

 GPIB-USB-A

https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-USB-A?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-USB-A?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/gpib-instrument-control-modules/GPIB-USB-A?aw_referrer=pdf

VISA

NI-VISA
™

User Manual

NI-VISA User Manual

September 2001 Edition

Part Number 370423A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,

Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,

Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, China (Shanghai) 021 6555 7838,

China (ShenZhen) 0755 3904939, Czech Republic 02 2423 5774, Denmark 45 76 26 00, Finland 09 725 725 11,

France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186,

India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,

Malaysia 603 9596711, Mexico 001 800 010 0793, Netherlands 0348 433466, New Zealand 09 914 0488,

Norway 32 27 73 00, Poland 0 22 528 94 06, Portugal 351 1 726 9011, Russia 095 2387139,

Singapore 2265886, Slovenia 386 3 425 4200, South Africa 11 805 8197, Spain 91 640 0085,

Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the

documentation, send e-mail to techpubs@ni.com.

© 1996, 2001 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF

NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY

THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, LabVIEW™, National Instruments™, NI™, ni.com™, NI-488.2™, NI-VISA™, NI-VXI™, and VXIpc™ are trademarks of
National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
The product described in this manual may be protected by one or more of the following patents: U.S. Patent No(s).: 5,724,272; 5,710,727;
5,847,955; 5,640,572; 5,771,388; 5,627,988; 5,717,614

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v NI-VISA User Manual

Contents

About This Manual
How to Use This Document Set ..xi

Conventions ...xii

Related Documentation..xii

Chapter 1
Introduction

How to Use This Manual ...1-1

What You Need to Get Started ..1-1

Introduction to VISA ...1-2

Chapter 2
Introductory Programming Examples

Example of Message-Based Communication ..2-1

Example 2-1...2-2

Example 2-1 Discussion ..2-3

Example of Register-Based Communication...2-4

Example 2-2...2-5

Example 2-2 Discussion ..2-6

Example of Handling Events ...2-7

Callbacks ...2-7

Queuing ...2-7

Example 2-3...2-8

Example 2-3 Discussion ..2-9

Example of Locking...2-10

Example 2-4...2-10

Example 2-4 Discussion ..2-11

Chapter 3
VISA Overview

Background..3-1

Interactive Control of VISA ..3-2

VISA Terminology ..3-4

Beginning Terminology...3-4

Communication Channels: Sessions..3-6

The Resource Manager..3-7

Examples of Interface Independence ...3-8

Contents

NI-VISA User Manual vi ni.com

Chapter 4
Initializing Your VISA Application

Introduction ... 4-1

Opening a Session ... 4-1

Example 4-1 .. 4-2

Finding Resources ... 4-5

Example 4-2 .. 4-5

Finding VISA Resources Using Regular Expressions 4-7

Attribute-Based Resource Matching ... 4-9

Example 4-3 .. 4-11

Configuring a Session.. 4-12

Accessing Attributes ... 4-12

Common Considerations for Using Attributes.. 4-13

Chapter 5
Message-Based Communication

Introduction ... 5-1

Basic I/O Services ... 5-1

Synchronous Read/Write Services.. 5-2

Asynchronous Read/Write Services.. 5-3

Clear Service ... 5-4

Trigger Service.. 5-5

Status/Service Request Service... 5-6

Example VISA Message-Based Application .. 5-7

Example 5-1 .. 5-7

Formatted I/O Services.. 5-8

Formatted I/O Operations ... 5-8

I/O Buffer Operations ... 5-9

Variable List Operations ... 5-10

Manually Flushing the Formatted I/O Buffers.. 5-10

Automatically Flushing the Formatted I/O Buffers .. 5-11

Resizing the Formatted I/O Buffers .. 5-12

Formatted I/O Instrument Driver Examples.. 5-12

Integers.. 5-12

Floating Point Values.. 5-14

Strings ... 5-15

Data Blocks ... 5-17

Contents

© National Instruments Corporation vii NI-VISA User Manual

Chapter 6
Register-Based Communication

Introduction..6-1

High-Level Access Operations ..6-3

High-Level Block Operations ..6-4

Low-Level Access Operations...6-5

Overview of Register Accesses from Computers..6-5

Using VISA to Perform Low-Level Register Accesses6-7

Operations versus Pointer Dereference ...6-8

Manipulating the Pointer ...6-8

Example 6-1...6-9

Bus Errors..6-10

Comparison of High-Level and Low-Level Access ..6-10

Speed ...6-10

Ease of Use ..6-10

Accessing Multiple Address Spaces..6-11

Shared Memory Operations ...6-11

Shared Memory Sample Code...6-12

Example 6-2...6-12

Chapter 7
VISA Events

Introduction..7-1

Supported Events ...7-2

Enabling and Disabling Events..7-4

Queuing..7-5

Callbacks..7-6

Callback Modes ...7-7

Independent Queues ..7-8

The userHandle Parameter ..7-9

Queuing and Callback Mechanism Sample Code..7-9

Example 7-1...7-10

The Life of the Event Context ...7-12

Event Context with the Queuing Mechanism..7-12

Event Context with the Callback Mechanism ...7-12

Exception Handling ...7-13

Contents

NI-VISA User Manual viii ni.com

Chapter 8
VISA Locks

Introduction ... 8-1

Lock Types .. 8-1

Lock Sharing ... 8-2

Acquiring an Exclusive Lock While Owning a Shared Lock......................... 8-3

Nested Locks... 8-3

Locking Sample Code ... 8-3

Example 8-1 .. 8-4

Chapter 9
Interface Specific Information

GPIB.. 9-1

Introduction to Programming GPIB Devices in VISA 9-1

Comparison Between NI-VISA and NI-488 APIs .. 9-2

Board-Level Programming ... 9-3

GPIB Summary ... 9-4

GPIB-VXI.. 9-5

Introduction to Programming GPIB-VXI Devices in VISA........................... 9-5

Register-based Programming with the GPIB-VXI ... 9-5

Additional Programming Issues.. 9-7

GPIB-VXI Summary... 9-8

VXI .. 9-8

Introduction to Programming VXI Devices in VISA 9-8

VXI/ VME Interrupts and Asynchronous Events in VISA............................. 9-9

Performing Arbitrary Access to VXI Memory with VISA............................. 9-10

Other VXI Resource Classes and VISA ... 9-10

Comparison Between NI-VISA and NI-VXI APIs... 9-11

Summary of VXI in VISA .. 9-13

PXI... 9-13

Introduction to Programming PXI Devices in NI-VISA 9-14

User Level Functionality... 9-14

Configuring NI-VISA to Recognize a PXI Device... 9-15

Using CVI to Install Your Device .inf Files ... 9-17

PXI Summary.. 9-18

Serial.. 9-18

Introduction to Programming Serial Devices in VISA 9-18

Default vs. Configured Communication Settings ... 9-18

Controlling the Serial I/O Buffers... 9-20

National Instruments ENET Serial Controllers .. 9-21

Serial Summary... 9-21

Contents

© National Instruments Corporation ix NI-VISA User Manual

Ethernet ..9-21

Introduction to Programming Ethernet Devices in VISA9-21

VISA Sockets vs. Other Sockets APIs ..9-22

Ethernet Summary ...9-23

Remote NI-VISA ...9-23

Introduction to Programming Remote Devices in NI-VISA...........................9-23

How to Configure and Use Remote NI-VISA...9-24

Remote NI-VISA Summary ..9-24

Chapter 10
NI-VISA Platform-Specific and Portability Issues

Programming Considerations ..10-2

NI Spy: Debugging Tool for Windows ...10-2

Multiple Applications Using the NI-VISA Driver ..10-2

Low-Level Access Functions ..10-2

Interrupt Callback Handlers ..10-3

Multiple Interface Support Issues ..10-4

VXI and GPIB Platforms...10-4

Serial Port Support ..10-5

Example 10-1...10-6

VME Support...10-7

Appendix A
Visual Basic Examples

Appendix B
Technical Support Resources

Glossary

Index

© National Instruments Corporation xi NI-VISA User Manual

About This Manual

This manual describes how to use NI-VISA, the National Instruments

implementation of the VISA I/O standard, in any environment using

LabWindows/CVI, any ANSI C compiler, or Microsoft Visual Basic. It is

intended to increase ease of use for end users through open, multivendor

systems, specifically through VISA I/O software. The assumption is made

that a user of VISA software and this manual is familiar with programming

I/O software for VXI, GPIB, Serial, PXI, and Ethernet technology on one

or more of the following operating systems:

• Windows 2000/NT/XP/Me/9x

• LabVIEW RT

• Solaris 2.x

• Mac OS 8/9/X

• Linux x86

• VxWorks x86

How to Use This Document Set

Use the documentation that came with your GPIB and/or VXI hardware

and software for Windows to install and configure your system.

Refer to the Read Me First document for information on installing the

NI-VISA distribution media.

Use the NI-VISA User Manual for detailed information on how to program

using VISA.

Use the NI-VISA online help or the NI-VISA Programmer Reference

Manual for specific information about the attributes, events, and

operations, such as format, syntax, parameters, and possible errors.

♦ Windows users—The NI-VISA Programmer Reference Manual is not

included in Windows kits. Windows users can access this information

through the NI-visa.hlp file at Start»Programs»National

Instruments»VISA»VISA Help.

About This Manual

NI-VISA User Manual xii ni.com

Conventions

The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence File»Page Setup»Options directs you to

pull down the File menu, select the Page Setup item, and select Options

from the last dialog box.

♦ The ♦ symbol indicates that the following text applies only to a specific

product, a specific operating system, or a specific software version.

This icon denotes a tip, which alerts you to advisory information.

bold Bold text denotes items that you must select or click on in the software,

such as menu items and dialog box options. Bold text also denotes

parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction

to a key concept. This font also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of disk drives, paths, directories,

programs, subprograms, subroutines, device names, functions, operations,

variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer

automatically prints to the screen. This font also emphasizes lines of code

that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value

that you must supply.

Related Documentation

The following documents contain information that you may find helpful as

you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface

for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats,

Protocols, and Common Commands

About This Manual

© National Instruments Corporation xiii NI-VISA User Manual

• ANSI/IEEE Standard 1014-1987, IEEE Standard for a Versatile

Backplane Bus: VMEbus

• ANSI/IEEE Standard 1155-1992, VMEbus Extensions for

Instrumentation: VXIbus

• ANSI/ISO Standard 9899-1990, Programming Language C

• NI-488.2 Function Reference Manual for DOS/Windows, National

Instruments Corporation

• NI-488.2 User Manual for Windows, National Instruments

Corporation

• NI-VXI Programmer Reference Manual, National Instruments

Corporation

• NI-VXI User Manual, National Instruments Corporation

• VPP-1, Charter Document

• VPP-2, System Frameworks Specification

• VPP-3.1, Instrument Drivers Architecture and Design Specification

• VPP-3.2, Instrument Driver Functional Body Specification

• VPP-3.3, Instrument Driver Interactive Developer Interface

Specification

• VPP-3.4, Instrument Driver Programmatic Developer Interface

Specification

• VPP-4.3, The VISA Library

• VPP-4.3.2, VISA Implementation Specification for Textual Languages

• VPP-4.3.3, VISA Implementation Specification for the G Language

• VPP-5, VXI Component Knowledge Base Specification

• VPP-6, Installation and Packaging Specification

• VPP-7, Soft Front Panel Specification

• VPP-8, VXI Module/Mainframe to Receiver Interconnection

• VPP-9, Instrument Vendor Abbreviations

© National Instruments Corporation 1-1 NI-VISA User Manual

1
Introduction

This chapter discusses how to use this manual, lists what you need to

get started, and contains a brief description of the VISA Library. The

National Instruments implementation of VISA is known as NI-VISA.

How to Use This Manual

This manual provides a sequential introduction to setting up a system to use

VISA and then using and programming the environment. Please gather all

the components described in the next section, What You Need to Get

Started. The Read Me First document included with your kit explains how

to install and set up your system.

Once you have set up your system, you can use Chapter 2, Introductory

Programming Examples, to guide yourself through some simple examples.

Chapters 3 through 8 contain more in-depth information about the

different elements that make up the VISA system.

For GPIB users or those familiar with NI-488, suggested reading is

Chapter 2, Introductory Programming Examples, Chapter 5,

Message-Based Communication, and the GPIB section in Chapter 9,

Interface Specific Information. For VXI users or those familiar with

NI-VXI, suggested reading is Chapter 2, Introductory Programming

Examples, Chapter 6, Register-Based Communication, and the VXI section

in Chapter 9, Interface Specific Information.

What You Need to Get Started

❑ Appropriate hardware, in the form of a National Instruments GPIB,

GPIB-VXI, MXI/VXI or serial interface board. For other hardware

interfaces, the computer’s standard ports should be sufficient for most

applications.

❑ For GPIB applications, install NI-488. For VXI applications, install

NI-VXI. For other hardware interfaces, NI-VISA uses the system’s

standard drivers.

Chapter 1 Introduction

NI-VISA User Manual 1-2 ni.com

❑ NI-VISA distribution media

❑ If you have a GPIB-VXI command module from another vendor, you

need that vendor’s GPIB-VXI VISA component. It will be installed

into the <VXIPNPPATH>\<Framework>\bin directory. For example,

the Hewlett-Packard component for the HPE1406 would be:

C:\VXIpnp\Win95\bin\HPGPVX32.dll

Introduction to VISA

The main objective of the VXIplug&play Systems Alliance is to increase

ease of use for end users through open, multi-vendor systems. The alliance

members share a common vision for multi-vendor systems architecture,

encompassing both hardware and software. This common vision enables

the members to work together to define and implement standards for

system-level issues.

As a step toward industry-wide software compatibility, the alliance

developed one specification for I/O software—the Virtual Instrument

System Architecture, or VISA. The VISA specification defines a

next-generation I/O software standard not only for VXI, but also for GPIB,

Serial, and other interfaces. With the VISA standard endorsed by over 35

of the largest instrumentation companies in the industry including

Tektronix, Hewlett-Packard, and National Instruments, VISA unifies the

industry to make software interoperable, reusable, and able to stand the test

of time. The alliance also grouped the most popular operating systems,

application development environments, and programming languages into

distinct frameworks and defined in-depth specifications to guarantee

interoperability of components within each framework.

This manual describes how to use NI-VISA, the National Instruments

implementation of the VISA I/O standard, in any environment using

LabWindows/CVI, any ANSI C compiler, or Microsoft Visual Basic.

NI-VISA currently supports the frameworks and programming languages

shown in Table 1-1. For information on programming VISA from

LabVIEW, refer to the VISA documentation included with your LabVIEW

software.

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-VISA User Manual

You may find that programming with NI-VISA is not significantly different

from programming with other I/O software products. However, the

programming concepts, model, and paradigm that NI-VISA uses create a

solid foundation for taking advantage of VISA’s more powerful features in

the future.

Table 1-1. NI-VISA Support

Operating System Programming Language/Environment

VXIplug&play

Framework

Windows Me/98/95 LabWindows/CVI, ANSI C, Visual Basic WIN95

Windows Me/98/95 LabVIEW GWIN95

Windows 2000/NT/XP LabWindows/CVI, ANSI C, Visual Basic WINNT

Windows 2000/NT/XP LabVIEW GWINNT

LabVIEW RT LabVIEW *

Solaris 2.x LabWindows/CVI, ANSI C SUN

Solaris 2.x LabVIEW GSUN

Mac OS 8/9/X ANSI C, LabVIEW *

Linux x86 ANSI C, LabVIEW *

VxWorks x86 ANSI C *

* This framework is supported by NI-VISA even though it is not defined by the VXIplug&play Systems Alliance.

© National Instruments Corporation 2-1 NI-VISA User Manual

2
Introductory Programming
Examples

This chapter introduces some examples of common communication

with instruments. To help you become comfortable with VISA, the

examples avoid VISA terminology. Chapter 3, VISA Overview, looks at

these examples again but using VISA terminology and focusing more

on how they explain the VISA model.

Note The examples in this chapter show C source code. You can find the same examples

in Visual Basic syntax in Appendix A, Visual Basic Examples.

Example of Message-Based Communication

Serial, GPIB, and VXI systems all have a definition of message-based

communication. In GPIB and serial, the messages are inherent in the design

of the bus itself. For VXI, the messages actually are sent via a protocol

known as word serial, which is based on register communication. In either

case, the end result is sending or receiving strings.

Example 2-1 shows the basic steps in any VISA program.

Chapter 2 Introductory Programming Examples

NI-VISA User Manual 2-2 ni.com

Example 2-1
#include "visa.h"

#define MAX_CNT 200

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViUInt32 retCount; /* Return count from string I/O */

ViChar buffer[MAX_CNT]; /* Buffer for string I/O */

/* Begin by initializing the system*/

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting*/

return -1;

}

/* Open communication with GPIB Device at Primary Addr 1*/

/* NOTE: For simplicity, we will not show error checking*/

status = viOpen(defaultRM, "GPIB0::1::INSTR", VI_NULL, VI_NULL,

&instr);

/* Set the timeout for message-based communication*/

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

/* Ask the device for identification */

status = viWrite(instr, "*IDN?\n", 6, &retCount);

status = viRead(instr, buffer, MAX_CNT, &retCount);

/* Your code should process the data */

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Chapter 2 Introductory Programming Examples

© National Instruments Corporation 2-3 NI-VISA User Manual

Example 2-1 Discussion
We can break down Example 2-1 into the following steps.

1. Begin by initializing the VISA system. For this task you use

viOpenDefaultRM(), which opens a communication channel with

VISA itself. This channel has a purpose similar to a telephone line. The

function call is analogous to picking up the phone and dialing the

operator. From this point on, the phone line, or the value output from

viOpenDefaultRM(), is what connects you to the VISA driver. Any

communication on the line is between you and the VISA driver only.

Chapter 3, VISA Overview, has more details about

viOpenDefaultRM(), but for now it is sufficient for you to

understand that the function initializes VISA and must be the first

VISA function called in your program.

2. Now you must open a communication channel to the device itself using

viOpen(). Notice that this function uses the handle returned by

viOpenDefaultRM(), which is the variable defaultRM in the

example, to identify the VISA driver. You then specify the address of

the device you want to talk to. Continuing with the phone analogy, this

is like asking the operator to dial a number for you. In this case, you

want to address a GPIB device at primary address 1 on the GPIB0 bus.

The value for x in the GPIBx token (GPIB0 in this example) indicates

the GPIB board to which your device is attached. This means that you

can have multiple GPIB boards installed in the computer, each

controlling independent buses. For more information on address

strings, viOpen(), and viOpenDefaultRM(), see Chapter 4,

Initializing Your VISA Application.

The two VI_NULL values following the address string are not

important at this time. They specify that the session should be

initialized using VISA defaults. Finally, viOpen() returns the

communication channel to the device in the parameter instr.

From now on, whenever you want to talk to this device, you use

the instr variable to identify it. Notice that you do not use the

defaultRM handle again. The main use of defaultRM is to tell the

VISA driver to open communication channels to devices. You do not

use this handle again until you are ready to end the program.

3. At this point, set a timeout value for message-based communication.

A timeout value is important in message-based communication to

determine what should happen when the device stops communicating

for a certain period of time. VISA has a common function to set values

such as these: viSetAttribute(). This function sets values such as

timeout and the termination character for the communication channel.

In this example, notice that the function call to viSetAttribute()

Chapter 2 Introductory Programming Examples

NI-VISA User Manual 2-4 ni.com

sets the timeout to be 5 s (5000 ms) for both reading and writing

strings.

4. Now that you have the communication channel set up, you can perform

string I/O using the viWrite() and viRead() functions. Notice

that this is the section of the programming code that is unique for

message-based communication. Opening communication channels,

as described in steps 1 and 2, and closing the channels, as described in

step 5, are the same for all VISA programs. The parameters that these

calls use are relatively straightforward.

a. First you identify which device you are talking to with instr.

b. Next you give the string to send, or what buffer to put the

response in.

c. Finally, specify the number of characters you are interested in

transferring.

For more information on these functions, see Chapter 5,

Message-Based Communication. Also refer to the NI-VISA online

help or the NI-VISA Programmer Reference Manual.

5. When you are finished with your device I/O, you can close the

communication channel to the device with the viClose() function.

Notice that the program shows a second call to viClose(). When you

are ready to shut down the program, or at least close down the VISA

driver, you use viClose() to close the communication channel that

was opened using viOpenDefaultRM().

Example of Register-Based Communication

Note You can skip over this section if you are exclusively using GPIB or serial

communication. Register-based programming applies only to VXI, GPIB-VXI, or PXI.

VISA has two standard methods for accessing registers. The first method

uses High-Level Access functions. You can use these functions to specify

the address to access; the functions then take care of the necessary details

to perform the access, from mapping an I/O window to checking for

failures. The drawback to using these functions is the amount of software

overhead associated with them.

To reduce the overhead, VISA also has Low-Level Access functions. These

functions break down the tasks done by the High-Level Access functions

and let the program perform each task itself. The advantage is that you can

optimize the sequence of calls based on the style of register I/O you are

Chapter 2 Introductory Programming Examples

© National Instruments Corporation 2-5 NI-VISA User Manual

about to perform. However, you must be more knowledgeable about how

register accesses work. In addition, you cannot check for errors easily. The

following example shows how to perform register I/O using the High-Level

Access functions, which is the method we recommend for new users. If you

are an experienced user or understand register I/O concepts, you can use the

Low-Level Access Operations section in Chapter 6, Register-Based

Communication.

Note Examples 2-2 through 2-4 use bold text to distinguish lines of code that are different

from the other examples in this chapter.

Example 2-2
#include "visa.h"

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViUInt16 deviceID; /* To store the value */

/* Begin by initializing the system*/

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting*/

return -1;

}

/* Open communication with VXI Device at Logical Addr 16 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

&instr);

/* Read the Device ID, and write to memory in A24 space */

status = viIn16(instr, VI_A16_SPACE, 0, &deviceID);

status = viOut16(instr, VI_A24_SPACE, 0, 0x1234);

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Chapter 2 Introductory Programming Examples

NI-VISA User Manual 2-6 ni.com

Example 2-2 Discussion
The general structure of this example is very similar to that of Example 2-1.

For this reason, we merely point out the basic differences as denoted in

bold text:

• A different address string is used for the VXI device.

• The string functions from Example 2-1 are replaced with register

functions.

The address string is still the same format as the address string in

Example 2-1, but it has replaced the GPIB with VXI. Again, remember

that the difference in the address string name is the extent to which the

specific interface bus will be important. Indeed, since this is a simple string,

it is possible to have the program read in the string from a user input or a

configuration file. Thus, the program can be compiled and is still portable

to different platforms, such as from a GPIB-VXI to a MXIbus board.

As you can see from the programming code, you use different functions to

perform I/O with a register-based device. The functions viIn16() and

viOut16() read and write 16-bit values to registers in either the A16, A24,

or A32 space of VXI. As with the message-based functions, you start by

specifying which device you want to talk to by supplying the instr

variable. You then identify the address space you are targeting, such as

VI_A16_SPACE.

The next parameter warrants close examination. Notice that we want

to read in the value of the Device ID register for the device at logical

address 16. Logical addresses start at offset 0xC000 in A16 space, and each

logical address gets 0x40 bytes of address space. Because the Device ID

register is the first address within that 0x40 bytes, the absolute address of

the Device ID register for logical address 16 is calculated as follows:

0xC000 + (0x40 * 16) = 0xC400

However, notice that the offset we supplied was 0. The reason for this is that

the instr parameter identifies which device you are talking to, and

therefore the VISA driver is able to perform the address calculation itself.

The 0 indicates the first register in the 0x40 bytes of address space, or the

Device ID register. The same holds true for the viOut16() call. Even in

A24 or A32 space, although it is possible that you are talking to a device

whose memory starts at 0x0, it is more likely that the VXI Resource

Manager has provided some other offset, such as 0x200000 for the

memory. However, because instr identifies the device, and the Resource

Manager has told the driver the offset address of the device’s memory, you

do not need to know the details of the absolute address. Just provide the

Chapter 2 Introductory Programming Examples

© National Instruments Corporation 2-7 NI-VISA User Manual

offset within the memory space, and VISA does the rest. For more detailed

information about other defined VXI registers, refer to the NI-VXI User

Manual.

Again, when you are done with the register I/O, use viClose() to shut

down the system.

Example of Handling Events

When dealing with instrument communication, it is very common for the

instrument to require service from the controller when the controller is not

actually looking at the device. A device can notify the controller via a

service request (SRQ), interrupt, or a signal. Each of these is an

asynchronous event, or simply an event. In VISA, you can handle these and

other events through either callbacks or a software queue.

Callbacks
Using callbacks, you can have sections of code that are never explicitly

called by the program, but instead are called by the VISA driver whenever

an event occurs. Due to their asynchronous nature, callbacks can be

difficult to incorporate into a traditional, sequential flow program.

Therefore, we recommend the queuing method of handling events for new

users. If you are an experienced user or understand callback concepts, look

at the Callbacks section in Chapter 7, VISA Events.

Queuing
When using a software queue, the VISA driver detects the asynchronous

event but does not alert the program to the occurrence. Instead, the driver

maintains a list of events that have occurred so that the program can retrieve

the information later. With this technique, the program can periodically

poll the driver for event information or halt the program until the event has

occurred. Example 2-3 programs an oscilloscope to capture a waveform.

When the waveform is complete, the instrument generates a VXI interrupt,

so the program must wait for the interrupt before trying to read the data.

Chapter 2 Introductory Programming Examples

NI-VISA User Manual 2-8 ni.com

Example 2-3
#include "visa.h"

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViEvent eventData; /* To hold event info */

ViUInt16 statID; /* Interrupt Status ID */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Address 16*/

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

&instr);

/* Enable the driver to detect the interrupts */

status = viEnableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE, VI_NULL);

/* Send the commands to the oscilloscope to capture the */

/* waveform and interrupt when done */

status = viWaitOnEvent(instr, VI_EVENT_VXI_SIGP, 5000, VI_NULL,

&eventData);

if (status < VI_SUCCESS) {

/* No interrupts received after 5000 ms timeout */

viClose(defaultRM);

return -1;

}

/* Obtain the information about the event and then destroy the*/

/* event. In this case, we want the status ID from the interrupt.*/

status = viGetAttribute(eventData, VI_ATTR_SIGP_STATUS_ID, &statID);

status = viClose(eventData);

/* Your code should read data from the instrument and process it.*/

Chapter 2 Introductory Programming Examples

© National Instruments Corporation 2-9 NI-VISA User Manual

/* Stop listening to events */

status = viDisableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE);

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Example 2-3 Discussion
Programming with events presents some new functions to use.

The first two functions you notice are viEnableEvent() and

viDisableEvent(). These functions tell the VISA driver which events

to listen for—in this case VI_EVENT_VXI_SIGP, which covers both VXI

interrupts and VXI signals. In addition, these functions tell the driver how

to handle events when they occur. In this example, the driver is instructed

to queue (VI_QUEUE) the events until asked for them. Notice that instr is

also supplied to the functions, since VISA performs event handling on a

per-communication-channel basis.

Once the driver is ready to handle events, you are free to write code that will

result in an event being generated. In the example above, this is shown as a

comment block because the exact code depends on the device. After you

have set the device up to interrupt, the program must wait for the interrupt.

This is accomplished by the viWaitOnEvent() function. Here you

specify what events you are waiting for and how long you want to wait. The

program then blocks, and that thread performs no other functions, until the

event occurs. Therefore, after the viWaitOnEvent() call returns, either it

has timed out (5 s in the above example) or it has caught the interrupt. After

some error checking to determine whether it was successful, you can obtain

information from the event through viGetAttribute(). When you are

finished with the event data structure (eventData), destroy it by calling

viClose() on it. You can now continue with the program and retrieve the

data. The rest of the program is the same as the previous examples.

Notice the difference in the way you can shut down the program if a timeout

has occurred. You do not need to close the communication channel with the

device, but only with the VISA driver. You can do this because when a

driver channel (defaultRM) is closed, the VISA driver closes all I/O

channels opened with it. So when you need to shut down a program quickly,

as in the case of an error, you can simply close the channel to the driver and

VISA handles the rest for you. However, VISA does not clean up anything

Chapter 2 Introductory Programming Examples

NI-VISA User Manual 2-10 ni.com

not associated with VISA, such as memory you have allocated. You are still

responsible for those items.

Example of Locking

Occasionally you may need to prevent other applications from using the

same resource that you are using. VISA has a service called locking that

you can use to gain exclusive access to a resource. VISA also has another

locking option in which you can have multiple sessions share a lock.

Because lock sharing is an advanced topic that may involve inter-process

communication, see the Lock Sharing section in Chapter 8, VISA Locks, for

more information. Example 2-4 uses the simpler form, the exclusive lock,

to prevent other VISA applications from modifying the state of the

specified serial port.

Example 2-4
#include "visa.h"

#define MAX_CNT 200

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViUInt32 retCount; /* Return count from string I/O */

ViChar buffer[MAX_CNT]; /* Buffer for string I/O */

/* Begin by initializing the system*/

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting*/

return -1;

}

/* Open communication with Serial Port 1*/

/* NOTE: For simplicity, we will not show error checking*/

status = viOpen(defaultRM, "ASRL1::INSTR", VI_NULL, VI_NULL, &instr);

/* Set the timeout for message-based communication*/

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

Chapter 2 Introductory Programming Examples

© National Instruments Corporation 2-11 NI-VISA User Manual

/* Lock the serial port so that nothing else can use it*/

status = viLock(instr, VI_EXCLUSIVE_LOCK, 5000, VI_NULL, VI_NULL);

/* Set serial port settings as needed*/

/* Defaults = 9600 Baud, no parity, 8 data bits, 1 stop bit*/

status = viSetAttribute(instr, VI_ATTR_ASRL_BAUD, 2400);

status = viSetAttribute(instr, VI_ATTR_ASRL_DATA_BITS, 7);

/* Set this attribute for binary transfers, skip it for this text example */

/* status = viSetAttribute(instr, VI_ATTR_ASRL_END_IN, 0); */

/* Ask the device for identification */

status = viWrite(instr, "*IDN?\n", 6, &retCount);

status = viRead(instr, buffer, MAX_CNT, &retCount);

/* Unlock the serial port before ending the program*/

status = viUnlock(instr);

/* Your code should process the data*/

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Example 2-4 Discussion
As you can see, the program does not differ with respect to controlling the

instrument. The ability to lock and unlock the resource simply involves

inserting the viLock() and viUnlock() operations around the code that

you want to ensure is protected, as far as the instrument is concerned.

To lock a resource, you use the viLock() operation on the session to the

resource. Notice that the second parameter is VI_EXCLUSIVE_LOCK. This

parameter tells VISA that you want this session to be the only session that

can access the device. The next parameter, 5000, is the time in milliseconds

you are willing to wait for the lock. For example, another program may

have locked its session to the resource before you. Using this timeout

feature, you can tell your program to wait until either the other program has

unlocked the session, or 5 s have passed, whichever comes first.

