

 GPIB-RS232

https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-RS232?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-RS232?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-RS232?aw_referrer=pdf

Getting Started with
Measurement Studio
for Visual Basic
Measurement Studio for Visual Basic

July 2001 Edition

Part Number 321170E-01

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,

Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,

Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, China (Shanghai) 021 6555 7838,

China (ShenZhen) 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,

Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,

Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Malaysia 603 9596711,

Mexico 5 280 7625, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,

Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,

Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the

documentation, send e-mail to techpubs@ni.com.

Copyright © 1996, 2001 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF

NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY

THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
ComponentWorks™, CVI™, DataSocket™, HiQ™, IMAQ™, IVI™, Measurement Studio™, National Instruments™, ni.com™, and NI-DAQ™ are
trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWAREMALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Measurement Studio for Visual Basic

Contents

About This Manual
Using This Manual to Get Started ...vii

Getting Help... ix

Conventions ...x

Chapter 1
Introduction to Measurement Studio for Visual Basic

Measurement Studio Overview ...1-1

System Requirements ..1-2

Installation Instructions..1-3

Chapter 2
Getting Started with ActiveX Controls

What Is an ActiveX Control?...2-1

What Are Properties and How Do I Get and Set Them? ...2-4

Control Properties..2-4

Environment Properties ...2-4

Configuring Controls in Property Pages..2-5

Changing Properties Programmatically...2-6

What Are Methods and How Do I Call Them? ...2-8

Calling Methods ..2-8

Working with Collections..2-9

Managing Collections ...2-9

Accessing Objects with the Item Method ...2-10

What Are Events and How Do I Define Them? ..2-11

How Do I Benefit from Using ActiveX Controls? ..2-13

Chapter 3
Getting Started with Measurement Studio for Visual Basic

Creating a Project Template ..3-1

Visualizing Data on a User Interface ...3-5

Analyzing Data ..3-8

Interacting with the Data..3-9

Annotating Data ...3-10

Acquiring Analog Data ..3-14

Continuously Acquiring and Charting Data ..3-17

Contents

Measurement Studio for Visual Basic vi ni.com

Error Handling... 3-18

Visual Basic On Error Statement .. 3-18

Return Values.. 3-20

Error and Warning Events... 3-21

Testing and Debugging.. 3-21

Monitoring and Displaying Variables during Program Execution 3-21

Stopping Program Execution at Breakpoints .. 3-22

Executing the Program One Line at a Time.. 3-22

Preparing Your Program for Distribution.. 3-23

Positioning the Form on the Screen .. 3-23

Customizing the Title Bar ... 3-23

Making an Executable... 3-23

Building a Distributable Package.. 3-24

Implementing a Full-Featured Application ... 3-24

Appendix A
Technical Support Resources

Glossary

Index

© National Instruments Corporation vii Measurement Studio for Visual Basic

About This Manual

This manual contains basic information to get you started developing

programs with the Measurement Studio ActiveX controls so that you can

acquire, analyze, and present data within Visual Basic or another ActiveX

control container.

Using This Manual to Get Started

This manual is designed to teach you the fundamentals of developing

Visual Basic programs with the Measurement Studio ActiveX controls

through interactive discussions and examples. If you are new to Visual

Basic or the Measurement Studio ActiveX controls, read this manual at

your computer so you can test the discussion and concepts.

If you are working in an ActiveX control container other than Visual Basic,

spend some time programming in your development environment. Check

the documentation that accompanies your programming environment for

getting started information or tutorials, especially tutorials that describe

using ActiveX controls in the environment. If you have specific questions,

search the online documentation of your development environment.

Before you begin, refer to Chapter 1, Introduction to Measurement Studio

for Visual Basic, for installation information and a product overview, and

then use the following questions and answers to assess what you should do

next.

Are you new to using ActiveX controls?

Read Chapter 2, Getting Started with ActiveX Controls, for introductory

information about ActiveX controls and why they are useful. Thenmove on

to Chapter 3, Getting Started with Measurement Studio for Visual Basic,

to complete a Measurement Studio tutorial in Visual Basic.

Are you familiar with ActiveX controls but need to learn about

Measurement Studio controls and features?

If you are already familiar with using ActiveX controls, including

collection objects and the Item method, refer to the Measurement Studio

Reference (Start»Programs»National Instruments»Measurement

Studio»Help»Measurement Studio Reference).

About This Manual

Measurement Studio for Visual Basic viii ni.com

Do you want to develop applications quickly or modify existing

examples?

If you are familiar with using ActiveX controls, including collections and

the Itemmethod, and have some experience using Measurement Studio or

other National Instruments products, you can get started more quickly by

looking at the examples installed in Program Files\National

Instruments\MeasurementStudio\Vb\Samples.

Most examples demonstrate how to perform operations with a particular

control or group of controls. To become familiar with an individual group

of controls, look at the examples for that particular group. Then, you can

combine different programming concepts from the different groups in your

application.

The examples include comments to provide more information about the

steps performed in each example. The examples avoid performing complex

programming tasks specific to one programming environment; instead,

they focus on showing you how to perform operations using the

Measurement Studio ActiveX controls. When developing applications

with ActiveX controls, you do a considerable amount of programming by

setting properties in the property pages. Check the value of the control

properties in the examples because the values greatly affect the operation

of the example program. In some cases, the actual source code used by an

example might not greatly differ from other examples; however, the values

of the properties change the example significantly.

Do you want more information about solving industry-specific

problems?

Refer to National Instruments online at ni.com for information about

building measurement and automation programs with any National

Instruments product. The National Instruments Developer Zone includes

technical information, tutorials, examples, and a community of developers

to help you solve industry problems. You also can search for technical notes

and tutorials written to help you solve specific measurement and

automation problems with National Instruments products.

About This Manual

© National Instruments Corporation ix Measurement Studio for Visual Basic

Getting Help

As you work with Measurement Studio, you might need to consult other

resources if you have questions. The following sources can provide you

with additional information about Measurement Studio:

Tip Refer to the documentation that you received with your development environment for

information about working in the environment, learning the tools, and writing code.

• Measurement Studio Reference—Complete reference information for

all Measurement Studio controls. You can access this help from the

Windows Start menu (Programs»National Instruments»

Measurement Studio»Help»Measurement Studio Reference).

• Measurement Studio for Visual Basic Examples—The installer copies

Visual Basic examples to Program Files\National

Instruments\MeasurementStudio\Vb\Samples. Use these

examples to get started developing your own programs.

• Measurement Studio Web Support at ni.com/mstudio—

Measurement Studio news and evaluation software, examples,

technical product tutorials, customer solutions, and Internet-based

virtual instruments.

• National Instruments Web Support at ni.com—Developer Zone,

Examples, FAQs, and a searchable KnowledgeBase.

About This Manual

Measurement Studio for Visual Basic x ni.com

Conventions

The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence Tools»Options»Environment directs you

to pull down the Visual Basic Tools menu, select the Options item, and

change environment properties on the Environment dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,

such as menu items and dialog box options.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction

to a key concept. This font also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of paths, directories, programs,

procedures, functions, operations, variables, filenames and extensions, and

code excerpts.

monospace bold Bold text in this font emphasizes lines of code that are different from the

other examples or indicates that you must add code to the example.

© National Instruments Corporation 1-1 Measurement Studio for Visual Basic

1
Introduction to
Measurement Studio
for Visual Basic

This chapter introducesMeasurement Studio and lists system requirements

and installation instructions.

Measurement Studio Overview

Measurement Studio bundles LabWindows/CVI for ANSI C programmers,

ActiveX controls for Microsoft Visual Basic programmers, and C++

classes and tools for Microsoft Visual C++ programmers to deliver

measurement and automation components in the programming

environment of your choice.

The Measurement Studio Base package includes the instrument control,

user interface, base analysis, and Internet tools you need for building

common measurement and automation programs. The Measurement

Studio Full Development System adds to the Base package digital signal

processing (DSP), advanced analysis components, and IVI controls

for Visual Basic.

Measurement Studio for Visual Basic is a collection of ActiveX controls

for acquiring, analyzing, manipulating, and presenting data within any

ActiveX control container. The Measurement Studio ActiveX controls are

designed for use in Visual Basic; however, you can use ActiveX controls in

any application that supports them, including Microsoft Internet Explorer,

Microsoft PowerPoint, and several development environments.

Chapter 1 Introduction to Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 1-2 ni.com

You can use either of the Measurement Studio packages to easily develop

complex custom user interfaces to display your data; acquire data with your

National Instruments Data Acquisition (DAQ) boards; control serial, GPIB,

and VXI instruments and controllers; analyze the data you acquired from a

device; or share live data between different applications over the Internet.

Measurement Studio offers smaller, more focused Measurement Studio for

Visual Basic packages as well. The Measurement Studio for Visual Basic

Starter Kit includes the essential user interface and instrument tools you

need to build a measurement application in any ActiveX control container.

If you are developing machine vision or imaging applications, building

automation interfaces, or controlling processes with PID algorithms,

Measurement Studio for Visual Basic offers the IMAQVision, Automation

Symbols, and Autotuning PID packages.

Note For more information about additional Measurement Studio packages, visit the

National Instruments Store online at ni.com.

System Requirements

To use the Measurement Studio ActiveX controls, your computer must

have the following:

• Pentium 90 MHz or higher microprocessor recommended

• Microsoft Windows 2000/NT/Me/9x operating system (Windows NT

users need NT 4.0 with Service Pack 3 or later)

• Memory requirements

– 24MB for Microsoft Windows 95 or later (48MB recommended)

– 32 MB for Microsoft Windows NT (48 MB recommended)

– 64 MB for Microsoft Windows Me and Microsoft Windows 2000

• 85 MB free hard disk space for the Measurement Studio Full

Development System

• VGA resolution (or higher) video adapter (16-bit color recommended

for the User Interface and 3D graph controls)

• Microsoft-compatible mouse

• Appropriate hardware and driver software if you are going to use a

Measurement Studio I/O hardware control

• ActiveX control container such as Microsoft Visual Basic

(32-bit version)

Chapter 1 Introduction to Measurement Studio for Visual Basic

© National Instruments Corporation 1-3 Measurement Studio for Visual Basic

Installation Instructions

You can install Measurement Studio for Visual Basic from the

Measurement Studio CD. The setup program installs different components

depending on the package you purchased.

Note If you have a version of ComponentWorks installed on your computer, uninstall that

version before installing Measurement Studio for Visual Basic. (The Measurement Studio

for Visual Basic controls were formerly known as ComponentWorks.) To uninstall

ComponentWorks, select Start»Settings»Control Panel»Add/Remove Programs.

Select National Instruments ComponentWorks from the list of programs and click the

Add/Remove button.

1. Install driver software and hardware if you need to acquire data or

control instruments in your program. Driver software performs the

low-level calls to your hardware. You must install and configure the

corresponding driver software and hardware before you can use any of

the hardware I/O controls.

