpib0 ';

ud := ibfind (bdname);

ibln (ud,2,16#60,listen);

if (listen = 0) then

begin

(* Error: No device is at the address. *)

end;

NI-488 Function Descriptions Chapter 3

Pascal 3-60 © National Instruments Corp.

IBLN (continued) IBLN

QuickPascal/Turbo Pascal

var ud,listen : integer;

 bdname : nbuf;

bdname := 'gpib0 ';

ud := ibfind (bdname);

ibln (ud,2,$60,listen);

if (listen = 0) then

begin

(* Error: No device is at the address. *)

end;

Turbo Pascal for Windows

var ud,listen : integer;

ud := ibfind ('gpib0');

ibln (ud,2,$60,listen);

if (listen = 0) then

begin

(* Error: No device is at the address. *)

end;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-61 Pascal

IBLOC IBLOC

Purpose: Go To Local state.

Format: ibloc (ud)

ud represents a device or an interface board.

Unless the Remote Enable line has been unasserted with the ibsre
function, all device functions automatically place the specified device in
remote program mode. ibloc is used to move devices temporarily from a
remote program mode to a local mode until the next device function is
executed on that device.

Device IBLOC Function

If ud is a device, ibloc places the device indicated in local mode by
calling ibcmd to send the following command sequence:

1. Talk address of the access board

2. Secondary address of the access board, if necessary

3. Unlisten (UNL)

4. Listen address of the device

5. Secondary address of the device, if necessary

6. Go To Local (GTL)

Other command bytes may be sent as necessary.

Board IBLOC Function

If ud is an interface board, the board is placed in a local state by sending
the local message Return To Local (RTL), unless it is locked in remote
mode. The LOK bit of the status word indicates whether the board is in a
lockout state. The ibloc function is used to simulate a front panel RTL
switch if the computer is used as an instrument.

NI-488 Function Descriptions Chapter 3

Pascal 3-62 © National Instruments Corp.

IBLOC (continued) IBLOC

Device Function Example:

Return the device dvm to local state.

ibloc (dvm);

Board Function Example:

Return the interface board brd0 to local state.

ibloc (brd0);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-63 Pascal

IBONL IBONL

Purpose: Place the device or interface board online or offline.

Format: ibonl (ud,v)

ud represents a device or an interface board. If v is non-zero, the device or
interface board is enabled for operation (online). If v is zero (0), it is reset
(offline).

After a device or an interface board is taken offline, the handle (ud) is no
longer valid. Before accessing the board or device again, you must re-
execute an ibfind or ibdev call to open the board or device.

Calling ibonl with v non-zero restores the default configuration settings
of a device or interface board.

Device Function Examples:

1. Disable the device plotter .

var v : integer;

v := 0;

ibonl (plotter,v);

2. Enable the device plotter after taking it offline temporarily.

MS-DOS Pascal

var plotter : integer;

 bdname : nbuf;

bdname := 'plotter'; (* Device name assigned *)

(* at configuration *)

(* time. *)

plotter := ibfind (bdname);

(* ibonl with v non-zero is automatically *)

(* performed as part of ibfind. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-64 © National Instruments Corp.

IBONL (continued) IBONL

Turbo Pascal for Windows

var plotter : integer;

 bdname : PChar;

bdname := 'plotter'; (* Device name assigned *)

(* at configuration *)

(* time. *)

plotter := ibfind (bdname);

(* ibonl with v non-zero is automatically *)

(* performed as part of ibfind. *)

3. Reset the configuration settings of the device plotter to their default
settings.

var v : integer;

v := 1;

ibonl (plotter,v);

Board Function Examples:

1. Disable the interface board brd0 .

var v : integer;

v := 0;

ibonl (brd0,v);

2. Enable the interface board brd0 after taking it offline temporarily.

MS-DOS Pascal

var brd0 : integer;

 bdname : nbuf;

bdname := 'GPIB0 '; (* Board name assigned *)

(* at configuration *)

(* time. *)

brd0 := ibfind (bdname);

(* ibonl with v non-zero is automatically *)

(* performed as part of ibfind. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-65 Pascal

IBONL (continued) IBONL

Turbo Pascal for Windows

var brd0 : integer;

 bdname : PChar;

bdname := 'GPIB0'; (* Board name assigned *)

(* at configuration *)

(* time. *)

brd0 := ibfind (bdname);

(* ibonl with v non-zero is automatically *)

(* performed as part of ibfind. *)

3. Reset the configuration settings of the interface board brd0 to their
default settings.

var v : integer;

v := 1;

ibonl (brd0,v);

NI-488 Function Descriptions Chapter 3

Pascal 3-66 © National Instruments Corp.

IBPAD IBPAD

Purpose: Change Primary Address.

Format: ibpad (ud,v)

ud represents a device or an interface board. v is the primary GPIB
address.

ibpad is needed only to alter the configuration setting. The assignment
made by this function remains in effect until ibpad is called again, the
ibonl or ibfind function is called, or the system is restarted.

There are 31 valid GPIB addresses, ranging from 0 to hex 1E–that is, the
lower five bits of v are significant and they must not all be ones. An EARG
error results if the value of v is not in this range.

When ibpad is called and an error does not occur, the previous primary
address is stored in iberr .

Device IBPAD Function

If ud is a device, ibpad determines the talk and listen addresses based on
the value of v. A device listen address is formed by adding hex 20 to the
primary address. The talk address is formed by adding hex 40 to the
primary address. A primary address of hex 10 corresponds to a listen
address of hex 30 and a talk address of hex 50. The actual GPIB address of
any device is set within that device, either with hardware switches or a
software program. Refer to the device documentation for instructions.

Board IBPAD Function

If ud is a board, ibpad programs the board to respond to the address
indicated by v.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-67 Pascal

IBPAD (continued) IBPAD

Device Function Example:

Change the primary GPIB address of plotter to hex A.

IBM/MS Pascal

var v : integer;

v := 16#A; (* Lower 5 bits of GPIB address. *)

ibpad (plotter,v);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $A; (* Lower 5 bits of GPIB address. *)

ibpad (plotter,v);

Board Function Example:

Change the primary GPIB address of the board brd0 to hex 7.

IBM/MS Pascal

var v : integer;

v := 16#7; (* Lower 5 bits of GPIB address. *)

ibpad (brd0,v);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $7; (* Lower 5 bits of GPIB address. *)

ibpad (brd0,v);

NI-488 Function Descriptions Chapter 3

Pascal 3-68 © National Instruments Corp.

IBPCT IBPCT

Purpose: Pass control.

Format: ibpct (ud)

ud represents a device.

The ibpct function passes CIC authority to the specified device from the
access board assigned to that device. The board automatically goes to
Controller Idle State (CIDS). The function assumes that the device has
Controller capability.

ibpct calls the board ibcmd function to send the following commands:

• Unlisten (UNL)

• Listen address of the access board

• Talk address of the device

• Secondary address of the device, if applicable

• Take Control (TCT)

Other command bytes may be sent as necessary.

Device Function Example:

Pass control to the device ibmxt .

ibpct (ibmxt);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-69 Pascal

IBPPC IBPPC

Purpose: Parallel Poll Configure.

Format: ibppc (ud,v)

ud represents a device or an interface board. v must be a valid parallel poll
enable/disable command or zero (0).

ibppc returns the previous value of v in iberr if an error does not occur.

Device IBPPC Function

If ud is a device, the ibppc function enables or disables the device from
responding to parallel polls.

ibppc calls the board ibcmd function to send the following commands:

• Talk address of the access board

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device, if applicable

• Parallel Poll Configure (PPC)

• Parallel Poll Enable (PPE) or Disable (PPD)

Other command bytes are sent if necessary.

Each of the 16 PPE messages specifies the GPIB data line (DIO1 through
DIO8) and sense (one or zero) that the device must use when responding to
a parallel poll. The assigned message is interpreted by the device along
with the current value of the individual status (ist) bit to determine if the
selected line is driven true or false. For example, if the PPE = hex 64, DIO5
is driven true if ist = 0 and false if ist = 1, and if PPE = hex 68, DIO1 is
driven true if ist = 1 and false if ist = 0. Any PPD message or zero value of
v cancels the PPE message in effect. You must know which PPE and PPD
messages are sent and determine what the responses indicate.

NI-488 Function Descriptions Chapter 3

Pascal 3-70 © National Instruments Corp.

IBPPC (continued) IBPPC

Board IBPPC Function

If ud is an interface board, the board responds to a parallel poll by setting
its Local Poll Enable (LPE) message to v.

Device Function Examples:

1. Configure the device dvm to respond to a parallel poll by sending data
line DIO5 true (ist = 0).

IBM/MS Pascal

var v : integer;

v := 16#64;

ibppc (dvm,v);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $64;

ibppc (dvm,v);

2. Configure the device dvm to respond to a parallel poll by sending data
line DIO1 true (ist = 1).

IBM/MS Pascal

var v : integer;

v := 16#68;

ibppc (dvm,v);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $68;

ibppc (dvm,v);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-71 Pascal

IBPPC (continued) IBPPC

3. Cancel the parallel poll configuration of the device dvm.

IBM/MS Pascal

var v : integer;

v := 16#70;

ibppc (dvm,v);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $70;

ibppc (dvm,v);

Board Function Example:

Configure the interface board brd0 to respond to a parallel poll by
sending data line DIO5 true (ist = 0).

IBM/MS Pascal

var v : integer;

v := 16#64;

ibppc (brd0,v);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $64;

ibppc (brd0,v);

NI-488 Function Descriptions Chapter 3

Pascal 3-72 © National Instruments Corp.

IBRD IBRD

Purpose: Read data from a device to a string.

Format: ibrd (ud,rd,cnt)

ud represents a device or an interface board. The pre-allocated array rd
identifies the storage buffer for data. cnt specifies the number of bytes to be read
from the GPIB. cnt is of type integer4 in Microsoft Pascal and of type
longINT in QuickPascal, Turbo Pascal, and Turbo Pascal for Windows. cnt is
of type integer in IBM Pascal.

ibrd terminates when one of the following events occurs:

• The allocated buffer becomes full.

• An error is detected.

• The time limit is exceeded.

• An END message is detected.

• An EOS character is detected (if this option is enabled).

The transfer count may be less than expected if any of these terminating events,
except for the first event, occurs.

When ibrd completes, ibsta holds the latest device status, ibcntl is the
number of bytes read, ibcnt is the 16-bit representation of the number of bytes
read, and, if the ERR bit in ibsta is set, iberr is the first error detected.

Device IBRD Function

If ud is a device, the device is addressed to talk and the access board is
addressed to listen. Then the data is read from the device.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-73 Pascal

IBRD (continued) IBRD

Board IBRD Function

If ud represents an interface board, the ibrd function reads from a GPIB
device that is assumed to already be properly addressed by the CIC. In
addition to the termination conditions previously listed, a board ibrd
function also terminates if a Device Clear (DCL) or Selected Device Clear
(SDC) command is received from the CIC.

If the access board is Active Controller, the board is placed in Standby
Controller state with ATN off even after the operation completes. If the
access board is not Active Controller, ibrd commences immediately.

If the board is CIC, the ibcmd function must be used prior to ibrd to
address a device to talk and the board to listen. An EADR error results if
the board is CIC but has not been addressed to listen with the ibcmd
function. An EABO error results if, for any reason, ibrd does not
complete within the time limit.

Device Function Example:

Read 100 bytes of data from a device.

Pascal

var ud : integer;

 rd : cbuf;

ud := ibdev (0,10,0,15,1,0);

ibrd (ud,rd,100);

Turbo Pascal for Windows

var ud : integer;

 rd : array[0..99] of char;

ud := ibdev (0,10,0,15,1,0);

ibrd (ud,rd,100);

NI-488 Function Descriptions Chapter 3

Pascal 3-74 © National Instruments Corp.

IBRD (continued) IBRD

Board Function Examples:

1. Read 100 bytes of data from a device at talk address hex 4C (ASCII L)
and the listen address of the board is hex 20 or ASCII space.

IBM/MS Pascal

var cmd : cbuf;

cmd[1] := chr(UNL); (* Unlisten. *)

cmd[2] := chr(16#4C); (* Device talk address. *)

cmd[3] := chr(16#20); (* GPIB board listen *)

(* address. *)

ibcmd (brd0,cmd,3);

ibrd (brd0,rd,56); (* Check ibsta to see on *)

(* what the read terminated:*)

(* CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd *)

(* Unaddress the *)

(* Talker and Listener. *)

cmd[1] := chr(UNT);

cmd[2] := chr(UNL);

ibcmd (brd0,cmd,2);

QuickPascal/Turbo Pascal

var cmd : cbuf;

cmd[1] := chr(UNL); (* Unlisten. *)

cmd[2] := chr($4C); (* Device talk address *)

cmd[3] := chr($20); (* GPIB board listen *)

(* address. *)

ibcmd (brd0,cmd,3);

ibrd (brd0,rd,56); (* Check ibsta to see on *)

(* what the read terminated:*)

(* CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd *)

(* Unaddress the *)

(* Talker and Listener. *)

cmd[1] := chr(UNT);

cmd[2] := chr(UNL);

ibcmd (brd0,cmd,2);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-75 Pascal

IBRD (continued) IBRD

Turbo Pascal for Windows

var rd : array[0..55] of char;

cmd : PChar;

(* Unlisten.Device talk address *)

(* GPIB board listen address *)

cmd := '?'#4C#20;

ibcmd (brd0,cmd^,3);

ibrd (brd0,rd,56);

(* Check ibsta to see on what the read terminated: *)

(* CMPL, END, TIMO, or ERR. Data is stored in rd *)

(* Unaddress the Talker and Listener. *)

cmd := '_?';

ibcmd (brd0,cmd^,2);

2. To terminate the read on an EOS character, see the IBEOS Board
Function Example.

3. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

NI-488 Function Descriptions Chapter 3

Pascal 3-76 © National Instruments Corp.

IBRDA IBRDA

Purpose: Read data asynchronously to string.

Format: ibrda (ud,rd,cnt)

ud represents a device or an interface board. The pre-allocated array rd
identifies the storage buffer for instruction bytes that are read from the
GPIB. cnt specifies the number of bytes to be read from the GPIB. cnt
is of type integer4 in Microsoft Pascal and of type longINT in
QuickPascal, Turbo Pascal, and Turbo Pascal for Windows. cnt is of type
integer in IBM Pascal.

ibrda is used in place of ibrd when the application program must
perform other functions while processing the GPIB I/O operation. ibrda
returns immediately after starting the I/O operation.

The three asynchronous I/O calls (ibcmda, ibrda , and ibwrta) are
designed to allow an application to perform other functions (non-GPIB
functions) while processing the I/O. Once the asynchronous I/O call has
been initiated, further GPIB calls involving the device or access board are
not allowed until the I/O has completed and the GPIB driver and the
application have been resynchronized. Resynchronization can be
accomplished by using one of the following three functions:

Note: Resynchronization is only successful if the ibsta returned
contains CMPL.

• ibwait (mask
contains CMPL) - The driver and application are synchronized.

• ibstop - The asynchronous I/O is canceled, and the driver
and application are synchronized.

• ibonl - The asynchronous I/O is canceled, the interface
has been reset, and the driver and application are
synchronized.

The only other GPIB call that is allowed during asynchronous I/O is the
ibwait function (mask is arbitrary). Any other GPIB call involving the
device or access board returns the EOIP error.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-77 Pascal

IBRDA (continued) IBRDA

Device IBRDA Function

If ud is a device, the device is addressed to talk and the access board is
addressed to listen. Then the data is read from the device. Other command
bytes may be sent as necessary.

Board IBRDA Function

If ud is an interface board, the ibrda function attempts to read from a
GPIB device that is assumed to already be properly addressed.

If the board is CIC, the ibcmd function must be called prior to ibrda to
address the device to talk and the board to listen. Otherwise, the actual CIC
must perform the addressing. An EADR error results if the interface board
is CIC but has not addressed itself to listen with the ibcmd function.

If the board is Active Controller, the board is first placed in Standby
Controller state with ATN off even after the read operation completes. If
the board is not the Active Controller, the read operation commences
immediately.

Device Function Example:

Read 56 bytes of data from the device tape while performing other
processing.

Pascal

var rd : cbuf;

 mask : word;

ibrda (tape,rd,56); (* Perform device read. *)

mask := CMPL or TIMO;

(* Perform other processing here. Then wait *)

(* for I/O completion or a timeout. *)

ibwait (tape,mask);

(* ibsta shows how the read terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-78 © National Instruments Corp.

IBRDA (continued) IBRDA

Turbo Pascal for Windows

var rd : array[0..55] of char;

 mask : word;

(* Read into null-terminated string *)

ibrda (tape,rd,56); (* Perform device read. *)

mask := CMPL or TIMO;

(* Perform other processing here. Then wait *)

(* for I/O completion or a timeout. *)

ibwait (tape,mask);

(* ibsta shows how the read terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

Board Function Examples:

1. Read 56 bytes of data from a device at talk address hex 4C (ASCII L)
and then unaddress it (the GPIB board listen address is hex 20 or ASCII
space).

IBM/MS Pascal

var cmd,rd : cbuf;

 mask : word;

(* Perform addressing in preparation for a *)

(* board read. *)

cmd[1] := chr(16#3F);

cmd[2] := chr(16#20);

cmd[3] := chr(16#4C);

ibcmd (brd0,cmd,3);

ibrda (brd0,rd,56);

eventtst; (* Unspecified routine to test *)

(* and process the high priority *)

(* event. *)

v := TIMO + CMPL;

ibwait (brd0,v); (* Wait for I/O to complete. *)

(* ibsta shows how the read terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd. *)

(* Unaddress the Talker and Listener. *)

cmd[1] := chr(16#5F);

cmd[2] := chr(16#3F);

ibcmd (brd0,cmd,2);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-79 Pascal

IBRDA (continued) IBRDA

QuickPascal/Turbo Pascal

var cmd,rd : cbuf;

 mask : word;

(* Perform addressing in preparation for a *)

(* board read. *)

cmd[1] := chr($3F);

cmd[2] := chr($20);

cmd[3] := chr($4C);

ibcmd (brd0,cmd,3);

ibrda (brd0,rd,56);

eventtst; (* Unspecified routine to test and *)

(* process the high priority event. *)

v := TIMO + CMPL;

ibwait (brd0,v); (* Wait for I/O to complete. *)

(* ibsta shows how the read terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd. *)

(* Unaddress the Talker and Listener. *)

cmd[1] := chr($5F);

cmd[2] := chr($3F);

ibcmd (brd0,cmd,2);

Turbo Pascal for Windows

var cmd : PChar;

 rd : array[0..55] of char;

 mask : word;

(* Perform addressing in preparation for a *)

(* board read. *)

cmd := #3F#20#4C;

ibcmd (brd0,cmd^,3);

(* Read into null-terminated string *)

ibrda (brd0,rd,56);

eventtst; (* Unspecified routine to test and *)

(* process the high priority event. *)

v := TIMO + CMPL;

ibwait (brd0,v); (* Wait for I/O to complete. *)

(* ibsta shows how the read terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd. *)

(* Unaddress the Talker and Listener. *)

cmd := #5F#3F;

ibcmd (brd0,cmd^,2);

NI-488 Function Descriptions Chapter 3

Pascal 3-80 © National Instruments Corp.

IBRDA (continued) IBRDA

2. To terminate the read on an EOS character, see the IBEOS Board
Function Example .

3. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-81 Pascal

IBRDF IBRDF

Purpose: Read data from GPIB into file.

Format: ibrdf (ud,flname)

ud represents a device or an interface board. flname is the filename
under which the data is stored. flname can be up to 50 characters long,
including a drive and path designation. For MS-DOS Pascal flname is of
type flbuf as defined in the header files DECL .PAS , QPDECL .PAS , and
TPDECL .PAS . For Turbo Pascal for Windows, flname is of type PChar .

ibrdf automatically opens the file flname as a binary file (not as a
character file). If the file does not exist, ibrdf creates it. On exit, ibrdf
closes the file. An EFSO error results if it is not possible to open, create,
seek, write, or close the specified file.

The ibrdf function terminates on any of the following events:

• An error is detected.

• The time limit is exceeded.

• An END message is detected.

• An EOS character is detected (if this option is enabled).

• A Device Clear (DCL) or Selected Device Clear (SDC) command is
received from another device which is the CIC.

After termination, ibcntl is the number of instruction bytes read. ibcnt
is the 16-bit representation of the number of bytes read.

When the device ibrdf function returns, ibsta holds the latest device
status, ibcntl is the number of instruction bytes read, ibcnt is the 16-bit
representation of the number of bytes read, and if the ERR bit in ibsta is
set, iberr is the first error detected.

NI-488 Function Descriptions Chapter 3

Pascal 3-82 © National Instruments Corp.

IBRDF (continued) IBRDF

Device IBRDF Function

If ud is a device, the ibrd function performs board functions
automatically. The ibrdf function terminates on similar conditions as
ibrd .

Board IBRDF Function

If ud is an interface board, the board ibrd function reads from a GPIB
device that is assumed to be already properly addressed.

An EADR error results if the board is CIC but has not been addressed to
listen with the ibcmd function. An EABO error results if, for any reason,
the read operation does not complete within the time limit. An EABO error
also results if the device that is to talk is not addressed or the operation does
not complete within the time limit for whatever reason.

Device Function Example:

Read data from the device rdr into the file RDGS on disk drive B .