Chapter 2 Introductory Programming Examples

NI-VISA User Manual 2-12 ni.com

The final two parameters are used in the lock sharing feature of viLock()

and are discussed further in Chapter 8, VISA Locks. For most applications,

however, these parameters are set to VI_NULL. Notice that if the viLock()

call succeeds, you then have exclusive access to the device. Other programs

do not have access to the device at all. Therefore, you should hold a lock

only for the time you need to program the device, especially if you are

designing an instrument driver. Failure to do so may cause other

applications to block or terminate with a failure.

When using a VISA lock over the Ethernet, the lock applies to any machine

using the given resource. For example, calling viLock() when using a

National Instruments ENET Serial controller prevents other machines from

performing I/O on the given serial port.

To end the example, the application calls viUnlock() when it has

acquired the data from the instrument. At this point, the resource is

accessible from any other session in any application.

© National Instruments Corporation 3-1 NI-VISA User Manual

3
VISA Overview

This chapter contains an overview of the VISA Library.

Background

The history of instrumentation reached a milestone with the ability to

communicate with an instrument from a computer. Controlling instruments

programmably brought a great deal of power and flexibility with the

capability to control devices faster and more accurately without the need

for human supervision. Over time, application development environments

such as LabVIEW and LabWindows/CVI eased the task of programming

and increased productivity, but instrumentation system developers were

still faced with the details of programming the instrument or the device

interface bus.

Instrument programmers require a software architecture that exports the

capabilities of the devices, not just the interface bus. In addition, the

architecture needs to be consistent across the devices and interface buses.

The VISA library realizes these goals. It results in a simpler model to

understand, reduces the number of functions the user needs to learn, and

significantly reduces the time and effort involved in programming different

interfaces. Instead of using a different Application Programming Interface

(API) devoted to each interface bus, you can use the VISA API whether

your system uses an Ethernet, GPIB, GPIB-VXI, VXI, PXI, or Serial

controller.

Finally, most instruments export a specific set of commands to which they

will respond. These commands are often primitive functions of the device

and require several commands to group them together so that the device can

perform common tasks. As a result, communicating directly with the

device may require much overhead in the form of multiple commands to do

task A, do task B, and so on. By driving the formation of the VXIplug&play

Systems Alliance and the IVI Foundation, National Instruments has

spearheaded standards for higher-level instrument drivers that use VISA.

This makes it easier for the vendors of instruments to create the instrument

drivers themselves, so that instrumentation system developers do not have

to learn the primitive command sets of each device.

Chapter 3 VISA Overview

NI-VISA User Manual 3-2 ni.com

Interactive Control of VISA

NI-VISA comes with a utility called VISA Interactive Control (VISAIC)

on all platforms that support VISA, with the exception of Macintosh and

VxWorks. This utility gives you access to all of VISA’s functionality

interactively, in an easy-to-use graphical environment. It is a convenient

starting point for program development and learning about VISA.

When VISAIC runs, it automatically finds all of the available resources in

the system and lists the instrument descriptors for each of these resources

under the appropriate resource type. This information is displayed on the

VISA I/O tab.

The following figure shows the VISAIC opening window.

Figure 3-1. VISAIC Opening Window

The Soft Front Panels tab of the main VISAIC panel gives you the option

to launch the soft front panels of any VXIplug&play instrument drivers that

have been installed on the system.

The NI I/O tab gives you the option to launch the NI-VXI interactive utility

or the NI-488 interactive utility. This gives you convenient links into the

Chapter 3 VISA Overview

© National Instruments Corporation 3-3 NI-VISA User Manual

interactive utilities for the drivers VISA calls in case you would like to try

debugging at this level.

Double-clicking on any of the instrument descriptors shown in the VISAIC

window opens a session to that instrument. Opening a session to the

instrument produces a window with a series of tabs for interactively

running VISA commands. The exact appearance of these tabs depends on

which compatibility mode VISAIC is in. To access the compatibility mode

and other VISAIC preferences select Edit»Preferences… to bring up the

following window.

The VISA implementations are slightly different in LabVIEW and

LabWindows/CVI. These differences are reflected in the operation tabs

that are shown when you open a session to a resource.

♦ Windows users—VISAIC detects whether you have LabVIEW and/or

LabWindows/CVI installed on your system and sets the compatibility

mode accordingly.

If you change the preferences, the new preferences take effect for any

subsequent session you open.

When a session to a resource is opened interactively, a window similar to

the following appears. This window uses the LabVIEW compatibility

mode.

Chapter 3 VISA Overview

NI-VISA User Manual 3-4 ni.com

Three main tabs appear in the window. The initial tab is the Template tab,

which contains all of the operations dealing with events, properties, and

locks. Notice that there is a separate tab for each of these operations under

the main tab. The other main tabs are Basic I/O and Register I/O. The

Basic I/O tab contains the operations for message-based instruments, while

the Register I/O tab contains the operations for register-based instruments.

The Register I/O tab does not appear for either GPIB or Serial instruments.

VISA Terminology

Chapter 2, Introductory Programming Examples, introduced some

examples of how to write code for the VISA driver. However, the chapter

deliberately avoided using VISA terminology to show that writing

programs under VISA can be very straightforward and similar to software

drivers you have used in the past. This section looks at these examples

again, but this time from the perspective of the underlying architecture.

Beginning Terminology
Typical device capabilities include sending and receiving messages,

responding to register accesses, requesting service, being reset, and so on.

One of the underlying premises of VISA, as defined in the previous section,

Chapter 3 VISA Overview

© National Instruments Corporation 3-5 NI-VISA User Manual

is to export the capabilities of the devices—independent of the interface

bus—to the user. VISA encapsulates each of these abilities into a resource.

A resource is simply a complete description of a particular set of

capabilities of a device. For example, to be able to write to a device, you

need a function you can use to send messages—viWrite(). In addition,

there are certain details you need to consider, such as how long the function

should try to communicate before timing out. Those of you familiar with

this methodology might recognize this approach as object-oriented (OO)

design. Indeed, VISA is based on OO design. In keeping with the

terminology of OO, we call the functions of these resources operations and

the details, such as the timeout, attributes.

An important VISA resource is the INSTR Resource. This resource

encapsulates all of the basic device functions together so that you can

communicate with the device through a single resource. The INSTR

Resource exports the most commonly used features of these resources and

is sufficient for most instrument drivers.

Other resource classes currently supported include MEMACC, INTFC,

BACKPLANE, SERVANT, and SOCKET. Most of these are specific to a

given hardware interface type, and are intended for advanced programmers.

You can read more about these classes in VISA Resource Types in NI-VISA

Programmer Reference Manual.

Returning to Example 2-1 in Chapter 2, Introductory Programming

Examples, look at the point where the program has opened a

communication channel with a message-based device. Because of interface

independence, it does not matter whether the device is GPIB or VXI or of

any other interface type. You want to send the identification query,

“*IDN?\n”, to the device. Because of the possibility that the device or

interface could fail, you want to ensure that the computer will not hang in

the event that the device does not receive the string. Therefore, the first step

is to tell the resource to time out after 5 s (5000 ms):

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

This sets an attribute (VI_ATTR_TMO_VALUE) of the resource. From this

point on, all communication to this resource through this communication

channel (instr) will have a timeout of 5 s. As you become more

experienced with VISA, you will see more of the benefits of this OO

approach. But for now, you can see that you can set the timeout with an

operation (function) in a manner similar to that used with other drivers. In

addition, the operation you need to remember, viSetAttribute(), is the

Chapter 3 VISA Overview

NI-VISA User Manual 3-6 ni.com

same operation you use to set any feature of any resource. Now you send

the string to the device and read the result:

status = viWrite(instr, "*IDN?\n", 6, &retCount);

status = viRead(instr, buffer, MAX_CNT, &retCount);

This is a familiar approach to programming. You use a write operation to

send a string to a device, and read the response with a read operation.

See Chapter 5, Message-Based Communication, for more information.

Communication Channels: Sessions
The examples from Chapter 2, Introductory Programming Examples, used

an operation called viOpen() to open communication channels with the

instruments. In VISA terminology, this channel is known as a session.

A session connects you to the resource you addressed in the viOpen()

operation and keeps your communication and attribute settings unique

from other sessions to the same resource. In VISA, a resource can have

multiple sessions to it from the same program and for interfaces other than

Serial, even from other programs simultaneously. Therefore you must

consider some things about the resource to be local, that is, unique to the

session, and other things to be global, that is, common for all sessions to

the resource.

If you look at the descriptions of the various attributes supported by the

VISA resources, you will see that some are marked global (such as

VI_ATTR_INTF_TYPE) and others are marked local (such as

VI_ATTR_TMO_VALUE). For example, the interface bus that the resource is

using to communicate with the device (VI_ATTR_INTF_TYPE) is the same

for everyone using that resource and is therefore a global attribute.

However, different programs may have different timeout requirements,

so the communication timeout value (VI_ATTR_TMO_VALUE) is a local

attribute.

Again, look at Example 2-1. To open communication with the instrument,

that is, to create a session to the INSTR Resource, you use the viOpen()

operation as shown below:

status = viOpen(defaultRM, "GPIB0::1::INSTR", VI_NULL, VI_NULL,

&instr);

In this case, the interface to which the instrument is connected is important,

but only as a means to uniquely identify the instrument. The code above

references a GPIB device on bus number 0 with primary address 1. The

access mode and timeout values for viOpen() are both VI_NULL. Other

Chapter 3 VISA Overview

© National Instruments Corporation 3-7 NI-VISA User Manual

values are defined, but VI_NULL is recommended for new users and all

instrument drivers.

However, notice the statement has two sessions in the parameter list for

viOpen(), defaultRM and instr. Why do you need two sessions?

As you will see in a moment, viOpen() is an operation on the Resource

Manager, so you must have a communication channel to this resource.

However, what you want is a session to the instrument; this is what is

returned in instr.

For the entire duration that you communicate with this GPIB instrument,

you use the session returned in instr as the communication channel.

When you are finished with the communication, you need to close the

channel. This is accomplished through the viClose() operation as shown

below:

status = viClose(instr);

At this point, the communication channel is closed but you are still free to

open it again or open a session to another device. Notice that you do not

need to close a session to open another session. You can have as many

sessions to different devices as you want.

The Resource Manager
The previous section briefly mentioned the VISA Resource known as the

Resource Manager. What exactly is a Resource Manager? If you have

worked with VXI, you are familiar with the VXI Resource Manager. Its job

is to search the VXI chassis for instruments, configure them, and then

return its findings to the user. The VISA Resource Manager has a similar

function. It scans the system to find all the devices connected to it through

the various interface buses and then controls the access to them. Notice that

the Resource Manager simply keeps track of the resources and creates

sessions to them as requested. You do not go through the Resource

Manager with every operation defined on a resource.

Again referring to Example 2-1, notice that the first line of code is a

function call to get a session to the Default Resource Manager:

status = viOpenDefaultRM(&defaultRM);

The viOpenDefaultRM() function returns a unique session to the Default

Resource Manager, but does not require some other session to operate.

Therefore this function is not a part of any resource—not even the Resource

Manager Resource. It is provided by the VISA driver itself and is the means

by which the driver is initialized.

Chapter 3 VISA Overview

NI-VISA User Manual 3-8 ni.com

Now that you have a communication channel (session) to the Resource

Manager, you can ask it to create sessions to instruments for you. In

addition to this, VISA also defines operations that can be invoked to query

the Resource Manager about other resources it knows about. You can use

the viFindRsrc() operation to give the Resource Manager a search

string, known as a regular expression, for instruments in the system. See

Chapter 4, Initializing Your VISA Application, for more information about

viFindRsrc().

Examples of Interface Independence

Now that you are more familiar with the architecture of the VISA driver,

we will cover two examples of how VISA provides interface independence.

First, many devices available today have both a Serial port and a GPIB port.

If you do not use VISA, then you must learn and use two APIs to

communicate with this device, depending on how you have it connected.

With VISA, however, you can use a single API to communicate with this

device regardless of the connection. Only the initialization code

differs—for example, the resource string is different, and you may have to

set the serial communication port parameters if they are different from the

specified defaults. But all communication after the initialization should be

identical for either bus type. Many VISA-based instrument drivers exist for

these types of devices.

The existence of multi-interface devices is a trend that will continue and

likely increase with the proliferation of new computer buses. This trend is

also true of non-GPIB devices. Several VXI device manufacturers, for

example, have repackaged their boards as PXI devices, with a similarly

minimal impact on their VISA-based instrument drivers.

A second example of interface independence is the GPIB-VXI controller.

This lets you communicate with VXI devices, but through a GPIB cable.

In other words, you use a GPIB interface with GPIB software to send

messages to VXI devices, the same way you program stand-alone GPIB

instruments. But how do you perform register accesses to the VXI devices?

Prior to VISA, you were required to send messages to the GPIB-VXI itself

and ask it to perform the register access. For example, when talking to the

National Instruments GPIB-VXI/C with NI-488.2, the register access looks

like the following when using NI-488 function calls:

dev = ibdev(boardID, PrimAddr, SecAddr, TMO, EOT, EOS);

status = ibwrt(dev, "A24 #h200000, #h1234", cnt);

Chapter 3 VISA Overview

© National Instruments Corporation 3-9 NI-VISA User Manual

If you had ever planned to move your code to a MXI or embedded VXI

controller solution, you would spend a great deal of time changing your

GPIB calls to VXI calls, especially when considering register accesses.

VISA has been designed to eliminate problems such as this limitation.

If you are talking to a VXI instrument, you can perform register I/O

regardless of whether you are connected via GPIB, MXI, or an embedded

VXI computer. In addition, the code is exactly the same for all three cases.

Therefore the code for writing to the A24 register through a GPIB-VXI is:

status = viOut16(instr, VI_A24_SPACE, 0x0, 0x1234);

These examples show how VISA removes the bus details from instrument

communication. The VISA library takes care of those details and allows

you to program your instrument based on its capabilities.

© National Instruments Corporation 4-1 NI-VISA User Manual

4
Initializing Your VISA
Application

This chapter describes the steps required to prepare your application for

communication with your device.

Introduction

A powerful feature of VISA is the concept of a single interface for finding

and accessing devices on various platforms. The VISA Resource Manager

does this by exporting services for controlling and managing resources.

These services include, but are not limited to, assigning unique resource

addresses and unique resource IDs, locating resources, and creating

sessions.

Each session contains all the information necessary to configure the

communication channel with a device, as well as information about the

device itself. This information is encapsulated inside a generic structure

called an attribute. You can use the attributes to configure a session or to

find a particular resource.

Opening a Session

When trying to access any of the VISA resources, the first step is

to get a reference to the default Resource Manager by calling

viOpenDefaultRM(). Your application can then use the session

returned from this call to open sessions to resources controlled by that

Resource Manager, as shown in the following example.

Note The examples in this chapter show C source code. You can find the same examples

in Visual Basic syntax in Appendix A, Visual Basic Examples.

Chapter 4 Initializing Your VISA Application

NI-VISA User Manual 4-2 ni.com

Example 4-1
#include "visa.h"

int main(void)

{

ViStatus status;

ViSession defaultRM, instr;

/* Open Default RM */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Access other resources */

status = viOpen(defaultRM, "GPIB::1::INSTR", VI_NULL, VI_NULL,

&instr);

/* Use device and eventually close it. */

viClose(instr);

viClose(defaultRM);

return 0;

}

As shown in this example, you use the viOpen() call to open new

sessions. In this call, you specify which resource to access by using a string

that describes the resource. The following table shows the format for this

string. Square brackets indicate optional string segments.

Interface Syntax

VXI INSTR VXI[board]::VXI logical address[::INSTR]

VXI MEMACC VXI[board]::MEMACC

VXI

BACKPLANE

VXI[board][::mainframe logical address]::BACKPLANE

VXI SERVANT VXI[board]::SERVANT

GPIB-VXI

INSTR

GPIB-VXI[board]::VXI logical address[::INSTR]

Chapter 4 Initializing Your VISA Application

© National Instruments Corporation 4-3 NI-VISA User Manual

Use the VXI keyword for VXI instruments via either embedded or MXIbus

controllers. Use the GPIB-VXI keyword for a GPIB-VXI controller. Use

the GPIB keyword to establish communication with a GPIB device. Use the

ASRL keyword to establish communication with an asynchronous serial

(such as RS-232) device.

Refer to Chapter 10, NI-VISA Platform-Specific and Portability Issues, for

help in determining exactly which resource you may be accessing. In some

cases, such as serial (ASRL) resources, the naming conventions with other

serial naming conventions may be confusing. In the Windows platform,

COM1 corresponds to ASRL1, unlike in LabVIEW where COM1 is

accessible using port number 0.

GPIB-VXI

MEMACC

GPIB-VXI[board]::MEMACC

GPIB-VXI

BACKPLANE

GPIB-VXI[board][::mainframe logical address]::BACKPLANE

GPIB INSTR GPIB[board]::primary address[::secondary address][::INSTR]

GPIB INTFC GPIB[board]::INTFC

GPIB

SERVANT

GPIB[board]::SERVANT

PXI INSTR PXI[board]::device[::function][::INSTR]

Serial INSTR ASRL[board][::INSTR]

TCPIP INSTR TCPIP[board]::host address[::LAN device name][::INSTR]

TCPIP SOCKET TCPIP[board]::host address::port::SOCKET

Interface Syntax

Chapter 4 Initializing Your VISA Application

NI-VISA User Manual 4-4 ni.com

The default values for optional string segments are as follows.

The following table shows examples of address strings.

Optional String Segments Default Value

board 0

secondary address none

LAN device name inst0

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI interface VXI0.

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a GPIB-VXI controlled

system.

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary address 0 in

GPIB interface 0.

ASRL1::INSTR A serial device attached to interface ASRL1.

VXI::MEMACC Board-level register access to the VXI interface.

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI interface number 1.

GPIB2::INTFC Interface or raw resource for GPIB interface 2.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the default VXI system,

which is interface 0.

GPIB-VXI2::BACKPLANE Mainframe resource for default chassis on GPIB-VXI

interface 2.

GPIB1::SERVANT Servant/device-side resource for GPIB interface 1.

VXI0::SERVANT Servant/device-side resource for VXI interface 0.

PXI::15::INSTR PXI device number 15 on bus 0.

TCPIP0::1.2.3.4::999
::SOCKET

Raw TCP/IP access to port 999 at the specified IP address.

TCPIP::dev@company.com
::INSTR

A TCP/IP device using VXI-11 located at the specified address.

This uses the default LAN Device Name of inst0.

Chapter 4 Initializing Your VISA Application

© National Instruments Corporation 4-5 NI-VISA User Manual

The previous tables show the canonical resource name formats. NI-VISA

also supports the use of aliases to make opening devices easier. On

Windows, run the Measurement & Automation Explorer (MAX) and

choose the menu option Tools»NI-VISA»Alias Editor to manage all your

aliases. On UNIX, run visaconf and double-click any resource to bring

up a dialog box for managing the alias for that resource. NI-VISA supports

alias names that include letters, numbers, and underscores. To use an alias

in your program, just call viOpen() with the alias name instead of the

canonical resource name.

Finding Resources

As shown in the previous section, you can create a session to a resource

using the viOpen() call. However, before you use this call you need to

know the exact location (address) of the resource you want to open. To find

out what resources are currently available at a given point in time, you can

use the search services provided by the viFindRsrc() operation, as

shown in the following example.

Example 4-2
#include "visa.h"

#define MANF_ID 0xFF6 /* 12-bit VXI manufacturer ID of device */

#define MODEL_CODE 0x0FE /* 12-bit or 16-bit model code of device */

/* Find the first matching device and return a session to it */

ViStatus autoConnect(ViPSession instrSesn)

{

ViStatus status;

ViSession defaultRM, instr;

ViFindList fList;

ViChar desc[VI_FIND_BUFLEN];

ViUInt32 numInstrs;

ViUInt16 iManf, iModel;

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error initializing VISA ... exiting */

return status;

}

/* Find all VXI instruments in the system */

Chapter 4 Initializing Your VISA Application

NI-VISA User Manual 4-6 ni.com

status = viFindRsrc(defaultRM, "?*VXI?*INSTR", &fList, &numInstrs,

desc);

if (status < VI_SUCCESS) {

/* Error finding resources ... exiting */

viClose(defaultRM);

return status;

}

/* Open a session to each and determine if it matches */

while (numInstrs--) {

status = viOpen(defaultRM, desc, VI_NULL, VI_NULL, &instr);

if (status < VI_SUCCESS) {

viFindNext(fList, desc);

continue;

}

status = viGetAttribute(instr, VI_ATTR_MANF_ID, &iManf);

if ((status < VI_SUCCESS) || (iManf != MANF_ID)) {

viClose(instr);

viFindNext(fList, desc);

continue;

}

status = viGetAttribute(instr, VI_ATTR_MODEL_CODE, &iModel);

if ((status < VI_SUCCESS) || (iModel != MODEL_CODE)) {

viClose(instr);

viFindNext(fList, desc);

continue;

}

/* We have a match, return the session without closing it */

*instrSesn = instr;

viClose(fList);

/* Do not close defaultRM, as that would close instr too */

return VI_SUCCESS;

}

/* No match was found, return an error */

viClose(fList);

viClose(defaultRM);

return VI_ERROR_RSRC_NFOUND;

}

Chapter 4 Initializing Your VISA Application

© National Instruments Corporation 4-7 NI-VISA User Manual

As this example shows, you can use viFindRsrc() to get a list of

matching resource names, which you can then further examine one at a time

using viFindNext(). Remember to free the space allocated by the system

by invoking viClose() on the list reference fList.

Notice that while this sample function returns a session, it does not return

the reference to the resource manager session that was also opened within

the same function. In other words, there is only one output parameter, the

session to the instrument itself, instrSesn. When your program is done

using this session, it also needs to close that corresponding resource

manager session. Therefore, if you use this style of initialization routine,

you should later get the reference to the resource manager session by

querying the attribute VI_ATTR_RM_SESSION just before closing the

INSTR session. You can then close the resource manager session with

viClose().

Finding VISA Resources Using Regular Expressions
Using viFindRsrc() to locate a resource in a VISA system requires a

way for you to identify which resources you are interested in. The VISA

Resource Manager accomplishes this through the use of regular

expressions, which specify a match for certain resources in the system.

Regular expressions are strings consisting of ordinary characters as well as

certain characters with special meanings that you can use to search for

patterns instead of specific text. Regular expressions are based on the idea

of matching, where a given string is tested to see if it matches the regular

expression; that is, to determine if it fits the pattern of the regular

expression. You can apply this same concept to a list of strings to return a

subset of the list that matches the expression.

Chapter 4 Initializing Your VISA Application

NI-VISA User Manual 4-8 ni.com

The following table defines the special characters and syntax rules used in

VISA regular expressions.

The priority, or precedence of the operators in regular expressions is as

follows:

• The grouping operator () in a regular expression has the highest

precedence.

• The + and * operators have the next highest precedence.

• The OR operator | has the lowest precedence.

Notice that in VISA, the string "GPIB?*INSTR" applies to both GPIB and

GPIB-VXI instruments.

Special Characters

and Operators Meaning

? Matches any one character.

\ Makes the character that follows it an ordinary character instead of special

character. For example, when a question mark follows a backslash (\?), it

matches the ? character instead of any one character.

[list] Matches any one character from the enclosed list. You can use a hyphen

to match a range of characters.

[^list] Matches any character not in the enclosed list. You can use a hyphen to

match a range of characters.

* Matches 0 or more occurrences of the preceding character or expression.

+ Matches 1 or more occurrences of the preceding character or expression.

exp|exp Matches either the preceding or following expression. The OR operator |

matches the entire expression that precedes or follows it and not just the

character that precedes or follows it. For example, VXI|GPIB means

(VXI)|(GPIB), not VX(I|G)PIB.

(exp) Grouping characters or expressions.

Chapter 4 Initializing Your VISA Application

© National Instruments Corporation 4-9 NI-VISA User Manual

The following table lists some examples of valid regular expressions that

you can use with viFindRsrc().

Notice that in VISA, the regular expressions used for resource matching

are not case sensitive. For example, calling viFindRsrc() with

"VXI?*INSTR" would return the same resources as invoking it with

"vxi?*instr".

Attribute-Based Resource Matching
VISA can also search for a resource based on the values of the resource’s

attributes. The viFindRsrc() search expression is handled in two parts:

the regular expression for the resource string and the (optional) logical

Regular Expression Sample Matches

?*INSTR Matches all INSTR (device) resources.

GPIB?*INSTR Matches GPIB0::2::INSTR, GPIB1::1::1::INSTR, and

GPIB-VXI1::8::INSTR.

GPIB[0-9]*::?*INSTR Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR but not

GPIB-VXI1::8::INSTR.

GPIB[^0]::?*INSTR Matches GPIB1::1::1::INSTR but not GPIB0::2::INSTR or

GPIB12::8::INSTR.

VXI?*INSTR Matches VXI0::1::INSTR but not GPIB-VXI0::1::INSTR.

GPIB-VXI?*INSTR Matches GPIB-VXI0::1::INSTR but not VXI0::1::INSTR.

?*VXI[0-9]*::?*INSTR Matches VXI0::1::INSTR and GPIB-VXI0::1::INSTR.

ASRL[0-9]*::?*INSTR Matches ASRL1::INSTR but not VXI0::5::INSTR.

ASRL1+::INSTR Matches ASRL1::INSTR and ASRL11::INSTR but not

ASRL2::INSTR.

(GPIB|VXI)?*INSTR Matches GPIB1::5::INSTR and VXI0::3::INSTR but not

ASRL2::INSTR.

(GPIB0|VXI0)::1::INSTR Matches GPIB0::1::INSTR and VXI0::1::INSTR.

?*VXI[0-9]*::?*MEMACC Matches VXI0::MEMACC and GPIB-VXI1::MEMACC.

VXI0::?* Matches VXI0::1::INSTR, VXI0::2::INSTR, and

VXI0::MEMACC.

?* Matches all resources.

Chapter 4 Initializing Your VISA Application

NI-VISA User Manual 4-10 ni.com

expression for the attributes. Assuming that a given resource matches the

given regular expression, VISA checks the attribute expression for a match.

The resource matches the overall string if it matches both parts.

Attribute matching works by using familiar constructs of logical operations

such as AND (&&), OR (||), and NOT (!). Equal (==) and unequal (!=)

apply to all types of attributes, and you can additionally compare numerical

attributes using other common comparators (>, <, >=, and <=).

You are free to make attribute matching expressions as complex as you like,

using multiple ANDs, ORs, and NOTs. Precedence applies as follows:

• The grouping operator () in an attribute matching expression has the

highest precedence.

• The NOT ! operator has the next highest precedence.

• The AND && operator has the next highest precedence.

• The OR operator || has the lowest precedence.

The following table shows three examples of matching based on attributes.

Notice that only global VISA attributes are permitted in the attribute

matching expression.

The following example is similar to Example 4-2, except that it uses a

regular expression with attribute matching. Notice that because only the

first match is needed, VI_NULL is passed for both the retCount and

findList parameters. This tells VISA to automatically close the find list

rather than return it to the application.

Expression Meaning

GPIB[0-9]*::?*::?*::INSTR
{VI_ATTR_GPIB_SECONDARY_ADDR > 0 &&
VI_ATTR_GPIB_SECONDARY_ADDR < 10}

Find all GPIB devices that have secondary

addresses from 1 to 9.

ASRL?*INSTR{VI_ATTR_ASRL_BAUD ==
9600}

Find all serial ports configured at 9600 baud.

?*VXI?INSTR{VI_ATTR_MANF_ID ==
0xFF6 && !(VI_ATTR_VXI_LA ==0 ||
VI_ATTR_SLOT <= 0)}

Find all VXI instrument resources with

manufacturer ID of FF6 and which are not

logical address 0, slot 0, or external controllers.

Chapter 4 Initializing Your VISA Application

© National Instruments Corporation 4-11 NI-VISA User Manual

Example 4-3
#include <stdio.h>

#include "visa.h"

#define MANF_ID 0xFF6 /* 12-bit VXI manufacturer ID of device */

#define MODEL_CODE 0x0FE /* 12-bit or 16-bit model code of device */

/* Find the first matching device and return a session to it */

ViStatus autoConnect2(ViPSession instrSesn)

{

ViStatus status;

ViSession defaultRM, instr;

ViChar desc[VI_FIND_BUFLEN], regExToUse[VI_FIND_BUFLEN];

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error initializing VISA ... exiting */

return status;

}

/* Find the first matching VXI instrument */

sprintf(regExToUse,

"?*VXI?*INSTR{VI_ATTR_MANF_ID==0x%x && VI_ATTR_MODEL_CODE==0x%x}",

MANF_ID, MODEL_CODE);

status = viFindRsrc(defaultRM, regExToUse, VI_NULL, VI_NULL, desc);

if (status < VI_SUCCESS) {

/* Error finding resources ... exiting */

viClose(defaultRM);

return status;

}

status = viOpen(defaultRM, desc, VI_NULL, VI_NULL, &instr);

if (status < VI_SUCCESS) {

viClose(defaultRM);

return status;

}

*instrSesn = instr;

/* Do not close defaultRM, as that would close instr too */

return VI_SUCCESS;

}

Chapter 4 Initializing Your VISA Application

NI-VISA User Manual 4-12 ni.com

Configuring a Session

After the Resource Manager opens a session, communication with the

device can usually begin using the default session settings. However, in

some cases such as ASRL (serial) resources, you need to set some other

parameters such as baud rate, parity, and flow control before proper

communication can begin. GPIB and VXI sessions may have still other

configuration parameters to set, such as timeouts and end-of-transmission

modes, although in general the default settings should suffice.

Accessing Attributes
VISA uses two operations for obtaining and setting

parameters—viGetAttribute() and viSetAttribute(). Attributes

not only describe the state of the device, but also the method of

communication with the device.

For example, you could use the following code to obtain the logical address

of a VXI address:

status = viGetAttribute(instr, VI_ATTR_VXI_LA, &Laddr);

and the variable Laddr would contain the device’s address. If you want to

set an attribute, such as the baud rate of an ASRL session, you could use:

status = viSetAttribute(instr, VI_ATTR_ASRL_BAUD, 9600);

Notice that some attributes are read-only, such as logical address, while

others are read/write attributes, such as the baud rate. Also, some attributes

apply only to certain types of sessions; VI_ATTR_VXI_LA would not exist

for an ASRL session. If you attempted to use it, the status parameter would

return with the code VI_ERROR_NSUP_ATTR. Finally, the data types of

some attribute values are different from each other. Using the above

examples, the logical address is a 16-bit value, whereas the baud rate is a

32-bit value. It is particularly important to use variables of the correct data

type in viGetAttribute().

Refer to the online help or to the NI-VISA Programmer Reference Manual

for a list of all available attributes you can use for each supported interface.

Chapter 4 Initializing Your VISA Application

© National Instruments Corporation 4-13 NI-VISA User Manual

Common Considerations for Using Attributes
As you set up your sessions, there are some common attributes you can use

that will affect how the sessions handle various situations. For currently

supported session types, all support the setting of timeout values and

termination methods:

• VI_ATTR_TMO_VALUE denotes how long (in milliseconds) to wait for

accesses to the device. Defaults to two seconds (2000 ms).