Tip Some Measurement Studio ActiveX controls require features provided only in the

newest versions of the driver. You can download the most current driver from the National

Instruments Web site at ni.com.

2. Install your hardware device. Refer to your hardware installation guide

for installation information.

3. Configure your device with National Instruments Measurement &

Automation Explorer. After configuring your hardware, Measurement

& Automation Explorer contains information about the hardware that

you might need to use I/O controls. For example, use the device

number fromMeasurement&Automation Explorer to specify a device

with an I/O control.

4. Insert the Measurement Studio CD in the CD drive of your computer.

If the CD startup screen does not appear, use Windows Explorer to run

the SETUP.EXE program from your CD.

5. Follow the instructions on the screen.

Tip You also can install an individual Measurement Studio component. On the Select

Feature screen, click on any component you do not want to install. From the drop-down

list, select Entire feature will be unavailable. You also can expand each top-level feature

and customize its installation.

Chapter 1 Introduction to Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 1-4 ni.com

The setup program installs the following groups of files on your computer

when you install Measurement Studio for Visual Basic.

• ActiveX controls (.ocx) and associated files: \Windows\System

• Example programs for Visual Basic: Program Files\

National Instruments\MeasurementStudio\Vb\Samples

• Instrument Driver Factory: Program Files\

National Instruments\MeasurementStudio\Vb\

Instrument Driver Factory

• Help files (.chm), application notes and this manual in PDF format,

which you can view with Adobe Acrobat Reader: Program Files\

National Instruments\MeasurementStudio\Help

• Miscellaneous files: Program Files\National Instruments\

MeasurementStudio\Vb

Note If you installed aMeasurement Studio package from theWeb, you can download the

latest versions of the application notes and this manual from ni.com.

© National Instruments Corporation 2-1 Measurement Studio for Visual Basic

2
Getting Started with
ActiveX Controls

This chapter contains introductory information about ActiveX controls.

What Is an ActiveX Control?

ActiveX controls are reusable software components that you can use within

an ActiveX control container to maximize software reuse, increase

productivity, and improve quality in your programs.

An ActiveX control encapsulates, or contains, three different

parts—properties, methods, and events— that you modify, call, and define

to take advantage of the control’s functionality in your program:

• Properties define attributes of a control, such as the way a control looks

on the form or the initial state of the control when you run the program.

Refer to the What Are Properties and How Do I Get and Set Them?

section later in this chapter for information about using properties.

• Methods are functions that perform a specific action on or with an

object. Refer to the What Are Methods and How Do I Call Them?

section later in this chapter for information about calling methods.

• Events are notifications generated by an ActiveX control in response

to some particular occurrence in the program, such as a mouse click

on a user interface control or a completed acquisition. Refer to the

What Are Events and How Do I Define Them? section later in this

chapter for information about defining event procedures.

An ActiveX control is a group of components, or software objects. Each

object encapsulates and exposes one specific functionality and all of the

objects work together to provide the entire functionality of the control. The

main object of an ActiveX control contains properties that store property

values and properties that access other objects in the control.

Chapter 2 Getting Started with ActiveX Controls

Measurement Studio for Visual Basic 2-2 ni.com

Figure 2-1 shows two Knob controls that might appear on a user interface.

Each pointer, label, and value pair on the knob is an object. The ticks also

are an object. Notice how each object contributes to the functionality of the

entire knob. Pointers define the current value or values of each knob. Ticks

help you determine the position of the pointers. Labels and value pairs

describe the pointer positions by number or name.

Figure 2-1. Each Object Contributes to the Functionality of the Entire Control

By manipulating individual objects on the control, you can create two very

different configurations. In Figure 2-1, Knob A uses a standard numerical

scale from 0 to 10, while Knob B uses three value pairs instead, where Low

equals 0, Medium equals 5, and High equals 10. Knob A has one

three-dimensional pointer, yet Knob B has a thin pointer. Notice the

differences in appearance as well. Knob A has ticks, while Knob B does

not. Knob A uses a three-dimensional control style, and Knob B uses a

classic flat control style.

To manipulate an individual object, you must access it through the control

hierarchy. Figure 2-2 demonstrates the relationship between software

objects in the Knob control. The main object of the Knob control contains

properties to store the value of the property, such as Caption, and other

properties to access other objects in the control. For example, the Axis

property accesses the CWAxis object, and the Pointers property accesses

the CWPointers collection object.

Captions

Pointers

Value Pairs

Ticks

Labels

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-3 Measurement Studio for Visual Basic

Figure 2-2. Software Objects Access Other Objects through Properties and Methods

A collection is a special software object that manages a set of the same

objects. For example, you might need two pointers on a knob or more than

one axis on a graph. You might want to assign different styles to each

object, including different styles on a pointer or different minimums and

maximums, ticks, and labels on an axis. You can access an individual

object, such as a CWPointer object or a CWAxis object, from the collection

with the Item method.

CWKnob Object
Contains the Axis, Pointers,

and Caption properties

Caption Property
Contains a Caption value

such as Knob A

CWAxis Object
Contains the Ticks, Labels,
and ValuePairs properties

CWPointers Collection
Collection of CWPointer objects
accessed through Item method

CWTicks Object CWLabels Object CWValuePairs Collection
Collection of CWValuePair objects

accessed through Item method

CWValue Pair Object

It
e

m
M

e
th

o
d

CWPointer Object

It
e

m
M

e
th

o
d

T
ic

k
s

P
ro

p
e

rt
y

V
a

lu
e

P
a

ir
s

P
ro

p
e

rt
y

A
x

is
P

ro
p

e
rt

y

P
o

in
te

rs
P

ro
p

e
rt

y

L
a

b
e

ls
P

ro
p

e
rt

y

Chapter 2 Getting Started with ActiveX Controls

Measurement Studio for Visual Basic 2-4 ni.com

Tip To learn more about the objects in the CWKnob control or the objects in any other

Measurement Studio ActiveX control, refer to the Measurement Studio Reference.

What Are Properties and How Do I Get and Set Them?

A property is an attribute of a control. Control properties define how the

control looks or behaves on the form or front panel of your user interface.

For example, you can customize a button to resemble several different

Boolean interfaces, such as a pushbutton, switch, or LED. Properties also

can describe the current state of the control. For example, you can set the

value of that Boolean button to on or off. You can set properties as you

design your program through property pages, or you can get or set

properties programmatically if you want to evaluate or change a property

at runtime.

You’ll need to set two types of properties: control properties and

environment properties.

Control Properties
Control properties relate directly to the functionality of the control, and you

can set them programmatically or with the custom property pages, if the

developers of the control created them. All Measurement Studio ActiveX

controls have custom property pages.

Use the property pages to set the property values for each ActiveX control

while you are creating your program. The property values you select during

design dictate the state of the control when you first run your program.

However, if you need to change the property values during program

execution, you can manipulate the properties programmatically.

Environment Properties
Environment properties describe how an ActiveX control interacts with

the environment and the rest of the user interface that you are developing.

The development environment provides default properties for the name

of the control (so that you can access the control programmatically),

position in the user interface (so that you can precisely place the controls

programmatically or interactively, rather than dragging and dropping), and

tab stops (so that users can tab through the interface). You canmodify these

and more environment properties in the environment’s default property

pages.

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-5 Measurement Studio for Visual Basic

Configuring Controls in Property Pages
You can set control properties in the custom property pages after you place

the control on a form. To access the control property pages, right click on

the control and select Properties. Although the layout and functionality

of custom property pages varies among controls, you usually see a page or

tabbed dialog box with a variety of properties that you can set for that

particular control. Several Measurement Studio ActiveX controls have

custom property pages that include a preview window, so that when you

modify a property, you can see how it affects the look of your control.

Figure 2-3 shows the Measurement Studio custom property pages and

preview window for the CWKnob control. Click OK when you want to

apply the new properties and close the property pages.

Figure 2-3. Set Control Properties in the Custom Property Pages

Tip For more information about the properties of a control, right click on any property

in the property pages to access What’s This? help. For most properties, What’s This?

help includes Visual Basic code examples.

Chapter 2 Getting Started with ActiveX Controls

Measurement Studio for Visual Basic 2-6 ni.com

You can modify environment properties after you place the control on a

form. Although the location and layout of default property sheets varies

among environments, you can usually access them from the View menu.

In Visual Basic, select View»Properties Window. Figure 2-4 shows the

Visual Basic environment properties for the CWKnob control.

Figure 2-4. Set Environment Properties

in the Visual Basic Property Window

Changing Properties Programmatically
Property pages provide a quick and easy way to set properties; however,

you use property pages only during design to set initial control properties.

You cannot access the property pages during program execution. If you

need to change properties during program execution to respond to user or

program events, modify parameters programmatically. For example, you

might want to change the state of an LED indicator during program

execution from false to true depending on the state of an assembly line.

When the assembly line is moving, the state of the LED is True, and when

the assembly line stops, the LED state changes to False. When the line

starts again, the LED state reverts to True.

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-7 Measurement Studio for Visual Basic

Each control you create in your program has a name that you use to

reference the control in your program. The environment assigns a default

name, and you can change the name in the environment’s default property

sheets. To access a property programmatically, use the name of the control

and the property in dot notation, as in the following syntax:

control.property = value

For example, to change the value property of the LED to false, use the

following line of code:

CWButton1.Value = False

In the this example, CWButton1 is the default name of the LED control,

and Value is the property that specifies the current value of the control.

Tip TheMeasurement Studio Button (CWButton) control supportsmany different display

styles, including slide switches, toggle switches, push buttons, command buttons, custom

bitmap buttons, and LEDs. To learn more about CWButton and controlling it

programmatically, refer to the Measurement Studio Reference.

In Visual Basic most controls have a default property such as Value.

You can access the default property of a control by using its control name

(without the property name attached), as in the following example:

CWKnob1 = 5.0

is programmatically equivalent to

CWKnob1.Value = 5.0

Some controls consist of several objects, and one object can access another

object through a property with the following syntax:

control.object.property

For example, you can access the CWAxis object from the CWKnob object

with the Axis property. To get the minimum value of the axis, use the

following syntax:

minimum = CWKnob1.Axis.Minimum

In this example, the minimum value of the axis on the knob is read and

stored in a variable named minimum. CWKnob1 is the default name of the

control, Axis is the property that accesses the CWAxis object, and

Minimum is the name of the property on the CWAxis object.

Chapter 2 Getting Started with ActiveX Controls

Measurement Studio for Visual Basic 2-8 ni.com

You can display the minimum value of the axis in a Visual Basic text box

named Text1 on the user interface with the following syntax:

Text1.Text = CWKnob1.Axis.Minimum

Or you can print the minimum value of the axis to the Immediate window:

Debug.Print CWKnob1.Axis.Minimum

Note For more information about the Immediate window, refer to the Testing and

Debugging section in Chapter 3, Getting Started with Measurement Studio

for Visual Basic.

