

 GPIB-RS485

https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-RS485?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-RS485?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-RS485?aw_referrer=pdf

Getting Started with
ComponentWorks
Getting Started with ComponentWorks

February 2000 Edition

Part Number 321170D-01

Worldwide Technical Support and Product Information

www.ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,

Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,

China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,

Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,

Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,

Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 00, Poland 48 22 528 94 06,

Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00,

Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the

documentation, send e-mail to techpubs@ni.com

© Copyright 1996, 2000 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media that do not execute programming
instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not
warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult
National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of
or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL
INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments
must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks
ComponentWorks™, CVI™, DataSocket™, HiQ™, IMAQ™, Measurement Studio™, National Instruments™, ni.com™, and
NI-DAQ™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL
OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL
COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE
EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS
CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL
POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE
FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION,
INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR
FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC
SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF
THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH)
SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM
FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE
REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO
BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS
FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER
MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL
INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A
SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND
SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Getting Started with ComponentWorks

Contents

About This Manual
Using ComponentWorks Documentation to Get Started...vii

Getting Help... ix

Conventions ...x

Chapter 1
Introduction to Measurement Studio and ComponentWorks

Measurement Studio Overview ...1-1

ComponentWorks Overview ...1-1

System Requirements ..1-3

Installation Instructions..1-4

Chapter 2
Getting Started with ActiveX Controls

What Is an ActiveX Control?...2-1

What Are Properties and How Do I Get and Set Them? ...2-4

Control Properties..2-4

Environment Properties ...2-4

Configuring Controls in Property Pages..2-5

Changing Properties Programmatically...2-6

What Are Methods and How Do I Call Them? ...2-8

Calling Methods ..2-8

Working with Collections..2-9

Managing Collections ...2-9

Accessing Objects with the Item Method ...2-9

What Are Events and How Do I Define Them? ..2-10

How Do I Benefit from Using ActiveX Controls? ..2-12

Chapter 3
Getting Started with ComponentWorks in Visual Basic

Creating a ComponentWorks Project Template ..3-1

Visualizing Data on a User Interface ...3-4

Analyzing Data ..3-7

Interacting with the Data..3-8

Acquiring Analog Data ..3-9

Continuously Acquiring and Charting Data ..3-12

Contents

Getting Started with ComponentWorks vi www.ni.com

Error Handling... 3-13

Visual Basic On Error Statement .. 3-13

Return Values.. 3-15

Error and Warning Events... 3-16

Testing and Debugging.. 3-16

Printing Variables during Program Execution .. 3-16

Monitoring Variables during Program Execution... 3-17

Examining and Debugging during Program Execution 3-17

Executing the Program One Line at a Time.. 3-17

Stopping Program Execution at Breakpoints .. 3-17

Preparing Your Program for Distribution.. 3-18

Positioning the Form on the Screen .. 3-18

Customizing the Title Bar ... 3-18

Making an Executable... 3-19

Building a Distributable Package.. 3-19

Implementing a Full-Featured Application ... 3-20

Appendix A
Technical Support Resources

Glossary

Index

Figures
Figure 2-1. Each Object Contributes to the Functionality of the Entire Control..... 2-2

Figure 2-2. Software Objects Access Other Objects through

Properties and Methods... 2-3

Figure 2-3. Set Control Properties in the ComponentWorks Property Pages.......... 2-5

Figure 2-4. Set Environment Properties in the Visual Basic Property Window 2-6

Figure 2-5. Selecting Events in the Code Editor ... 2-12

Figure 3-1. Loading the ComponentWorks Controls into the Toolbox................... 3-3

Figure 3-2. Creating a Simple User Interface .. 3-4

Figure 3-3. Analyzing Data ... 3-7

Figure 3-4. Interacting with Data... 3-8

Figure 3-5. Configuring Analog Input Channels ... 3-10

Figure 3-6. Continuously Acquiring and Charting Data ... 3-13

© National Instruments Corporation vii Getting Started with ComponentWorks

About This Manual

This manual contains basic information to get you started developing

programs with ComponentWorks ActiveX controls so that you can acquire,

analyze, and present data within any ActiveX control container, including

Visual Basic.

Using ComponentWorks Documentation to Get Started

This manual is designed to teach you the fundamentals of developing

Visual Basic programs with ComponentWorks ActiveX controls through

interactive discussions and examples. If you are new to Visual Basic or

ComponentWorks ActiveX controls, read this manual at your computer so

you can test the discussion and concepts.

If you are working in an ActiveX control container other than Visual Basic,

spend some time programming in your development environment. Check

the documentation that accompanies your programming environment for

getting started information or tutorials, especially tutorials that describe

using ActiveX controls in the environment. If you have specific questions,

search the online documentation of your development environment.

Before you begin, refer to Chapter 1, Introduction to Measurement Studio

and ComponentWorks, for installation information and a ComponentWorks

overview, and then use the following questions and answers to assess what

you should do next.

Are you new to using ActiveX controls?

Read Chapter 2, Getting Started with ActiveX Controls, for introductory

information about ActiveX controls and why they are so useful. Then move

on to Chapter 3, Getting Started with ComponentWorks in Visual Basic,

to complete a ComponentWorks tutorial in Visual Basic.

Are you familiar with ActiveX controls but need to learn

ComponentWorks controls and features?

If you are already familiar with using ActiveX controls, including

collection objects and the Item method, refer to the ComponentWorks

online reference (Start»Programs»National Instruments»

Measurement Studio»Online Help»ComponentWorks Reference

for Visual Basic).

About This Manual

Getting Started with ComponentWorks viii www.ni.com

Do you want to develop applications quickly or modify existing

examples?

If you are familiar with using ActiveX controls, including collections and

the Item method, and have some experience using ComponentWorks or

other National Instruments products, you can get started more quickly by

looking at the examples installed in MeasurementStudio\Vb\Samples.

Most examples demonstrate how to perform operations with a particular

control or group of controls. To become familiar with an individual group

of controls, look at the example for that particular group. Then, you can

combine different programming concepts from the different groups in your

application.

The examples include comments to provide more information about the

steps performed in the example. The examples avoid performing complex

programming tasks specific to one programming environment; instead,

they focus on showing you how to perform operations using the

ComponentWorks controls. When developing applications with ActiveX

controls, you do a considerable amount of programming by setting

properties in the property pages. Check the value of the control properties

in the examples because the values greatly affect the operation of the

example program. In some cases, the actual source code used by an

example might not greatly differ from other examples; however, the values

of the properties change the example significantly.

Tip ComponentWorks installs only Visual Basic examples. Visit the ComponentWorks

Web site at www.ni.com/cworks for Visual C++ and Borland Delphi examples.

Do you want more information about solving industry-specific

problems?

Refer to National Instruments online at www.ni.com for information about

building measurement and automation programs with any National

Instruments product. The ComponentWorks online reference includes

several ComponentWorks application notes to help you solve industry

problems. Check the Application Note library for more technical notes and

tutorials written to help you solve specific measurement and automation

problems with National Instruments products.

About This Manual

© National Instruments Corporation ix Getting Started with ComponentWorks

Getting Help

As you work with ComponentWorks, you might need to consult other

resources if you have questions. The following sources can provide you

with additional information about ComponentWorks:

Tip Refer to the documentation that you received with your development environment for

information about working in the environment, learning the tools, and writing code.

• ComponentWorks Reference—Complete reference information for all

ComponentWorks controls. You can access this help from the

Windows Start menu (Programs»National Instruments»

Measurement Studio»Online Help»ComponentWorks Reference

for Visual Basic).

• ComponentWorks Examples—The ComponentWorks installer copies

Visual Basic examples to MeasurementStudio\Vb\Samples. Use

these examples to get started developing your own programs. Visit the

ComponentWorks Web site to download examples for Visual C++ and

Borland Delphi.

• ComponentWorks Web Support at www.ni.com/cworks—

ComponentWorks news and evaluation software, examples, technical

product tutorials, customer solutions, and Internet-based virtual

instruments.

• National Instruments Web Support at www.ni.com—Examples,

FAQs, a searchable KnowledgeBase, and the Application Notes

library.

About This Manual

Getting Started with ComponentWorks x www.ni.com

Conventions

The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence Tools»Options»Environment directs you

to pull down the Visual Basic Tools menu, select the Options item, and

change environment properties on the Environment dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,

such as menu items and dialog box options.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction

to a key concept. This font also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of paths, directories, programs,

procedures, functions, operations, variables, filenames and extensions, and

code excerpts.

monospace bold Bold text in this font emphasizes lines of code that are different from the

other examples or indicates that you must add code to the example.

© National Instruments Corporation 1-1 Getting Started with ComponentWorks

1
Introduction to
Measurement Studio and
ComponentWorks

This chapter introduces Measurement Studio and ComponentWorks and

lists system requirements and installation instructions.

Measurement Studio Overview

Measurement Studio bundles LabWindows/CVI for ANSI C programmers,

ComponentWorks for Microsoft Visual Basic programmers, and

ComponentWorks++ for Microsoft Visual C++ programmers to deliver

measurement and automation components in the programming

environment of your choice.

The Measurement Studio Base package includes the instrument control,

user interface, base analysis, and Internet tools you need for building

common measurement and automation programs. The Measurement

Studio Full Development System adds to the Base package digital signal

processing (DSP) and advanced analysis components. ComponentWorks

includes IVI controls in the Full Development System.

ComponentWorks Overview

ComponentWorks is a collection of ActiveX controls for acquiring,

analyzing, manipulating, and presenting data within any ActiveX control

container. The ComponentWorks ActiveX controls are designed for use in

Visual Basic, and some ComponentWorks features and utilities have been

incorporated with the Visual Basic user in mind. However, you can use

ActiveX controls in any application that supports them, including

Microsoft Internet Explorer, Microsoft Visual C++, and Borland Delphi.

Chapter 1 Introduction to Measurement Studio and ComponentWorks

Getting Started with ComponentWorks 1-2 www.ni.com

You can use either of the Measurement Studio packages to easily develop

complex custom user interfaces to display your data; acquire data with your

National Instruments Data Acquisition (DAQ) boards; control serial, GPIB,

and VXI instruments and controllers; analyze the data you acquired from a

device; or share live data between different applications over the Internet.

ComponentWorks offers smaller, more focused ComponentWorks

packages as well. The ComponentWorks Starter Kit includes the essential

user interface and instrument tools you need to build a measurement

application in any ActiveX control container. If you are developing

machine vision or imaging applications, building automation interfaces, or

controlling processes with PID algorithms, ComponentWorks offers the

ComponentWorks IMAQ Vision, Automation Symbols, and Autotuning

PID packages.