MS-DOS Pascal

var flname : flbuf;

(* Perform device read . flname has been blank-filled .*)
flname[1] := 'B';

flname[2] := ':';

flname[3] := 'R';

flname[4] := 'D';

flname[5] := 'G';

flname[6] := 'S';

ibrdf (rdr,flname);

(* ibsta and ibcnt show the results of the *)

(* read operation. *)

Turbo Pascal for Windows

var flname : PChar;

flname := 'B:RDGS';

ibrdf (rdr,flname);

(* ibsta and ibcnt show the results of the *)

(* read operation. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-83 Pascal

IBRDF (continued) IBRDF

Board Function Example:

Read data from a device at talk address hex 4C (ASCII L) to the file
RDGS on the current disk drive and then unaddress it (the GPIB board
listen address is hex 20 or ASCII space).

MS-DOS Pascal

var cmd : cbuf

 flname : flbuf;

(* Perform addressing in preparation for a *)

(* board read. *)

cmd[1] := chr(UNL);

cmd[2] := chr('L'); (* TAD *)

cmd[3] := chr(' '); (* MLA *)

ibcmd (brd0,cmd,3);

(* flname has been blank-filled. *)

flname[1] := 'R';

flname[2] := 'D';

flname[3] := 'G';

flname[4] := 'S';

ibrdf (brd0,flname);

(* ibsta and ibcnt show the results of the *)

(* completed operation. *)

Turbo Pascal for Windows

var cmd,flname : PChar;

(* Perform addressing in preparation for a *)

(* board read. *)

cmd := '?L';

ibcmd (brd0,cmd^,3);

flname := 'RDGS';

ibrdf (brd0,flname);

(* ibsta and ibcnt show the results of the *)

(* completed operation. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-84 © National Instruments Corp.

IBRDI IBRDI

Purpose: Read data to integer array.

Format: ibrdi (ud,iarr,cnt)

ibrdi is not available in Turbo Pascal or Turbo Pascal for Windows
because the ibrd call is adequate for receiving data into any type of buffer.
IBM/MS Pascal and QuickPascal, which have more rigid typing rules,
require different procedure declarations for array buffers of different types.

ud represents a device or an interface board. iarr is of type ibuf as
defined in the header files DECL .PAS and QPDECL .PAS . cnt specifies the
maximum number of bytes to be read. cnt is of type integer4 in
Microsoft Pascal, longINT in QuickPascal, and integer in IBM Pascal.

ibrdi is similar to the ibrd function, which reads into a character array.
As the data is read, each byte pair is treated as an integer and stored in
iarr . But unlike ibrd , ibrdi stores the data directly into an integer
array. No integer conversion of the data is needed for arithmetic operations.

Device Function Example:

Read 512 bytes of data from the device tape and store in the integer
array rd .

IBM/MS Pascal/QuickPascal

var tape : integer;

 rd : ibuf;

tape := ibdev (0,6,0,14,1,0);

ibrdi (tape,rd,512);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-85 Pascal

IBRDI (continued) IBRDI

Board Function Examples:

1. Read 56 bytes of data into integer array rd from a device at talk
address hex 4C (ASCII L). (The GPIB board listen address is hex 20 or
ASCII space.)

IBM/MS Pascal/QuickPascal

var bd : integer;

 bdname : nbuf;

 cmd : cbuf;

 rd : ibuf;

bdname := 'GPIB0 ';

bd := ibfind (bdname);

cmd[1] := '?'; (* UNL *)

cmd[2] := ' '; (* MLA *)

cmd[3] := 'L'; (* MTA *)

ibcmd (bd,cmd,3);

ibrdi (bd,rd,56);

(* ibsta shows how the read terminated: *)

(* on CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd. *)

2. To terminate the read on an EOS character, see the IBEOS Board
Function Example .

3. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

NI-488 Function Descriptions Chapter 3

Pascal 3-86 © National Instruments Corp.

IBRDIA IBRDIA

Purpose: Read data asynchronously to integer array.

Format: ibrdia (ud,iarr,cnt)

ibrdia is not available in Turbo Pascal or Turbo Pascal for Windows
because the ibrda call is adequate for receiving data into any type of
buffer. IBM/MS Pascal and QuickPascal, which have more rigid typing
rules, require different procedure declarations for array buffers of different
types.

ud represents a device or an interface board. iarr is of type ibuf as
defined in the header files DECL .PAS and QPDECL .PAS . cnt is the
maximum number of bytes to be read. cnt is of type integer4 in
Microsoft Pascal, longINT in QuickPascal, and integer in IBM Pascal.

ibrdia is similar to the ibrda function, which reads into a character
string variable. As the data is read, each byte pair is treated as an integer
and stored in iarr . But unlike ibrda , ibrdia stores the data directly
into an integer array. No integer conversion of the data is needed for
arithmetic operations.

Device Function Example:

Read 56 bytes of data into the integer array rd from the device tape
while performing other processing.

IBM/MS Pascal

var rd : ibuf;

 mask : word;

(* Perform device read. *)

ibrdia (tape,rd,56);

(* Perform other processing here. Then wait *)

(* for I/O completion or a timeout. *)

mask := 16#4100; (* TIMO CMPL *)

ibwait (tape,mask);

(* ibsta shows how the read terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd. *)

if (ibsta and ERR) <> 0 then error;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-87 Pascal

IBRDIA (continued) IBRDIA

QuickPascal

var rd : ibuf;

 mask : word;

(* Perform device read. *)

ibrdia (tape,rd,56);

(* Perform other processing here. Then wait *)

(* for I/O completion or a timeout. *)

mask := $4100; (* TIMO CMPL *)

ibwait (tape,mask);

(* ibsta shows how the read terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd. *)

if (ibsta and ERR) <> 0 then error;

Board Function Examples:

1. Read 56 bytes of data into the integer array rd from a device at talk
address hex 4C (ASCII L). (The GPIB board listen address is hex 20 or
ASCII space.)

IBM/MS Pascal

var cmd : cbuf;

 rd : ibuf;

 mask : word;

(* Perform addressing in preparation for *)

(* board read. *)

cmd[1] := '?'; (* UNL *)

cmd[2] := ' '; (* MLA *)

cmd[3] := 'L'; (* TAD *)

ibcmd (bd,cmd,3);

ibrdia (bd,rd,56);

(* Perform other processing here. Then wait *)

(* for I/O completion or a timeout. *)

mask := 16#4100; (* TIMO CMPL *)

ibwait (bd,mask);

(* ibsta shows how the read terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd. *)

if (ibsta and ERR) <> 0 then error;

NI-488 Function Descriptions Chapter 3

Pascal 3-88 © National Instruments Corp.

IBRDIA (continued) IBRDIA

QuickPascal

var cmd : cbuf;

 rd : ibuf;

 mask : word;

(* Perform addressing in preparation for *)

(* board read. *)

cmd[1] := '?'; (* UNL *)

cmd[2] := ' '; (* MLA *)

cmd[3] := 'L'; (* TAD *)

ibcmd (bd,cmd,3);

ibrdia (bd,rd,56);

(* Perform other processing here. Then wait *)

(* for I/O completion or a timeout. *)

mask := $4100; (* TIMO CMPL *)

ibwait (bd,mask);

(* ibsta shows how the read terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

(* Data is stored in rd. *)

if (ibsta and ERR) <> 0 then error;

2. To terminate the read on an EOS character, see the IBEOS board
function example.

3. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-89 Pascal

IBRPP IBRPP

Purpose: Conduct a Parallel Poll.

Format: ibrpp (ud,ppr)

ud represents a device or an interface board. ppr stores the parallel poll
response.

Device IBRPP Function

If ud is a device, all devices on its GPIB are polled in parallel using the
access board of that device. This is done by executing the board function
ibrpp with the appropriate access board specified.

Board IBRPP Function

If ud is a board, the ibrpp function causes the identified board to conduct
a parallel poll of previously configured devices by sending the IDY
message (ATN and EOI both asserted) and reading the response from the
GPIB data lines.

An ECIC error results if the GPIB board is not CIC. If the GPIB board is
Standby Controller, it takes control and asserts ATN (becomes Active) prior
to polling. It remains Active Controller afterward.

In the examples that follow, some of the GPIB commands and addresses are
coded as printable ASCII characters. The simplest means of specifying
values is to use printable ASCII characters to represent values. When
possible, ASCII characters should be used. Refer to Appendix A for
conversions of numeric values to ASCII characters.

Some commands relevant to parallel polls are shown in Table 3-6.

NI-488 Function Descriptions Chapter 3

Pascal 3-90 © National Instruments Corp.

IBRPP (continued) IBRPP

Table 3-6. Parallel Poll Commands

Command Hex Value Meaning

PPC 05 Parallel Poll Configure

PPU 15 Parallel Poll Unconfigure

PPE 60 Parallel Poll Enable

PPD 70 Parallel Poll Disable

Parallel poll constants are defined in the appropriate declaration file.

Device Function Example:

Remotely configure the device lcrmtr to respond positively on DIO3
if its individual status bit is 1, and then parallel poll all configured
devices.

IBM/MS Pascal

var ppc,ppr : integer;

ppc := 16#6A;

ibppc (lcrmtr,ppc);

ibrpp (lcrmtr,ppr);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var ppc,ppr : integer;

ppc := $6A;

ibppc (lcrmtr,ppc);

ibrpp (lcrmtr,ppr);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-91 Pascal

IBRPP (continued) IBRPP

Board Function Examples:

1. Remotely configure the device brd0 at listen address hex 23
(ASCII #) to respond positively on DIO3 if its individual status bit is 1,
and then parallel poll all configured devices.

IBM/MS Pascal

var ppr : integer;

 cmd : cbuf;

cmd[1] := chr(16#23); (* device listen address *)

cmd[2] := chr(PPC);

cmd[3] := chr(PPE + S + 2); (* Send PPR3 if ist = 1 *)

cmd[4] := chr(UNL);

ibcmd (brd0,cmd,4);

ibrpp (brd0,ppr); (* PPR is returned in ppr. *)

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var ppr : integer;

 cmd : cbuf;

cmd[1] := chr($23); (* device listen address *)

cmd[2] := chr(PPC);

cmd[3] := chr(PPE + S + 2); (* Send PPR3 if ist = 1 *)

cmd[4] := chr(UNL);

ibcmd (brd0,cmd,4);

ibrpp (brd0,ppr); (* PPR is returned in ppr. *)

2. Disable and unconfigure all GPIB devices from parallel polling using
the PPU (hex 15) command.

var cmd : cbuf;

cmd[1] := chr(PPU);

ibcmd (brd0,cmd,1);

NI-488 Function Descriptions Chapter 3

Pascal 3-92 © National Instruments Corp.

IBRSC IBRSC

Purpose: Request or release System Control.

Format: ibrsc (ud,v)

ud represents an interface board. If v is non-zero, functions requiring
System Controller capability are subsequently allowed. If v is zero (0),
functions requiring System Controller capability are not allowed.

The ibrsc function is used to enable or disable the capability of the GPIB
board to send the Interface Clear (IFC) and Remote Enable (REN) messages
to GPIB devices using the ibsic and ibsre functions, respectively. The
interface board must not be System Controller to respond to IFC sent by
another Controller.

In most applications, the GPIB board is always the System Controller, but
in some applications, the GPIB board is never the System Controller. In
either case, the ibrsc function is used only if the computer is not going to
be System Controller for the duration of the program execution. While the
IEEE-488 standard does not specifically allow schemes in which System
Control can be passed dynamically from one device to another, the ibrsc
function can be used in such a scheme.

When ibrsc is called and an error does not occur, iberr is set to one (1)
if the interface board was previously System Controller and zero (0) if it
was not.

Board Function Example:

Request to be System Controller if the interface board brd0 is not
currently so designated.

var v : integer;

v := 1; (* Any non-zero value will do. *)

ibrsc (brd0,v);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-93 Pascal

IBRSP IBRSP

Purpose: Return serial poll byte.

Format: ibrsp (ud,spr)

ud represents a device. spr stores the serial poll response.

The ibrsp function is used to serial poll one device and obtain its status
byte or to obtain a previously stored status byte. If bit 6 (the hex 40 bit) of
the response is set, the device is requesting service.

When the automatic serial polling feature is enabled, the specified device
may have been polled previously. If it has been polled and a positive
response was obtained, the RQS bit of ibsta is set on that device. In this
case, ibrsp returns the previously acquired status byte. If the RQS bit of
ibsta is not set during an automatic poll, it serial polls the device.

When a poll is actually conducted, the specific sequence of events is as
follows:

1. Unlisten (UNL)

2. Controller Listen Address

3. Secondary address of the access board, if applicable

4. Serial Poll Enable (SPE)

5. Talk address of the device

6. Secondary address of the device, if applicable

7. Read serial poll response byte from device

8. Serial Poll Disable (SPD)

9. Other command bytes may be sent as necessary

NI-488 Function Descriptions Chapter 3

Pascal 3-94 © National Instruments Corp.

IBRSP (continued) IBRSP

The response byte spr , except the RQS bit, is device specific. For
example, the polled device might set a particular bit in the response byte to
indicate that it has data to transfer and another bit to indicate a need for
reprogramming. Consult the device documentation for interpretation of the
response byte.

Device Function Example:

Obtain the Serial Poll Response (spr) byte from the device tape .

var spr : integer;

ibrsp (tape,spr);

(* The application program would then *)

(* analyze the response in spr. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-95 Pascal

IBRSV IBRSV

Purpose: Request service and/or set or change the serial poll status byte.

Format: ibrsv (ud,v)

ud represents an interface board. v is the status byte that the GPIB board
provides when serial polled by another device that is the GPIB CIC. If bit 6
(the hex 40 bit) is set, the GPIB board additionally requests service from the
Controller by asserting the GPIB SRQ line.

The ibrsv function is used to request service from the Controller using the
Service Request (SRQ) signal and to provide a system-dependent status
byte when the Controller serial polls the GPIB board.

When ibrsv is called and an error does not occur, the previous value of v
is stored in iberr .

Board Function Examples:

1. Set the Serial Poll status byte to hex 41, which simultaneously requests
service from an external CIC.

IBM/MS Pascal

var v : integer;

v := 16#41 or 1; (* assert srq *)

ibrsv (brd0,v);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $41 or 1;

ibrsv (brd0,v);

NI-488 Function Descriptions Chapter 3

Pascal 3-96 © National Instruments Corp.

IBRSV (continued) IBRSV

2. Change the status byte without requesting service.

IBM/MS Pascal

var v : integer;

v := 16#23;

ibrsv (brd0,v);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $23;

ibrsv (brd0,v);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-97 Pascal

IBSAD IBSAD

Purpose: Change or disable Secondary Address.

Format: ibsad (ud,v)

ud represents a device or an interface board. If v is a number between hex
60 and hex 7E, that number becomes the secondary GPIB address of the
device or interface board. If v is hex 7F or zero (0), secondary addressing
is disabled.

ibsad is needed only to alter the secondary address value from its
configuration setting. The assignment made by this function remains in
effect until ibsad is called again, the ibonl or ibfind function is
called, or the system is restarted.

When ibsad is called and an error does not occur, the previous secondary
address is stored in iberr .

Device IBSAD Function

If ud is a device, the function enables or disables extended GPIB
addressing for the device. When secondary addressing is enabled, the
specified secondary GPIB address of that device is sent automatically in
subsequent device I/O functions.

Board IBSAD Function

If ud is an interface board, the ibsad function enables or disables
extended GPIB addressing and, when enabled, assigns the secondary
address of the GPIB board.

Device Function Examples:

1. Change the secondary GPIB address of the device plotter from its
current value to hex 6A.

IBM/MS Pascal

var v : integer;

v := 16#6A;

ibsad (plotter,v);

NI-488 Function Descriptions Chapter 3

Pascal 3-98 © National Instruments Corp.

IBSAD (continued) IBSAD

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $6A;

ibsad (plotter,v);

2. Disable secondary addressing for the device dvm .

var v : integer;

v := 0; (* 0 or hex 7F can be used. *)

ibsad (dvm,v);

Board Function Examples:

1. Change the secondary GPIB address of the interface board brd0 from
its current value to hex 6A.

IBM/MS Pascal

var v : integer;

v := 16#6A;

ibsad (brd0,v);

QuickPascal/Turbo Pascal/Turbo Pascal for Windows

var v : integer;

v := $6A;

ibsad (brd0,v);

2. Disable secondary addressing for the interface board brd0 .

var v : integer;

v := 0; (* 0 or hex 7F can be used. *)

ibsad (brd0,v);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-99 Pascal

IBSIC IBSIC

Purpose: Send interface clear for 100 µsec.

Format: ibsic (ud)

ud represents an interface board. ibsic must be used at the beginning of
a program if board functions are used.

The ibsic function asserts the IFC signal for at least 100 µsec if the GPIB
board is System Controller. This action initializes the GPIB, makes the
interface board CIC and Active Controller with ATN asserted, and is
generally used when a bus fault condition is suspected.

The IFC signal resets only the GPIB interface functions of bus devices and
not the internal device functions. Device functions are reset with the
Device Clear (DCL) and Selected Device Clear (SDC) commands. To
determine the effect of these messages, consult the device documentation.

The ESAC error occurs if the GPIB board does not have System Controller
capability.

Board Function Example:

At the beginning of a program, initialize the GPIB and make it CIC and
Active Controller.

ibsic (brd0);

NI-488 Function Descriptions Chapter 3

Pascal 3-100 © National Instruments Corp.

IBSRE IBSRE

Purpose: Set or clear the Remote Enable line.

Format: ibsre (ud,v)

ud represents an interface board. If v is non-zero, the Remote Enable
(REN) signal is asserted. If v is zero (0), the signal is unasserted.

The ibsre function turns the REN signal on and off. REN is used by
devices to select between local and remote modes of operation. A device
does not actually enter remote mode until it receives its listen address.

The ESAC error occurs if the GPIB board is not System Controller. When
ibsre is called and an error does not occur, the previous REN state is
stored in iberr .

Board Function Examples:

1. Place the device at listen address hex 23 (ASCII #) in remote mode.

MS-DOS Pascal

var cmd : cbuf;

ibsre (brd0,1); (* Any non-zero value will do. *)

cmd[1] := '#'; (* device listen address *)

ibcmd (brd0,cmd,1);

Turbo Pascal for Windows

var cmd : PChar;

ibsre (brd0,1); (* Any non-zero value will do. *)

cmd := '#'; (* device listen address *)

ibcmd (brd0,cmd^,1);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-101 Pascal

IBSRE (continued) IBSRE

2. To exclude the local ability of the device to return to local mode, send
the Local Lockout (LLO or hex 11) command or include it in the
command string in Example 1.

IBM/MS Pascal

var cmd : cbuf;

cmd[1] := chr(LLO); (* or: *)

(* cmd[1] = chr(16#23); *)

ibcmd (brd0,cmd,1); (* cmd[2] = chr(LLO); *)

(* ibcmd (brd0,cmd,2); *)

QuickPascal/Turbo Pascal

var cmd : cbuf;

cmd[1] := chr(LLO); (* or: *)

(* cmd[1] = chr($23); *)

ibcmd (brd0,cmd,1); (* cmd[2] = chr(LLO); *)

(* ibcmd (brd0,cmd,2); *)

Turbo Pascal for Windows

var cmd : PChar;

cmd := #11; (* or: cmd = #23#11; *)

(* ibcmd(brd0,cmd^,2); *)

ibcmd (brd0,cmd^,1);

3. Return all devices to local mode.

var v : integer;

v := 0; (* Set REN to false. *)

ibsre (brd0,v);

NI-488 Function Descriptions Chapter 3

Pascal 3-102 © National Instruments Corp.

IBSRQ IBSRQ

Purpose: Register an SRQ "interrupt routine."

Format:

IBM Pascal

ibsrq (func);

MS Pascal

ibsrq (ads func);

QuickPascal/Turbo Pascal

ibsrq (@ func);

This function establishes the Pascal, QuickPascal, or Turbo Pascal routine
func as the procedure to be called whenever the driver notices the SRQI
bit set (1) in the status word (ibsta) of a GPIB interface board. The check
for SRQI is made after each call to the driver. If SRQI is set, func will be
called before control is returned to the application program. SRQ servicing
is turned off if ibsrq is called with the ibnil procedure. ibnil is
declared in the header files DECL .PAS , QPDECL .PAS , and TPDECL .PAS .
ibnil is defined in the language interface files PIB .OBJ and TPIB .OBJ .
Turbo Pascal for Windows does not support IBSRQ .

Note: Disable automatic serial polling if you use ibsrq .

IBM/MS Pascal

The procedure to be called must be a separate Pascal module. The
procedure must be declared external (extern) in the main program. Do
not establish a nested procedure as a procedure to be called. The actual call
syntax is different for Microsoft Pascal and IBM Pascal.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-103 Pascal

IBSRQ (continued) IBSRQ

QuickPascal/Turbo Pascal

The procedure to be called is defined in the main program. Nested
procedures are not allowed to be called for SRQ servicing. The heading of
the procedure to be called is different for Microsoft Pascal and Turbo
Pascal. The Turbo Pascal heading must include the directive far .

For example:

QuickPascal: procedure srqservice;

Turbo Pascal: procedure srqservice; far;

Example:

Establish srqservice as the procedure to call SRQ servicing.

MS Pascal

procedure srqservice; extern;

var bd : integer;

 dvm [public] : integer;

 spr [public] : integer;

 udname : nbuf;

begin

udname := 'gpib0 ';

bd := ibfind (udname);

(* Disable autopolling. *)

ibconfig (bd,IbcAUTOPOLL,0);

udname := 'DEV4 ';

dvm := ibfind (udname);

ibsrq (ads srqservice);

end.

module separate pascal module;

procedure ibrsp (dvm : integer; spr : integer);

extern;

procedure srqservice;

var dvm [extern] : integer;

 spr [extern] : integer;

NI-488 Function Descriptions Chapter 3

Pascal 3-104 © National Instruments Corp.