What Are Methods and How Do I Call Them?

A method is a defined function within the control that you use to perform

an action, like starting or stopping a data acquisition or plotting data on a

graph. You call methods just as you call any function in your programming

environment.

Calling Methods
The following syntax shows you how to call a simple method that does not

require parameters:

control.method

If the method accepts parameters, use the following syntax, listing as many

parameters as needed:

control.method parameter1, parameter2

If the method returns a value and you want to save the result, enclose the

parameters in parentheses, as in the following syntax:

result = control.method(parameter1, parameter2)

For example, the Measurement Studio Analog Input (CWAI) control

returns a value after completing the AcquireData method, which

synchronously runs an acquisition. The returned value indicates if the

operation completed successfully or if a warning or error occurred. In the

following example, the value returned from the AcquireData method is

assigned to a variable (lErr):

lErr = CWAI1.AcquireData(ScaledData, BinaryCodes, 1)

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-9 Measurement Studio for Visual Basic

There are two types of parameters: required and optional. The method

needs required parameters to perform its primary action. The method can

use optional parameters to take more precise actions or take advantage

of additional features of the method.

Tip If you are unsure if a parameter is optional, refer to the Visual Basic Object Browser

or code completion. Visual Basic encloses optional parameters in square brackets.

Although you must include required parameters when you call the method,

you do not have to specify any optional parameters. For example, the

PlotYmethod for the Measurement Studio Graph (CWGraph) control has

a required parameter—the array of data that you want to plot on the graph.

The following line of code plots the array ScaledData:

CWGraph1.PlotY ScaledData

The PlotY method also has optional parameters. For example, you can

pass a second parameter to represent the initial value for the x-axis, a third

parameter for an incremental change on the x-axis corresponding to each

data point, and a fourth parameter that determines if a column of data or a

row of data is plotted:

CWGraph1.PlotY ScaledData, 10.0, 0.1, True

Working with Collections
Collections are special objects that manage a set of like objects. For

example, a CWPointers collection object manages a varying number of

CWPointer objects.

Managing Collections
You can add or remove individual objects from a collection with the

following syntax:

'Add a new pointer to the knob.

CWKnob1.Pointers.Add

'Remove the second pointer on the knob.

CWKnob1.Pointers.Remove 2

'Remove all pointers on the knob.

CWKnob1.Pointers.RemoveAll

Note A collection of objects is an array of objects, where the first object is at index 1.

Chapter 2 Getting Started with ActiveX Controls

Measurement Studio for Visual Basic 2-10 ni.com

Accessing Objects with the Item Method
Each collection object contains an Itemmethod that you can use to access

any particular object stored in the collection. The Itemmethod accepts one

parameter, Item, which uses the index or name of an object in a collection

to reference the object you want to access.

For example, use the following syntax to set the value of the second pointer

on a knob to 5:

CWKnob1.Pointers.Item(2).Value = 5.0

The term CWKnob1.Pointers.Item(2) refers to the second CWPointer

object in the CWPointers collection of the CWKnob object. In this

example, the Item parameter is an integer representing the one-based index

of the object in the collection. If you assign names to the objects in a

collection, you can pass the Item method a string containing the name

of the object you want to access. In the following example, the CWPointer

object named TemperaturePointer is set to 25:

CWKnob1.Pointers.Item("TemperaturePointer") = 25.0

The Item method is the most commonly used method on a collection and

is referred to as the default method. Many programming environments,

including Visual Basic, do not require you to explicitly include the default

method in the syntax. Visual Basic accepts either of the following forms:

'Item method specified.

collection.Item(Index).property

or

'Item method implied as default method.

collection(Index).property

Therefore,

'Set the second pointer to 5.

CWKnob1.Pointers.Item(2).Value = 5.0

is programmatically equivalent to

'Set the second pointer to 5.

CWKnob1.Pointers(2).Value = 5.0

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-11 Measurement Studio for Visual Basic

What Are Events and How Do I Define Them?

An event is a notification generated by an ActiveX control in response

to some particular occurrence in the program, perhaps a mouse click

on a user interface button, a change in the value of a knob, or a completed

data acquisition. Events exist so you can define the tasks your program

performs when that event occurs. You define those tasks in an event

procedure. Every time that event occurs, your event procedure is called to

process the event.

In event-driven programming, the program continuously runs and waits

for events to occur rather than continuously polling to determine if

something has changed, as in a loop-driven program. When an event

occurs, the program responds to it by executing the appropriate event

procedure and waiting for the next event to occur. Loop-driven programs

execute code sequentially from top to bottom and then loop back to the top

to start executing the same code over and over. Loop-driven programs often

take more processor time and respond slower to more frequent events.

Event-driven programming saves processor time, requires less code, and

enables you to add new controls with new functionality without rewriting

any loop-driven code.

To develop an event procedure for an ActiveX control in Visual Basic,

double click on the control to open the code editor. The program

automatically generates a default event procedure for the control. The event

procedure skeleton includes the control name, the default event, and any

parameters that are passed to the event procedure. The following code is an

example of the event procedure generated when the value of the knob is

changed by the user or by some other part of the program:

Private Sub CWKnob1_PointerValueChanged(ByVal_

Pointer As Long, Value As Variant)

End Sub

The event contains two parameters: Pointer and Value. Pointer is the

index of the pointer that changed and Value is the new value of the selected

pointer. You can use these parameters in your event procedure to help you

process the event. For example, you can use the Value parameter to scale

Chapter 2 Getting Started with ActiveX Controls

Measurement Studio for Visual Basic 2-12 ni.com

a data point named data by the new value of the pointer as soon as it

changes:

Private Sub CWKnob1_PointerValueChanged(ByVal_

Pointer As Long, Value As Variant)

'data is a global variable.

data = data * Value

End Sub

Note You can use the underscore line-continuation character to span a single statement

over several lines of code, which is especially useful for displaying long strings in your

code. The underscore line-continuation is used throughout this manual to indicate that a

line of code continues; however, you can remove the continuation character when you

include a complete statement on a single line.

Alternatively, you can generate an event procedure in the code editor.

Figure 2-5 shows how to create the event procedure for the KeyPress

event on a CWKnob control named CWKnob1. Select the control from the

left list and then the event you want to define from the right list of the code

editor.

Figure 2-5. Select Events in the Code Editor

Tip Use the code editor to generate any event procedure for any control on the form

without switching back and forth to the form window.

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-13 Measurement Studio for Visual Basic

How Do I Benefit from Using ActiveX Controls?

Custom ActiveX controls address your specific industry needs. For

example,Measurement Studio providesmeasurement and automation tools

to help you develop custom measurement and automation applications in

the environment that you choose. ActiveX controls provide the following

benefits:

• Work in any ActiveX control container. ActiveX controls enable

you to implement component-based software in any ActiveX control

container. Many integrated development environments are ActiveX

control containers because they support the standard interfaces needed

to communicate with ActiveX controls. Microsoft Visual Basic, Visual

C++, Excel, Word, and Internet Explorer users can take advantage

of ActiveX controls in their development environment or Microsoft

Office tool.

ActiveX control containers offer standard tools to help you develop

basic interfaces and programs, but you often need custom tools to

create your applications. Custom ActiveX controls provide specific

functionality that is not available through controls native to your

development environment, and they enable you to get the exact

functionality you need without leaving your development

environment. Furthermore, custom ActiveX controls are widely

distributed across the Internet, so you can find a custom control

for almost anything you can imagine.

• Develop event-driven programs. ActiveX controls are tools

for developing event-driven programs, rather than loop-driven

programs. In event-driven programming, the program runs

continuously waiting for events to occur. When an event occurs, the

program responds to it and then waits for the next event to occur.

Event-driven programming saves processor time, requires less code,

and enables you to add new controls with new functionality without

rewriting any loop-driven code.

• Easily configure and use ActiveX controls.ActiveX controls deliver

an easy-to-use property page interface for configuring controls during

design time; a simplified API for accessing properties, methods, and

events programmatically; and 32-bit performance. Furthermore,

ActiveX controls communicate with the container, so you can take

advantage of your development environment’s features, such as the

Visual Basic Object Browser and code completion.

• Create reusable software components. ActiveX controls are easy to

develop in Microsoft Visual Basic. You can combine many different

ActiveX controls on one form to create a single component that

Chapter 2 Getting Started with ActiveX Controls

Measurement Studio for Visual Basic 2-14 ni.com

contains the exact functionality that you need. You then can use your

custom component as a reusable software component in other

programs or in HTML files to add interactive functionality to a

Web page, which you can view with Internet Explorer 3.0 or later and

Netscape with the ActiveX plug-in.

© National Instruments Corporation 3-1 Measurement Studio for Visual Basic

3
Getting Started
with Measurement Studio
for Visual Basic

In this chapter, you will practice using Measurement Studio for Visual

Basic. In this tutorial, you will learn to design a graphical user interface;

acquire, visualize, and analyze data; and distribute your completed

program.

Tip Refer to the Microsoft Visual Basic documentation if you need more information

about programming in Visual Basic. If you are an advanced Visual Basic programmer

and need more information about developing programs with Measurement Studio,

refer to the Measurement Studio Reference (Start»Programs»National Instruments»

Measurement Studio»Help»Measurement Studio Reference).

You need the following tools to complete this tutorial:

• Microsoft Visual Basic. Although this example uses Visual Basic 6

terminology, you can implement the example in Visual Basic 5 or later.

• National Instruments Measurement Studio for Visual Basic.

If you have not purchased a licensed version of Measurement Studio,

visit the National Instruments Measurement Studio Web site at

ni.com/mstudio and follow the links to download Measurement

Studio for Visual Basic evaluation software.

• National Instruments DAQ hardware and NI-DAQ 6.5 or later. Or you

can experiment with the Serial, GPIB, or VISA controls if you have

serial, GPIB, or VXI instruments or controllers.

Creating a Project Template

Goal Create a project template to hold all of the components needed to develop similar

programs. Templates provide a way for you to reuse components and code. For example,

if you develop a lot of acquisition programs, you might have a template named Acquisition

that includes the Measurement Studio DAQ and User Interface controls and perhaps even

a standard interface that simulates your acquisition process. If you develop a lot of

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-2 ni.com

automation projects, you might have a template named Automation that contains the

Measurement Studio User Interface, Automation Symbols, and PID components and a

standard user interface that simulates the process on your production floor.

For this tutorial, you’ll create a standard project template (CWProject) that

contains the Measurement Studio User Interface, DAQ, and Analysis

ActiveX controls. You can use the template over and over as you develop

similar programs.

1. Launch Visual Basic.

2. Open a new Standard EXE project.

3. Right click on the Visual Basic Toolbox and select Components.

4. Select National Instruments CW Analysis, National Instruments

CW DAQ, and National Instruments CW UI.

