

 NB-GPIB

https://www.apexwaves.com/modular-systems/national-instruments/nb-series/NB-GPIB?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/nb-series/NB-GPIB?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/nb-series/NB-GPIB?aw_referrer=pdf

NI-488.2™ User
Manual for MacOS

NI-488.2 User Manual for MacOS

July 1997 Edition

Part Number 320897B-01

© Copyright 1995, 1997 National Instruments Corporation. All rights reserved.

support@natinst.com
E-mail: info@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

BBS United States: (512) 794-5422

BBS United Kingdom: 01635 551422

BBS France: 01 48 65 15 59

(512) 418-1111

Tel: (512) 795-8248

Fax: (512) 794-5678

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,

Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30,

Hong Kong 2645 3186, Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970,

Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,

Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51,

Taiwan 02 377 1200, United Kingdom 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

Fax-on-Demand Support

Telephone Support (U.S.)

International Offices

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action
against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part,
without the prior written consent of National Instruments Corporation.

Trademarks

NI-488®, NI-488.2™, and TNT4882C™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all traditional
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent serious injury
or death should always continue to be used when National Instruments products are being used. National Instruments
products are NOT intended to be a substitute for any form of established process, procedure, or equipment used to
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v NI-488.2 User Manual for MacOS

Table

of

Contents

About This Manual
How to Use This Manual Set ...xi

Organization of This Manual ...xii

Conventions Used in This Manual...xiii

Related Documentation..xiii

Customer Communication ...xiv

Chapter 1
Introduction

GPIB Overview..1-1

Talkers, Listeners, and Controllers..1-1

Controller-In-Charge and System Controller ..1-2

GPIB Addressing...1-2

Sending Messages Across the GPIB ...1-3

Data Lines ...1-3

Handshake Lines ...1-3

Interface Management Lines...1-4

Setting Up and Configuring Your System...1-4

Controlling More Than One Board...1-5

Configuration Requirements ...1-6

NI-488.2 Software Components ..1-7

NI-488.2 Driver and Driver Utilities ...1-7

C Language Files...1-8

FutureBASIC Language Files ...1-8

How the NI-488.2 Software Works with Your System.....................................1-9

Chapter 2
Developing Your Application

Choosing a Programming Method ...2-1

Using the NI-488.2 Language Interface ..2-1

Using NI-488 Functions: One Device for Each Board.....................................2-1

NI-488 Device Functions ..2-2

NI-488 Board Functions..2-2

NI-488.2 User Manual for MacOS vi © National Instruments Corporation

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices 2-3

Checking Status with Global Variables.. 2-3

Status Word—ibsta... 2-3

Error Variable—iberr.. 2-5

Count Variables—ibcnt and ibcntl ... 2-5

Using IBIC 488.2 to Communicate with Devices... 2-6

Writing Your NI-488 Application ... 2-6

Items to Include... 2-6

NI-488 Program Shell ... 2-7

General Program Steps and Examples .. 2-8

Step 1. Open a Device .. 2-8

Step 2. Clear the Device ... 2-8

Step 3. Configure the Device.. 2-9

Step 4. Trigger the Device .. 2-9

Step 5. Wait for the Measurement .. 2-10

Step 6. Read the Measurement ... 2-11

Step 7. Process the Data ... 2-11

Step 8. Place the Device Offline... 2-11

Writing Your NI-488.2 Application .. 2-12

Items to Include... 2-12

NI-488.2 Program Shell... 2-13

General Program Steps and Examples .. 2-14

Step 1. Initialization.. 2-14

Step 2. Find All Listeners ... 2-14

Step 3. Identify the Instrument ... 2-15

Step 4. Initialize the Instrument.. 2-16

Step 5. Configure the Instrument.. 2-16

Step 6. Trigger the Instrument .. 2-17

Step 7. Wait for the Measurement .. 2-17

Step 8. Read the Measurement ... 2-18

Step 9. Process the Data ... 2-19

Step 10. Place the Board Offline .. 2-19

Compiling, Linking, and Running .. 2-19

C Applications .. 2-19

FutureBASIC Applications... 2-20

© National Instruments Corporation vii NI-488.2 User Manual for MacOS

Chapter 3
Debugging Your Application

Running NI-488.2 Test ..3-1

Debugging with the Global Status Variables ..3-1

Debugging with IBIC 488.2 ..3-1

GPIB Error Codes..3-2

Configuration Errors..3-3

Timing Errors ..3-3

Communication Errors ..3-4

Repeat Addressing ..3-4

Termination Method ...3-4

Common Questions..3-4

Chapter 4
Interface Bus Interactive Control Utility

Overview..4-1

Example Using NI-488 Functions ...4-1

IBIC 488.2 Syntax ...4-4

Number Syntax..4-5

String Syntax ...4-5

Address Syntax..4-5

IBIC 488.2 Syntax for NI-488 Functions ..4-6

IBIC 488.2 Syntax for NI-488.2 Routines ...4-9

Status Word..4-11

Error Information ...4-11

Count..4-12

Common NI-488 Functions ...4-12

ibdev ..4-12

ibwrt...4-14

ibrd...4-14

Common NI-488.2 Routines in IBIC 488.2...4-15

Set ..4-15

Send and SendList ...4-15

Receive ..4-16

Auxiliary Functions ...4-16

Set (Select Device or Board) ...4-17

Help (Display Help Information) ..4-17

! (Repeat Previous Function)...4-18

n* (Repeat Function n Times) ...4-18

$ (Execute Indirect File) ..4-18

Buffer (Set Buffer Display Mode)...4-19

NI-488.2 User Manual for MacOS viii © National Instruments Corporation

Chapter 5
GPIB Programming Techniques

Termination of Data Transfers .. 5-1

High-Speed Data Transfers (HS488) .. 5-2

Enabling HS488.. 5-2

System Configuration Effects on HS488.. 5-3

Waiting for GPIB Conditions ... 5-4

Device-Level Calls and Bus Management.. 5-4

Talker/Listener Applications ... 5-5

Waiting for Messages from the Controller ... 5-5

Requesting Service.. 5-5

Serial Polling ... 5-5

Service Requests from IEEE 488 Devices.. 5-6

Service Requests from IEEE 488.2 Devices ... 5-6

Automatic Serial Polling... 5-6

Stuck SRQ State ... 5-7

Autopolling and Interrupts.. 5-7

C “ON SRQ” Capability... 5-8

SRQ and Serial Polling with NI-488 Device Functions 5-8

SRQ and Serial Polling with NI-488.2 Routines .. 5-9

Example 1: Using FindRQS .. 5-10

Example 2: Using AllSpoll.. 5-11

Parallel Polling .. 5-11

Implementing a Parallel Poll... 5-11

Parallel Polling with NI-488 Functions .. 5-12

Parallel Polling with NI-488.2 Routines... 5-13

Chapter 6
GPIB Configuration Utility

Overview ... 6-1

Running the Configuration Utility... 6-1

Opening the Configuration Utility .. 6-1

Default Configuration ... 6-3

Control Items... 6-4

Help Frame.. 6-4

Global Frame... 6-5

© National Instruments Corporation ix NI-488.2 User Manual for MacOS

Bus/Device Frame ...6-6

Options for Buses or Devices..6-8

Primary Address ...6-8

Secondary Address ...6-8

Repeat Addressing..6-9

Timeout...6-9

EOS Modes...6-9

EOS Byte ..6-9

Options for Buses Only...6-10

Bus Timing ...6-10

TNT High Speed...6-10

DMA...6-10

System Controller ...6-11

Assert REN when System (Controller)6-11

Unaddressing ..6-11

Options for Devices Only ...6-11

Rename Device...6-11

Use Bus...6-12

Exiting the Configuration Utility ...6-12

Appendix A
Status Word Conditions

Appendix B
Error Codes and Solutions

Appendix C
Customer Communication

Glossary

Index

NI-488.2 User Manual for MacOS x © National Instruments Corporation

Figures
Figure 1-1. Linear and Star System Configuration.. 1-5

Figure 1-2. Example of Multiboard System Setup .. 1-6

Figure 1-3. How the NI-488.2 Software Works with Your System 1-9

Figure 2-1. General Program Shell Using NI-488 Device Functions........................ 2-7

Figure 2-2. General Program Shell Using NI-488.2 Routines................................... 2-13

Figure 6-1. Opening Screen of NI-488 Config .. 6-2

Figure 6-2. Device Default Settings in NI-488 Config.. 6-3

Figure 6-3. Help Frame in NI-488 Config... 6-5

Figure 6-4. Manual Bus Association in NI-488 Config .. 6-6

Tables
Table 1-1. GPIB Address Bits .. 1-2

Table 1-2. GPIB Handshake Lines... 1-3

Table 1-3. GPIB Interface Management Lines .. 1-4

Table 2-1. Status Word (ibsta) Layout ... 2-4

Table 3-1. GPIB Error Codes ... 3-2

Table 4-1. Syntax for Board-Level NI-488 Functions in IBIC 488.2 4-6

Table 4-2. Syntax for Device-Level NI-488 Functions in IBIC 488.2..................... 4-7

Table 4-3. Syntax for NI-488.2 Routines in IBIC 488.2 .. 4-9

Table 4-4. Auxiliary Functions in IBIC 488.2 ... 4-16

Table 6-1. Bus/Device Options in NI-488 Config ... 6-7

Table A-1. Status Word Bits ... A-1

Table B-1. GPIB Error Codes ... B-1

© National Instruments Corporation xi NI-488.2 User Manual for MacOS

About

This

Manual

This manual describes the features and functions of the NI-488.2

software for MacOS. This manual assumes that you are already familiar

with the Macintosh operating system.

How to Use This Manual Set

Use the getting started manual that came with your kit to install and

configure your GPIB hardware and NI-488.2 software.

Use the NI-488.2 User Manual for MacOS to learn the basics of GPIB

and how to develop an application program. The user manual also

contains debugging information and detailed examples.

NI-488.2 Function
Reference Manual

for MacOS

Function
and Routine
Descriptions

Novice
Users

Experienced
Users

Getting Started
Manual

Installation and
Configuration

NI-488.2
User Manual for

 MacOS

Application
Development
and Examples

About This Manual

NI-488.2 User Manual for MacOS xii © National Instruments Corporation

Use the NI-488.2 Function Reference Manual for MacOS for specific

NI-488 function and NI-488.2 routine information, such as format,

parameters, and possible errors.

Organization of This Manual

This manual is organized as follows:

• Chapter 1, Introduction, gives an overview of GPIB and the

NI-488.2 software.

• Chapter 2, Developing Your Application, explains how to develop

a GPIB application program using NI-488 functions and NI-488.2

routines.

• Chapter 3, Debugging Your Application, describes several ways to

debug your application program.

• Chapter 4, Interface Bus Interactive Control Utility, introduces

you to IBIC 488.2, the interactive control utility you can use to

communicate with GPIB devices interactively.

• Chapter 5, GPIB Programming Techniques, describes techniques

for using some NI-488 functions and NI-488.2 routines in your

application program.

• Chapter 6, GPIB Configuration Utility, contains instructions for

configuring the NI-488.2 software with the NI-488 Config utility.

• Appendix A, Status Word Conditions, gives a detailed description

of the conditions reported in the status word, ibsta.

• Appendix B, Error Codes and Solutions, lists a description of each

error, some conditions under which it might occur, and possible

solutions.

• Appendix C, Customer Communication, contains forms you can

use to request help from National Instruments or to comment on our

products and manuals.

• The Glossary contains an alphabetical list and description of terms

used in this manual, including abbreviations, acronyms, metric

prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in

this manual, including the page where you can find each one.

About This Manual

© National Instruments Corporation xiii NI-488.2 User Manual for MacOS

Conventions Used in This Manual

The following conventions are used in this manual.

bold Bold text denotes commands, menus, menu items, options, and screen

button names and checkboxes.

italic Italic text denotes emphasis, cross references, field names, or an

introduction to a key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that you enter from the

keyboard. Sections of code, programming examples, and syntax

examples also appear in this font. This font is also used for the proper

name of disk drives, paths, directories, device names, variables, and for

statements taken from program code.

bold monospace Bold text in this font denotes the messages and responses that the

computer automatically prints to the screen.

italic monospace Italic text in this font denotes that you must supply the appropriate

words or values in the place of these items.

<> Angle brackets enclose the name of a key on the keyboard—for

example, <Shift>.

IEEE 488 and IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard 488.1-1987

IEEE 488.2 and the ANSI/IEEE Standard 488.2-1987, respectively, which define

the GPIB.

Macintosh Macintosh refers to any computer using MacOS.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and

terms are listed in the Glossary.