• VI_ATTR_TERMCHAR_EN sets whether a termination character

specified by VI_ATTR_TERMCHAR will be used on read operations.

The termchar defaults to linefeed (\n or LF) but the termchar enable

attribute defaults to VI_FALSE. Serial users should also see

Chapter 9, Interface Specific Information.

• VI_ATTR_SEND_END_EN determines whether to use an END bit on

your write operations. Defaults to VI_TRUE.

Various interfaces have other types of attributes that may affect channel

communication. See Chapter 9, Interface Specific Information, for attribute

information relevant to each support hardware interface type.

© National Instruments Corporation 5-1 NI-VISA User Manual

5
Message-Based Communication

This chapter shows how to use the VISA library in message-based

communication.

Introduction

Whether you are using RS-232, GPIB, Ethernet, or VXI, message-based

communication is a standard protocol for controlling and receiving data

from instruments. Because most message-based devices have similar

capabilities, it is natural that the driver interface should be consistent.

Under VISA, controlling message-based devices is the same regardless

of what hardware interface(s) those devices support or how those devices

are connected to your computer.

VISA message-based communication includes the Basic I/O Services and

the Formatted I/O Services from within the VISA Instrument Control

Resource (INSTR). All sessions to a VISA Instrument Control Resource

(INSTR) opened using viOpen() have full message-based communication

capabilities. Of course, if the device is a register-based VXI device, the

message-based operations return an error code (VI_ERROR_NSUP_OPER)

to indicate that this device does not support the operations, although the

session still provides access to them. This chapter discusses the uses of the

Basic I/O Services and the Formatted I/O Services provided by the INSTR

Resource in a VISA application.

Basic I/O Services

The VISA Instrument Control Resource lets a controller interact with the

device that it is associated with by providing the controller with services to

do the following:

• Send blocks of data to the device

• Request blocks of data from the device

• Send the device clear command to the device

• Trigger the device

• Find information about the status of the device

Chapter 5 Message-Based Communication

NI-VISA User Manual 5-2 ni.com

Note For the ASRL INSTR and TCPIP SOCKET resources, the I/O protocol attribute

must be set to VI_PROT_4882_STRS to use viReadSTB() and viAssertTrigger().

The following sections describe the operations provided by the VISA

Instrument Control Resource for the Basic I/O Services.

Synchronous Read/Write Services
The most straightforward of the operations are viRead() and viWrite(),

which perform the actual receiving and sending of strings. Notice that these

operations look upon the data as a string and do not interpret the contents.

For this reason, the data could be messages, commands, or binary encoded

data, depending on how the device has been programmed. For example, the

IEEE 488.2 command *IDN? is a message that is sent in ASCII format.

However, an oscilloscope returning a digitized waveform may take each

16-bit data point and put it end to end as a series of 8-bit characters. The

following code segment shows a program requesting the waveform that the

device has captured.

status = viWrite(instr, "READ:WAVFM:CH1", 14, &retCount);

status = viRead(instr, buffer, 1024, &retCount);

Now the character array buffer contains the data for the waveform, but

you still do not know how the data is formatted. For example, if the data

points were 1, 2, 3, ...the buffer might be formatted as “1,2,3,...”. However,

if the data were binary encoded 8-bit values, the first byte of bufferwould

be 1—not the ASCII character 1, but the actual value 1. The next byte

would be neither a comma nor the ASCII character 2, but the actual value

2, and so on. Refer to the documentation that came with the device for

information on how to program the device and interpret the responses.

The various ways that a string can be sent is the next issue to consider in

message-based communication. For example, the actual mechanism for

sending a byte differs drastically between GPIB and VXI; however,

both have similar mechanisms to indicate when the last byte has been

transferred. Under both systems, a device can specify an actual character,

such as linefeed, to indicate that no more data will be sent. This is known

as the End Of String (EOS) character and is common in older GPIB

devices. The obvious drawback to this mechanism is that you must send an

extra character to terminate the communication, and you cannot use this

character in your messages. However, both GPIB and VXI can specify that

the current byte is the last byte. GPIB uses the EOI line on the bus, and VXI

uses the END bit in the Word Serial command that encapsulates the byte.

Chapter 5 Message-Based Communication

© National Instruments Corporation 5-3 NI-VISA User Manual

You need to determine how to inform the VISA driver which mechanism to

use. As was discussed in Chapter 3, VISA Overview, VISA uses a technique

known as attributes to hold this information. For example, to tell the driver

to use the EOI line or END bit, you set the VI_ATTR_SEND_END_EN

attribute to true.

status = viSetAttribute(instr, VI_ATTR_SEND_END_EN, VI_TRUE);

You can terminate reads on a carriage return by using the following code.

status = viSetAttribute(instr, VI_ATTR_TERMCHAR, 0x0D);

status = viSetAttribute(instr, VI_ATTR_TERMCHAR_EN, VI_TRUE);

Refer to the Common Considerations for Using Attributes section in

Chapter 4, Initializing Your VISA Application, for the default values of

these attributes. Refer to the NI-VISA online help or the NI-VISA

Programmer Reference Manual for a complete list and description of the

available attributes.

Asynchronous Read/Write Services
In addition to the synchronous read and write services, VISA has

operations for asynchronous I/O. The functionality of these operations is

identical to that of the synchronous ones; therefore, the topics covered in

the previous section apply to asynchronous read and write operations as

well. The main difference is that a job ID is returned from the asynchronous

I/O operations instead of the transfer status and return count. You then wait

for an I/O completion event, from which you can get that information.

Note You must enable the session for the I/O completion event before beginning an

asynchronous transfer.

One other difference is the timeout attribute, VI_ATTR_TMO_VALUE. This

attribute may or may not apply to asynchronous operations, depending on

the implementation. If you want to ensure that asynchronous operations

never time out, even on implementations that do use the timeout attribute,

set the attribute value to VI_TMO_INFINITE. If you want to ensure that

asynchronous operations do not last beyond a certain period of time, even

on implementations that do not use the timeout attribute, you should abort

the I/O using the viTerminate() operation if it does not complete within

the expected time, as shown in the following code.

status = viEnableEvent(instr, VI_EVENT_IO_COMPLETION,

VI_QUEUE, VI_NULL);

status = viWriteAsync(instr, "READ:WAVFM:CH1" ,14, &jobID);

Chapter 5 Message-Based Communication

NI-VISA User Manual 5-4 ni.com

status = viWaitOnEvent(instr, VI_EVENT_IO_COMPLETION, 10000,

&etype, &event);

if (status < VI_SUCCESS) {

status = viTerminate(instr, VI_NULL, jobID);

/* now the I/O completion event should exist in the queue*/

status = viWaitOnEvent(instr, VI_EVENT_IO_COMPLETION,0,

&etype, &event);

}

As long as an asynchronous operation is successfully posted (if the return

value from the asynchronous operation is greater than or equal to
VI_SUCCESS), there will always be exactly one I/O completion event

resulting from the transfer. However, if the asynchronous operation

(viReadAsync() or viWriteAsync()) returns an error code, there will

not be an I/O completion event. In the above example, if the I/O has not

completed in 10 seconds, the call to viTerminate() aborts the I/O and

results in the I/O completion event being generated.

The I/O completion event has attributes containing information about the

transfer status, return count, and more. For a more complete description of

the I/O completion event and its attributes, refer to the NI-VISA

Programmer Reference Manual or to the NI-VISA online help. For a more

detailed example using asynchronous I/O, see Example 7-1 in Chapter 7,

VISA Events.

Note The asynchronous I/O services are not available when programming with Visual

Basic.

Clear Service
When communicating with a message-based device, particularly when you

are first developing your program, you may need to tell the device to clear

its I/O buffers so that you can start again. In addition, if a device has more

information than you need, you may want to read until you have everything

you need and then tell the device to throw the rest away. The viClear()

operation performs these tasks.

More specifically, the clear operation lets a controller send the device clear

command to the device it is associated with, as specified by the interface

specification and the type of device. The action that the device takes

depends on the interface to which it is connected.

• For a GPIB device, the controller sends the IEEE 488.1 SDC (04h)

command.

Chapter 5 Message-Based Communication

© National Instruments Corporation 5-5 NI-VISA User Manual

• For a VXI or MXI device, the controller sends the Word Serial Clear

(FFFFh) command.

• For the ASRL INSTR or TCPIP SOCKET resource, the controller

sends the string "*CLS\n". The I/O protocol must be set to

VI_PROT_4882_STRS for this service to be available to these

resources.

For more details on these clear commands, refer to your device

documentation, the IEEE 488.1 standard, or the VXIbus specification.

Trigger Service
Most instruments can be instructed to wait until they receive a trigger

before they start performing operations such as generating a waveform,

reading a voltage, and so on. Under GPIB, this trigger is a software

command sent to the device. Under VXI, this could either be a software

trigger or a hardware trigger on one of the multiple TTL/ECL trigger lines

on the VXIbus backplane.

VISA uses the same operation—viAssertTrigger()—to perform these

actions. Which trigger method (software or hardware) you use is dependent

on a combination of an attribute (VI_ATTR_TRIG_ID) and a parameter to

the operation. For example, to send a software trigger by default under

either interface, you use the following code.

status = viSetAttribute(instr, VI_ATTR_TRIG_ID, VI_TRIG_SW);

status = viAssertTrigger(instr, VI_TRIG_PROT_DEFAULT);

Of course, you need to set the attribute only once at the beginning of the

program, not every time you assert the trigger. If you want to assert a VXI

hardware trigger, such as a SYNC pulse, you can use the following code.

status = viSetAttribute(instr, VI_ATTR_TRIG_ID, VI_TRIG_TTL3);

status = viAssertTrigger(instr, VI_TRIG_PROT_SYNC);

Keep in mind that VISA currently uses device triggering. That is, each call

to viAssertTrigger() is associated with a specific device through the

session used in the call. However, the VXI hardware triggers by definition

have interface-level triggering. In other words, you cannot prevent two

devices from receiving a SYNC pulse of TTL3 if both devices are listening

to the line. Therefore, if you need to trigger multiple devices off a single

VXI trigger line, you can do this by sending the trigger to any one of the

devices on the line.

Chapter 5 Message-Based Communication

NI-VISA User Manual 5-6 ni.com

Status/Service Request Service
It is fairly common for a device to need to communicate with a controller

at a time when the controller is not planning to talk with the device. For

example, if the device detects a failure or has completed a data acquisition

sequence, it may need to get the attention of the controller. In both GPIB

and VXI, this is accomplished through a Service Request (SRQ). Although

the actual technique for delivering this service request to the controller

differs between the two interfaces, the end result is that an event

(VI_EVENT_SERVICE_REQ) is received by the VISA driver. You can find

more details on event notification and handling in Chapter 2, Introductory

Programming Examples, and Chapter 7, VISA Events. At this time, just

assume that the program has received the event and has a handle to the data

through the eventContext parameter.

Under VISA, the VI_EVENT_SERVICE_REQ event contains no additional

information other than the type of event. Therefore, by using

viGetAttribute() on the eventContext parameter, as shown in the

following code, the program can identify the event as a service request.

status = viGetAttribute(eventContext,VI_ATTR_EVENT_TYPE, &eventType);

You can retrieve the status byte of the device by issuing a viReadSTB()

operation. This is especially important because on some interfaces, such as

GPIB, it is not always possible to know which device has asserted the

service request until a viReadSTB() is performed. This means that all

sessions to devices on the bus with the service request may receive a service

request event. Therefore, you should always check the status byte to ensure

that your device was the one that requested service. Even if you have only

one device asserting a service request, you should still call viReadSTB()

to guarantee delivery of future service request events. For example, the

following code checks the type of event, performs a viReadSTB(), and

then checks the result.

status = viGetAttribute(eventContext,VI_ATTR_EVENT_TYPE, &eventType);

if (eventType == VI_EVENT_SERVICE_REQ) {

status = viReadSTB(instr, &statusByte);

if ((status >= VI_SUCCESS) && (statusByte & 0x40)) {

/* Perform action based on Service Request*/

}

/* Otherwise ignore the Service Request */

} /* End IF SRQ*/

Chapter 5 Message-Based Communication

© National Instruments Corporation 5-7 NI-VISA User Manual

Example VISA Message-Based Application
The following is an example VISA application using message-based

communication.

Note This example shows C source code. You can find the same example in Visual Basic

syntax in Appendix A, Visual Basic Examples.

Example 5-1
#include "visa.h"

int main(void)

{

ViSession defaultRM, instr;

ViUInt32 retCount;

ViChar idnResult[72];

ViChar resultBuffer[256];

ViStatus status;

/* Open Default Resource Manager */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with GPIB Device at Primary Addr 1 */

/* NOTE: For simplicity, we will not show error checking */

viOpen(defaultRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, &instr);

/* Initialize the timeout attribute to 10 s */

viSetAttribute(instr, VI_ATTR_TMO_VALUE, 10000);

/* Set termination character to carriage return (\r=0x0D) */

viSetAttribute(instr, VI_ATTR_TERMCHAR, 0x0D);

viSetAttribute(instr, VI_ATTR_TERMCHAR_EN, VI_TRUE);

/* Don't assert END on the last byte */

viSetAttribute(instr, VI_ATTR_SEND_END_EN, VI_FALSE);

/* Clear the device */

viClear(instr);

/* Request the IEEE 488.2 identification information */

viWrite(instr, "*IDN?\n", 6, &retCount);

viRead(instr, idnResult, 72, &retCount);

/* Use idnResult and retCount to parse device info */

Chapter 5 Message-Based Communication

NI-VISA User Manual 5-8 ni.com

/* Trigger the device for an instrument reading */

viAssertTrigger(instr, VI_TRIG_PROT_DEFAULT);

/* Receive results */

viRead(instr, resultBuffer, 256, &retCount);

/* Close sessions */

viClose(instr);

viClose(defaultRM);

return 0;

}

Formatted I/O Services

The Formatted I/O Services perform formatted and buffered I/O for

devices. A formatted write operation writes to a buffer inside the VISA

driver, while a formatted read operation reads from a buffer inside the

driver. Buffering improves system performance by having the driver

perform the I/O with the device only at certain times, such as when the

buffer is full. The driver is then able to send larger blocks of information to

the device at a time, improving overall throughput.

The buffer operations also provide control over the low-level serial driver

buffers. See the Controlling the Serial I/O Buffers section in Chapter 9,

Message-Based Communication, for more information on that topic.

Formatted I/O Operations
The main two operations under the formatted I/O services are viPrintf()

and viScanf(). Although this section discusses these two operations

only, this material also applies to other formatted I/O routines such as

viVPrintf() and viVScanf(). These operations derive their names

from the standard C string I/O functions. Like printf() and scanf(),

these operations let you use special format strings to dynamically create or

parse the string. For example, a common command for instruments is the

"Fx" command for function X. This could be "F1" for volt measurement,

"F2" for ohm measurement, and so on. With formatted I/O, you can select

the type of measurement and use only a single operation to send the string.

Consider the following code segment.

/* Retrieve user's selections. Assume the variable */

/* X holds the choice from the following menu: */

/* 1) VDC, (2) Ohms, (3) Amps */

status = viPrintf(instr, "F%d", X);

Chapter 5 Message-Based Communication

© National Instruments Corporation 5-9 NI-VISA User Manual

Here, the variable X corresponds to the type of measurement denoted by a

number matching the function number for the instrument. Without

formatted I/O, the result would have been either:

sprintf(buffer, "F%d", X);

viWrite(instr, buffer, strlen(buffer), &retCount);

or

switch(X) {

case 1:

viWrite(instr, "F1", 2, &retCount);

break;

case 2:

viWrite(instr, "F2", 2, &retCount);

break;

.

.

}

In addition, there is an operation viQueryf() that combines the

functionality of a viPrintf() followed by a viScanf() operation.

viQueryf() is used to query the device for information:

status = viQueryf(instr,"*IDN?\n","%s",buf);

I/O Buffer Operations
Another method for communicating with your instruments using formatted

I/O functions is using the formatted I/O buffer functions: viSPrintf().

viSScanf(), viBufRead(), and viBufWrite(). You can use these

functions to manipulate a buffer that you will send or receive from an

instrument.

For example, you may want to bring information from a device into a buffer

and then manipulate it yourself. To do this, first call viBufRead(), which

reads the string from the instrument into a user-specified buffer. Then use

viSScanf() to extract information from the buffer. Similarly, you can

format a buffer with viSPrintf() and then use viBufWrite() to send it

to an instrument.

As you can see, the formatted I/O approach is the simplest way to get the

job done. Because of the variety of modifiers you can use in the format

string, this section does not go into any more detail on these operations.

Please refer either to the NI-VISA online help or to Chapter 5, Operations,

in the NI-VISA Programmer Reference Manual for more information.

Chapter 5 Message-Based Communication

NI-VISA User Manual 5-10 ni.com

Variable List Operations
You can also use another form of the standard formatted I/O operations

known as Variable List operations: viVPrintf(), viVSPrintf(),

viVScanf(), viVSScanf(), and viVQueryf(). These functions are

identical in their operation to the ANSI C versions of variable list

operations. Please see your C reference guide for more information.

Manually Flushing the Formatted I/O Buffers
This section describes flushing issues that are related to formatted I/O

buffers. The descriptions apply to all buffered read and buffered write

operations. For example, the viPrintf() description applies equally to

other buffered write operations (viVPrintf() and viBufWrite()).

Similarly, the viScanf() description applies to other buffered read

operations (viVScanf() and viBufRead()).

Flushing a write buffer immediately sends any queued data to the device.

Flushing a read buffer discards the data in the read buffer. An empty read

buffer guarantees that the next call to viScanf(), viBufRead(), or a

related operation reads data directly from the device rather than from

queued data residing in the read buffer.

The easiest way to flush the buffers is with an explicit call to viFlush().

This operation can actually flush the buffers in two ways. The simpler way

uses discard flags. These flags tell the driver to discard the contents of the

buffers without performing any I/O to the device. For example,

status = viFlush(instr, VI_READ_BUF_DISCARD);

However, the flush operation can also complete the current I/O before

flushing the buffer. For a write buffer, this simply means to send the rest of

the buffer to the device. However, for a read buffer, the process is more

involved. Because you could be in the middle of a read from the device (that

is, the device still has information to send), it is possible to have the driver

check the buffer for an EOS or END bit/EOI signal. If such a value exists

in the buffer, the contents of the buffer are discarded. However, if the driver

can find no such value, it begins reading from the device until it detects the

end of the communication and then discards the data. This process keeps

the program and device in synchronization with each other. See the

description of the viFlush() operation in the NI-VISA online help or in

the NI-VISA Programmer Reference Manual for more information.

Chapter 5 Message-Based Communication

© National Instruments Corporation 5-11 NI-VISA User Manual

Automatically Flushing the Formatted I/O Buffers
Although you can explicitly flush the buffers by making a call to

viFlush(), the buffers are flushed implicitly under some conditions.

These conditions vary for the viPrintf() and viScanf() operations.

In addition, you can modify the conditions through attributes.

The write buffer is maintained by the viPrintf(), viVPrintf(),

viBufWrite(), and viVQueryf() (write side) operations. To explicitly

flush the write buffer, you can make a call to the viFlush() operation with

a write flag set.

The standard conditions for automatically flushing the buffer are as

follows.

• Whenever the END indicator is sent. The indicator could be either the

EOS character or the END bit/EOI line, depending on the current state

of the attributes which select these modes.

• When the write buffer is full.

• In response to a call to viSetBuf() with the VI_WRITE_BUF flag set.

In addition to these rules, the VI_ATTR_WR_BUF_OPER_MODE attribute can

modify the flushing of the buffer. The default setting for this attribute is

VI_FLUSH_WHEN_FULL, which means that the preceding three rules apply.

However, if the attribute is set to VI_FLUSH_ON_ACCESS, the buffer is

flushed with every call to viPrintf() and viVPrintf(), essentially

disabling the buffering mode.

The read buffer is maintained by the viScanf(), viVScanf(),

viBufRead(), and viVQueryf() (read side) operations. To explicitly

flush the read buffer, you can make a call to the viFlush() operation with

a read flag set. The only rule for automatically flushing the read buffer is in

response to the viSetBuf() operation. However, as with the write buffer,

you can use an attribute to control how to flush the buffer:

VI_ATTR_RD_BUF_OPER_MODE. If the attribute is set to

VI_FLUSH_DISABLE, the buffer is flushed only when an explicit call to

viFlush() is made. If this attribute is set to VI_FLUSH_ON_ACCESS, the

buffer is flushed at the end of every call to viScanf().

In addition to the preceding rules and attributes, the formatted I/O buffers

of a session to a given device are reset whenever that device is cleared

through the viClear() operation. At such a time, the read and write buffer

must be flushed and any ongoing operation through the read/write port

must be aborted.

Chapter 5 Message-Based Communication

NI-VISA User Manual 5-12 ni.com

Resizing the Formatted I/O Buffers
The read and write buffers, as mentioned previously, can be dynamically

resized using the viSetBuf() operation. Remember that this operation

automatically flushes the buffers, so it is best to set the size of the buffers

before beginning the actual I/O calls. You specify which buffer you want

to modify and then the size of the buffer you require. It is important to

check the return code of this operation because you may be requesting a

buffer beyond the size that the system can allocate at the time. If this

occurs, the buffer size is not changed.

For example, to set both the read and write buffers to 8 KB, use the

following code.

status = viSetBuf(instr, VI_READ_BUF | VI_WRITE_BUF, 8192);

Formatted I/O Instrument Driver Examples

This section shows examples of VISA formatted I/O usage found in

existing instrument drivers. It shows how to perform various I/O tasks

using the formatted I/O services in VISA. This section assumes a basic

knowledge of string formatting and ANSI-C format specifiers. For more

information on VISA format specifiers, refer to the NI-VISA Programmer

Reference Manual.

The VISA formatting capabilities include those specified by ANSI-C with

extensions for common protocols used by instrumentation systems. To

perform I/O, use the viPrintf(), viScanf(), and viQueryf() service

routines with the appropriate format strings.

This section includes four different categories of formatted I/O: Integers,

Floating point numbers, Strings, and Data blocks. For each category, we

give a description and a list of short examples. The focus is on the VISA

I/O supported format specifiers that are most frequently used in driver

development, with an explanation of how different modifiers work with the

format codes. To eliminate redundancy and make the examples easier to

understand, we have omitted error-checking routines on I/O operations

from all of the following examples.

Integers
Integer formatting is often found in driver development. Besides

transferring the numeric values that the instrument reads, it may also

represent the status codes (Boolean values) or error codes returned by the

instrument. When writing integer values to or reading them from the

Chapter 5 Message-Based Communication

© National Instruments Corporation 5-13 NI-VISA User Manual

instrument, you can use %d format code with length modifiers (h and l) and

the array modifier (,).

Short Integer—"%hd"
Use this modifier for short (16 bit) integers. These are typically used for holding test results

and status codes.

Examples

This example shows how to scan a self test result (a 16 bit integer) returned from an

instrument into a short integer.

/* Self Test */

ViInt16 testResult;

viPrintf (io, "*TST?\n");

viScanf (io, "%hd", testResult);

/* read test result into short integer */

This example shows how to query the instrument to determine whether it has encountered an

error. The error status is returned as a short integer (16 bits).

/* Check Error Status */

ViInt16 esr;

viQueryf (io, "*ESR?\n", "%hd", &esr);

/* read status into short integer */

Long Integer—"%ld", "%d"
Use this modifier for long (32 bit) integers. These are typically used for data value transfers

and error code queries.

Examples

This example shows how to scan an error code (a 32 bit integer) returned from an instrument

into a 32 bit integer

/* Error query */

ViInt32 errCode;

viPrintf (io, ":STAT:ERR?\n");

viScanf (io, "%d", &errCode);

/* read error code into integer */

This example shows how to format the sample count (a 32 bit integer) into the command

string sent to an instrument.

/* Send Sample Count */

ViInt32 value = 5000;

viPrintf (io, ":SAMP:COUN %d;", value);

Chapter 5 Message-Based Communication

NI-VISA User Manual 5-14 ni.com

Floating Point Values
When writing floating point values to or reading them from the instrument,

you can use %f or %e format codes with length modifiers (l and L) and the

array modifier (,). Floating point values are important when programming

a numeric value transfer.

Note %f does not fully represent a floating point value in the extreme cases. Use %e for a

floating point value in such cases.

Double Float—"%le"
Use this modifier for double (64 bit) floats. These are typically used for data value transfers.

Examples

This example shows how to scan the vertical range (a 64 bit floating point number).

/* Query Vertical Range */

ViReal64 value;

viPrintf (io, ":CH1:SCA?\n");

viScanf (io, "%le", &value);

This example shows how to format a trigger delay of 50.0 (specified as a 64 bit floating point

number) into the command string sent to an instrument.

/* Send Trigger Delay */

ViReal64 value = 50.0;

viPrintf (io, ":TRIG:DEL %le;", value);

Precision Specifier—"."
Use the precision specifier to specify the number of precision digits when doing a numeric

transfer. This modifier sets the accuracy of the values.

Example

This example shows how to set the voltage resolution. The resolution is represented in a

double floating point (64 bits). The precision modifier .9 specifies that there are nine digits

after the decimal point. In this case, 0.000000005 is sent to the instrument.

/* Set Resolution */

ViReal64 value = 0.0000000051;

viPrintf (io, "VOLT:RES %.9le", value);

Chapter 5 Message-Based Communication

© National Instruments Corporation 5-15 NI-VISA User Manual

Array of Floating Point Values Specifier—","
Use this modifier when transferring an array of floating point values to or from an instrument.

The count of the number of elements can be represented by a constant, asterisk (*) sign, or

number (#) sign. The asterisk (*) sign indicates the count is the first argument on

viPrintf(). The number (#) sign indicates that the count is the first argument on

viScanf(), and the count is passed by address. You can use the constant with both

viPrintf() and viScanf().

Examples

This example shows how to send an array of double numbers to the instrument. The comma

(,) indicates the parameter is an array and the asterisk (*) specifies the array size to be passed

in from the argument.

/* Create User Defined Mask */

ViInt32 maskSize = 100;

ViReal64 interleaved[100];

/* define points in the specified mask and store them in the array */

viPrintf (io, ":MASK:MASK1:POINTS %*,le", maskSize, interleaved);

This example shows how to take multiple readings from an instrument. The comma (,)

indicates the parameter is an array and the number (#) sign specifies the actual number of

readings returns from the instrument.

/* Read Multi-Point */

ViInt32 readingCnt = 50;

ViReal64 readingArray[50];

viQueryf (io, "READ?\n", "%,#le", &readingCnt, readingArray);

This example shows how to fetch multiple readings from an instrument. The comma (,)

indicates the parameter is an array while the constant 1000 specifies the number of readings.

/* Fetch Multi-Point */

ViReal64 readingArray[1000];

viScanf (io, "%,1000le", readingArray);

Strings
When transferring string values to or from the instrument, you can use %s,

%t, %T and %[] format codes with a field width modifier. Because this is a

message-based communication system, string formatting is the most

common routine. With string formatting, you can configure instrument

settings and query instrument information.

Chapter 5 Message-Based Communication

NI-VISA User Manual 5-16 ni.com

White Space Termination—"%s"
Characters are read from an instrument into the string until a white space character is read.

Example

This example queries the trigger source. This instrument returns a string. The maximum

length of the string is specified in the format string with the number (#) sign. The argument

rdBufferSize contains the maximum length on input, and it contains the actual number of

bytes read on output.

/* Trigger Source Query */

ViChar rdBuffer[BUFFER_SIZE];

ViInt32 rdBufferSize = sizeof(rdBuffer);

viPrintf (io, ":TRIG:SOUR?\n");

viScanf (io, "%#s", &rdBufferSize, rdBuffer);

END Termination—"%t"
Characters are read from an instrument into the string until the first END indicator is received.

This will often be accompanied by the linefeed character (\n) but that is not always the case.

Use %T to parse up to a linefeed instead of an END.

Example

This example queries the instrument model on a Tektronix instrument. The model number, a

32-bit integer, is the part of the string between the first two characters "," returned from the

instrument. The format string %t specifies that the string reads from the device until the END

indicator is received. For instance, if the instrument returns TEKTRONIX,TDS

210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04\n, then the model number is 210, and

the module string is 0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04\n.

/* Instrument Model Information */

ViChar moduleStr[BUFFER_SIZE];

ViInt32 modelNumber;

viPrintf (io, "*IDN?\n");

viScanf (io, "TEKTRONIX,TDS %d,%t", &modelNumber, moduleStr);

Other Terminators—"%[^]", "%*[^]"
Without the asterisk, characters are read from an instrument into the string until the character

specified after ^ is read. With the asterisk, characters are discarded until the character

specified after ^ is read.

Examples

This is an example of how to perform a self-test. In this case, the format string %256[^\n]

specifies the maximum field width of the string as 256 and terminates with a line feed (LF)

character.

Chapter 5 Message-Based Communication

© National Instruments Corporation 5-17 NI-VISA User Manual

/* Self Test */

ViChar testMessage[256];

viPrintf (io, "TST\n");

viScanf (io, "%256[^\n]", testMessage);

This example shows how to query for an error. The instrument returns an integer (32 bits) as

the error code and a message that terminates with a double-quote ("). The message is in

quotes.

/* Error Query */

ViInt32 errCode;

ViChar errMessage[MAX_SIZE];

viPrintf (io, ":STAT:ERR?\n");

viScanf (io, "%d,\"%[^\"]\"", &errCode, errMessage);

This example shows how to query for the instrument manufacturer. The manufacturer name

is the first part of the string, up to the character ",", returned from the instrument. For

instance, if the instrument returns ROHDE&SCHWARZ,NRVD,835430/066,V1.52 V1.40\n,

then the manufacturer name is ROHDE&SCHWARZ. The rest of the response is discarded.

/* Instrument Manufacturer */

ViChar rdBuffer[256];

viQueryf (io, "*IDN?\n", "%256[^,]%*T", rdBuffer);

This example shows how to query for the instrument model. The model name is the part of

the string between the first two characters "," returned from the instrument. For instance, if

the instrument returns ROHDE&SCHWARZ,NRVD, 835430/066,V1.52 V1.40\n, then the

model name is NRVD. The format string %*[^,] discards the input up to character ",". The

final part of the response is also discarded.

/* Instrument Model Information */

ViChar rdBuffer[256];

viQueryf (io, "*IDN?\n", "%*[^,],%256[^,]%*T", rdBuffer);

This example queries the instrument firmware revision. The firmware revision information is

everything up to the carriage return (CR) character.

/* Instrument Firmware Revision */

ViChar rdBuffer[256];

viQueryf (io, "ROM?", "%256[^\r]", rdBuffer);

Data Blocks
Both raw data and binary data can be transferred between the driver and the

instrument. Data block transfer is a simple yet powerful formatting

technique for transferring waveform data between drivers and instruments.