Note If you don’t see the controls you want to load, click theBrowse button and select the

following ActiveX control files from your Windows System folder: cwanalysis.ocx,

cwdaq.ocx, and cwui.ocx. Depending on the Measurement Studio package you own,

you might have the following Measurement Studio ActiveX controls to include in this or

other project templates:

• 3D Graph Control cw3dgrph.ocx

• Analysis Controls cwanalysis.ocx

• Data Acquisition Controls cwdaq.ocx

• DataSocket Control nids.dll

• Instrument Controls (GPIB and Serial) cwinstr.ocx

• IVI DC Power Control CWIviDCPower.ocx

• IVI DMM Control CWIviDmm.ocx

• IVI Function Generator Control CWIviFgen.ocx

• IVI Scope Control CWIviScope.ocx

• IVI Switch and SwitchScan Controls CWIviSwitch.ocx

• IVITools Control CWIviTools.ocx

• Motion Control nimotion.ocx

• User Interface Controls cwui.ocx

• VISA Control cwvisa.ocx

• IMAQ Vision cwimaq.ocx

• Automation Symbols cwas.ocx

• Autotuning PID cwpid.ocx

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-3 Measurement Studio for Visual Basic

5. Click OK. Visual Basic loads the Measurement Studio controls into

the Toolbox, as shown in Figure 3-1.

Figure 3-1. Load the Measurement Studio ActiveX Controls into the Toolbox

6. Save the form and project in the Visual Basic \Template\Projects

directory as CWForm and CWProject.

Tip Only projects found in the \Template\Projects directory appear in the New

Project dialog box. You can change the path for your template directory in the Visual Basic

options (Tools»Options»Environment).

7. Close the project.

Native Visual
Basic Controls

Measurement Studio
DAQ ActiveX Controls

Measurement Studio
Analysis ActiveX Controls

Measurement Studio
User Interface ActiveX Controls

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-4 ni.com

Measurement Studio also has four predefined project templates that you

can use to create a new Visual Basic project. Each project template

automatically loads a defined set of Measurement Studio controls. Refer

to Table 3-1, Measurement Studio Project Templates, for information

about each Measurement Studio project template.

Table 3-1. Measurement Studio Project Templates

Template Components Use

NI Instrumentation EXE 3D Graph, Analysis,

DataSocket, Instrumentation,

IVI, User Interface, and VISA

Standalone

instrumentation

applications

NI Instrumentation ActiveX Control 3D Graph, Analysis,

DataSocket, Instrumentation,

IVI, User Interface, and VISA

Web applications

NI Measurements EXE 3D Graph, Analysis,

DataSocket, Data Acquisition,

and User Interface

Standalone

measurements

applications

NI Measurements ActiveX Control 3D Graph, Analysis,

DataSocket, Data Acquisition,

and User Interface

Web applications

The Measurement Studio IVI controls and some advanced analysis functions are available only in the Measurement Studio

Full Development System.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-5 Measurement Studio for Visual Basic

Visualizing Data on a User Interface

Goal Create a user interface to get and display data. The interface is very simple,

consisting of a graph and Get Data button, as shown in Figure 3-2. When the program is

complete, you can click the Get Data button and display an array of random numbers on

the graph.

Figure 3-2. Create a Simple User Interface

1. Open a new Visual Basic project with the CWProject template from

the New Project dialog. Notice that you have a new project with the

Measurement Studio controls already loaded. Refer to the Creating

a Project Template section for information about creating the

CWProject template.

2. Place a Measurement Studio Graph (CWGraph) control on the form.

A form is the window or area on the screen on which you place

controls and indicators to create the user interface for your program.

Select the CWGraph icon from the Visual Basic Toolbox, and click

and drag on the form where you want the graph to appear.

Tip If you have trouble finding a control in the Toolbox, hold your mouse over each

control icon to see the tooltips.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-6 ni.com

3. Select the graph, and look at the most important environment property

in the Visual Basic Properties window—the control name.Name is the

most important environment property because it is the name you use to

programmatically access and control the graph. Visual Basic named

the CWGraph control CWGraph1.

4. Double click on the CommandButton control icon in the Toolbox to

place a pushbutton control on the form. Visual Basic places the control

in the middle of the form.

Tip You can place controls on the form two ways. Either double click on a control in the

Toolbox or select it and click and drag on the form to place the object. If you double click

on the control in the Toolbox, Visual Basic places the control in the middle of the form.

Use your mouse to move and resize the control.

5. Click and drag on the button to move it below the graph.

The CommandButton control is a native Visual Basic control. One of

the benefits of developing programs with ActiveX controls is that you

can use the control that provides the exact functionality your program

requires, whether it is a native Visual Basic control or a custom

ActiveX control like the CWGraph control.

Because the CommandButton is a native Visual Basic control, it has

only one set of properties (environment properties), so you use only the

Visual Basic Properties window to set properties for this control. By

default, Visual Basic names this control Command1, which is not very

descriptive. Change the name to cmdGetData.

Tip Quite a few naming conventions for variables and constants exist, but the most

common one is the Hungarian notation. With this notation, each variable and constant

name is proceeded by three to four letters that reflect the data type. For instance, txt

proceeds a name for a TextBox, cmd refers to a CommandButton, and lbl represents a

Label. You can find many more of these prefixes in Visual Basic guides.

6. Change the Caption property to Get Data. To edit a property,

highlight the property value on the right side of the property window

and type in the new value.

With the user interface completed, you can write code to generate data and

display it on the graph. The program has only one event—pressing theGet

Data button. When you click the button, an array of random numbers is

generated and plotted on the graph.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-7 Measurement Studio for Visual Basic

7. Double click on theGet Data command button. The code editor opens

with the following event procedure skeleton:

Private Sub cmdGetData_Click()

End Sub

The first line indicates that you are writing a procedure that is called

every time the user clicks on the cmdGetData object (the Get Data

button).

8. The following procedure declares two variables: data is the array of

generated y values to be plotted on the graph, and i is the loop counter.

Each time the loop runs, a y value is created with the Visual Basic Rnd

method and added to the data array. The loop iterates 50 times to

create an array of 50 y values, and then the procedure plots the data.

Insert the bolded code in the event procedure:

Private Sub cmdGetData_Click()

Dim data(0 to 49) As Double, i

For i = 0 To 49

data(i) = Rnd * 10

Next i

CWGraph1.PlotY data

End Sub

Tip Take advantage of the code completion feature in Visual Basic. After you enter the

name of a control and a period, the code editor prompts you with a list of available

properties and methods.

9. Test the program. Click the Start button in the Visual Basic toolbar to

start the program, and then click theGet Data button. The graph plots

all 50 points of data and stops, waiting for the next event to occur. You

can click theGet Data button again, and another 50 points are plotted

on the graph.

10. Click the End button in the Visual Basic toolbar to stop the program

and return to design mode.

Note Save your program periodically throughout this tutorial.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-8 ni.com

Analyzing Data

Goal Find and display the mean value of the data you are generating. Figure 3-3 shows

the new interface, which uses the Measurement Studio Statistics (CWStat) control to find

the mean and a Visual Basic Label control to display the value.

Figure 3-3. Analyze Data

1. Place a Visual Basic Label on the form to display the mean value.

Change the control name to lblMeanValue and the border style to

Fixed Single. Also, delete the default caption text so that the indicator

is empty, rather than displaying Label1, when the program first runs.

Use an additional Visual Basic Label to identify the indicator as the

mean.

2. Place a CWStat control on the form and use its Mean method to find

and display the mean value. By default, Visual Basic names this

control CWStat1.

Note To access the functionality of any ActiveX control, whether graphical or

non-graphical, you must place the control on the form. If the control does not have a

graphical interface, it does not appear on the user interface during runtime. For example,

you must place the CWStat control on the form to access its functionality, but it does not

appear on the user interface during runtime.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-9 Measurement Studio for Visual Basic

3. Add the bolded code to the existing event procedure to find the mean

value in data (the array of generated data) and display it as the caption

in the lblMeanValue indicator:

Private Sub cmdGetData_Click()

Dim data(0 to 49) As Double, i

For i = 0 To 49

data(i) = Rnd * 10

Next i

CWGraph1.PlotY data

lblMeanValue.Caption = CWStat1.Mean(data)

End Sub

4. Run the program and click the Get Data button to display the mean

value. Click Get Data again, and notice that the mean value changes

because a new set of random data was generated. Stop the program

when you finish testing.

Interacting with the Data

Goal Interact with the data from the user interface. For this example, scale the data by the

value that appears on a knob, as shown in Figure 3-4.

Figure 3-4. Interact with Data

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-10 ni.com

1. Place a Measurement Studio Knob (CWKnob) control on the form

as shown in Figure 3-4. By default, Visual Basic names the control

CWKnob1. Right click on the knob and select Properties to modify its

custom properties. On the Numeric page, changeMinimum and

Maximum to 10 and 100, so that you can scale the data by 10 to 100.

Make the knob caption display Scale Factor. Click OK.

2. Modify the following bolded line of code to scale the data according to

the value of the knob on the user interface:

Private Sub cmdGetData_Click()

Dim data(0 to 49) As Double, i

For i = 0 To 49

data(i) = Rnd * CWKnob1.Pointers(1).Value

Next i

CWGraph1.PlotY data

lblMeanValue.Caption = CWStat1.Mean(data)

End Sub

3. Run the program and click theGet Data button. The data looks similar

because the data is scaled by 10, as it was before. Turn the knob to 50

and click theGet Data button again. The mean value increases and the

graph has autoscaled to accommodate larger values. Stop the program

when you finish testing.

Annotating Data

Goal Label the maximum and minimum values on the plot as shown in Figure 3-5. You

can use the Measurement Studio Array (CWArray) control to find the maximum and

minimum values and the CWGraph annotations to highlight data on a plot.

1. Place a CWArray control on the form. By default, Visual Basic names

it CWArray1.

2. Use the MaxMin1Dmethod to find the minimum and maximum values

on the plot. In the following event procedure, data is the input array

of generated data, max and min are the maximum andminimum values

of the array, and imax and imin are the indices of the maximum and

minimum points. Add the following bolded lines of code to the event

procedure:

Private Sub cmdGetData_Click()

Dim data(0 to 49) As Double, i

For i = 0 To 49

data(i) = Rnd * CWKnob1.Pointers(1).Value

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-11 Measurement Studio for Visual Basic

Next i

CWGraph1.PlotY data

lblMeanValue.Caption = CWStat1.Mean(data)

Dim max As Variant, min As Variant, imax As_

Variant, imin As Variant

CWArray1.MaxMin1D data, max, imax, min, imin

End Sub

Figure 3-5. Annotate Data

Tip This portion of the tutorial demonstrates how to create annotations programmatically.

Like all Measurement Studio User Interface controls, you can use the custom property

pages to set properties.