The following list describes the functionality that ComponentWorks

ActiveX controls can add to your custom programs:

• User Interface Controls (Starter Kit, Measurement Studio Base and

Full)—Present your data in a technical format. These controls include

a graph/strip chart, slides, thermometers, tanks, knobs, gauges, meters,

LEDs, and switches.

• Three-Dimensional Graph Control (Measurement Studio Base and

Full)—Visualize three-dimensional data on a user interface.

• DAQ Controls (Starter Kit, Measurement Studio Base and

Full)—Perform analog I/O, digital I/O, and counter/timer I/O

operations using National Instruments DAQ products.

• GPIB, Serial, and VISA Controls (Starter Kit, Measurement Studio

Base and Full)—Control and retrieve data from instruments or devices

connected to a serial, GPIB, or VXI port in your computer. You must

connect GPIB instruments with a National Instruments GPIB interface

card.

• DataSocket Control and Tools (Measurement Studio Base and

Full)—Share live data between applications or HTTP, FTP, OPC,

and file servers.

• IVI Controls (Measurement Studio Full)—Control scopes and DMMs.

With IVI, you can develop hardware-independent test systems,

isolating your test programs from changes in the instrument hardware.

• Analysis Library Controls (Starter Kit, Measurement Studio Base and

Full)—Functions for statistics, advanced signal processing,

windowing, filters, curve fitting, vector and matrix algebra routines,

probability, and array manipulations. Refer to the ComponentWorks

Chapter 1 Introduction to Measurement Studio and ComponentWorks

© National Instruments Corporation 1-3 Getting Started with ComponentWorks

online reference to find out which analysis functions are available in

your ComponentWorks package.

• IMAQ Vision Controls (ComponentWorks IMAQ Vision)—Acquire

images from National Instruments image acquisition (IMAQ) boards,

display them in your program, perform interactive viewer operations,

and analyze your images to extract information with the

ComponentWorks IMAQ Vision package.

• Industrial Automation Controls (ComponentWorks Automation

Symbols)—Build advanced custom user interfaces for your industrial

process monitor or control programs. The ComponentWorks

Automation Symbols package includes controls for pipes, motors,

pumps, valves, and vessels.

• PID Control (ComponentWorks Autotuning PID)—Control programs

based on proportional-integral-derivative (PID) controllers. For

example, you might use the ComponentWorks Autotuning PID

package to control processes such as heating and cooling systems,

fluid level monitoring, flow control, and pressure control.

System Requirements

To use the ComponentWorks ActiveX controls, your computer must have

the following:

• Microsoft Windows 2000/NT/9x operating system (Windows NT users

need NT 4.0 to use the DAQ controls)

• ActiveX control container such as Microsoft Visual Basic

(32-bit version)

• Appropriate hardware and driver software if you are going to use a

ComponentWorks I/O control, including DAQ, Serial, GPIB, VISA,

IVI, or IMAQ

• 33 MHz 80486 or higher microprocessor (66 MHz 80486 or higher

microprocessor recommended)

• VGA resolution (or higher) video adapter

• Minimum of 16 MB of memory

• Minimum of 85 MB of free hard disk space for the Measurement

Studio Full Development System

• Microsoft-compatible mouse

Chapter 1 Introduction to Measurement Studio and ComponentWorks

Getting Started with ComponentWorks 1-4 www.ni.com

Installation Instructions

You can install ComponentWorks from the Measurement Studio CD. The

setup program installs different components depending on the package you

purchased.

Note If you have an earlier version of ComponentWorks installed on your computer,

uninstall that version before installing ComponentWorks 3.0 or later. To uninstall

ComponentWorks, select Start»Settings»Control Panel»Add/Remove Programs.

Select National Instruments ComponentWorks from the list of programs and press the

Add/Remove button.

1. Install driver software and hardware if you need to acquire data or

control instruments in your program. Driver software performs the

low-level calls to your hardware. You must install and configure the

corresponding driver software and hardware before you can use any of

the ComponentWorks hardware I/O controls, including the DAQ,

GPIB, Serial, VISA, IVI, and IMAQ controls.

Tip Some ComponentWorks controls require features provided only in the newest

versions of the driver. You can download the most current driver from the National

Instruments Web site at www.ni.com.

2. Install your hardware device. Refer to your hardware installation guide

for installation information.

3. Configure your device with National Instruments Measurement &

Automation Explorer. After configuring your hardware, Measurement

& Automation Explorer contains information about the hardware that

you might need to use ComponentWorks I/O controls. For example,

use the device number from Measurement & Automation Explorer to

specify a device with a ComponentWorks I/O control.

4. Insert the ComponentWorks CD in the CD drive of your computer.

From the CD startup screen, click Install ComponentWorks. If the

CD startup screen does not appear, use Windows Explorer to run the

SETUP.EXE program from your CD.

5. Follow the instructions on the screen.

Chapter 1 Introduction to Measurement Studio and ComponentWorks

© National Instruments Corporation 1-5 Getting Started with ComponentWorks

The ComponentWorks setup program installs the following groups of files

on your computer when you install the ComponentWorks Starter Kit,

Measurement Studio Base package, or Measurement Studio Full

Development System:

• ActiveX controls (.ocx), help files (.hlp, .cnt), and associated files:

\Windows\System

• Example ComponentWorks programs for Visual Basic:

\MeasurementStudio\Vb\Samples\

• Application notes and this manual in PDF format, which you can view

with Adobe Acrobat Reader 3.0 or later:

\MeasurementStudio\Vb\Documentation

• Miscellaneous files:

MeasurementStudio\Vb\

© National Instruments Corporation 2-1 Getting Started with ComponentWorks

2
Getting Started with
ActiveX Controls

This chapter contains introductory information about ActiveX controls.

What Is an ActiveX Control?

ActiveX controls are reusable software components that you use within any

ActiveX control container to maximize software reuse, increase

productivity, and improve quality in your programs.

An ActiveX control encapsulates, or contains, three different

parts—properties, methods, and events—that you will modify, call, and

define to take advantage of the control’s functionality in your program:

• Properties define attributes of a control, such as the way a control looks

on the form or the initial state of the control when you run the program.

Refer to the What Are Properties and How Do I Get and Set Them?

section later in this chapter for information about using properties.

• Methods are functions that perform a specific action on or with an

object. Refer to the What Are Methods and How Do I Call Them?

section later in this chapter for information about calling methods.

• Events are notifications generated by an ActiveX control in response

to some particular occurrence in the program, such as a mouse click on

a user interface control or a completed acquisition. Refer to the What

Are Events and How Do I Define Them? section later in this chapter

for information about defining event procedures.

An ActiveX control is a group of components or software objects, where

each object encapsulates and exposes one specific functionality and all of

the objects work together to provide the entire functionality of the control.

The main object of an ActiveX control contains some properties that store

property values and some properties that access other objects in the control.

Chapter 2 Getting Started with ActiveX Controls

Getting Started with ComponentWorks 2-2 www.ni.com

Figure 2-1 shows two Knob controls that might appear on a user interface.

Each pointer, label, and value pair you see on the knob is an object. The

ticks also are an object. Notice how each object contributes to the

functionality of the entire knob. Pointers define the current value or values

of each knob. Ticks help you determine the position of the pointers. Labels

and value pairs describe the pointer positions by number or name.

Figure 2-1. Each Object Contributes to the Functionality of the Entire Control

By manipulating individual objects on the control, you can create two very

different configurations. In Figure 2-1, Knob A uses a standard numerical

scale from 0 to 10, while Knob B uses three value pairs instead, where Low

equals 0, Medium equals 5, and High equals 10. Knob A has two pointers,

yet Knob B has a single pointer. Notice the subtle differences in appearance

as well. Knob A has ticks, while Knob B does not. Knob A uses

three-dimensional pointers, and Knob B uses a thin pointer.

To manipulate an individual object, you must access it through the control

hierarchy. Figure 2-2 demonstrates the link between software objects in the

CWKnob control. The main object of the CWKnob control contains

properties to store the value of the property, such as Caption, and other

properties to access other objects in the control. For example, the Axis

property accesses the CWAxis object, and the Pointers property accesses

the CWPointers collection object.

Captions

Pointers

Value Pairs

Ticks

Labels

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-3 Getting Started with ComponentWorks

Figure 2-2. Software Objects Access Other Objects through Properties and Methods

A collection is a special software object that manages a set of the same

objects. For example, you might need two pointers on a knob or more than

one axis on a graph. You might want to assign different styles to each

object, including different styles on a pointer or different minimums and

maximums, ticks, and labels on an axis. You can access an individual

object, such as a CWPointer object or a CWAxis object, from the collection

with the Item method.

Tip To learn more about the objects in the CWKnob control or the objects in any other

ComponentWorks control, refer to the ComponentWorks online reference.

CWKnob Object
Contains the Axis, Pointers,

and Caption properties

CWAxis Object

CWLabels ObjectCWTicks Object CWValuePairs Collection
Collection of CWValuePair objects

accessed through Item method

CWPointers Collection
Contains the Ticks, Labels,
and ValuePairs properties

Collection of CWPointer objects
accessed through Item method

CWPointer Object

CWValuePair Object

Axis Property Pointers Property
Caption Property

Contains a Caption value
such as Knob A

Ticks Property Labels Property ValuePairs Property

Chapter 2 Getting Started with ActiveX Controls

Getting Started with ComponentWorks 2-4 www.ni.com

What Are Properties and How Do I Get and Set Them?

A property is an attribute of a control. Properties for a control define how

the control looks or behaves on the form or front panel of your user

interface. For example, you can customize a button to resemble several

different Boolean interfaces, such as a pushbutton, switch, or LED.

Properties also can describe the current state of the control. For example,

you can set the value of that Boolean button to on or off. You can set

properties as you design your program through property pages, or you can

get or set properties programmatically if you want to evaluate or change a

property at runtime.

You’ll need to set two types of properties: control properties and

environment properties.

Control Properties
Control properties relate directly to the functionality of the control and you

set them programmatically or with the custom property pages, if the

developers of the control created them. All ComponentWorks controls

have custom property pages.

Use the property pages to set the property values for each ActiveX control

while you are creating your program. The property values you select during

design dictate the state of the control when you first run your program.

However, if you need to change the property values during program

execution, you can manipulate the properties programmatically.

Environment Properties
Environment properties describe how an ActiveX control should interact

with the environment and the rest of the user interface that you are

developing. The development environment provides default properties

for the name of the control (so that you can access the control

programmatically), position in the user interface (so that you can precisely

place the controls programmatically or interactively, rather than dragging

and dropping), and tab stops (so that users can tab through the interface).

You can modify these and more environment properties in the

environment’s default property pages.