IBSRQ (continued) IBSRQ

begin

ibrsp (dvm,spr);

(* Analyze the response byte here. *)

end;

end.

IBM Pascal

procedure srqservice; extern;

var bd : integer;

 dvm [public] : integer;

 spr [public] : integer;

 udname : nbuf;

begin

udname := 'gpib0 ';

bd := ibfind (udname);

(* Disable autopolling. *)

ibconfig (bd,IbcAUTOPOLL,0);

udname := 'DEV4 ';

dvm := ibfind (udname);

ibsrq (srqroutine);

end.

module separate pascal module;

procedure ibrsp (dvm : integer; spr : integer);

extern;

procedure srqservice;

var dvm [extern] : integer;

 spr [extern] : integer;

begin

ibrsp (dvm,spr);

(* Analyze the response byte here. *)

end;

end.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-105 Pascal

IBSRQ (continued) IBSRQ

QuickPascal

var bd,dvm : integer;

 udname : nbuf;

procedure srqservice;

var spr;

begin

ibrsp (dvm,spr);

(* Analyze the response here. *)

end;

begin (* Main *)

udname := 'GPIB0 ';

bd := ibfind (udname);

(* Disable autopolling *)

ibconfig (bd,IbcAUTOPOLL,0);

udname := 'DEV4 ';

dvm := ibfind (udname);

ibsrq (@ srqservice);

end.

Turbo Pascal

var bd,dvm : integer;

 udname : nbuf;

procedure srqservice; far;

var spr;

begin

ibrsp (dvm,spr);

(* Analyze the response here. *)

end;

begin (* Main *)

udname := 'GPIB0 ';

bd := ibfind (udname);

(* Disable autopolling *)

ibconfig (bd,IbcAUTOPOLL,0);

udname := 'DEV4 ';

dvm := ibfind (udname);

ibsrq (@ srqservice);

end.

NI-488 Function Descriptions Chapter 3

Pascal 3-106 © National Instruments Corp.

IBSTOP IBSTOP

Purpose: Abort asynchronous operation.

Format: ibstop (ud)

ud represents a device or an interface board.

ibstop terminates any asynchronous read, write, or command operation
and then resynchronizes the application with the driver.

If there is an asynchronous I/O operation in progress, the ERR bit in the
status word is set and an EABO error is returned.

Device IBSTOP Function

If ud is a device, ibstop attempts to terminate any unfinished
asynchronous I/O device function to that device.

Board IBSTOP Function

If ud is a board, ibstop attempts to terminate any unfinished
asynchronous I/O operation that had been started with that board.

Device Function Example:

Stop any asynchronous operations associated with the device rdr .

ibstop (rdr);

Board Function Example:

Stop any asynchronous operations associated with the interface board
brd0 .

ibstop (brd0);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-107 Pascal

IBTMO IBTMO

Purpose: Change or disable time limit.

Format: ibtmo (ud,v)

ud represents a device or an interface board. v is a code specifying the
time limit as follows:

Table 3-7. Timeout Code Values

Value
of v

Minimum
Timeout

0 disabled

1 10 µsec

2 30 µsec

3 100 µsec

4 300 µsec

5 1 msec

6 3 msec

7 10 msec

8 30 msec

9 100 msec

10 300 msec

11 1 sec

12 3 sec

13 10 sec

14 30 sec

15 100 sec

Note: If v is zero (0), no limit is in effect.

NI-488 Function Descriptions Chapter 3

Pascal 3-108 © National Instruments Corp.

IBTMO (continued) IBTMO

ibtmo is needed only to alter the value from its configuration setting. The
assignment made by this function remains in effect until ibtmo is called
again, the ibonl or ibfind function is called, or the system is restarted.

The ibtmo function changes the length of time that the following functions
wait for the embedded I/O operation to finish or for the specified event to
occur before returning with a timeout indication:

• ibcmd

• ibrd

• ibrdi

• ibwrt

• ibwrti

The ibtmo function also changes the length of time that device functions
wait for commands to be accepted. If a device does not accept commands
within the time limit, the EBUS error will be returned.

When ibtmo is called and an error does not occur, the previous timeout
code value is stored in iberr .

Device IBTMO Function

If ud is a device, the new time limit is used in subsequent device functions
directed to that device.

Board IBTMO Function

If ud is a board, the new time limit is used in subsequent board functions
directed to that board.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-109 Pascal

IBTMO (continued) IBTMO

Device Function Example:

Change the time limit for calls involving the device tape to
approximately 300 msec.

MS-DOS Pascal

var tape : integer;

 devname : nbuf;

devname := 'DEV9 ';

tape := ibfind (devname);

ibtmo (tape,10);

Turbo Pascal for Windows

var tape : integer;

 devname : PChar;

devname := 'DEV9';

tape := ibfind (devname);

ibtmo (tape,10);

Board Function Example:

Change the time limit for calls directed to the interface board brd0 to
approximately 10 msec.

ibtmo (brd0,7);

NI-488 Function Descriptions Chapter 3

Pascal 3-110 © National Instruments Corp.

IBTRAP IBTRAP

Purpose: Alter Applications Monitor trap and display modes.

Format: ibtrap (mask,mode)

mask is a bit mask with the same bit assignments as ibsta . Each mask
bit is set to be trapped and/or recorded (depending on the value of mode)
when the corresponding bit appears in the status word after a GPIB call. If
all the bits are set, then every GPIB call except ibfind is trapped. mode
determines whether the recording and trapping occur. The valid values are
listed in Table 3-8.

Table 3-8. IBTRAP Mode

Value Effect

1 Turn monitor off. No recording or trapping occurs.

2 Turn record on. All calls are recorded but no trapping
occurs.

3 Turn record and trap on. All calls are recorded and the
monitor is displayed whenever a trap condition occurs.

If an error occurs during a call to ibtrap , the ERR bit of ibsta is set and
iberr is one of the values listed in Table 3-9. Otherwise, iberr contains
the previous mask value.

Table 3-9. IBTRAP Errors

Value Explanation

ECAP Applications Monitor not installed.

EARG Invalid monitor mode.

Refer to Appendix B, Applications Monitor , for more information. Note
that the Applications Monitor can only be used with NI-488.2 for MS-DOS.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-111 Pascal

IBTRAP (continued) IBTRAP

Device Function Example:

Configure applications monitor to record and trap on SRQ or CMPL.

var mask : word;

 mode : integer;

mask := SRQI or CMPL; (* mask is hex 1100 *)

mode := 3;

ibtrap (mask,mode);

NI-488 Function Descriptions Chapter 3

Pascal 3-112 © National Instruments Corp.

IBTRG IBTRG

Purpose: Trigger selected device.

Format: ibtrg (ud)

ud represents a device.

ibtrg addresses and triggers the specified device.

ibtrg sends the following commands:

• Talk address of access board

• Secondary address of access board, if applicable

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device, if applicable

• Group Execute Trigger (GET)

Other command bytes may be sent as necessary.

Device Function Example:

Trigger the device analyz .

ibtrg (analyz);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-113 Pascal

IBWAIT IBWAIT

Purpose: Wait for selected event.

Format: ibwait (ud,mask)

ud represents a device or an interface board. mask is a bit mask with the
same bit assignments as the status word ibsta .

ibwait is used to monitor the events selected by the bits in mask and to
delay processing until any of them occurs. These events and bit
assignments are shown in Table 3-10. ibwait also updates ibsta .

Table 3-10. Wait Mask Layout

Mnemonic
Bit
Pos.

Hex
Value Description

ERR 15 8000 GPIB error

TIMO 14 4000 Time limit exceeded

END 13 2000 GPIB board detected END or EOS

SRQI 12 1000 SRQ on

RQS 11 800 Device requesting service

CMPL 8 100 Asynchronous I/O completed

LOK 7 80 GPIB board is in lockout state

REM 6 40 GPIB board is in remote state

CIC 5 20 GPIB board is CIC

ATN 4 10 Attention is asserted

TACS 3 8 GPIB board is Talker

LACS 2 4 GPIB board is Listener

DTAS 1 2 GPIB board is in device trigger state

DCAS 0 1 GPIB board is in device clear state

NI-488 Function Descriptions Chapter 3

Pascal 3-114 © National Instruments Corp.

IBWAIT (continued) IBWAIT

If mask = 0 or mask = hex 8000 (the ERR bit), the function returns
immediately. If the TIMO bit is zero (0) or the time limit is set to zero (0)
with the ibtmo function, timeouts are disabled. Disabling timeouts should
be done only when setting mask = 0 or when it is certain the selected event
will occur. Otherwise, the processor may wait indefinitely for the event to
occur.

Device IBWAIT Function

If ud is a device, only the ERR, TIMO, END, RQS, and CMPL bits of the
wait mask and status word are applicable. If automatic polling is enabled,
on an ibwait for RQS, each time the GPIB SRQ line is asserted, the
access board of the specified device serial polls all devices on its GPIB.
The responses are saved until the status byte returned by the device being
waited for indicates that it was the device requesting service (bit hex 40 is
set in the status byte). If the TIMO bit is set, ibwait returns if the event
does not occur within the timeout period of the device.

Board IBWAIT Function

If ud is a board, all bits of the wait mask and status word are applicable
except RQS.

Device Function Example:

Wait indefinitely for the device logger to request service.

var mask : word;

mask := RQS; (* mask is hex 800 *)

ibwait (logger,mask);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-115 Pascal

IBWAIT (continued) IBWAIT

Board Function Examples:

1. Wait for a service request or a timeout.

var mask : word;

mask := SRQI + TIMO; (* mask is hex 5000 *)

ibwait (brd0,mask);

(* Check ibsta here to see which occurred. *)

2. Update the current status for ibsta .

var mask : word;

mask := 0;

ibwait (brd0,mask);

3. Wait indefinitely until control is passed from another CIC.

var mask : word;

mask := CIC; (* mask is hex 20 *)

ibwait (brd0,mask);

4. Wait indefinitely until addressed to talk or listen by another CIC.

var mask : word;

mask := TACS + LACS; (* mask is hex 0C *)

ibwait (brd0,mask);

NI-488 Function Descriptions Chapter 3

Pascal 3-116 © National Instruments Corp.

IBWRT IBWRT

Purpose: Write data from string.

Format: ibwrt (ud,wrt,cnt)

ud represents a device or an interface board. wrt is a pre-allocated array
containing the data to be sent over the GPIB. cnt specifies the number of
bytes to be sent over the GPIB. cnt is of type integer4 in Microsoft
Pascal, and of type longINT in QuickPascal and Turbo Pascal. cnt is of
type integer in IBM Pascal.

The ibwrt function terminates on any of the following events:

• All bytes are transferred.

• An error is detected.

• The time limit is exceeded.

• A Device Clear (DCL) or Selected Device Clear (SDC) command is
received from another device which is the CIC.

After termination, ibcntl is the number of bytes read. ibcnt is the 16-
bit representation of the number of bytes read. A short count can occur on
any of the above terminating events but the first.

When the device ibwrt function returns, ibsta holds the latest device
status, ibcntl is the actual number of instruction bytes written to the
device, ibcnt is the 16-bit representation of the number of instruction
bytes written, and, if the ERR bit in ibsta is set, iberr is the first error
detected.

Device IBWRT Function

If ud is a device, the device is addressed to listen and the access board is
addressed to talk. Then the data is written to the device.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-117 Pascal

IBWRT (continued) IBWRT

Board IBWRT Function

If ud is an interface board, the ibwrt function attempts to write to a GPIB
device that is assumed to be already addressed by the CIC.

If the access board is Active Controller, the board is first placed in Standby
Controller state with ATN off even after the write operation completes. If
the access board is not the Active Controller, ibwrt commences
immediately.

If the access board is CIC, ibcmd must be called prior to ibwrt to address
the device to listen and the board to talk. An EADR error results if the
board is CIC but has not been addressed to talk with ibcmd . An EABO
error results if, for any reason, ibwrt does not complete within the time
limit. An ENOL error occurs if there are no Listeners on the bus when the
instruction bytes are sent.

Note: If you want to send an EOS character at the end of your data string,
you must place it there explicitly. See Device Function Example 2.

Device Function Examples:

1. Write ten instruction bytes to the device dvm .

Pascal

var wrt : cbuf;

wrt[1] := 'F';

wrt[2] := '3';

wrt[3] := 'R';

wrt[4] := '1';

wrt[5] := 'P';

wrt[6] := '2';

wrt[7] := 'X';

wrt[8] := '5';

wrt[9] := 'G';

wrt[10] := '0';

ibwrt (dvm,wrt,10);

NI-488 Function Descriptions Chapter 3

Pascal 3-118 © National Instruments Corp.

IBWRT (continued) IBWRT

Turbo Pascal for Windows

var wrt : PChar;

wrt := 'F3R1P2X5G0';

ibwrt (dvm,wrt^,10);

2. Write five instruction bytes terminated by a carriage return and a
linefeed to the device ptr . Linefeed is the EOS character of the
device.

IBM/MS Pascal

var wrt : cbuf;

wrt[1] := 'I';

wrt[2] := 'P';

wrt[3] := '2';

wrt[4] := 'X';

wrt[5] := '5';

wrt[6] := chr(16#0D);

wrt[7] := chr(16#0A);

ibwrt (ptr,wrt,7);

QuickPascal/Turbo Pascal

var wrt : cbuf;

wrt[1] := 'I';

wrt[2] := 'P';

wrt[3] := '2';

wrt[4] := 'X';

wrt[5] := '5';

wrt[6] := chr($0D);

wrt[7] := chr($0A);

ibwrt (ptr,wrt,7);

Turbo Pascal for Windows

var wrt : PChar;

wrt := 'IP2X5'#0D#0A;

ibwrt (ptr,wrt^,7);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-119 Pascal

IBWRT (continued) IBWRT

Board Function Example:

Write 10 instruction bytes to a device at listen address hex 2F
(ASCII /) and then unaddress it (the GPIB board talk address is hex 40
or ASCII @).

IBM/MS Pascal

var cmd : cbuf;

 wrt : cbuf;

cmd[1] := chr(UNL); (* Unlisten. *)

cmd[2] := chr(16#40); (* PC talk address. *)

cmd[3] := chr(16#2F); (* Device listen address *)

ibcmd (brd0,cmd,3);

wrt[1] := 'F' (* Ten instruction bytes *)

wrt[2] := '3';

wrt[3] := 'R';

wrt[4] := '1';

wrt[5] := 'P';

wrt[6] := '2';

wrt[7] := 'X';

wrt[8] := '5';

wrt[9] := 'G';

wrt[10] := '0';

ibwrt (brd0,wrt,10);

NI-488 Function Descriptions Chapter 3

Pascal 3-120 © National Instruments Corp.

IBWRT (continued) IBWRT

QuickPascal/Turbo Pascal

var cmd : cbuf;

 wrt : cbuf;

cmd[1] := chr(UNL); (* Unlisten. *)

cmd[2] := chr($40); (* PC talk address *)

cmd[3] := chr($2F); (* device listen address *)

ibcmd (brd0,cmd,3);

wrt[1] := 'F'; (* Ten instruction bytes *)

wrt[2] := '3';

wrt[3] := 'R';

wrt[4] := '1';

wrt[5] := 'P';

wrt[6] := '2';

wrt[7] := 'X';

wrt[8] := '5';

wrt[9] := 'G';

wrt[10] := '0';

ibwrt (brd0,wrt,10);

Turbo Pascal for Windows

var cmd,wrt : PChar;

(* Unlisten. PC talk address. *)

(* device listen address. *)

cmd := '?'#40#2F;

ibcmd (brd0,cmd^,3);

wrt := 'F3R1P2X5G0'; (* Ten instruction bytes *)

ibwrt (brd0,wrt^,10);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-121 Pascal

IBWRTA IBWRTA

Purpose: Write data asynchronously from string.

Format: ibwrta (ud,wrt,cnt)

ud represents a device or an interface board. wrt is a pre-allocated array
containing the data to be sent over the GPIB. cnt specifies the number of
bytes to be sent over the GPIB. cnt is of type integer4 in Microsoft
Pascal, and of type longINT in QuickPascal and Turbo Pascal. cnt is of
type integer in IBM Pascal.

ibwrta is used in place of ibwrt when the application program must
perform other functions while processing the GPIB I/O operation. ibwrta
returns immediately after starting the I/O operation.

The three asynchronous I/O calls (ibcmda , ibrda , and ibwrta) are
designed to allow an application to perform other functions (non-GPIB
functions) while processing the I/O. Once the asynchronous I/O call has
been initiated, further GPIB calls involving the device or access board are
not allowed until the I/O has completed and the NI-488 driver and the
application have been resynchronized. Resynchronization can be
accomplished by using one of the following three functions:

Note: Resynchronization is only successful if the ibsta returned
contains CMPL.

• ibwait (mask
contains CMPL) - The driver and application are synchronized.

• ibstop - The asynchronous I/O is canceled, and the driver
and application are synchronized.

• ibonl - The asynchronous I/O is canceled, the interface
has been reset, and the driver and application are
synchronized.

The only other GPIB call that is allowed during asynchronous I/O is the
ibwait function (mask is arbitrary). Any other GPIB call involving the
device or access board returns the EOIP error.

NI-488 Function Descriptions Chapter 3

Pascal 3-122 © National Instruments Corp.

IBWRTA (continued) IBWRTA

Device IBWRTA Function

If ud is a device, the device is addressed to listen and the access board is
addressed to talk. Then the data is written to the device.

Board IBWRTA Function

If ud is an interface board, the ibwrta function attempts to write to a
GPIB device that is assumed to be already properly initialized and
addressed by the actual CIC.

If the board is Active Controller, the board is first placed in Standby
Controller state with ATN off (even after the write operation completes).
Otherwise, the write operation commences immediately.

If the board is CIC, the ibcmd function must be called prior to ibwrta to
address the device to listen and the board to talk. An EADR error results if
the board is CIC but has not been addressed to talk with the ibcmd
function. The ENOL error does not occur if there are no Listeners. When
the device ibwrt function returns, ibsta holds the latest device status,
and, if the ERR bit in ibsta is set, iberr is the first error detected.

Note: If you want to send an EOS character at the end of your data string,
you must place it there explicitly.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-123 Pascal

IBWRTA (continued) IBWRTA

Device Function Example:

Write 10 instruction bytes to the device dvm while performing other
processing.

Pascal

var wrt : cbuf;

 mask : word;

wrt[1] := 'F'; (* Ten instruction bytes *)

wrt[2] := '3';

wrt[3] := 'R';

wrt[4] := '1';

wrt[5] := 'P';

wrt[6] := '2';

wrt[7] := 'X';

wrt[8] := '5';

wrt[9] := 'G';

wrt[10] := '0';

ibwrta (dvm,wrt,10);

mask := CMPL or TIMO;

(* Perform other processing here, then wait *)

(* for I/O completion or a timeout. *)

ibwait (dvm,mask);

(* ibsta indicates how the write terminated: *)

(* on CMPL, END, TIMO, or ERR. *)

Turbo Pascal for Windows

var wrt : PChar;

 mask : word;

wrt := 'F3R1P2X5G0';

ibwrta (dvm,wrt^,10);

mask := CMPL or TIMO;

(* Perform other processing here, then wait *)

(* for I/O completion or a timeout. *)

ibwait (dvm,mask);

(* ibsta indicates how the write terminated: *)

(* on CMPL, END, TIMO, or ERR. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-124 © National Instruments Corp.

IBWRTA (continued) IBWRTA

Board Function Example:

Write 10 instruction bytes to a device at listen address hex 2F
(ASCII /), while testing for a high priority event to occur, and then
unaddress it (the GPIB board talk address is hex 40 or ASCII @).

IBM/MS Pascal

var cmd : cbuf;

 wrt : cbuf;

 mask : word;

(* Perform addressing in preparation for *)

(* board write. *)

cmd[1] := chr(16#3F); (* Unlisten *)

cmd[2] := chr(16#40); (* talk address *)

cmd[3] := chr(16#2F); (* listen address *)

ibcmd (brd0,cmd,3);

(* Perform board asynchronous write. *)

wrt[1] := 'F';

wrt[2] := '3';

wrt[3] := 'R';

wrt[4] := '1';

wrt[5] := 'P';

wrt[6] := '2';

wrt[7] := 'X';

wrt[8] := '5';

wrt[9] := 'G';

wrt[10] := '0';

ibwrta (brd0,wrt,10);

(* Perform other processing here. Then wait *)

(* for I/O completion or a timeout. *)

mask := CMPL or TIMO;

ibwait (brd0,mask);

(* Unaddress the Talker and Listener. *)

cmd[1] := chr(UNT);

cmd[2] := chr(UNL);

ibcmd (brd0,cmd,2);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-125 Pascal

IBWRTA (continued) IBWRTA

QuickPascal/Turbo Pascal

var cmd : cbuf;

 wrt : cbuf;

 mask : word;

(* Perform addressing in preparation for *)

(* board write. *)

cmd[1] := chr($3F); (* Unlisten *)

cmd[2] := chr($40); (* talk address *)

cmd[3] := chr($2F); (* listen address *)

ibcmd (brd0,cmd,3);

(* Perform board asynchronous write. *)

wrt[1] := 'F';

wrt[2] := '3';

wrt[3] := 'R';

wrt[4] := '1';

wrt[5] := 'P';

wrt[6] := '2';

wrt[7] := 'X';

wrt[8] := '5';

wrt[9] := 'G';

wrt[10] := '0';

ibwrta (brd0,wrt,10);

(* Perform other processing here. Then wait *)

(* for I/O completion or a timeout. *)

mask := CMPL or TIMO;

ibwait (brd0,mask);

(* Unaddress the Talker and Listener. *)

cmd[1] := chr(UNT);

cmd[2] := chr(UNL);

ibcmd (brd0,cmd,2);

NI-488 Function Descriptions Chapter 3

Pascal 3-126 © National Instruments Corp.

