

 NB-GPIB

https://www.apexwaves.com/modular-systems/national-instruments/nb-series/NB-GPIB?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/nb-series/NB-GPIB?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/nb-series/NB-GPIB?aw_referrer=pdf

User Manual
LabVIEW User Manual

January 1998 Edition

Part Number 320999B-01

Internet Support

E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support

BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support

512 418 1111

Telephone Support (USA)

Tel: 512 795 8248
Fax: 512 794 5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1992, 1998 National Instruments Corporation. All rights reserved.

 Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks

CVI™, LabVIEW™, National Instruments™, natinst.com™, NI-488™, NI-488.2™, NI-DAQ™, NI-VISA™, NI-VXI™,
SCXI™, and VXIpc™, are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v LabVIEW User Manual

Contents

About This Manual
Organization of This Manual ...xxiii

Part I, Introduction to G Programming..xxiii
Part II, I/O Interfaces...xxiv
Part III, Analysis..xxiv
Part IV, Network and Interapplication Communication....................................xxv
Part V, Advanced G Programming..xxvi
Appendices, Glossary, and Index ..xxvi

Conventions Used in This Manual...xxvii
Related Documentation..xxviii
Customer Communication ...xxviii

Chapter 1
Introduction

What Is LabVIEW? ...1-1
How Does LabVIEW Work? ...1-1

G Programming ...1-2
Organization of the LabVIEW System (Windows) ...1-4

Startup Screen on Windows ..1-5
Organization of the LabVIEW System (Macintosh) ...1-6
Organization of the LabVIEW System (UNIX) ..1-7
Toolkit Support ..1-9
Where Should I Start?..1-9

PART I
Introduction to G Programming

Chapter 2
Creating VIs

What is a Virtual Instrument? ..2-1
How Do You Build a VI? ..2-1

VI Hierarchy..2-1
Controls, Constants, and Indicators...2-2
Terminals...2-3

Contents

LabVIEW User Manual vi © National Instruments Corporation

Wires ... 2-4
Tip Strips .. 2-4
Wire Stretching... 2-5
Selecting and Deleting Wires ... 2-5
Bad Wires ... 2-6

VI Documentation... 2-10
What is a SubVI?... 2-12

Hierarchy Window.. 2-12
Search Hierarchy .. 2-14

Icon and Connector ... 2-14
Opening, Operating, and Changing SubVIs.. 2-19
Front Panel .. 2-19
Block Diagram .. 2-20

How Do You Debug a VI? .. 2-21

Chapter 3
Loops and Charts

What is a Structure?... 3-1
Charts... 3-2

Chart Modes .. 3-2
Faster Chart Updates... 3-3
Overlaid Versus Stacked Plots .. 3-3

While Loops .. 3-4
Front Panel .. 3-5
Block Diagram .. 3-6
Mechanical Action of Boolean Switches .. 3-8
Timing... 3-10
Preventing Code Execution in the First Iteration.. 3-12

Shift Registers ... 3-13
Front Panel .. 3-15
Block Diagram .. 3-15
Using Uninitialized Shift Registers... 3-17
Front Panel .. 3-19
Block Diagram .. 3-20

For Loops... 3-22
Numeric Conversion ... 3-24
Front Panel .. 3-25
Block Diagram .. 3-26

Contents

© National Instruments Corporation vii LabVIEW User Manual

Chapter 4
Case and Sequence Structures and the Formula Node

Case Structure ..4-2
Front Panel...4-2
Block Diagram...4-3
VI Logic...4-4

Sequence Structures ...4-5
Front Panel...4-5

Modifying the Numeric Format ..4-6
Setting the Data Range..4-7

Block Diagram...4-7
Formula Node ..4-11

Front Panel...4-14
Block Diagram...4-14

Artificial Data Dependency ...4-15

Chapter 5
Arrays, Clusters, and Graphs

Arrays...5-1
How Do You Create and Initialize Arrays? ..5-1

Array Controls, Constants, and Indicators ..5-2
Auto-Indexing..5-2
Front Panel...5-3
Block Diagram...5-4
Multiplot Graphs ...5-7
Using Auto-Indexing to Set the For Loop Count ..5-10
Using Array Functions ..5-10

Build Array ...5-10
Initialize Array ..5-11
Array Size ...5-12
Array Subset..5-13
Index Array ...5-14

Front Panel...5-17
Block Diagram...5-18
Efficient Memory Usage: Minimizing Data Copies..5-18

What is Polymorphism?...5-19
Clusters ..5-20

Contents

LabVIEW User Manual viii © National Instruments Corporation

Graphs.. 5-20
Customizing Graphs.. 5-20

Graph Cursors... 5-21
Graph Axes ... 5-22

Data Acquisition Arrays.. 5-22
Front Panel .. 5-22
Block Diagram .. 5-23

Intensity Plots .. 5-25

Chapter 6
Strings and File I/O

Strings.. 6-1
Creating String Controls and Indicators.. 6-1
Strings and File I/O ... 6-2
Front Panel .. 6-2
Block Diagram .. 6-3
Front Panel .. 6-4
Block Diagram .. 6-4
Front Panel .. 6-7
Block Diagram .. 6-8

File I/O... 6-9
File I/O Functions ... 6-9

Writing to a Spreadsheet File .. 6-11
Front Panel .. 6-12
Block Diagram .. 6-12
Front Panel .. 6-14
Block Diagram .. 6-15
Front Panel .. 6-16
Block Diagram .. 6-17

Using the File I/O Functions ... 6-18
Specifying a File ... 6-18
Paths and Refnums.. 6-19
File I/O Examples ... 6-19

Datalog Files.. 6-20

Contents

© National Instruments Corporation ix LabVIEW User Manual

PART II
I/O Interfaces

Chapter 7
Getting Started with a LabVIEW Instrument Driver

What is a LabVIEW Instrument Driver? ...7-1
Where Can I Get Instrument Drivers? ...7-2
Where Should I Install My LabVIEW Instrument Driver? ...7-2
How Do I Access the Instrument Driver VIs? ...7-3
Instrument Driver Structure ...7-4
Obtaining Help for Your Instrument Driver VIs ...7-6
Running the Getting Started VI Interactively

(Selecting the GPIB Address, Serial Port, and Logical Address).................................7-7
Interactively Testing Component VIs..7-8
Building Your Application ..7-9
Related Topics ...7-10

Open VISA Session Monitor VI..7-10
Error Handling...7-11
Testing Communication with Your Instrument...7-11

Developing a Quick and Simple LabVIEW Instrument Driver.......................................7-12
Modifying an Existing Driver ...7-12
Developing a Simple Driver ..7-13
Developing a Full-Featured Driver ...7-17
Using LabVIEW with IVI Instrument Drivers..7-17

Chapter 8
LabVIEW VISA Tutorial

What is VISA? ...8-1
Supported Platforms and Environments..8-1

Why Use VISA? ..8-2
VISA Is the Standard...8-2
Interface Independence..8-2
Platform Independence..8-2
Easily Adapted to the Future ...8-2

Basic VISA Concepts ..8-3
Default Resource Manager, Session, and Instrument Descriptors8-3
How Do I Search for Resources? ..8-4
What is a VISA Class? ..8-5

Popping Up on a VISA Control ..8-6
Opening a Session ...8-6

Contents

LabVIEW User Manual x © National Instruments Corporation

How Do the Default Resource Manager, Instrument Descriptors,
and Sessions Relate? .. 8-7

Closing a Session .. 8-8
When Is It a Good Idea to Leave a Session Open?............................. 8-8

Error Handling with VISA.. 8-9
Easy VISA VIs .. 8- 11
Message-Based Communication ... 8-11

How Do I Write To and Read From a Message-Based Device? 8-12
Register-Based Communication (VXI only) ... 8-12

Basic Register Access ... 8-14
Basic Register Move ... 8-15
Low-Level Access Functions.. 8-15

Using VISA to Perform Low-Level Register Accesses 8-15
Bus Errors ... 8-17

Comparison of High-Level and Low-Level Access ... 8-17
Speed .. 8-17
Ease of Use ... 8-18
Accessing Multiple Address Spaces... 8-18

VISA Properties... 8-18
Serial ... 8-20
GPIB.. 8-21
VXI.. 8-21
VISA Property Examples.. 8-22

Serial Write and Read... 8-22
How Do I Set a Termination Character for a Read Operation?.......... 8-22
VXI Properties .. 8-23

Events .. 8-24
GPIB SRQ Events ... 8-24
Trigger Events... 8-25
Interrupt Events... 8-25

Locking.. 8-26
Shared Locking ... 8-28

Platform-Specific Issues.. 8-28
Programming Considerations.. 8-29

Multiple Applications Using the NI-VISA Driver 8-29
Multiple Interface Support Issues ... 8-29

VXI and GPIB Platforms.. 8-29
Multiple GPIB-VXI Support .. 8-30
Serial Port Support.. 8-30
VME Support.. 8-30

Debugging A VISA Program .. 8-31
Debugging Tool for Windows 95/NT... 8-32

VISAIC.. 8-32

Contents

© National Instruments Corporation xi LabVIEW User Manual

Chapter 9
Introduction to LabVIEW GPIB Functions

Types of Messages...9-1
The Controller-In-Charge and System Controller ...9-3
Compatible GPIB Hardware ..9-3

LabVIEW for Windows 95 and Windows 95-Japanese....................................9-3
LabVIEW for Windows NT ..9-3
LabVIEW for Windows 3.1 ..9-4
LabVIEW for Mac OS...9-4
LabVIEW for HP-UX..9-4
LabVIEW for Sun..9-5
LabVIEW for Concurrent PowerMAX ...9-5

Chapter 10
Serial Port VIs

Handshaking Modes ..10-2
Software Handshaking—XON/XOFF...10-2

Error Codes ..10-2
Port Number...10-3

Windows 95 and 3.x ..10-3
Macintosh ..10-3
UNIX ...10-3

PART III
Analysis

Chapter 11
Introduction to Analysis in LabVIEW

The Importance of Data Analysis ..11-1
Full Development System..11-3
Analysis VI Overview ...11-3
Notation and Naming Conventions..11-6
Data Sampling..11-9

Sampling Signals ...11-9
Sampling Considerations...11-10
Why Do You Need Anti-Aliasing Filters? ..11-13
Why Use Decibels? ...11-14

Contents

LabVIEW User Manual xii © National Instruments Corporation

Chapter 12
Signal Generation

Normalized Frequency .. 12-1
Front Panel .. 12-5
Block Diagram .. 12-6

Wave and Pattern VIs.. 12-7
Phase Control .. 12-7
Front Panel .. 12-8
Block Diagram .. 12-9
Front Panel .. 12-11
Block Diagram .. 12-12

Chapter 13
Digital Signal Processing

The Fast Fourier Transform (FFT) .. 13-1
DFT Calculation Example .. 13-2
Magnitude and Phase Information .. 13-4

Frequency Spacing between DFT/FFT Samples... 13-5
Fast Fourier Transforms.. 13-7
Zero Padding ... 13-8
FFT VIs in the Analysis Library ... 13-9
Front Panel .. 13-10
Block Diagram .. 13-11
Two-Sided FFT ... 13-12
One-Sided FFT.. 13-12

The Power Spectrum ... 13-14
Loss of Phase Information .. 13-14
Frequency Spacing between Samples ... 13-14

Summary.. 13-15

Chapter 14
Smoothing Windows

Introduction to Smoothing Windows .. 14-1
About Spectral Leakage and Smoothing Windows... 14-2
Windowing Applications... 14-7
Characteristics of Different Types of Window Functions... 14-7

Rectangular (None) ... 14-7
Hanning... 14-8
Hamming... 14-9
Kaiser-Bessel .. 14-10
Triangle ... 14-11

Contents

© National Instruments Corporation xiii LabVIEW User Manual

Flattop..14-11
Exponential..14-12

Windows for Spectral Analysis Versus Windows for Coefficient Design14-13
What Type of Window Do I Use?...14-16
Front Panel...14-17
Block Diagram...14-18

Chapter 15
Spectrum Analysis and Measurement

Introduction to Measurement VIs ..15-1
You Will Learn ..15-4
Spectrum Analysis ...15-4

Calculating the Amplitude and Phase Spectrum of a Signal15-4
Front Panel...15-5
Block Diagram...15-6
Calculating the Frequency Response of a System...15-7
Front Panel...15-8
Block Diagram...15-9

Harmonic Distortion ..15-10
Total Harmonic Distortion ..15-11
Using the Harmonic Analyzer VI..15-12
Block Diagram...15-14
Front Panel...15-15

Summary..15-16

Chapter 16
Filtering

Introduction to Digital Filtering Functions ..16-1
Ideal Filters ..16-3
Practical (Nonideal) Filters ..16-4

The Transition Band ..16-4
Passband Ripple and Stopband Attenuation..16-5

IIR and FIR Filters ...16-6
Filter Coefficients..16-8

Infinite Impulse Response Filters ..16-8
Cascade Form IIR Filtering ...16-10
Butterworth Filters...16-12
Chebyshev Filters ..16-12
Chebyshev II or Inverse Chebyshev Filters...16-13
Elliptic (or Cauer) Filters...16-14
Bessel Filters ...16-15

Contents

LabVIEW User Manual xiv © National Instruments Corporation

Finite Impulse Response Filters .. 16-16
Designing FIR Filters by Windowing... 16-17
Designing Optimum FIR Filters Using the Parks-McClellan Algorithm 16-18
Designing Narrowband FIR Filters... 16-18
Windowed FIR Filters... 16-19
Optimum FIR Filters ... 16-19
FIR Narrowband Filters .. 16-19

Nonlinear Filters .. 16-20
How Do I Decide Which Filter to Use? .. 16-20

Front Panel .. 16-22
Block Diagram .. 16-23

Summary.. 16-24

Chapter 17
Curve Fitting

Introduction to Curve Fitting... 17-1
Applications of Curve Fitting ... 17-3
Front Panel .. 17-4
Block Diagram .. 17-5

General LS Linear Fit Theory ... 17-6
How to Use the General LS Linear Fit VI... 17-11

Building the Observation Matrix .. 17-15
Nonlinear Lev-Mar Fit Theory.. 17-18
Using the Nonlinear Lev-Mar Fit VI... 17-19

Front Panel .. 17-21
Block Diagram .. 17-22

Chapter 18
Linear Algebra

Linear Systems and Matrix Analysis... 18-1
Types of Matrices.. 18-1
Determinant of a Matrix.. 18-2
Transpose of a Matrix ... 18-3

Can You Obtain One Vector as a Linear Combination
of Other Vectors? (Linear Independence) 18-3

How Can You Determine Linear Independence? (Matrix Rank)....... 18-4
“Magnitude” (Norms) of Matrices .. 18-5
Determining Singularity (Condition Number) .. 18-7

Basic Matrix Operations and Eigenvalues-Eigenvector Problems.................................. 18-9
Dot Product and Outer Product ... 18-10
Eigenvalues and Eigenvectors .. 18-12

Contents

© National Instruments Corporation xv LabVIEW User Manual

Matrix Inverse and Solving Systems of Linear Equations ..18-14
Solutions of Systems of Linear Equations...18-15
Front Panel...18-17
Block Diagram...18-18

Matrix Factorization ..18-20
Pseudoinverse ..18-21

Summary..18-21

Chapter 19
Probability and Statistics

Probability and Statistics ...19-1
Statistics ...19-3

Mean ..19-3
Median...19-3
Sample Variance..19-4
Standard Deviation ..19-5
Mode..19-6
Moment About Mean ..19-6
Histogram ..19-7
Mean Square Error (MSE)...19-10
Root Mean Square (RMS) ...19-11

Probability..19-12
Random Variables ...19-12
Normal Distribution...19-15
Front Panel...19-17
Block Diagram...19-18

Summary..19-20

PART IV
Network and Interapplication Communication

Chapter 20
Introduction to Communication

LabVIEW Communication Overview ...20-1
Introduction to Communication Protocols...20-1
File Sharing Versus Communication Protocols...20-2
Client/Server Model...20-3

A General Model for a Client..20-3
A General Model for a Server ...20-4

Contents

LabVIEW User Manual xvi © National Instruments Corporation

Chapter 21
TCP and UDP

Overview ... 21-1
LabVIEW and TCP/IP .. 21-2
Internet Addresses... 21-2

Internet Protocol (IP) ... 21-2
User Datagram Protocol (UDP)... 21-3

Using UDP .. 21-3
Transmission Control Protocol (TCP)... 21-4

Using TCP... 21-4
TCP Versus UDP.. 21-5
TCP Client Example ... 21-5
Timeouts and Errors ... 21-6
TCP Server Example .. 21-6
TCP Server with Multiple Connections.. 21-7

Setup.. 21-7
UNIX .. 21-7
Macintosh ... 21-8
Windows 3.x ... 21-8
Windows 95 and Windows NT .. 21-8

Chapter 22
ActiveX Support

ActiveX Automation Server Functionality.. 22-2
ActiveX Server Properties and Methods ... 22-3
ActiveX Automation Client Functionality .. 22-3
ActiveX Client Examples .. 22-4

Converting ActiveX Variant Data to G Data .. 22-4
Adding a Workbook to Microsoft Excel from LabVIEW 22-5

Chapter 23
Using DDE

DDE Overview .. 23-1
Services, Topics, and Data Items .. 23-2
Examples of Client Communication with Excel... 23-2
LabVIEW VIs as DDE Servers... 23-4
Requesting Data Versus Advising Data.. 23-6
Synchronization of Data.. 23-7

Contents

© National Instruments Corporation xvii LabVIEW User Manual

Networked DDE ..23-8
Using NetDDE ..23-10

Server Machine...23-10
Client Machine ...23-12

Chapter 24
AppleEvents

AppleEvents...24-1
Sending AppleEvents ..24-2
Client Server Model ..24-2
AppleEvent Client Examples ..24-3

Launching Other Applications ..24-3
Sending Events to Other Applications ..24-3
Dynamically Loading and Running a VI ..24-4

Chapter 25
Program-to-Program Communication

Introduction to PPC ...25-1
Ports, Target IDs, and Sessions ...25-2
PPC Client Example ..25-3
PPC Server Example ...25-4
PPC Server with Multiple Connections...25-5

PART V
Advanced G Programming

Chapter 26
Customizing VIs

How Do You Customize a VI? ..26-1
Set Window Options..26-1
SubVI Node Setup...26-2
Front Panel...26-2
Block Diagram...26-3
Front Panel...26-6
Block Diagram...26-7

Contents

LabVIEW User Manual xviii © National Instruments Corporation

Chapter 27
Front Panel Object Attributes

Front Panel .. 27-3
Block Diagram .. 27-3

Chapter 28
Program Design

Use Top-Down Design .. 28-1
Make a List of User Requirements ... 28-1
Design the VI Hierarchy ... 28-1
Create the Program.. 28-3

Plan Ahead with Connector Panes .. 28-3
SubVIs with Required Inputs .. 28-4

Good Diagram Style .. 28-4
Watch for Common Operations .. 28-5
Use Left-to-Right Layouts .. 28-5
Check for Errors.. 28-6
Watch Out for Missing Dependencies .. 28-7
Avoid Overuse of Sequence Structures .. 28-8
Study the Examples... 28-9

Chapter 29
Where to Go from Here

Other Useful Resources... 29-1
Solution Wizard and Search Examples ... 29-1
Data Acquisition Applications .. 29-1
G Programming Techniques ... 29-1
Function and VI Reference ... 29-2

Resources for Advanced Topics.. 29-2
Attribute Nodes ... 29-2
VI Setup and Preferences .. 29-2
Local and Global Variables... 29-3
Creating SubVIs .. 29-3
VI Profiles ... 29-3
Control Editor ... 29-4
List and Ring Controls .. 29-4
Call Library Function.. 29-4
Code Interface Nodes.. 29-4

Contents

© National Instruments Corporation xix LabVIEW User Manual

Appendices, Glossary, and Index

Appendix A
Analysis References

Appendix B
Common Questions

Appendix C
Customer Communication

Glossary

Index
Figures, Tables, and Activities

Figures
Figure 11-1. Analog Signal and Corresponding Sampled Version..............................11-9
Figure 11-2. Aliasing Effects of an Improper Sampling Rate11-10
Figure 11-3. Actual Signal Frequency Components ..11-11
Figure 11-4. Signal Frequency Components and Aliases ..11-12
Figure 11-5. Effects of Sampling at Different Rates..11-13

Figure 14-1. Periodic Waveform Created from Sampled Period.................................14-2
Figure 14-2. Sine Wave and Corresponding Fourier Transform14-3
Figure 14-3. Spectral Representation When Sampling a Nonintegral Number

of Samples ..14-4
Figure 14-4. Time Signal Windowed Using a Hamming Window..............................14-6

Figure 22-1. Preferences Dialog Box, Server Configuration.......................................22-2
Figure 22-2. Block Diagram Displaying ActiveX Variant Data to G Data22-4
Figure 22-3. Adding a Workbook to Microsoft Excel ...22-5

Figure 25-1. PPC VI Execution Order (Used by Permission
of Apple Computer, Inc.)..25-5

Contents

LabVIEW User Manual xx © National Instruments Corporation

Tables
Table 22-1. Functions for ActiveX Automation Client Support 22-3

Table 23-1. Values to Add in Place of Default .. 23-11

Activities
Activity 2-1. Create a VI .. 2-7
Activity 2-2. Document a VI .. 2-10
Activity 2-3. Create an Icon and Connector... 2-17
Activity 2-4. Call a SubVI.. 2-19
Activity 2-5. Debug a VI in LabVIEW .. 2-22

Activity 3-1. Experiment with Chart Modes .. 3-3
Activity 3-2. Use a While Loop and a Chart .. 3-5
Activity 3-3. Change the Mechanical Action of a Boolean Switch 3-9
Activity 3-4. Control Loop Timing .. 3-10
Activity 3-5. Use a Shift Register .. 3-15
Activity 3-6. Create a Multiplot Chart ... 3-19
Activity 3-7. Use a For Loop.. 3-25

Activity 4-1. Use the Case Structure .. 4-2
Activity 4-2. Use a Sequence Structure.. 4-5
Activity 4-3. Use the Formula Node .. 4-13

Activity 5-1. Create an Array with Auto-Indexing .. 5-3
Activity 5-2. Use Auto-Indexing on Input Arrays ... 5-8
Activity 5-3. Use the Build Array Function ... 5-17
Activity 5-4. Use the Graph and Analysis VIs ... 5-22

Activity 6-1. Concatenate a String ... 6-2
Activity 6-2. Use Format Strings ... 6-4
Activity 6-3. String Subsets and Number Extraction ... 6-7
Activity 6-4. Write to a Spreadsheet File ... 6-12
Activity 6-5. Append Data to a File ... 6-14
Activity 6-6. Read Data from a File ... 6-16

Activity 12-1. Learn More about Normalized Frequency .. 12-5
Activity 12-2. Use the Sine Wave and Sine Pattern VIs .. 12-8
Activity 12-3. Build a Function Generator... 12-11

Contents

© National Instruments Corporation xxi LabVIEW User Manual

Activity 13-1. Use the Real FFT VI ...13-10

Activity 14-1. Compare a Windowed and Nonwindowed Signal14-17

Activity 15-1. Use the Amplitude and Phase Spectrum VI ..15-5
Activity 15-2. Compute the Frequency and Impulse Response......................................15-8
Activity 15-3. Calculate Harmonic Distortion..15-14

Activity 16-1. Extract a Sine Wave ..16-22

Activity 17-1. Use the Curve Fitting VIs..17-4
Activity 17-2. Use the General LS Linear Fit VI ...17-14
Activity 17-3. Use the Nonlinear Lev-Mar Fit VI ..17-20

Activity 18-1. Compute the Inverse of a Matrix...18-17
Activity 18-2. Solve a System of Linear Equations..18-19

Activity 19-1. Use the Normal Distribution VI ..19-17

Activity 26-1. Use Setup Options for a SubVI ...26-2

Activity 27-1. Use an Attribute Node...27-3

© National Instruments Corporation xxiii LabVIEW User Manual

About This Manual

The LabVIEW User Manual provides information about creating virtual
instruments (VIs). This manual also includes information about the
interfaces to which you can input and output data, using LabVIEW VIs to
perform analysis operations, and how LabVIEW handles network and
interapplication communication. Please read the LabVIEW Release Notes
before you use the LabVIEW User Manual.

Organization of This Manual

The LabVIEW User Manual is organized as follows.

• Chapter 1, Introduction, introduces the unique LabVIEW approach to
programming. It also explains how to start using LabVIEW to develop
programs.

Part I, Introduction to G Programming
This section contains basic information about creating virtual instruments
(VIs), using VIs in other VIs, programming structures such as loops, and
data structures such as arrays and strings.

Part I, Introduction to G Programming, contains the following chapters.

• Chapter 2, Creating VIs, explains how to create a VI including the
front panel, which is the user interface, and the block diagram, which
is the source code. Once you create a VI, you can use it in other VIs.

• Chapter 3, Loops and Charts, shows you how to repeat portions of the
block diagram using a While Loop and a For Loop. This chapter also
explains how to display graphically multiple points, one at a time, on
a chart.

• Chapter 4, Case and Sequence Structures and the Formula Node,
explains how to use the Case structure, which is a conditional structure,
the Sequence structure, which aids in establishing execution order, and
the Formula Node, which aids in executing mathematical formulas.

• Chapter 5, Arrays, Clusters, and Graphs, shows how to display a
group or array of data points on a graph. You can pass scale parameters
as well as an array of data points to a graph by creating a cluster, which
is a group of data different data types.

• Chapter 6, Strings and File I/O, introduces string controls and
indicators and file input and output operations.

About This Manual

LabVIEW User Manual xxiv © National Instruments Corporation

Part II, I/O Interfaces
This section contains basic information on the interfaces to which you can
input and output data, which are data acquisition, GPIB, serial, and VXI.
Refer to the Data Acquisition Basics Manual for basic information on
real-time data acquisition. VISA (Virtual Instrument Software
Architecture) is a single software library that interfaces with GPIB, serial,
and VXI instruments. LabVIEW applications developed especially for a
specific instrument are called instrument drivers. National Instruments
provides several instrument drivers using the VISA library, but you can also
build your own instrument drivers.

Part II, I/O Interfaces, contains the following chapters.

• Chapter 7, Getting Started with a LabVIEW Instrument Driver,
explains how to create and use National Instruments instrument
drivers.

• Chapter 8, LabVIEW VISA Tutorial, shows you how to implement
common VISA applications using message-based and register-based
communication as well as events and locking.

• Chapter 9, Introduction to LabVIEW GPIB Functions, explains how
the GPIB operates and the difference between the IEEE 488 and
IEEE 488.2 interface.

• Chapter 10, Serial Port VIs, explains the important factors that affect
serial communication.

Part III, Analysis
This section contains basic information on analysis of data, signal
processing, signal generation, linear algebra, curve fitting, probability, and
statistics.

Part III, Analysis, contains the following chapters.

• Chapter 11, Introduction to Analysis in LabVIEW, introduces concepts
that apply to all analysis applications, including supported
functionality, notation and naming conventions, and sampling signal
methods.

• Chapter 12, Signal Generation, explains how to produce signals using
the normalized frequency and how to build a simulated function
generator.

• Chapter 13, Digital Signal Processing, shows the difference
between the Fast Fourier Transform (FFT) and the Discrete Fourier
Transform (DFT).

About This Manual

© National Instruments Corporation xxv LabVIEW User Manual

• Chapter 14, Smoothing Windows, explains how using windows
prevents spectral leakage and improves the analysis of acquired
signals.

• Chapter 15, Spectrum Analysis and Measurement, shows how to
determine the amplitude and phase spectrum, develop a spectrum
analyzer, and determine the total harmonic distortion (THD).

• Chapter 16, Filtering, explains how to filter unnecessary frequencies
from signals using infinite impulse response filters (IIR), finite
impulse response filters (FIR), and nonlinear filters.

• Chapter 17, Curve Fitting, shows how to extract information from a
data set to create a data trend description.

• Chapter 18, Linear Algebra, explains how to perform matrix
computation and analysis.

• Chapter 19, Probability and Statistics, explains some fundamental
concepts of probability and statistics, and shows how to use these
concepts in solving real-world problems.

Part IV, Network and Interapplication Communication
This section contains basic information about network and interapplication
communication.

Part IV, Network and Interapplication Communication, contains the
following chapters.

• Chapter 20, Introduction to Communication, introduces the way
LabVIEW handles networking and interapplication communication.

• Chapter 21, TCP and UDP, explains basic concepts of Transmission
Control Protocol (TCP), Internet Protocol (IP), and internet addresses.

• Chapter 22, ActiveX Support, shows how LabVIEW can be an ActiveX
server and client. ActiveX is the same as OLE Automation
communication.

• Chapter 23, Using DDE, explains how to use Dynamic Data Exchange
(DDE) to communicate between Windows applications. DDE can be
used in a client, a server, and across a network.

• Chapter 24, AppleEvents, shows how AppleEvents are used to
communicate between LabVIEW and other Macintosh applications.
LabVIEW can be an AppleEvents server and client.

• Chapter 25, Program-to-Program Communication, explains how
LabVIEW can communicate to other Macintosh applications using
Program-to-Program Communication (PPC).

About This Manual

LabVIEW User Manual xxvi © National Instruments Corporation

Part V, Advanced G Programming
This section contains information on VI customization; programmatic
control of front panel objects, VIs, and LabVIEW; and tips on how to
design complex applications.

Part V, Advanced G Programming, contains the following chapters.

• Chapter 26, Customizing VIs, shows how to use VI Setup… and
VI Node Setup… to customize the appearance and execution behavior
of a VI when it is running.

• Chapter 27, Front Panel Object Attributes, describes objects called
attribute nodes, which are special block diagram nodes that control the
appearance and functional characteristics of controls and indicators.

• Chapter 28, Program Design, explains techniques to use when
creating programs and offers programming-style guidelines.

• Chapter 29, Where to Go from Here, provides information about
resources you can use to create your applications successfully.

Appendices, Glossary, and Index

• Appendix A, Analysis References, lists the reference material used to
produce the Analysis VIs in LabVIEW. These references contain more
information on the theories and algorithms implemented in the
analysis library.

• Appendix B, Common Questions, answers common questions about
LabVIEW networking communications and Instrument I/O,
specifically GPIB and serial I/O.

• Appendix C, Customer Communication, contains forms to help you
gather the information necessary to help us solve your technical
problems and a form you can use to comment on the product
documentation.

• The Glossary contains an alphabetical list of terms used in this manual,
including abbreviations, acronyms, metric prefixes, mnemonics, and
symbols.

• The Index contains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

About This Manual

© National Instruments Corporation xxvii LabVIEW User Manual

Conventions Used in This Manual

The following conventions are used in this manual:

< > Angle brackets enclose the name of a key on the keyboard—for example,
<shift>. Angle brackets containing numbers separated by an ellipsis
represent a range of values associated with a bit or signal name—
for example, DBIO<3..0>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—
for example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options» Substitute

Fonts directs you to pull down the File menu, select the Page Setup item,
select Options, and finally select the Substitute Fonts options from the
last dialog box.

This icon to the left of bold text denotes the beginning of an activity, which
contains step-by-step instructions you can follow to learn more about
LabVIEW.

This icon to the left of bold text denotes the end of an activity, which
contains step-by-step instructions you can follow to learn more about
LabVIEW.

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

This icon to the left of bold italicized text denotes a caution, which advises
you of precautions to take to avoid injury, data loss, or a system crash.

bold Bold text denotes the names of menus, menu items, parameters, dialog
boxes, dialog box buttons or options, icons, windows, Windows 95 tabs,
or LEDs.

bold italic Bold italic text denotes an activity objective, note, caution, or warning.

bold monospace Bold monospace text denotes messages and responses that the computer
automatically prints to the screen.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows 3.x.

!

About This Manual

LabVIEW User Manual xxviii © National Instruments Corporation

monospace Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, variables, filenames and extensions, and for statements and
comments taken from programs.

paths Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

Platform Text in this font denotes information related to a specific platform.

Related Documentation

• G Programming Reference Manual

• LabVIEW Data Acquisition Basics Manual

• LabVIEW Function and VI Reference Manual

• LabVIEW QuickStart Guide

• LabVIEW Online Reference, available by selecting
Help»Online Reference

• LabVIEW Online Tutorial (Windows only), which you launch from the
LabVIEW dialog box

• G Programming Quick Reference Card

• LabVIEW Getting Started Card

• LabVIEW Release Notes

• LabVIEW Upgrade Notes

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendix C, Customer

Communication, at the end of this manual.

© National Instruments Corporation 1-1 LabVIEW User Manual

1
Introduction

This chapter introduces the unique LabVIEW approach to programming.
It also explains how to start using LabVIEW to develop programs. The
chapter refers you to other chapters or manuals for more information.

What Is LabVIEW?

LabVIEW is a program development environment, much like modern C
or BASIC development environments, and National Instruments
LabWindows/CVI. However, LabVIEW is different from those
applications in one important respect. Other programming systems use
text-based languages to create lines of code, while LabVIEW uses a
graphical programming language, G, to create programs in block diagram
form.

LabVIEW, like C or BASIC, is a general-purpose programming system
with extensive libraries of functions for any programming task. LabVIEW
includes libraries for data acquisition, GPIB and serial instrument control,
data analysis, data presentation, and data storage. LabVIEW also includes
conventional program development tools, so you can set breakpoints,
animate the execution to see how data passes through the program, and
single-step through the program to make debugging and program
development easier.

How Does LabVIEW Work?

LabVIEW is a general-purpose programming system, but it also includes
libraries of functions and development tools designed specifically for data
acquisition and instrument control. LabVIEW programs are called virtual

instruments (VIs) because their appearance and operation can imitate actual
instruments. However, VIs are similar to the functions of conventional
language programs.

A VI consists of an interactive user interface, a dataflow diagram that
serves as the source code, and icon connections that allow the VI to be

Chapter 1 Introduction

LabVIEW User Manual 1-2 © National Instruments Corporation

called from higher level VIs. More specifically, VIs are structured as
follows:

• The interactive user interface of a VI is called the front panel,
because it simulates the panel of a physical instrument. The front
panel can contain knobs, push buttons, graphs, and other controls
and indicators. You enter data using a mouse and keyboard, and
then view the results on the computer screen.

• The VI receives instructions from a block diagram, which you
construct in G. The block diagram is a pictorial solution to a
programming problem. The block diagram is also the source code
for the VI.

• VIs are hierarchical and modular. You can use them as top-level
programs, or as subprograms within other programs. A VI within
another VI is called a subVI. The icon and connector of a VI work
like a graphical parameter list so that other VIs can pass data to a
subVI.

With these features, LabVIEW promotes and adheres to the concept of
modular programming. You divide an application into a series of tasks,
which you can divide again until a complicated application becomes a
series of simple subtasks. You build a VI to accomplish each subtask and
then combine those VIs on another block diagram to accomplish the larger
task. Finally, your top-level VI contains a collection of subVIs that
represent application functions.

Because you can execute each subVI by itself, apart from the rest of the
application, debugging is much easier. Furthermore, many low-level
subVIs often perform tasks common to several applications, so that you can
develop a specialized set of subVIs well-suited to applications you are
likely to construct.

G Programming
G is the easy to use graphical data flow programming language on which
LabVIEW is based. G simplifies scientific computation, process
monitoring and control, and test and measurement applications, and you
also can use it for a wide variety of other applications.

Part I, Introduction to G Programming, covers the functionality of G that
you need to get started with most LabVIEW applications. For a more
extensive explanation of LabVIEW functionality, see the G Programming

Reference Manual.

Chapter 1 Introduction

© National Instruments Corporation 1-3 LabVIEW User Manual

The basic concepts of G that are covered in this manual are described in the
following list.

• VIs—Virtual instruments (VIs) have three main parts: the front panel,
the block diagram, and the icon/connector. The front panel specifies
the user interface of the VI. The block diagram consists of the
executable code that you create using nodes, terminals, and wires.
With the icon/connector, you can use a VI as a subVI in the block
diagram of another VI. For more information about VIs, refer to
Chapter 2, Creating VIs and Chapter 26, Customizing VIs.

• Loops and Charts—G has two structures to repeat execution of a
sub-diagram—the While Loop and the For Loop. Both structures are
resizable boxes. You place the subdiagram to be repeated inside the
border of the loop structure. The While Loop executes as long as the
value at the conditional terminal is TRUE. The For Loop executes a set
number of times. Charts are used to display real-time trend information
to the operator. For more information about loops and charts, refer to
Chapter 3, Loops and Charts.

• Case and Sequence Structures—The Case structure is a conditional
branching control structure, which executes a subdiagram based on
certain input. A Sequence structure is a program control structure that
executes its subdiagrams in numeric order. For more information about
Case or Sequence structures, refer to Chapter 4, Case and Sequence

Structures and the Formula Node.

• Attribute Nodes—Attribute nodes are special block diagram nodes
that you can use to control the appearance and functional
characteristics of controls and indicators. For more information about
attribute nodes, refer to Chapter 27, Front Panel Object Attributes.

• Arrays, Clusters and Graphs—An array is a resizable collection of
data elements of the same type. A cluster is a statically sized collection
of data elements of the same or different types. Graphs commonly are
used to display data. For more information about arrays, clusters, and
graphs, refer to Chapter 5, Arrays, Clusters, and Graphs.

Chapter 1 Introduction

LabVIEW User Manual 1-4 © National Instruments Corporation

Organization of the LabVIEW System (Windows)

After you have completed the installation, as described in the LabVIEW

Release Notes that come with your software, your LabVIEW directory
should contain the following files.

• LABVIEW.EXE—This is the LabVIEW program. Launch this program
to start LabVIEW.

• vi.lib directory—Contains libraries of VIs that are included with
LabVIEW, including GPIB, analysis, and data acquisition (DAQ) VIs.
Most of these are available from the Functions palette.

• examples directory—Contains numerous subdirectories of examples.
This directory also contains a VI called readme.vi that serves as a
guide to the examples.

• serpdrv and daqdrv—These files serve as part of LabVIEW’s
interface to the serial port, and DAQ communication, respectively.
These files must be in the same directory as vi.lib.

• resource directory

– labview.rsc, lvstring.rsc, and lvicon.rsc—Data files
used by the LabVIEW application

– (Windows 3.1) lvdevice.dll—This file provides timing services
to LabVIEW and must be in the same directory as vi.lib for
LabVIEW to run.

– (Windows 3.1) lvimage.dll—This file allows LabVIEW to load
images created using a variety of graphics programs.

– labview50.tlb—This file is a type library to enable LabVIEW
to act as an ActiveX server.

– ole_container.dll—This file enables LabVIEW to display
and update ActiveX containers.

– lvwutil32.dll—This file is used by the Solution Wizard,
which builds DAQ and Instrument I/O examples based on your
criteria.

– lvjpeg.dll and lvpng.dll—These files provide support to
display JPEG and PNG graphics in HTML files when you print VI
documentation to an HTML file.

• Cintools directory—Contains files necessary to build Code Interface
Nodes (CINs), which are a means to link C code to LabVIEW VIs.

• visarc file—Serves as part of LabVIEW’s interface to VISA (Virtual
Instrument Software Architecture). VISA provides a single interface
library for controlling VXI, GPIB, and Serial instruments.

Chapter 1 Introduction

© National Instruments Corporation 1-5 LabVIEW User Manual

• labview.ini—Contains the configuration options for LabVIEW.

• Project directory—Contains files which become items in the
LabVIEW Project menu.

• menus directory—Contains files used to configure the structure of the
Controls and Functions palettes.

• Instr.lib directory—Contains instrument drivers used to control
VXI, GPIB, and Serial instruments. When you install National
Instruments instrument drivers, place them in this directory because
they will be added to the Functions palette.

• Help directory—Contains complete online documentation as well as
the Search Examples help file, which aids in locating examples
common to your application.

• Tutorial directory—Contains files that are necessary to run the
online tutorial, an interactive tutorial covering the basic concepts of the
LabVIEW environment.

• Activity directory—Is a location where you can save the VIs you
create while completing the activities in this manual.

• User.lib directory—Is a location where you can save commonly
used VIs that you have created. The VIs in this directory will be
displayed in the Functions palette.

• Wizard directory—This directory creates the Solution Wizard option
in the File menu. You can use this directory to add items to the
File menu.

LabVIEW installs driver software for GPIB, data acquisition, and VXI
driver hardware. For configuration information, see Chapter 2, Installing

and Configuring Your Data Acquisition Hardware, in the LabVIEW Data

Acquisition Basics Manual, the VXI VI Reference Manual, and Chapter 8,
LabVIEW VISA Tutorial, of this manual.

Startup Screen on Windows
When you launch LabVIEW, you are greeted with a navigation dialog box
where introductory material, common commands, and Quick Tips are
easily accessible. If you prefer to bypass the navigation dialog, you can
disable it using a checkbox at the bottom of the dialog box. To reenable it,
use the Preferences dialog box.

When all VIs are closed, a similar dialog box appears. The Small Dialog
button switches to a simpler version of the dialog box—with only New,
Open, and Exit buttons.

Chapter 1 Introduction

LabVIEW User Manual 1-6 © National Instruments Corporation

Organization of the LabVIEW System (Macintosh)

After you have completed the installation, as described in the LabVIEW

Release Notes that come with your software, your LabVIEW directory
should contain the following files.

• LabVIEW—This is the LabVIEW program. Launch this program to
start LabVIEW.

• vi.lib folder—Contains libraries of VIs that are included with
LabVIEW, including GPIB, analysis, and data acquisition (DAQ) VIs.
Most of these are available from the Functions palette.

• examples folder—Contains numerous subfolders of examples. This
folder also contains a VI called readme.vi that serves as a guide to
the examples.

• resource folder

– lvstring.rsrc and lvicon.rsrc—Data files used by the
LabVIEW application.

– lvjpeg.lib and lvpng.lib—These files provide support to
display JPEG and PNG graphics in HTML files when you print VI
documentation to an HTML file.

• cintools folder—Contains files necessary to build Code Interface
Nodes (CINs), which are a means to link C code to LabVIEW VIs.

• visarc file—Serves as part of LabVIEW’s interface to VISA, Virtual
Instrument Software Architecture. VISA provides a single interface
library for controlling VXI, GPIB, and Serial instruments.

• Project folder—Contains files which become items in the LabVIEW
Project menu.

• menus folder—Contains files used to configure the structure of the
Controls and Functions palettes.

• instr.lib folder—Contains instrument driers used to control VXI,
GPIB, and Serial instruments. When you install National Instruments
instrument drivers, place them in this directory because they will be
added to the Functions palette.

• help folder—Contains complete online documentation as well as the
Search Examples help file, which aids in locating examples common
to your application.

• activity folder—Is a location where you can save the VIs you create
while completing the activities in this manual.

Chapter 1 Introduction

© National Instruments Corporation 1-7 LabVIEW User Manual

• user.lib folder—Is a location where you can save commonly used
VIs that you have created. The VIs in this directory will be displayed
in the Functions palette.

• Wizard folder—This directory creates the Solution Wizard option in
the File menu (PCI Macintosh only). You can use this directory to add
items to the File menu.

In addition, the LabVIEW installation utility installs several driver files so
that you can use GPIB and/or DAQ plug-in boards.

• System Folder:Control Panels:NI-488 INIT—This control
panel contains the drivers for your GPIB boards. You can use it to
configure your boards, but you rarely need to change any settings.

• System Folder:Control Panels:NI-DAQ—This control panel
loads DAQ drivers into memory. You can use it to configure the
location and behavior of your DAQ boards and SCXI modules.

• System Folder:Extensions:NI-DMA/DSP—Both the GPIB and
DAQ drivers use this extension. It provides support for direct memory
access (DMA) transfer of data, which provides higher data transfer
rates. This extension also provides support for NI-DSP boards.

LabVIEW installs driver software for GPIB and data acquisition hardware.
For configuration information, see Chapter 2, Installing and Configuring

Your Data Acquisition Hardware, in the LabVIEW Data Acquisition Basics

Manual.

Organization of the LabVIEW System (UNIX)

After you have completed the installation, as described in the LabVIEW

Release Notes that come with your software, your LabVIEW directory
should contain the following files.

• labview—This is the LabVIEW program. Launch this program to
start LabVIEW.

• vi.lib directory—Contains libraries of VIs that are included with
LabVIEW, including GPIB, analysis, and data acquisition (DAQ) VIs.
Most of these are available from the Functions palette.

• examples directory—Contains numerous subdirectories of examples.
This directory also contains a VI called readme.vi that serves as a
guide to the examples.

• serpdrv—This file serves as part of LabVIEW's interface to
serial port communication. This file must be in the same directory
as vi.lib.

Chapter 1 Introduction

LabVIEW User Manual 1-8 © National Instruments Corporation

• resource directory

– labview.rsc, lvstring.rsc, and lvicon.rsc—Data files
used by the LabVIEW application

– lvjpeg.lib and lvpng.lib—These files provide support to
display JPEG and PNG graphics in HTML files when you print VI
documentation to an HTML file.

• cintools directory—Contains files necessary to build Code
Interface Nodes (CINs), which are a means to link C code to
LabVIEW VIs.

• visarc file—Serves as part of LabVIEW’s interface to VISA,
Virtual Instrument Software Architecture. VISA provides a single
interface library for controlling VXI, GPIB, and Serial instruments.

• Project directory—Contains the files which become items in the
LabVIEW Project menu.

• menus directory—Contains files used to configure the structure of the
Controls and Functions palettes.

• instr.lib directory—Contains instrument drivers used to control
VXI, GPIB, and Serial instruments. When you install National
Instruments instrument drivers, place them in this directory because
they will be added to the Functions palette.

• help directory—Contains complete online documentation as well as
the Search Examples help file, which aids in locating examples
common to your application.

• activity directory—Is a location where you can save the VIs you
create while completing the activities in this manual.

• user.lib directory—Is a location where you can save commonly
used VIs that you have created. The VIs in this directory will be
displayed in the Functions palette.

• Wizard directory—This directory creates the Solution Wizard
option in the File menu. You can use this directory to add items to
the File menu.

• acrobat directory—Contains online documentation in Acrobat
(.pdf) format.

• acroread directory—Contains Adobe Acrobat reader files.

Chapter 1 Introduction

© National Instruments Corporation 1-9 LabVIEW User Manual

Toolkit Support

Files that are installed in vi.lib\addons automatically show up at the top
level of the Controls and Functions palettes. This feature can be used by
new toolkits to make them more accessible after installation. If you already
have toolkits that installed files elsewhere, you can move them to the
addons directory for easier access. If you want to add your own VIs to the
palettes, we recommend placing them in user.lib or adding them to a
custom palette set.

Where Should I Start?

This manual provides basic information on how to build an application
in LabVIEW. To become familiar with the LabVIEW environment,
go through the LabVIEW Online Tutorial (Windows only), the
LabVIEW QuickStart Guide, and Part I, Introduction to G Programming
in this manual.

Most LabVIEW applications are divided into the following tasks:
I/O interface to sensors or instruments, data display on the front panel, data
analysis, data storage, and data transfer across a network. To learn more
about each of these tasks, refer to Part II, I/O Interfaces, Part III, Analysis,
and Part IV, Network and Interapplication Communication. For advanced
G programming techniques, refer to Part V, Advanced G Programming,
in this manual.

To generate or find examples similar to your application, refer to the
Solution Wizard (Windows and PCI Macintosh only) or Search Examples
online help file (Windows only), which you can access from the LabVIEW
startup dialog.

For information on individual functions and VIs, refer to the LabVIEW

Function and VI Reference Manual and online help.

Part I

Introduction to G Programming

This section contains basic information about creating virtual instruments
(VIs), using VIs in other VIs, programming structures such as loops, and
data structures such as arrays and strings.

Part I, Introduction to G Programming, contains the following chapters.

• Chapter 2, Creating VIs, explains how to create a VI including the
front panel, which is the user interface, and the block diagram, which
is the source code. Once you create a VI, you can use it in other VIs.

• Chapter 3, Loops and Charts, shows you how to repeat portions of the
block diagram using a While Loop and a For Loop. This chapter also
explains how to display multiple points graphically, one at a time, on
a chart.

• Chapter 4, Case and Sequence Structures and the Formula Node,
explains how to use the Case structure, which is a conditional structure,
the Sequence structure, which aids in establishing execution order, and
the Formula Node, which aids in executing mathematical formulas.

• Chapter 5, Arrays, Clusters, and Graphs, shows how to display a
group or array of data points on a graph. You can pass scale parameters
as well as an array of data points to a graph by creating a cluster, which
is a group of different data types.

• Chapter 6, Strings and File I/O, explains how to manipulate strings
and write those strings to an ASCII file.

Note (Windows 3.1) You must save the VIs you create in Part I in VI libraries.

VI libraries allow you to use file names that are longer than 8 characters.

Also, the VIs needed for the activities in Part I are located in the VI library

LabVIEW\Activity\Activity.llb. Refer to the Saving VIs section in

Chapter 2, Editing VIs, of the G Programming Reference Manual for more

information on VI Libraries.

© National Instruments Corporation 2-1 LabVIEW User Manual

2
Creating VIs

This chapter introduces the basic concepts of virtual instruments and
provides activities that explain the following:

• How to create the icon and connector

• How to use a VI as a subVI

What is a Virtual Instrument?

A virtual instrument (VI) is a program in the graphical programming
language G. Virtual instrument front panels often have a user interface
similar to physical instruments. G also has built-in functions that are similar
to VIs, but do not have front panels or block diagrams as VIs do. Function
icons always have a yellow background.

How Do You Build a VI?

One of the keys to creating LabVIEW applications is understanding and
using the hierarchical nature of the VI. After you create a VI, you can use
it as a subVI in the block diagram of a higher-level VI.

VI Hierarchy
When you create an application, you start at the top-level VI and define the
inputs and outputs for the application. Then, you construct subVIs to
perform the necessary operations on the data as it flows through the block
diagram. If a block diagram has a large number of icons, group them into a
lower-level VI to maintain the simplicity of the block diagram. This
modular approach makes applications easy to debug, understand, and
maintain.

As with other applications, you can save your VI to a file in a regular
directory. With G, you also can save multiple VIs in a single file called a
VI library.

Chapter 2 Creating VIs

LabVIEW User Manual 2-2 © National Instruments Corporation

If you are using Windows 3.1, you should save your VIs into VI libraries
because you can use long file names (up to 255 characters) with mixed
cases.

You should not use VI libraries unless you need to transfer your VIs to
Windows 3.1. Saving VIs as individual files is more effective than using
VI libraries because you can copy, rename, and delete files more easily than
if you are using a VI library. For a list of the advantages and disadvantages
of using VI libraries and individual files, see the section Saving VIs in
Chapter 2, Editing VIs, of the G Programming Reference Manual.

VI libraries have the same load, save, and open capabilities as other
directories. VI libraries, however, are not hierarchical. That is, you cannot
create a VI library inside of another VI library. You cannot create a new
directory inside a VI library, either. There is no way to list the VIs in a
VI library outside the LabVIEW environment.

After you create a VI library, it appears in the LabVIEW file dialog box as
a folder with VI on the folder icon. Regular directories appear as a folder
without the VI label.

Even though you might not save your own VIs in VI libraries, you should
be familiar with how they work. In the various activities in this manual, you
will save your VIs in the LabVIEW\Activity directory. Solutions to these
activities are provided in the LabVIEW\Activity\Solution directory.

Controls, Constants, and Indicators

A control is an object you place on your front panel for entering data into a
VI interactively or into a subVI programmatically. An indicator is an object
you place on your front panel for displaying output. Controls and indicators
in G are similar to input and output parameters, respectively, in traditional
programming languages. An alternative to placing controls and indicators
on the front panel and then wiring them to functions or VIs on the block
diagram, is to create controls or indicators directly from the block diagram.
To do this, pop up on the input terminal of a function or VI on the block
diagram and select Create Control. This creates a control of the correct
data type and wires it to the terminal.

Chapter 2 Creating VIs

© National Instruments Corporation 2-3 LabVIEW User Manual

You can create an indicator and wire it to an output terminal by popping up
on the terminal and selecting Create Indicator. As an alternative to placing
constants on the block diagram and wiring them to functions and VIs, you
can pop up on a function or VI terminal and select Create Constant. You
cannot delete a control or indicator from the block diagram. As with all
front panel objects, you must go to the front panel, select the Positioning
tool, and then delete the object.

Each time you create a new control or indicator on the front panel,
LabVIEW creates the corresponding terminal in the block diagram.
The terminal symbols suggest the data type of the control or indicator.
For example, a DBL terminal represents a double-precision, floating-point
number; a TF terminal is a Boolean; an I16 terminal represents a regular,
16-bit integer; and an ABC terminal represents a string. For more
information about data types in G, and their graphical representations,
see the G Programming Quick Reference Card.

Terminals
Terminals are regions on a VI or function through which data passes.
Terminals are analogous to parameters in text-based programming
languages. It is important that you wire the correct terminals of a function
or VI. You can view the icon connector to make correct wiring easier.
To do this, pop up on the function or VI and choose Show»Terminals.
To return to the icon, pop up on the function or VI and select
Show»Terminals again.

Chapter 2 Creating VIs

LabVIEW User Manual 2-4 © National Instruments Corporation

Wires
A wire is a data path between nodes. Wires are colored according to the
kind of data each wire carries. Blue wires carry integers, orange wires carry
floating-point numbers, green wires carry Booleans, and pink wires carry
strings. For more information about wire styles and colors, see the
G Programming Quick Reference Card.

To wire from one terminal to another, click the Wiring tool on the first
terminal, move the tool to the second terminal, and click on the second
terminal. It does not matter at which terminal you start. The hot spot of the
Wiring tool is the tip of the unwound wiring segment.

 In the wiring illustrations in this section, the arrow at the end of this mouse
symbol shows where to click and the number printed on the arrow indicates
how many times to click the mouse button.

When the Wiring tool is over a terminal, the terminal area blinks, to indicate
that clicking connects the wire to that terminal. Do not hold down the
mouse button while moving the Wiring tool from one terminal to another.
You can bend a wire once by moving the mouse perpendicular to the current
direction. To create more bends in the wire, click the mouse button.
To change the direction of the wire, press the spacebar. Click with the
mouse button, to tack the wire down and move the mouse perpendicularly.

Tip Strips
When you move the Wiring tool over the terminal of a node, a tip strip for
that terminal pops up. Tip strips consist of small, yellow text banners that
display the name of each terminal. These tip strips should help you to wire
the terminals. The following illustration displays the tip strip that appears
when you place the Wiring tool over an output of the Simple Error
Handler VI.

Hot Spot

1

1 1

Chapter 2 Creating VIs

© National Instruments Corporation 2-5 LabVIEW User Manual

Note When you place the Wiring tool over a node, G displays wire stubs that indicate

each input and output. The wire stub has a dot at its end if it is an input to the node.

Wire Stretching
You can move wired objects individually or in groups by dragging the
selected objects to a new location with the Positioning tool.

Selecting and Deleting Wires
You might wire nodes incorrectly. If you do, select the wire you want to
delete and then press <Delete>. A wire segment is a single horizontal or
vertical piece of wire. The point where three or four wire segments join is
called a junction. A wire branch contains all the wire segments from one
junction to another, from a terminal to the next junction, or from one
terminal to another if there are no junctions in between. You select a wire
segment by clicking on it with the Positioning tool. Double-clicking selects
a branch, and triple-clicking selects the entire wire.

VI

Tip Strip

Wiring Tool

Chapter 2 Creating VIs

LabVIEW User Manual 2-6 © National Instruments Corporation

Bad Wires
A dashed wire represents a bad wire. You can get a bad wire for a number
of reasons, such as connecting two controls, or connecting a source
terminal to a destination terminal when the data types do not match (for
instance, connecting a numeric to a Boolean). You can remove a bad wire
by clicking on it with the Positioning tool and pressing <Delete>. Choosing
Edit»Remove Bad Wires or <Ctrl-B> deletes all bad wires in the block
diagram. This is a useful quick fix to try if your VI refuses to run or returns
the Signal has Loose Ends error message.

Note Do not confuse a black, dashed wire with a dotted wire. A dotted wire represents a

Boolean data type, as the following illustration shows.

Segment

Junction

Bend

Segment

Selects a Segment Selects a Branch Selects an Entire Wire

1 2 3

Dashed Wire (bad)

Dotted Wire (good)

Chapter 2 Creating VIs

© National Instruments Corporation 2-7 LabVIEW User Manual

Activity 2-1. Create a VI

Your objective is to build a VI.

Imagine that you have sensors that read temperature and volume readings
as voltage. You will use a VI in the LabVIEW\Activity directory to
simulate the temperature and volume measurements in volts. You will write
a VI to scale these measurements to degrees fahrenheit and liters,
respectively.

1. Open a new front panel by selecting File»New. If you have closed all
VIs, select New VI from the LabVIEW dialog box.

Note If the Controls palette is not visible, select Windows»Show Controls Palette to

display the palette. You also can access the Controls palette by popping up in an

open area of the front panel. To pop up, right-click on your mouse (<Option>-click

for Macintosh).

2. Select Tank from Controls»Numeric, and place it on the front panel.

3. Type Volume in the label text box and click anywhere on the front
panel.

Note If you click outside the text box without entering text, the label disappears.

To show the label again, pop up on the control and select Show»Label.

4. Rescale the tank indicator to display the tank volume between 0.0
and 1000.0.

a. Using the Labeling tool, double-click on 10.0 on the tank scale to
highlight it.

b. Type 1000 in the scale and click the mouse button anywhere on
the front panel. The intermediary increments are scaled
automatically.

5. Place a thermometer from Controls»Numeric on the front panel.
Label it Temp and rescale it to be between 0 and 100.

Chapter 2 Creating VIs

LabVIEW User Manual 2-8 © National Instruments Corporation

6. Your front panel should look like the following illustration.

7. Open the block diagram by choosing Windows»Show Diagram.
Select the objects listed below from the Functions palette and place
them on the block diagram.

Note If the Functions palette is not visible, select Windows»Show Functions Palette to

display the palette. You also can access the Functions palette by popping up in an

open area of the block diagram.

8. Place each of the following objects on the block diagram.

Process Monitor (Functions»Select a VI from the LabVIEW\Activity
directory)—Simulates reading a temperature voltage and volume value
from a sensor or transducer.

Random Number Generator (Functions»Numeric)—Generates a number
between 0 and 1.

Multiply function (Functions»Numeric)—Multiplies two numbers and
returns their product. In this activity, you need two of these. Drop one from
the palette and copy and paste to create the other.

Numeric Constant (Functions»Numeric)—You need two of these.
Drop one from the palette. Using the labeling tool, change its value to
10.00. Copy and paste it.

Note Another way to create a constant is to pop up on the terminal of a function or VI

using the Wiring tool. Select Create Constant from the floating menu. A constant

of the appropriate data type appears.

Chapter 2 Creating VIs

© National Instruments Corporation 2-9 LabVIEW User Manual

9. To view the inputs and outputs of a function or a VI, select Show Help
from the Help menu and then drag the cursor over each function and
VI. The Help window for the Process Monitor VI is shown below.

10. Using the Wiring tool, wire the objects as shown.

Note To move objects around on the block diagram, click on the Positioning tool in the

Tools palette.

11. Select File»Save and save the VI as Temp & Vol.vi in the
LabVIEW\Activity directory.

12. From the front panel, run the VI by clicking on the Run button. Notice
values for Volume and Temperature are displayed on the front panel.

13. Close the VI by selecting File»Close.

End of Activity 2-1.

Chapter 2 Creating VIs

LabVIEW User Manual 2-10 © National Instruments Corporation

VI Documentation
You can document a VI by choosing Windows»Show VI Info…. Type the
description of the VI in the VI Information dialog box. Then, you can recall
the description by selecting Windows»Show VI Info… again.

You can edit the descriptions of objects on the front panel (or their
respective terminals on the block diagram) by popping up on the object and
choosing Data Operations»Description….

Note You cannot change the description of a VI or its front panel objects while the VI

is running.

The following illustration is an example pop-up menu that appears while
you are running a VI. You cannot add to or change the description while
running the VI, but you can view any previously entered information.

You also can view the description of a front panel object by showing the
Help window (Help»Show Help) and moving the cursor over the object.

Activity 2-2. Document a VI

Your objective is to document a VI that you have created.

1. Open the Temp & Vol.vi created in Activity 2-1 from the
LabVIEW\Activity directory.

2. Select Windows»Show VI Info…. Type the description for the VI, as
shown in the following illustration, and click on OK.

Chapter 2 Creating VIs

© National Instruments Corporation 2-11 LabVIEW User Manual

3. Pop up on the tank and choose Data Operations»Description….
Type the description for the indicator, as shown in the following
illustration, and click OK.

Chapter 2 Creating VIs

LabVIEW User Manual 2-12 © National Instruments Corporation

4. Pop up on the thermometer and choose Data Operations»

Description…. Type in the description: Displays simulated
temperature (deg F) measurement. Click on OK.

5. Select Show Help from the Help menu. Place the cursor on Volume
and then on Temp. You can see the descriptions you typed in appear
in the help window.

6. Save and close the VI.

End of Activity 2-2.

What is a SubVI?

A subVI is much like a subroutine in text-based programming languages.
It is a VI that is used in the block diagram of another VI.

You can use any VI that has an icon and a connector as a subVI in
another VI. In the block diagram, you select VIs to use as subVIs from
Functions»Select a VI…. Choosing this option produces a file dialog box,
from which you can select any VI in the system. If you open a VI that does
not have an icon and a connector, a blank, square box appears in the calling
VI’s block diagram. You cannot wire to this node. For more information
about icons and connectors, see the LabVIEW Online Tutorial, which you
can access from the startup dialog box.

A subVI is analogous to a subroutine. A subVI node is analogous to a
subroutine call. The subVI node is not the subVI itself, just as a subroutine
call statement in a program is not the subroutine itself. A block diagram that
contains several identical subVI nodes calls the same subVI several times.

Hierarchy Window
The Hierarchy window displays a graphical representation of the calling
hierarchy for all VIs in memory, including type definitions and global
variables. You use the Hierarchy window (Project»Show VI Hierarchy)
to display the dependencies of VIs by providing information on VI callers
and subVIs. This window contains a toolbar that you can use to configure
several types of settings for displayed items. The following illustration
shows an example of the VI hierarchy toolbar.

Chapter 2 Creating VIs

© National Instruments Corporation 2-13 LabVIEW User Manual

You can use buttons on the Hierarchy window toolbar or the View menu,
or pop up on an empty space in the window to access the following
options. For more information about the Hierarchy window see the
Using the Hierarchy Window section in Chapter 3, Using SubVIs, of the
G Programming Reference Manual.

Redraw—Rearranges nodes after successive operations on hierarchy nodes
if you need to minimize line crossings and maximize symmetric aesthetics.
If a focus node exists, you then scroll through the window so that the first
root that shows subVIs is visible.

Switch to vertical layout—Arranges the nodes from top-to-bottom, placing
roots at the top.

Switch to horizontal layout—Arranges the nodes from left-to-right, placing
roots on the left side.

Include/Exclude VIs—Toggles the hierarchy graph to include VI libraries,
or exclude VIs in VI libraries.

Include/Exclude global—Toggles the hierarchy graph to include or exclude
global variables. Global variables store data used by several VIs.

Include/Exclude typedefs—Toggles the hierarchy graph to include or
exclude typedefs. A typedef is a master copy of a custom control, which can
be used by several VIs.

In addition, the View menu and pop-up menus include Show all VIs and
Full VI Path in Label options that you cannot access on the toolbar.

As you move the Operating tool over objects in the Hierarchy window,
LabVIEW displays the name of the VI below the VI icon.

Use the <Tab> key to toggle between the Positioning and Scroll window
tools. This feature is useful for moving nodes from the Hierarchy window
to the block diagram.

You can drag a VI or subVI node to the block diagram or copy it to the
clipboard by clicking on the node. <Shift>-click on a VI or subVIs node to
select multiple objects for copying to other block diagrams or front panels.
Double-clicking on a VI or subVI node opens the front panel of that node.

Chapter 2 Creating VIs

LabVIEW User Manual 2-14 © National Instruments Corporation

Any VIs that contain subVIs have an arrow button next to the VI that you
can use to show or hide subVIs. Clicking on the red arrow button or
double-clicking on the VI itself displays the subVIs in that VI. A black
arrow button on a VI node means that all subVIs are displayed. You also
can pop up on a VI or subVI node to access a menu with options, such as
showing or hiding subVIs, opening the VI or subVI front panel, editing the
VI icon, and so on.

Search Hierarchy
You also can search currently visible nodes in the Hierarchy window by
name. You initiate the search by typing in the name of the node, anywhere
on the window. As you type in the text, a search string appears, which
displays the text as you type it in and concurrently searches through the
hierarchy. The following illustration shows the search hierarchy.

After finding the correct node, you can press <Enter> to search for the next
node that matches the search string, or you can press <Shift-Enter> to find
the previous node that matches the search string.

Icon and Connector
Every VI has a default icon displayed in the upper-right corner of the Front
Panel and Diagram windows. For VIs, the default is the LabVIEW VI icon
and a number indicating how many new VIs you have opened since
launching LabVIEW. You use the Icon Editor to customize the icon by
turning individual pixels on and off. To activate the Icon Editor, pop up on
the default icon in the top right corner of the Panel window and select
Edit Icon.

The following illustration shows the Icon Editor Window. You use the tools
at left to create the icon design in the pixel editing area. An image of the
actual icon size appears in one of the boxes to the right of the editing area.

Chapter 2 Creating VIs

© National Instruments Corporation 2-15 LabVIEW User Manual

The tools to the left of the editing area perform the following functions:

Pencil tool—Draws and erases pixel by pixel.

Line tool—Draws straight lines. Press <Shift> and then drag this tool to
draw horizontal, vertical, and diagonal lines.

Color Copy tool—Copies the foreground color from an element in the icon.

Fill bucket tool—Fills an outlined area with the foreground color.

Rectangle tool—Draws a rectangular border in the foreground color.
Double-click on this tool to frame the icon in the foreground color.

Filled rectangle tool—Draws a rectangle bordered with the foreground
color and filled with the background color. Double-click to frame the icon
in the foreground color and fill it with the background color.

Select tool—Selects an area of the icon for moving, cloning, or other
changes.

Text tool—Enters text into the icon design.

Foreground/Background—Displays the current foreground and
background colors. Click on each to get a color palette from which you can
choose new colors.

Chapter 2 Creating VIs

LabVIEW User Manual 2-16 © National Instruments Corporation

The buttons at the right of the editing screen perform the following
functions:

• Undo—Cancels the last operation you performed.

• OK—Saves your drawing as the VI icon and returns to the front panel.

• Cancel—Returns to the front panel without saving any changes.

Depending on the type of monitor you are using, you can design a separate
icon for monochrome, 16-color, and 256-color mode. You design and save
each icon version separately. The editor defaults to Black & White, but you
can click on one of the other color options to switch modes.

Note If you design a color icon only, the icon does not show up in a subpalette of the

Functions palette if you place the VI in the *.lib directory, nor will the icon be

printed or displayed on a black and white monitor.

The connector is the programmatic interface to a VI. If you use the panel
controls or indicators to pass data to and from subVIs, these controls or
indicators need terminals on the connector pane. You define connections by
choosing the number of terminals you want for the VI and assigning a front
panel control or indicator to each of those terminals.

To define a connector, select Show Connector from the icon pane pop-up
menu on the Panel window.

The connector icon replaces the icon in the upper-right corner of the Panel
window. LabVIEW selects a terminal pattern appropriate for your VI with
terminals for controls on the left side of the connector pane, and terminals
for indicators on the right. The number of terminals selected depends on the
number of controls and indicators on your front panel.

Each rectangle on the connector represents a terminal area, and you can use
the rectangles either for input or output from the VI. If necessary, you can
select a different terminal pattern for your VI. To do this, pop up on the
icon, select Show Connector, pop up again, and select Patterns.

Chapter 2 Creating VIs

© National Instruments Corporation 2-17 LabVIEW User Manual

Activity 2-3. Create an Icon and Connector

Your objective is to make an icon and connector for a VI.

To use a VI as a subVI, you must create an icon to represent it on the block
diagram of another VI, and a connector pane to which you can connect
inputs and outputs. LabVIEW provides several tools with which you can
create or edit an icon for your VIs.

The icon of a VI represents it as a subVI in the block diagram of other VIs.
It can be a pictorial representation of the purpose of the VI, or a textual
description of the VI.

1. Open Temp & Vol.vi in the LabVIEW\Activity directory.

2. From the front panel, pop up on the icon in the top right corner and
select Edit Icon…. You also can double click on the icon to invoke the
icon editor.

Note You only can access the icon/connector for a VI from the front panel.

3. Erase the default icon. With the Select tool, which appears as a dotted
rectangle, click and drag over the section you want to delete, and press
the <Delete> key. You also can double click on the shaded rectangle in
the tool box to erase the icon.

4. Draw a thermometer with the Pencil tool.

5. Create the text with the Text tool. To change the font, double-click on
the Text tool. Your icon should look similar to the following
illustration.

Chapter 2 Creating VIs

LabVIEW User Manual 2-18 © National Instruments Corporation

6. Close the Icon Editor by clicking on OK. The new icon appears in the
icon pane.

7. Define the connector terminal pattern by popping up in the icon pane
on the front panel and choosing Show Connector. By default,
LabVIEW selects a terminal pattern based on the number of controls
and indicators on the front panel. Because there are two objects on
the front panel, the connector has two terminals, as shown at left.

8. Pop up on the connector pane and select Rotate 90 Degrees.
Notice how the connector pane changes, as shown at left.

9. Assign the terminals to Temp and Volume.

a. Click on the top terminal in the connector. The cursor
automatically changes to the Wiring tool, and the terminal
turns black.

b. Click on the Temp indicator. A moving dashed line frames the
indicator, as shown in the following illustration. The selected
terminal changes to a color consistent with the datatype of the
control/indicator selected.

If you click in an open area on the front panel, the dashed line disappears
and the selected terminal appears dimmed, indicating that you have
assigned the indicator to that terminal. If the terminal is white, you have not
made the connection correctly.

c. Repeat steps a and b to associate the bottom terminal with the
Volume indicator.

d. Pop up on the connector and select Show Icon….

10. Save the VI by choosing File»Save.

Now, this VI is complete and ready for use as a subVI in other VIs. The icon
represents the VI in the block diagram of the calling VI. The connector
(with two terminals) outputs the temperature and volume.

Chapter 2 Creating VIs

© National Instruments Corporation 2-19 LabVIEW User Manual

Note The connector specifies the inputs and outputs of a VI when you use it as a subVI.

Remember that front panel controls can be used as inputs only; front panel

indicators can be used as outputs only.

11. Close the VI by choosing File»Close.

End of Activity 2-3.

Opening, Operating, and Changing SubVIs
You can open a VI used as a subVI from the block diagram of the calling
VI by double-clicking on the subVI icon or by selecting Project»This VI’s

SubVIs. You will see a palette containing all the subVIs of the calling VI.
Select the subVI you want to open.

Any changes you make to a subVI alter only the version in memory until
you save the subVI. The changes affect all instances of the subVI and not
just the node you used to edit the VI.

Activity 2-4. Call a SubVI

Your objective is to build a VI that uses the Temp & Vol.vi as a subVI.

The Temp & Vol VI you built in Activity 2-1 returns a temperature and
volume. You will take a volume reading and convert the value to gallons
when a switch is pressed.

Front Panel

1. Open a new front panel by selecting File»New.

2. Select a Horizontal Switch from the Controls»Boolean palette and
label it volume. Place free labels on the front panel to indicate Liters
and Gallons by using the Labeling tool.

3. Select a meter from Controls»Numeric and place it on the front panel.
Label it Tank Volume.

Chapter 2 Creating VIs

LabVIEW User Manual 2-20 © National Instruments Corporation

4. Change the range of the meter to accommodate values ranging
between 0.0 and 1000.0. With the Operating tool, double-click on the
high limit and change it from 10.0 to 1000.0. Switch to the positioning
tool and resize the meter by dragging out one of the corners and
expanding the control.

Block Diagram

5. Go to the block diagram by selecting Windows»Show Diagram.

6. Pop up in a free area of the block diagram and choose
Functions»Select a VI…. A dialog box appears. Select
Temp & Vol.vi in the LabVIEW\Activity directory. Click on
Open in the dialog box. LabVIEW places the Temp & Vol VI on the
block diagram.

7. Add the other objects to the block diagram as shown in the following
illustration.

Numeric Constant (Functions»Numeric)—Add a numeric constant to the
block diagram. Assign the value 3.785 to the constant by using the
Labeling tool. This is the conversion factor for switching from liters to
gallons.

Select Function (Function»Comparison)—Returns the value wired to the
TRUE or FALSE input, depending on the Boolean input.

Chapter 2 Creating VIs

© National Instruments Corporation 2-21 LabVIEW User Manual

Divide function (Functions»Numeric)—Divides the value in liters by
3.785 to convert it to gallons.

8. Wire the diagram objects as shown.

9. Return to the front panel and click on the Run button in the toolbar.
The meter shows the value in liters.

10. Click on the switch to select Gallons and click on the Run button.
The meter shows the value in gallons.

11. Save the VI as Using Temp & Vol.vi in the LabVIEW\Activity
directory.

End of Activity 2-4.

How Do You Debug a VI?

A VI cannot compile or run if it is broken. Normally, the VI is broken while
you are creating or editing it, until you wire all the icons in the diagram. If it
still is broken when you finish, try selecting Remove Bad Wires from the
Edit menu. Often, this fixes a broken VI.

When your VI is not executable, a broken arrow appears instead of the Run
button. To list the errors, click on the broken Run button. Click on one of
the errors listed and then click on Find to highlight the object or terminal
that reported the error.

You can animate the VI block diagram execution by clicking on the
Highlight Execution button. Execution highlighting is commonly used
with single-step mode to trace the data flow in a block diagram.

For debugging purposes, you might want to execute a block diagram node
by node. This is known as single-stepping. To enable the single-step mode,
click on the Step Into button or Step Over button. This action then causes
the first node to blink, denoting that it is ready to execute. Then you can
click on either the Step Into or Step Over button again to execute the node
and proceed to the next node. If the node is a structure or VI, you can select
the Step Over button to execute the node but not single-step through the
node. For example, if the node is a subVI and you click on the Step Over
button, you execute the subVI and proceed to the next node but cannot see
how the subVI nodes execute. To single step through a structure or subVI,
select the Step Into button.

Chapter 2 Creating VIs

LabVIEW User Manual 2-22 © National Instruments Corporation

Click on the Step Out button to finish execution of the block diagram nodes
and/or complete single stepping. For more information about debugging,
see Chapter 4, Executing and Debugging VIs and SubVIs, in the
G Programming Reference Manual.

Activity 2-5. Debug a VI in LabVIEW

Your objective is to use the probe tool and the probe window and to

examine data flow in the block diagram using the execution highlighting

feature.

1. Open Using Temp & Vol.vi from the LabVIEW\Activity
directory.

2. Select Windows»Show Diagram.

3. If the Tools palette is not open, select Windows»Show Tools Palette.

4. Select the Probe tool from the Tools palette. Click with the Probe tool
on the wire coming out of the Divide function. A Probe window pops
up with the title Probe 1 and a yellow glyph with the number of the
probe, as shown in the following illustration. The Probe window
remains open, even if you switch to the front panel.

5. Return to the front panel. Move the Probe window so you can
view both the probe and volume values as shown in the following
illustration. Run the VI. The volume in gallons appears in the
Probe window while Tank Volume displays the value in liters.

Chapter 2 Creating VIs

© National Instruments Corporation 2-23 LabVIEW User Manual

Note The volume values that appear on your screen may be different than what is

shown in this illustration. Refer to the Numeric Conversion section in Chapter 3,

Loops and Charts, for more information.

6. Close the Probe window by clicking in the close box at the top of the
Probe window title bar.

Another useful debugging technique is to examine the flow of data in the
block diagram using the execution highlighting feature.

7. Return to the block diagram of the VI.

8. Begin execution highlighting by clicking on the Highlight Execution
button, in the toolbar. The Highlight Execution button changes to an
illuminated light bulb.

9. Click on the Run button to run the VI, and notice that execution
highlighting animates the VI block diagram execution. Moving
bubbles represent the flow of data through the VI. Also notice that data
values appear on the wires and display the values contained in the
wires at that time, as shown in the following block diagram, just as if
you had probed the wire.

You also can use the single stepping buttons if you want to walk through
the graphical code, one step at a time.

10. Begin single-stepping by clicking on the Step Over button, in the
toolbar.

11. Step into the Temp & Vol subVI by clicking on the Step Into button,
in the toolbar. Clicking on this button opens the front panel and block
diagram of your Temp & Vol subVI. Click on the Step Over button
until the VI finishes executing.

12. Finish executing the block diagram by clicking on the Step Out button,
in the toolbar. Clicking on this button completes all remaining
sequences in the block diagram.

End of Activity 2-5.

© National Instruments Corporation 3-1 LabVIEW User Manual

3
Loops and Charts

This chapter introduces structures and explains the basic concepts of charts,
the While Loop, and the For Loop. This chapter also provides activities that
illustrate how to accomplish the following:

• Learn about different chart modes

• Use a While Loop and a chart

• Change the mechanical action of a Boolean switch

• Control loop timing

• Use a shift register

• Create a multiplot chart

• Use a For Loop

What is a Structure?

A structure is a program control element. Structures control the flow of
data in a VI. G has five structures: the While Loop, the For Loop, the Case
structure, the Sequence structure, and the Formula Node. This chapter
introduces the While Loop and For Loop structures along with the chart and
the shift register. The Case structure, Sequence structure, and Formula
Node are explained in Chapter 4, Case and Sequence Structures and the

Formula Node.

While and For Loops are basic structures for programming with G, so you
can find them in most of the G examples as well as the activities in this
manual. You also can find more information on loops in Chapter 19,
Structures, in the G Programming Reference Manual.

For examples of structures, see Examples\General\structs.llb.
For examples of charts, see Examples\General\Graphs\charts.llb.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-2 © National Instruments Corporation

Charts

A chart is a numeric plotting indicator which is updated with new data
periodically. You can find two types of charts in the Controls»Graph
palette: waveform chart and intensity chart. You can customize charts to
match your data display requirements or to display more information.
Features available for charts include: a scrollbar, a legend, a palette, a
digital display, and representation of scales with respect to time. For more
information about charts, see Chapter 15, Graph and Chart Controls and

Indicators, in your G Programming Reference Manual.

Chart Modes
The following illustration shows the three chart display options available
from the Data Operations»Update Mode submenu—Strip chart,

Scope chart, and Sweep chart. The default mode is strip chart.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-3 LabVIEW User Manual

Faster Chart Updates
You can pass an array of multiple values to the chart. The chart treats these
inputs as new data for a single plot. Refer to the charts.vi example
located in Examples\General\Graphs\charts.llb.

Overlaid Versus Stacked Plots
You can display multiple plots on a chart using a single vertical scale,
called overlaid plots, or using multiple vertical scales, called stacked plots.
Refer to the charts.vi example located in Examples\General\
Graphs\charts.llb.

Activity 3-1. Experiment with Chart Modes

Your objective is to view a chart as your VI runs in strip chart mode, scope

chart mode, and sweep chart mode.