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-5 Getting Started with ComponentWorks

Configuring Controls in Property Pages
You can set control properties in the custom property pages after you place

the control on a form. To access the control property pages, right click on

the control and select Properties. Although the layout and functionality of

custom property pages varies among controls, you’ll usually see a page or

tabbed dialog box with a variety of properties that you can set for that

particular control. The ComponentWorks User Interface custom property

pages include a preview window so that when you modify a property, you

can see how it affects the look of your control. Figure 2-3 shows the

ComponentWorks custom property pages and preview window for the

CWKnob control. Click OK when you want to apply the new properties

and close the property pages.

Figure 2-3. Set Control Properties in the ComponentWorks Property Pages

Chapter 2 Getting Started with ActiveX Controls

Getting Started with ComponentWorks 2-6 www.ni.com

You can modify environment properties after you place the control on a

form. Although the location and layout of default property sheets varies

among environments, you can usually access them from the View menu.

In Visual Basic, select View»Properties Window. Figure 2-4 shows the

Visual Basic environment properties for the CWKnob control.

Figure 2-4. Set Environment Properties in the Visual Basic Property Window

Changing Properties Programmatically
Property pages provide a quick and easy way to set properties, but

remember that you use property pages during design to set initial control

properties, and you cannot access the property pages during program

execution. If you need to change properties during program execution to

respond to user or program events, modify parameters programmatically.

For example, you might want to change the state of an LED indicator

during program execution from false to true depending on the state of an

assembly line. When the assembly line is moving, the state of the LED is

true, and when the assembly line stops, the LED changes to false. When the

line starts again, the LED reverts to true.

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-7 Getting Started with ComponentWorks

Each control you create in your program has a name that you use to

reference the control in your program. The environment assigns a default

name, and you can change the name in the environment’s default property

sheets. To access a property programmatically, use the name of the control

and the property in dot notation, as in the following syntax:

control.property = value

For example, to change the value property of the LED to false, use the

following line of code:

CWButton1.Value = False

In the this example, CWButton1 is the default name of the LED control,

and Value is the property that specifies the current value of the control.

Tip The ComponentWorks Button (CWButton) supports many different display styles,

including slide switches, toggle switches, push buttons, command buttons, custom bitmap

buttons, and LEDs. To learn more about CWButton and controlling it programmatically,

refer to the ComponentWorks online reference.

In Visual Basic most controls have a default property such as Value. You

can access the default property of a control by using its control name

(without the property name attached), as in the following example:

CWKnob1 = 5.0

is programmatically equivalent to

CWKnob1.Value = 5.0

Some controls consist of several objects, and one object can access another

object through a property with the following syntax:

control.object.property

For example, you can access the CWAxis object from the CWKnob object

with the Axis property. To get the minimum value of the axis, use the

following syntax:

minimum = CWKnob1.Axis.Minimum

In this example, the minimum value of the axis on the knob is read and

stored in a variable named minimum. CWKnob1 is the default name of the

control, Axis is the property that accesses the CWAxis object, and

Minimum is the name of the property on the CWAxis object.

Chapter 2 Getting Started with ActiveX Controls

Getting Started with ComponentWorks 2-8 www.ni.com

You can display the minimum value of the axis in a Visual Basic text box

named Text1 on the user interface with the following syntax:

Text1.Text = CWKnob1.Axis.Minimum

Or you can print the minimum value of the axis:

Print CWKnob1.Axis.Minimum

What Are Methods and How Do I Call Them?

A method is a defined function within the control that you use to perform

an action, like starting or stopping an acquisition or plotting data on a

graph. You call methods as you would any function in your programming

environment.

Calling Methods
The following syntax shows you how to call a simple method that does not

require parameters:

control.method

If the method accepts parameters, use the following syntax, listing as many

parameters as needed:

control.method parameter1, parameter2

If the method returns a value and you want to save the result, enclose the

parameters in parentheses, as in the following syntax:

result = control.method(parameter1, parameter2)

For example, the ComponentWorks Analog Input (CWAI) control returns a

value after completing the AcquireData method, which synchronously

runs an acquisition. The returned value indicates if the operation completed

successfully or if a warning or error occurred. In the following example, the

value returned from the AcquireData method is assigned to a variable

(lErr):

lErr = CWAI1.AcquireData(ScaledData, BinaryCodes, 1)

You’ll see two different types of parameters: required and optional. The

method needs required parameters to perform its primary action. The

method can use optional parameters to take more precise actions or take

advantage of additional features of the method.

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-9 Getting Started with ComponentWorks

Tip If you are unsure whether a parameter is optional, refer to the Visual Basic Object

Browser or code completion. Visual Basic encloses optional parameters in square brackets.

Although you must include required parameters when you call the method,

you do not have to specify any optional parameters. For example, the

PlotY method for the ComponentWorks Graph (CWGraph) has a required

parameter—the array of data that you want to plot on the graph. The

following line of code plots the array ScaledData:

CWGraph1.PlotY ScaledData

The PlotY method also has optional parameters. For example, you can

pass a second parameter to represent the initial value for the x-axis, a third

parameter for an incremental change on the x-axis corresponding to each

data point, and a fourth parameter that determines whether a column of data

or a row of data is plotted:

CWGraph1.PlotY ScaledData, 10.0, 0.1, True

Working with Collections
Collections are special objects that manage a set of like objects. For

example, a CWPointers collection object manages a varying number of

CWPointer objects.

Managing Collections
You can add or remove individual objects from a collection with the

following syntax:

'Add a new pointer to the Knob.

CWKnob1.Pointers.Add

'Remove the second pointer on the Knob.

CWKnob1.Pointers.Remove 2

'Remove all pointers on the Knob.

CWKnob1.Pointers.RemoveAll

Note A collection of objects is an array of objects, where the first object is at index 1.

Accessing Objects with the Item Method
Each collection object contains an Item method that you can use to access

any particular object stored in the collection. The Item method accepts one

parameter—Item—that specifies the object you want to access through the

index or name of the object in the collection.

Chapter 2 Getting Started with ActiveX Controls

Getting Started with ComponentWorks 2-10 www.ni.com

For example, use the following syntax to set the value of the second pointer

on a knob to 5:

CWKnob1.Pointers.Item(2).Value = 5.0

The term CWKnob1.Pointers.Item(2) refers to the second CWPointer

object in the CWPointers collection of the CWKnob object. In this

example, the Item parameter is an integer representing the one-based index

of the object in the collection. If you assign names to the objects in a

collection, you can pass the Item method a string containing the name of

the object you want to access. In the following example, the CWPointer

object named TemperaturePointer is being set to 25:

CWKnob1.Pointers.Item("TemperaturePointer") = 25.0

The Item method is the most commonly used method on a collection and

is referred to as the default method. Many programming environments,

including Visual Basic, do not require you to explicitly include the default

method in the syntax. Visual Basic will accept either of the following

forms:

'Item method specified.

collection.Item(Index).property

or

'Item method implied as default method.

collection(Index).property

Therefore,

'Set the second pointer to 5.

CWKnob1.Pointers.Item(2).Value = 5.0

is programmatically equivalent to

'Set the second pointer to 5.

CWKnob1.Pointers(2).Value = 5.0

What Are Events and How Do I Define Them?

An event is a notification generated by an ActiveX control in response

to some particular occurrence in the program, perhaps a mouse click on

a user interface button, a change in the value of a knob, or a completed

acquisition. Events exist so you can define the tasks your program should

perform when that event occurs. You define those tasks in an event

procedure. Every time that event occurs, your event procedure is called to

process the event.

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-11 Getting Started with ComponentWorks

In event-driven programming, the program continuously runs and waits for

events to occur rather than continuously polling to determine if something

has changed, as in a loop-driven program. When an event occurs, the

program responds to it by executing the appropriate event procedure and

waiting for the next event to occur. Loop-driven programs execute code

sequentially from top to bottom and then loop back to the top to start

executing the same code over and over. Loop-driven programs often take

more processor time and respond slower to more frequent events.

Event-driven programming saves processor time, requires less code, and

enables you to add new controls with new functionality without rewriting

any loop-driven code.

To develop an event procedure for an ActiveX control in Visual Basic,

double click on the control to open the code editor, which automatically

generates a default event procedure for the control. The event procedure

skeleton includes the control name, the default event, and any parameters

that are passed to the event procedure. The following code is an example of

the event procedure generated when the value of the knob is changed by the

user or by some other part of the program:

Private Sub CWKnob1_PointerValueChanged(ByVal_

Pointer As Long, Value As Variant)

End Sub

Notice that the event contains two parameters: Pointer and Value.

Pointer is the index of the pointer that changed and Value is the new

value of the selected pointer. You can use these parameters in your event

procedure to help you process the event. For example, you can use the

Value parameter to scale a data point named data by the new value of the

pointer as soon as it changes:

Private Sub CWKnob1_PointerValueChanged(ByVal_

Pointer As Long, Value As Variant)

'data is a global variable.

data = data * Value

End Sub

Note You can use the underscore line-continuation character to span a single statement

over several lines of code, which is especially useful for displaying long strings in your

code. The underscore line-continuation is used throughout this manual to indicate that a

line of code continues; however, you can remove the continuation character when you

include a complete statement on a single line.

Chapter 2 Getting Started with ActiveX Controls

Getting Started with ComponentWorks 2-12 www.ni.com

Alternatively, you can generate an event procedure in the code editor.

Figure 2-5 shows how to create the event procedure for the KeyPress

event on a CWKnob control named CWKnob1. Select the control from the

left list and then the event you want to define from the right list of the code

editor.

Figure 2-5. Selecting Events in the Code Editor

Tip Use the code editor to generate any event procedure for any control on the form

without switching back and forth to the form window.

How Do I Benefit from Using ActiveX Controls?

Custom ActiveX controls address your specific industry needs. For

example, ComponentWorks provides measurement and automation tools

to help you develop custom measurement and automation applications in

the environment that you choose. Furthermore, ActiveX controls are tools

for developing event-driven applications, they are easy to configure and

use, and they can help you create your own reusable software components.

• Work in any ActiveX control container. ActiveX controls enable

you to implement component-based software in any ActiveX control

container. Many integrated development environments are ActiveX

control containers because they support the standard interfaces needed

to communicate with ActiveX controls. Microsoft Visual Basic, Visual

C++, Excel, Word, Internet Explorer, and Borland Delphi users can

take advantage of ActiveX controls in their development environment

or Microsoft Office tool.

ActiveX control containers offer standard tools to help you develop

basic interfaces and programs, but you often need custom tools to

create your applications. Custom ActiveX controls provide specific

Chapter 2 Getting Started with ActiveX Controls

© National Instruments Corporation 2-13 Getting Started with ComponentWorks

functionality that is not available through native controls in your

development environment, and they enable you to get the exact

functionality you need without leaving your development

environment. Furthermore, custom ActiveX controls are widely

distributed across the Internet, so you can find a custom control for

almost anything you can imagine.