IBWRTA (continued) IBWRTA

Turbo Pascal for Windows

var cmd,wrt : PChar;

 mask : word;

(* Perform addressing in preparation for *)

(* board write. *)

cmd := #3F#40#2F;

ibcmd (brd0,cmd^,3);

(* Perform board asynchronous write. *)

wrt := 'F3R1P2X5G0';

ibwrta (brd0,wrt^,10);

(* Perform other processing here. Then wait *)

(* for I/O completion or a timeout. *)

mask := CMPL or TIMO;

ibwait (brd0,mask);

(* Unaddress the Talker and Listener. *)

cmd := '_?';

ibcmd (brd0,cmd^,2);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-127 Pascal

IBWRTF IBWRTF

Purpose: Write data from file.

Format: ibwrtf (ud,flname)

ud represents a device or an interface board. flname is the filename from
which the data is written to the GPIB. flname may be up to 50 characters
long, including a drive and path designation. For MS-DOS Pascal,
flname is of type flbuf as defined in the declaration files DECL.PAS ,
QPDECL.PAS , and TPDECL.PAS . For Turbo Pascal for Windows,
flname is of type PChar .

ibwrtf automatically opens the file flname . On exit, ibwrtf closes
the file. An EFSO error results if it is not possible to open, seek, read, or
close the specified file.

The ibwrtf function operation terminates on any of the following events:

• All bytes are sent.

• An error is detected.

• The time limit is exceeded.

• A Device Clear (DCL) or Selected Device Clear (SDC) command is
received from another device that is the CIC.

After termination, ibcntl is the number of bytes written. ibcnt is the
16-bit representation of the number of bytes written.

Device IBWRTF Function

If ud is a device, the same board functions as the device ibwrt function
are performed automatically. ibwrtf terminates on similar conditions as
ibwrt .

When the ibwrtf function returns, ibsta holds the latest device status,
ibcntl is the number of instruction bytes written, ibcnt is the 16-bit
representation of the number of bytes written, and, if the ERR bit in ibsta
is set, iberr is the first error detected.

NI-488 Function Descriptions Chapter 3

Pascal 3-128 © National Instruments Corp.

IBWRTF (continued) IBWRTF

Board IBWRTF Function

If ud is an interface board, the board ibwrt function writes to a GPIB
device that is assumed to be already properly addressed.

An EADR error results if the board is CIC but has not been addressed to
talk with the ibcmd function. An EABO error results if, for any reason,
the read operation does not complete within the time limit. An ENOL error
occurs if there are no Listeners on the bus when the instruction bytes are
sent.

Device Function Example:

Write data to the device rdr from the file Y.DAT on the current disk
drive.

MS-DOS Pascal

var flname : flbuf;

flname[1] := 'Y';

flname[2] := '.';

flname[3] := 'D';

flname[4] := 'A';

flname[5] := 'T';

(* flname has been blank-filled. *)

ibwrtf (rdr,flname);

Turbo Pascal for Windows

var flname : PChar;

flname := 'Y.DAT';

ibwrtf (rdr,flname);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-129 Pascal

IBWRTF (continued) IBWRTF

Board Function Examples:

1. Write data to the device at listen address hex 2C (ASCII ,) from the file
Y.DAT on the current drive, and then unaddress the interface board
brd0 .

IBM/MS Pascal

var cmd : cbuf;

 flname : flbuf;

(* Perform addressing in preparation for *)

(* board write. *)

cmd[1] := chr(UNL);

cmd[2] := chr(16#40); (* MTA *)

cmd[3] := chr(16#2C); (* LAD *)

ibcmd (brd0,cmd,3);

flname[1] := 'Y';

flname[2] := '.';

flname[3] := 'D';

flname[4] := 'A';

flname[5] := 'T';

(* flname has been blank-filled. *)

ibwrtf (brd0,flname);

(* Unaddress the Talker and Listener. *)

cmd[1] := chr(UNT);

cmd[2] := chr(UNL);

ibcmd (brd0,cmd,2);

NI-488 Function Descriptions Chapter 3

Pascal 3-130 © National Instruments Corp.

IBWRTF (continued) IBWRTF

QuickPascal/Turbo Pascal

var cmd : cbuf;

 flname : flbuf;

(* Perform addressing in preparation for *)

(* board write. *)

cmd[1] := chr(UNL);

cmd[2] := chr($40); (* MTA *)

cmd[3] := chr($2C); (* LAD *)

ibcmd (brd0,cmd,3);

flname[1] := 'Y';

flname[2] := '.';

flname[3] := 'D';

flname[4] := 'A';

flname[5] := 'T';

(* flname has been blank-filled. *)

ibwrtf (brd0,flname);

(* Unaddress the Talker and Listener. *)

cmd[1] := chr(UNT);

cmd[2] := chr(UNL);

ibcmd (brd0,cmd,2);

Turbo Pascal for Windows

var cmd,flname : PChar;

(* Perform addressing in preparation *)

(* for board write. *)

cmd := '_'#40#2C; (* MTA LAD *)

ibcmd (brd0,cmd^,3);

flname := 'Y.DAT';

ibwrtf (brd0,flname);

(* Unaddress the Talker and Listener. *)

cmd := '_?';

ibcmd (brd0,cmd^,2);

2. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-131 Pascal

IBWRTI IBWRTI

Purpose: Write data from integer array.

Format: ibwrti (ud,iarr,cnt)

ibwrti is not available in Turbo Pascal and Turbo Pascal for Windows
because the ibwrt call is adequate for sending data from any type of
buffer. Pascal and QuickPascal, which have more rigid typing rules, require
different procedure declarations for array buffers of different types.

ud represents a device or an interface board. iarr is the array of data to
be sent. iarr is of type ibuf as defined in the header files DECL .PAS
and QPDECL .PAS . cnt specifies the maximum number of bytes to be
written. cnt is of type integer4 in Microsoft Pascal, longINT in
QuickPascal, and integer in IBM Pascal.

ibwrti is similar to the ibwrt function, which writes data from a
character array.

Device Function Examples:

1. Write 10 instruction bytes from the integer array wrt to the device
dvm .

var wrt : ibuf;

wrt[1] := 1;

wrt[2] := 2;

wrt[3] := 3;

wrt[4] := 4;

wrt[5] := 5;

ibwrti (dvm,wrt,10);

NI-488 Function Descriptions Chapter 3

Pascal 3-132 © National Instruments Corp.

IBWRTI (continued) IBWRTI

2. Write instruction bytes from integer array wrt terminated by a carriage
return and a linefeed (hex 0A) to device ptr . Linefeed is the EOS
character of the device.

IBM/MS Pascal

var wrt : ibuf;

wrt[1] := 1;

wrt[2] := 2;

wrt[3] := 3 + 16#0D * 256;

wrt[4] := 16#0A;

ibwrti (ptr,wrt,7);

QuickPascal

var wrt : ibuf;

wrt[1] := 1;

wrt[2] := 2;

wrt[3] := 3 + $0D * 256;

wrt[4] := $0A;

ibwrti (ptr,wrt,7);

Board Function Examples:

1. Write 10 instruction bytes from the integer array wrt to a device at
listen address hex 2F (ASCII /). (The GPIB board talk address is hex
40 or ASCII @.)

var cmd : cbuf;

 wrt : ibuf;

cmd[1] := '?'; (* UNL *)

cmd[2] := '@'; (* MTA *)

cmd[3] := '/'; (* LAD *)

ibcmd (brd,cmd,3);

(* Perform the board write. *)

wrt[1] := 1;

wrt[2] := 2;

wrt[3] := 3;

wrt[4] := 4;

wrt[5] := 5;

ibwrti (brd,wrt,10);

2. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-133 Pascal

IBWRTIA IBWRTIA

Purpose: Write data asynchronously from integer array.

Format: ibwrtia (ud,iarr,cnt)

ibwrtia is not available in Turbo Pascal and Turbo Pascal for Windows
because the ibwrta call is adequate for sending data from any type of
buffer. Pascal and QuickPascal, which have more rigid typing rules, require
different procedure declarations for array buffers of different types.

ud represents a device or an interface board. iarr is the array of data to
be sent. iarr is of type ibuf as defined in the header files DECL .PAS
and QPDECL .PAS . cnt specifies the maximum number of bytes to be
written. The data is sent in low-byte, high-byte order. cnt is of type
integer4 in Microsoft Pascal, longINT in QuickPascal, and integer
in IBM Pascal.

ibwrtia is similar to the ibwrta function, which writes data from a
character array.

Device Function Example:

Write 10 instruction bytes from integer array wrt to the device dvm
while performing other processing.

IBM/MS Pascal

var wrt : ibuf;

 mask : word;

wrt[1] := 1;

wrt[2] := 2;

wrt[3] := 3;

wrt[4] := 4;

wrt[5] := 5;

ibwrtia (dvm,wrt,10);

(* Perform other processing here. Then wait *)

(* for I/O completion or timeout. *)

mask := 16#4100; (* TIMO CMPL *)

ibwait (dvm,mask);

(* ibsta shows how the write terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

if (ibsta and ERR) <> 0 then error;

NI-488 Function Descriptions Chapter 3

Pascal 3-134 © National Instruments Corp.

IBWRTIA (continued) IBWRTIA

QuickPascal

var wrt : ibuf;

 mask : word;

wrt[1] := 1;

wrt[2] := 2;

wrt[3] := 3;

wrt[4] := 4;

wrt[5] := 5;

ibwrtia (dvm,wrt,10);

(* Perform other processing here. Then wait *)

(* for I/O completion or timeout. *)

mask := $4100; (* TIMO CMPL *)

ibwait (dvm,mask);

(* ibsta shows how the write terminated: on *)

(* CMPL, END, TIMO, or ERR. *)

if (ibsta and ERR) <> 0 then error;

Board Function Example:

Write 10 instruction bytes from the integer array wrt to a device at
listen address hex 2F (ASCII /) and then unaddress it. (The GPIB
board talk address is hex 40 or ASCII @.)

IBM/MS Pascal

var cmd : cbuf;

 wrt : ibuf;

 mask : word;

(* Perform addressing in preparation for board write. *)

cmd[1] := '?'; (* UNL *)

cmd[2] := '@'; (* MTA *)

cmd[3] := '/'; (* LAD *)

ibcmd (brd,cmd,3);

wrt[1] := 1; (* Perform the board write. *)

wrt[2] := 2;

wrt[3] := 3;

wrt[4] := 4;

wrt[5] := 5;

ibwrtia (brd,wrt,10);

(* Perform other processing here. Then wait *)

(* for I/O completion or timeout. *)

mask := 16#4100; (* TIMO CMPL *)

ibwait (bd,mask);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-135 Pascal

IBWRTIA (continued) IBWRTIA

QuickPascal

var cmd : cbuf;

 wrt : ibuf;

 mask : word;

(* Perform addressing in preparation for *)

(* board write. *)

cmd[1] := '?'; (* UNL *)

cmd[2] := '@'; (* MTA *)

cmd[3] := '/'; (* LAD *)

ibcmd (brd,cmd,3);

(* Perform the board write. *)

wrt[1] := 1;

wrt[2] := 2;

wrt[3] := 3;

wrt[4] := 4;

wrt[5] := 5;

ibwrtia (brd,wrt,10);

(* Perform other processing here. Then wait *)

(* for I/O completion or timeout. *)

mask := $4100; (* TIMO CMPL *)

ibwait (bd,mask);

NI-488 Function Descriptions Chapter 3

Pascal 3-136 © National Instruments Corp.

GPIB Example Programs

These examples illustrate the programming steps that you can follow to
program a representative IEEE-488 instrument from your personal
computer using the NI-488 functions. The applications are written in
IBM/MS Pascal, QuickPascal, Turbo Pascal, and Turbo Pascal for
Windows. The target instrument is a digital voltmeter (DVM). This
instrument is otherwise unspecified–that is, it is not a DVM
manufactured by any particular manufacturer. The following steps
explain how to use the driver to execute certain programming and
control sequences without explaining how to determine those sequences.

Because the instructions that are sent to program a device as well as the
data that might be returned from the device are called device-dependent
messages, the format and syntax of the messages used in this example
are unique to this device. Furthermore, the interface messages or bus
commands that must be sent to each device will also vary, but to a
lesser degree. The exact sequence of messages to program and to
control a particular device are contained in its documentation.

For example, the following sequence of actions is assumed to be
necessary to program this DVM to make and return measurements of a
high frequency AC voltage signal in the autoranging mode:

1. Initialize the GPIB interface circuits of the DVM so that it can
respond to messages.

2. Place the DVM in remote programming mode and turn off front
panel control.

3. Initialize the internal measurement circuits.

4. Instruct the meter to measure volts alternating current (VAC) using
auto-ranging (AUTO), to wait for a trigger from the Controller
before starting a measurement (TRIGGER 2), and to assert the
IEEE-488 Service Request signal line (SRQ) when the
measurement has been completed and the meter is ready to send
the result (*SRE 16).

5. For each measurement:

a. Send the TRIGGER command to the multimeter. The ibwrt
command "VAL1?" instructs the meter to send the next
triggered reading to its IEEE-488 output buffer.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-137 Pascal

b. Wait until the DVM asserts Service Request (SRQ) to indicate
that the measurement is ready to be read.

c. Serial poll the DVM to determine if the measured data is valid
or if a fault condition exists. You can find out by checking the
message available (MAV) bit, bit 4 in the status byte.

d. If the data is valid, read 10 bytes from the DVM.

6. End the session.

The example programs that follow are based on these assumptions:

• The GPIB board is the designated System Active Controller of the
GPIB.

• There is no change to the GPIB board default hardware settings.

• The only changes made to the software parameters are those
necessary to define the device DVM at primary address 1.

• There is only one GPIB board in use, and it is designated GPIB0.

• The primary listen and talk addresses of GPIB0 are hex 20 (ASCII
space) and hex 40 (ASCII @), respectively.

Note: In the example programs, the term Software Reference Manual
is used to refer to the NI-488.2 Software Reference Manual for
MS-DOS.

NI-488 Function Descriptions Chapter 3

Pascal 3-138 © National Instruments Corp.

IBM/MS Pascal Program – Device Functions

PROGRAM DPSAMP(input,output);

{$INCLUDE: 'decl.pas'}

type

 string40 = lstring(40);

var

 devname : nbuf; (* Device name buffer. nbuf is *)

(* defined in DECL.PAS as a *)

(* character array. *)

 wrt : cbuf; (* Data written to the Fluke 45 . *)

 rd : cbuf; (* Data received from the *)

(* Fluke 45. *)

 buffer : string40; (* Assigned the value of rd. *)

(* Will be converted to *)

(* numeric. *)

 sendstr : string40; (* GPIB command string. *)

 mask : word; (* Wait mask. *)

 dvm : integer; (* Device number. *)

 i,m : integer; (* FOR loop index. *)

 spr : integer; (* Serial poll response byte. *)

 num : real4; (* Numeric conversion of rd. *)

 sum : real4; (* Accumulator of measurements. *)

(* ===

 * Procedure dvmerr

 * The dmverr procedure notifies you that the Fluke 45

 * returned an invalid serial poll response byte. The

 * error message is printed along with the serial poll

 * response byte.

 *

 * The NI-488 function ibonl is called to disable the

 * hardware and software.

 * ==*)

procedure dvmerr(msg:string40; spr:integer);

begin

 writeln (msg);

 writeln('Status Byte = ', spr);

(* Call the ibonl function to disable the hardware and *)

(* software. *)

 ibonl (dvm,0);

end;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-139 Pascal

(* ==

 * Procedure gpiberr

 * The gpiberr procedure notifies you that an NI-488 routine

 * failed by printing an error message. The status variable

 * ibsta is printed in decimal along with the mnemonic

 * meaning of the bit position. The status variable iberr

 * is printed in decimal along with the mnemonic meaning

 * of the decimal value. The status variable ibcnt is

 * printed in decimal.

 *

 * The NI-488 function ibonl is called to disable the

 * hardware and software.

 * ==*)

procedure gpiberr(msg:string40);

begin

 writeln (msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcnt);

NI-488 Function Descriptions Chapter 3

Pascal 3-140 © National Instruments Corp.

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (dvm,0);

end;

(* ===

 * Procedure readdata

 * The readdata procedure reads 10 measurements from the

 * Fluke 45 and calculates the average of the measurements.

 *

 * The return statement terminates this procedure.

 * ==*)

procedure readdata;

begin

(* Initialize the accumulator of the 10 measurements *)

(* to zero. *)

 sum := 0.0;

(* Establish a FOR loop to read the 10 measurements. *)

(* The variable m serves as the counter of the FOR loop. *)

 for m := 1 to 10 do

 begin

 (* Trigger the Fluke 45. If the error bit (ERR) is *)

 (* set in ibsta, call gpiberr with an error message. *)

 ibtrg(dvm);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibtrg Error');

 return

 end;

 (* Request the triggered measurement by sending *)

 (* the instruction 'VAL1?'. If the error bit (ERR) *)

 (* is set in ibsta, call gpiberr with an error *)

 (* message. *)

 sendstr := 'VAL1?';

 for i:= 1 to 5 do

 wrt[i] := sendstr[i];

 ibwrt (dvm,wrt,5);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibwrt Error');

 return

 end;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-141 Pascal

 (* Wait for the Fluke 45 to request service (RQS) or *)

 (* wait for the Fluke 45 to timeout (TIMO). The *)

 (* default timeout period is 10 seconds. RQS is *)

 (* detected by bitposition 11 (hex 800). TIMO is *)

 (* detected by bit position 14 (hex 4000). These *)

 (* status bits are listed under the NI-488 function *)

 (* ibwait in the Software Reference Manual. If the *)

 (* error bit (ERR) or the timeout bit (TIMO) is set *)

 (* in ibsta, call gpiberr with an error message. *)

 mask := 16#4800; (* RQS + TIMO *)

 ibwait(dvm, mask);

 if (ibsta and (ERR or TIMO)) <> 0 then

 begin

 gpiberr('Ibwait Error');

 return

 end;

 (* Read the Fluke 45 serial poll status byte. If *)

 (* the error bit (ERR) is set in ibsta, call gpiberr *)

 (* with an error message. *)

 spr := 0;

 ibrsp(dvm,spr);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibrsp Error');

 return

 end;

 (* If the returned status byte is hex 50, the Fluke *)

 (* 45 has valid data to send; otherwise, it has a *)

 (* fault condition to report. If the status byte *)

 (* is not hex 50, call dvmerr with an error message. *)

 if (spr <> 16#50) then

 begin

 dvmerr('Fluke 45 Error', spr);

 return

 end;

 (* Read the Fluke 45 measurement. If the error bit *)

 (* (ERR) is set in ibsta, call gpiberr with an error *)

 (* message. *)

 ibrd (dvm, rd, 10);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibrd Error');

 return

 end;

 (* Assign the array rd to the string buffer. Remove *)

 (* spaces in buffer. Print the measurement. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-142 © National Instruments Corp.

 buffer.len := lobyte(ibcnt) - 1;

 for i := 1 to (ibcnt - 1) do

 buffer[i] := rd[i];

 writeln('Reading: ', buffer);

 writeln;

 (* Convert the measurement to its numeric value. If *)

 (* there is an error during the conversion, terminate *)

 (* this program. If an error does not occur during *)

 (* the conversion, add the value to the accumulator. *)

 if decode(buffer,num) then

 sum := sum + num

 else

 return;

 end; (* Continue the FOR loop until 10 *)

 (* measurements are read. *)

(* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ===

 * MAIN

 * ===*)

BEGIN

 writeln('Read 10 measurements from the Fluke 45...');

 writeln;

(* Assign a unique identifier to the Fluke 45 and store *)

(* in the variable DVM. The name DVM is the name you *)

(* configured for the Fluke 45 using IBCONF.EXE. If DVM *)

(* is less than zero, call gpiberr with an error message. *)

 devname := 'DVM ';

 dvm := ibfind (devname);

 if (dvm < 0) then

 begin

 gpiberr('Ibfind Error');

 return

 end;

(* Clear the internal or device functions of the Fluke 45 . *)

(* If the error bit (ERR) is set in ibsta, call gpiberr *)

(* with an error message. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-143 Pascal

 ibclr (dvm);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibclr Error');

 return

 end;

(* Reset the Fluke 45 by issuing the reset (*RST) command. *)

(* Instruct the Fluke 45 to measure the volts alternating *)

(* current (VAC) using auto-ranging (AUTO), to wait for a *)

(* trigger from the GPIB interface board (TRIGGER 2), and *)

(* to assert the IEEE-488 Service Request line, SRQ, when *)

(* the measurement has been completed and the Fluke 45 is *)

(* ready to send the result (*SRE 16). If the error bit *)

(* (ERR) is set in ibsta, call gpiberr with an error message. *)

 sendstr := '*RST; VAC; AUTO; TRIGGER 2; *SRE 16';

 for i:= 1 to 35 do

 wrt[i] := sendstr[i];

 ibwrt (dvm,wrt,35);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibwrt Error');

 return

 end;

(* Call readdata to read 10 measurements from Fluke 45 . *)

 readdata;

(* Call the ibonl function to disable the device DVM. *)

 ibonl (dvm,0);

end.

NI-488 Function Descriptions Chapter 3

Pascal 3-144 © National Instruments Corp.