1. Open Charts.vi, located in the following directory:
LabVIEW\Examples\General\Graphs\charts.11b.

2. Run the VI.

The strip chart mode has a scaling display similar to a paper tape strip chart
recorder. As each new value is received, it is plotted at the right margin and
old values shift to the left.

The scope chart mode has a retracing display similar to an oscilloscope.
As the VI receives each new value, it plots the value to the right of the last
value. When the plot reaches the right border of the plotting area, the VI
erases the plot and begins plotting again from the left border. The scope
chart is significantly faster than the strip chart because it is free of the
processing overhead involved in scrolling.

The sweep chart mode acts much like the scope chart, but it does not go
blank when the data hits the right border. Instead, a moving vertical line
marks the beginning of new data and moves across the display as the VI
adds new data.

3. With the VI still running, pop up on any chart, and select Update

Mode, and change the current mode to that of another chart. Notice the
difference between the various charts and modes.

4. Stop and close the VI.

End of Activity 3-1.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-4 © National Instruments Corporation

While Loops

A While Loop is a structure that repeats a section of code until a condition
is met. It is comparable to a Do Loop or a Repeat-Until Loop in traditional
programming language.

The While Loop, shown in the following illustration, is a resizable box you
use to execute the diagram inside it until the Boolean value passed to the
conditional terminal (an input terminal) is FALSE. The VI checks the
conditional terminal at the end of each iteration; therefore, the While Loop
always executes at least once. The iteration terminal is an output numeric
terminal that outputs the number of times the loop has executed. However,
the iteration count always starts at zero, so if the loop runs once, the
iteration terminal outputs 0.

The While Loop is equivalent to the following pseudocode:

Do

Execute Diagram Inside the Loop (which sets the

condition)

While Condition is TRUE

Iteration
Terminal

Conditional
Terminal

Chapter 3 Loops and Charts

© National Instruments Corporation 3-5 LabVIEW User Manual

Activity 3-2. Use a While Loop and a Chart

Your objective is to use a While Loop and a chart for acquiring and

displaying data in real time.

You will build a VI that generates random data and displays it on a chart.
A knob control on the front panel adjusts the loop rate between 0 and 2
seconds and a switch stops the VI. You will change the mechanical action
of the switch so you do not have to turn on the switch each time you run
the VI. Use the front panel in the following illustration to get started.

Front Panel

1. Open a new front panel by selecting File»New.

2. Place a Vertical Switch (Controls»Boolean) on the front panel.
Label the switch Enable.

3. Use the Labeling tool to create free labels for ON and OFF. Select the
Labeling tool, and type in the label text. With the Color tool, shown at
left, make the border of the free label transparent by selecting the T
in the bottom left corner of the Color palette.

4. Place a waveform chart (Controls»Graph) on the front panel.
Label the chart Random Signal. The chart displays random data
in real time.

Note Make sure that you select a waveform chart and not a waveform graph. In the

Graph palette, the waveform chart appears closest to the left side.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-6 © National Instruments Corporation

5. Pop up on the chart and choose Show»Palette, and Show»Legend to
hide the palette and legend. The digital display shows the latest value.
Then pop up on the chart and choose Show»Digital Display and
Show»Scroll Bar.

6. Rescale the chart from 0.0 to 1.0. Use the Labeling tool to replace the
high limit of 10.0 with 1.0.

7. Place a knob (Controls»Numeric) on the front panel. Label the knob
Loop Delay (sec). This knob controls the timing of the While
Loop. Pop up on the knob and deselect Show»Digital Display to hide
the digital display.

8. Rescale the knob. Using the Labeling tool, double-click on 10.0 in the
scale around the knob, and replace it with 2.0.

Block Diagram

9. Open the block diagram and create the diagram in the following
illustration.

a. Place the While Loop in the block diagram by selecting it from
Functions»Structures. The While Loop is a resizable box that is
not dropped on the diagram immediately. Instead, you have the
chance to position and resize it. To do so, click in an area above
and to the left of all the terminals. Continue holding down the
mouse button and drag out a rectangle that encompasses the
terminals.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-7 LabVIEW User Manual

b. Select the Random Number (0–1) function from Functions»

Numeric.

c. Wire the diagram as shown in the Block Diagram, connecting the
Random Number (0–1) function to the Random Signal chart
terminal, and the Enable switch to the conditional terminal of the
While Loop. Leave the Loop Delay terminal unwired for now.

10. Return to the front panel and turn on the vertical switch by clicking on
it with the Operating tool.

11. Save the VI as Random Signal.vi in the LabVIEW\Activity
directory.

12. Run the VI.

The While Loop is an indefinite looping structure. The diagram within it
executes as long as the specified condition is TRUE. In this example, as
long as the switch is on (TRUE), the diagram continues to generate random
numbers and display them on the chart.

13. Stop the VI by clicking on the vertical switch. Turning the switch
off sends the value FALSE to the loop conditional terminal and stops
the loop.

14. Scroll through the chart. Click and hold down the mouse button on
either arrow in the scrollbar.

15. Clear the display buffer and reset the chart by popping up on the chart
and choosing Data Operations»Clear Chart.

Note The display buffer default size is 1,024 points. You can increase or decrease this

buffer size by popping up on the chart and choosing Chart History Length….

You only can use this feature when the VI is not running.

End of Activity 3-2.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-8 © National Instruments Corporation

Mechanical Action of Boolean Switches
You might notice that each time you run the VI, you must turn on the
vertical switch and then click the Run button in the toolbar. With G, you
can modify the mechanical action of Boolean controls.

There are six possible choices for the mechanical action of a Boolean
control:

• Switch When Pressed

• Switch When Released

• Switch Until Released

• Latch When Pressed

• Latch When Released

• Latch Until Released

Below are figures depicting each of these boolean switches, as well as a
description of each of these mechanical actions.

Switch When Pressed action—Changes the control value each time you
click on the control with the Operating tool. The action is similar to that of
a ceiling light switch, and is not affected by how often the VI reads the
control.

Switch When Released action—Changes the control value only after you
release the mouse button, during a mouse click, within the graphical
boundary of the control. The action is not affected by how often the VI
reads the control. This action is similar to what happens when you click on
a check mark in a dialog box; it becomes highlighted but does not change
until you release the mouse button.

Switch Until Released action —Changes the control value when you click
on the control. It retains the new value until you release the mouse button,
at which time the control reverts to its original value. The action is similar
to that of a doorbell, and is not affected by how often the VI reads the
control.

Latch When Pressed action—Changes the control value when you click on
the control. It retains the new value until the VI reads it once, at which point
the control reverts to its default value. (This action happens regardless of
whether you continue to press the mouse button.) This action is similar to
that of a circuit breaker and is useful for stopping While Loops or having
the VI do something only once each time you set the control.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-9 LabVIEW User Manual

Latch When Released action—Changes the control value only after you
release the mouse button. When your VI reads the value once, the control
reverts to the old value. This action guarantees at least one new value. As
with Switch When Released, this action is similar to the behavior of buttons
in a dialog box; clicking on this action highlights the button, and releasing
the mouse button latches a reading.

Latch Until Released action —Changes the control value when you click
on the control. It retains the value until your VI reads the value once or until
you release the mouse button, depending on which one occurs last.

Activity 3-3. Change the Mechanical Action
of a Boolean Switch

Your objective is to experiment with the different mechanical actions of

Boolean switches.

1. Open the Random Signal.vi, as saved in Activity 3-2, from the
LabVIEW\Activity directory. The default value of the Enable
switch is FALSE.

2. Modify the vertical switch so it is used only to stop the VI. Change the
switch so that you do not need to turn on the switch each time you run
the VI.

a. Turn on the vertical switch with the Operating tool.

b. Pop up on the switch and choose Data Operations»Make

Current Value Default. This makes the ON position the default
value.

c. Pop up on the switch and choose Mechanical Action»Latch

When Pressed.

3. Run the VI. Click on the Enable switch to stop the acquisition.
The switch moves to the OFF position momentarily and is reset back
to the ON position.

4. Save the VI.

Note For your reference, LabVIEW contains an example that demonstrates these

behaviors, called Mechanical Action of Booleans.vi. It is located in

Examples\General\Controls\booleans.llb.

End of Activity 3-3.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-10 © National Instruments Corporation

Timing
When you ran the VI in the previous activity, the While Loop executed as
quickly as possible. However, you can slow it down to iterate at certain
intervals with the functions in the Functions»Time & Dialog palette.

The timing functions express time in milliseconds (ms), however, your
operating system might not maintain this level of timing accuracy.

• (Windows 95/NT) The timer has a resolution of 1 ms. However, this is
hardware-dependent, so on slower systems, such as an 80386, you
might have lower resolution timing.

• (Windows 3.1) The timer has a default resolution of 55 ms. You can
configure LabVIEW to have 1 ms resolution by selecting Edit»

Preferences…, selecting Performance and Disk from the Paths ring,
and unchecking the Use Default Timer checkbox. LabVIEW does not
use the 1 ms resolution by default because it places a greater load on
your operating system.

• (Macintosh) For 68K systems without the QuickTime extension, the
timer has a resolution of 16 2/3 ms (1/60th of a second). If you have a
Power Macintosh or have QuickTime installed, timer resolution is
1 ms.

• (UNIX) The timer has a resolution of 1 ms.

Activity 3-4. Control Loop Timing

Your objective is to control loop timing and ensure that no iteration is

shorter than the specified number of milliseconds.

1. Open Random Signal.vi, as modified and saved in Activity 3-3,
from the LabVIEW\Activity directory.

2. Modify the VI to generate a new random number at a time interval
specified by the knob, as shown in the following illustration.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-11 LabVIEW User Manual

Wait Until Next ms Multiple function (Functions»Time & Dialog)—
Multiply the knob terminal by 1,000 to convert the knob value in seconds
to milliseconds. Use this value as the input to the Wait Until Next ms
Multiple function.

Multiply function (Functions»Numeric)—The multiply function
multiplies the knob value by 1000 to convert seconds to milliseconds.

Numeric constant (Functions»Numeric)—The numeric constant holds the
constant by which you must multiply the knob value to get a quantity in
milliseconds. Thus, if the knob has a value of 1.0, the loop executes once
every 1000 milliseconds (once per second).

3. Run the VI. Rotate the knob to get different values for the loop delay.
Notice the effects of the loop delay on the update of the Random
Signal display.

4. Save the VI as Random Signal with Delay.vi in the
LabVIEW\Activity directory. Close the VI.

End of Activity 3-4.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-12 © National Instruments Corporation

Preventing Code Execution in the First Iteration
The While Loop always executes at least once, because G performs the
loop test for continuation after the diagram executes. You can construct
a While Loop that pretests its conditional terminal by including a Case
structure inside the loop. Wire a Boolean input to the Case structure
selector terminal so the subdiagram for the FALSE condition executes if
the code in the While Loop should not execute. See Chapter 4, Case and

Sequence Structures and the Formula Node for more information about
using Case structures.

The subdiagram for the TRUE condition contains the work of the While
Loop. The test for continuation occurs outside the Case structure, and the
results are wired to the conditional terminal of the While Loop and the
selector terminal of the Case structure. In the following illustration, labels
represent the pretest condition.

This example has the same result as the following pseudocode:

While (pretest condition)

Do actual work of While Loop

Loop

Chapter 3 Loops and Charts

© National Instruments Corporation 3-13 LabVIEW User Manual

Shift Registers

Shift registers (available for While Loops and For Loops) transfer
values from one loop iteration to the next. You can create a shift register
by popping up on the left or right border of a loop and selecting
Add Shift Register.

The shift register contains a pair of terminals directly opposite each other
on the vertical sides of the loop border. The right terminal stores the data
upon the completion of an iteration. That data shifts at the end of the
iteration and appears in the left terminal at the beginning of the next
iteration, as shown in the following illustration. A shift register can hold
any data type—numeric, Boolean, string, array, and so on. The shift
register automatically adapts to the data type of the first object you wire
to the shift register.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-14 © National Instruments Corporation

You can configure the shift register to remember values from several
previous iterations. This feature is useful for averaging data points.
You create additional terminals to access values from previous iterations
by popping up on the left or right terminal and choosing Add Element.
For example, if a shift register contains three elements in the left terminal,
you can access values from the last three iterations, as shown in the
following illustration.

Before Loop Begins First Iteration

Subsequent Iterations Last Iteration

Inital
Value

Inital
Value

New
Value

New
Value

Previous
Value

New
Value

Previous
Value

New
Value

Contains i–1

Contains i–2

Contains i–3

Previous values
are available at
the left terminal.

Latest value
passes to the
right terminal.

Pop up on left
terminal to add
new elements or
use Positioning
tool to resize the
left terminal to
expose more
elements.

Pop up on border
for new shift register.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-15 LabVIEW User Manual

Activity 3-5. Use a Shift Register

Your objective is to build a VI that displays a running average on a chart.

Front Panel

1. Open a new front panel and create the objects as shown in the
following illustration.

2. Change the scale of the Waveform chart to range from 0.0 to 2.0.

3. After adding the vertical switch, pop up on it and select Mechanical

Action»Latch When Pressed and set the ON state to be the default by
choosing Operate»Make Current Values Default.

Block Diagram

4. Build the block diagram shown in the following illustration.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-16 © National Instruments Corporation

5. Add the While Loop (Functions»Structures) in the block diagram
and create the shift register.

a. Pop up on the left or right border of the While Loop and choose
Add Shift Register.

b. Add an extra element by popping up on the left terminal of the
shift register and choosing Add Element. Add a third element in
the same manner as the second.

Random Number (0–1) function (Functions»Numeric)—This function
generates random data ranging between 0 and 1.

Compound Arithmetic function (Functions»Numeric)—In this activity,
the compound arithmetic function returns the sum of random numbers from
two iterations. To add more inputs, pop up on an input and choose Add
Input from the pop-up menu.

Divide function (Functions»Numeric)—In this activity, the divide
function returns the average of the last four random numbers.

Numeric Constant (Functions»Numeric)—During each iteration of the
While Loop, the Random Number (0–1) function generates one random
value. The VI adds this value to the last three values stored in the left
terminals of the shift register. The Random Number (0–1) function divides
the result by four to find the average of the values (the current value plus
the previous three). Then the average is displayed on the waveform chart.

Wait Until Next ms Multiple function (Functions»Time & Dialog)—This
function ensures that each iteration of the loop occurs no faster than the
millisecond input. The input is 500 milliseconds for this activity. If you pop
up on the icon and choose Show»Label, the label Wait Until Next ms
Multiple appears.

6. Pop up on the input of the Wait Until Next ms Multiple function and
select Create Constant. A numeric constant appears and is
automatically wired to the function.

7. Type 500 in the label. The numeric constant wired to the Wait Until
Next ms Multiple function specifies a wait of 500 milliseconds
(one half-second). Thus, the loop executes once every half-second.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-17 LabVIEW User Manual

Notice that the VI initializes the shift registers with a random number.
If you do not initialize the shift register terminal, it contains the default
value or the last value from the previous run and the first few averages are
meaningless.

8. Run the VI and observe the operation.

9. Save this VI as Random Average.vi in the LabVIEW\Activity
directory.

Note Remember to initialize shift registers to avoid incorporating old or default data

into your current data measurements

End of Activity 3-5.

Using Uninitialized Shift Registers
You initialize a shift register by wiring a value from outside a While Loop
or For Loop to the left terminal of the shift register. Sometimes, however,
you want to execute a VI repeatedly with a loop and a shift register, so that
each time the VI executes, the initial output of the shift register is the last
value from the previous execution. To do that, you must leave the left shift
register terminal unwired from outside the loop. Leaving the input to the
left shift register terminal unwired preserves state information between
subsequent executions of a VI.

The following illustration shows an example of a subVI that calculates the
running average of four data points. The VI uses an uninitialized shift
register (with three additional elements) to store previous data points.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-18 © National Instruments Corporation

Each time the VI is called, running average is computed from the new
input and the previous three values. Then the new value is saved into the
shift register, and the previous two values are moved up in the shift register.
There is no input value wired to the input side of the left shift registers, so
all three values are preserved for the next execution of the VI.

Because this subVI has nothing wired to the condition terminal, it executes
exactly once when called. The While Loop in this subVI is not used to loop
several times, but to store values in the loop shift registers between calls.

When the Running Average VI is loaded into memory, the uninitialized
shift registers are set to zero automatically. If the shift registers are wired to
Boolean values, the initial value is FALSE.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-19 LabVIEW User Manual

Activity 3-6. Create a Multiplot Chart

Your objective is to create a chart that can accommodate more than

one plot.

Front Panel

1. Open the Random Average.vi you created in Activity 3-5.

2. Modify the Front Panel as shown in the following illustration.

a. Using the Positioning tool, stretch the legend to include two plots.

b. Show the digital display by popping up on the chart, and choosing
Show»Digital Display. Move the legend if necessary.

c. Rename Plot 0 to Current Value by double-clicking on the
label with the Labeling tool and typing in the new text. You can
resize the label area by dragging either of the left corners with
the Positioning tool. Rename Plot 1 to Running Avg in the
same way.

d. For the Current Value plot, change the interpolation to
unconnected, the point style to square, and the color to green. You
can change the plot style and color by popping up on the legend.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-20 © National Instruments Corporation

Block Diagram

3. Modify the block diagram, as shown in the following illustration,
to display both the average and the current random number on the
same chart.

Bundle function (Functions»Cluster)—In this activity, the Bundle
function bundles the average and current value for plotting on the chart.
The bundle node appears as shown at left when you place it in the block
diagram. You can add additional elements by using the Resizing cursor
(accessed by placing the Positioning tool at the corner of the function)
to enlarge the node.

Note The order of the inputs to the Bundle function determines the order of the plots on

the chart. For example, if you wire the raw data to the top input of the Bundle

function and the average to the bottom, the first plot corresponds to the raw data

and the second plot corresponds to the average.

4. From the front panel, run the VI. The VI displays two plots on the
chart. The plots are overlaid. That is, they share the same vertical scale.

5. From the block diagram, run the VI with execution highlighting turned
on to see the data in the shift registers.

6. Turn execution highlighting off. From the front panel, run the VI.
While the VI is running, use the buttons from the palette to modify the
chart. You can reset the chart, scale the X or Y axis, and change the
display format at any time. You also can scroll to view other areas or
zoom into areas of a graph or chart.

You can use the X and Y buttons to rescale the X and Y axes, respectively.
If you want the graph to autoscale either of the scales continuously, click on
the lock switch to the left of each button to lock on autoscaling.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-21 LabVIEW User Manual

You can use the other buttons to modify the axis text precision or to control
the operation mode for the chart. Experiment with these buttons to explore
their operation, scroll the area displayed, or zoom in on areas of the chart.

7. Format the scales of the waveform chart to represent either absolute or
relative time. To select the x scale time format, pop up on the x-scale
and select Formatting….

a. Choose absolute time by selecting the Time & Date option from
the Format and Precision menu ring. This changes the dialog
box to the one shown below. For the waveform chart to start at a
certain time and increment at certain intervals, you can edit the
Xo and dX values respectively.

b. Format the chart to display the data starting from noon,
Oct. 24, 1996 and increment every 10 minutes, as shown above.

Note Modifying the axis text format often requires more physical space than was

originally set aside for the axis. If you change the axis, the text may become larger

than the maximum size that the waveform can correctly present. To correct this,

use the Resizing cursor to make the display area of the chart smaller.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-22 © National Instruments Corporation

8. To select the relative time format, select Numeric from the Format

and Precision menu ring. Then you can select the Relative Time

(seconds) option in the dialog box and represent the time in seconds.
Modify the dialog box, as shown in the following illustration, and
select OK.

9. Run the VI.

10. Save the VI as Multiple Random Plot.vi in the
LabVIEW\Activity directory.

End of Activity 3-6.

For Loops

A For Loop executes a section of code a defined number of times. It is
resizable, and, like the While Loop, is not dropped on the block diagram
immediately. Instead, a small icon representing the For Loop appears in the
block diagram, and you have the opportunity to size and position it. To do
so, first click in an area above and to the left of all the terminals. While
holding down the mouse button, drag out a rectangle that encompasses the
terminals you want to place inside the For Loop. When you release the
mouse button, G creates a For Loop of the size and position you selected.
You place the For Loop on the block diagram by selecting it from
Functions»Structures.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-23 LabVIEW User Manual

The For Loop executes the diagram inside its border a predetermined
number of times. The For Loop has two terminals, explained below.

Count terminal (an input terminal)—The count terminal specifies the
number of times to execute the loop.

Iteration terminal (an output terminal)—The iteration terminal contains the
number of times the loop has executed.

The For Loop is equivalent to the following pseudocode:

For i = 0 to N-1

Execute Diagram Inside The Loop

The following illustration shows a For Loop that generates 100 random
numbers and displays the points on a chart.

Loop Count
Numerical Input

Numerical
Output

Chapter 3 Loops and Charts

LabVIEW User Manual 3-24 © National Instruments Corporation

Numeric Conversion
Until now, all the numeric controls and indicators you have used have been
double-precision, floating-point numbers represented with 32 bits. G,
however, can represent numerics as integers (byte, word, or long) or
floating-point numbers (single-, double-, or extended-precision). The
default representation for a numeric is a double-precision, floating-point.

If you wire two terminals together that are of different data types,
G converts one of the terminals to the same representation as the other
terminal. As a reminder, G places a gray dot, called a coercion dot, on the
terminal where the conversion takes place.

For example, consider the For Loop count terminal. The terminal
representation is a long integer. If you wire a double-precision,
floating-point number to the count terminal, G converts the number to a
long integer. Notice the gray dot in the count terminal of the first For Loop.

Note When the VI converts floating-point numbers to integers, it rounds to the nearest

integer. If a number is exactly halfway between two integers, it is rounded to the

nearest even integer. For example, the VI rounds 6.5 to 6, but rounds 7.5 to 8. This

is an IEEE standard method for rounding numbers. See the IEEE Standard 754

for details.

Gray Dot

Chapter 3 Loops and Charts

© National Instruments Corporation 3-25 LabVIEW User Manual

Activity 3-7. Use a For Loop

Your objective is to use a For Loop and shift registers to calculate the

maximum value in a series of random numbers.

Front Panel

1. Open a new front panel and add the objects shown in the following
illustration.

a. Place a digital indicator on the front panel and label it Maximum
Value.

b. Place a waveform chart on the front panel and label it Random
Data. Change the scale of the chart to range from 0.0 to 1.0.

c. Pop up on the chart and choose Show»Scrollbar and
Show»Digital Display. Pop up and hide the palette and legend.

d. Resize the scrollbar with the positioning tool.

Chapter 3 Loops and Charts

LabVIEW User Manual 3-26 © National Instruments Corporation

Block Diagram

2. Open the block diagram and modify it as shown in the following
illustration.

3. Place a For Loop (Functions»Structures) on the block diagram.

4. Add the shift register by popping up or right-clicking on the right or
left border of the For Loop and choosing Add Shift Register.

5. Add the following objects to the block diagram.

Random Number (0–1) function (Functions»Numeric)—This function
generates the random data.

Numeric Constant (Functions»Numeric)—The For Loop needs to know
how many iterations to make. In this case, you execute the For Loop
100 times.

Numeric Constant (Functions»Numeric)—You set the initial value of the
shift register to zero for this exercise because you know that the output of
the random number generator is from 0.0 to 1.0.

You must know something about the data you are collecting to initialize a
shift register. For example, if you initialize the shift register to 1.0, then that
value is already greater than all the expected data values, and is always the
maximum value. If you did not initialize the shift register, then it would
contain the maximum value of a previous run of the VI. Therefore, you
could get a maximum output value that is not related to the current set of
collected data.

Chapter 3 Loops and Charts

© National Instruments Corporation 3-27 LabVIEW User Manual

Max & Min function (Functions»Comparison)—Takes two numeric
inputs and outputs the maximum value of the two in the top right corner and
the minimum of the two in the bottom right corner. Because you only are
interested in the maximum value for this exercise, wire only the maximum
output and ignore the minimum output.

6. Wire the terminals as shown. If the Maximum Value terminal were
inside the For Loop, you would see it continuously updated, but
because it is outside the loop, it contains only the last calculated
maximum.

Note Updating indicators each time a loop iterates is time-consuming and you should

try to avoid it when possible to increase execution speed.

7. Run the VI.

8. Save the VI as Calculate Max.vi in the LabVIEW\Activity
directory.

End of Activity 3-7.

© National Instruments Corporation 4-1 LabVIEW User Manual

4
Case and Sequence Structures
and the Formula Node

This chapter introduces the basic concepts of Case and Sequence structures
and the Formula Node, and provides activities that explain the following:

• How to use the Case structure

• How to use the Sequence structure

• What sequence locals are and how to use them

• What a Formula Node is and how to use it

Both Case and Sequence structures can have multiple subdiagrams,
configured like a deck of cards, of which only one is visible at a time. At the
top of each structure border is the subdiagram display window, which
contains a diagram identifier in the center and decrement and increment
buttons at each side. The diagram identifier indicates which subdiagram
currently is displayed. For Case structures, a diagram identifier is a list
of values which select the subdiagram. For Sequence structures, a diagram
identifier is the number of the frame in the sequence (0 to n – 1). The
following illustration shows a Case structure and a Sequence structure.

Clicking on the decrement (left) or increment (right) button displays the
previous or next subdiagram, respectively. Incrementing from the last
subdiagram displays the first subdiagram, and decrementing from the first
subdiagram displays the last. For more information about Case and
Sequence structures, refer to Chapter 19, Structures, in the G Programming

Reference Manual.

Case Structure Sequence Structure

Increment/Decrement
Buttons

Diagram
Identifier

Chapter 4 Case and Sequence Structures and the Formula Node

LabVIEW User Manual 4-2 © National Instruments Corporation

Case Structure

The Case structure has two or more subdiagrams, or cases, exactly one of
which executes when the structure executes. This depends on the value
of an integer, Boolean, string, or enum value you wire to the external side
of the selection terminal or selector. A Case structure is shown in the
following illustration.

Note Case statements in other programming languages generally do not execute any

case if a case is out of range. In G, you must either include a default case that

handles out-of-range values or explicitly list every possible input value.

Activity 4-1. Use the Case Structure

Your objective is to build a VI that checks a number to see if it is positive.

If the number is positive, the VI calculates the square root of the number;

otherwise, the VI returns an error.

Front Panel

1. Open a new front panel and create the objects as shown in the
following illustration.

The Number control supplies the number. The Square Root Value
indicator displays the square root of the number. The free label acts as a
note to the user.

Chapter 4 Case and Sequence Structures and the Formula Node

© National Instruments Corporation 4-3 LabVIEW User Manual

Block Diagram

2. Build the diagram as shown in the following illustration.

3. Place a Case structure in the block diagram by selecting it from
Functions»Structures. The Case structure is a resizable box that is
not dropped on the diagram immediately. Instead, you have the chance
to position it and resize it. To do so, click in an area above and to the
left of all the terminals you want to be inside the Case structure.
Continue holding down the mouse button and drag out a rectangle that
encompasses the terminals.

Greater Or Equal To 0? function (Functions»Comparison)—Returns a
TRUE if the number input is greater than or equal to 0.

Square Root function (Functions»Numeric)—Returns the square root of
the input number.

Selection
Terminal

Chapter 4 Case and Sequence Structures and the Formula Node

LabVIEW User Manual 4-4 © National Instruments Corporation

Numeric Constant (Functions»Numeric)—In this activity, the constant
indicates the numeric value of the error.

One Button Dialog function (Functions»Time & Dialog)—In this activity,
the function displays a dialog box that contains the message
Error...Negative Number.

String Constant (Functions»String)—Enter text inside the box with the
Labeling tool.

The VI executes either the TRUE case or the FALSE case. If the number is
greater than or equal to zero, the VI executes the TRUE case and returns the
square root of the number. The FALSE case outputs –99999.00 and
displays a dialog box with the message Error...Negative Number.

Note You must define the output tunnel for each case. When you create an output

tunnel in one case, tunnels appear at the same position in all the other cases.

Unwired tunnels appear as white squares.

4. Return to the front panel and run the VI. Try a number greater than zero
and a number less than zero by changing the value in the digital control
you labeled Number. Notice that when you change the digital control
to a negative number, LabVIEW displays the error message you set up
in the FALSE case of the Case structure.

5. Save the VI as Square Root.vi in the LabVIEW\Activity
directory.

VI Logic
The block diagram in this activity has the same effect as the following
pseudocode in a text-based language.

if (Number >= 0) then

Square Root Value = SQRT(Number)

else

Square Root Value = -99999.00

Display Message "Error...Negative Number"

end if

End of Activity 4-1.

Chapter 4 Case and Sequence Structures and the Formula Node

© National Instruments Corporation 4-5 LabVIEW User Manual

Sequence Structures

The Sequence structure, which looks like frames of film, executes block
diagrams sequentially. In conventional programming languages, the
program statements execute in the order in which they appear. In data flow
programming, a node executes when data is available at all of the node
inputs, although sometimes it is necessary to execute one node before
another. G uses the Sequence structure as a method to control the order in
which nodes execute. G executes the diagram inside the border of Frame 0
first, it executes the diagram inside the border of Frame 1 second, and so
on. As with the Case structure, only one frame is visible at a time.

A Sequence structure is shown in the following illustration.

Activity 4-2. Use a Sequence Structure

Your objective is to build a VI that computes the time it takes to generate

a random number that matches a given number.

Front Panel

1. Open a new front panel and build the front panel shown in the
following illustration. Be sure to modify the controls and indicators
as described in the text following the illustration.

Chapter 4 Case and Sequence Structures and the Formula Node

LabVIEW User Manual 4-6 © National Instruments Corporation

The Number to Match control contains the number you want to match.
The Current Number indicator displays the current random number.
The # of iterations indicator displays the number of iterations before
a match. Time to Match indicates how many seconds it took to find the
matching number.

Modifying the Numeric Format
By default, LabVIEW displays values in numeric controls in decimal
notation with two decimal places (for example, 3.14). You can use the
Format & Precision… option of a control or indicator pop-up menu to
change the precision or to display the numeric controls and indicators in
scientific or engineering notation. You can also use the
Format & Precision… option to denote time and date formats for
numerics.

2. Pop up on the Time to Match digital indicator and choose
Format & Precision…. The front panel must be the active window to
access the menu.

3. Enter 3 for Digits of Precision and click OK.

4. Pop up on the Number to Match digital control and choose
Representation»I32.

5. Repeat Step 4 for the Current Number and the # of iterations digital
indicators.

Chapter 4 Case and Sequence Structures and the Formula Node

© National Instruments Corporation 4-7 LabVIEW User Manual

Setting the Data Range
With the Data Range… option, you can prevent a user from setting a
control or indicator value outside a preset range or increment. Your options
are to ignore the value, coerce it to within range, or suspend execution. The
range error symbol appears in place of the run button in the toolbar when a
range error suspends execution. Also, a solid, dark border frames the
control that is out of range.

6. Pop up on the Number to Match indicator and choose Data Range….

7. Fill in the dialog box as shown in the following illustration and
click OK.

Block Diagram

8. Open the block diagram.

9. Place the Sequence structure (Functions»Structures) in the block
diagram.

10. Enlarge the structure by dragging one corner with the Resizing cursor.

Chapter 4 Case and Sequence Structures and the Formula Node

LabVIEW User Manual 4-8 © National Instruments Corporation

11. Create a new frame by popping up on the frame border and choose
Add Frame After. Repeat this step to create frame 2.

12. Build the block diagram shown in the following illustrations.

Chapter 4 Case and Sequence Structures and the Formula Node

© National Instruments Corporation 4-9 LabVIEW User Manual

Frame 0 in the previous illustration contains a small box with an arrow in
it. That box is a sequence local variable which passes data between frames
of a Sequence structure. You can create sequence locals on the border of a
frame. Then, the data wired to a frame sequence local is available in
subsequent frames. However, you cannot access the data in frames
preceding the frame in which you created the sequence local.

13. Create the sequence local by popping up on the bottom border of
Frame 0 and choosing Add Sequence Local.

The sequence local appears as an empty square. The arrow inside the square
appears automatically when you wire a function to the sequence local.

14. Finish the block diagram as shown in the opening illustration of the
Block Diagram section in this activity.

Tick Count (ms) function (Functions»Time & Dialog)—Returns the
number of milliseconds that have elapsed since power on. For this activity,
you need two Tick Count functions.

Random Number (0–1) function (Functions»Numeric)—Returns a
random number between 0 and 1.

Multiply function (Functions»Numeric)—In this activity, the function
multiplies the random number by 100.

Numeric Constant function (Functions»Numeric)—In this activity, the
numeric constant represents the maximum number that can be multiplied.

Chapter 4 Case and Sequence Structures and the Formula Node

LabVIEW User Manual 4-10 © National Instruments Corporation

Round to Nearest function (Functions»Numeric)—In this activity, the
function rounds the random number between 0 and 100 to the nearest whole
number.

Not Equal? function (Functions»Comparison)—In this activity, the
function compares the random number to the number specified in the front
panel and returns a TRUE if the numbers are not equal. Otherwise, this
function returns FALSE.

Increment function (Functions»Numeric)—In this activity, the function
increments the While Loop count by 1.

Subtract function (Functions»Numeric)—In this activity, the function
returns the time (in milliseconds) elapsed between frame 2 and frame 0.

Divide function (Functions»Numeric)—In this activity, the function
divides the number of milliseconds elapsed by 1,000 to convert the number
to seconds.

Numeric constant (Functions»Numeric)—In this activity, the function
converts the number from milliseconds to seconds.

In Frame 0, the Tick Count (ms) function returns the current time in
milliseconds. This value is wired to the sequence local, where the value is
available in subsequent frames. In Frame 1, the VI executes the While Loop
as long as the number specified does not match the number that the Random
Number (0–1) function returns. In Frame 2, the Tick Count (ms) function
returns a new time in milliseconds. The VI subtracts the old time (passed
from Frame 0 through the sequence local) from the new time to compute
the time elapsed.

15. Return to the front panel and enter a number inside the Number to
Match control and run the VI.

16. Save the VI as Time to Match.vi in the LabVIEW\Activity
directory.

End of Activity 4-2.

Chapter 4 Case and Sequence Structures and the Formula Node

© National Instruments Corporation 4-11 LabVIEW User Manual

Formula Node

The Formula Node is a resizable box that you can use to enter formulas
directly into a block diagram. You place the Formula Node on the block
diagram by selecting it from Functions»Structures. This feature is
useful when an equation has many variables or is otherwise complicated.
For example, consider the equation below:

y = x2 + x + 1

If you implement this equation using regular G arithmetic functions, the
block diagram looks like the one in the following illustration.

You can implement the same equation using a Formula Node, as shown in
the following illustration

With the Formula Node, you can directly enter a complicated formula, or
formulas, in lieu of creating block diagram subsections. You enter formulas
with the Labeling tool. You create the input and output terminals of the
Formula Node by popping up on the border of the node and choosing Add
Input (Add Output). Type the variable name in the box. Variables are case
sensitive. You enter the formula or formulas inside the box. Each formula
statement must end with a semicolon (;).

Chapter 4 Case and Sequence Structures and the Formula Node

LabVIEW User Manual 4-12 © National Instruments Corporation

The operators and functions available inside the Formula Node are listed in
the Help window for the Formula Node, as shown in the following
illustration. A semicolon terminates each formula statement.

The following example shows how you can perform a conditional
assignment inside a Formula Node.

Consider the following code fragment that computes the square root of x if
x is positive, and assigns the result to y. If x is negative, the code assigns
-99 to y.

if (x >= 0) then

y = sqrt(x)

else

y = -99

end if

You can implement the code fragment using a Formula Node, as shown in
the following illustration.

Chapter 4 Case and Sequence Structures and the Formula Node

© National Instruments Corporation 4-13 LabVIEW User Manual

Activity 4-3. Use the Formula Node

Your objective is to build a VI that uses the Formula Node to calculate the

following equations.

y1 = x3 – x2 + 5

y2 = m * x + b

where x ranges from 0 to 10.

You will use only one Formula Node for both equations, and you will
graph the results on the same graph. For more information on graphs,
see Chapter 5, Arrays, Clusters, and Graphs.

Conditional
Operator

False
Condition

Condition True
Condition

Chapter 4 Case and Sequence Structures and the Formula Node

LabVIEW User Manual 4-14 © National Instruments Corporation

Front Panel

1. Open a new front panel and build the front panel shown in following
illustration. The waveform graph indicator displays the plots of the
equation. The VI uses the two digital controls to input the values for
m and b.

2. Create the graph legend shown in the following illustration by
selecting Show»Legend. Use the Resizing cursor to drag the legend
downward so it displays two plots. Use the Labeling tool to rename the
plots. You can define the line style for each plot using the legend
pop-up menu. You also can color each plot by using the Color tool on
the plots legend.

Block Diagram

3. Build the block diagram shown in the following illustration.

Formula Node (Functions»Structures). With this node, you can enter
formulas directly. Create the three input terminals by popping up on the
border and choosing Add Input. You create the output terminal by
choosing Add Output from the pop-up menu.

Chapter 4 Case and Sequence Structures and the Formula Node

© National Instruments Corporation 4-15 LabVIEW User Manual

When you create an input or output terminal, you must give it a variable
name. The variable name must match the one you use in the formula
exactly. The names are case sensitive. That is, if you use a lowercase a in
naming the terminal, you must use a lowercase a in the formula. You can
enter the variable names and formula with the Labeling tool.

Note Although variable names are not limited in length, be aware that long names take

up considerable diagram space. A semicolon (;) terminates the formula

statement.

Numeric Constant (Functions»Numeric). You also can pop up on the
count terminal and select Create Constant to create and wire the numeric
constant automatically. The numeric constant specifies the number of For
Loop iterations. If x range is 0 to 10 including 10, you must wire 11 to the
count terminal.

Because the iteration terminal counts from 0 to 10, you use it to control the
x value in the Formula Node.

Build Array (Functions»Array) puts two array inputs into the form of a
multiplot graph. Create the two input terminals by using the Resizing
cursor to drag one of the corners. For more information on arrays, see
Chapter 5, Arrays, Clusters, and Graphs.

4. Return to the front panel and run the VI with different values for m
and b.

5. Save the VI as Equations.vi in the LabVIEW/Activity directory.

End of Activity 4-3.

Artificial Data Dependency

Nodes not connected by a wire can execute in any order. Nodes do not
necessarily execute in left-to-right, top-to-bottom order. A Sequence
structure is one way to control execution order when natural data
dependency does not exist.

Another way to control execution order is to create and artificial data
dependency, a condition in which the arrival of data rather than its value
triggers execution of an object. The receiver may not actually use the data
internally. The advantage of artificial dependency is that all of the nodes are
visible at one level, although, in some cases, the confusion created by the
artificial links between the nodes can be a disadvantage.

Chapter 4 Case and Sequence Structures and the Formula Node

LabVIEW User Manual 4-16 © National Instruments Corporation

You can open the Timing Template (data dep).vi from
Examples\General\structs.llb to see how the Timing Template
has been altered to use artificial data dependency rather than a sequence
structure.

© National Instruments Corporation 5-1 LabVIEW User Manual

5
Arrays, Clusters, and Graphs

This chapter introduces the basic concepts of polymorphism, arrays,
clusters, and graphs and provides activities that explain auto-indexing and
the Graph and Analysis VIs.

Arrays

An array is a collection of data elements that are all the same type. An array
has one or more dimensions and up to 231 – 1 elements per dimension,
memory permitting. You access each array element through its index. The
index is in the range 0 to n – 1, where n is the number of elements in the
array. The following 1D array of numeric values illustrates this structure.
Notice that the first element has index 0, the second element has index 1,
and so on.

How Do You Create and Initialize Arrays?
If you need an array as a source of data in your block diagram, you can
choose Functions»Array and then select and place the array shell on your
block diagram. Using the Operating tool, you can choose a numeric
constant, Boolean constant, or string constant to place inside the empty
array. The following illustration shows an example array shell with a
numeric constant inserted into the array shell.

To create an array on the front panel, select Array & Cluster from the
Controls palette and place the array shell on your front panel. Then select
an object (numeric, for example) and place that inside the array shell. This
creates an array of numerics.

10-element array 1.2 3.2 8.2 8.0 4.8 5.1 6.0 1.0 2.5 1.7

0 1 2 3 4 5 6 7 8 9index

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-2 © National Instruments Corporation

Note You also can create an array and its corresponding control on the front panel and

then copy or drag the array control to the block diagram to create a corresponding

constant.

For more information on how to create array controls and indicators on the
front panel, see Chapter 14, Array and Cluster Controls and Indicators, in
the G Programming Reference Manual.

There are several ways to create and initialize arrays on the block diagram.
Some block diagram functions also produce arrays, as the following
illustration shows.

Array Controls, Constants, and Indicators
You create array controls, constants, and indicators on the front panel or
block diagram by combining an array shell with a numeric, Boolean, string,
or cluster. An array element cannot be another array, chart, or graph.
For examples of arrays, see Examples\General\arrays.llb.

Auto-Indexing
For Loop and While Loop structures can index and accumulate arrays at
their boundaries automatically. These capabilities collectively are called
auto-indexing. When you enable auto-indexing and wire an array of any
dimension from an external node to an input tunnel on the loop border,
components of that array enter the loop, one at a time, starting with the first
component. The loop indexes scalar elements from 1D arrays, 1D arrays
from 2D arrays, and so on. The opposite action occurs at output tunnels—
elements accumulate sequentially into 1D arrays, 1D arrays accumulate
into 2D arrays, and so on.

Note Auto-indexing is the default for every array wired to a For Loop. You can disable

auto-indexing by popping up on the tunnel (entry point of the input array) and

selecting Disable Indexing.

x[i]=ASCII code
of ith character

Sine Pattern
String to Byte Array

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-3 LabVIEW User Manual

By default, auto-indexing is disabled for every array wired to a While Loop.
Pop up on the array tunnel of a While Loop to enable auto-indexing.

Activity 5-1. Create an Array
with Auto-Indexing

Your objective is to create an array using the auto-indexing feature of a

For Loop and plot the array in a waveform graph.

You will build a VI that generates an array using the Generate Waveform
VI and plots the array in a waveform graph. You also will modify the VI to
graph multiple plots.

Front Panel

1. Open a new front panel.

2. Place an array shell from Controls»Array & Cluster in the front
panel. Label the array shell Waveform Array.

tunnel

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-4 © National Instruments Corporation

3. Place a digital indicator from Controls»Numeric inside the
element display of the array shell, as the following illustration shows.
This indicator displays the array contents.

4. Place a waveform graph from Controls»Graph in the front panel.
Label the graph Waveform Graph.

5. Enlarge the graph by dragging a corner with the Resizing cursor.

6. Hide the legend and palette.

7. Disable autoscaling by popping up on the graph and deselecting
Y Scale»Autoscale Y.

8. Use the Text tool to rescale the Y axis to range from –0.5 to 1.5.

Block Diagram

9. Build the block diagram shown in the following illustration.

Generate Waveform VI (Functions»Select a VI… from the
LabVIEW\Activity directory)—Returns one point of a waveform.
The VI requires a scalar index input, so wire the loop iteration terminal
to this input.

Notice that the wire from the Generate Waveform VI becomes thicker as it
changes to an array at the loop border.

The For Loop automatically accumulates the arrays at its boundary. This is
called auto-indexing. In this case, the numeric constant wired to the loop

1D Array

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-5 LabVIEW User Manual

count numeric input has the For Loop create a 100-element array (indexed
0 to 99).

Bundle function (Functions»Cluster)—Assembles the plot components
into a cluster. You need to resize the Bundle function icon before you can
wire it properly. Place the Positioning tool on the lower-left corner of the
icon. The tool transforms into the Resizing cursor shown at left. When the
tool changes, click and drag down until a third input terminal appears.
Now, you can continue wiring your block diagram as shown in the previous
illustration.

Numeric Constant (Functions»Numeric)—Three numeric constants set
the number of For Loop iterations, the initial X value, and the delta X value.
Notice that you can pop up on the For Loop count terminal, shown at left,
and select Create Constant to add and wire a numeric constant for that
terminal automatically.

10. From the front panel, run the VI. The VI plots the auto-indexed
waveform array on the waveform graph. The initial X value is 0 and the
delta X value is 1.

11. Change the delta X value to 0.5 and the initial X value to 20. Run the
VI again.

Notice that the graph now displays the same 100 points of data with a
starting value of 20 and a delta X of 0.5 for each point (see the X axis). In a
timed test, this graph might correspond to 50 seconds worth of data starting
at 20 seconds.

12. You can view any element in the waveform array by entering the index
of that element in the index display. If you enter a number greater than
the array size, the display dims, indicating that you do not have a
defined element for that index.

If you want to view more than one element at a time, you can resize the
array indicator. Place the Positioning tool on the lower right corner of
the array. The tool transforms into the array Resizing cursor shown at left.
When the tool changes, drag to the right or straight down. The array now
displays several elements in ascending index order, beginning with the

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-6 © National Instruments Corporation

element corresponding to the specified index, as the following
illustration shows.

In the previous block diagram, you specified an initial X and a delta X value
for the waveform. The default initial X value is zero and the delta X value
is 1. So, you can wire the waveform array directly to the waveform graph
terminal without the initial X and delta X specified, as the following
illustration shows.

13. Return to the block diagram. Delete the Bundle function and the
numeric constants wired to it. To delete the function and constants,
select the function and constants with the Positioning tool then press
<Delete>. Select Edit»Remove Bad Wires. Finish wiring the block
diagram as shown in the previous illustration.

14. Run the VI. Notice that the VI plots the waveform with an initial
X value of 0 and a delta X value of 1.

6 7 8
index index

6

7

8

1D Array

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-7 LabVIEW User Manual

Multiplot Graphs
You can create multiplot waveform graphs by building an array of the data
type normally passed to a single-plot graph.

15. Continue building your block diagram as shown in the preceding
diagram.

Sine function (Functions»Numeric»Trigonometric)—In this activity,
you use the function in a For Loop to build an array of points that represents
one cycle of a sine wave.

Build Array function (Functions»Array)—In this exercise, you use this
function to create the proper data structure to plot two arrays on a waveform
graph, which in this case is a 2D array. Enlarge the Build Array function to
create two inputs by dragging a corner with the Positioning tool.

Pi constant (Functions»Numeric»Additional Numeric Constants)—
Remember that you can find the Multiply and Divide functions in
Functions»Numeric.

16. Switch to the front panel. Run the VI.

Notice that the two waveforms plot on the same waveform graph.
The initial X value defaults to 0 and the delta X value defaults to 1 for
both data sets.

2D Array

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-8 © National Instruments Corporation

Note You can change the appearance of a plot on the graph by popping up in the legend

for a particular plot. For example, you can change from a line graph to a bar

graph by choosing Common Plots»Bar Graph.

17. Save the VI as Graph Waveform Arrays.vi in the
LabVIEW\Activity directory.

End of Activity 5-1.

In the previous example, the For Loop executed 100 times because a
constant of 100 was wired to the count terminal. The following activity
illustrates another means of determining how many times a loop will
execute.

Activity 5-2. Use Auto-Indexing
on Input Arrays

Your objective is to open and operate a VI that uses auto-indexing in a

For Loop to process an array.

1. Open the Separate Array Values VI by selecting File»Open…. The VI
is located in Examples\General\arrays.llb.

2. Open the block diagram. The following illustration shows the block
diagram with both TRUE and FALSE cases visible.

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-9 LabVIEW User Manual

Notice that the wire from Input Array changes from a thick wire outside
the For Loop, indicating it is an array, to a thin wire inside the loop,
indicating it is a single element. The ith element of the array is indexed
automatically from the array during each iteration.

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-10 © National Instruments Corporation

Using Auto-Indexing to Set the For Loop Count
Notice that the count terminal is left unwired. When you use auto-indexing
on an array entering a For Loop, the loop executes according to the size of
the array, eliminating the need to wire a value to the count terminal. If you
use auto-indexing for more than one array, or if you set the count in
addition to auto-indexing an array, the actual number of iterations is the
smallest number possible.

3. Run the VI. Of the eight input values, you will see four in the Positive
Array and four in the Negative Array.

4. From the block diagram, wire a constant of 5 to the count terminal of
the For Loop. Run the VI. You will see three values in the Positive
Array and two in the Negative Array, even though the input array still
has eight elements. This demonstrates that if N is set and you are
auto-indexing, the smaller number is used for the actual number of
iterations of the loop.

5. Close the VI and do not save changes.

End of Activity 5-2.

Using Array Functions
G has many functions to manipulate arrays located in Functions»Array.
These functions include Replace Array Element, Search 1D Array,
Sort 1D Array, Reverse 1D Array, and Multiply Array Elements.
For more information about arrays and the array functions available,
refer to Chapter 14, Array and Cluster Controls and Indicators, in the
G Programming Reference Manual or Online Reference»Function and

VI Reference.

Build Array

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-11 LabVIEW User Manual

Build Array function (Functions»Array)—You can use it to create an
array from scalar values or from other arrays. Initially, the Build Array
function appears with one scalar input.

You can add as many inputs as you need to the Build Array function, and
each input can be either a scalar or an array. To add more inputs, pop up on
the left side of the function and select Add Element Input or Add Array

Input. You also can enlarge the Build Array node with the Resizing cursor
(place the Positioning tool at the corner of an object to transform it into the
Resizing cursor). You can remove inputs by shrinking the node with the
Resizing cursor, or by selecting Remove Input.

The following illustration shows two ways to create and initialize arrays
with values from block diagram constants. On the left, five string constants
are built into a 1D array of strings. On the right, three groups of numeric
constants are built into three, 1D numeric arrays. Then, the three arrays are
combined into a 2D numeric array. The result is a 3 x 3 array with the rows
3, 4, 7; –1, 6, 2; and 5, –2, 8.

You also can create an array by combining other arrays along with scalar
elements. For example, suppose you have two arrays and three scalar
elements that you want to combine into a new array with the order array 1,
scalar 1, scalar 2, array 2, and scalar 3.

Initialize Array
Use this function to create an array whose elements all have the same value.
In the following illustration, this function creates a 1D array.

Array of
Strings

2D Array
of Numbers

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-12 © National Instruments Corporation

The element input determines the data type and the value of each element.
The dimension size input determines the length of the array. For example,
if element is a long integer with the value of five and dimension size
has a value of 100, the result is a 1D array of 100 long integers all set to
five. You can wire the inputs from front panel control terminals, as shown
in the preceding illustration, from block diagram constants, or from
calculations on other parts of your diagram.

To create and initialize an array that has more than one dimension, pop up
on the lower-left side of the function and select Add Dimension. You also
can use the Resizing cursor to enlarge the Initialize Array node and add
more dimension size inputs, one for each additional dimension. You can
remove dimensions by shrinking the node by selecting Remove Dimension
from the function pop-up menu or with the Resizing cursor.

The following block diagram shows how to initialize a 3D array.

If all the dimension size inputs are zero, the function creates an empty array
of the specified type and dimension.

Array Size
Array Size returns the number of elements in the input array.

47 3 2 5

Array Size = 4 Elements

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-13 LabVIEW User Manual

Array Subset
You can use this function to extract a portion of an array or matrix.

Array Subset returns a portion of an array starting at index and
containing length elements. The following illustrations show examples
of Array Subsets. Notice that the array index begins with 0.

3 2 5

1 4 2
2 3

2D Array
2 Rows
3 Columns

Size =

1 2 7 3 2 5 8

2

4

1D Array

Index

Length New 1D Array

7 3 2 5

1 4 2 7

2 5 7 1

7 3 2 5

0

2

Row Index

2D Array

New 2D Array
Row Length

1

3

Column Index

Column Length

3 2 5

5 7 1

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-14 © National Instruments Corporation

Index Array
The Index Array function accesses an element of an array.

The following illustration shows an example of an Index Array function
accessing the third element of an array. Notice that the index of the third
element is 2 because the first element has index 0.

You also can use this function to slice off one or more dimensions of a
multi-dimensional array to create a subarray of the original. To do this,
stretch the Index Array function to include two index inputs, and select
the Disable Indexing command on the pop-up menu of the second index
terminal as shown in the following illustration. Now you have disabled the
access to a specific array column. By giving it a row index, the result is an
array whose elements are the elements of the specified row of the 2D array.
You also can disable indexing on the row terminal.

3 2 5 7 1 4 2

2

1D Array

Index

5

Element

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-15 LabVIEW User Manual

Notice that the index terminal symbol changes from a solid to an empty
box when you disable indexing. To restore a disabled index, use the
Enable Indexing command from the same menu.

You can extract subarrays along any combination of dimensions.
The following illustration shows how to extract a 1D row or column arrays
from a 2D array.

Array

Disabled Input
(Empty Box)

Extract Column

Extract Row

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-16 © National Instruments Corporation

From a 3D array, you can extract a 2D array by disabling two index
terminals, or a 1D array by disabling a single index terminal. The following
figure shows several ways to slice a 3D array.

The following rules govern the use of the Index Array function to slice
arrays:

• The dimension of the output object must equal the number of disabled
index terminals. For example:

– Zero disabled = scalar element

– One disabled = 1D component

– Two disabled = 2D component

• The values wired to enabled terminals must identify the output
elements.

Thus, you can interpret the lower left preceding example as a command to
generate a 1D array of all elements at column 0 and row 3. You can interpret
the upper right example as a command to generate a 2D array of page 1.
The new, 0th element is the one closest to the original, as shown in the
preceding illustration.

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-17 LabVIEW User Manual

Activity 5-3. Use the Build Array Function

Your objective is to use the Build Array function to combine elements and

arrays into one bigger array.

Front Panel

1. Create a new front panel, as shown in the following illustration.

2. Place a digital control from the Controls»Numeric palette and label it
scalar 1. Change its representation to I32.

3. Copy and paste it to create two other digital controls and label them
scalar 2 and scalar 3.

4. Create an array of digital controls and label it array 1. Copy and
paste it and label it array 2.

5. Expand the arrays and enter the values 1 through 9 in array 1,
scalar 1, scalar 2, array 2, and scalar 3, as shown in the
illustration above.

6. Copy the array and paste it and change it to an indicator. Label it
1D array. Expand it to show nine values.

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-18 © National Instruments Corporation

Block Diagram

7. Place a Build Array function (Functions»Array) on the block
diagram. Expand it with the Positioning tool to have five inputs.

8. Pop up on the first input in the Build Array node and select Change to

Array. Do the same for the fourth input.

9. Wire the arrays and scalars to the node. The output array is a 1D array
composed of the elements of array 1 followed by scalar 1,
scalar 2, and the elements of array 2 and scalar 3, as the
following illustration shows.

10. Run the VI. You can see the values in scalar 1, scalar 2,
scalar 3, array 1, and array 2 appear in a single 1D array.

11. Save the VI as Build Array.vi in the LabVIEW\Activity
directory.

End of Activity 5-3.

Efficient Memory Usage: Minimizing Data Copies
To save memory, you can use single-precision arrays instead of
double-precision arrays. For information about how memory is allocated,
see the section Monitoring Memory Usage in Chapter 28, Performance

Issues, in the G Programming Reference Manual.

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-19 LabVIEW User Manual

What is Polymorphism?

Polymorphism is the ability of a function to adjust to input data of different
types, dimensions, or representations. Most G functions are polymorphic.
For example, the following illustrations show some of the polymorphic
combinations of the Add function.

In the first combination, the two scalars are added together, and the result
is a scalar. In the second combination, the scalar is added to each element
of the array, and the result is an array. An array is a collection of data. In the
third combination, each element of one array is added to the corresponding
element of the other array. You also can use other combinations, such as
clusters of numerics or arrays of clusters.

You can apply these principles to other G functions and data types.
G functions are polymorphic to different degrees. Some functions might
accept numeric and Boolean inputs, others might accept a combination of
any other data types. For more information about polymorphism, see
Online Reference»Function and VI Reference.

ResultCombination

Scalar + Scalar

Scalar + Array

Array + Array Array

Array

Scalar

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-20 © National Instruments Corporation

Clusters

A cluster is a data type that can contain data elements of different types.
The cluster in the block diagram that you will build in Activity 5-4 groups
related data elements from multiple places on the block diagram, reducing
wire clutter. When you use clusters, your subVIs require fewer connection
terminals. A cluster is analogous to a record in Pascal or a struct in C. You
can think of a cluster as a bundle of wires, much like a telephone cable.
Each wire in the cable would represent a different element of the cluster.
The components include the initial X value (0), the delta X value (1), and
the Y array (waveform data, provided by the numeric constants on the
block diagram). In G, use the Bundle function to assemble a cluster. For
more information about Clusters refer to Chapter 14, Array and Cluster

Controls and Indicators, in the G Programming Reference Manual.

Graphs

A graph is a two-dimensional display of one or more data arrays called
plots. There are three types of graphs in the Controls»Graph palette:

• XY graph

• Waveform graph

• Intensity graph

The difference between a graph and a chart is that a graph plots data as a
block, whereas a chart plots data point by point, or array by array.

For examples of graph VIs, see Examples\General\Graphs.

Customizing Graphs
Both waveform and XY graphs have a number of optional parts that you
can show or hide using the Show submenu of the pop-up menu for the
graph. The options include a legend, through which you can define the
color and style for a given plot, a palette from which you can change scaling
and format options while the VI is running, and a cursor display. The
following illustration of a graph shows all of the optional components
except for the cursor display.

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-21 LabVIEW User Manual

Graph Cursors
You can place cursors and a cursor display on all the graphs in G, and you
can label the cursor on the plot. You can set a cursor to lock onto a plot, and
you can move multiple cursors at the same time. There is no limit to the
number of cursors a graph can have. The following illustration shows a
waveform graph with the cursor display.

For more detailed information on customizing graphs, see Chapter 15,
Graph and Chart Controls and Indicators, in the G Programming

Reference Manual.

Major Grids
Minor Grids

Legend

Palette

X Scale

Y Scale

Cursor
Movement

Control
X Position

Active
Cursor Button

for Cursor
Movement

Lock
to Plot
Control

Cursor
Name

Y Position
Cursor
Style

Control

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-22 © National Instruments Corporation

Refer to the ZoomGraph VI in Examples\General\Graphs\zoom.llb
for an example that reads cursor values and programmatically zooms in and
out of a graph using the cursors.

Graph Axes
You can format the scales of a graph to represent either absolute or relative
time. Use absolute time format to display the time, date, or both for your
scale. If you do not want G to assume a date, use relative time format.
To select absolute or relative time format, pop up on the chart and select
the scale you want to modify. Select Formatting…. This enables the
Formatting dialog box, which you can use to specify different attributes
of the chart.

Data Acquisition Arrays
Data returned from a plug-in data acquisition board using the Data
Acquisition VIs can be in the form of a single value, a 1D array,
or a 2D array. You can find a number of graph examples located in
Examples\General\Graphs, which contains VIs to perform varied
functions with arrays and graphs.

Activity 5-4. Use the Graph and Analysis VIs

Your objective is to build a VI that measures temperature and displays the

values in real time. It also displays the average, maximum, and minimum

temperatures.

Front Panel

1. Create a new front panel as shown in the following illustration.
You can modify the point styles of the waveform chart and waveform
graph by popping up on their legends. Scale the charts as shown.

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-23 LabVIEW User Manual

The Temperature waveform chart displays the temperature as it is acquired.
After acquisition, the VI plots the data in Temp Graph. The Mean, Max, and
Min digital indicators display the average, maximum, and minimum
temperatures.

Block Diagram

2. Build the block diagram as shown in the following illustration:

Digital Thermometer VI (Functions»Select a VI from the
LabVIEW\Activity directory)—Returns one temperature measurement.

Chapter 5 Arrays, Clusters, and Graphs

LabVIEW User Manual 5-24 © National Instruments Corporation

Wait Until Next ms Multiple function (Functions»Time & Dialog)—
In this exercise, this function ensures the For Loop executes every
0.25 seconds (250 milliseconds).

Numeric constant (Functions»Numeric)—You also can pop up on the
Wait Until Next ms Multiple function and select Create Constant to
automatically create and wire the numeric constant.

Array Max & Min function (Functions»Array)—In this activity, this
function returns the maximum and minimum temperature measured during
the acquisition.

Mean VI (Functions»Analysis»Probability and Statistics or
Functions»Base Analysis for LabVIEW Base Package users)—Returns
the average of the temperature measurements.

Bundle function (Functions»Cluster)—Assembles the plot components
into a cluster. The components include the initial X value (0), the
delta X value (0.25), and the Y array (temperature data). Use the
Positioning tool to resize the function by dragging one of the corners.

The For Loop executes 40 times. The Wait Until Next ms Multiple function
causes each iteration to take place every 250 milliseconds. The VI stores
the temperature measurements in an array created at the For Loop border
(auto-indexing). After the For Loop completes execution, the array is
passed on to the subVIs and Temp Graph.

The Array Max&Min function returns the maximum and minimum
temperature. The Mean VI returns the average of the temperature
measurements.

Your completed VI bundles the data array with an initial X value of 0 and
a delta X value of 0.25. The VI requires a delta X value of 0.25 so that the
VI plots the temperature array points every 0.25 seconds on the waveform
graph.

3. Return to the front panel and run the VI.

4. Save the VI as Temperature Analysis.vi in the
LabVIEW\Activity directory.

End of Activity 5-4.

Chapter 5 Arrays, Clusters, and Graphs

© National Instruments Corporation 5-25 LabVIEW User Manual

Intensity Plots

LabVIEW has two methods for displaying three-dimensional data:
the intensity chart and the intensity graph. Both intensity plots accept
two-dimensional arrays of numbers, where each number is mapped to a
color. You can define the color mapping interactively, using an optional
color ramp scale, or programmatically, using an attribute node for the chart.
For examples using the intensity chart and graph, refer to intgraph.llb
in the Examples\General\Graphs directory.

© National Instruments Corporation 6-1 LabVIEW User Manual

6
Strings and File I/O

This chapter introduces string controls and indicators and file input and
output operations and provides activities that illustrate how to accomplish
the following:

• Create string controls and indicators

• Use string functions

• Perform file input and output operations

• Save data to files in spreadsheet format

• Write data to and read data from text files

Strings

A string is a collection of ASCII characters. In instrument control, you can
pass numeric data as character strings and then convert these strings to
numbers. Storing numeric data to disk can also involve strings. To store
numbers in an ASCII file, you must first convert numbers to strings before
writing the numbers to a disk file.

For examples of strings, see Examples\General\strings.llb.

Creating String Controls and Indicators
You can find the string control and indicator, shown at left, in
Controls»String & Table. You can enter or change text inside a string
control using the Operating tool or the Labeling tool. Enlarge string
controls and indicators by dragging a corner with the Positioning tool.

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-2 © National Instruments Corporation

Strings and File I/O
If you want to minimize space that a front panel string control or indicator
occupies, select Show»Scrollbar. If this option is dimmed, you must
increase the vertical size of the window to make it available.

Activity 6-1. Concatenate a String

LabVIEW has many functions to manipulate strings. For this activity,

your objective is to use some of the string functions to convert a number

to a string and concatenate that string with other strings to form a single

output string.

1. Open a new front panel and add the objects shown in the following
illustration. Be sure to modify the controls and indicators as shown.

Front Panel

The two string controls and the digital control can be combined into a single
output string and displayed in the string indicator. The digital indicator
displays the string length.

Chapter 6 Strings and File I/O

© National Instruments Corporation 6-3 LabVIEW User Manual

The Combined String output in this activity has a similar format to
command strings used to communicate with GPIB (IEEE 488) and serial
(RS-232 or RS-422) instruments. Refer to Part II, I/O Interfaces, of this
manual to learn more about strings used for instrument commands.

Block Diagram

2. Build the block diagram shown in the following illustration.

Format Into String function (Functions»String) concatenates and formats
numbers and strings into a single output string. Use the Resizing cursor on
the icon to add three argument inputs.

String Length function (Functions»String) returns the number of
characters in the concatenated string.

3. Run the VI. Notice that the Format Into String function concatenates
the two string controls and the digital control into a single, output
string.

4. Save the VI as Build String.vi. You will use this VI in the next
exercise.

End of Activity 6-1.

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-4 © National Instruments Corporation

Activity 6-2. Use Format Strings

Your objective is to create a string according to the format you specify.

You will use the Build String VI that you created in Activity 6-1 to create a
format string. With format strings, you can specify the format of arguments,
including the field width, base (hex, octal, and so on), and any text that
separates the arguments.

Front Panel

1. Open the Build String VI that you created in Activity 6-1.

Block Diagram

Chapter 6 Strings and File I/O

© National Instruments Corporation 6-5 LabVIEW User Manual

2. Pop up on the Format Into String VI and select Edit Format String.
The following dialog box appears.

Note You can also double-click on the node to access the Edit Format String dialog box.

Notice that the Current Format Sequence contains the argument types, in
the order that you wired them.

3. Set the precision of the numeric to 4.

a. Highlight Format fractional number in the Current Format
Sequence list box.

b. Click in the Use Specified Precision checkbox.

c. Highlight the numeric beside the Use Specified Precision
checkbox, type in 4, and press <Enter> (Windows); <return>
(Macintosh); <Return> (Sun); or <Enter> (HP-UX). The following

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-6 © National Instruments Corporation

illustration shows the selected options to set the precision of
number.

4. Press the Create String button. Pressing this button automatically
inserts the correct format string information and wires format string to
the function, as shown in the following illustration.

5. Return to the front panel and type text inside the two string controls
and a number inside the digital control. Run the VI.

6. Save and close the VI. Name it Format String.vi.

End of Activity 6-2.

Chapter 6 Strings and File I/O

© National Instruments Corporation 6-7 LabVIEW User Manual

Activity 6-3. String Subsets and
Number Extraction

Your objective is to take a subset of a string that contains the string

representation of a number and convert it to a numeric value.

Front Panel
1. Open the Parse String.vi from Examples\General\

strings.llb. Run the VI with the default inputs. Notice that the
string subset of DC is chosen for the input string. Also, notice that
the numeric part of the string was parsed out and converted to a
number. You can try different control values (remember that strings,
like arrays, are indexed starting with zero), or you can show the block
diagram to see how to parse the components out of the input string.

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-8 © National Instruments Corporation

Block Diagram
2. Open the block diagram of the Parse String VI, shown in the following

illustration.

LabVIEW uses the String Subset and Scan From String functions to parse
the input string.

String Subset function (Functions»String) returns the substring beginning
at offset and contains length number of characters. The first character
offset is zero.

In many instances, you must convert strings to numbers, such as when you
convert a data string received from an instrument into the data values.

Scan From String function (Functions»String) scans a string and converts
valid, numeric characters (0 to 9, +, –, e, E, and period) to numbers. If you
wire a format string, Scan From String makes conversions according to the
format. If you do not wire format string, Scan From String makes default
conversions for each default input terminal in the function. This function
starts scanning the string at offset. The first character offset is zero.

The Scan From String function is useful when you know the header length
(VOLTS DC in the example here), or when the string contains only valid
numeric characters.

3. Close the VI by selecting File»Close. Do not save the VI.

End of Activity 6-3.

Chapter 6 Strings and File I/O

© National Instruments Corporation 6-9 LabVIEW User Manual

File I/O

The G file I/O functions (Functions»File I/O) are a powerful and flexible
set of tools for working with files. In addition to reading and writing data,
the LabVIEW file I/O functions move and rename files and directories,
create spreadsheet-type files of readable ASCII text, and write data in
binary form for speed and compactness.

You can store or retrieve data from files in three different formats.

• ASCII Byte Stream—You should store data in ASCII format when you
want to access it from another software package, such as a word
processing or spreadsheet program. To store data in this manner, you
must convert all data to ASCII strings.

• Datalog files—These files are in binary format that only G can access.
Datalog files are similar to database files because you can store several
different data types into one (log) record of a file.

• Binary Byte Stream—These files are the most compact and fastest
method of storing data. You must convert the data to binary string
format and you must know exactly what data types you are using to
save and retrieve the data to and from files.

This section discusses ASCII byte stream files because that is the most
common data file format. For examples of file I/O, see Examples\File.

File I/O Functions
Most file I/O operations involve three basic steps: opening an existing
file or creating a new file; writing to or reading from the file; and closing
the file. Therefore, LabVIEW contains many utility VIs in Functions»

File I/O. This section describes the nine, high-level utilities. These utility
functions are built upon intermediate-level VIs that incorporate error
checking and handling with the file I/O functions.

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-10 © National Instruments Corporation

The Write Characters To File VI writes a character string to a new byte
stream file or appends the string to an existing file. This VI opens or creates
the file, writes the data, and then closes the file.

The Read Characters From File VI reads a specified number of characters
from a byte stream file beginning at a specified character offset. This VI
opens the file beforehand and closes it afterwards.

The Read Lines From File VI reads a specified number of lines from a byte
stream file beginning at a specified character offset. This VI opens the file
beforehand and closes it afterwards.

The Write To Spreadsheet File VI converts a 1D or 2D array of
single-precision numbers to a text string and writes the string to a new byte
stream file or appends the string to an existing file. You can optionally
transpose the data. This VI opens or creates the file beforehand and closes
it afterwards. You can use this VI to create text files readable by most
spreadsheet programs.

The Read From Spreadsheet File VI reads a specified number of lines or
rows from a numeric text file, beginning at a specified character offset, and
converts the data to a 2D, single-precision array of numbers. You can
optionally transpose the array. This VI opens the file beforehand and closes
it afterwards. You can use this VI to read spreadsheet files saved in text
format.

For additional File I/O functions, select Function»File I/O»

Binary File VIs or Function»File I/O»Advanced File Functions.

Chapter 6 Strings and File I/O

© National Instruments Corporation 6-11 LabVIEW User Manual

Writing to a Spreadsheet File

One very common application for saving data to a file is to format the text
file so that you can open it in a spreadsheet. In most spreadsheets, tabs
separate columns and EOL (End of Line) characters separate rows, as
shown in the following figure.

Opening the file using a spreadsheet program yields the following table.

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-12 © National Instruments Corporation

Activity 6-4. Write to a Spreadsheet File

Your objective is to modify an existing VI to use a file I/O function so that

you can save data to a new file in ASCII format. Later you can access this

file from a spreadsheet application.

Front Panel
1. Open the Graph Waveform Arrays.vi you built in Activity 5-1.

As you recall, this VI generates two data arrays and plots them on
a graph. You modify this VI to write the two arrays to a file where
each column contains a data array.

Block Diagram

2. Open the block diagram of Graph Waveform Arrays.vi and
modify the VI by adding the block diagram functions that have been
added to the lower right of the following illustration.

Chapter 6 Strings and File I/O

© National Instruments Corporation 6-13 LabVIEW User Manual

The Write To Spreadsheet File VI (Functions»File I/O) converts the
2D array to a spreadsheet string and writes it to a file. If you have not
specified a path name, then a file dialog box pops up and prompts you for
a file name. The Write To Spreadsheet File writes either a 1D or 2D array
to file. Because you have a 2D array of data in this example, you do not
have to wire to the 1D input. With this VI, you can use a spreadsheet
delimiter or string of delimiters, such as tabs or commas in your data.

Boolean Constant (Functions»Boolean) controls whether or not
G transposes the 2D array before writing it to file. To change the value
to TRUE click on the constant with the Operating tool. In this case, you
want the data transposed because the data arrays are row specific (each row
of the two-dimensional array is a data array). Because each column of the
spreadsheet file contains a data array, the 2D array must first be transposed.

3. Return to the front panel and run the VI. After the data arrays have
been generated, a file dialog box prompts you for the file name of the
new file you are creating. Type in a file name and click on OK.

Caution Do not attempt to write data in VI libraries, such as the mywork.llb. Doing so

may result in overwriting your library and losing your previous work.

4. Save the VI, name it Waveform Arrays to File.vi, and close
the VI.

5. You now can use spreadsheet software or a text editor to open and view
the file you just created. You should see two columns of 100 elements.

In this example, the data was not converted or written to file until the entire
data arrays had been collected. If you are acquiring large buffers of data or

!

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-14 © National Instruments Corporation

would like to write the data values to disk as they are being generated, then
you must use a different File I/O VI.

End of Activity 6-4.

Activity 6-5. Append Data to a File

Your objective is to create a VI to append temperature data to a file in

ASCII format. This VI uses a For Loop to generate temperature values

and store them in a file. During each iteration, you will convert the data

to a string, add a comma as a delimiting character, and append the string

to a file.

Front Panel
1. Open a new front panel and place the objects as shown in the following

illustration.

The front panel contains a digital control and a waveform chart.
Select Show»Digital Display. The # of points control specifies how
many temperature values to acquire and write to file. The chart displays
the temperature curve. Rescale the Y axis of the chart for the range
70.0 to 90.0, and rescale the X axis for the range 0 to 20.

2. Pop up on the # of points digital control and choose
Representation»I32.

Chapter 6 Strings and File I/O

© National Instruments Corporation 6-15 LabVIEW User Manual

Block Diagram
3. Open the block diagram.

4. Add the For Loop and enlarge it. This VI generates the number of
temperature values specified by the # of Points control.

5. Add a Shift Register to the loop by popping up on the loop border.
This shift register contains the path name to the file.

6. Finish wiring the objects.

Empty Path constant (Functions»File I\O»File Constants). The Empty
Path function initializes the shift register so that the first time you try to
write a value to file, the path is empty. A file dialog box prompts you to
enter a file name.

Digital Thermometer VI returns a simulated temperature measurement
from a temperature sensor.

Format Into String function (Functions»String) converts the temperature
measurement (a number) to a string and concatenates the comma that
follows it.

String constant (Functions»String). This format string specifies that you
want to convert a number to a fractional format string and follow the string
with a comma.

The Write Characters To File VI (Functions»File I/O) writes a string of
characters to a file.

Boolean Constant (Functions»Boolean) sets the append to file? input
of the Write Characters To File VI to True so that the new temperature

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-16 © National Instruments Corporation

values are appended to the selected file as the loop iterates. Click the
Operating tool on the constant to set its value to True.

7. Return to the front panel and run the VI with the # of points set
to 20. A file dialog box prompts you for a file name. When you enter
a file name, the VI starts writing the temperature values to that file
as each point is generated.

8. Save the VI as Write Temperature to File.vi in the
LabVIEW\Activity directory.

9. Use any word processing software such as Write for Windows, Teach
Text for Macintosh, or a text editor in UNIX to open that data file and
view the contents. You should get a file containing twenty data values
(with a precision of three places after the decimal point) separated by
commas.

End of Activity 6-5.

Activity 6-6. Read Data from a File

Your objective is to create a VI that reads the data file you wrote in the

previous example and displays the data on a waveform graph. You must

read the data in the same data format in which you saved it. Therefore,

because you originally saved the data in ASCII format using string data

types, you must read it in as string data with one of the file I/O VIs.

Front Panel
1. Open a new front panel and build the front panel shown in the

following illustration.

Chapter 6 Strings and File I/O

© National Instruments Corporation 6-17 LabVIEW User Manual

The front panel contains a string indicator and a waveform graph. The
String Read from File indicator displays the comma delimited temperature
data from the file you wrote in the previous activity. The graph displays the
temperature curve.

Block Diagram

2. Build the block diagram as shown in the following illustration.

The Read Characters From File VI (Functions»File I/O) reads the data
from the file and outputs the information in a string. If no path name is
specified, a file dialog box prompts you to enter a file name. In this
example, you do not need to determine the number of characters to read
because there are fewer characters in the file than the default of 512.

You must know how the data was stored in a file in order to read the data
back out. If you know how long a file is, you can use the Read Characters
From File VI to determine the known number of characters to read.

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-18 © National Instruments Corporation

The Extract Numbers VI (Examples\General\strings.llb) takes an
ASCII string containing numbers separated by commas, line feeds, or other
non-numeric characters and converts them to an array of numerics.

3. Return to the front panel and run the VI. Select the data file you just
wrote to disk when the file dialog box prompts you. You should see the
same data values displayed in the graph as you saw in the Write
Temperature to File VI example.

4. Save the VI, name it Temperature from File.vi, and close the VI.

End of Activity 6-6.

Using the File I/O Functions

Sometimes the high-level file I/O functions do not provide the functionality
you might need for saving data to disk. At this point, you must use the
functions from Functions»File I/O»Advanced.

Specifying a File
There are two ways to specify a file—programmatically or through a
dialog box. In the programmatic method, you supply the filename and the
pathname for the VI.

(Windows) A pathname consists of the drive name (for example, C),
followed by a colon, followed by backslash-separated directory names,
followed by the filename. An example is C:\DATADIR\TEST1 for a file
named TEST1 in the directory DATADIR on the C drive.

(Macintosh) A pathname consists of the drive name, followed by a colon,
followed by colon-separated folder names, followed by the filename.
An example is HardDrive:DataFolder:Test1 for a file named Test1
in the folder DataFolder on the volume named HardDrive.

(UNIX) A pathname consists of slash-separated directory names followed by
the filename. An example is /usr/datadirectory/test1 for a file
named test1 in the directory /usr/datadirectory.

(All Platforms) Using the dialog box method, the File Dialog function
displays a dialog box that you can use to interactively search for a directory
and then type in a filename.

Chapter 6 Strings and File I/O

© National Instruments Corporation 6-19 LabVIEW User Manual

Paths and Refnums
A path is a G data type that identifies files. You can enter or display a file
path using the standard syntax for a given platform with the path control
and path indicator. In many ways, the path control and indicator works like
a string control or indicator, except that G formats the path appropriately
for any platform supported by G.

A refnum consists of a G data type that identifies open files. When you
open a file, G returns a refnum associated with the file. All operations
performed on open files use the file refnums to identify each file. A refnum
is only valid for the period during which the file is open. If you close the
file, G disassociates the refnum with the file. If you subsequently open the
file, the new refnum may be different from the refnum that G used
previously.

In addition to associating an operation with a file, G remembers
information for each refnum, such as the current location for reading from
the file and the degree of access to the file that other users are permitted,
so that you can have concurrent but independent operations on a single file.
If you open a file multiple times, each open file operation returns a different
refnum.

File I/O Examples
You can use the following examples to see how to use the File I/O functions
complete with proper error checking and handling techniques:

The Write to Text File VI (in Examples\File\smplfile.llb) writes an
ASCII text file that contains data values with time-stamps.

The Read from Text File VI (in Examples\File\smplfile.llb) reads
an ASCII text file that contains data values with time-stamps.

Chapter 6 Strings and File I/O

LabVIEW User Manual 6-20 © National Instruments Corporation

Datalog Files

The examples shown in this chapter illustrate simple methods for dealing
with files that contain data stored as a sequence of ASCII characters. This
approach is common when creating files that other software packages read,
such as a spreadsheet program. G has another file format, called a datalog

file. A datalog file stores data as a sequence of records of a single, arbitrary
data type, which you determine when you create the file. G indexes data in
a datalog file in terms of these records. While all the records in a datalog
file must be of a single type, that type can be complex. For instance, you
can set each record so that the record contains a cluster with a string, a
number, and an array.

If you are going to retrieve the data with a VI, you may not want to write
data to ASCII files, because converting data to and from strings can be time
consuming. For instance, converting a two-dimensional array to a string in
a spreadsheet format with headers and time-stamps is a complicated
operation. If you do not need to have the data stored in a format that other
applications can read, you may want to write data out as a datalog file.
In this form, writing data to a file requires little manipulation, making
writing and reading much faster. It also simplifies data retrieval, because
you can read the original blocks of data back as a log or record without
having to know how many bytes of data the records contain. G records the
amount of data for each record of a datalog file.