• Develop event-driven programs. ActiveX controls are tools for

developing event-driven programs, rather than loop-driven programs.

In event-driven programming, the program runs continuously waiting

for events to occur. When an event occurs, the program responds to

it and then waits for the next event to occur. Event-driven

programming saves processor time, requires less code, and enables

you to add new controls with new functionality without rewriting any

loop-driven code.

• Easily configure and use ActiveX controls. ActiveX controls deliver

an easy-to-use property page interface for configuring controls during

design time; a simplified API for accessing properties, methods, and

events programmatically; and 32-bit performance. Furthermore,

ActiveX controls communicate with the container, so you can take

advantage of your development environment’s features, such as the

Visual Basic Object Browser and code completion.

• Create your own software components. ActiveX controls are easy to

develop in Microsoft Visual Basic. You can combine many different

ActiveX controls on one form to create a single component that

contains the exact functionality that you need. You then can use your

custom component as a reusable software component in other

programs or in HTML files to add interactive functionality to a

Web page. Web browsers with ActiveX support, including Internet

Explorer 3.0 or later and Netscape with the ActiveX plug-in, can view

the embedded control.

© National Instruments Corporation 3-1 Getting Started with ComponentWorks

3
Getting Started
with ComponentWorks
in Visual Basic

In this chapter, you will practice using ComponentWorks in Visual Basic.

At the end of this tutorial, you will have learned to design a graphical user

interface; acquire, visualize, and analyze data; and distribute your

completed program.

Tip Refer to the Microsoft Visual Basic documentation if you need more information

about programming in Visual Basic after completing this tutorial. If you are an advanced

Visual Basic programmer and need more information about developing programs with

ComponentWorks, refer to the ComponentWorks online reference (Start»Programs»

National Instruments»Measurement Studio»Online Help»ComponentWorks

Reference for Visual Basic).

You need the following tools to complete this tutorial:

• Microsoft Visual Basic. Although this example uses Visual Basic 6

terminology, you can implement the example in Visual Basic 4 or later.

• National Instruments ComponentWorks. If you have not purchased a

licensed version of ComponentWorks, visit the National Instruments

ComponentWorks Web site at www.ni.com/cworks and follow the

links to download ComponentWorks evaluation software.

• National Instruments DAQ hardware and NI-DAQ 6.5 or later. Or you

can experiment with the Serial, GPIB, or VISA controls if you have

serial, GPIB, or VXI instruments or controllers.

Creating a ComponentWorks Project Template

Goal Create a project template to hold all of the components needed to develop similar

programs. Templates provide a way for you to reuse components and code. For example,

if you develop a lot of acquisition programs, you might have a template named Acquisition

that includes the ComponentWorks DAQ and User Interface controls and perhaps even a

standard interface that simulates your acquisition process. If you develop a lot of

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-2 www.ni.com

automation projects, you might have a template named Automation that contains the

ComponentWorks User Interface, Automation Symbols, and PID components and a

standard user interface that simulates the process on your production floor.

For this tutorial, you’ll create a standard ComponentWorks template

(CWProject) that contains the ComponentWorks User Interface, DAQ, and

Analysis controls. You can use the template over and over as you develop

similar programs.

1. Launch Visual Basic.

2. Open a new Standard EXE project.

3. Right click on the Visual Basic Toolbox and select Components.

4. Select National Instruments CW Analysis, National Instruments

CW DAQ, and National Instruments CW UI.

Note If you don’t see the controls you want to load, press the Browse button and select

the following ActiveX control files from your Windows System folder: cwanalysis.ocx,

cwdaq.ocx, and cwui.ocx. Depending on the ComponentWorks package you own, you

might have the following ComponentWorks controls to include in this or other project

templates:

• 3D Graph Control cw3dgrph.ocx

• Instrument Controls (GPIB and Serial) cwinstr.ocx

• VISA Control cwvisa.ocx

• IVI DMM Control CWIviDmm.ocx

• IVI Scope Control CWIviScope.ocx

• IVITools Control CWIviTools.ocx

• DataSocket Control cwds.ocx

• IMAQ Vision cwimaq.ocx

• Automation Symbols cwas.ocx

• Autotuning PID cwpid.ocx

Chapter 3 Getting Started with ComponentWorks in Visual Basic

© National Instruments Corporation 3-3 Getting Started with ComponentWorks

5. Click OK. Visual Basic loads the ComponentWorks controls into the

Toolbox, as shown in Figure 3-1.

Figure 3-1. Loading the ComponentWorks Controls into the Toolbox

6. Save the form and project in the Visual Basic \Template\Projects

directory as CWForm and CWProject.

Tip Only projects found in the \Template\Projects directory appear in the New

Project dialog box. You can change the path for your template directory in the Visual Basic

options (Tools»Options»Environment).

7. Close the project.

Native Visual
Basic Controls

ComponentWorks
DAQ ActiveX Controls

ComponentWorks
Analysis ActiveX Controls

ComponentWorks User
Interface ActiveX Controls

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-4 www.ni.com

Visualizing Data on a User Interface

Goal Create a user interface to get and display data. The interface is very simple,

consisting of a graph and Get Data button, as shown in Figure 3-2. When the program is

complete, you’ll be able to press the Get Data button and display an array of random

numbers on the graph.

Figure 3-2. Creating a Simple User Interface

1. Open a new Visual Basic project with the CWProject template from

the New Project dialog. Notice that you have a new project with the

ComponentWorks controls already loaded. Refer to Creating a

ComponentWorks Project Template for information about creating

the CWProject template.

2. Place a ComponentWorks Graph (CWGraph) control on the form.

A form is the window or area on the screen on which you place

controls and indicators to create the user interface for your program.

Select the CWGraph icon from the Visual Basic Toolbox, and use your

mouse to click and drag on the form where you want the graph to

appear.

Tip If you have trouble finding a control in the Toolbox, hold your mouse over each

control icon to see the tooltips.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

© National Instruments Corporation 3-5 Getting Started with ComponentWorks

3. Select the graph, and look at the most important environment property

in the Visual Basic Properties window—the control name. Name is the

most important environment property because it’s the name you’ll use

to programmatically access and control the graph. Visual Basic named

the CWGraph control CWGraph1.

4. Double click on the CommandButton control icon in the Toolbox to

place a pushbutton control on the form. Notice that Visual Basic places

the control in the middle of the form.

Tip You can place controls on the form two ways. Either double click on a control in the

Toolbox or select it and click and drag on the form to place the object. If you double click

on the control in the Toolbox, Visual Basic places the control in the middle of the form.

Use your mouse to move and resize the control.

5. Click and drag on the button to move it below the graph.

The CommandButton control is a native Visual Basic control. One of

the benefits of developing programs with ActiveX controls is that you

can use the control that provides the exact functionality your program

requires, whether it is a native Visual Basic control or a custom

ActiveX control like the ComponentWorks Graph.

Because the CommandButton is a native Visual Basic control, it has

only one set of properties (environment properties), so you will use

only the Visual Basic Properties window to set properties for this

control. Notice that Visual Basic named this control Command1,

which is not very descriptive. Change the name to cmdGetData.

Tip Quite a few naming conventions for variables and constants exist, but the most

common one is the Hungarian notation. With this notation, each variable and constant

name is proceeded by three to four letters that reflect the data type. For instance, txt

proceeds a name for a TextBox, cmd refers to a CommandButton, and lbl represents a

Label. You can find many more of these prefixes in Visual Basic guides.

6. Change the Caption property to Get Data. To edit a property,

highlight the property value on the right side of the property window

and type in the new value.

With the user interface completed, you can write code to generate data and

display it on the graph. There’s only one event—pressing the Get Data

button. When you press the button, an array of random numbers is

generated and plotted on the graph.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-6 www.ni.com

7. Double click on the Get Data command button. The code editor opens

with the event procedure skeleton, as follows:

Private Sub cmdGetData_Click()

End Sub

The first line indicates that you are writing a procedure to be called

every time the user clicks on the cmdGetData object (the Get Data

button).

8. The following procedure declares two variables: data is the array of

generated Y values to be plotted on the graph, and i is the loop counter.

Each time the loop runs, a Y value is created with the Visual Basic Rnd

method and added to the data array. The loop iterates 50 times to

create an array of 50 Y values, and then the procedure plots the data.

Insert the bolded code in the event procedure:

Private Sub cmdGetData_Click()

Dim data(0 to 49) As Double, i

For i = 0 To 49

data(i) = Rnd * 10

Next i

CWGraph1.PlotY data

End Sub

Tip Take advantage of code completion in Visual Basic 5 and later. After you enter the

name of a control and a period, the code editor prompts you with a list of available

properties and methods.

9. Test the program. Press the Start button in the Visual Basic toolbar to

start the program, and then press the Get Data button. The graph plots

all 50 points of data and stops, waiting for the next event to occur. You

can press the Get Data button again, and another 50 points are plotted

on the graph.

10. Press the End button in the Visual Basic toolbar to stop the program

and return to design mode.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

© National Instruments Corporation 3-7 Getting Started with ComponentWorks

Analyzing Data

Goal Find and display the mean value of the data you are generating. Figure 3-3 shows

the new interface, which uses the ComponentWorks Statistics (CWStat) control to find the

mean and a Visual Basic Label control to display the value.

Figure 3-3. Analyzing Data

1. Place a Visual Basic Label on the form to display the mean value.

Change the control name to lblMeanValue and the border style to

Fixed Single. Also, delete the default caption text so that the indicator

will be empty, rather than displaying Label1, when the program first

runs. Use an additional Visual Basic Label to identify the indicator as

the mean.

2. Place a CWStat control on the form and use its Mean method to find

and display the mean value. Notice that Visual Basic names this

control CWStat1.

Note To access the functionality of any ActiveX control, whether graphical or

non-graphical, you have to place the control on the form. If the control does not have a

graphical interface, it does not appear on the user interface during runtime. For example,

you have to place the CWStat control on the form to access its functionality, but it does not

appear on the user interface during runtime.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-8 www.ni.com

3. Add the bolded code to the existing event procedure to find the mean

value in data (the array of generated data) and display it as the caption

in the lblMeanValue indicator:

Private Sub cmdGetData_Click()

Dim data(0 to 49) As Double, i

For i = 0 To 49

data(i) = Rnd * 10

Next i

CWGraph1.PlotY data

lblMeanValue.Caption = CWStat1.Mean(data)

End Sub

4. Run the program and press the Get Data button to display the mean

value. Press Get Data again, and notice that the mean value changes

because a new set of random data was generated. Stop the program

when you finish testing.

Interacting with the Data

Goal Interact with the data from the user interface. For this example, scale the data by the

value that appears on a knob, as shown in Figure 3-4.