Related Documentation

The following documents contain information that you may find helpful

as you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface

for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1987, IEEE Standard Codes, Formats,

Protocols, and Common Commands

• Inside Macintosh, Apple Computer, Inc., Reading, MA, 1987

• Macintosh Programmer's Workshop, Version 3.3, Apple

Computer, Inc., Cupertino, CA, 1993

About This Manual

NI-488.2 User Manual for MacOS xiv © National Instruments Corporation

• Metrowerks CodeWarrior User’s Guide, Metrowerks, Inc.,

Mooers, NY

• FutureBASIC, STAZ Software, Inc., Diamondhead, MS, 1996

• THINK C User's Manual, Symantec Corp., Bedford, MA

Customer Communication

National Instruments wants to receive your comments on our products

and manuals. We are interested in the applications you develop with

our products, and we want to help if you have problems with them.

To make it easy for you to contact us, this manual contains comment

and configuration forms for you to complete. These forms are in

Appendix C, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 NI-488.2 User Manual for MacOS

Chapter

1Introduction

This chapter gives an overview of GPIB and the NI-488.2 software.

GPIB Overview

The ANSI/IEEE Standard 488.1-1987, also known as GPIB

(General Purpose Interface Bus), describes a standard interface for

communication between instruments and controllers from various

vendors. It contains information about electrical, mechanical, and

functional specifications. The GPIB is a digital, 8-bit parallel

communications interface with data transfer rates of 1 MB/s and above.

The bus supports one System Controller, usually a computer, and up to

14 additional instruments. The ANSI/IEEE Standard 488.2-1987

extends IEEE 488.1 by defining a bus communication protocol, a

common set of data codes and formats, and a generic set of common

device commands.

Talkers, Listeners, and Controllers
GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends

out data messages. Listeners receive data messages. The Controller,

usually a computer, manages the flow of information on the bus. It

defines the communication links and sends GPIB commands to devices.

Some devices are capable of playing more than one role. A digital

voltmeter, for example, can be a Talker and a Listener. If your personal

computer has a National Instruments GPIB interface board and the

NI-488.2 software installed, it can function as a Talker, Listener, and

Controller.

Chapter 1 Introduction

NI-488.2 User Manual for MacOS 1-2 © National Instruments Corporation

Controller-In-Charge and System Controller
You can have multiple Controllers on the GPIB, but only one Controller

at a time can be the active Controller, or Controller-In-Charge (CIC).

When a Controller is not active, it is considered an idle Controller.

Active control can pass from the current CIC to an idle Controller.

The System Controller, usually a GPIB interface board, is the only

device on the bus that can make itself the CIC.

GPIB Addressing
All devices and boards connected to the GPIB must be assigned a

unique GPIB address. The Controller uses the addresses to identify each

device when sending or receiving data. A GPIB address is made up of

two parts: a primary address and an optional secondary address.

The primary address is a number in the range 0 to 30. The GPIB

Controller uses the primary address to form a talk or listen address that

is sent over the GPIB when communicating with a device.

A talk address is formed by setting bit 6, the TA (Talk Active) bit of

the GPIB address. A listen address is formed by setting bit 5, the LA

(Listen Active) bit of the GPIB address. For example, if a device is at

address 1, the Controller sends hex 41 (address 1 with bit 6 set) to make

the device a Talker. Because the Controller is usually at primary

address 0, it sends hex 20 (address 0 with bit 5 set) to make itself a

Listener. Table 1-1 shows the configuration of the GPIB address bits.

With some With some devices, you can use secondary addressing.

A secondary address is a number in the range hex 60 to hex 7E. When

secondary addressing is in use, the Controller sends the primary talk or

listen address of the device followed by the secondary address of the

device.

Table 1-1. GPIB Address Bits

Bit Position 7 6 5 4 3 2 1 0

Meaning 0 TA LA GPIB Primary Address (range 0 to 30)

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-488.2 User Manual for MacOS

Sending Messages Across the GPIB
Devices on the bus communicate by sending messages. Signals and

lines transfer these messages across the GPIB interface, which consists

of 16 signal lines and eight ground return (shield drain) lines. The

16 signal lines are discussed in the following sections.

Data Lines
Eight data lines, DIO1 through DIO8, carry both data and command

messages.

Handshake Lines
Three hardware handshake lines asynchronously control the transfer of

message bytes between devices. This process is a three-wire interlocked

handshake, and it guarantees that devices send and receive message

bytes on the data lines without transmission error. Table 1-2

summarizes the GPIB handshake lines.

Table 1-2. GPIB Handshake Lines

Line Description

NRFD (not ready for data) Listening device is ready/not ready to receive a message

byte. Also used by the Talker to signal high-speed

transfers (HS488).

NDAC (not data accepted) Listening device has/has not accepted a message byte.

DAV (data valid) Talking device indicates signals on data lines are stable

(valid) data.

Chapter 1 Introduction

NI-488.2 User Manual for MacOS 1-4 © National Instruments Corporation

Interface Management Lines
Five GPIB hardware lines manage the flow of information across the

bus. Table 1-3 summarizes the GPIB interface management lines.

Setting Up and Configuring Your System
Devices are usually connected with a cable assembly consisting of

a shielded 24-conductor cable with both a plug and receptacle

connector at each end. With this design, you can link devices in a

linear configuration, a star configuration, or a combination of the two.

Figure 1-1 shows the linear and star configurations.

Table 1-3. GPIB Interface Management Lines

Line Description

ATN (attention) Controller drives ATN true when it sends

commands and false when it sends data messages.

IFC (interface clear) System Controller drives the IFC line to initialize

the bus and make itself CIC.

REN (remote enable) System Controller drives the REN line to place

devices in remote or local program mode.

SRQ (service request) Any device can drive the SRQ line to

asynchronously request service from the Controller.

EOI (end or identify) Talker uses the EOI line to mark the end of a data

message. Controller uses the EOI line when it

conducts a parallel poll.

Chapter 1 Introduction

© National Instruments Corporation 1-5 NI-488.2 User Manual for MacOS

Figure 1-1. Linear and Star System Configuration

Controlling More Than One Board
Multiboard drivers, such as the NI-488.2 driver for MacOS, can control

more than one interface board. Figure 1-2 shows an example of a

multiboard system configuration. gpib0 is the access board for the

voltmeter, and gpib1 is the access board for the plotter and printer.

The control functions of the devices automatically access their

respective boards.

Device A

Device B

Device C

Device DDevice A

Device CDevice B

Linear Configuration Star Configuration

Chapter 1 Introduction

NI-488.2 User Manual for MacOS 1-6 © National Instruments Corporation

Figure 1-2. Example of Multiboard System Setup

Configuration Requirements
To achieve the high data transfer rate that the GPIB was designed for,

you must limit the physical distance between devices and the number of

devices on the bus. The following restrictions are typical:

• A maximum separation of four meters between any two devices and

an average separation of two meters over the entire bus

• A maximum total cable length of 20 m

• A maximum of 15 devices connected to each bus, with at least

two-thirds powered on

For high-speed operation, the following restrictions apply:

• All devices in the system must be powered on.

• Cable lengths should be as short as possible up to a maximum of

15 m of cable in each system.

• There must be at least one equivalent device load per meter of

cable.

gpib0

gpib1

One
GPIB

Digital
Voltmeter

Plotter

Printer

Another
GPIB

Chapter 1 Introduction

© National Instruments Corporation 1-7 NI-488.2 User Manual for MacOS

If you want to exceed these limitations, you can use bus extenders to

increase the cable length or expanders to increase the number of device

loads. Extenders and expanders are available from National

Instruments.

The following sections describe the NI-488.2 software, which controls

the flow of communication on the GPIB.

NI-488.2 Software Components

The following section highlights important elements of the NI-488.2

software for MacOS and describes the function of each element.

NI-488.2 Driver and Driver Utilities
The NI-488.2 software includes the following driver and utility files:

• Read Me is a documentation file that contains important

information about the NI-488.2 software and a description of any

new features. Before you use the software, read this file for the

most recent information.

• NI-488.2 Installer is an application that installs the NI-488.2

software.

• NI-488 INIT loads the appropriate drivers for installed National

Instruments GPIB interfaces. The NI-488 INIT is loaded into

memory when the Macintosh is booted

• NI-488 Config is a configuration utility that you can use to

examine or change the software settings.

• NI-488.2 Test is a software diagnostic utility.

• IBIC 488.2 is an interactive control program that you use to

communicate with the GPIB devices interactively using NI-488.2

functions and routines. It helps you to learn the NI-488.2 routines

and to program your instrument or other GPIB devices.

• NI-DMA/DSP is a system extension that provides DMA

functionality through an RTSI connection to an NB-DMA2800 or

NB-DMA-8.

• The Ethernet folder contains utilities that are applicable if you

have a National Instruments GPIB-ENET.

• MacGPIB.shlb is a shared library that programmers can use to call

NI-488.2 routines.

Chapter 1 Introduction

NI-488.2 User Manual for MacOS 1-8 © National Instruments Corporation

• IBDIAG NUBUS, IBDIAG PCI, and IBDIAG PCMCIA are hardware

diagnostic utilities.

• PCI_GPIB is a native PowerMac device driver which supports the

PCI-GPIB interface.

• PCCARD_GPIB is a native PowerMac device driver for PowerBooks

that adhere to PC Card 3.0.

C Language Files
The C LI Folder contains the following files relevant to programming

in THINK C, MPW C, and Metrowerks CodeWarrior C:

• decl.h is a file containing useful variable and constant

declarations.

• Devsamp.c is a device-level sample program.

• Samp4882.c is a sample program using NI-488.2 calls.

• MacGPIB68k(CodeWarrior).lib is a library file for Metrowerks

CodeWarrior compiler.

• MacGPIB68k(ThinkC).lib is a library file for THINK C

compiler.

• MacGPIB68k.o is a library file for MPW C compiler.

• MacGPIB.shlb is a shared library for developing applications for

PowerPC.

FutureBASIC Language Files
The BASIC LI Folder contains the following files relevant to

programming in FutureBASIC:

• FutureBASIC GPIB LI.lib is a library file loaded by your

FutureBASIC program.

• FutureBASIC GPIB LI.GLBL is a global file that must be included

at the beginning of your program.

• Devsamp.bas is a device-level sample program.

• Samp4882.bas is a sample program using NI-488.2 calls.

Chapter 1 Introduction

© National Instruments Corporation 1-9 NI-488.2 User Manual for MacOS

How the NI-488.2 Software Works with Your System
The NI-488.2 INIT is a device driver that is loaded at system startup.

Figure 1-3 shows how the NI-488.2 software works with your system

and your GPIB hardware.

Figure 1-3. How the NI-488.2 Software Works with Your System

IBIC 488.2 Utility for
Using NI-488.2

Commands Interactively
OR

User
Application
Program

NI-488.2 Language Interface

Operating System

NI-488.2 Driver

GPIB Hardware Interface

© National Instruments Corporation 2-1 NI-488.2 User Manual for MacOS

Chapter

2Developing Your Application

This chapter explains how to develop a GPIB application program using

NI-488 functions and NI-488.2 routines.

Choosing a Programming Method

Programs that need to communicate across the GPIB can access the

NI-488.2 driver using the NI-488.2 language interface.

Using the NI-488.2 Language Interface
Your NI-488.2 software includes two distinct sets of subroutines to

meet your application needs. For most application programs, the NI-488

functions are sufficient. You should use the NI-488.2 routines if you

have a complex configuration with one or more interface boards and

multiple devices.

The following sections discuss some differences between NI-488

functions and NI-488.2 routines.

Using NI-488 Functions: One Device for Each Board
If your system has only one device attached to each board, the NI-488

functions are probably sufficient for your programming needs. Some

other factors that make the NI-488 functions more convenient include

the following:

• With NI-488 asynchronous I/O functions (ibcmda, ibrda, and

ibwrta), you can initiate an I/O sequence while maintaining

control over the CPU for non-GPIB tasks.

• NI-488 functions include built-in file transfer functions (ibrdf and

ibwrtf).

• With NI-488 functions, you can control the bus in non-typical ways

or communicate with non-compliant devices.

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-2 © National Instruments Corporation

The NI-488 functions consist of high-level (or device) functions that

hide much of the GPIB management operations and low-level (or

board) functions that offer you more control over the GPIB than

NI-488.2 routines. The following sections describe these different

function types.

NI-488 Device Functions
Device functions are high-level functions that automatically execute

commands that handle bus management operations such as reading

from and writing to devices or polling them for status. If you use device

functions, you do not need to understand GPIB protocol or bus

management. For information about device-level calls and how they

manage the GPIB, refer to Device-Level Calls and Bus Management in

Chapter 5, GPIB Programming Techniques.