Chapter 5 Message-Based Communication

NI-VISA User Manual 5-18 ni.com

IEEE-488.2 Binary Data—"%b"
When writing binary data to or reading it from the instrument, you can use %b, %B format

codes with length modifiers (h, l, z, and Z). ASCII data is represented by signed integer

values. The range of values depends on the byte width specified. One-byte-wide data ranges

from –128 to +127. Two-byte-wide data ranges from –32768 to +32767. An example of an

ASCII waveform data string follows:

CURVE -109, -110, -109, -107, -109, -107, -105, -103, -100, -97, -90, -84, -80

Examples

This example queries a waveform. The data is in IEEE 488.2 <ARBITRARY BLOCK

PROGRAM DATA> format. The number (#) sign specifies the data size. In the absence of

length modifiers, the data is assumed to be of byte-size elements.

/* Waveform Query */

ViInt32 totalPoints = MAX_DATA_PTS;

ViInt8 rdBuffer[MAX_DATA_PTS];

viQueryf (io, ":CURV?\n", "%#b", &totalPoints, rdBuffer);

This example shows how to scan the preamble of waveform data returned from a scope, how

to determine the number of data points in the waveform, and how to scan the array of raw

binary data returned.

/* Waveform Preamble */

ViByte data[MAX_WAVEFORM_SIZE];

ViInt32 i, tmpCount, acqType;

ViReal64 xInc, xOrg, xRef, yInc, yOrg, yRef;

viQueryf (io, "WAV:PRE?\n",

"%*[^,], %ld, %ld, %*[^,], %Lf, %Lf, %Lf, %Lf, %Lf, %Lf",

&acqType, &tmpCount, &xInc, &xOrg, &xRef, &yInc, &yOrg, &yRef);

tmpCount = (acqType == 3) ? 2*tmpCount : tmpCount;

viQueryf (io, "WAV:DAT?\n", "%#b", &tmpCount, data));

Raw Binary Data—"%y"
When transferring raw binary data to or from an instrument, use the %y format code with

length modifiers (h and l) and byte ordering modifiers (!ob and !ol). Raw binary data can

be represented by signed integer values or positive integer values. The range of the values

depends on the specified byte width:

Byte Width Signed Integer Range Positive Integer Range

1 –128 to +127 0 to 255

2 –32768 to +32767 0 to 65535

Chapter 5 Message-Based Communication

© National Instruments Corporation 5-19 NI-VISA User Manual

Examples

This example shows how to send a block of unsigned short integer (16 bits) in binary form to

the instrument. In this case, the binary data is an arbitrary waveform. The asterisk (*) specifies

the block size to be passed in from the argument. Also, !ob specifies data is sent in standard

(big endian) format. Use !ol to send data in little endian format.

/* Create Arbitrary Waveform */

ViInt32 wfmSize = WFM_SIZE;

ViUInt16 dataBuffer[WFM_SIZE]; /* contains waveform data */

dataBuffer[WFM_SIZE-1] |= 0x1000;

/* Add the end of waveform indicator */

viPrintf (io, "STARTBIN 0 %d;%*!obhy", wfmSize, wfmSize, dataBuffer);

This example shows how to send a block of signed integers (32 bits) in binary form to the

instrument. The asterisk (*) specifies the block size to be passed in from the argument.

Without the presence of a byte order modifier, data is sent in standard (big endian) format.

/* Create FM Modulation Waveform */

ViInt32 dataBuffer[WFM_SIZE];

/*contains waveform data */

viPrintf (io, "%*ly", wfmSize, dataBuffer);

© National Instruments Corporation 6-1 NI-VISA User Manual

6
Register-Based Communication

This chapter shows how to use the VISA library in register-based

communication.

Note You can skip this chapter if you are using GPIB, Serial, or Ethernet exclusively.

Register-based programming applies only to PXI, VXI, and GPIB-VXI.

Introduction

Register-based devices (RBDs) are a class of devices that are simple and

relatively inexpensive to manufacture. Communication with such devices

is usually accomplished via reads and writes to registers. VISA has the

ability to read from and write to individual device registers, as well as a

block of registers, through the Memory I/O Services.

In addition to accessing RBDs, VISA also provides support for memory

management of the memory exported by a device. For example, both local

controllers and remote devices can have general-purpose memory in

A24/A32 space. With VISA, although the user must know how each remote

device accesses its own memory, the memory management aspects of local

controllers are handled through the Shared Memory operations—

viMemAlloc() and viMemFree(). For more information on this topic,

refer to the Shared Memory Operations section in this chapter.

With the Memory I/O Services, you access the device registers based on the

session to the device. In other words, if a session communicates with a

device at VXI logical address 16, you cannot use Memory I/O Services on

that session to access registers on a device at any other logical address. The

range of address locations you can access with Memory I/O Services on a

session is the range of address locations assigned to that device. This is true

for both High-Level and Low-Level Access operations.

To facilitate access to the device registers for multiple VXI devices, VISA

allows you to open a VXI MEMACC (memory access) session. A session

to a VXI MEMACC Resource allows an application to access the entire

VXI memory range for a specified address space. The MEMACC Resource

supports the same high-level and low-level operations as the INSTR

Chapter 6 Register-Based Communication

NI-VISA User Manual 6-2 ni.com

Resource. Programmatically, the main difference between a VXI INSTR

session and a VXI MEMACC session is the value of the offset parameter

you pass to the register based operations. When using an INSTR Resource,

all address parameters are relative to the device’s assigned memory base in

the given address space; knowing a device’s base address is neither required

by nor relevant to the user. When using a MEMACC Resource, all address

parameters are absolute within the given address space; knowing a device’s

base address is both required by and relevant to the user.

Note A session to a MEMACC Resource supports only the high-level, low-level, and

resource template operations. A MEMACC session does not support the other INSTR

operations.

In VISA, you can choose between two styles for accessing

registers—High-Level Access or Low-Level Access. Both styles have

operations to read the value of a device register and write to a device

register, as shown in the following table. In addition, there are high-level

operations designed to read or write a block of data. The block-move

operations do not have a low-level counterpart.

Note The remainder of this chapter uses XX in the names of some operations to denote that

the information applies to 8-bit, 16-bit, and 32-bit reads and writes. For example,

viInXX() refers to viIn8(), viIn16(), and viIn32().

The following sections show the benefits of each style so you can make an

informed choice of which is more appropriate for your programming

requirements.

High-Level

Access

High-Level

Block

Low-Level

Access

Read viIn8()
viIn16()
viIn32()

viMoveIn8()
viMoveIn16()
viMoveIn32()

viPeek8()
viPeek16()
viPeek32()

Write viOut8()
viOut16()
viOut32()

viMoveOut8()
viMoveOut16()
viMoveOut32()

viPoke8()
viPoke16()
viPoke32()

Chapter 6 Register-Based Communication

© National Instruments Corporation 6-3 NI-VISA User Manual

High-Level Access Operations

The High-Level Access (HLA) operations viInXX() and viOutXX()

have a simple and easy-to-use interface for performing register-based

communication. The HLA operations in VISA are wholly self-contained,

in that all the information necessary to carry out the operation is contained

in the parameters of the operation. The HLA operations also perform all the

necessary hardware setup as well as the error detection and handling. There

is no need to call other operations to do any other activity related to the

register access. For this reason, you should use HLA operations if you are

just becoming familiar with the system.

To use viInXX() or viOutXX() operations to access a register on a

device, you need to have the following information about the register:

• The address space where the register is located. In a VXI interface bus,

for example, the address space can be A16, A24, or A32. In the PXI

bus, the device’s address space can be the PXI configuration registers

or one of the BAR spaces (BAR0-BAR5).

• The offset of the register relative to the device for the specified address

space. You do not need to know the actual base address of the device,

just the offset.

Note When using the VXI MEMACC Resource, you need to provide the absolute VXI

address (base + offset) for the register.

The following sample code reads the Device Type register of a VXI device

located at offset 0 from the base address in A16 space, and writes a value

to the A24 shared memory space at offset 0x20 (this offset has no special

significance).

status = viIn16(instr, VI_A16_SPACE, 0, &retValue);

status = viOut16(instr, VI_A24_SPACE, 0x20, 0x1234);

With this information, the HLA operations perform the necessary hardware

setup, perform the actual register I/O, check for error conditions, and

restore the hardware state. To learn how to perform these steps individually,

see the Low-Level Access operations.

The HLA operations can detect and handle a wide range of possible errors.

HLA operations perform boundary checks and return an error code

(VI_ERROR_INV_OFFSET) to disallow accesses outside the valid range of

addresses that the device supports. The HLA operations also trap and

Chapter 6 Register-Based Communication

NI-VISA User Manual 6-4 ni.com

handle any bus errors appropriately and then report the bus error as

VI_ERROR_BERR.

That is all that is really necessary to perform register I/O. For more

examples of HLA register I/O, please see Example 2-2 in Chapter 2,

Introductory Programming Examples.

High-Level Block Operations

The high-level block operations viMoveInXX() and viMoveOutXX()

have a simple and easy-to-use interface for reading and writing blocks of

data residing at either the same or consecutive (incrementing) register

addresses. Like the high-level access operations, the high-level block

operations can detect and handle many errors and do not require calls to the

low-level mapping operations. Unlike the high-level access operations, the

high-level block operations do not have a direct low-level counterpart. To

perform block operations using the low-level access operations, you must

map the desired region of memory and then perform multiple viPeekXX()

or viPokeXX() operation invocations, instead of a single call to

viMoveInXX() or viMoveOutXX().

To use the block operations to access a device, you need to have the

following information about the registers:

• The address space where the registers are located. In a VXI interface,

for example, the address space can be A16, A24, or A32. In the PXI

bus, the device’s address space can be the PXI configuration registers

or one of the BAR spaces (BAR0-BAR5).

• The beginning offset of the registers relative to the device for the

specified address space.

Note With an INSTR Resource you do not need to know the actual base address of the

device, just the offset.

• The number of registers or register values to access.

The default behavior of the block operations is to access consecutive

register addresses. However, you can change this behavior using the

attributes VI_ATTR_SRC_INCREMENT (for viMoveInXX()) and

VI_ATTR_DEST_INCREMENT (for viMoveOutXX()). If the value is

changed from 1 (the default value, indicating consecutive addresses) to 0

(indicating that registers are to be treated as FIFOs), then the block

operations performs the specified number of accesses to the same register

address.

Chapter 6 Register-Based Communication

© National Instruments Corporation 6-5 NI-VISA User Manual

Note The range value of 0 for the VI_ATTR_SRC_INCREMENT and

VI_ATTR_DEST_INCREMENT attributes may not be supported on all VISA

implementations. In this case, you may need to perform a manual FIFO block move using

individual calls to the high-level or low-level access operations.

If you are using the block operations in the default mode (consecutive

addresses), the number of elements that you want to access may not go

beyond the end of the device’s memory in the specified address space.

In other words, the following code sample reads the VXI device’s entire

register set in A16 space:

status = viMoveIn16(instr, VI_A16_SPACE, 0, 0x20, regBuffer16);

Notice that although the device has 0x40 bytes of registers in A16 space,

the fourth parameter is 0x20. Why is this? Since the operation accesses

16-bit registers, the actual range of registers read is 0x20 accesses times

2 B, or all 0x40 bytes. Similarly, the following code sample reads a PXI

device’s entire register set in configuration space:

status = viMoveIn32 (instr, VI_PXI_CFG_SPACE, 0, 64, regBuffer32);

When using the block operations to access FIFO registers, the number of

elements to read or write is not restricted, because all accesses are to the

same register and never go beyond the end of the device’s memory region.

The following sample code writes 4 KB of data to a device’s FIFO register

in A16 space at offset 0x10 (this offset has no special significance):

status = viSetAttribute(instr, VI_ATTR_DEST_INCREMENT, 0);

status = viMoveOut32(instr, VI_A16_SPACE, 0x10, 1024, regBuffer32);

Low-Level Access Operations

Low-Level Access (LLA) operations provide a very efficient way to

perform register-based communication. LLA operations incur much less

overhead than HLA operations for certain types of accesses. LLA

operations perform the same steps that the HLA operations do, except that

each individual task performed by an HLA operation is an individual

operation under LLA.

Overview of Register Accesses from Computers
Before learning about the LLA operations, first consider how a computer

can perform a register access to an external device. There are two possible

ways to perform this access. The first and more obvious, although

Chapter 6 Register-Based Communication

NI-VISA User Manual 6-6 ni.com

primitive, is to have some hardware on the computer that communicates

with the external device.

You would have to follow these steps:

1. Write the address you want.

2. Specify the data to send.

3. Send the command to perform the access.

As you can see, this method involves a great deal of communication with

the local hardware.

The National Instruments MXI plug-in cards and embedded VXI

computers use a second, much more efficient method. This method

involves taking a section of the computer’s address space and mapping this

space to another space, such as the VXI A16 space. Most PXI devices also

have registers that are memory mapped into your computer.

To understand how mapping works, you must first remember that memory

and address space are two different things. For example, most 32-bit CPUs

have 4 GB of address space, but have memory measured in megabytes. This

means that the CPU can put out over 232 possible addresses onto the local

bus, but only a small portion of that corresponds to memory. In most cases,

the memory chips in the computer will respond to these addresses.

However, because there is less memory in the computer than address space,

National Instruments can add hardware that responds to other addresses.

This hardware can then modify the address, according to the mapping

that it has, to a VXI address and perform the access on the VXIbus

automatically. The result is that the computer acts as if it is performing a

local access, but in reality the access has been mapped out of the computer

and to the VXIbus.

You may wonder what the difference is between the efficient method and

the primitive method. They seem to be telling the hardware the same

information. However, there are two important differences. In the primitive

method, the communication described must take place for each access.

However, the efficient method requires only occasional communication

with the hardware. Only when you want a different address space or an

address outside of the window do you need to reprogram the hardware.

In addition, when you have set up your hardware, you can use standard

memory access methods, such as pointer dereferences in C, to access the

registers.

Chapter 6 Register-Based Communication

© National Instruments Corporation 6-7 NI-VISA User Manual

Using VISA to Perform Low-Level Register Accesses
The first LLA operation you need to call to access a device register is the

viMapAddress() operation, which sets up the hardware window and

obtains the appropriate pointer to access the specified address space. The

viMapAddress() operation first programs the hardware to map local

CPU addresses to hardware addresses as described in the previous section.

In addition, it returns a pointer that you can use to access the registers.

The following code is an example of programming the VXI hardware to

access A16 space.

status = viMapAddress(instr, VI_A16_SPACE, 0, 0x40, VI_FALSE,

VI_NULL, &address);

This sample code sets up the hardware to map A16 space, starting at offset

0 for 0x40 bytes, and returns the pointer to the window in address.

Remember that the offset is relative to the base address of the device we are

talking to through the instr session, not from the base of A16 space itself.

Therefore, offset 0 does not mean address 0 in A16 space, but rather the

starting point of the device’s A16 memory. You can ignore the VI_FALSE

and VI_NULL parameters for the most part because they are reserved for

definition by a future version of VISA.

If you call viMap Address() on an INSTR session with an address space

the device does not support, or an offset or size greater than the device’s

memory range, then the VISA driver will not map the memory and will

return an error.

Note To access the device registers through a VXI MEMACC session, you need to

provide the absolute VXIbus addresses (base address for device + register offset in device

address space).

If you need more than a single map for a device, you must open a second

session to the device, because VISA currently supports only a single map

per session. There is very low overhead in having two sessions because

sessions themselves do not take much memory. However, you need to keep

track of two session handles. Notice that this is different from the maximum

number of windows you can have on a system. The hardware for the

controller you are using may have a limit on the number of unique windows

it can support.

When you are finished with the window or need to change the mapping to

another address or address space, you must first unmap the window using

Chapter 6 Register-Based Communication

NI-VISA User Manual 6-8 ni.com

the viUnmapAddress() operation. All you need to specify is which

session you used to perform the map.

status = viUnmapAddress(instr);

Operations versus Pointer Dereference
After the viMapAddress() operation returns the pointer, you can

use it to read or write registers. VISA provides the viPeekXX() and

viPokeXX() operations to perform the accesses. On many systems,

the viMapAddress() operation returns a pointer that you can also

dereference directly, rather than calling the LLA operations. The

performance gain achievable by using pointer dereferences over operation

invocations is extremely system dependent. To determine whether you can

use a pointer dereference to perform register accesses on a given mapped

session, examine the value of the VI_ATTR_WIN_ACCESS attribute. If the

value is VI_DEREF_ADDR, it is safe to perform a pointer dereference.

To make your code portable across different platforms, we recommend

that you always use the accessor operations—viPeekXX() and

viPokeXX()—as a backup method to perform register I/O. In this way,

not only is your source code portable, but your executable can also have

binary compatibility across different hardware platforms, even on systems

that do not support direct pointer dereferences:

viGetAttribute(instr, VI_ATTR_WIN_ACCESS, &access);

if (access == VI_DEREF_ADDR)

*address = 0x1234;

else

viPoke16(instr, address, 0x1234);

Manipulating the Pointer
Every time you call viMapAddress(), the pointer you get back is valid for

accessing a region of addresses. Therefore, if you call viMapAddress()

with mapBase set to address 0 and mapSize to 0x40 (the configuration

register space for a VXI device), you can access not only the register

located at address 0, but also registers in the same vicinity by manipulating

the pointer returned by viMapAddress(). For example, if you want to

access another register at address 0x2, you can add 2 to the pointer. You

can add up to and including 0x3F to the pointer to access these registers in

this example because we have specified 0x40 as the map size. However,

notice that you cannot subtract any value from the address variable

because the mapping starts at that location and cannot go backwards.

Example 6-1 shows how you can access other registers from address.

Chapter 6 Register-Based Communication

© National Instruments Corporation 6-9 NI-VISA User Manual

Note The examples in this chapter show C source code. You can find the same examples

in Visual Basic syntax in Appendix A, Visual Basic Examples.

Example 6-1
#include "visa.h"

#define ADD_OFFSET(addr, offs) (((ViPByte)addr) + (offs))

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViAddr address; /* User pointer */

ViUInt16 value; /* To store register value */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Address 16 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

&instr);

status = viMapAddress(instr, VI_A16_SPACE, 0, 0x40, VI_FALSE, VI_NULL,

&address);

viPeek16(instr, address, &value);

/* Access a different register by manipulating the pointer.*/

viPeek16(instr, ADD_OFFSET(address, 2), &value);

status = viUnmapAddress(instr);

/* Close down the system*/

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Chapter 6 Register-Based Communication

NI-VISA User Manual 6-10 ni.com

Bus Errors
The LLA operations do not report bus errors. In fact, viPeekXX() and

viPokeXX() do not report any error conditions. However, the HLA

operations do report bus errors. When using the LLA operations, you must

ensure that the addresses you are accessing are valid.

Comparison of High-Level and Low-Level Access

Speed
In terms of the speed of developing your application, the HLA operations

are much faster to implement and debug because of the simpler interface

and the status information received after each access. For example, HLA

operations encapsulate the mapping and unmapping of hardware windows,

which means that you do not need to call viMapAddress() and

viUnmapAddress() separately.

For speed of execution, the LLA operations perform faster when used for

several random register I/O accesses in a single window. If you know that

the next several accesses are within a single window, you can perform the

mapping just once and then each of the accesses has minimal overhead.

The HLA operations will be slower because they must perform a map,

access, and unmap within each call. Even if the window is correctly

mapped for the access, the HLA call at the very least needs to perform some

sort of check to determine if it needs to remap. Furthermore, because HLA

operations encapsulate many status-checking capabilities not included in

LLA operations, HLA operations have higher software overhead. For these

reasons, HLA is slower than LLA in many cases.

Note For block transfers, the high-level viMoveXX() operations perform the fastest.

Ease of Use
HLA operations are easier to use because they encapsulate many status

checking capabilities not included in LLA operations, which explains the

higher software overhead and lower execution speed of HLA operations.

HLA operations also encapsulate the mapping and unmapping of hardware

windows, which means that you do not need to call viMapAddress() and

viUnmapAddress() separately.

Chapter 6 Register-Based Communication

© National Instruments Corporation 6-11 NI-VISA User Manual

Accessing Multiple Address Spaces
You can use LLA operations to access only the address space currently

mapped. To access a different address space, you need to perform a

remapping, which involves calling viUnmapAddress() and

viMapAddress(). Therefore, LLA programming becomes more

complex, without much of a performance increase, for accessing several

address spaces concurrently. In these cases, the HLA operations are

superior.

In addition, if you have several sessions to the same or different devices all

performing register I/O, they must compete for the finite number of

windows available. When using LLA operations, you must allocate the

windows and always ensure that the program does not ask for more

windows than are available. The HLA operations avoid this problem by

restoring the window to the previous setting when they are done. Even if all

windows are currently in use by LLA operations, you can still use HLA

functions because they will save the state of the window, remap, access, and

then restore the window. As a result, you can have an unlimited number of

HLA windows.

Shared Memory Operations

Note There are two distinct cases for using shared memory operations. In the first case,

the local VXI controller exports general-purpose memory to the A24/A32 space. In the

second case, remote VXI devices export memory into A24/A32 space. Unlike the first case,

the memory exported to A24/A32 space may not be general purpose, so the VISA Shared

Memory services do not control memory on remote VXI devices.

A common configuration in a VXI system is to export memory to either the

A24 or A32 space. The local controller usually can export such memory.

This memory can then be used to buffer the data going to or from the

instruments in the system. However, a common problem is preventing

multiple devices from using the same memory. In other words, a memory

manager is needed on this memory to prevent corruption of the data.

The VISA Shared Memory operations—viMemAlloc() and

viMemFree()—provide the memory management for a specific device,

namely, the local controller. Since these operations are part of the INSTR

resource, they are associated with a single VXI device. In addition, because

a VXI device can export memory in either A24 or A32 space (but not both),

the memory pool available to these operations is defined at startup. You can

Chapter 6 Register-Based Communication

NI-VISA User Manual 6-12 ni.com

determine whether the memory resides in A24 or A32 space by querying

the attribute VI_ATTR_MEM_SPACE.

Shared Memory Sample Code
The following example shows how these shared memory operations work

by incorporating them into Example 6-1. Their main purpose is to allocate

a block of memory from the pool that can then be accessed through the

standard register-based access operations (high level or low level). The

INSTR resource for this device ensures that no two sessions requesting

memory receive overlapping blocks.

Note Example 6-2 uses bold text to distinguish lines of code that are different from those

in Example 6-1.

Example 6-2
#include "visa.h"

#define ADD_OFFSET (addr, offs) (((ViPByte)addr) + (offs))

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, self; /* Communication channels */

ViAddr address; /* User pointer */

ViBusAddress offset; /* Shared memory offset */

ViUInt16 addrSpace; /* Shared memory space */

ViUInt16 value; /* To store register value */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Address 0 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "VXI0::0::INSTR", VI_NULL, VI_NULL,

&self);

/* Allocate a portion of the device's memory */

status = viMemAlloc(self, 0x100, &offset);

Chapter 6 Register-Based Communication

© National Instruments Corporation 6-13 NI-VISA User Manual

/* Determine where the shared memory resides */

status = viGetAttribute(self, VI_ATTR_MEM_SPACE, &addrSpace);

status = viMapAddress(self, addrSpace, offset, 0x100, VI_FALSE,

VI_NULL, &address);

viPeek16(self, address, &value);

/* Access a different register by manipulating the pointer. */

viPeek16(self, ADD_OFFSET(address, 2), &value);

status = viUnmapAddress(self);

status = viMemFree(self, offset);

/* Close down the system */

status = viClose(self);

status = viClose(defaultRM);

return 0;

}

© National Instruments Corporation 7-1 NI-VISA User Manual

7
VISA Events

This chapter describes the VISA event model and how to use it. The

following sections discuss the various events VISA supports and the event

handling paradigm.

Introduction

VISA defines a common mechanism to notify an application when certain

conditions occur. These conditions or occurrences are referred to as events.

An event is a means of communication between a VISA resource and its

applications. Typically, events occur because of a condition requiring the

attention of applications.

The VISA event model provides the following two different ways for an

application to receive event notification:

• The first method uses a queuing mechanism. You can use this method

to place all of the occurrences of a specified event in a queue. The

queuing mechanism is generally useful for noncritical events that do

not need immediate servicing. The Queuing section in this chapter

describes this mechanism in detail.

• The other method is to have VISA invoke a function that the program

specifies prior to enabling the event. This is known as a callback

handler and is invoked on every occurrence of the specified event.

The callback mechanism is useful when your application requires an

immediate response. The Callbacks section in this chapter describes

this mechanism in detail.

The queuing and callback mechanisms are suitable for different

programming styles. However, because these mechanisms work

independently of each other, you can have them both enabled at the

same time.

Chapter 7 VISA Events

NI-VISA User Manual 7-2 ni.com

Supported Events

VISA defines the following generic and INSTR-specific event types.

Table 7-1. Generic and INSTR-specific Event Types

Event Type Description Resource Class(es), Other Notes

VI_EVENT_IO_COMPLETION Notification that an

asynchronous I/O

operation has completed.

The I/O Completion event applies to

all asynchronous operations, which

for INSTR includes

viReadAsync(),

viWriteAsync(), and

viMoveAsync(). For resource

classes that do not support

asynchronous operations, this event

type is not applicable.

VI_EVENT_EXCEPTION Notification that an error

condition (exception)

has occurred during an

operation invocation.

The exception event supports only

the callback model. Refer to the

Exception Handling section at the end

of this chapter for more information

about this event type.

VI_EVENT_SERVICE_REQ Notification of a service

request (SRQ) from the

device.

Supported for message based INSTR

classes, including GPIB, VXI,

GPIB-VXI, and TCPIP.

VI_EVENT_VXI_SIGP Notification of a VXIbus

signal or VXIbus

interrupt from the device.

Supported for VXI INSTR only.

VI_EVENT_VXI_VME_INTR Notification of a VXIbus

interrupt from the device.

Supported for VXI INSTR only. This

applies to both VXI and VME

devices.

VI_EVENT_TRIG Notification of a VXIbus

trigger.

Supported for VXI INSTR and VXI

BACKPLANE only.

VI_EVENT_PXI_INTR Notification of a

PCI/PXI interrupt from

the device.

Supported for PXI INSTR only.

Not supported on all platforms.

VI_EVENT_ASRL_BREAK Notification that a break

signal was received.

Supported for Serial INSTR only.

Not supported on all platforms.

Chapter 7 VISA Events

© National Instruments Corporation 7-3 NI-VISA User Manual

To learn about other event types defined for other resource classes, refer to

Chapter 9, Interface Specific Information, or the NI-VISA Programmer

Reference Manual.

VI_EVENT_ASRL_CTS Notification that the

Clear To Send (CTS) line

changed state.

Supported for Serial INSTR only. Not

supported on all platforms. If the CTS

line changes state quickly several

times in succession, not all line state

changes will necessarily result in

event notifications.

VI_EVENT_ASRL_DCD Notification that the Data

Carrier Detect (DCD)

line changed state.

Supported for Serial INSTR only. Not

supported on all platforms. If the

DCD line changes state quickly

several times in succession, not all

line state changes will necessarily

result in event notifications.

VI_EVENT_ASRL_DSR Notification that the Data

Set Ready (DSR) line

changed state.

Supported for Serial INSTR only. Not

supported on all platforms. If the DSR

line changes state quickly several

times in succession, not all line state

changes will necessarily result in

event notifications.

VI_EVENT_ASRL_RI Notification that the

Ring Indicator (RI) input

signal was asserted.

Supported for Serial INSTR only.

Not supported on all platforms.

VI_EVENT_ASRL_CHAR Notification that at least

one data byte has been

received.

Supported for Serial INSTR only. Not

supported on all platforms. Each data

character will not necessarily result in

an event notification.

VI_EVENT_ASRL_TERMCHAR Notification that the

termination character has

been received.

Supported for Serial INSTR only. Not

supported on all platforms. The actual

termination character is specified by

setting VI_ATTR_TERMCHAR prior to

enabling this event. For this event, the

setting ofVI_ATTR_TERMCHAR_EN is

ignored.

Table 7-1. Generic and INSTR-specific Event Types (Continued)

Event Type Description Resource Class(es), Other Notes

Chapter 7 VISA Events

NI-VISA User Manual 7-4 ni.com

VISA events use a list of attributes to maintain information associated

with the event. You can access the event attributes using the

viGetAttribute() operation, just as for the session and resource

attributes. Remember to use the eventContext as the first parameter,

rather than the I/O session.

All VISA events support the generic event attribute

VI_ATTR_EVENT_TYPE. This attribute returns the identifier of the event

type. In addition to this attribute, individual events may define attributes to

hold additional event information. The events listed below define the

accompanying additional attributes; the other event types do not define any

additional attributes.

• VI_EVENT_IO_COMPLETION defines, among other attributes,

VI_ATTR_STATUS and VI_ATTR_RET_COUNT, which provide

information about how the asynchronous I/O operation completed.

• VI_EVENT_VXI_SIGP defines VI_ATTR_SIGP_STATUS_ID, which

contains the 16-bit Status/ID value retrieved during the interrupt or

from the Signal register.

• VI_EVENT_VXI_VME_INTR defines VI_ATTR_RECV_INTR_LEVEL

and VI_ATTR_INTR_STATUS_ID, which provide the interrupt level

and 32-bit interrupt Status/ID value, respectively.

• VI_EVENT_TRIG defines VI_ATTR_RECV_TRIG_ID, which provides

the trigger line on which the trigger was received.

• VI_EVENT_EXCEPTION defines VI_ATTR_STATUS and

VI_ATTR_OPER_NAME, which provide information about what error

was generated and which operation generated it, respectively.

All the attributes VISA events support are read-only attributes; a user

application cannot modify their values. Refer to the NI-VISA Programmer

Reference Manual for detailed information on the specific events.

Enabling and Disabling Events

Before a session can use either the VISA callback or queuing mechanism,

you need to enable the session to sense events. You use the

viEnableEvent() operation to enable an event type using either of the

mechanisms. For example, to enable the VI_EVENT_SERVICE_REQ event

for queuing, use the following code:

status = viEnableEvent(instr,VI_EVENT_SERVICE_REQ,VI_QUEUE,VI_NULL);

Chapter 7 VISA Events

© National Instruments Corporation 7-5 NI-VISA User Manual

Note VISA currently allows both queuing and callbacks to be enabled for the same event

type on the same session. You can do this in one call by bitwise ORing the mechanisms

together (VI_QUEUE|VI_HNDLR), or you can do this in two separate calls to

viEnableEvent(). The two mechanisms operate independently of each other. However,

using both mechanisms for the same event type on the same session is usually unnecessary

and is difficult to debug. Therefore, this is highly discouraged.

Use viDisableEvent() to stop a session from receiving events of a

specified type. You can specify the mechanism for which you are disabling,

although it is more convenient to use VI_ALL_MECH to disable the event

type for all mechanisms. For example, to disable the

VI_EVENT_SERVICE_REQ event regardless of the mechanism for which it

was enabled, use the following code:

status = viDisableEvent(instr,VI_EVENT_SERVICE_REQ,VI_ALL_MECH);

The viEnableEvent() operation also automatically enables the

hardware, if necessary for detecting the event. The hardware is enabled

when the first call to viEnableEvent() for the event is made from any of

the sessions currently active. Similarly, viDisableEvent() disables the

hardware when the last enabled session disables itself for the event.