Figure 3-4. Interacting with Data

Chapter 3 Getting Started with ComponentWorks in Visual Basic

© National Instruments Corporation 3-9 Getting Started with ComponentWorks

1. Place a ComponentWorks Knob (CWKnob) control on the form as

shown in Figure 3-4. Notice that Visual Basic names the control

CWKnob1. Right click on the knob and select Properties to modify

its custom properties. On the Numeric page, change Minimum and

Maximum to 10 and 100, so that you can scale the data by 10 to 100.

Make the knob caption display Scale Factor. Click OK.

2. Modify the bolded line of code as follows to scale the data according

to the value of the knob on the user interface:

Private Sub cmdGetData_Click()

Dim data(0 to 49) As Double, i

For i = 0 To 49

data(i) = Rnd * CWKnob1.Pointers(1).Value

Next i

CWGraph1.PlotY data

lblMeanValue.Caption = CWStat1.Mean(data)

End Sub

3. Run the program and press Get Data. Notice that the data looks similar

because the data is scaled by 10, as it was before. Turn the knob to 50

and press Get Data again. Notice that the mean value increases and the

graph has autoscaled to accommodate larger values. Stop the program

when you finish testing.

Acquiring Analog Data

Goal Acquire live data from a DAQ device. You already know how to visualize, analyze,

and interact with data, and now you can use the ComponentWorks Analog Input (CWAI)

control to add analog input functionality.

Note You need a National Instruments DAQ board installed and configured to run this

example. Alternatively, if you have a serial, GPIB, or VXI instrument or controller, you can

use an Instrument control rather than the CWAI control. Load the Instrument and VISA

controls to the Visual Basic Toolbox and use the correct commands to read from the

instrument if you use them.

1. Place a CWAI control on the form. Notice that Visual Basic named

it CWAI1. After placing the control on the form, use the

ComponentWorks custom property pages to interactively select

your device and acquisition settings.

Tip Right click on any ComponentWorks control and select Properties to set custom

properties for that control.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-10 www.ni.com

2. Select your data acquisition device from the drop-down list.

3. Click the New button to create a new CWAIChannel object.

A CWAIChannel object holds the configuration for the channel or set

of channels that you want to read. You can add more CWAIChannel

configurations with the New button or delete existing configurations

with the Del button.

4. Type 1 or the channel you want to read in Channels. Figure 3-5 shows

how your Channels property page might look.

Figure 3-5. Configuring Analog Input Channels

Tip If you configure named channels with National Instruments Measurement &

Automation Explorer, you can use named channels rather than channel numbers.

5. On the Buffer page, change the Number of scans to acquire to 50 so

that only 50 points of data are acquired.

6. Click OK to apply the settings and close the property pages.

Consider how this program will work with its new interface and analog

input feature. You will press Get Data and then wait for the data to appear

on the graph and the mean to be displayed in the indicator. You then might

change the scale factor with the knob and press Get Data again. Now

consider what you need to do programmatically to make it work.

First, the board needs to be configured with the settings from the CWAI

property pages and then it needs to acquire 50 data points. When all

50 points have been acquired, the CWAI control will generate the

AcquiredData event, indicating that the data has been acquired and is

Chapter 3 Getting Started with ComponentWorks in Visual Basic

© National Instruments Corporation 3-11 Getting Started with ComponentWorks

ready for some sort of processing. For this example, you can use the

AcquiredData event to scale and plot all 50 data points and then calculate

the mean. Therefore, you need to modify the existing event procedure for

the Get Data button and create a new event procedure to handle the data

after it is acquired.

7. Modify the event procedure for the Get Data button as follows,

making sure to delete existing lines of code that do not appear below:

Private Sub cmdGetData_Click()

'Configure the device with settings from the

'CWAI property pages.

CWAI1.Configure

'Start the acquisition.

CWAI1.Start

End Sub

8. Double click on the CWAI control to create the AcquiredData event

procedure skeleton and then add the bolded code to the procedure:

Private Sub CWAI1_AcquiredData(ScaledData _

As Variant, BinaryCodes As Variant)

Dim i

'Scale each point with the value from the knob.

For i = 0 To 49

ScaledData(i) = ScaledData(i) *_

CWKnob1.Pointers(1).Value

Next

'Plot the scaled data.

CWGraph1.PlotY ScaledData

'Find and display the mean.

lblMeanValue.Caption = CWStat1.Mean(ScaledData)

End Sub

Note Notice that the Variant ScaledData holds all acquired data. The CWAI control

passes this array to the event procedure so that the data can be processed.

9. Run the program. Press Get Data, and watch the graph plot all

50 points of data and stop, waiting for the next event to occur. Change

the scale factor to see how the graph and mean change. Press Get Data

again, and watch another 50 points get plotted on the graph. Stop the

program when you finish testing.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-12 www.ni.com

Continuously Acquiring and Charting Data

Goal Acquire and chart a continuous stream of data from your analog input device.

1. Use the Conditions property page for the CWAI control to set the stop

condition to Continuous. A stop condition specifies when the DAQ

device should stop acquiring data after the acquisition is started. The

Continuous option keeps the acquisition running until a user stops the

program.

2. Modify the graph plot method to display the data on a strip chart:

Private Sub CWAI1_AcquiredData(ScaledData _

As Variant, BinaryCodes As Variant)

Dim i

'Scale each point with the value from the knob.

For i = 0 To 49

ScaledData(i) = ScaledData(i) *_

CWKnob1.Pointers(1).Value

Next

'Chart the scaled data.

CWGraph1.ChartY ScaledData

'Find and display the mean.

lblMeanValue.Caption = CWStat1.Mean(ScaledData)

End Sub

Note PlotY and ChartY are the two most common methods for passing data to a graph.

Use PlotY when you have a finite number of points and you don’t need to see data that

was visualized before the current data set. Use ChartY to continuously display data, as on

a strip chart, and set the ChartLength property to keep a record of historical data.

3. Test the program. Run the program and press the Get Data button.

Figure 3-6 shows the program during runtime. Notice that data is

continuously acquired and displayed on the graph like a strip chart. Try

changing the scale factor, and notice how the graph and mean respond

to scaling. Stop the program when you finish testing.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

© National Instruments Corporation 3-13 Getting Started with ComponentWorks

Figure 3-6. Continuously Acquiring and Charting Data

4. Save the project and form as Acquire Data.

Error Handling

Goal Include error handling in your program so that it can continue running if an error

occurs. If you don’t include error handling, the ComponentWorks controls generate

exceptions when errors occur, forcing you to terminate your program. Use the Visual Basic

On Error statement or the I/O control return values and error events to handle errors so

that your program can continue to run.

Visual Basic On Error Statement
Use the On Error statement to handle errors, as in the following examples.

Refer to the Visual Basic documentation for more information about the On

Error statement.

• On Error Resume Next enables the program to continue running at

the next line. To handle an error in this mode, check and process the

information in the Err object in your code, as in the following

example:

Private Sub Acquire_Click()

On Error Resume Next

'Configure.

CWAI1.Configure

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-14 www.ni.com

'Display error message if one occurs

'during Configure.

If Err.Number <> 0 Then MsgBox "Configure: "_

+ CStr(Err.Number)

'Start the acquisition.

CWAI1.Start

'Display error message if one occurs

'during Start.

If Err.Number <> 0 Then MsgBox "Start: "_

+ CStr(Err.Number)

End Sub

• On Error GoTo enables the program to continue running at the

specified location in the procedure. In the following example, the same

error handler is called if an error occurs with either Configure or

Start:

Private Sub Acquire_Click()

On Error GoTo ErrorHandler

CWAI1.Configure

CWAI1.Start

Exit Sub

'Display error message if one occurs

'during Configure or Start.

ErrorHandler:

MsgBox "DAQ Error: " + CStr(Err.Number)

Resume Next

End Sub

Tip Use the ComponentWorks DAQTools (CWDAQTools) control and the

GetErrorText method to convert an error code into descriptive error information.

The following example saves the return code in the DAQError variable and, if the value

indicates a warning or event, uses the GetErrorText method to retrieve textual

information about it:

'Get return code.

DAQError = CWAI1.Start

If DAQError <> 0 Then

'Display message box with error information.

MsgBox CWDAQTools1.GetErrorText(DAQError)

End If

Chapter 3 Getting Started with ComponentWorks in Visual Basic

© National Instruments Corporation 3-15 Getting Started with ComponentWorks

Return Values
The ComponentWorks I/O controls (DAQ, Instrument, VISA, IVI, and

IMAQ) can return error codes rather than generating exceptions, which

force you to enter debug mode or terminate the program. Error codes are

generated by hardware controls if an error occurs during specific contexts

of an operation.

If you set the ExceptionOnError property to false, the I/O control

methods do not generate exceptions but return a status code that indicates

whether the operation completed successfully. If the return value is

something other than zero, a warning or error occurred. Positive return

values indicate that a problem occurred in the operation, but that the

program can continue running. Negative return values indicate that a

critical problem has occurred in the operation and that all other functions

or methods depending on the failed operation also will fail.

To retrieve the return code from a method call, assign the value of the

function or method to a long integer variable and check the value of the

variable after calling the function or method. For example, the following

code checks the return value of the Start method on a CWAI control:

'Get the return value for the Start method.

lerr = CWAI1.Start

'Display an error message if one occurred.

If lerr <> 0 Then MsgBox "Error at DAQ Start: " _

+ CStr(lerr)

If you want to check the return value in several different event procedures,

write one error handler for your program rather than duplicating it for every

call to a function or method. Remember that you can use the

ComponentWorks DAQTools (CWDAQTools) control and the

GetErrorText method to convert an error code into descriptive error

information. For example, the following code creates a LogError

subroutine to use with the Start method and later functions or methods:

Private Sub LogError(code As Long)

'Display error if one occurs.

If code <> 0 Then

MsgBox "DAQ Error: " + _

CWDAQTools1.GetErrorText(code)

End If

End Sub

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-16 www.ni.com

Call LogError before every function or method call, as in the following

line of code:

LogError CWAI1.Start

The return value is passed to LogError and processed.

Error and Warning Events
The DAQ controls include their own error and warning events (DAQError

and DAQWarning), and the Instrument, VISA, IVI, and IMAQ controls

include an error event. Using warning and error events, you can develop

event procedures for error checking asynchronous operations, such as

continuous analog input or asynchronous instrument control.

By default, only asynchronous operations call error and warning events.

If you are working with the ComponentWorks DAQ controls, you can use

the ErrorEventMask property to force other operations or contexts to

generate error and warning events. Refer to the online reference for

information about the ErrorEventMask property.

Testing and Debugging

Goal Test and debug your program as needed. Visual Basic provides many debugging

tools. If you experience some unexpected behavior in your program, use these tools to

locate and correct the problem. Refer to your Visual Basic documentation for more

information about debugging techniques.