NI-488 Board Functions
Board functions are low-level functions that perform rudimentary GPIB

operations. Board functions access the interface board directly and

require you to handle the addressing and bus management protocol. In

cases when the high-level device functions might not meet your needs,

low-level board functions give you the flexibility and control to handle

situations such as the following:

• Communicating with non-compliant (non-IEEE 488.2) devices

• Altering various low-level board configurations

• Managing the bus in non-typical ways

The NI-488 board functions are compatible with, and can be

interspersed within, sequences of NI-488.2 routines. When you use

board functions within a sequence of NI-488.2 routines, you do not need

a prior call to ibfind to obtain a board descriptor. You simply

substitute the board index as the first parameter of the board function

call. With this flexibility, you can handle non-standard or unusual

situations that you cannot resolve using NI-488.2 routines only.

Chapter 2 Developing Your Application

© National Instruments Corporation 2-3 NI-488.2 User Manual for MacOS

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices
When your system includes a board that must access more than one

device, use the NI-488.2 routines. NI-488.2 routines can perform the

following tasks with a single call:

• Find all of the Listeners on the bus

• Find a device requesting service

• Determine the state of the SRQ line, or wait for SRQ to be asserted

• Address multiple devices to listen

Checking Status with Global Variables
Each NI-488 function and NI-488.2 routine updates the global variables

to reflect the status of the device or board that you are using. The status

word (ibsta), the error variable (iberr), and the count variables

(ibcnt and ibcntl) contain useful information about the performance

of your application program. Your program should check these

variables frequently. The following sections describe each of these

global variables and how you can use them in your application program.

You can print out the values of the global variables at any time while

the application is running.

Status Word—ibsta
All functions update a global status word, ibsta, which contains

information about the state of the GPIB and the GPIB hardware. Most

of the NI-488 functions return the value stored in ibsta. You can test

for conditions reported in ibsta to make decisions about continued

processing, or you can debug your program by checking ibsta after

each call.

ibsta is a 16-bit value. A bit value of one (1) indicates that a certain

condition is in effect. A bit value of zero (0) indicates that the condition

is not in effect. Each bit in ibsta can be set for NI-488 device calls

(dev), NI-488 board calls and NI-488.2 calls (brd), or both (dev, brd).

Table 2-1 shows the condition that each bit position represents, the bit

mnemonics, and the type of calls for which each bit can be set. For a

detailed explanation of each of the status conditions, refer to

Appendix A, Status Word Conditions.

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-4 © National Instruments Corporation

The language header files included on your distribution disk contain the

mnemonic constants for ibsta. You can check a bit position in ibsta

by using its numeric value or its mnemonic constant. For example, bit

position 15 (hex 8000) detects a GPIB error. The mnemonic for this bit

is ERR. To check for a GPIB error, use either of the following

statements after each NI-488 function and NI-488.2 routine.

if (ibsta & ERR) gpiberr();

or

if (ibsta & 0x8000) gpiberr();

where gpiberr() is an error handling routine.

Table 2-1. Status Word (ibsta) Layout

Mnemonic

Bit

Pos.

Hex

Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Chapter 2 Developing Your Application

© National Instruments Corporation 2-5 NI-488.2 User Manual for MacOS

Error Variable—iberr
If the ERR bit is set in the status word (ibsta), a GPIB error has

occurred. When an error occurs, the error type is specified by the value

in iberr.

Note: The value in iberr is meaningful as an error type only when the ERR bit

is set, indicating that an error has occurred.

For more information on error codes and solutions refer to Chapter 3,

Debugging Your Application, or Appendix B, Error Codes and

Solutions.

Count Variables—ibcnt and ibcntl
The count variables are updated after each read, write, or command

function. ibcnt and ibcntl are both 32-bit integers. If you are reading

data, the count variables indicate the number of bytes read. If you are

sending data or commands, the count variables reflect the number of

bytes sent.

In your application program, you can use the count variables to

null-terminate an ASCII string of data received from an instrument. For

example, if data is received in an array of characters, you can use ibcnt

to null-terminate the array and print the measurement on the screen as

follows:

char rdbuf[512];

ibrd (ud, rdbuf, 20L);

if (!(ibsta & ERR)){

rdbuf[ibcnt] = '\0';

printf ("Read: %s\n", rdbuf);

}

else {

error();

}

ibcnt is the number of bytes received. Data begins in the array at index

zero (0); therefore, ibcnt is the position for the null character that

marks the end of the string.

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-6 © National Instruments Corporation

Using IBIC 488.2 to Communicate with Devices
Before you begin writing your application program, you might want

to use the Interface Bus Interactive Control utility, IBIC 488.2.

With IBIC 488.2, you communicate with your instruments from the

keyboard rather than from an application program. Before you develop

your GPIB application, you can use IBIC 488.2 to learn how to

communicate with your instruments and to determine your

programming needs. For specific device communication instructions,

refer to the user manual that came with your instrument. For

information about using IBIC 488.2 and for detailed examples,

refer to Chapter 4, Interface Bus Interactive Control Utility.

Writing Your NI-488 Application

This section discusses items you should include in your application

program, general program steps, and an NI-488 example. In this

manual, the example code is presented in C using the standard C

language interface. The NI-488.2 software includes the source code

for example NI-488 applications written in C (Devsamp.c) and in

FutureBASIC (Devsamp.bas).

Items to Include
Include the following in your application program:

• For C applications, include the GPIB header files decl.h. These

files contain variable and constant declarations as well as

declarations of structures.

• For FutureBASIC applications, the files

FutureBASIC GPIB LI.GLBL and FutureBASIC GPIB LI.LIB

must be included at the beginning of your program.

• Check for errors after each NI-488 function call.

• Declare and define a function to handle GPIB errors. This function

takes the device offline and closes the application. If the function

is declared as follows:

void gpiberr (char *msg);/* function prototype */

then your application invokes the function as follows:

if (ibsta & ERR) {

gpiberr("GPIB error");

}

Chapter 2 Developing Your Application

© National Instruments Corporation 2-7 NI-488.2 User Manual for MacOS

NI-488 Program Shell
Figure 2-1 is a flowchart of the steps to create your application program

using device-level NI-488 functions.

Figure 2-1. General Program Shell Using NI-488 Device Functions

Yes

No

End

Start

Are All Devices
Open?

Open Device (ibdev)

Yes

NoFinished GPIB
Programming?

Yes

NoClosed All
Devices?

Close Device (ibonl)

Make a Device-Level Call
• Send Data to Device (ibwrt)
• Receive Data from Device (ibrd)
• Clear Device (ibclr)
• Serial Poll Device (ibrsp)
 and so on

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-8 © National Instruments Corporation

General Program Steps and Examples
The following steps demonstrate how to use the NI-488 device

functions in your program. This example configures a digital

multimeter, reads 10 voltage measurements, and computes the average

of these measurements.

Step 1. Open a Device
Your first NI-488 function call should be to ibdev to open a device.

ud = ibdev(0, 1, 0 , T10s, 1, 0);

if (ibsta & ERR) {

 gpiberr("ibdev error");

}

The input arguments of the ibdev function are as follows:

• 0—board index for GPIB0

• 1—primary GPIB address of the device

• 0—no secondary GPIB address for the device

• T10s—I/O timeout value (10 s)

• 1—send END message with the last byte when writing to device

• 0—disable EOS detection mode

When you call ibdev, the driver automatically initializes the GPIB by

sending an Interface Clear (IFC) message and placing the device in

remote programming state.

Step 2. Clear the Device
Clear the device before you configure the device for your application.

Clearing the device resets its internal functions to a default state.

ibclr(ud);

if (ibsta & ERR) {

gpiberr("ibclr error");

}

Chapter 2 Developing Your Application

© National Instruments Corporation 2-9 NI-488.2 User Manual for MacOS

Step 3. Configure the Device
After you open and clear the device, it is ready to receive commands.

To configure the instrument, you send device-specific commands using

the ibwrt function. Refer to the instrument user manual for the

command bytes that work with your instrument.

ibwrt(ud, "*RST; VAC; AUTO; TRIGGER 2; *SRE 16", 35L);

if (ibsta & ERR) {

gpiberr("ibwrt error");

}

The programming instruction in this example resets the multimeter

(*RST). The meter is instructed to measure the volts alternating current

(VAC) using auto-ranging (AUTO), to wait for a trigger from the GPIB

interface board before starting a measurement (TRIGGER 2), and to

assert the SRQ line when the measurement completes and the

multimeter is ready to send the result (*SRE 16).

Step 4. Trigger the Device
If you configure the device to wait for a trigger, you must send a trigger

command to the device before reading the measurement value. Then

instruct the device to send the next triggered reading to its GPIB output

buffer.

ibtrg(ud);

if (ibsta & ERR) {

gpiberr("ibtrg error");

}

ibwrt(ud,"VAL1?", 5L);

if (ibsta & ERR) {

gpiberr("ibwrt error");

}

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-10 © National Instruments Corporation

Step 5. Wait for the Measurement
After you trigger the device, the RQS bit is set when the device is ready

to send the measurement. You can detect RQS by using the ibwait

function. The second parameter indicates what you are waiting for.

Notice that the ibwait function also returns when the I/O timeout value

is exceeded.

printf("Waiting for RQS...\n");

ibwait (ud, TIMO | RQS);

if (ibsta & (ERR | TIMO)) {

gpiberr("ibwait error");

}

When SRQ has been detected, serial poll the instrument to determine if

the measured data is valid or if a fault condition exists. For IEEE 488.2

instruments, you can find out by checking the message available

(MAV) bit, bit 4 in the status byte that you receive from the instrument.

ibrsp (ud, &StatusByte);

if (ibsta & ERR) {

gpiberr("ibrsp error");

}

if (!(StatusByte & MAVbit)) {

gpiberr("Improper Status Byte");

printf(" Status Byte = 0x%x\n", StatusByte);

}

Chapter 2 Developing Your Application

© National Instruments Corporation 2-11 NI-488.2 User Manual for MacOS

Step 6. Read the Measurement
If the data is valid, read the measurement from the instrument.

(AsciiToFloat is a function that takes a null-terminated string as input

and outputs the floating point number it represents.)

ibrd (ud, rdbuf, 10L);

if (ibsta & ERR) {

gpiberr("ibrd error");

}

rdbuf[ibcntl] = '\0'; printf("Read: %s\n", rdbuf);

/* Output ==> Read: +10.98E-3 */

sum += AsciiToFloat(rdbuf);

Step 7. Process the Data
Repeat steps 4 through 6 in a loop until 10 measurements have been

read. Then print the average of the readings as shown:

printf("The average of the 10 readings is %f\n",
sum/10.0);

Step 8. Place the Device Offline
As a final step, take the device offline using the ibonl function.

ibonl (ud, 0);

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-12 © National Instruments Corporation

Writing Your NI-488.2 Application

This section discusses items you should include in an application

program that uses NI-488.2 routines, general program steps, and an

NI-488.2 example. In this manual the example code is presented in C

using the standard C language interface. The NI-488.2 software

includes the source code for example NI-488.2 applications written in

C (Samp4882.c), and FutureBASIC (Samp4882.bas).

Items to Include
Include the following in your application program:

• For C applications, include the GPIB header files decl.h. These

file contain variable and constant declarations as well as

declarations of structures.

• For FutureBASIC applications, the file FutureBASIC GPIB
LI.GLBL and FutureBASIC GPIB LI.LIB must be included at the

beginning of your program.

• Check for errors after each NI-488.2 routine.

• Declare and define a function to handle GPIB errors. This function

takes the device offline and closes the application. If the function

is declared as follows:

void gpiberr (char *msg);/* function prototype */

then your application invokes the function as follows:

if (ibsta & ERR) {

gpiberr("GPIB error");

}

Chapter 2 Developing Your Application

© National Instruments Corporation 2-13 NI-488.2 User Manual for MacOS

NI-488.2 Program Shell

Figure 2-2 is a flowchart of the steps to create your application program

using NI-488.2 routines.

Figure 2-2. General Program Shell Using NI-488.2 Routines

Yes

No

End

Start

Are All Boards
Installed?

Initialize Specified GPIB
Interface (SendIFC)

High-LevelLow-Level
Making

High-Level or Low-Level
Call?

Yes

NoFinished GPIB
Programming?

Yes

NoAre All Boards
Closed?

Close Board (ibonl)

Make a High-Level Call
• Send Data to Device (Send)
• Receive Data from Device (Receive)
• Clear Device (DevClear)
• Serial Poll Device (ReadStatusByte)
 and so on

Make a Low-Level Call
• Address Devices to Listen (SendSetup)
• Send Data to Addressed Listener
 (SendDataBytes)
• Address Device to Talk (ReceiveSetup)
• Receive Data from Addressed Talker
 (RcvRespMsg)
 and so on

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-14 © National Instruments Corporation

General Program Steps and Examples
The following steps demonstrate how to use the NI-488.2 routines in

your program. This example configures a digital multimeter, reads 10

voltage measurements, and computes the average of these

measurements.