The Write Datalog File Example (in Examples\File\datalog.llb)
creates a new datalog file and writes the specified number of records to the
file. Each record is a cluster containing a string and an array of single
precision numbers.

To read a datalog file, you must match the data type that was used to
write to the file. The Read Datalog File Example (in Examples\File\
datalog.llb) reads a datalog file created by the Write Datalog File
Example one record at a time. The record read consists of a cluster
containing a string and an array of single precision numbers.

Part II

I/O Interfaces

This section contains basic information on the interfaces to which you can
input and output data, which are data acquisition, GPIB, serial, and VXI.
Refer to the Data Acquisition Basics Manual for introductory information
on real-time data acquisition. VISA (Virtual Instrument Software
Architecture) is a single software API that interfaces with GPIB, serial, and
VXI instruments. LabVIEW applications developed especially for a
specific instrument are called instrument drivers. National Instruments
provides several instrument drivers using the VISA library, but you can
also build your own instrument drivers.

Part II, I/O Interfaces, contains the following chapters.

• Chapter 7, Getting Started with a LabVIEW Instrument Driver,
explains how to create and use National Instruments instrument
drivers.

• Chapter 8, LabVIEW VISA Tutorial, shows you how to implement
common VISA applications using message-based and register-based
communication as well as events and locking.

• Chapter 9, Introduction to LabVIEW GPIB Functions, explains how
the GPIB operates and the difference between the IEEE 488 and IEEE
488.2 interfaces.

• Chapter 10, Serial Port VIs, describes the VIs for serial port
communication and explains the important factors that affect serial
communication.

© National Instruments Corporation 7-1 LabVIEW User Manual

7
Getting Started with a LabVIEW
Instrument Driver

This chapter begins by describing how to install and use instrument drivers
from the Instrument Driver Library, and ends with instruction on creating
your own instrument driver. This chapter steps you through common
techniques for verifying communication with your instrument, developing
an application using instrument drivers, and creating an instrument driver.

What is a LabVIEW Instrument Driver?

An instrument driver is a set of LabVIEW VIs that communicate with an
instrument using LabVIEW’s standard VISA I/O functions. Each VI
corresponds to a programmatic operation, such as configuring, reading
from, writing to, and triggering an instrument. LabVIEW instrument
drivers eliminate the need to learn the complex, low-level programming
commands for each instrument.

The LabVIEW instrument driver library contains instrument drivers for a
variety of programmable instruments that use the GPIB, VXI or serial
interface. You can use a library driver for your instrument as is. However,
instrument drivers are distributed with their block diagram source code, so
you can customize them for your specific application if need be.

Chapter 7 Getting Started with a LabVIEW Instrument Driver

LabVIEW User Manual 7-2 © National Instruments Corporation

Where Can I Get Instrument Drivers?

Instrument drivers can be installed from an instrument driver CD or
downloaded from the National Instruments web site. You can obtain the
latest instrument driver order form by using a touch-tone phone to call
the National Instruments automated fax system, Fax-on-Demand, at
(512) 418-1111 or (800) 329-7177. Or you can download drivers using the
Instrument Driver Network on the web. To access this Network, connect to
http://www.natinst.com/idnet.

If an instrument driver for your particular instrument does not exist,
you can:

1. Try using a driver for a similar instrument. Often similar instruments
from the same manufacturer have similar if not identical command
sets.

2. Create an instrument driver using the guidelines in the Developing a

Quick and Simple LabVIEW Instrument Driver section in this chapter.

3. Develop a complete, fully functional instrument driver. To develop a
National Instruments quality driver, you can download Application
Note 006, Developing a LabVIEW Instrument Driver, from our web
site. This application note will help you to develop a complete
instrument driver.

Where Should I Install My LabVIEW Instrument Driver?

Instrument drivers should be installed as a subdirectory of your
LabVIEW/instr.lib. For example, the HP34401A instrument driver,
which is included with LabVIEW, is installed in the following directory:

 Labview/instr.lib/hp34401a

Within this directory you will find the menu files and VI libraries that make
up an instrument driver. The menu files allow you to view your instrument
driver VIs from the Functions palette. The VI libraries contain the
instrument driver VIs.

Chapter 7 Getting Started with a LabVIEW Instrument Driver

© National Instruments Corporation 7-3 LabVIEW User Manual

How Do I Access the Instrument Driver VIs?

You can find the Instrument Driver VIs near the bottom of the Functions
palette in the Instrument Drivers subpalette.

Many of the instrument drivers have menus palettes which have the
following components:

• Initialize VI

• Close VI

• Application Example Subpalette

• Configuration Subpalette

• Action/Status Subpalette

• Data Subpalette

• Utility Subpalette

Instrument driver VIs can also be accessed using the Select a VI option
from the Functions palette. To view the entire instrument driver hierarchy

Chapter 7 Getting Started with a LabVIEW Instrument Driver

LabVIEW User Manual 7-4 © National Instruments Corporation

you might open the VI Tree VI. This is a non-executable VI that is designed
to show the functional structure of the instrument driver.

Instrument Driver Structure

The following figure shows the organization of a standard instrument
driver. Once you understand this model, you will find it applies to
numerous instrument drivers.

The Getting Started VIs are simple application VIs you can use without
modification. Run this VI to verify communication with your instrument.
Typically you will only need to change the instrument address before
running the VI from the front panel. However, there are a few that also
require you to specify the VISA Resource name (for example, GPIB::2).
For more information on VISA Resource names, see Chapter 8, LabVIEW

VISA Tutorial. The Getting Started VI generally consists of three sub-VIs:
the Initialize VI, an Application VI, and the Close VI.

The Application VIs are high-level examples of grouping together
low-level component functions to execute a typical programmatic
instrument operation. For example, the Application VIs might include
VIs to control the most commonly used instrument configurations and
measurements. These VIs serve as a code example to execute a common
operation such as configuring the instrument, triggering, and taking a
measurement.

Application Programs Getting Started VI

Support VIs VISA

Functional Body

Component VIs

Application VIs

Initialize Close

Configure
Action &
Status

Data Utility

Instrument Driver Model

Chapter 7 Getting Started with a LabVIEW Instrument Driver

© National Instruments Corporation 7-5 LabVIEW User Manual

Because the application VIs are standard VIs with icons and connector
panes, you can call them from any high-level application when you want a
single, measurement-oriented interface to the driver. For many users, the
application VIs are the only instrument driver VIs needed for instrument
control. The HP34401 Example VI, shown in the following figure,
demonstrates an application VI front panel and block diagram.

The initialize VI, the first instrument driver VI called, establishes
communication with the instrument. Additionally, it can perform any
necessary actions to place the instrument either in its default power on
state or in some other specific state. Generally, the initialize VI only needs
to be called once at the beginning of your application program.

The configuration VIs are a collection of software routines that configure
the instrument to perform the desired operation. There may be numerous
configuration VIs, depending on the particular instrument. After these VIs

Chapter 7 Getting Started with a LabVIEW Instrument Driver

LabVIEW User Manual 7-6 © National Instruments Corporation

are called, the instrument is ready to take measurements or stimulate a
system.

The action/status category contains two types of VIs. Action VIs initiate or
terminate test and measurement operations. These operations can include
arming the trigger system or generating a stimulus. These VIs are different
from the configuration VIs because they do not change the instrument
settings, but only order the instrument to carry out an action based on its
current configuration. The status VIs obtain the current status of the
instrument or the status of pending operations.

The data VIs transfer data to or from the instrument. Examples include VIs
for reading a measured value or waveform from a measurement instrument,
VIs for downloading waveforms or digital patterns to a source instrument.

The utility VIs perform a variety of operations that are auxiliary to the most
often used instrument driver VIs. These VIs include the majority of the
instrument driver template VIs such as reset, self-test, revision, error query,
and error message and may include other custom instrument driver VIs that
perform operations such as calibration or storage and recall of setups.

The close VI terminates the software connection to the instrument and frees
up system resources. Generally, the close VI only needs to be called once at
the end of your application program or when you finish communication
with your instrument. You should make sure that for each successful call to
the initialize VI, that you have a matching close VI—otherwise you will be
maintaining unnecessary memory resources.

Note Application functions do not call initialize and close. To run an application

function, you must first run the initialize VI. The Getting Started VI calls initialize

and close.

Obtaining Help for Your Instrument Driver VIs

LabVIEW instrument drivers are documented through the LabVIEW
Help window. There is a Help description for each instrument driver VI
as well as for each front panel control. To display the Help window,
choose Show Help from the Help menu. To display help for the VI, place
the cursor over the VI icon. To display help for the front panel controls,
place the cursor over the desired control. If you cannot see the entire
description in the Help window, you can obtain control or indicator help by
selecting Data Operations»Description... from the control or indicator
pop-up menu.

Chapter 7 Getting Started with a LabVIEW Instrument Driver

© National Instruments Corporation 7-7 LabVIEW User Manual

Running the Getting Started VI Interactively
(Selecting the GPIB Address, Serial Port, and Logical Address)

To verify communication with your instrument and test a typical
programmatic instrument operation, you should first open the Getting
Started VI. Look over each of the controls and set them appropriately.
Generally, with the exception of the address field, the defaults for most
controls will be sufficient for your first run. You will need to set the address
appropriately. If you do not know the address of your instrument, refer to
the Instrument Wizard for help. After running the VI, check to see that
reasonable data was returned and an error was not reported in the error
cluster. The most common reasons for the Getting Started VI to fail are:

1. NI-VISA is not installed. If you did not choose this as an option during
your LabVIEW installation, you will need to install it before rerunning
your Getting Started VI.

2. The instrument address was incorrect. The Getting Started VI requires
you to specify the correct address for your instrument. If you are not
certain of your instrument’s address, run the Instrument Wizard or the
Find Resource function. If you are not familiar with the syntax for the
address string, refer to Chapter 8, LabVIEW VISA Tutorial, for help.
To access the Instrument Wizard, select Solution Wizard in the
LabVIEW dialog box. When prompted, select Instrument Wizard.

3. The instrument driver does not support the exact model you are using.
You might need to double-check that the instrument driver supports the
instrument model you are using.

Once you have verified basic communication with your instrument
using the Getting Started VI, you probably want to customize instrument
control for your needs. If your application needs are similar to the Getting
Started VI, the simplest means of creating a customized VI is to save a
copy of the Getting Started VI by selecting Save As... from the File menu.
You can change the default values on the front panel by selecting Make

Current Values Default from the Operate menu. Block diagram changes
might include changing the constants wired to the Application VI or other
sub-VIs. As mentioned earlier, the block diagram of the Getting Started VI
generally consists of three VIs: The Initialize VI, an Application Function
VI, and the Close VI.

Chapter 7 Getting Started with a LabVIEW Instrument Driver

LabVIEW User Manual 7-8 © National Instruments Corporation

Interactively Testing Component VIs

Many users like to test out component VIs interactively before they include
them in their application. This helps to select appropriate instrument
configuration settings. To run the component VIs from their front panels,
you will first need to run the Initialize VI. For subsequent VIs, you will
need to first pop-up on the VISA Session control and select your resource
name from the Open Sessions... sub-menu, as shown below:

Chapter 7 Getting Started with a LabVIEW Instrument Driver

© National Instruments Corporation 7-9 LabVIEW User Manual

Once you have selected your resource. You can interactively run the
component VI from the front panel multiple times without resetting the
resource selection.

In general, you should run the component VIs in the order you want to call
them in your application. First you run the Initialize VI, followed by one or
more configuration VIs. If you are using a trigger for your measurement,
you might need to call an action VI to arm the trigger. Calls to data VIs then
collect the measured value(s). When you are finished testing the instrument
driver component VIs, you should run the Close VI to deallocate resources.

Building Your Application

After selecting the component VIs you need and their execution order,
you can then build your application. If the execution order is similar to
the Application VI, you can modify the Application VI’s block diagram.
If your application differs significantly from the Application VI, you
should build your own VI.

You should place the VIs on your block diagram in order and then wire
them together using the VISA session and the error cluster parameters. You
do not need to wire all inputs for all component VIs. If the default values
are sufficient for your application, you do not need to wire the input
terminals. For key inputs, you might want to wire the defaults anyway as a
means of documenting your VI. For repeated measurements, you should
place your data measurement VIs in a loop. Remember, if you place a
component VI inside a loop, you must disable indexing on the VISA
Session and Error cluster wires that are passed into and out of the loop.

Chapter 7 Getting Started with a LabVIEW Instrument Driver

LabVIEW User Manual 7-10 © National Instruments Corporation

To check for instrument errors, you should periodically call the Error Query
VI. As shown in the following figure, a user could use an oscilloscope to
take frequency measurements once per second and display them to the
operator. Notice that the loop terminates on three possible conditions:
the operator stops the VI using a front panel control, an instrument error
is detected by the Error Query VI, or an error occurs with the VISA
I/O interface. If an error occurs within the loop, the Error Message VI will
then display a popup message to the operator. The Error Message VI is
similar to LabVIEW’s General Error Handler VI, except that additional
instrument-specific errors can be reported. One should use the Error
Message VI after executing several instrument driver VIs to recognize and
display any errors that may have occurred.

Related Topics

Open VISA Session Monitor VI
The Open VISA Session Monitor VI is handy if you are involved with
interactive or programmatic debugging of your instrument driver
application. During your debugging you might discover that you have
many open VISA sessions that need to be closed. If you open a significant
number of the VISA sessions without closing them, you decrease the
available memory resources. To close all the open sessions quickly, you
can run the Open VISA Session Monitor VI in the labview/vi.lib/
utility/visa.llb library. Alternatively, you could save your work,
exit, and re-enter LabVIEW. Exiting LabVIEW closes all your open VISA
sessions.

Chapter 7 Getting Started with a LabVIEW Instrument Driver

© National Instruments Corporation 7-11 LabVIEW User Manual

Error Handling
It is important to perform error handling in instrument control applications
because there are several potential sources for errors.

• VISA functions can return errors because VISA or the underlying
software or hardware is not properly installed. For example, when
communicating with GPIB instruments, NI-488.2 must be installed to
correctly to use National Instruments’ GPIB controller card. Similarly,
if the board is not installed or is not correctly configured, the
instrument driver VIs will return an error. This type of error can be
detected with the Error Message VI or LabVIEW’s General Error
Handler VI.

• VISA functions can return errors if the device you are accessing is not
responding the commands you have sent. The instrument could be
incorrectly addressed, malfunctioning, or unable to understand the
commands that are being sent. This type of error can be detected with
the Error Message VI or LabVIEW’s General Error Handler VI.

• The instrument reports errors. Generally, an instrument will flag an
error for reasons ranging from invalid commands to settings out of
range to missing hardware options. These instrument errors can be
detected by calling the instrument driver’s Error Query VI followed by
the Error Message VI.

For more information on error handling, see the Error Handling with VISA
section in Chapter 8, LabVIEW VISA Tutorial.

Testing Communication with Your Instrument
If you are having difficulty communicating with your instrument using the
instrument driver VIs, use the Easy VISA IO VIs to test simple reads and
writes interactively without running the VISA Open and VISA Close VIs.
For example, for the Easy VISA Write VI, you only need to provide the
resource name and the message to be sent to the instrument. The Easy VISA
IO VIs include the following and are shown in the following illustration:

• Easy VISA Find Resources

• Easy VISA Write

• Easy VISA Read

• Easy VISA Write & Read

• Easy VISA Serial Write & Read

• Easy Register Write

• Easy Register Read

Chapter 7 Getting Started with a LabVIEW Instrument Driver

LabVIEW User Manual 7-12 © National Instruments Corporation

Although these Easy VISA IO VIs are convenient for testing purposes, they
should be used with caution for application development. For each read or
write to the instrument, these VIs always open and close a VISA Session,
which can slow down your application if called repeatedly. For this reason,
it is best to use the standard VISA functions for application development.

Developing a Quick and Simple LabVIEW
Instrument Driver

Although National Instruments continues to develop new instrument
drivers, we do not have the resources to develop drivers for all the
requested instruments. You might find yourself in a situation where you
need to interface with an instrument and no driver is available. This section
describes how to develop a simple instrument driver for your application.

Modifying an Existing Driver
Before you start from scratch, check that no driver exists for your
instrument. This might include checking both the manufacturer’s web site,
as well as National Instruments’ web site. While you are checking the web
sites, you should be on the lookout for instrument drivers that support a
similar instrument. Instruments from the same model series often have
similar command sets. Similarly, SCPI instruments of like functionality
also have similar command sets. Obtain these drivers and assess the
command set similarity to your instrument. For instruments from the same
model series, you might need to contact the manufacturer and ask for
details on the differences between the command sets. If you are comparing
similar SCPI instruments, you will need to compare the instrument driver

Easy VISA VIs

Chapter 7 Getting Started with a LabVIEW Instrument Driver

© National Instruments Corporation 7-13 LabVIEW User Manual

commands with those in your instrument’s programming manual.
You might want to modify an existing driver to optimize the code. For the
driver to be used by a variety of users, a component VI might attempt to
change a setting that is not necessary for your application. In general, you
will only want to optimize those VIs that are called repeatedly in a loop.
Configuration VIs are generally only called once, and have little effect on
application speed.

The simplest way to modify an instrument driver VI is to rename it by
selecting Save As... from the File menu. To identify the new VI you should
change the name by either modifying the prefix or the description. For
example, if you were modifying a Tektronix TDS oscilloscope instrument
driver to work with a different instrument, you might want to rename the
VI prefixes from TKTDS7XX to a name appropriate for your instrument.
Once you have modified the name, you will want to modify the block
diagram and front panel controls. Most changes to the block diagram will
be related to the string functions. If you are not familiar with the string
functions, such as Pick Line and Append or Select and Append, refer to the
LabVIEW Online Reference for more information.

Each Initialize VI optionally calls an Identification Query that is specific to
an instrument model or model series. You will either need to turn off this
option, or you will need to change the response to the identification query
command. For SCPI instruments, this command is *IDN?.

The degree to which an instrument driver needs to be changed will depend
on how similar the instruments and their command sets are. If the command
sets are very different, you will be better off starting from scratch.

Developing a Simple Driver
Most message-based instruments are controlled programmatically by a
series of writes and reads to and from the instrument. For most simple
instrument drivers only four VISA functions are needed: VISA Open,
VISA Write, VISA Read, and VISA Close.

The simple instrument driver VI shown in the following illustration
makes just one write and one read from an instrument. This VI first opens
resources to the instrument using the VISA Open VI. Then, it sends the
MEAS:DC? command (as described in the instruments user manual) to
return a DC measurement from the instrument. The VISA Read function
returns the measurement in the form of a string. To use the measurement
with other numeric functions, the string is converted to a numeric using the
Scan from String function. After completing the last read or write to the
instrument, the VISA Close function is called. This is followed by the

Chapter 7 Getting Started with a LabVIEW Instrument Driver

LabVIEW User Manual 7-14 © National Instruments Corporation

Simple Error Handler VI to process any errors that might have occurred
with the Instrument IO functions.

For a more modular instrument driver, you might try to break up the reads
and writes to the instrument according to the type of operation you are
trying to accomplish. You might want to combine the reads and writes
necessary to set up configuration into one VI, while measurement reading
is in another VI. For repeated measurements, you could place your
measurement VIs in a loop. If you know exactly what the configuration of
your setup is, you probably could include all the configuration commands
into one string constant, as shown below.

If, on the other hand, you want a user to be able to select different
configurations, then you will need to programmatically build command
strings. You can use the Pick Line & Append function to choose from a
selection of strings and concatenate it to another string in a single step. This
procedure is easier than using a Case structure and the Concatenate Strings
function.

Chapter 7 Getting Started with a LabVIEW Instrument Driver

© National Instruments Corporation 7-15 LabVIEW User Manual

The block diagram on the left in the following illustration is easier than the
one on the right.

By using the Select & Append function you can select a string constant and
concatenate it to another string in a single step. This procedure is easier
than using a Select function followed by a Concatenate function.

The block diagram on the left in the following illustration is easier than the
one on the right.

Other useful string functions for building command strings are the Format
into String function and the Format & Append function. These functions
convert one or more numerics into a string with a variety of formatting

Chapter 7 Getting Started with a LabVIEW Instrument Driver

LabVIEW User Manual 7-16 © National Instruments Corporation

options. Both the Pick Line & Append and the Format into String functions
are demonstrated in the block diagram shown below:

After you read the response from the instrument, you should parse the
measurement into a numeric value. The Scan from String function is useful
for converting ASCII numbers to numerics. The following code strips off
the “VOLTS DC” part of the string input and converts the “+1.28E+2” to a
double precision numeric. The string input is typical of a response from a
multimeter.

Chapter 7 Getting Started with a LabVIEW Instrument Driver

© National Instruments Corporation 7-17 LabVIEW User Manual

If your instrument returns binary data, use the Type Cast function. This
function changes the data type of a wire, but not how the data is stored in
memory. VISA Reads return string data, regardless of whether it is encoded
as ASCII or binary. Therefore, to convert the binary string to a numeric or
numeric array, you need to type case the string to a different datatype. The
following example strips off a 4-byte header from a 1,000-byte response
string and then converts the remaining values to a single precision array.

Developing a Full-Featured Driver
If you are developing a driver that will be used by others, you might want to
consider developing a full-featured driver. These drivers are more modular
and have an architecture similar to those in the National Instruments
Instrument Driver Library, complete with error reporting and utility
functions. For more details about developing a more detailed driver, refer
to the Application Note 006, Developing a LabVIEW Instrument Driver,
on the National Instruments web site.

Using LabVIEW with IVI Instrument Drivers
In addition to the more than 600 LabVIEW source code drivers, you can
control instruments with IVI (Intelligent Virtual Instruments) instrument
drivers. IVI instrument drivers are DLL-based drivers developed in
LabWindows/CVI that give production test users additional benefits,
including the following.

• Instrument state caching for improved performance

• Simulation

• Multithread safety

• Instrument attribute access

See the LabVIEW Online Reference for more information about IVI
instrument drivers and how to use them.

© National Instruments Corporation 8-1 LabVIEW User Manual

8
LabVIEW VISA Tutorial

This chapter is an overview of LabVIEW’s implementation of VISA.
It explains the basic concepts involved in programming instruments with
VISA and gives examples demonstrating simple VISA concepts.

What is VISA?

VISA is a standard I/O Application Programming Interface (API)
for instrumentation programming. VISA by itself does not provide
instrumentation programming capability. VISA is a high-level API that
calls into lower level drivers. The hierarchy of NI-VISA is shown in the
figure below.

VISA can control VXI, GPIB, or serial instruments, making the appropriate
driver calls depending on the type of instrument being used. When
debugging VISA problems it is important to keep in mind that this
hierarchy exists. What may appear to be a VISA problem could in reality
be a problem with one of the drivers into which VISA is calling.

Supported Platforms and Environments
Because VISA is the industry standard for developing instrument drivers,
most instrument drivers currently written by National Instruments use
VISA and therefore support Macintosh, Windows 3.x, Windows 95,
Windows NT, Solaris 1, Solaris 2, and HP-UX, if the system-level drivers
are available for that platform.

VISA

GPIB

NI-488.2

Serial

OS Calls

VXI

NI-VXI

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-2 © National Instruments Corporation

Why Use VISA?

VISA Is the Standard
VISA is the standard API for instrument drivers throughout the
instrumentation industry. In addition, you can use one API to control a suite
of instruments of different types, including VXI, GPIB and serial.

Interface Independence
VISA uses the same operations to communicate with instruments
regardless of the interface type. For example, the VISA command to write
an ASCII string to a message-based instrument is the same whether the
instrument is serial, GPIB, or VXI. Thus VISA provides interface
independence. This makes it easier to switch bus interfaces, which means
that users who must program instruments for different interfaces only need
to learn one API.

Platform Independence
VISA is designed so that programs written using VISA function calls are
easily portable from one platform to another. To ensure platform
independence, VISA strictly defines its own data types. Therefore issues
like the size, in bytes, of an integer variable from one platform to another
should not affect a VISA program. The VISA function calls and their
associated parameters are uniform across all platforms. Software can be
ported to other platforms and then recompiled. A LabVIEW program can
be ported to any platform supporting LabVIEW.

Easily Adapted to the Future
Another advantage of VISA is that it is an object-oriented API that will
easily adapt to new instrumentation interfaces as they are developed in the
future, making application migration to the new interfaces easy.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-3 LabVIEW User Manual

Basic VISA Concepts

A simplified outline of the internal structure of the VISA API is shown in
the diagram below.

Default Resource Manager, Session, and Instrument Descriptors
The Default Resource Manager is at the highest level of VISA operations.
LabVIEW automatically establishes communication with the default
Resource Manager at the first VISA VI call. This brings up two terms that
need to be defined: resource and session.

Resource—An entity with which you can communicate. Examples include
instrument (INSTR) and memory access (MEMACC) resources.

Session—A connection (link) to any existing resource, including the
Default Resource Manager.

You use the VISA Default Resource Manager to open sessions to other
resources. You must open sessions to the instruments before a VI can
communicate with them.

The VISA Default Resource Manager can also search for available
resources in the system. You can then open sessions to any of these
resources.

Message-Based

– Read
– Write

Register-Based

– In
– Out

Default Resource Manager

– Finds Resources
– Opens Sessions

– Read (Get)
– Write (Set)

– Wait (Synchronous)
– Install Handler (Asynchronous)

EventsProperties

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-4 © National Instruments Corporation

How Do I Search for Resources?
The VISA Find Resource function shown below searches for available
resources in the system. This function is a common starting point for a
VISA program. You can use it to determine if all of the necessary resources
for the application to run are available.

The only necessary input to the VISA Find Resource function is a string
called the search expression. This determines what types of resources
the Find Resource VI will return. Possible strings for the search expression
are shown in the table below and can be found in the LabVIEW Online

Reference.

Instrument Resources Expression

GPIB GPIB[0 – 9]*::? *INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB or GPIB-VXI GPIB?*INSTR

VXI VXI?*INSTR

All VXI ?*VXI[0 – 9]*::?*INSTR

serial ASRL[0 – 9]*::?*INSTR

All ?*INSTR

Memory Access Resources Expression

VXI VXI?*MEMACC

GPIB-VXI GPIB-VXI?*MEMACC

All VXI ?*VXI[0–9]*::?*MEMACC

All ?*MEMACC

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-5 LabVIEW User Manual

The return values of the function are the return count (which reports the
number of resources that were found) and the find list. The find list is an
array of strings. Each string contains the description of one of the resources
that was found. These strings are known as instrument descriptors. A VI
that will find all of the available resources in the system is shown in the
figure below.

Instrument Descriptor—The exact name and location of a VISA
resource. This string has the following format:

Interface Type[board index]::Address::VISA Class

The instrument descriptors are simply specific instruments found by the
search query. The board index only needs to be used if more than one
interface type is present in the system. For example, if the system contains
two GPIB plug in boards one could be referred to as GPIB0 and one as
GPIB1. In this case, the board index needs to be used in instrument
descriptors. For VXI instruments the Address parameter is the Logical
Address of the instrument. For GPIB instruments it is the GPIB primary
address. Serial instruments do not use the address parameter. For example,
ASRL1::INSTR is the descriptor for the COM 1 serial port on a personal
computer.

What is a VISA Class?
The VISA Class is a grouping that encapsulates some or all of the VISA
operations. INSTR is the most general class that encompasses all
VISA operations for an instrument. In the future other classes might be
added to the VISA specification. Currently the VISA Class does not need
to be included as part of the instrument descriptor, but you should include
it to ensure future compatibility. Currently, if the VISA class is left blank,
it will default to the INSTR class.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-6 © National Instruments Corporation

Popping Up on a VISA Control
LabVIEW supplies another way to set the class for a VISA session that can
be used now. You can pop up on the front panel VISA Session control and
select the VISA Class as shown in the following figure.

If a class other than the default Instr class is selected, only functions for
operations associated with that device class can be wired successfully with
this session. For example, if GPIB Instr is selected for the VISA class, the
functions for VXI register access can not be wired with the session.

Opening a Session
The instrument descriptors are used to open sessions to the resources in the
system. The VISA Open function is shown below.

The resource name input is the VISA instrument descriptor for the resource
to which a session will be opened.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-7 LabVIEW User Manual

Note You do not need to use the Find Resource VI to obtain instrument descriptors for

resources. The VISA Open VI can be used with an instrument descriptor provided

by the user or programmer. However, to be sure of the syntax for the descriptor it

is best to run Find Resource first.

Note In most applications, sessions only need to be opened once for each instrument

that the application will communicate with. This session can be routed throughout

the application and then closed at the end of the application.

Notice that there is also a VISA session input to the VISA Open VI. To
open sessions to resources in LabVIEW a VISA Session front panel control
is needed. The VISA session front panel control can be found in the
Controls Palette in the Path & Refnum subpalette.

How Do the Default Resource Manager, Instrument Descriptors, and
Sessions Relate?

It is important to have a clear understanding at this point of the Default
Resource Manager, instrument descriptors, and sessions. A good analogy
can be made between the VISA Default Resource Manager and a telephone
operator. Opening a session to the Default Resource Manager (remember
this is done automatically in LabVIEW) is like picking up the phone and
calling the operator to establish a line of communication between a
program and the VISA driver.

In turn the telephone operator can dial phone numbers to establish lines
of communication with resources in the system. The phone numbers that
the resource manager uses are the instrument descriptors. The lines of
communication are the sessions that are opened to VISA resources.
In addition, the resource manager can look for all the available phone
numbers. This is the VISA Find Resource operation.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-8 © National Instruments Corporation

Closing a Session
An open session to a VISA resource also uses system resources within
the computer. To properly end a VISA program, all of the opened
VISA sessions should be closed. To do this there is a VISA Close VI that
is shown below.

The VISA session input to the VISA Close VI is the session to be closed.
This session originally comes from the output session terminal of the
VISA Open VI.

If a session is not closed when a VI is run, it remains open. It is a good idea
to close sessions that are opened in an application so open sessions don’t
build up and cause problems with system resources. However, there are
cases when leaving sessions open can be useful.

Note If a VI is aborted (for example, when you are debugging a VI) the VISA session is

not closed automatically. You can use the Open VISA Session Monitor VI (located

in vi.lib/Utility) to assist in closing such sessions.

When Is It a Good Idea to Leave a Session Open?
If a VI runs and leaves a session open without closing it, this session can be
used in later VIs. An open session can be accessed by popping up on a
VISA Session front panel control and choosing Open Sessions. The output
of the VISA Session front panel control will then be the selected open
session. In this way sessions can be closed that were left open from earlier
runs of a VI. This method can also be used to interactively test parts of an
application. An example of selecting an open session is shown in the
following figure.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-9 LabVIEW User Manual

You can use the VISA Session control to check for open sessions.
Accessing open sessions by popping up on front panel VISA Session
Controls also provides a convenient way to interactively run parts of an
instrument driver.

Error Handling with VISA
Error handling with VISA VIs is similar to error handling with other
I/O VIs in LabVIEW. Each of the VISA VIs contain Error Input and Error
Output terminals that are used to pass error clusters from one VI to another
in a diagram. The error cluster contains a Boolean flag indicating whether
an error has occurred, a numeric VISA error code, and a string containing
the location of the VI where the error occurred. If an error occurs
subsequent VIs will not try to execute and simply pass on the error cluster.
A front panel error cluster indicator showing the output from the error out
terminal of a VISA VI is shown in the figure below.

Notice that in this case an error has occurred. Also notice that the VISA
error code is cut off in the code indicator. VISA error codes are 32-bit
integers that are usually in hexadecimal format. The LabVIEW error cluster
displays the code in decimal. The VISA Error Codes topic in the LabVIEW

Online Reference, and the Numeric Error Codes section in Appendix A,
Error Codes, of the LabVIEW Function and VI Reference Manual, also list
the error codes in decimal. However, as the figure above shows, these error
codes are cut off in the error cluster. The code indicator must be resized to
display the entire error code.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-10 © National Instruments Corporation

The LabVIEW Simple and General Error Handler VIs can be found in the
Time & Dialog subpalette under the Functions palette. If an error occurs,
these VIs provide a pop-up dialog box, which displays possible reasons
for the error. The Simple Error Handler VI returns the same error as the
error cluster used in the previous example, but provides more detailed
information about the error, as shown in the following figure.

Notice that the code description is listed under the possible reasons. It is not
always convenient to handle errors with pop up dialog boxes through the
LabVIEW error handling VIs. VISA also provides an operation that will
take a VISA error code and produce the error message string corresponding
to the code as an output. This VI is shown in the figure below.

The inputs to this VI are a VISA session and a VISA error cluster. The VI
will check the VISA code in the input error cluster and output the text
description of the code in Status Description. The following figure shows
a LabVIEW string indicator displaying the error string returned from the
VISA Status Description VI.

The exact method used for implementing error handling will depend on the
nature of the program. However, some sort of error handling mechanism
should be implemented in any program involving VISA.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-11 LabVIEW User Manual

Easy VISA VIs

You can use the Easy VISA VIs to verify that you have established
communication with your instrument. When developing your applications,
you should use the other VISA VIs in the palette because they give you
more control over your instrument. For more information about the
Easy VISA VIs, see the Testing Communication with Your Instrument
section of Chapter 7, Getting Started with a LabVIEW Instrument Driver.
The examples in the following sections do not use the Easy VISA VIs.

Message-Based Communication

Serial, GPIB, and many VXI devices recognize a variety of message-based
command strings. At the VISA level the actual protocol used to send a
command string to an instrument is transparent. A user only needs to know
that they would like to write a message to or read a message from a
message-based device. The VIs that are used to perform these operations
are VISA Write and VISA Read.

Note These same VIs are used to write message-based commands to GPIB, serial,

and message-based VXI instruments. VISA knows automatically which driver

functions to call based on the type of resource being used.

The VISA Write VI is shown below.

The only input, besides the session, is the string to be sent to the instrument.

The VISA Read VI is equally easy to use. It is shown below.

The VISA Read VI must be given a byte count input equal to the maximum
number of bytes that should be read from the instrument. The VI will stop

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-12 © National Instruments Corporation

reading when this number of bytes has been read or when the end of the
transfer is indicated.

The actual message-based commands that the instrument recognizes vary
from manufacturer to manufacturer. IEEE 488.2 and SCPI standardized the
commands for message-based instruments. Many instruments follow these
standards. However, the only way to be certain of the commands for a
particular instrument is to refer to the documentation provided by the
manufacturer. However, instrument drivers exist for many message-based
devices. These instrument drivers contain functions that put together the
appropriate ASCII command strings and send them to the instrument. See
the National Instruments website or ftp site to obtain the latest drivers.

How Do I Write To and Read From a Message-Based Device?
A simple example that writes the *IDN? (identification) string to a
message-based instrument and reads the response is shown in the figure
below.

This program could be used successfully with any device that recognizes
the *IDN? command. The device could be serial, GPIB, or message-based
VXI. The only change would be the instrument descriptor.

Register-Based Communication (VXI only)

VISA contains a set of register access VIs for use with VXI instruments.
If you are using GPIB or serial devices only, this section does not apply.

Some VXI instruments do not support message-based commands. The only
way to communicate with these instruments is through register accesses.
All VXI instruments have configuration registers in the upper 16 kilobytes
of A16 memory space. Therefore, register access functions can also be used
to read from and write to the configuration registers for message-based
devices. The basic VISA operation used to read a value from a register is
VISA In. There are actually three different versions of this operation for

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-13 LabVIEW User Manual

reading an 8-, 16-, or 32-bit value. You must use the VI for the access width
that your instrument supports. For example, a particular instrument might
return a bus error for 32-bit accesses if it were designed for 16-bit access.
The VISA In 16 VI is shown in the following figure.

This VI and the other basic register access VIs can be found in the High

Level Register Access subpalette under the main VISA function palette.

The address space input indicates which VXI address space to use.
The offset input sometimes causes confusion. Remember that VISA keeps
track of the base memory address that a device requests in each address
space. The offset input is relative to this base address.

Consider the following example. Suppose that you have a device at Logical
Address 1 and would like to use the VISA In 16 VI to read its ID/Logical
Address configuration register. You know that this register is at absolute
address 0xC040 in A16 space and that the configuration registers for
the device at Logical Address 1 lie from 0xC040 to 0xC07F. However,
VISA also knows this and you only need to specify the offset in this region
you wish to access. In this case that offset is zero.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-14 © National Instruments Corporation

There is another set of high-level register access operations that parallel the
VISA In operations, but are for writing to registers. These operations are
the VISA Out operations. The VISA Out 16 VI is shown below.

This VI is similar to the VISA In 16 VI except the value to write must
be provided to the value terminal. Keep in mind when using the VISA Out
VIs that some registers may not respond to a write cycle or may cause a
bus error.

Basic Register Access
An example of using the high-level VISA access functions in a VI is shown
in the simple program below.

This block diagram shows how to use the VISA In 16 VI to read the first
configuration register for a VXI device at Logical Address 0. The offset
parameter, in this case zero, is relative to the memory range that the device
requests in the VXI address space being accessed. The address space
parameter indicates which VXI address space is being accessed. In this case
the device is at Logical Address 0. Its configuration registers are located
from 0xC000 to 0xC03F in the A16 address space. The VISA In 16
operation with offset 0 is really reading the register at 0xC000.

The program reads from a 16-bit register in the A16 address space at the
specified offset (0) of the specified resource (VXI::0::INSTR). If an error
occurs in the sequence of VISA VIs that execute in the program diagram,
the Simple Error Handler returns a dialog box informing the user of the
error and displaying the text message associated with the VISA Error Code.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-15 LabVIEW User Manual

Basic Register Move
The following block diagram shows how to use the VISA Move In 16 VI to
read the first four configuration registers for a VXI device at Logical
Address 0.

The VISA Move In VIs are used to read large blocks of data from
VXI devices. The data is returned as an array of four 16-bit values. There
is a corresponding set of VISA Move Out VIs for moving large blocks of
data to VXI devices. The Move In and Move Out VIs have 8-, 16-, and
32-bit versions. The appropriate VI is determined by the size of the
registers that are going to be accessed.

Low-Level Access Functions
Low-Level Access (LLA) functions provide a very efficient way to
perform register-based communication. LLA functions incur much less
overhead than High-Level Access (HLA) functions for certain types of
accesses. LLA functions perform the same steps that the HLA functions do,
except that each individual task performed by an HLA function is an
individual function under LLA.

Using VISA to Perform Low-Level Register Accesses
The first LLA operation you need to call for accessing a device register is
the VISA Map Address operation, which sets up the hardware window
to allow access to the VXI address space. The VISA Map Address
operation programs the hardware to map local CPU addresses to VXI

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-16 © National Instruments Corporation

addresses as described in the previous section. The following code is an
example of programming the hardware to access A16 space.

This sample code sets up the hardware to map A16 space, starting at offset
0 for 0x40 bytes. Remember that the offset is relative to the base address of
the device we are talking to through the VISA session, not from the base of
A16 space itself. Therefore, offset 0 does not mean address 0 in A16 space,
but rather the starting point of the device’s A16 memory.

Note To access the device registers through a MEMACC session, you need to provide

the absolute VXIbus addresses (base address for device + register offset in device

address space).

If you need more than a single map for a device, you will need to open a
second session to the device because VISA currently supports only a single
map per session. There is very low overhead in having two sessions because
sessions themselves do not take much memory. However, you will need to
keep track of two session handles. Notice that this is different from the
maximum number of windows you can have on a system. The hardware for
the controller you are using may have a limit on the number of unique
windows it can support. When you are finished with the window, or you
need to change the mapping to another address or address space, you must
first unmap the window using the VISA Unmap Address operation.

This example maps 64 bytes (hex 40) to the A16 address space starting at
offset 0 from the address of the device at Logical Address 1. When using
LLA operations, always specify a map size that is large enough to

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-17 LabVIEW User Manual

accommodate the range of addresses you will access. You can do this by
using a property node to determine the amount of address space used by the
device. Property nodes are explained later in this chapter.

Note The default maximum window that can be mapped is typically 64kB. If using a

MITE-based controller, you can request more than 64kB, but you will need to

increase your User Window size. This is done in the resource editor for your

controller, either T&M Explorer, VXIEdit, or VXItedit. Please consult the

documentation that came with your controller.

Bus Errors
Bus errors are not reported by the LLA operations. In fact, VISA Peek and
VISA Poke do not report any error conditions. However, the HLA
operations do report bus errors. When using the LLA operations, you must
ensure that the addresses you are accessing are valid.

Comparison of High-Level and Low-Level Access

Speed
In terms of the speed of developing your application, the HLA operations
are much faster to implement and debug because of the simpler interface
and the status information received after each access. For example,
HLA operations encapsulate the mapping and unmapping of hardware
windows, which means that you do not need to call VISA Map Address
and VISA Unmap Address separately.

For speed of execution, the LLA operations perform faster when used for
several random register I/O accesses in a single mapped window. If you
know that the next several accesses are within a single window, you can
perform the mapping just once and then each of the access has minimal
overhead.

The HLA operations will be slower because they must perform a map,
access, and unmap within each call. Even if the window is correctly
mapped for the access, the HLA call at the very least must perform
some sort of check to determine if it needs to remap. Also, because
HLA operations encapsulate many status checking capabilities not
included in LLA operations, HLA operations have higher software
overhead. For these reasons, HLA is slower than LLA in many cases.

Note For block transfers, the high-level VISA Move operations perform the fastest.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-18 © National Instruments Corporation

Ease of Use
HLA operations are easier to use because they encapsulate many status
checking capabilities not included in LLA operations, which explains the
higher software overhead and lower execution speed of HLA operations.
HLA operations also encapsulate the mapping and unmapping of hardware
windows, which means that you do not need to call VISA Map Address
and VISA Unmap Address separately.

Accessing Multiple Address Spaces
You can use LLA operations to access only the address space currently
mapped with a single VISA session. For a single session, to access a
different address space, you need to perform a remapping, which involves
calling VISA Unmap Address and VISA Map Address. Therefore,
LLA programming becomes more complex for accessing several address
spaces concurrently.

In addition, if you have several sessions to the same or different devices
all performing register I/O, they must compete for the finite number of
hardware windows available. When using LLA operations, you must
allocate the windows and always ensure that the program does not ask for
more windows than are available. The HLA operations avoid this problem
by restoring the window to the previous setting when they are done. Even
if all windows are currently in use by LLA operations, you can still use
HLA functions because they will save the state of the window, remap,
access, and then restore the window. As a result, you are not restricted when
using the HLA operations.

VISA Properties

The basic operations that are associated with message and register-based
resources in VISA have now been introduced. These operations allow
register access, and message-based communication. In addition to the basic
communication operations, VISA resources have a variety of properties
(attributes) with values that can be read or set in a program.

In a LabVIEW program these properties are handled programmatically
in the same way that the properties of front panel controls and indicators
are handled. Property nodes are used to read or set the values of VISA
properties. The property node is shown in the following figure.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-19 LabVIEW User Manual

Note The property node is a generic node that also can be used to set ActiveX/OLE and

VI Server properties.

After placing a property node on the block diagram, you can set the
properties for a VISA class. You can use either of the following methods
to do this.

• Wire a VISA Session to the reference input terminal of the
property node.

• Pop up on the property node and choose Instr from the Select VISA

Class menu.

The property node contains a single property terminal when it is initially
placed on the block diagram. However, it can be resized to contain as many
terminals as necessary. The initial terminal on the VISA property node is a
read terminal. This means that the value of the property selected in that
terminal will be read. This is indicated by the small arrow pointing to the
right at the right edge of the terminal. Many terminals can be changed
individually from a read terminal to a write terminal by popping-up on the
property you wish to change.

Note Some properties are read only. Their values can not be set.

To select the property in each terminal of the property node, pop up on the
property node terminal and choose Select Item. This will provide a list of
all the possible properties that can be set in the program. The number of
different properties that are shown under the Select Item choice of the
VISA Property Node can be limited by changing the VISA Class of the
property node.

To change the VISA class pop up on the VISA property node and select
VISA Class. Several different classes can be selected under this option
besides the default INSTR class which encompasses all possible VISA
properties. These classes limit the properties displayed to those related to
that selected class instead of all the VISA properties. Once a session is
connected to the Session input terminal of the property node, the VISA
Class will be set to the class associated with that session.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-20 © National Instruments Corporation

Initially, the VISA properties will be somewhat unfamiliar and their exact
nature may not be clear from the name alone. The LabVIEW Online

Reference contains information on the properties. Brief descriptions of
individual properties are also available in the simple help window. To get a
brief description of a specific property, select the property in one of the
terminals of a property node and then open the help window. This is shown
for the VXI LA property below.

Note that the help window shows the specific variable type of the property
and gives a brief description of what the property does. In cases where it is
not clear what variable type to use for reading or writing a property,
remember popping up on a property node and selecting Create Constant,
Create Control, or Create Indicator will automatically select the
appropriate variable type.

There are two basic types of VISA properties—global properties and
local properties. Global properties are specific to a resource while local
properties are specific to a session. For example, the VXI LA property is an
example of a global property. It applies to all of the sessions that are open
to that resource. A local property is a property that could be different for
individual sessions to a specific resource. An example of a local property is
the timeout value. Some of the common properties for each resource type
are shown in the following lists.

Serial
Serial Baud Rate—The baud rate for the serial port.

Serial Data Bits—The number data bits used for serial transmissions.

Serial Parity—The parity used for serial transmissions.

Serial Stop Bits—The number of stop bits used for serial transmissions.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-21 LabVIEW User Manual

GPIB
GPIB Readdressing—Specifies if the device should be readdressed
before every write operation.

GPIB Unaddressing—Specifies if the device should be unaddressed after
read and write operations.

VXI
Mainframe Logical Address—The lowest logical address of a device in
the same chassis with the resource.

Manufacturer Identification—The manufacturer ID number from the
device’s configuration registers.

Model Code—The model code of the device from the device’s
configuration registers.

Slot—The slot in the chassis that the device resides in.

VXI Logical Address—The logical address of the device.

VXI Memory Address Space—The VXI address space used by the
resource.

VXI Memory Address Base—The base address of the memory region
used by the resource.

VXI Memory Address Size—The size of memory region used by the
resource.

There are many other properties besides those listed here. There are also
properties that are not specific to a certain interface type. The timeout
property, which is the timeout used in message-based I/O operations,
is a good example of such a property. The most complete source for
information about properties is the LabVIEW Online Reference, which
you can access by selecting Help»Online Reference.

The online help shows which type of interfaces the property applies to, if
the property is local or global, its data type, and what the valid range of
values are for the property. It also shows related items and gives a detailed
description of the property.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-22 © National Instruments Corporation

VISA Property Examples

Serial Write and Read
This section contains three simple examples of using properties in
VISA programs. The first, shown in the following figure, writes a string
to a serial instrument and reads the response.

The VI opens a session to the serial port COM 1 and initializes it for
19,200 baud, 8 data bits, no parity, and 1 stop bit. A string is then written
to the port. After writing the string and waiting for 10 seconds the number
of bytes that have been returned by the device are obtained using another
VISA property. These bytes are then read from the port. Notice that you
use the value 10 to set the number of stop bits to one. (This is from the
VISA specification. 10 corresponds to 1 stop bit, 20 to 2 stop bits.)

How Do I Set a Termination Character
for a Read Operation?
The next example shows how to use properties to set a termination
character for VISA read operations. Some message-based devices send a
special termination character when they have no more data to send.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-23 LabVIEW User Manual

This VI opens a session to GPIB instrument at primary address 2. The VI
sets the termination character to a linefeed (decimal value 10) and then
enables the use of a termination character with another property. The
VI also sets the timeout property to 10,000 milliseconds (10 seconds).
It then writes the string *IDN? to the instrument and tries to read back a
100 character response. The read will terminate when the termination
character is received. The VI stops when the termination character is
received, after it reads 100 bytes, or after 10 seconds.

VXI Properties
The final example shows how to read some of the common properties
associated with a VXI instrument.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-24 © National Instruments Corporation

This VI opens a session to a VXI instrument at Logical Address 2 and reads
the manufacturer ID, model code, and slot for the VXI module.

Events

An event is a VISA means of communication between a resource and its
applications. It is a way for the resource to notify the application that some
condition has occurred that requires action by the application. Examples of
different events are included in the following sections.

GPIB SRQ Events
The following block diagram shows how to handle GPIB Service Request
(SRQ) events with VISA.

The VI enables service request events and then writes a command string to
the instrument. The instrument is expected to respond with an SRQ when
it has processed the string. The Wait on Event Async VI is used to wait for
up to 10 seconds for the SRQ event to occur. Once the SRQ occurs, the
instrument’s status byte is read with the Read Status Byte VI. The status
byte must be read after GPIB SRQ events occur or later SRQ events may
not be received properly. Finally the response is read from the instrument
and displayed. The Wait on Event Async is different from the regular
Wait on Event VI in that it continuously calls Wait on Event with a timeout
of zero to poll for the event. This frees up time for other parallel segments
of the program to execute while waiting for the event.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-25 LabVIEW User Manual

Trigger Events

This diagram shows how to detect a trigger on TTL Trigger Line 0 for a
device at Logical Address 1. You must set the type of trigger events to
detect with a VISA property before the events are enabled. The VI waits for
up to 10 seconds for the event to be received. If the event is received
successfully the event is closed in the VI.

Interrupt Events

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-26 © National Instruments Corporation

This diagram demonstrates using VISA’s event handling capability to
detect a VXI interrupt asserted by a VXI device at Logical Address 1. The
VI enables VXI Signal Processing Events and then goes into a loop that
repeatedly calls VISA Wait on Event. The loop will terminate if an event is
received or if a front panel stop switch is selected. The Wait on Event VI
has a timeout terminal that is set to a value of zero. In this case the VI
simply checks to see if any events have been received and then immediately
returns a timeout error if there is no event in the event queue. If an event is
received the event session is closed and notification of the event is
produced. Once the event handling is finished the events are disabled.

Locking

VISA introduces locks for access control of resources. In VISA, GPIB
and VXI applications can open multiple sessions to the same resource
simultaneously and can access the resource through these different sessions
concurrently. In some cases, applications accessing a resource must restrict
other sessions from accessing that resource. For example, an application
may need to execute a write and a read operation as a single step so that
no other operations take place between the write and read operations.
The application can lock the resource before invoking the write operation
and unlock it after the read operation, to execute them as a single step.

The VISA locking mechanism enforces arbitration of accesses to resources
on an individual basis. If a session locks a resource, operations invoked by
other sessions are serviced or returned with a locking error, depending on
the operation and the type of lock used.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-27 LabVIEW User Manual

This VI opens two sessions to the same resource but locks the first session.
The first session then writes a command to the resource and reads the
response. Once the write/read sequence is completed the first session
unlocks the resource. At this point the second session, which is trying to
perform the same write/read, will no longer receive a resource locked error
on the write operation and can complete successfully. Locking can be used
in cases where more than one application may be accessing the same
resource or multiple sessions will be opened to the resource in a single
application.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-28 © National Instruments Corporation

Shared Locking
There may be cases where you want to lock access to a resource, but
selectively share this access. The figure below shows the Lock VI in
complex help view.

Lock type defaults to exclusive, but you can set it to shared. You can then
wire a string to requested key to be the password needed for another
application to access the resource. However, the VI assigns one in access

key if you don’t ask for one. You can then use this key to access a locked
resource.

Platform-Specific Issues

This section discusses programming information for you to consider when
developing applications that use the NI-VISA driver.

After installing the driver software, you can begin to develop your
VISA application software. Remember that the NI-VISA driver relies
on NI-488.2 and NI-VXI for driver-level I/O accesses.

• Windows 95/NT users—On VXI and MXI systems, use T&M
Explorer to run the VXI Resource Manager, configure your hardware,
and assign VME and GPIB-VXI addresses. For GPIB systems, use the
system Device Manager to configure your hardware. To control
instruments through serial ports, you can use T&M Explorer to change
the default settings, or you can perform all the necessary configuration
at run time by setting VISA attributes.

• All other platforms—On VXI and MXI systems, you must still run
VXIinit and Resman, and use VXIedit or VXItedit for configuration
purposes. Similarly, for GPIB and GPIB-VXI systems, you still use
the GPIB Control Panel applet or IBCONF to configure your system.
To control instruments through serial ports, you can do all necessary
configuration at run time by setting VISA attributes.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-29 LabVIEW User Manual

Programming Considerations
This section contains information for you to consider when developing
applications that use the NI-VISA I/O interface software.

Multiple Applications Using the NI-VISA Driver
Multiple-application support is an important feature in all implementations
of the NI-VISA driver. You can have several applications that use NI-VISA
running simultaneously. You can even have multiple instances of the same
application that uses the NI-VISA driver running simultaneously, if your
application is designed for this. The NI-VISA operations perform in the
same manner whether you have only one application or several applications
(or several instances of an application) all trying to use the NI-VISA driver.

However, you need to be careful in cases when you have multiple
applications or sessions using the low-level VXIbus access functions.
The memory windows used to access the VXIbus are a limited resource.
You should call the viMapAddress() operation before attempting to
perform low-level VXIbus access with viPeekXX() or viPokeXX().
Immediately after the accesses are completed, you should always call
the viUnmapAddress() operation so that you free up the memory window
for other applications.

Multiple Interface Support Issues
This section contains information about how to use and/or configure your
NI-VISA software for certain types of interfaces.

VXI and GPIB Platforms
NI-VISA supports all existing National Instruments VXI, GPIB, and serial
hardware for the operating systems on which NI-VISA exists. For VXI,
this includes MXI-1 and MXI-2 platforms, the GPIB-VXI, and the line of
VXIpc embedded computers. For GPIB, this includes, but is not limited to,
the PCI-GPIB, NB-GPIB, GPIB-SPARC series, the full line of
AT-GPIB/TNT boards, and the GPIB-ENET box, which you can use to
remotely control GPIB devices. With the GPIB-ENET, you can even
remotely control VXI devices when using a GPIB-VXI controller.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-30 © National Instruments Corporation

Multiple GPIB-VXI Support
Windows 95/NT users can refer to the T&M Explorer utility to add
multiple National Instruments GPIB-VXI controllers, or any other
vendor’s GPIB-VXI controller, to your system. Windows 3.x and
UNIX users must use the VISAconf utility to add the controllers.

Serial Port Support
NI-VISA currently supports only a single session at a time on a given
serial port. The maximum number of serial ports that NI-VISA currently
supports on any platform is 32. The default numbering of serial ports is
system-dependent.

VME Support
To access VME devices in your system, you must configure NI-VXI to see
these devices. Windows 95/NT users can configure NI-VXI by using the
Add Device Wizard in the T&M Explorer. Users on other platforms must
use the Non-VXI Device Editor in VXIedit or VXItedit. For each address
space in which your device has memory, you must create a separate
pseudo-device entry with a logical address between 256 and 511.
For example, a VME device with memory in both A24 and A32 spaces
requires two entries. You can also specify which interrupt levels the device
uses. VXI and VME devices cannot share interrupt levels. You can then

Platform Method

Windows 3.x, Windows 95, Windows NT ASRL1 – ASRL4 access COM1 – COM4
ASRL10 – ASRL13 access LPT1 – LPT4

Macintosh 68K, Macintosh PPC ASRL1 accesses the modem port
ASRL2 accesses the printer port

Solaris 1.x ASRL1 – ASRL6 access
/dev/ttya – /dev/ttyf

Solaris 2.x ASRL1 – ASRL6 access
/dev/cua/a – /dev/cua/f

HP-UX 9
HP-UX 10

ASRL1 and ASRL2 access serial ports 1 and 2
through /dev/tty00 and /dev/tty01 on
HP-UX9. HP-UX10 uses /dev/tty0p0 and
/dev/tty1p0. Additional ports are numbered
consecutively starting at ASRL3, which uses
/dev/tty02.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-31 LabVIEW User Manual

access the device from NI-VISA just as you would a VXI device, by
specifying the address space and the offset from the base at which you have
configured it. NI-VISA support for VME devices includes the register
access operations (both high-level and low-level) and the block-move
operations, as well as the ability to receive interrupts.

Debugging A VISA Program

This section contains information on debugging VISA programs. Because
of VISA’s nature there are more possibilities to consider when debugging
VISA problems than when working with standalone drivers. VISA makes
calls into NI-VXI, NI-488, or Operating System serial APIs. Therefore,
problems that appear in VISA could be related to the driver VISA is calling,
and not VISA itself.

If no VISA VIs appear to be working in LabVIEW (including instrument
drivers), the first step to take is the VISA Find Resource VI. This VI will
run without any other VISA VIs in the block diagram. If this VI produces
strange errors such as nonstandard VISA errors, the problem is most likely
that the wrong version of VISA is installed or that VISA is not installed
correctly. If VISA Find Resource runs correctly, LabVIEW is working
correctly with the VISA driver. The next step is to identify what sequence
of VIs is producing the error in the LabVIEW program.

If it is a simple sequence of events that is producing the error, a good next
step in debugging is to try the same sequence interactively with the VISAIC
utility (see the next section). It is generally a good idea to do initial program
development interactively. If the interactive utility works successfully but
the same sequence in LabVIEW does not, it is an indication that LabVIEW
might have a problem interacting with the VISA driver. If the same
sequence exhibits the same problem interactively in VISAIC it is possible
that a problem exists with one of the drivers VISA is calling. You can use
the interactive utilities for these drivers (VIC for NI-VXI and IBIC for
NI-488.2) to try to perform the equivalent operations. If the problems
persist on this level, it is an indication that there may be a problem with the
lower-level driver or its installation.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-32 © National Instruments Corporation

Debugging Tool for Windows 95/NT
NI Spy tracks the calls your application makes to National Instruments test
and measurement (T&M) drivers, including NI-VISA, NI-VXI, and
NI-488.2. NI-488.2 users may notice that NI Spy is similar to GPIB Spy.

NI Spy highlights functions that return errors, so you can quickly determine
which functions failed during your development. NI Spy can also log your
program’s calls to these drivers, so you can check them for errors at your
convenience.

VISAIC

VISA comes with a utility called VISA Interactive Control (VISAIC) on all
platforms that support VISA and LabVIEW, except the Macintosh. This
utility provides access to all of VISA’s functionality interactively, in an
easy-to-use graphical environment. It is a convenient starting point for
program development and learning about VISA.

When VISAIC runs it automatically finds all of the available resources in
the system and lists the instrument descriptors for each of these resources
under the appropriate resource type. The VISAIC opening window is
shown in the figure below.

Chapter 8 LabVIEW VISA Tutorial

© National Instruments Corporation 8-33 LabVIEW User Manual

The Soft Front Panels tab of the main VISAIC panel will give you the
option to launch the soft front panels of any VXIplug&play instrument
drivers that have been installed on the system.

The NI I/O tab will give you the option to launch the NI-VXI interactive
utility or the NI-488 interactive utility. This gives you convenient links into
the interactive utilities for the drivers VISA calls in case you would like to
try debugging at this level.

Double clicking on any of the instrument descriptors shown in the VISAIC
window will open a session to that instrument. Opening a session to the
instrument produces a window with a series of tabs for interactively
running VISA commands. The exact appearance of these tabs depends on
which compatibility mode VISAIC is in. To access the compatibility mode
and other VISAIC preferences select Edit»Preferences… to bring up the
window shown below.

The VISA implementations are slightly different in LabVIEW and
LabWindows/CVI. These differences are reflected in the operation tabs
that are shown when you open a session to a resource. By default the
compatibility mode is set to Labwindows/CVI, and you should change this
to LabVIEW. Once the preferences are changed the new preferences will
take effect for any session that is opened later.

Chapter 8 LabVIEW VISA Tutorial

LabVIEW User Manual 8-34 © National Instruments Corporation

When a session to a resource is opened interactively a window similar to
the one shown below will appear.

There are three main tabs that appear in the window. The initial tab is the
template tab that contains all of the operations dealing with events,
properties, and locks. Notice that there is a different tab for each of these
operations under the main tab. The other main tabs are the INSTR Basic I/O
and INSTR Register I/O. The Basic I/O tab contains the basic operations
for message-based instruments while the Register I/O tab contains the basic
operations for register-based instruments. The Register I/O tab only
appears for VXI instruments.

© National Instruments Corporation 9-1 LabVIEW User Manual

9
Introduction to LabVIEW
GPIB Functions

This chapter explains how the General Purpose Interface Bus (GPIB)
operates and the difference between the IEEE 488 and IEEE 488.2
interfaces.

There are two GPIB standards—IEEE 488 and IEEE 488.2.
Hewlett-Packard designed the GPIB (originally called the HP-IB)
to interconnect and control its line of programmable instruments.
The GPIB was soon applied to other applications such as intercomputer
communication and peripheral control because of its 1 Mbytes/s maximum
data transfer rates. It was later accepted as IEEE Standard 488-1975 and has
since evolved into ANSI/IEEE Standard 488.2-1987. The versatility of the
system prompted the name General Purpose Interface Bus.

National Instruments brought the GPIB to users of non-Hewlett-Packard
computers and devices, specializing in both high-performance, high-speed
hardware interfaces and comprehensive, full-function software. The GPIB
functions for LabVIEW follow the IEEE 488.2 specification.

Types of Messages

The GPIB carries device-dependent messages and interface messages.

• Device-dependent messages, often called data or data messages,
contain device-specific information such as programming instructions,
measurement results, machine status, and data files.

• Interface messages manage the bus itself. They are usually called
commands or command messages. Interface messages perform such
tasks as initializing the bus, addressing and unaddressing devices, and
setting device modes for remote or local programming.

Do not confuse the term command as used here with some device
instructions, which can also be called commands. These device-specific
instructions are actually data messages.

Chapter 9 Introduction to LabVIEW GPIB Functions

LabVIEW User Manual 9-2 © National Instruments Corporation

The ANSI/IEEE Standard 488.2-1987 expanded on the earlier IEEE 488.1
standard to describe exactly how the Controller should manage the GPIB,
including the standard messages that compliant devices should understand,
the mechanisms for reporting device errors and other status information,
and the various protocols that discover and configure compliant devices
connected to the bus.

IEEE 488.2 has the ability to monitor any of the bus lines at any time is
crucial for detecting active devices (Talkers and Listeners) on the GPIB.
GPIB devices can be Talkers, Listeners, and/or Controllers. A digital
voltmeter, for example, is a Talker and may be a Listener as well. A Talker
sends data messages to one or more Listeners. The Controller manages the
flow of information on the GPIB by sending commands to all devices.

The GPIB is like an ordinary computer bus, except that the computer has
its circuit cards interconnected via a backplane bus, whereas the GPIB has
stand-alone devices interconnected via a cable bus.

The role of the GPIB Controller is similar to the role of the CPU of a
computer, but a better analogy is to the switching center of a city telephone
system. The switching center (Controller) monitors the communications
network (GPIB). When the center (Controller) notices that a party (device)
wants to make a call (send a data message), it connects the caller (Talker)
to the receiver (Listener).

The Controller addresses a Talker and a Listener before the Talker can send
its message to the Listener. After the Talker transmits the message, the
Controller may unaddress both devices.

Some bus configurations do not require a Controller. For example, one
device may always be a Talker (called a Talk-only device) and there may be
one or more Listen-only devices.

A Controller is necessary when you must change the active or addressed
Talker or Listener. A computer usually handles the Controller function.

With the GPIB board and its software, your personal computer plays all
three roles:

• Controller—to manage the GPIB

• Talker—to send data

• Listener—to receive data

Chapter 9 Introduction to LabVIEW GPIB Functions

© National Instruments Corporation 9-3 LabVIEW User Manual

The Controller-In-Charge and System Controller

Although there can be multiple Controllers on the GPIB, only one
Controller at a time is active or Controller-In-Charge (CIC). You can
pass active control from the current CIC to an idle Controller. Only one
device on the bus—the System Controller—can make itself the CIC.
The GPIB board is usually the System Controller.

Compatible GPIB Hardware

The following National Instruments GPIB hardware products are
compatible with LabVIEW:

LabVIEW for Windows 95 and Windows 95-Japanese

• AT-GPIB/TNT, AT-GPIB/TNT (PnP), AT-GPIB/TNT+, PCI-GPIB

• PCMCIA-GPIB, PCMCIA-GPIB+

• GPIB-ENET

• EISA-GPIB

• VXIpc Model 850

• NEC-GPIB/TNT, NEC-GPIB/TNT (PnP)

• GPIB-PCII/IIA

• PC/104-GPIB

• CPCI-GPIB

• GPIB-ENET

• PMC-GPIB

LabVIEW for Windows NT

• AT-GPIB, AT-GPIB/TNT

• PCMCIA-GPIB

• PCI-GPIB

• VXIpc Model 850

• GPIB-ENET

Chapter 9 Introduction to LabVIEW GPIB Functions

LabVIEW User Manual 9-4 © National Instruments Corporation

LabVIEW for Windows 3.1

• AT-GPIB, AT-GPIB/TNT, AT-GPIB/TNT (PnP), AT-GPIB/TNT+,
PCI-GPIB

• PCMCIA-GPIB, PCMCIA-GPIB+

• GPIB-ENET

• EISA-GPIB

• VXIpc Model 850

• NEC-GPIB/TNT (Japanese), NEC-GPIB/TNT (PnP) (Japanese),
GPIB-PCII/IIA

• GPIB-232CT-A

• GPIB-485CT-A

• GPIB-1284CT

• PCII/IIA

• STD-GPIB

• EXM-GPIB

• MC-GPIB

LabVIEW for Mac OS

• PCI-GPIB

• NB-GPIB/TNT, NB-GPIB-P/TNT

• PCMCIA-GPIB

• LC-GPIB

• GPIB-ENET

• GPIB-232CT-A

• GPIB-SCSI-A

• PC/104-GPIB

• NB-DMA2800 (Traditional GPIB functions only)

LabVIEW for HP-UX

• GPIB-ENET

• EISA-GPIB

• AT-GPIB/TNT

Chapter 9 Introduction to LabVIEW GPIB Functions

© National Instruments Corporation 9-5 LabVIEW User Manual

LabVIEW for Sun

• GPIB-ENET

• GPIB-SCSI-A

• SB-GPIB/TNT

LabVIEW for Concurrent PowerMAX

• GPIB-1014

• GPIB-1014D

• GPIB-1014P

• GPIB-1014DP

© National Instruments Corporation 10-1 LabVIEW User Manual

10
Serial Port VIs

This chapter describes the VIs for serial port operations and explains the
important factors that affect serial communication.

Serial communication is a popular means of transmitting data between a
computer and a peripheral device such as a programmable instrument or
even another computer. Serial communication uses a transmitter to send
data, one bit at a time, over a single communication line to a receiver.
You can use this method when data transfer rates are low or you must
transfer data over long distances.

Serial communication is popular because most computers have one or two
serial ports. Many GPIB instruments also are available with serial ports.
A limitation of serial communication, however, is that a serial port can
communicate with only one device.

Some peripheral devices require characters to terminate strings of data sent
to them. Common terminating characters are a carriage return, a line feed,
or a semicolon. Consult the device manual to determine if a terminating
character is needed.

For examples of how to use the Serial Port VIs, see
examples\instr\smplserl.llb.

RS-232 Instrument

76.6F

RS-232 Cable

Serial Port

Chapter 10 Serial Port VIs

LabVIEW User Manual 10-2 © National Instruments Corporation

Handshaking Modes

A common problem in serial communications is ensuring that both sender
and receiver keep up with data transmission. The serial port driver can
buffer incoming/outgoing information, but that buffer is of a finite size.
When it becomes full, the computer ignores new data until you have read
enough data out of the buffer to make room for new information.

Handshaking helps prevent this buffer from overflowing. With
handshaking, the sender and the receiver notify each other when their
buffers fill up. The sender can then stop sending new information until the
other end of the serial communication is ready for new data.

You can perform two kinds of handshaking in LabVIEW—software
handshaking and hardware handshaking. You can turn both of these forms
of handshaking on or off using the Serial Port Init VI. By default, the VIs
do not use handshaking.

Software Handshaking—XON/XOFF
XON/XOFF is a software handshaking protocol you can use to avoid
overflowing serial port buffers. When the receive buffer is nearly full, the
receiver sends XOFF (<Ctrl-S> [decimal 19]) to tell the other device to stop
sending data. When the receive buffer is sufficiently empty, the receiver
sends XON (<Ctrl-Q> [decimal 17]) to indicate that transmission can
begin again. When you enable XON/XOFF, the devices always interpret
<Ctrl-Q> and <Ctrl-S> as XON and XOFF characters, never as data.
When you disable XON/XOFF, you can send <Ctrl-Q> and <Ctrl-S> as
data. Do not use XON/XOFF with binary data transfers because <Ctrl-Q>
or <Ctrl-S> may be embedded in the data, and the devices will interpret
them as XON and XOFF instead of as data.

Error Codes

You can connect the error code parameter to one of the error handler VIs.
These VIs can describe the error and give you options on how to proceed
when an error occurs.

Some error codes returned by the serial port VIs are platform-specific.
Please refer to your system documentation for a list of error codes.

Chapter 10 Serial Port VIs

© National Instruments Corporation 10-3 LabVIEW User Manual

Port Number

Windows 95/NT and 3.x

When you use the serial port VIs under Windows 95/NT and Windows 3.x,
the port number parameter can have the following values:

0: COM1 5: COM6 10: LPT1

1: COM2 6: COM7 11: LPT2

2: COM3 7: COM8 12: LPT3

3: COM4 8: COM9 13: LPT4

4: COM5

When you use the serial port VIs under Windows 95 or Windows NT,
the port number parameter is 0 for COM1, 1 for COM2, and so on.

Macintosh

On the Macintosh, port 0 is the modem, using the drivers .ain and .aout.
Port 1 is the printer, using the drivers .bin and .bout. To get more ports
on a Macintosh, you must install other boards, with the accompanying
drivers.

UNIX

On a Sun SPARCstation under Solaris 1 and on Concurrent PowerMAX,
the port number parameter for the serial port VIs is 0 for /dev/ttya,
1 for /dev/ttyb, and so on. Under Solaris 2, port 0 refers to /dev/cua/a,
1 to /dev/cua/b, and so on. Under HP-UX port number 0 refers to
/dev/tty00, 1 to /dev/tty01, and so on.

On Concurrent PowerMAX, port 0 refers to /dev/console, Port 1 refers
to /dev/tty1, Port 2 refers to /dev/tty2, and so on.

Because other vendor’s serial port boards can have arbitrary device names,
LabVIEW has developed an easy interface to keep the numbering of ports
simple. In LabVIEW for Sun, HP-UX, and Concurrent PowerMAX, a
configuration option exists to tell LabVIEW how to address the serial ports.
LabVIEW supports any board that uses standard UNIX devices. Some
manufacturers suggest using cua rather than tty device nodes with their
boards. LabVIEW can address both types of nodes.

Chapter 10 Serial Port VIs

LabVIEW User Manual 10-4 © National Instruments Corporation

The file .labviewrc contains the LabVIEW configuration options.
To set the devices the serial port VIs use, set the configuration option
labview.serialDevices to the list of devices you intend to use.

For example, the default is:

labview.serialDevices:/dev/ttya:/dev/ttyb:/dev/ttyc:...

:/dev/ttyz.

Note This requires that any third party serial board installation include a method of

creating a standard /dev file (node) and that the user knows the name of that file.

Part III

Analysis

This section contains basic information on analysis of post acquisition data,
signal processing, signal generation, linear algebra, curve fitting,
probability, and statistics.

Part III, Analysis, contains the following chapters.

• Chapter 11, Introduction to Analysis in LabVIEW, introduces
concepts that apply to all analysis applications, including supported
functionality, notation and naming conventions, and sampling signal
methods.

• Chapter 12, Signal Generation, explains how to produce signals using
normalized frequency and how to build a simulated function generator.

• Chapter 13, Digital Signal Processing, describes the fundamentals of
the Fast Fourier Transform (FFT) and the Discrete Fourier Transform
(DFT) and how they are used in spectral analysis.

• Chapter 14, Smoothing Windows, explains how using windows
prevents spectral leakage and improves the analysis of acquired
signals.

• Chapter 15, Spectrum Analysis and Measurement, shows how to
determine the amplitude and phase spectrum, develop a spectrum
analyzer, and determine the total harmonic distortion (THD) of your
signals.

• Chapter 16, Filtering, explains how to filter unwanted frequencies
from signals using infinite impulse response filters (IIR), finite
impulse response filters (FIR), and nonlinear filters.

• Chapter 17, Curve Fitting, shows how to extract information from a
data set to obtain a functional description.

Part III Analysis

LabVIEW User Manual III-2 © National Instruments Corporation

• Chapter 18, Linear Algebra, explains how to perform matrix
computation and analysis.

• Chapter 19, Probability and Statistics, explains some fundamental
concepts on probability and statistics, and shows how to use these
concepts in solving real-world problems.

© National Instruments Corporation 11-1 LabVIEW User Manual

11
Introduction to Analysis
in LabVIEW

Digital signals are everywhere in the world around us. Telephone
companies use digital signals to represent the human voice. Radio, TV,
and hi-fi sound systems are all gradually converting to the digital domain
because of its superior fidelity, noise reduction, and signal processing
flexibility. Data is transmitted from satellites to earth ground stations
in digital form. NASA’s pictures of distant planets and outer space are
often processed digitally to remove noise and extract useful information.
Economic data, census results, and stock market prices are all available in
digital form. Because of the many advantages of digital signal processing,
analog signals are also converted to digital form before they are processed
with a computer.

This chapter provides a background in basic digital signal processing and
an introduction to the LabVIEW Analysis Library, which consists of
hundreds of VIs for signal processing and analysis.

The Importance of Data Analysis

Modern, high-speed floating-point numerical and digital signal
processors have become increasingly important to real-time and analysis
systems. A few of the many possible applications include biomedical
data processing, speech synthesis and recognition, and digital audio and
image processing.

Chapter 11 Introduction to Analysis in LabVIEW

LabVIEW User Manual 11-2 © National Instruments Corporation

The importance of integrating analysis libraries into engineering stations is
that the raw data, as shown in the following figure, does not always
immediately convey useful information. Often you must transform the
signal, remove noise disturbances, correct for data corrupted by faulty
equipment, or compensate for environmental effects, such as temperature
and humidity.

By analyzing and processing the digital data, you can extract the useful
information from the noise and present it in a form more comprehensible
than the raw data. The following figure shows the processed data.

The LabVIEW block diagram programming approach and the extensive set
of LabVIEW analysis VIs simplify the development of analysis
applications.

The LabVIEW analysis VIs give you the most recent data analysis
techniques using VIs that you can wire together. Instead of worrying about
implementation details for analysis routines, as you do in conventional
programming languages, you can concentrate on solving your data analysis
problems.

Chapter 11 Introduction to Analysis in LabVIEW

© National Instruments Corporation 11-3 LabVIEW User Manual

Full Development System

The base analysis VI library is a subset of the advanced analysis VI library.
The base analysis library includes VIs for statistical analysis, linear
algebra, and numerical analysis. The advanced analysis library includes
more VIs in these areas as well as VIs for signal generation, time and
frequency-domain algorithms, windowing routines, digital filters,
evaluations, and regressions.

If the VIs in the base analysis library do not satisfy your needs, then you
can add the LabVIEW Advanced Analysis Libraries to the LabVIEW Base
Package. Once you upgrade, you will have all the analysis tools available
in the Full Development System.

Analysis VI Overview

Once the analog signal has been converted to digital form by the
A/D Converter (ADC) and is available in your computer as a digital signal
(a set of samples), you will usually want to process these samples in some
way. The processing could be to determine the characteristics of the system
from which the samples were obtained, to measure certain features of the
signal, or to convert them into a form suitable for human understanding.

The Analysis library contains VIs to perform extensive numerical analysis,
signal generation and signal processing, curve fitting, measurement, and
other analysis functions. The Analysis Library, included in the LabVIEW
full development system, is a key component in building a virtual
instrumentation system. Besides containing the analysis functionality
found in many math packages, it also features many unique signal
processing and measurement functions that are designed exclusively for
the instrumentation industry.

Chapter 11 Introduction to Analysis in LabVIEW

LabVIEW User Manual 11-4 © National Instruments Corporation

The LabVIEW Analysis VIs are available in the Analysis subpalette of the
Functions Palette in LabVIEW or BridgeVIEW.

 There are 10 analysis VI libraries. The main categories are:

Signal Generation: VIs that generate digital patterns and waveforms.

Digital Signal Processing: VIs that perform frequency domain
transformations, frequency domain analysis, time domain analysis, and
other transforms such as the Hartley and Hilbert transforms.

Measurement Functions: VIs that perform measurement-oriented
functions such as single-sided spectrums, scaled windowing, and peak
power and frequency estimation.

Digital Filters: VIs that perform IIR, FIR, and nonlinear digital filtering
functions.

Windowing Functions: VIs that perform data windowing.

Chapter 11 Introduction to Analysis in LabVIEW

© National Instruments Corporation 11-5 LabVIEW User Manual

Probability and Statistics Functions: VIs that perform descriptive
statistics functions, such as identifying the mean or the standard deviation
of a set of data, as well as inferential statistics functions for probability and
analysis of variance (ANOVA).

Curve Fitting Functions: VIs that perform curve fitting functions and
interpolations.

Linear Algebra Functions: VIs that perform algebraic functions for real
and complex vectors and matrices.

Array Operations: VIs that perform common, one- and two-dimensional
numerical array operations, such as linear evaluation and scaling.

Additional Numerical Methods: VIs that use numerical methods to
perform root-finding, numerical integration, and peak detection.

In these chapters, you will learn how to use the VIs from the analysis library
to build a function generator and a simple, yet practical, spectrum analyzer.
You will also learn how to use digital filters, the purpose of windowing and
the advantages of different types of windows, how to perform simple
curve-fitting tasks, and much more. The activities in these chapters require
the LabVIEW/BridgeVIEW full development system. For the more
adventurous, an extensive set of examples that demonstrate how to use the
analysis VIs can be found in the labview\examples\analysis folder.

In addition to the Analysis library, National Instruments also offers
many analysis add-ons that make LabVIEW one of the most powerful
analysis software packages available. These add-ons include the Joint

Time-Frequency Analysis Toolkit, which includes the National Instruments
award-winning Gabor spectrogram algorithm that analyzes time-frequency
features not easily obtained by conventional Fourier analysis; the G Math

Toolkit that offers extended math functionality like a formula parser,
routines for optimization and solving differential equations, numerous
types of 2D and 3D plots, and more; the Digital Filter Design Toolkit; and
many others.

Chapter 11 Introduction to Analysis in LabVIEW

LabVIEW User Manual 11-6 © National Instruments Corporation

Notation and Naming Conventions

To help you identify the type of parameters and operations, this section of
the manual uses the following notation and naming conventions unless
otherwise specified in a VI description. Although there are a few scalar
functions and operations, most of the analysis VIs process large blocks of
data in the form of one-dimensional arrays (or vectors) and
two-dimensional arrays (or matrices).

Normal lower case letters represent scalars or constants. For example,

a,
π,

b = 1.234.

Capital letters represent arrays. For example,

X,
A,

Y = a X + b.

In general, X and Y denote 1D arrays, and A, B, and C represent matrices.