Printing Variables during Program Execution
One of the most common debugging methods is to print out or display

important variables throughout program execution. You can monitor

critical values and determine when your program varies from the expected

progress. Some programming environments have dedicated debugging

windows that are used to display such information without disturbing the

rest of the user interface. You can use the Debug.Print command in

Visual Basic to print information directly to the debug window. For

example, the following code displays the first channel or channels that you

are reading:

Debug.Print CWAI1.Channels.Item(1).ChannelString

Chapter 3 Getting Started with ComponentWorks in Visual Basic

© National Instruments Corporation 3-17 Getting Started with ComponentWorks

Monitoring Variables during Program Execution
Use a watch window to display the value of a variable during program

execution. You can use it to edit the value of a variable while the program

is paused. In some cases, you can display expressions, which are values

calculated dynamically from one or more program variables.

Examining and Debugging during Program Execution
The Immediate window opens during runtime in break mode, which means

that you can examine and debug your program while it is running. For

example, you can type or paste a line of code and press <Enter> to run it.

Or you can copy and paste code from the Immediate window into the code

editor.

Note Visual Basic does not save the content of the Immediate window. Copy any code

from the Immediate window that you want to save.

Executing the Program One Line at a Time
Use single stepping to execute a program one line at a time to check

variables and the output from your program as it runs. Single stepping is

commonly used after a breakpoint to slowly step though a questionable

section of code.

If you use step into, the program executes any code available for

subroutines or function calls and steps through the code one line at a time.

Use this mode if you want to check the code for each function called. The

step over mode assumes that you do not want to go into the code for

functions being called and runs them as one step.

In some cases, you might want to test a limited number of iterations of a

loop but then run the rest of the iterations without stopping. For this type of

debugging, several environments include the step to cursor or run to cursor

options. Under this option, you can place your cursor at a specific point in

the code, such as the first line after a loop and run the program to that point.

Stopping Program Execution at Breakpoints
Most development environments include breakpoint options so you can

suspend program execution at a specific point in your code. Breakpoints are

placed on a specific line of executable code in the program to pause

program execution.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-18 www.ni.com

Stopping at a breakpoint confirms that your program ran to the line of code

containing the breakpoint. If you are unsure whether a specific section of

code executes, place a breakpoint in the procedure to find out. Once you

have stopped at a specific section of your code, you can use other tools,

such as a watch window or debug window, to analyze or even edit variables.

In some environments, breakpoints might also include conditions so

program execution halts if certain conditions are met. These conditions

usually check program variables for specific values. Once you have

completed the work at the breakpoint, you can continue running

your program, either in the normal run mode or in some type of

single-step mode.

Preparing Your Program for Distribution

Goal Add finishing touches to the analog input program to prepare it for distribution.

This section explains some Visual Basic features that you can use to further customize your

programs. Refer to your Visual Basic documentation for more information about

customizing your programs in Visual Basic.

Positioning the Form on the Screen
You can use the Form Layout window to position the program form

exactly where you want it to appear when your customer runs it. Select

View»Form Layout Window and drag-and-drop the form anywhere on

the Form Layout window screen.

Tip Right click in the Form Layout window and select resolution guides to help you

precisely position the form or select a predefined startup position, such as the center of the

screen.

Customizing the Title Bar
You can set environment properties in the Visual Basic Properties window

to further customize the form and its title bar. For example, change the

Caption property to Acquire Data to customize the title bar text. You can

specify the icon that the program displays in the title bar or Windows Start

menu with the Icon property. You might use your company’s icon or create

a new icon for your custom program.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

© National Instruments Corporation 3-19 Getting Started with ComponentWorks

Making an Executable
Now that you have a program to distribute to customers, Visual Basic

makes it easy to create an executable version (.exe) so that your customers

don’t have to run the Visual Basic project. Anyone running Windows

2000/NT/9x can run Visual Basic executables. For this example, select

File»Make Acquire Data.exe and complete the dialogs. To run the

executable, double click the icon for the executable file.

Building a Distributable Package
To install a program using ComponentWorks controls on another

computer, you must install the necessary control files and supporting

libraries. You can create an automatic installer to install your program and

all the files needed to run that program or you can manually install the

program and program files.

Whichever installation method you choose, you must install all necessary

OCX files to enable your program to create the controls on a different

computer, and you must register all OCXs with the operating system. You

also need to install driver software and corresponding hardware if your

program performs any I/O operations requiring separate driver software,

such as data acquisition or GPIB. Remember to configure the software

drivers.

Note You can redistribute the OCX files and related DLLs on your CD.

The Microsoft Visual Studio Package & Deployment Wizard provides tools

to help you package all components you need to distribute and build an

installer. This wizard automatically includes all ActiveX controls (OCXs)

that you used, any system files required to run your program on another

computer, dependency files to identify the run-time files needed to run the

program on a different computer, and the Visual Basic run-time file needed

to run any Visual Basic executable on a Windows computer. The wizard

also lets you specify the default location of the installed files.

Note If you use the evaluation version of ComponentWorks to develop your program,

the distributable version of your program will also use the evaluation version of

ComponentWorks.

Chapter 3 Getting Started with ComponentWorks in Visual Basic

Getting Started with ComponentWorks 3-20 www.ni.com

Implementing a Full-Featured Application

You have created a simple, yet versatile program to acquire data from a

DAQ device and visualize that data on a graph. Try adding the following

features to this simple analog input example to create a more robust custom

application:

• Additional interface controls to make the program more user friendly.

Did you notice that to stop the acquisition you had to stop the Visual

Basic program? Instead, you could place a Stop button on the user

interface so that your customers don’t have to quit the program every

time they want to stop the acquisition.

• Data logging. Use Visual Basic to log data to a file as it is acquired, and

then continue using your own software to analyze the data and generate

reports. For example, you can import the data into Microsoft Excel or

National Instruments HiQ and analyze it there. Refer to the

ComponentWorks Analog Input—Acquiring and Logging Data in

Visual Basic application note at www.ni.com.

• Internet connectivity with ComponentWorks DataSocket. Use the

ComponentWorks DataSocket ActiveX control to publish live data

over the Internet. Refer to the Building an Interactive Web Page with

DataSocket application note www.ni.com.

• Multiple instrument control with DAQ, GPIB, Serial, VISA, or IVI.

Control different kinds of instruments using the same program

architecture. Refer to the Application Note library at www.ni.com for

technical papers and tutorials about instrument control.

© National Instruments Corporation A-1 Getting Started with ComponentWorks

A
Technical Support Resources

This appendix describes the comprehensive resources available to you in

the Technical Support section of the National Instruments Web site and

provides technical support telephone numbers for you to use if you have

trouble connecting to our Web site or if you do not have internet access.

NI Web Support

To provide you with immediate answers and solutions 24 hours a day,

365 days a year, National Instruments maintains extensive online technical

support resources. They are available to you at no cost, are updated daily,

and can be found in the Technical Support section of our Web site at

www.ni.com/support

Online Problem-Solving and Diagnostic Resources
• KnowledgeBase—A searchable database containing thousands of

frequently asked questions (FAQs) and their corresponding answers or

solutions, including special sections devoted to our newest products.

The database is updated daily in response to new customer experiences

and feedback.

• Troubleshooting Wizards—Step-by-step guides lead you through

common problems and answer questions about our entire product line.

Wizards include screen shots that illustrate the steps being described

and provide detailed information ranging from simple getting started

instructions to advanced topics.

• Product Manuals—A comprehensive, searchable library of the latest

editions of National Instruments hardware and software product

manuals.

• Hardware Reference Database—A searchable database containing

brief hardware descriptions, mechanical drawings, and helpful images

of jumper settings and connector pinouts.

• Application Notes—A library with more than 100 short papers

addressing specific topics such as creating and calling DLLs,

developing your own instrument driver software, and porting

applications between platforms and operating systems.

Appendix A Technical Support Resources

Getting Started with ComponentWorks A-2 www.ni.com

Software-Related Resources
• Instrument Driver Network—A library with hundreds of instrument

drivers for control of standalone instruments via GPIB, VXI, or serial

interfaces. You also can submit a request for a particular instrument

driver if it does not already appear in the library.

• Example Programs Database—A database with numerous,

non-shipping example programs for National Instruments

programming environments. You can use them to complement the

example programs that are already included with National Instruments

products.

• Software Library—A library with updates and patches to application

software, links to the latest versions of driver software for National

Instruments hardware products, and utility routines.

Worldwide Support

National Instruments has offices located around the globe. Many branch

offices maintain a Web site to provide information on local services. You

can access these Web sites from www.ni.com/worldwide

If you have trouble connecting to our Web site, please contact your local

National Instruments office or the source from which you purchased your

National Instruments product(s) to obtain support.

For telephone support in the United States, dial 512 795 8248. For

telephone support outside the United States, contact your local branch

office:

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Brazil 011 284 5011, Canada (Calgary) 403 274 9391,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,

China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11,

France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427,

Hong Kong 2645 3186, India 91805275406, Israel 03 6120092,

Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,

Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695,

Netherlands 0348 433466, Norway 32 27 73 00, Poland 48 22 528 94 06,

Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,

Sweden 08 587 895 00, Switzerland 056 200 51 51,

Taiwan 02 2377 1200, United Kingdom 01635 523545

© National Instruments Corporation G-1 Getting Started with ComponentWorks

Glossary

A

ActiveX Set of Microsoft technologies for reusable software components. Formerly

called OLE.

ActiveX control Reusable software component that adds functionality to any ActiveX

control container through exposed properties, methods, and events. The

ComponentWorks Data Acquisition, User Interface, and Analysis controls

are examples of ActiveX controls.

ActiveX control

container

Development environment that fully supports ActiveX controls and

integrates them into its own environment using COM. An ActiveX control

container enables you to specify how ActiveX controls interact with the

environment through environment properties. Visual Basic is an example of

an ActiveX control container. See also environment property.

analog I/O Reading or writing data in continuously variable physical quantities, such

as voltage or current.

API Application Programming Interface. A specification of software functions

and their input and return parameters.

array Ordered, indexed set of data elements.

asynchronous Function that begins an operation and returns control to the program prior

to the completion or termination of the operation.

B

breakpoint Testing and debugging tool that allows you to select a program line at which

execution will automatically stop.

Glossary

Getting Started with ComponentWorks G-2 www.ni.com

C

channel Pin or wire lead to which you apply or from which you read the analog or

digital signal.

code completion Code writing feature that prompts you with next element in the line of code.