Step 1. Initialization
Use the SendIFC routine to initialize the bus and the GPIB interface

board so that the GPIB board is Controller-In-Charge (CIC). The only

argument of SendIFC is the GPIB interface board number.

SendIFC(0);

if (ibsta & ERR) {

gpiberr("SendIFC error");

}

Step 2. Find All Listeners
Use the FindLstn routine to create an array of all of the instruments

attached to the GPIB. The first argument is the interface board number,

the second argument is the list of instruments that was created, the third

argument is a list of instrument addresses that the procedure actually

found, and the last argument is the maximum number of devices that the

procedure can find (that is, it must stop if it reaches the limit). The end

of the list of addresses must be marked with the NOADDR constant,

which is defined in the header file that you included at the beginning of

the program.

for (loop = 0; loop <=30; loop++){

instruments[loop] = loop;

}

instruments[31] = NOADDR;

printf("Finding all Listeners on the bus...\n");

Findlstn(0, instruments, result, 30);

if (ibsta & ERR) {

gpiberr("FindLstn error");

}

Chapter 2 Developing Your Application

© National Instruments Corporation 2-15 NI-488.2 User Manual for MacOS

Step 3. Identify the Instrument
Send an identification query to each device for identification. For this

example, assume that all of the instruments are IEEE 488.2-compatible

and can accept the identification query, *IDN?. In addition, assume that

FindLstn found the GPIB interface board at primary address 0

(default) and, therefore, you can skip the first entry in the result array.

for (loop = 1; loop <= num_Listeners; loop++) {

Send(0, result[loop], "*IDN?", 5L, NLend);

if (ibsta & ERR) {

gpiberr("Send error");

}

Receive(0, result[loop], buffer, 10L, STOPend);

if (ibsta & ERR) {

gpiberr("Receive error");

}

buffer[ibcntl] = '\0';

printf("The instrument at address %d is a %s\n",
result[loop], buffer);

if (strncmp(buffer, "Fluke, 45", 9) == 0) {

fluke = result[loop];

printf("**** Found the Fluke ****\n");

break;

}

}

if (loop > num_Listeners) {

printf("Did not find the Fluke!\n");

ibonl(0,0);

exit(1);

}

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-16 © National Instruments Corporation

The constant NLend signals that the new line character with EOI is

automatically appended to the data to be sent.

The constant STOPend indicates that the read is stopped when EOI is

detected.

Step 4. Initialize the Instrument
After you find the multimeter, use the DevClear routine to clear it. The

first argument is the GPIB board number. The second argument is the

GPIB address of the multimeter. Then send the IEEE 488.2 reset

command to the meter.

DevClear(0, fluke);

if (ibsta & ERR) {

gpiberr("DevClear error")

}

Send(0, fluke, "*RST", 4L, NLend);

if (ibsta & ERR) {

gpiberr("Send *RST error");

}

sum = 0.0;

for(m =0; m<10; m++){
/* start of loop for Steps 5 through 8 */

Step 5. Configure the Instrument
After initialization, the instrument is ready to receive instructions. To

configure the multimeter, use the Send routine to send device-specific

commands. The first argument is the number of the access board. The

second argument is the GPIB address of the multimeter. The third

argument is a string of bytes to send to the multimeter.

The bytes in this example instruct the meter to measure volts alternating

current (VAC) using auto-ranging (AUTO), to wait for a trigger from the

Controller before starting a measurement (Trigger 2), and to assert

SRQ when the measurement has been completed and the meter is ready

to send the result (*SRE 16). The fourth argument represents the

number of bytes to be sent. The last argument, NLend, is a constant

defined in the header file which tells Send to append a linefeed

Chapter 2 Developing Your Application

© National Instruments Corporation 2-17 NI-488.2 User Manual for MacOS

character, with EOI asserted, to the end of the message sent to the

multimeter.

Send (0, fluke, "VAC; AUTO; TRIGGER 2; *SRE 16", 29L,
NLend);

if (ibsta & ERR) {

gpiberr("Send setup error");

}

Step 6. Trigger the Instrument
In the previous step, the multimeter was instructed to wait for a trigger

before conducting a measurement. Now send a trigger command to the

multimeter. You could use the Trigger routine to accomplish this, but

because the Fluke 45 is IEEE 488.2-compatible, you can just send it the

trigger command, *TRG. The VAL1? command instructs the meter to

send the next triggered reading to its output buffer.

Send(0, fluke, "*TRG; VAL1?", 11L, NLend);

if (ibsta & ERR) {

gpiberr("Send trigger error");

}

Step 7. Wait for the Measurement
After the meter is triggered, it takes a measurement and displays it on

its front panel and then asserts SRQ. You can detect the assertion of

SRQ using either the TestSRQ or WaitSRQ routine. If you have a

process that you want to execute while you are waiting for the

measurement, use TestSRQ. For this example, you can use the WaitSRQ

routine. The first argument in WaitSRQ is the GPIB board number. The

second argument is a flag returned by WaitSRQ that indicates whether

or not SRQ is asserted.

WaitSRQ(0, &SRQasserted);

if (!SRQasserted) {

gpiberr("WaitSRQ error");

}

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-18 © National Instruments Corporation

After you have detected SRQ, use the ReadStatusByte routine to poll

the meter and determine its status. The first argument is the GPIB board

number, the second argument is the GPIB address of the instrument, and

the last argument is a variable that ReadStatusByte uses to store the

status byte of the instrument.

ReadStatusByte(0, fluke, &statusByte);

if (ibsta & ERR) {

gpiberr("ReadStatusByte error");

}

After you have obtained the status byte, you must check to see if the

meter has a message to send. You can do this by checking the message

available (MAV) bit, bit 4 in the status byte.

if (!(statusByte & MAVbit) {

gpiberr("Improper Status Byte");

printf("Status Byte = 0x%x\n", statusByte);

}

Step 8. Read the Measurement
Use the Receive function to read the measurement over the GPIB. The

first argument is the GPIB interface board number, and the second

argument is the GPIB address of the multimeter. The third argument is

a string into which the Receive function places the data bytes from the

multimeter. The fourth argument represents the number of bytes to be

received. The last argument indicates that the Receive message

terminates upon receiving a byte accompanied with the END message.

Receive(0, fluke, buffer, 10L, STOPend);

if (ibsta & ERR) {

gpiberr("Receive error");

}

buffer[ibcnt] = '\0';

printf (Reading : %s\n", buffer);

sum += AsciiToFloat(buffer);

} /* end of loop started in Step 5 */

Chapter 2 Developing Your Application

© National Instruments Corporation 2-19 NI-488.2 User Manual for MacOS

Step 9. Process the Data
Repeat Steps 5 through 8 in a loop until 10 measurements have been

read. Then print the average of the readings as shown:

printf (" The average of the 10 readings is : %f\n",
sum/10);

Step 10. Place the Board Offline
Before ending your application program, take the board offline using

the ibonl function.

ibonl(0,0);

Compiling, Linking, and Running

C Applications
Include the following C statement at the beginning of your application

program.

#include "decl.h"

The file decl.h defines external variables and constants that you can

use in your application.

If your application requires prototypes, be sure to include the following

statement at the beginning of your application program:

#define PROTOTYPES

The GPIB status, error, and count information are returned in the

variables ibsta, iberr, and ibcnt, as described earlier in this chapter.

Do one of the following based on the type of your application and the

type of compiler you are using:

• For 68k applications compiled under Think C—Before compiling,

add the file MacGPIB68K(ThinkC).lib to your project. Add Think

C libraries that support toolbox and string functions as well.

• For 68k applications compiled under Metrowerks CodeWarrior—

Before compiling, add the file MacGPIB68k(CodeWarrior).lib

to your project. Add CodeWarrior libraries that support toolbox and

string functions as well.

Chapter 2 Developing Your Application

NI-488.2 User Manual for MacOS 2-20 © National Instruments Corporation

• For 68k applications compiled under MPW C—Add the file

MacGPIB68k.o to the command that links your object module to

create the application.

• For native PowerPC applications—Use the MacGPIB.shlb shared

library located in the Extensions folder.

FutureBASIC Applications
Place the following lines at the beginning of your application:

GLOBALS "FutureBASIC GPIB LI.GLBL"

END GLOBALS

INCLUDE "FutureBASIC GPIB LI.LIB"

© National Instruments Corporation 3-1 NI-488.2 User Manual for MacOS

Chapter

3Debugging Your Application

This chapter describes several ways to debug your application program.

Running NI-488.2 Test

The software diagnostic test NI-488.2 Test verifies that the NI-488.2

software is installed and functioning with the GPIB board. For more

information about NI-488.2 Test, refer to the getting started manual

that came with your GPIB board.

Debugging with the Global Status Variables
After each function call to your NI-488.2 driver, ibsta, iberr, ibcnt,

and ibcntl are updated before the call returns to your application. You

should check for an error after each GPIB call. Refer to Chapter 2,

Developing Your Application, for more information about how to use

these variables within your program to automatically check for errors.

After you determine which GPIB call is failing and note the

corresponding values of the global variables, refer to Appendix A,

Status Word Conditions, and Appendix B, Error Codes and Solutions.

These appendixes will help you interpret the state of the driver.

Debugging with IBIC 488.2
If your application does not automatically check for and display errors,

you can locate an error by using the Interface Bus Interactive Control

utility, IBIC 488.2. Simply issue the same functions or routines,

one at a time as they appear in your application program. Because

IBIC 488.2 returns the status values and error codes after each call,

you should be able to determine which GPIB call is failing. For more

information about IBIC 488.2, refer to Chapter 4, Interface Bus

Interactive Control Utility.

Chapter 3 Debugging Your Application

NI-488.2 User Manual for MacOS 3-2 © National Instruments Corporation

After you determine which GPIB call is failing and note the

corresponding values of the global variables, refer to Appendix A,

Status Word Conditions, and Appendix B, Error Codes and Solutions.

These appendixes will help you interpret the state of the driver.

GPIB Error Codes
Table 3-1 lists the GPIB error codes. Remember that the error variable

is meaningful only when the ERR bit in the status variable is set. For a

detailed description of each error and possible solutions, refer to

Appendix B, Error Codes and Solutions.

Table 3-1. GPIB Error Codes

Error

Mnemonic

iberr

Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EDMA 8 No DMA channel available

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

Chapter 3 Debugging Your Application

© National Instruments Corporation 3-3 NI-488.2 User Manual for MacOS

Configuration Errors
If your hardware and software settings do not match, one of the

following problems might occur:

• Application hangs on input or output functions

• Data is corrupted

If these problems occur, make sure that the GPIB hardware settings

match the NI-488.2 software settings for the interrupt request level and

the DMA channel. Refer to the getting started manual that came with

your kit for information on hardware and software default settings. For

instructions on how to view or modify the NI-488.2 software

configuration, refer to Chapter 6, GPIB Configuration Utility.

Several applications require customized configuration of the GPIB

driver. For example, you might want to terminate reads on a special

end-of-string character, or you might require secondary addressing. In

these cases, you can use either the configuration utility to permanently

reconfigure the driver or the NI-488 ibconfig function to

programmatically modify the driver while your application is running.

If your application uses ibconfig, it will always work regardless of the

previous configuration of the driver. Refer to the description of

ibconfig in the NI-488.2 Function Reference Manual for MacOS for

more information.

Timing Errors
If your application fails, but the same calls issued in ibic are

successful, your program might be issuing the NI-488.2 calls too

quickly for your device to process and respond to them. This problem

can also result in corrupted or incomplete data.

A well-behaved IEEE 488 device should hold off handshaking and set

the appropriate transfer rate. If your device is not well behaved, you can

Error

Mnemonic

iberr

Value Meaning

ETAB 20 Table problem

ELCK 21 Board or device is locked

Table 3-1. GPIB Error Codes (Continued)

Chapter 3 Debugging Your Application

NI-488.2 User Manual for MacOS 3-4 © National Instruments Corporation

test for and resolve the timing error by single-stepping through your

program and inserting finite delays between each GPIB call. One way

to do this is to have your device communicate its status whenever

possible. Although this method is not possible with many devices, it is

usually the best option. Your delays will be controlled by the device and

your application can adjust itself and work independently on any

platform. Other delay mechanisms will probably cause varying delay

times on different platforms.

Communication Errors

Repeat Addressing
Some devices require GPIB addressing before any GPIB activity.

Devices adhering to the IEEE 488.2 standard should remain in their

current state until specific commands are sent across the GPIB to

change their state. You might need to configure your NI-488.2 driver to

perform repeat addressing if your device does not remain in its currently

addressed state. Refer to Chapter 6, GPIB Configuration Utility, or to

the description of ibconfig (option IbcREADDR) in the NI-488.2

Function Reference Manual for MacOS for more information about

reconfiguring your software.