Queuing

The queuing mechanism in VISA gives an application the flexibility to

receive events only when it requests them. An application uses the

viWaitOnEvent() operation to retrieve the event information. However,

in addition to retrieving events from the queue, you can also use

viWaitOnEvent() in your application to halt the current execution and

wait for the event to arrive. Both of these cases are discussed in this section.

The event queuing process requires that you first enable the session to sense

the particular event type. When enabled, the session can automatically

queue the event occurrences as they happen. A session can later dequeue

these events using the viWaitOnEvent() operation. You can set the

timeout to VI_TMO_IMMEDIATE if you want your application to check if

any event of the specified event type exists in the queue.

Note Each session has a queue for each of the possible events that can occur. This means

that each queue is per session and per event type.

An application can also use viWaitOnEvent() to wait for events if none

currently exists in the queue. When you select a non-zero timeout value

(something other than VI_TMO_IMMEDIATE), the operation retrieves the

Chapter 7 VISA Events

NI-VISA User Manual 7-6 ni.com

specified event if it exists in the queue and returns immediately. Otherwise,

the application waits until the specified event occurs or until the timeout

expires, whichever occurs first. When an event arrives and causes

viWaitOnEvent() to return, the event is not queued for the session on

which the wait operation was invoked. However, if any other session is

currently enabled for queuing, the event is placed on the queue for that

session.

You can use viDisableEvent() to disable event queuing on a session, as

discussed in the previous section. After calling viDisableEvent(), no

further event occurrences are queued on that session, but event occurrences

that were already in the event queue are retained. Your application can use

viWaitOnEvent() to dequeue these retained events in the same manner

as previously described. The wait operation does not need to have events

enabled to work; however, the session must be enabled to detect new events.

An application can explicitly clear (flush) the event queue with the

viDiscardEvents() operation.

The event queues in VISA do not dynamically grow as new events arrive.

The default queue length is 50, but you can change the size of a queue by

using the VI_ATTR_MAX_QUEUE_LENGTH template attribute. This attribute

specifies the maximum number of events that can be placed in a queue.

Note If the event queue is full and a new event arrives, the new event is discarded.

VISA does not let you dynamically configure queue lengths. That is, you

can only modify the queue length on a given session before the first

invocation of the viEnableEvent() operation, as shown in the following

code segment.

status = viSetAttribute(instr, VI_ATTR_MAX_QUEUE_LENGTH, 10);

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ, VI_QUEUE,

VI_NULL);

See Example 2-3 in Chapter 2, Introductory Programming Examples, for

an example of handling events via the queue mechanism.

Callbacks

The VISA event model also allows applications to install functions that can

be called back when a particular event type is received. You need to install

a handler before enabling a session to sense events through the callback

Chapter 7 VISA Events

© National Instruments Corporation 7-7 NI-VISA User Manual

mechanism. Refer to The userHandle Parameter section in this chapter for

more information. The procedure works as follows:

1. Use the viInstallHandler() operation to install handlers to

receive events.

2. Use the viEnableEvent() operation to enable the session for the

callback mechanism as described earlier in the Enabling and Disabling

Events section.

3. The VISA driver invokes the handler on every occurrence of the

specified event.

4. VISA provides the event object in the eventContext parameter of

viEventHandler(). The event context is like a data structure, and

contains information about the specific occurrence of the event. Refer

to The Life of the Event Context section in this chapter for more

information on event context.

You can now have multiple handlers per session in the current revision of

VISA. If you have multiple handlers installed for the same event type on

the same session, each handler is invoked on every occurrence of that event

type. The handlers are invoked in reverse order of installation; that is, in

Last In First Out (LIFO) order. For a given handler to prevent other handlers

on the same session from being executed, it should return the value

VI_SUCCESS_NCHAIN rather than VI_SUCCESS. This does not affect the

invocation of event handlers on other sessions or in other processes.

Callback Modes
VISA gives you the choice of two different modes for using the callback

mechanism. You can use either direct callbacks or suspended callbacks.

You can have only one of these callback modes enabled at any one time.

To use the direct callback mode, specify VI_HNDLR in the mechanism

parameter. In this mode, VISA invokes the callback routine at the time the

event occurs.

To use the suspended callback mode, specify VI_SUSPEND_HNDLR in the

mechanism parameter. In this mode, VISA does not invoke the callback

routine at the time of event occurrence; instead, the events are placed on a

suspended handler queue. This queue is similar to the queue used by the

queuing mechanism except that you cannot access it directly. You can

obtain the events on the queue only by re-enabling the session for callbacks.

You can flush the queue with viDiscardEvents().

Chapter 7 VISA Events

NI-VISA User Manual 7-8 ni.com

For example, the following code segment shows how you can halt the

arrival of events while you perform some critical operations that would

conflict with code in the callback handler. Notice that no events are lost

while this code executes, because they are stored on a queue.

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,VI_HNDLR,

VI_NULL);

.

.

.

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,

VI_SUSPEND_HNDLR, VI_NULL);

/*Perform code that must not be interrupted by a callback. */

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ, VI_HNDLR,

VI_NULL);

When you switch the event mechanism from VI_HNDLR to

VI_SUSPEND_HNDLR, the VISA driver can still detect the events. For

example, VXI interrupts still generate a local interrupt on the controller and

VISA handles these interrupts. However, the event VISA generates for the

VXI interrupt is now placed on the handler queue rather than passed to the

application. When the critical section completes, switching the mechanism

from VI_SUSPEND_HNDLR back to VI_HNDLR causes VISA to call the

application’s callback functions whenever it detects a new event as well as

for every event waiting on the handler queue.

Independent Queues
As stated previously, the callback and the queuing mechanisms operate

totally independently of each other, so VISA keeps the information for

event occurrences separately for both mechanisms. Therefore, VISA

maintains the suspended handler queue separately from the event queue

used for the queuing mechanism. The VI_ATTR_MAX_QUEUE_LENGTH

attribute mentioned earlier in the Queuing section of this chapter applies

to the suspended handler queue as well as to the queue for the queuing

mechanism. However, because these queues are separate, if one of the

queues reaches the predefined limit for storing event occurrences, it does

not directly affect the other mechanism.

Chapter 7 VISA Events

© National Instruments Corporation 7-9 NI-VISA User Manual

The userHandle Parameter
When using viInstallHandler() to install handlers for the callback

mechanism, your application can use the userHandle parameter to supply

a reference to any application-defined value. This reference is passed back

to the application as the userHandle parameter to the callback routine

during handler invocation. By supplying different values for this

parameter, applications can install the same handler with different

application-defined contexts.

For example, applications often need information that was received in the

callback to be available for the main program. In the past, this has been

done through global variables. In VISA, userHandle gives the application

more modularity than is possible with global variables. In this case, the

application can allocate a data structure to hold information locally. When

it installs the callback handler, it can pass the reference to this data structure

to the callback handler via the userHandle. This means that the handler can

store the information in the local data structure rather than a global data

structure.

For another example, consider an application that installs a handler with a

fixed value of 0x1 for the userHandle parameter. It can install the same

handler with a different value, say 0x2, for the same event type on another

session. However, installations of the same handler are different from one

another. Both handlers are invoked when the event of the given type occurs

but in one invocation the value passed to userHandle is 0x1 and in the other

it is 0x2. As a result, you can uniquely identify VISA event handlers by a

combination of the handler address and user context pair.

This structure also is important when the application attempts to remove the

handler. The operation viUninstallHandler() requires not only the

handler’s address but also the userHandle value to correctly identify which

handler to remove.

Queuing and Callback Mechanism Sample Code

Example 7-1 demonstrates the use of both the queuing and callback

mechanisms in event handling. In the program, a message is sent to a GPIB

device telling it to read some data. When the data collection is complete,

the device asserts SRQ, informing the program that it can now read data.

After reading the device’s status byte, the handler begins to read

asynchronously using a buffer of information that the main program

passes to it.

Chapter 7 VISA Events

NI-VISA User Manual 7-10 ni.com

Note This example shows C source code. You can find the same example in Visual Basic

syntax in Appendix A, Visual Basic Examples.

Example 7-1
#include "visa.h"

#include <stdlib.h>

#define MAX_CNT 1024

/* This function is to be called when an SRQ event occurs */

/* Here, an SRQ event indicates the device has data ready */

ViStatus _VI_FUNCH myCallback(ViSession vi, ViEventType etype,

ViEvent eventContext, ViAddr userHandle)

{

ViJobId jobID;

ViStatus status;

ViUInt16 stb;

status = viReadSTB(vi, &stb);

status = viReadAsync(vi,(ViBuf)userHandle,MAX_CNT,&jobID);

return VI_SUCCESS;

}

int main(void)

{

ViStatus status;

ViSession defaultRM, gpibSesn;

ViBuf bufferHandle;

ViUInt32 retCount;

ViEventType etype;

ViEvent eventContext;

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error initializing VISA...exiting */

return -1;

}

/* Open communication with GPIB device at primary address 2 */

status = viOpen(defaultRM, "GPIB0::2::INSTR", VI_NULL, VI_NULL,

&gpibSesn);

/* Allocate memory for buffer */

Chapter 7 VISA Events

© National Instruments Corporation 7-11 NI-VISA User Manual

/* In addition, allocate space for the ASCII NULL character */

bufferHandle = (ViBuf)malloc(MAX_CNT+1);

/* Tell the driver what function to call on an event */

status = viInstallHandler(gpibSesn, VI_EVENT_SERVICE_REQ, myCallback,

bufferHandle);

/* Enable the driver to detect events */

status = viEnableEvent(gpibSesn, VI_EVENT_SERVICE_REQ, VI_HNDLR,

VI_NULL);

status = viEnableEvent(gpibSesn, VI_EVENT_IO_COMPLETION, VI_QUEUE,

VI_NULL);

/* Tell the device to begin acquiring a waveform */

status = viWrite(gpibSesn, "E0x51; W1", 9, &retCount);

/* The device asserts SRQ when the waveform is ready */

/* The callback begins reading the data */

/* After the data is read, an I/O completion event occurs */

status = viWaitOnEvent(gpibSesn, VI_EVENT_IO_COMPLETION, 20000,

&etype, &eventContext);

if (status < VI_SUCCESS) {

/* Waveform not received...exiting */

free(bufferHandle);

viClose(defaultRM);

return -1;

}

/* Your code should process the waveform data */

/* Close the event context */

viClose(eventContext);

/* Stop listening for events */

status = viDisableEvent(gpibSesn, VI_ALL_ENABLED_EVENTS,

VI_ALL_MECH);

status = viUninstallHandler(gpibSesn, VI_EVENT_SERVICE_REQ,

myCallback,bufferHandle);

/* Close down the system */

free(bufferHandle);

status = viClose(gpibSesn);
status = viClose(defaultRM);
return 0;

}

Chapter 7 VISA Events

NI-VISA User Manual 7-12 ni.com

The Life of the Event Context

The event context that the VISA driver generates when an event occurs is

a data object that contains the information about the event. Because it is

more than just a simple variable, memory allocation and deallocation

becomes important.

Event Context with the Queuing Mechanism
When you use the queuing mechanism, the event context is returned when

you call viWaitOnEvent(). The VISA driver has created this data

structure, but it cannot destroy it until you tell it to. For this reason, in VISA

you call viClose() on the event context so the driver can free the memory

for you. Always remember to call viClose() when you are done with the

event.

If you know the type of event you are receiving, and the event does not

provide any useful information to your application other than whether it

actually occurred, you can pass VI_NULL as the outEventType and

eventContext parameters as shown in the following example:

status = viWaitOnEvent(gpibSesn, VI_EVENT_SERVICE_REQ, 5000,

VI_NULL, VI_NULL);

In this case, VISA automatically closes the event data structure rather than

returning it to you. Calling viClose() on the event context is therefore

both unnecessary and incorrect because VISA would not have returned the

event context to you.

Event Context with the Callback Mechanism
In the case of callbacks, the event is passed to you in a function, so the

VISA driver has a chance to destroy it when the function ends. This has two

important repercussions. First, you do not need to call viClose() on the

event inside the callback function. Indeed, calling this operation on the

event could lead to serious problems because VISA will access the event

(to close it) when your callback returns. Secondly, the event itself has a life

only as long as the callback function is executing. Therefore, if you want to

keep any information about the event after the callback function, you

should use viGetAttribute() to retrieve the information for storage.

Any references to the event itself becomes invalid when the callback

function ends.

Chapter 7 VISA Events

© National Instruments Corporation 7-13 NI-VISA User Manual

Exception Handling

By using the VISA event VI_EVENT_EXCEPTION, you can have one point

in your code that traps all errors and handles them appropriately. This

means that after you install and enable your VISA exception handler, you

do not have to check the return status from each operation, which makes the

code easier to read and maintain. How an application handles error codes

is specific to both the device and the application. For one application, an

error could mean different things from different devices, and might even

be ignored under certain circumstances; for another, any error could always

be fatal.

For an application that needs to treat all errors as fatal, one possible use for

this event type would be to print out a debug message and then exit the

application. Because the method of installing the handler and then enabling

the event has already been covered, the following code segment shows only

the handler itself:

ViStatus _VI_FUNCH myEventHandler (ViSession vi, ViEventType etype,

ViEvent eventContext, ViAddr uHandle)

{

ViChar rsrcName[256], operName[256];

ViStatus stat;

ViSession rm;

if (etype == VI_EVENT_EXCEPTION) {

viGetAttribute(vi,VI_ATTR_RSRC_NAME,rsrcName);

viGetAttribute(eventContext,VI_ATTR_OPER_NAME,operName);

viGetAttribute(eventContext,VI_ATTR_STATUS,&stat);

printf(

"Session 0x%08lX to resource %s caused error 0x%08lX in operation %s.\n",

vi,rsrcName,stat,operName);

/* Use this code only if you will not return control to VISA */

viGetAttribute(vi,VI_ATTR_RM_SESSION,&rm);

viClose(eventContext);

viClose(vi);

viClose(rm);

exit(-1); /* exit the application immediately */

}

/* code for other event types */

return VI_SUCCESS;

}

Chapter 7 VISA Events

NI-VISA User Manual 7-14 ni.com

If you wanted just to print out a message, you would leave out the code that

closes the objects and exits. Notice that in this code segment, the event

object is closed inside of the callback, even though we just recommended

in the previous section that you not do this! The reason that we do it here is

that the code will never return control to VISA—calling exit()will return

control to the operation system instead. This is the only case where you

should ever invoke viClose() within a callback.

Another (more advanced) use of this event type is for throwing C++

exceptions. Because VISA exception event handlers are invoked in the

context of the same thread in which the error condition occurs, you can

safely throw a C++ exception from the VISA handler. Like the example

above, you would invoke viClose() on the exception event (but you

would probably not close the actual session or its resource manager

session). You would also need to include the information about the VISA

exception (for example, the status code) in your own exception class (of the

type that you throw), since this will not be available once the VISA event

is closed.

Throwing C++ exceptions introduces several issues to consider. First, if

you have mixed C and C++ code in your application, this could introduce

memory leaks in cases where C functions allocate local memory on the

heap rather than the stack. Second, if you use asynchronous operations, an

exception is thrown only if the error occurs before the operation is posted

(for example, if the error generated is VI_ERROR_QUEUE_ERROR). If the

error occurs during the operation itself, the status is returned as part of the

VI_EVENT_IO_COMPLETION event. This is important because that event

may occur in a separate thread, due to the nature of asynchronous I/O.

Therefore, you should not use asynchronous operations if you wish to

throw C++ exceptions from your handler.

© National Instruments Corporation 8-1 NI-VISA User Manual

8
VISA Locks

This chapter describes how to use locks in VISA.

Introduction

VISA introduces locks for access control of resources. In VISA,

applications can open multiple sessions to a resource simultaneously and

can access the resource through these different sessions concurrently. In

some cases, applications accessing a resource must restrict other sessions

from accessing that resource. For example, an application may need to

execute a write and a read operation as a single step so that no other

operations intervene between the write and read operations. The

application can lock the resource before invoking the write operation and

unlock it after the read operation, to execute them as a single step. VISA

defines a locking mechanism to restrict accesses to resources for such

special circumstances.

The VISA locking mechanism enforces arbitration of accesses to resources

on an individual basis. If a session locks a resource, operations invoked by

other sessions are serviced or returned with a locking error, depending on

the operation and the type of lock used.

Lock Types

VISA defines two different types, or modes, of locks: exclusive and

shared locks, which are denoted by VI_EXCLUSIVE_LOCK and

VI_SHARED_LOCK, respectively. viLock() is used to acquire a lock on

a resource, and viUnlock() is used to release the lock.

If a session has an exclusive lock, other sessions cannot modify global

attributes or invoke operations, but can still get attributes and set local

attributes. If the session has a shared lock, other sessions that have shared

locks can also modify global attributes and invoke operations.

Regardless of which type of lock a session has, if the session is closed

without first being unlocked, VISA automatically performs a viUnlock()

on that session.

Chapter 8 VISA Locks

NI-VISA User Manual 8-2 ni.com

Lock Sharing
The locking mechanism in VISA is session based, not thread based.

Therefore, if multiple threads share the same session, they have the same

privileges for accessing the resource. VISA locks will not provide mutual

exclusion in this scenario. However, some applications might have separate

sessions to a resource for these multiple threads, and might require that all

the sessions in the application have the same privileges as the session that

locked the resource. In other cases, there might be a need to share locks

among sessions in different applications. Essentially, sessions that have a

lock to a resource may share the lock with certain sessions, and exclude

access from other sessions.

This section discusses the mechanism that makes it possible to share locks.

VISA defines a lock type—VI_SHARED_LOCK—that gives exclusive

access privileges to a session, along with the capability to share these

exclusive privileges at the discretion of the original session. When locking

sessions with a shared lock, the locking session gains an access key. The

session can then share this lock with any other session by passing the access

key. VISA allows user applications to specify an access key to be used for

lock sharing, or VISA can generate the access key for an application.

If the application chooses to specify the accessKey, other sessions that

want access to the resource must choose the same unique accessKey for

locking the resource. Otherwise, when VISA generates the accessKey, the

session that gained the shared lock should make the accessKey available to

other sessions for sharing access to the locked resource. Before the other

sessions can access the locked resource, they must acquire the lock using

the same access key in the accessKey parameter of the viLock()

operation. Invoking viLock() with the same access key will register the

new session with the same access privileges as the original session. All

sessions that share a resource should synchronize their accesses to maintain

a consistent state of the resource. The following code is an example of

obtaining a shared lock with a requested name:

status = viLock(instr, VI_SHARED_LOCK, 15000, "MyLockName", accessKey);

This example attempts to acquire a shared lock with "MyLockName" as the

requestedKey and a timeout of 15 s. If the call is successful, accessKey

will contain "MyLockName". If you want to have VISA generate a key,

simply pass VI_NULL in place of "MyLockName" and VISA will return a

unique key in accessKey that other sessions can use for locking the

resource.

Chapter 8 VISA Locks

© National Instruments Corporation 8-3 NI-VISA User Manual

Acquiring an Exclusive Lock While Owning a Shared Lock
When multiple sessions have acquired a shared lock, VISA allows one of

the sessions to acquire an exclusive lock as well as the shared lock it is

holding. That is, a session holding a shared lock can also acquire an

exclusive lock using the viLock() operation. The session holding both the

exclusive and shared lock has the same access privileges it had when it was

holding only the shared lock. However, the exclusive lock precludes other

sessions holding the shared lock from accessing the locked resource. When

the session holding the exclusive lock unlocks the resource using the

viUnlock() operation, all the sessions (including the one that acquired

the exclusive lock) again have all the access privileges associated with the

shared lock. This circumstance is useful when you need to synchronize

multiple sessions holding a shared lock. A session holding an exclusive and

shared lock can also be useful when one of the sessions needs to execute in

a critical section.

Nested Locks
VISA supports nested locking. That is, a session can lock the same resource

multiple times (for the same lock type). Unlocking the resource requires an

equal number of invocations of the viUnlock() operation. Each session

maintains a separate lock count for each type of locks. Repeated

invocations of the viLock() operation for the same session increase the

appropriate lock count, depending on the type of lock requested. In the case

of shared locks, nesting viLock() calls return with the same accessKey

every time. In the case of exclusive locks, viLock() does not return an

accessKey, regardless of whether it is nested. For each invocation of

viUnlock(), the lock count is decremented. VISA unlocks a resource

only when the lock count equals 0.

Locking Sample Code

Example 8-1 uses a shared lock because two sessions are opened for

performing trigger operations. The first session receives triggers and the

second session sources triggers. A shared lock is needed because an

exclusive lock would prohibit the other session from accessing the same

resource. If viWaitOnEvent() fails, this example performs a viClose()

on the resource manager without unlocking or closing the sessions. When

the resource manager session closes, all sessions that were opened using it

automatically close as well. Likewise, remember that closing a session that

has any lock results in automatically releasing its lock(s).

Chapter 8 VISA Locks

NI-VISA User Manual 8-4 ni.com

Note This example shows C source code. You can find the same example in Visual Basic

syntax in Appendix A, Visual Basic Examples.

Example 8-1
#include "visa.h"

#define MAX_COUNT 128

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM; /* Communication channels */

ViSession instrIN, instrOUT; /* Communication channels */

ViChar accKey[VI_FIND_BUFLEN]; /* Access key for lock */

ViByte buf[MAX_COUNT]; /* To store device data */

ViEventType etype; /* To identify event */

ViEvent event; /* To hold event info */

ViUInt32 retCount; /* To hold byte count */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communications with VXI Device at Logical Addr 16 */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

&instrIN);

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

&instrOUT);

/* We open two sessions to the same device */

/* One session is used to assert triggers on TTL channel 4 */

/* The second is used to receive triggers on TTL channel 5 */

/* Lock first session as shared, have VISA generate the key */

/* Then lock the second session with the same access key */

status = viLock(instrIN, VI_SHARED_LOCK, 5000, VI_NULL, accKey);

status = viLock(instrOUT, VI_SHARED_LOCK, VI_TMO_IMMEDIATE, accKey,

accKey);

Chapter 8 VISA Locks

© National Instruments Corporation 8-5 NI-VISA User Manual

/* Set trigger channel for sessions */

status = viSetAttribute(instrIN, VI_ATTR_TRIG_ID,VI_TRIG_TTL5);

status = viSetAttribute(instrOUT,VI_ATTR_TRIG_ID,VI_TRIG_TTL4);

/* Enable input session for trigger events */

status = viEnableEvent(instrIN, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

/* Assert trigger to tell device to start sampling */

status = viAssertTrigger(instrOUT, VI_TRIG_PROT_DEFAULT);

/* Device will respond with a trigger when data is ready */

if ((status = viWaitOnEvent(instrIN, VI_EVENT_TRIG, 20000, &etype,

&event)) < VI_SUCCESS) {

viClose(defaultRM);

return -1;

}

/* Close the event */

status = viClose(event);

/* Read data from the device */

status = viRead(instrIN, buf, MAX_COUNT, &retCount);

/* Your code should process the data */

/* Unlock the sessions */

status = viUnlock(instrIN);

status = viUnlock(instrOUT);

/* Close down the system */

status = viClose(instrIN);

status = viClose(instrOUT);

status = viClose(defaultRM);

return 0;

}

© National Instruments Corporation 9-1 NI-VISA User Manual

9
Interface Specific Information

Although one of the benefits of VISA is an interface-independent API,

there are times when you must understand the details of the specific

interface with which you are working. This chapter provides additional

information about each of the hardware interface types that NI-VISA

currently supports.

GPIB

VISA supports programming IEEE-488.1 and IEEE-488.2 devices, and

includes complete device-level and board-level functionality.

Introduction to Programming GPIB Devices in VISA
For novice GPIB users, the VISA API presents a simple interface for device

communication. Most GPIB devices allow you to set a primary address via

either a DIP switch or via front panel selectors. This primary address is the

same one used in the VISA resource string to viOpen(). The simplest and

most common GPIB resource string is "GPIB::<primary

address>::INSTR". Recall that the "INSTR" resource class informs

VISA that you are doing instrument (device) communication. Most GPIB

programs perform simple message-based transfers (write command, read

response). For more information about VISA message-based functionality,

see Chapter 5, Message-Based Communication.

There are several VISA attributes specific to the GPIB INSTR resource.

The VI_ATTR_GPIB_PRIMARY_ADDR and

VI_ATTR_GPIB_SECONDARY_ADDR attributes are read-only, and these

return the same values that were used in the resource string passed to

viOpen(). If the specified device does not have a secondary address, that

attribute query will succeed and return a value of –1. The attribute

VI_ATTR_GPIB_READDR_EN controls whether each message to or from

the same device will cause the driver to readdress the device. This attribute

is true (enabled) by default, and disabling this attribute (setting it to false)

may provide a slight performance increase by removing unnecessary

bus-level readdressing to the same device. The attribute

VI_ATTR_GPIB_UNADDR_EN controls whether the driver will follow each

message to or from the specified device with untalk (UNT) and unlisten

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-2 ni.com

(UNL) commands. This attribute is false (disabled) by default, which is the

most optimal setting. Changing the values of these attributes may be

necessary for certain older non-IEEE-488.2-compliant devices.

More complex GPIB systems often include multiple GPIB controllers

(or boards) and devices with both primary and secondary addresses. The

canonical form of a complex GPIB instrument resource string is

"GPIB<controller>::<primary address>::<secondary

address>::INSTR". The controller number is the same as used in the

GPIB configuration utility (MAX on Windows, the GPIB Control Panel

applet on Macintosh, or ibconf on UNIX). If not specified, the controller

number defaults to 0.

Comparison Between NI-VISA and NI-488 APIs
For GPIB users who are familiar with NI-488, the following table shows

several common, but not all, NI-488 device-level function calls and the

corresponding VISA operations. As you can see, the APIs are almost

identical. The difference is that VISA is extensible to additional hardware

interfaces. Therefore, if you are programming multiple devices that

communicate over more than one bus type, it might be easier to use VISA

for your entire system.

Table 9-1. NI-VISA and NI-488 Functions and Operations

C NI-488

Device Function

C VISA

INSTR Operation

LabVIEW NI-488

Device Function

LabVIEW VISA

INSTR Operation

ibdev viOpen <no equivalent>

VISA Open

ibonl viClose <no equivalent>

VISA Close

ibwrt viWrite

GPIB Write VISA Write

ibrd viRead

GPIB Read VISA Read

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-3 NI-VISA User Manual

One difference in the event mechanism between NI-488 and VISA is worth

noting. In VISA, you must always call viEnableEvent() prior to being

allowed to receive events. While this was not the case with NI-488, this is

required in VISA to avoid the race condition of trying to wait on events for

which the hardware may not be enabled. Thus, you should enable the

session for events not just immediately before calling viWaitOnEvent(),

but before the device has even been triggered or configured to generate a

service request event.

Board-Level Programming
Advanced users occasionally need to control multiple devices

simultaneously or need to have multiple controllers connected together in

a single system. Power GPIB programmers use interface-level (bus-level)

commands to do this. The corresponding VISA resource for this is the

GPIB INTFC resource, and the form of the resource string is

"GPIB<controller>::INTFC". This allows raw message transfers in

which the driver does not perform automatic device addressing, as it does

with INSTR. Also, with the INTFC resource, the controller can directly

ibclr viClear

GPIB Clear VISA Clear

ibtrg viAssertTrigger

GPIB Trigger VISA Assert Trigger

ibrsp viReadSTB

GPIB Serial Poll VISA Read STB

ibwait viWaitOnEvent

Wait for GPIB RQS Wait for RQS

ibconfig viSetAttribute

GPIB Initialization VISA Property Node

Table 9-1. NI-VISA and NI-488 Functions and Operations (Continued)

C NI-488

Device Function

C VISA

INSTR Operation

LabVIEW NI-488

Device Function

LabVIEW VISA

INSTR Operation

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-4 ni.com

query and manipulate specific lines on the bus such as SRQ or NDAC, and

also pass control to other devices that have controller capability.

For users who are familiar with NI-488, the following table shows several

common, but not all, NI-488 board-level function calls and the

corresponding VISA operations. As in the previous table, you can see that

the APIs are almost identical.

For users who need to write an application that will run inside a device,

such as firmware, the INTFC resource provides the necessary functionality.

The device status byte attribute is useful for reflecting application status.

GPIB Summary
Since both of these APIs are very similar and both provide the same GPIB

functionality, which should you choose? If you are already familiar with

NI-488 and are programming only GPIB devices, then there is not a strong

reason for you to change to VISA. NI-488 is supported in all major

application development environments, including LabVIEW and

Measurement Studio. However, if you have instruments with more than

one type of port or connection available to them, then using VISA might be

advantageous because you can use the same API regardless of the

connection medium.

Table 9-2. Board-Level Programming Functions and Operations

NI-488 board function VISA INTFC Operation

ibfind viOpen

ibonl viClose

ibwrt viWrite

ibrd viRead

ibwait viWaitOnEvent

ibconfig viSetAttribute

ibask, ibwait viGetAttribute

ibcmd viGpibCommand

ibsre viGpibControlREN

ibgts, ibcac viGpibControlATN

ibsic viGpibSendIFC

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-5 NI-VISA User Manual

Finally, many modern instrument drivers rely on VISA for their I/O needs,

so if you are using instrument drivers, then you need to at least install

NI-VISA for them to be able to execute.

GPIB-VXI

VISA supports programming VXI devices connected through a GPIB-VXI

controller. The functionality is a subset of the VISA API for VXI devices

connected through a native VXI controller.

Introduction to Programming GPIB-VXI Devices in VISA
For new GPIB-VXI users, this controller makes VXI message-based

devices appear as though they are GPIB devices with secondary addresses.

This initially provided an easy transition into VXI for customers with

existing GPIB systems, because they could use the same NI-488 API to

control both types of instruments. However, this proved problematic for

VXI register-based devices, because their addresses are not mapped

directly into the GPIB system.

For controlling message-based VXI devices through a GPIB-VXI, the

biggest difference between a program using NI-488 and one using VISA is

in the calls made at the beginning and the end. For register-based devices,

the differences are more significant. This section first discusses the basic

changes common to both types of devices, then discusses some of the

changes required for register-based programming.

For message-based programming, an NI-488 program would typically call

ibdev() with the VXI device’s primary and secondary GPIB addresses to

get a handle to the specific device. In VISA, a program calls viOpen()

with the VXI device’s logical address (which is a more natural address

because the device is VXI) to get a handle to it. The simplest and most

common GPIB-VXI resource string is "GPIB-VXI::<logical

address>::INSTR". Once you have a session to the VXI device, the

NI-488 and VISA calls to communicate with the device are very similar, as

covered above in the Comparison between NI-VISA and NI-488 APIs

section.

Register-based Programming with the GPIB-VXI
Register-based programming does not have a straightforward mapping.