Array indexes in LabVIEW are zero-based. The index of the first element
in the array, regardless of its dimension, is zero. The following sequence of
numbers represents a 1D array X containing n elements.

The following scalar quantity represents the ith element of the sequence X.

The first element in the sequence is x
0
 and the last element in the sequence

is xn–1, for a total of n elements.

X x0 x1 x2 ... xn 1–, , , ,{ }=

xi 0 i n<≤,

Chapter 11 Introduction to Analysis in LabVIEW

© National Instruments Corporation 11-7 LabVIEW User Manual

The following sequence of numbers represents a 2D array containing
n rows and m columns.

The total number of elements in the 2D array is the product of n and m.
The first index corresponds to the row number, and the second index
corresponds to the column number. The following scalar quantity
represents the element located on the ith row and the jth column.

aij, 0 ≤ i < n and 0 ≤ j < m

The first element in A is a
0 0

 and the last element is an–1 m–1.

Unless otherwise specified, this manual uses the following simplified array
operation notations.

Setting the elements of an array to a scalar constant is represented by

X = a,

which corresponds to the sequence

X = {a, a, a, …, a}

and is used instead of

xi = a,

for

i = 0, 1, 2, …, n–1.

A

a00 a01 a02 ... a0m 1–

a10 a11 a12 ... a1m 1–

a20 a21 a22 ... a2m 1–

: : : : :

an 10– an 11– an 2– ... an 1m– 1–

=

Chapter 11 Introduction to Analysis in LabVIEW

LabVIEW User Manual 11-8 © National Instruments Corporation

Multiplying the elements of an array by a scalar constant is represented by

Y = a X,

which corresponds to the sequence

Y = {a x0, a x1, a x2, …, a xn–1}

and is used instead of

yi = a xi,

for

i = 0, 1, 2, …, n–1.

Similarly, multiplying a 2D array by a scalar constant is represented by

B = k A,

which corresponds to the sequence

and is used instead of

b
i j

 = k a
i j

,

for

i = 0, 1, 2, …, n–1

and

j = 0, 1, 2, …, m–1.

An array with no elements is an empty array and is represented by

Empty = NULL = Ø = { } .

In general, operations on empty arrays result in empty output arrays or
undefined results.

B

ka00 ka01 ka02 ... ka0m 1–

ka10 ka11 ka12 ... ka1m 1–

ka20 ka21 ka22 ... ka2m 1–

: : : : :

kan 10– kan 11– kan 12– ... kan 1m– 1–

=

Chapter 11 Introduction to Analysis in LabVIEW

© National Instruments Corporation 11-9 LabVIEW User Manual

Data Sampling

Sampling Signals
To use digital signal processing techniques, you must first convert an
analog signal into its digital representation. In practice, this is implemented
by using an analog-to-digital (A/D) converter. Consider an analog signal
x(t) that is sampled every ∆t seconds. The time interval ∆t is known as the
sampling interval or sampling period. Its reciprocal, 1/∆t, is known as the
sampling frequency, with units of samples/second. Each of the discrete
values of x(t) at t = 0, ∆t, 2∆t, 3∆t, etc., is known as a sample. Thus, x(0),
x(∆t), x(2∆t),, are all samples. The signal x(t) can thus be represented by
the discrete set of samples

{x(0), x(∆t), x(2∆t), x(3∆t), …, x(k∆t), … }.

Figure 11-1 below shows an analog signal and its corresponding sampled
version. The sampling interval is ∆t. Observe that the samples are defined
at discrete points in time.

Figure 11-1. Analog Signal and Corresponding Sampled Version

The following notation represents the individual samples:

x[i] = x(i∆t),

for

i = 0, 1, 2, …

1.1

0.0

-1.1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

∆t = distance between
samples along time axis

∆t

Chapter 11 Introduction to Analysis in LabVIEW

LabVIEW User Manual 11-10 © National Instruments Corporation

If N samples are obtained from the signal x(t), then x(t) can be represented
by the sequence

X = {x[0], x[1], x[2], x[3], …, x[N–1] }

This is known as the digital representation or the sampled version of x(t).
Note that the sequence X = {x[i]} is indexed on the integer variable i, and
does not contain any information about the sampling rate. So by knowing
just the values of the samples contained in X, you will have no idea of what
the sample rate is.

Sampling Considerations
A/D converters (ADCs) are an integral part of National Instruments
DAQ boards. One of the most important parameters of an analog input
system is the rate at which the DAQ board samples an incoming signal.
The sampling rate determines how often an analog-to-digital (A/D)
conversion takes place. A fast sampling rate acquires more points in a given
time and can therefore often form a better representation of the original
signal than a slow sampling rate. Sampling too slowly may result in a poor
representation of your analog signal. Figure 11-2 shows an adequately
sampled signal, as well as the effects of undersampling. The effect of
undersampling is that the signal appears as if it has a different frequency
than it truly does. This misrepresentation of a signal is called an alias.

Figure 11-2. Aliasing Effects of an Improper Sampling Rate

Adequately sampled signal

Aliased signal due to undersampling

Chapter 11 Introduction to Analysis in LabVIEW

© National Instruments Corporation 11-11 LabVIEW User Manual

According to the Nyquist theorem, to avoid aliasing you must sample at a
rate greater than twice the maximum frequency component in the signal
you are acquiring. For a given sampling rate, the maximum frequency that
can be represented accurately, without aliasing, is known as the Nyquist
frequency. The Nyquist frequency is one half the sampling frequency.
Signals with frequency components above the Nyquist frequency will
appear aliased between DC and the Nyquist frequency. The alias frequency
is the absolute value of the difference between the frequency of the input
signal and the closest integer multiple of the sampling rate. Figures 11-3
and 11-4 illustrate this phenomenon. For example, assume fs, the sampling
frequency, is 100 Hz. Also, assume the input signal contains the following
frequencies—25 Hz, 70 Hz, 160 Hz, and 510 Hz. These frequencies are
shown in Figure 11-3.

Figure 11-3. Actual Signal Frequency Components

F1
25 Hz

F2
70 Hz

F3
160 Hz

F4
510 Hz

ƒs/2=50
Nyquist Frequency

ƒs=100
Sampling Frequency

5000
Frequency

M
a

g
n

it
u

d
e

Chapter 11 Introduction to Analysis in LabVIEW

LabVIEW User Manual 11-12 © National Instruments Corporation

In Figure 11-4, we see that frequencies below the Nyquist frequency
(fs/2=50 Hz) are sampled correctly. Frequencies above the Nyquist
frequency appear as aliases. For example, F1 (25 Hz) appears at the correct
frequency, but F2 (70 Hz), F3 (160 Hz), and F4 (510 Hz) have aliases at
30 Hz, 40 Hz, and 10 Hz, respectively. To calculate the alias frequency, use
the following equation:

Alias Freq. = ABS (Closest Integer Multiple
of Sampling Freq. – Input Freq.)

where ABS means “the absolute value.” For example,

Alias F2 = |100 – 70| = 30 Hz
Alias F3 = |(2)100 – 160| = 40 Hz
Alias F4 = |(5)100 – 510| = 10 Hz

Figure 11-4. Signal Frequency Components and Aliases

A question often asked is, “How fast should I sample?” Your first thought
may be to sample at the maximum rate available on your DAQ board.
However, if you sample very fast over long periods of time, you may not
have enough memory or hard disk space to hold the data. Figure 11-5
shows the effects of various sampling rates. In case a, the sine wave of
frequency f is sampled at the same frequency fs (samples/sec) = f
(cycles/sec), or at 1 sample per cycle. The reconstructed waveform appears
as an alias at DC. As you increase the sampling to 7 samples/4 cycles, as in
case b, the waveform increases in frequency, but aliases to a frequency less
than the original signal (3 cycles instead of 4). The sampling rate in case b
is fs = 7/4 f. If you increase the sampling rate to fs = 2f, the digitized
waveform has the correct frequency (same number of cycles), and can be
reconstructed as the original sinusoidal wave, as shown in case c. For
time-domain processing, it may be important to increase your sampling rate
so that the samples more closely represent the original signal. By increasing

F1
25 Hz

F2
70 Hz

F3
160 Hz

F4
510 Hz

ƒs/2=50
Nyquist Frequency

ƒs=100
Sampling Frequency

5000
Frequency

M
a

g
n

it
u

d
e

F4 alias
10 Hz

F2 alias
30 Hz

F3 alias
40 Hz

Actual Frequency

Aliased Frequency

Chapter 11 Introduction to Analysis in LabVIEW

© National Instruments Corporation 11-13 LabVIEW User Manual

the sampling rate to well above f, say to fs=10f, or 10 samples/cycle, you
can accurately reproduce the waveform, as shown in case d.

Figure 11-5. Effects of Sampling at Different Rates

Why Do You Need Anti-Aliasing Filters?
We have seen that the sampling rate should be at least twice the maximum
frequency of the signal that we are sampling. In other words, the maximum
frequency of the input signal should be less than or equal to half of the
sampling rate. But how do you ensure that this is definitely the case in
practice? Even if you are sure that the signal being measured has an upper
limit on its frequency, pickup from stray signals (such as the powerline
frequency or from local radio stations) could contain frequencies higher
than the Nyquist frequency. These frequencies may then alias into the
desired frequency range and thus give us erroneous results.

To be completely sure that the frequency content of the input signal is
limited, a low pass filter (a filter that passes low frequencies but attenuates
the high frequencies) is added before the sampler and the ADC. This filter
is called an anti-alias filter because by attenuating the higher frequencies
(greater than Nyquist), it prevents the aliasing components from being
sampled. Because at this stage (before the sampler and the ADC) we are
still in the analog world, the anti-aliasing filter is an analog filter.

a) 1 sample/1 cycle

b) 7 samples/4 cycles

c) 2 samples/cycle

d) 10 samples/cycle

Chapter 11 Introduction to Analysis in LabVIEW

LabVIEW User Manual 11-14 © National Instruments Corporation

An ideal anti-alias filter is as shown in figure (a) below.

It passes all the desired input frequencies (below f1) and cuts off all the
undesired frequencies (above f1). However, such a filter is not physically
realizable. In practice, filters look as shown in figure (b) above. They pass
all frequencies < f1, and cut-off all frequencies > f2. The region between
f1 and f2 is known as the transition band, which contains a gradual
attenuation of the input frequencies. Although you want to pass only
signals with frequencies < f1, those signals in the transition band could
still cause aliasing. Therefore, in practice, the sampling frequency should
be greater than two times the highest frequency in the transition band. So,
this turns out to be more than two times the maximum input frequency (f1).
That is one reason why you may see that the sampling rate is more than
twice the maximum input frequency. We will see in a later section how the
transition band of the filter depends on the filter type being designed.

Why Use Decibels?
On some instruments, you will see the option of displaying the amplitude
in a linear or decibel (dB) scale. The linear scale shows the amplitudes as
they are, whereas the decibel scale is a transformation of the linear scale
into a logarithmic scale. We will now see why this transformation is
necessary.

Suppose that you want to display a signal with very large as well as very
small amplitudes. Let us assume you have a display of height 10 cm,
and will utilize the entire height of the display for the largest amplitude.
So, if the largest amplitude in the signal is 100 V, a height of 1 cm of the
display corresponds to 10 V. If the smallest amplitude of the signal is 0.1 V,
this corresponds to a height of only 0.1 mm. This will barely be visible on
the display.

To see all the amplitudes, from the largest to the smallest, you need to
change the amplitude scale. Alexander Graham Bell invented a unit, the
Bell, which is logarithmic, compressing large amplitudes and expanding

F
ilt

e
r

O
u
tp

u
t

f1
Frequency

Transition Band

a. Ideal Anti-alias Filter b. Practical Anti-alias Filter

F
ilt

e
r

O
u
tp

u
t

f1 f2
Frequency

Chapter 11 Introduction to Analysis in LabVIEW

© National Instruments Corporation 11-15 LabVIEW User Manual

the small amplitudes. However, the Bell was too big of a unit, so commonly
the decibel (1/10th of a Bell) is used. The decibel (dB) is defined as

one dB = 10 log10 (Power Ratio) = 20 log10 (Voltage Ratio)

The following table shows the relationship between the decibel and the
Power and Voltage Ratios.

Thus, you see that the dB scale is useful in compressing a wide range of
amplitudes into a small set of numbers. The decibel scale is often used in
sound and vibration measurements and in displaying frequency domain
information.

dB Power Ratio Voltage Ratio

+40 10000 100

+20 100 10

+6 4 2

+3 2 1.4

0 1 1

–3 1/2 1/1.4

–6 1/4 1/2

–20 1/100 1/10

–40 1/10000 1/100

© National Instruments Corporation 12-1 LabVIEW User Manual

12
Signal Generation

This chapter explains how to produce signals using normalized frequency
and how to build a simulated function generator. For examples of how to
use the signal generation VIs, see the examples located in
examples\analysis\sigxmpl.llb.

You will learn how to use the VIs in the analysis library to generate many
different types of signals. Some of the applications for signal
generation are:

• Simulating signals to test your algorithm when real-world signals are
not available (for example, when you do not have a DAQ board for
obtaining real-world signals, or when access to real-world signals is
not possible).

• Generating signals to apply to a D/A converter.

Normalized Frequency

In the analog world, a signal frequency is measured in Hz or cycles per
second. But the digital system often uses a digital frequency, which is the
ratio between the analog frequency and the sampling frequency:

digital frequency = analog frequency / sampling frequency

This digital frequency is known as the normalized frequency. Its units are
cycles/sample.

Chapter 12 Signal Generation

LabVIEW User Manual 12-2 © National Instruments Corporation

Some of the Signal Generation VIs use an input frequency control, f, that is
assumed to use normalized frequency units of cycles per sample. This
frequency ranges from 0.0 to 1.0, which corresponds to a real frequency
range of 0 to the sampling frequency fs. This frequency also wraps around
1.0, so that a normalized frequency of 1.1 is equivalent to 0.1. As an
example, a signal that is sampled at the Nyquist rate (fs/2) means that it is
sampled twice per cycle (that is, two samples/cycle). This will correspond
to a normalized frequency of 1/2 cycles/sample = 0.5 cycles/sample.
The reciprocal of the normalized frequency, 1/f, gives you the number of
times that the signal is sampled in one cycle.

When you use a VI that requires the normalized frequency as an input, you
must convert your frequency units to the normalized units of cycles/sample.
You must use these normalized units with the following VIs.

• Sine Wave

• Square Wave

• Sawtooth Wave

• Triangle Wave

• Arbitrary Wave

• Chirp Pattern

If you are used to working in frequency units of cycles, you can convert
cycles to cycles/sample by dividing cycles by the number of samples
generated. The following illustration shows the Sine Wave VI, which is
being used to generate two cycles of a sine wave.

Chapter 12 Signal Generation

© National Instruments Corporation 12-3 LabVIEW User Manual

The following illustration shows the block diagram for converting cycles to
cycles/sample.

You need only divide the frequency (in cycles) by the number of samples.
In the above example, the frequency of 2 cycles is divided by 50 samples,
resulting in a normalized frequency of f = 1/25 cycles/sample. This means
that it takes 25 (the reciprocal of f) samples to generate one cycle of the
sine wave.

However, you may need to use frequency units of Hz (cycles/s). If you need
to convert from Hz (or cycles/s) to cycles/sample, divide your frequency in
cycles/s by the sampling rate given in samples/s.

cycles/s
samples/s

cycles
sample
-----------------=

Chapter 12 Signal Generation

LabVIEW User Manual 12-4 © National Instruments Corporation

The following illustration shows the Sine Wave VI used to generate a
60 Hz sine signal.

The following illustration shows a block diagram for generating a Hertz
sine signal. You divide the frequency of 60 Hz by the sampling rate of
1000 Hz to get the normalized frequency of f = 0.06 cycles/sample.
Therefore, it takes almost 17 (1/0.06) samples to generate one cycle of
the sine wave.

Chapter 12 Signal Generation

© National Instruments Corporation 12-5 LabVIEW User Manual

The signal generation VIs create many common signals required for
network analysis and simulation. You can also use the signal generation VIs
in conjunction with National Instruments hardware to generate analog
output signals.

Activity 12-1. Learn More about
Normalized Frequency

Your objective is to learn more about normalized frequency by adjusting

the frequency, sampling rate, and number of samples and observing the

effects on a sine wave.

Front Panel

1. Open a new front panel and create the objects as shown in the
following illustration.

Chapter 12 Signal Generation

LabVIEW User Manual 12-6 © National Instruments Corporation

Block Diagram

2. Build the block diagram shown in the following illustration.

Sine Wave VI (Analysis»Signal Generation palette).

3. Save the VI as Normalized Frequency.vi in the
LabVIEW\Activity directory.

4. Select a frequency of 2 cycles (frequency = 2 and ftype = cycles) and
number of samples = 100. Run the VI. Note that the plot will show
2 cycles.

5. Increase the number of samples to 150, 200, and 250. How many
cycles do you see?

6. Now keep the number of samples = 100. Increase the number of
cycles to 3, 4, and 5. How many cycles do you see?

Chapter 12 Signal Generation

© National Instruments Corporation 12-7 LabVIEW User Manual

Thus, when you choose the frequency in terms of cycles, you will see
that many cycles of the input waveform on the plot. Note that the
sampling rate is irrelevant in this case.

7. Change ftype to Hz and sampling rate (Hz) to 1,000.

8. Keeping the number of samples fixed at 100, change the frequency
to 10, 20, 30, and 40. How many cycles of the waveform do you see on
the plot for each case? Explain your observations.

9. Repeat the above step by keeping the frequency fixed at 10 and change
the number of samples to 100, 200, 300, and 400. How many cycles
of the waveform do you see on the plot for each case? Explain your
observations.

10. Keep the frequency fixed at 20 and the number of samples fixed at
200. Change the sampling rate (Hz) to 500, 1,000, and 2,000. Make
sure you understand the results.

End of Activity 12-1.

Wave and Pattern VIs

You will notice that the names of most of the signal generation VIs have
the word wave or pattern in them. There is a basic difference in the
operation of the two different types of VIs. It has to do with whether or not
the VI can keep track of the phase of the signal that it generates each time
it is called.

Phase Control
The wave VIs have a phase in control where you can specify the initial
phase (in degrees) of the first sample of the generated waveform. They also
have a phase out indicator that specifies what the phase of the next sample
of the generated waveform is going to be. In addition, a reset phase control
decides whether or not the phase of the first sample generated when the
wave VI is called is the phase specified at the phase in control, or whether
it is the phase available at the phase out control when the VI last executed.
A TRUE value of reset phase sets the initial phase to phase in, whereas a
FALSE value sets it to the value of phase out when the VI last executed.

The wave VIs are all reentrant (can keep track of phase internally) and
accept frequency in normalized units (cycles/sample). The only pattern VI

Chapter 12 Signal Generation

LabVIEW User Manual 12-8 © National Instruments Corporation

that presently uses normalized units is the Chirp Pattern VI. Setting the
reset phase Boolean to FALSE allows for continuous sampling simulation.

Note Wave VIs are reentrant and accept the frequency input in terms of

normalized units.

In the next activity, you will generate a sine wave using both the Sine Wave
VI and the Sine Pattern VI. You will see how in the Sine Wave VI you
have more control over the initial phase than in the Sine Pattern VI.

Activity 12-2. Use the Sine Wave and
Sine Pattern VIs

Your objective is to generate a sinusoidal waveform using both the

Sine Wave VI and the Sine Pattern VI and to understand the differences.

Front Panel

1. Open a new front panel and create the objects as shown in the
following illustration.

Chapter 12 Signal Generation

© National Instruments Corporation 12-9 LabVIEW User Manual

Block Diagram

2. Build the block diagram shown in the following illustration.

Sine Pattern VI (Analysis»Signal Generation palette).

Sine Wave VI (Analysis»Signal Generation palette).

3. Save the VI as Wave and Pattern.vi in the LabVIEW\Activity
directory.

Chapter 12 Signal Generation

LabVIEW User Manual 12-10 © National Instruments Corporation

4. Set the controls to the following values:

cycles/freq: 2.00

sampling freq: 100

phase in: 0.00

reset phase: OFF

Run the VI several times.

Observe that the Sine Wave plot changes each time you run the VI.
Because reset phase is set to OFF, the phase of the sine wave changes
with each call to the VI, being equal to the value of phase out during
the previous call. However, the Sine Pattern plot always remains the
same, showing 2 cycles of the sinusoidal waveform. The initial phase
of the Sine Pattern plot is equal to the value set in the phase in control.

Note “Phase in” and “phase out” are specified in degrees.

5. Change phase in to 90 and run the VI several times. Just as before, the
Sine Wave plot changes each time you run the VI. However, the Sine
Pattern plot does not change, but the initial phase of the sinusoidal
pattern is 90 degrees—the same as that specified in the phase in
control.

6. With phase in still at 90, set reset phase to ON and run the VI several
times. The sinusoidal waveforms shown in both the Sine Wave and
Sine Pattern plots start at 90 degrees, but do not change with successive
calls to the VI.

7. Keeping reset phase as ON, run the VI several times for each of the
following values of phase in: 45, 180, 270, and 360. Note the initial
phase of the generated waveform each time that the VI is run.

End of Activity 12-2.

Chapter 12 Signal Generation

© National Instruments Corporation 12-11 LabVIEW User Manual

Activity 12-3. Build a Function Generator

Your objective is to build a simple function generator that can

generate the following waveforms.

• Sine Wave

• Square Wave

• Triangle Wave

• Sawtooth Wave

Front Panel

1. Open a new front panel and create the objects as shown in the
following illustration.

The signal source control selects the type of waveform that you want to
generate.

The square duty cycle control is used only for setting the duty cycle of the
square wave.

The samples control determines the number of samples in the plot.

Notice that these are all wave VIs, and therefore they require the frequency
input to be the normalized frequency. So, you divide frequency by the
sample rate and the result is the normalized frequency wired to the f input
of the VIs.

Chapter 12 Signal Generation

LabVIEW User Manual 12-12 © National Instruments Corporation

Block Diagram

2. Build the block diagram shown in the following illustration.

Sine Wave VI (Analysis»Signal Generation palette) generates a sine
wave of normalized frequency f.

Triangle Wave VI (Analysis»Signal Generation palette) generates a
triangular wave of normalized frequency f.

Square Wave VI (Analysis»Signal Generation palette) generates a
square wave of normalized frequency f with specified duty cycle.

Sawtooth Wave VI (Analysis»Signal Generation palette) generates a
sawtooth wave of normalized frequency f.

3. Save the VI as Function Generator.vi in the
LabVIEW\Activity directory.

4. Select a sampling rate of 1000 Hz, amplitude = 1, samples = 100,
frequency = 10, reset phase = ON, and signal source = sine wave.
Because sampling rate = 1000 and frequency = 10 Hz, every
100 samples corresponds to one cycle.

Chapter 12 Signal Generation

© National Instruments Corporation 12-13 LabVIEW User Manual

5. Run the VI and observe the resulting plot.

6. Change samples to 200, 300, and 400. How many cycles of the
waveform do you see? Explain why.

7. With samples set to 100, change reset phase to OFF. Do you notice
any difference in the plot?

8. Change frequency to 10.01 Hz. What happens? Why?

9. Change reset phase to ON. Now what happens? Explain why.

10. Repeat steps 4 through 9 for different waveforms selected in the signal

source control.

End of Activity 12-3.

© National Instruments Corporation 13-1 LabVIEW User Manual

13
Digital Signal Processing

This chapter describes the fundamentals of the Fast Fourier Transform
(FFT) and the Discrete Fourier Transform (DFT) and how they are used in
spectral analysis. For examples of how to use the digital signal processing
VIs, see the examples located in examples\analysis\dspxmpl.llb.

The Fast Fourier Transform (FFT)

The samples of a signal obtained from a DAQ board constitute the
time domain representation of the signal. This representation gives
the amplitudes of the signal at the instants of time during which it had
been sampled. However, in many cases you want to know the frequency
content of a signal rather than the amplitudes of the individual samples.
The representation of a signal in terms of its individual frequency
components is known as the frequency domain representation of the
signal. The frequency domain representation could give more insight
about the signal and the system from which it was generated.

The algorithm used to transform samples of the data from the time domain
into the frequency domain is known as the discrete Fourier transform or
DFT. The DFT establishes the relationship between the samples of a signal
in the time domain and their representation in the frequency domain.
The DFT is widely used in the fields of spectral analysis, applied
mechanics, acoustics, medical imaging, numerical analysis,
instrumentation, and telecommunications.

Suppose you have obtained N samples of a signal from a DAQ board. If you
apply the DFT to N samples of this time domain representation of the

frequency domain representationtime domain representation of x[n]

DFT

Chapter 13 Digital Signal Processing

LabVIEW User Manual 13-2 © National Instruments Corporation

signal, the result is also of length N samples, but the information it contains
is of the frequency domain representation. The relationship between the
N samples in the time domain and the N samples in the frequency domain
is explained below.

If the signal is sampled at a sampling rate of fs Hz, then the time interval
between the samples (that is, the sampling interval) is ∆t, where

The sample signals are denoted by x[i], 0 ≤ i ≤ N–1 (that is, you have a total
of N samples). When the discrete Fourier transform, given by

(13-1)

for

k = 0, 1, 2, …, N–1

is applied to these N samples, the resulting output (X[k], 0 ð k ð N–1) is the
frequency domain representation of x[i]. Notice that both the time domain
x and the frequency domain X have a total of N samples. Analogous to the
time spacing of ∆t between the samples of x in the time domain, you have
a frequency spacing of

between the components of X in the frequency domain. ∆f is also known
as the frequency resolution. To increase the frequency resolution (smaller
∆f) you must either increase the number of samples N (with fs constant) or
decrease the sampling frequency fs (with N constant).

In the following example, you will go through the mathematics of
Equation 13-1 to calculate the DFT for a D.C. signal.

DFT Calculation Example
In the next section, you will see the exact frequencies to which the
N samples of the DFT correspond. For the present discussion, assume that
X[0] corresponds to D.C., or the average value, of the signal. To see the

t∆ 1
fs

---=

Xk xie
j2πik N⁄–

i 0=

N 1–

∑=

f∆
fs

N

1
N∆t
----------= =

Chapter 13 Digital Signal Processing

© National Instruments Corporation 13-3 LabVIEW User Manual

result of calculating the DFT of a waveform with the use of Equation 13-1,
consider a D.C. signal having a constant amplitude of +1 V. Four samples
of this signal are taken, as shown in the figure below.

Each of the samples has a value +1, giving the time sequence

x[0] = x[1] = x[3] = x[4] = 1

Using Equation 13-1 to calculate the DFT of this sequence and making use
of Euler’s identity,

exp (–iθ) = cos(θ) – jsin(θ)

you get:

 = x[0] + x[1] + x[2] + x[3] = 4

a
m

p
lit

u
d
e

time

+1 V

0 1 2 3

x[0] x[1] x[2] x[3]

X 0[] xie
j2πi0 N⁄–

i 0=

N 1–

∑=

X 1[] x 0[] x 1[] π
2
--- 

 cos j
π
2
--- 

 sin– 
  x 2[] π()cos j π()sin–()

x 3[] 3π
2

------ 
 cos j

3π
2

------ 
 sin– 

  1 j– 1– j+() 0==

+ + +=

X 2[] x 0[] x 1[] π()cos j π()sin–() x 2[] 2π()cos j 2π()sin–()
x 3[] 3π()cos j 3π()sin–() 1 1– 1 1–+() 0==

+ + +=

X 3[] x 0[] x 1[] 3π
2

------ 
 cos j

3π
2

------ 
 sin– 

  x 2[] 3π()cos j 3π()sin–()

x 3[] 9π
2

------ 
 cos j

9π
2

------ 
 sin– 

  1 j– 1– j–() 0==

+ +=

Chapter 13 Digital Signal Processing

LabVIEW User Manual 13-4 © National Instruments Corporation

Therefore, except for the DC component, X[0], all the other values are zero,
which is as expected. However, the calculated value of X[0] depends on
the value of N (the number of samples). Because you had N = 4, X[0] = 4.
If N = 10, then you would have calculated X[0] = 10. This dependency of
X[] on N also occurs for the other frequency components. Thus, you
usually divide the DFT output by N, so as to obtain the correct magnitude
of the frequency component.

Magnitude and Phase Information
You have seen that N samples of the input signal result in N samples of the
DFT. That is, the number of samples in both the time and frequency
representations is the same. From Equation 13-1, you see that regardless of
whether the input signal x[i] is real or complex, X[k] is always complex
(although the imaginary part may be zero). Thus, because the DFT is
complex, it contains two pieces of information—the amplitude and the
phase. It turns out that for real signals (x[i] real) such as those obtained from
the output of one channel of a DAQ board, the DFT is symmetric with the
following properties:

| X[k] | = | X[N–k] |

and

phase (X[k]) = – phase(X[N–k])

The terms used to describe this symmetry are that the magnitude of X[k] is
even symmetric, and phase(X[k]) is odd symmetric. An even symmetric
signal is one that is symmetric about the y-axis, whereas an odd symmetric
signal is symmetric about the origin. This is shown in the following figures.

The net effect of this symmetry is that there is repetition of information
contained in the N samples of the DFT. Because of this repetition of
information, only half of the samples of the DFT actually need to be
computed or displayed, as the other half can be obtained from this
repetition.

y

x

even symmetry

y

x

odd symmetry

Chapter 13 Digital Signal Processing

© National Instruments Corporation 13-5 LabVIEW User Manual

Note If the input signal is complex, the DFT will be nonsymmetric and you cannot use

this trick.

Frequency Spacing between DFT/FFT Samples

If the sampling interval is ∆t seconds, and the first (k = 0) data sample is at
0 seconds, then the kth (k > 0, k integer) data sample is at k∆t seconds.
Similarly, if the frequency resolution is ∆f Hz

() then the kth sample of the DFT occurs at a frequency of k∆f

Hz. (Actually, as you will soon see, this is valid for only up to the first half
of the frequency components. The other half represent negative frequency
components.) Depending on whether the number of samples, N, is even or
odd, you can have a different interpretation of the frequency corresponding
to the kth sample of the DFT.

For example, suppose N is even and let . The following table
shows the frequency to which each format element of the complex output
sequence X corresponds.

Note that the pth element, X[p], corresponds to the Nyquist frequency.
The negative entries in the second column beyond the Nyquist frequency
represent negative frequencies.

For example, if N = 8, p = N/2 = 4, then

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] 4∆f (Nyquist freq)

X[5] –3∆f

X[6] –2∆f

X[7] –∆f

Here, X[1] and X[7] will have the same magnitude, X[2] and X[6} will
have the same magnitude, and X[3] and X[5] will have the same magnitude.
The difference is that whereas X[1], X[2], and X[3] correspond to positive
frequency components, X[5], X[6], and X[7] correspond to negative
frequency components. Note that X[4] is at the Nyquist frequency.

f∆
fs

N
----=

p
N

2
----=

Chapter 13 Digital Signal Processing

LabVIEW User Manual 13-6 © National Instruments Corporation

The following illustration represents this complex sequence for N = 8.

Such a representation, where you see both the positive and negative
frequencies, is known as the two-sided transform.

Note that when N is odd, there is no component at the Nyquist frequency.

For example, if N = 7, p = (N–1)/2 = (7–1)/2 = 3, and you have

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] –3∆f

X[5] –2∆f

X[6] –∆f

Now X[1] and X[6] have the same magnitude, X[2] and X[5] have the same
magnitude, and X[3] and X[4] have the same magnitude. However, whereas
X[1], X[2], and X[3] correspond to positive frequencies, X[4], X[5], and
X[6] correspond to negative frequencies. Because N is odd, there is no
component at the Nyquist frequency.

positive
frequencies

negative
frequencies

Nyquist
component

DC

Chapter 13 Digital Signal Processing

© National Instruments Corporation 13-7 LabVIEW User Manual

The following illustration represents the preceding table for N = 7.

This is also a two-sided transform, because you have both the positive and
negative frequencies.

Fast Fourier Transforms
Direct implementation of the DFT on N data samples requires
approximately N2 complex operations and is a time-consuming process.
However, when the size of the sequence is a power of 2,

N = 2m for m = 1, 2, 3,…

you can implement the computation of the DFT with approximately
N log2(N) operations. This makes the calculation of the DFT much faster,
and DSP literature refers to these algorithms as fast Fourier transforms
(FFTs). The FFT is nothing but a fast algorithm for calculating the DFT
when the number of samples (N) is a power of 2.

The advantages of the FFT include speed and memory efficiency, because
the VI can compute the FFT “in place,” that is, no additional memory
buffers are needed to compute the output. The size of the input sequence,
however, must be a power of 2. The DFT can efficiently process any size
sequence, but the DFT is slower than the FFT and uses more memory,
because it must allocate additional buffers for storing intermediate results
during processing.

positive
frequencies

negative
frequencies

DC

Chapter 13 Digital Signal Processing

LabVIEW User Manual 13-8 © National Instruments Corporation

Zero Padding
A technique employed to make the input sequence size equal to a power of
2 is to add zeros to the end of the sequence so that the total number of
samples is equal to the next higher power of 2. For example, if you have
10 samples of a signal, you can add six zeros to make the total number of
samples equal to 16 (= 24—a power of 2). This is shown below:

The addition of zeros to the end of the time domain waveform does
not affect the spectrum of the signal. In addition to making the total number
of samples a power of two so that faster computation is made possible
by using the FFT, zero padding also helps in increasing the frequency
resolution (recall that ∆f = fs/N) by increasing the number of samples, N.

Chapter 13 Digital Signal Processing

© National Instruments Corporation 13-9 LabVIEW User Manual

FFT VIs in the Analysis Library
The analysis library contains two VIs that compute the FFT of a signal.
They are the Real FFT VI and Complex FFT VI.

The difference between the two VIs is that the Real FFT VI computes the
FFT of a real-valued signal, whereas the Complex FFT VI computes the
FFT of a complex-valued signal. However, keep in mind that the outputs of
both VIs are complex.

Most real-world signals are real valued, and hence you can use the
Real FFT VI for most applications. Of course, you could also use the
Complex FFT VI by setting the imaginary part of the signal to zero.
An example of an application where you could use the Complex FFT VI
is when the signal consists of both a real and imaginary component. Such a
type of signal occurs frequently in the field of telecommunications, where
you modulate a waveform by a complex exponential. The process of
modulation by a complex exponential results in a complex signal, as shown
below:

The block diagram below shows a simplified version of how you can
generate 10 cycles of a complex signal:

x(t) modulation by
exp(–jωt)

y(t) = x(t)cos(ωt) – jx(t)sin(ωt)

To next stage

Chapter 13 Digital Signal Processing

LabVIEW User Manual 13-10 © National Instruments Corporation

Activity 13-1. Use the Real FFT VI

In this activity, your objective is to display the two-sided and the one-sided

Fourier transform of a signal using the Real FFT VI, and to observe the

effect of aliasing in the frequency spectrum.

Front Panel

1. Build the front panel shown in the following illustration.

Chapter 13 Digital Signal Processing

© National Instruments Corporation 13-11 LabVIEW User Manual

Block Diagram

2. Build the block diagram shown in the following illustration.

Array Size function (Functions»Array palette) scales the output of the
FFT by the number of samples so as to obtain the correct amplitude of the
frequency components.

Sine Wave function (Functions»Analysis»Signal Generation palette)
generates a time domain sinusoidal waveform.

Real FFT function (Functions»Analysis»Digital Signal Processing
palette) computes the FFT of the input data samples.

Complex to Polar function (Functions»Numeric»Complex palette)
separates the complex output of the FFT into its real and imaginary
(magnitude and phase) parts. The phase information is in units of radians.
Here you are displaying only the magnitude of the FFT.

The frequency spacing, ∆f, is given by dividing the sampling freq by the
of samples.

3. Save this VI as FFT_2sided.vi in the LabVIEW\Activity
directory.

4. Select frequency (Hz) = 10, sampling freq = 100, and
of samples = 100. Run the VI.

Notice the plots of the time waveform and the frequency spectrum.
Because sampling freq = # of samples = 100, you are in effect
sampling for 1 second. Thus, the number of cycles of the sine wave you
see in the time waveform is equal to the frequency(Hz) you select.
In this case, you will see 10 cycles. (If you change the frequency (Hz)
to 5, you will see five cycles).

Chapter 13 Digital Signal Processing

LabVIEW User Manual 13-12 © National Instruments Corporation

Two-Sided FFT

5. Examine the frequency spectrum (the Fourier transform). You will
notice two peaks, one at 10 Hz and the other at 90 Hz. The peak at
90 Hz is actually the negative frequency of 10 Hz. The plot you see is
known as the 2-sided FFT because it shows both the positive and the
negative frequencies.

6. Run the VI with frequency (Hz) = 10 and then with
frequency (Hz) = 20. For each case, note the shift in both peaks
of the spectrum.

Note Also observe the time domain plot for frequency (Hz) = 10 and 20. Which one gives

a better representation of the sine wave? Why?

7. Because fs = 100 Hz, you can accurately sample only signals having a
frequency < 50 Hz (Nyquist frequency = fs/2). Change the frequency

(Hz) to 48 Hz. You should see the peaks at ± 48 Hz on the spectrum
plot.

8. Now change the frequency (Hz) to 52 Hz. Is there any difference
between the result of step 5 and what you see on the plots now?
Because 52 > Nyquist, the frequency of 52 is aliased to
|100 – 52| = 48 Hz.

9. Change frequency (Hz) to 30 Hz and 70 Hz and run the VI. Is there
any difference between the two cases? Explain why.

One-Sided FFT

10. Modify the block diagram of the VI as shown below. You have seen
that the FFT had repetition of information because it contained
information about both the positive and the negative frequencies.
This modification now shows only half the FFT points (only the
positive frequency components). This representation is known as the
1-sided FFT. The 1-sided FFT shows only the positive frequency
components. Note that you need to multiply the positive frequency

Chapter 13 Digital Signal Processing

© National Instruments Corporation 13-13 LabVIEW User Manual

components by two to obtain the correct amplitude. The D.C.
component, however, is left untouched.

Equal To O? function (Functions»Comparison palette) tests to see if the
array index is equal zero. If so, it corresponds to the D.C. component and
should not be multiplied by two.

11. Run the VI with the following values: frequency (Hz) = 30,
sampling freq = 100, # of samples = 100.

12. Save the VI as FFT_1sided.vi in the LabVIEW\Activity
directory.

13. Change the value of frequency (Hz) to 70 and run the VI. Do you
notice any difference between this and the result of step 9?

End of Activity 13-1.

Chapter 13 Digital Signal Processing

LabVIEW User Manual 13-14 © National Instruments Corporation

The Power Spectrum

You have seen that the DFT (or FFT) of a real signal is a complex number,
having a real and an imaginary part. The power in each frequency
component represented by the DFT/FFT can be obtained by squaring the
magnitude of that frequency component. Thus, the power in the kth
frequency component (the kth element of the DFT/FFT) is given by |X[k]|2.
The plot showing the power in each of the frequency components is known
as the power spectrum. Because the DFT/FFT of a real signal is
symmetric, the power at a positive frequency of k∆f is the same as the
power at the corresponding negative frequency of –k∆f (DC and Nyquist
components not included). The total power in the DC

and Nyquist components are and , respectively.

Loss of Phase Information
Because the power is obtained by squaring the magnitude of the DFT/FFT,
the power spectrum is always real. The disadvantage of this is that the
phase information is lost. If you want phase information, you must use the
DFT/FFT, which gives you a complex output.

You can use the power spectrum in applications where phase information is
not necessary (for example, to calculate the harmonic power in a signal).
You can apply a sinusoidal input to a nonlinear system and see the power
in the harmonics at the system output.

Frequency Spacing between Samples
You can use the Power Spectrum VI in the Analysis»Digital Signal

Processing subpalette to calculate the power spectrum of the time domain
data samples. Just like the DFT/FFT, the number of samples from the
Power Spectrum VI output is the same as the number of data samples
applied at the input. Also, the frequency spacing between the output
samples is ∆f = fs/N.

X 0[] 2
X

N

2

2

Chapter 13 Digital Signal Processing

© National Instruments Corporation 13-15 LabVIEW User Manual

Summary

The time domain representation (sample values) of a signal can be
converted into the frequency domain representation by means of an
algorithm known as the discrete Fourier transform (DFT). To have fast
calculation of the DFT, an algorithm known as the fast Fourier transform
(FFT) is used. You can use this algorithm when the number of signal
samples is a power of two.

The output of the conventional DFT/FFT is two-sided because it contains
information about both the positive and the negative frequencies. This
output can be converted into a one-sided DFT/FFT by using only half the
DFT/FFT output points. The frequency spacing between the samples of the
DFT/FFT is ∆f = fs/N.

The power spectrum can be calculated from the DFT/FFT by squaring the
magnitude of the individual frequency components. The Power Spectrum
VI in the advanced analysis library does this automatically for you. The
units of the output of the Power Spectrum VI are in Vrms2. However, the
power spectrum does not provide any phase information.

The DFT, FFT, and power spectrum are useful for measuring the frequency
content of stationary or transient signals. The FFT provides the average
frequency content of the signal over the entire time that the signal was
acquired. For this reason, you use the FFT mostly for stationary signal
analysis (when the signal is not significantly changing in frequency content
over the time that the signal is acquired), or when you want only the average
energy at each frequency line. A large class of measurement problems fall
in this category. For measuring frequency information that changes during
the acquisition, you should use the joint time-frequency analysis (JTFA)
toolkit or the wavelet and filter banks designer (WFBD) toolkit.

© National Instruments Corporation 14-1 LabVIEW User Manual

14
Smoothing Windows

This chapter explains how using windows prevents spectral leakage and
improves the analysis of acquired signals. For examples of how to use the
analysis window VIs, see the examples located in examples\analysis\
windxmpl.llb.

Introduction to Smoothing Windows

In practical signal-sampling applications, you can obtain only a finite
record of the signal, even when you carefully observe the sampling theorem
and sampling conditions. Unfortunately for the discrete-time system, the
finite sampling record results in a truncated waveform that has different
spectral characteristics from the original continuous-time signal. These
discontinuities produce leakage of spectral information, resulting in a
discrete-time spectrum that is a smeared version of the original
continuous-time spectrum.

A simple way to improve the spectral characteristics of a sampled signal is
to apply smoothing windows. When performing Fourier or spectral
analysis on finite-length data, you can use windows to minimize the
transition edges of your truncated waveforms, thus reducing spectral
leakage. When used in this manner, smoothing windows act like
predefined, narrowband, lowpass filters.

Chapter 14 Smoothing Windows

LabVIEW User Manual 14-2 © National Instruments Corporation

About Spectral Leakage and Smoothing Windows

When you use the DFT/FFT to find the frequency content of a signal, it is

inherently assumed that the data that you have is a single period of a

periodically repeating waveform. This is shown in Figure 14-1. The first
period shown is the one sampled. The waveform corresponding to this
period is then repeated in time to produce the periodic waveform.

Figure 14-1. Periodic Waveform Created from Sampled Period

As seen in the previous figure, because of the assumption of periodicity
of the waveform, discontinuities between successive periods will occur.
This happens when you sample a noninteger number of cycles. These
artificial discontinuities turn up as very high frequencies in the spectrum
of the signal, frequencies that were not present in the original signal.
These frequencies could be much higher than the Nyquist frequency, and
as you have seen before, will be aliased somewhere between 0 and fs/2.
The spectrum you get by using the DFT/FFT therefore will not be the actual
spectrum of the original signal, but will be a smeared version. It appears as
if the energy at one frequency has leaked out into all the other frequencies.
This phenomenon is known as spectral leakage.

Time

One Period Discontinuity

Chapter 14 Smoothing Windows

© National Instruments Corporation 14-3 LabVIEW User Manual

Figure 14-2 shows a sine wave and its corresponding Fourier transform.
The sampled time domain waveform is shown in Graph 1. Because the
Fourier transform assumes periodicity, you repeat this waveform in time,
and the periodic time waveform of the sine wave of Graph 1 is shown in
Graph 2. The corresponding spectral representation is shown in Graph 3.
Because the time record in Graph 2 is periodic, with no discontinuities,
its spectrum is a single line showing the frequency of the sine wave. The
reason that the waveform in Graph 2 does not have any discontinuities is
because you have sampled an integer number of cycles (in this case, 1)
of the time waveform.

Figure 14-2. Sine Wave and Corresponding Fourier Transform

Chapter 14 Smoothing Windows

LabVIEW User Manual 14-4 © National Instruments Corporation

In Figure 14-3, you see the spectral representation when you sample a
noninteger number of cycles of the time waveform (namely 1.25).
Graph 1 now consists of 1.25 cycles of the sine wave. When you repeat
this periodically, the resulting waveform, as shown in Graph 2, consists
of discontinuities. The corresponding spectrum is shown in Graph 3.
Notice how the energy is now spread over a wide range of frequencies.
This smearing of the energy is spectral leakage. The energy has leaked
out of one of the FFT lines and smeared itself into all the other lines.

Figure 14-3. Spectral Representation When Sampling a Nonintegral Number
of Samples

Chapter 14 Smoothing Windows

© National Instruments Corporation 14-5 LabVIEW User Manual

Leakage exists because of the finite time record of the input signal.
To overcome leakage, one solution is to take an infinite time record,
from –infinity to +infinity. Then the FFT would calculate one single line at
the correct frequency. Waiting for infinite time is, however, not possible in
practice. So, because you are limited to having a finite time record, another
technique, known as windowing, is used to reduce the spectral leakage.

The amount of spectral leakage depends on the amplitude of the
discontinuity. The larger the discontinuity, the more the leakage, and
vice versa. You can use windowing to reduce the amplitude of the
discontinuities at the boundaries of each period. It consists of multiplying
the time record by a finite length window whose amplitude varies smoothly
and gradually towards zero at the edges. This is shown in Figure 14-4,
where the original time signal is windowed using a Hanning window.
Notice that the time waveform of the windowed signal gradually tapers to
zero at the ends. Therefore, when performing Fourier or spectral analysis
on finite-length data, you can use windows to minimize the transition edges
of your sampled waveform. A smoothing window function applied to the
data before it is transformed into the frequency domain minimizes spectral
leakage.

Note that if the time record contains an integral number of cycles, as shown
in Figure 14-2, then the assumption of periodicity does not result in any
discontinuities, and thus there is no spectral leakage. The problem arises
only when you have a nonintegral number of cycles.

Chapter 14 Smoothing Windows

LabVIEW User Manual 14-6 © National Instruments Corporation

Figure 14-4. Time Signal Windowed Using a Hamming Window

Chapter 14 Smoothing Windows

© National Instruments Corporation 14-7 LabVIEW User Manual

Windowing Applications

There are several reasons to use windowing. Some of these are:

• To define the duration of the observation.

• Reduction of spectral leakage.

• Separation of a small amplitude signal from a larger amplitude signal
with frequencies very close to each other.

Characteristics of Different Types of Window Functions

Applying a window to (windowing) a signal in the time domain is
equivalent to multiplying the signal by the window function. Because
multiplication in the time domain is equivalent to convolution in the
frequency domain, the spectrum of the windowed signal is a convolution
of the spectrum of the original signal with the spectrum of the window.
Thus, windowing changes the shape of the signal in the time domain,
as well as affecting the spectrum that you see.

Many different types of windows are available in the LabVIEW analysis
library. Depending on your application, one may be more useful than the
others. Some of these windows are:

Rectangular (None)
The rectangular window has a value of one over its time interval.
Mathematically, it can be written as:

w[n] = 1.0

for

n = 0, 1, 2........N–1

where N is the length of the window. Applying a rectangular window
is equivalent to not using any window. This is because the rectangular
function just truncates the signal to within a finite time interval.
The rectangular window has the highest amount of spectral leakage.

Chapter 14 Smoothing Windows

LabVIEW User Manual 14-8 © National Instruments Corporation

The rectangular window for N = 32 is shown in the following illustration:

The rectangular window is useful for analyzing transients that have a
duration shorter than that of the window. It is also used in order tracking,
where the effective sampling rate is proportional to the speed of the shaft in
rotating machines. In this application, it detects the main mode of vibration
of the machine and its harmonics.

Hanning
This window has a shape similar to that of half a cycle of a cosine wave.
Its defining equation is

w(n) = 0.5 – 0.5cos(2πn/N)

for

n = 0, 1, 2,N–1

A Hanning window with N = 32 is shown below:

Chapter 14 Smoothing Windows

© National Instruments Corporation 14-9 LabVIEW User Manual

The Hanning window is useful for analyzing transients longer than the time
duration of the window, and also for general purpose applications.

Hamming
This window is a modified version of the Hanning window. Its shape is also
similar to that of a cosine wave. It can be defined as

w(n) = 0.54 – 0.46cos(2πn/N)

for

n = 0, 1, 2,N–1

A Hamming window with N = 32 is shown below:

You see that the Hanning and Hamming windows are somewhat similar.
However, note that in the time domain, the Hamming window does not get
as close to zero near the edges as does the Hanning window.

Chapter 14 Smoothing Windows

LabVIEW User Manual 14-10 © National Instruments Corporation

Kaiser-Bessel
This window is a “flexible” window whose shape the user can modify by
adjusting the parameter beta. Thus, depending on your application, you can
change the shape of the window to control the amount of spectral leakage.
The Kaiser-Bessel window for different values of beta are shown below:

Note that for small values of beta, the shape is close to that of a rectangular
window. Actually, for beta = 0 .0, you do get a rectangular window. As you
increase beta, the window tapers off more to the sides.

This window is good for detecting two signals of almost the same
frequency, but significantly different amplitudes.

Chapter 14 Smoothing Windows

© National Instruments Corporation 14-11 LabVIEW User Manual

Triangle
The shape of this window is that of a triangle. It is given by

w[n] = 1 – | (2n–N) / N |

for

n = 0, 1, 2, ..., n–1

A triangle window for N = 32 is shown below:

Flattop
This window has the best amplitude accuracy of all the window functions.
The increased amplitude accuracy (± 0.02 dB for signals exactly between
integral cycles) is at the expense of frequency selectivity. The Flattop
window is most useful in accurately measuring the amplitude of single
frequency components with little nearby spectral energy in the signal.
The Flattop window can be defined as

w(n) = a0 – a1*cos(2πn/N) + a2*cos(4πn/N)]

where

a0 = 0.2810638602
a1 = 0.5208971735
a2 = 0.1980389663

Chapter 14 Smoothing Windows

LabVIEW User Manual 14-12 © National Instruments Corporation

A flattop window is shown below:

Exponential
The shape of this window is that of a decaying exponential. It can be
mathematically expressed as:

for

n = 0, 1, 2.......N – 1

where f is the final value. The initial value of the window is one, and it
gradually decays towards zero. The final value of the exponential can be
adjusted to between 0 and 1. The exponential window for N = 32, with the
final value specified as 0.1, is shown below:

This window is useful in analyzing transients (signals that exist only for a
short time duration) whose duration is longer than the length of the window.

w n[] e

n f()ln
N 1–
--------------- 

 
f

n

N 1–
------------- 

 
= =

Chapter 14 Smoothing Windows

© National Instruments Corporation 14-13 LabVIEW User Manual

This window can be applied to signals that decay exponentially, such as the
response of structures with light damping that are excited by an impact (for
example, a hammer).

Windows for Spectral Analysis Versus Windows
for Coefficient Design

The window VIs implemented in the Analysis library in LabVIEW are
designed for spectral analysis applications. In these applications, the input
signal is windowed by passing it through one of the window VIs. The
windowed signal is then passed to a DFT-based VI for frequency-domain
display and analysis.

The window functions designed for spectral analysis must be DFT-even,
a term defined by Fredric J. Harris in his paper On the Use of Windows

for Harmonic Analysis with the Discrete Fourier Transform (Proceedings

of the IEEE, Volume 66, No.1, January 1978). A window function is
DFT-even if its dot product (inner product) with integral cycles of sine
sequences is identically zero. Another way to think of a DFT-even sequence
is that its DFT has no imaginary component.

The following figures illustrate the Hanning window and one cycle of a sine
pattern for a sample size of 8. The figures below show that the DFT-even
Hanning window is not symmetric about its midpoint and its last point is
not equal to its first point, much like one complete cycle of a sine pattern.

Chapter 14 Smoothing Windows

LabVIEW User Manual 14-14 © National Instruments Corporation

Finally, the DFT considers input sequences to be periodic—that the
signal being analyzed is actually a concatenation of the input signal.
The following illustration shows three such cycles of the previous
sequences, demonstrating the smooth periodic extension of the DFT-even
window and the single-cycle sine pattern.

Another type of window application is that of FIR filter design, see the
Windowed FIR Filters section in Chapter 16, Filtering. This application
requires windows that are symmetric about their midpoint.

The following equations of the Hanning window function illustrate the
difference between the DFT-even window function (spectral analysis) and
the symmetrical window function (coefficient design).

Chapter 14 Smoothing Windows

© National Instruments Corporation 14-15 LabVIEW User Manual

Hanning window function for spectral analysis:

for

i=0,1, 2, ..., N–1

Hanning window function for symmetrical coefficient design:

for

i=0, 1, 2, ..., N–1

The two equations above show that you can implement the symmetrical
window functions by slightly modifying the use of the DFT-even window
functions. The following illustration shows a block diagram that uses the
Hanning Window VI to implement symmetrical windowing of filter
coefficients.

See Appendix A, Analysis References, for more information on smoothing
windows.

w i[] 0.5 1
2πi

N 
 


cos–

=

w i[] 0.5 1
2πi

N 1– 
 


cos–

=

Chapter 14 Smoothing Windows

LabVIEW User Manual 14-16 © National Instruments Corporation

What Type of Window Do I Use?
Now that you have seen several of the many different types of windows that
are available, you may ask, “What type of window should I use?”
The answer depends on the type of signal you have and what you are
looking for. Choosing the correct window requires some prior knowledge
of the signal that you are analyzing. In summary, the following table shows
the different types of signals and the appropriate windows that you can use
with them.

In many cases, you may not have sufficient prior knowledge of the signal,
so you need to experiment with different windows to find the best one.

Type of signal Window

Transients whose duration is shorter than the length
of the window

Rectangular

Transients whose duration is longer than the length
of the window

Exponential, Hanning

General-purpose applications Hanning

Order tracking Rectangular

System analysis (frequency response measurements) Hanning (for random excitation),
Rectangular (for pseudorandom
excitation)

Separation of two tones with frequencies very close
to each other, but with widely differing amplitudes

Kaiser-Bessel

Separation of two tones with frequencies very close
to each other, but with almost equal amplitudes

Rectangular

Accurate single tone amplitude measurements Flat Top

Chapter 14 Smoothing Windows

© National Instruments Corporation 14-17 LabVIEW User Manual

Activity 14-1. Compare a Windowed and
Nonwindowed Signal

Your objective is to observe the difference (both time and frequency

domains) between a windowed and nonwindowed signal.

Front Panel

1. Open a new front panel and create the objects as shown in the
following illustration.

Chapter 14 Smoothing Windows

LabVIEW User Manual 14-18 © National Instruments Corporation

Block Diagram

2. Build the block diagram shown in the following illustration.

The Sine Pattern VI (Functions»Analysis»Signal Generation palette)
generates a sine wave with the number of cycles specified in the cycles
control.

The time waveform of the sine wave is windowed using the Hamming
Window VI (Functions»Analysis»Windows palette), and both the
windowed and nonwindowed time waveforms are displayed on the left
two plots on the front panel.

The Amplitude and Phase Spectrum VI (Functions»Analysis»

Measurement palette) obtains the amplitude spectrum of the windowed
and nonwindowed time waveforms. These waveforms are displayed on the
two plots on the right side of the front panel.

3. Save the VI as Windowed & Unwindowed Signal.vi in the
LabVIEW\Activity directory.

4. Set cycles to 10 (an integral number) and run the VI. Note that the
spectrum of the windowed signal is broader (wider) than the spectrum
of the nonwindowed signal. But both the spectra are concentrated
near 10 on the x-axis.

Chapter 14 Smoothing Windows

© National Instruments Corporation 14-19 LabVIEW User Manual

5. Change cycles to 10.25 (a nonintegral number) and run the VI.
Note that the spectrum of the nonwindowed signal is now more spread
out than it was before. This is because now you have a noninteger
number of cycles, and when you repeat the waveform to make it
periodic, you get discontinuities. The spectrum of the windowed signal
is still concentrated, but that of the nonwindowed signal has now
smeared all over the frequency domain. (This is spectral leakage.)

6. Change cycles to 10.5 and observe the frequency domain plots.
Spectral leakage of the original signal is clearly apparent.

End of Activity 14-1.

© National Instruments Corporation 15-1 LabVIEW User Manual

15
Spectrum Analysis and
Measurement

This chapter shows how to determine the amplitude and phase spectrum,
develop a spectrum analyzer, and determine the total harmonic distortion
(THD) of your signals. For examples of how to use the measurement VIs,
see the examples located in examples\analysis\measure\
measxmpl.llb.

Introduction to Measurement VIs

Several measurement VIs perform commonly used time domain to
frequency-domain transformations such as amplitude and phase spectrum,
signal power spectrum, network transfer function, and so on. Other
measurement VIs interact with VIs that perform such functions as scaled
time domain windowing and power and frequency estimation.

You can use the measurement VIs for the following applications:

• Spectrum analysis applications

– Amplitude and phase spectrum

– Power spectrum

– Scaled time domain window

– Power and frequency estimate

– Harmonic analysis and total harmonic distortion (THD)
measurements

• Network and dual channel analysis applications

– Impulse response function

– Network functions (including coherence)

– Cross power spectrum

Chapter 15 Spectrum Analysis and Measurement

LabVIEW User Manual 15-2 © National Instruments Corporation

The DFT, FFT, and power spectrum are useful for measuring the frequency
content of stationary or transient signals. The FFT provides the average
frequency content of the signal over the entire time that the signal was
acquired. For this reason, you use the FFT mostly for stationary signal
analysis (when the signal is not significantly changing in frequency content
over the time that the signal is acquired), or when you want only the average
energy at each frequency line. A large class of measurement problems fall
in this category. For measuring frequency information that changes during
the acquisition, you should use joint time-frequency analysis VIs, such as
the Gabor Spectrogram.

The measurement VIs are built on top of the signal processing VIs and have
the following characteristics, which model the behavior of traditional,
benchtop frequency analysis instruments.

• Real-world, time-domain signal input is assumed.

• Outputs are in magnitude and phase, scaled, and in units where
appropriate, ready for immediate graphing.

• Single-sided spectrums from DC to .

• Sampling period to frequency interval conversion for graphing with
appropriate X axis units (in Hz).

• Corrections for the windows being used are applied where appropriate.

• Windows are scaled so that each window gives the same peak spectrum
amplitude result within its amplitude accuracy constraints.

• Views power or amplitude spectrums in various unit formats, including
decibels and spectral density units, such as , , and
so on.

Sampling Frequency
2

V
2

Hz⁄ V Hz⁄

Chapter 15 Spectrum Analysis and Measurement

© National Instruments Corporation 15-3 LabVIEW User Manual

In general, you can directly connect the measurement VIs to the output of
data acquisition VIs and to graphs through the axis cluster, as the following
spectrum analyzer diagram shows.

The measurement examples include the following:

• Amplitude Spectrum Example

• Simulated Dynamic Signal Analysis Example

• Total Harmonic Distortion (THD) Example

You can use the following examples with National Instruments hardware.

• Simple Spectrum Analyzer and Spectrum Analyzer—Both work with
any analog input hardware (use dynamic signal acquisition hardware
for good quality measurements).

• Dynamic Signal Analyzer and Network Analyzer—Both work with
dynamic signal acquisition (DSA) hardware.

Chapter 15 Spectrum Analysis and Measurement

LabVIEW User Manual 15-4 © National Instruments Corporation

You Will Learn

• About the Measurement VIs and how they can be used to perform
various signal processing operations.

• About how to calculate the frequency (amplitude & phase) spectrum of
a time domain signal, with the appropriate units.

• About how to calculate the frequency response of a system, by
processing the system stimulus and response signals, with the
appropriate units.

• About how to compute the coherence function and how to use it to
understand your frequency response measurements.

• About how to determine the total harmonic distortion present in
a signal.

Spectrum Analysis

Calculating the Amplitude and Phase Spectrum of a Signal
In many applications, knowing the frequency content of a signal provides
insight into the system that generated the signal. You can use the
information obtained analyze the frequency content of sounds, calibrate
instruments, estimate the amount of noise and vibration generated by parts
of machines, and so on. The next activity demonstrates how to use the
Amplitude and Phase Spectrum VI to measure the amplitude and phase of
a signal.

Chapter 15 Spectrum Analysis and Measurement

© National Instruments Corporation 15-5 LabVIEW User Manual

Activity 15-1. Use the Amplitude and
Phase Spectrum VI

In this activity, your objective is to compute the amplitude and phase

spectrum of a signal.

Front Panel

1. Open the Amp Spectrum Example VI found in the examples\
analysis\measure\measxmpl.llb library. The signal is
generated by the Simple Function Generator VI, which simulates a
multi-function generator with additive white noise.

Chapter 15 Spectrum Analysis and Measurement

LabVIEW User Manual 15-6 © National Instruments Corporation

Block Diagram

2. Open and examine the block diagram.

The Amplitude and Phase Spectrum VI calculates the amplitude spectrum
and the phase spectrum of a time domain signal. The connections to this VI
are discussed below.

The input time domain signal is applied at the Signal (V) control.
The magnitude and phase of the spectrum of the input signal is available at
the Amp Spectrum Mag (Vrms) and the Amp Spectrum Phase (radians)
outputs respectively. The Spectrum Unit Conversion VI is used to convert
the original Vrms output of the Amplitude and Phase Spectrum to any other
common units (Vrms, Vpk, Vrms^2, Vpk^2, , ,
Vrms^2/Hz, and Vpk^2/Hz). The last four units are amplitude spectral
density (,) and power spectral density (Vrms^2/Hz,
and Vpk^2/Hz). The window constants output cluster from the Scaled
Time Domain Window VI contains constants for the selected window
which are required for spectral density measurements.

Vrms Hz Vpk Hz

Vrms Hz Vpk Hz

Chapter 15 Spectrum Analysis and Measurement

© National Instruments Corporation 15-7 LabVIEW User Manual

3. Run the VI.

4. Run the Amp Spectrum example continuously with the Simple
Function Generator front panel open so that you can change the
simulated frequency and waveform type as well as the amplitude and
noise level of the signal. Notice the changes to the amplitude spectrum.

End of Activity 15-1.

Calculating the Frequency Response of a System
Measuring the frequency content of individual signals is useful on its own,
but the frequency response of systems is widely used in analyzing the
behavior of all kinds of networks, from the impedance of electrical
components to the analysis of the natural vibrating frequency of dynamic
structures. The frequency response completely characterizes how a
network will respond to a given input.

Chapter 15 Spectrum Analysis and Measurement

LabVIEW User Manual 15-8 © National Instruments Corporation

Activity 15-2. Compute the Frequency and
Impulse Response

Your objective is to compute the frequency response and impulse

response of a system, and to compute the coherence function and

understand how it is used to validate your frequency response

measurements.

Front Panel

1. Open a new front panel and add the objects shown in the following
illustration. This front panel shows the frequency response magnitude
and the impulse response function for a bandpass filter. The coherence
function is plotted on the same scale as the frequency response
magnitude because it is also a spectral measurement.

Chapter 15 Spectrum Analysis and Measurement

© National Instruments Corporation 15-9 LabVIEW User Manual

Block Diagram

2. Open the block diagram and modify it as shown in the following
illustration. Here we are measuring the system response of a bandpass
filter (Butterworth Filter VI) by passing white noise (Uniform White
Noise VI) as the system stimulus and collecting the filter output as the
system response. Both the stimulus and response are windowed by the
Hanning window (Scaled Time Domain Window VI) and the entire
system is monitored for a number of frames, or averages. The stimulus
and response data is then sent to the Network Functions (avg) VI where
all the actual computations related to the system frequency response
are made.

The Network Functions (avg) VI computes the frequency response
(magnitude and phase), cross power spectrum (magnitude and phase),
coherence function, and impulse response. By increasing the number of
frames of input and output data (increasing averages on the front panel), the
estimates of the system response functions improve. In this diagram, only
the frequency response magnitude, coherence, and impulse response are
plotted.

The coherence function measures how much of the output signal is
correlated with the input signal, and thus it gives an indication of the
validity of your frequency response estimate. Injected noise and nonlinear
system behavior at certain frequencies cause the coherence function to dip
below unity at those frequencies. For uncorrelated system noise, the more
averages are taken, the more the coherence function approaches unity, and

Chapter 15 Spectrum Analysis and Measurement

LabVIEW User Manual 15-10 © National Instruments Corporation

the better the frequency response estimate. One last bit of information to
remember about the coherence function is that it is only defined when you
are averaging more than one frame of input and output data. For only one
average, coherence will be unity at all frequencies, even where your
frequency response estimates may be poor.

End of Activity 15-2.

Harmonic Distortion

When a signal, x(t), of a particular frequency (for example, f1) is passed
through a nonlinear system, the output of the system consists of not only
the input frequency (f1), but also its harmonics (f2 = 2*f1, f3 = 3*f1,
f4 = 4*f1, and so on). The number of harmonics, and their corresponding
amplitudes, that are generated depends on the degree of nonlinearity of the
system. In general, the more the nonlinearity, the higher the harmonics, and
vice versa.

An example of a nonlinear system is a system where the output y(t) is the
cube of the input signal x(t).

So, if the input is

x(t) = cos(ωt),

the output is

x3(t) = 0.5*cos(ωt) + 0.25*[cos(ωt) + cos(3ωt)]

Therefore, the output contains not only the input fundamental frequency of
ω, but also the third harmonic of 3ω.

Nonlinear
System

f1 f , 2f , 3f , 4f , …1 1 1 1

y(t) = f(x) = x (t)cos(ωt) cos (ωt)3 3

Chapter 15 Spectrum Analysis and Measurement

© National Instruments Corporation 15-11 LabVIEW User Manual

Total Harmonic Distortion
To determine the amount of nonlinear distortion that a system introduces,
you need to measure the amplitudes of the harmonics that were introduced
by the system relative to the amplitude of the fundamental. Harmonic
distortion is a relative measure of the amplitudes of the harmonics as
compared to the amplitude of the fundamental. If the amplitude of the
fundamental is A1, and the amplitudes of the harmonics are A2
(second harmonic), A3 (third harmonic), A4 (fourth harmonic), ...AN (Nth
harmonic), then the total harmonic distortion (THD) is given by

THD = sqrt (A1
2 + A2 2 + A3

2 + ... AN
2)/A1

and the percentage total harmonic distortion (% THD) is

% THD = 100*sqrt (A1
2 + A2

2 + A3
2 + AN

2)/A1

In the next activity, you will generate a sine wave and pass it through a
nonlinear system. The block diagram of the nonlinear system is shown
below:

Verify from the block diagram that if the input is x(t) = cos(ωt), the output is

y(t) = cos(ωt) + 0.5cos2(ωt) + 0.1n(t)
= cos(ωt) + [1 + cos(2ωt)]/4 + 0.1n(t)
= 0.25 + cos(ωt) + 0.25cos(2ωt) + 0.1n(t)

Therefore, this nonlinear system generates an additional DC component as
well as the second harmonic of the fundamental.

Chapter 15 Spectrum Analysis and Measurement

LabVIEW User Manual 15-12 © National Instruments Corporation

Using the Harmonic Analyzer VI
You can use the Harmonic Analyzer VI to calculate the %THD present in
the signal at the output of the nonlinear system. It finds the fundamental and
harmonic components (their amplitudes and corresponding frequencies)
present in the power spectrum applied at its input, and calculates the
percentage of total harmonic distortion (%THD) and the percentage of total
harmonic distortion plus noise (%THD + Noise). The connections to the
Harmonic Analyzer VI are shown below:

To use this VI, you need to give it the power spectrum of the signal whose
THD you want it to calculate. Thus, in this example, you need to make the
following connections:

The Scaled Time Domain Window VI applies a window to the output y(t)
of the nonlinear system (Your System). This is then passed on to the Auto
Power Spectrum VI, which sends the power spectrum of y(t) to the
Harmonic Analyzer VI, which then calculates the amplitudes and
frequencies of the harmonics, the THD, and the %THD.

You can specify the number of harmonics you want the VI to find in the
harmonics control. Their amplitudes and corresponding frequencies are
returned in the Harmonic Amplitudes and Harmonic Frequencies array
indicators.

Chapter 15 Spectrum Analysis and Measurement

© National Instruments Corporation 15-13 LabVIEW User Manual

Note The number specified in the # harmonics control includes the fundamental. So, if

you enter a value of 2 in the # harmonics control, it means to find the fundamental

(say, of freq f1) and the second harmonic (of frequency f2 = 2*f1). If you enter a

value of N, the VI will find the fundamental and the corresponding (N–1)

harmonics.

The following are explanations of some of the other controls:

fundamental frequency is an estimate of the frequency of the fundamental
component. If left as zero (the default), the VI uses the frequency of the
non-DC component with the highest amplitude as the fundamental
frequency.

window is the type of window you applied to your original time signal.
It is the window that you select in the Scaled Time Domain Window VI.
For an accurate estimation of the THD, it is recommended that you select
a window function. The default is the uniform window.

sampling rate is the input sampling frequency in Hz.

The % THD + Noise output requires some further explanation. The
calculations for % THD + Noise are almost similar to that for % THD,
except that the noise power is also added to that of the harmonics. It is
given by

% THD + Noise = 100*sqrt (sum(APS))/A1

where sum(APS) is the sum of the Auto Power Spectrum elements minus
the elements near DC and near the index of the fundamental frequency.

Chapter 15 Spectrum Analysis and Measurement

LabVIEW User Manual 15-14 © National Instruments Corporation

Activity 15-3. Calculate Harmonic Distortion

Your objective is to use the Harmonic Analyzer VI for harmonic

distortion calculations.

Block Diagram

1. Open the THD Example VI from examples\analysis\
measxmpl.llb and view the block diagram.

Some of this will already be familiar to you. Your System is the nonlinear
system that you saw previously. Its output is windowed, and the power
spectrum calculated and given to the Harmonic Analyzer VI.

The Sine Wave VI generates a fundamental of frequency specified in the
fundamental frequency control.

Chapter 15 Spectrum Analysis and Measurement

© National Instruments Corporation 15-15 LabVIEW User Manual

Front Panel

2. View the front panel. At the bottom, you see a plot of the power
spectrum of the output of the nonlinear system. On the top right side
are the array indicators for the frequencies and amplitudes of the
fundamental and its harmonics. The size of the array depends on the
value entered in the # harmonics control.

3. Change the fundamental frequency to 1000, # harmonics to 2, and
run the VI several times. Each time, note the values in the output
indicators (Harmonic Frequencies, Harmonic Amplitudes,
% THD, and % THD + Noise).

Why do you get different values each time you run the VI?

Which of the values, % THD or % THD + Noise, is larger? Can you
explain why?

4. Run the VI with different selections of the window control and observe
the peaks in the power spectrum.

Which window gives the narrowest peaks? The widest? Can you
explain why?

Chapter 15 Spectrum Analysis and Measurement

LabVIEW User Manual 15-16 © National Instruments Corporation

5. Change the fundamental frequency to 3000 and run the VI.

Why do you get an error?

Hint: Consider the relationship between the Nyquist frequency and the
frequency of the harmonic(s).

6. When you finish, close the VI and exit LabVIEW.

End of Activity 15-3.

Summary

You have seen that the measurement VIs can perform common
measurement tasks. Some of these tasks include calculating the amplitude
and phase spectrum of a signal, and the amount of harmonic distortion.
Other VIs calculate properties of a system such as its transfer function, its
impulse response, the cross power spectrum between the input and output
signals, and so on. The ready-made VIs to perform these measurements are
available in the Analysis»Measurements subpalette.

© National Instruments Corporation 16-1 LabVIEW User Manual

16
Filtering

This chapter explains how to filter unwanted frequencies from signals
using infinite impulse response filters (IIR), finite impulse response filters
(FIR), and nonlinear filters. For examples of how to use the analysis filter
VIs, see the examples located in examples\analysis\fltrxmpl.llb.

Introduction to Digital Filtering Functions

Analog filter design is one of the most important areas of electronic design.
Although analog filter design books featuring simple, tested filter designs
exist, filter design is often reserved for specialists because it requires
advanced mathematical knowledge and understanding of the processes
involved in the system affecting the filter.

Modern sampling and digital signal processing tools make it possible to
replace analog filters with digital filters in applications that require
flexibility and programmability. These applications include audio,
telecommunications, geophysics, and medical monitoring.

Digital filters have the following advantages over their analog counterparts:

• They are software programmable.

• They are stable and predictable.

• They do not drift with temperature or humidity and do not require
precision components.

• They have a superior performance-to-cost ratio.

You can use digital filters in LabVIEW to control parameters such as filter
order, cutoff frequencies, amount of ripple, and stopband attenuation.

The digital filter VIs described in this section follow the virtual instrument
philosophy. The VIs handle all the design issues, computations, memory
management, and actual data filtering internally, transparent to the user.
You do not have to be an expert in digital filters or digital filter theory to
process the data.

Chapter 16 Filtering

LabVIEW User Manual 16-2 © National Instruments Corporation

The following discussion of sampling theory is intended to give you a better
understanding of the filter parameters and how they relate to the input
parameters.

The sampling theorem states that you can reconstruct a continuous-time
signal from discrete, equally spaced samples if the sampling frequency is at
least twice that of the highest frequency in the time signal. Assume you can
sample the time signal of interest at ∆t equally spaced intervals without
losing information. The ∆t parameter is the sampling interval.

You can obtain the sampling rate or sampling frequency fs from the
sampling interval

,

which means that, according to the sampling theorem, the highest
frequency that the digital system can process is

.

The highest frequency the system can process is known as the Nyquist
frequency. This also applies to digital filters. For example, if your sampling
interval is

∆t = 0.001 sec,

then the sampling frequency is

fs = 1,000 Hz,

and the highest frequency that the system can process is

fNyq = 500 Hz.

The following types of filtering operations are based upon filter design
techniques:

• Smoothing windows

• Infinite impulse response (IIR) or recursive digital filters

• Finite impulse response (FIR) or nonrecursive digital filters

• Nonlinear filters

fs

1
t∆

-----=

fNyq

fs

2
---=

Chapter 16 Filtering

© National Instruments Corporation 16-3 LabVIEW User Manual

The rest of this chapter presents a brief theoretical background on the
IIR, FIR, and nonlinear techniques and discusses the digital filter VIs
corresponding to each technique. Refer to Chapter 14, Smoothing

Windows, for information about the VIs that implement smoothing
windows.

Ideal Filters

Filters alter or remove unwanted frequencies. Depending on the frequency
range that they either pass or attenuate, they can be classified into the
following types:

• A lowpass filter passes low frequencies, but attenuates high
frequencies.

• A highpass filter passes high frequencies, but attenuates low
frequencies.

• A bandpass filter passes a certain band of frequencies.

• A bandstop filter attenuates a certain band of frequencies.

The ideal frequency response of these filters is shown below:

You see that the lowpass filter passes all frequencies below fc, whereas the
highpass filter passes all frequencies above fc. The bandpass filter passes all
frequencies between fc1 and fc2, whereas the bandstop filter attenuates all
frequencies between fc1 and fc2. The frequency points fc, fc1 and fc2 are
known as the cut-off frequencies of the filter. When designing filters, you
need to specify these cut-off frequencies.

The frequency range that is passed through the filter is known as the
passband (PB) of the filter. An ideal filter has a gain of one (0 dB) in the
passband so that the amplitude of the signal neither increases nor decreases.
The stopband (SB) corresponds to that range of frequencies that do not pass

a
m

p
lit

u
d

e

frequency

a
m

p
lit

u
d

e

frequency

a
m

p
lit

u
d

e

frequency

a
m

p
lit

u
d

e

frequency
fc

Lowpass
fc

Highpass
fc1 fc2

Bandpass
fc1 fc2

Bandstop

Chapter 16 Filtering

LabVIEW User Manual 16-4 © National Instruments Corporation

through the filter at all and are rejected (attenuated). The passband and the
stopband for the different types of filters are shown below:

Note that whereas the lowpass and highpass filters have one passband and
one stopband, the bandpass filter has one passband and two stopbands, and
the bandstop filter has two passbands and one stopband.

Practical (Nonideal) Filters

The Transition Band
Ideally, a filter should have a unit gain (0 dB) in the passband, and a gain
of zero (–infinity dB) in the stopband. However, in a real implementation,
not all of these criteria can be fulfilled. In practice, there is always a finite
transition region between the passband and the stopband. In this region,
the gain of the filter changes gradually from 1 (0 dB) in the passband to
0 (–infinity) in the stopband. The following diagrams show the passband,
the stopband, and the transition region (TR) for the different types of
nonideal filters. Note that the passband is now the region where the
frequency range within which the gain of the filter varies from 0 dB
to –3 dB.

a
m

p
lit

u
d

e

freq
fc

Lowpass

PB SB

a
m

p
lit

u
d

e

freq
fc

Highpass

SB PB

a
m

p
lit

u
d

e

freq
fc1 fc2

Bandpass

PB SBSB

a
m

p
lit

u
d

e

freq
fc1 fc2

Bandstop

SB PBPB

Chapter 16 Filtering

© National Instruments Corporation 16-5 LabVIEW User Manual

Passband Ripple and Stopband Attenuation
In many applications, it is okay to allow the gain in the passband to vary
slightly from unity. This variation in the passband is called the passband

ripple and is the difference between the actual gain and the desired gain of
unity. The stopband attenuation, in practice, cannot be infinite, and you
must specify a value with which you are satisfied. Both the passband ripple
and the stopband attenuation are measured in decibels or dB, defined by:

dB = 20*log10(Ao(f)/Ai(f))

where log10 denotes the logarithm to the base 10, and Ai(f) and Ao(f) are
the amplitudes of a particular frequency f before and after the filtering,
respectively.

For example, for –0.02 dB passband ripple, the formula gives:

–0.02 = 20*log10(Ao(f)/Ai(f))

Ao(f)/Ai(f) = 10–0.001 = 0.9977

which shows that the ratio of input and output amplitudes is close to unity.

pass

stop stop

stop

pass pass

stop

passpass

stop

Transition Regions

Bandpass Bandstop

Lowpass Highpass

Chapter 16 Filtering

LabVIEW User Manual 16-6 © National Instruments Corporation

If you have –60 dB attenuation in the stopband, you have

–60 = 20*log10(Ao(f)/Ai(f))

Ao(f)/Ai(f) = 10–3 = 0.001

which means the output amplitude is 1/1000 of the input amplitude.
The following figure, though not drawn to scale, illustrates this concept

Note Attenuation is usually expressed in decibels without the word “minus,” but a

negative dB value is normally assumed.

IIR and FIR Filters

Another method of classification of filters is based on their impulse
response. But what is an impulse response? The response of a filter to an
input that is an impulse (x[0] = 1 and x[i] = 0 for all i ≠ 0) is called the
impulse response of the filter (see figure below). The Fourier transform of
the impulse response is known as the frequency response of the filter. The
frequency response of a filter tells you what the output of the filter is going
to be at different frequencies. In other words, it tells you the gain of the
filter at different frequencies. For an ideal filter, the gain should be 1 in the
passband and 0 in the stopband. So, all frequencies in the passband are
passed “as is” to the output, but there is no output for frequencies in the
stopband.