Termination Method
You should be aware of the data termination method that your device

uses. By default, your NI-488.2 software is configured to send EOI on

writes and terminate reads on EOI or a specific byte count. If you send

a command string to your device and it does not respond, it might be

because it does not recognize the end of the command. You might need

to send a termination message such as <CR> <LF> after a write

command as follows:

ibwrt(dev,”COMMAND\x0A\x0D”,9);

Common Questions

What do I do if NI-488.2 Test fails with an error?

Refer to the getting started manual for specific information about what

might cause this test to fail.

Chapter 3 Debugging Your Application

© National Instruments Corporation 3-5 NI-488.2 User Manual for MacOS

How do I communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument

manufacturer. The command sequences you use are totally dependent

on the specific instrument. The documentation for each instrument

should include the GPIB commands you need to communicate with it.

In most cases, NI-488 device-level calls are sufficient for

communicating with instruments. Refer to Chapter 2, Developing Your

Application, for more information.

Can I use the NI-488 and NI-488.2 calls together in the same

application?

Yes, you can mix NI-488 functions and NI-488.2 routines.

What do I do if I have installed the NI-488.2 software and now my

Macintosh crashes upon startup?

Try changing the name of the NI-488 INIT to ZNI-488 INIT. Because

INITs load in alphabetical order, the ZNI-488 INIT will load last,

preventing possible corruption from INITs that load after it. If changing

the name of the NI-488 INIT does not solve the problem, another INIT

file might have a conflict with the NI-488 INIT. Try removing some

of your other INIT files. You can store them in a temporary folder, in

case you need to reload them later. If you are using System 7.5 or later,

you can use the Extensions Manager control panel to disable certain

extensions and control panels.

What can I do to check for errors in my GPIB application?

Examine the value of ibsta after each NI-488 or NI-488.2 call. If a call

fails, the ERR bit of ibsta is set and an error code is stored in ibcnt.

For more information about global status variables, refer to Chapter 2,

Developing Your Application.

How can I use the files located in the Ethernet folder?

You do not need to use the files in the Ethernet folder unless you have

a National Instruments GPIB-ENET.

Chapter 3 Debugging Your Application

NI-488.2 User Manual for MacOS 3-6 © National Instruments Corporation

How do I use IBIC 488.2?

You can use IBIC 488.2 to practice communication with your

instrument, troubleshoot problems, and develop your application

program. For instructions, refer to Chapter 4, Interface Bus

Interactive Control Utility.

How can I determine which type of GPIB board I have installed?

Run the NI-Boards configuration utility for information about the

GPIB boards installed in your computer.

What information should I have before I call National Instruments?

Before you contact National Instruments, note the results of the

diagnostic test NI-488.2 Test and fill out the support forms in

Appendix C, Customer Communication.

© National Instruments Corporation 4-1 NI-488.2 User Manual for MacOS

Chapter

4Interface Bus
Interactive Control Utility

This chapter introduces you to IBIC 488.2, the interactive control

utility you can use to communicate with GPIB devices interactively.

Overview

With the IBIC 488.2 utility, you communicate with GPIB devices

through functions you enter at the keyboard. For specific information

about how to communicate with your particular device, refer to the

manual that came with the device. You can use IBIC 488.2 to practice

communication with the instrument, troubleshoot problems, and

develop your application program.

One way IBIC 488.2 helps you to learn about your instrument and to

troubleshoot problems is by displaying the following information on

your screen whenever you enter a command:

• The results of the status word (ibsta) in hexadecimal notation

• The mnemonic constant of each bit set in ibsta

• The mnemonic value of the error variable (iberr) if an error exists

(the ERR bit is set in ibsta)

• The count value for each read, write, or command function

• The data received from your instrument

Example Using NI-488 Functions

This section shows how you might use IBIC 488.2 to test a sequence

of NI-488 device function calls. You do not need to remember the

parameters that each function takes. If you enter the function name

only, IBIC 488.2 prompts you for the necessary parameters.

Chapter 4 Interface Bus Interactive Control Utility

NI-488.2 User Manual for MacOS 4-2 © National Instruments Corporation

1. Run IBIC 488.2 by double-clicking on the IBIC 488.2 icon.

Your screen should appear as follows:

2. Use ibdev to open a device, assign it to access board gpib0,

choose a primary address of 6 with no secondary address, set a

timeout of 10 s, enable the END message, and disable the EOS

mode:

:ibdev

enter board index: 0

enter primary address: 6

enter secondary address: 0

enter timeout: 13

enter 'EOI on last byte' flag: 1

enter end-of-string mode/byte: 0

id = 32256

ud0:

You could also input all the same information with the ibdev

command as follows:

:ibdev 0 6 0 13 1 0

id = 32256

ud0:

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corporation 4-3 NI-488.2 User Manual for MacOS

3. Clear the device as follows:

ud0: ibclr

[0100] (cmpl)

4. Write the function, range, and trigger source instructions to your

device. Refer to the instrument's user manual for the command

bytes that work with your instrument.

ud0: ibwrt

enter string: "*RST; VAC; AUTO; TRIGGER 2; *SRE
16"

[0100] (cmpl)

count: 35

or

ud0: ibwrt "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"

[0100] (cmpl)

count: 35

5. Trigger the device as follows:

ud0: ibtrg

[0100] (cmpl)

6. Wait for a timeout or for your device to request service. If the

current timeout limit is too short, use ibtmo to change it. Use the

ibwait command as follows:

ud0: ibwait

enter wait mask: TIMO RQS

[0900] (rqs cmpl)

or

ud0: ibwait TIMO RQS

[0900] (rqs cmpl)

7. Read the serial poll status byte. This serial poll status byte varies

depending on the device used.

ud0: ibrsp

[0100] (cmpl)

Poll: 0x40 (decimal : 64)

Chapter 4 Interface Bus Interactive Control Utility

NI-488.2 User Manual for MacOS 4-4 © National Instruments Corporation

8. Use the read command to display the data on the screen both in hex

values and their ASCII equivalents.

ud0: ibrd

enter byte count: 18

[0100] (cmpl)

count: 18

4e 44 43 56 20 30 30 30 N D C V 0 0 0

2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0

0a 0a . .

or

ud0: ibrd 18

[0100] (cmpl)

count: 18

4e 44 43 56 20 30 30 30 N D C V 0 0 0

2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0

0a 0a . .

9. Place the device offline as follows:

ud0: ibonl

enter value: 0

[0100] (cmpl)

or

ud0: ibonl 0

[0100] (cmpl)

10. Terminate the IBIC 488.2 program by entering q at the prompt or

choosing Quit from the File menu.

IBIC 488.2 Syntax

When you enter commands in IBIC 488.2, you can either include the

parameters, or the program prompts you for values. Some commands

require numbers as input values. Others might require you to input a

string.

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corporation 4-5 NI-488.2 User Manual for MacOS

Number Syntax
You can enter numbers as hexadecimal, octal, or decimal integer.

Hexadecimal numbers—You must precede hex numbers by zero and x

(for example, 0xD).

Octal numbers—You must precede octal numbers by zero only (for

example, 015).

Decimal numbers—Enter the number only.

String Syntax
You can enter strings as an ASCII character sequence, octal bytes, hex

bytes, or special symbols.

ASCII character sequence—You must enclose the entire sequence in

quotation marks (for example, "*tst"). To include a quotation mark in

a string, precede it with a backslash (for example, "ab\"cd").

Octal bytes—You must use a backslash character followed by the octal

value. For example, octal 40 is represented by \40 and can be used in a

string as "ab\40cd".

Hex bytes—You must use a backslash character and an x followed by

the hex value. For example, hex 40 is represented by \x40 and can be

used in a string as "ab\x40cd".

Special Symbols–Some instruments require special termination or

end-of-string (EOS) characters that indicate to the device that a

transmission has ended. The two most common EOS characters are

\r and \n. \r represents a carriage return character and \n represents a

linefeed character. You can use these special characters to insert the

carriage return and linefeed characters into a string, as in

"F3R5T1\r\n".

Address Syntax
Many of the NI-488.2 routines have an address or address list

parameter. An address is a 16-bit representation of the GPIB address of

a device. The primary address is stored in the low byte and the

secondary address, if any, is stored in the high byte. For example, a

device at primary address 6 and secondary address 0x67 has an address

of 0x6706. A NULL address is represented as 0xffff.

Chapter 4 Interface Bus Interactive Control Utility

NI-488.2 User Manual for MacOS 4-6 © National Instruments Corporation

IBIC 488.2 Syntax for NI-488 Functions

Table 4-1 and Table 4-2 summarize the syntax of NI-488 functions in

IBIC 488.2. v represents a number, and string represents a string that

you input. For more information about the function parameters, use the

IBIC 488.2 help feature or refer to the NI-488.2 Function Reference

Manual for MacOS.

Table 4-1. Syntax for Board-Level NI-488 Functions in IBIC 488.2

Syntax Description

ibbna brdname Change access board of device where brdname is symbolic name

of new board

ibclr Clear specified device

ibconfig mn v Alter configurable parameters where mn is mnemonic for a

configuration parameter or equivalent integer value

ibdev v v v v v
v

Open an unused device. ibdev parameters are board id, pad,

sad, tmo, eos, eot

ibeos v Change/disable EOS message

ibeot v Enable/disable END message

iblines Read the state of all GPIB control lines

ibln v v Check for presence of device on the GPIB at pad, sad

ibloc Go to local

ibonl v Place device online or offline

ibpad v Change primary address

ibpct Pass control

ibppc v Parallel poll configure

ibrd v Read data where v is the bytes to read

ibrda v Read data asynchronously where v is the bytes to read

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corporation 4-7 NI-488.2 User Manual for MacOS

ibrdf flname Read data to file where flname is pathname of file to read

ibrpp Conduct a parallel poll

ibrsp Return serial poll byte

ibsad v Change secondary address

ibstop Abort asynchronous operation

ibtmo v Change/disable time limit

ibtrg Trigger selected device

ibwait mask Wait for selected event where mask is a hex, octal, or decimal

integer or a mask bit mnemonic

ibwrt string Write data

ibwrta string Write data asynchronously

ibwrtf flname Write data from a file where flname is pathname of file to write

Table 4-2. Syntax for Device-Level NI-488 Functions in IBIC 488.2

Syntax Description

ibcac v Become Active Controller

ibcmd string Send commands

ibcmda string Send commands asynchronously

ibconfig mn v Alter configurable parameters where mn is mnemonic for a

configuration parameter or equivalent integer value

ibdma v Enable/disable DMA

ibeos v Change/disable EOS message

ibeot v Enable/disable END message

Table 4-1. Syntax for Board-Level NI-488 Functions in IBIC 488.2 (Continued)

Syntax Description

Chapter 4 Interface Bus Interactive Control Utility

NI-488.2 User Manual for MacOS 4-8 © National Instruments Corporation

ibfind udname Return unit descriptor where udname is the symbolic name of a

board (for example, gpib0)

ibgts v Go from Active Controller to standby

ibist v Set/clear ist

iblines Read the state of all GPIB control lines

ibln v v Check for presence of device on the GPIB at pad, sad

ibloc Go to local

ibonl v Place device online or offline

ibpad v Change primary address

ibppc v Parallel poll configure

ibrd v Read data where v is the bytes to read

ibrda v Read data asynchronously where v is the bytes to read

ibrdf flname Read data to file where flname is pathname of file to read

ibrpp Conduct a parallel poll

ibrsc v Request/release system control

ibrsv v Request service

ibsad v Change secondary address

ibsic Send interface clear

ibsre v Set/clear remote enable line

ibstop Abort asynchronous operation

ibtmo v Change/disable time limit

Table 4-2. Syntax for Device-Level NI-488 Functions in IBIC 488.2 (Continued)

Syntax Description

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corporation 4-9 NI-488.2 User Manual for MacOS

IBIC 488.2 Syntax for NI-488.2 Routines

Table 4-3 summarizes the syntax of NI-488.2 routines in IBIC 488.2.

v represents a number and string represents a string. address

represents an address, and addrlist represents a list of addresses

separated by commas. For more information about the routine

parameters, use the IBIC 488.2 help feature or refer to the NI-488.2

Function Reference Manual for MacOS.

ibwait mask Wait for selected event where mask is a hex, octal, or decimal

integer or a mask bit mnemonic

ibwrt string Write data

ibwrta string Write data asynchronously

ibwrtf flname Write data from a file where flname is pathname of file to write

Table 4-3. Syntax for NI-488.2 Routines in IBIC 488.2

Routine Syntax Description

AllSpoll addrlist Serial poll multiple devices

DevClear address Clear a device

DevClearList addrlist Clear multiple devices

EnableLocal addrlist Enable local control

EnableRemote addrlist Enable remote control

FindLstn addrlist limit Find all Listeners

FindRQS addrlist Find device asserting SRQ

PassControl address Pass control to a device

PPoll Parallel poll devices

Table 4-2. Syntax for Device-Level NI-488 Functions in IBIC 488.2 (Continued)

Syntax Description

Chapter 4 Interface Bus Interactive Control Utility

NI-488.2 User Manual for MacOS 4-10 © National Instruments Corporation

PPollConfig address line sense Configure device for parallel poll

PPollUnconfig address Unconfigure device for parallel poll

RcvRespMsg address string mode Receive response message

ReadStatusByte address Serial poll a device

Receive address count mode Receive data from a device

ReceiveSetup address Receive setup

ResetSys addrlist Reset multiple devices

Send address string mode Send data to a device

SendCmds string Send command bytes

SendDataBytes addrlist string
mode

Send data bytes

SendIFC Send interface clear

SendList addrlist string mode Send data to multiple devices

SendLLO Put devices in local lockout

SendSetup addrlist Send setup

SetRWLS addrlist Put devices in remote with lockout state

TestSys addrlist Cause multiple devices to perform self tests

TestSRQ Test for service request

Trigger address Trigger a device

TriggerList addrlist Trigger multiple devices

WaitSRQ Wait for service request

Table 4-3. Syntax for NI-488.2 Routines in IBIC 488.2 (Continued)

Routine Syntax Description

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corporation 4-11 NI-488.2 User Manual for MacOS

Status Word

In IBIC 488.2, all NI-488 functions (except ibfind and ibdev) and

NI-488.2 routines return the status word ibsta in two forms—a hex

value in square brackets and a list of mnemonics in parentheses. In the

following example, the status word is on the second line. It shows that

the device function write operation completed successfully:

ud0: ibwrt "f2t3x"

[0100] (cmpl)

count: 5

ud0:

For more information about the status word, refer to Chapter 2,

Developing Your Application.