IBM/MS Pascal Program – Board Functions

PROGRAM BPSAMP(input,output);

{$INCLUDE: 'decl.pas'}

type

 string40 = lstring(40);

var

 bdname : nbuf; (* Board name buffer. nbuf is *)

(* defined in DECL.PAS as a *)

(* character array. *)

 cmd : cbuf; (* Array of commands. cbuf is *)

(* defined in DECL.PAS as a *)

(* character array. *)

 wrt : cbuf; (* Data written to the *)

(* Fluke 45 . *)

 rd : cbuf; (* Data received from the *)

(* Fluke 45. *)

 buffer : string40; (* Assigned the value of rd. *)

(* Will be converted to numeric . *)

 sendstr : string40; (* GPIB command string. *)

 mask : word; (* Wait mask. *)

 bd : integer; (* Board number. *)

 i,m : integer; (* FOR loop index. *)

 num : real4; (* Numeric conversion of rd. *)

 sum : real4; (* Accumulator of measurements. *)

 (* ==
* Procedure dvmerr

* The dmverr procedure notifies you that the Fluke 45

* returned an invalid serial poll response byte. The

* error message is printed along with the serial poll

* response byte.

*

* The NI-488 function ibonl is called to disable the

* hardware and software.

*

* ===*)

procedure dvmerr(msg:string40; rdchar:char);

begin

 writeln (msg);

 writeln('Status Byte = ', ord(rdchar));

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (bd,0);

end;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-145 Pascal

(* ==

 * Procedure gpiberr

 * The gpiberr procedure notifies you that an NI-488 routine

 * failed by printing an error message. The status variable

 * ibsta is printed in decimal along with the mnemonic

 * meaning of the bit position. The status variable iberr

 * is printed in decimal along with the mnemonic meaning of

 * the decimal value. The status variable ibcnt is printed

 * in decimal.

 *

 * The NI-488 function ibonl is called to disable the

 * hardware and software.

 * ===*)

procedure gpiberr(msg:string40);

begin

 writeln (msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcnt);

NI-488 Function Descriptions Chapter 3

Pascal 3-146 © National Instruments Corp.

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (bd,0);

end;

(* ==

 * Procedure readdata

 * The readdata procedure reads 10 measurements from the

 * Fluke 45 and calculates the average of the measurements.

 *

 * The return statement terminates this procedure.

 * ===*)

procedure readdata;

begin

(* Initialize the accumulator of the 10 measurements *)

(* to zero. *)

 sum := 0.0;

(* Establish a FOR loop to read the 10 measurements. *)

(* The variable m serves as the counter of the FOR loop. *)

 for m := 1 to 10 do

 begin

(* Address the Fluke 45 to listen (hex 21 or ASCII "!") *)

(* and address the GPIB interface board to talk *)

(* (hex 20 or ASCII "@"). These commands can be *)

(* found in Appendix A of the Software Reference *)

(* Manual. If the error bit (ERR) is set in ibsta, *)

(* call gpiberr with an error message. *)

 cmd[1] := '!';

 cmd[2] := '@';

 ibcmd (bd,cmd,2);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibcmd Error');

 return

 end;

 (* Trigger the Fluke 45 by sending the trigger *)

 (* (GET) command (hex 08) message. If the error *)

 (* bit (ERR) is set in ibsta, call gpiberr with *)

 (* an error message. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-147 Pascal

 cmd[1] := chr(GET);

 ibcmd (bd,cmd,1);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibcmd Error');

 return

 end;

(* Request the triggered measurement by sending *)

(* the instruction "VAL1?". If the error bit (ERR) *)

(* is set in ibsta, call gpiberr with an error *)

(* message. *)

 sendstr := 'VAL1?';

 for i := 1 to 5 do

 wrt[i] := sendstr[i];

 ibwrt (bd,wrt,5);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibwrt Error');

 return

 end;

(* Wait for the Fluke 45 to assert the Service *)

(* Request (SRQ) line or wait for the Fluke 45 to *)

(* timeout (TIMO).The default timeout period is 10 *)

(* seconds. SRQ is detected by bit position 12 *)

(* (hex 1000, SRQI). TIMO is detected by bit *)

(* position 14 (hex 4000). These status bits are *)

(* listed under the NI-488 function ibwait in *)

(* the Software Reference Manual. If error bit *)

(* (ERR) or the timeout bit (TIMO) is set in ibsta, *)

(* call gpiberr with an error message. *)

 mask := 16#5000; (* SRQI + TIMO *)

 ibwait(bd, mask);

 if (ibsta and (ERR or TIMO)) <> 0 then

 begin

 gpiberr('Ibwait Error');

 return

 end;

(* Serial poll the Fluke 45. Unaddress bus devices *)

(* by sending the untalk (UNT) command (hex 5F or *)

(* ASCII "_") and the unlisten (UNL) command (hex *)

(* 3F or ASCII "?"). Send the Serial Poll Enable *)

(* (SPE) command (hex 18) and the Fluke 45 talk *)

(* address (hex 41 or ASCII "A"). Address the GPIB *)

(* interface board to listen (hex 20 or ASCII *)

(* space). These commands can be found in *)

(* Appendix A of the Software Reference Manual. *)

(* If the error bit (ERR) is set in ibsta, call *)

(* gpiberr with an error message. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-148 © National Instruments Corp.

 cmd[1] := '_';

 cmd[2] := '?';

 cmd[3] := chr(SPE);

 cmd[4] := 'A';

 cmd[5] := ' ';

 ibcmd(bd, cmd, 5);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibcmd Error');

 return

 end;

(* Read the Fluke 45 serial poll status byte. If the *)

(* error bit (ERR) is set in ibsta, call gpiberr *)

(* with an error message. *)

 ibrd(bd, rd, 1);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibrd Error');

 return

 end;

(* If the returned status byte is hex 50, the Fluke 45 *)

(* has valid data to send; otherwise, it has a fault *)

(* condition to report. If the status byte is not *)

(* hex 50, call dvmerr with an error message. *)

 if (ord(rd[1]) <> 16#50) then

 begin

 dvmerr('Fluke 45 Error', rd[1]);

 return

 end;

(* Complete the serial poll by sending the Serial Poll *)

(* Disable (SPD) command, hex 19. This command can be *)

(* found in Appendix A of the Software Reference *)

(* Manual. If the error bit (ERR) is set in ibsta, *)

(* call gpiberr with an error message. *)

 cmd[1] := chr(SPD);

 ibcmd(bd, cmd, 1);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibcmd Error');

 return

 end;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-149 Pascal

(* Read the Fluke 45 measurement. If the error bit (ERR) *)

(* is set in ibsta, call gpiberr with an error message. *)

 ibrd (bd,rd,10);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibrd Error');

 return

 end;

 (* Assign the array rd to the string buffer. Remove *)

 (* spaces in buffer. Print the measurement. *)

 buffer.len := lobyte(ibcnt) - 1;

 for i := 1 to (ibcnt - 1) do

 buffer[i] := rd[i];

 writeln('Reading: ', buffer);

 writeln;

 (* Convert the measurement to its numeric value. If *)

 (* there is an error during the conversion, terminate *)

 (* this program. If an error does not occur during *)

 (* the conversion, add the value to the accumulator. *)

 if decode(buffer,num) then

 sum := sum + num

 else

 return;

 end; (* Continue the FOR loop until 10 *)

 (* measurements are read. *)

 (* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ===

 * MAIN

 * ==*)

BEGIN

 writeln('Read 10 measurements from the Fluke 45...');

 writeln;

(* Assign a unique identifier to board 0 and store in *)

(* the variable bd. The name 'GPIB0' is the default *)

(* name of board 0. If bd is less than zero, call *)

(* gpiberr with an error message. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-150 © National Instruments Corp.

 bdname := 'GPIB0 ';

 bd := ibfind (bdname);

 if (bd < 0) then

 begin

 gpiberr('Ibfind Error');

 return

 end;

(* Send the Interface Clear (IFC) message. This action *)

(* initializes the GPIB interface board and makes the *)

(* interface board Controller-In-Charge. If the error *)

(* bit (ERR) is set in ibsta, call gpiberr with an *)

(* error message. *)

 ibsic (bd);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibsic Error');

 return

 end;

(* Turn on the Remote Enable (REN) signal. The device *)

(* does not actually enter remote mode until it receives *)

(* its listen address. If the error bit (ERR) is set in *)

(* ibsta, call gpiberr with an error message. *)

 ibsre (bd,1);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibsre Error');

 return

 end;

(* Inhibit front panel control with the Local Lockout *)

(* (LLO) command (hex 11). Place the Fluke 45 in remote *)

(* mode by addressing it to listen (hex 21 or ASCII "!"). *)

(* Send the Device Clear (DCL) message to clear internal *)

(* device functions (hex 14). Address the GPIB interface *)

(* board to talk (hex 20 or ASCII "@"). These commands *)

(* can be found in Appendix A of the Software Reference *)

(* Manual. If the error bit (ERR) is set in ibsta, call *)

(* gpiberr with an error message. *)

 cmd[1] := chr(LLO);

 cmd[2] := chr(DCL);

 cmd[3] := '!';

 cmd[4] := '@';

 ibcmd (bd,cmd,4);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibcmd Error');

 return

 end;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-151 Pascal

(* Reset the Fluke 45 by issuing the reset (*RST) command. *)

(* Instruct the Fluke 45 to measure the volts alternating *)

(* current (VAC) using auto-ranging (AUTO), to wait for a *)

(* trigger from the GPIB interface board (TRIGGER 2), and *)

(* to assert the IEEE-488 Service Request line, SRQ, when *)

(* the measurement has been completed and the Fluke 45 is *)

(* ready to send the result (*SRE 16). If the error bit *)

(* (ERR) is set in ibsta, call gpiberr with an error *)

(* message. *)

 sendstr := '*RST; VAC; AUTO; TRIGGER 2; *SRE 16';

 for i:= 1 to 35 do

 wrt[i] := sendstr[i];

 ibwrt (bd,wrt,35);

 if (ibsta and ERR) <> 0 then

 begin

 gpiberr('Ibwrt Error');

 return

 end;

(* Call readdata to read 10 measurements from the *)

(* Fluke 45. *)

 readdata;

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (bd,0);

END.

NI-488 Function Descriptions Chapter 3

Pascal 3-152 © National Instruments Corp.

QuickPascal Program – Device Functions

PROGRAM DQPSAMP(input,output);

{$I qpdecl.pas}

const

 maxlen = 10; (* Maximum length of data array. *)

var

 devname : nbuf; (* Device name buffer. nbuf is *)

(* defined in QPDECL.PAS as a *)

(* character array. *)

 wrt : cbuf; (* Data written to the *)

(* Fluke 45. *)

 rd : cbuf; (* Data received from the *)

(* Fluke 45. *)

 buffer : string[maxlen];(* Assigned the value of rd. *)

(* Will be converted to *)

(* numeric. *)

 sendstr : string[40]; (* GPIB command string. *)

 mask : integer; (* Wait mask. *)

 dvm : integer; (* Device number. *)

 i,m : integer; (* FOR loop index. *)

 spr : integer; (* Serial poll response byte. *)

 code : integer; (* Procedure VAL parameter. *)

(* VAL is Turbo Pascal *)

(* conversion procedure. *)

 num : real; (* Numeric conversion of rd. *)

 sum : real; (* Accumulator of measurements. *)

(* ==

 * Procedure dvmerr

 * The dvmerr procedure notifies you that the Fluke 45

 * returned an invalid serial poll response byte. The

 * error message is printed along with the serial poll

 * response byte.

 * The NI-488 function ibonl is called to disable the

 * hardware and software.
 *

 * The halt procedure terminates this program.

 * ===*)

procedure dvmerr(msg:string; spr:integer);

begin

 writeln (msg);

 writeln('Status Byte = ', spr);

(* Call the ibonl function to disable the hardware *)

(* and software. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-153 Pascal

 ibonl (dvm,0);

 halt;

end;

(* ==

 * Procedure gpiberr

 * The gpiberr procedure notifies you that an NI-488 routine

 * failed by printing an error message. The status variable

 * ibsta is printed in decimal along with the mnemonic

 * meaning of the bit position. The status variable iberr

 * is printed in decimal along with the mnemonic meaning of

 * the decimal value. The status variable ibcnt is printed

 * in decimal.

 *

 * The NI-488 function ibonl is called to disable the

 * hardware and software.

 *

 * The halt command stops execution of this program.

 * ==*)

procedure gpiberr(msg:string);

begin

 writeln (msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

NI-488 Function Descriptions Chapter 3

Pascal 3-154 © National Instruments Corp.

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcnt);

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (dvm,0);

 halt;

end;

(* ===

 * Procedure readdata

 * The readdata procedure reads 10 measurements from the

 * Fluke 45 and calculates the average of the measurements.

 *

 * The exit procedure terminates this procedure.

 * ==*)

procedure readdata;

begin

(* Initialize the accumulator of the 10 measurements *)

(* to zero. *)

 sum := 0.0;

(* Establish a FOR loop to read the 10 measurements. *)

(* The variable m serves as the counter of the FOR loop. *)

 for m := 1 to 10 do

 begin

 (* Trigger the Fluke 45. If the error bit (ERR) *)

 (* is set in ibsta, call gpiberr with an error *)

 (* message. *)

 ibtrg(dvm);

 if (ibsta and ERR) <> 0 then gpiberr('Ibtrg Error');

 (* Request the triggered measurement by sending *)

 (* the instruction "VAL1?". If the error bit *)

 (* (ERR) is set in ibsta, call gpiberr with an *)

 (* error message. *)

 sendstr := 'VAL1?';

 for i:= 1 to 5 do

 wrt[i] := sendstr[i];

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-155 Pascal

 ibwrt (dvm,wrt,5);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

(* Wait for the Fluke 45 to request service *)

(* (RQS) or wait for the Fluke 45 to timeout *)

(* (TIMO). The default timeout period is 10 *)

(* seconds. RQS is detected by bit position 11 *)

(* (hex 800). TIMO is is detected by bit *)

(* position 14 (hex 4000). These status bits are *)

(* listed under the NI-488 function ibwait in *)

(* the Software Reference Manual. If the error *)

(* bit (ERR) or the timeout bit (TIMO) is set in *)

(* ibsta, call gpiberr with an error message. *)

mask := $4800; (* RQS + TIMO *)

ibwait(dvm, mask);

if (ibsta and (ERR or TIMO)) <> 0 then

gpiberr('Ibwait Error');

 (* Read the Fluke 45 serial poll status byte. If the *)

 (* error bit (ERR) is set in ibsta, call gpiberr *)

 (* with an error message. *)

spr := 0;

ibrsp(dvm,spr);

if (ibsta and ERR) <> 0 then gpiberr('Ibrsp Error');

 (* If the returned status byte is hex 50, the Fluke 45 *)

 (* has valid data to send; otherwise, it has a fault *)

 (* condition to report. If the status byte is not *)

 (* hex 50, call dvmerr with an error message. *)

if (spr <> $50) then dvmerr('Fluke 45 Error', spr);

 (* Read the Fluke 45 measurement. If the error bit (ERR) *)

 (* is set in ibsta, call gpiberr with an error message. *)

ibrd (dvm, rd, 10);

if (ibsta and ERR) <> 0 then gpiberr('Ibrd Error');

 (* Assign the array rd to the string buffer. Remove *)

 (* spaces in buffer. Print the measurement. *)

 for i:= 1 to (ibcnt - 1) do

 buffer[i] := rd[i];

 buffer[0] := chr(ibcnt - 1);

 delete(buffer, ibcnt, maxlen - ibcnt + 1);

 writeln('Reading: ', buffer);

 writeln;

 (* Convert the measurement to its numeric value. If *)

 (* there is an error during the conversion, print the *)

 (* index of the character that did not convert and *)

 (* terminate this program. If an error does not occur *)

 (* during the conversion, add the value to the *)

 (* accumulator.

NI-488 Function Descriptions Chapter 3

Pascal 3-156 © National Instruments Corp.

 val(buffer, num, code);

 if code <> 0 then

 begin

 writeln('Error at position: ', code);

 exit;

 end

 else

 sum := sum + num;

 end; (* Continue the FOR loop until 10 measurements *)

 (* are read. *)

 (* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ==

 * MAIN

 * ===*)

BEGIN

 writeln('Read 10 measurements from the Fluke 45...');

 writeln;

(* Assign a unique identifier to the Fluke 45 and store *)

(* in the variable DVM. The name DVM is the name you *)

(* configured for the Fluke 45 using IBCONF.EXE. If DVM *)

(* is less than zero, call gpiberr with an error message. *)

 devname := 'DVM ';

 dvm := ibfind (devname);

 if (dvm < 0) then gpiberr('Ibfind Error');

(* Clear the internal or device functions of the Fluke 45 . *)

(* If the error bit (ERR) is set in ibsta, call gpiberr *)

(* with an error message. *)

 ibclr (dvm);

 if (ibsta and ERR) <> 0 then gpiberr('Ibclr Error');

(* Reset the Fluke 45 by issuing the reset (*RST) *)

(* command. Instruct the Fluke 45 to measure the volts *)

(* alternating current (VAC) using auto-ranging (AUTO), *)

(* to wait for a trigger from the GPIB interface board *)

(* (TRIGGER 2), and to assert the IEEE-488 Service *)

(* Request line, SRQ, when the measurement has been *)

(* completed and the Fluke 45 is ready to send the *)

(* result(*SRE 16). If the error bit (ERR) is set *)

(* in ibsta, call gpiberr with an error message. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-157 Pascal

 sendstr := '*RST; VAC; AUTO; TRIGGER 2; *SRE 16';

 for i:= 1 to 35 do

 wrt[i] := sendstr[i];

 ibwrt (dvm,wrt,35);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

(* Call readdata to read 10 measurements from the *)

(* Fluke 45 . *)

 readdata;

(* Call the ibonl function to disable the device DVM. *)

 ibonl (dvm,0);

end.

NI-488 Function Descriptions Chapter 3

Pascal 3-158 © National Instruments Corp.

QuickPascal Program – Board Functions

PROGRAM BQPSAMP(input,output);

{$I qpdecl.pas}

const

 maxlen = 10; (* Maximum length of data *)

(* array. *)

Var

 bdname : nbuf; (* Board name buffer. nbuf *)

(* is defined in QPDECL.PAS as *)

(* a character array. *)

 cmd : cbuf; (* Array of commands. cbuf is *)

(* defined in QPECL.PAS as a *)

(* character array. *)

 wrt : cbuf; (* Data written to the Fluke 45. *)

 rd : cbuf; (* Data received from the *)

(* Fluke 45. *)

 buffer : string[maxlen];(* Assigned the value of rd. *)

(* Will be converted to *)

(* numeric. *)

 sendstr : string[40]; (* GPIB command string. *)

 mask : integer; (* Wait mask. *)

 bd : integer; (* Board number. *)

 i,m : integer; (* FOR loop index. *)

 code : integer; (* Procedure VAL parameter. *)

(* VAL is a Turbo Pascal *)

(* conversion procedure. *)

 num : real; (* Numeric conversion of rd. *)

 sum : real; (* Accumulator of measurements. *)

(* ===

 * Procedure dvmerr

 * The dvmerr procedure notifies you that the Fluke 45

 * returned an invalid serial poll response byte. The

 * error message is printed along with the serial poll

 * response byte.

 *

 * The NI-488 function ibonl is called to disable the

 * hardware and software.

 *

 * The halt procedure terminates this procedure.

 * ==*)

procedure dvmerr(msg:string; rdchar:char);

begin

 writeln (msg);

 writeln('Status Byte = ', ord(rdchar));

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-159 Pascal

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (bd,0);

 halt;

end;

(* ==

* Procedure gpiberr

* The gpiberr procedure notifies you that an NI-488 routine

* failed by printing an error message. The status variable

* ibsta is printed in decimal along with the mnemonic

* meaning of the bit position. The status variable iberr

* is printed in decimal along with the mnemonic meaning of

* the decimal value. The status variable ibcnt will be

* printed in decimal.
*

* The NI-488 function ibonl is called to disable the

* hardware and software.
*

* The halt procedure stops execution of this program.

* ===*)

procedure gpiberr(msg:string);

begin

 writeln (msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

NI-488 Function Descriptions Chapter 3

Pascal 3-160 © National Instruments Corp.

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcnt);

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (bd,0);

 halt;

end;

(* ===

 * Procedure readdata

 * The readdata procedure reads 10 measurements from the

 * Fluke 45 and calculates the average of the measurements.

 *

 * The exit procedure terminates this procedure.