–0.00dB

–0.02dB

–60.00dB

stopband
attenuation

passband ripple

Chapter 16 Filtering

© National Instruments Corporation 16-7 LabVIEW User Manual

If the impulse response of the filter falls to zero after a finite amount of
time, it is known as a finite impulse response (FIR) filter. However, if the
impulse response exists indefinitely, it is known as an infinite impulse

response (IIR) filter. Whether the impulse response is finite or not (that is,
whether the filter is FIR or IIR) depends on how the output is calculated.

The basic difference between FIR and IIR filters is that for FIR filters, the
output depends only on the current and past input values, whereas for IIR
filters, the output depends not only on the current and past input values, but
also on the past output values.

As an example, consider a cash register at a supermarket. Let x[k] be the
cost of the present item that a customer buys and x(k–1) is the price of the
previous item, where 1< k < N, and N is the total number of items. The cash
register adds the cost of each item to produce a “running” total. This
“running” total y[k], up to the kth item, is given by

y[k] = x[k] + x[k–1] + x[k–2] + x[k–3] ++ x[1] (16-1A)

Thus, the total for N items is y[N]. Because y[k] is the total up to the kth
item, and y[k–1] is the total up to the (k–1)st item, you can rewrite
Equation 16-1A as

y[k] = y[k–1] + x[k] (16-1B)

If you add a sales tax of 8.25%, Equations 16-1A and 16-1B can be
rewritten as

y[k] = 1.0825x[k] + 1.0825x[k–1] + 1.0825 x[k–2] + (16-2A)
1.0825x[k–3] + ... + 1.0825x[1]

y[k] = y[k–1] + 1.0825x[k] (16-2B)

1.0 Filter

a
m

p
lit

u
d

e

time

a
m

p
lit

u
d

e

time

a
m

p
lit

u
d

e

freguency

Fourier
Transform

IMPULSE IMPULSE
RESONSE

FREQUENCY
RESONSE

Chapter 16 Filtering

LabVIEW User Manual 16-8 © National Instruments Corporation

Note that both Equations 16-2A and 16-2B are identical in describing
the behavior of the cash register. The difference is that whereas 16-2A is
implemented only in terms of the inputs, 16-2B is implemented in
terms of both the input and the output. Equation 16-2A is known as
the nonrecursive, or FIR, implementation. Equation 16-2B is known as
the recursive, or IIR, implementation.

Filter Coefficients
In Equation 16-2A, the multiplying constant for each term is 1.0825. In
Equation 16-2B, the multiplying constants are 1 (for y[k–1]) and 1.0825
(for x[k]). These multiplying constants are known as the coefficients of the
filter. For an IIR filter, the coefficients multiplying the inputs are known as
the forward coefficients, and those multiplying the outputs are known as the
reverse coefficients.

Equations of the form 16-1A, 16-1B, 16-2A, or 16-2B that describe the
operation of the filter are known as difference equations.

The disadvantage of IIR filters is that the phase response is nonlinear. If the
application does not require phase information, such as simple signal
monitoring, IIR filters may be appropriate. You should use FIR filters for
those applications requiring linear phase responses. The recursive nature of
IIR filters makes them more difficult to design and implement.

Infinite Impulse Response Filters

Infinite impulse response filters (IIR) are digital filters with impulse
responses that can theoretically be infinite in length (duration). The general
difference equation characterizing IIR filters is

(16-3)

where Nb is the number of forward coefficients (bj) and Na is the number
of reverse coefficients (ak).

In most IIR filter designs (and in all of the LabVIEW IIR filters), coefficient
a0 is 1. The output sample at the present sample index i is the sum of scaled
present and past inputs (xi and xi – j when ≠ 0) and scaled past outputs
(yi–k). Because of this, IIR filters are also known as recursive filters or
autoregressive moving-average (ARMA) filters.

yi

1
a0

----- bjxi j–

j 0=

Nb 1–

∑ akyi k–

k 1=

Na 1–

∑–
 
 
 

=

Chapter 16 Filtering

© National Instruments Corporation 16-9 LabVIEW User Manual

The response of the general IIR filter to an impulse (x0 = 1 and xi = 0 for all
i ≠ 0) is called the impulse response of the filter. The impulse response of
the filter described by Equation 16-3 is indeed of infinite length for nonzero
coefficients. In practical filter applications, however, the impulse response
of stable IIR filters decays to near zero in a finite number of samples.

IIR filters in LabVIEW contain the following properties:

• Negative indices resulting from Equation 16-3 are assumed to be zero
the first time you call the VI.

• Because the initial filter state is assumed to be zero (negative indices),
a transient proportional to the filter order occurs before the filter
reaches a steady state. The duration of the transient response, or delay,
for lowpass and highpass filters is equal to the filter order.

• Delay = order.

• The duration of the transient response for bandpass and bandstop
filters is twice the filter order

• Delay = 2 * order.

You can eliminate this transient response on successive calls by enabling
state memory. To enable state memory, set the init/cont control of the VI to
TRUE (continuous filtering).

The number of elements in the filtered sequence equals the number of
elements in the input sequence.

The filter retains the internal filter state values when the filtering completes.

Original Signal
Filtered Signal

Chapter 16 Filtering

LabVIEW User Manual 16-10 © National Instruments Corporation

The advantage of digital IIR filters over finite impulse response (FIR)
filters is that IIR filters usually require fewer coefficients to perform similar
filtering operations. Thus, IIR filters execute much faster and do not require
extra memory, because they execute in place.

The disadvantage of IIR filters is that the phase response is nonlinear. If the
application does not require phase information, such as simple signal
monitoring, IIR filters may be appropriate. You should use FIR filters for
those applications requiring linear phase responses.

Cascade Form IIR Filtering
Filters implemented using the structure defined by Equation 16-4 directly
are known as direct form IIR filters. Direct form implementations are
often sensitive to errors introduced by coefficient quantization and by
computational, precision limits. Additionally, a filter designed to be stable
can become unstable with increasing coefficient length, which is
proportional to filter order.

A less sensitive structure can be obtained by breaking up the direct form
transfer function into lower order sections, or filter stages. The direct form
transfer function of the filter given by Equation 16-4 (with a0 = 1) can be
written as a ratio of z transforms, as follows:

. (16-4)

By factoring Equation 16-4 into second-order sections, the transfer
function of the filter becomes a product of second-order filter functions

(16-5)

where is the largest integer < Na/2, and Na > Nb. (Ns is the
number of stages.) This new filter structure can be described as a cascade
of second-order filters.

H z()
b0 b1z 1– … bNb 1– z

Nb 1–()–+ + +

1 a1z 1– … aNa 1– z
Na 1–()–+ + +

--=

H z()
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

Ns

∏=

Ns Na 2⁄=

x[i] x[i]stage 1 stage 2 stage Ns

Cascaded Filter Stages

Chapter 16 Filtering

© National Instruments Corporation 16-11 LabVIEW User Manual

Each individual stage is implemented using the direct form II filter
structure because it requires a minimum number of arithmetic operations
and a minimum number of delay elements (internal filter states). Each stage
has one input, one output, and two past internal states (sk[i–1] and sk[i–2]).

If n is the number of samples in the input sequence, the filtering operation
proceeds as in the following equations:

y0[i] = x[i],

sk[i] = yk–1[i–1] – a1ksk[i–1] – a2ksk[i–2], k = 1, 2,..., Ns

yk[i] = bOksk[i] + b1ksk[i–1] + b2ksk[i–2], k = 1, 2,..., Ns

y[i] = yNs[i]

for each sample

i = 0, 1, 2,...,n–1.

For filters with a single cutoff frequency (lowpass and highpass),
second-order filter stages can be designed directly. The overall IIR lowpass
or highpass filter contains cascaded second-order filters.

For filters with two cutoff frequencies (bandpass and bandstop),
fourth-order filter stages are a more natural form. The overall IIR bandpass
or bandstop filter is cascaded fourth-order filters. The filtering operation for
fourth-order stages proceeds as in the following equations:

y0[i] = x[i],

sk[i] = yk–1[i–1] – a1ksk[i–1] – a2ksk[i–2] – a3ksk[i–3] – a4ksk[i–4],

k = 1, 2,..., Ns

yk[i] = b0ksk[i] + b1ksk[i–1] + b2ksk[i–2] + b3ksk[i–3] + b4ksk[i–4],

k = 1, 2,..., Ns

y[i] = yNs[i].

Notice that in the case of fourth-order filter stages, .Ns Na 1+() 4⁄=

Chapter 16 Filtering

LabVIEW User Manual 16-12 © National Instruments Corporation

Butterworth Filters
A smooth response at all frequencies and a monotonic decrease from the
specified cutoff frequencies characterize the frequency response of
Butterworth filters. Butterworth filters are maximally flat—the ideal
response of unity in the passband and zero in the stopband. The half power
frequency or the 3-dB down frequency corresponds to the specified cutoff
frequencies.

The following illustration shows the response of a lowpass Butterworth
filter. The advantage of Butterworth filters is a smooth, monotonically
decreasing frequency response. After you set the cutoff frequency,
LabVIEW sets the steepness of the transition proportional to the filter
order. Higher order Butterworth filters approach the ideal lowpass filter
response.

Chebyshev Filters
Butterworth filters do not always provide a good approximation of the
ideal filter response because of the slow rolloff between the passband
(the portion of interest in the spectrum) and the stopband (the unwanted
portion of the spectrum).

Chebyshev filters minimize peak error in the passband by accounting for
the maximum absolute value of the difference between the ideal filter and
the filter response you want (the maximum tolerable error in the passband).
The frequency response characteristics of Chebyshev filters have an
equiripple magnitude response in the passband, monotonically decreasing
magnitude response in the stopband, and a sharper rolloff than Butterworth
filters.

Chapter 16 Filtering

© National Instruments Corporation 16-13 LabVIEW User Manual

The following graph shows the response of a lowpass Chebyshev filter.
Notice that the equiripple response in the passband is constrained by the
maximum tolerable ripple error and that the sharp rolloff appears in the
stopband. The advantage of Chebyshev filters over Butterworth filters is
that Chebyshev filters have a sharper transition between the passband and
the stopband with a lower order filter. This produces smaller absolute errors
and higher execution speeds.

Chebyshev II or Inverse Chebyshev Filters
Chebyshev II, also known as inverse Chebyshev or Type II Chebyshev
filters, are similar to Chebyshev filters, except that Chebyshev II filters
distribute the error over the stopband (as opposed to the passband), and
Chebyshev II filters are maximally flat in the passband (as opposed to the
stopband).

Chebyshev II filters minimize peak error in the stopband by accounting for
the maximum absolute value of the difference between the ideal filter and
the filter response you want. The frequency response characteristics of
Chebyshev II filters are equiripple magnitude response in the stopband,
monotonically decreasing magnitude response in the passband, and a
rolloff sharper than Butterworth filters.

The following graph plots the response of a lowpass Chebyshev II filter.
Notice that the equiripple response in the stopband is constrained by the
maximum tolerable error and that the smooth monotonic rolloff appears in
the stopband. The advantage of Chebyshev II filters over Butterworth filters
is that Chebyshev II filters give a sharper transition between the passband
and the stopband with a lower order filter. This difference corresponds to a
smaller, absolute error and higher execution speed. One advantage of

Chapter 16 Filtering

LabVIEW User Manual 16-14 © National Instruments Corporation

Chebyshev II filters over regular Chebyshev filters is that Chebyshev II
filters distribute the error in the stopband instead of the passband.

Elliptic (or Cauer) Filters
Elliptic filters minimize the peak error by distributing it over the
passband and the stopband. Equi-ripples in the passband and the stopband
characterize the magnitude response of elliptic filters. Compared with the
same order Butterworth or Chebyshev filters, the elliptic design provides
the sharpest transition between the passband and the stopband. For this
reason, elliptic filters are used widely.

The following graph plots the response of a lowpass elliptic filter. Notice
that the ripple in both the passband and stopband is constrained by the same
maximum tolerable error (as specified by ripple amount in dB). Also,
notice the sharp transition edge for even low-order elliptic filters.

Chapter 16 Filtering

© National Instruments Corporation 16-15 LabVIEW User Manual

Bessel Filters
You can use Bessel filters to reduce nonlinear phase distortion inherent in
all IIR filters. In higher order filters and those with a steeper rolloff, this
condition is more pronounced, especially in the transition regions of the
filters. Bessel filters have maximally flat response in both magnitude and
phase. Furthermore, the phase response in the passband of Bessel filters,
which is the region of interest, is nearly linear. Like Butterworth filters,
Bessel filters require high-order filters to minimize the error and, for this
reason, are not widely used. You can also obtain linear phase response
using FIR filter designs.The following graphs plot the response of a
lowpass Bessel filter. Notice that the response is smooth at all frequencies,
as well as monotonically decreasing in both magnitude and phase. Also,
notice that the phase in the passband is nearly linear.

Chapter 16 Filtering

LabVIEW User Manual 16-16 © National Instruments Corporation

Finite Impulse Response Filters

Finite impulse response (FIR) filters are digital filters, which have a finite
impulse response. FIR filters are also known as nonrecursive filters,
convolution filters, or moving-average (MA) filters because you can
express the output of an FIR filter as a finite convolution

where x represents the input sequence to be filtered, y represents the output
filtered sequence, and h represents the FIR filter coefficients.

The following list gives the most important characteristics of FIR filters:

• They can achieve linear phase because of filter coefficient symmetry in
the realization.

• They are always stable.

• You can perform the filtering function using the convolution and, as
such, generally associate a delay with the output sequence

,

where n is the number of FIR filter coefficients.

The following graphs plot a typical magnitude and phase response of
FIR filters versus normalized frequency.

yi hkxi k–

k 0=

n 1–

∑=

delay
n 1–

2
------------=

Chapter 16 Filtering

© National Instruments Corporation 16-17 LabVIEW User Manual

The discontinuities in the phase response arise from the discontinuities
introduced when you compute the magnitude response using the absolute
value. Notice that the discontinuities in phase are on the order of pi. The
phase, however, is clearly linear. See Appendix A, Analysis References, for
material that can give you more information on this topic.

You design FIR filters by approximating a specified, desired frequency
response of a discrete-time system. The most common techniques
approximate the desired magnitude response while maintaining a
linear-phase response.

Designing FIR Filters by Windowing
The simplest method for designing linear-phase FIR filters is the window

design method. To design a FIR filter by windowing, you start with an ideal
frequency response, calculate its impulse response, and then truncate the
impulse response to produce a finite number of coefficients. To meet the
linear-phase constraint, by maintain symmetry about the center point of the
coefficients. The truncation of the ideal impulse response results in the
effect known as the Gibbs phenomenon—oscillatory behavior near abrupt
transitions (cutoff frequencies) in the FIR filter frequency response.

You can reduce the effects of the Gibbs phenomenon by smoothing the
truncation of the ideal impulse response using a smoothing window
function. By tapering the FIR coefficients at each end, you can diminish the
height of the side lobes in the frequency response. The disadvantage to this
method, however, is that the main lobe widens, resulting in a wider
transition region at the cutoff frequencies. The selection of a window
function, then, is similar to the choice between Chebyshev and Butterworth

Chapter 16 Filtering

LabVIEW User Manual 16-18 © National Instruments Corporation

IIR filters in that it is a trade-off between side lobe levels near the cutoff
frequencies and width of the transition region.

Designing FIR filters by windowing is simple and computationally
inexpensive. It is therefore the fastest way to design FIR filters. It is not
necessarily, however, the best FIR filter design method.

Designing Optimum FIR Filters Using the Parks-McClellan Algorithm
The Parks-McClellan algorithm offers an optimum FIR filter design
technique that attempts to design the best filter possible for a given number
of coefficients. Such a design reduces the adverse effects at the cutoff
frequencies. It also offers more control over the approximation errors in
different frequency bands—control that is not possible with the window
method.

Using the Parks-McClellan algorithm to design FIR filters is
computationally expensive. This method, however, produces optimum
FIR filters by applying time-consuming iterative techniques.

Designing Narrowband FIR Filters
When you use conventional techniques to design FIR filters with especially
narrow bandwidths, the resulting filter lengths may be very long. FIR filters
with long filter lengths often require lengthy design and implementation
times, and are more susceptible to numerical inaccuracy. In some cases,
conventional filter design techniques, such as the Parks-McClellan
algorithm, may fail the design altogether.

You can use a very efficient algorithm, called the Interpolated Finite
Impulse Response (IFIR) filter design technique, to design narrowband FIR
filters. Using this technique produces narrowband filters that require far
fewer coefficients (and therefore fewer computations) than those filters
designed by the direct application of the Parks-McClellan algorithm.
LabVIEW also uses this technique to produce wideband, lowpass (cutoff
frequency near Nyquist) and highpass filters (cutoff frequency near zero).
For more information about IFIR filter design, see Multirate Systems and

Filter Banks by P.P. Vaidyanathan, or the paper on interpolated finite
impulse response filters by Neuvo, et al., listed in Appendix A, Analysis

References, of this manual.

Chapter 16 Filtering

© National Instruments Corporation 16-19 LabVIEW User Manual

Windowed FIR Filters
You use the filter type parameter of the FIR VIs to select the type of
windowed FIR filter you want: lowpass, highpass, bandpass, or bandstop.
The following list gives the two related FIR VIs:

• FIR Windowed Coefficients—Generates the windowed
(or unwindowed) coefficients.

• FIR Windowed Filters—Filters the input using windowed
(or unwindowed) coefficients.

Optimum FIR Filters
You can use the Parks-McClellan algorithm to design optimum,
linear-phase, FIR filter coefficients in the sense that the resulting
filter optimally matches the filter specifications for a given number of
coefficients. The Parks-McClellan VI takes as input an array of band
descriptions, each containing information describing the response you
want for the given band. The VI outputs the FIR coefficients along with
computed ripple, which is a measure of the deviation of the resulting filter
from the ideal filter specifications.

Four VIs use the Parks-McClellan VI to implement filters whose stopband
and passband ripple level are equal: Equiripple LowPass, Equiripple
HighPass, Equiripple BandPass, and Equiripple BandStop.

FIR Narrowband Filters
You can design narrowband FIR filters using the FIR Narrowband
Coefficients VI, and then implement the filtering using the FIR
Narrowband Filter VI. The design and implementation are separate
operations because many narrowband filters require lengthy design times,
while the actual filtering process is very fast and efficient. Keep this in
mind when creating your narrowband filtering diagrams.

The parameters required for narrowband filter specification are filter type,
sampling rate, passband and stopband frequencies, passband ripple (linear
scale), and stopband attenuation (decibels). For bandpass and bandstop
filters, passband and stopband frequencies refer to bandwidths, and you
must specify an additional center frequency parameter. You can also design
wideband lowpass filters (cutoff frequency near Nyquist) and wideband
highpass filters (cutoff frequency near zero) using the narrowband
filter VIs.

Chapter 16 Filtering

LabVIEW User Manual 16-20 © National Instruments Corporation

The following illustration shows how to use the FIR Narrowband
Coefficients VI and the FIR Narrowband Filter VI to estimate the response
of a narrowband filter to an impulse.

Nonlinear Filters

Smoothing windows, IIR filters, and FIR filters are linear because they
satisfy the superposition and proportionality principles

L {ax(t) + by(t)} = aL {x(t)} + bL{y(t)},

where a and b are constants, x(t) and y(t) are signals, L{•} is a linear
filtering operation, and their inputs and outputs are related via the
convolution operation.

A nonlinear filter does not meet the preceding conditions and you cannot
obtain its output signals via the convolution operation, because a set
of coefficients cannot characterize the impulse response of the filter.
Nonlinear filters provide specific filtering characteristics that are difficult
to obtain using linear techniques. The median filter is a nonlinear filter that
combines lowpass filter characteristics (to remove high-frequency noise)
and high-frequency characteristics (to detect edges).

How Do I Decide Which Filter to Use?

Now that you have seen the different types of filters and their
characteristics, the question arises as to which filter design is best suited
for your application. In general, some of the factors affecting the choice of
a suitable filter are whether you require linear phase, whether you can
tolerate ripples, and whether a narrow transition band is required. The
following flowchart is expected to serve as a guideline for selecting the

Chapter 16 Filtering

© National Instruments Corporation 16-21 LabVIEW User Manual

correct filter. Keep in mind that in practice, you may need to experiment
with several different options before finally finding the best one.

No narrow
transition band?

high order
Butterworth

Yes

Yes

Yes

No

Yes
FIR Filterlinear phase?

ripple OK?

No

Yes

Yes

ripple
in PB?

low order
Butterworth

No

No

narrowest possible transition region?Elliptic

Inv. Chebyshev

Noripple
in SB?

Chebyshev

Yes

NoMultiband
filter specs?

Elliptic

FIR

Chapter 16 Filtering

LabVIEW User Manual 16-22 © National Instruments Corporation

Activity 16-1. Extract a Sine Wave

Your objective is to filter data samples that consist of both

high-frequency noise and a sinusoidal signal.

In this activity, you combine a sine wave generated by the Sine Pattern VI
with high-frequency noise. (The high-frequency noise is obtained by
highpass filtering uniform white noise with a Butterworth filter.) The
combined signal is then lowpass filtered by another Butterworth filter to
extract the sine wave.

Front Panel

1. Open a new VI and build the front panel as shown above.

a. Select a Digital Control from the Numeric»Controls palette and
label it Frequency.

b. Select Vertical Slide from the Numeric»Controls palette and
label it Cut-Off Frequency.

c. Select another Vertical Slide from the Numeric»Controls palette
and label it Filter Order.

Chapter 16 Filtering

© National Instruments Corporation 16-23 LabVIEW User Manual

d. Select a Waveform Graph from the Numeric»Graph palette for
displaying the noisy signal, and another Waveform Graph for
displaying the original signal.

Block Diagram

2. Build the block diagram as shown below.

Sine Pattern VI (Functions»Analysis»Signal Generation palette)
generates a sine wave of the desired frequency.

Uniform White Noise VI (Functions»Analysis»Signal Generation
palette) generates uniform white noise that is added to the sinusoidal signal.

Butterworth Filter VI (Functions»Analysis»Filters palette) highpass
filters the noise.

Notice that you are generating 10 cycles of the sine wave, and there are
1000 samples. Also, the sampling frequency to the Butterworth Filter VI
on the right side is specified as 1000 Hz. Thus, effectively you are
generating a 10 Hz signal.

3. Save the VI as Extract the Sine Wave.vi in the
LabVIEW\Activity directory.

4. Switch back to the front panel. Select a Frequency of 10 Hz, a
Cut-Off Frequency of 25 Hz, and a Filter Order of 5. Run the VI.

5. Reduce the Filter Order to 4, 3, and 2, and observe the difference in
the filtered signal. Explain what happens as you lower the filter order.

Chapter 16 Filtering

LabVIEW User Manual 16-24 © National Instruments Corporation

6. When you finish, save the VI as Extract the Sine Wave.vi in the
Dig.filt.llb library.

7. Close the VI.

End of Activity 16-1.

Summary

You have seen from the frequency response characteristics that practical
filters differ from ideal filters. For practical filters, the gain in the passband
may not always be equal to 1, the attenuation in the stopband may not
always be -infinity, and there exists a transition region of finite width. The
width of the transition region depends on the filter order, and the width
decreases with increasing order.

You have also learned about both FIR and IIR digital filters. The output of
FIR filters depends only on the current and past input values, whereas the
output of IIR filters depends on the current and past input values as well as
the past output values. You saw the frequency response of different designs
of IIR filters and classified them according to the presence of ripples in the
passband and/or the stopband. Because of the dependence of its output on
past outputs, a transient appears at the output of an IIR filter each time the
VI is called. This transient can be eliminated after the first call to the VI by
setting its init/cont control to a TRUE value.

© National Instruments Corporation 17-1 LabVIEW User Manual

17
Curve Fitting

This chapter describes how to extract information from a data set to obtain
a functional description. For examples of how to use the regression VIs, see
the examples located in examples\analysis\regressn.llb.

Introduction to Curve Fitting

Curve fitting analysis is a technique for extracting a set of curve parameters
or coefficients from the data set to obtain a functional description of the
data set. The algorithm that fits a curve to a particular data set is known as
the Least Squares Method and is discussed in most introductory textbooks
in probability and statistics. The error is defined as

e(a) = [f(x,a) – y(x)]2, (17-1)

where e(a) is the error, y(x) is the observed data set, f(x,a) is the functional
description of the data set, and a is the set of curve coefficients which best
describes the curve.

For example, let a = {a0, a1}. Then the functional description of a line is

f(x,a) = a0 + a1 x.

The least squares algorithm finds a by solving the system

(17-2)

To solve this system, you set up and solve the Jacobian system generated
by expanding Equation 17-2. After you solve the system for a, you can
obtain an estimate of the observed data set for any value of x using the
functional description f(x, a).

In LabVIEW, the curve fitting VIs automatically set up and solve the
Jacobian system and return the set of coefficients that best describes your
data set. You can concentrate on the functional description of your data and
not worry about solving the system in Equation 17-2.

∂
∂a
------e a() 0=

Chapter 17 Curve Fitting

LabVIEW User Manual 17-2 © National Instruments Corporation

Two input sequences, Y Values and X Values, represent the data set y(x).
A sample or point in the data set is

(xi, yi),

where xi is the ith element of the sequence X Values, and yi is the ith element
of the sequence Y Values.

In general, for each predefined type of curve fit, there are two types of VIs,
unless otherwise specified. One type returns only the coefficients, so that
you can further manipulate the data. The other type returns the coefficients,
the corresponding expected or fitted curve, and the mean squared error
(MSE). Because it is a discrete system, the VI calculates the MSE, which
is a relative measure of the residuals between the expected curve values and
the actual observed values, using the formula

(17-3)

where f is the sequence representing the fitted values, y is the sequence
representing the observed values, and n is the number of sample points
observed.

The Analysis library offers both linear and nonlinear curve fitting
algorithms. The different types of curve fitting in LabVIEW are outlined
below:

• Linear Fit—fits experimental data to a straight line of the form
y = mx + c.

y[i]=a0+a1*x[i]

• Exponential Fit—fits data to an exponential curve of the form
y = aexp(bx)

y[i] = a0*exp(a1*x[i])

• General Polynomial Fit—fits data to a polynomial function of
the form

y = a + bx + cx^2 + ...

y[i] = a0+a1*x[i]+a2*x[i]2...

MSE
1
n
--- fi yi–()2

i 0=

n 1–

∑=

Chapter 17 Curve Fitting

© National Instruments Corporation 17-3 LabVIEW User Manual

• General Linear Fit—fits data to

y[i] = a0+a1*f1(x[i])+a2*f2(x[i]) + ...

where y[i] is a linear combination of the parameters a0, a1, a2.... The general
linear fit also features selectable algorithms for better precision and
accuracy. For example, y = a0 + a1*sin(x) is a linear fit because y has a
linear relationship with parameters a0 and a1. Polynomial fits are always
linear fits for the same reason. But special algorithms can be designed for
the polynomial fit to speed up the fitting processing and improve accuracy.

• Nonlinear Levenberg-Marquardt Fit—fits data to

y[i] = f(x[i], a0, a1, a2...)

where a0, a1, a2... are the parameters. This method is the most general
method and does not require y to have a linear relationship with a0, a1, a2....
It can be used to fit linear or nonlinear curves, but is almost always used to
fit a nonlinear curve, because the general linear fit method is better suited
to linear curve fitting. The Levenberg-Marquardt method does not always
guarantee a correct result, so it is absolutely necessary to verify the results.

Applications of Curve Fitting
The practical applications of curve fitting are numerous. Some of them are
listed below.

• Removal of measurement noise.

• Filling in missing data points (for example, if one or more
measurements were missed or improperly recorded).

• Interpolation (estimation of data between data points; for example,
if the time between measurements is not small enough).

• Extrapolation (estimation of data beyond data points; for example,
if you are looking for data values before or after the measurements
were taken).

• Differentiation of digital data. (For example, if you need to find the
derivative of the data points. The discrete data can be modeled by a
polynomial, and the resulting polynomial equation can be
differentiated.)

• Integration of digital data (for example, to find the area under a curve
when you have only the discrete points of the curve).

• To obtain the trajectory of an object based on discrete measurements
of its velocity (first derivative) or acceleration (second derivative).

Chapter 17 Curve Fitting

LabVIEW User Manual 17-4 © National Instruments Corporation

Activity 17-1. Use the Curve Fitting VIs

Your objective is to use and compare the Linear, Exponential and

Polynomial Curve Fit VIs to obtain the set of least square coefficients

that best represent a set of data points.

Front Panel

1. Open the Regressions Demo VI from the library regressn.llb.
The front panel and block diagram are already built for you.

This VI generates “noisy” data samples that are approximately linear,
exponential, or polynomial. It then uses the corresponding analysis curve
fitting VIs to determine the parameters of the curve that best fits those data
points. (At this stage, you do not need to worry about how the noisy data
samples are generated.) You can control the noise amplitude with the
Noise Level control on the front panel.

Chapter 17 Curve Fitting

© National Instruments Corporation 17-5 LabVIEW User Manual

Block Diagram

2. Select Linear in the Algorithm Selector control, and set the
Noise Level control to about 0.1. Run the VI. Notice the spread of
the data points and the fitted curve (straight line).

3. Experiment with different values of Order and Noise Level. What do
you notice? How does the mse change?

4. Change the Algorithm Selector to Exponential and run the VI.
Experiment with different values of Order and Noise Level. What do
you notice?

5. Change the Algorithm Selector to Polynomial and run the VI.
Experiment with different values of Order and Noise Level. What do
you notice?

6. In particular, with the Algorithm Selector control set to Polynomial,
change the Order to 0 and run the VI. Then change it to 1 and run the
VI. Explain your observations.

Chapter 17 Curve Fitting

LabVIEW User Manual 17-6 © National Instruments Corporation

7. Depending on your observations in steps 2, 3, 4, and 5, for which of the
algorithms (Linear, Exponential, Polynomial) is the Order control the
most effective? Why?

8. Close the VI and quit. Do not save any changes.

End of Activity 17-1.

General LS Linear Fit Theory

The General LS Linear Fit Problem can be described as follows.

Given a set of observation data, find a set of coefficients that fit the linear
“model.”

 i=0, 1, ... , n–1, (17-4)

where B is the set of Coefficients, n is the number of elements in Y Values
and the number of rows of H, and k is the number of Coefficients.

 is your observation data, which is contained in H.

Equation 17-4 can also be written as Y = HB.

yi boxi0 … bk 1– xik 1–+ +=

bjxi j

j 0=

k 1–

∑=

xi j

H

x00 x01… x0k 1–

x10 x11… x1k 1–

.

.

.

.

xn 10– xn 12– … xn 1k– 1–

=

Chapter 17 Curve Fitting

© National Instruments Corporation 17-7 LabVIEW User Manual

This is a multiple linear regression model, which uses several variables
, to predict one variable yi. In contrast, the Linear Fit,

Exponential Fit, and Polynomial Fit VIs are all based on a single predictor
variable, which uses one variable to predict another variable.

In most cases, we have more observation data than coefficients. The
equations in 17-4 may not have the solution. The fit problem becomes to
find the coefficient B that minimizes the difference between the observed
data, yi and the predicted value:

.

This VI uses the least chi-square plane method to obtain the coefficients
in 17-4, that is, finding the solution, B, which minimizes the quantity:

 = |H0B–Y0|2 (17-5)

where

, , i=0, 1, ... , n–1; j=0, 1, ... , k–1.

In this equation, is the Standard Deviation. If the measurement errors
are independent and normally distributed with constant standard deviation

, the preceding equation is also the least square estimation.

xi0 xi1 … xik 1–, , ,

zi bjxij

j 0=

k 1–

∑=

χ2
yi z–

i

σi

 
 
  2

i 0=

n 1–

∑
yi bjxij

j 0=

k 1–

∑–

σi

 
 
 
 
 
 
 

2

i 0=

n 1–

∑= =

hoij

xij

σi

-----= yoi

yi

σi

-----=

σi

σi σ=

Chapter 17 Curve Fitting

LabVIEW User Manual 17-8 © National Instruments Corporation

There are different ways to minimize . One way to minimize is to set
the partial derivatives of to zero with respect to b0, b1, ... , bk–1.

The preceding equations can be derived to:

(17-6)

Where is the transpose of H0.

The equations in 17-6 are also called normal equations of the least-square
problems. You can solve them using LU or Cholesky factorization
algorithms, but the solution from the normal equations is susceptible to
roundoff error.

An alternative, and preferred way to minimize is to find the least-square
solution of equations

H0B=Y0.

You can use QR or SVD factorization to find the solution, B. For QR
factorization, you can choose Householder, Givens, and Givens2 (also
called fast Givens).

Different algorithms can give you different precision, and in some cases,
if one algorithm cannot solve the equation, perhaps another algorithm can.
You can try different algorithms to find the best one based on your
observation data.

χ2 χ2

χ2

∂χ2

∂b0

-------- 0=

∂χ2

∂b1

--------- 0=

.

.

.

.

∂χ2

∂bk 1–

-------------- 0=
















H0
TH0B H0

TY=

H0
T

χ2

Chapter 17 Curve Fitting

© National Instruments Corporation 17-9 LabVIEW User Manual

The Covariance matrix C is computed as

.

The Best Fit Z is given by

The mse is obtained using the following formula:

The polynomial fit that has a single predictor variable can be thought of as a
special case of multiple regression. If the observation data sets are
where i = 0, 1, …, n–1, the model for polynomial fit is

(17-7)

i = 0, 1, 2, ... , n – 1.

Comparing equations 17-4 and 17-7 shows that . In other words,

,

C H0
TH0() 1–

=

zi bjxi j

j 0=

k 1–

∑=

mse
1
n

yi z–
i

σi

------------- 
 

2

i 0=

n 1–

∑=

xi yi,{ }

yi bjxi

j

j 0=

k 1–

∑= b0 b1xi b2xi
2 … bk 1– xi

k 1–+ + + +=

xi j xj
i=

xi0 xi

0
=

1=

xi1 xi= xi2, x2
i … xik 1–, xk 1–

i= =

Chapter 17 Curve Fitting

LabVIEW User Manual 17-10 © National Instruments Corporation

In this case, you can build H as follows:

Instead of using , you can also choose another function formula
to fit the data sets . In general, you can select . Here,

 is the function model that you choose to fit your observation data.
In polynomial fit, .

In general, you can build H as follows:

Your fit model is:

.

H

1 x0 x2
0 … xk 1–

0

1 x1 x2
1 … xk 1–

1

.

.

.

.

1 xn 1– x2
n 1– … xk 1–

n 1– 
 
 
 
 
 
 
 
 
 
 
 
 

=

xi j xi
j=

xi,yi{ } xi j fj xi()=
fj xi()

fj xi() xj
i

=

H

f0 x0() f1 x0() f2 x0() … fk 1– x0()

f0 x1() f1 x1() f2 x1() … fk 1– x1()

.

.

.

.

f0 xn 1–() f1 xn 1–() f2 xn 1–() … fk 1– xn 1–()
 
 
 
 
 
 
 
 
 
 
 
 
 

=

yi b0f
0

x() b1f
1

x() … bk 1– f
k 1–

x()+ + +=

Chapter 17 Curve Fitting

© National Instruments Corporation 17-11 LabVIEW User Manual

How to Use the General LS Linear Fit VI

The Linear Fit VI calculates the coefficients a0 and a1 that best fits the
experimental data (x[i] and y[i]) to a straight line model given by

y[i] = a0 + a1*x[i]

Here, y[i] is a linear combination of the coefficients a0 and a1. You can
extend this concept further so that the multiplier for a1 is some function of
x. For example:

y[i] = a0 + a1*sin(ωx[i])

or

y[i] = a0 + a1*x[i]2

or

y[i] = a0 + a1*cos(ωx[i]2)

where ω is the angular frequency. In each of these cases, y[i] is a linear
combination of the coefficients a0 and a1. This is the basic idea behind the

General LS Linear Fit VI, where the y[i] can be linear combinations of
several coefficients, each of which may be multiplied by some function of
the x[i]. Therefore, you can use it to calculate coefficients of the functional
models that can be represented as linear combinations of the coefficients,
such as

y = a0 + a1*sin(ωx)

or

y = a0 + a1*x2 + a2*cos(ωx2)

y = a0 + a1*(3sin(ωx)) + a2*x3 + a3 / x + ...

In each case, note that y is a linear function of the coefficients (although it
may be a nonlinear function of x).

Chapter 17 Curve Fitting

LabVIEW User Manual 17-12 © National Instruments Corporation

You will now see how to use the General LS Linear Fit VI to find the best
linear fit to a set of data points. The inputs and outputs of the General LS
Linear Fit VI are shown below.

The data that you collect (x[i] and y[i]) is to be given to the inputs H and
Y Values. The Covariance output is the matrix of covariances between the
coefficients ak, where cij is the covariance between ai and aj, and ckk is the
variance of ak. At this stage, you need not be concerned about the inputs
Standard Deviation, covariance selector, and algorithm. For now, you
will just use their default values. You can refer to the Analysis Online

Reference for more details on these inputs.

The matrix H is known as the Observation Matrix and will be explained
in more detail later. Y Values is the set of observed data points y[i].
For example, suppose you have collected samples (Y Values) from a
transducer and you want to solve for the coefficients of the model:

You see that the multiplier for each aj (0 ð j ð3) is a different function.
For example, a0 is multiplied by 1, a1 is multiplied by sin(ωx), a2 is
multiplied by cos(ωx), and so on. To build H, you set each column of H to
the independent functions evaluated at each x value, x[i]. Assuming there
are 100 “x” values, H would be:

y ao a1 ωx()sin a2 ωx()cos a3x
2

+ + +=

H

1 ωx0()sin ωx0()cos x0
2

1 ωx1()sin ωx1()cos x1
2

1 ωx2()sin ωx2()cos x2
2

… … … …

1 ωx99()sin ωx99()cos x99
2

=

Chapter 17 Curve Fitting

© National Instruments Corporation 17-13 LabVIEW User Manual

If you have N data points and k coefficients (a0, a1,ak–1) for which to
solve, H will be an N-by-k matrix with N rows and k columns. Thus, the
number of rows of H is equal to the number of elements in Y Values,
whereas the number of columns of H is equal to the number of coefficients
for which you are trying to solve.

In practice, H is not available and must be built. Given that you have
the N independent X Values and observed Y Values, the following block
diagram demonstrates how to build H and use the General LS Linear
Fit VI.

Chapter 17 Curve Fitting

LabVIEW User Manual 17-14 © National Instruments Corporation

Activity 17-2. Use the General LS Linear Fit VI

For this activity, your objective is to learn how to set up the input

parameters and use the General LS Linear Fit VI.

This activity demonstrates how to use the General LS Linear Fit VI to
obtain the set of least square coefficients a and the fitted values, and also
how to set up the input parameters to the VI.

The purpose is to find the set of least square coefficients a that best
represent the set of data points (x[i], y[i]). As an example, suppose that we
have a physical process that generates data using the relationship

(17-8)

where

and noise is a random value. Also, assume you have some idea of the
general form of the relationship between x and y, but are not quite sure of
the coefficient values. So, you may think that the relationship between
x and y is of the form

 (17-9)

where

.

y 2h0 x() 3h1 x() 4h2 x() noise+ + +=

h0 x() x
2(),sin=

h1 x() x(),cos=

h2 x() 1
x 1+
------------= ,

y a0f0 x() a1f1 x() a2f2 x() a3f3 x() a4f4 x()+ + + +=

f
o

x() 1.0,=

f1 x() x
2(),sin=

f2 x() 3 x(),cos=

f3 x() 1
x 1+
------------,=

f4 x() x
4

=

Chapter 17 Curve Fitting

© National Instruments Corporation 17-15 LabVIEW User Manual

Equations 17-8 and 17-9 respectively correspond to the actual physical
process and to your guess of this process. The coefficients you choose in
your guess may be close to the actual values, or may be far away from them.
Your objective now is to accurately determine the coefficients a.

Building the Observation Matrix
To obtain the coefficients a, you must supply the set of (x[i], y[i]) points
in the arrays H and Y Values (where the matrix H is a 2D array) to the
General LS Linear Fit VI. The x[i] and y[i] points are the values observed
in your experiment. A simple way to build the matrix H is to use the
Formula Node as shown in the following block diagram.

You can edit the formula node to change, add, or delete functions. At this
point, you have all the necessary inputs to use the General LS Linear Fit VI
to solve for a. To obtain equation (1) from equation (2), you need to
multiply f0(x) by 0.0, f1(x) by 2.0, f2(x) by 1.0, f3(x) by 4.0 and f4(x) by 0.0.
Thus, looking at equations (1) and (2), note that the expected set of
coefficients are

.a 0.0, 2.0, 1.0, 4.0, 0.0{ }=

Chapter 17 Curve Fitting

LabVIEW User Manual 17-16 © National Instruments Corporation

The block diagram below demonstrates how to set up the General LS
Linear Fit VI to obtain the coefficients and a new set of y values.

The subVI labeled Data Create generates the X and Y arrays. You can
replace this icon with one that actually collects the data in your
experiments. The icon labeled H(X,i) generates the 2D matrix H.

The last portion of the block diagram overlays the original and the
estimated data points and produces a visual record of the General LS Linear
Fit. Executing the General LS Linear Fit VI with the values of X, Y, and H
returns the following set of coefficients.

The resulting equation is thus

y = 0.0298(1) + 2.1670sin(x2) + 1.0301(3cos(x))

+ 3.9226/(x+1) + 0.00(x4)

= 0.0298 + 2.1670sin(x2) + 1.0301(3cos(x)) + 3.9226/(x+1)

The following graph displays the results.

Chapter 17 Curve Fitting

© National Instruments Corporation 17-17 LabVIEW User Manual

You will now see the VI in which this particular example has been
implemented.

1. Open the General LS Fit Example VI from the library
examples\analysis\regressn.llb.

2. Examine the block diagram. Make sure you understand it.

3. Examine the front panel.

noise amplitude: can change the amplitude of the noise added to the
data points. The larger this value, the more the spread of the data
points.

NumData: the number of data points that you want to generate.

algorithm: provides a choice of six different algorithms to obtain the
set of coefficients and the fitted values. In this particular example, there
is no significant difference among different algorithms. You can select
different algorithms from the front panel to see the results. In some
cases, different algorithms may have significant differences,
depending on your observed data set.

MSE: gives the mean squared error. The smaller the MSE, the better
the fit.

error: gives the error code in case of any errors. If error code = 0,
it indicates no error. For a list of error codes, see Appendix A,
Error Codes, in the LabVIEW Function and VI Reference Manual.

Coefficients: the calculated values of the coefficients (a0, a1, a2, a3,
and a4) of the model.

Chapter 17 Curve Fitting

LabVIEW User Manual 17-18 © National Instruments Corporation

4. Run the VI with progressively larger values of the noise amplitude.
What happens to the observed data plotted on the graph? What about
the MSE?

5. For a fixed value of noise amplitude, run the VI by choosing different
algorithms from the algorithm control. Do you find that any one
algorithm is better than the other? Which one gives you the
lowest MSE?

6. When you finish, close the VI. Do not save any changes.

End of Activity 17-2.

Nonlinear Lev-Mar Fit Theory

This VI determines the set of coefficients that minimize the chi-square
quantity:

(17-10)

In this equation, (xi, yi) are the input data points, and f(xi;a1...aM) = f(X, A)
is the nonlinear function where a1...aM are coefficients. If the measurement
errors are independent and normally distributed with constant, standard
deviation , this is also the least-square estimation.

You must specify the nonlinear function f = f(X, A) in the Formula Node on
the block diagram of the Target Fnc & Deriv NonLin VI, which is a subVI
of the Nonlinear Lev-Mar Fit VI. You can access the Target Fnc & Deriv
NonLin VI by selecting it from the menu that appears when you select
Project»This VI’s SubVIs.

This VI provides two ways to calculate the Jacobian (partial derivatives
with respect to the coefficients) needed in the algorithm. These two
methods follow:

• Numerical calculation—Uses a numerical approximation to compute
the Jacobian.

• Formula calculation—Uses a formula to compute the Jacobian.
You need to specify the Jacobian function in the Formula Node
on the block diagram of the Target Fnc & Deriv NonLin VI, as well as

χ2 yi f xi a1…aM;()–

σi

-- 
  2

i 0=

N 1–

∑=

σi σ=

∂f ∂A⁄

Chapter 17 Curve Fitting

© National Instruments Corporation 17-19 LabVIEW User Manual

the nonlinear function f = f(X, A). This is a more efficient computation
than the numerical calculation, because it does not require a numerical
approximation to the Jacobian.

The input arrays X and Y define the set of input data points. The VI
assumes that you have prior knowledge of the nonlinear relationship
between the x and y coordinates. That is, f = f(X, A), where the set of
coefficients, A, is determined by the Levenberg-Marquardt algorithm.

Using this function successfully sometimes depends on how close your
initial guess coefficients are to the solution. Therefore, it is always worth
taking effort and time to obtain good initial guess coefficients to the
solution from any available resources before using the function.

Using the Nonlinear Lev-Mar Fit VI

So far, you have seen VIs that are used when there is a linear relationship
between y and the coefficients a0, a1, a2, However, when a nonlinear
relationship exists, you can use the Nonlinear Lev-Mar Fit VI to determine
the coefficients. This VI uses the Levenberg-Marquardt method, which is
very robust, to find the coefficients A = {a0, a1, a2, ..., ak} of the nonlinear
relationship between A and y[i]. The VI assumes that you have prior
knowledge of the nonlinear relationship between the x and y coordinates.

As a preliminary step, you need to specify the nonlinear function in the
Formula Node on the block diagram of one of the subVIs of the Nonlinear
Lev-Mar Fit VI. This particular subVI is the Target Fnc and Deriv NonLin
VI. You can access the Target Fnc and Deriv NonLin VI by selecting it
from the menu that appears when you select Project»This VI’s SubVIs.

Note When using the Nonlinear Lev-Mar Fit VI, you also must specify the nonlinear

function in the Formula Node on the block diagram of the Target Fnc and

Deriv NonLin VI.

The connections to the Nonlinear Lev-Mar Fit VI are shown below:

Chapter 17 Curve Fitting

LabVIEW User Manual 17-20 © National Instruments Corporation

X and Y are the input data points x[i] and y[i].

Initial Guess Coefficients is your initial guess as to what the coefficient
values are. The coefficients are those used in the formula that you entered
in the Formula Node of the Target Fnc and Deriv NonLin VI. Using the
Nonlinear Lev-Mar Fit VI successfully sometimes depends on how close
your initial guess coefficients are to the actual solution. Therefore, it is
always worth taking the time and effort to obtain a good initial guess to the
solution from any available resource.

For now, you can leave the other inputs to their default values. For more
information on these inputs, see the Analysis Online Reference.

Best Fit Coefficients: the values of the coefficients (a0, a1, ...) that best fit
the model of the experimental data.

Activity 17-3. Use the Nonlinear
Lev-Mar Fit VI

For this activity, your objective is to create a general exponential

signal a*exp(b*x) + c + noise, and then use the Nonlinear Lev-Mar

Fit VI to fit the data and get the best guess coefficients a, b, and c of

the general exponential signal.

In this activity, you will see how to use the Nonlinear Lev-Mar Fit VI to
determine the coefficients a, b, and c, of a nonlinear function given by
a*exp(b*x) + c.

Chapter 17 Curve Fitting

© National Instruments Corporation 17-21 LabVIEW User Manual

Front Panel

1. Open the Nonlinear Lev-Mar Exponential Fit VI from the library
examples\analysis\regressn.llb. The front panel is shown in
the following illustration.

The a, b, and c controls determine the actual values of the coefficients a, b,
and c. The Initial Coefficients control is your educated guess as to the
actual values of a, b, and c. Finally, the Best Guess Coef indicator gives
you the values of a, b, and c calculated by the Nonlinear Lev-Mar Fit VI.
To simulate a more practical example, we also add noise to this equation,
thus making it of the form:

a*exp(b*x) + c + noise

The noise level control adjusts the noise level. Note that the actual
values of a, b, and c being chosen are +1.0, –0.1 and 2.0. In the
Initial Coefficients control, the default guess for these is a = 2.0, b = 0,
and c = 4.0.

Chapter 17 Curve Fitting

LabVIEW User Manual 17-22 © National Instruments Corporation

Block Diagram

2. Examine the block diagram.

The data samples of the exponential function are simulated using the
Exponential VI (Numeric»Logarithmic subpalette) and uniform white
noise is added to the samples with the help of the Uniform White Noise VI
(Analysis»Signal Generation subpalette).

3. From the Project menu, select Unopened SubVIs»Target Fnc and

Deriv NonLin VI. The front panel of the Target Fnc and Deriv NonLin
VI opens, as shown below.

Chapter 17 Curve Fitting

© National Instruments Corporation 17-23 LabVIEW User Manual

4. Switch to the block diagram.

Observe the Formula Node at the bottom. It has the form of the
function whose parameters (a0, a1, and a2) you are trying to evaluate.

5. Close the front panel and the block diagram of the Target Fnc and
Deriv NonLin VI.

6. Run the NonLinear Lev-Mar Exponential Fit VI. Note that the values
of the coefficients returned in Best Guess Coef are very close to the
actual values entered in the Initial Coefficients control. Also note the
value of the mse.

7. Increase the noise level from 0.1 to 0.5. What happens to the mse and
the coefficient values in Best Guess Coef? Why?

8. Change the noise level back to 0.1 and the Initial Coefficients to 5.0,
–2.0, and 10.0, and run the VI. Note the values returned in the

Best Guess Coef and the mse indicators.

9. With the noise level still at 0.1, change your guess of the
Initial Coefficients to 5.0, 8.0, and 10.0, and run the VI. This time,
your guess is further away than the one you chose in step 4. Notice the
error. This illustrates how important it is to have a reasonably educated
guess for the coefficients.

10. When you finish, close the VI. Do not save any changes.

End of Activity 17-3.

© National Instruments Corporation 18-1 LabVIEW User Manual

18
Linear Algebra

This chapter explains how to use the linear algebra VIs to perform matrix
computation and analysis. For examples of how to use the linear algebra
VIs, see the examples located in examples\analysis\linxmpl.llb.

Linear Systems and Matrix Analysis

Systems of linear algebraic equations arise in many applications that
involve scientific computations such as signal processing, computational
fluid dynamics, and others. Such systems may occur naturally or may be
the result of approximating differential equations by algebraic equations.

Types of Matrices
Whatever the application, it is always necessary to find an accurate solution
for the system of equations in a very efficient way. In matrix-vector
notation, such a system of linear algebraic equations has the form

where A is an matrix, b is a given vector consisting of n elements, and
x is the unknown solution vector to be determined. A matrix is represented
by a 2D array of elements. These elements may be real numbers, complex
numbers, functions, or operators. The matrix A shown below is an array of
m rows and n columns with elements.

Here, ai,j denotes the (i,j)th element located in the ith row and the jth column.
In general, such a matrix is called a rectangular matrix. When , so
that the number of rows is equal to the number of columns, it is called a
square matrix. An matrix (m rows and one column) is called a
column vector. A row vector is a matrix (1 row and n columns). If all

Ax b=

n n×

m n×

A

a0 0, a0 1, … a0 n 1–,

a1 0, a1 1, … a1 n 1–,

… … … …
am 1– 0, am 1– 1, … am 1– n 1–,

=

m n=

m 1×
1 n×

Chapter 18 Linear Algebra

LabVIEW User Manual 18-2 © National Instruments Corporation

the elements other than the diagonal elements are zero (that is, ai,j = 0,
), such a matrix is called a diagonal matrix. For example,

is a diagonal matrix. A diagonal matrix with all the diagonal elements equal
to one is called an identity matrix, also known as unit matrix. If all the
elements below the main diagonal are zero, then the matrix is known as an
upper triangular matrix. On the other hand, if all the elements above the
main diagonal are zero, then the matrix is known as a lower triangular

matrix. When all the elements are real numbers, the matrix is referred to as
a real matrix. On the other hand, when at least one of the elements of the
matrix is a complex number, the matrix is referred to as a complex matrix.
To make things simpler to understand, you will work mainly with real
matrices in this lesson. However, for the adventurous, there are also some
activities involving complex matrices.

Determinant of a Matrix
One of the most important attributes of a matrix is its determinant. In the
simplest case, the determinant of a 2 x 2 matrix

is given by . The determinant of a square matrix is formed by
taking the determinant of its elements. For example, if

then the determinant of A, denoted by , is

= =

=–196

i j≠

A

4 0 0

0 5 0

0 0 9

=

A a b

c d
=

ad bc–

A

2 5 3

6 1 7

1 6 9

=

A

A 2 5 3

6 1 7

1 6 9

2 1 7

6 9
5 6 7

1 9
– 3 6 1

1 6
+

 
 
 

=

2 33–() 5 47()– 3 35()+

Chapter 18 Linear Algebra

© National Instruments Corporation 18-3 LabVIEW User Manual

The determinant tells many important properties of the matrix. For
example, if the determinant of the matrix is zero, then the matrix is
singular. In other words, the above matrix (with nonzero determinant) is
nonsingular. You will revisit the concept of singularity later in the section
Matrix Inverse and Solving Systems of Linear Equations, when the lesson
discusses the solution of linear equations and matrix inverses.

Transpose of a Matrix
The transpose of a real matrix is formed by interchanging its rows and
columns. If the matrix B represents the transpose of A, denoted by AT, then
bj,i=ai,j. For the matrix A defined above,

In case of complex matrices, we define complex conjugate transposition.
If the matrix D represents the complex conjugate transpose (if a = x + iy,
then complex conjugate a* = x - iy) of a complex matrix C, then

That is, the matrix D is obtained by replacing every element in C by its
complex conjugate and then interchanging the rows and columns of the
resulting matrix.

A real matrix is called a symmetric matrix if the transpose of the matrix is
equal to the matrix itself. The example matrix A is not a symmetric matrix.
If a complex matrix C satisfies the relation C = CH, then C is called a
Hermitian matrix.

Can You Obtain One Vector as a Linear Combination
of Other Vectors? (Linear Independence)
A set of vectors x1, x2,, xn is said to be linearly dependent if and only if
there exist scalars α1, α2, ..., αn, not all zero, such that

In simpler terms, if one of the vectors can be written in terms of a linear
combination of the others, then the vectors are said to be linearly
dependent.

B A
T

2 6 1

5 1 6

3 7 9

==

D C
H

di j, c∗
j i,=⇒=

α1x1 α2x2 … αnxn+ + + 0=

Chapter 18 Linear Algebra

LabVIEW User Manual 18-4 © National Instruments Corporation

If the only set of αi for which the above equation holds is ,
, ..., , then the set of vectors x1, x2,, xn is said to be

linearly independent. So, in this case, none of the vectors can be written in
terms of a linear combination of the others. Given any set of vectors, the
above equation always holds for , , ..., .
Therefore, to show the linear independence of the set, you must show that

, , ..., is the only set of αi for which the above
equation holds.

For example, first consider the vectors

Notice that and are the only values, for which the
relation holds true. Hence, these two vectors are linearly
independent of each other. Let us now look at vectors

Notice that, if and , then . Therefore,
these two vectors are linearly dependent on each other. You must
completely understand this definition of linear independence of vectors to
fully appreciate the concept of the rank of the matrix as discussed next.

How Can You Determine Linear Independence?
(Matrix Rank)
The rank of a matrix A, denoted by ρ(A), is the maximum number of
linearly independent columns in A. If you look at the example matrix A,
you will find that all the columns of A are linearly independent of each
other. That is, none of the columns can be obtained by forming a linear
combination of the other columns. Hence, the rank of the matrix is 3.
Consider one more example matrix, B, where

α1 0=
α2 0= αn 0=

α1 0= α2 0= αn 0=

α1 0= α2 0= αn 0=

x
1

2
= y

3

4
=

α1 0= α2 0=
α1x α2y+ 0=

x
1

2
= y

2

4
=

α1 2–= α2 1= α1x α2y+ 0=

B

0 1 1

1 2 3

2 0 2

=

Chapter 18 Linear Algebra

© National Instruments Corporation 18-5 LabVIEW User Manual

This matrix has only two linearly independent columns, because the third
column of B is linearly dependent on the first two columns. Hence, the rank
of this matrix is 2. It can be shown that the number of linearly independent
columns of a matrix is equal to the number of independent rows. So, the
rank can never be greater than the smaller dimension of the matrix.
Consequently, if A is an matrix, then

where min denotes the minimum of the two numbers. In matrix theory,
the rank of a square matrix pertains to the highest order nonsingular matrix
that can be formed from it. Remember from the earlier discussion that a
matrix is singular if its determinant is zero. So, the rank pertains to the
highest order matrix that you can obtain whose determinant is not zero. For
example, consider a 4 x 4 matrix

For this matrix, , but

Hence, the rank of B is 3. A square matrix has full rank if and only if its
determinant is different from zero. Matrix B is not a full-rank matrix.

“Magnitude” (Norms) of Matrices
You must develop a notion of the “magnitude” of vectors and matrices to

measure errors and sensitivity in solving a linear system of equations.

As an example, these linear systems can be obtained from applications in

control systems and computational fluid dynamics. In two dimensions,

for example, you cannot compare two vectors and

, because you might have but . A vector

norm is a way to assign a scalar quantity to these vectors so that they can

be compared with each other. It is similar to the concept of magnitude,

modulus, or absolute value for scalar numbers.

n m×

ρ A() min n m,()≤

B

1 2 3 4

0 1 1– 0

1 0 1 2

1 1 0 2

=

det B() 0=

1 2 3

0 1 1–

1 0 1

1–=

x x1 x2=

y y1 y2= x1 y1> x2 y2<

Chapter 18 Linear Algebra

LabVIEW User Manual 18-6 © National Instruments Corporation

There are ways to compute the norm of a matrix. These include the 2-norm
(Euclidean norm), the 1-norm, the Frobenius norm (F-norm), and the
Infinity norm (inf-norm). Each norm has its own physical interpretation.
Consider a unit ball containing the origin. The Euclidean norm of a vector
is simply the factor by which the ball must be expanded or shrunk in order
to encompass the given vector exactly. This is shown in the figures below:

Figure 1a shows a unit ball of radius = 1 unit. Figure 1b shows a vector

of length = = . As shown in Figure 1c, the unit ball must
be expanded by a factor of before it can exactly encompass the given
vector. Hence, the Euclidean norm of the vector is .

The norm of a matrix is defined in terms of an underlying vector norm. It is
the maximum relative stretching that the matrix does to any vector. With the
vector 2-norm, the unit ball expands by a factor equal to the norm. On the
other hand, with the matrix 2-norm, the unit ball may become an ellipsoidal
(ellipse in 3-D), with some axes longer than others. The longest axis
determines the norm of the matrix.

Some matrix norms are much easier to compute than others. The 1-norm
is obtained by finding the sum of the absolute value of all the elements in
each column of the matrix. The largest of these sums is called the 1-norm.
In mathematical terms, the 1-norm is simply the maximum absolute
column sum of the matrix.

1

1

2

2

2√2

Figure 1bFigure 1a

2

2

Figure 1c

2√2

2
2

2
2

+ 8 2 2
2 2

2 2

A 1 maxj ai j,

i 0=

n 1–

∑=

Chapter 18 Linear Algebra

© National Instruments Corporation 18-7 LabVIEW User Manual

For example,

then

.

The inf-norm of a matrix is the maximum absolute row sum of the matrix

In this case, you add the magnitudes of all elements in each row of the
matrix. The maximum value that you get is called the inf-norm. For the
above example matrix,

.

The 2-norm is the most difficult to compute because it is given by the
largest singular value of the matrix. Singular values are discussed in the
section Matrix Factorization.

Determining Singularity (Condition Number)
Whereas the norm of the matrix provides a way to measure the magnitude
of the matrix, the condition number of a matrix is a measure of how close
the matrix is to being singular. The condition number of a square
nonsingular matrix is defined as

where p can be one of the four norm types discussed above. For example,
to find the condition number of a matrix A, you can find the 2-norm of A,
the 2-norm of the inverse of the matrix A, denoted by A–1, and then multiply
them together (the inverse of a square matrix A is a square matrix B such
that AB=I, where I is the identity matrix). As mentioned earlier, the 2-norm

A 1 3

2 4
=

A 1 max 3 7,() 7= =

A ∞ maxi ai j,

j 0=

n 1–

∑=

A ∞ max 4 6,() 6= =

cond A() A p A
1–

p⋅=

Chapter 18 Linear Algebra

LabVIEW User Manual 18-8 © National Instruments Corporation

is difficult to calculate on paper. You can use the Matrix Norm VI from the
LabVIEW Analysis Library to compute the 2-norm. For example,

The condition number can vary between 1 and infinity. A matrix with a
large condition number is nearly singular, while a matrix with a condition
number close to 1 is far from being singular. The matrix A above is
nonsingular. However, consider the matrix

.

The condition number of this matrix is 47168, and hence the matrix is close
to being singular. As you might recall, a matrix is singular if its determinant
is equal to zero. However, the determinant is not a good indicator for
assessing how close a matrix is to being singular. For the matrix B above,
the determinant (0.0299) is nonzero; however, the large condition number
indicates that the matrix is close to being singular. Remember that the
condition number of a matrix is always greater than or equal to one; the
latter being true for identity and permutation matrices (a permutation

matrix is an identity matrix with some rows and columns exchanged).
The condition number is a very useful quantity in assessing the accuracy
of solutions to linear systems.

In this section, you have become familiar with some basic notation and
fundamental matrix concepts such as determinant of a matrix and its rank.
The following activity should help you further understand these terms,
which will be used frequently throughout the rest of the lesson.

A
1 2

3 4
A

1–, 2– 1

1.5 0.5–
A 2, 5.4650 A

1–
2,

2.7325 cond A(), 14.9331

= = =

= =

B
1 0.99

1.99 2
=

Chapter 18 Linear Algebra

© National Instruments Corporation 18-9 LabVIEW User Manual

Basic Matrix Operations and
Eigenvalues-Eigenvector Problems

In this section, consider some very basic matrix operations. Two matrices,
A and B, are said to be equal if they have the same number of rows and
columns and their corresponding elements are all equal. Multiplication of
a matrix A by a scalar is equal to multiplication of all its elements by the
scalar. That is,

For example,

Two (or more) matrices can be added or subtracted if and only if they
have the same number of rows and columns. If both matrices A and B have
m rows and n columns, then their sum C is an m-by-n matrix defined as

, where . For example,

For multiplication of two matrices, the number of columns of the first
matrix must be equal to the number of rows of the second matrix. If matrix
A has m rows and n columns and matrix B has n rows and p columns, then
their product C is an m-by-p matrix defined as , where

For example,

α

C αA ci j,⇒ α ai j,= =

2 1 2

3 4

2 4

6 8
=

C A B±= ci j, ai j, bi j,±=

1 2

3 4

2 4

5 1
+ 3 6

8 5
=

C AB=

ci j, ai k, bk j,

k 0=

n 1–

∑=

1 2

3 4

2 4

5 1
× 12 6

26 16
=

Chapter 18 Linear Algebra

LabVIEW User Manual 18-10 © National Instruments Corporation

So, you multiply the elements of the first row of A by the corresponding
elements of the first column of B and add all the results to get the elements
in the first row and first column of C. Similarly, to calculate the element in
the ith row and the jth column of C, multiply the elements in the ith row of A
by the corresponding elements in the jth column of C, and then add them
all. This is shown pictorially as:

Matrix multiplication, in general, is not commutative, that is, .
Also, remember that multiplication of a matrix by an identity matrix results
in the original matrix.

Dot Product and Outer Product
If X represents a vector and Y represents another vector, then the dot

product of these two vectors is obtained by multiplying the corresponding
elements of each vector and adding the results. This is denoted by

where n is the number of elements in X and Y. Note that both vectors must
have the same number of elements. The dot product is a scalar quantity, and
has many practical applications.

For example, consider the vectors and in a
two-dimensional rectangular coordinate system.

Rn • C1 Rn • Cm

R1 • C1 R1 • Cm

R1

Rn

X

Cm C1

=

AB BA≠

X Y• xiyi

i 0=

n 1–

∑=

a 2i 4j+= b 2i j+=

Chapter 18 Linear Algebra

© National Instruments Corporation 18-11 LabVIEW User Manual

Then the dot product of these two vectors is given by

The angle α between these two vectors is given by

,

where |a| denotes the magnitude of a.

As a second application, consider a body on which a constant force a acts.
The work W done by a in displacing the body is defined as the product of
|d| and the component of a in the direction of displacement d. That is,

a=2i+4j

b=2i+j

α = 36.86°

d
2

4

2

1
• 2 2×() 4 1×()+ 8= = =

α inv
a b•
a b
------------ 

 cos inv
8

10
------ 

 cos 36.86o= = =

d

Force a

α
α

Body

W a d αcos a d•= =

Chapter 18 Linear Algebra

LabVIEW User Manual 18-12 © National Instruments Corporation

On the other hand, the outer product of these two vectors is a matrix. The
(i,j)th element of this matrix is obtained using the formula

For example,

Eigenvalues and Eigenvectors
To understand eigenvalues and eigenvectors, start with the classical
definition. Given an matrix A, the problem is to find a scalar λ and a
nonzero vector x such that

Such a scalar λ is called an eigenvalue, and x is a corresponding
eigenvector.

Calculating the eigenvalues and eigenvectors are fundamental principles of
linear algebra and allow you to solve many problems such as systems of
differential equations when you understand what they represent. Consider
an eigenvector x of a matrix A as a nonzero vector that does not rotate when
x is multiplied by A (except perhaps to point in precisely the opposite
direction). x may change length or reverse its direction, but it will not turn
sideways. In other words, there is some scalar constant λ such that the
above equation holds true. The value λ is an eigenvalue of A.

Consider the following example. One of the eigenvectors of the matrix A,
where

,

is

.

ai j, xi yj×=

1

2

3

4
× 3 4

6 8
=

n n×

Ax λx=

A 2 3

3 5
=

x 0.62

1.00
=

Chapter 18 Linear Algebra

© National Instruments Corporation 18-13 LabVIEW User Manual

Multiplying the matrix A and the vector x simply causes the vector x
to be expanded by a factor of 6.85. Hence, the value 6.85 is one of the
eigenvalues of the vector x. For any constant , the vector is also an
eigenvector with eigenvalue , because

In other words, an eigenvector of a matrix determines a direction in
which the matrix expands or shrinks any vector lying in that direction by
a scalar multiple, and the expansion or contraction factor is given by the
corresponding eigenvalue. A generalized eigenvalue problem is to find a
scalar and a nonzero vector x such that

where B is another matrix.

The following are some important properties of eigenvalues and
eigenvectors:

• The eigenvalues of a matrix are not necessarily all distinct. In other
words, a matrix can have multiple eigenvalues.

• All the eigenvalues of a real matrix need not be real. However, complex
eigenvalues of a real matrix must occur in complex conjugate pairs.

• The eigenvalues of a diagonal matrix are its diagonal entries, and the
eigenvectors are the corresponding columns of an identity matrix of
the same dimension.

• A real symmetric matrix always has real eigenvalues and eigenvectors.

• As discussed earlier, eigenvectors can be scaled arbitrarily.

There are many practical applications in the field of science and
engineering for an eigenvalue problem. For example, the stability of a
structure and its natural modes and frequencies of vibration are determined
by the eigenvalues and eigenvectors of an appropriate matrix. Eigenvalues
are also very useful in analyzing numerical methods, such as convergence
analysis of iterative methods for solving systems of algebraic equations,
and the stability analysis of methods for solving systems of differential
equations.

The EigenValues and Vectors VI is shown below. The Input Matrix is an
N-by-N real square matrix. Matrix type determines the type of the input
matrix. Matrix type could be 0, indicating a general matrix, or 1,
indicating a symmetric matrix. A symmetric matrix always has real

α α x

λ

A αx() αAx λα x==

λ

Ax λBx=

n n×

Chapter 18 Linear Algebra

LabVIEW User Manual 18-14 © National Instruments Corporation

eigenvalues and eigenvectors. A general matrix has no special property
such as symmetry or triangular structure.

Output option determines what needs to be computed. Output option = 0
indicates that only the eigenvalues need to be computed. Output option = 1
indicates that both the eigenvalues and the eigenvectors should be
computed. It is computationally very expensive to compute both the
eigenvalues and the eigenvectors. So, it is important that you use the output
option control in the EigenValues and Vectors VI very carefully.
Depending on your particular application, you might just want to compute
the eigenvalues or both the eigenvalues and the eigenvectors. Also, a
symmetric matrix needs less computation than an nonsymmetric matrix.
So, choose the matrix type control carefully.

In this section, you learned about some basic matrix operations and the
eigenvalues-eigenvectors problem. The next example will introduce some
VIs in the analysis library that perform these operations.

Matrix Inverse and Solving Systems of Linear Equations

The inverse, denoted by , of a square matrix A is a square matrix
such that

where I is the identity matrix. The inverse of a matrix exists if and only
if the determinant of the matrix is not zero, (that is, it is nonsingular).
In general, you can find the inverse of only a square matrix. You can,
however, compute the pseudoinverse of a rectangular matrix, as discussed
later in the Matrix Factorization section.

A
1–

A
1–
A AA

1–
I= =

Chapter 18 Linear Algebra

© National Instruments Corporation 18-15 LabVIEW User Manual

Solutions of Systems of Linear Equations
In matrix-vector notation, a system of linear equations has the form

, where A is a matrix and b is a given n-vector. The aim is to
determine x, the unknown solution n-vector. There are two important
questions to be asked about the existence of such a solution. Does such a
solution exist, and if it does is it unique? The answer to both of these
questions lies in determining the singularity or nonsingularity of the
matrix A.

As discussed earlier, a matrix is said to be singular if it has any one of the
following equivalent properties:

• The inverse of the matrix does not exist.

• The determinant of the matrix is zero.

• The rows (or columns) of A are linearly dependent.

• for some vector .

Otherwise, the matrix is nonsingular. If the matrix is nonsingular, its inverse
 exists, and the system has a unique solution:

regardless of the value for b. On the other hand, if the matrix is singular,
then the number of solutions is determined by the right-hand-side vector b.
If A is singular and , then for any scalar , where
the vector z is as in the last definition above. Thus, if a singular system has
a solution, then the solution cannot be unique.

It is not a good idea to explicitly compute the inverse of a matrix, because
such a computation is prone to numerical inaccuracies. Therefore, it is not
a good strategy to solve a linear system of equations by multiplying the
inverse of the matrix A by the known right-hand-side vector. The general
strategy to solve such a system of equations is to transform the original
system into one whose solution is the same as that of the original system,
but is easier to compute. One way to do so is to use the Gaussian
Elimination technique. See Appendix A, Analysis References, for more
information on matrix computations. The three basic steps involved in the
Gaussian Elimination technique are as follows. First, express the matrix A
as a product

where L is a unit lower triangular matrix and U is an upper triangular
matrix. Such a factorization is known as LU factorization. Given this, the
linear system can be expressed as . Such a system can
then be solved by first solving the lower triangular system for y by

Ax b= n n×

Az 0= z 0≠

A
1–

Ax b= x A
1–
b=

Ax b= A x ϒz+() b= ϒ

A LU=

Ax b= LUx b=
Ly b=

Chapter 18 Linear Algebra

LabVIEW User Manual 18-16 © National Instruments Corporation

forward-substitution. This is the second step in the Gaussian Elimination
technique. For example, if

then

.

The first element of y can be easily determined due to the lower triangular
nature of the matrix L. Then you can use this value to compute the
remaining elements of the unknown vector sequentially. Hence, the name
forward-substitution. The final step involves solving the upper triangular
system by back-substitution. For example, if

then

.

In this case, this last element of x can be easily determined and then
used to determine the other elements sequentially. Hence, the name
back-substitution. So far, this chapter has discussed the case of square
matrices. Because a nonsquare matrix is necessarily singular, the system
of equations must have either no solution or a nonunique solution. In such
a situation, you usually find a unique solution x that satisfies the linear
system in an approximate sense.

The Analysis library provides VIs for computing the inverse of a matrix,
computing LU decomposition of a matrix, and solving a system of linear
equations. It is important to identify the input matrix properly, as it
helps avoid unnecessary computations, which in turn helps to minimize
numerical inaccuracies. The four possible matrix types are general
matrices, positive definite matrices, and lower and upper triangular
matrices. A real matrix is positive definite if and only if it is symmetric and
the quadratic form for all nonzero vectors is X. If the input matrix is square,
but does not have a full rank (a rank-deficient matrix), then the VI finds the
least square solution x. The least square solution is the one which

l
a 0

b c
= y

p

q
= b

r

s
=

p
r

a
--- q,

s bp–()
c

-------------------= =

Ux y=

U
a b

0 c
= x

m

n
= y

p

q
=

n
q

c
--- m, p bn–()

a
--------------------= =

Chapter 18 Linear Algebra

© National Instruments Corporation 18-17 LabVIEW User Manual

minimizes the norm of . The same holds true also for nonsquare
matrices.

Activity 18-1. Compute the Inverse of a Matrix

Your objective is to compute the inverse of a matrix.

You will build a VI that will compute the inverse of a matrix A. Further, you
will compute a matrix B which is similar to matrix A. A matrix B is similar
to a matrix A if there is a nonsingular matrix T such that so
that A and B have the same eigenvalues. You will verify this definition of
similar matrices.

Front Panel

1. Build the front panel as shown below. Matrix A is a real matrix.
Matrix T is a nonsingular matrix that will be used to construct
the similar matrix B.

Ax b–

B T
1–
AT=

2 2×
2 2×

Chapter 18 Linear Algebra

LabVIEW User Manual 18-18 © National Instruments Corporation

Block Diagram

2. Open the block diagram and modify it as shown in the following
illustration.

Inverse Matrix function (Analysis»Linear Algebra subpalette). In this
activity, this function computes the inverse of the input matrix A.

AxB function (Analysis»Linear Algebra subpalette). In this activity, this
function multiplies two two-dimensional input matrices.

EigenValues and Vectors function (Analysis»Linear Algebra subpalette).
In this activity, this VI computes the eigenvalues and eigenvectors of the
input matrix.

3. Save the VI as Matrix Inverse.vi in the LabVIEW\Activity
directory.

4. Return to the front panel and run the VI. Check if the eigenvalues of A
and the similar matrix B are the same.

End of Activity 18-1.

Chapter 18 Linear Algebra

© National Instruments Corporation 18-19 LabVIEW User Manual

Activity 18-2. Solve a System of
Linear Equations

Your objective is to solve a system of linear equations.

Many practical applications require you to solve a system of linear
equations. A very important area of application is related to military
defense. This includes analysis of electromagnetic scattering and radiation
from large targets, performance analysis of large radomes, and design
of aerospace vehicles having low radar cross sections (the Stealth
Technology). A second area of application is in the design and modeling
of wireless communication systems such as hand-held cellular phones.
This list of applications goes on and on, and therefore it is very important
for you to properly understand how to use the VIs in the Analysis Library
to solve a linear system of equations.

1. Use the Solve Linear Equations.vi in the Analysis»Linear

Algebra subpalette to solve the system of equations where
the Input Matrix A and the Known Vector b are

Choose matrix type equal to general.

2. Use the A x Vector.vi to multiply the matrix A and the vector x (output
of the above operation) and check if the result is equal to the vector b
above.

3. Save the VI as Linear System.vi in the LabVIEW\Activity
directory.

End of Activity 18-2.

Ax b=

A

2 4 2–

4 9 3–

2– 1– 7

b,
2

8

10

= =

Chapter 18 Linear Algebra

LabVIEW User Manual 18-20 © National Instruments Corporation

Matrix Factorization

The previous section discussed how a linear system of equations can be
transformed into a system whose solution is simpler to compute. The basic
idea was to factorize the input matrix into the multiplication of several,
simpler matrices. You looked at one such technique, the LU decomposition
technique, in which you factorized the input matrix as a product of upper
and lower triangular matrices. Other commonly used factorization methods
are Cholesky, QR, and the Singular Value Decomposition (SVD). You can
use these factorization methods to solve many matrix problems, such as
solving linear system of equations, inverting a matrix, and finding the
determinant of a matrix.

If the input matrix A is symmetric and positive definite, then an
LU factorization can be computed such that , where U is an
upper triangular matrix. This is called Cholesky factorization. This
method requires only about half the work and half the storage compared
to LU factorization of a general matrix by Gaussian elimination. It is easy
to determine if a matrix is positive definite by using the Test Positive
Definite VI in the Analysis library.

A matrix Q is orthogonal if its columns are orthonormal. That is,
if , the identity matrix. QR factorization technique factors a
matrix as the product of an orthogonal matrix Q and an upper triangular
matrix R. That is, .QR factorization is useful for both square
and rectangular matrices. A number of algorithms are possible for
QR factorization, such as the Householder transformation, the
Givens transformation and the Fast Givens Transformation.

The Singular Value Decomposition (SVD) method decomposes a matrix
into the product of three matrices: . U and V are orthogonal
matrices. S is a diagonal matrix whose diagonal values are called the
singular values of A. The singular values of A are the nonnegative square
roots of the eigenvalues of , and the columns of U and V, which are
called left and right singular vectors, are orthonormal eigenvectors of
and , respectively. SVD is useful for solving analysis problems such
as computing the rank, norm, condition number, and pseudoinverse of
matrices. The following section discusses this last application.

A U
T
U=

Q
T
Q I=

A QR=

A USV
T

=

A
T
A

AA
T

A
T
A

Chapter 18 Linear Algebra

© National Instruments Corporation 18-21 LabVIEW User Manual

Pseudoinverse
The pseudoinverse of a scalar is defined as if , and zero
otherwise. In case of scalars, pseudoinverse is the same as the inverse.
You can now define the pseudoinverse of a diagonal matrix by transposing
the matrix and then taking the scalar pseudoinverse of each entry. Then the
pseudoinverse of a general real matrix A, denoted by , is given by

Note that the pseudoinverse exists regardless of whether the matrix
is square or rectangular. If A is square and nonsingular, then the
pseudoinverse is the same as the usual matrix inverse. The Analysis Library
includes a VI for computing the pseudoinverse of real and complex
matrices.

Summary

• A matrix can be considered as a two-dimensional array of m rows and
n columns. Determinant, rank, and condition number are some
important attributes of a matrix.

• The condition number of a matrix affects the accuracy of the final
solution.

• The determinant of a diagonal matrix, an upper triangular matrix, or a
lower triangular matrix is the product of its diagonal elements.

• Two matrices can be multiplied only if the number of columns of the
first matrix is equal to the number of rows in the second matrix.

• An eigenvector of a matrix is a nonzero vector that does not rotate
when the matrix is applied to it. Similar matrices have the same
eigenvalues.

• The existence of a unique solution for a system of equations depends
on whether the matrix is singular or nonsingular.

σ 1 σ⁄ σ 0≠

m n× A†

A† VS†U
T

=

© National Instruments Corporation 19-1 LabVIEW User Manual

19
Probability and Statistics

This chapter explains some fundamental concepts on probability and
statistics and shows how to use these concepts in solving real-world
problems. For examples of how to use the probability and statistics VIs,
see the examples located in examples\analysis\statxmpl.llb.