3. Add an annotation to the graph to highlight the maximum value on the

plot. An annotation has three main objects—a shape, a line, and a

caption. For the Shape object, use the Type property to specify which

type of shape to draw at the area of interest. The Plot property

associates an annotation with a specific plot. The SnapMode property

anchors the annotation on a plot point. Add the following event

procedure that is called when you start your program:

Private Sub Form_Load()

CWGraph1.Annotations.Add

CWGraph1.Annotations(1).Name = "Max"

With CWGraph1.Annotations("Max")

.Shape.Type = cwShapePoint

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-12 ni.com

Set .Plot = CWGraph1.Plots(1)

.SnapMode = cwCSnapAnchoredToPoint

End With

End Sub

Tip In Visual Basic, the Form_Load event procedure executes before the user sees the

user interface. This event procedure is useful if you want to preconfigure form variables or

initialize settings for controls.

4. Create a second annotation that highlights the minimum value. Copy

the code you wrote for the first annotation and change it accordingly.

5. Position the annotations on the graph and create annotation captions.

To place an annotation on the plot point at the specified index, set the

PointIndex property for each annotation to imin and imax,

respectively. Set the Text property for each annotation caption to

Maximum and Minimum. To control the placement of a caption in the

graph area, you can use the SetCoordinates method. For the y

coordinates of each caption, use the value of lblMeanValue to center

the captions on the form. Add the following bolded lines of code:

Private Sub cmdGetData_Click()

Dim data(0 To 49) As Double, i

 For i = 0 To 49

 data(i) = Rnd *_

CWKnob1.Pointers(1).Value

 Next i

CWGraph1.PlotY data

lblMeanValue.Caption = CWStat1.Mean(data)

Dim max As Variant, min As Variant, imax As

Variant, imin As Variant

CWArray1.MaxMin1D data, max, imax, min, imin

With CWGraph1.Annotations("Max")

.PointIndex = imax

.Caption.Text = "Maximum"

'Place the "Maximum" caption at 30 on the x

'axis and at the mean value of the y axis

.Caption.SetCoordinates 30, lblMeanValue

End With

With CWGraph1.Annotations("Min")

.PointIndex = imin

.Caption.Text = "Minimum"

'Place the "Minimum" caption at 10 on the x

'axis and at the mean value of the y axis

.Caption.SetCoordinates 10, lblMeanValue

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-13 Measurement Studio for Visual Basic

End With

End Sub

6. Run the program. Notice that you have two annotations marking the

minimum and maximum values.

7. You can reposition any annotation line and caption at runtime through

the Annotation object Enabled property and the Graph object

TrackMode property. The TrackMode property determines how the

mouse interacts with the graph. If you set the TrackMode property to

cwGTrackDragAnnotation, you can reposition the annotation line

and caption. You must set the Enabled property to True to reposition

the annotation at runtime. Add the following bolded lines of code to the

event procedure:

Private Sub Form_Load()

CWGraph1.TrackMode = cwGTrackDragAnnotation

CWGraph1.Annotations.Add

CWGraph1.Annotations(1).Name = "Max"

With CWGraph1.Annotations("Max")

.Shape.Type = cwShapePoint

Set .Plot = CWGraph1.Plots(1)

.SnapMode = cwCSnapAnchoredToPoint

.Enabled = True

End With

CWGraph1.Annotations.Add

CWGraph1.Annotations(2).Name = "Min"

With CWGraph1.Annotations("Min")

.Shape.Type = cwShapePoint

Set .Plot = CWGraph1.Plots(1)

.SnapMode = cwCSnapAnchoredToPoint

.Enabled = True

End With

End Sub

8. Run the program. Click the Get Data button. The labeled annotations

appear on the graph. Click theGet Data button again. The annotations

appear at the new maximum and minimum values. Click on the line

portion of either annotation and drag the caption to reposition it. Stop

the program when you are finished testing.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-14 ni.com

Acquiring Analog Data

Goal Acquire live data from a DAQ device. You already know how to visualize, analyze,

and interact with data, and now you can use theMeasurement Studio Analog Input (CWAI)

control to add analog input functionality.

Note You need a National Instruments DAQ board installed and configured to run this

example. Alternatively, if you have a serial, GPIB, or VXI instrument or controller, you can

use an Instrument control rather than the CWAI control. Load the Instrument and VISA

controls to the Visual Basic Toolbox and use the correct commands to read from the

instrument if you use them.

1. Place a CWAI control on the form. By default, Visual Basic names

it CWAI1. After placing the control on the form, use the custom

property pages to interactively select your device and acquisition

settings.

Tip Right click on any Measurement Studio control and select Properties to set custom

properties for that control.

2. Select your data acquisition device from the drop-down list.

3. Click the New button to create a new CWAIChannel object.

A CWAIChannel object holds the configuration for the channel or set

of channels that you want to read. You can add more CWAIChannel

configurations with the New button or delete existing configurations

with the Del button.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-15 Measurement Studio for Visual Basic

4. Type 1 or the channel you want to read inChannels. Figure 3-6 shows

how your Channels property page might look.

Figure 3-6. Configure Analog Input Channels

Tip If you configure named or virtual channels with National Instruments Measurement

& Automation Explorer, you can use those channels rather than channel numbers.

5. On the Buffer page, change the Number of scans to acquire to 50 so

that only 50 points of data are acquired.

6. Click OK to apply the settings and close the property pages.

Consider how this program works with its new interface and analog input

feature. You click theGet Data button and then wait for the data to appear

on the graph and the mean to be displayed in the indicator. You then might

change the scale factor with the knob and click the Get Data button again.

Now consider what you need to do programmatically to make it work.

First, the board must be configured with the settings from the CWAI

property pages and then it must acquire 50 data points. When all 50 points

are acquired, the CWAI control generates the AcquiredData event,

indicating that the data has been acquired and is ready for some sort of

processing. For this example, you can use the AcquiredData event to

scale and plot all 50 data points and then calculate the mean. Therefore, you

need to modify the existing event procedure for the Get Data button and

create a new event procedure to handle the data after it is acquired.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-16 ni.com

7. Because you will be charting data continuously later in the tutorial,

delete the Form_Load event procedure and any code you added to the

Click event procedure to create the annotations. Annotations work

well to mark the maximum and minimum values of a plot; however,

when you chart data continuously, you will not have only one

minimum and one maximum point.

8. Modify the Click event procedure for theGetData button as follows,

ensuring that you delete existing lines of code that do not appear

below:

Private Sub cmdGetData_Click()

'Configure the device with settings from the

'CWAI property pages.

CWAI1.Configure

'Start the acquisition.

CWAI1.Start

End Sub

9. Double click on the CWAI control to create the AcquiredData event

procedure skeleton and then add the bolded code to the procedure:

Private Sub CWAI1_AcquiredData(ScaledData _

As Variant, BinaryCodes As Variant)

Dim i

'Scale each point with the value from the knob.

For i = 0 To 49

ScaledData(i) = ScaledData(i) * _

CWKnob1.Pointers(1).Value

Next

'Plot the scaled data.

CWGraph1.PlotY ScaledData

'Find and display the mean.

lblMeanValue.Caption = CWStat1.Mean(ScaledData)

End Sub

Note The Variant ScaledData holds all acquired data. The CWAI control passes this

array to the event procedure so that you can process the data.

10. Run the program. Click the Get Data button. The graph plots all

50 points of data and stops, waiting for the next event to occur. Change

the scale factor to see how the plot and mean change. Click the Get

Data button again. Another 50 points are plotted on the graph. Stop the

program when you finish testing.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-17 Measurement Studio for Visual Basic

Continuously Acquiring and Charting Data

Goal Acquire and chart a continuous stream of data from your analog input device.

1. Use the Conditions property page for the CWAI control to set the stop

condition to Continuous. A stop condition specifies when the DAQ

device stops acquiring data after the acquisition is started. The

Continuous option keeps the acquisition running until a user stops the

program.

2. Modify the graph plot method to display the data on a strip chart:

Private Sub CWAI1_AcquiredData(ScaledData _

As Variant, BinaryCodes As Variant)

Dim i

'Scale each point with the value from the knob.

For i = 0 To 49

ScaledData(i) = ScaledData(i) * _

CWKnob1.Pointers(1).Value

Next

'Chart the scaled data.

CWGraph1.ChartY ScaledData

'Find and display the mean.

lblMeanValue.Caption = CWStat1.Mean(ScaledData)

End Sub

Note PlotY and ChartY are the two most common methods for passing data to a graph.

Use the PlotY method when you have a finite number of points and you do not need to

see data that was visualized before the current data set. Use the ChartY method to

continuously display data, as on a strip chart, and set the ChartLength property to keep

a record of historical data.

3. Test the program. Run the program and click the Get Data button.

Figure 3-7 shows the program during runtime. Notice that data is

continuously acquired and displayed on the graph like a strip chart.

Try changing the scale factor, and notice how the graph and mean

respond to scaling. Stop the program when you finish testing.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-18 ni.com

Figure 3-7. Continuously Acquire and Chart Data

Error Handling

Goal Include error handling in your program so that it can continue running if an error

occurs. If you don’t include error handling, the Measurement Studio controls generate

exceptions when errors occur, forcing you to terminate your program. Use the Visual Basic

On Error statement or the I/O control return values and error events to handle errors so

that your program can continue to run.

Visual Basic On Error Statement
Use the On Error statement to handle errors, as in the following examples.

Refer to the Visual Basic documentation for more information about the On

Error statement.

• On Error Resume Next enables the program to continue running at

the next line. To handle an error in this mode, check and process the

information in the Err object in your code, as in the following

example:

Private Sub Acquire_Click()

On Error Resume Next

'Configure.

CWAI1.Configure

'Display error message if one occurs

'during Configure.

If Err.Number <> 0 Then MsgBox "Configure: "_

+ CStr(Err.Number)

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-19 Measurement Studio for Visual Basic

'Start the acquisition.

CWAI1.Start

'Display error message if one occurs

'during Start.

If Err.Number <> 0 Then MsgBox "Start: "_

+ CStr(Err.Number)

End Sub

• On Error GoTo enables the program to continue running at the

specified location in the procedure. In the following example, the same

error handler is called if an error occurs with either Configure or

Start:

Private Sub Acquire_Click()

On Error GoTo ErrorHandler

CWAI1.Configure

CWAI1.Start

Exit Sub

'Display error message if one occurs

'during Configure or Start.

ErrorHandler:

MsgBox "DAQ Error: " + CStr(Err.Number)

Resume Next

End Sub

Tip Use the Measurement Studio DAQTools (CWDAQTools) control and the

GetErrorText method to convert an error code into descriptive error information.

The following example saves the return code in the DAQError variable and, if the value

indicates a warning or event, uses the GetErrorText method to retrieve textual

information about it:

'Get return code.

DAQError = CWAI1.Start

If DAQError <> 0 Then

'Display message box with error information.