 * ==*)

procedure readdata;

begin

(* Initialize the accumulator of the 10 measurements *)

(* to zero. *)

 sum := 0.0;

(* Establish a FOR loop to read the 10 measurements. *)

(* The variable m serves as the counter of the FOR loop. *)

 for m := 1 to 10 do

 begin

 (* Address the Fluke 45 to listen (hex 21 or ASCII "!") *)

 (* and address the GPIB interface board to talk (hex *)

 (* 20 or ASCII "@"). These commands can be found in *)

 (* Appendix A of the Software Reference Manual. If *)

 (* the error bit (ERR) is set in ibsta, call gpiberr *)

 (* with an error message. *)

cmd[1] := '!';

cmd[2] := '@';

ibcmd (bd,cmd,2);

if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-161 Pascal

 (* Trigger the Fluke 45 by sending the trigger (GET) *)

 (* command (hex 08) message. If the error bit (ERR) is *)

 (* set in ibsta, call gpiberr with an error message. *)

cmd[1] := chr(GET);

ibcmd (bd,cmd,1);

if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

 (* Request the triggered measurement by sending the *)

 (* instruction "VAL1?". If the error bit (ERR) is *)

 (* set in ibsta, call gpiberr with an error message. *)

 sendstr := 'VAL1?';

 for i := 1 to 5 do

 wrt[i] := sendstr[i];

 ibwrt (bd,wrt,5);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

 (* Wait for the Fluke 45 to assert the Service *)

 (* Request (SRQ) line or wait for the Fluke 45 to *)

 (* timeout (TIMO). The default timeout period is 10 *)

 (* seconds.SRQ is detected by bit position 12 *)

 (* (hex 1000, SRQI).TIMO isdetected by bit position *)

 (* 14 (hex 4000). These status bits are listed *)

 (* under the NI-488 function ibwait in the Software *)

 (* Reference Manual. If error bit (ERR) or the *)

 (* timeout bit (TIMO) is set in ibsta, call gpiberr *)

 (* with an error message. *)

mask := $5000; (* SRQI + TIMO *)

ibwait(bd, mask);

if (ibsta and (ERR or TIMO) <> 0 then

gpiberr('Ibwait Error');

 (* Serial poll the Fluke 45. Unaddress bus devices *)

 (* by sending the untalk (UNT) command (hex 5F or *)

 (* ASCII "_") and the unlisten (UNL) command *)

 (* (hex 3F or ASCII "?"). Send the Serial Poll *)

 (* Enable (SPE) command (hex 18) and the Fluke 45 *)

 (* talk address (hex 41 or ASCII "A"). Address the *)

 (* GPIB interface board to listen (hex 20 or ASCII *)

 (* space). These commands can be found in Appendix A *)

 (* of the Software Reference Manual. If the error *)

 (* bit (ERR) is set in ibsta, call gpiberr with an *)

 (* error message. *)

cmd[1] := '_';

cmd[2] := '?';

cmd[3] := chr(SPE);

cmd[4] := 'A';

cmd[5] := ' ';

ibcmd(bd, cmd, 5);

if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

NI-488 Function Descriptions Chapter 3

Pascal 3-162 © National Instruments Corp.

 (* Read the Fluke 45 serial poll status byte. *)

 (* If the error bit (ERR) is set in ibsta, call *)

 (* gpiberr with an error message. *)

 ibrd(bd, rd, 1);

 if (ibsta and ERR) <> 0 then gpiberr('Ibrd Error');

 (* If the returned status byte is hex 50, the *)

 (* Fluke 45 has valid data to send; otherwise, it *)

 (* has a fault condition to report. If the status *)

 (* byte is not hex 50, call dvmerr with an error *)

 (* message. *)

 if (ord(rd[1]) <> $50) then dvmerr('Fluke 45 Error',
 rd[1]);

 (* Complete the serial poll by sending the Serial *)

 (* Poll Disable (SPD) command, hex 19. This command *)

 (* can be found in Appendix A of the Software *)

 (* Reference Manual. If the error bit (ERR) is set *)

 (* in ibsta, call gpiberr with an error message. *)

 cmd[1] := chr(SPD);

 ibcmd(bd, cmd, 1);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

 (* Read the Fluke 45 measurement. If the error bit *)

 (* (ERR) is set in ibsta, call gpiberr with an *)

 (* error message. *)

 ibrd (bd,rd,10);

 if (ibsta and ERR) <> 0 then gpiberr('Ibrd Error');

 (* Assign the array rd to the string buffer. Remove *)

 (* spaces in buffer. Print the measurement. *)

 for i:= 1 to (ibcnt - 1) do

 buffer[i] := rd[i];

 buffer[0] := chr(ibcnt - 1);

 delete(buffer, ibcnt, maxlen - ibcnt + 1);

 writeln('Reading: ', buffer);

 writeln;

 (* Convert the measurement to its numeric value. If *)

 (* there is an error during the conversion, print *)

 (* the index of the character that did not convert *)

 (* and terminate this program. If an error does not *)

 (* occur during the conversion, add the value to the *)

 (* accumulator. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-163 Pascal

 val(buffer, num, code);

 if code <> 0 then

 begin

 writeln('Error at position: ', code);

 exit;

 end

 else

 sum := sum + num;

 end; (* Continue the FOR loop until 10 *)

 (* measurements are read. *)

(* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ===

 * MAIN

 * ==*)

BEGIN

 writeln('Read 10 measurements from the Fluke 45...');

 writeln;

(* Assign a unique identifier to board 0 and store in *)

(* the variable bd. The name 'GPIB0' is the default name *)

(* of board 0. If bd is less than zero, call gpiberr *)

(* with an error message. *)

 bdname := 'GPIB0 ';

 bd := ibfind (bdname);

 if (bd < 0) then gpiberr('Ibfind Error');

(* Send the Interface Clear (IFC) message. This action *)

(* initializes the GPIB interface board and makes the *)

(* interface board Controller-In-Charge. If the error *)

(* bit (ERR) is set in ibsta, call gpiberr with an error *)

(* message. *)

 ibsic (bd);

 if (ibsta and ERR) <> 0 then gpiberr('Ibsic Error');

(* Turn on the Remote Enable (REN) signal. The device *)

(* does not actually enter remote mode until it receives *)

(* its listen address. If the error bit (ERR) is set in *)

(* ibsta, call gpiberr with an error message. *)

 ibsre (bd,1);

 if (ibsta and ERR) <> 0 then gpiberr('Ibsre Error');

NI-488 Function Descriptions Chapter 3

Pascal 3-164 © National Instruments Corp.

(* Inhibit front panel control with the Local Lockout *)

(* (LLO) command (hex 11). Place the Fluke 45 in remote *)

(* mode by addressing it to listen (hex 21 or ASCII "!") . *)

(* Send the Device Clear (DCL) message to clear internal *)

(* device functions (hex 14). Address the GPIB *)

(* interface board to talk (hex 20 or ASCII "@"). These *)

(* commands can be found in Appendix A of the Software *)

(* Reference Manual. If the error bit (ERR) is set *)

(* in ibsta, call gpiberr with an error message. *)

 cmd[1] := chr(LLO);

 cmd[2] := chr(DCL);

 cmd[3] := '!';

 cmd[4] := '@';

 ibcmd (bd,cmd,4);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

(* Reset the Fluke 45 by issuing the reset (*RST) command. *)

(* Instruct the Fluke 45 to measure the volts alternating *)

(* current (VAC) using auto-ranging (AUTO), to wait for a *)

(* trigger from the GPIB interface board (TRIGGER 2), *)

(* and to assert the IEEE-488 Service Request line, SRQ, *)

(* when the measurement has been completed and the *)

(* Fluke 45 is ready to send the result (*SRE 16). If *)

(* the error bit (ERR) is set in ibsta, call gpiberr *)

(* with an error message. *)

 sendstr := '*RST; VAC; AUTO; TRIGGER 2; *SRE 16';

 for i:= 1 to 35 do

 wrt[i] := sendstr[i];

 ibwrt (bd,wrt,35);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

(* Call readdata to read 10 measurements from the *)

(* Fluke 45. *)

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (bd,0);

END.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-165 Pascal

Turbo Pascal Program – Device Functions

PROGRAM DTPSAMP(input,output);

uses tpdecl;

const

 maxlen = 10; (* Maximum length of data array *)

var

 devname : nbuf; (* Device name buffer. nbuf is *)

(* defined in TPDECL.PAS as a *)

(* character array. *)

 wrt : cbuf; (* Data written to the *)

(* Fluke 45. *)

 rd : cbuf; (* Data received from the *)

(* Fluke 45. *)

 buffer : string[maxlen];(* Assigned the value of rd. *)

(* Will be converted to *)

(* numeric. *)

 sendstr : string[40]; (* GPIB command string. *)

 mask : integer; (* Wait mask. *)

 dvm : integer; (* Device number. *)

 i,m : integer; (* FOR loop index. *)

 spr : integer; (* Serial poll response byte. *)

 code : integer; (* Procedure VAL parameter. *)

(* VAL is Turbo Pascal *)

(* conversion procedure. *)

 num : real; (* Numeric conversion of rd. *)

 sum : real; (* Accumulator of measurements. *)

(* ===

 * Procedure dvmerr

 * The dvmerr procedure notifies you that the Fluke 45

 * returned an invalid serial poll response byte. The error

 * message is printed along with the serial poll response

 * byte.

 * The NI-488 function ibonl is called to disable the

 * hardware and software.

 * The halt procedure terminates this program.

 * ==*)

procedure dvmerr(msg:string; spr:integer);

begin

 writeln (msg);

 writeln('Status Byte = ', spr);

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (dvm,0);

 halt;

end;

NI-488 Function Descriptions Chapter 3

Pascal 3-166 © National Instruments Corp.

(* ===

 * Procedure gpiberr

 * The gpiberr procedure notifies you that an NI-488 routine

 * failed by printing an error message. The status variable

 * ibsta is printed in decimal along with the mnemonic

 * meaning of the bit position. The status variable iberr

 * is printed in decimal along with the mnemonic meaning of

 * the decimal value. The status variable ibcnt is printed

 * in decimal.
 *

 * The NI-488 function ibonl is called to disable the

 * hardware and software.
 *

 * The halt procedure stops execution of this program.

 * ==*)

procedure gpiberr(msg:string);

begin

 writeln (msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcnt);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-167 Pascal

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (dvm,0);

 halt;

end;

(* ===

 * Procedure readdata

 * The readdata procedure reads 10 measurements from the

 * Fluke 45 and calculates the average of the measurements.

 *

 * The exit procedure terminates this procedure.

 * ===*)

procedure readdata;

begin

(* Initialize the accumulator of the 10 measurements *)

(* to zero. *)

 sum := 0.0;

(* Establish a FOR loop to read the 10 measurements. *)

(* The variable m serves as the counter of the FOR loop. *)

 for m := 1 to 10 do

 begin

 (* Trigger the Fluke 45. If the error bit (ERR) is *)

 (* set in ibsta, call gpiberr with an error message. *)

 ibtrg(dvm);

 if (ibsta and ERR) <> 0 then gpiberr('Ibtrg Error');

 (* Request the triggered measurement by sending the *)

 (* instruction "VAL1?". If the error bit (ERR) is *)

 (* set in ibsta, call gpiberr with an error message. *)

 sendstr := 'VAL1?';

 for i:= 1 to 5 do

 wrt[i] := sendstr[i];

 bwrt (dvm,wrt,5);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

 (* Wait for the Fluke 45 to request service (RQS) or *)

 (* wait for the Fluke 45 to timeout(TIMO). The *)

 (* default timeout period is 10 seconds. RQS is *)

 (* detected by bit position 11 (hex 800). TIMO is *)

 (* detected by bit position 14 (hex 4000). These *)

NI-488 Function Descriptions Chapter 3

Pascal 3-168 © National Instruments Corp.

 (* status bits are listed under the NI-488 function *)

 (* ibwait in the Software Reference Manual. If the *)

 (* error bit (ERR) or the timeout bit (TIMO) is set *)

 (* in ibsta, call gpiberr with an error message. *)

mask := $4800; (* RQS + TIMO *)

ibwait(dvm, mask);

if (ibsta and (ERR or TIMO)) <> 0 then

gpiberr('Ibwait Error');

 (* Read the Fluke 45 serial poll status byte. If *)

 (* the error bit (ERR) is set in ibsta, call gpiberr *)

 (* with an error message. *)

spr := 0;

ibrsp(dvm,spr);

if (ibsta and ERR) <> 0 then gpiberr('Ibrsp Error');

 (* If the returned status byte is hex 50, the Fluke 45 *)

 (* has valid data to send; otherwise, it has a fault *)

 (* condition to report. If the status byte is not *)

 (* hex 50, call dvmerr with an error message. *)

if (spr <> $50) then dvmerr('Fluke 45 Error', spr);

 (* Read the Fluke 45 measurement. If the error *)

 (* bit (ERR) is set in ibsta, call gpiberr with an *)

 (* error message. *)

ibrd (dvm, rd, 10);

if (ibsta and ERR) <> 0 then gpiberr('Ibrd Error');

 (* Assign the array rd to the string buffer. Remove *)

 (* spaces in buffer. Print the measurement. *)

 for i:= 1 to (ibcnt - 1) do

 buffer[i] := rd[i];

 buffer[0] := chr(ibcnt - 1);

 writeln('Reading: ', buffer);

 writeln;

 (* Convert the measurement to its numeric value. *)

 (* If there is an error during the conversion, print *)

 (* the index of the character that did not convert *)

 (* and terminate this program. If an error does not *)

 (* occur during the conversion, add the value to *)

 (* the accumulator. *)

 val(buffer, num, code);

 if code <> 0 then

 begin

 writeln('Error at position: ', code);

 exit;

 end

 else

 sum := sum + num;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-169 Pascal

 end; (* Continue the FOR loop until 10 *)

 (* measurements are read. *)

(* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ===

 * MAIN

 * ==*)

BEGIN

 writeln('Read 10 measurements from the Fluke 45...');

 writeln;

(* Assign a unique identifier to the Fluke 45 and store *)

(* in the variable dvm. The name DVM is the name you *)

(* configured for the Fluke 45 using IBCONF.EXE. If DVM *)

(* is less than zero, call gpiberr with an error message. *)

 devname := 'DVM ';

 dvm := ibfind (devname);

 if (dvm < 0) then gpiberr('Ibfind Error');

(* Clear the internal or device functions of the *)

(* Fluke 45. If the error bit (ERR) is set in ibsta, *)

(* call gpiberr with an error message. *)

 ibclr (dvm);

 if (ibsta and ERR) <> 0 then gpiberr('Ibclr Error');

(* Reset the Fluke 45 by issuing the reset (*RST) command . *)

(* Instruct the Fluke 45 to measure the volts alternating *)

(* current (VAC) using auto-ranging (AUTO), to wait for a *)

(* trigger from the GPIB interface board (TRIGGER 2), and *)

(* to assert the IEEE-488 Service Request line, SRQ, *)

(* when the measurement has been completed and the *)

(* Fluke 45 is ready to send the result (*SRE 16). If *)

(* the error bit (ERR) is set in ibsta, call gpiberr *)

(* with an error message. *)

 sendstr := '*RST; VAC; AUTO; TRIGGER 2; *SRE 16';

 for i:= 1 to 35 do

 wrt[i] := sendstr[i];

 ibwrt (dvm,wrt,35);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

(* Call readdata to read 10 measurements from the *)

(* Fluke 45. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-170 © National Instruments Corp.

 readdata;

(* Call the ibonl function to disable the device DVM. *)

 ibonl (dvm,0);

end.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-171 Pascal

Turbo Pascal Program – Board Functions

PROGRAM BTPSAMP(input,output);

uses tpdecl;

const

 maxlen = 10; (* Maximum length of data array . *)

Var

 bdname : nbuf; (* Board name buffer. nbuf is *)

(* defined in TPDECL.PAS as a *)

(* character array. *)

 cmd : cbuf; (* Array of commands. cbuf is *)

(* defined in TPDECL.PAS as a *)

(* character array. *)

 wrt : cbuf; (* Data written to the Fluke 45. *)

 rd : cbuf; (* Data received from the *)

(* Fluke 45. *)

 buffer : string[maxlen];(* Assigned the value of rd. *)

(* Will be converted to numeric. *)

 sendstr: string[40]; (* GPIB command string. *)

 mask : integer; (* Wait mask. *)

 bd : integer; (* Board number. *)

 i,m : integer; (* FOR loop index. *)

 code : integer; (* Procedure VAL parameter. *)

(* VAL is a Turbo Pascal *)

(* conversion procedure. *)

 num : real; (* Numeric conversion of rd. *)

 sum : real; (* Accumulator of measurements. *)

(* ===

 * Procedure dvmerr

 * The dvmerr procedure notifies you that the Fluke 45

 * returned an invalid serial poll response byte. The

 * error message is printed along with the serial poll

 * response byte.

 * The NI-488 function ibonl is called to disable the

 * hardware and software.

 * The halt procedure terminates this program.

 * ==*)

procedure dvmerr(msg:string; rdchar:char);

begin

 writeln (msg);

 writeln('Status Byte = ', ord(rdchar));

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (bd,0);

 halt;

end;

NI-488 Function Descriptions Chapter 3

Pascal 3-172 © National Instruments Corp.

(* ===

 * Procedure gpiberr

 * The gpiberr procedure notifies you that an NI-488 routine

 * failed by printing an error message. The status variable

 * ibsta is printed in decimal along with the mnemonic

 * meaning of the bit position. The status variable iberr

 * is printed in decimal along with the mnemonic meaning of

 * the decimal value. The status variable ibcnt is printed

 * in decimal.

 *

 * The NI-488 function ibonl is called to disable the

 * hardware and software.

 *

 * The halt procedure stops execution of this program.

 * ===*)

procedure gpiberr(msg:string);

begin

 writeln (msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-173 Pascal

 writeln('ibcnt = ', ibcnt);

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (bd,0);

 halt;

end;

(* ===

 * Procedure readdata

 * The readdata procedure reads 10 measurements from the

 * Fluke 45 and calculates the average of the measurements.

 *

 * The exit procedure terminates this procedure.

 * ==*)

procedure readdata;

begin

(* Initialize the accumulator of the 10 measurements *)

(* to zero. *)

(* Establish a FOR loop to read the 10 measurements. *)

(* The variable m serves as the counter of the FOR loop. *)

 for m := 1 to 10 do

 begin

 (* Address the Fluke 45 to listen (hex 21 or *)

 (* ASCII "!") and address the GPIB interface board *)

 (* to talk (hex 20 or ASCII "@"). These commands *)

 (* can be found in Appendix A of the Software *)

 (* Reference Manual. If the error bit (ERR) is set *)

 (* in ibsta, call gpiberr with an error message. *)

 cmd[1] := '!';

 cmd[2] := '@';

 ibcmd (bd,cmd,2);

 if

 (* Trigger the Fluke 45 by sending the trigger (GET) *)

 (* command (hex 08) message. If the error bit (ERR) is *)

 (* set in ibsta, call gpiberr with an error message. *)

 cmd[1] := chr(GET);

 ibcmd (bd,cmd,1);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

NI-488 Function Descriptions Chapter 3

Pascal 3-174 © National Instruments Corp.

 (* Request the triggered measurement by sending the *)

 (* instruction "VAL1?". If the error bit (ERR) is set *)

 (* in ibsta, call gpiberr with an error message. *)

 sendstr := 'VAL1?';

 for i := 1 to 5 do

 wrt[i] := sendstr[i];

 ibwrt (bd,wrt,5);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

 (* Wait for the Fluke 45 to assert the Service Request *)

 (* (SRQ) line or wait for the Fluke 45 to timeout *)

 (* (TIMO).The default timeout period is 10 seconds. *)

 (* SRQ is detected by bit position 12 (hex 1000, SRQI). *)

 (* TIMO is detected by bit position 14 (hex 4000). *)

 (* These status bits are listed under the NI-488 *)

 (* function ibwait in the Software Reference Manual. *)

 (* If error bit (ERR) orthe timeout bit (TIMO) is *)

 (* set in ibsta, call gpiberr with an error message. *)

 mask := $5000; (* SRQI + TIMO *)

 ibwait(bd, mask);

 if (ibsta and (ERR or TIMO)) <> 0 then

gpiberr('Ibwait Error');

 (* Serial poll the Fluke 45. Unaddress bus devices by *)

 (* sending the untalk (UNT) command (hex 5F or *)

 (* ASCII "_") and the unlisten (UNL) command (hex 3F *)

 (* or ASCII "?").Send the Serial Poll Enable (SPE) *)

 (* command (hex 18) and the Fluke 45 talk address *)

 (* (hex 41 or ASCII "A"). Address the GPIB interface *)

 (* board to listen (hex 20 or ASCII space). These *)

 (* commands can be found in Appendix A of the *)

 (* Software Reference Manual. If the error bit *)

 (* (ERR) is set in ibsta, call gpiberr with an *)

 (* error message. *)

 cmd[1] := '_';

 cmd[2] := '?';

 cmd[3] := chr(SPE);

 cmd[4] := 'A';

 cmd[5] := ' ';

 ibcmd(bd, cmd, 5);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

 (* Read the Fluke 45 serial poll status byte. If the *)

 (* error bit (ERR) is set in ibsta, call gpiberr *)

 (* with an error message. *)

 ibrd(bd, rd, 1);

 if (ibsta and ERR) <> 0 then gpiberr('Ibrd Error');

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-175 Pascal

 (* If the returned status byte is hex 50, the Fluke *)

 (* 45 has valid data to send; otherwise, it has a *)

 (* fault condition to report. If the status byte is *)

 (* not hex 50, call dvmerr with an error message. *)

 if (ord(rd[1]) <> $50) then

 dvmerr('Fluke 45 Error', rd[1]);

 (* Complete the serial poll by sending the Serial *)

 (* Poll Disable (SPD) command, hex 19. This command *)

 (* can be found in Appendix A of the Software *)

 (* Reference Manual. If the error bit (ERR) is *)

 (* set in ibsta, call gpiberr with an error message. *)

cmd[1] := chr(SPD);

ibcmd(bd, cmd, 1);

if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

 (* Read the Fluke 45 measurement. If the error bit *)

 (* (ERR) is set in ibsta, call gpiberr with an error *)

 (* message. *)

ibrd (bd,rd,10);

if (ibsta and ERR) <> 0 then gpiberr('Ibrd Error');

 (* Assign the array rd to the string buffer. *)

 (* Remove spaces in buffer. Print the measurement. *)

 for i:= 1 to (ibcnt - 1) do

 buffer[i] := rd[i];

 buffer[0] := chr(ibcnt - 1);

 writeln('Reading: ', buffer);

 writeln;

 (* Convert the measurement to its numeric value. *)

 (* If there is an error during the conversion, *)

 (* print the index of the character that did not *)

 (* convert and terminate this program. If an error *)

 (* does not occur during the conversion, add the *)

 (* value to the accumulator. *)

 val(buffer, num, code);

 if code <> 0 then

 begin

 writeln('Error at position: ', code);

 exit;

 end

 else

 sum := sum + num;

 end; (* Continue the FOR loop until 10 *)

 (* measurements are read. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-176 © National Instruments Corp.