Error Information

If an NI-488 function or NI-488.2 routine completes with an error, IBIC
488.2 displays the relevant error mnemonic. In the following example,

an error condition EBUS has occurred during a data transfer.

ud0: ibwrt "f2t3x"

[8100] (err cmpl)

error: EBUS

count: 1

ud0:

In this example, the addressing command bytes could not be transmitted

to the device. This indicates that either dev1 is powered off, or the

GPIB cable is disconnected.

For a detailed list of the error codes and their meanings, refer to

Chapter 3, Debugging Your Application.

Chapter 4 Interface Bus Interactive Control Utility

NI-488.2 User Manual for MacOS 4-12 © National Instruments Corporation

Count

When an I/O function completes, IBIC 488.2 displays the actual

number of bytes sent or received, regardless of the existence of an error

condition.

If one of the addresses in an address list of an NI-488.2 routine is

invalid, then the error is EARG and IBIC 488.2 displays the index of

the invalid address as the count.

The count has a different meaning depending on which NI-488 function

or NI-488.2 routine is called. Refer to the function descriptions in the

NI-488.2 Function Reference Manual for MacOS for the correct

interpretation of the count return.

Common NI-488 Functions

Following are some common NI-488 functions.

ibdev
The ibdev command initializes a device descriptor with the input

information.

With ibdev, you specify the following values:

• Access board for the device

• Primary address

• Secondary address

• Timeout setting

• EOT mode

• EOS mode

The following example shows ibdev opening an available device and

assigning it to access gpib0 (board = 0) with a primary address of

6 (pad = 6), a secondary address of hex 67 (sad = 0x67), a timeout

of 10 s (tmo = 13), the END message enabled (eot = 1), and the EOS

mode disabled (eos = 0).

:ibdev 0 6 0x67 13 1 0

id = 32256

ud0:

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corporation 4-13 NI-488.2 User Manual for MacOS

If you use ibdev without specifying parameters, IBIC 488.2 prompts

you for the input parameters as shown in the following example:

:ibdev

enter board index: 0

enter primary address: 6

enter secondary address: 0x67

enter timeout: 13

enter ‘EOI on last byte’ flag: 1

enter end-of-string mode/byte: 0

id = 32256

ud0:

The following three distinct errors can occur with the ibdev call:

• EDVR—No device is available, the board index entered refers to a

nonexistent board (that is, not 0, 1, 2, or 3), or no driver is installed.

The following example illustrates an EDVR error.

:ibdev 4 6 0x67 7 1 0

id = -1

[8000] (err)

error: EDVR (2)

:

• ENEB—The board index entered refers to a known board

(such as 0), but the driver cannot find the board.

• EARG—One of the last five parameters is an invalid value. The

ibdev call returns with a new prompt and the EARG error (invalid

function argument). If the ibdev call returns with an EARG error,

you must identify which parameter is incorrect and use the

appropriate command to correct it. In the following example, pad

Chapter 4 Interface Bus Interactive Control Utility

NI-488.2 User Manual for MacOS 4-14 © National Instruments Corporation

has an invalid value. You can correct it with an ibpad call as

shown:

:ibdev 0 66 0x67 7 1 0

id = 32256

[8100] (err cmpl)

error: EARG

ud0: ibpad 6

previous value: 16

ibwrt
The ibwrt command sends data from one GPIB device to another.

For example, to send the six character data string F3R5T1 from the

computer to a device, you enter the following string at the prompt as

shown in the following example:

ud0: ibwrt "F3R5T1"

[0100] (cmpl)

count: 6

The returned status word contains the cmpl bit, which indicates a

successful I/O completion. The byte count 6 indicates that all six

characters were sent from the computer and received by the device.

ibrd
The ibrd command causes a GPIB device to receive data from another

GPIB device. The following example acquires data from the device and

displays it on the screen in hex format and in its ASCII equivalent,

along with the status word and byte count.

ud0: ibrd 20

[2100] (end cmpl)

count: 18

4e 44 43 56 28 30 30 30 N D C V 9 0 0 0

2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0

0d 0a . .

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corporation 4-15 NI-488.2 User Manual for MacOS

Common NI-488.2 Routines in IBIC 488.2

Following are some common NI-488.2 routines in IBIC 488.2.

Set
You must use the set command before you can use NI-488.2 routines

in IBIC 488.2. The syntax for this form of the set command is as

follows:

set 488.2 n

where n represents a board number (for example, n=0 for gpib0).

The 488.2 prompt indicates that you are in NI-488.2 mode on board n.

The following example shows how to enter into 488.2 mode on board

gpib0.

set 488.2 0

488.2 (0):

Send and SendList
The Send routine sends data to a single GPIB device. You can use the

SendList command to send data to multiple GPIB devices. For

example, suppose you want to send the five character string *IDN?

followed by the new line character with EOI. You want to send the

message from the computer to the devices at primary address 2 and 17.

To do this, enter the SendList command at the 488.2 (0) prompt as

shown in the following example:

488.2 (0): SendList 2, 17 "*IDN?" NLend

[0128] (cmpl cic tacs)

count: 6

The returned status word contains the cmpl bit, which indicates a

successful I/O completion. The byte count 6 indicates that six

characters, including the added new line, were sent from the computer

and received by both devices.

Chapter 4 Interface Bus Interactive Control Utility

NI-488.2 User Manual for MacOS 4-16 © National Instruments Corporation

Receive
The Receive routine causes the GPIB board to receive data from

another GPIB device. The following example acquires 10 data bytes

from the device at primary address 5. It stops receiving data when 10

characters have been received or when the END message is received.

The acquired data is then displayed in hex format along with its ASCII

equivalent. The IBIC 488.2 program also displays the status word and

the count of transferred bytes.

488.2 (0): Receive 5 10 STOPend

[2124] (end cmpl cic lacs)

count: 5

48 65 6c 6c 6f Hello

Auxiliary Functions

Table 4-4 summarizes the auxiliary functions that you can use in

IBIC 488.2.

Table 4-4. Auxiliary Functions in IBIC 488.2

Function Description

set udname Select active device or board where udname is the symbolic name

of the new device or board (for example, dev1 or gpib0). Call

ibfind or ibdev initially to open each board or device.

help [option] Display help information where option is any NI-488 or

NI-488.2 call. If you do not enter an option, a menu of options

appears.

! Repeat previous function.

- Turn display off.

+ Turn display on.

n* function Execute function n times where function represents the correct

IBIC 488.2 function syntax.

n* ! Execute previous function n times.

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corporation 4-17 NI-488.2 User Manual for MacOS

Set (Select Device or Board)
You can use the set command to select 488.2 mode or to communicate

with a different device. The following example switches

communication from using NI-488.2 routines for gpib0 to using a unit

descriptor (ud0) previously acquired by an ibdev call.

488.2 (0): set ud0

ud0:

Help (Display Help Information)
The help feature displays a menu of topics to choose from. Each topic

lists relevant functions and other information. You can access help for

a specific NI-488 function or NI-488.2 routine by typing help followed

by the call name (for example, help ibwrt). Help describes the

function syntax for all NI-488 functions and NI-488.2 routines.

Function Description

$ filename Execute indirect file where filename is the pathname of a file

that contains IBIC 488.2 functions to be executed.

print string Display string on screen where string is an ASCII character

sequence, octal bytes, hex bytes, or special symbols.

buffer
[option]

Set the type of display used for buffers.

e Exit.

q Quit.

Table 4-4. Auxiliary Functions in IBIC 488.2 (Continued)

Chapter 4 Interface Bus Interactive Control Utility

NI-488.2 User Manual for MacOS 4-18 © National Instruments Corporation

! (Repeat Previous Function)
The ! function repeats the most recent function executed. The following

example issues an ibsic command and then repeats that same

command.

gpib0: ibsic

[0130] (cmpl cic atn)

gpib0: !

[0130] (cmpl cic atn)

n* (Repeat Function n Times)
The n* function repeats the execution of the specified function n times,

where n is an integer. In the following example, the message Hello is

sent five times to the device described by ud0.

ud0 : 5*ibwrt "Hello"

In the following example, the word Hello is sent five times, 20 times,

and then 10 more times.

ud0: 5*ibwrt "Hello"

ud0: 20* !

ud0: 10* !

Notice that the multiplier (*) does not become part of the function

name; that is, ibwrt "Hello" is repeated 20 times, not 5* ibwrt
"Hello".

$ (Execute Indirect File)
The $ function reads a specified file and executes the IBIC 488.2

functions listed in that file, in sequence, as if they were entered in that

order from the keyboard. The following example executes the

IBIC 488.2 functions listed in the file userfile:

gpib0: $ userfile

The following example repeats the operation three times:

gpib0: 3*$ userfile

The display mode that is in effect before this function was executed can

be changed by functions in the indirect file.

Chapter 4 Interface Bus Interactive Control Utility

© National Instruments Corporation 4-19 NI-488.2 User Manual for MacOS

Buffer (Set Buffer Display Mode)

You can set the type of display used for buffers to control how much of

the buffer is displayed. Type buffer 0 to turn off the display of all

buffers, buffer 1 to display the buffer in ASCII only, buffer 2 to

display the buffer in hex/ASCII, or buffer 3 to display a brief

hex/ASCII display.

© National Instruments Corporation 5-1 NI-488.2 User Manual for MacOS

Chapter

5GPIB Programming
Techniques

This chapter describes techniques for using some NI-488 functions and

NI-488.2 routines in your application program.

For more detailed information about each function or routine, refer to

the NI-488.2 Function Reference Manual for MacOS.

Termination of Data Transfers

GPIB data transfers are terminated either when the GPIB EOI line is

asserted with the last byte of a transfer or when a preconfigured

end-of-string (EOS) character is transmitted. By default, the NI-488.2

driver asserts EOI with the last byte of writes and the EOS modes are

disabled.

You can use the ibeot function to enable or disable the end of

transmission (EOT) mode. If EOT mode is enabled, the NI-488.2 driver

asserts the GPIB EOI line when the last byte of a write is sent out on the

GPIB. If it is disabled, the EOI line is not asserted with the last byte of

a write.

You can use the ibeos function to enable, disable, or configure the EOS

modes. EOS mode configuration includes the following information:

• An EOS byte

• EOS comparison method—This indicates whether the EOS byte

has seven or eight significant bits. For a 7-bit EOS byte, the eighth

bit of the EOS byte is ignored.

• EOS write method—If this is enabled, the NI-488.2 driver

automatically asserts the GPIB EOI line when the EOS byte is

written to the GPIB. For example, if the buffer passed into an

ibwrt call contains five occurrences of the EOS byte, the EOI line

is asserted as each of the five EOS bytes are written to the GPIB. If

the ibwrt buffer does not contain an occurrence of the EOS byte,

the EOI line is not asserted (unless the EOT mode is enabled, in

which case the EOI line is asserted with the last byte of the write).