MsgBox CWDAQTools1.GetErrorText(DAQError)

End If

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-20 ni.com

Return Values
The Measurement Studio I/O controls can return error codes rather than

generating exceptions, which force you to enter debug mode or terminate

the program. Error codes are generated by hardware controls if an error

occurs during specific contexts of an operation.

If you set the ExceptionOnError property to False, the I/O control

methods do not generate exceptions. Instead, the methods return a status

code that indicates if the operation completed successfully. If the return

value is something other than zero, a warning or error occurred. Positive

return values indicate that a problem occurred in the operation, but that the

program can continue running. Negative return values indicate that a

critical problem has occurred in the operation and that all other functions

or methods depending on the failed operation also will fail.

To retrieve the return code from a method call, assign the value of the

function or method to a long integer variable and check the value of the

variable after calling the function or method. For example, the following

code checks the return value of the Start method on a CWAI control:

'Get the return value for the Start method.

lerr = CWAI1.Start

'Display an error message if one occurred.

If lerr <> 0 Then MsgBox "Error at DAQ Start: " _

+ CStr(lerr)

If you want to check the return value in several different event procedures,

write one error handler for your program rather than duplicating it for every

call to a function or method. Remember that you can use the CWDAQTools

control and the GetErrorText method to convert an error code into

descriptive error information. For example, the following code creates a

LogError subroutine to use with the Startmethod and later functions or

methods:

Private Sub LogError(code As Long)

'Display error if one occurs.

If code <> 0 Then

MsgBox "DAQ Error: " + _

CWDAQTools1.GetErrorText(code)

End If

End Sub

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-21 Measurement Studio for Visual Basic

Call LogError before every function or method call, as in the following

line of code:

LogError CWAI1.Start

The return value is passed to LogError and processed.

Error and Warning Events
The DAQ controls include error and warning events (DAQError and

DAQWarning), and the Instrument, VISA, IVI, and IMAQ controls include

an error event. Using warning and error events, you can develop event

procedures for error checking asynchronous operations, such as continuous

analog input or asynchronous instrument control.

By default, only asynchronous operations call error and warning events.

If you are working with the Measurement Studio DAQ ActiveX controls,

you can use the ErrorEventMask property to force other operations or

contexts to generate error and warning events. Refer to the Measurement

Studio Reference for information about the ErrorEventMask property.

Testing and Debugging

Goal Test and debug your program as needed. Visual Basic provides many debugging

tools. If you experience some unexpected behavior in your program, use these tools to

locate and correct the problem. Refer to your Visual Basic documentation for more

information about debugging techniques.

Monitoring and Displaying Variables during Program Execution
One of the most common debugging methods is to print out or display

important variables throughout program execution. You can monitor

critical values and determine when your program varies from the expected

progress. Some programming environments have dedicated debugging

windows that are used to display such information without disturbing the

rest of the user interface.

In Visual Basic, the Immediate window opens during runtime in break

mode, which means that you can examine and debug your program while it

is running. You can use the Debug.Print command in Visual Basic to

print information directly to the debug window. For example, the following

code displays the first channel or channels that you are reading:

Debug.Print CWAI1.Channels(1).ChannelString

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-22 ni.com

You also can type or paste a line of code into the Immediate window and

press <Enter> to run it. Or you can copy and paste code from the Immediate

window into the code editor.

Note Visual Basic does not save the content of the Immediate window. Copy any code

from the Immediate window that you want to save.

You also can use a Watch window to display the value of a variable during

program execution. You can use it to edit the value of a variable while the

program is paused. In some cases, you can display expressions, which are

values calculated dynamically from one or more program variables.

Stopping Program Execution at Breakpoints
Most development environments include breakpoint options so you can

suspend program execution at a specific point in your code. Breakpoints are

placed on a specific line of executable code in the program to pause

program execution.

Stopping at a breakpoint confirms that your program ran to the line of code

containing the breakpoint. If you are unsure if a specific section of code

executes, place a breakpoint in the procedure to find out. Once you have

stopped at a specific section of your code, you can use other tools, such as

a Watch window or the Immediate window, to analyze or even edit

variables.

In some environments, breakpoints also might include conditions so

program execution halts if certain conditions are met. These conditions

usually check program variables for specific values. Once you have

completed the work at the breakpoint, you can continue running

your program, either in the normal run mode or in some type of

single-step mode.

Executing the Program One Line at a Time
Use single stepping to execute a program one line at a time to check

variables and the output from your program as it runs. Single stepping is

commonly used after a breakpoint to slowly step through a questionable

section of code.

If you use step into, the program executes any code available for

subroutines or function calls and steps through the code one line at a time.

Use this mode if you want to check the code for each function called. The

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-23 Measurement Studio for Visual Basic

step over mode assumes that you do not want to go into the code for

functions being called and runs them as one step.

In some cases, you might want to test a limited number of iterations of a

loop but then run the rest of the iterations without stopping. For this type of

debugging, several environments include the step to cursor or run to cursor

options. Under this option, you can place your cursor at a specific point in

the code, such as the first line after a loop and run the program to that point.

Preparing Your Program for Distribution

Goal Add finishing touches to the analog input program to prepare it for distribution.

This section explains someVisual Basic features that you can use to further customize your

programs. Refer to your Visual Basic documentation for more information about

customizing your programs in Visual Basic.

Positioning the Form on the Screen
You can use the Form Layout window to position the program form

exactly where you want it to appear when your customer runs it. Select

View»Form Layout Window and drag-and-drop the form anywhere on

the Form Layout window screen.

Tip Right click in the Form Layout window and select resolution guides to help you

precisely position the form or select a predefined startup position, such as the center of the

screen.

Customizing the Title Bar
You can set environment properties in the Visual Basic Properties window

to further customize the form and its title bar. For example, change the

Caption property to Acquire Data to customize the title bar text. You can

specify the icon that the program displays in the title bar or Windows Start

menu with the Icon property. You might use your company icon or create

a new icon for your custom program.

Making an Executable
Now that you have a program to distribute to customers, Visual Basic

makes it easy to create an executable version (.exe) so that your

customers do not have to run the Visual Basic project. Anyone running

Windows 2000/NT/Me/9x can run Visual Basic executables. For this

example, select File»Make Acquire Data.exe and complete the dialogs.

To run the executable, double click the icon for the executable file.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

Measurement Studio for Visual Basic 3-24 ni.com

Building a Distributable Package
To install a program using Measurement Studio ActiveX controls on

another computer, you must install the necessary control files and

supporting libraries. You can create an automatic installer to install your

program and all the files needed to run that program or you can manually

install the program and program files.

Whichever installation method you choose, you must install all necessary

OCX files to enable your program to create the controls on a different

computer, and you must register all OCXs with the operating system.

You also need to install driver software and corresponding hardware if

your program performs any I/O operations requiring separate driver

software, such as data acquisition or GPIB. Remember to configure

the software drivers.

Note You can redistribute the OCX files and related DLLs from your Measurement

Studio CD.

TheMicrosoft Visual Studio Package&DeploymentWizard provides tools

to help you package all components you need to distribute and build an

installer. This wizard automatically includes all ActiveX controls (OCXs)

that you used, any system files required to run your program on another

computer, dependency files to identify the run-time files needed to run the

program on a different computer, and the Visual Basic run-time file needed

to run any Visual Basic executable on a Windows computer. The wizard

also lets you specify the default location of the installed files.

Note If you use the evaluation version of Measurement Studio for Visual Basic to develop

your program, the distributable version of your program also uses the evaluation version of

Measurement Studio for Visual Basic controls.

Implementing a Full-Featured Application

You have created a simple, yet versatile program to acquire data from a

DAQ device and visualize that data on a graph. Try adding the following

features to this simple analog input example to create a more robust custom

application:

• Additional interface controls to make the program more user friendly.

Did you notice that to stop the acquisition you had to stop the Visual

Basic program? Instead, you can place a Stop button on the user

interface so that your customers do not have to quit the program every

time they want to stop the acquisition.

Chapter 3 Getting Started with Measurement Studio for Visual Basic

© National Instruments Corporation 3-25 Measurement Studio for Visual Basic

• Data logging. Use Visual Basic to log data to a file as it is acquired, and

then continue using your own software to analyze the data and generate

reports. For example, you can import the data into Microsoft Excel

or National Instruments HiQ and analyze it there. Refer to the

Measurement Studio Analog Input—Acquiring and Logging Data

in Visual Basic application note at ni.com.

• Internet connectivity with National Instruments DataSocket. Use the

Measurement Studio DataSocket control to publish live data over the

Internet. Refer to the Building an Interactive Web Page with

DataSocket application note at ni.com.

• Multiple instrument control with DAQ, GPIB, serial, VISA, or IVI.

Control different kinds of instruments using the same program

architecture. Visit ni.com for technical papers and tutorials

about instrument control.

© National Instruments Corporation A-1 Measurement Studio for Visual Basic

A
Technical Support Resources

Web Support

National Instruments Web support is your first stop for help in solving

installation, configuration, and application problems and questions. Online

problem-solving and diagnostic resources include frequently asked

questions, knowledge bases, product-specific troubleshooting wizards,

manuals, drivers, software updates, and more. Web support is available

through the Technical Support section of ni.com.

NI Developer Zone

The NI Developer Zone at ni.com/zone is the essential resource for

building measurement and automation systems. At the NI Developer Zone,

you can easily access the latest example programs, system configurators,

tutorials, technical news, as well as a community of developers ready to

share their own techniques.

Customer Education

National Instruments provides a number of alternatives to satisfy your

training needs, from self-paced tutorials, videos, and interactive CDs to

instructor-led hands-on courses at locations around the world. Visit the

Customer Education section of ni.com for online course schedules,

syllabi, training centers, and class registration.

System Integration

If you have time constraints, limited in-house technical resources, or other

dilemmas, you may prefer to employ consulting or system integration

services. You can rely on the expertise available through our worldwide

network of Alliance Program members. To find out more about our

Alliance system integration solutions, visit the System Integration section

of ni.com.

Appendix A Technical Support Resources

Measurement Studio for Visual Basic A-2 ni.com

Worldwide Support

National Instruments has offices located around the world to help address

your support needs. You can access our branch office Web sites from the

Worldwide Offices section of ni.com. Branch office Web sites provide

up-to-date contact information, support phone numbers, e-mail addresses,

and current events.

If you have searched the technical support resources on our Web site and

still cannot find the answers you need, contact your local office or National

Instruments corporate. Phone numbers for our worldwide offices are listed

at the front of this manual.

© National Instruments Corporation G-1 Measurement Studio for Visual Basic

Glossary

A

ActiveX Set of Microsoft technologies for reusable software components. Formerly

called OLE.

ActiveX control Reusable software component that adds functionality to any ActiveX

control container through exposed properties, methods, and events. The

Measurement Studio Data Acquisition, User Interface, and Analysis

controls are examples of ActiveX controls.