In Visual Basic 5.0 and later, when you enter the name of a control, the code

editor prompts you with the names of all available properties and methods.

code editor Window where you write code. In Visual Basic, the code editor provides

several features to make writing code easier: automatic code completion,

automatic quick info, and bookmarks. The automatic quick info feature

displays the syntax for statements and functions as you enter them in the

code editor. Bookmarks mark lines of code in the code editor so that you

can find and return to them later.

collection Object that contains a number of objects of the same type, such as pointers,

axes, and plots. In ComponentWorks, the name of the collection is the

plural of the name of the objects in the collection. For example, a collection

of CWAxis objects is called CWAxes. To reference an object in the

collection, you must specify the object as part of the collection, usually by

index. For example, CWGraph.Axes.Item(2) is the second axis in the

CWAxes collection of a graph.

COM Component Object Model. Microsoft specification for architecting and

developing reusable software components.

control 1. ActiveX control. See ActiveX control.

2. Object for entering or manipulating data on a user interface. Compare to

indicator.

control property Property that defines the way an ActiveX control looks and behaves. You

can set control properties programmatically or with custom property pages.

counter/timer I/O Reading or writing data based on high-precision timing through a counter

or timer. By combining a counter with a highly accurate clock, you can

create a wide variety of timing and counting applications, such as

monitoring and analyzing digital waveforms and generating complex

square waves.

Glossary

© National Instruments Corporation G-3 Getting Started with ComponentWorks

D

DAQ Data acquisition. Process of acquiring data, typically from A/D or digital

input plug-in boards.

DataSocket Technology that simplifies live data exchange between applications and

HTTP, FTP, OPC, and file servers over the Internet. It provides one

common API to a number of different communication protocols.

debug Find and correct errors in a program.

device Plug-in data acquisition board that performs analog input and output,

digital input and output, and counter/timer operations.

device number Slot number or board ID number assigned to the board when it is

configured.

digital I/O Reading or writing digital representations of data in discrete units (the

binary digits 1 and 0). Digital information is either on or off.

DLL Dynamic Link Library. A library of functions that link to a program and

load at runtime rather than being compiled into the program. Loading

libraries only when they are needed saves memory in software applications.

DMM Digital Multimeter. A common measurement instrument that measures

resistance, current, and voltage in a wide variety of applications.

dot notation Programming syntax that allows you to access attributes and methods or

functions on an object. For example, object.attribute = value allows

you to set attribute on object to a new value.

driver Software that controls a specific hardware device, such as a data acquisition

board or GPIB interface board.

Glossary

Getting Started with ComponentWorks G-4 www.ni.com

E

environment property Property that defines how an ActiveX control interacts with the

development environment and the rest of the user interface that you are

developing. The development environment provides default values for

environment properties, but you can modify the default values to better

integrate the ActiveX control in your program.

error Critical problem in a software application that causes the operation or

program to fail.

error event Object-generated response to an error. The ComponentWorks DAQ, GPIB,

Serial, VISA, IVI, and IMAQ I/O controls generate error events for which

you can define event procedures. See also warning event.

error handler Function, subroutine, or section of code that processes errors if one should

occur during program execution. Refer to the Visual Basic documentation

for information about the On Error statement. See also error event and

warning event.

event Object-generated response to some action or change in state, such as a

mouse click or a completed acquisition. The event calls an event procedure

that processes the event. Events are defined as part of an ActiveX control

object.

event-driven Describes a program that runs continuously, waiting for an event to occur.

When an event occurs, the program calls the appropriate event procedure.

Compare to loop-driven, where a program continuously polls to find out if

anything has changed.

event procedure User-defined function called in response to an event from an object. See

event.

exception Error message generated by a control and sent directly to the application or

programming environment containing the control.

executable Program file with a .exe extension that you can run independently of the

development environment in which it was created.

Glossary

© National Instruments Corporation G-5 Getting Started with ComponentWorks

F

form Window or area on the screen on which you place controls and indicators

to create the user interface for your program.

FTP File Transfer Protocol. Protocol based on TCP/IP to exchange files between

computers.

FTP Server Application running on a computer that enables the storing and retrieving

of files by different clients via FTP. Most FTP servers allow anonymous

connections so that any networked user can exchange files.

G

GPIB General Purpose Interface Bus. The standard bus used for controlling

electronic instruments with a computer. Also called IEEE 488 bus because

it is defined by ANSI/IEEE Standards 488-1978, 488.1-1987, and

488.2-1987.

GUI Graphical User Interface. A user interface that has graphics, controls,

indicators, and/or menus.

H

HTML HyperText Markup Language. Syntax used to build Web pages. HTML

files are downloaded from an HTTP server and viewed in a Web browser,

such as Internet Explorer.

HTTP HyperText Transfer Protocol. Protocol based on TCP/IP, which is used to

download Web pages from an HTTP server to a Web browser.

HTTP Server Application running on a computer that serves Web pages and other

information to client computers using HTTP. Clients display Web pages in

Web browsers but can retrieve information using other tools, like a

DataSocket client.

Hungarian notation Object-naming notation where each variable and constant name is

proceeded by three to four letters that reflect the data type. For example,

intValue is a variable of type integer.

Glossary

Getting Started with ComponentWorks G-6 www.ni.com

I

I/O Input/Output. The transfer of data to or from a computer system involving

communication channels, operator interface devices, and/or data

acquisition and control interfaces.

IEEE 488 Shortened notation for ANSI/IEEE Standards 488-1978, 488.1-1987, and

488.2-1987. See also GPIB.

IMAQ Vision National Instruments image acquisition and analysis software that you can

use to acquire images from National Instruments image acquisition

(IMAQ) boards, display them in your program, perform interactive viewer

operations, and analyze the images to extract information.

Immediate window Visual Basic debugging tool. The Immediate window opens during runtime

in break mode, which means that you can examine and debug your program

while it is running. For example, you can type or paste a line of code and

press ENTER to run it. Or you can copy and paste code from the Immediate

window into the code editor.

indicator Object for displaying data on a user interface. Compare to control.

installer Software program that copies program, system, and other necessary files to

computers. You can use tools such as the Microsoft Visual Studio Package

& Deployment Wizard to create installers for programs you want to

distribute to others.

instrument driver Library of functions to control and use one specific physical instrument.

Also a set of functions that adds specific functionality to an application.

IVI Interchangeable Virtual Instruments. A technology involving standard

programming interfaces for classes of instruments, such as oscilloscopes,

DMMs, and function generators, that results in hardware-independent

instrument drivers. The IVI standard programming interfaces have been

defined by the IVI Foundation, an industry consortium. See

www.ivifoundation.org.

Glossary

© National Instruments Corporation G-7 Getting Started with ComponentWorks

L

LED Light-Emitting Diode. An indicator that emits a light when current passes

through it. For example, an LED shows if your computer or printer is

turned on.

loop-driven Describes a program that uses a main loop to keep polling the program for

changes. Compare to event-driven.

M

MB Megabytes of memory.

Measurement &

Automation Explorer

National Instruments tool for configuring your National Instruments

hardware and driver software; executing system diagnostics; adding new

devices, interfaces, and virtual channels; and viewing devices and

instruments connected to your system.

method Function that performs a specific action on or with an object. The operation

of the method often depends on the values of the object properties.

N

named channel Channel configuration that specifies a DAQ device; a hardware-specific

channel string; channel attributes such as input limits, input mode, and

actuator type; and a scaling formula for making a measurement or

generating a signal in terms of your actual physical quantity. You can create

named channels for National Instruments devices in Measurement &

Automation Explorer.

NI-DAQ Driver-level software to control and communicate with DAQ hardware.

Glossary

Getting Started with ComponentWorks G-8 www.ni.com

O

object Reusable, self-contained programming structure that encapsulates data and

functionality. An object has exposed properties, methods, and events so that

you can programmatically control how the object looks and behaves. Also

known as a software object. See property, method, and event.

Object Browser Visual Basic tool that displays the available properties, methods, and events

for the controls that are currently loaded in the development environment.

The Object Browser shows the hierarchy within a group of objects. Press

<F2> in Visual Basic to open the Object Browser.

OCX OLE Control eXtension. Another name for ActiveX controls, reflected by

the .ocx file extension of ActiveX control files.

OLE Object Linking and Embedding. See ActiveX.

OLE control See ActiveX control.

OPC OLE for Process Control. An industry standard based on ActiveX and

COM technologies that enables you to create a single client application that

can communicate with disparate devices. See www.opcfoundation.org.

OPC Server OLE for Process Control Server. A COM-based standard defined by the

OPC Foundation that specifies how to interact with device servers.

oscilloscope Measurement instrument widely used in high-speed testing applications,

such as telecommunication physical layer testing, video testing, and

high-speed digital design verification.

P

parameter Value passed to a method or function.

PID Proportional-Integral-Derivative. A three-term control mechanism

combining proportional, integral, and derivative control. You might use a

PID algorithm to control processes such as heating and cooling systems,

fluid level monitoring, flow control, and pressure control.

plot 1. Trace (data line) on a graph representing the data in one row or column

of an array.

2. To display a new set of data while deleting any previous data on the

graph. Use one of the Plot methods on the CWGraph control to plot data.

Glossary

© National Instruments Corporation G-9 Getting Started with ComponentWorks

pointer Indicator on a CWSlide or CWKnob object. You can use a collection of

pointers to display different values on the same object. In the collection,

each pointer is referenced by an index in the collection and each individual

pointer has its own properties such as color, style, mode, and so on.

property Attribute that defines the appearance or state of an object. The property can

be a specific value or another object with its own properties and methods.

For example, a value property is the color (property) of a plot (object),

while an object property is a specific Y axis (property) on a graph (object).

The Y axis itself is another object with properties, such as minimum and

maximum values.

property pages Window or dialog box that displays current configuration information and

allows users to modify the configuration. Also called property sheets.

R

return value Status code that indicates whether an operation completed successfully.

If the return value is something other than zero, a warning or error

occurred. Positive return values indicate a warning, a problem that occurred

in the operation but that will not stop the program from running. Negative

return values indicate an error, a critical problem that occurred in the

operation and that will stop all other functions or methods that depend on

the failed operation from completing successfully.

S

scope See oscilloscope.

serial Standard serial bus on a computer used to communicate with instruments.

Also known as RS-232.

software object See object.

synchronous Property or operation that begins and returns control to the program only

when the operation is complete.

syntax Set of rules to which statements must conform in a particular programming

language.

Glossary

Getting Started with ComponentWorks G-10 www.ni.com

U

UI User Interface. See GUI.

V

value pairs Paired name and value that you can use for custom ticks, labels, and grid

lines on the axis of a knob, slide, or graph.

Variant Data type that can hold any defined type of data. Visual Basic converts all

data as needed to save it in a variable of type Variant.

VISA Driver-software architecture developed by National Instruments to unify

instrumentation software for serial, GPIB, and VXI instruments or

controllers. It has been accepted as a standard for VXI by the

VXIplug&play Systems Alliance.