Because register accesses using the GPIB-VXI involve sending requests to

the controller itself (using the local command set), NI-488 programs would

use ibdev() with the GPIB-VXI controller’s primary and secondary

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-6 ni.com

GPIB addresses. In VISA, you call viOpen() with the VXI device’s

logical address, the same method for both message-based and

register-based devices, and VISA handles sending the necessary messages

to the controller. For programming the device, the following NI-488

messages and VISA operations are roughly equivalent:

Notice that with the INSTR register access operations viOut16() and

viIn16(), you pass a device-relative offset in the specified address space.

This is different from the GPIB-VXI/C local command set, which accepts

absolute addresses. If your application currently uses absolute addressing

and you do not want to convert to device-relative offsets, you may consider

the MEMACC resource, which accepts absolute addressing. The form of

the resource string for that class is "GPIB-VXI<system>::MEMACC". You

can also use the operations viOut8() and viIn8() to perform 8-bit

accesses, which is not a feature supported by the local command set. VISA

also defines 32-bit operations and accesses to A32 space, but because these

are not implemented by the GPIB-VXI/C itself, they return errors.

Table 9-3. Register-based Programming Messages and Operations

NI-488 Message VISA Operation

"Laddrs?" or

"DLAD?"

viFindRsrc()

"RMentry?" or

"DINF?"

viGetAttribute()

"Cmdr?" viGetAttribute() with VI_ATTR_CMDR_LA

"LaSaddr?" viGetAttribute() with

VI_ATTR_GPIB_SECONDARY_ADDR

"Primary?" viGetAttribute() with

VI_ATTR_GPIB_PRIMARY_ADDR

"WREG" or

"A16"

viOut16() with VI_A16_SPACE

"RREG?" or

"A16?"

viIn16() with VI_A16_SPACE

"A24" viOut16() with VI_A24_SPACE

"A24?" viIn16() with VI_A24_SPACE

"SrcTrig" viAssertTrigger()

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-7 NI-VISA User Manual

If you have used the DMAmove code instrument in the past, you can instead

use the viMoveInxx() and viMoveOutxx() operations instead. They

make use of the GPIB-VXI’s DMA functionality, but require only a single

operation call, instead of the multiple calls required to send the command

and data blocks and then poll waiting for the operation to complete. Using

VISA to move blocks of data also means that you no longer need to load

the DMAmove code instrument, as NI-VISA automatically downloads a

separate code instrument to handle these and other operations.

Additional Programming Issues
For advanced users, the GPIB-VXI Mainframe Backplane resource

encapsulates the operations and properties of each mainframe (or chassis)

in a VXIbus system. This resource type lets a controller query and

manipulate specific lines on a specific mainframe in a given VXI

system. The form of the resource string for this class is

"GPIB-VXI<system>::BACKPLANE". Services in this resource class

allow the user to map, unmap, and assert hardware triggers, and also to

assert various utility signals.

Although the VISA API is almost identical for VXI and GPIB-VXI, the

GPIB-VXI implements only a subset of this functionality. As mentioned

above, the GPIB-VXI does not support 32-bit register accesses, nor does it

support A32 space. The attributes VI_ATTR_SRC_ACCESS_PRIV,

VI_ATTR_DEST_ACCESS_PRIV, and VI_ATTR_WIN_ACCESS_PRIV can

only be set to the value VI_DATA_PRIV; other address modifiers are not

supported. The attributes VI_ATTR_SRC_BYTE_ORDER,

VI_ATTR_DEST_BYTE_ORDER, and VI_ATTR_WIN_BYTE_ORDER can

only be set to the value VI_BIG_ENDIAN; little endian transfers are not

supported. Also, while the GPIB-VXI does support service request events,

it does not support receiving the following events: miscellaneous VXI

signals or interrupts, triggers, SYSFAIL, or SYSRESET.

If you have more than one GPIB-VXI controller in your system, or if you

change the primary address of a GPIB-VXI controller from its default

(1 for the National Instruments GPIB-VXI/C), or if you have a GPIB-VXI

controller from another vendor, then you need to configure NI-VISA to find

such a controller. Use the NI-VISA configuration utility (MAX on

Windows, visaconf on UNIX) and explicitly add a GPIB-VXI controller.

You will be prompted for the GPIB controller number to which the

GPIB-VXI is connected (usually 0), a unique GPIB-VXI controller number

(which you are free to assign), and the primary and secondary addresses to

which you have configured this GPIB-VXI controller.

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-8 ni.com

GPIB-VXI Summary

In summary, using VISA to program VXI devices controlled by a

GPIB-VXI is no different than if they are controlled with a native VXI

controller such as the PCI-MXI-2 or a VXIpc. Although porting the code

from NI-488 to VISA is not simple in the case of register-based

programming, it will be code that is compatible with native VXI

controllers.

VXI

This topic introduces you to the concepts of VXI (VME eXtensions for

Instrumentation), VME, MXI (Multisystem eXtension Interface), and how

you can control these buses using VISA.

Introduction to Programming VXI Devices in VISA
A VXI device has a unique logical address, which serves as a means of

referencing the device in the VXI system. This logical address is analogous

to a GPIB primary address. VXI uses an 8-bit logical address, allowing for

up to 256 VXI devices in a VXI system. VISA addresses a specific VXI

device with a resource string identifying the VXI system that the device is

in and the logical address of this particular device:

"VXI<system>::<logical address>::INSTR".

Each VXI device has a specific set of registers, called configuration

registers. See the NI-VXI on-line help for a diagram. These registers are

located in the upper 16KB of the 64KB A16 address space. The logical

address of a VXI device determines the location of the device’s

configuration registers in the 16KB area reserved by VXI. The rest of

A16 space is available for VME devices. The 16MB A24 address space and

the 4GB A32 address space are available for VXI and VME devices. Each

VXI system has a Resource Manager which is responsible for allocating

each device’s requests in the appropriate address space. When you open a

VXI/VME INSTR resource in VISA, you have access to registers in the

spaces that have been allocated by the Resource Manager for the device

corresponding to that INSTR resource. Devices which provide only this

minimal level of capability are called register-based devices, and support

VISA operations such as viInX/viOutX (read/write a single register),

viMoveInX/viMoveOutX (perform a block move to read or write a block

of registers), viMapAddress (map a region of VXI memory into your

application for low-level access), and others. These operations are

discussed in more detail in Chapter 6, Register-Based Communication.

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-9 NI-VISA User Manual

In addition to register-based devices, the VXIbus specification also defines

message-based devices, which are required to have communication

registers in addition to configuration registers. All message-based VXIbus

devices, regardless of the manufacturer, can communicate using the

VXI-specified Word Serial Protocol. In addition, you can establish

higher-performance communication channels, such as the shared-memory

channels in Fast Data Channel (FDC), to take advantage of the VXIbus

bandwidth capabilities (a diagram of these protocols is shown in the

NI-VXI on-line help).

The VXIbus Word Serial Protocol is a standardized message-passing

protocol. This protocol is functionally very similar to the IEEE 488

protocol, which transfers data messages to and from devices one byte at a

time. Thus, VXI message-based devices communicate in a fashion very

similar to GPIB instruments. In general, message-based devices typically

contain a higher level of local intelligence that uses or requires a higher

level of communication. In addition, the Word Serial Protocol has special

messages for configuring message-based devices. All VXI message-based

devices are required to support the Word Serial Protocol and support a basic

level of standard communication. There are even higher level message

based protocols, such as Standard Commands for Programmable

Instrumentation (SCPI); these are not required protocols, and not all VXI

message-based devices support them. Message-based VXI devices support

VISA operations such as viRead/viWrite (Word Serial read/write

buffer), viClear (Word Serial clear), viPrintf/viScanf (formatted

I/O), viAssertTrigger (Word Serial trigger), viVxiCommandQuery

(Word Serial command and/or response), and others. These operations are

discussed in more detail in Chapter 5, Message-Based Communication.

VXI/ VME Interrupts and Asynchronous Events in VISA
VXI/VME devices can communicate asynchronous status and events

through VXI/VME interrupt events (VI_EVENT_VXI_VME_INTR) or by

using specific messages called signals (VI_EVENT_VXI_SIGP). Since VXI

interrupts can be treated just like signals, a VISA application for VXI

devices will typically just use VI_EVENT_VXI_SIGP to handle both

interrupts and signals, regardless of which is actually sent in hardware. The

main difference is that the status/ID returned as an attribute of the event is

16-bit for VI_EVENT_VXI_SIGP and 32-bit for

VI_EVENT_VXI_VME_INTR.

The VXI specification also makes use of triggering (VI_EVENT_TRIG) to

synchronize events between VXI devices. VXI devices support these events

in the INSTR resource through the standard VISA operations such as

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-10 ni.com

viEnableEvent, as discussed in Chapter 7, VISA Events. Since devices

can both send and receive triggers, the attribute VI_ATTR_TRIG_ID

specifies the line used for either. You cannot use the same session to both

assert and receive triggers; for this, you need multiple sessions.

Performing Arbitrary Access to VXI Memory with VISA
VISA provides the VXI MEMACC resource class to allow access to

arbitrary locations in VXI address spaces. When you open a VXI INSTR

resource, VISA automatically performs all register I/O in the address

spaces used by that device relative to that device’s memory region, and will

prevent accidental access outside of the region allocated for your device. If

you need to access a memory region not associated with a particular device,

or use a low-level scheme for performing your register I/O that uses

absolute addresses, you should use the MEMACC resource which provides

this capability. When using a MEMACC resource, all address parameters

are absolute within the given address space; knowing a device’s base

address is both required by and relevant to the user. The VISA resource

string format for this is "VXI<system>::MEMACC". You can still use the

same VISA operations for performing register I/O enumerated above, such

as viInX/viOutX, viMoveInX/viMoveOutX, and viMapAddress.

Other VXI Resource Classes and VISA
For certain applications, such as asserting interrupts or triggers, it may be

necessary to access the VXI mainframe or chassis (“backplane”) directly.

VISA provides the BACKPLANE resource for this purpose, where each

VXI mainframe can is accessed using the VISA resource string

"VXI<system>::<mainframe number>::BACKPLANE". The

BACKPLANE resource encapsulates the operations and properties of each

mainframe (or chassis) in the VXI system, and lets a controller query and

manipulate specific lines on a specific mainframe in a given VXI system.

The operations viMapTrigger, viUnmapTrigger, viAssertTrigger,

and the event VI_EVENT_TRIG supported on this resource allow the user

to map, unmap, assert, and receive hardware triggers. You can also use

viAssertUtilSignal, viAssertIntrSignal,

VI_EVENT_VXI_VME_SYSFAIL, and VI_EVENT_VXI_VME_SYSRESET to

assert and receive various utility and interrupt signals. This includes

advanced functionality that might not be available in all implementations

or on all controllers.

It is possible to configure your VXI controller to be a Word Serial servant

in your VXI system, with another controller as its commander. For such

situations, VISA provides another class of asynchronous events associated

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-11 NI-VISA User Manual

with the Word Serial protocol: the Word Serial Servant protocol. Using the

VISA SERVANT resource, your device can act as a servant, which means

that it can use VI_EVENT_IO_COMPLETION to respond to requests from a

Word Serial commander. This resource is accessed using

"VXI<system>::SERVANT" and encapsulates the operations and

properties of the capabilities of a device and a device’s view of the system

in which it exists. The SERVANT resource exposes the device-side

functionality of the device associated with the given resource. This

functionality is somewhat unusual for a VXI controller and in most cases

you will never need to use the SERVANT resource. The SERVANT

resource provides the complementary functions for the message-based

operations discussed above, and therefore implements the servant side

viRead, viWrite, etc. for buffer reads and writes, viPrintf, viScanf,

etc. for formatted I/O, and asynchronous message-based notification

events. The resource also provides the ability to assert and receive interrupt

and utility signals.

Comparison Between NI-VISA and NI-VXI APIs
As a VXI programmer you may be familiar with the NI-VXI API, but

National Instruments recommends that all new VXI applications be

developed in NI-VISA, which provides additional flexibility, features, and

performance. Fortunately, translating NI-VXI API code to VISA is made

fairly simple by the close correlation between the two APIs. For users who

are familiar with the NI-VXI API, the following table shows several

common, but not all, NI-VXI API function calls and the corresponding

VISA operations. You can see that the APIs are almost identical. The

difference is that VISA is extensible to additional hardware interfaces.

Therefore, if you are programming multiple devices that communicate over

more than one bus type, it might be easier to use VISA for your entire

system.

Table 9-4. NI-VISA and NI-VXI Functions and Operations

C NI-VXI

Function

C VISA

INSTR Operation

LabVIEW NI-VXI

Function

LabVIEW VISA

INSTR Operation

InitVXIlibrary viOpenDefaultRM

viOpen

InitVXIlibrary VISA Open

CloseVXIlibrary viClose

CloseVXIlibrary VISA Close

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-12 ni.com

WSwrt viWrite

WSwrt VISA Write

WSrd viRead

WSrd VISA Read

WSclr viClear

WSclr VISA Clear

WStrg,

SrcTrig

viAssertTrigger

WStrg, SrcTrig VISA Assert Trigger

VXIin, VXIout viInX, OutX

VXIin, VXIout VISA InX,

VISAOutX

VXImove viMoveInX,

viMoveOutX

VXImove VISA Move InX,

VISA Move OutX

MapVXIAddress viMapAddress

MapVXIAddress VISA Map Address

AssertVXIint viAssertIntrSignal

AssertVXIint VISA Assert

Interrupt

EnableVXItoSignalInt viEnableEvent

EnableVXItoSignalInt VISA Enable Event

Table 9-4. NI-VISA and NI-VXI Functions and Operations (Continued)

C NI-VXI

Function

C VISA

INSTR Operation

LabVIEW NI-VXI

Function

LabVIEW VISA

INSTR Operation

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-13 NI-VISA User Manual

An important difference between the NI-VXI API and VISA is the scope of

the effect of certain function calls. In the NI-VXI API, many functions

(notably, enabling for events) acted on the VXI controller directly and

therefore applied to the entire VXI system. Since VISA is generally

device-oriented rather than controller-oriented, the corresponding VISA

INSTR operations act on a specific VXI device, not the entire system.

Summary of VXI in VISA
Since the VISA API is very similar to the NI-VXI API and both provide

almost the same VXI functionality, which should you choose? National

Instruments recommends using the VISA API because it allows you to

control multiple VXI systems (controllers) from a single computer,

provides a more flexible API that allows you to move to other interfaces

if the application demands it, and usually provides equal or better

performance. However, if your application already uses NI-VXI and you

are programming only VXI devices, then there is not a strong reason for

you to change the application to VISA. For new applications, though, VISA

is almost always preferred. Finally, most modern instrument drivers rely on

VISA for their I/O needs, so if you are using instrument drivers, then you

need to at least install NI-VISA for them to be able to execute.

PXI

NI-VISA supports programming PCI and PXI (PCI eXtensions for

Instrumentation) devices plugged into the local PC or PXI chassis, or PXI

devices in a remote chassis connected via a remote controller such as

MXI-3.

WaitForSignal viWaitOnEvent

WaitForSignal VISA Wait on Event

GetDevInfo viGetAttribute

GetDevInfoLong VISA Property Node

Table 9-4. NI-VISA and NI-VXI Functions and Operations (Continued)

C NI-VXI

Function

C VISA

INSTR Operation

LabVIEW NI-VXI

Function

LabVIEW VISA

INSTR Operation

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-14 ni.com

Introduction to Programming PXI Devices in NI-VISA
Users who are writing an application for a PCI or PXI card can use

NI-VISA to gain full access to all the device’s configuration, I/O, and

memory mapped registers. NI-VISA currently supports the PXI interface

only on Windows and LabVIEW RT. The supported functionality is

identical for PCI and PXI cards. The terms PCI and PXI are used somewhat

interchangeably in this section; technically, PXI is a rigorously defined

extension of PCI.

To use PXI or PCI devices in your program, make sure you define the

macro "NIVISA_PXI" before including "visa.h".

A PXI resource is uniquely identified in the system by 3 characteristics: the

PCI bus number on which it is located, the PCI device number it is

assigned, and the function number of the device. For single-function

devices, the function number is always 0 and is optional; for multi-function

devices, the function number is device-specific but will be in the range 0–7.

The device number is associated with the slot number, but these numbers

are usually different. The bus number of a device is consistent from one

system boot to the next, unless bridge devices are inserted somewhere

between the device and the system’s CPU. The canonical resource string

that you pass to viOpen() for a PCI or PXI device is

"PXI<bus>::<device>::<function>::INSTR", but based on the

previous explanation, this can be difficult to determine.

A better way to determine the resource string is to query the system with

viFindRsrc() and use or display the resource(s) returned from that

operation. Each PCI device has a vendor code and a model code; this is

much the same as VXI does, although the vendor ID’s are different. You can

create a query to search for devices of a particular attribute value; in this

case, you can search for a specific vendor ID and model code. For example,

the PCI vendor ID for National Instruments is 0x1093. If NI made a device

with the model code 0xBEEF, you could call viFindRsrc() with the

expression "PXI?*INSTR{VI_ATTR_MANF_ID==0x1093 &&

VI_ATTR_MODEL_CODE==0xBEEF}". In many cases the returned list has

one or only a few devices.

User Level Functionality
An INSTR session to a PCI or PXI device provides the same register level

programming functionality as in VXI. NI-VISA supports both high-level

and low-level accesses, as discussed in Chapter 6, Register-Based

Communication. The valid address spaces for a PXI device are the

configuration registers (VI_PXI_CFG_SPACE) and the 6 Base Address

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-15 NI-VISA User Manual

Registers (VI_PXI_BAR0_SPACE - VI_PXI_BAR5_SPACE). A device may

support any or all of the BAR’s. This information is device dependent but

can be queried through the attributes VI_ATTR_PXI_MEM_TYPE_BAR0 -

VI_ATTR_PXI_MEM_TYPE_BAR5. The values for this attribute are none

(0), memory mapped (1), or I/O (2). If the value is memory mapped or I/O,

you can also query the appropriate attributes for the base and size of each

supported region.

In addition to register accesses, NI-VISA supports the event

VI_EVENT_PXI_INTR to provide notification to an application that the

specified device has generated a PCI interrupt. This event allows a user to

write an entire device driver or instrument driver at the user level, without

having to write any kernel code.

Configuring NI-VISA to Recognize a PXI Device
Each PCI device must have a kernel level driver associated with it; this is

done in Windows via an .inf file. For NI-VISA to recognize your device,

you must run the PXI Driver Development Wizard, available via the Start

menu under National Instruments»VISA.

The wizard first prompts you for basic information NI-VISA needs to

properly locate your PXI instrument. This includes the following:

• Instrument Prefix—The VXIplug&play or IVI instrument driver

prefix for the device.

• PXI Manufacturer ID—This 16-bit value is vendor specific and is

unique among PCI-based device providers. The vendor ID number for

National Instruments, for example, is 0x1093.

• PXI Model Code—The 16-bit device ID value is device specific,

defined by the instrument provider, and required for PCI-based

devices.

• Generates interrupts—Checking this box indicates that you want to

use the VISA event-handling model in response to hardware interrupts

your PXI instrument generates.

In text boxes where numerical information is required, preceding the

number with 0x designates a hexadecimal value. The wizard assumes all

other numeric entries are decimal values.

If you need to handle hardware interrupts, check Generates interrupts and

the wizard guides you through a two-step process. In Step 1, you specify

how your device detects a pending interrupt. This is done via one or more

register accesses, where each access is a single register read or write of a

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-16 ni.com

specified width to a given offset relative to a given address space. In the

wizard, you specify each access as a Read, Write, or Compare.

The Compare operation is essential for determining whether a PCI/PXI

device is interrupting. A Compare operation performs a Read, then applies

a user-specified mask to the result and compares the masked result with

another user-specified value (you specify both of these values in the

wizard). In order to determine whether your device is interrupting, the

Compare operation has an associated result of True or False. NI-VISA

decides that the device is interrupting if and only if the result of all Compare

operations is True. Because NI-VISA relies on the result of the Compare

operation in making this determination, at least one Compare operation

must be present in an interrupt detection sequence for the sequence to be

valid.

In addition to the interrupt detection sequence, NI-VISA also needs the

sequence of register operations required to acknowledge an interrupt

condition for your device; this is Step 2. At interrupt time, if NI-VISA

determines that your device is interrupting (as discussed above), this

second sequence should do whatever is necessary to squelch the interrupt

condition. This sequence is constructed using the same Read, Write, and

Compare operations discussed in Step 1, and individual operations are

entered in an identical manner. Because this sequence should consist of the

minimum operations necessary to turn off an interrupt condition for your

device, the result of any Compare operations, while still valid, are irrelevant

to interrupt acknowledgment. If your device uses ROAK (Release on

Interrupt Acknowledge) interrupts, and the ROAK register was accessed in

the sequence specified by Step 1, this sequence can be left blank.

The wizard will also allow you to enter certain Windows Device Manager

settings; these are cosmetic and do not affect the ability of NI-VISA to

recognize and control your PXI instrument. They are provided as a

convenience, allowing you to more fully customize your instrument driver

package.

When you are done, the PXI Driver Development Wizard generates a

Windows Setup Information (.inf) file for each supported operating

system. Before a PXI device will be visible to NI-VISA, you must use the

.inf files to update the Windows system registry. The procedure for using

an .inf file to update the registry is Windows-version dependent. To

manually install an .inf file on any machine, including the one on which

it was generated, open the appropriate .inf file in a text editor and follow

the instructions on the first few lines at the top.

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-17 NI-VISA User Manual

Using CVI to Install Your Device .inf Files
To support your PXI application on a target machine, you must include

the generated .inf files in your PXI application’s installer. National

Instruments LabWindows/CVI is a convenient development environment

for creating an installer package to redistribute VXIplug&play or IVI

instrument drivers. CVI can also generate a Win32 installation package for

your PXI instrument driver using the Build»Create Distribution Kit

option.

The Create Distribution Kit menu lists several options for customizing an

instrument driver installation. For VISA-based PXI instrument drivers,

follow these steps to create the distribution:

1. Generate the .inf files for your instrument using the PXI Driver

Development Wizard, as discussed above. The files will be

named <prefix><os>, where os is one of the following: _9x

(Windows 95/98/ME), _nt4 (Windows NT 4), _nt5

(Windows 2000/XP), and _rt (LabVIEW Real-Time). Maintaining

these exact file names is important when using CVI to generate a

distribution kit.

2. From the CVI Create Distribution Kit dialog, choose Add Group to

create a new file group for the PXI .inf files. You must name this

group “PXI Setup Files”.

3. The next dialog box will prompt you for the files to add to the PXI

Setup Files group. Add all the .inf files generated by the PXI Setup

Wizard.

4. Verify that the Group Destination for the PXI Setup Files group is the

Application Directory. Also verify that the Relative Path is not enabled

(unchecked).

5. Choose Build to create the distribution kit.

LabWindows/CVI will generate a set of installation files (including

setup.exe) for your driver. You should redistribute all the files it creates

(including the *.msi and *.cab). When this installer is run on a target

machine, the installation script handles the extra steps necessary to register

the PXI device with NI-VISA.

On all Windows operating systems other than NT 4, it may be necessary to

remove the device manually from the Windows Device Manager before

rebooting the system. Specifically, if a PXI device is installed before the

.inf file, Windows will mark the device as “Unknown” and will not

properly associate the NI-VISA driver with it.

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-18 ni.com

PXI Summary
NI-VISA provides a convenient means of accessing advanced functionality

of PCI and PXI devices. The alternative to using NI-VISA for PCI or PXI

device communication is writing a kernel driver. By using NI-VISA, you

avoid having to learn how to write kernel drivers, you avoid having to learn

a different kernel model for each Windows operating system, and you gain

platform independence and portability by scaling to other operating

systems such as LabVIEW RT now and others in the future.

Serial

VISA supports programming Serial devices connected to either an RS-232

or RS-485 controller.

Introduction to Programming Serial Devices in VISA
Serial users have traditionally faced difficulties when porting code from

one platform to another. Each operating system has its own Serial API;

each application development environment has its own Serial API; and all

of these usually differ. The VISA Serial API is consistent across all

supported platforms and all supported ADEs.

The first thing to point out is how to open a given Serial port. The format of

the resource string that you pass to viOpen() is "ASRL<port>::INSTR".

The actual binding of a given resource string to a physical port is platform

dependent. Refer to the documentation and example in Chapter 10,

NI-VISA Platform-Specific and Portability Issues. However,

ASRL1::INSTR and ASRL2::INSTR are typically reserved for the native

Serial ports (COM1 and COM2) on the local PC, if they exist.

Default vs. Configured Communication Settings
When you open a Serial port, the VISA specification defines the default

communication settings to be 9600 baud, 8 data bits, 1 stop bit, no parity,

and no flow control. If you have configured the settings to a different value

in the NI-VISA configuration utility (MAX on Windows, visaconf on

UNIX), then you must pass the value VI_LOAD_CONFIG (4) as the

AccessMode parameter to viOpen(). This parameter will cause the

configured settings to be used; otherwise, if the AccessMode is 0 or

VI_NULL, the default settings will be used.

Most Serial devices allow you to set the communication settings parameters

via either DIP switches or via front panel selectors. If you are not using the

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-19 NI-VISA User Manual

NI-VISA configuration as discussed above, be sure to use

viSetAttribute() to make these attribute values consistent with your

device settings:

• VI_ATTR_ASRL_BAUD sets the baud rate. Defaults to 9600. The range

depends on the serial port’s capabilities and is platform dependent. For

example, most but not all systems support 115200 baud.

• VI_ATTR_ASRL_DATA_BITS sets the number of data bits. Defaults

to 8. The range is from 5–8.

• VI_ATTR_ASRL_PARITY sets the parity. Defaults to

VI_ASRL_PAR_NONE (0). You can also choose odd, even, mark,

or space.

• VI_ATTR_ASRL_STOP_BITS sets the number of stop bits. Defaults

to VI_ASRL_STOP_ONE (10). Other valid values are

VI_ASRL_STOP_ONE5 (15) and VI_ASRL_STOP_TWO (20). Note

that 1.5 stop bits is not supported on all systems and is also not

supported in all combinations with other settings.

• VI_ATTR_ASRL_FLOW_CNTRL sets the method for limiting overflow

on transfers between the devices. Defaults to VI_ASRL_FLOW_NONE

(no flow control). You can also choose between XON/XOFF software

flow control, RTS/CTS hardware flow control, and on supported

systems, DTR/DSR hardware flow control.

Other common (but not all) ASRL INSTR attributes are as follows:

• VI_ATTR_ASRL_END_IN defines the method of terminating reads.

Defaults to VI_ASRL_END_TERMCHAR. This means that the read

operation will stop whenever the character specified by

VI_ATTR_TERMCHAR is encountered, regardless of the state of

VI_ATTR_TERMCHAR_EN. To perform binary transfers (and to prevent

VISA from stopping reads on the termination character) set this

attribute to VI_ASRL_END_NONE.

• VI_ATTR_ASRL_END_OUT defines the method of terminating writes.

Defaults to VI_ASRL_END_NONE. (This value means that the setting of

VI_ATTR_SEND_EN is irrelevant.) To have VISA automatically

append a termination character to each write operation, set this

attribute to VI_ASRL_END_TERMCHAR. To have VISA automatically

send a break condition after each write operation, set this attribute to

VI_ASRL_END_BREAK.

• If the serial port is RS-485, then you can query and manipulate the

attribute VI_ATTR_ASRL_WIRE_MODE, which designates the RS-485

wiring mode. This attribute can have the values VI_ASRL_WIRE4 (0,

uses 4-wire mode), VI_ASRL_WIRE2_DTR_ECHO (1, uses 2-wire DTR

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-20 ni.com

mode controlled with echo), VI_ASRL_WIRE2_DTR_CTRL (2, uses

2-wire DTR mode controlled without echo), and

VI_ASRL_WIRE2_AUTO (3, uses 2-wire auto mode controlled with

TXRDY). This attribute is not supported for RS-232 ports. It is valid

only on the platforms on which National Instruments supports RS-485

products.

For lower-level functionality, you can also query the state of each modem

line via viGetAttribute(). VISA will return whether the given line state

is asserted (1), unasserted (0), or unknown (–1).

Controlling the Serial I/O Buffers
The viFlush() and viSetBuf() operations also provide a control

mechanism for the low-level serial driver buffers. The default size of

these buffers is 0, which guarantees that all I/O is flushed on every access.

To improve performance, you can alter the size of the output or input

serial buffers by invoking the viSetBuf() operation with the

VI_ASRL_OUT_BUF or VI_ASRL_IN_BUF flag, respectively. When the

buffer size is non-zero, I/O to serial devices is not automatically flushed.

You can force the output serial buffer to be flushed by invoking the

viFlush() operation with VI_ASRL_OUT_BUF. Alternatively, you can

call viFlush() with VI_ASRL_OUT_BUF_DISCARD to empty the output

serial buffer without sending any remaining data to the device. You can

also call viFlush() with either VI_ASRL_IN_BUF or

VI_ASRL_IN_BUF_DISCARD to empty the input serial buffer (both flags

have the same effect and are provided only for API consistency).

Note Not all VISA implementations may support setting the size of either the serial input

or output buffers. In such an implementation, the viSetBuf() operation will return a

warning. While this should not affect most programs, you can at least detect this lack of

support if a specific buffer size is required for performance reasons. If serial buffer control

is not supported in a given implementation, we recommend that you use some form of

handshaking (controlled via the VI_ATTR_ASRL_FLOW_CNTRL attribute), if possible, to

avoid loss of data.

When using formatted I/O in conjunction with serial devices, calling
viFlush() on a formatted I/O buffer has the same effect on the

corresponding serial buffer. For example, invoking viFlush() with
VI_WRITE_BUF flushes the formatted I/O output buffer first, and then the

low-level serial output buffer. Similarly, VI_WRITE_BUF_DISCARD

empties the contents of both the formatted I/O and low-level serial output

buffers.

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-21 NI-VISA User Manual

National Instruments ENET Serial Controllers
The ENET to RS-232 and ENET to RS-485 products allow you to have the

Serial controller box situated at a different location from your workstation.

The workstation communicates over TCP/IP to the Serial controller box,

which in turn communicates to the devices connected over the Serial bus.

On most Windows operating systems, you can map each port on the

controller box to a local port on the workstation, such as COM5.

NI-VISA currently natively supports communicating with these Serial

controller boxes on Linux x86, Solaris 2.x, and Windows. Since you cannot

map the remote Serial ports to local Serial ports on the UNIX workstations,

you must specify the controller’s hostname and the remote Serial port

number directly in the resource string. This is also valid on Windows but is

unnecessary if you have created a local Serial port mapping. The resource

string for these products is "ASRL::<hostname>::<remote Serial

port number>::INSTR". The hostname can be represented as either an

IP address (dot-notation) or network machine name.

The communication settings discussion above applies to the ENET Serial

controllers as well.

Serial Summary
VISA provides a consistent API across a broad range of Serial port

controllers on all supported platforms. As operating systems continue to

evolve and other new Serial APIs inevitably emerge, VISA will insulate

you against unnecessary changes to your code.