ActiveX control

container

Development environment that fully supports ActiveX controls and

integrates them into its own environment using COM. An ActiveX control

container enables you to specify how ActiveX controls interact with the

environment through environment properties. Visual Basic is an example

of an ActiveX control container. See also environment property.

analog I/O Reading or writing data in continuously variable physical quantities,

such as voltage or current.

API Application Programming Interface. A specification of software functions

and their input and return parameters.

array Ordered, indexed set of data elements.

asynchronous Function that begins an operation and returns control to the program prior

to the completion or termination of the operation.

B

breakpoint Testing and debugging tool that allows you to select a program line at which

execution automatically stops.

Glossary

Measurement Studio for Visual Basic G-2 ni.com

C

channel Pin or wire lead to which you apply or from which you read the analog or

digital signal.

code completion Code writing feature that prompts youwith next element in the line of code.

In Visual Basic 5.0 and later, when you enter the name of a control, the code

editor prompts you with the names of all available properties and methods.

code editor Window where you write code. In Visual Basic, the code editor provides

several features to make writing code easier: automatic code completion,

automatic quick info, and bookmarks. The automatic quick info feature

displays the syntax for statements and functions as you enter them in the

code editor. Bookmarks mark lines of code in the code editor so that you

can find and return to them later.

collection Object that contains a number of objects of the same type, such as pointers,

axes, and plots. In Measurement Studio for Visual Basic, the name of the

collection is the plural of the name of the objects in the collection. For

example, a collection of CWAxis objects is called CWAxes. To reference an

object in the collection, youmust specify the object as part of the collection,

usually by index. For example, CWGraph.Axes.Item(2) is the second

axis in the CWAxes collection of a graph.

COM Component Object Model. Microsoft specification for architecting and

developing reusable software components.

ComponentWorks TheMeasurement Studio for Visual Basic controls were formerly known as

ComponentWorks. See Measurement Studio.

control 1. ActiveX control. See ActiveX control.

2. Object for entering or manipulating data on a user interface. Compare

with indicator.

control property Property that defines the way an ActiveX control looks and behaves. You

can set control properties programmatically or with custom property pages.

counter/timer I/O Reading or writing data based on high-precision timing through a counter

or timer. By combining a counter with a highly accurate clock, you can

create a wide variety of timing and counting applications, such as

monitoring and analyzing digital waveforms and generating complex

square waves.

Glossary

© National Instruments Corporation G-3 Measurement Studio for Visual Basic

D

DAQ Data acquisition. Process of acquiring data, typically from A/D or digital

input plug-in boards.

DataSocket Technology that simplifies live data exchange between applications and

HTTP, FTP, OPC, logos (Lookout objects) and file servers over the Internet.

It provides one common API to a number of different communication

protocols.

debug Find and correct errors in a program.

device Plug-in data acquisition board that performs analog input and output,

digital input and output, and counter/timer operations.

device number Slot number or board ID number assigned to the board when it is

configured.

digital I/O Reading or writing digital representations of data in discrete units

(the binary digits 1 and 0). Digital information is either on or off.

DLL Dynamic Link Library. A library of functions that link to a program and

load at runtime rather than being compiled into the program. Loading

libraries only when they are needed saves memory in software applications.

DMM Digital Multimeter. A common measurement instrument that measures

resistance, current, and voltage in a wide variety of applications.

dot notation Programming syntax that allows you to access attributes and methods or

functions on an object. For example, object.attribute = value allows

you to set attribute on object to a new value.

driver Software that controls a specific hardware device, such as a data acquisition

board or GPIB interface board.

Glossary

Measurement Studio for Visual Basic G-4 ni.com

E

environment property Property that defines how an ActiveX control interacts with the

development environment and the rest of the user interface that you are

developing. The development environment provides default values for

environment properties, but you can modify the default values to better

integrate the ActiveX control in your program.

error Critical problem in a software application that causes the operation or

program to fail.

error event Object-generated response to an error. The Measurement Studio DAQ,

GPIB, Serial, VISA, IVI, and IMAQ I/O controls generate error events for

which you can define event procedures. See also warning event.

error handler Function, subroutine, or section of code that processes errors if one occurs

during program execution. Refer to the Visual Basic documentation for

information about the On Error statement. See also error event and

warning event.

event Object-generated response to some action or change in state, such as a

mouse click or a completed acquisition. The event calls an event procedure

that processes the event. Events are defined as part of an ActiveX control

object.

event-driven Describes a program that runs continuously, waiting for an event to occur.

When an event occurs, the program calls the appropriate event procedure.

Compare with loop-driven, where a program continuously polls to find out

if anything has changed.

event procedure User-defined function called in response to an event from an object.

See also event.

exception Error message generated by a control and sent directly to the application or

programming environment containing the control.

executable Program file with a .exe extension that you can run independently of the

development environment in which it was created.

Glossary

© National Instruments Corporation G-5 Measurement Studio for Visual Basic

F

form Window or area on the screen on which you place controls and indicators

to create the user interface for your program.

FTP File Transfer Protocol. Protocol based on TCP/IP to exchange files between

computers.

FTP Server Application running on a computer that enables the storing and retrieving

of files by different clients via FTP. Most FTP servers allow anonymous

connections so that any networked user can exchange files.

G

GPIB General Purpose Interface Bus. The standard bus used for controlling

electronic instruments with a computer. Also called IEEE 488 bus because

it is defined by ANSI/IEEE Standards 488-1978, 488.1-1987, and

488.2-1987.

GUI Graphical User Interface. A user interface that has graphics, controls,

indicators, and/or menus.

H

HTML HyperText Markup Language. Syntax used to build Web pages. HTML

files are downloaded from an HTTP server and viewed in a Web browser,

such as Internet Explorer.

HTTP HyperText Transfer Protocol. Protocol based on TCP/IP, which is used to

download Web pages from an HTTP server to a Web browser.

HTTP Server Application running on a computer that serves Web pages and other

information to client computers using HTTP. Clients display Web pages

in Web browsers but can retrieve information using other tools, like a

DataSocket client.

Hungarian notation Object-naming notation where each variable and constant name is

proceeded by three to four letters that reflect the data type. For example,

intValue is a variable of type integer.

Glossary

Measurement Studio for Visual Basic G-6 ni.com

I

I/O Input/Output. The transfer of data to or from a computer system involving

communication channels, operator interface devices, and/or data

acquisition and control interfaces.

IEEE 488 Shortened notation for ANSI/IEEE Standards 488-1978, 488.1-1987,

and 488.2-1987. See also GPIB.

IMAQ Vision National Instruments image acquisition and analysis software that you

can use to acquire images from National Instruments image acquisition

(IMAQ) boards, display them in your program, perform interactive viewer

operations, and analyze the images to extract information.

Immediate window Visual Basic debugging tool. The Immediate window opens during runtime

in breakmode, whichmeans that you can examine and debug your program

while it is running. For example, you can type or paste a line of code and

press <Enter> to run it. Or you can copy and paste code from the Immediate

window into the code editor.

indicator Object for displaying data on a user interface. Compare with control.

installer Software program that copies program, system, and other necessary files to

computers. You can use tools such as the Microsoft Visual Studio Package

& Deployment Wizard to create installers for programs you want to

distribute to others.

instrument driver Library of functions to control and use one specific physical instrument.

Also a set of functions that adds specific functionality to an application.

IVI Interchangeable Virtual Instruments. A technology involving standard

programming interfaces for classes of instruments, such as oscilloscopes,

DMMs, and function generators, that results in hardware-independent

instrument drivers. The IVI standard programming interfaces have been

defined by the IVI Foundation, an industry consortium. Visit

www.ivifoundation.org.

Glossary

© National Instruments Corporation G-7 Measurement Studio for Visual Basic

L

LED Light-Emitting Diode. An indicator that emits a light when current passes

through it. For example, an LED shows if your computer or printer is

turned on.

loop-driven Describes a program that uses a main loop to keep polling the program for

changes. Compare with event-driven.

M

MB Megabytes of memory.

Measurement &

Automation Explorer

National Instruments tool for configuring your National Instruments

hardware and driver software; executing system diagnostics; adding new

devices, interfaces, and virtual channels; and viewing devices and

instruments connected to your system.

Measurement Studio National Instruments software that includes tools to build measurement

applications in ANSI C, Visual C++, and Visual Basic.

method Function that performs a specific action on or with an object. The operation

of the method often depends on the values of the object properties.

N

named channel Channel configuration that specifies a DAQ device; a hardware-specific

channel string; channel attributes such as input limits, input mode, and

actuator type; and a scaling formula for making a measurement or

generating a signal in terms of your actual physical quantity. You can create

named channels for National Instruments devices in Measurement &

Automation Explorer.

NI-DAQ Driver-level software to control and communicate with DAQ hardware.

Glossary

Measurement Studio for Visual Basic G-8 ni.com

O

object Reusable, self-contained programming structure that encapsulates data and

functionality. An object has exposed properties, methods, and events so that

you can programmatically control how the object looks and behaves. Also

known as a software object. See property, method, and event.

Object Browser Visual Basic tool that displays the available properties, methods, and events

for the controls that are currently loaded in the development environment.

The Object Browser shows the hierarchy within a group of objects. Press

<F2> in Visual Basic to open the Object Browser.

OCX OLE Control eXtension. Another name for ActiveX controls, reflected by

the .ocx file extension of ActiveX control files.

OLE Object Linking and Embedding. See ActiveX.

OLE control See ActiveX control.

OPC OLE for Process Control. An industry standard based on ActiveX and

COM technologies that enables you to create a single client application that

can communicate with disparate devices. Visit

www.opcfoundation.org.

OPC Server OLE for Process Control Server. A COM-based standard defined by the

OPC Foundation that specifies how to interact with device servers.

oscilloscope Measurement instrument widely used in high-speed testing applications,

such as telecommunication physical layer testing, video testing, and

high-speed digital design verification.

P

parameter Value passed to a method or function.

PID Proportional-Integral-Derivative. A three-term control mechanism

combining proportional, integral, and derivative control. You might use a

PID algorithm to control processes such as heating and cooling systems,

fluid level monitoring, flow control, and pressure control.

Glossary

© National Instruments Corporation G-9 Measurement Studio for Visual Basic

plot 1. Trace (data line) on a graph representing the data in one row or column

of an array.

2. To display a new set of data while deleting any previous data on the

graph. Use one of the Plotmethods on the CWGraph control to plot data.

pointer Indicator on a CWSlide or CWKnob object. You can use a collection of

pointers to display different values on the same object. In the collection,

each pointer is referenced by an index in the collection and each individual

pointer has its own properties such as color, style, mode, and so on.

property Attribute that defines the appearance or state of an object. The property can

be a specific value or another object with its own properties and methods.

For example, a value property is the color (property) of a plot (object),

while an object property is a specific Y axis (property) on a graph (object).