Chapter 5 GPIB Programming Techniques

NI-488.2 User Manual for MacOS 5-2 © National Instruments Corporation

• EOS read method—If this is enabled, the NI-488.2 driver

terminates ibrd, ibrda, and ibrdf calls when the EOS byte is

detected on the GPIB, when the GPIB EOI line is asserted, or when

the specified count is reached. If the EOS read method is disabled,

ibrd, ibrda, and ibrdf calls terminate only when the GPIB EOI

line is asserted or the specified count has been read.

You can use the ibconfig function to configure the software to inform

you whether or not the GPIB EOI line was asserted when the EOS byte

was read. Use the IbcEndBitIsNormal option to configure the

software to report only the END bit in ibsta when the GPIB EOI line

is asserted. By default, the NI-488.2 driver reports END in ibsta when

either the EOS byte is read in or the EOI line is asserted during a read.

High-Speed Data Transfers (HS488)
National Instruments has designed a high-speed data transfer protocol

for IEEE 488 called HS488. This protocol increases performance for

GPIB reads and writes up to 8 MB/s, depending on the speed of your

computer.

HS488 is a superset of the IEEE 488 standard; thus, you can mix

IEEE 488.1, IEEE 488.2, and HS488 devices in the same system. If

HS488 is enabled, the TNT4882C hardware implements high-speed

transfers automatically when communicating with HS488 instruments.

If you attempt to enable HS488 on a GPIB board that does not have the

TNT4882C chip, the error ECAP is returned.

Enabling HS488
To enable HS488 for your GPIB board, use the ibconfig function

(option IbcHSCableLength). The value passed to ibconfig should

specify the number of meters of cable in your GPIB configuration. If

you specify a cable length that is much smaller than what you actually

use, the transferred data could become corrupted. If you specify a cable

length longer than what you actually use, the data is transferred

successfully, but more slowly than if you specified the correct cable

length.

In addition to using ibconfig to configure your GPIB board for

HS488, the Controller-In-Charge must send out GPIB command bytes

(interface messages) to configure other devices for HS488 transfers.

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-3 NI-488.2 User Manual for MacOS

If you are using device-level calls, the NI-488.2 software automatically

sends the HS488 configuration message to devices. If you enabled the

HS488 protocol in the configuration utility, the NI-488.2 software

sends out the HS488 configuration message when you use ibdev to

bring a device online. If you call ibconfig to change the GPIB cable

length, the NI-488.2 software sends out the HS488 message again the

next time you call a device-level function.

If you are using board-level functions or NI-488.2 routines and you

want to configure devices for high-speed, you must send the HS488

configuration messages using ibcmd or SendCmds. The HS488

configuration message is made up of two GPIB command bytes. The

first byte, the Configure Enable (CFE) message (hex 1F), places all

HS488 devices into their configuration mode. Non-HS488 devices

should ignore this message. The second byte is a GPIB secondary

command that indicates the number of meters of cable in your system.

It is called the Configure (CFGn) message. Because HS488 can operate

only with cable lengths of 1 to 15 meters, only CFGn values of 1

through 15 (hex 61 through 6F) are valid. If the cable length was

configured correctly in the configuration utility, you can determine

how many meters of cable are in your system by calling ibask (option

IbaHSCableLength) in your application program. For CFE and CFGn

messages, refer to Appendix A, Multiline Interface Messages, in the

NI-488.2 Function Reference Manual for MacOS.

System Configuration Effects on HS488

Maximum data transfer rates can be limited by your host computer and

GPIB system setup. For example, even though the theoretical maximum

transfer rate with HS488 is 8 MB/s, the maximum transfer rate

obtainable on Macintosh computers with a NuBus is 2 MB/s. The same

IEEE 488 cabling constraints for a 350 ns T1 delay apply to HS488. As

you increase the amount of cable in your GPIB configuration, the

maximum data transfer rate using HS488 decreases. For example, two

HS488 devices connected by two meters of cable can transfer data faster

than three HS488 devices connected by four meters of cable.

Chapter 5 GPIB Programming Techniques

NI-488.2 User Manual for MacOS 5-4 © National Instruments Corporation

Waiting for GPIB Conditions
You can use the ibwait function to obtain the current ibsta value or

to suspend your application until a specified condition occurs on the

GPIB. If you use ibwait with a parameter of zero, it immediately

updates ibsta and returns. If you want to use ibwait to wait for one

or more events to occur, then pass a wait mask to the function. The wait

mask should always include the TIMO event; otherwise, your

application is suspended indefinitely until one of the wait mask events

occurs.

Device-Level Calls and Bus Management
The NI-488 device-level calls are designed to perform all of the GPIB

management for your application program. However, the NI-488.2

driver can handle bus management only when the GPIB interface board

is CIC (Controller-In-Charge). Only the CIC is able to send command

bytes to the devices on the bus to perform device addressing or other

bus management activities. Use one of the following methods to make

your GPIB board the CIC:

• If your GPIB board is configured as the System Controller

(default), it automatically makes itself the CIC by asserting the

IFC line the first time you make a device-level call.

• If your setup includes more than one Controller, or if your GPIB

interface board is not configured as the System Controller, use the

CIC Protocol method. To use the protocol, issue the ibconfig

function (option IbcCICPROT) or use the configuration utility to

activate the CIC protocol. If the interface board is not CIC and you

make a device-level call with the CIC Protocol enabled, the

following sequence occurs.

1. The GPIB interface board asserts the SRQ line.

2. The current CIC serial polls the board.

3. The interface board returns a response byte of hex 42.

4. The current CIC passes control to the GPIB board.

If the current CIC does not pass control, the NI-488.2 driver returns the

ECIC error code to your application. This error can occur if the current

CIC does not understand the CIC Protocol. If this happens, you could

send a device-specific command requesting control for the GPIB board.

Then use a board-level ibwait command to wait for CIC.

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-5 NI-488.2 User Manual for MacOS

Talker/Listener Applications

Although designed for Controller-In-Charge applications, you can also

use the NI-488.2 software in most non-Controller situations. These

situations are known as Talker/Listener applications because the

interface board is not the GPIB Controller. A typical Talker/Listener

application waits for events from the Controller and responds as

appropriate. The following paragraphs describe some programming

techniques for Talker/Listener applications.

Waiting for Messages from the Controller
A Talker/Listener application typically uses ibwait with a mask of 0

to monitor the status of the interface board. Then, based on the status

bits set in ibsta, the application takes whatever action is appropriate.

For example, the application could monitor the status bits TACS

(Talker Active State) and LACS (Listener Active State) to determine

when to send data to or receive data from the Controller. The

application could also monitor the DCAS (Device Clear Active State)

and DTAS (Device Trigger Active State) bits to determine if the

Controller has sent the device clear (DCL or SDC) or trigger (GET)

messages to the interface board. If the application detects a device clear

from the Controller, it might reset the internal state of message buffers.

If it detects a trigger message from the Controller, the application might

begin an operation such as taking a voltage reading if the application is

actually acting as a voltmeter.

Requesting Service
Another type of event that might be important in a Talker/Listener

application is the serial poll. A Talker/Listener application can call

ibrsv with a serial poll response byte when it needs to request service

from the Controller.

Serial Polling

You can use serial polling to obtain specific information from GPIB

devices when they request service. When the GPIB SRQ line is

asserted, it signals the Controller that a service request is pending. The

Controller then determines which device asserted the SRQ line and

responds accordingly. The most common method for SRQ detection and

servicing is the serial poll.

Chapter 5 GPIB Programming Techniques

NI-488.2 User Manual for MacOS 5-6 © National Instruments Corporation

Service Requests from IEEE 488 Devices
IEEE 488 devices request service from the GPIB Controller by

asserting the GPIB SRQ line. When the Controller acknowledges the

SRQ, it serial polls each open device on the bus to determine which

device requested service. Any device requesting service returns a status

byte with bit 6 set and then unasserts the SRQ line. Devices not

requesting service return a status byte with bit 6 cleared. Manufacturers

of IEEE 488 devices use lower order bits to communicate the reason for

the service request or to summarize the state of the device.

Service Requests from IEEE 488.2 Devices
The IEEE 488.2 standard refined the bit assignments in the status byte.

In addition to setting bit 6 when requesting service, IEEE 488.2 devices

also use two other bits to specify their status. Bit 4, the Message

Available bit (MAV), is set when the device is ready to send previously

queried data. Bit 5, the Event Status bit (ESB), is set if one or more of

the enabled IEEE 488.2 events occurs. These events include power-on,

user request, command error, execution error, device-dependent error,

query error, request control, and operation complete. The device can

assert SRQ when ESB or MAV are set, or when a manufacturer-defined

condition occurs.

Automatic Serial Polling
You can enable automatic serial polling if you want your application to

conduct a serial poll automatically any time the SRQ line is asserted.

You can use autopolling with NI-488 device-level calls only. The

autopolling procedure occurs as follows.

1. To enable autopolling, use the configuration utility or the

configuration function, ibconfig with option IbcAUTOPOLL.

(By default, autopolling is enabled.)

2. When the SRQ line is asserted, the driver automatically serial polls

the open devices.

3. Each positive serial poll response (bit 6 or hex 40 is set) is stored

in a queue associated with the device that sent it. The RQS bit of

the device status word, ibsta, is set.

4. The polling continues until SRQ is unasserted or an error condition

is detected.

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-7 NI-488.2 User Manual for MacOS

5. To empty the queue, use the ibrsp function. ibrsp returns the first

queued response. Other responses are read in first-in-first-out

(FIFO) fashion. If the RQS bit of the status word is not set when

ibrsp is called, a serial poll is conducted and returns whatever

response is received. You should empty the queue as soon as an

automatic serial poll occurs, because responses might be discarded

if the queue is full.

6. If the RQS bit of the status word is still set after ibrsp is called,

the response byte queue contains at least one more response byte.

If this happens, you should continue to call ibrsp until RQS is

cleared.

Stuck SRQ State
If autopolling is enabled and the GPIB interface board detects an SRQ,

the driver serial polls all open devices connected to that board. The

serial poll continues until either SRQ unasserts or all the devices have

been polled.

If no device responds positively to the serial poll, or if SRQ remains in

effect because of a faulty instrument or cable, a stuck SRQ state is in

effect. If this happens during an ibwait for RQS, the driver reports the

ESRQ error. If the stuck SRQ state happens, no further polls are

attempted until another ibwait for RQS is made. Whenever ibwait is

issued, the stuck SRQ state is terminated and the driver attempts a new

set of serial polls.

Autopolling and Interrupts
If autopolling is enabled, the NI-488.2 software can perform

autopolling after any device-level NI-488 call as long as no GPIB I/O

is currently in progress. This means that an automatic serial poll can

occur even when your application is not making any calls to the

NI-488.2 software. Autopolling can also occur when a device-level

ibwait for RQS is in progress. Autopolling is not allowed whenever an

application calls a board-level NI-488 function or any NI-488.2 routine,

or the stuck SRQ (ESRQ) condition occurs.

If autopolling is enabled and interrupts are disabled, you can use

autopolling in the following situations only:

• During a device-level ibwait for RQS

• Immediately after a device-level NI-488 function is completed,

before control is returned to the application program

Chapter 5 GPIB Programming Techniques

NI-488.2 User Manual for MacOS 5-8 © National Instruments Corporation

C “ON SRQ” Capability
C applications can respond asynchronously to SRQ using the NI-488

ibsrq function. This function lets an application specify an

SRQ-handling routine that is called whenever the NI-488.2 driver

detects that the SRQ line is asserted. This SRQ-handling routine is not

an interrupt service routine. The driver checks the GPIB SRQ line after

any NI-488 function or NI-488.2 routine has completed, and if SRQ is

asserted and the application has called ibsrq, the user-defined

SRQ-handling routine is called.

SRQ and Serial Polling with NI-488 Device Functions
You can use the device-level NI-488 function ibrsp to conduct a serial

poll. ibrsp conducts a single serial poll and returns the serial poll

response byte to the application program. If automatic serial polling is

enabled, the application program can use ibwait to suspend program

execution until RQS appears in the status word, ibsta. The program

can then call ibrsp to obtain the serial poll response byte.

The following example illustrates the use of the ibwait and ibrsp

functions in a typical SRQ servicing situation when automatic serial

polling is enabled.

#include "decl.h"

char GetSerialPollResponse (int DeviceHandle)

{

char SerialPollResponse = 0;

ibwait (DeviceHandle, TIMO | RQS);

if (ibsta & RQS) {

printf ("Device asserted SRQ.\n");

/* Use ibrsp to retrieve the serial poll
 response. */

ibrsp (DeviceHandle, &SerialPollResponse);

}

return SerialPollResponse;

}

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-9 NI-488.2 User Manual for MacOS

SRQ and Serial Polling with NI-488.2 Routines
The NI-488.2 software includes a set of NI-488.2 routines that you

can use to conduct SRQ servicing and serial polling. Routines

pertinent to SRQ servicing and serial polling are AllSpoll, FindRQS,

ReadStatusByte, TestSRQ, and WaitSRQ.