Probability and Statistics

We live in an information age in which facts and figures form an important
part of life. Statements such as “There is a 60% chance of thunderstorms,”
“Joe was ranked among the top five in the class,” “Michael Jordan has an
average of 30 points a game this season,” and so on are common. These
statements give a lot of information, but we seldom think how this
information was obtained. Was there a lot of data involved in obtaining this
information? If there was, how did someone condense it to single numbers
such as 60% chance and average of 30 points or terms such as top five. The
answer to all these questions brings up the very interesting field of
statistics.

First, consider how information (data) is generated. Consider the 1997
basketball season. Michael Jordan of the Chicago Bulls played 51 games,
scoring a total of 1568 points. This includes the 45 points he posted,
including the game-winning buzzer three-pointer, in a 103-100 victory over
the Charlotte Hornets; his 36 points in an 88-84 victory over the Portland
Trail Blazers; a season high of 51 points in an 88-87 victory over the New
York Nicks; 45 points, 7 rebounds, 5 assists and 3 steals in a 102-97 victory
over the Cleveland Cavaliers; and his 40 points, 6 rebounds, and 6 assists
in a 107-104 victory over the Milwaukee Bucks. The point is not that
Jordan is a great player, but that a single player can generate lots of data in
a single season. The question is how to condense all this data so that it
brings out all the essential information and is yet easy to remember. This is
where the term statistics comes into the picture.

To condense all the data, single numbers must make it more intelligible and
help draw useful inferences. For example, consider the number of points
that Jordan scored in different games. It is difficult to remember how many
points he scored in each game. But if you divide the total number of points

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-2 © National Instruments Corporation

that Jordan scored (1568) by the number of games he has played (51), you
have a single number of 30.7 and can call it points per game average.

Suppose you want to rate Jordan’s free throw shooting skills. It might be
difficult to do so by looking at his performance in each game. However, you
can divide the number of free throws he has scored in all the games by the
total number of free throws he was awarded. This shows he has a free throw
percentage of 84.4%. You can obtain this number for all the NBA players
and then rank them. Thus, you can condense the information for all the
players into single numbers representing free throw percentage, points per
game, and three-point average. Based on this information, you can rank
players in different categories. You can further weight these different
numbers and come up with a single number for each player. These single
numbers can then help us in judging the Most Valuable Player (MVP) for
the season. Thus, in a broad sense, the term statistics implies different ways
to summarize data to derive useful and important information from it.

The next question is, what is probability? You have looked at ways to
summarize lots of data into single numbers. These numbers then help draw
conclusions for the present. For example, looking at Jordan’s statistics for
the 1996 season helped elect him the MVP for that season. But can you say
anything about the future? Can you measure the degree of accuracy in the
inference and use it for making future decisions? The answer lies in the
theory of probability. Whereas, in laymen’s terms, one would say that it is
probable that Jordan will continue to be the best in the years to come, you
can use different concepts in the field of probability, as discussed later in
this chapter, to make more quantitative statements.

In a completely different scenario, there may be certain experiments whose
outcomes cannot be predetermined, but certain outcomes may be more
probable. This once again leads to the notion of probability. For example,
if you flip an unbiased coin in the air, what is the chance that it will land
heads up? The chance or probability is 50%. That means, if you repeatedly
flip the coin, half the time it will land heads up. Does this mean that
10 tosses will result in exactly five heads? Will 100 tosses result in exactly
50 heads? Probably not. But in the long run, the probability will work out
to be 0.5.

To summarize, whereas statistics allows you to summarize data and draw
conclusions for the present, probability allows you to measure the degree
of accuracy in those conclusions and use them for the future.

Chapter 19 Probability and Statistics

© National Instruments Corporation 19-3 LabVIEW User Manual

Statistics

In this section, you will look at different concepts and terms commonly
used in statistics and see how to use the G Analysis VIs in different
applications.

Mean
Consider a data set X consisting of n samples , , , , , .
The mean value (a.k.a. average) is denoted by and is defined by the
formula

In other words, it is the sum of all the sample values divided by the number
of samples. As in the Michael Jordan example, the data set consisted of
51 samples. Each sample was equal to the number of points that Jordan
scored in each game. The total of all these points was 1568, divided by the
number of samples (51) to get a mean or average value of 30.7.

The input-output connections for the Mean VI are shown below.

Median
Let represent the sorted sequence of the data
set X. The sequence can be sorted either in the ascending order or in
descending order. The median of the sequence is denoted by and is
obtained by the formula

where

 and .

x0 x1 x2 x3 … xn 1–

x

x
1
n
--- x0 x1 x2 x3 … xn 1–+ + + + +()=

S s0 s1 s2 … sn 1–, , ,{ , }=

xmedian

xmedian

si n is odd

0.5 sk 1– sk+() n is even



=

i
n 1–

2
------------= k

n

2
---=

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-4 © National Instruments Corporation

In words, the median of a data sequence is the midpoint value in the
sorted version of that sequence. For example, consider the sequence

 consisting of five (odd number) samples. This sequence is
already sorted in the descending order. In this case, the median is the
midpoint value, 3. Consider a different sequence consisting
of four (even number) samples. This sequence is already sorted in the
ascending order. In this case, there are two midpoint values, 2 and 3. As per
the formula above, the median is equal to . If a student
X scored 4.5 points on a test and another student Y scored 1 point on the
same test, the median is a very useful quantity for making qualitative
statements such as “X lies in the top half of the class” or “Y lies in the
bottom half of the class.”

The input-output connections for the Median VI are shown below.

Sample Variance
The sample variance of the data set X consisting of n samples is denoted by

 and is defined by the formula

where denotes the mean of the data set. Hence, the sample variance is
equal to the sum of the squares of the deviations of the sample values from
the mean divided by n–1.

Note The above formula does not apply for n=1. However, it does not mean anything to

compute the sample variance if there is only one sample in the data set.

The input-output connections for the Sample Variance VI are shown below.

5 4 3 2 1, , ,{ , }

1 2 3 4, , ,{ }

0.5 2 3+()× 2.5=

s
2

s
2 1

n 1–
------------ x1 x–()

2
x2 x–()

2
… xn x–()

2
+ + +[]=

x

Chapter 19 Probability and Statistics

© National Instruments Corporation 19-5 LabVIEW User Manual

In other words, the sample variance measures the spread or dispersion of
the sample values. If the data set consists of the scores of a player from
different games, the sample variance can be used as a measure of the
consistency of the player. It is always positive, except when all the sample
values are equal to each other and in turn equal to the mean.

There is one more type of variance called population variance. The formula
to compute population variance is similar to the one above to compute
sample variance, except for the (n–1) in the denominator replaced by n.

The input-output connections for the Variance VI are shown below

The Sample Variance VI computes sample variance, whereas the Variance
VI computes the population variance. Statisticians and mathematicians
prefer to use the latter, engineers the former. It really does not matter for
large values of , say .

Note Use the proper type of VI suited for your application.

Standard Deviation
The positive square root of the sample variance is denoted by and is
called the standard deviation of the sample.

The input-output connections for the Standard Deviation VI are shown
below.

n n 30≥

s
2

s

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-6 © National Instruments Corporation

Mode
The mode of a sample is a sample value that occurs most frequently in the
sample. For example, if the input sequence X is

then the mode of X is 4, because that is the value that most often occurs in X.

The input-output connections for the Mode VI are shown below.

Moment About Mean
If X represents the input sequence with n number of elements in it, and

is the mean of this sequence, then the mth-order moment can be
calculated using the formula

In other words, the moment about mean is a measure of the deviation of the
elements in the sequence from the mean. Note that for , the moment
about mean is equal to the population variance.

The input-output connections for the Moment About Mean VI are shown
below.

X 0 1 3 3 4 4 4 5 5 7, , , , , , , , ,{ }=

x

σx

m 1
n
--- xi x–()

m

i 0=

n 1–

∑=

m 2=

Chapter 19 Probability and Statistics

© National Instruments Corporation 19-7 LabVIEW User Manual

Histogram
So far, this chapter has discussed different ways to extract important
features of a data set. The data is usually stored in a table format, which
many people find difficult to grasp. The visual display of data helps us
gain insights into the data. Histogram is one such graphical method for
displaying data and summarizing key information. Consider a data
sequence . Divide the total range of
values into 8 intervals. These intervals are 0 – 1, 1 – 2, 2 – 3, ..., 7 – 8.
The histogram for the sequence X then plots the number of data samples
that lie in that interval, not including the upper boundary.

The figure above shows that one data sample lies in the range 0 – 1 and
1 – 2, respectively. However, there is no sample in the interval 2 – 3.
Similarly, two samples lie in the interval 3 – 4, and three samples lie in the
range 4 – 5. Examine the data sequence X above and be sure you
understand this concept.

There are different ways to compute data for histogram. Next you will see
how it is done in the Histogram VI using the sequence X.

As shown above, the inputs to this VI are the input sequence X and the
number of intervals m. The VI obtains Histogram:h(x) as follows. It scans

X 0 1 3 3 4 4 4 5 5 8, , , , , , , , ,{ }=

0 ∆0 ∆1 ∆7
1

1

2

3

2 3 4 5 6 7 8

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-8 © National Instruments Corporation

X to determine the range of values in it. Then the VI establishes the interval
width, , according to the specified value of m

where max is the maximum value found in X, min is the minimum value
found in X, and m is the specified number of intervals.

Let

.

Then

Let represent the output sequence X Values. The histogram is a function
of X. This VI evaluates the elements of using

For this example,

.

The VI then defines the ith interval to be in the range of values from
 up to but not including ,

and defines the function for x belonging to and zero
elsewhere. The function has unity value if the value of x falls within the
specified interval, not including the boundary. Otherwise, it is zero. Notice
that the interval is centered about and its width is . If a value is equal
to max, it is counted as belonging to the last interval.

∆x

∆x
max min–

m
--------------------------=

m 8=

∆x
8 0–

8
------------ 1= =

χ
χ

χ i min 0.5∆x i∆x+ += for i 0 1 2 … m 1–, , , ,=

χ0 0.5 χ1, 1.5 … χ7, , 7.5= = =

χ i 0.5∆x– χ i 0.5∆x+

∆i χ i 0.5∆x–() χ i 0.5∆x+()] for, ,[= i 0 1 2 … m 1–, , , ,=

yi x() 1= ∆i

χ i ∆x

Chapter 19 Probability and Statistics

© National Instruments Corporation 19-9 LabVIEW User Manual

For our example,

and as an example

and

.

Finally, the VI evaluates the histogram sequence H using

where represents the elements of the output sequence Histogram: h(X)
and n is the number of elements in the input sequence X. For this example,

.

The G Analysis Library also has a General Histogram VI that is more
advanced than the Histogram VI. Please refer to the Analysis Online

Reference for detailed information.

∆0 0 1] ∆1, ,[1 2] … ∆7, , ,[7 8],[= = =

y0 0() 1=

y0 1() y0 3() y0 4() y0 5() y0 8() 0= = = = =

hi yi xj()
j 0=

n 1–

∑= for i 0 1 2 … m 1–, , , ,=

hi

h0 1 h4, 3 … h7, , 1= = =

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-10 © National Instruments Corporation

Mean Square Error (MSE)
If X and Y represent two input sequences, then the mean square error
is the average of the sum of the square of the difference between the
corresponding elements of the two input sequences. The following formula
is used to find the mse.

where n is the number of data points.

Consider a digital signal x fed to a system, S1. The output of this system is
y1. Now you acquire a new system, S2, which is theoretically known to
generate the same result as S1 but has two times faster response time.
Before replacing the old system, you want to be absolutely sure that the
output response of both the systems is the same. If the sequences y1 and y2
are very large, it is difficult to compare each element in the sequences. In
such a scenario, you can use the MSE VI to calculate the mean square error
(mse) of the two sequences y1 and y2. If the mse is smaller than an
acceptable tolerance, then the system S1 can be reliably replaced by the
new system S2.

The input-output connections for the MSE VI are shown below.

mse
1
n
--- xi yi–()2

i 0=

n 1–

∑=

x

S1

S2

y1

y2

Chapter 19 Probability and Statistics

© National Instruments Corporation 19-11 LabVIEW User Manual

Root Mean Square (RMS)
The root mean square of a sequence X is the positive square root of the
mean of the square of the input sequence. In other words, you can square
the input sequence, take the mean of this new squared sequence, and then
take the square root of this quantity. The formula used to compute the rms
value is

where n is the number of elements in X.

RMS is a widely used quantity in the case of analog signals. For a sine
voltage waveform, if Vp is the peak amplitude of the signal, then the

root mean square voltage Vrms is given by .

The following figure shows a voltage waveform of peak amplitude = 2 V
and the RMS value of V computed using the Analysis Library.

The input-output connections for the RMS VI are shown below.

Ψx

Ψx

1
n
--- xi

2

i 0=

n 1–

∑=

Vp

2

2 1.41≈

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-12 © National Instruments Corporation

Probability

In any random experiment, there is always a chance that a particular event
will or will not occur. A number between 0 and 1 is assigned to measure
this chance, or probability, that a particular event occurs. If you are
absolutely sure that the event will occur, its probability is 100% or 1.0,
but if you are sure that the event will not occur, its probability is 0.

Consider a simple example. If you roll a single unbiased die, there are six
possible events that can occur—either a 1, 2, 3, 4, 5, or 6 can result. What
is the probability that a 2 will result? This probability is one in six, or
0.16666. You can define probability in simple terms as: The probability that
an event A will occur is the ratio of the number of outcomes favorable to A
to the total number of equally likely outcomes.

Random Variables
Many experiments generate outcomes that you can interpret in terms of real
numbers. Some examples are the number of cars passing a stop sign during
a day, number of voters favoring candidate A, and number of accidents at
a particular intersection. The values of the numerical outcomes of this
experiment can change from experiment to experiment and are called
random variables. Random variables can be discrete (if they can take on
only a finite number of possible values) or continuous. As an example of
the latter, weights of patients coming into a clinic may be anywhere from,
say, 80 to 300 pounds. Such random variables can take on any value in an
interval of real numbers. Given such a situation, suppose you want to find
the probability of encountering a patient weighing exactly 172.39 pounds.
You will see how to calculate this probability next using an example.

Consider an experiment to measure the life lengths x of 50 batteries of a
certain type. These batteries are selected from a larger population of such
batteries. The histogram for observed data is shown below.

Chapter 19 Probability and Statistics

© National Instruments Corporation 19-13 LabVIEW User Manual

This figure shows that most of the life lengths are between zero and
100 hours, and the histogram values drop off smoothly you we look at
larger life lengths.

You can approximate the histogram shown above by an exponentially
decaying curve. You could take this function as a mathematical model for
the behavior of the data sample. If you want to know the probability that a
randomly selected battery will last longer than four hundred hours, this
value can be approximated by the area under the curve to the right of the
value 4. Such a function that models the histogram of the random variable
is called the probability density function.

To summarize all the information above in terms of a definition, a random
variable X is said to be continuous if it can take on the infinite number of

histogram

0 1 2 3 4 5 6
life length in hundreds of hours

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-14 © National Instruments Corporation

possible values associated with intervals of real numbers, and there is a
function f(x), called the probability density function, such that

1.

2.

3.

Notice from equation (3) above, that for a specific value of the continuous
random variable, that is for

X=a, .

It should not be surprising that you assign a probability of zero to any
specific value, because there are an infinite number of possible values that
the random variable can take. Therefore, the chance that it will take on a
specific value is extremely small.

In the previous example used the exponential function model for the
probability density function. There are a number of different choices for
this function. One of these is the Normal Distribution, discussed below.

f x() 0≥ for all x

f x() xd

∞–

∞

∫ 1=

P a X b≤ ≤() f x() xd

a

b

∫=

P X a=() f x() xd

a

a

∫ 0= =

X a=

Chapter 19 Probability and Statistics

© National Instruments Corporation 19-15 LabVIEW User Manual

Normal Distribution
The normal distribution is one of the most widely used continuous
probability distributions. This distribution function has a symmetric bell
shape, as shown in the following illustration.

The curve is centered at the mean value , and its spread is measured
by the variance . These two parameters completely determine the
shape and location of the normal density function, whose functional form
is given by

Suppose a random variable Z has a normal distribution with mean equal to
zero and variance equal to one. This random variable is said to have
standard normal distribution.

The G Analysis Normal Distribution VI computes the one-sided
probability, p, of the normally distributed random variable x.

x 0=
s

2
1=

f x() 1

2πs
-------------e

x x–()
2

2s
2()⁄–

=

p Prob X x≤()=

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-16 © National Instruments Corporation

where X is a standard normal distribution with the mean value equal to zero
and variance equal to one, p is the probability and x is the value.

Suppose you conduct an experiment in which you measure the heights of
adult males. You conduct this experiment on 1000 randomly chosen men
and obtain a data set S. The histogram distribution has many measurements
clumped closely about a mean height, with relatively few very short and
very tall males in the population. Therefore, the histogram can be closely
approximated by a normal distribution. Now suppose that, among a
different set of 1000 randomly chosen males, you want to find the
probability that the height of a male is greater than or equal to 170 cms.
You can use the Normal Distribution VI to find this probability. Set the
input . Thus, the choice of the probability density function is
fundamental to obtaining a correct probability value.

The Inverse Normal Distribution VI performs exactly the opposite
function. Given a probability p, it finds the values x that have the chance of
lying in a normally distributed sample. For example, you might want to find
the heights that have a 60% chance of lying in a randomly chosen data set.

As mentioned earlier, there are different choices for the probability density
function. The well-known and widely-used ones are the Chi-Square
distribution, the F distribution, and the T-distribution. For more information
on these distributions, refer to Appendix A, Analysis References. The G
Analysis library has VIs that computes the one-sided probability for these
different types of distributions. In addition, it also has VIs that perform the
inverse operation.

x 170=

Chapter 19 Probability and Statistics

© National Instruments Corporation 19-17 LabVIEW User Manual

Activity 19-1. Use the Normal Distribution VI

Your objective is to understand key probability concepts.

In this activity, you will first generate a data sample with standard normal
distribution and then use the Normal Distribution VI to check the
probability of a random variable x.

Front Panel

1. Build the front panel as shown in the following figure. NoisePlot is a
waveform graph, whereas NoiseHistogram is an XY graph.

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-18 © National Instruments Corporation

Block Diagram

2. Build the block diagram as shown in the following illustration.
The Gaussian White Noise generates a Gaussian-distributed pattern
with mean value equal to 0 and standard deviation set by the user using
the input standard deviation. Samples is the number of samples of the
Gaussian Noise Pattern. Seed is the seed value used to generate the
random noise. Connect the Gaussian Noise Pattern to the waveform
graph Noise Plot.

Gaussian White Noise function (Analysis»Signal Generation subpalette).
In this activity, this function generates a Gaussian White Noise pattern.

Histogram function (Analysis»Probability and Statistics subpalette).
In this activity, this function computes the histogram of the Gaussian Noise
Pattern.

Normal Distribution function (Analysis»Probability and Statistics
subpalette). In this activity, this function computes the one-sided
probability of the normally distributed random variable Random Variable.

Chapter 19 Probability and Statistics

© National Instruments Corporation 19-19 LabVIEW User Manual

3. You will compute the histogram of the Gaussian Noise Pattern using
the Histogram VI used in the previous activity.

4. As discussed earlier, do some postprocessing to plot the histogram in
a different way. Select the PostProcessing VI from the
LabVIEW\Activity directory.

5. Bundle the output of this VI and connect it to the Noise Histogram.

6. Select the Normal Distribution VI. Connect the Random Variable
control to the input terminal and connect the output to the probability
indicator.

7. Return to the front panel. Set the Number of Samples to 2,048,
Standard Deviation to 1, Seed to 2 and Number of intervals to 10.
Run the VI.

8. You will see the Gaussian white noise on the Noise Plot graph. It is
difficult to tell much from this plot. However, the histogram plot for the
same noise pattern provides a lot of information. It shows that most of
the samples are centered around the mean value of zero. From this
histogram, you can approximate this noise pattern by a Normal
Distribution function (Gaussian distribution). Because the mean value
is zero and you set the standard deviation equal to one, the probability
density function is actually a standard normal distribution.

Note It is very important that you carefully choose the proper type of distribution

function to approximate your data. In this example, you actually plotted the

histogram to make this decision. Many times, you can make an intelligent decision

based solely on prior knowledge of the behavior and characteristics of the data

sample.

9. Return to the front panel and enter a value for Random Variable. This
VI will compute the one-sided probability of this normally distributed
random variable. Remember, you have assumed that the variable is
normally distributed by looking at the histogram.

10. Save the VI as Probability.vi in the LabVIEW\Activity
directory.

End of Activity 19-1.

Chapter 19 Probability and Statistics

LabVIEW User Manual 19-20 © National Instruments Corporation

Summary

• Different concepts in statistics and probability help decipher
information and data to make intelligent decisions.

• Mean, Median, Sample Variance, and Mode are some of the statistics
techniques to help in making inferences from a sample to a population.

• Histograms are widely used as a simple but informative method of data
display.

• Using the theory of probability, you can make inferences from a
sample to a population and then measure the degree of accuracy in
those inferences.

Part IV

Network and Interapplication
Communication

This section contains basic information about network and interapplication
communication.

Part IV, Network and Interapplication Communication, contains the
following chapters.

• Chapter 20, Introduction to Communication, introduces the way
LabVIEW handles networking and interapplication communication.

• Chapter 21, TCP and UDP, describes Internet Protocol (IP), User
Datagram Protocol (UPD), Transmission Control Protocol (TCP),
internet addresses, and examples of TCP client/server applications.

• Chapter 22, ActiveX Support, explains how to use LabVIEW as an
ActiveX server and client. ActiveX is the same as OLE Automation
communication.

• Chapter 23, Using DDE, describes the LabVIEW VIs for Dynamic
Data Exchange (DDE) for Windows 3.1, Windows 95, and
Windows NT. These VIs execute DDE functions for sharing data with
other applications that accept DDE connections.

• Chapter 24, AppleEvents, describes AppleEvents, one form of
Macintosh-only interapplication communication (IAC) through which
Macintosh applications can communicate.

• Chapter 25, Program-to-Program Communication, describes
program-to-program communication (PPC), a low-level form of Apple
interapplication communication (IAC) by which Macintosh
applications send and receive blocks of data.

© National Instruments Corporation 20-1 LabVIEW User Manual

20
Introduction to Communication

This chapter introduces the way LabVIEW handles networking and
interapplication communications.

LabVIEW Communication Overview

For the purpose of this discussion, networking refers to communication
between multiple processes, possibly on separate computers. This
communication usually occurs over a hardware network, such as ethernet
or LocalTalk.

A primary use for networking in software applications is for one or more
applications to use the services of another application. For example, the
application providing services (the server) could be either a data collection
application running on a dedicated computer or a database program
providing information to other applications.

In this discussion, you are introduced to networking and communication
terminology and programming networked applications.

Introduction to Communication Protocols

For communication between processes to occur, the processes must use a
common communications language, referred to as a protocol.

A communication protocol lets you specify the data that you want to send
or receive and the location of the destination or source, without having to
worry about how the data gets there. The protocol translates your
commands into data that network drivers can accept. The network drivers
then take care of transferring data across the network as appropriate.

Several networking protocols have emerged as accepted standards for
communications. In general, one protocol is not compatible with another.
Thus, in communication applications, one of the first things you must do is
decide which protocol to use. If you want to communicate with an existing,
off-the-shelf application, then you have to work within the protocols
supported by that application.

Chapter 20 Introduction to Communication

LabVIEW User Manual 20-2 © National Instruments Corporation

When you actually write the application, you have more flexibility in
choosing a protocol. Factors that affect your protocol choice include the
type of machines the processes will run on, the kind of hardware network
you have available, and the complexity of the communication that your
application will need.

Several protocols are built into LabVIEW, some of which are specific to a
type of computer. LabVIEW uses the following protocols to communicate
between computers:

• TCP—Available on all computers

• UDP—Available on all computers

• DDE—Available on the PC, for communication between Windows
applications

• ActiveX—Available for use with Windows 95 and Windows NT

• AppleEvents—Available on the Macintosh, for sending messages
between Macintosh applications

• PPC—Available on the Macintosh, for sending and receiving data
between Macintosh applications

Each protocol is different, especially in the way they refer to the network
location of a remote application. They are incompatible with each other, so
if you want to communicate between a Macintosh and a PC, you must use
a protocol compatible with both, such as TCP.

Other LabVIEW communication options include the following:

• System Exec VI—Allows you to execute a system level command.
There are actually two System Exec VIs, one for use with all versions
of Windows, the other with Sun and HP-UX

• Named Pipes—Available on UNIX only

• HiQ—Available on the Macintosh and PC only

File Sharing Versus Communication Protocols

Before you get too deeply involved in communication protocols, consider
whether another approach is more appropriate for your application.
For instance, consider an application where a dedicated system acquires
data and you want the data recorded on a different computer.

You could write an application that uses networking protocols to send data
from the acquisition computer to the data-recording machine, where a
separate application collects the data and stores it on disk.

Chapter 20 Introduction to Communication

© National Instruments Corporation 20-3 LabVIEW User Manual

A simpler method might involve the filesharing capabilities available on
most networked computers. With filesharing, drivers that are part of the
operating system let you connect to other machines. The remote machine’s
disk storage is treated as an extension of your own disk storage. Once
you connect two systems, filesharing usually makes this connection
transparent, so that any application can write to the remote disk as if
connected locally. Filesharing is frequently the simplest method for
transferring data between machines.

Client/Server Model

The client/server model is a common model for networked applications.
In the client/server model, one set of processes (clients) requests services
from another set of processes (servers).

For example, in your application you could set up a dedicated computer for
acquiring measurements from the real world. The computer acts as a server
when it provides data to other computers on request. It acts as a client when
it requests another application, such as a database program, to record the
data that it acquires.

In LabVIEW, you can use client and server applications with all protocols
except Macintosh AppleEvents. You can use AppleEvents to send
commands to other applications. You cannot set up a command server in
LabVIEW using AppleEvents. If you need server capabilities on the
Macintosh, use either TCP, UDP, or PPC.

A General Model for a Client
The following block diagram shows what a simplified model for a client
looks like in LabVIEW.

In the preceding diagram, LabVIEW first opens a connection to a server.
It then sends a command to the server, gets a response back, and closes the

Chapter 20 Introduction to Communication

LabVIEW User Manual 20-4 © National Instruments Corporation

connection to the server. Finally, it reports any errors that occurred during
the communication process.

For higher performance, you can process multiple commands once the
connection is open. After the commands are executed, you can close the
connection.

This basic block diagram structure serves as a model and is used elsewhere
in this manual to demonstrate how to implement a given protocol in
LabVIEW.

A General Model for a Server
The following block diagram shows a simplified model for a server in
LabVIEW.

In the preceding diagram, LabVIEW first initializes the server. If the
initialization is successful, LabVIEW goes into a loop, where it waits for a
connection. Once the connection is made, LabVIEW waits to receive a
command. LabVIEW executes the command and returns the results. The
connection is then closed. LabVIEW repeats this entire process until it is
shut down locally when a user presses a stop button on the front panel or
remotely when it receives a command to shut the VI down.

This VI does not report errors. It might send back a response indicating that
a command is invalid, but it does not display a dialog when an error occurs.
Because a server might be unattended, consider carefully how the server
should handle errors. You probably do not want a dialog box to be
displayed because that requires user interaction at the server (someone
would have to press the OK button). However, you might want LabVIEW
to write a log of transactions and errors to a file or a string.

Chapter 20 Introduction to Communication

© National Instruments Corporation 20-5 LabVIEW User Manual

You can increase performance by allowing the connection to stay open so
that you can receive multiple commands, but this action blocks other clients
from connecting until the current client disconnects. If the protocol
supports multiple simultaneous connections, you can restructure LabVIEW
to handle multiple clients simultaneously, as shown in the following
diagram.

The preceding diagram uses LabVIEW multitasking capabilities to run
two loops simultaneously. One loop continuously waits for a connection.
When a connection is received, it is added to a queue. The other loop
checks each of the open connections and executes any commands that have
been received. If an error occurs on one of the connections, the connection
is disconnected. When the user aborts the server, all open connections are
closed. This basic block diagram structure is a model used elsewhere in this
manual to demonstrate how to implement a given protocol in LabVIEW.

© National Instruments Corporation 21-1 LabVIEW User Manual

21
TCP and UDP

This chapter discusses Internet Protocol (IP), User Datagram Protocol
(UPD), Transmission Control Protocol (TCP), internet addresses, and
examples of TCP client/server applications.

Overview

TCP/IP is a suite of communication protocols, originally developed for the
Defense Advanced Research Projects Agency (DARPA). Since its
development, it has become widely accepted and is available on a number
of computer systems.

The name TCP/IP comes from two of the best known protocols of the suite,
the Transmission Control Protocol (TCP) and the Internet Protocol (IP).
TCP, IP, and the User Datagram Protocol (UDP) are the basic tools for
network communication.

TCP/IP enables communication over single networks or multiple
interconnected networks (internet). The individual networks can be
separated by great geographical distances. TCP/IP routes data from one
network or internet computer to another. Because TCP/IP is available on
most computers, it can transfer information between diverse systems.

Internet Protocol (IP) transmits data across the network. This low-level
protocol takes data of a limited size and sends it as a datagram across the
network. Because it does not guarantee that the data will arrive at the other
end, IP is rarely used directly by applications. Also, when you send several
datagrams they sometimes arrive out of order or are delivered multiple
times, depending on how the network transfer occurs. UDP, which is built
on top of IP, has similar problems.

TCP is a higher-level protocol that uses IP to transfer data. TCP breaks data
into components that IP can manage. It also provides error detection and
ensures that data arrives in order without duplication. For these reasons,
TCP is usually the best choice for network applications.

Chapter 21 TCP and UDP

LabVIEW User Manual 21-2 © National Instruments Corporation

LabVIEW and TCP/IP
You can use the TCP/IP suite of protocols with LabVIEW on all platforms.
LabVIEW has a set of TCP and UDP VIs that you can use to create client
or server VIs.

Internet Addresses
Each host on an IP network has a unique 32-bit internet address.
This address identifies the network on the internet to which the host is
attached and the specific computer on that network. You use this address
to identify the sender or receiver of data. IP places the address in the
datagram headers so that each datagram is routed correctly.

One way of describing this 32-bit address is the IP dotted decimal notation,
which divides the 32-bit address into four 8-bit numbers. The address is
written as the four integers, separated by decimal points. For example, the
following 32-bit address is written in dotted decimal notation as
132.13.2.30.

10000100 00001101 00000010 00011110

Another way of using the 32-bit address is by names that are mapped to the
IP address. Network drivers usually perform this mapping by consulting a
local hosts file that contains name to address mappings or a larger database
using the Domain Name System to query other computer systems for the
address for a given name. Your network configuration dictates the exact
mechanism for this process, which is known as hostname resolution.

Internet Protocol (IP)

Internet Protocol (IP) performs the low-level service of moving data
between machines. IP packages data into components called datagrams.
A datagram contains, among other things, the data and a header indicating
the source and destination addresses. IP determines the correct path for the
datagram to take across the network or internet and sends the data to the
specified destination.

The original host may not know the complete path that the data will take.
Using the header, any host on the network can route the data to the
destination, either directly or by forwarding it to another host. Because
some systems have different transfer capabilities, IP can fragment
datagrams into smaller segments as necessary; when the data arrives at the
destination, IP automatically reassembles the data into its original form.

Chapter 21 TCP and UDP

© National Instruments Corporation 21-3 LabVIEW User Manual

IP makes a best-effort attempt to deliver data but cannot guarantee delivery.
Also, because IP routes each separately, datagrams might arrive out of
sequence. In fact, IP may deliver a single packet more than once if it is
duplicated in transmission. IP does not determine the order of packets.
Instead, higher-level protocols layered above IP order the packets and
ensure reliable delivery. IP is rarely used directly because programs use
TCP or UDP instead.

User Datagram Protocol (UDP)

UDP provides simple, low-level communication between processes on
computers. Processes communicate by sending datagrams to a destination
machine or port. IP handles the machine-to-machine delivery. Once on a
machine, UDP moves the datagram to its destination port. If the destination
port does not have a receiving process attached, the datagram is discarded.
All of the delivery problems of IP are also present in UDP.

Typically, UDP is used in applications where reliability is not critical. For
example, an application might transmit informative data to a destination
frequently enough that a few lost segments of data are not problematic.

Using UDP
UDP is not a connection-based protocol like TCP. This means that a
connection does not need to be established with a destination before
sending or receiving data. Instead, the destination for the data is specified
when each datagram is sent. The system does not report transmission
errors.

You can use the UDP Open VI to open a port. A port is the location where
data is sent. The number of simultaneously open UDP ports depends on the
system. UDP Open returns a Network Connection refnum, an opaque token
used in all subsequent operations pertaining to that port.

You can use the UDP Write VI to send data to a destination and the UDP
Read VI to read it. Each write requires a destination address and port. Each
read contains the source address and port. Packet boundaries are preserved.
That is, a read never contains data sent in two separate write operations.

In theory, you should be able to send data packets of any size. If necessary,
a packet is disassembled into smaller pieces and sent on its way. At their
destination, the pieces are reassembled and the packet is presented to the
requesting process. In practice, systems only allocate a certain amount of
memory to reassemble packets. A packet that cannot be reassembled is

Chapter 21 TCP and UDP

LabVIEW User Manual 21-4 © National Instruments Corporation

thrown away. The largest size packet that can be sent without disassembly
depends on the network hardware.

When LabVIEW finishes all communications, calling the UDP Close VI
frees system resources.

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) ensures reliable transmission
across networks, delivering data in sequence without errors, loss, or
duplication. When you pass data to TCP, it attaches additional information
and gives the data to IP, which puts the data into datagrams and transmits
it. This process reverses at the receiving end, with TCP checking the data
for errors, ordering the data correctly, and acknowledging successful
transmissions. If the sending TCP does not receive an acknowledgment,
it retransmits the data segment.

Using TCP
TCP is a connection-based protocol, which means that sites must establish
a connection before transferring data. TCP permits multiple simultaneous
connections.

You initiate a connection either by waiting for an incoming connection or
by actively seeking a connection with a specified address. In establishing
TCP connections, you have to specify both the address and a port at
that address. A port is represented by a number between 0 and 65535.
On UNIX systems, port numbers less than 1024 are reserved for privileged
applications. Different ports at a given address identify different
services at that address and make it easier to manage multiple
simultaneous connections.

You can actively establish a connection with a specific address and port
using the TCP Open Connection function. Using this function, you
specify the address and port with which you want to communicate. If the
connection is successful, the function returns a connection ID that uniquely
identifies that connection. Use this connection ID to refer to the connection
in subsequent function calls.

You can use two methods to wait for an incoming connection:

• With the first method, you use the TCP Listen VI to create a listener
and wait for an accepted TCP connection at a specified port. If the
connection is successful, the VI returns a connection ID and the
address and port of the remote TCP.

Chapter 21 TCP and UDP

© National Instruments Corporation 21-5 LabVIEW User Manual

• With the second method, you use the TCP Create Listener function to
create a listener, and then use the Wait on Listener function to listen for
and accept new connections. Wait on Listener returns the same listener
ID that was passed to the function, as well as the connection ID for a
connection. When you are finished waiting for new connections, you
can use TCP Close to close a listener. You can not read from or write
to a listener.

The advantage of using the second method is that you can cancel a listen
operation by calling TCP Close. This is useful in the case where you want
to listen for a connection without using a timeout, but you want to cancel
the listen when some other condition becomes true (for example, when the
user presses a button).

When a connection is established, you can read and write data to the remote
application using the TCP Read and TCP Write functions.

Finally, use the TCP Close Connection function to close the connection to
the remote application. If there is unread data and the connection closes,
that data may be lost. Connected parties should use a higher-level protocol
to determine when to close the connection. Once a connection is closed,
you cannot read or write from it again.

TCP Versus UDP
If you are writing both the client and server and your system can use
TCP/IP, then TCP is probably the best protocol to use because it is a
reliable, connection-based protocol. UDP is a connectionless protocol with
higher performance, but it does not ensure reliable transmission of data.

TCP Client Example
The following discussion is a generalized description of how to use the
components of the Client block diagram model with the TCP protocol.

Use the TCP Open Connection function to open a connection to a server.
You must specify the internet address of the server, as well as the port for
the server. The address identifies a computer on the network. The port is
an additional number that identifies a communication channel on the
computer that the server uses to listen for communication requests. When
you create a TCP server, you specify the port that you want the server to use
for communication.

Chapter 21 TCP and UDP

LabVIEW User Manual 21-6 © National Instruments Corporation

To execute a command on the server, use the TCP Write function to send
the command to the server. You then use the TCP Read function to read
back results from the server. With the TCP Read function, you must specify
the number of characters you want to read. Because the length of the
response might vary, this can be awkward. The server can have the same
problem with the command because the length of a command can vary.

You can use the following methods to address differently sized commands:

• Precede the command and the result with a fixed size parameter that
specifies the size of the command or result. In this case, read the size
parameter and then read the number of characters specified by the size.
This option is efficient and flexible.

• Make each command and result a fixed size. When a command is
smaller than the size, you can pad it out to the fixed size.

• Follow each command and result with a specific terminating character.
You then need to read data in small chunks until you get the
terminating character.

Use the TCP Close Connection function to close the connection to
the server.

Timeouts and Errors
The preceding section discussed communication protocol for the server.
When you design a network application consider carefully what should
happen if something fails. For example, if the server crashes, how would
each of the client VIs handle it?

One solution is to make sure that each VI has a timeout. If something fails
to produce results, after a certain amount of time the client will continue
execution. In continuing, the client can try to reestablish execution or report
the error. If necessary, it can gracefully shut down the client application.

TCP Server Example
The following discussion explains how you can use TCP to fulfill each
component of the general server model.

No initialization is necessary with TCP, so you can leave out this step.

Chapter 21 TCP and UDP

© National Instruments Corporation 21-7 LabVIEW User Manual

Use the TCP Listen VI to wait for a connection. You must specify the port
that will be used for communication. This port must be the same port that
the client will attempt to connect. For more information, see the TCP Client

Example section in this chapter.

If a connection is established, read from that port to retrieve a command.
As discussed in the TCP Client example, you must decide the format for
commands. If commands are preceded by a length field, first read the length
field, and then read the amount of data indicated by the length field.

Execution of a command should be protocol independent because it is done
on the local computer. When finished, pass the results to the next stage,
where they are transmitted to the client.

Use the TCP Write function to return results. As discussed in the
TCP Client Example section, the data must be in a form that the client
can accept.

Use the TCP Close Connection function to close the connection.

This step can be left out with TCP, because everything is finished after you
close the connection.

TCP Server with Multiple Connections
TCP handles multiple connections easily. You can use the methods
described in the preceding section to implement the components of a server
with multiple connections.

Setup
Before you can use TCP/IP, you need to make sure that you have the right
setup, which varies depending on the computer you use.

UNIX
TCP/IP support is built in. Assuming your network is configured properly,
no additional setup for LabVIEW is necessary.

Chapter 21 TCP and UDP

LabVIEW User Manual 21-8 © National Instruments Corporation

Macintosh

TCP/IP is built in to Macintosh operating system version 7.5 and later. To
use TCP/IP with an earlier system, you need to install the MacTCP driver
software, available from the Apple Programmer Developer Association
(APDA). You can contact APDA at (800) 282-2732 for information on
licensing the MacTCP driver. LabVIEW also works with Open Transport.

Windows 3.x

To use TCP/IP, you must install an ethernet board along with its low-level
driver. In addition, you must purchase and install TCP/IP software that
includes a Windows Sockets (WinSock) DLL conforming to standard 1.1.
WinSock is a standard interface that enables application communication
with a variety of network drivers. Several vendors provide network
software that includes the WinSock DLL. Install the ethernet board, the
board drivers, and the WinSock DLL according to the software vendor
instructions.

Several vendors supply WinSock drivers that work with a number of
boards. Contact the vendor of your board to find out if they offer a WinSock
DLL you can use with the board. Install the WinSock DLL according to
vendor instructions.

National Instruments recommends using the WinSock DLL provided by
Microsoft for Windows for Workgroups. Prior to the release of this
WinSock DLL, National Instruments tested a number of WinSock DLLs.
These tests showed that many DLLs at that time did not fully comply with
the standard, so consider trying a demo version of a DLL before you buy
the real version. You can usually obtain a demo version from the
manufacturer. Most demo versions are fully functional but expire after a
certain amount of time.

Windows 95 and Windows NT

TCP support is built into Windows 95 and NT. You do not need to use a
third-party DLL to communicate using TCP.

© National Instruments Corporation 22-1 LabVIEW User Manual

22
ActiveX Support

This chapter explains how to use LabVIEW as an ActiveX server and
client.

With ActiveX automation, you can access properties and methods, which
are usually grouped into objects, of one Windows application and use them
in another Windows application. LabVIEW for Windows 3.x does not
support ActiveX automation. ActiveX automation is supported only in
Windows 95 and NT.

An application supports automation either as a server or a client.
Applications that expose objects and provide methods for operating on
those objects are ActiveX automation servers. Applications that use the
methods exposed by another application are ActiveX automation clients.

LabVIEW can function both as an ActiveX server and an ActiveX client.
LabVIEW can also display an ActiveX object on the front panel using the
ActiveX container. For more information on ActiveX, refer to Chapter 16,
ActiveX Controls, in the G Programming Reference Manual.

Note For the purposes of this document, the term ActiveX refers to Microsoft

Corporation’s ActiveX technology, as well as to OLE technology.

For general ActiveX information, refer to the Microsoft Developers Network

documentation and Inside OLE, 2nd edition by Kraig Brockschmidt.

Chapter 22 ActiveX Support

LabVIEW User Manual 22-2 © National Instruments Corporation

ActiveX Automation Server Functionality

Because you can use LabVIEW as an ActiveX Automation server, other
ActiveX-enabled applications (such as Microsoft Excel) can request
properties and methods from LabVIEW and individual VIs.

To activate LabVIEW as an ActiveX server, select Edit»Preferences»

Server: Configuration. The following dialog box appears:

Figure 22-1. Preferences Dialog Box, Server Configuration

Select the ActiveX protocol. LabVIEW exports a createable class,
Application, and a dispatch class, VirtualInstrument, to ActiveX.
The progId LabVIEW.Application or LabVIEW.Application.5
creates an application object. The Application method GetVIReference
creates and returns a pointer to a Virtual Instrument object.

Chapter 22 ActiveX Support

© National Instruments Corporation 22-3 LabVIEW User Manual

ActiveX Server Properties and Methods

See the LabVIEW Online Reference for detailed descriptions of the
properties and methods of the exported classes.

You can find an example that illustrates how you can use properties and
methods in examples\comm directory\freqresp.xls. This example
uses a Visual Basic script macro to run a VI and tabulate the results.

ActiveX Automation Client Functionality

LabVIEW can act as an ActiveX Automation client, controlling other
ActiveX Automation servers. LabVIEW can set and get properties and
execute methods made available by ActiveX servers. A server exports
information about its objects, methods, and properties through a Type
Library file. A type library is normally created by the environment in which
the servers were built. Refer to the documentation for each server
application for more information.

Table 22-1 lists and describes the functions you can use for an ActiveX
Automation client.

With the following steps, you can create a client application using C:

1. Get the IDispatch interface of the object whose methods you want to
access.

2. Get the DispatchID of the method of that object.

3. Invoke the method using the Invoke functions of the IDispatch
interface, packing all parameters into the parameter list.

Table 22-1. Functions for ActiveX Automation Client Support

Function Description

Automation Open Selects an automation Class to be opened

Invoke Node Executes functions of a class

Property Node Sets or gets properties of a class

Automation Close Closes an automation refnum

Chapter 22 ActiveX Support

LabVIEW User Manual 22-4 © National Instruments Corporation

To create a client application in LabVIEW, complete the following steps:

1. Use the Automation Open function to get an Automation refnum that
uniquely defines the IDispatch interface.

2. Use the Invoke Node to execute a method belonging to that object.
LabVIEW converts its data types to ActiveX variant if the server
application requires data in that format.

The examples in the next section, ActiveX Client Examples, illustrates the
use of these nodes.

ActiveX Client Examples

The following examples illustrate how to use the new ActiveX functions
listed above.

Converting ActiveX Variant Data to G Data
The first example, shown in Figure 22-2, illustrates how to convert
ActiveX Variant data to G data. In every ActiveX application, you must
open an ActiveX automation refnum at the start and close the automation
refnum at the end. In this example, you open the application object of
Microsoft Excel and display the visible property using Property Node.
The visible property is in ActiveX Variant format. The G Data function
must convert the property information to a format supported by LabVIEW.

Figure 22-2. Block Diagram Displaying ActiveX Variant Data to G Data

To learn more about the property information of other applications, refer to
the online help for that application. The LabVIEW Online Reference does
not contain property information for other ActiveX-enabled applications.

Chapter 22 ActiveX Support

© National Instruments Corporation 22-5 LabVIEW User Manual

Adding a Workbook to Microsoft Excel from LabVIEW
The second example, shown in Figure 22-3, adds a workbook to Microsoft
Excel from LabVIEW. As stated earlier in this section, you must open
every ActiveX application refnum with the Open Automation Refnum
functions and close the ActiveX application with Close Automation
Refnum. To add another workbook, you must have a refnum to a
workbook. In this example, you open the Excel refnum with Open
Automation Refnum and you access the workbook refnum with the
Property Node. After you add a workbook to Excel, a refnum referring to
that workbook is returned to LabVIEW. When you no longer need Excel
open, close the Excel and workbook refnum.

Figure 22-3. Adding a Workbook to Microsoft Excel

© National Instruments Corporation 23-1 LabVIEW User Manual

23
Using DDE

This chapter describes the LabVIEW VIs for Dynamic Data Exchange
(DDE) for Windows 3.1, Windows 95, and Windows NT. These VIs
execute DDE functions for sharing data with other applications that accept
DDE connections.

DDE Overview

Dynamic Data Exchange (DDE) is a protocol for exchanging data between
Windows applications.

In TCP/IP communications, applications open a line of communication and
then transfer raw data. DDE works at a higher level, where applications
send messages to each other to exchange information. One simple message
is to send a command to another application. Most of the other messages
deal with transferring data, where the data is referenced by name.

Both applications must be running, and both must give Windows
their callback function address before DDE communication can begin.
The callback function accepts any DDE messages that Windows sends to
the application.

A DDE client initiates a conversation with another application (a DDE
server) by sending a connect message. After establishing a connection, the
client can send commands to the server and change or request the value of
data that the server manages.

A client can request data from a server by a request or an advise. The client
uses a request to ask for the current value of the data. If a client wants to
monitor a value over a period of time, the client must request to be advised
of changes. By asking to be advised of data value, the client establishes a
link between the client and server through which the server notifies the
client when the data changes. The client can stop monitoring the value of
the data by telling the server to stop the advise link.

When the DDE communication for a conversation is complete, the client
sends a close conversation message to the server.

Chapter 23 Using DDE

LabVIEW User Manual 23-2 © National Instruments Corporation

DDE is most appropriate for communication with standard off-the-shelf
applications such as Microsoft Excel.

With LabVIEW you can create VIs that act as clients to other applications
(meaning they request or send data to other applications). You can also
create VIs that act as servers that provide named information for access by
other applications. As a server, LabVIEW does not use connection-based
communication. Instead, you provide named information to other
applications, which can then read or set the values of that information by
name.

Services, Topics, and Data Items
With TCP/IP, you identify the process you want to talk to by its computer
address and a port number. With DDE, you identify the application you
want to talk to by referencing the name of a service and a topic. The server
decides on arbitrary service and topic names. A given server generally uses
its application name for the service, but not necessarily. That server can
offer several topics that it is willing to communicate. With Excel, for
example, the topic might be the name of a spreadsheet.

To communicate with a server, first find the names of the service and topic
that you want to discuss. Then open a conversation using these two names
to identify the server.

Unless you are going to send a command to the server, you usually work
with data items that the server is willing to talk about. You can treat these
as a list of variables that the server lets you manipulate. You can change
variables by name, supplying a new value for the variable. Or, you can
request the values of variables by name.

Examples of Client Communication with Excel
Each application that supports DDE has a different set of services, topics,
and data items that it can talk about. For example, two different spreadsheet
programs can take very different approaches to how they specify
spreadsheet cells. To find out what a given application supports, consult the
documentation that came with that application.

Microsoft Excel, a popular spreadsheet program for Windows, has
DDE support. You can use DDE to send commands to Excel. You can
also manipulate and read spreadsheet data by name. For more information
on how to use DDE with Excel, refer to the Microsoft Excel User’s Guide 2.

Chapter 23 Using DDE

© National Instruments Corporation 23-3 LabVIEW User Manual

With Excel, the service name is Excel. For the topic, you use the name of
an open document, such as spreadsheet document, or the word System.

If you use the name System, you can request information about the status
of Excel or send general commands to Excel (commands that are not
directed to a specific spreadsheet). For instance, for the topic System,
Excel communicates about items such as Status, which has a value of
Busy if Excel is busy, or Ready if Excel is ready to execute commands.
Topics is another useful data item you can use when the topic is System.
This item returns a list of topics about which Excel can communicate,
including all open spreadsheet documents and the System topic.

The following VI shows how you can use the Topics command in
LabVIEW. The value returned is a string containing the names of the open
spreadsheets and the word System.

Another way you can use the System topic with Excel is to instruct Excel
to open a specific document. Use the DDE Execute.vi to send an Excel
macro that instructs Excel to open the document, as shown in the following
LabVIEW block diagram.

Chapter 23 Using DDE

LabVIEW User Manual 23-4 © National Instruments Corporation

After you open a spreadsheet file, you can send commands to the
spreadsheet to read cell values. In this case, your topic is the spreadsheet
document name. The item is the name of a cell, a range of cells, or a named
section of a spreadsheet. For example, in the following diagram LabVIEW
can retrieve the value in the cell at row one column one. It then acquires a
sample from the specified channel, and sends the resulting sample back
to Excel.

LabVIEW VIs as DDE Servers
You can create LabVIEW VIs that act as servers for data items. The general
concept is that a LabVIEW VI indicates that it is willing to provide
information regarding a specific service and topic pair. LabVIEW can use
any name for the service and topic name. It might specify the service name
to be the name of the application (LabVIEW), and the topic name to be
either the name of the Server VI, or a general classification for the data it
provides, such as Lab Data.

The Server VI then registers data items for a given service that it will talk
about. LabVIEW remembers the data names and their values, and handles
communication with other applications regarding the data. When the server
VI changes the value of data that is registered for DDE communication,
LabVIEW notifies any client applications that have requested notification
concerning that data. In the same way, if another application sends a Poke
message to change the value of a data item, LabVIEW changes this value.

You cannot use the DDE Execute Command with a LabVIEW VI acting as
a server. If you want to send a command to a VI, you must send the
command using data items.

Chapter 23 Using DDE

© National Instruments Corporation 23-5 LabVIEW User Manual

Also, notice that LabVIEW does not currently have anything like the
System topic that Excel provides. The LabVIEW application is not
inherently a DDE server to which you can send commands or request status
information. However, you can use LabVIEW VIs to create a DDE server.

The following example shows how to create a DDE Server VI that provides
data to other client applications. In this case, the data is a random number.
You can easily replace the random number with real-world data from data
acquisition boards or devices connected to the computer by GPIB, VXI, or
serial connections.

The VI in the preceding diagram registers a server with LabVIEW. The VI
registers an item that it is willing to provide to clients. In the loop, the VI
periodically sets the value of the item. As mentioned earlier, LabVIEW
notifies other applications that data is available. When the loop is complete,
the VI finishes by unregistering the item and unregistering the server.

Chapter 23 Using DDE

LabVIEW User Manual 23-6 © National Instruments Corporation

The clients for this VI can be any application that understands DDE,
including other LabVIEW VIs. The following diagram illustrates a client to
the VI shown in the previous diagram. It is important that the service, topic,
and item names are the same as the ones used by the server.

Requesting Data Versus Advising Data
The previous client example used the DDE Request VI in a loop to retrieve
data. With DDE Request, the data is retrieved immediately, regardless of
whether you have seen the data before. If the server and the client do not
loop at exactly the same rate, you can duplicate or miss data.

One way to avoid duplicating data is to use the DDE Advise VIs to request
notification of changes in the value of a data item. The following diagram
shows how you can implement this scheme.

Chapter 23 Using DDE

© National Instruments Corporation 23-7 LabVIEW User Manual

In the preceding diagram, LabVIEW opens a conversation. It then uses the
DDE Advise Start VI to request notification of changes in the value of a
data item. Every time through the loop, LabVIEW calls the DDE Advise
Check VI, which waits for a data item to change its value. When the loop
is finished, LabVIEW ends the advise loop by calling the DDE Advise Stop
VI, and closing the conversation.

Synchronization of Data
The client server examples in the preceding section work well for
monitoring data. However, in these examples there is no assurance that the
client receives all the data that the server sends. Even with the DDE Advise
loop, if the client does not check for a data change frequently enough, the
client can miss a data value that the server provided.

In some applications, missed data is not a problem. For example, if you are
monitoring a data acquisition system, missed data may not cause problems
when you are observing general trends. In other applications, you may want
to ensure that no data is missed.

One major difference between TCP and DDE is that TCP queues data so
that you do not miss it and you get it in the correct order. DDE does not
provide this service.

In DDE, you can set up a separate item, which the client uses to
acknowledge that it has received the latest data. You then update the
acquired data item to contain a new point only when the client
acknowledges receipt of the previous data.

For example, you can modify the server example shown in the Requesting

Data Versus Advising Data section of this chapter to set a state item to
a specific value after it has updated the acquired data item. The server
then monitors the state item until the client acknowledges receipt of data.
This modification is shown in the following block diagram.

Chapter 23 Using DDE

LabVIEW User Manual 23-8 © National Instruments Corporation

A client for this server, as shown in the following diagram, monitors the
state item until it changes to data available. At that point, the client reads
the data from the acquired data item provided by the server, and then
updates the state item to data read value.

This technique makes it possible to synchronize data transfer between
a server and a single client. However, it has some shortcomings. First,
you can have only one client. Multiple clients can conflict with one another.
For example, one client might receive the data and acknowledge it before
the other client notices that new data is available.You can build more
complicated DDE diagrams to deal with this problem, but they quickly
become awkward.

 Another problem with this technique of synchronizing communication is
that the speed of your acquisition becomes controlled by the rate at which
you transfer data. You can address this issue by breaking the acquisition and
the transmission into separate loops. The acquisition can queue data which
the transmission loop would send. This is similar to the TCP Server
example in which the server handles multiple connections.

If your application needs reliable synchronization of data transfer, you may
want to use TCP/IP instead, because it provides queueing, acknowledgment
of data transfer, and support for multiple connections at the driver level.

Networked DDE
You can use DDE to communicate with applications on the same computer
or to communicate over the network with applications on different
computers. To use networked DDE, you must be running Windows for
Workgroups 3.1 or greater, Windows 95, or Windows NT. The standard
version of Windows 3.1 does not support networked DDE.

Chapter 23 Using DDE

© National Instruments Corporation 23-9 LabVIEW User Manual

Each computer under Windows for Workgroups has a network computer
name. You configure this name using the Network control panel.

When you communicate over the network, the meaning of the service and
topic strings change. The service name changes to indicate that you want
to use networked DDE and includes the name of the computer you want to
communicate with. The service name is of the following form:

\\computer-name\ndde$

You can supply any arbitrary name for the topic. You then edit the
SYSTEM.INI file to associate this topic name with the actual service and
topic that will be used on the remote computer. This configuration also
includes parameters that configure the network connection. Following is
an example of what this section would look like:

[DDE Shares]

topicname = appname, realtopic, ,31,,0,,0,0,0

The topicname is the name that your client VI uses for the topic. Appname
is the name of the remote application. With networked DDE, this must be
the same as the service name. Realtopic is the topic to use on the remote
computer. The remaining parameters configure the way DDE works. Use
the parameters as listed in the preceding example. The meaning of these
parameters is not documented by Microsoft.

For example, if you want two computers running LabVIEW to
communicate using networked DDE, the server needs to use LabVIEW
for the service name, and a name, such as labdata, for the topic.

Assuming the server computer name is Lab, the client tries to open a
conversation using the \\Lab\ndde$ for the service. For the topic, the
client can use a name of remotelab.

For this to work, you must edit the SYSTEM.INI file of the server computer
to have the following line in the [DDEShares] section:

remotelab=LabVIEW,labdata,,31,,0,,0,0,0

For Windows NT, launch DDEShare.exe, which is located in the
winnt/system 32 directory. Choose Shares»DDE Shares… and then
select Add a Share… to register the service name and topic name on the
server.

Chapter 23 Using DDE

LabVIEW User Manual 23-10 © National Instruments Corporation

Using NetDDE
NetDDE is built into Windows for WorkGroups 3.11, Windows 95 and
Windows NT. It is also available for Windows 3.1 with an add-on package
from WonderWare. If you are using Windows 3.1 with the WonderWare
package, consult the WonderWare documentation on how to use NetDDE.

If you are using Windows for WorkGroups, Windows 95, or Windows NT,
use the following instructions:

Server Machine

Windows for Workgroups

Add the following line to the [DDE Shares] section of the file
system.ini on the server (application receiving DDE commands):

lvdemo = service_name,topic_name,,31,,0,,0,0,0

where

lvdemo can be any name.

service_name is typically the name of the application, such as excel.

topic_name is typically the specific file name, such as sheet1.

Enter other commas and numbers as shown.

Windows 95

Note NetDDE is not automatically started by Windows 95. You need to run the

program\WINDOWS\NETDDE.EXE. (This can be added to the startup folder

so that it is always started.)

To set up a NetDDE server on Windows 95:

• Run\WINDOWS\REGEDIT.EXE.

• In the tree display, open the folder My Computer\
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

NetDDE\DDE Shares.

• Create a new DDE Share by selecting Edit»New»Key and give it the
name lvdemo.

• With the lvdemo key selected, add the required values to the share as
follows. (For future reference, these keys are just being copied from
the CHAT$ share but REDEGIT does not allow you cut, copy, or paste

Chapter 23 Using DDE

© National Instruments Corporation 23-11 LabVIEW User Manual

keys or values.) Use Edit»New to add new values. When you create
the key, there will a default value named (Default) and a value of
(value not set). Leave these values alone and add the following:

• Close REGEDIT.

• Restart the machine. (NetDDE must be restarted for changes to take
effect.)

Windows NT

Launch DDEShare.exe, found in the winnt\system32 directory. Select
from the Shares»DDE Shares»Add a Share... to register the service name
and topic name on the server.

Table 23-1. Values to Add in Place of Default

Value Type Name Value

Binary Additional item count 00 00 00 00

String Application service_name

String Item service_name

String Password1 service_name

String Password2 service_name

Binary Permissions1 1f 00 00 00

Binary Permissions2 00 00 00 00

String Topic topic_name

Chapter 23 Using DDE

LabVIEW User Manual 23-12 © National Instruments Corporation

Client Machine

On the client machine (application initiating DDE conversation)
no configuration changes are necessary.

Use the following inputs to DDE Open Conversation.vi:

Service: \\machine_name\ndde$

Topic: lvdemo

where
machine_name specifies the name of the server machine

lvdemo matches the name specified in the [DDE Shares] section on the
server.

Consider the examples Chart Client.vi and Chart Server.vi found
in examples\network\ddeexamp.llb. To use those VIs to pass
information between two computers using NetDDE, you should do the
following:

Server Machine:

1. Do not modify any front panel values.

2. In the system.ini file of the Server machine, add the following line
in the [DDEShares] section:
lvdemo = TestServer,Chart,,31,,0,,0,0,0

Client Machine:

On the front panel, set the controls to the following:
Service = \\machine_name\ndde$
Topic = lvdemo
Item = Random

© National Instruments Corporation 24-1 LabVIEW User Manual

24
AppleEvents

This chapter describes AppleEvents, one form of Macintosh-only
interapplication communication (IAC) through which Macintosh
applications can communicate.

AppleEvents

AppleEvents is a Macintosh specific protocol that allows applications to
communicate with each other. As with DDE, applications use a message to
request actions or return information from other applications. An
application can send a message to itself, an application on the same
computer, or an application running on a computer elsewhere on the
network. You can use AppleEvents to send commands to other
applications, such as open or print, or to send data requests, such as
spreadsheet information.

LabVIEW contains VIs for sending some of the commands common to
most applications. The VIs are easy to use and do not require detailed
knowledge of how AppleEvents work. The following list includes some of
the ways you can use AppleEvents in LabVIEW applications:

• You can command LabVIEW to tell another application (even an
application on another computer connected by a network) to perform
an action. For example, LabVIEW can tell a spreadsheet program to
create a graph. See the Sending AppleEvents section in this chapter for
details.

• You can use an AppleScript program as a front end to instruct
LabVIEW to run specific VIs.

• By sending instructions to perform specific operations, you can
communicate with and control LabVIEW applications on other
machines connected by a network. See the Sending AppleEvents

section in this chapter for details.

• You can command LabVIEW to send messages to itself, instructing
itself to load, run, and unload specific VIs. For example, in large
applications where memory is tight, you can replace subVI calls with
a utility VI (the AESend Open, Run, Close VI) and dynamically load,
run, and unload the VIs.

Chapter 24 AppleEvents

LabVIEW User Manual 24-2 © National Instruments Corporation

These VIs use the low-level AESend VI to send AppleEvents. Apple has
defined a large vocabulary for messages to help standardize AppleEvent
communication. You can combine words in this vocabulary to build
complex messages. You can use this VI to send arbitrary AppleEvents to
other applications. However, creating and sending AppleEvents at this level
is complicated and requires detailed understanding of AppleEvents. See
Inside Macintosh and the AppleEvent Registry.

Sending AppleEvents
The Communication subpalette of the Functions palette contains VIs for
sending AppleEvents. With these VIs, you can select a target application
for an AppleEvent, create AppleEvents, and send the AppleEvents to the
target application.

The AppleEvent VIs palette of the Communication subpalette contains
VIs that send specific AppleEvent messages. These VIs let you send several
standard AppleEvents (Open Document, Print Document, and Close
Application) and all the LabVIEW custom AppleEvents. These high-level
VIs require little understanding of AppleEvent programming details.
Their diagrams are good examples of creating and sending AppleEvents.

You can use the low-level AESend VI if you want to send an AppleEvent
for which LabVIEW provides no VI. The AppleEvent VIs palette of the
Communication subpalette also contains VIs that can help you create an
AppleEvent. However, creating and sending an AppleEvent at this level
requires detailed understanding of AppleEvents as described in Inside

Macintosh, Volume VI, and the AppleEvent Registry.

Client Server Model
You cannot use the AppleEvent VIs to create LabVIEW diagrams that
behave as servers. The VIs are used to send messages to other applications.
If you need diagram-based server capabilities, you must use TCP or PPC.

LabVIEW itself acts as an AppleEvent server, in that it understands and
responds to a set of AppleEvents. Specifically, using AppleEvents you can
instruct LabVIEW to open VIs, print them, run them, and close them. You
can ask LabVIEW whether a given VI is running. You can also tell
LabVIEW to quit.

Using these server capabilities, you can instruct other LabVIEW
applications to run VIs and control LabVIEW remotely. You can also
command LabVIEW to send messages to itself, instructing the loading of
specific VIs. For example, in large applications where memory is limited,

Chapter 24 AppleEvents

© National Instruments Corporation 24-3 LabVIEW User Manual

you can replace subVI calls with calls to the AESend Open, Run, Close VI
to load and run VIs as necessary. Notice that when you run a VI this way
its front panel opens, just as if you had selected File»Open....

AppleEvent Client Examples

Launching Other Applications
To send a message to an application, that application must be running. You
can use the AESend Finder Open VI to launch another application. This VI
sends a message to the Finder. The Finder is, in itself, an application that
understands a limited number of AppleEvents. The following simple
example shows how you can use AppleEvents to launch Teach Text with a
specific text file.

If the application is on a remote computer, then you must specify the
location of that computer. You can use inputs to the AESend Finder
Open VI to specify the network zone and the server name of the computer
with which you want to communicate. If the network zone and server name
are not specified, as in the preceding application, they default to those of
the current computer.

Notice that if you try to send messages to another computer, you are
automatically prompted to log onto that computer. There is no method for
avoiding this prompt, because it is built into the operating system. This can
cause problems when you want your application to run on an unattended
computer system.

Sending Events to Other Applications
Once an application is running, you can send messages to that application
using other AppleEvents. Not all applications support AppleEvents, and
those that do may not support every published AppleEvent. To find out
which AppleEvents an application supports, consult the documentation that
comes with that application.

If the application understands AppleEvents, you call an AppleEvent VI
with the Target ID for the application. A Target ID is a cluster that describes
a target location on the network (zone, server, and supporting application).

Chapter 24 AppleEvents

LabVIEW User Manual 24-4 © National Instruments Corporation

You do not need to worry about the exact structure of this cluster because
LabVIEW provides VIs that you can use to generate a Target ID.

There are two ways to create a Target ID. You can use the Get Target ID VI
to programmatically create a Target ID based on the application name and
network location. Or, you can use the PPC Browser VI, which displays a
dialog box listing network applications that are aware of AppleEvents.
You interactively select from this list to create a Target ID.

You can also use the PPC Browser VI to find out if another application uses
AppleEvents. If you run the VI and select the computer that is running the
application, the dialog box lists the application if it is AppleEvent aware.

In the following diagram, LabVIEW interactively selects an AppleEvent-
aware application on the network and tells it to open a document. In this
case, LabVIEW is telling the application to open a VI.

Dynamically Loading and Running a VI
The AESend Open, Run, Close VI sends messages asking LabVIEW to run
a VI. First, it sends the Open Document Message and LabVIEW opens a
VI. Then, the Open Run Close VI sends the LabVIEW Run VI message and
LabVIEW runs the specified VI. Next, Open Run Close sends the VI
Active? message, and LabVIEW returns the status of a specified VI until
the VI is no longer running. Finally, the VI sends the Close VI message.

Assuming the target LabVIEW is on another computer, you could use the
following diagram to load and run the VI. If you are sending it to the current
LabVIEW, you do not need the PPC Browser VI.

© National Instruments Corporation 25-1 LabVIEW User Manual

25
Program-to-Program
Communication

This chapter describes program-to-program communication (PPC), a
low-level form of Apple interapplication communication (IAC) by which
Macintosh applications send and receive blocks of data.

Introduction to PPC

Program-to-Program Communication (PPC) is a Macintosh protocol for
transferring blocks of data between applications. You can use it to create
VIs that act as clients or servers. Although supported by all Macintoshes
running System 7.x, it is not commonly used by most Macintosh
applications. Instead, most Macintosh applications use AppleEvents,
a high-level protocol for sending commands between applications,
to communicate.

Although PPC is not as commonly supported as AppleEvents, it does
provide some advantages. Because it is at a lower level, it provides better
performance than AppleEvents. Also, in LabVIEW you can create VIs that
use PPC to act as clients or servers. You cannot create diagrams that act as
AppleEvent servers.

LabVIEW VIs can use PPC to send and receive large amounts of
information between applications on the same computer or different
computers on a network. For two applications to communicate with PPC,
they must both be running and prepared to send or receive information.

PPC is similar in structure to TCP, in terms of both server and client
applications. The PPC method for specifying a remote application is
different from the TCP method. Other than that, the two protocols provide
similar performance and features. Both protocols handle queueing and
reliable transmission of data. You can use both protocols with multiple
open connections.

Chapter 25 Program-to-Program Communication

LabVIEW User Manual 25-2 © National Instruments Corporation

When deciding between TCP and PPC, consider the platforms you plan to
run your VIs on and the platforms with which you will communicate.
If your application is Macintosh only, PPC is a good choice because it is
built into the operating system. TCP is built into Macintosh operating
system version 7.5 and later. To use TCP with an earlier system, you must
buy a separate TCP/IP driver from Apple. If buying the separate driver is
not an issue, then you may want to use TCP because the TCP interface is
simpler than PPC. PPC uses some fairly complicated data structures to
describe addresses.

If your application must communicate with other platforms or run on other
platforms, then you should use TCP/IP.

Ports, Target IDs, and Sessions
To communicate using PPC, both clients and servers must open ports to use
for subsequent communication. The Open Port VI opens the port using a
cluster that contains, among other things, the name that you want to use for
the port. Ports are used to distinguish between different services that an
application provides. Each application can have multiple ports open
simultaneously.

Each port can support several simultaneous sessions or conversations.
To open a session, a client uses a Target ID indicating the location of the
server. PPC uses the same type of Target ID that the AppleEvent VIs use.
You can use the PPC Browser or the Get Target ID VIs to generate the
Target ID for the remote application.

A server waits for clients to attempt to open a session by using the
PPC Inform Session VI. The server can accept or reject the session by using
the PPC Accept Session VI. A client can attempt to open a session with a
server by using the PPC Start Session VI.

After the session is started, you can use the PPC Read and PPC Write VIs
to transfer data. You can close a session using PPC End Session, and you
can close a port using the PPC Close Port VI.

Chapter 25 Program-to-Program Communication

© National Instruments Corporation 25-3 LabVIEW User Manual

PPC Client Example
The following discussion explains how you can use PPC to fulfill each
component of the general Client model.

Use the PPC Open Connection and PPC Open Session VIs to open a
connection to a server. This requires that you specify the Target ID of the
server, which you can get by using either the PPC Browser VI or the Get
Target ID VI. The end result is a port refnum and a session refnum, which
are used to communicate with the server.

To execute a command on the server, use the PPC Write VI to send the
command to the server. Next, use the PPC Read VI to read the results from
the server. With the PPC Read VI, you must specify the number of
characters you want to read. As with TCP, this can be awkward because the
length of the response can vary. The server can have a similar problem
because the length of a command may vary.

Following are several methods that address the problem of differently sized
commands. These methods can also be used with TCP.

• Precede the command and the result with a fixed size parameter that
specifies the size of the command or result. In this case, read the size
parameter, and then read the number of characters specified by the
size. This option is efficient and flexible.

• Make each command and result a fixed size. When a command is
smaller than the size, you can pad it out to the fixed size.

• Follow each command and result with a specific terminating character.
You then need to read data in small chunks until you get the
terminating character.

Use the PPC Close Session and PPC Close Connection VIs to close the
connection to the server.

Chapter 25 Program-to-Program Communication

LabVIEW User Manual 25-4 © National Instruments Corporation

PPC Server Example
The following discussion explains how you can use PPC to fulfill each
component of the general Server model.

Use PPC Open Port in the initialization phase to open a communication
port.

Use the PPC Inform Session VI to wait for a connection. With PPC, you
can either automatically accept incoming connections or choose to accept
or reject the session by using the PPC Accept Session VI. This process of
waiting for a session and then approving the session allows you to screen
connections.

When a connection is established, you can read from that session to retrieve
a command. As was discussed in the PPC Client Example section, you
must decide the format for commands. If commands are preceded by a
length field, then you need to first read the length field and then read that
amount of data.

Because it is something done on the local computer, execution of a
command should be protocol independent. When finished, you pass the
results to the next stage, where they are transmitted to the client.

Use the PPC Write VI to return the result. As discussed in the PPC Client

Example section, the data must be formatted in a form that the client can
accept.

Use the PPC Close Session VI to close the connection.

When the server is finished, use the PPC Close Port VI to close the port that
you opened in the initialization phase.

Chapter 25 Program-to-Program Communication

© National Instruments Corporation 25-5 LabVIEW User Manual

PPC Server with Multiple Connections
PPC handles multiple sessions and multiple ports easily. The methods for
implementing each component of a server, as described in the preceding
section, also work for a server with multiple connections. Figure 25-1
illustrates the order in which you use the PPC VIs.

Figure 25-1. PPC VI Execution Order (Used by Permission of Apple Computer, Inc.)

Part V

Advanced G Programming

This section contains information about customizing VIs, configuring front
panel objects programmatically, and designing complex applications.

Part V, Advanced G Programming, contains the following chapters.

• Chapter 26, Customizing VIs, explains how you can customize your
VIs. It also contains activities that illustrate how to use the VI Setup…
and the SubVI Node Setup… options to customize the appearance
and execution behavior of a VI when it is running.

• Chapter 27, Front Panel Object Attributes, describes objects called
attribute nodes, which are special block diagram nodes that control the
appearance and functional characteristics of controls and indicators.

• Chapter 28, Program Design, explains techniques to use when
creating programs and offers programming-style guidelines.

• Chapter 29, Where to Go from Here, provides information about
resources you can use to create your applications successfully.

Note: (Windows 3.1) You must save the VIs you create in Part V in VI libraries.

VI libraries enable you to use file names that are longer than 8 characters.

Also, the VIs needed for the activities in Part V are located in the VI library

LabVIEW\Activity\Activity.llb. Refer to the Saving VIs section in

Chapter 2, Editing VIs, of the G Programming Reference Manual for more

information on VI libraries.

In addition to programmatically configuring front panel objects, you also
can configure and control VIs and LabVIEW itself programmatically.
For example, you can change the appearance of a VI, change the execution
behavior of a VI, change the print settings for LabVIEW, and determine all
the VIs loaded into memory. Some of the options you can set interactively
in Preferences and VI Setup… you also can set programmatically.
The options available in Preferences are considered application settings
because they affect all VIs in LabVIEW. The VI Setup… options are

LabVIEW User Manual V-2 © National Instruments Corporation

VI settings because they only affect one VI and all instances in which
you use it as a subVI. Besides changing the configuration of a VI and
LabVIEW, you also can perform actions, or methods. For example, you
can reinitialize all front panel objects to their default value.

Another example of programmatic control is dynamically loading and
calling a VI. If you have a large application that has many subVIs, all the
subVIs are loaded into memory when you load the top-level VI. Loading
all subVIs into memory might not be practical for large applications.
Instead, you can load and call subVIs dynamically using the Call By
Reference node.

Refer to Chapter 21, VI Server, of the G Programming Reference Manual
and the LabVIEW Online Reference for more information about
programmatic configuration and control of VIs and LabVIEW.

In addition to configuring and controlling VIs and LabVIEW on a
local machine, you can also configure and control VIs and LabVIEW
on a remote machine through a TCP/IP network. Refer to Chapter 7,
Customizing Your Environment, in the G Programming Reference Manual
for more information. You also can configure and control VIs and
LabVIEW through another ActiveX application. Refer to Chapter 22,
ActiveX Support, in this manual for information about ActiveX support
in LabVIEW.

© National Instruments Corporation 26-1 LabVIEW User Manual

26
Customizing VIs

This chapter explains how you can customize your VIs. It also contains
activities that illustrate how to accomplish the following tasks:

• Use the VI Setup… option

• Use the SubVI Node Setup… option

For examples of custom VIs, see Examples\General\viopts.llb.

How Do You Customize a VI?

You can configure VI execution in several ways. You access these options
by popping up on the icon pane in the upper-right corner of the front panel
and choosing VI Setup….

A VI Setup dialog box appears showing setup options for execution of the
VI, appearance of the panel, documentation, and menu bar appearance at
run time. You can learn how to use these options in Activity 26-1. For more
detailed information, see Chapter 6, Setting Up VIs and SubVIs, in the
G Programming Reference Manual.

Set Window Options
Use Window Options to control the appearance of the VI when running.
To switch from Execution Options to Window Options, click the
downward pointing arrow in the menu bar.

Chapter 26 Customizing VIs

LabVIEW User Manual 26-2 © National Instruments Corporation

SubVI Node Setup
You also can configure how a subVI executes. The configuration options
are available by popping up on the subVI icon in the block diagram of the
calling VI, and choosing SubVI Node Setup…. The following illustration
shows the SubVI Node Setup dialog box.

Note If you select an option from the VI Setup… dialog box of a VI, the option applies

to every instance of that VI. If you select an option from the SubVI Node Setup

dialog box, the option applies only to that particular node.

Activity 26-1. Use Setup Options for a SubVI

Your objective is to build a VI that prompts the operator to enter

information.

You will create a VI that launches a dialog box to obtain information from
the user upon execution. Once the user enters the information and clicks a
button, the dialog box disappears.

Front Panel

1. Open a new front panel and add the string controls and the button
shown in the following illustration.

Chapter 26 Customizing VIs

© National Instruments Corporation 26-3 LabVIEW User Manual

Block Diagram

2. Build the block diagram shown in the following illustration.

3. Create the icon for the VI as shown at left. To access the Icon Editor,
pop up on the icon pane of the front panel and select Edit Icon.

4. Switch to the connector pane by popping up on the icon pane and
selecting Show Connector.

5. Build the connector. Notice that the default connector pane is not the
same as the connector pane illustrated to the left. To create the correct
connector pane, choose Patterns from the pop-up menu on the
connector. Choose the pattern with three inputs and two outputs. Then
choose Flip Horizontal. Now you can connect the Date and Time
controls to the two connectors on the left side of the icon, and the

Chapter 26 Customizing VIs

LabVIEW User Manual 26-4 © National Instruments Corporation

Name Answer, Date Answer, and Time Answer indicators to the
three connectors on the right side of the icon, as shown in the following
illustration. After creating the connector, return to the icon display.

6. Save the VI as Get Operator Info.vi in the LabVIEW\Activity
directory.

7. Now you can customize the VI with the VI setup options to make it
look like a dialog box.

a. Pop up on the icon and select VI Setup. Configure the Execution

Options as shown in the following illustration.

b. Select Window Options and make the selections shown in the
following illustration.

Chapter 26 Customizing VIs

© National Instruments Corporation 26-5 LabVIEW User Manual

8. After you select the VI Setup options, resize the front panel as
shown in the following illustration so you do not see the three string
indicators.

9. Save and close the VI. Now you can use this VI as a subVI.

Chapter 26 Customizing VIs

LabVIEW User Manual 26-6 © National Instruments Corporation

Front Panel

10. Open a new front panel.

11. Place a Waveform Chart (Controls»Graph) on the front panel and
label it Temperature Data.

12. Modify the scale of the chart so that the upper limit is set to 90.0 and
the lower limit is set to 70.0. Pop up on the chart and choose
Show»Legend to hide the legend. Pop up on the chart again and
choose Show»Palette to hide the palette.

13. Build the rest of the front panel as shown in the following illustration.

Chapter 26 Customizing VIs

© National Instruments Corporation 26-7 LabVIEW User Manual

Block Diagram

14. Create a Sequence structure and add the following objects to frame 0,
as shown in the following illustration.

Get Date/Time String function (Functions»Time & Dialog)—Outputs the
current date and time.

Get Operator Info VI (Functions»Select a VI… from the
LabVIEW\Activity directory)—Opens its front panel and prompts
the user to enter a name, the date, and the time.

Boolean constant (Functions»Boolean)—Controls whether the input date
and time string are TRUE. To set this option to TRUE, click the constant
with the Operating tool.

15. Pop up on the Sequence structure and select Add Frame After from
the pop-up menu.

16. Place a While Loop inside frame 1 of the Sequence structure.

Chapter 26 Customizing VIs

LabVIEW User Manual 26-8 © National Instruments Corporation

17. Add the objects shown in the following illustration.

Temp & Vol VI (Functions»Select a VI… from the LabVIEW\Activity
directory)—Returns one temperature measurement from a simulated
temperature sensor.