 (* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ===

 * MAIN

 * ===*)

BEGIN

 writeln('Read 10 measurements from the Fluke 45...');

 writeln;

(* Assign a unique identifier to board 0 and store in *)

(* the variable bd. The name GPIB0 is the default name *)

(* of board 0. If bd is less than zero, call gpiberr *)

(* with an error message. *)

 bdname := 'GPIB0 ';

 bd := ibfind (bdname);

 if (bd < 0) then gpiberr('Ibfind Error');

(* Send the Interface Clear (IFC) message. This action *)

(* initializes the GPIB interface board and makes the *)

(* interface board Controller-In-Charge. If the error *)

(* bit (ERR) is set in ibsta, call gpiberr with an *)

(* error message. *)

 ibsic (bd);

 if (ibsta and ERR) <> 0 then gpiberr('Ibsic Error');

(* Turn on the Remote Enable (REN) signal. The device *)

(* does not actually enter remote mode until it *)

(* receives its listen address. If the error bit (ERR) *)

(* is set in ibsta, call gpiberr with an error message. *)

 ibsre (bd,1);

 if (ibsta and ERR) <> 0 then gpiberr('Ibsre Error');

(* Inhibit front panel control with the Local Lockout *)

(* (LLO) command (hex 11). Place the Fluke 45 in *)

(* remote mode by addressing it to listen (hex 21 or *)

(* ASCII "!"). Send the Device Clear (DCL) message to *)

(* clear internal device functions (hex 14). Address *)

(* the GPIB interface board to talk (hex 20 or ASCII "@"). *)

(* These commands can be found in Appendix A of the *)

(* Software Reference Manual. If the error bit (ERR) is *)

(* set in ibsta, call gpiberr with an error message. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-177 Pascal

 cmd[1] := chr(LLO);

 cmd[2] := chr(DCL);

 cmd[3] := '!';

 cmd[4] := '@';

 ibcmd (bd,cmd,4);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

(* Reset the Fluke 45 by issuing the reset (*RST) command. *)

(* Instruct the Fluke 45 to measure the volts alternating *)

(* current (VAC) using auto-ranging (AUTO), to wait for a *)

(* trigger from the GPIB interface board (TRIGGER 2), and *)

(* to assert the IEEE-488 Service Request line, SRQ, when *)

(* the measurement has been completed and the Fluke 45 is *)

(* ready to send the result (*SRE 16). If the error bit *)

(* (ERR) is set in ibsta, call gpiberr with an error *)

(* message. *)

 sendstr := '*RST; VAC; AUTO; TRIGGER 2; *SRE 16';

 for i:= 1 to 35 do

 wrt[i] := sendstr[i];

 ibwrt (bd,wrt,35);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

(* Call readdata to read 10 measurements from the *)

(* Fluke 45. *)

 readdata;

(* Call the ibonl function to disable the hardware *)

(* and software. *)

 ibonl (bd,0);

END.

NI-488 Function Descriptions Chapter 3

Pascal 3-178 © National Instruments Corp.

Turbo Pascal for Windows Program – Device Functions

PROGRAM DTPWSAMP(input,output);

uses wincrt, tpwgpib;

var

 wrt : PChar; (* Data written to the *)

 (* Fluke 45. *)

 rd : array[0..10] of char; (* Data received from the *)

 (* Fluke 45. *)

 mask : word; (* Wait mask. *)

 dvm : integer; (* Device number. *)

 m : integer; (* FOR loop index. *)

 spr : integer; (* Serial poll response *)

 (* byte. *)

 code : integer; (* Procedure VAL parameter. *)

 (* VAL is Turbo Pascal *)

 (* conversion procedure. *)

 num : real; (* Numeric conversion of RD . *)

 sum : real; (* Accumulator of *)

 (* measurements. *)

(* ===

 * Procedure DVMERR

 * This function will notify you that the Fluke 45 returned

 * an invalid serial poll response byte. The error message

 * will be printed along with the serial poll response byte.

 *

 * The NI-488 function IBONL is called to disable the

 * hardware and software.

 *

 * The HALT function will terminate this program.

 * ===*)

procedure dvmerr(msg:string; spr:integer);

begin

 writeln (msg);

 writeln('Status Byte = ', spr);

(* Call the IBONL function to disable the hardware and *)

(* software. *)

 ibonl (dvm,0);

 halt;

end;

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-179 Pascal

(* ===

 * Procedure GPIBERR

 * This procedure will notify you that a NI-488 function

 * failed by printing an error message. The status variable

 * IBSTA will be printed in decimal along with the mnemonic

 * meaning of the bit position. The status variable IBERR

 * will be printed in decimal along with the mnemonic

 * meaning of the decimal value. The status variable IBCNTL

 * will be printed in decimal.

 *

 * The NI-488 function IBONL is called to disable the

 * hardware and software.

 *

 * The HALT command stops execution of this program.

 * ===*)

procedure gpiberr(msg:string);

begin

 writeln (msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

 writeln('ibcnt = ', ibcnt);

NI-488 Function Descriptions Chapter 3

Pascal 3-180 © National Instruments Corp.

(* Call the IBONL function to disable the hardware and *)

(* software. *)

 ibonl (dvm,0);

 halt;

end;

(* ===

 * Procedure READDATA

 * This procedures reads 10 measurements from the Fluke 45

 * and calculates the average of the measurements.

 *

 * The EXIT procedure terminates this procedure.

 * ===*)

procedure readdata;

begin

(* Initialize the accumulator of the 10 measurements to *)

(* zero. *)

 sum := 0.0;

(* Establish FOR loop to read the 10 measuements. The *)

(* variable m will serve as the counter of the FOR loop. *)

 for m := 1 to 10 do

 begin

 (* Trigger the Fluke 45. If the error bit ERR is *)

 (* set in IBSTA, call GPIBERR with an error message. *)

 ibtrg(dvm);

 if (ibsta and ERR) <> 0 then gpiberr('Ibtrg Error');

 (* Request the triggered measurement by sending the *)

 (* instruction 'VAL1?'. If the error bit ERR is set *)

 (* IBSTA, call GPIBERR with an error message. *)

 wrt := 'VAL1?';

 ibwrt (dvm,wrt^,5);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

 (* Wait for the Fluke 45 to request service (RQS) *)

 (* or wait for the Fluke 45 to timeout(TIMO). The *)

 (* default timeout period is 10 seconds. RQS is *)

 (* detected by bit position 11 (hex 800). TIMO is *)

 (* detected by bit position 14 (hex 4000). These *)

 (* status bits are listed under the NI-488 function *)

 (* IBWAIT in the Software Reference Manual. If the *)

 (* error bit ERR or the timeout bit TIMO is set in *)

 (* IBSTA, call GPIBERR with an error message. *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-181 Pascal

 mask := $4800; (* RQS + TIMO *)

 ibwait(dvm, mask);

 if (ibsta and (ERR or TIMO)) <> 0 then

 gpiberr('Ibwait Error');

 (* Read the Fluke 45 serial poll status byte. If *)

 (* the error bit ERR is set in IBSTA, call GPIBERR *)

 (* with an error message. *)

 spr := 0;

 ibrsp(dvm,spr);

 if (ibsta and ERR) <> 0 then gpiberr('Ibrsp Error');

 (* If the returned status byte is hex 50, the Fluke *)

 (* 45 has valid data to send; otherwise, it has a *)

 (* fault condition to report. If the status byte is *)

 (* not hex 50, call DVMERR with an error message. *)

 if (spr <> $50) then dvmerr('Fluke 45 Error', spr);

 (* Read the Fluke 45 measurement. If the error bit *)

 (* ERR is set in IBSTA, call GPIBERR with an error *)

 (* message. *)

 ibrd (dvm, rd, 10);

 if (ibsta and ERR) <> 0 then gpiberr('Ibrd Error');

 (* Remove spaces in array RD. Print the measurement. *)

 rd[ibcnt-1] := #0;

 writeln('Reading: ', rd);

 writeln;

 (* Convert the measurement to its numeric value. *)

 (* If there is an error during the conversion, print *)

 (* the index of the character that did not convert *)

 (* and terminate this program. If an error does not *)

 (* occur during the conversion, add the value to the *)

 (* accumulator. *)

 val(rd, num, code);

 if code <> 0 then

 begin

 writeln('Error at position: ', code);

 exit;

 end

 else

 sum := sum + num;

 end; (* Continue FOR loop until 10 measurements are *)

 (* read. *)

(* Print the average of the 10 readings. *)

NI-488 Function Descriptions Chapter 3

Pascal 3-182 © National Instruments Corp.

 writeln('The average of the 10 readings is ', sum/10);

end;

(* ==

 * MAIN

 * ===*)

BEGIN

 writeln('Read 10 measurements from the Fluke 45...');

 writeln;

(* Assign a unique identifier to the Fluke 45 and store *)

(* in the variable DVM. The name "DVM" is the name you *)

(* configured for the Fluke 45 using IBCONF.EXE. If DVM *)

(* is less than zero, call GPIBERR with an error message. *)

 dvm := ibfind ('DVM');

 if (dvm < 0) then gpiberr('Ibfind Error');

(* Clear the internal or device functions of the Fluke *)

(* 45. If the error bit ERR is set in IBSTA, call *)

(* GPIBERR with an error message. *)

 ibclr (dvm);

 if (ibsta and ERR) <> 0 then gpiberr('Ibclr Error');

(* Reset the Fluke 45 by issuing the reset (*RST) *)

(* command. Instruct the Fluke 45 to measure the volts *)

(* alternating current (VAC) using auto-ranging (AUTO), *)

(* to wait for a trigger from the GPIB interface board *)

(* (TRIGGER 2), and to assert the IEEE-488 Service Request *)

(* line, SRQ, when the measurement has been completed and *)

(* the Fluke 45 is ready to send the result (*SRE 16). *)

(* If the error bit ERR is set in IBSTA, call GPIBERR *)

(* with an error message. *)

 wrt := '*RST; VAC; AUTO; TRIGGER 2; *SRE 16';

 ibwrt (dvm, wrt^, 35);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

(* Call READDATA to read 10 measurements from the *)

(* Fluke 45. *)

 readdata;

(* Call the IBONL function to disable the device DVM. *)

 ibonl (dvm,0);

end.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-183 Pascal

Turbo Pascal for Windows Program – Board Functions

PROGRAM BTPWSAMP(input,output);

uses wincrt, tpwgpib;

Var

 cmd : PChar; (* Commands written to *)

 (* the Fluke 45. *)

 wrt : PChar; (* Data written to the *)

 (* Fluke 45. *)

 rd : array[0..10] of char; (* Data received from the *)

 (* Fluke 45. *)

 mask : word; (* Wait mask. *)

 bd : integer; (* Board number. *)

 i,m : integer; (* FOR loop index. *)

 code : integer; (* Procedure VAL parameter. *)

 (* VAL is a Turbo Pascal *)

 (* conversion procedure. *)

 num : real; (* Numeric conversion of RD. *)

 sum : real; (* Accumulator of *)

 (* measurements. *)

(*==

 * Procedure DVMERR

 * This procedure will notify you that the Fluke 45 returned

 * an invalid serial poll response byte. The error message

 * will be printed along with the serial poll response byte.

 *

 * The NI-488 function IBONL is called to disable the

 * hardware and software.

 *

 * The HALT procedure will terminate this program.

 * ==*)

procedure dvmerr(msg:string; rdchar:char);

begin

 writeln (msg);

 writeln('Status Byte = ', ord(rdchar));

(* Call the IBONL function to disable the hardware and *)

(* software. *)

 ibonl (bd,0);

 halt;

end;

NI-488 Function Descriptions Chapter 3

Pascal 3-184 © National Instruments Corp.

(* ===

 * Procedure GPIBERR

 * This procedure will notify you that a NI-488 function

 * failed by printing an error message. The status variable

 * IBSTA will be printed in decimal along with the mnemonic

 * meaning of the bit position. The status variable IBERR

 * will be printed in decimal along with the mnemonic

 * meaning of the decimal value. The status variable IBCNTL

 * will be printed in decimal.

 *

 * The NI-488 function IBONL is called to disable the

 * hardware and software.

 *

 * The HALT procedure stops execution of this program.

 * ===*)

procedure gpiberr(msg:string);

begin

 writeln (msg);

 write('ibsta = ', ibsta,' <');

 if ibsta and ERR <> 0 then write (' ERR');

 if ibsta and TIMO <> 0 then write (' TIMO');

 if ibsta and EEND <> 0 then write (' END');

 if ibsta and SRQI <> 0 then write (' SRQI');

 if ibsta and RQS <> 0 then write (' RQS');

 if ibsta and CMPL <> 0 then write (' CMPL');

 if ibsta and LOK <> 0 then write (' LOK');

 if ibsta and REM <> 0 then write (' REM');

 if ibsta and CIC <> 0 then write (' CIC');

 if ibsta and ATN <> 0 then write (' ATN');

 if ibsta and TACS <> 0 then write (' TACS');

 if ibsta and LACS <> 0 then write (' LACS');

 if ibsta and DTAS <> 0 then write (' DTAS');

 if ibsta and DCAS <> 0 then write (' DCAS');

 writeln(' >');

 write('iberr = ', iberr);

 if iberr = EDVR then writeln (' EDVR <DOS Error>');

 if iberr = ECIC then writeln (' ECIC <Not CIC>');

 if iberr = ENOL then writeln (' ENOL <No Listener>');

 if iberr = EADR then writeln (' EADR <Address error>');

 if iberr = EARG then writeln (' EARG <Invalid argument>');

 if iberr = ESAC then writeln (' ESAC <Not Sys Ctrlr>');

 if iberr = EABO then writeln (' EABO <Op. aborted>');

 if iberr = ENEB then writeln (' ENEB <No GPIB board>');

 if iberr = EOIP then writeln (' EOIP <Async I/O in prg>');

 if iberr = ECAP then writeln (' ECAP <No capability>');

 if iberr = EFSO then writeln (' EFSO <File sys. error>');

 if iberr = EBUS then writeln (' EBUS <Command error>');

 if iberr = ESTB then writeln (' ESTB <Status byte lost>');

 if iberr = ESRQ then writeln (' ESRQ <SRQ stuck on>');

 if iberr = ETAB then writeln (' ETAB <Table Overflow>');

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-185 Pascal

 writeln('ibcnt = ', ibcnt);

(* Call the IBONL function to disable the hardware and *)

(* software. *)

 ibonl (bd,0);

 halt;

end;

(* ===

 * Procedure READDATA

 * This procedures reads 10 measurements from the Fluke 45

 * and calculates the average of the measurements.

 *

 * The EXIT procedure terminates this procedure.

 * ===*)

procedure readdata;

begin

(* Initialize the accumulator of the 10 measurements to *)

(* zero. *)

 sum := 0.0;

(* Establish FOR loop to read the 10 measuements. The *)

(* variable m will serve as the counter of the FOR loop. *)

 for m := 1 to 10 do

 begin

 (* Address the Fluke 45 to listen (hex 21 or ASCII *)

 (* "!") and address the GPIB interface board to *)

 (* talk (hex 20 or ASCII "@"). These commands can *)

 (* be found in Appendix A of the Software Reference *)

 (* Manual. If the error bit ERR is set in IBSTA, *)

 (* call GPIBERR with an error message. *)

 cmd := '!@';

 ibcmd (bd, cmd^, 2);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

 (* Trigger the Fluke by sending the trigger (GET) *)

 (* command (hex 08) message. If the error bit ERR *)

 (* is set in IBSTA, call GPIBERR with an error *)

 (* message. *)

 cmd := #8;

 ibcmd (bd, cmd^,1);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

NI-488 Function Descriptions Chapter 3

Pascal 3-186 © National Instruments Corp.

 (* Request the triggered measurement by sending the *)

 (* instruction "VAL1?". If the error bit ERR is *)

 (* set IBSTA, call GPIBERR with an error message. *)

 wrt := 'VAL1?';

 ibwrt (bd, wrt^,5);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

 (* Wait for the Fluke 45 to assert the Service *)

 (* Request (SRQ) line or wait for the Fluke 45 to *)

 (* timeout(TIMO). The default timeout period is 10 *)

 (* seconds. SRQ is detected by bit position 12 *)

 (* (hex 1000, SRQI). TIMO is detected by bit *)

 (* position 14 (hex 4000). These status bits are *)

 (* listed under the NI-488 function IBWAIT in *)

 (* the Software Reference Manual. If error bit ERR *)

 (* or the timeout bit TIMO is set in IBSTA, call *)

 (* GPIBERR with an error message. *)

 mask := $5000; (* SRQI + TIMO *)

 ibwait(bd, mask);

 if (ibsta and (ERR or TIMO)) <> 0 then

 gpiberr('Ibwait Error');

 (* Serial poll the Fluke 45. Unaddress bus devices *)

 (* by sending the untalk (UNT) command (hex 5F or *)

 (* ASCII "_") and the unlisten (UNL) command (hex 3F *)

 (* or ASCII "?"). Send the Serial Poll Enable (SPE) *)

 (* command (hex 18) and the Fluke 45 talk address *)

 (* (hex 41 or ASCII "A"). Address the GPIB *)

 (* interface board to listen (hex 20 r ASCII space). *)

 (* These commands can be found in Appendix A of *)

 (* the Software Reference Manual. If the error bit *)

 (* ERR is set in IBSTA, call GPIBERR with an error *)

 (* message. *)

 cmd := '_?'#24'A ';

 ibcmd(bd, cmd^, 5);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

 (* Read the Fluke 45 serial poll status byte. If *)

 (* the error bit ERR is set in IBSTA, call GPIBERR *)

 (* with an error message. *)

 ibrd(bd, rd, 1);

 if (ibsta and ERR) <> 0 then gpiberr('Ibrd 1 Error');

 (* If the returned status byte is hex 50, the Fluke *)

 (* 45 has valid data to send; otherwise, it has a *)

 (* fault condition to report. If the status byte is *)

 (* not hex 50, call DVMERR with an error message. *)

 if (ord(rd[0]) <> $50) then dvmerr('Fluke 45 Error',

 rd[0]);

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-187 Pascal

 (* Complete the serial poll by sending the Serial *)

 (* Poll Disable (SPD) command, hex 19. This *)

 (* command can be found in Appendix A of the Software *)

 (* Reference Manual. If the error bit ERR *)

 (* is set in IBSTA, call GPIBERR with an error *)

 (* message. *)

 cmd := #25'A ';

 ibcmd(bd, cmd^, 3);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

 (* Read the Fluke 45 measurement. If the error bit *)

 (* ERR is set in IBSTA, call GPIBERR with an error *)

 (* message. *)

 ibrd (bd,rd,10);

 if (ibsta and ERR) <> 0 then gpiberr('Ibrd 2 Error');

 (* Assign the array RD to the string BUFFER. *)

 (* Remove spaces in BUFFER. Print the measurement. *)

 rd[ibcnt-1] := #0;

 writeln('Reading: ', rd);

 writeln;

 (* Convert the measurement to its numeric value. *)

 (* If there is an error during the conversion, *)

 (* print the index of the character that did not *)

 (* convert and terminate this program. If an error *)

 (* does not occur during the conversion, add the *)

 (* value to the accumulator. *)

 val(rd, num, code);

 if code <> 0 then

 begin

 writeln('Error at position: ', code);

 exit;

 end

 else

 sum := sum + num;

 end; (* Continue FOR loop until 10 measurements *)

 (* are read. *)

(* Print the average of the 10 readings. *)

 writeln('The average of the 10 readings is ', sum/10);

end;

NI-488 Function Descriptions Chapter 3

Pascal 3-188 © National Instruments Corp.

(* ===

 * MAIN

 * ===*)

BEGIN

 writeln('Read 10 measurements from the Fluke 45...');

 writeln;

(* Assign a unique identifier to board 0 and store in *)

(* the variable BD. The name 'GPIB0' is the default name *)

(* of board 0. If BD is less than zero, call GPIBERR *)

(* with an error message. *)

 bd := ibfind ('GPIB0');

 if (bd < 0) then gpiberr('Ibfind Error');

(* Send the Interface Clear (IFC) message. This action *)

(* initializes the GPIB interface board and makes the *)

(* interface board Controller-In-Charge. If the error *)

(* bit ERR is set in IBSTA, call GPIBERR with an error *)

(* message. *)

 ibsic (bd);

 if (ibsta and ERR) <> 0 then gpiberr('Ibsic Error');

(* Turn on the Remote Enable (REN) signal. The device *)

(* does not actually enter remote mode until it receives *)

(* its listen address. If the error bit ERR is set in *)

(* IBSTA, call GPIBERR with an error message. *)

 ibsre (bd,1);

 if (ibsta and ERR) <> 0 then gpiberr('Ibsre Error');

(* Inhibit front panel control with the Local Lockout *)

(* (LLO) command (hex 11). Place the Fluke 45 in remote *)

(* mode by addressing it to listen (hex 21 or ASCII "!"). *)

(* Send the Device Clear (DCL) message to clear internal *)

(* device functions (hex 14). Address the GPIB interface *)

(* board to talk (hex 20 or ASCII "@"). These commands *)

(* can be found in Appendix A of the Software Reference *)

(* Manual. If the error bit ERR is set in IBSTA, call *)

(* GPIBERR with an error message. *)

 cmd := #17#20'!@';

 ibcmd (bd, cmd^,4);

 if (ibsta and ERR) <> 0 then gpiberr('Ibcmd Error');

(* Reset the Fluke 45 by issuing the reset (*RST) *)

(* command. Instruct the Fluke 45 to measure the volts *)

(* alternating current (VAC) using auto-ranging (AUTO), *)

(* to wait for a trigger from the GPIB interface board *)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-189 Pascal

(* (TRIGGER 2), and to assert the IEEE-488 Service *)

(* Request line, SRQ, when the measurement has been *)

(* completed and the Fluke 45 is ready to send the result *)

(* (*SRE 16). If the error bit ERR is set in IBSTA, *)

(* call GPIBERR with an error message. *)

 wrt := '*RST; VAC; AUTO; TRIGGER 2; *SRE 16';

 ibwrt (bd,wrt^,35);

 if (ibsta and ERR) <> 0 then gpiberr('Ibwrt Error');

(* Call READDATA to read 10 measurements from the *)

(* Fluke 45. *)

 readdata;

(* Call the IBONL function to disable the hardware and *)

(* software. *)

 ibonl (bd,0);

END.