VXI VME eXtension for Instrumentation. Instrumentation architecture and bus

based on the VME standard. Used in high-end test applications.

W

warning Non-critical problem in a software application.

warning event Object-generated response to a warning. The ComponentWorks DAQ and

IMAQ I/O controls generate warning events for which you can define event

procedures. See also error event.

watch window Visual Basic debugging tool that displays the value of variables during

program execution.

© National Instruments Corporation I-1 Getting Started with ComponentWorks

Index

Symbols
_ (line continuation character), 2-11

A
acquiring analog data, 3-9 to 3-13

ActiveX control containers, 2-12

ActiveX controls, 2-1 to 2-13

benefits of using, 2-12 to 2-13

custom controls, 2-12, 3-3, 3-5

events, 2-10 to 2-12

loading in Visual Basic, 3-2 to 3-3

methods, 2-8 to 2-10

naming, 3-5

native (Visual Basic) controls, 3-3, 3-5

overview, 2-1 to 2-3

placing on a form, 3-4, 3-5

properties, 2-4 to 2-8

Analog Input (CWAI) control, 3-9 to 3-13

Analysis controls, 1-2, 3-7 to 3-8

analyzing data, 3-7 to 3-8

application notes, viii

Automation Symbols controls, 1-3

B
breakpoints, 3-17 to 3-18

building a distributable package, 3-19

C
calling methods, 2-8 to 2-9, 3-7

code completion, 3-6

code examples

AcquiredData event, 3-11, 3-12

adding an object to a collection, 2-9

calling Analysis functions, 3-8

calling methods, 2-8, 2-9

charting data, 3-12

Click event, 3-6, 3-8, 3-9, 3-11, 3-13, 3-14

configuring devices, 3-11, 3-13, 3-14

Debug.Print, 3-16

displaying error information, 3-14

displaying messages, 3-13, 3-14

displaying values on the user

interface, 2-8, 3-8

Err object, 3-13, 3-14

using event parameters in procedures, 2-11

For loop, 3-6, 3-11

generating event procedure skeletons, 2-11

generating random data, 3-6

GetErrorText method, 3-14

getting a property, 2-7

If-Then statements, 3-13, 3-14

Item method, 2-10

On Error statement, 3-13, 3-14

plotting data, 3-6

printing values, 2-8, 3-16

removing objects from a collection, 2-9

using return values, 3-15

saving a value from a method call, 2-8

scaling data with user interface controls, 3-9

setting a property, 2-7

setting properties on collection items, 2-10

starting acquisitions, 3-11, 3-13, 3-14

collections, 2-3, 2-9 to 2-10

ComponentWorks

application notes, viii

controls, 1-2 to 1-3

error handling, 3-13 to 3-16

examples, viii, ix

installation, 1-4 to 1-5

overview, 1-1 to 1-3

packages, 1-1

Index

Getting Started with ComponentWorks I-2 www.ni.com

property pages, 2-5

reference, ix

samples, viii, ix

system requirements, 1-3

template for Visual Basic, 3-1 to 3-3

tutorial, 3-1 to 3-20

control properties, 2-4

customizing a program title bar, 3-18

D
Data Acquisition controls, 1-2, 3-9 to 3-13

data logging, 3-20

DataSocket control, 1-2, 3-20

debugging, 3-16 to 3-18

breakpoints, 3-17 to 3-18

Immediate window, 3-17

Print function, 3-16

stepping through code, 3-17

watch window, 3-17

distributing programs, 3-19

DMM control, 1-2

documentation

conventions, x

getting started with, vii to ix

related documentation, vii to ix

E
environment properties, 2-4

error events, 3-16

error handling, 3-13 to 3-16

events, 3-16

GetErrorText method, 3-14, 3-15

On Error statement, 3-13 to 3-14

return values, 3-15

ErrorEventMask property, 3-16

event procedures, 2-10, 2-11

event-driven programming, 2-11

events, 2-10 to 2-12

developing event procedures, 2-11,

3-6, 3-11

error, 3-16

warning, 3-16

examples, viii, ix

using ComponentWorks in Visual Basic

(tutorial), 3-1 to 3-20

See also code examples.

ExceptionOnError property, 3-15

exceptions, 3-13

executable, 3-19

F
Form Layout window, 3-18

forms, 3-4, 3-18

G
GetErrorText method, 3-15

getting started, vii to ix

GPIB control, 1-2, 3-9

Graph (CWGraph), 1-2, 3-4 to 3-6

graphing data, 3-4 to 3-6

H
Hungarian notation, 3-5

I
IMAQ Vision controls, 1-3

Immediate window, 3-17

installers, 3-19

installing ComponentWorks, 1-4 to 1-5

Instrument controls, 1-2, 3-9

interacting with data, 3-8 to 3-9

Internet connectivity, 1-2, 3-20

Item method, 2-9 to 2-10

IVI controls, 1-2

Index

© National Instruments Corporation I-3 Getting Started with ComponentWorks

K
Knob (CWKnob), 3-8 to 3-9

L
line continuation, 2-11

loading controls, 3-2 to 3-3

loop-driven program, 2-11

M
making an executable, 3-19

manipulating data, 3-8 to 3-9

manual. See documentation.

Measurement Studio, 1-1

methods, 2-8 to 2-10

calling, 2-8 to 2-9, 3-7

default method, 2-10

GetErrorText, 3-15

passing parameters, 2-8 to 2-9

N
naming conventions, 3-5

National Instruments Web support, A-1

O
objects, 2-1 to 2-3

online problem-solving and diagnostic

resources, A-1

P
Package & Deployment Wizard, 3-19

parameters, 2-8 to 2-9

PID control, 1-3

placing controls, 3-4, 3-5

Print function, 3-16

program distribution, 3-18 to 3-19

building a distributable package, 3-19

making an executable, 3-19

programming

event-driven, 2-11

loop-driven, 2-11

project template, 3-1 to 3-3

properties, 2-4 to 2-8

control, 2-4, 3-9

default property, 2-7

environment, 2-4, 3-5, 3-7

ErrorEventMask, 3-16

ExceptionOnError, 3-15

property pages, 2-5 to 2-6

setting programmatically, 2-6 to 2-8

Properties window, 2-6, 3-5

property pages, 2-5 to 2-6

R
redistributable files, 3-19

requirements (system), 1-3

return values, 3-15

run to cursor, 3-17

S
scaling data with user interface controls, 3-11

Scope control, 1-2

Serial control, 1-2, 3-9

single stepping, 3-17

software objects, 2-1 to 2-3

software-related resources, A-2

Statistics (CWStat), 3-7 to 3-8

stepping (through code), 3-17

system requirements, 1-3

Index

Getting Started with ComponentWorks I-4 www.ni.com

T
technical support resources, A-1

telephone support, A-2

template (Visual Basic project), 3-1 to 3-3

testing, 3-16 to 3-18

Three-Dimensional Graph control, 1-2

title bar, 3-18

tutorial, 3-1 to 3-20

acquiring analog data, 3-9 to 3-13

analyzing data, 3-7 to 3-8

charting data, 3-12 to 3-13

distributing programs, 3-18 to 3-19

error handling, 3-13 to 3-16

expanding your program, 3-20

interacting with data, 3-8 to 3-9

testing and debugging, 3-16 to 3-18

visualizing data, 3-4 to 3-6

U
User Interface controls, 1-2, 3-4 to 3-6,

3-8 to 3-9

V
VISA control, 1-2, 3-9

Visual Basic, 3-1 to 3-20

breakpoints, 3-17 to 3-18

code completion, 3-6

code editor, 2-12

debugging, 3-16 to 3-18

error handling, 3-13 to 3-16

forms, 3-4, 3-18

Immediate window, 3-17

line continuation, 2-11

loading controls, 3-2 to 3-3

On Error statement, 3-13 to 3-14

Package & Deployment Wizard, 3-19

Print function, 3-16

Properties window, 2-6, 3-5

stepping through code, 3-17

template, 3-1 to 3-3

Toolbox, 3-3

tutorial, 3-1 to 3-20

watch window, 3-17

visualizing data, 3-4 to 3-6, 3-12 to 3-13

W
warning events, 3-16

watch window, 3-17

Web support from National Instruments

online problem-solving and diagnostic

resources, A-1

software-related resources, A-2

worldwide technical support, A-2

	Getting Started with ComponentWorks
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Using ComponentWorks Documentation to Get Started
	Getting Help
	Conventions

	Chapter 1 Introduction to Measurement Studio and ComponentWorks
	Measurement Studio Overview
	ComponentWorks Overview
	System Requirements
	Installation Instructions

	Chapter 2 Getting Started with ActiveX Controls
	What Is an ActiveX Control?
	What Are Properties and How Do I Get and Set Them?
	Control Properties
	Environment Properties
	Configuring Controls in Property Pages
	Changing Properties Programmatically

	What Are Methods and How Do I Call Them?
	Calling Methods
	Working with Collections
	Managing Collections
	Accessing Objects with the Item Method

	What Are Events and How Do I Define Them?
	How Do I Benefit from Using ActiveX Controls?

	Chapter 3 Getting Started with ComponentWorks in Visual Basic
	Creating a ComponentWorks Project Template
	Visualizing Data on a User Interface
	Analyzing Data
	Interacting with the Data
	Acquiring Analog Data
	Continuously Acquiring and Charting Data
	Error Handling
	Visual Basic On Error Statement
	Return Values
	Error and Warning Events

	Testing and Debugging
	Printing Variables during Program Execution
	Monitoring Variables during Program Execution
	Examining and Debugging during Program Execution
	Executing the Program One Line at a Time
	Stopping Program Execution at Breakpoints

	Preparing Your Program for Distribution
	Positioning the Form on the Screen
	Customizing the Title Bar
	Making an Executable
	Building a Distributable Package

	Implementing a Full-Featured Application

	Appendix A Technical Support Resources
	Glossary
	A-B
	C
	D
	E
	F-H
	I
	L-N
	O-P
	R-S
	U-W

	Index
	Symbols
	A-C
	D-I
	K-S
	T-W

	Figures
	Figure 2-1. Each Object Contributes to the Functionality of the Entire Control
	Figure 2-2. Software Objects Access Other Objects through Properties and Methods
	Figure 2-3. Set Control Properties in the ComponentWorks Property Pages
	Figure 2-4. Set Environment Properties in the Visual Basic Property Window
	Figure 2-5. Selecting Events in the Code Editor
	Figure 3-1. Loading the ComponentWorks Controls into the Toolbox
	Figure 3-2. Creating a Simple User Interface
	Figure 3-3. Analyzing Data
	Figure 3-4. Interacting with Data
	Figure 3-5. Configuring Analog Input Channels
	Figure 3-6. Continuously Acquiring and Charting Data