Wait Until Next ms Multiple function (Functions»Time

& Dialog)—Causes the While Loop to execute in ms.

Numeric constant (Functions»Numeric)—You also can pop up on the
Wait Until Next Tick Multiple function and select Create Constant to
create and wire the numeric constant automatically. The numeric constant
delays execution of the loop for 500 ms (0.5 seconds).

Not function (Functions»Boolean)—Inverts the value of the STOP button
so that the While Loop executes repeatedly until you click STOP.

18. Save the VI as Pop-up Panel Demo.vi in the LabVIEW\Activity
directory.

19. Run the VI. The front panel of the Get Operator Info VI opens and
prompts you to enter your name, the date, and the time. Click the
Continue button to return to the calling VI. Then temperature data is
acquired until you click the STOP button.

Note The front panel of the Get Operator Info VI opens because of the options you have

selected from the VI Setup dialog box. Do not try to open the front panel of the

subVI from the block diagram of the Pop-Up Panel Demo VI.

20. Close all windows.

End of Activity 26-1.

© National Instruments Corporation 27-1 LabVIEW User Manual

27
Front Panel Object Attributes

This chapter describes objects called attribute nodes, which are special
block diagram nodes that control the appearance and functional
characteristics of controls and indicators.

With attribute nodes, you can set attributes such as display colors, visibility,
position, blinking, and many more. To create an attribute node, select
Create»Attribute Node from the pop-up menu of the front panel object
or from the terminal in the block diagram, as shown in the following
illustration.

Initially, the attribute node displays a single characteristic. You can expand
the node to display multiple characteristics. To expand the node, select the
attribute node with the Positioning tool. Place your cursor over the node
near the bottom-right corner, and when your cursor changes to a frame drag
it to create the desired number of characteristics. Then you can change

Chapter 27 Front Panel Object Attributes

LabVIEW User Manual 27-2 © National Instruments Corporation

attributes by clicking the node with the Operating tool and choosing the
new attribute from the pop-up menu, as shown in the following illustration.

Because there are many different attributes for front panel objects, you can
use the Help window to display the descriptions, data types, and acceptable
values of attributes. Access the Help window by selecting Help»

Show Help.

For more information about accessing help in LabVIEW, see Getting Help
in Chapter 1, Introduction to G Programming, of the G Programming

Reference Manual.

With attribute nodes, you can assign characteristics or read the current
state of an attribute by popping up on the attribute and selecting
Change to Read.

Chapter 27 Front Panel Object Attributes

© National Instruments Corporation 27-3 LabVIEW User Manual

Activity 27-1. Use an Attribute Node

Your objective is to create a VI that indicates a high limit condition

using attribute nodes. You will use the Fill Color attribute of a

Tank indicator to indicate whether a randomly generated tank

level has gone above the user-defined limit.

Front Panel

1. Open a new front panel and create it as shown in the following
illustration.

2. Rescale the tank from 0.0 to 100.0.

3. Set the default Limit Setting to 50.00.

Block Diagram

4. Create the block diagram as shown below.

Chapter 27 Front Panel Object Attributes

LabVIEW User Manual 27-4 © National Instruments Corporation

Not function (Functions»Boolean)—In this exercise, the Not function
inverts the value of the STOP button so that the While Loop executes
repeatedly until you click the STOP button. (The default state of the button
is FALSE.)

Random Number Generator (Functions»Numeric)—Generates raw data
between 0 and 1 to fill the tank on your front panel. You multiply this value
by 100 to create a value between 0 and 100.

Greater or Equal? (Functions»Comparison)—Compares the raw data to
the Limit Setting input. If the value is greater than or equal to the limit
input, a TRUE value is passed to the Case Structure.

Attribute Node (Pop up on the Tank terminal)—Select Create»

Attribute Node from the Tank terminal. Pop up on the attribute and choose
Select»Fill Color.

Color Box Constant (Functions»Numeric»Additional Numeric

Constants)—Wire this constant to define a red color to Fill Color in the
TRUE case and a blue color in the FALSE Case. Click on the constant with
the Operating tool to select the color.

Wait Until Next ms Multiple (Functions»Time & Dialog)—Wire a
numeric constant of 1000 to execute the loop every second.

5. Run the VI. The level of the tank is compared to the Limit Setting
control. If the tank value is greater than or equal to the Limit Setting
value, the tank turns red. If the data falls below the limit, the tank
turns blue.

6. Save the VI as Tank Limit.vi in the LabVIEW\Activity
directory.

End of Activity 27-1.

© National Instruments Corporation 28-1 LabVIEW User Manual

28
Program Design

Now that you are familiar with many aspects of G programming, you need
to apply that knowledge to develop your own applications. This chapter
suggests some techniques to use when creating programs and offers
programming-style recommendations.

Use Top-Down Design

When you have a large project to manage, incorporate top-down design.
G has an advantage over other programming languages with respect to
top-down design because you can start with the final user interface then
animate it.

Make a List of User Requirements
Create a list of the panels with which the user can interact, the number and
type of controls and indicators for these panels, the need for real-time
analysis, data presentation, and so on. Next, create mock-up front panels
you can show to the prospective users (or manipulate yourself, if you are
the user). Think about and discuss functions and features. Use this
interactive process to redesign the user interface as necessary. You might
need to do some low-level research at this early stage to be certain you can
meet specifications.

Design the VI Hierarchy
The power of G lies in the hierarchical nature of VIs. After you create a VI,
you can use it as a subVI in the block diagram of a higher level VI. You can
have an essentially unlimited number of layers in the hierarchy.

Chapter 28 Program Design

LabVIEW User Manual 28-2 © National Instruments Corporation

Divide the task to be accomplished into manageable, logical pieces. As the
following flowchart illustrates, you can expect several major blocks in one
form or another for every data acquisition system.

In some cases you might not need all these blocks or you might need
different blocks. For example, some applications do not include any file
I/O operations. Alternatively, you might need additional blocks, such as
blocks representing user prompts. Your main objective is to divide your
programming task into high-level blocks that you can manage easily.

After you determine the high-level blocks you need, try to create a block
diagram that uses those high-level blocks. For each block, create a new
stub VI (a nonfunctional prototype representing a future subVI). For this
stub VI, create an icon as well as a front panel that contains the necessary
inputs and outputs. You do not have to create a block diagram for this VI
yet. Instead, see if this stub VI is a necessary part of your top-level block
diagram.

After you assemble a group of stub VIs, try to understand, in general terms,
the function of each block and how each block provides the desired results.
Ask yourself whether any given block generates information that a
subsequent VI needs. If so, make certain that the sketch for your top-level
block diagram contains wires to pass the data between VIs.

MAIN

READ
DATA

PROCESS
DATA

SAVE
DATA

FILE
SETUP

HDW
SETUP

CONFIG

FILE I/O
HANDLER

HDW
DRIVERS

Chapter 28 Program Design

© National Instruments Corporation 28-3 LabVIEW User Manual

Try to avoid using unnecessary global variables because they hide the data
dependency between VIs. As your system gets larger, it becomes difficult
to debug if you depend on global variables as your method for transferring
information between VIs.

Create the Program
Now you are ready to create the program in G:

• Use a modular approach by building subVIs where you find a logical
division of labor or the potential for code reuse.

• Solve your general problems along with your specific ones.

• Test your subVIs as you create them. You might need to construct
higher-level test routines, but you can catch the bugs in one small
module more easily than in a hierarchy of several VIs.

As you consider the details of your subVIs, you might find that your initial
design is incomplete. For example, you might realize you need to transfer
more information from one subVI to another. You might have to reevaluate
your top-level design at this point. Using modular subVIs to accomplish
specific tasks makes it easier to manage your program reorganizations.

Plan Ahead with Connector Panes

If you think that you might need to add additional inputs or outputs later on,
select a connector-pane pattern with extra terminals. You can leave these
extra terminals unconnected. With these extra terminals, you do not have
to change the connector pane for your VI if you find you need another input
or output later. This flexibility enables you to make these changes with
minimal effect on your hierarchy.

When linking controls and indicators to the connector, place inputs on the
left and outputs on the right. This prevents complicated, unclear wiring
patterns in your VIs.

BAD Input
Location

GOOD Input
Location

OK Output
Location

OK Input
Location

BAD Output
Location

GOOD Output
Location

Chapter 28 Program Design

LabVIEW User Manual 28-4 © National Instruments Corporation

If you create a group of subVIs that are used together often, try to give the
subVIs a consistent connector pane, with common inputs in the same
location. You then can remember where to locate each input more easily
without using the Help window. If you create a subVI that produces an
output that is used as the input to another subVI, try to align the input and
output connections. This technique simplifies your wiring patterns.

SubVIs with Required Inputs
On the front panel, you can edit required inputs for subVIs by clicking
the icon pane on the upper-right side of the window and choosing
Show Connector»This Connection Is. From the submenu, choose
between the Required, Recommended, or Optional options.
The following illustration displays the submenu options.

If you want to return to the icon pane in the front panel, pop up on the
connector pane and select Show Icon.

Good Diagram Style

In general, avoid creating a block diagram that uses more than one or two
screens of space. If a diagram becomes very large, decide whether you can
reuse some components of your diagram in other VIs, or whether a section
of your diagram fits together as a logical component. If so, consider
dividing your diagram into subVIs.

With forethought and careful planning, it is easier to design diagrams that
use subVIs to perform specific tasks. Using subVIs helps you manage
changes and debug your diagrams quickly. You can determine the function
of a well-structured program after only a brief examination.

Chapter 28 Program Design

© National Instruments Corporation 28-5 LabVIEW User Manual

Watch for Common Operations
As you design your programs, you might find that you perform a certain
operation frequently. Depending on the situation, consider using subVIs or
loops to perform an action repetitively.

For example, examine the following diagram in which three similar
operations run independently.

An alternative to this design is a loop, which performs the operation
three times. You can build an array of the different arguments and use
auto-indexing to set the correct value for each iteration of the loop.

If the array elements are constant, you can use an array constant instead of
building the array on the block diagram.

Use Left-to-Right Layouts
G is designed to use a left-to-right (and sometimes top-to-bottom) layout.
Organize all elements of your program in this layout when possible.

Chapter 28 Program Design

LabVIEW User Manual 28-6 © National Instruments Corporation

Check for Errors
When you perform any kind of I/O, consider the possibility of errors
occurring. Almost all I/O functions return error information. If you use
direct I/O, make sure that your program checks for errors and you handle
them appropriately.

LabVIEW does not handle errors automatically because users usually want
very specific error-handling methods. For example, if an I/O VI in your
block diagram times out, you might or might not want your entire program
to stop. You also might want the VI to retry for a certain period of time.
In LabVIEW, you can make these error-handling decisions in the block
diagram of your VI.

The following list describes situations in which errors frequently occur:

• Incorrect initialization of communication or data that has been written
to an external device improperly

• Loss of power in an external device, or a broken or improperly working
external device

• Change in functionality of an application or library when upgrading
operating system software

When an error occurs, you might not want certain subsequent operations to
occur. For instance, if an analog output operation fails because you specify
the wrong device, you might not want a subsequent analog input operation
to take place.

One method for managing such a problem is to test for errors after every
function and place subsequent functions inside case structures. However,
this method can complicate your diagrams and ultimately hide the purpose
of your application.

An alternative approach, which has been used successfully in a number of
applications and many of the VI libraries, is to incorporate error handling
in the subVIs that perform I/O. Each VI can have an error input and an error
output. You can design the VI to check the error input to see if an error has
occurred previously. If an error exists, you can configure the VI to do
nothing and pass the error input to the error output. If no error exists, the VI
can execute the operation and pass the result to the error output.

Note In some cases, such as a Close operation, you might want the VI to perform the

operation regardless of the error that is passed into it.

Chapter 28 Program Design

© National Instruments Corporation 28-7 LabVIEW User Manual

Using the preceding technique, you can wire several VIs together,
connecting error inputs and outputs to propagate errors from one VI to the
next. At the end of the series of VIs, you can use the Simple Error Handler
VI to display a dialog box if an error occurs. The Simple Error Handler VI
is located in Functions»Time & Dialog. In addition to encapsulating error
handling, you can use this technique to determine the order of several
I/O operations.

One of the main advantages in using the error input and output clusters is
that you can use them to control the execution order of dissimilar
operations.

The error information generally is represented using a cluster containing a
numeric error code, a string containing the name of the function that
generated the error, and an error Boolean for quick testing. The following
illustration shows how you can use this technique in your own applications.
Notice that the While Loop stops if it detects an error.

Watch Out for Missing Dependencies
Make sure that you have explicitly defined the sequence of events when
necessary. Do not assume left-to-right or top-to-bottom execution when no
data dependency exists.

In the following example, no dependency exists between the Read File VI
and the Close File VI. This program might not work as expected.

Chapter 28 Program Design

LabVIEW User Manual 28-8 © National Instruments Corporation

The following version of the block diagram establishes a dependency by
wiring an output of the Read File VI to the Close File VI. The operation
cannot end until the Close File VI receives the output of the Read File VI.

Notice that the preceding example still does not check for errors. For
instance, if the file does not exist, the program does not display a warning.
The following version of the block diagram illustrates one technique for
handling this problem. In this example, the block diagram uses the error
I/O inputs and outputs of these functions to propagate any errors to the
Simple Error Handler VI.

Avoid Overuse of Sequence Structures
Because VIs can operate with a great deal of inherent parallelism, avoid
using Sequence structures. Using a Sequence structure guarantees the order
of execution but prohibits parallel operations. For instance, asynchronous
tasks that use I/O devices (GPIB, serial ports, and data acquisition boards)
can run concurrently with other operations if Sequence structures do not
prevent them from doing so.

Sequence structures tend to hide parts of the program and interrupt the
natural left-to-right flow of data. You do not sacrifice performance by using
Sequence structures. However, when you need to sequence operations, you
might consider using data flow instead. For instance, in I/O operations you
might use the error I/O technique described previously to ensure that one
I/O operation occurs before another.

Chapter 28 Program Design

© National Instruments Corporation 28-9 LabVIEW User Manual

Study the Examples
For further information about program design, you can examine the many
example block diagrams included in LabVIEW. These sample programs
provide you with insights into G programming style and technique.
To view these block diagrams, open any of the VIs in the Examples
directory.

© National Instruments Corporation 29-1 LabVIEW User Manual

29
Where to Go from Here

You have completed activities that have prepared you to create LabVIEW
applications. Before you start your own applications, you might want to
examine the additional resources available to you.

Other Useful Resources

The following sections overview resources you can use to create your
applications successfully.

Solution Wizard and Search Examples
To find examples similar to your application, open the Solution Wizard
and the Search Examples options from the LabVIEW dialog box. The
Solution Wizard creates data acquisition and instrument I/O examples
based on the criteria you specify. The Search Examples option opens
examples illustrating several G programming concepts as well as analysis,
networking, data acquisition, and instrument I/O.

Data Acquisition Applications
(Windows, Macintosh) The LabVIEW Data Acquisition Basics Manual
provides information about starting data acquisition applications that use
analog input, analog output, digital I/O, and counter/timers. The LabVIEW

Data Acquisition Basics Manual also explains the basic concepts behind
data acquisition and the VIs used to implement those concepts.

G Programming Techniques
Part I, Introduction to G Programming, and Part V, Advanced G

Programming, in this manual have introduced you to fundamental
G programming techniques. To learn more about the capabilities of G,
refer to the G Programming Reference Manual, which provides further
information about execution and debugging, VI setup, front panel objects,
wiring, structures, and attribute nodes. It also provides information not
discussed in the LabVIEW User Manual, such as printing, customizing the
G environment using Preferences, custom controls, multithreading, and
performance issues.

Chapter 29 Where to Go from Here

LabVIEW User Manual 29-2 © National Instruments Corporation

Function and VI Reference
For an overview of the functions and VIs available in LabVIEW, refer to
the LabVIEW Function and VI Reference Manual, which provides brief
descriptions of the functions and VIs, organized in the same order in which
they appear in the Functions palette.

Resources for Advanced Topics

The LabVIEW User Manual teaches you the fundamentals of building a
LabVIEW application. LabVIEW contains several advanced features
that are either not discussed or only discussed in a limited fashion in this
manual. The following sections overview these features and provide
additional resources so you can apply them as necessary in your
applications.

Attribute Nodes
Chapter 27, Front Panel Object Attributes, of this manual briefly describes
attribute nodes. Using attribute nodes, you can manage settings related to
controls and indicators programmatically. For example, you can change
the visibility of controls. Use an attribute node if you need to change the
options in a ring or list control, clear the contents of a chart, or change the
scales on a chart or graph programmatically. Chapter 22, Attribute Nodes,
in the G Programming Reference Manual describes attribute nodes in
detail.

VI Setup and Preferences
You can programmatically control various attributes of VIs as well as
attributes of LabVIEW using the VI Server feature. You can load VIs into
memory, run VIs, change the appearance of VIs, and change the execution
behavior of a VI. Some of the options that you can set interactively in
Preferences and VI Setup… you can also set programmatically. The
options available in Preferences are considered application settings
because they affect all VIs shown in LabVIEW. The VI Setup… options
are VI settings because they only affect one VI and all instances in which
you use the VI as a subVI.

In addition to changing attributes, which are called properties, you can
perform an action on LabVIEW or an individual VI. For example, you
can set an action, also called a method, to save a VI. You can set properties
and methods for LabVIEW and VIs on the local machine, across a TCP/IP
network, or through another ActiveX application. For more information

Chapter 29 Where to Go from Here

© National Instruments Corporation 29-3 LabVIEW User Manual

about ActiveX capabilities, refer to Chapter 22, ActiveX Support, in this
manual. For more information about TCP/IP settings and how to use this
feature, refer to Chapter 7, Customizing Your G Environment, and
Chapter 21, VI Server, in the G Programming Reference Manual.

Local and Global Variables
Use local variables to read from controls in multiple locations of the block
diagram. Also use local variables when you need to treat a front panel
object as a control in some locations and an indicator in other locations.
Use local variables sparingly because they hide the data flow of your
diagrams, which makes it difficult to see the purpose of your program and
to debug local variables. See Chapter 23, Global and Local Variables, of
the G Programming Reference Manual for a discussion of local variables.

Global variables store data used by several VIs. Use global variables
judiciously because they hide the data flow of your diagram. Although you
need global variables in some applications, do not use them if you can
structure your program using an alternate data flow method for transferring
data. See Chapter 23, Global and Local Variables, of the G Programming

Reference Manual for details.

Creating SubVIs
You can create subVIs from a selection on the block diagram by choosing
Edit»Create SubVI from Selection. In addition, LabVIEW automatically
wires the correct inputs and outputs to the subVI. In some instances, you
cannot create a subVI from a VI. See Chapter 3, Using SubVIs, of the
G Programming Reference Manual for a detailed discussion of this feature.

VI Profiles
You can use the VI profile feature (Project»Show Profile Window)
to access detailed information about a timing statistics and timing details
of a VI. This feature helps you optimize the performance of your VIs.
See Chapter 28, Performance Issues, of the G Programming Reference

Manual for a detailed discussion of the profile feature.

Chapter 29 Where to Go from Here

LabVIEW User Manual 29-4 © National Instruments Corporation

Control Editor
Use the Control Editor to customize the look of your front panel controls.
You also can use the editor to save customized controls so you can reuse
them in other applications. See Chapter 24, Custom Controls and Type

Definitions, of the G Programming Reference Manual for a detailed
discussion of the Control Editor.

List and Ring Controls
Use list and ring controls when you need to present the user with a list of
options. See Chapter 13, List and Ring Controls and Indicators, in the
G Programming Reference Manual for a detailed discussion of these front
panel objects.

Call Library Function
LabVIEW provides a Call Library function you can use to call a shared
library or DLL. With this function, you can create an interface in LabVIEW
to call an existing code or driver. See Chapter 25, Calling Code from Other

Languages, in the G Programming Reference Manual for a discussion of
the Call Library functions.

Code Interface Nodes
You can use code interface nodes (CINs) as an alternative method for
calling source code written in a conventional, text-based programming
language from LabVIEW block diagrams. Use CINs for tasks that
conventional programming languages can perform more quickly than
LabVIEW, for tasks that you cannot perform directly from the block
diagram, and for linking existing code to LabVIEW. However, the Call
Library function generally is easier to use when calling source code than
CINs. Use CINs when you need tighter integration with LabVIEW and the
source code. See the LabVIEW Code Interface Reference Manual,
available in Portable Document Format (PDF) only, and Chapter 25,
Calling Code from Other Languages, in the G Programming Reference

Manual and for further information about CINs.

© National Instruments Corporation A-1 LabVIEW User Manual

A
Analysis References

This appendix lists the reference material used to produce the Analysis VIs
in this manual. These references contain more information on the theories
and algorithms implemented in the analysis library.

Baher, H. Analog & Digital Signal Processing. New York:
John Wiley & Sons, 1990.

Bates, D.M. and Watts, D.G. Nonlinear Regression Analysis and its

Applications. New York: John Wiley & Sons, 1988.

Bracewell, R.N. “Numerical Transforms.” Science 248 (11 May 1990).

Burden, R.L. and Faires, J.D. Numerical Analysis. 3d ed. Boston:
Prindle, Weber & Schmidt, 1985.

Chen, C.H. et al. Signal Processing Handbook. New York: Marcel
Decker, Inc., 1988.

DeGroot, M. Probability and Statistics. 2d ed. Reading, Massachusetts:
Addison-Wesley Publishing Co., 1986.

Dowdy, S. and Wearden, S. Statistics for Research. 2nd ed. New York:
John Wiley & Sons. 1991.

Dudewicz, E.J. and Mishra, S.N. Modern Mathematical Statistics.
New York: John Wiley & Sons, 1988.

Duhamel, P. et al. “On Computing the Inverse DFT.” IEEE Transactions

on ASSP 34, 1 (February 1986).

Dunn, O. and Clark, V. Applied Statistics: Analysis of Variance and

Regression 2nd ed. New York: John Wiley & Sons. 1987.

Elliot, D.F. Handbook of Digital Signal Processing Engineering

Applications. San Diego: Academic Press, 1987.

Golub, G.H. and Van Loan, C.F. Matrix Computations. Baltimore:
The John Hopkins University Press, 1989.

Appendix A Analysis References

LabVIEW User Manual A-2 © National Instruments Corporation

Harris, Fredric J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform.” Proceedings of the IEEE-66 (1978)-1.

Maisel, J.E. “Hilbert Transform Works With Fourier Transforms to
Dramatically Lower Sampling Rates.” Personal Engineering and

Instrumentation News 7, 2 (February 1990).

Miller, I. and Freund, J.E. Probability and Statistics for Engineers.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1987.

Neter, J. et al. Applied Linear Regression Models. Richard D.
Irwin, Inc., 1983.

Neuvo, Y., Dong, C.-Y., and Mitra, S.K. “Interpolated Finite Impulse
Response Filters” IEEE Transactions on ASSP. ASSP-32, 6
(June, 1984).

O’Neill, M.A. “Faster Than Fast Fourier.” BYTE. (April 1988).

Oppenheim, A.V. and Schafer, R.W. Discrete-Time Signal Processing.
Englewood Cliffs, New Jersey: Prentice Hall, 1989.

Parks, T.W. and Burrus, C.S. Digital Filter Design. New York:
John Wiley & Sons, Inc., 1987.

Pearson, C.E. Numerical Methods in Engineering and Science. New York:
Van Nostrand Reinhold Co., 1986.

Press, W.H. et al. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1988.

Rabiner, L.R. & Gold, B. Theory and Application of Digital Signal

Processing. Englewood Cliffs, New Jersey: Prentice Hall, 1975.

Sorensen, H.V. et al. “On Computing the Split-Radix FFT.”
IEEE Transactions on ASSP. ASSP-34, 1 (February 1986).

Sorensen, H.V. et al. “Real-Valued Fast Fourier Transform Algorithms.”
IEEE Transactions on ASSP. ASSP-35, 6 (June 1987).

Spiegel, M. Schaum’s Outline Series on Theory and Problems

of Probability and Statistics. New York: McGraw-Hill, 1975.

Stoer, J. and Bulirsch, R. Introduction to Numerical Analysis.
New York: Springer-Verlag, 1987.

Appendix A Analysis References

© National Instruments Corporation A-3 LabVIEW User Manual

Vaidyanathan, P.P. Multirate Systems and Filter Banks. Englewood Cliffs,
New Jersey: Prentice Hall, 1993.

Wichman, B. and Hill, D. “Building a Random-Number Generator:
A Pascal Routine for Very-Long-Cycle Random-Number Sequences.”
BYTE (March 1987): 127–128.

© National Instruments Corporation B-1 LabVIEW User Manual

B
Common Questions

This appendix answers common questions about LabVIEW networking
communications and Instrument I/O, specifically GPIB and serial I/O.

Communications Common Questions

This section answers common questions about LabVIEW networking
communications. Questions are divided into sections according to the
relevant platform: All, Windows, and Macintosh. Please contact
National Instruments if you have further questions or suggestions
regarding LabVIEW.

Questions for All Platforms
How do I use LabVIEW to communicate with other applications?

Communicating with other applications, often called interprocess or
interapplication communication, can be done with the standard networking
protocols on each platform. LabVIEW has support for TCP (Transmission
Control Protocol) and UDP (User Datagram Protocol) on all platforms.

(Windows) In addition, LabVIEW for Windows supports DDE (Dynamic
Data Exchange).

(Macintosh) In addition, LabVIEW for Macintosh supports IAC
(Interapplication Communication). IAC includes Apple Events and PPC
(Program to Program Communication).

(UNIX) LabVIEW for UNIX only supports TCP and UDP.

See Part II, I/O Interfaces, for more information on how use LabVIEW
to communicate with other applications. In addition, for many
instrumentation applications, file I/O provides a simple, adequate method
of sending information between applications.

How do I launch another application with LabVIEW?

On Windows and UNIX, use System Exec.vi
(Functions»Communication). On Macintosh, use AESend Finder Open
(Functions»Communication»AppleEvent).

Appendix B Common Questions

LabVIEW User Manual B-2 © National Instruments Corporation

When would I want to use UDP instead of TCP?

Typically, UDP is used in applications where reliability is not critical.
For example, an application might transmit informative data to a
destination frequently enough that a few lost segments of data are not
problematic. Also, UDP can be used to broadcast to any machine wanting
to listen to the server.

What port numbers can I use with TCP and UDP?

A port is represented by a number between 0 and 65535. With UNIX,
port numbers less than 1024 are reserved for privileged applications
(for example, ftp). When you specify a local port, you can use the value 0
to use or to choose an unused port.

Why can’t I broadcast using UDP?

Since the broadcast address varies among domains, you will need to find
out from your system administrator what broadcast address to use. For
example, the broadcast address 0xFFFFFFFF will not be correct for your
domain. Additionally, your machine by default may not allow broadcasting
unless the process is run by the root user.

Windows Only

Which WinSock DLLs can I use with LabVIEW?

This question pertains to Windows 3.x only because Windows 95 and
Windows NT include this file.

Any WinSock driver that conforms to standard 1.1 should work with
LabVIEW.

Recommended

National Instruments recommends using the WinSock DLL provided by
Microsoft for Windows for Workgroups. Prior to the release of this
WinSock DLL, National Instruments tested a number of WinSock DLLs.
The following DLLs were recommended at that time.

• TCPOpen version 1.2.2 from Lanera Corporation.

• Trumpet version 1.0.

• Super-TCP version 3.0 R1 from Frontier Technologies Corporation.

• NEWT/Chameleon version 3.11 from NetManage, Inc.

Appendix B Common Questions

© National Instruments Corporation B-3 LabVIEW User Manual

Not Recommended

National Instruments’ limited testing of these products yielded various
problems and crashes while attempting TCP/IP communication. At this
time we can neither recommend these products nor support customers
attempting TCP/IP communication with these WinSock DLLs.

• Distinct TCP/IP version 3.1 from Distinct Corporation.

• PCTCP version 2.x from FTP Software, Inc.

How do I call an Excel macro using DDE?

Use DDE Execute.vi. This VI tells the DDE server to execute a command
string in which you specify the action for Excel to perform and the name of
the macro. Make sure to include the correct parentheses and brackets
around the command. Refer to the Excel User’s Guide for more
information. Some common examples are shown below:

Why doesn’t DDE Poke work with Microsoft Access?

Microsoft Access cannot accept data directly from DDE clients. To get data
into an Access database you must create a macro in that database to import
the data from a file. In the simple case these macros need only be two
actions long. First do a SetWarnings to suppress Access dialogs, then do a
TransferSpreadsheet or TransferText to get the data. After this macro is
defined, you can call the macro by sending an execute to that database with
the macro name as the data. Refer to the example VI Sending Data to
Access.vi located in examples\network\access.llb to see how this
is done.

Which commands do I use to communicate with a non-LabVIEW

application using DDE?

The DDE commands are specific to the application with which you are
interfacing. Consult the documentation for the application to see which
commands are available.

Command String Action

[RUN("MACRO1")] Runs MACRO1

[RUN("MACRO1!R1C1")] Runs MACRO1 starting at
Row 1, Column 1

[OPEN("C:\EXCEL\SURVEY.XLS")] Opens SURVEY.XLS

Appendix B Common Questions

LabVIEW User Manual B-4 © National Instruments Corporation

How do I install LabVIEW as a shared application on a file server?

If you have a license for each client, follow these procedures:

• Install the LabVIEW Full Development System on the server. (Unless
there is NI hardware on the server, it is not necessary to install NI-DAQ
or GPIB.DLL).

• Each local machine should use its own labview.ini file for
LabVIEW preferences. If a labview.ini file does not already exist
on a local machine, you can create this (empty) text document using a
text editor, such as Microsoft Notepad. The first line of labview.ini
must be [labview]. To have a local setting for labview.ini,
LabVIEW requires a command line argument containing the path to
the preferences. For example, if the labview.exe file is on drive
W:\LABVIEW and the labview.ini file is on C:\LVWORK (the hard
drive on the local machine), modify the command line option of the
LabVIEW icon in Program Manager to be

W:\LABVIEW\LABVIEW.EXE -pref C:\LVWORK\LABVIEW.INI

Note pref must be lower case. Additionally, each local machine must have its own

LabVIEW temporary directory, which you can specify in LabVIEW by choosing

Edit»Preferences....

• You do not need GPIB.DLL on the server machine, unless you are
using a GPIB board on this machine. You will need the gpibdrv file
in the LabVIEW directory. On each machine that has a GPIB board,
you will need to install the driver for that board. Either use the drivers
that came with the board or complete a custom LabVIEW installation
in which you install only the desired GPIB driver on the local machine.

• The same procedure for GPIB.DLL applies to NI-DAQ.

On Windows NT why does the Synch DDE Client / Server hang after

many transfers?

There are some problems with DDE in LabVIEW for Windows NT that
result in VIs hanging during DDE Poke and DDE Request operations. This
limitation is specific to Windows NT.

Appendix B Common Questions

© National Instruments Corporation B-5 LabVIEW User Manual

Macintosh Only

What is a target ID?

Target ID is used in the Apple Events and PPC VIs on the Macintosh.
It serves as a reference to the application that you are trying to launch, run,
or abort. You can obtain the target ID to an application using one of the
following VIs:

• Get Target ID takes the name and location of the application as input,
searches the network for it, and returns the target ID.

• PPC Browser pops up a dialog box that allows you to select an
application, which may be across the network or on your computer.

You can use the target ID you obtain as an input to all subsequent Apple
Event functions to open, print, close, or run the application.

Why can’t I see my application in the dialog box generated by

PPC Browser?

If the application you want to connect to cannot be used with Apple Events,
it will not show up in the PPC Browser dialog box. If you are certain that
the desired application supports Apple Events, open the Apple menu on the
machine where the application is located. Select Control Panels»File

Sharing (MacOS 8) or Control Panels»Sharing Setup (System 7 and earlier)
and verify that Program Linking is turned on.

How can I close the Finder using Apple Events?

Use the VI AESend Quit Application to quit the Finder or any other
application.

Appendix B Common Questions

LabVIEW User Manual B-6 © National Instruments Corporation

GPIB

All Platforms

When using a LabVIEW instrument driver, I have trouble talking with

my instrument.

Ensure that your GPIB interface is working properly. Use the example
LabVIEW<->GPIB.vi located in examples\instr\smplgpib.llb.
Try a simple command to the instrument. For example, if the instrument is
488.2, the string *IDN? will ask the instrument to send its identification
string (about 100 characters).

Once communication is established, you should have no problems with the
instrument driver.

I get timeout errors with GPIB Read/Write in LabVIEW.

Try running a simple program to establish communication between
LabVIEW and GPIB. Use the example LabVIEW<->GPIB.vi, located
in examples\instr\smplgpib.llb. Try a simple command to the
instrument. For example, if the instrument is 488.2, the string *IDN? will
ask the instrument to send its identification string (about 100 characters).

If you still receive errors with GPIB, you may have a configuration
problem. Open the GPIB configuration utility (Windows: wibconf; Mac:
NI-488 Config; Sun: ibconf; HP-UX: ibconf). Verify that the settings
match your hardware settings. Exit the configuration utility and run the
ibic (Interface Bus Interactive Control) utility for your Windows: wibic;
platform (Mac: ibic, which ships with your GPIB board; Sun: ibic;
HP-UX: ibic).

Appendix B Common Questions

© National Instruments Corporation B-7 LabVIEW User Manual

Try the following sequence:

If you have any configuration errors, you will get an error message in one
of these steps. The NI 488.2 Software Reference Manual that came with
your GPIB board has detailed descriptions of the error messages.

Why can I communicate with my GPIB instrument with a LabVIEW

VI running in execution highlighting mode but not when it is running

full-speed?

This sounds like a timing problem. VIs run much slower with execution
highlighting enabled than they will otherwise. Your instrument may need
more time to prepare the data to send. Add a delay function or use service
requests before the GPIB Read.vi to give the instrument enough time to
generate the data it needs to send back to the computer.

Why can I write successfully to my GPIB instrument but can’t read

back from it?

When GPIB Write.vi executes, the computer is in talk mode and the
instrument is in listen mode. When GPIB Read.vi executes, the device is
supposed to switch to talk mode and the computer to listen mode.
The device is prompted to switch modes by a termination signal which may
be a character (End Of String) or a GPIB bus line (End Or Identify). So, if
GPIB Read.vi times out or returns an EABO (Operation aborted) error,

: ibfind gpib0 Find the GPIB interface

id = 32000

gpib0: ibsic

Clear the GPIB bus
(Send Interface Clear)

[0130] [cmpl cic atn] Operation completed successfully

gpib0: ibfind dev1 Find device 1.
Use appropriate instrument address.

id = 32xxx

dev1: ibwrt "*IDN?"

Write string to instrument. 488.2
instruments recognize this command
and return their identification string.

count = 5

dev1: ibrd 100

Five bytes were sent. Read up to
100 bytes from the instrument.

Fluke xxx Multimeter… Instrument returns identification
string.

Appendix B Common Questions

LabVIEW User Manual B-8 © National Instruments Corporation

it means that the device is not receiving the right termination signal.
To determine the termination mode for a given instrument, refer to its
manual. As a rule of thumb, all IEEE 488.2 devices terminate on <CR><LF>
and assertion of the EOI (End Or Identify) line in the GPIB bus.

Use the configuration utility for your platform (Windows: wibconf; Mac:
NI-488 Config; Sun: ibconf; HP-UX: ibconf) to change the
termination character.

A VI that talks with a GPIB instrument works fine on one platform and

not on another.

Make sure that the instrument is configured properly in wibconf, NI-488
Config, or ibconf. Some older, 488.1 instruments do not automatically go
to remote state. Go to the GPIB configuration utility for your platform and
set the field Assert REN when SC. This will ensure that the instrument
goes to remote state (as opposed to local state) when it is addressed.

Windows Only

I can communicate with my instrument using a Quick Basic program

but not from LabVIEW.

The GPIB board has separate handlers for DOS and Windows. Quick Basic
accesses the DOS handler, but LabVIEW accesses the Windows handler.
Make sure that the board and device are configured properly through
wibconf.exe.

Serial I/O

All Platforms

Why doesn’t my instrument respond to commands sent with the

Serial Port Write VI?

Many instruments expect a carriage return or line feed to terminate the
command string. The Serial Port Write.vi in LabVIEW sends only
those characters included in the string input; no termination character is
appended to the string. Many terminal emulation (for example, Windows
Terminal) packages automatically append a carriage return to the end of
all transmissions. With LabVIEW, you will need to include the proper

Appendix B Common Questions

© National Instruments Corporation B-9 LabVIEW User Manual

termination character in your string input to Serial Port Write.vi if
your instrument requires it.

Some instruments require a carriage return (\r); others require a line feed
(\n). When you enter a return on the keyboard (on PC keyboards, this is
the Enter key on the main alphanumeric keypad), LabVIEW inserts a \n.
To insert a carriage return, use the Concatenate Strings function and append
a carriage return constant to the string, or manually enter \r after selecting
'\' Codes Display from the string pop-up menu.

Make sure that your cable works. Many of our technical support questions
are related to bad cables. In computer to computer communication with
serial I/O, use a null-modem to reverse the receive and transmit signals.

See the example LabVIEW<->Serial.vi to establish communication
with your instrument. It is located in examples\instr\smplserl.llb.
The VI also demonstrates the use of Bytes at Serial Port.vi before
reading data back from the serial port.

How do I close a serial port so that other applications can use it?

You may wish to close the serial port after use. For example, on Windows,
a VI may write information using Serial Port Write.vi to lpt1,
connected to a printer. After the operation is complete, LabVIEW still has
control over the serial port. Other applications cannot use this port until
LabVIEW has released control.

LabVIEW contains a Close Serial Driver.vi on all platforms.
This VI tells LabVIEW to release control over the specified port.
The Close Serial Driver.vi is not in the Serial palette; it is located in
vi.lib\Instr_sersup.llb. To access the VI, use the
Functions»VI... or File»Open... commands.

How do I clear my serial port buffer?

Read the remaining data in the buffer and ignore it.

How can I add additional serial ports to my computer?

You can add additional serial ports to your IBM-compatible PC using
AT bus serial interface boards from National Instruments. If you are using
another platform, you can use a third party board to add serial ports to your
computer. Some third party boards require a special language interface that
does not conform to the standard API for serial ports on the platform. In this
case, you will need to write your own interface, probably through a CIN or
DLL, to the driver. The following sections explain how to use the serial port

Appendix B Common Questions

LabVIEW User Manual B-10 © National Instruments Corporation

VIs included in LabVIEW to address boards which use the standard serial
port interface on the different platforms.

(Windows 3.x) LabVIEW for Windows uses the standard Microsoft
Windows interface to the serial port. Thus, limitations in the use of serial
ports in LabVIEW are due to limitations in Windows. For example, because
Windows can only address ports COM1 through COM9, LabVIEW can
only address these ports. Further, Windows allows access to only eight
serial ports at any time; thus, LabVIEW can control a maximum of eight
serial ports at any one time.

National Instruments now sells Plug and Play AT serial boards for a
variety of solutions for serial communications. The AT-485 and AT-232
asynchronous serial interface boards are available in either 2 or 4-port
configurations. Full Plug and Play compatibility gives you the benefits of
switchless configuration for easier installation and maintenance. The
AT-485 and AT-232 include the following software components for use
with Windows: device driver, hardware diagnostic test, and configuration
utility. These boards have been tested with LabVIEW for Windows.
Contact National Instruments for more information:

A third party board which uses some work-around to overcome Windows
limitations will in all probability not work well, if at all, with LabVIEW.
It is possible to write a CIN or DLL to access such boards, but this is not
recommended. In general, boards that use the standard Windows interface
should be completely compatible with LabVIEW.

(Windows 95 and Windows NT) Unlike Windows 3.x, Windows 95 and
Windows NT are not limited to eight serial ports. Under Windows 95 and
Windows NT, LabVIEW can address as many as 256 serial ports. The
default port number parameter is 0 for COM1, 1 for COM2, 2 for COM3
and so on.

Manufacturer: National Instruments

Product Name: AT-485 and AT-232

Tel: 512 794 0100

Fax: 512 794 8411

Fax-on-Demand: 800 329 7177,
order number 1430

Appendix B Common Questions

© National Instruments Corporation B-11 LabVIEW User Manual

The file labview.ini contains the LabVIEW configuration options.
To set the devices which will be used by the serial port VIs, set the
configuration option labview.serialDevices to the list of devices to be used.
For example, to set up your devices in a way similar to Windows 3.x:

serialDevices="COM1;COM2;COM3;COM4;COM5;COM6;COM7;COM8;
COM9;\\.\COM10;\\.\COM11;\\.\COM12;\\.\COM13;\\.\COM14;

\\.\COM15;\\.\COM16;LPT1;LPT2"

The above should appear as a single line in your configuration.

(Macintosh) LabVIEW uses standard system INITs to talk with the serial
ports. By default, LabVIEW uses the drivers .aIn and .aOut, the modem
port, as port 0, and drivers .bIn and .bOut, the printer port, for port 1.
To access additional ports, you must install additional boards with the
accompanying INITs.

After the board and INIT(s) are installed, tell LabVIEW how to use the
additional ports. The method used in LabVIEW 5.0 is slightly different to
that used in previous versions.

Modify the global serpOpen.vi (located in
vi.lib\Instr_sersup.llb) to accommodate the additional ports.
All serial port VIs call Open Serial Driver.vi, which reads the
appropriate input and/or output driver names from the serpOpen.vi.
The front panel of serpOpen.vi contains two string arrays, named input
driver names and out driver names.

When Open Serial Driver.vi is called, it uses the port number
input as the index into the string arrays. Therefore, to allow LabVIEW to
recognize additional serial ports, add additional string elements into the
input and output driver names, then select Make Current Values Default
and save the changes to serpOpen.vi.

Each serial port on a plug-in board has two names, one for input and one for
output. The exact names and instructions for installing the drivers comes
with the documentation for the board. Contact the board manufacturer if the
instructions are missing or unclear.

Appendix B Common Questions

LabVIEW User Manual B-12 © National Instruments Corporation

The following boards work with LabVIEW for Macintosh:

(UNIX) On a Sun SPARCstation under Solaris 1 and on Concurrent
PowerMAX, the port number parameter for the serial port VIs is 0 for
/dev/ttya, 1 for /dev/ttyb, and so on. Under Solaris 2, port 0 refers to
/dev/cua/a, 1 to /dev/cua/b, and so on. Under HP-UX port number 0
refers to /dev/tty00, 1 to /dev/tty01, and so on.

On Concurrent PowerMAX, port 0 refers to /dev/console, Port 1 refers
to /dev/tty1, Port 2 refers to /dev/tty2, and so on.

Because other vendor’s serial port boards can have arbitrary device names,
LabVIEW has developed an easy interface to keep the numbering of ports
simple. In LabVIEW for Sun, HP-UX, and Concurrent PowerMAX, a
configuration option exists to tell LabVIEW how to address the serial ports.
LabVIEW supports any board that uses standard UNIX devices. Some
manufacturers suggest using cua rather than tty device nodes with their
boards. LabVIEW can address both types of nodes.

The file .labviewrc contains the LabVIEW configuration options.
To set the devices the serial port VIs use, set the configuration option
labview.serialDevices to the list of devices you intend to use.

For example, the default is:

labview.serialDevices:/dev/ttya:/dev/ttyb:/dev/ttyc:...

:/dev/ttyz.

Note This requires that any third party serial board installation include a method of

creating a standard/dev file (node) and that the user knows the name of that

file.

Manufacturer: Creative Solutions, Inc.

Product Name: Hurdler HQS (4 ports) or
HDS (2 ports)

Phone: 301 984 0262

Fax: 301 770 1675

Manufacturer: Greensprings

Product Name: RM 1280 (4 ports)

Phone: 415 327 1200

Fax: 415 327 3808

Appendix B Common Questions

© National Instruments Corporation B-13 LabVIEW User Manual

The following boards should work with LabVIEW for Sun:

For any of these products contact SunExpress at (800) 873-7869.

How can I control the DTR and RTS serial lines?

Serial Port Init.vi can be used to configure the serial port for
hardware handshaking; however, some applications may require manual
toggling of the DTR and RTS lines. Because the interface to the serial ports
is platform-dependent, each platform has a separate mechanism to control
the lines.

(Windows) The LabVIEW for Windows distribution contains a VI which
you can use to drive the DTR and RTS serial lines. The VI serial line
ctrl.vi, located in vi.lib\Instr_sersup.llb, can be used to
control these lines. The VI will toggle these lines according to the function
input. Valid codes for the input are:

0 noop
1 clear DTR
2 set DTR
3 clear RTS
4 set RTS
5 set DTR protocol
6 clr DTR protocol
7 noop2

Manufacturer: Sun

Product Name: SBus Serial Parallel Controller
(8 serial, 1 parallel)

Manufacturer: Artecon, Inc.

Product Name: SUNX-SB-300P
ArtePort SBus Card with 3 Ser /
1 Par Ports

SUNX-SB-400P
ArtePort SBus Card with 4 Ser /
1 Par Ports

SUNX-SB-1600
ArtePort SBus Card
with 16 Serial Ports

Appendix B Common Questions

LabVIEW User Manual B-14 © National Instruments Corporation

(Macintosh) On the Macintosh, you can use the Device Control/Status
function to control the serial port. Inside Macintosh (see Volume II, pages
245–259 and Volume IV, pages 225–228), contains specific information on
what csCodes can be sent to the serial port. A summary of the codes and
their functions is listed here:

(Sun) LabVIEW for Sun contains no specific support to toggle the hardware
handshaking lines of the serial ports. To manually control these lines, you
must write a CIN. See the Steps for Creating a CIN section in Chapter 1,
CIN Overview, of the LabVIEW Code Interface Reference Manual,
available in Portable Document Format (PDF) only, for further details on
how to write a CIN.

Why can’t I allocate a serial buffer larger than 32kbytes?

You can not use a buffer size on Serial Port Init.vi that is larger than
32k because Windows and Macintosh limit the serial port buffer to 32k;
thus, if you allocate a buffer larger than this, LabVIEW truncates the buffer
size to 32k. This is not a problem on the Sun.

code param Effect

13 baudRate Set baud rate (actual rate, as an integer)

14 serShk Set handshake parameters

16 byte Set miscellaneous control options

17 Asserts DTR

18 Negates DTR

19 char Replace parity errors

20 2 chars Replace parity errors with alternate character

21 Unconditionally set XOff for output flow control

22 Unconditionally clear XOff for output flow control

23 Send XOn for input flow control if XOff was sent last

24 Unconditionally send XOn for input flow control

25 Send XOff for input flow control if XOn was sent last

26 Unconditionally send XOff for input flow control

27 Reset SCC channel

Appendix B Common Questions

© National Instruments Corporation B-15 LabVIEW User Manual

Windows Only

How do I access the parallel port?

In LabVIEW for Windows 3.x, port 10 is LPT1, port 11 is LPT2, and so on.
For Windows 95/NT, you can set a port to be LPT1 in Serial Devices.
To send data to a printer connected to a parallel port, use the Serial Port
Write.vi.

What do the error numbers received from the serial port VIs mean?

The Serial Port VIs in LabVIEW for Windows return the errors reported by
the Windows GetCommError function. Error numbers returned by the
Serial Port VIs are 0x4000 (16,384) ‘Or’-ed with the error numbers in the
following table. Notice that the error returned reflects the status of the serial
port; the error may have been generated as the result of a previous serial
port function. The return values can be a combination of the following
errors:

Hex Value Error Name Heading

0x0001 CE_RXOVER Receiving queue
overflowed. There was
either no room in the
input queue or a
character was received
after the end-of-file
character was received.

0x0002 CE_OVERRUN Character was not read
from the hardware
before the next character
arrived. The character
was lost.

0x0004 CE_RXPARITY Hardware detected a
parity error.

0x0008 CE_FRAME Hardware detected a
framing error.

0x0010 CE_BREAK Hardware detected a
break condition.

Appendix B Common Questions

LabVIEW User Manual B-16 © National Instruments Corporation

0x0020 CE_CTSTO CTS (clear-to-send)
timeout. While a
character was being
transmitted, CTS was
low for the duration
specified by the
fCtsHold member of
COMSTAT.

0x0040 CE_DSRTO DSR (data-set-ready)
timeout. While a
character was being
transmitted, DSR was
low for the duration
specified by the
fDsrHold member of
COMSTAT.

0x0080 CE_RLSDTO RLSD
(receive-line-signal-
detect) timeout.While
a character was being
transmitted, RLSD was
low for the duration
specified by the
fRlsdHold member of
COMSTAT.

0x0100 CE_TXFULL Transmission queue was
full when a function
attempted to queue a
character.

0x0200 CE_PTO Timeout occurred
during an attempt to
communicate with a
parallel device.

0x0400 CE_IOE I/O error occurred
during an attempt to
communicate with a
parallel device.

Hex Value Error Name Heading

Appendix B Common Questions

© National Instruments Corporation B-17 LabVIEW User Manual

To use this table, take the error number and dissect it into its error
components. For example, if Serial Port Write.vi returns the error
16,408, then the errors returned are CE_BREAK and CE_FRAME
(16,408 = 16,384 + 16 + 8 = 0x4000 + 0x0010 + 0x0008).

Sun Only

I receive an error –37 when performing serial I/O.

Error –37 means that LabVIEW cannot find the appropriate serial device.
This indicates that either a) the /dev/tty? files do not exist on your
machine, or b) LabVIEW cannot find the file serpdrv.

By default, LabVIEW addresses /dev/ttya as port 0, /dev/ttyb as
port 1, and so on. These devices must exist and the user must have read
and write permissions to access the devices. You can change the devices
LabVIEW accesses with the serial port VIs by adding the serialDevices
configuration option to your .Xdefaults file. See the LabVIEW

Release Notes on how to use this option.

The serpdrv file is shipped with LabVIEW and serves as the interface
between LabVIEW and the Sun serial ports. This file needs to be in the
location specified by the libdir configuration option, set to the LabVIEW
directory by default. This means that serpdrv needs to be in the same
directory as gpibdrv and vi.lib.

0x0800 CE_DNS Parallel device was not
selected.

0x1000 CE_OOP Parallel device signaled
that it is out of paper.

0x8000 CE_MODE Requested mode is not
supported, or the
idComDev parameter is
invalid. If set,
CE_MODE is the only
valid error.

Hex Value Error Name Heading

Appendix B Common Questions

LabVIEW User Manual B-18 © National Instruments Corporation

Serial I/O hangs on a Solaris 1.x machine.

LabVIEW for Sun uses asynchronous I/O calls when performing serial port
operations. In the Generic_Small kernel, asynchronous I/O has been
commented out. To access the serial ports from LabVIEW for Sun, the user
must use the standard Generic kernel (not Generic_Small), or rebuild the
Generic_Small kernel and reboot the SPARC.

© National Instruments Corporation C-1 LabVIEW User Manual

C
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
questions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

FTP Support

To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use
your Internet address, such as joesmith@anywhere.com, as your password. The support files and
documents are located in the /support directories.

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

LabVIEW User Manual C-2 © National Instruments Corporation

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also download
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) __

Computer brand____________ Model ___________________ Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter __________________________

Mouse ___yes ___no Other adapters installed _______________________________________

Hard disk capacity _____MB Brand___

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: ___

LabVIEW Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration, and
use this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your
questions more efficiently.

National Instruments Products

Hardware revision ___

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware ___

Programming choice ___

National Instruments software __

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Other Products

Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: LabVIEW™User Manual

Edition Date: January 1998

Part Number: 320999B-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) _______________________________

Mail to: Technical Publications Fax to: Technical Publications

National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

© National Instruments Corporation G-1 LabVIEW User Manual

Glossary

Prefix Meanings Value

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

Numbers/Symbols

∞ Infinity.

π Pi.

D Delta. Difference. ∆x denotes the value by which x changes from one index
to the next.

1D One-dimensional.

2D Two-dimensional.

A

A/D Analog/digital.

absolute path Relative file or directory path that describes a location relative to the top
level of the file system.

active window Window that is set to accept user input, usually the front-most window.
The title bar of an active window is highlighted. Make a window active by
clicking in it or by selecting it from the Windows menu.

ANSI American National Standards Institute.

array Ordered, indexed set of data elements of the same type.

array shell Front panel object that houses an array. An array shell consists of an index
display, a data object window, and an optional label. It can accept various
data types.

Glossary

LabVIEW User Manual G-2 © National Instruments Corporation

artificial data dependency Condition in a dataflow programming language in which the arrival of data,
rather than its value, triggers the execution of a node.

ASCII American Standard Code for Information Interchange.

asynchronous execution Mode in which multiple processes share processor time. For example, one
process executes while others wait for interrupts during device I/O or while
waiting for a clock tick.

ATE Automatic test equipment.

auto-indexing Capability of loop structures to disassemble and assemble arrays at their
borders. As an array enters a loop with auto-indexing enabled, the loop
automatically disassembles it with scalars extracted from one-dimensional
arrays, one-dimensional arrays extracted from two-dimensional arrays, and
so on. Loops assemble data into arrays as they exit the loop according to the
reverse of the same procedure.

autoscaling Ability of scales to adjust to the range of plotted values. On graph scales,
this feature also determines maximum and minimum scale values.

autosizing Automatic resizing of labels to accommodate text that you type.

B

block diagram Pictorial description or representation of a program or algorithm. In G, the
block diagram is the source code for the VI. It consists of executable icons
called nodes as well as wires that carry data between the nodes.

BNF Backus-Naur form. A common representation for language grammars in
computer science.

Boolean controls and
indicators

Front panel objects used to manipulate and display Boolean (TRUE or
FALSE) data. Several styles are available, such as switches, buttons,
and LEDs.

breakpoint Point at which execution halts when a subVI is called. You set a breakpoint
by clicking a VI, node, or wire with the Breakpoint tool from the Tools
palette.

Breakpoint tool Tool used to set a breakpoint on a VI, node, or wire.

broken run button Button that replaces the Run button when a VI cannot run because of errors.
Click this button to invoke the Error List dialog box.

Glossary

© National Instruments Corporation G-3 LabVIEW User Manual

broken VI VI that cannot be compiled or run. It is signified by a broken arrow in the
Run button.

Bundle node Function that creates clusters from various types of elements.

byte stream file File that stores data as a sequence of ASCII characters or bytes.

C

case One subdiagram of a Case structure.

Case structure Conditional branching control structure, which executes one and only one
of its subdiagrams based on its input. It is the combination of the IF, THEN,
ELSE, and CASE statements in control flow languages.

cast To change the type descriptor of a data element without altering the
memory image of the data.

chart See scope chart, strip chart, and sweep chart.

check box Small square box in a dialog box that can be selected or cleared.
Check boxes generally are associated with multiple options that can
be set. More than one check box can be selected.

CIN See code interface node.

cloning To make a copy of a control or other G object by clicking it, pressing
<Ctrl> (Windows), <option> (Macintosh), <meta> (Sun), or <Alt>
(HP-UNIX), and dragging the copy to a new location.

cluster Set of ordered, unindexed data elements of any data type including
numeric, Boolean, string, array, or cluster. The elements must be all
controls or all indicators.

cluster shell Front panel object that contains the elements of a cluster.

code interface node CIN. Special block diagram node through which you can link conventional,
text-based code to a VI.

coercion Automatic conversion G performs to change the numeric representation of
a data element.

coercion dot Gray dot on a terminal indicating that one of two terminals wired together
has been converted to match the data type of the other.

Glossary

LabVIEW User Manual G-4 © National Instruments Corporation

Color Copy tool Tool you use to copy colors for pasting with the Color tool.

Color tool Tool you use to set foreground and background colors.

compile Process that converts high-level code to machine-executable code. VIs are
compiled automatically before they run for the first time after creation or
alteration.

conditional terminal Terminal of a While Loop that contains a Boolean value that determines
whether the VI performs another iteration.

connector Part of the VI or function node that contains input and output terminals.
Data passes to and from the node through a connector.

connector pane Region in the upper right corner of a front panel window that displays the
VI terminal pattern. It underlies the icon pane.

constant See universal constant and user-defined constant.

continuous run Execution mode in which a VI is run repeatedly until the operator stops it.
You enable it by clicking the Continuous Run button.

Continuous Run button Icon that indicates the execution status of a VI.

control Front panel object for entering data to a VI interactively or to a subVI
programmatically.

control flow Programming system in which the sequential order of instructions
determines execution order. Most conventional text-based programming
languages, such as C, Pascal, and BASIC, are control flow languages.

Controls palette Palette containing front panel controls and indicators.

conversion Process of changing the type of a data element.

count terminal Terminal of a For Loop whose value determines the number of times a
For Loop executes its subdiagram.

CPU Central processing unit.

Glossary

© National Instruments Corporation G-5 LabVIEW User Manual

current VI VI whose front panel, block diagram, or Icon Editor is the active window.

custom PICT controls
and indicators

Controls and indicators whose parts can be replaced by graphics and
indicators you supply.

D

DAQ See data acquisition.

data acquisition DAQ. Process of acquiring data, typically from A/D or digital input plug-in
boards.

data dependency Condition in a dataflow programming language in which a node cannot
execute until it receives data from another node. See also artificial data
dependency.

data flow Programming system consisting of executable nodes in which nodes
execute only when they have received all required input data and produce
output automatically when they have executed. G is a dataflow system.

data logging To acquire data and simultaneously store it in a disk file. G file
I/O functions can log data.

data storage formats Arrangement and representation of data stored in memory.

data type Format for information. In BridgeVIEW, acceptable data types for tag
configuration are analog, discrete, bit array, and string. In LabVIEW,
acceptable data types for most functions are numeric, array, string, and
cluster.

data type descriptor Code that identifies data types, used in data storage and representation.

datalog file File that stores data as a sequence of records of a single, arbitrary data type
that you specify when you create the file. While all the records in a datalog
file must be of a single type, that type can be complex; for instance, you
can specify that each record is a cluster containing a string, a number, and
an array.

DDE See dynamic data exchange.

description box Dialog box containing online documentation for a G object.

destination terminal See sink terminal.

Glossary

LabVIEW User Manual G-6 © National Instruments Corporation

developer See system developer.

dialog box Window that appears when an application needs further information to
carry out a command.

dimension Size and structure attribute of an array.

directory Structure for organizing files into convenient groups. A directory is like an
address showing where files are located. A directory can contain files or
subdirectories of files.

drive Letter in the range a–z, followed by a colon (:), indicating a logical
disk drive.

DUT Device under test.

dynamic data exchange DDE. Passage of data between applications, accomplished without user
involvement or monitoring.

E

empty array Array that has zero elements but has a defined data type. For example, an
array that has a numeric control in its data display window but has no
defined values for any element is an empty numeric array.

end of file EOF. Character offset of the end of file relative to the beginning of the file
(that is, the EOF is the size of the file).

error message Indication of a software or hardware malfunction, or an unacceptable data
entry attempt.

execution highlighting Feature that animates VI execution to illustrate the data flow in the VI.

external routine See shared external routine.

F

FFT Fast Fourier transform.

file refnum Identifier that G associates with a file when you open it. You use the file
refnum to indicate that you want a function or VI to perform an operation
on the open file.

Glossary

© National Instruments Corporation G-7 LabVIEW User Manual

flattened data Data of any type that has been converted to a string, usually, for writing it
to a file.

For Loop Iterative loop structure that executes its subdiagram a set number of times.
Equivalent to conventional code: For i = 0 to n – 1, do....

formula node Node that executes formulas you enter as text. Formula nodes are especially
useful for lengthy formulas that would be cumbersome to build in block
diagram form.

frame Subdiagram of a Sequence structure.

free label Label on a front panel or block diagram that does not belong to any object.

front panel Interactive user interface of a VI. Modeled after the front panel of physical
instruments, it is composed of switches, slides, meters, graphs, charts,
gauges, LEDs, or other controls or indicators.

function Built-in execution element, comparable to an operator, function, or
statement in a conventional language.

Functions palette Palette containing block diagram structures, constants, communication
features, and VIs.

G

G Graphical programming language used to develop LabVIEW and
BridgeVIEW applications.

global variable Non-reentrant subVI with local memory that uses an uninitialized
shift register to store data from one execution to the next. The memory
of copies of these subVIs is shared and thus can be used to pass global
data between them.

glyph Small picture or icon.

GPIB General Purpose Interface Bus. Common name for the communications
interface system defined in ANSI/IEEE Standard 488.1-1987 and
ANSI/IEEE Standard 488.2-1987. Hewlett-Packard, the inventor of
the bus, calls it the HP-IB.

graph control Front panel object that displays data in a Cartesian plane.

Glossary

LabVIEW User Manual G-8 © National Instruments Corporation

H

handle Pointer to a pointer to a block of memory that manages reference arrays and
strings. An array of strings is a handle to a block of memory containing
handles to strings.

Help Online instructions that explain how to use a Windows application.
The Help menu displays specific Help topics. Pressing <F1> displays a
list of Help topics.

Help window Special window that displays the names and locations of the terminals for
a function or subVI, the description of controls and indicators, the values of
universal constants, and descriptions and data types of control attributes.

hex Hexadecimal. Base-16 number system.

hierarchical palette Menu that contains palettes and subpalettes.

Hierarchy window Window that graphically displays the hierarchy of VIs and subVIs.

housing Nonmoving part of front panel controls and indicators that contains sliders
and scales.

Hz Hertz. Cycles per second.

I

I/O Input/output. Transfer of data to or from a computer system involving
communications channels, operator input devices, and/or data acquisition
and control interfaces.

icon Graphical representation of a node on a block diagram.

Icon Editor Interface similar to that of a paint program for creating VI icons.

icon pane Region in the upper right corner of the Panel and Diagram windows that
displays the VI icon.

IEEE Institute for Electrical and Electronic Engineers.

indicator Front panel object that displays output.

Inf Digital display value for a floating-point representation of infinity.

Glossary

© National Instruments Corporation G-9 LabVIEW User Manual

inplace execution Ability of a function or VI to reuse memory instead of allocating more.

instrument driver VI that controls a programmable instrument.

iteration terminal Terminal of a For Loop or While Loop that contains the current number of
completed iterations.

L

label Text object used to name or describe other objects or regions on the front
panel or block diagram.

Labeling tool Tool used to create labels and enter text into text windows.

LabVIEW Laboratory Virtual Instrument Engineering Workbench. Program
development application based on the programming language G used
commonly for test and measurement purposes.

LED Light-emitting diode.

legend Object owned by a chart or graph that displays the names and styles of plots
on that chart or graph.

list box Box within a dialog box listing all available choices for a command.
For example, a list of file names on a disk. Usually you select an item
from the list box, then click OK. If more choices exist than can fit in the
list box, it has vertical scroll bars. Selecting the down arrow next to the
first item in the list displays the rest of the list box.

local variable Variable that enables you to read or write to one of the controls or indicators
on the front panel of your VI.

M

marquee Moving, dashed border that surrounds selected objects.

matrix Two-dimensional array.

MB Megabytes of memory.

Glossary

LabVIEW User Manual G-10 © National Instruments Corporation

menu bar Horizontal bar that lists the names of the main menus of an application.
The menu bar appears below the title bar of a window. Each application has
a menu bar that is distinct for that application, although some menus
(and commands) are common to many applications.

mnemonic String associated with an integer value.

modular programming Type of programming that uses interchangeable computer routines.

N

NaN Digital display value for a floating-point representation of not a number
that typically is the result of an undefined operation, such as log(–1).

node Program execution element. Nodes are analogous to statements, operators,
functions, and subroutines in conventional programming languages.
In a block diagram, nodes include functions, structures, and subVIs.

nondisplayable
characters

ASCII characters that cannot be displayed, such as new line, tab, and so on.

not-a-path Predefined value for the path control that indicates the path is invalid.

not-a-refnum Predefined value that indicates the refnum is invalid.

numeric controls and
indicators

Front panel objects used to manipulate and display or input and output
numeric data.

O

object Generic term for any item on the front panel or block diagram, including
controls, nodes, wires, and imported pictures.

Object Pop-up Menu tool Tool used to access a pop-up menu for an object.

OPC Server OLE for Process Control. COM-based standard defined by the
OPC foundation that specifies how to interact with device servers.
COM is a 32-bit Windows technology.

Operating tool Tool used to enter data into controls as well as operate them. Resembles
a hand with a pointing finger.

Glossary

© National Instruments Corporation G-11 LabVIEW User Manual

P

palette Display of icons that represent possible options.

pixmap Standard format for storing pictures in which each pixel is represented by
a color value. A bitmap is a black and white version of a pixmap.

platform Computer and its operating system.

plot Graphical representation of an array of data shown either in a graph or
a chart.

polymorphism Ability of a node to adjust automatically to data of different representation,
type, or structure.

pop up To call a special menu by right-clicking (Windows) or command-clicking
(Macintosh) an object.

pop-up menu Menu accessed by right-clicking (Windows) or command-clicking
(Macintosh) an object. Menu options pertain to that object.

Positioning tool Tool used to move, select, and resize objects. It resembles an arrow.

probe Debugging feature for checking intermediate values in a VI.

Probe tool Tool used to create probes on wires.

programmatic printing Automatic printing of a VI front panel after execution.

pseudocode Simplified language-independent representation of programming code.

pull-down menu Menu accessed from a menu bar. Pull-down menu options usually are
general in nature.

R

real-time Pertaining to the performance of a computation during the actual time that
the related physical process transpires so results of the computation can be
used in guiding the physical process.

reentrant execution Mode in which calls to multiple instances of a subVI can execute in parallel
with distinct and separate data storage.

Glossary

LabVIEW User Manual G-12 © National Instruments Corporation

refnum Identifier of a DDE conversation or open file that can be referenced by
related VIs.

representation Subtype of the numeric data type. Representations include signed and
unsigned byte, word, and long integers, as well as single-, double-, and
extended-precision floating-point numbers, both real and complex.

resizing handle Angled handle on the corner of an object that indicates a resizing point.

ring control Special numeric control that associates 32-bit integers, starting at 0 and
increasing sequentially, with a series of text labels or graphics.

S

scalar Number capable of being represented by a point on a scale. A single value
as opposed to an array. Scalar Booleans and clusters are explicitly singular
instances of their respective data types.

scale Part of mechanical-action, chart, and graph controls and indicators that
contains a series of marks or points at known intervals to denote units of
measure.

scope chart Numeric indicator modeled on the operation of an oscilloscope.

Scroll tool Tool used to move through windows.

sensor Device that produces a voltage or current output representative of a
physical property being measured, such as speed, temperature, or flow.

sequence local Terminal that passes data between the frames of a Sequence structure.

Sequence structure Program control structure that executes its subdiagrams in numeric order.
It commonly is used to force nodes that are not data-dependent to execute
in a desired order.

shared external routine Subroutine that can be shared by several CIN code resources.

shift register Optional mechanism in loop structures used to pass the value of a variable
from one iteration of a loop to a subsequent iteration.

sink terminal Terminal that absorbs data. Also called a destination terminal.

slider Moveable part of slide controls and indicators.

Glossary

© National Instruments Corporation G-13 LabVIEW User Manual

Solutions Gallery Option within the DAQ Solution Wizard in which you can select from
numerous categories of common DAQ applications.

source terminal Terminal that emits data.

string controls and
indicators

Front panel objects used to manipulate and display or input and output text.

strip chart Numeric plotting indicator modeled after a paper strip chart recorder,
which scrolls as it plots data.

structure Program control element, such as a Sequence, Case, For Loop, or
While Loop.

stubVI Nonfunctional prototype of a subVI. A stubVI has inputs and outputs, but
is incomplete. It is used during early planning stages of a VI design as a
place holder for future VI development.

subdiagram Block diagram within the border of a structure.

subpalette Palette contained in an icon of another palette.

subVI VI used in the block diagram of another VI. It is comparable to a
subroutine.

sweep chart Numeric indicator modeled on the operation of an oscilloscope. It is similar
to a scope chart, except that a line sweeps across the display to separate old
data from new data.

system developer Creator of the application software to be executed.

T

table-driven execution Method of execution in which individual tasks are separate cases in a
Case Structure that is embedded in a While Loop. Sequences are specified
as arrays of case numbers.

terminal Object or region on a node through which data passes.

tip strip Text banner that displays the name of an object, control, or terminal.

tool Special cursor you can use to perform specific operations.

toolbar Bar containing command buttons you can use to run and debug VIs.

Glossary

LabVIEW User Manual G-14 © National Instruments Corporation

Tools palette Palette containing the tools you use to edit and debug front-panel and
block-diagram objects.

top-level VI VI at the top of the VI hierarchy. This term distinguishes the VI from
its subVIs.

tunnel Data entry or exit terminal on a structure.

two-dimensional Having two dimensions, such as an array with both rows and columns.

type descriptor See data type descriptor.

U

universal constant Uneditable block diagram object that emits a particular ASCII character or
standard numeric constant, such as pi.

user See operator.

user-defined constant Block diagram object that emits a value you set.

UUT Unit under test.

V

VI See virtual instrument.

VI library Special file that contains a collection of related VIs for a specific use.

virtual instrument VI. Program in the graphical programming language G; so-called because
it models the appearance and function of a physical instrument.

Virtual Instrument
Software Architecture

Single interface library for controlling GPIB, VXI, RS-232, and other types
of instruments.

VISA See Virtual Instrument Software Architecture.

VXI VME eXtensions for Instrumentation (bus).

Glossary

© National Instruments Corporation G-15 LabVIEW User Manual

W

waveform chart Indicator that plots data points at a certain rate.

While Loop Loop structure that repeats a section of code until a condition is met. It is
comparable to a Do loop or a Repeat-Until loop in conventional
programming languages.

wire Data path between nodes. See also data flow.

wire branch Section of wire that contains all the wire segments from one junction to
another, from a terminal to the next junction, or from one terminal to
another if no junctions exist between the terminals.

wire junction Point where three or more wire segments join.

wire segment Single, horizontal or vertical piece of wire.

Wiring tool Tool used to define data paths between source and sink terminals.

© National Instruments Corporation I-1 LabVIEW User Manual

Index

A
A x Vector VI, 18-19

absolute time, selecting, 3-21

action/status VIs, for instrument drivers, 7-6

ActiveX, 22-1 to 22-5

adding workbook to Excel from LabVIEW
(example), 22-5

Automation client functionality,
22-3 to 22-4

functions for (table), 22-3

Automation server functionality, 22-2

converting ActiveX variant data to G data
(example), 22-4

overview, 22-1

server properties and methods, 22-3

Add Element option, 3-14

Add Frame After option, 4-8

Add Input option, 4-14

Add Output option, 4-14

Add Shift Register option, 3-13

AESend Finder Open VI, 24-3

AESend Open, Run, Close VI, 24-4

aliasing

anti-aliasing filters, 11-13 to 11-14

avoiding, 11-11 to 11-12

defined, 11-10

due to improper sampling rate
(figure), 11-10

signal frequency components and
aliases, 11-12

Amplitude and Phase Spectrum VI

calculating amplitude and phase spectrum
(tutorial), 15-5 to 15-7

windowed vs. nonwindowed signal
(example), 14-18

analog-to-digital converter, 11-9, 11-10

analysis. See also data sampling.