Ethernet

VISA supports programming Ethernet devices over TCP/IP using either

raw socket connections or the LAN instrumentation protocol (also known

as VXI-11).

Introduction to Programming Ethernet Devices in VISA
For users writing new code to communicate with an Ethernet instrument,

the most important consideration in choosing the right API is which

protocol(s) the device supports. The LAN instrument protocol was

designed to mimic the message-based IEEE-488 style of programming

with which instrumentation users have become accustomed; VISA is the

best API to program devices using this protocol. For other devices, if the

vendor merely documents the TCP/IP port number and the proprietary raw

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-22 ni.com

packet format, VISA or any sockets API may be the best solution. Finally,

some devices use other common well-defined protocols over either TCP/IP

or UDP or some other layer; in these cases, an existing standard

implementation of that protocol may be more appropriate than VISA.

For the LAN instrument protocol, the simplest resource string is

"TCPIP::<hostname>::INSTR". The hostname can be represented as

either an IP address (dot-notation) or network machine name. If an Ethernet

device supports multiple internal device names or functions, then you can

access such a device with "TCPIP::<hostname>::<device

name>::INSTR". Recall that the “INSTR” resource class informs VISA

that you are doing instrument (device) communication. Programming these

LAN instruments is similar to programming GPIB instruments, in that most

applications perform simple message-based transfers (write command,

read response) and receive service request event notifications. For more

information about VISA message-based functionality, see Chapter 5,

Message-Based Communication.

VISA Sockets vs. Other Sockets APIs
For TCP/IP devices that you want to program directly (in the absence of a

higher level protocol implementation), VISA provides a platform

independent sockets API. VISA sockets are based on the UNIX sockets

implementation in the Berkeley Software Distribution. A socket is a

bi-directional communication endpoint; an object through which a VISA

sockets application sends or receives packets of data across a network.

The VISA socket resource string format is

"TCPIP::<hostname>::<port>::SOCKET". The “SOCKET” resource

class informs VISA that you are communicating with an Ethernet device

that does not support the LAN instrument protocol. By default, only the

read and write operations are valid. If the device recognizes 488.2

commands such as "*TRG\n" and "*STB?\n", you can set the attribute

VI_ATTR_IO_PROT to VI_PROT_4882_STRS (4) and then use the

operations such as viAssertTrigger() and viReadSTB(). However,

unlike LAN instruments, there is no way to support the service request

event with the SOCKET resource class.

For users familiar with other platform independent sockets APIs, VISA

does have some advantages. The VISA sockets API is simpler than the

UNIX sockets API because viOpen() includes the functionality of

socket(), bind(), and connect(). It is simpler and more portable than

the Windows sockets API because it removes the need for calls to

WSAStartup() and WSACleanup(). VISA uses platform independent

VISA callbacks for asynchronous reads and writes so you don’t need the

Chapter 9 Interface Specific Information

© National Instruments Corporation 9-23 NI-VISA User Manual

platform specific knowledge of threading models and asynchronous

completion services that other sockets APIs require. Finally, VISA is more

powerful than that of many application development environments because

it provides additional attributes for modifying the TCP/IP communication

parameters.

The attribute VI_ATTR_TCPIP_KEEPALIVE defaults to false, but if

enabled will use “keep-alive” packets to ensure that the connection has not

been lost. The attribute VI_ATTR_TCPIP_NODELAY defaults to true, which

enforces that VISA write operations get flushed immediately; this ensures

consistency with other supported VISA interfaces. The default setting

disables the Nagle algorithm, which typically improves network

performance by buffering send data until a full-size packet can be sent.

Disabling this attribute (setting it to false) may improve the performance of

multiple back-to-back VISA write operations to a TCP/IP device.

Ethernet Summary
VISA provides a cross-platform API for programming Ethernet

instruments. Other APIs provide the same Ethernet functionality and

implement additional protocols, so if you are familiar with them, then there

is not a strong reason for you to change to VISA. However, if you have

instruments with more than one type of port or connection available to them

(such as TCP/IP and GPIB on the same instrument), or are using multiple

types of instruments with different hardware interface types, then using

VISA may be advantageous because you can use the same interface

independent API regardless of the connection medium. The only code that

changes is the resource string.

Remote NI-VISA

NI-VISA allows you to programmatically access resources on a remote

workstation. NI-DAQ users should find this similar to Remote DAQ.

Introduction to Programming Remote Devices in NI-VISA
Many users have devices that they need to use in multiple situations, such

as a group of scientists sharing an instrument in the laboratory. The most

common way this is done is for each user to physically carry the device next

to his PC, connect the device, and then use it. NI-VISA for Windows and

Linux x86 now supports a more efficient way to do this. With remote

NI-VISA on these supported platforms, you can leave the device connected

to a single workstation and access it from multiple client workstations.

Chapter 9 Interface Specific Information

NI-VISA User Manual 9-24 ni.com

Remote NI-VISA is not a separate hardware interface type, but it is

included in this chapter for completeness.

How to Configure and Use Remote NI-VISA
On the server machine (the one to which the hardware is connected), you

must install Remote NI-VISA Server. This installation option may not exist

in all NI-VISA distributions. By default, the server is disabled and access

from any other computer is disallowed. Use the NI-VISA configuration

utility (MAX on Windows, visaconf on UNIX) and make sure the server

is enabled. You must also specify each address or address range of the

computer(s) you wish to allow access. An address can be either in dot

notation (x.x.x.x) or the network machine name; an address range can only

be in dot notation (x.x.x.*).

On the client machine, no configuration is necessary. The VISA resource

string contains the server machine name and the original VISA resource

string on the server: "visa://hostname/VISA resource string".

The hostname can be represented as either an IP address (dot-notation) or

network machine name.

If you want to search for all resources on a specific server, you can pass

"visa://hostname/?*" to viFindRsrc(). On Windows, you can use

the “Remote Servers” section of MAX to configure NI-VISA to access

certain servers by default. In this case, using "?*" will cause

viFindRsrc() to query all configured servers as well as the local

machine. If you want to limit the query to the local machine only, regardless

of whether it has been configured to access any remote servers, pass "/?*"

as the expression to viFindRsrc().

Remote NI-VISA supports the complete functionality of all attributes,

events, and operations for all supported hardware interface types.

Remote NI-VISA Summary
Using remote NI-VISA is just one way to access hardware on another

machine. If you have an existing application written using VISA and you

need to use it from a different client, this may be the easiest solution.

However, since each VISA operation invocation is a remote procedure call,

your application performance may decrease, especially if it is

register-intensive or has a significant amount of programming logic based

on device responses or register values. The latency over Ethernet is better

suited to applications that transfer large blocks of data. A better way to

remotely access hardware is to make remote calls at a higher level, such as

using Remote VI Server in LabVIEW.

© National Instruments Corporation 10-1 NI-VISA User Manual

10
NI-VISA Platform-Specific
and Portability Issues

This chapter discusses programming information for you to consider when

developing applications that use the NI-VISA driver.

After installing the driver software, you can begin to develop your VISA

application software. Remember that the NI-VISA driver relies on

NI-488.2 and NI-VXI for driver-level I/O accesses.

♦ Windows users—On VXI and MXI systems, use the Measurement &

Automation Explorer (MAX) to run the VXI Resource Manager (resman),

configure your hardware, and assign VME and GPIB-VXI addresses. For

GPIB systems, use MAX to configure your GPIB controllers. To control

instruments through Serial ports, you can use MAX to change the default

settings, or you can perform all the necessary configuration at run time by

setting VISA attributes.

♦ All other platforms—On VXI and MXI systems, you must still run the VXI

Resource Manager (resman), and use the VXI Resource Editor (vxiedit

or vxitedit) for configuration purposes. For GPIB and GPIB-VXI

systems, you still use the GPIB Control Panel applet (Macintosh) or ibconf

(UNIX) to configure your system. To control instruments through Serial

ports, you can do all necessary configuration at run-time by setting VISA

attributes. On UNIX, you can also use the VISA Configuration Utility

(visaconf) to configure VISA aliases and change the default Serial

settings.

The NI-VISA Programmer Reference Manual contains detailed

descriptions of the VISA attributes, events, and operations. Windows and

Solaris users can access this same information online through

NI-visa.hlp, which you can find in the NIvisa directory.

Chapter 10 NI-VISA Platform-Specific and Portability Issues

NI-VISA User Manual 10-2 ni.com

Programming Considerations

This section contains information for you to consider when developing

applications that use the NI-VISA I/O interface software.

NI Spy: Debugging Tool for Windows
NI Spy tracks the calls your application makes to National Instruments

test and measurement (T&M) drivers, including NI-VXI, NI-VISA,

and NI-488.2.

NI Spy highlights functions that return errors, so you can quickly determine

which functions failed during your development. NI Spy can also log your

program’s calls to these drivers into a file so you can check them for errors

at your convenience.

Multiple Applications Using the NI-VISA Driver
Multiple-application support is an important feature in all implementations

of the NI-VISA driver. You can have several applications that use NI-VISA

running simultaneously. You can even have multiple instances of the same

application that uses the NI-VISA driver running simultaneously, if your

application is designed for this. The NI-VISA operations perform in the

same manner whether you have only one application or several applications

(or several instances of an application) all trying to use the NI-VISA driver.

However, you need to be careful when you have multiple applications or

sessions using the low-level bus access functions. The memory windows

used to access the bus are a limited resource. Call the viMapAddress()

operation before attempting to perform low-level bus access with

viPeekXX() or viPokeXX(). Immediately after the accesses are

completed, always call the viUnmapAddress() operation so that you free

up the memory window for other applications.

Low-Level Access Functions
The viMapAddress() operation returns a pointer for use with low-level

access functions. On some systems, such as the VXIpc embedded

computers, it is possible to directly dereference this pointer. However, on

other systems such as the GPIB-VXI, you must use the viPeekXX() and

viPokeXX() operations. To make your source code portable between

these and other platforms, and even other implementations of VISA, check

the attribute VI_ATTR_WIN_ACCESS after calling viMapAddress().

If the value of that attribute is VI_DEREF_ADDR, you can safely dereference

Chapter 10 NI-VISA Platform-Specific and Portability Issues

© National Instruments Corporation 10-3 NI-VISA User Manual

the address pointer directly. Otherwise, use the viPeekXX() and

viPokeXX() operations to perform register I/O accesses.

National Instruments also provides macros for viPeekXX() and

viPokeXX() on certain platforms. The C language macros automatically

dereference the pointer whenever possible without calling the driver, which

can substantially improve performance. Although the macros can increase

performance only on NI-VISA, your application will be binary compatible

with other implementations of VISA (the macros will just call the

viPeekXX() and viPokeXX() operations). However, the macros are not

enabled by default. To use the macros, you must define the symbol

NIVISA_PEEKPOKE before including visa.h.

Interrupt Callback Handlers
Application callbacks are available in C/C++ but not in LabVIEW or

Visual Basic. Callbacks in C are registered with the

viInstallHandler() operation and must be declared with the following

signature:

ViStatus _VI_FUNCH appHandler (ViSession vi, ViEventType

eventType, ViEvent event, ViAddr userHandle)

Notice that the _VI_FUNCH modifier expands to _stdcall for Windows

(32-bit). This is the standard Windows callback definition. On other

systems, such as UNIX and Macintosh, VISA defines _VI_FUNCH to be

nothing (null). Using _VI_FUNCH for handlers makes your source code

portable to systems that need other modifiers (or none at all).

When using National Instruments Measurement Studio for Visual C++,

callbacks are registered with the InstallEventHandler() method.

See the Measurement Studio for Visual C++ documentation for more

information on VISA callbacks. Handlers for this product must be declared

with the following signature:

ViStatus __cdecl EventHandler (CNiVisaEvent& event)

After you install an interrupt handler and enable the appropriate event(s),

an event occurrence causes VISA to invoke the callback. When VISA

invokes an application callback, it does so in the correct application

context. From within any handler, you can call back into the NI-VISA

driver. On all platforms other than Macintosh, you can also make system

calls. The way VISA invokes callbacks is platform dependent, as shown in

Table 10-1.

Chapter 10 NI-VISA Platform-Specific and Portability Issues

NI-VISA User Manual 10-4 ni.com

What this means is that on Macintosh (all interfaces other than VXI) you

cannot wait in a tight loop for a callback to occur. For example, the

following code does not work:

while (!intr_recv)

; /* do nothing */

For callbacks to be invoked on the Macintosh platform, you must call any

VISA operation or give up processor time. Notice that NI-VISA on

Windows and all UNIX platforms does not require you to call VISA

operations or give up processor time to receive callbacks. However, because

occasionally calling VISA operations ensures that callbacks will be

invoked correctly on any platform, you should keep these issues in mind

when writing code that you want to be portable.

Multiple Interface Support Issues

This section contains information about how to use or configure your

NI-VISA software for certain types of interfaces.

VXI and GPIB Platforms
NI-VISA supports all existing National Instruments GPIB, VXI, and Serial

controllers for the operating systems on which NI-VISA exists. For VXI,

this includes, but is not limited to, MXI-1, MXI-2, VXI-834x, VXI-1394,

Table 10-1. How VISA Invokes Callbacks

Platform Callback Invocation Method

Windows

2000/NT/XP/Me/9x

The callback is performed in a separate

thread created by NI-VISA. The thread is

signaled as soon as the event occurs.

Mac OS 8/9

VxWorks x86

For VXI, the callback is performed from

within the driver interrupt service routine.

For all other interfaces, the callback is

performed only when the driver is accessed.

Solaris 2.x For VXI with the PCI-MXI-2, the callback

is performed in a separate thread. For all

other interfaces, the callback is performed

via a UNIX signal.

Linux x86 The callback is performed via a UNIX

signal.

Chapter 10 NI-VISA Platform-Specific and Portability Issues

© National Instruments Corporation 10-5 NI-VISA User Manual

GPIB-VXI, and the line of embedded VXIpc computers. For GPIB, this

includes, but is not limited to, PCI-GPIB, GPIB-USB-A, AT-GPIB/TNT,

PCMCIA-GPIB, and the GPIB-ENET and GPIB-ENET/100 boxes, which

you can use to remotely control GPIB devices. With the GPIB-ENET and

GPIB-ENET/100 boxes, you can even remotely control VXI devices when

using a GPIB-VXI controller.

Serial Port Support
The maximum number of serial ports that NI-VISA currently supports on

any platform is 256. The default numbering of serial ports is system

dependent, as shown in Table 10-2.

If you need to know programmatically which ASRL INSTR resource maps

to which underlying Serial port, the following code will retrieve and display

that information.

Table 10-2. How Serial Ports Are Numbered

Platform Method

Windows

2000/NT/XP/Me/9x

ASRL1-ASRL4 access COM1-COM4.

ASRL10 accesses LPT1.

Other COM ports are automatically

detected when you call viFindRsrc(). The

VISA interface number may not equal the

COM port number.

LabVIEW RT ASRL1-ASRL4 access COM1-COM4.

Other COM ports are automatically

detected when you call viFindRsrc().

Mac OS 8/9 ASRL1 accesses the modem port.

ASRL2 accesses the printer port.

Other COM ports are automatically

detected when you call viFindRsrc().

Solaris 2.x ASRL1-ASRL6 access /dev/cua/a –

/dev/cua/f.

Linux x86 ASRL1-ASRL4 access /dev/ttyS0 –

/dev/ttyS3.

VxWorks x86 ASRL1-ASRL2 access /tyCo/0 – /tyCo/1.

Chapter 10 NI-VISA Platform-Specific and Portability Issues

NI-VISA User Manual 10-6 ni.com

Example 10-1
#include "visa.h"

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM; /* Communication channels */

ViSession instr; /* Communication channel */

ViChar rsrcName[VI_FIND_BUFLEN]; /* Serial resource name */

ViChar intfDesc[VI_FIND_BUFLEN]; /* Port binding description */

ViUInt32 retCount; /* To hold number of resources */

ViFindList flist; /* To hold list of resources */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

status = viFindRsrc (defaultRM, "ASRL?*INSTR", &flist, &retCount,

rsrcName);

while (retCount--) {

status = viOpen (defaultRM, rsrcName, VI_NULL, VI_NULL, &instr);

if (status < VI_SUCCESS)

printf (“Could not open %s, status = 0x%08lX\n”,rsrcName,

status);

else

{

status = viGetAttribute (instr, VI_ATTR_INTF_INST_NAME,

intfDesc);

printf (“Resource %s, Description %s\n”, rsrcName, intfDesc);

status = viClose (instr);

}

status = viFindNext (flist, rsrcName);

}

viClose (flist);

viClose (defaultRM);

return 0;

}

Chapter 10 NI-VISA Platform-Specific and Portability Issues

© National Instruments Corporation 10-7 NI-VISA User Manual

VME Support
To access VME devices in your system, you must configure NI-VXI to see

these devices. Windows users can configure NI-VXI by using the Create

New Wizard in MAX. Users on other platforms must use the Non-VXI

Device Editor in VXI Resource Editor (vxiedit or vxitedit). For each

address space in which your device has memory, you must create a separate

pseudo-device entry with a logical address between 256 and 511. For

example, a VME device with memory in both A24 and A32 spaces requires

two entries. You can also specify which interrupt levels the device uses.

VXI and VME devices cannot share interrupt levels. You can then access

the device from NI-VISA just as you would a VXI device, by specifying

the address space and the offset from the base at which you have configured

it. NI-VISA support for VME devices includes the register access

operations (both high-level and low-level) and the block-move operations,

as well as the ability to receive interrupts.

© National Instruments Corporation A-1 NI-VISA User Manual

A
Visual Basic Examples

This appendix shows the Visual Basic syntax of the ANSI C examples

given earlier in this manual. The examples use the same numbering

sequence for easy reference.

These examples use the VISA data types where applicable. This feature is

available only on Windows. To use this feature, select the VISA library

(visa32.dll) as a reference from Visual Basic. This makes use of the type

library embedded into the DLL.

Example 2-1
Private Sub vbMain()

 Const MAX_CNT = 200

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim retCount As Long

 Dim buffer As String * MAX_CNT

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with GPIB Device at Primary Addr 1

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "GPIB0::1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Set the timeout for message-based communication

 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 5000)

 Rem Ask the device for identification

 stat = viWrite(sesn, "*IDN?", 5, retCount)

 stat = viRead(sesn, buffer, MAX_CNT, retCount)

 Rem Your code should process the data

 Rem Close down the system

 stat = viClose (sesn)

Appendix A Visual Basic Examples

NI-VISA User Manual A-2 ni.com

 stat = viClose (dfltRM)

End Sub

Example 2-2
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim deviceID As Integer

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Addr 16

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Read the Device ID and write to memory in A24 space

 stat = viIn16(sesn, VI_A16_SPACE, 0, deviceID)

 stat = viOut16(sesn, VI_A24_SPACE, 0, &H1234)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub

Example 2-3
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim eType As ViEventType

 Dim eData As ViEvent

 Dim statID As Integer

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

Appendix A Visual Basic Examples

© National Instruments Corporation A-3 NI-VISA User Manual

 Rem Open communication with VXI Device at Logical Address 16

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Enable the driver to detect the interrupts

 stat = viEnableEvent(sesn, VI_EVENT_VXI_SIGP, VI_QUEUE, VI_NULL)

 Rem Send the commands to the oscilloscope to capture the

 Rem waveform and interrupt when done

 stat = viWaitOnEvent(sesn, VI_EVENT_VXI_SIGP, 5000, eType, eData)

 If (stat < VI_SUCCESS) Then

 Rem No interrupts received after 5000 ms timeout

 stat = viClose (dfltRM)

 Exit Sub

 End If

 Rem Obtain the information about the event and then destroy the

 Rem event. In this case, we want the status ID from the interrupt.

 stat = viGetAttribute(eData, VI_ATTR_SIGP_STATUS_ID, statID)

 stat = viClose(eData)

 Rem Your code should read data from the instrument and process it.

 Rem Stop listening to events

 stat = viDisableEvent(sesn, VI_EVENT_VXI_SIGP, VI_QUEUE)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub

Example 2-4
Private Sub vbMain()

 Const MAX_CNT = 200

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim retCount As Long

 Dim buffer As String * MAX_CNT

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

Appendix A Visual Basic Examples

NI-VISA User Manual A-4 ni.com

 Rem Open communication with Serial Port 1

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "ASRL1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Set the timeout for message-based communication

 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 5000)

 Rem Lock the serial port so that nothing else can use it

 stat = viLock(sesn, VI_EXCLUSIVE_LOCK, 5000, "", "")

 Rem Set serial port settings as needed

 Rem Defaults = 9600 Baud, no parity, 8 data bits, 1 stop bit

 stat = viSetAttribute(sesn, VI_ATTR_ASRL_BAUD, 2400)

 stat = viSetAttribute(sesn, VI_ATTR_ASRL_DATA_BITS, 7)

 Rem Ask the device for identification

 stat = viWrite(sesn, "*IDN?", 5, retCount)

 stat = viRead(sesn, buffer, MAX_CNT, retCount)

 Rem Unlock the serial port before ending the program

 stat = viUnlock(sesn)

 Rem Your code should process the data

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub

Example 4-1
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Rem Open Default RM

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Access other resources

 stat = viOpen(dfltRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Use device and eventually close it.

 stat = viClose (sesn)

 stat = viClose (dfltRM)

End Sub

Appendix A Visual Basic Examples

© National Instruments Corporation A-5 NI-VISA User Manual

Example 4-2
Rem Find the first matching device and return a session to it

Private Function AutoConnect(instrSesn As ViSession) As ViStatus

 Const MANF_ID = &HFF6 '12-bit VXI manufacturer ID of a device

 Const MODEL_CODE = &H0FE '12-bit or 16-bit model code of a device

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim fList As ViFindList

 Dim desc As String * VI_FIND_BUFLEN

 Dim nList As Long

 Dim iManf As Integer

 Dim iModel As Integer

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA ... exiting

 AutoConnect = stat

 Exit Function

 End If

 Rem Find all VXI instruments in the system

 stat = viFindRsrc(dfltRM, "?*VXI?*INSTR", fList, nList, desc)

 If (stat < VI_SUCCESS) Then

 Rem Error finding resources ... exiting

 viClose (dfltRM)

 AutoConnect = stat

 Exit Function

 End If

 Rem Open a session to each and determine if it matches

 While (nList)

 stat = viOpen(dfltRM, desc, VI_NULL, VI_NULL, sesn)

 If (stat >= VI_SUCCESS) Then

 stat = viGetAttribute(sesn, VI_ATTR_MANF_ID, iManf)

 If ((stat >= VI_SUCCESS) And (iManf = MANF_ID)) Then

 stat = viGetAttribute(sesn, VI_ATTR_MODEL_CODE, iModel)

 If ((stat >= VI_SUCCESS) And (iModel = MODEL_CODE)) Then

 Rem We have a match, return session without closing

 instrSesn = sesn

 stat = viClose (fList)

 Rem Do not close dfltRM; that would close sesn too

 AutoConnect = VI_SUCCESS

 Exit Function

 End If

Appendix A Visual Basic Examples

NI-VISA User Manual A-6 ni.com

 End If

 stat = viClose (sesn)

 End If

 stat = viFindNext(fList, desc)

 nList = nList - 1

 Wend

 Rem No match was found, return an error

 stat = viClose (fList)

 stat = viClose (dfltRM)

 AutoConnect = VI_ERROR_RSRC_NFOUND

End Function

Example 4-3
Example 4-3 uses functionality not available in Visual Basic. Refer to

Example 4-2 for sample code using viFindRsrc().

Example 5-1
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim retCount As Long

 Dim idnResult As String * 72

 Dim resultBuffer As String * 256

 Rem Open Default Resource Manager

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with GPIB Device at Primary Addr 1

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Initialize the timeout attribute to 10 s

 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 10000)

 Rem Set termination character to carriage return (\r=0x0D)

 stat = viSetAttribute(sesn, VI_ATTR_TERMCHAR, &H0D)

 stat = viSetAttribute(sesn, VI_ATTR_TERMCHAR_EN, VI_TRUE)

 Rem Don't assert END on the last byte

 stat = viSetAttribute(sesn, VI_ATTR_SEND_END_EN, VI_FALSE)

Appendix A Visual Basic Examples

© National Instruments Corporation A-7 NI-VISA User Manual

 Rem Clear the device

 stat = viClear(sesn)

 Rem Request the IEEE 488.2 identification information

 stat = viWrite(sesn, "*IDN?", 5, retCount)

 stat = viRead(sesn, idnResult, 72, retCount)

 Rem Your code should use idnResult and retCount to parse device info

 Rem Trigger the device for an instrument reading

 stat = viAssertTrigger(sesn, VI_TRIG_PROT_DEFAULT)

 Rem Receive results

 stat = viRead(sesn, resultBuffer, 256, retCount)

 Rem Close sessions

 stat = viClose (sesn)

 stat = viClose (dfltRM)

End Sub

Example 6-1
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim addr As ViAddr

 Dim mSpace As Integer

 Dim Value As Integer

 Rem Open Default Resource Manager

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Address 16

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

 mSpace = VI_A16_SPACE

 stat = viMapAddress(sesn, mSpace, 0, &H40, VI_FALSE, VI_NULL, addr)

 viPeek16 sesn, addr, Value

 Rem Access a different register by manipulating the pointer.

 viPeek16 sesn, addr + 2, Value

 stat = viUnmapAddress(sesn)

 Rem Close down the system

Appendix A Visual Basic Examples

NI-VISA User Manual A-8 ni.com

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub

Example 6-2
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim self As ViSession

 Dim addr As ViAddr

 Dim offs As Long

 Dim mSpace As Integer

 Dim Value As Integer

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Address 0

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::0::INSTR", VI_NULL, VI_NULL, self)

 Rem Allocate a portion of the device's memory

 stat = viMemAlloc(self, &H100, offs)

 Rem Determine where the shared memory resides

 stat = viGetAttribute(self, VI_ATTR_MEM_SPACE, mSpace)

 stat = viMapAddress(self, mSpace, offs, &H100, VI_FALSE, VI_NULL, addr)

 viPeek16 self, addr, Value

 Rem Access a different register by manipulating the pointer.

 viPeek16 self, addr + 2, Value

 stat = viUnmapAddress(self)

 stat = viMemFree(self, offs)

 Rem Close down the system

 stat = viClose(self)

 stat = viClose(dfltRM)

End Sub

Appendix A Visual Basic Examples

© National Instruments Corporation A-9 NI-VISA User Manual

Example 7-1
Visual Basic does not support callback handlers, so currently the only way to handle events

is through viWaitOnEvent(). Because Visual Basic does not support asynchronous

operations either, this example uses the viRead() call instead of the viReadAsync() call.

Private Sub vbMain()

 Const MAX_CNT = 1024

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim bufferHandle As String

 Dim retCount As Long

 Dim etype As ViEventType

 Dim event As ViEvent

 Dim stb As Integer

 Rem Begin by initializing the system

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with GPIB device at primary address 2

 stat = viOpen(dfltRM, "GPIB0::2::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Allocate memory for buffer

 Rem In addition, allocate space for the ASCII NULL character

 bufferHandler = Space$(MAX_CNT + 1)

 Rem Enable the driver to detect events

 stat = viEnableEvent(sesn, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL)

 Rem Tell the device to begin acquiring a waveform

 stat = viWrite(sesn, "E0x51; W1", 9, retCount)

 Rem The device asserts SRQ when the waveform is ready

 stat = viWaitOnEvent(sesn, VI_EVENT_SERVICE_REQ, 20000, etype, event)

 If (stat < VI_SUCCESS) Then

 Rem Waveform not received...exiting

 stat = viClose (dfltRM)

 Exit Sub

End If

 stat = viReadSTB (sesn, stb)

 Rem Read the data

 stat = viRead(sesn, bufferHandle, MAX_CNT, retCount)

Appendix A Visual Basic Examples

NI-VISA User Manual A-10 ni.com

 Rem Your code should process the waveform data

 Rem Close the event context

 stat = viClose (event)

 Rem Stop listening for events

 stat = viDisableEvent(sesn, VI_ALL_ENABLED_EVENTS, VI_ALL_MECH)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub

Example 8-1
Private Sub vbMain()

 Const MAX_COUNT = 128

 Dim stat As ViStatus 'For checking errors

 Dim dfltRM As ViSession 'Communication channels

 Dim sesnIN As ViSession 'Communication channels

 Dim sesnOUT As ViSession 'Communication channels

 Dim aKey As String * VI_FIND_BUFLEN 'Access key for lock

 Dim buf As String * MAX_COUNT 'To store device data

 Dim etype As ViEventType 'To identify event

 Dim event As ViEvent 'To hold event info

 Dim retCount As Long 'To hold byte count

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communications with VXI Device at Logical Addr 16

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesnIN)

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesnOUT)

 Rem We open two sessions to the same device

 Rem One session is used to assert triggers on TTL channel 4

 Rem The second is used to receive triggers on TTL channel 5

 Rem Lock first session as shared, have VISA generate the key

 Rem Then lock the second session with the same access key

 stat = viLock(sesnIN, VI_SHARED_LOCK, 5000, "", aKey)

 stat = viLock(sesnOUT, VI_SHARED_LOCK, VI_TMO_IMMEDIATE, aKey, aKey)

 Rem Set trigger channel for sessions

 stat = viSetAttribute(sesnIN, VI_ATTR_TRIG_ID, VI_TRIG_TTL5)

Appendix A Visual Basic Examples

© National Instruments Corporation A-11 NI-VISA User Manual

 stat = viSetAttribute(sesnOUT, VI_ATTR_TRIG_ID, VI_TRIG_TTL4)

 Rem Enable input session for trigger events

 stat = viEnableEvent(sesnIN, VI_EVENT_TRIG, VI_QUEUE, VI_NULL)

 Rem Assert trigger to tell device to start sampling

 stat = viAssertTrigger(sesnOUT, VI_TRIG_PROT_DEFAULT)

 Rem Device will respond with a trigger when data is ready

 stat = viWaitOnEvent(sesnIN, VI_EVENT_TRIG, 20000, etype, event)

 If (stat < VI_SUCCESS) Then

 stat = viClose (dfltRM)

 Exit Sub

 End If

 Rem Close the event

 stat = viClose(event)

 Rem Read data from the device

 stat = viRead(sesnIN, buf, MAX_COUNT, retCount)

 Rem Your code should process the data

 Rem Unlock the sessions

 stat = viUnlock(sesnIN)

 stat = viUnlock(sesnOUT)

 Rem Close down the system

 stat = viClose(sesnIN)

 stat = viClose(sesnOUT)

 stat = viClose(dfltRM)

End Sub

Example 10-1
Private Declare Function viGetAttrString Lib "VISA32.DLL" Alias "#133" (ByVal

vi As ViSession, ByVal attrName As ViAttr, ByVal strValue As Any) As ViStatus

Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim fList As ViFindList

 Dim rsrcName As String * VI_FIND_BUFLEN

 Dim instrDesc As String * VI_FIND_BUFLEN

 Dim nList As Long

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA ... exiting

 Exit Sub

Appendix A Visual Basic Examples

NI-VISA User Manual A-12 ni.com

 End If

 Rem Find all Serial instruments in the system

 stat = viFindRsrc(dfltRM, "ASRL?*INSTR", fList, nList, rsrcName)

 If (stat < VI_SUCCESS) Then

 Rem Error finding resources ... exiting

 viClose (dfltRM)

 Exit Sub

 End If

 While (nList)

 stat = viOpen(dfltRM, rsrcName, VI_NULL, VI_NULL, sesn)

 If (stat < VI_SUCCESS) Then

 Debug.Print "Could not open resource", rsrcName, "Status", stat

 Else

 stat = viGetAttrString(sesn, VI_ATTR_INTF_INST_NAME, instrDesc)

 Debug.Print "Resource", rsrcName, "Description", instrDesc

 stat = viClose(sesn)

 End If

 stat = viFindNext(fList, rsrcName)

 nList = nList - 1

 Wend

 stat = viClose(fList)

 stat = viClose(dfltRM)

End Sub

© National Instruments Corporation B-1 NI-VISA User Manual

B
Technical Support Resources

Web Support

National Instruments Web support is your first stop for help in solving

installation, configuration, and application problems and questions. Online

problem-solving and diagnostic resources include frequently asked

questions, knowledge bases, product-specific troubleshooting wizards,

manuals, drivers, software updates, and more. Web support is available

through the Technical Support section of ni.com.