© National Instruments Corp. A-1 Pascal

Appendix A
Multiline Interface Messages

This appendix contains an interface message reference list, which describes
the mnemonics and messages that correspond to the interface functions.
These multiline interface messages are sent and received with ATN TRUE.

For more information on these messages, refer to the ANSI/IEEE Standard
488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation .

Multiline Interface Messages Appendix A

Pascal A-2 © National Instruments Corp.

Multiline Interface Messages

 Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

00 000 0 NUL 20 040 32 SP MLA0
01 001 1 SOH GTL 21 041 33 ! MLA1
02 002 2 STX 22 042 34 " MLA2
03 003 3 ETX 23 043 35 # MLA3
04 004 4 EOT SDC 24 044 36 $ MLA4
05 005 5 ENQ PPC 25 045 37 % MLA5
06 006 6 ACK 26 046 38 & MLA6
07 007 7 BEL 27 047 39 ' MLA7

08 010 8 BS GET 28 050 40 (MLA8
09 011 9 HT TCT 29 051 41) MLA9
0A 012 10 LF 2A 052 42 * MLA10
0B 013 11 VT 2B 053 43 + MLA11
0C 014 12 FF 2C 054 44 , MLA12
0D 015 13 CR 2D 055 45 - MLA13
0E 016 14 SO 2E 056 46 . MLA14
0F 017 15 SI 2F 057 47 / MLA15

10 020 16 DLE 30 060 48 0 MLA16
11 021 17 DC1 LLO 31 061 49 1 MLA17
12 022 18 DC2 32 062 50 2 MLA18
13 023 19 DC3 33 063 51 3 MLA19
14 024 20 DC4 DCL 34 064 52 4 MLA20
15 025 21 NAK PPU 35 065 53 5 MLA21
16 026 22 SYN 36 066 54 6 MLA22
17 027 23 ETB 37 067 55 7 MLA23

18 030 24 CAN SPE 38 070 56 8 MLA24
19 031 25 EM SPD 39 071 57 9 MLA25
1A 032 26 SUB 3A 072 58 : MLA26
1B 033 27 ESC 3B 073 59 ; MLA27
1C 034 28 FS 3C 074 60 < MLA28
1D 035 29 GS 3D 075 61 = MLA29
1E 036 30 RS 3E 076 62 > MLA30
1F 037 31 US 3F 077 63 ? UNL

Message Definitions

DCL Device Clear
GET Group Execute Trigger
GTL Go To Local
LLO Local Lockout
MLA My Listen Address

MSA My Secondary Address
MTA My Talk Address
PPC Parallel Poll Configure
PPD Parallel Poll Disable

Appendix A Multiline Interface Messages

© National Instruments Corp. A-3 Pascal

Multiline Interface Messages

 Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

40 100 64 @ MTA0 60 140 96 ` MSA0,PPE
41 101 65 A MTA1 61 141 97 a MSA1,PPE
42 102 66 B MTA2 62 142 98 b MSA2,PPE
43 103 67 C MTA3 63 143 99 c MSA3,PPE
44 104 68 D MTA4 64 144 100 d MSA4,PPE
45 105 69 E MTA5 65 145 101 e MSA5,PPE
46 106 70 F MTA6 66 146 102 f MSA6,PPE
47 107 71 G MTA7 67 147 103 g MSA7,PPE

48 110 72 H MTA8 68 150 104 h MSA8,PPE
49 111 73 I MTA9 69 151 105 i MSA9,PPE
4A 112 74 J MTA10 6A 152 106 j MSA10,PPE
4B 113 75 K MTA11 6B 153 107 k MSA11,PPE
4C 114 76 L MTA12 6C 154 108 l MSA12,PPE
4D 115 77 M MTA13 6D 155 109 m MSA13,PPE
4E 116 78 N MTA14 6E 156 110 n MSA14,PPE
4F 117 79 O MTA15 6F 157 111 o MSA15,PPE

50 120 80 P MTA16 70 160 112 p MSA16,PPD
51 121 81 Q MTA17 71 161 113 q MSA17,PPD
52 122 82 R MTA18 72 162 114 r MSA18,PPD
53 123 83 S MTA19 73 163 115 s MSA19,PPD
54 124 84 T MTA20 74 164 116 t MSA20,PPD
55 125 85 U MTA21 75 165 117 u MSA21,PPD
56 126 86 V MTA22 76 166 118 v MSA22,PPD
57 127 87 W MTA23 77 167 119 w MSA23,PPD

58 130 88 X MTA24 78 170 120 x MSA24,PPD
59 131 89 Y MTA25 79 171 121 y MSA25,PPD
5A 132 90 Z MTA26 7A 172 122 z MSA26,PPD
5B 133 91 [MTA27 7B 173 123 { MSA27,PPD
5C 134 92 \ MTA28 7C 174 124 | MSA28,PPD
5D 135 93] MTA29 7D 175 125 } MSA29,PPD
5E 136 94 ^ MTA30 7E 176 126 ~ MSA30,PPD
5F 137 95 _ UNT 7F 177 127 DEL

PPE Parallel Poll Enable
PPU Parallel Poll Unconfigure
SDC Selected Device Clear
SPD Serial Poll Disable

SPE Serial Poll Enable
TCT Take Control
UNL Unlisten
UNT Untalk

© National Instruments Corp. B-1 Pascal

Appendix B
Applications Monitor

This appendix explains how to use, install, and configure the Applications
Monitor, a resident program that is useful in debugging sequences of
NI-488 and NI-488.2 calls from within your MS-DOS application.

Using the Applications Monitor

The applications monitor can temporarily halt program execution (trap)
upon returning from NI-488 functions and NI-488.2 routines that meet a
condition specified by you. You can inspect function arguments, buffers,
return values, GPIB global variables, and other pertinent data. You can
select the condition that halts the program on every NI-488 function or
NI-488.2 routine, on those functions that return an error indication, or on
those calls that are returned with selected bit patterns in the GPIB status
word.

If the specified condition is met, you will see a pop-up screen (Figure B-1)
that contains details of the call being trapped. In addition, you can view up
to 255 of the preceding calls to verify that the sequence of calls and their
arguments have occurred as intended.

Figure B-1. Applications Monitor Pop-Up Screen

Applications Monitor Appendix B

Pascal B-2 © National Instruments Corp.

In many cases, you can omit explicit error-checking if you use the
applications monitor. If a program is expected to run without errors,
trapping on errors will cause the applications monitor to be invoked only if
an error occurs during a GPIB call. You can then take the action necessary
to fix the problem.

Currently, the applications monitor is available with all revisions of the
NI-488.2 software for MS-DOS.

Installing the Applications Monitor

The applications monitor is included on the distribution diskette as the file
APPMON.EXE . To install it, enter the following command in response to
the DOS prompt:

APPMON

If the GPIB driver is not present or the applications monitor has already
been installed, the file does not load and an error message is printed.

Once installed, the applications monitor will remain in memory until you
restart the system. If you decide later that you no longer wish to devote
memory to the resident applications monitor, simply restart your system; the
applications monitor will no longer be loaded.

IBTRAP

Once installed, the applications monitor is run by the ibtrap function.
The applications monitor can trap on GPIB driver calls that have certain bits
set in the GPIB status word. The trap options are set by the special GPIB
driver call, ibtrap . This call can be made either from the application
program or from the DOS prompt using the special utility program called
IBTRAP.EXE .

With the function call and the DOS utility, select a mask , which determines
those events that will be trapped, and a monitor mode , which selects what is
displayed when a trap occurs.

Appendix B Applications Monitor

© National Instruments Corp. B-3 Pascal

The exact syntax of the function call is dependent on the language you are
using. See the description of ibtrap in Chapter 3 of this manual for
details about how to include ibtrap calls in your application.

You can use the utility program ibtrap to set the trap mode from DOS.
Simply enter ibtrap in response to the DOS prompt, specifying the
desired combination of the flags listed on the following pages.

Select one or more mask flags:

-ALL all GPIB calls

-ERR GPIB error

-TIMO timeout

-END GPIB board detected END or EOS

-SRQI SRQ on

-RQS device requesting service

-CMPL I/O completed

-LOK GPIB board is in Lockout State

-REM GPIB board is in Remote State

-CIC GPIB board is Controller-In-Charge

-ATN attention is asserted

-TACS GPIB board is Talker

-LACS GPIB board is Listener

-DTAS GPIB board is in Device Trigger State

-DCAS GPIB board is in Device Clear State

Applications Monitor Appendix B

Pascal B-4 © National Instruments Corp.

Select only one monitor flag:

-OFF turns the monitor off. No recording or trapping occurs.

-REC instructs the monitor to record all GPIB driver calls but no
trapping occurs.

-DIS instructs the monitor to record all GPIB driver calls and
display whenever a trap condition exists.

Omitting either the mask or the monitor flag will leave its current
configuration unchanged. Invoking ibtrap without any flags will display
the valid flags and their current states. This has no effect on the
applications monitor configuration.

By selecting various flags for the mask and monitor parameters, you can
achieve a variety of trapping configurations. The following are some
examples:

IBTRAP -CIC -ATN -DIS record all GPIB driver calls and
display the applications monitor
whenever attention is asserted or the
GPIB board is Controller-in-Charge.

IBTRAP -SRQ -REC record all GPIB driver calls and set
the trap mask to trap when SRQ is on.
Do not display the applications
monitor when a trap condition exists.

IBTRAP -DIS record all GPIB driver calls and
display the applications monitor
whenever a trap condition exists. The
trap mask remains unchanged.

IBTRAP -OFF disable the applications monitor. No
recording or trapping is performed.

See Chapter 3 of this manual for the appropriate syntax to use in your
application program.

Appendix B Applications Monitor

© National Instruments Corp. B-5 Pascal

Applications Monitor Options

When the applications monitor is displayed, you can view the parameters of
the current GPIB call, change the display and trap modes, and scan the
GPIB session summary. The applications monitor displays the following
information relative to the current GPIB call:

• Device symbolic device name.

• Function NI-488.2 routine or NI-488 function and
description.

• Value for functions that have a number as their second
parameter, this contains its value; otherwise, it is
undefined.

• Count for functions that have a count as their third
parameter, this contains its value; otherwise, it is
undefined.

• ibsta contains the GPIB status information.

• iberr contains the GPIB error information or the
previous value of the value parameter if no error
occurred.

• ibcnt contains the number of bytes transferred.

• Buffer for functions that have a buffer as a parameter, this
Value displays its contents. Each byte of the buffer is

shown with its index, character image, and ASCII
value.

• Status shows the state of the individual bits of ibsta . A
"*" indicates the bit is active. The active bits of the
trap mask are highlighted for easy identification.

• Error shows the state of the individual bits of iberr . A
"*" indicates the bit is active.

• Information contains any message concerning the current GPIB
call.

Note: All numbers are displayed in hex. Also, the applications monitor
is unable to record IBFIND or IBTRAP calls.

Applications Monitor Appendix B

Pascal B-6 © National Instruments Corp.

Main Commands

When the main applications monitor screen is displayed, the following
command keys are available:

<F1> continue executing applications program

<F2> display session summary

<F3> exit to DOS

<F5> configure trap mask

<F6> configure monitor mode

<F7> hide/show monitor

<F8> clear session summary buffer

<F10> display command key list

<Cursor Up> scroll buffer up one character

<Cursor Down> scroll buffer down one character

<Page Up> scroll buffer up one page

<Page Down> scroll buffer down one page

<Home> scroll to beginning of buffer

<End> scroll to end of buffer

Appendix B Applications Monitor

© National Instruments Corp. B-7 Pascal

Session Summary Screen

This session summary can be viewed by pressing <F2>. The following
keys can manipulate the display:

<Cursor Up> scrolls summary up one line

<Cursor Down> scrolls summary down one line

<Page Up> scrolls summary up one page

<Page Down> scrolls summary down one page

<Home> scrolls to the top of summary

<End> scrolls to the end of summary

<Escape > or <F2> exits the session summary display and returns to the
main applications monitor screen

Configuring the Trap Mask

Press <F5> to change the current configuration of the trap mask. A pop-up
menu appears with each of the status bits displayed along with their current
states (either ON or OFF). Press the up and down arrow keys to highlight
the desired bit and press <F1> to toggle its state. Press <Enter> to record
the changes. Pressing <Escape> cancels this action and leaves the mask
unchanged. Selecting all bits has the effect of trapping on every call, while
turning them all off causes no trapping to occur.

Configuring the Monitor Mode

Press <F6> to change the current configuration of the applications monitor
mode. A pop-up menu appears with the current mode checkmarked. Use
the up and down arrow keys to highlight the new mode and press <Enter>
to record the change. Press <Escape> to cancel this action and leave the
mode unchanged.

Applications Monitor Appendix B

Pascal B-8 © National Instruments Corp.

Hiding and Showing the Applications Monitor

Press <F7> to hide the applications monitor and restore the contents of the
screen. By pressing <F7>within the applications monitor, with the program
active, you can view program output written to the screen. Pressing <F7>
again will restore the applications monitor.

Exiting Directly to DOS

Press <F3> to exit directly from your application back to DOS. This will
terminate your application and let you continue working from the DOS
prompt.

© National Instruments Corp. C-1 Pascal

Appendix C
Customer Communication

For your convenience, this appendix contains forms to help you gather the
information necessary to help us solve technical problems you might have
as well as a form you can use to comment on the product documentation.
Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around
the world. In the U.S. and Canada, applications engineers are available
Monday through Friday from 8:00 a.m. to 6:00 p.m. (central time). In other
countries, contact the nearest branch office. You may fax questions to us at
any time.

Corporate Headquarters
(512) 795-8248
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices Phone Number Fax Number
Australia (03) 879 9422 (03) 879 9179
Austria (0662) 435986 (0662) 437010-19
Belgium 02/757.00.20 02/757.03.11
Denmark 45 76 26 00 45 76 71 11
Finland (90) 527 2321 (90) 502 2930
France (1) 48 14 24 00 (1) 48 14 24 14
Germany 089/741 31 30 089/714 60 35
Italy 02/48301892 02/48301915
Japan (03) 3788-1921 (03) 3788-1923
Netherlands 03480-33466 03480-30673
Norway 32-848400 32-848600
Spain (91) 640 0085 (91) 640 0533
Sweden 08-730 49 70 08-730 43 70
Switzerland 056/20 51 51 056/20 51 55
U.K. 0635 523545 0635 523154

Technical Support Form

Technical support is available any time by fax. Include the information from
your configuration form. Use additional pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand

Model Processor

Operating system

Speed MHz RAM MB

Display adapter

Mouse yes no

Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model

Revision

Configuration

(continues)

National Instruments software product

Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Pascal Hardware and Software
Configuration Form

Record the settings and revisions of your hardware and software on the line
to the right of each item. Update this form each time you revise your
software or hardware configuration, and use this form as a reference for
your current configuration.

National Instruments Products

• NI-488.2 Software Revision Number on Disk

• Application Programming Language/Version
(IBM Pascal, Microsoft Pascal, MS QuickPascal,
Turbo Pascal, Turbo Pascal for Windows)

• Programming Language Interface Version

• Type of National Instruments GPIB boards installed and their respective
hardware settings

Board Type
Interrupt

Level
DMA

Channel
Base I/O
Address

(continues)

Other Products

• Computer Make and Model

• Microprocessor

• Clock Frequency

• Type of Monitor Card Installed

• DOS Version

• Type of other boards installed and their respective hardware settings

Board Type
Base I/O
Address

Interrupt
Level

DMA
Channel

Documentation Comment Form

National Instruments encourages you to comment on the documentation
supplied with our products. This information helps us provide quality
products to meet your needs.

Title: NI-488 and NI-488.2 Subroutines for Pascal

Edition Date: November 1993

Part Number: 320375-01

Please comment on the completeness, clarity, and organization of the
manual.

(continues)

If you find errors in the manual, please record the page numbers and
describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02
Aust in, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
MS 53-02
(512) 794-5678

	NI-488 ®and NI-488.2 ™Subroutines for Pascal
	Limited Warranty
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of National Instruments Products

	Preface
	Organization of This Manual
	Conventions Used in This Manual
	Abbreviations
	Acronyms
	Related Documents
	Customer Communication

	Contents
	Chapter 1 General Information
	Terms and Mnemonics Used in This Manual
	Using the Distribution Files
	IBM Pascal and Microsoft Pascal Files
	Microsoft QuickPascal Files
	Turbo Pascal Files
	Turbo Pascal for Windows Files
	Programming Preparations
	MS-DOS Pascal Preparations
	IBM/MS Pascal Preparations
	QuickPascal Preparations
	Turbo Pascal Preparations
	Turbo Pascal for Windows Preparations
	Using ibsrq for "ON SRQ" Capability
	Using ibsta to Test the Status Word
	Using ibcnt and ibcntl as Count Variables
	Using I/O Variable Parameters
	MS-DOS Pascal I/O Variable Parameters
	Turbo Pascal for Windows I/O Variable Parameters
	Pascal NI-488.2 I/O Variable Parameters
	Using the NI-488.2 Routine and NI-488 Function Calls
	Using Functions that Reconfigure Board or Device Characteristics

	Chapter 2 NI-488.2 Routine Descriptions
	AllSpoll
	DevClear
	DevClearList
	EnableLocal
	EnableRemote
	FindLstn
	FindRQS
	PassControl
	PPoll
	PPollConfig
	PPollUnconfig
	RcvRespMsg
	ReadStatusByte
	Receive
	ReceiveSetup
	ResetSys
	Send
	SendCmds
	SendDataBytes
	SendIFC
	SendList
	SendLLO
	SendSetup
	SetRWLS
	TestSRQ
	TestSys
	Trigger
	TriggerList
	WaitSRQ
	NI-488.2 Example Programs
	IBM/MS Pascal Program – NI-488.2 Routines
	QuickPascal Program – NI-488.2 Routines
	Turbo Pascal Program – NI-488.2 Routines
	Turbo Pascal for Windows Program – NI-488.2 Routines

	Chapter 3 NI-488 Function Descriptions
	IBASK
	IBBNA
	IBCAC
	IBCLR
	IBCMD
	IBCMDA
	IBCONFIG
	IBDEV
	IBDMA
	IBEOS
	IBEOT
	IBEVENT
	IBFIND
	IBGTS
	IBIST
	IBLINES
	IBLN
	IBLOC
	IBONL
	IBPAD
	IBPCT
	IBPPC
	IBRD
	IBRDA
	IBRDF
	IBRDI
	IBRDIA
	IBRPP
	IBRSC
	IBRSP
	IBRSV
	IBSAD
	IBSIC
	IBSRE
	IBSRQ
	IBSTOP
	IBTMO
	IBTRAP
	IBTRG
	IBWAIT
	IBWRT
	IBWRTA
	IBWRTF
	IBWRTI
	IBWRTIA
	GPIB Example Programs
	IBM/MS Pascal Program – Device Functions
	IBM/MS Pascal Program – Board Functions
	QuickPascal Program – Device Functions
	QuickPascal Program – Board Functions
	Turbo Pascal Program – Device Functions
	Turbo Pascal Program – Board Functions
	Turbo Pascal for Windows Program – Device Functions
	Turbo Pascal for Windows Program – Board Functions

	Appendix A Multiline Interface Messages
	Appendix B Applications Monitor
	Using the Applications Monitor
	Installing the Applications Monitor
	IBTRAP
	Applications Monitor Options
	Main Commands
	Session Summary Screen
	Configuring the Trap Mask
	Configuring the Monitor Mode
	Hiding and Showing the Applications Monitor
	Exiting Directly to DOS

	Appendix C Customer Communication
	Figure
	Figure B-1. Applications Monitor Pop-Up Screen

	Tables
	Table 1-1. Terms Used in This Manual
	Table 1-2. Mnemonics Used in This Manual
	Table 1-3. Pascal NI-488.2 Routines
	Table 1-4. Pascal NI-488 Functions
	Table 1-5. Functions That Alter Default Characteristics
	Table 3-1. ibask Board Configuration Parameter Options
	Table 3-2. ibask Device Configuration Parameter Options
	Table 3-3. ibconfig Board Configuration Parameter Options
	Table 3-4. ibconfig Device Configuration Parameter Options
	Table 3-5 Data Transfer Termination Method
	Table 3-6. Parallel Poll Commands
	Table 3-7. Timeout Code Values
	Table 3-8. IBTRAP Mode
	Table 3-9. IBTRAP Errors
	Table 3-10. Wait Mask Layout