Advanced Analysis Libraries, 11-3

array example, 5-22 to 5-24

base analysis VI library, 11-3

block diagram programming approach, 1-2

categories available, 11-4 to 11-5

common uses, 11-1

curve fitting, 17-1 to 17-23

applications of curve fitting,
17-3 to 17-6

comparison of Linear, Exponential, and
Polynomial Curve Fit VIs (tutorial),
17-4 to 17-6

general LS linear fit theory,
17-6 to 17-10

nonlinear Lev-Mar fit theory,
17-18 to 17-19

overview, 17-1 to 17-3

using General LS Linear Fit VI,
17-11 to 17-18

using Nonlinear Lev-Mar Fit VI,
17-19 to 17-23

digital signal processing, 13-1 to 13-15

fast Fourier transform (FFT),
13-1 to 13-5

frequency spacing between DFT/FFT
samples, 13-5 to 13-13

power spectrum, 13-14 to 13-15

filtering, 16-1 to 16-24

digital filtering functions, 16-1 to 16-3

extracting sine wave (tutorial),
16-22 to 16-24

finite impulse response filters,
16-16 to 16-20

ideal filters, 16-3 to 16-4

IIR and FIR filters, 16-6 to 16-8

infinite impulse response filters,
16-8 to 16-15

Index

LabVIEW User Manual I-2 © National Instruments Corporation

nonlinear filters, 16-20

practical (nonideal) filters,
16-4 to 16-6

selecting a filter, 16-20 to 16-21

summary, 16-24

importance of, 11-1 to 11-2

linear algebra, 18-1 to 18-21

basic matrix operations,
18-9 to 18-14

eigenvalues and eigenvectors,
18-12 to 18-14

linear systems and matrix analysis,
18-1 to 18-8

matrix factorization, 18-20 to 18-21

matrix inverse and solving systems of
linear equations, 18-14 to 18-19

summary, 18-21

notation and naming conventions,
11-6 to 11-8

overview, 11-3 to 11-5

probability and statistics, 19-1 to 19-20

histogram, 19-7 to 19-9

mean, 19-3

mean square error, 19-10

median, 19-3 to 19-4

mode, 19-6

moment about mean, 19-6

normal distribution, 19-15 to 19-19

overview, 19-1 to 19-2

probability, 19-12 to 19-19

random variables, 19-12 to 19-14

root mean square, 19-11

sample variance, 19-4 to 19-5

standard deviation, 19-5

summary, 19-20

reference materials, A-1 to A-3

signal generation, 12-1 to 12-13

normalized frequency, 12-1 to 12-7

wave and pattern VIs, 12-7 to 12-13

smoothing windows, 14-1 to 14-19

choosing window type, 14-16

comparing windowed and
nonwindowed signals (tutorial),
14-17 to 14-19

exponential window, 14-12 to 14-13

flattop window, 14-11 to 14-12

Hamming window, 14-9

Hanning window, 14-8 to 14-9

Kaiser-Bessel window, 14-10

overview, 14-1

rectangular window, 14-7 to 14-8

spectral analysis vs. coefficient
design, 14-13 to 14-15

spectral leakage, 14-2 to 14-6

triangle window, 14-11

windowing applications, 14-7

spectrum analysis and measurement,
15-1 to 15-16

calculating amplitude and phase
spectrum, 15-4 to 15-7

calculating frequency response of
system, 15-7 to 15-10

harmonic distortion, 5-10 to 15-16

measurement VIs, 15-1 to 15-3

summary, 15-16

Analysis subpalette, 11-4

ANSI/IEEE 488.2-1987 GPIB standard, 9-1

anti-aliasing filters, 11-13 to 11-14

appending data to file (example),
6-14 to 6-167

block diagram, 6-15 to 6-16

front panel, 6-14

AppleEvent VIs palette, 24-2

Index

© National Instruments Corporation I-3 LabVIEW User Manual

AppleEvents, 24-1 to 24-4

client examples

dynamically loading and running
VIs, 24-4

launching other applications, 24-3

sending events to other applications,
24-3 to 24-4

client/server model, 24-2 to 24-3

overview, 24-1 to 24-2

questions and answers, B-5

sending, 24-2

Target ID, 24-3 to 24-4

using in LabVIEW applications,
24-1 to 24-2

Application VIs, 7-4 to 7-5

Arbitrary Wave VI, 12-2

Array & Cluster palette, 5-1

array controls, creating, 5-2

array functions, 5-10 to 5-18

Array Size, 5-12 to 5-13

Array Subset, 5-13

Build Array, 5-10 to 5-11

Index Array, 5-14 to 5-16

Initialize Array, 5-11 to 5-12

polymorphism, 5-19

Array Max & Min function (example), 5-24

array shell, placing on front panel, 5-3

Array Size function

description, 5-12 to 5-13

using Real FFT VI (tutorial), 13-11

Array Subset function, 5-13

arrays, 5-1 to 5-10. See also array functions.

auto-indexing, 5-2 to 5-3

Initialize array function, 5-12

input arrays, 5-8 to 5-10

setting For Loop count, 5-10

creating and initializing, 5-1 to 5-2

using Build Array function (tutorial),
5-17 to 5-18

creating with auto-indexing, 5-3 to 5-8

block diagram, 5-4 to 5-6

front panel, 5-3 to 5-4

multiplot waveform graph, 5-7 to 5-8

data acquisition arrays, 5-22

defined, 1-3, 5-1

efficient memory usage, 5-18

graph and analysis VI example,
5-22 to 5-24

block diagram, 5-23 to 5-24

front panel, 5-22 to 5-23

one-dimensional (illustration), 5-1

resizing, 5-5 to 5-6

slicing off dimensions, 5-16

artificial data dependency, 4-15 to 4-16

ASCII byte stream file format, 6-9

Attribute Nodes, 27-1 to 27-4

overview, 1-3, 29-1

purpose and use, 27-1 to 27-2

tutorial for using, 27-3 to 27-4

auto-indexing

creating array with auto-indexing
(example), 5-3 to 5-8

block diagram, 5-4 to 5-6

front panel, 5-3 to 5-4

multiplot graphs, 5-7 to 5-8

defined, 5-2

enabling and disabling, 5-2 to 5-3

purpose and use, 5-2 to 5-3

setting For Loop count, 5-10

autoregressive moving-average (ARMA)
filters. See infinite impulse
response (IIR) filters.

autoscaling of graph input, disabling, 5-4

average, defined, 19-1

AxB function (example), 18-18

axes

formatting for absolute or relative time,
5-22

modifying text format (note), 3-20

rescaling, 3-20

Index

LabVIEW User Manual I-4 © National Instruments Corporation

B
bad wires, 2-6. See also wires and wiring.

removing, 2-21

bandpass filters, 16-3

bandstop filters, 16-3

Bessel filters, 16-15

binary byte stream file format, 6-9

block diagram. See also block diagram
examples; wires and wiring.

client model, 20-3

creating controls, constants, and
indicators on, 2-2 to 2-3

defined, 1-2

moving objects around on, 2-9

programming considerations,
28-4 to 28-9

avoiding overuse of Sequence
structures, 28-8

checking for errors, 28-6 to 28-7

left-to-right layouts, 28-5

looking for missing dependencies,
28-7 to 28-8

studying examples, 28-9

watching for common operations,
28-5

server model, 20-4, 20-5

block diagram examples

appending data to file, 6-15 to 6-16

array created with auto-indexing,
5-4 to 5-6

Attribute Node, 27-3 to 27-4

Build Array function, 5-18

building VIs, 2-7 to 2-9

calculating amplitude and phase
spectrum, 15-6 to 15-7

Case structure, 4-3 to 4-4

computing frequency and impulse
response, 15-9 to 15-10

computing matrix inverse, 18-18

curve fitting VIs, 17-5 to 17-6

extracting sine wave, 16-23 to 16-24

format strings, 6-4 to 6-6

For Loop, 3-26 to 3-27

Formula Node, 4-14 to 4-15

graph and analysis VI, 5-23 to 5-24

multiplot chart, 3-20 to 3-22

Nonlinear Lev-Mar Fit VI, 17-22 to 17-23

Normal Distribution VI, 19-18 to 19-19

normalized frequency, 12-6 to 12-7

reading data from file, 6-17 to 6-18

Real FFT VI, 13-11

shift register, 3-15 to 3-17

Sine Wave and Sine Pattern VIs,
12-9 to 12-10

string concatenation, 6-3

string subsets and number extraction, 6-8

subVI Node Setup options, 26-3 to 26-5,
26-7 to 26-8

waveform function generator,
12-12 to 12-13

While Loop, 3-6 to 3-7

windowed vs. nonwindowed signal,
14-18 to 14-19

writing to spreadsheet file, 6-12 to 6-14

Boolean constants

appending data to file example, 6-15

subVI Node Setup options example, 26-7

writing to spreadsheet file example, 6-13

Boolean controls and indicators, 3-8 to 3-9

changing mechanical action (tutorial), 3-9

Boolean palette, 2-19

broken Run button, 2-21

Build Array function

description, 5-10 to 5-11

Formula node example, 4-15

illustration, 5-10

multiplot graphs example, 5-7

building VIs. See VIs.

bulletin board support, C-2

Index

© National Instruments Corporation I-5 LabVIEW User Manual

Bundle function

array created with auto-indexing, 5-5

graph and analysis VI example, 5-24

shift register example, 3-20

bus errors, in VISA register-based
communication, 8-17

Butterworth Filter VI

computing frequency and impulse
response (example), 15-9

extracting sine wave (example), 16-23

Butterworth filters, 16-12

C
Call Library function, 29-4

cascade form IIR filtering, 16-10 to 16-11

Case structures

block diagram, 4-3 to 4-4

defining output tunnel for each case
(note), 4-4

diagram identifier, 4-1

front panel, 4-2

out-of-range values (note), 4-2

overview, 1-3

subdiagram display window, 4-1

VI logic, 4-4

Cauer (elliptic) filters, 16-14

chart modes

illustration, 3-2

tutorial for, 3-3

charts. See also graphs; plots.

defined, 3-2

faster chart updates, 3-3

intensity charts, 5-25

multiplot charts (tutorial), 3-19 to 3-22

overlaid vs. stacked plots, 3-3

waveform chart

subVI Node Setup options example,
26-6

using with While Loop (tutorial),
3-5 to 3-7

Chebyshev filters, 16-12 to 16-13

Chebyshev II or inverse Chebyshev filters,
16-13 to 16-14

Chirp Pattern VI, 12-2

CINs (Code Interface Nodes), 29-4

class, VISA, 8-5 to 8-6

client/server model, 20-3 to 20-5

AppleEvents, 24-2 to 24-3

client model, 20-3 to 20-4

server model, 20-4 to 20-5

TCP client example, 21-5 to 21-6

TCP server example, 21-6 to 21-7

TCP server with multiple
connections, 21-7

close VI, required for instrument drivers, 7-6

clusters

defined, 1-3, 5-20

purpose, 5-20

Code Interface Nodes (CINs), 29-4

coefficients, of filters, 16-8

Color Box Constant (example), 27-4

color icons, creating, 2-16

command messages, GPIB, 9-1

common questions. See questions and
answers.

communication

client/server model, 20-3 to 20-5

message-based, in VISA, 8-11 to 8-12

overview, 20-1

questions and answers, B-1 to B-5

all platforms, B-1 to B-2

Macintosh only, B-5

Windows only, B-2 to B-5

register-based, in VISA, 8-12 to 8-18

basic register access, 8-14

bus errors, 8-17

high-level vs. low-level access,
8-17 to 8-18

low-level access functions,
8-15 to 8-17

VISA In VIs, 8-12 to 8-13

Index

LabVIEW User Manual I-6 © National Instruments Corporation

VISA Move In VIs, 8-15

VISA Out VIs, 8-14

testing for instrument drivers

Easy VISA IO VIs, 7-11 to 7-12

Getting Started VI, 7-7

communication protocols. See also ActiveX;
AppleEvents; DDE (Dynamic Data
Exchange); PPC (Program to Program
Communication); TCP/IP protocol; UDP
(User Datagram Protocol).

defined, 20-1

file sharing vs., 20-2 to 20-3

overview, 20-1 to 20-2

Communication subpalette, 24-2

Comparison option, 2-20

Complex FFT VI, 13-9

Complex to Polar function (example), 13-11

Compound Arithmetic function
(example), 3-16

concatenation of string (example), 6-2 to 6-3

condition number of matrix, determining,
18-7 to 18-8

configuration VIs, for instrument drivers, 7-5

connectors. See also icons.

accessing with Show Connector option,
2-16, 28-4

creating (tutorial), 2-17 to 2-19

defined, 2-16

displaying required connections, 28-4

programming considerations,
28-3 to 28-4

VI icon and connector, 1-2

subVI Node Setup options example,
26-3 to 26-4

constants. See also specific types, e.g.,

numeric constants.

adding to VI (example), 2-8

creating, 2-3, 5-2

Control Editor, 29-4

Controllers, GPIB

Controller-In-Charge and System
Controller, 9-3

required, 9-2

controls. See also specific controls and
indicators.

analogous to input and output
parameters, 2-2

creating, 2-2

defined, 2-2

Controls palette

Array & Cluster palette, 5-1

Boolean palette, 2-19

displaying, 2-7

Graph palette, 3-2

String & Table palette, 6-1

count terminal, 3-23, 3-24

Create Constant option, 2-3

Create Control option, 2-2

Create Indicator option, 2-3

<Ctrl-B>, removing bad wires, 2-6

cursors, graph, 5-21 to 5-22

curve fitting, 17-1 to 17-23

applications, 17-3 to 17-6

comparison of Linear, Exponential, and
Polynomial Curve Fit VIs (tutorial),
17-4 to 17-6

exponential fit, 17-2

general linear fit, 17-3

general LS linear fit theory, 17-6 to 17-10

general polynomial fit, 17-2

linear fit, 17-2

nonlinear Lev-Mar fit theory,
17-18 to 17-19

overview, 17-1 to 17-3

using General LS Linear Fit VI,
17-11 to 17-18

using Nonlinear Lev-Mar Fit VI,
17-19 to 17-23

Index

© National Instruments Corporation I-7 LabVIEW User Manual

customer communication, xxviii, C-1 to C-2

customizing VIs, 26-1 to 26-8

subVI Node Setup option, 26-2 to 26-8

VI Setup option, 26-1

Windows Options, 26-1

D
data acquisition applications, as programming

resource, 29-1

data acquisition arrays, 5-22

data analysis. See analysis.

data dependency

artificial, 4-15 to 4-16

programming considerations,
28-7 to 28-8

data messages, GPIB, 9-1

Data Operations submenu

Description, 2-10

Update Mode, 3-2

data range, setting, 4-7

Data Range option, 4-7

data sampling, 11-9 to 11-15

anti-aliasing filters, 11-13 to 11-14

decibels, 11-14 to 11-15

relationship with power and voltage
ratios (table), 11-15

sampling considerations, 11-10 to 11-13

actual signal frequency components
(figure), 11-11

aliasing effects of improper sampling
rate, 11-10

avoiding aliasing, 11-11 to 11-12

effects of sampling rates (figure),
11-13

sampling rate, 11-12 to 11-13

signal frequency components and
aliases (figure), 11-12

sampling signals, 11-9 to 11-10

analog signal and corresponding
sampled version (figure), 11-9

analog-to-digital converter, 11-9

digital representation or sampled
version, 11-10

theory of, and digital filters, 16-2

data VIs, for instrument drivers, 7-6

datagrams. See also UDP (User Datagram
Protocol).

defined, 21-1

in Internet Protocol, 21-2

datalog file format

advantages, 6-20

defined, 6-9, 6-20

DDE (Dynamic Data Exchange),
23-1 to 23-12

calling Excel macro, B-3

client communication with Excel
(example), 23-2 to 23-4

commands for non-LabVIEW
applications, B-4

DDE Poke and Microsoft Access, B-3

installing LabVIEW as shared application
on file server, B-4 to B-5

LabVIEW VIs as DDE servers,
23-4 to 23-6

networked DDE, 23-8 to 23-12

client machine, 23-12

server machine, 23-10 to 23-11

using NetDDE, 23-10

Windows 95, 23-10 to 23-11

Windows for Workgroups, 23-10

Windows NT, 23-11

overview, 23-1 to 23-2

requesting data vs. advising data,
23-6 to 23-7

services, topics, and data items, 23-2

Synch DDE Client/Server hangs, B-5

synchronization of data, 23-7 to 23-8

Index

LabVIEW User Manual I-8 © National Instruments Corporation

DDE Advise Check VI, 23-7

DDE Advise Start VI, 23-7

DDE Advise Stop VI, 23-7

DDE Advise VIs, 23-6

DDE Request VI, 23-6

DDE Server VI, 23-5

debugging

instrument drivers

calling Error Query VI, 7-10

Getting Started VI, 7-7

interactively testing component VIs,
7-8 to 7-9

Open VISA Session Monitor VI, 7-10

testing communication with Easy
VISA IO VIs, 7-11 to 7-12

NI SPY tool for Windows 95/NT, 8-32

VIs, 2-21 to 2-23

execution highlighting, 2-21

VI example, 2-23

highlighting execution, 2-21 to 2-22

VI example, 2-23

probe tool (tutorial), 2-22 to 2-23

single stepping, 2-21 to 2-22

buttons for, 2-21

VI example, 2-23

using LabVIEW (tutorial),
2-22 to 2-23

VISA programs, 8-31 to 8-32

decibels, 11-14 to 11-15

relationship with power and voltage ratios
(table), 11-15

Default Resource Manager, VISA

defined, 8-3

relationship with instrument descriptors
and sessions, 8-7

deleting wires, 2-5

dependency. See data dependency.

Description option, 2-10

descriptions. See also documenting VIs.

changing while VI is running (note), 2-10

viewing, 2-10

determinant of matrix, 18-2 to 18-3

DFT. See discrete Fourier transform (DFT).

diagram identifiers, in structures, 4-1

Digital Display option, 6-14

digital filters, 16-1 to 16-3. See also filtering.

advantages, 16-1

sampling theory, 16-2

digital signal processing, 13-1 to 13-15

fast Fourier transform (FFT), 13-1 to 13-5

DFT calculation example,
13-2 to 13-4

magnitude and phase information,
13-4

frequency spacing between DFT/FFT
samples, 13-5 to 13-13

fast Fourier transforms, 13-7

FFT VIs in analysis library, 13-9

using Real FFT VI (tutorial),
13-10 to 13-13

zero padding, 13-8

power spectrum, 13-14

frequency spacing between samples,
13-14

loss of phase information, 13-14

summary, 13-15

Digital Thermometer VI, 5-23, 6-15

direct form IIR filters, 16-10

Disable Indexing option, 5-14

discrete Fourier transform (DFT), 13-1 to 13-2

DFT calculation example, 13-2 to 13-4

frequency resolution, 13-2

frequency spacing between DFT/FFT
samples, 13-5 to 13-13

magnitude and phase information,
13-4 to 13-5

odd and even symmetric, 13-4

time spacing, 13-2

Index

© National Instruments Corporation I-9 LabVIEW User Manual

Divide function

adding to block diagram (example), 2-21

Sequence structure example, 4-10

shift register example, 3-16

documentation

conventions used, xxvii-xxviii

organization of manual, xxiii-xxvi

related documentation, xxviii

documenting VIs

procedure for, 2-10

tutorial for, 2-10 to 2-12

dot product, 18-10 to 18-12

Dynamic Data Exchange (DDE). See DDE
(Dynamic Data Exchange).

E
e-mail support, C-1

Easy VISA IO VIs

disadvantages of, 7-12

purpose and use, 8-11

testing instrument driver communication,
7-11 to 7-12

Edit Format String dialog box, 6-5 to 6-6

Edit Icon option, 2-14, 2-17

eigenvalues and eigenvectors, 18-12 to 18-14

EigenValues and Vectors function (example),
18-18

electronic support services, C-1 to C-2

elliptic (Cauer) filters, 16-14

Empty Path constant, 6-15

Enable Indexing option, 5-15

error codes, serial port VIs, 10-2, B-15 to B-17

error handling. See also Simple Error Handler
VI.

instrument drivers, 7-11

programming considerations,
28-6 to 28-7

VISA error handling, 8-9 to 8-10

Error Message VI, 7-10

Error query VI, 7-10

events, VISA. See VISA events.

examples. See block diagram examples; front
panel examples; Search Examples options.

execution highlighting

techniques, 2-21 to 2-22

VI example, 2-23

Execution Options, 26-4

exponential fit, in curve fitting, 17-2

Exponential Fit VI (tutorial), 17-4 to 17-6

exponential window

description, 14-12 to 14-13

when to use, 14-16

Extract Numbers VI, 6-18

F
fast Fourier transform (FFT), 13-1 to 13-5

discrete Fourier transform, 13-1 to 13-2

DFT calculation example,
13-2 to 13-4

magnitude and phase information,
13-4 to 13-5

frequency spacing between DFT/FFT
samples, 13-5 to 13-13

fast Fourier transforms, 13-7

FFT VIs in analysis library, 13-9

using Real FFT VI (tutorial),
13-10 to 13-13

zero padding, 13-8

using Real FFT VI (tutorial)

one-sided FFT, 13-12 to 13-13

two-sided FFT, 13-12

fax and telephone support, C-2

Fax-on-Demand support, C-1

FFT VIs

purpose and use, 13-9

using Real FFT VI (tutorial),
13-10 to 13-13

Index

LabVIEW User Manual I-10 © National Instruments Corporation

file I/O

appending data to file, 6-14 to 6-16

block diagram, 6-15 to 6-16

front panel, 6-14

ASCII byte stream format, 6-9

binary byte stream format, 6-9

datalog format, 6-9, 6-20

examples, 6-19

paths, 6-19

reading data from file, 6-16 to 6-18

block diagram, 6-17 to 6-18

front panel, 6-16 to 6-17

refnums, 6-19

specifying files, 6-18

writing to spreadsheet file, 6-12 to 6-14

block diagram, 6-12 to 6-14

front panel, 6-12

file I/O functions

Read Characters From File VI, 6-10, 6-17

Read From Spreadsheet File VI, 6-10

Read Lines From File VI, 6-10

Write Characters to File VI, 6-10, 6-15

Write to Spreadsheet File VI, 6-10, 6-13

File I/O palette, 6-9

file sharing, vs. communication protocols,
20-2 to 20-3

files, LabVIEW

Macintosh, 1-6 to 1-7

UNIX, 1-7 to 1-8

Windows, 1-4 to 1-5

filtering, 16-1 to 16-24

digital filtering functions, 16-1 to 16-3

extracting sine wave (tutorial),
16-22 to 16-24

finite impulse response filters,
16-16 to 16-20

characteristics, 16-16

designing by windowing,
16-17 to 16-18

filter coefficients, 16-8

FIR narrowband filters,
16-19 to 16-20

narrowband FIR filters, 16-18

optimum FIR filters, 16-19

Parks-McClellan algorithm for
designing, 16-18

windowed FIR filters, 16-19

ideal filters, 16-3 to 16-4

IIR and FIR filters, 16-6 to 16-8

infinite impulse response filters,
16-8 to 16-15

advantages and disadvantages, 16-10

Bessel filters, 16-15

Butterworth filters, 16-12

cascade form IIR filtering,
16-10 to 16-11

Chebyshev filters, 16-12 to 16-13

Chebyshev II or inverse Chebyshev
filters, 16-13 to 16-14

elliptic (or Cauer) filters, 16-14

filter coefficients, 16-8

properties, 16-9

nonlinear filters, 16-20

practical (nonideal) filters, 16-4 to 16-6

passband ripple and stopband
attenuation, 16-5 to 16-6

transition band, 16-4 to 16-5

selecting a filter, 16-20 to 16-21

summary, 16-24

finite impulse response (FIR) filters,
16-16 to 16-20

basic principles, 16-6 to 16-7

characteristics, 16-16

compared with infinite impulse response
filters, 16-7, 16-10

designing by windowing, 16-17 to 16-18

filter coefficients, 16-8

FIR narrowband filters, 16-19 to 16-20

Gibbs phenomenon, 16-17

narrowband FIR filters, 16-18

nonrecursive implementation, 16-8

Index

© National Instruments Corporation I-11 LabVIEW User Manual

optimum FIR filters, 16-19

Parks-McClellan algorithm for
designing, 16-18

windowed FIR filters, 16-19

FIR filters. See finite impulse response
(FIR) filters.

FIR Narrowband Filter VI, 16-19 to 16-20

FIR Windowed Coefficients VI, 16-19

FIR Windowed Filters VI, 16-19

flattop window

description, 14-11 to 14-12

when to use, 14-16

floating-point numbers, rounding (note), 3-24

For Loops, 3-22 to 3-27. See also
shift registers.

auto-indexing

array processing, 5-2 to 5-3

creating array with auto-indexing,
5-3 to 5-6

defined, 5-2

setting For Loop count, 5-10

block diagram, 3-26 to 3-27

count terminal, 3-23

equivalent pseudocode, 3-23

front panel, 3-25

iteration terminal, 3-23

numeric conversion, 3-24

overview, 1-3

placing on block diagram, 3-22

purpose and use, 3-22 to 3-23

Format & Append function, 7-15

Format & Precision option

absolute time (example), 3-21

modifying numeric format, 4-6

relative time (example), 3-22

Format Into String function

appending data to file example, 6-15

format string example, 6-5

string concatenation example, 6-3

using in simple instrument driver,
7-15 to 7-16

format string (example), 6-4 to 6-6

Formula node, 4-11 to 4-15

block diagram, 4-14 to 4-15

defined, 4-11

front panel, 4-14

illustration, 4-13

input and output terminals, 4-11

operators and functions available in Help
window (figure), 4-12

purpose and use, 4-11 to 4-12

semicolon (;) terminating formula
statements, 4-11

syntax, 4-11

tutorial for using, 4-13 to 4-15

forward coefficients, of filters, 16-8

frequency and impulse response

computing (tutorial), 15-8 to 15-10

of filters, 16-6 to 16-7

usefulness of measuring, 15-7

frequency domain representation, 13-1

frequency spacing between DFT/FFT
samples. See fast Fourier transform (FFT).

front panel

building subVIs (tutorial), 2-19 to 2-20

controls and indicators, using as inputs
only (note), 2-19

defined, 1-2

front panel examples

appending data to file, 6-14

array created with auto-indexing,
5-3 to 5-4

Attribute Node example, 27-3

Build Array function, 5-17

calculating amplitude and phase
spectrum, 15-5 to 15-7

Case structure, 4-2

computing frequency and impulse
response, 15-8

computing matrix inverse, 18-17

curve fitting VIs, 17-4

extracting sine wave, 16-22 to 16-23

Index

LabVIEW User Manual I-12 © National Instruments Corporation

format string, 6-4

Formula node, 4-14

graph and analysis VI, 5-22 to 5-23

For Loop, 3-25

multiplot chart, 3-19

Nonlinear Lev-Mar Fit VI, 17-21

Normal Distribution VI, 19-17

normalized frequency, 12-5

reading data from file, 6-16 to 6-17

Real FFT VI, 13-10

Sequence structure, 4-5 to 4-7

shift register, 3-15

Sine Wave and Sine Pattern VIs, 12-8

string concatenation, 6-2 to 6-3

string subsets and number extraction, 6-7

subVI Node Setup options,
26-2 to 26-3, 26-6

waveform function generator, 12-11

While Loop, 3-5 to 3-6

windowed vs. nonwindowed signal, 14-17

writing to spreadsheet file, 6-12

FTP support, C-1

Full VI Path option, 2-13

Functions menu

Comparison, 2-20

Select a VI, 2-12

Structures, 3-22

Functions palette

Analysis subpalette, 11-4

Communication subpalette, 24-2

displaying, 2-8

File I/O palette, 6-9

String palette, 6-3

Time & Dialog palette, 3-10

G
G programming. See programming.

Gaussian White Noise VI (example), 19-18

General Error Handler VI, 8-10. See also
Simple Error Handler VI.

General Histogram VI, 19-9

general least squares linear fit theory

description, 17-6 to 17-10

using Linear Fit VI, 17-11 to 17-13

tutorial for, 17-14 to 17-18

general linear fit, in curve fitting, 17-3

General LS Linear Fit VI

block diagram, 17-13

building observation matrix, 17-15

comparison of Linear, Exponential, and
Polynomial Curve Fit VIs (tutorial),
17-4 to 17-6

inputs and outputs (figure), 17-12

tutorial for, 17-14 to 17-18

underlying principles, 17-11 to 17-13

general polynomial fit, in curve fitting, 17-2

General Purpose Interface Bus. See GPIB.

Generate Waveform VI, 5-4

Get Date/Time String function (example),
26-7

Get Operator Info VI (example), 26-7

Get Target ID VI, 24-4, 25-2

Getting Started VI

in structure of instrument driver, 7-4

using as basis for customized VI, 7-7

verifying communication and testing
instrument drivers, 7-7

Gibbs phenomenon, in filters, 16-17

global variables, 29-3

GPIB, 9-1 to 9-5

compatible GPIB hardware, 9-3 to 9-5

LabVIEW for Concurrent
PowerMAX, 9-5

LabVIEW for HP-UX, 9-4

LabVIEW for Mac OS, 9-4

LabVIEW for Sun, 9-5

LabVIEW for Windows 31., 9-4

LabVIEW for Windows 95 and
Windows 95-Japanese, 9-3

LabVIEW for Windows NT, 9-3

Index

© National Instruments Corporation I-13 LabVIEW User Manual

Controller-In-Charge and System
Controller, 9-3

questions and answers, B-6 to B-8

all platforms, B-6 to B-8

Windows only, B-8

standards, 9-1

types of messages, 9-1 to 9-2

VISA support issues, 8-29

adding multiple controllers, 8-30

GPIB Readdressing property, VISA, 8-21

GPIB SRQ events, VISA, 8-24

GPIB Unaddressing property, VISA, 8-21

graph cursors, 5-21 to 5-22

Graph palette, 3-2

graph VIs (example), 5-22 to 5-24

graphs. See also charts; plots.

axes, 5-22

changing type of graph (note), 5-8

customizing, 5-20 to 5-22

data acquisition arrays, 5-22

defined, 5-20

graph and analysis VI example,
5-22 to 5-24

block diagram, 5-23 to 5-24

front panel, 5-22 to 5-23

intensity graphs, 5-25

multiplot waveform graphs (example),
5-7 to 5-8

Greater or Equal? function (example), 27-4

Greater Or Equal to 0? function (example), 4-3

H
Hamming window

description, 14-9

windowed vs. nonwindowed signal
(example), 14-18

handshaking modes, 10-2

XON/XOFF software handshaking, 10-2

Hanning window

description, 14-8 to 14-9

spectral analysis example, 14-13 to 14-15

when to use, 14-16

harmonic distortion, 5-10 to 15-16

calculating with Harmonic Analyzer VI,
15-12 to 15-13

tutorial for, 15-14 to 15-16

measuring total distortion, 15-11

number of harmonics and their
amplitudes, 15-10

help for instrument driver VIs, obtaining, 7-6

hidden labels, displaying, 2-7

hierarchy of VIs

description, 2-1 to 2-2

programming considerations,
28-1 to 28-3

Hierarchy window, 2-12 to 2-14

Include/Exclude global button, 2-13

Include/Exclude typedefs button, 2-13

Include/Exclude VIs button, 2-13

purpose and use, 2-12

Redraw button, 2-13

searching visible nodes, 2-14

Switch to vertical layout button, 2-13

working with VIs, 2-13 to 2-14

high-level access, compared with low-level
access, 8-17 to 8-18

Highlight Execution button, 2-21, 2-23

highlighting execution

techniques, 2-21 to 2-22

VI example, 2-23

highpass filters, 16-3

histogram, 19-7 to 19-9

Histogram VI

computing data for histogram,
19-7 to 19-9

input-output connections (figure), 19-7

Normal Distribution VI tutorial, 19-18

Index

LabVIEW User Manual I-14 © National Instruments Corporation

hostname resolution, of Internet
addresses, 21-2

hot spot of Wiring tool, 2-4

I
Icon Editor

buttons, 2-16

color icons (note), 2-16

creating icon and connector (tutorial),
2-17 to 2-19

illustration, 2-15

tools, 2-15

icons. See also connectors.

creating (tutorial), 2-17 to 2-19

customizing with Icon Editor,
2-14 to 2-16

default icon, 2-14

VI icon and connector, 1-2

subVI Node Setup options example,
26-3 to 26-4

ideal filters, 16-3 to 16-4

Identification Query, required for Initialize VI,
7-13

IEEE 488 GPIB standard, 9-1

IEEE 488.2 GPIB standard, 9-1, 9-2

IEEE GPIB Standard 488-1975, 9-1

IIR filters. See infinite impulse response
(IIR) filters.

impulse response, of filter, 16-6. See also finite
impulse response (FIR) filters; infinite
impulse response (IIR) filters.

Increment function (example), 4-10

Index Array function

description, 5-14 to 5-16

extracting subarrays, 5-15 to 5-16

illustration, 5-14

rules governing slicing of arrays, 5-16

indicators

analogous to input and output
parameters, 2-2

automatic creation of terminal, 2-3

creating, 2-3, 5-2

defined, 2-2

rescaling (example), 2-7

updating in For Loops (note), 3-27

infinite impulse response (IIR) filters,
16-8 to 16-15

advantages and disadvantages, 16-10

basic principles, 16-6 to 16-7

Bessel filters, 16-15

Butterworth filters, 16-12

cascade form IIR filtering, 16-10 to 16-11

Chebyshev filters, 16-12 to 16-13

Chebyshev II or inverse Chebyshev filters,
16-13 to 16-14

compared with finite impulse response
filters, 16-7, 16-10

elliptic (or Cauer) filters, 16-14

filter coefficients, 16-8

properties, 16-9

recursive implementation, 16-8

Initialize Array function, 5-11 to 5-12

initialize VI

Identification Query requirement, 7-13

required for instrument drivers, 7-5

instrument descriptors

opening VISA sessions, 8-6 to 8-7

relationship with Default Resource
Manager, 8-7

VISA Find Resource function, 8-5

instrument drivers, 7-1 to 7-17. See also
VISA.

accessing, 7-3 to 7-4

debugging, 7-10 to 7-12

error handling, 7-11

Open VISA Session Monitor VI, 7-10

testing communication with
instrument, 7-11 to 7-12

Index

© National Instruments Corporation I-15 LabVIEW User Manual

defined, 7-1

developing, 7-12 to 7-17

Easy VISA IO VIs, 7-12

full-featured driver, 7-17

modifying existing driver,
7-12 to 7-13

procedure for, 7-9 to 7-10

simple driver, 7-13 to 7-17

using Intelligent Virtual
Instruments, 7-17

libraries of drivers, 7-1

location for installing, 7-2

menu palettes, 7-3

obtaining, 7-2

online help, 7-6

running Getting Started VI
interactively, 7-7

structure, 7-4 to 7-6

action/status VIs, 7-6

Application VIs, 7-4 to 7-5

close VI, 7-6

configuration VIs, 7-5 to 7-6

data VIs, 7-6

Getting Started VIs, 7-4

initialize VI, 7-5

model (figure), 7-4

utility VIs, 7-6

testing component VIs
interactively, 7-8 to 7-9

Instrument Drivers subpalette, 7-3

Intelligent Virtual Instrument (IVI) instrument
drivers, 7-17

intensity chart

purpose and use, 5-25

intensity graph

purpose and use, 5-25

interapplication communication. See ActiveX;
AppleEvents; DDE (Dynamic Data
Exchange); PPC (Program to Program
Communication); TCP/IP protocol; UDP
(User Datagram Protocol).

Internet Protocol (IP). See also TCP/IP
protocol.

datagrams, 21-2

hostname resolution, 21-2

Internet addresses, 21-2

mechanism of, 21-2 to 21-3

overview, 21-1

Interpolated Finite Impulse Response (IFIR)
filter design, 16-18

interrupt events, VISA, 8-25 to 8-26

inverse Chebyshev filters, 16-13 to 16-14

Inverse Matrix function (example), 18-18

Inverse Normal Distribution VI, 19-16

IP. See Internet Protocol (IP).

iteration terminal

For Loop, 3-23

Formula node example, 4-15

J
junction (of wires), 2-5

K
Kaiser-Bessel window

description, 14-10

when to use, 14-16

knob control, adding to front panel for
While Loop (example), 3-5 to 3-6

L
LabVIEW

getting started, 1-9

how LabVIEW works, 1-1 to 1-3

organization of

Macintosh, 1-6 to 1-7

UNIX, 1-7 to 1-8

Windows, 1-4 to 1-5

overview, 1-1

Latch Until Released action, 3-9

Index

LabVIEW User Manual I-16 © National Instruments Corporation

Latch When Pressed action, 3-8

Latch When Released action, 3-9

Least Squares Method, 17-1. See also
general least squares linear fit theory.

linear algebra, 18-1 to 18-21

basic matrix operations, 18-9 to 18-14

dot product and outer product,
18-10 to 18-11

eigenvalues and eigenvectors,
18-12 to 18-14

linear systems and matrix analysis,
18-1 to 18-8

determining linear independence,
18-4 to 18-5

determining singularity (condition
number), 18-7 to 18-8

linear independence of vector,
18-3 to 18-4

“magnitude” (norms) of matrices,
18-5 to 18-7

matrix determinants, 18-2 to 18-3

rank of matrix, 18-4 to 18-5

transpose of matrix, 18-3 to 18-5

types of matrices, 18-1 to 18-2

matrix factorization, 18-20 to 18-21

pseudoinverse, 18-21

matrix inverse, 18-14 to 18-19

computing inverse (tutorial),
18-17 to 18-18

solutions of systems of linear
equations, 18-15 to 18-17

solving systems of linear equations
(tutorial), 18-19

summary, 18-21

linear fit, in curve fitting, 17-2

Linear Fit VI. See General LS Linear Fit VI.

list controls, 29-4

Listener, GPIB, 9-2

local variables, 29-3

locking, in VISA, 8-26 to 8-28

mechanism for, 8-26 to 8-27

shared locking, 8-28

loops. See For Loops; While Loops.

low-level access functions, 8-15 to 8-17

bus errors, 8-17

compared with high-level access,
8-17 to 8-18

accessing multiple address spaces,
8-18

ease of use, 8-18

speed, 8-17

defined, 8-15

performing with VISA, 8-15 to 8-17

lowpass filters, 16-3

M
Macintosh protocols. See AppleEvents; PPC

(Program to Program Communication).

magnitude (norms) of matrices, 18-5 to 18-7

Mainframe Logical Address property,
VISA, 8-21

manual. See documentation.

Manufacturer Identification property,
VISA, 8-21

matrix analysis, 18-1 to 18-21

basic matrix operations, 18-9 to 18-14

dot product and outer product,
18-10 to 18-11

eigenvalues and eigenvectors,
18-12 to 18-14

column vector, 18-1

complex matrix, 18-2

determining singularity (condition
number), 18-7 to 18-8

diagonal matrix, 18-2

identity matrix, 18-2

lower triangular matrix, 18-2

“magnitude” (norms) of matrices,
18-5 to 18-7

Index

© National Instruments Corporation I-17 LabVIEW User Manual

matrix determinants, 18-2 to 18-3

matrix factorization, 18-20 to 18-21

Cholesky factorization, 18-20

LU decomposition, 18-15 to 18-16,
18-20

pseudoinverse, 18-21

QR factorization, 18-20

Singular Value Decomposition
method, 18-20

matrix inverse, 18-14 to 18-19

computing inverse (tutorial),
18-17 to 18-18

solutions of systems of linear
equations, 18-15 to 18-17

solving systems of linear equations
(tutorial), 18-19

real matrix, 18-2

rectangular matrix, 18-1

row vector, 18-1

square matrix, 18-1

transpose of matrix, 18-3 to 18-5

complex conjugate transpose, 18-3

determining linear independence,
18-4 to 18-5

Hermitian matrix, 18-3

linear independence of vector,
18-3 to 18-4

matrix rank, 18-4 to 18-5

symmetric matrix, 18-3

types of matrices, 18-1 to 18-2

unit matrix, 18-2

upper triangular matrix, 18-2

Max & Min function (example), 3-27

mean, 19-3

mean square error (MSE), 19-10

Mean VI

graph and analysis VI example, 5-24

input-output connections (figure), 19-3

measurement VIs, 15-1 to 15-3. See also
spectrum analysis and measurement.

applications

network and dual channel analysis
applications, 15-1

spectrum analysis, 15-1

characteristics, 15-2

connecting to output of data acquisition
VIs, 15-3

examples, 15-3

mechanical actions of Boolean controls

Boolean switches, 3-8 to 3-9

changing the action (tutorial), 3-9

median, 19-3 to 19-4

Median VI (figure), 19-4

memory usage, with arrays, 5-18

message-based communication, VISA,
8-11 to 8-12

VISA Read VI, 8-11

VISA Write VI, 8-11

writing and reading message-based
devices, 8-12

messages, GPIB, 9-1 to 9-2

mode, 19-6

Mode VI (figure), 19-6

Model Code property, VISA, 8-21

modular programming. See program design.

moment about mean, 19-6

Moment about Mean VI (figure), 19-6

moving-average (MA) filters. See finite
impulse response (FIR) filters.

MSE VI (figure), 19-10

multiplot charts (example), 3-19 to 3-22

multiplot graphs (example), 5-7 to 5-8

Multiply function

adding to VI, 2-8

Sequence structure example, 4-9

While Loop (example), 3-11

Index

LabVIEW User Manual I-18 © National Instruments Corporation

N
narrowband FIR filters

design considerations, 16-18

FIR Narrowband Filter VI for designing,
16-19 to 16-20

network communication. See ActiveX;
AppleEvents; DDE (Dynamic Data
Exchange); PPC (Program to Program
Communication); TCP/IP protocol;
UDP (User Datagram Protocol).

Network Functions VI (example), 15-9

networked DDE. See DDE (Dynamic Data
Exchange).

networking, defined, 20-1

NI SPY tool for Windows 95/NT, 8-32

NI-VISA hierarchy, 8-1. See also VISA.

nonideal filters. See practical (nonideal) filters.

nonlinear filters, 16-20

Nonlinear Lev-Mar Fit VI, 17-19 to 17-23

connections to (figure), 17-19

nonlinear Lev-Mar fit theory,
17-18 to 17-19

tutorial for using, 17-20 to 17-23

nonrecursive filters. See finite impulse
response (FIR) filters.

normal distribution, 19-15 to 19-16

Normal Distribution VI

computation, 19-15 to 19-16

tutorial for, 19-17 to 19-19

normalized frequency, 12-1 to 12-7

defined, 12-1

tutorial for, 12-5 to 12-7

VIs that require normalized units, 12-2

norms (magnitude) of matrices, 18-5 to 18-7

Not Equal? function (example), 4-10

Not function

Attribute Node example, 27-4

subVI Node Setup options example, 26-8

numeric constants

adding to subVI example, 2-20

adding to VI example, 2-8

array created with auto-indexing, 5-5

Case structure example, 4-4

For Loop example, 3-26

Formula node example, 4-15

graph and analysis VI example, 5-24

Sequence structure example, 4-9, 4-10

shift register example, 3-16

subVI Node Setup options example, 26-8

While Loop example, 3-11

numeric conversion

For Loops, 3-24

string subset and number extraction
example, 6-7 to 6-8

numeric format, modifying (example), 4-6

Nyquist frequency, 11-11 to 11-12

Nyquist theorem, 11-11

O
OLE (Object Linking and Embedding).

See ActiveX.

One Button Dialog function (example), 4-4

Open VISA Session Monitor VI, 7-10

optimum FIR filters, 16-19

order tracking, with rectangular window, 14-8

outer product, 18-10 to 18-12

overlaid plots, vs. stacked plots, 3-3

P
parallel port, accessing, B-15

Parks-McClellan algorithm, for FIR
filters, 16-18

Parks-McClellan VI, 16-19

Parse String VI, 6-7

passband, of filters, 16-3

passband ripple, 16-5 to 16-6

path, defined, 6-19

Index

© National Instruments Corporation I-19 LabVIEW User Manual

path data type, 6-19

pattern VIs. See wave and pattern VIs.

percentage, defined, 19-2

phase control

Sine Wave and Sine Pattern VI
example, 12-10

wave VIs, 12-7 to 12-8

pi constant, 5-7

Pick Line & Append function, 7-14, 7-16

plots. See also charts; graphs.

changing plot type (note), 5-8

intensity plots, 5-25

stacked vs. overlaid plots, 3-3

polymorphism

array functions, 5-19

defined, 5-19

Polynomial Curve Fit VI (tutorial),
17-4 to 17-6

port numbers, for TCP or UDP, B-2

ports, PPC, 25-2

power spectrum

defined, 13-14

frequency spacing between
samples, 13-14

loss of phase information, 13-14

PPC (Program to Program Communication),
25-1 to 25-5

client example, 25-3

overview, 25-1 to 25-2

ports, target IDs, and sessions, 25-2

server example, 25-4

server with multiple connections, 25-5

PPC Accept Session VI

accepting or rejecting sessions, 25-2

PPC server example, 25-4

PPC Browser VI

AppleEvents, 24-4

application fails to display, B-5

PPC, 25-2

PPC Close Connection VI, 25-3

PPC Close Port VI

closing ports, 25-2

PPC server example, 25-4

PPC Close Session VI

PPC client example, 25-3

PPC server example, 25-4

PPC Inform Session VI

opening sessions, 25-2

PPC server example, 25-4

PPC Open Connection VI, 25-3

PPC Open Port VI

description, 25-2

PPC server example, 25-4

PPC Open Session VI, 25-3

PPC Read VI

PPC client example, 25-3

transferring data, 25-2

PPC Write VI

PPC client example, 25-3

PPC server example, 25-4

transferring data, 25-2

practical (nonideal) filters, 16-4 to 16-6

passband ripple and stopband attenuation,
16-5 to 16-6

transition band, 16-4 to 16-5

preferences, 29-2. See also VI Setup option.

probability, 19-12 to 19-19

defined, 19-2

normal distribution, 19-15 to 19-16

tutorial for, 19-17 to 19-19

overview, 19-12

random variables, 19-12 to 19-14

probability density function, 19-13, 19-14

probe, for debugging VIs (tutorial),
2-22 to 2-23

Process Monitor VI, tutorial for building,
2-8 to 2-9

Index

LabVIEW User Manual I-20 © National Instruments Corporation

program design, 28-1 to 28-9

connector panes

planning for, 28-3 to 28-4

subVIs with required inputs, 28-4

good diagram style, 28-4 to 28-9

avoiding overuse of Sequence
structures, 28-8

checking for errors, 28-6 to 28-7

left-to-right layouts, 28-5

looking for missing dependencies,
28-7 to 28-8

studying examples, 28-9

watching for common operations,
28-5

top-down design, 28-1 to 28-3

designing VI hierarchy, 28-1 to 28-3

listing user requirements, 28-1

modular approach in, 28-3

stub VIs, 28-2

Program to Program Communication (PPC).
See PPC (Program to Program
Communication).

programming. See also debugging.

Attribute Nodes, 27-1 to 27-4

purpose and use, 27-1 to 27-2

tutorial for using, 27-3 to 27-4

customizing VIs, 26-1 to 26-8

subVI Node Setup option,
26-2 to 26-8

VI Setup option, 26-1

Windows Options, 26-1

modular programming, 1-2

multiple applications using NI-VISA
driver, 8-29

overview, 1-2 to 1-3

resources, 29-1 to 29-4

Attribute Nodes, 29-2

Call Library function, 29-4

Code Interface Nodes, 29-4

Control Editor, 29-4

creating subVIs, 29-3

data acquisition applications, 29-1

function and VI reference, 29-2

G programming techniques,
29-1 to 29-2

list and ring controls, 29-4

local and global variables, 29-3

Solution Wizard and Search
Examples, 29-1

VI profiles, 29-3

VI Setup and Preferences,
29-2 to 29-3

Project menu

Show VI Hierarchy, 2-12

This VI’s SubVIs, 2-19

properties, VISA. See VISA properties.

property node

illustration, 8-19

setting VISA class properties, 8-19

protocol. See also communication protocols.

defined, 20-1

Q
questions and answers, B-1 to B-18

communications, B-1 to B-5

all platforms, B-1 to B-2

Macintosh only, B-5

Windows only, B-2 to B-5

GPIB, B-6 to B-8

all platforms, B-6 to B-8

Windows only, B-8

serial I/O, B-8 to B-18

all platforms, B-8 to B-14

Sun only, B-17 to B-18

Windows only, B-15 to B-17

Index

© National Instruments Corporation I-21 LabVIEW User Manual

R
Random Number (0-1) function

For Loop example, 3-26

Sequence structure example, 4-9

shift register example, 3-16

Random Number Generator function
(example), 27-4

random variables, 19-12 to 19-14

rank, of matrix, 18-4 to 18-5

Read Characters From File VI

purpose, 6-10

reading data from file example, 6-17

Read from Datalog File VI, 6-20

Read From Spreadsheet File VI, 6-10

Read from Text File VI (example file), 6-19

Read Lines From File VI, 6-10

read operations, VISA

serial write and read (example), 8-22

setting termination character (example),
8-22 to 8-23

reading data from file, 6-16 to 6-18

block diagram, 6-17 to 6-18

front panel, 6-16 to 6-17

Real FFT VI

compared with Complex FFT VI, 13-9

tutorial for, 13-10 to 13-13

block diagram, 13-11

front panel, 13-10

one-sided FFT, 13-12 to 13-13

two-sided FFT, 13-12

rectangular window

description, 14-7 to 14-8

when to use, 14-16

recursive filters. See infinite impulse
response (IIR) filters.

refnums

defined, 6-19

file I/O operations, 6-19

register-based communication (VXI only), in
VISA, 8-12 to 8-18

basic register access, 8-14

bus errors, 8-17

high-level vs. low-level access,
8-17 to 8-18

low-level access functions, 8-15 to 8-17

MEMACC session (note), 8-16

VISA In VIs, 8-12 to 8-13

VISA Move In VIs, 8-15

VISA Out VIs, 8-14

relative time, selecting, 3-22

Remove Bad Wires option, 2-6, 2-21

Resource Manager, VISA. See Default
Resource Manager, VISA.

resources, in VISA

defined, 8-3

searching for, 8-4 to 8-5

VISA Find Resource function, 8-4 to 8-5

reverse coefficients, of filters, 16-8

ring controls, 29-4

RMS VI (figure), 19-11

root mean square (RMS), 19-11

Rotate 90 Degrees option, 2-18

Round to Nearest function (example), 4-10

rounding to nearest integer (note), 3-24

Run button, broken, 2-21

S
sample variance, 19-4 to 19-5

Sample Variance VI

compared with Variance VI, 19-5

input-output connections (figure),
19-4, 19-5

sampling data. See data sampling.

sampling frequency, 11-9

sampling interval, 11-9

sampling period, 11-9

sampling rate, 11-12 to 11-13

effects of (figure), 11-13

Index

LabVIEW User Manual I-22 © National Instruments Corporation

Sawtooth Wave VI

function generator example, 12-12

normalized frequency required, 12-2

Scaled Time Domain Window VI

calculating harmonic distortion
(example), 15-12

computing frequency and impulse
response (example), 15-9

Scan From String function

string subset example, 6-8

using in simple instrument driver, 7-16

scope chart mode

example, 3-3

illustration, 3-2

Scrollbar option, 6-2

Search Examples options, 29-1

search hierarchy, in Hierarchy window, 2-14

Select & Append function, 7-15

Select a VI option, 2-12

Separate Array Values VI, 5-8

sequence local variables

creating (example), 4-9

illustration, 4-9

Sequence structures, 4-5 to 4-10

block diagram, 4-7 to 4-10

diagram identifier, 4-1

front panel, 4-5 to 4-7

illustration, 4-5

modifying numeric format, 4-6

overview, 1-3

programming considerations, 28-8

setting data range, 4-7

subdiagram display window, 4-1

Serial Baud Rate property, VISA, 8-20

Serial Data Bits property, VISA, 8-20

serial I/O questions and answers, B-8 to B-18

adding serial ports, B-9 to B-13

all platforms, B-8 to B-14

allocating serial buffer, B-14

closing serial port, B-9

controlling DTR and RTS lines,
B-13 to B-14

error numbers from serial port VIs (table),
B-15 to B-17

resetting or clearing serial port, B-9

Serial Port Write VI, B-8 to B-9

Sun only, B-17 to B-18

Windows only, B-15 to B-17

Serial Parity property, VISA, 8-20

serial port support, NI-VISA, 8-30

serial port VIs, 10-1 to 10-4

error codes, 10-2, B-15 to B-17

examples, 10-1

handshaking modes, 10-2

port number, 10-3 to 10-4

Macintosh, 10-3

UNIX, 10-3 to 10-4

Windows 95 and 3.x, 10-3

XON/XOFF software handshaking, 10-2

serial properties, VISA

list of properties, 8-20

write and read example, 8-22

Serial Stop Bits property, VISA, 8-20

Server: Configuration dialog box, 22-2

servers. See also ActiveX; client/server model.

LabVIEW VIs as DDE servers,
23-4 to 23-6

service, DDE, 23-2

sessions, PPC, 25-2

Index

© National Instruments Corporation I-23 LabVIEW User Manual

sessions, VISA

abnormally closed sessions (note), 8-8

closing, 8-8 to 8-9

defined, 8-3

front panel control, 8-7

opening, 8-6 to 8-7

relationship with Default Resource
Manager, 8-7

when to leave open, 8-8 to 8-9

shift registers, 3-13 to 3-22

adaptation to data type of first object,
3-13 to 3-14

block diagram, 3-15 to 3-17

creating multiplot chart (tutorial),
3-19 to 3-22

block diagram, 3-20 to 3-22

front panel, 3-19

defined, 3-13

front panel, 3-15

initializing

avoiding incorporation of old data
(note), 3-17

For Loop example, 3-26

left and right terminals, 3-13

remembering values from previous
iterations, 3-14

uninitialized shift register example,
3-17 to 3-18

Show all VIs option, 2-13

Show Connector option, 2-16, 2-18

Show submenu

Digital Display option, 6-14

Scrollbar option, 6-2

Show Terminals option, 2-3

Show VI Hierarchy option, 2-12

Show VI Info option, 2-10

signal generation, 12-1 to 12-13

example files, 12-1

normalized frequency, 12-1 to 12-5

tutorial for, 12-5 to 12-7

wave and pattern VIs, 12-7 to 12-13

building function generator (tutorial),
12-11 to 12-13

phase control, 12-7 to 12-8

sine wave and sine pattern VI
(tutorial), 12-8 to 12-10

Simple Error Handler VI

programming considerations, 28-7

using in simple instrument driver, 7-14

VISA error handling, 8-10

Sine function (example), 5-7

Sine Pattern VI

generating sinusoidal waveform
(example), 12-8 to 12-10

windowed vs. nonwindowed signal
(example), 14-18

sine wave, extracting (example),
16-22 to 16-24

Sine Wave VI

calculating harmonic distortion
(example), 15-14

extracting sine wave (example), 16-23

function generator example, 12-12

generating sinusoidal waveform
(example), 12-8 to 12-10

normalized frequency example,
12-6 to 12-7

normalized frequency required, 12-2

using Real FFT VI (tutorial), 13-11

single stepping through VIs

buttons for, 2-21 to 2-22

example, 2-23

singularity of matrix, determining,
18-7 to 18-8

Index

LabVIEW User Manual I-24 © National Instruments Corporation

Slot property, VISA, 8-21

smoothing windows, 14-1 to 14-19

choosing window type, 14-16

comparing windowed and nonwindowed
signals (tutorial), 14-17 to 14-19

exponential window, 14-12 to 14-13

flattop window, 14-11 to 14-12

Hamming window, 14-9

Hanning window, 14-8 to 14-9

Kaiser-Bessel window, 14-10

overview, 14-1

rectangular window, to 14-814-7

spectral analysis vs. coefficient design,
14-13 to 14-15

spectral leakage, 14-2 to 14-6

amount of leakage, 14-5

periodic waveform from sampled
period (figure), 14-2

reason for leakage, 14-5

sampling nonintegral number of
samples (figure), 14-4

sine wave and corresponding Fourier
transform (figure), 14-3

time signal windowed using
Hamming window (figure), 14-6

triangle window, 14-11

windowing applications, 14-7

Solution Wizard, 29-1

Solve Linear Equations VI, 18-19

spectral leakage, 14-2 to 14-6

amount of leakage, 14-5

periodic waveform from sampled period
(figure), 14-2

reason for leakage, 14-5

sampling nonintegral number of samples
(figure), 14-4

sine wave and corresponding Fourier
transform (figure), 14-3

time signal windowed using Hamming
window (figure), 14-6

spectrum analysis and measurement,
15-1 to 15-16

calculating amplitude and phase
spectrum, 15-4 to 15-7

calculating frequency response of system,
15-7 to 15-10

coefficient design vs. spectral analysis,
14-13 to 14-15

DFT-even window functions
required, 14-13

periodic input sequence in, 14-14

harmonic distortion, 5-10 to 15-16

measurement VIs, 15-1 to 15-3

summary, 15-16

spreadsheet files

Read From Spreadsheet File VI, 6-10

Write to Spreadsheet File VI, 6-10, 6-13

writing to, 6-11 to 6-14

block diagram, 6-12 to 6-14

front panel, 6-12

Square Root function (example), 4-3

Square Wave VI

function generator example, 12-12

normalized frequency required, 12-2

stacked plots, vs. overlaid plots, 3-3

standard API for instrument drivers.
See VISA.

standard deviation, 19-5

Standard Deviation VI (figure), 19-5

statistics, 19-1 to 19-20

histogram, 19-7 to 19-9

mean, 19-3

mean square error, 19-10

median, 19-3 to 19-4

mode, 19-6

moment about mean, 19-6

overview, 19-1 to 19-2

root mean square, 19-11

sample variance, 19-4 to 19-5

standard deviation, 19-5

summary, 19-20

Index

© National Instruments Corporation I-25 LabVIEW User Manual

status VIs, for instrument drivers, 7-6

Step Into button, 2-21, 2-23

Step Out button, 2-22, 2-23

Step Over button, 2-21, 2-23

stopband, of filters, 16-3

stopband attenuation, 16-5 to 16-6

String & Table palette, 6-1

string constants

appending data to file example, 6-15

Case structure example, 4-4

string controls and indicators

concatenating strings (example),
6-2 to 6-3

creating, 6-1

format string example, 6-4 to 6-6

minimizing space used on front panel, 6-2

string subsets and number extraction
example, 6-7 to 6-8

String Length function (example), 6-3

String palette, 6-3

String Subset function (example), 6-8

strip chart mode

example, 3-3

illustration, 3-2

structures. See also Case structures; For
Loops; Sequence structures; While Loops.

defined, 3-1

diagram identifier, 4-1

overview, 4-1

subdiagram display window, 4-1

Structures option, 3-22

stub VIs, 28-2

subdiagram display window, in structures, 4-1

Subtract function (example), 4-10

subVI Node Setup options. See also
VI Setup option.

overview, 26-2

tutorial for using, 26-2 to 26-8

dialog box example, 26-2 to 26-5

subVI nodes

analogous to subroutine call, 2-12

defined, 2-12

subVIs

analogous to subroutines, 2-12

calling (tutorial), 2-19 to 2-21

changing, 2-19

creating

block diagram, 2-20 to 2-21

debugging techniques, 2-21 to 2-23

front panel, 2-19 to 2-20

icon and connector, 2-14 to 2-19

programming resources, 29-3

defined, 2-12

displaying required inputs, 28-4

Hierarchy window, 2-12 to 2-14

icon and connectors

creating, 2-16

Icon Editor window, 2-14 to 2-16

tutorial for creating, 2-17 to 2-19

opening, 2-19

operating, 2-19

sweep chart mode

example, 3-3

illustration, 3-2

Switch Until Released action, 3-8

Switch When Pressed action, 3-8

Switch When Released action, 3-8

System Controller, 9-3

T
Talker, GPIB, 9-2

Target IDs

AppleEvents, 24-4

PPC, 25-2

questions and answers, B-5

Index

LabVIEW User Manual I-26 © National Instruments Corporation

TCP (Transmission Control Protocol),
21-4 to 21-8. See also TCP/IP protocol.

client example, 21-5 to 21-6

compared with UDP, 21-5, B-2

mechanism of, 21-4 to 21-5

overview, 21-1, 21-4

port numbers, B-2

server example, 21-6 to 21-7

server with multiple connections, 21-7

setting up, 21-7 to 21-8

Macintosh, 21-8

UNIX, 21-7

Windows 3.x, 21-8

Windows 95/NT, 21-8

timeouts and errors, 21-6

TCP Close Connection function

closing connection to remote
application, 21-5

TCP client example, 21-6

TCP server example, 21-7

TCP Close function, 21-5

TCP Create Listener function, 21-5

TCP/IP protocol

Internet addresses, 21-2

overview, 21-1

using with LabVIEW, 21-2

TCP Listen VI

TCP server example, 21-7

waiting for incoming connection, 21-4

TCP Open Connection function
(example), 21-5

TCP Read function

reading data from remote application,
21-5

TCP client example, 21-6

TCP Write function

TCP client example, 21-6

TCP server example, 21-7

writing data to remote application, 21-5

technical support, C-1 to C-2

telephone and fax support, C-2

Temp & Vol VI (example), 26-8

terminal pattern for connector

assigning terminals to controls and
indicators, 2-18

confirming connections, 2-18

selecting patterns, 2-16

terminals

automatic creation for controls and
indicators, 2-3

defined, 2-3

Thermometer indicator (example), 2-7 to 2-8

This Connection Is option, 28-4

This VI’s subVIs option, 2-19

three-dimensional arrays, slicing, 5-16

Tick Count (ms) function (example), 4-9

Time & Dialog palette, 3-10

time domain representation, 13-1

timing, While Loop, 3-10 to 3-11

tip strips, 2-4

toolkit support, in LabVIEW, 1-9

top-down design. See program design.

topic, DDE, 23-2

Transmission Control Protocol (TCP). See
TCP (Transmission Control Protocol).

transpose of matrix, 18-3 to 18-5

determining linear independence
(matrix rank), 18-4 to 18-5

linear independence, 18-3 to 18-4

Triangle Wave VI

function generator example, 12-12

normalized frequency required, 12-2

triangle window, 14-11

trigger events, VISA, 8-25

troubleshooting. See questions and answers.

Type Cast function, 7-17

Index

© National Instruments Corporation I-27 LabVIEW User Manual

U
UDP (User Datagram Protocol), 21-3 to 21-4

broadcasting, B-2

compared with TCP, 21-5, B-2

mechanism of, 21-3 to 21-4

overview, 21-3

port numbers, B-2

UDP Open VI, 21-3

UDP Read VI, 21-3

UDP Write VI, 21-3

Uniform White Noise VI

computing frequency and impulse
response (example), 15-9

extracting sine wave (example), 16-23

uninitialized shift registers, 3-17 to 3-18

Update Mode submenu, 3-2

User Datagram Protocol (UDP). See UDP
(User Datagram Protocol).

utility VIs, for instrument drivers, 7-6

V
Variance VI, compared with Sample Variance

VI, 19-5

vertical switch, adding to front panel
(example), 3-5

VI libraries

advantages of, 2-2

when to use, 2-2

VI profile feature, 29-3

VI Setup option, 26-1. See also subVI Node
Setup options.

Execution Options, 26-4

programming considerations,
29-2 to 29-3

Window Options, 26-1, 26-5

Virtual Instrument Software Architecture
(VISA). See VISA.

virtual instruments. See also subVIs; VIs.

defined, 1-1

VIs. See also subVIs.

building, 2-1 to 2-12

bad wires, 2-6

controls, constants, and indicators,
2-2 to 2-3

deleting wires, 2-5 to 2-6

documenting VIs, 2-10 to 2-12

hierarchy of VIs, 2-1 to 2-2

terminals, 2-3

tip strips, 2-4 to 2-5

tutorial for, 2-7 to 2-9

wire stretching, 2-5

wiring techniques, 2-4 to 2-6

customizing, 26-1 to 26-8

subVI Node Setup option,
26-2 to 26-8

VI Setup option, 26-1

Windows Options, 26-1

debugging, 4-6 to 4-21

highlighting execution, 2-21

highlighting execution (tutorial), 2-23

probe tool (tutorial), 2-22 to 2-23

single-stepping, 2-21 to 2-22

single-stepping (tutorial), 2-23

using LabVIEW (tutorial),
2-22 to 2-23

defined, 2-1

front panel, defined, 1-2

hierarchical structure, 2-1 to 2-2

icon/connector, 1-2

overview, 1-3

structure, 1-2

using as DDE servers, 23-4 to 23-6

VISA, 8-1 to 8-34

adaptability to future needs, 8-2

basic concepts, 8-3 to 8-10

debugging VISA programs, 8-31 to 8-32

NI Spy for Windows 95/NT, 8-32

Index

LabVIEW User Manual I-28 © National Instruments Corporation

Default Resource Manager

purpose and use, 8-3

relationship with instrument
descriptors and sessions, 8-7

defined, 8-1

Easy VISA IO VIs

disadvantages of using, 7-12

purpose and use, 8-11

testing instrument driver
communication, 7-11 to 7-12

error handling, 8-9 to 8-10

instrument descriptors, 8-7

interface independence, 8-2

internal structure of VISA API
(figure), 8-3

interrupt events, 8-25 to 8-26

locking, 8-26 to 8-28

mechanism of, 8-26 to 8-27

shared locking, 8-28

message-based communication,
8-11 to 8-12

VISA Read VI, 8-11

VISA Write VI, 8-11

writing and reading message-based
devices, 8-12

multiple interface support issues

multiple GPIB-VXI support, 8-30

serial port support, 8-30

VME support, 8-30 to 8-31

VXI and GPIB platforms, 8-29

NI-VISA hierarchy (figure), 8-1

platform independence, 8-2

platform-specific issues, 8-28 to 8-31

GPIB and GPIB-VXI systems, 8-28

multiple application support, 8-29

multiple interface support issues,
8-29 to 8-31

programming considerations, 8-29

supported platforms and
environments, 8-1

VXI and MXI systems, 8-28

Windows95/NT users, 8-28

popping up on controls, 8-6

register-based communication
(VXI only), 8-12 to 8-18

basic register access, 8-14

bus errors, 8-17

high-level vs. low-level access,
8-17 to 8-18

low-level access functions,
8-15 to 8-17

MEMACC session (note), 8-16

VISA In VIs, 8-12 to 8-13

VISA Move In VIs, 8-15

VISA Out VIs, 8-14

resources

defined, 8-3

searching for, 8-4 to 8-5

sessions

abnormally closed sessions (note),
8-8

closing, 8-8 to 8-9

defined, 8-3

front panel control, 8-7

opening, 8-6 to 8-7

relationship with Default Resource
Manager, 8-7

when to leave open, 8-8 to 8-9

standard API for instrument drivers, 8-2

VISA Class, 8-5

VISAIC, 8-32 to 8-34

VISA class, 8-5 to 8-6

defined, 8-5

popping up on VISA control, 8-6

setting properties with property node, 8-19

VISA Close function

closing sessions, 8-8

illustration, 8-8

using in simple instrument drivers, 7-13

Index

© National Instruments Corporation I-29 LabVIEW User Manual

VISA events, 8-24 to 8-26

GPIB SRQ events, 8-24

interrupt events, 8-25 to 8-26

trigger events, 8-25

VISA Find Resource function, 8-4 to 8-5

instrument descriptor, 8-5

search expressions (table), 8-4

VISA functions

as source of errors in instrument
drivers, 7-11

basic functions needed for instrument
drivers, 7-13

VISA In 16 VI, 8-13

VISA In operations, 8-12 to 8-13

VISA Interactive Control (VISAIC),
8-32 to 8-34

VISA Map Address operation, 8-15

VISA Move In VIs, 8-15

VISA Move Out VIs, 8-15

VISA Open VI

illustration, 8-6

opening sessions, 8-6 to 8-7

using in simple instrument drivers, 7-13

VISA session input, 8-7

VISA Out 16 VI, 8-14

VISA Out operations, 8-14

VISA properties, 8-18 to 8-24

changing VISA class, 8-19 to 8-20

examples, 8-22 to 8-24

getting descriptions of properties, 8-20

global, 8-20

GPIB, 8-21

local, 8-20

property node, 8-18 to 8-19

read only properties (note), 8-19

serial, 8-20

serial write and read (example), 8-22

setting termination character for read
operation (example), 8-22 to 8-23

VXI, 8-21

VXI properties (example), 8-23 to 8-24

VISA Read VI

message-based communication, 8-11

using in simple instrument drivers, 7-13

VISA Status Description VI, 8-10

VISA Unmap Address operation, 8-16

VISA Write VI, 8-11

VME support, VISA, 8-30 to 8-31

VXI. See also register-based communication
(VXI only), in VISA.

VISA support issues, 8-29

adding multiple controllers, 8-30

VXI properties, VISA

example, 8-23 to 8-24

VXI Logical Address, 8-21

VXI Memory Address Base, 8-21

VXI Memory Address Size, 8-21

VXI Memory Address Space, 8-21

W
Wait on Event Async VI, 8-24

Wait on Event VI, 8-26

Wait Until Next ms Multiple function

Attribute Node example, 27-4

graph and analysis VI example, 5-24

shift register example, 3-16

subVI Node Setup options example, 26-8

While Loop example, 3-11

wave and pattern VIs, 12-7 to 12-13

building function generator (tutorial),
12-11 to 12-13

phase control, 12-7 to 12-8

sine wave and sine pattern VI (tutorial),
12-8 to 12-10

waveform chart

subVI Node Setup options example, 26-6

using with While Loop (tutorial),
3-5 to 3-7

waveform function generator (example),
12-11 to 12-13

Index

LabVIEW User Manual I-30 © National Instruments Corporation

waveform graphs, multiplot (example),
5-7 to 5-8

While Loops, 3-4 to 3-12. See also shift
registers.

auto-indexing, 5-2 to 5-3

block diagram (example), 3-6 to 3-7

defined, 3-4

equivalent pseudocode, 3-4

front panel (example), 3-5 to 3-6

illustration, 3-4

mechanical action of Boolean switches,
3-8 to 3-9

overview, 1-3

preventing code execution in first
iteration, 3-12

timing, 3-10 to 3-11

waveform chart used with (tutorial),
3-5 to 3-7

window design method, for FIR filters, 16-17

Window Options, 26-1, 26-5

windowed FIR filters, 16-19

windowing functions

exponential window, 14-12 to 14-13

flattop window, 14-11 to 14-12

Hamming window, 14-9

Hanning window, 14-8 to 14-9

Kaiser-Bessel window, 14-10

rectangular window, 14-7 to 14-8

triangle window, 14-11

Winsock drivers, B-2 to B-3

wires and wiring

bad wires, 2-6

color of wires, 2-4

dashed wires, 2-6

vs. dotted wires (note), 2-6

defined, 2-4

deleting, 2-5

junctions, 2-5

removing, 2-21

selecting wires, 2-5 to 2-6

tip strips, 2-4 to 2-5

wire stretching, 2-5

wire stubs (note), 2-5

Wiring tool

hot spot, 2-4

tip strips, 2-4

using mouse (figure), 2-4

Write Characters to File VI

appending data to file example, 6-15

purpose, 6-10

Write to Datalog File VI, 6-20

Write to Spreadsheet File VI

example, 6-13

purpose, 6-10

Write to Text file VI (example file), 6-19

X
X button (example), 3-20

XON/XOFF software handshaking, 10-2

Y
Y button (example), 3-20

Z
zero padding, 13-8

	LabVIEW User Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATI...

	Contents
	About This Manual
	Organization of This Manual
	Part I, Introduction to G Programming
	Part II, I/O Interfaces
	Part III, Analysis
	Part IV, Network and Interapplication Communicatio...
	Part V, Advanced G Programming
	Appendices, Glossary, and Index

	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	What Is LabVIEW?
	How Does LabVIEW Work?
	G Programming

	Organization of the LabVIEW System (Windows)
	Startup Screen on Windows

	Organization of the LabVIEW System (Macintosh)
	Organization of the LabVIEW System (UNIX)
	Toolkit Support
	Where Should I Start?

	Part I Introduction to G Programming
	Chapter 2 Creating VIs
	What is a Virtual Instrument?
	How Do You Build a VI?
	VI Hierarchy
	Controls, Constants, and Indicators
	Terminals
	Wires
	Tip Strips
	Wire Stretching
	Selecting and Deleting Wires
	Bad Wires

	VI Documentation

	What is a SubVI?
	Hierarchy Window
	Search Hierarchy

	Icon and Connector
	Opening, Operating, and Changing SubVIs

	How Do You Debug a VI?

	Chapter 3 Loops and Charts
	What is a Structure?
	Charts
	Chart Modes
	Faster Chart Updates
	Overlaid Versus Stacked Plots

	While Loops
	Mechanical Action of Boolean Switches
	Timing
	Preventing Code Execution in the First Iteration

	Shift Registers
	Using Uninitialized Shift Registers

	For Loops
	Numeric Conversion

	Chapter 4 Case and Sequence Structures and the Formula Node
	Case Structure
	VI Logic

	Sequence Structures
	Modifying the Numeric Format
	Setting the Data Range

	Formula Node
	Artificial Data Dependency

	Chapter 5 Arrays, Clusters, and Graphs
	Arrays
	How Do You Create and Initialize Arrays?
	Array Controls, Constants, and Indicators

	Auto�Indexing
	Multiplot Graphs
	Using Auto-Indexing to Set the For Loop Count
	Using Array Functions
	Build Array
	Initialize Array
	Array Size
	Array Subset
	Index Array

	Efficient Memory Usage: Minimizing Data Copies

	What is Polymorphism?
	Clusters
	Graphs
	Customizing Graphs
	Graph Cursors
	Graph Axes

	Data Acquisition Arrays

	Intensity Plots

	Chapter 6 Strings and File I/O
	Strings
	Creating String Controls and Indicators
	Strings and File I/O

	File I/O
	File I/O Functions

	Writing to a Spreadsheet File
	Using the File I/O Functions
	Specifying a File
	Paths and Refnums
	File I/O Examples

	Datalog Files

	Part II I/O Interfaces
	Chapter 7 Getting Started with a LabVIEW Instrument Driver
	What is a LabVIEW Instrument Driver?
	Where Can I Get Instrument Drivers?
	Where Should I Install My LabVIEW Instrument Drive...
	How Do I Access the Instrument Driver VIs?
	Instrument Driver Structure
	Obtaining Help for Your Instrument Driver VIs
	Running the Getting Started VI Interactively (Sele...
	Interactively Testing Component VIs
	Building Your Application
	Related Topics
	Open VISA Session Monitor VI
	Error Handling
	Testing Communication with Your Instrument

	Developing a Quick and Simple LabVIEW Instrument�D...
	Modifying an Existing Driver
	Developing a Simple Driver
	Developing a Full-Featured Driver
	Using LabVIEW with IVI Instrument Drivers

	Chapter 8 LabVIEW VISA Tutorial
	What is VISA?
	Supported Platforms and Environments

	Why Use VISA?
	VISA Is the Standard
	Interface Independence
	Platform Independence
	Easily Adapted to the Future

	Basic VISA Concepts
	Default Resource Manager, Session, and Instrument ...
	How Do I Search for Resources?
	What is a VISA Class?
	Popping Up on a VISA Control

	Opening a Session
	How Do the Default Resource Manager, Instrument De...
	Closing a Session
	When Is It a Good Idea to Leave a Session Open?

	Error Handling with VISA

	Easy VISA VIs
	Message-Based Communication
	How Do I Write To and Read From a Message-Based De...

	Register-Based Communication (VXI only)
	Basic Register Access
	Basic Register Move
	Low-Level Access Functions
	Using VISA to Perform Low-Level Register Accesses
	Bus Errors

	Comparison of High-Level and Low-Level Access
	Speed
	Ease of Use
	Accessing Multiple Address Spaces

	VISA Properties
	Serial
	GPIB
	VXI
	VISA Property Examples
	Serial Write and Read
	How Do I Set a Termination Character for�a�Read�Op...
	VXI Properties

	Events
	GPIB SRQ Events
	Trigger Events
	Interrupt Events

	Locking
	Shared Locking

	Platform-Specific Issues
	Programming Considerations
	Multiple Applications Using the NI-VISA Driver

	Multiple Interface Support Issues
	VXI and GPIB Platforms
	Multiple GPIB-VXI Support
	Serial Port Support
	VME Support

	Debugging A VISA Program
	Debugging Tool for Windows 95/NT

	VISAIC

	Chapter 9 Introduction to LabVIEW GPIB Functions
	Types of Messages
	The Controller-In-Charge and System Controller
	Compatible GPIB Hardware
	LabVIEW for Windows 95 and Windows 95-Japanese
	LabVIEW for Windows NT
	LabVIEW for Windows 3.1
	LabVIEW for Mac OS
	LabVIEW for HP-UX
	LabVIEW for Sun
	LabVIEW for Concurrent PowerMAX

	Chapter 10 Serial Port VIs
	Handshaking Modes
	Software Handshaking—XON/XOFF

	Error Codes
	Port Number
	Windows 95 and 3.x
	Macintosh
	UNIX

	Part III Analysis
	Chapter 11 Introduction to Analysis in LabVIEW
	The Importance of Data Analysis
	Full Development System
	Analysis VI Overview
	Notation and Naming Conventions
	Data Sampling
	Sampling Signals
	Sampling Considerations
	Why Do You Need Anti-Aliasing Filters?
	Why Use Decibels?

	Chapter 12 Signal Generation
	Normalized Frequency
	Wave and Pattern VIs
	Phase Control

	Chapter 13 Digital Signal Processing
	The Fast Fourier Transform (FFT)
	DFT Calculation Example
	Magnitude and Phase Information

	Frequency Spacing between DFT/FFT Samples
	Fast Fourier Transforms
	Zero Padding
	FFT VIs in the Analysis Library
	Two-Sided FFT
	One-Sided FFT

	The Power Spectrum
	Loss of Phase Information
	Frequency Spacing between Samples

	Summary

	Chapter 14 Smoothing Windows
	Introduction to Smoothing Windows
	About Spectral Leakage and Smoothing Windows
	Windowing Applications
	Characteristics of Different Types of Window Funct...
	Rectangular (None)
	Hanning
	Hamming
	Kaiser-Bessel
	Triangle
	Flattop
	Exponential

	Windows for Spectral Analysis Versus Windows for�C...
	What Type of Window Do I Use?

	Chapter 15 Spectrum Analysis and Measurement
	Introduction to Measurement VIs
	You Will Learn
	Spectrum Analysis
	Calculating the Amplitude and Phase Spectrum of a ...
	Calculating the Frequency Response of a System

	Harmonic Distortion
	Total Harmonic Distortion
	Using the Harmonic Analyzer VI

	Summary

	Chapter 16 Filtering
	Introduction to Digital Filtering Functions
	Ideal Filters
	Practical (Nonideal) Filters
	The Transition Band
	Passband Ripple and Stopband Attenuation

	IIR and FIR Filters
	Filter Coefficients

	Infinite Impulse Response Filters
	Cascade Form IIR Filtering
	Butterworth Filters
	Chebyshev Filters
	Chebyshev II or Inverse Chebyshev Filters
	Elliptic (or Cauer) Filters
	Bessel Filters

	Finite Impulse Response Filters
	Designing FIR Filters by Windowing
	Designing Optimum FIR Filters Using the Parks-McCl...
	Designing Narrowband FIR Filters
	Windowed FIR Filters
	Optimum FIR Filters
	FIR Narrowband Filters

	Nonlinear Filters
	How Do I Decide Which Filter to Use?
	Summary

	Chapter 17 Curve Fitting
	Introduction to Curve Fitting
	Applications of Curve Fitting

	General LS Linear Fit Theory
	How to Use the General LS Linear Fit VI
	Building the Observation Matrix

	Nonlinear Lev-Mar Fit Theory
	Using the Nonlinear Lev-Mar Fit VI

	Chapter 18 Linear Algebra
	Linear Systems and Matrix Analysis
	Types of Matrices
	Determinant of a Matrix
	Transpose of a Matrix
	Can You Obtain One Vector as a Linear Combination ...
	How Can You Determine Linear Independence? (Matrix...

	 Magnitude” (Norms) of Matrices
	Determining Singularity (Condition Number)

	Basic Matrix Operations and Eigenvalues-Eigenvecto...
	Dot Product and Outer Product
	Eigenvalues and Eigenvectors

	Matrix Inverse and Solving Systems of Linear Equat...
	Solutions of Systems of Linear Equations

	Matrix Factorization
	Pseudoinverse

	Summary

	Chapter 19 Probability and Statistics
	Probability and Statistics
	Statistics
	Mean
	Median
	Sample Variance
	Standard Deviation
	Mode
	Moment About Mean
	Histogram
	Mean Square Error (MSE)
	Root Mean Square (RMS)

	Probability
	Random Variables
	Normal Distribution

	Summary

	Part IV Network and Interapplication Communication
	Chapter 20 Introduction to Communication
	LabVIEW Communication Overview
	Introduction to Communication Protocols
	File Sharing Versus Communication Protocols
	Client/Server Model
	A General Model for a Client
	A General Model for a Server

	Chapter 21 TCP and UDP
	Overview
	LabVIEW and TCP/IP
	Internet Addresses

	Internet Protocol (IP)
	User Datagram Protocol (UDP)
	Using UDP

	Transmission Control Protocol (TCP)
	Using TCP
	TCP Versus UDP
	TCP Client Example
	Timeouts and Errors
	TCP Server Example
	TCP Server with Multiple Connections

	Setup
	UNIX
	Macintosh
	Windows 3.x
	Windows 95 and Windows NT

	Chapter 22 ActiveX Support
	ActiveX Automation Server Functionality
	ActiveX Server Properties and Methods
	ActiveX Automation Client Functionality
	ActiveX Client Examples
	Converting ActiveX Variant Data to G Data
	Adding a Workbook to Microsoft Excel from LabVIEW

	Chapter 23 Using DDE
	DDE Overview
	Services, Topics, and Data Items
	Examples of Client Communication with Excel
	LabVIEW VIs as DDE Servers
	Requesting Data Versus Advising Data
	Synchronization of Data
	Networked DDE
	Using NetDDE

	Chapter 24 AppleEvents
	AppleEvents
	Sending AppleEvents
	Client Server Model
	AppleEvent Client Examples
	Launching Other Applications
	Sending Events to Other Applications
	Dynamically Loading and Running a VI

	Chapter 25 Program-to-Program Communication
	Introduction to PPC
	Ports, Target IDs, and Sessions
	PPC Client Example
	PPC Server Example
	PPC Server with Multiple Connections

	Part V Advanced G Programming
	Chapter 26 Customizing VIs
	How Do You Customize a VI?
	Set Window Options
	SubVI Node Setup

	Chapter 27 Front Panel Object Attributes
	Chapter 28 Program Design
	Use Top-Down Design
	Make a List of User Requirements
	Design the VI Hierarchy
	Create the Program

	Plan Ahead with Connector Panes
	SubVIs with Required Inputs

	Good Diagram Style
	Watch for Common Operations
	Use Left-to-Right Layouts
	Check for Errors
	Watch Out for Missing Dependencies
	Avoid Overuse of Sequence Structures
	Study the Examples

	Chapter 29 Where to Go from Here
	Other Useful Resources
	Solution Wizard and Search Examples
	Data Acquisition Applications
	G Programming Techniques
	Function and VI Reference

	Resources for Advanced Topics
	Attribute Nodes
	VI Setup and Preferences
	Local and Global Variables
	Creating SubVIs
	VI Profiles
	Control Editor
	List and Ring Controls
	Call Library Function
	Code Interface Nodes

	Appendix A Analysis References
	Appendix B Common Questions
	Communications Common Questions
	Questions for All Platforms
	Windows Only
	Macintosh Only

	GPIB
	All Platforms
	Windows Only

	Serial I/O
	All Platforms
	Windows Only
	Sun Only

	Appendix C Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	LabVIEW Hardware and Software Configuration�Form
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	Numbers/Symbols
	A
	B
	C
	D
	E-F
	G
	H-I
	L-M
	N-O
	P-R
	S
	T
	U-V
	W

	Index
	A
	B
	C
	D
	E-F
	G
	H
	I
	J-L
	M
	N-P
	Q
	R-S
	T
	U-V
	W
	X-Z

	Figures
	Figure 11-1. Analog Signal and Corresponding Sampl...
	Figure 11-2. Aliasing Effects of an Improper Sampl...
	Figure 11-3. Actual Signal Frequency Components
	Figure 11-4. Signal Frequency Components and Alias...
	Figure 11-5. Effects of Sampling at Different Rate...
	Figure 14-1. Periodic Waveform Created from Sample...
	Figure 14-2. Sine Wave and Corresponding Fourier T...
	Figure 14-3. Spectral Representation When Sampling...
	Figure 14-4. Time Signal Windowed Using a Hamming ...
	Figure 22-1. Preferences Dialog Box, Server Config...
	Figure 22-2. Block Diagram Displaying ActiveX Vari...
	Figure 22-3. Adding a Workbook to Microsoft Excel
	Figure 25-1. PPC VI Execution Order (Used by Permi...

	Tables
	Table 22-1. Functions for ActiveX Automation Clien...
	Table 23-1. Values to Add in Place of Default

	Activities
	Activity 2-1. Create a VI
	Activity 2-2. Document a VI
	Activity 2-3. Create an Icon and Connector
	Activity 2-4. Call a SubVI
	Activity 2-5. Debug a VI in LabVIEW
	Activity 3-1. Experiment with Chart Modes
	Activity 3-2. Use a While Loop and a Chart
	Activity 3-3. Change the Mechanical Action of a Boolean Switch
	Activity 3-4. Control Loop Timing
	Activity 3-5. Use a Shift Register
	Activity 3-6. Create a Multiplot Chart
	Activity 3-7. Use a For Loop
	Activity 4-1. Use the Case Structure
	Activity 4-2. Use a Sequence Structure
	Activity 4-3. Use the Formula Node
	Activity 5-1. Create an Array with Auto-Indexing
	Activity 5-2. Use Auto-Indexing on Input Arrays
	Activity 5-3. Use the Build Array Function
	Activity 5-4. Use the Graph and Analysis VIs
	Activity 6-1. Concatenate a String
	Activity 6-2. Use Format Strings
	Activity 6-3. String Subsets and Number Extraction
	Activity 6-4. Write to a Spreadsheet File
	Activity 6-5. Append Data to a File
	Activity 6-6. Read Data from a File
	Activity 12-1. Learn More about Normalized Frequency
	Activity 12-2. Use the Sine Wave and Sine Pattern VIs
	Activity 12-3. Build a Function Generator
	Activity 13-1. Use the Real FFT VI
	Activity 14-1. Compare a Windowed and Nonwindowed Signal
	Activity 15-1. Use the Amplitude and Phase Spectrum VI
	Activity 15-2. Compute the Frequency and Impulse Response
	Activity 15-3. Calculate Harmonic Distortion
	Activity 16-1. Extract a Sine Wave
	Activity 17-1. Use the Curve Fitting VIs
	Activity 17-2. Use the General LS Linear Fit VI
	Activity 17-3. Use the Nonlinear Lev-Mar Fit VI
	Activity 18-1. Compute the Inverse of a Matrix
	Activity 18-2. Solve a System of Linear Equations
	Activity 19-1. Use the Normal Distribution VI
	Activity 26-1. Use Setup Options for a SubVI
	Activity 27-1. Use an Attribute Node