The Y axis itself is another object with properties, such as minimum and

maximum values.

property pages Window or dialog box that displays current configuration information and

allows users to modify the configuration. Also called property sheets.

R

return value Status code that indicates if an operation completed successfully. If the

return value is something other than zero, a warning or error occurred.

Positive return values indicate a warning, a problem that occurred in the

operation but does not stop the program from running. Negative return

values indicate an error, a critical problem that occurred in the operation

and that stops all other functions or methods that depend on the failed

operation from completing successfully.

S

scope See oscilloscope.

serial Standard serial bus on a computer used to communicate with instruments.

Also known as RS-232.

software object See object.

synchronous Property or operation that begins and returns control to the program only

when the operation is complete.

Glossary

Measurement Studio for Visual Basic G-10 ni.com

syntax Set of rules to which statements must conform in a particular programming

language.

U

UI User Interface. See GUI.

V

value pairs Paired name and value that you can use for custom ticks, labels, and grid

lines on the axis of a knob, slide, or graph.

Variant Data type that can hold any defined type of data. Visual Basic converts all

data as needed to save it in a variable of type Variant.

VISA Driver-software architecture developed by National Instruments to unify

instrumentation software for serial, GPIB, and VXI instruments or

controllers. It has been accepted as a standard for VXI by the

VXIplug&play Systems Alliance.

VXI VME eXtension for Instrumentation. Instrumentation architecture and bus

based on the VME standard. Used in high-end test applications.

W

warning Non-critical problem in a software application.

warning event Object-generated response to a warning. The Measurement Studio DAQ

and IMAQ I/O controls generate warning events for which you can define

event procedures. See also error event.

watch window Visual Basic debugging tool that displays the value of variables during

program execution.

© National Instruments Corporation I-1 Measurement Studio for Visual Basic

Index

Symbols
_ (line continuation character), 2-12

A
acquiring analog data, 3-14

ActiveX control containers, 2-13

ActiveX controls

benefits of using, 2-13

custom controls, 2-13, 3-3, 3-6

events, 2-11

loading in Visual Basic, 3-2

methods, 2-8

naming, 3-6

native (Visual Basic) controls, 3-3, 3-6

overview, 2-1

placing on a form, 3-5, 3-6

properties, 2-4

Analog Input (CWAI) control, 3-14

Analysis controls, 3-8

analyzing data, 3-8

annotating data, 3-10

annotations, 3-10

application notes, viii

Array (CWArray), 3-10

B
breakpoints, 3-22

building a distributable package, 3-24

C
calling methods, 2-8, 3-8

code completion, 3-7

code examples

AcquiredData event, 3-16, 3-17

adding an object to a collection, 2-9

annotating data, 3-10

calling Analysis functions, 3-9

calling methods, 2-8, 2-9

charting data, 3-17

Click event, 3-7, 3-9, 3-10, 3-16, 3-18, 3-19

configuring devices, 3-16, 3-18, 3-19

Debug.Print, 3-21

displaying error information, 3-19

displaying messages, 3-18, 3-19

displaying values on the user interface,

2-8, 3-9

Err object, 3-18, 3-19

using event parameters in procedures, 2-12

For loop, 3-7, 3-16

generating event procedure skeletons, 2-11

generating random data, 3-7

GetErrorText method, 3-19

getting a property, 2-7

If-Then statements, 3-18, 3-19

Item method, 2-10

On Error statement, 3-18, 3-19

plotting data, 3-7

printing values, 2-8, 3-21

removing objects from a collection, 2-9

using return values, 3-20

saving a value from a method call, 2-8

scaling data with user interface

controls, 3-10

setting a property, 2-7

setting properties on collection items, 2-10

starting acquisitions, 3-16, 3-18, 3-19

collections, 2-3, 2-9

Index

Measurement Studio for Visual Basic I-2 ni.com

control properties, 2-4

customer education, A-1

customizing a program title bar, 3-23

D
Data Acquisition controls, 3-14

data logging, 3-25

DataSocket control, 3-25

debugging

breakpoints, 3-22

Immediate window, 3-21

Print function, 3-21

stepping through code, 3-22

watch window, 3-22

Developer Zone, viii

distributing programs, 3-24

documentation

conventions, x

getting started with, vii

related documentation, vii

E
environment properties, 2-4

error events, 3-21

error handling

events, 3-21

GetErrorText method, 3-19, 3-20

On Error statement, 3-18

return values, 3-20

ErrorEventMask property, 3-21

event procedures, 2-11

event-driven programming, 2-11

events

developing event procedures, 2-11, 3-7,

3-16

error, 3-21

warning, 3-21

examples

See also code examples.

using Measurement Studio for Visual

Basic (tutorial), 3-1

ExceptionOnError property, 3-20

exceptions, 3-18

executable, 3-23

F
Form Layout window, 3-23

Form_Load event, 3-12

forms, 3-5, 3-23

G
GetErrorText method, 3-20

getting started, vii

GPIB control, 3-14

Graph (CWGraph), 3-5

graphing data, 3-5

graphs

annotating, 3-10

CWGraph control, 3-10

displaying data, 3-10

H
Hungarian notation, 3-6

I
Immediate window, 3-21

installers, 3-24

installing Measurement Studio, 1-3 to 1-4

Instrument controls, 3-14

interacting with data, 3-9

Internet connectivity, 3-25

Item method, 2-10

Index

© National Instruments Corporation I-3 Measurement Studio for Visual Basic

K
Knob (CWKnob), 3-9

L
line continuation, 2-12

loading controls, 3-2

loop-driven program, 2-11

M
making an executable, 3-23

manipulating data, 3-9

Measurement Studio

overview, 1-1

reference, ix

Measurement Studio for Visual Basic

application notes, viii

error handling, 3-18, 3-21

examples, viii

installation, 1-3 to 1-4

packages, 1-1

property pages, 2-5

reference, ix

samples, viii

system requirements, 1-2

template for Visual Basic, 3-1

tutorial, 3-1

methods

calling, 2-8, 3-8

default method, 2-10

GetErrorText, 3-20

passing parameters, 2-9

SnapMode, 3-11

TrackMode, 3-13

N
naming conventions, 3-6

National Instruments Web support, A-1

NI Developer Zone, A-1

O
objects, 2-1

P
Package & Deployment Wizard, 3-24

parameters, 2-9

placing controls, 3-5, 3-6

plotting data, 3-5

Print function, 3-21

program distribution

building a distributable package, 3-24

making an executable, 3-23

programming

event-driven, 2-11

loop-driven, 2-11

project template, 3-1

properties

control, 2-4, 3-10, 3-14

default property, 2-7

environment, 2-4, 3-6, 3-8

ErrorEventMask, 3-21

ExceptionOnError, 3-20

property pages, 2-5 to 2-6

setting programmatically, 2-6

Properties window, 2-6, 3-6

property pages, 2-5 to 2-6

R
redistributable files, 3-24

requirements (system), 1-2

return values, 3-20

run to cursor, 3-23

S
scaling data with user interface controls, 3-16

Serial control, 3-14

single stepping, 3-22

SnapMode method, 3-11

Index

Measurement Studio for Visual Basic I-4 ni.com

software objects, 2-1

Statistics (CWStat), 3-8

stepping (through code), 3-22

system integration, by National

Instruments, A-1

system requirements, 1-2

T
template (Visual Basic project), 3-1

testing, 3-21

title bar, 3-23

TrackMode, 3-13

tutorial

acquiring analog data, 3-14

analyzing data, 3-8

annotating data, 3-10

charting data, 3-17

distributing programs, 3-23

error handling, 3-18, 3-21

expanding your program, 3-24

interacting with data, 3-9

testing and debugging, 3-21

visualizing data, 3-5

U
User Interface controls, 3-5, 3-9

V
VISA control, 3-14

Visual Basic

breakpoints, 3-22

code completion, 3-7

code editor, 2-12

debugging, 3-21

error handling, 3-18, 3-21

forms, 3-5, 3-23

Immediate window, 3-21

line continuation, 2-12

loading controls, 3-2

On Error statement, 3-18

Package & Deployment Wizard, 3-24

Print function, 3-21

Properties window, 2-6, 3-6

stepping through code, 3-22

template, 3-1

Toolbox, 3-3

tutorial, 3-1

watch window, 3-22

visualizing data, 3-5, 3-17

W
warning events, 3-21

watch window, 3-22

Web support from National Instruments, A-1

worldwide technical support, A-2

	Getting Started with Measurement Studio for�Visual Basic
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Using This Manual to Get Started
	Getting Help
	Conventions

	Chapter 1 Introduction to Measurement Studio for Visual Basic
	Measurement Studio Overview
	System Requirements
	Installation Instructions

	Chapter 2 Getting Started with ActiveX Controls
	What Is an ActiveX Control?
	Figure 2-1. Each Object Contributes to the Functionality of the Entire Control
	Figure 2-2. Software Objects Access Other Objects through Properties and Methods

	What Are Properties and How Do I Get and Set Them?
	Control Properties
	Environment Properties
	Configuring Controls in Property Pages
	Figure 2-3. Set Control Properties in the Custom Property Pages
	Figure 2-4. Set Environment Properties in the Visual Basic Property Window

	Changing Properties Programmatically

	What Are Methods and How Do I Call Them?
	Calling Methods
	Working with Collections
	Managing Collections
	Accessing Objects with the Item Method

	What Are Events and How Do I Define Them?
	Figure 2-5. Select Events in the Code Editor

	How Do I Benefit from Using ActiveX Controls?

	Chapter 3 Getting Started with Measurement Studio for Visual Basic
	Creating a�Project Template
	Figure 3-1. Load the Measurement Studio ActiveX Controls into the Toolbox
	Table 3-1. Measurement Studio Project Templates

	Visualizing Data on a User Interface
	Figure 3-2. Create a Simple User Interface

	Analyzing Data
	Figure 3-3. Analyze Data

	Interacting with the Data
	Figure 3-4. Interact with Data

	Annotating Data
	Figure 3-5. Annotate Data

	Acquiring Analog Data
	Figure 3-6. Configure Analog Input Channels

	Continuously Acquiring and Charting Data
	Figure 3-7. Continuously Acquire and Chart Data

	Error Handling
	Visual Basic On Error Statement
	Return Values
	Error and Warning Events

	Testing and Debugging
	Monitoring and Displaying Variables during Program Execution
	Stopping Program Execution at Breakpoints
	Executing the Program One Line at a Time

	Preparing Your Program for Distribution
	Positioning the Form on the Screen
	Customizing the Title Bar
	Making an Executable
	Building a Distributable Package

	Implementing a Full-Featured Application

	Appendix A Technical Support Resources
	Glossary
	A-B
	C
	D
	E
	F-H
	I
	L-N
	O-P
	R-S
	U-W

	Index
	Symbols
	A-C
	D-I
	K-S
	T-W