NI Developer Zone

The NI Developer Zone at ni.com/zone is the essential resource for

building measurement and automation systems. At the NI Developer Zone,

you can easily access the latest example programs, system configurators,

tutorials, technical news, as well as a community of developers ready to

share their own techniques.

Customer Education

National Instruments provides a number of alternatives to satisfy your

training needs, from self-paced tutorials, videos, and interactive CDs to

instructor-led hands-on courses at locations around the world. Visit the

Customer Education section of ni.com for online course schedules,

syllabi, training centers, and class registration.

System Integration

If you have time constraints, limited in-house technical resources, or other

dilemmas, you may prefer to employ consulting or system integration

services. You can rely on the expertise available through our worldwide

network of Alliance Program members. To find out more about our

Alliance system integration solutions, visit the System Integration section

of ni.com.

Appendix B Technical Support Resources

NI-VISA User Manual B-2 ni.com

Worldwide Support

National Instruments has offices located around the world to help address

your support needs. You can access our branch office Web sites from the

Worldwide Offices section of ni.com. Branch office Web sites provide

up-to-date contact information, support phone numbers, e-mail addresses,

and current events.

If you have searched the technical support resources on our Web site and

still cannot find the answers you need, contact your local office or National

Instruments corporate. Phone numbers for our worldwide offices are listed

at the front of this manual.

© National Instruments Corporation G-1 NI-VISA User Manual

Glossary

Prefix Meanings Value

p- pico 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

A

address A string (or other language construct) that uniquely locates and identifies

a resource. VISA defines an ASCII-based grammar that associates strings

with particular physical devices and VISA resources.

address location Refers to the location of a specific register.

address modifier One of six signals in the VMEbus specifications used by VMEbus masters

to indicate the address space and mode (supervisory/nonprivileged,

data/program/block) in which a data transfer is to take place.

address space In VXI/VME systems, a set of 2n memory locations differentiated from

other such sets in VXI/VMEbus systems by six signal lines known as

address modifiers, where n (either 16, 24, or 32) is the number of address

lines required to uniquely specify a byte location in a given space. In PXI

systems, the address space corresponds to 1 of 6 possible BAR locations

(BAR0 through BAR5). In VME, VXI, and PXI, a given device may have

addresses in one or more address spaces.

address string A string (or other language construct) that uniquely locates and identifies a

resource. VISA defines an ASCII-based grammar that associates strings

with particular physical devices and VISA resources.

Glossary

NI-VISA User Manual G-2 ni.com

alias User-defined name for a VISA resource.

ANSI American National Standards Institute

API Application Programming Interface. The direct interface that an end user

sees when creating an application. In VISA, the API consists of the sum of

all of the operations, attributes, and events of each of the VISA Resource

Classes.

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with respect to the

execution of a program.

attribute A value within an object or resource that reflects a characteristic of its

operational state.

B

b Bit

B Byte

backplane In VXI/VME systems, an assembly, typically a PCB, with 96-pin

connectors and signal paths that bus the connector pins. A C-size VXIbus

system will have two sets of bused connectors called the J1 and J2

backplanes. A D-size VXIbus system will have three sets of bused

connectors called the J1, J2, and J3 backplane.

Base Address Register Each PCI or PXI device has six of these, BAR0 through BAR5. At

power-on, each BAR requests a given size of memory or I/O space. Each

device can request from 0 to 6 regions of PCI memory or I/O space. After

the operating system starts, each BAR contains an assigned base address in

PCI address space. A value of 0 in a given BAR indicates that the device is

not using that BAR.

bus error An error that signals failed access to an address. Bus errors occur with

low-level accesses to memory and usually involve hardware with bus

mapping capabilities. For example, nonexistent memory, a nonexistent

register, or an incorrect device access can cause a bus error.

Glossary

© National Instruments Corporation G-3 NI-VISA User Manual

byte order How bytes are arranged within a word or how words are arranged within a

longword. Motorola (Big-Endian) ordering stores the most significant byte

(MSB) or word first, followed by the least significant byte (LSB) or word.

Intel (Little-Endian) ordering stores the LSB or word first, followed by the

MSB or word.

C

callback Same as handler. A software routine that is invoked when an asynchronous

event occurs. In VISA, callbacks can be installed on any session that

processes events.

CIC Controller-In-Charge. The device that manages the GPIB by sending

interface messages to other devices.

commander A device that has the ability to control another device. This term can also

denote the unique device that has sole control over another device (as with

the VXI Commander/Servant hierarchy).

communication channel The same as session. A communication path between a software element

and a resource. Every communication channel in VISA is unique.

configuration

registers

A set of registers through which the system can identify a module device

type, model, manufacturer, address space, and memory requirements. In

order to support automatic system and memory configuration, the PXI and

VXIbus specifications require that all PXI and VXIbus devices have a set

of such registers.

controller An entity that can control another device(s) or is in the process of

performing an operation on another device.

CPU Central processing unit

D

device An entity that receives commands from a controller. A device can be an

instrument, a computer (acting in a non-controller role), or a peripheral

(such as a plotter or printer).

DLL Dynamic Link Library. Same as a shared library or shared object. A file

containing a collection of functions that can be used by multiple

applications. This term is usually used for libraries on Windows platforms.

Glossary

NI-VISA User Manual G-4 ni.com

DMA Direct memory access. High-speed data transfer between a board and

memory that is not handled directly by the CPU. Not available on some

systems. See programmed I/O.

E

embedded controller A computer plugged directly into the VXI backplane. An example is the

National Instruments VXIpc-850.

event An asynchronous occurrence that is independent of the normal sequential

execution of the process running in a system.

external controller A desktop computer or workstation connected to the VXI system via a MXI

interface board. An example is a standard personal computer with a

PCI-MXI-2 installed.

F

Fast Data Channel See FDC.

FIFO First In-First Out; a method of data storage in which the first element stored

is the first one retrieved.

FDC Fast Data Channel; a protocol that provides a mechanism for transferring

data blocks between a VXIbus Commander and its Servants.

G

GPIB General Purpose Interface Bus is the common name for the

communications interface system defined in ANSI/IEEE Standard

488.1-1987 and ANSI/IEEE Standard 488.2-1992.

H

handler Same as callback. A software routine that is invoked when an asynchronous

event occurs. In VISA, callbacks can be installed on any session that

processes events.

handshaking A type of protocol that makes it possible for two devices to synchronize

operations.

Glossary

© National Instruments Corporation G-5 NI-VISA User Manual

I

I/O input/output

IEEE Institute of Electrical and Electronics Engineers

instrument A device that accepts some form of stimulus to perform a designated task,

test, or measurement function. Two common forms of stimuli are message

passing and register reads and writes. Other forms include triggering or

varying forms of asynchronous control.

instrument driver A set of routines designed to control a specific instrument or family of

instruments, and any necessary related files for LabWindows/CVI or

LabVIEW.

interface A generic term that applies to the connection between devices and

controllers. It includes the communication media and the device/controller

hardware necessary for cross-communication.

interrupt A condition that requires attention out of the normal flow of control of a

program.

IVI Interchangeable Virtual Instruments

IVI Driver A software module that controls a hardware device and that complies with

the IVI Foundation specifications.

IVI Foundation, Inc. Interchangeable Virtual Instruments, Inc., a non-profit Delaware

Corporation, composed of end-user test engineers, instrument and software

suppliers, and system integrators, chartered to define software standards

that promote instrument interchangeability. See

www.ivifoundation.org for more details.

L

lock A state that prohibits sessions other than the session(s) owning the lock

from accessing a resource.

logical address An 8-bit number that uniquely identifies the location of each VXIbus

device's configuration registers in a system. The A16 register address of a

device is C000h + Logical Address * 40h.

Glossary

NI-VISA User Manual G-6 ni.com

M

mapping An operation that returns a reference to a specified section of an address

space and makes the specified range of addresses accessible to the

requester. This function is independent of memory allocation.

MAX Measurement & Automation Explorer. Provides access to all National

Instruments DAQ, GPIB, IMAQ, IVI, Motion, VISA, and VXI devices.

With MAX, you can configure National Instruments hardware and

software, add new channels, interfaces, and virtual instruments, execute

system diagnostics, and view the devices and instruments connected to

your system. Installs automatically with NI-VISA version 2.5 or higher or

NI-VXI version 3.0 or higher. Available only for Win32-based operating

systems.

message-based device In VXI/VME systems, an intelligent device that implements the defined

VXIbus registers and communication protocols. These devices are able to

use Word Serial Protocol to communicate with one another through

communication registers. All GPIB and Serial devices are by definition

message-based, as are devices for some other interfaces. Many modern

message-based devices support the IEEE 488.2 protocol.

multitasking The ability of a computer to perform two or more functions simultaneously

without interference from one another. In operating system terms, it is the

ability of the operating system to execute multiple applications/processes

by time-sharing the available CPU resources.

N

NI Spy A utility that monitors, records, and displays multiple National Instruments

APIs, such as NI-488.2 and NI-VISA. Useful for troubleshooting errors in

your application and for verifying communication.

O

operation An action defined by a resource that can be performed on a resource. In

general, this term is synonymous with the connotation of the word method

in object-oriented architectures.

Glossary

© National Instruments Corporation G-7 NI-VISA User Manual

P

process An operating system element that shares a system's resources.

A multi-process system is a computer system that allows multiple

programs to execute simultaneously, each in a separate process

environment. A single-process system is a computer system that allows

only a single program to execute at a given point in time.

programmed I/O Low-speed data transfer between a board and memory in which the CPU

moves each data value according to program instructions. See DMA.

protocol Set of rules or conventions governing the exchange of information between

computer systems.

PXI PCI eXtensions for Instrumentation. PXI leverages the electrical features

defined by the Peripheral Component Interconnect (PCI) specification as

well as the CompactPCI form factor, which combines the PCI electrical

specification with Eurocard (VME) mechanical packaging and

high-performance connectors. This combination allows CompactPCI and

PXI systems to have up to seven peripheral slots versus four in a desktop

PCI system.

R

register An address location that can be read from or written into or both. It may

contain a value that is a function of the state of hardware or can be written

into to cause hardware to perform a particular action. In other words, an

address location that controls and/or monitors hardware.

register-based device In VXI/VME systems, a servant-only device that supports only the four

basic VXIbus configuration registers. Register-based devices are typically

controlled by message-based devices via device-dependent register reads

and writes. All PXI devices are by definition register-based, as are devices

for some other interfaces.

Resource Class The definition for how to create a particular resource. In general, this is

synonymous with the connotation of the word class in object-oriented

architectures. For VISA Instrument Control resource classes, this refers to

the definition for how to create a resource which controls a particular

capability or set of capabilities of a device.

Glossary

NI-VISA User Manual G-8 ni.com

resource or resource

instance

In general, this term is synonymous with the connotation of the word object

in object-oriented architectures. For VISA, resource more specifically

refers to a particular implementation (or instance in object-oriented terms)

of a Resource Class.

S

s second

SCPI Standard Commands for Programmable Instrumentation; a protocol which

defines a standard set of commands to control programmable test and

measurement devices in instrumentation systems.

servant A device controlled by a Commander.

session The same as communication channel. A communication path between a

software element and a resource. Every communication channel in VISA is

unique.

shared library or

shared object

Same as DLL. A file containing a collection of functions that can be used

by multiple applications. This term is usually used for libraries on UNIX

platforms.

shared memory A block of memory that is accessible to both a client and a server. The

memory block operates as a buffer for communication. This is unique to

register-based interfaces such as VXI.

socket A bi-directional communication endpoint; an object through which a VISA

sockets application sends or receives packets of data across a network.

SRQ IEEE 488 Service Request. This is an asynchronous request from a remote

device that requires service. A service request is essentially an interrupt

from a remote device. For GPIB, this amounts to asserting the SRQ line on

the GPIB. For VXI, this amounts to sending the Request for Service True

event (REQT).

status byte A byte of information returned from a remote device that shows the current

state and status of the device. If the device follows IEEE 488 conventions,

bit 6 of the status byte indicates whether the device is currently requesting

service.

Glossary

© National Instruments Corporation G-9 NI-VISA User Manual

status/ID A value returned during an IACK cycle. In VME, usually an 8-bit value

which is either a status/data value or a vector/ID value used by the

processor to determine the source. In VXI, a 16-bit value used as a data; the

lower 8 bits form the VXI logical address of the interrupting device and the

upper 8 bits specify the reason for interrupting.

T

TCP/IP Transmission Control Protocol/Internet Protocol. The recognized standard

for transmitting data over networks, TCP/IP is a multi-layered suite of

communication protocols used to connect hosts on LANs, WANs and the

Internet. It is very widely supported, even by network operating systems

that have their own communication protocols.

thread An operating system element that consists of a flow of control within a

process. In some operating systems, a single process can have multiple

threads, each of which can access the same data space within the process.

However, each thread has its own stack and all threads can execute

concurrently with one another (either on multiple processors, or by

time-sharing a single processor).

V

virtual instrument A name given to the grouping of software modules (in this case, VISA

resources with any associated or required hardware) to give the

functionality of a traditional stand-alone instrument. Within VISA, a virtual

instrument is the logical grouping of any of the VISA resources.

VISA Virtual Instrument Software Architecture. This is the general name given

to this product and its associated architecture. The architecture consists of

two main VISA components: the VISA resource manager and the VISA

resources.

VISA Instrument

Control Resources

This is the name given to the part of VISA that defines all of the

device-specific resource classes. VISA Instrument Control resources

encompass all defined device capabilities for direct, low-level instrument

control.

VISA memory

access resources

This is the name given to the part of VISA that defines all of the register-

or memory-specific resource classes. The VISA MEMACC resources

encompass all high- and low-level services for interface-level accesses to

all memory defined in the system.

Glossary

NI-VISA User Manual G-10 ni.com

VISA Resource

Manager

This is the name given to the part of VISA that manages resources. This

management includes support for finding resources and opening sessions to

them.

VISA Resource

Template

This is the name given to the part of VISA that defines the basic constraints

and interface definition for the creation and use of a VISA resource. All

VISA resources must derive their interface from the definition of the VISA

Resource Template. This includes services for setting and retrieving

attributes, receiving events, locking resources, and closing objects.

visaconf VISA configuration utility for Solaris and Linux.

VISAIC VISA Interacvtive Control utility. Interactively controls VXI/VME devices

without using a conventional programming language, LabVIEW, or

Measurement Studio.

VME Versa Module Eurocard or IEEE 1014

VXIbus VMEbus Extensions for Instrumentation or IEEE 1155

© National Instruments Corporation I-1 NI-VISA User Manual

Index

A
arbitrary access to VXI memory, 9-10

attribute-based resource matching, 4-9

attributes

accessing, 4-12

common considerations for using, 4-13

B
basic I/O services, 5-1

board-level programming

GPIB, 9-3

bus errors, 6-10

C
callback, 2-7

callback VISA events, 7-6

modes, 7-7

clear service, 5-4

communication settings

Serial, 9-18

comparison between NI-VISA and NI-VXI

APIs, 9-11

configuring a session, 4-12

configuring NI-VISA to recognize a PXI

device, 9-15

conventions used in the manual, xii

customer education, B-1

D
device .inf files

installing with LabWindows/CVI, 9-17

disabling and enabling events, 7-4

E
enabling and disabling events, 7-4

ENET Serial controllers, 9-21

Ethernet devices

interface specific information, 9-21

event context, life of, 7-12

with callback mechanism, 7-12

with queuing mechanism, 7-12

events, 7-1

examples

ASRL INSTR resource mapping to Serial

port, 10-6

attribute-based resource matching, 4-9

callback, 2-7, 7-9

finding resources, 4-5

formatted I/O drivers, 5-12

handling events, 2-7

interactive control of VISA, 3-2

interface independence, 3-8

introductory programming, 2-1

locking, 2-10

locking sample code, 8-3

message-based communication, 2-1

queuing, 2-7, 7-9

register-based communication, 2-4

Serial port mapping, 10-6

shared memory operations, 6-12

VISA message-based application, 5-7

VISA session, opening, 4-1

visual basic examples, A-1

exception handling, 7-13

F
finding resources, 4-5

using regular expressions, 4-7

flushing buffers, automatically, 5-11

Index

NI-VISA User Manual I-2 ni.com

flushing buffers, manually, 5-10

formatted I/O instrument drivers

examples, 5-12

formatted I/O operations, 5-8

formatted I/O services, 5-8

G
GPIB

board-level programming, 9-3

functions and operations (table), 9-4

comparison between NI-VISA and

NI-488 APIs, 9-2

programming GPIB devices in VISA, 9-1

VISA interface, 9-1

GPIB-VXI

additional programming issues, 9-7

programming GPIB-VXI devices in

VISA, 9-5

register-based programming, 9-5

messages and operations (table), 9-6

VISA interface, 9-5

H
handling events

example, 2-7

high-level access operations, 6-3

high-level block operations, 6-4

how to use this manual, 1-1

I
I/O buffer operations, 5-9

independent queues, 7-8

installing your device .inf files, 9-17

interactive control

of VISA, 3-2

interface independence

example, 3-8

interface specific information, 9-1

additional GPIB-VXI programming

issues, 9-7

board-level programming, 9-3

comparison between NI-VISA and

NI-488 APIs, 9-2

comparison between NI-VISA and

NI-VXI APIs, 9-11

configuring NI-VISA to recognize a PXI

device, 9-15

controlling the Serial I/O buffers, 9-20

Ethernet, 9-21

introduction to programming

Ethernet devices in NI-VISA, 9-21

summary, 9-23

VISA sockets vs. other Sockets

APIs, 9-22

GPIB, 9-1

GPIB-VXI, 9-5

register-based programming, 9-5

NI-VISA and NI-VXI functions and

operations (table), 9-11

other VXI resource classes, 9-10

performing arbitrary access to VXI

memory with VISA, 9-10

programming GPIB devices in VISA, 9-1

programming GPIB-VXI devices in

VISA, 9-5

programming VXI devices in VISA, 9-8

PXI, 9-13

introduction to programming PXI

devices in NI-VISA, 9-14

PXI summary, 9-18

register-based programming

messages and operations (table), 9-6

remote NI-VISA

configuring and using, 9-24

introduction to programming remote

NI-VISA devices in

NI-VISA, 9-23

Index

© National Instruments Corporation I-3 NI-VISA User Manual

remote VISA, 9-23

summary, 9-24

Serial, 9-18

default vs. configured

communication settings, 9-18

ENET Serial controllers, 9-21

introduction to programming Serial

devices in NI-VISA, 9-18

summary of VXI in VISA, 9-13

user level functionality, 9-14

using CVI to install your device .inf

files, 9-17

VXI, 9-8

VXI/VME interrupts and asynchronous

events in VISA, 9-9

interfaces

multiple interface support issues, 10-4

interrupt callback handlers, 10-3

how VISA involves callbacks

(table), 10-4

introduction to VISA, 1-2

introductory programming examples, 2-1

L
LabWindows/CVI

installing your device .inf files, 9-17

locking

example, 2-10

service (definition), 2-10

locks, 8-1

acquiring an exclusive lock while owning

a shared lock, 8-3

locking sample code, 8-3

nested locks, 8-3

sharing, 8-2

types, 8-1

low-level access functions, 10-2

low-level access operations, 6-5

M
manipulating the pointer, 6-8

message-based communication, 5-1

asynchronous read/write services, 5-3

basic I/O services, 5-1

clear service, 5-4

example, 2-1

formatted I/O instrument drivers

examples, 5-12

formatted I/O services, 5-8

flushing buffers, automatically, 5-11

flushing buffers, manually, 5-10

I/O buffer operations, 5-9

resizing buffers, 5-12

variable list operations, 5-10

introduction, 5-1

status/service request service, 5-6

synchronous read/write services, 5-2

trigger service, 5-5

VISA application example, 5-7

multiple interface support issues

Serial port, 10-5

numbering of (table), 10-5

VXI and GPIB platforms, 10-4

multiple interfaces

support issues, 10-4

N
National Instruments Web support, B-1

NI Developer Zone, B-1

NI Spy, 10-2

NI-488

comparison with NI-VISA API, 9-2

NI-VISA

API comparison with NI-VXI, 9-13

comparison with NI-488 API, 9-2

functions and operations (table), 9-11

support of, frameworks and programming

languages (table), 1-3

Index

NI-VISA User Manual I-4 ni.com

NI-VXI

API comparison with NI-VISA, 9-13

O
operating systems

NI-VISA support of (table), 1-3

operations vs. pointer dereference, 6-8

other VXI resource classes, 9-10

P
platform specific issues, 10-1

interrupt callback handlers, 10-3

how VISA involves callbacks

(table), 10-4

low-level access functions, 10-2

multiple applications, 10-2

multiple interfaces, 10-4

NI Spy, 10-2

VME support, 10-7

portability issues, 10-1

interrupt callback handlers, 10-3

how VISA involves callbacks

(table), 10-4

low-level access functions, 10-2

multiple applications, 10-2

multiple interfaces, 10-4

NI Spy, 10-2

VME support, 10-7

programming

considerations, 10-2

Ethernet devices, 9-21

examples

introductory, 2-1

GPIB devices, 9-1

GPIB-VXI devices, 9-5

languages

NI-VISA support of (table), 1-3

PXI devices, 9-14

remote devices, 9-23

Serial devices, 9-18

VXI devices, 9-8

PXI devices

configuring NI-VISA to recognize a PXI

device, 9-15

installing your device .inf files, 9-17

interface specific information, 9-13

summary, 9-18

Q
queuing, 2-7

queuing VISA events, 7-5

sample code, 7-9

R
register access, 6-5

using VISA, 6-7

register-based communication, 6-1

bus errors, 6-10

example, 2-4

high-level access

comparison with low level

access, 6-10

high-level access operations, 6-3

high-level block operations, 6-4

introduction, 6-1

low-level access

comparison with high- level

access, 6-10

low-level access operations, 6-5, 6-7

manipulating the pointer, 6-8

operations vs. pointer

dereference, 6-8

register access, 6-5

multiple address spaces, accessing, 6-11

shared memory operations, 6-11

sample codes, 6-12

related documentation, xii

Index

© National Instruments Corporation I-5 NI-VISA User Manual

remote NI-VISA

configuring and using, 9-24

resizing buffers, 5-12

resource manager, 3-7

S
Serial

controlling I/O buffers, 9-20

ENET Serial controllers, 9-21

ports, numbering of (table), 10-5

Serial devices

interface specific information, 9-18

status/service request service, 5-6

support issues

multiple interfaces, 10-4

supported events, 7-2

synchronous read/write services, 5-2

system integration, by National

Instruments, B-1

T
technical support resources, B-1

trigger service, 5-5

U
user level functionality, 9-14

userHandle parameter, 7-9

V
variable list operations, 5-10

VISA

attribute-based resource matching, 4-9

attributes

accessing, 4-12

common considerations for

using, 4-13

background, 3-1

communication channels, 3-4, 3-6

configuring a session, 4-12

events, 7-1

finding resources, 4-5

using regular expressions, 4-7

initializing your application, 4-1

interactive control, 3-2

interface specific information, 9-1

introduction to, 1-2

locks, 8-1

overview, 3-1

resource manager, 3-7

session, opening, 4-1

terminology, 3-4

VISA events, 7-1

callback, 7-6

sample code, 7-9

callback modes, 7-7

disabling and enabling events, 7-4

enabling and disabling events, 7-4

event context, 7-12

with callback mechanism, 7-12

with queuing mechanism, 7-12

exception handling, 7-13

independent queues, 7-8

introduction, 7-1

queuing, 7-5

sample code, 7-9

supported events, 7-2

userHandle parameter, 7-9

VISA locks, 8-1

acquiring an exclusive lock while owning

a shared lock, 8-3

introduction, 8-1

lock sharing, 8-2

lock types, 8-1

locking sample code, 8-3

nested locks, 8-3

visa32.dll, A-1

VISAIC

opening window (figure), 3-2

Index

NI-VISA User Manual I-6 ni.com

visual basic examples, A-1

and visa32.dll, A-1

VME support, 10-7

VXI

programming VXI devices in VISA, 9-8

VISA interface, 9-8

VXI/VME

interrupts and asynchronous events in

VISA, 9-9

W
Web support from National Instruments, B-1

what you need to get started, 1-1

worldwide technical support, B-2

	NI-VISA User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	How to Use This Document Set
	Conventions
	Related Documentation

	Chapter 1 Introduction
	How to Use This Manual
	What You Need to Get Started
	Introduction to VISA
	Table 1-1. NI-VISA Support

	Chapter 2 Introductory Programming Examples
	Example of Message-Based Communication
	Example 2-1
	Example 2-1 Discussion

	Example of Register-Based Communication
	Example 2-2
	Example 2-2 Discussion

	Example of Handling Events
	Callbacks
	Queuing
	Example 2-3
	Example 2-3 Discussion

	Example of Locking
	Example 2-4
	Example 2-4 Discussion

	Chapter 3 VISA Overview
	Background
	Interactive Control of VISA
	Figure 3-1. VISAIC Opening Window

	VISA Terminology
	Beginning Terminology
	Communication Channels: Sessions
	The Resource Manager

	Examples of Interface Independence

	Chapter 4 Initializing Your VISA Application
	Introduction
	Opening a Session
	Example 4-1

	Finding Resources
	Example 4-2
	Finding VISA Resources Using Regular Expressions
	Attribute-Based Resource Matching
	Example 4-3

	Configuring a Session
	Accessing Attributes
	Common Considerations for Using Attributes

	Chapter 5 Message-Based Communication
	Introduction
	Basic I/O Services
	Synchronous Read/Write Services
	Asynchronous Read/Write Services
	Clear Service
	Trigger Service
	Status/Service Request Service
	Example VISA Message-Based Application
	Example 5-1

	Formatted I/O Services
	Formatted I/O Operations
	I/O Buffer Operations
	Variable List Operations
	Manually Flushing the Formatted I/O Buffers
	Automatically Flushing the Formatted I/O Buffers
	Resizing the Formatted I/O Buffers

	Formatted I/O Instrument Driver Examples
	Integers
	Floating Point Values
	Strings
	Data Blocks

	Chapter 6 Register-Based Communication
	Introduction
	High-Level Access Operations
	High-Level Block Operations
	Low-Level Access Operations
	Overview of Register Accesses from Computers
	Using VISA to Perform Low-Level Register Accesses
	Operations versus Pointer Dereference
	Manipulating the Pointer
	Example 6-1
	Bus Errors

	Comparison of High-Level and Low-Level Access
	Speed
	Ease of Use
	Accessing Multiple Address Spaces

	Shared Memory Operations
	Shared Memory Sample Code
	Example 6-2

	Chapter 7 VISA Events
	Introduction
	Supported Events
	Table 7-1. Generic and INSTR-specific Event Types

	Enabling and Disabling Events
	Queuing
	Callbacks
	Callback Modes
	Independent Queues
	The userHandle Parameter

	Queuing and Callback Mechanism Sample Code
	Example 7-1

	The Life of the Event Context
	Event Context with the Queuing Mechanism
	Event Context with the Callback Mechanism

	Exception Handling

	Chapter 8 VISA Locks
	Introduction
	Lock Types
	Lock Sharing
	Acquiring an Exclusive Lock While Owning a Shared Lock
	Nested Locks

	Locking Sample Code
	Example 8-1

	Chapter 9 Interface Specific Information
	GPIB
	Introduction to Programming GPIB Devices in VISA
	Comparison Between NI-VISA and NI-488 APIs
	Table 9-1. NI-VISA and NI-488 Functions and Operations

	Board-Level Programming
	Table 9-2. Board-Level Programming Functions and Operations

	GPIB Summary

	GPIB-VXI
	Introduction to Programming GPIB-VXI Devices in VISA
	Register-based Programming with the GPIB-VXI
	Table 9-3. Register-based Programming Messages and Operations

	Additional Programming Issues
	GPIB-VXI Summary

	VXI
	Introduction to Programming VXI Devices in VISA
	VXI/ VME Interrupts and Asynchronous Events in VISA
	Performing Arbitrary Access to VXI Memory with VISA
	Other VXI Resource Classes and VISA
	Comparison Between NI-VISA and NI-VXI APIs
	Table 9-4. NI-VISA and NI-VXI Functions and Operations

	Summary of VXI in VISA

	PXI
	Introduction to Programming PXI Devices in NI-VISA
	User Level Functionality
	Configuring NI-VISA to Recognize a PXI Device
	Using CVI to Install Your Device .inf Files
	PXI Summary

	Serial
	Introduction to Programming Serial Devices in VISA
	Default vs. Configured Communication Settings
	Controlling the Serial I/O Buffers
	National Instruments ENET Serial Controllers
	Serial Summary

	Ethernet
	Introduction to Programming Ethernet Devices in VISA
	VISA Sockets vs. Other Sockets APIs
	Ethernet Summary

	Remote NI-VISA
	Introduction to Programming Remote Devices in NI-VISA
	How to Configure and Use Remote NI-VISA
	Remote NI-VISA Summary

	Chapter 10 NI-VISA Platform-Specific and Portability Issues
	Programming Considerations
	NI Spy: Debugging Tool for Windows
	Multiple Applications Using the NI-VISA Driver
	Low-Level Access Functions
	Interrupt Callback Handlers
	Table 10-1. How VISA Invokes Callbacks

	Multiple Interface Support Issues
	VXI and GPIB Platforms
	Serial Port Support
	Table 10-2. How Serial Ports Are Numbered

	Example 10-1
	VME Support

	Appendix A Visual Basic Examples
	Appendix B Technical Support Resources
	Glossary
	A
	B
	C-D
	E-H
	I-L
	M-O
	P-R
	S
	T-V

	Index
	A-F
	G-I
	L-N
	O-R
	S-V
	W