AllSpoll can serial poll multiple devices with a single call. It places

the status bytes from each polled instrument into a predefined array.

Then you must check the RQS bit of each status byte to determine

whether that device requested service.

ReadStatusByte is similar to AllSpoll, except that it serial polls only

a single device. It is also analogous to the device-level NI-488 ibrsp

function.

FindRQS serial polls a list of devices until it finds a device that is

requesting service or until it has polled all of the specified devices. The

routine returns the index and status byte value of the device requesting

service.

TestSRQ determines whether the SRQ line is asserted or unasserted,

and returns to the program immediately.

WaitSRQ is similar to TestSRQ, except that WaitSRQ suspends the

application program until either SRQ is asserted or the timeout period

is exceeded.

The following examples use NI-488.2 routines to detect SRQ and then

determine which device requested service. In these examples three

devices are present on the GPIB at addresses 3, 4, and 5, and the GPIB

interface is designated as bus index 0. The first example uses FindRQS

to determine which device is requesting service and the second example

uses AllSpoll to serial poll all three devices. Both examples use

WaitSRQ to wait for the GPIB SRQ line to be asserted.

Note: Automatic serial polling is not used in these examples because you cannot

use it with NI-488.2 routines.

Chapter 5 GPIB Programming Techniques

NI-488.2 User Manual for MacOS 5-10 © National Instruments Corporation

Example 1: Using FindRQS

This example illustrates the use of FindRQS to determine which device

is requesting service.

void GetASerialPollResponse (char *DevicePad,
char *DeviceResponse)

{

char SerialPollResponse = 0;

int WaitResult;

Addr4882_t Addrlist[4] = {3,4,5,NOADDR};

WaitSRQ (0, &WaitResult);

if (WaitResult) {

printf ("SRQ is asserted.\n");

/* Use FindRQS to find a device that requested service.
*/

FindRQS (0, AddrList, &SerialPollResponse);

if (!(ibsta & ERR)) {

printf ("Device at pad %x returned byte %x.\n",

AddrList[ibcnt],(int) SerialPollResponse);

*DevicePad = AddrList[ibcnt];

*DeviceResponse = SerialPollResponse;

}

}

return;

}

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-11 NI-488.2 User Manual for MacOS

Example 2: Using AllSpoll

This example illustrates the use of AllSpoll to serial poll three

devices.

void GetAllSerialPollResponses (Addr4882_t AddrList[],
short ResponseList[]

{

int WaitResult;

WaitSRQ (0, &WaitResult);

if (WaitResult) {

printf ("SRQ is asserted.\n");

/* Use Allspoll to serial poll all the devices at once.
*/

AllSpoll (0, AddrList, ResponseList);

if (!(ibsta & ERR)) {

for (i = 0; AddrList[i] != NOADDR; i++) {

printf ("Device at pad %x returned byte %x.\n",

AddrList[i], ResponseList[i]);

}

}

}

return;

}

Parallel Polling

Although parallel polling is not widely used, it is a useful method for

obtaining the status of more than one device at the same time. The

advantage of a parallel poll is that it can easily check up to eight

individual devices at once. In comparison, eight separate serial polls

would be required to check eight devices for their serial poll response

bytes.

Implementing a Parallel Poll
You can implement parallel polling with either NI-488 functions or

NI-488.2 routines. If you use NI-488.2 routines to execute parallel

Chapter 5 GPIB Programming Techniques

NI-488.2 User Manual for MacOS 5-12 © National Instruments Corporation

polls, you do not need extensive knowledge of the parallel polling

messages. However, you should use the NI-488 functions for parallel

polling when the GPIB board is not the Controller and must configure

itself for a parallel poll and set its own individual status bit (ist).

Parallel Polling with NI-488 Functions
Follow these steps to implement parallel polling using NI-488

functions. Each step contains example code.

1. Configure the device for parallel polling using the ibppc function,

unless the device can configure itself for parallel polling.

ibppc requires an 8-bit value to designate the data line number,

the ist sense, and whether or not the function configures or

unconfigures the device for the parallel poll. The bit pattern is as

follows:

0 1 1 E S D2 D1 D0

E is 1 to disable parallel polling and 0 to enable parallel polling for

that particular device.

S is 1 if the device is to assert the assigned data line when ist = 1,

and 0 if the device is to assert the assigned data line when ist = 0.

D2 through D0 determine the number of the assigned data line.

The physical line number is the binary line number plus one. For

example, DIO3 has a binary bit pattern of 010.

The following example code configures a device for parallel

polling using NI-488 functions. The device asserts DIO7 if its

ist = 0.

In this example, the ibdev command is used to open a device that

has a primary address of 3, has no secondary address, has a timeout

of 3 s, asserts EOI with the last byte of a write operation, and has

EOS characters disabled.

#include "decl.h"

char ppr;

dev = ibdev(0,3,0,T3s,1,0);

/* Pass the binary bit pattern, 0110 110 or hex 66,
to ibppc. */

ibppc(dev, 0x66);

If the GPIB interface board configures itself for a parallel poll, you

should still use the ibppc function. Pass the board index or a board

unit descriptor value as the first argument in ibppc. In addition, if

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-13 NI-488.2 User Manual for MacOS

the individual status bit (ist) of the board needs to be changed, use

the ibist function.

In the following example, the GPIB board is to configure itself to

participate in a parallel poll. It asserts DIO5 when ist = 1 if a

parallel poll is conducted.

ibppc(0, 0x6C);

ibist(0, 1);

2. Conduct the parallel poll using ibrpp and check the response for a

certain value. The following example code performs the parallel

poll and compares the response to hex 10, which corresponds to

DIO5. If that bit is set, the ist of the device is 0.

ibrpp(dev, &ppr);

if (ppr & 0x10) printf("ist = 0\n");

3. Unconfigure the device for parallel polling with ibppc. Notice that

any value having the parallel poll disable bit set (bit 4) in the bit

pattern disables the configuration, so you can use any value

between hex 70 and 7E.

ibppc(dev, 0x70);

Parallel Polling with NI-488.2 Routines
Follow these steps to implement parallel polling using NI-488.2

routines. Each step contains example code.

1. Configure the device for parallel polling using the PPollConfig
routine, unless the device can configure itself for parallel polling.

The following example configures a device at address 3 to assert

data line 5 (DIO5) when its ist value is 1.

#include "decl.h"

char response;

Addr4882_t AddressList[2];

/* The following command clears the GPIB. */
SendIFC(0);

/* The value of sense is compared with the ist bit of
the device
 and determines whether the data line is asserted.*/

PPollConfig(0,3,5,1);

Chapter 5 GPIB Programming Techniques

NI-488.2 User Manual for MacOS 5-14 © National Instruments Corporation

2. Conduct the parallel poll using PPoll, store the response, and

check the response for a certain value. In the following example,

because DIO5 is asserted by the device if ist = 1, the program

checks bit 4 (hex 10) in the response to determine the value of ist.

PPoll(0, &response);

/*If response has bit 4 (hex 10) set, the ist bit of
the device
 at that time is equal to 0. If it does not appear,
the ist
 bit is equal to 1. Check the bit in the following
statement.*/

if (response & 0x10) {

printf("The ist equals 1.\n");

}

else {

printf("The ist equals 0.\n");

}

3. Unconfigure the device for parallel polling using the

PPollUnconfig routine as shown in the following example. In this

example, the NOADDR constant must appear at the end of the array

to signal the end of the address list. If NOADDR is the only value in

the array, all devices receive the parallel poll disable message.

AddressList[0] = 3;

AddressList[1] = NOADDR;

PPollUnconfig(0, AddressList);

© National Instruments Corporation 6-1 NI-488.2 User Manual for MacOS

Chapter

6GPIB Configuration Utility

This chapter contains instructions for configuring the NI-488.2

software with the NI-488 Config utility.

Overview

You can use the GPIB configuration utility, NI-488 Config, to view

or change the configuration settings of your NI-488.2 software. With

NI-488 Config, you can change the default GPIB settings that your

interface board uses to communicate with other devices. The utility

edits the default GPIB configuration resources in the NI-488 INIT file.

Help is available on the screen for modifying the current settings.

For specific information about possible settings, refer to the getting

started manual that came with your GPIB interface board or box.

Running the Configuration Utility

This section contains information on running the NI-488 Config

configuration utility. It explains how to use the utility and describes the

configuration settings that you can modify.

Opening the Configuration Utility
The NI-488 Config configuration utility appears in the Control
Panels folder when you install your NI-488.2 software. Open the

Control Panels folder by choosing Control Panels from the

Apple Icon menu and select NI-488 Config.

The NI-488 Config utility displays the currently defined values for

characteristics of a particular device or bus, such as addressing and

timeout information. Help for modifying the current settings is

available at the bottom of the window.

The NI-488 Config configuration utility consists of three frames,

arranged vertically and separated by a heavy line.

Chapter 6 GPIB Configuration Utility

NI-488.2 User Manual for MacOS 6-2 © National Instruments Corporation

Figure 6-1. Opening Screen of NI-488 Config

The global and bus/device frames contain the configuration

characteristic settings. The help frame displays information about the

item over which the cursor is positioned.

The Interface Type and Bus/Device menus affect the display of

configuration controls. For example, selecting a serial interface hides

the Auto Configure checkbox.

Chapter 6 GPIB Configuration Utility

© National Instruments Corporation 6-3 NI-488.2 User Manual for MacOS

Default Configuration
Your NI-488.2 software is shipped with the following default

configurations:

• The Auto Configure checkbox is selected.

• All buses are configured as shown in the bus/device frame in

Figure 6-1.

• All devices are configured similarly to dev1 shown in the

bus/device frame in Figure 6-2. The devices dev1 through dev30

use bus gpib0 and are at the primary addresses 1 through 30,

respectively. The devices dev31 through dev60 use bus gpib1 and

are at the primary addresses 1 through 30, respectively. The devices

dev61 through dev64 use bus gpib2 and are at the primary

addresses 1 through 4, respectively.

Figure 6-2. Device Default Settings in NI-488 Config

Chapter 6 GPIB Configuration Utility

NI-488.2 User Manual for MacOS 6-4 © National Instruments Corporation

Control Items

NI-488 Config has the following four types of control items:

Help Frame
When you place the cursor over any configuration item, a help message

for that item appears in the help frame. Figure 6-3 shows the default

configuration for bus gpib0. The global frame shows the automatic

association of bus gpib0 with a GPIB board installed in System slot 3

(NuBus slot xB). The cursor is positioned over the Auto Configure

checkbox and a corresponding help message appears in the help frame.

The rectangular boxes with drop shadows

and labels to the left have pop-up menus of

options. The currently selected option is

displayed in the box. To select an option

on the pop-up menu, click and hold down

the mouse button when the cursor is over

the box.

A checkbox is a small square box that

contains an X when selected and is labeled

at the right or on the top. An unselected

checkbox displays an alert box when

clicked.

A button is a rounded rectangular box.

An editable text box is a rectangular box

labeled to the left.

Chapter 6 GPIB Configuration Utility

© National Instruments Corporation 6-5 NI-488.2 User Manual for MacOS

Figure 6-3. Help Frame in NI-488 Config

Global Frame
The Interface Type pop-up menu options let you switch the checkboxes

among interface types. Choose NuBus boards for boards, such as the

NB-GPIB-P/TNT or NB-GPIB-P, installed in a NuBus Macintosh.

The Serial box products option applies to the GPIB-422CT or

GPIB-232CT-A, the Ethernet box products option applies to the

GPIB-ENET, and the SCSI box products option applies to the

GPIB-SCSI or GPIB-SCSI-A. For specific information on configuring

one of those products, refer to the getting started manual that came with

the product.

To the upper right of the Interface Type menu box is a row of interface

checkboxes with which you can associate an IEEE 488 bus. Slot

numbers appear above the checkboxes, and associated bus numbers, if

any, appear below the checkboxes. To manually associate a bus with an

interface, first unselect Auto Configure. When you select an interface

checkbox with Auto Configure selected, the next available bus is

assigned to it. Figure 6-4 shows the manual association of bus 0 to

System slot 3 (NuBus slot xB).

Chapter 6 GPIB Configuration Utility

NI-488.2 User Manual for MacOS 6-6 © National Instruments Corporation

Figure 6-4. Manual Bus Association in NI-488 Config

Selecting the Auto Configure checkbox in the global frame

automatically configures the buses according to the way the boards

are contained in the system. When Auto Configure is checked, each

bus, gpib0 through gpib7, is associated with the next GPIB board

found by the Slot Manager when searching System slots 1 through 6

(NuBus slots 9 through E) and expansion slots x1 through x8

(NuBus slots 1 through 8). Select the Auto Configure checkbox unless

your application requires compatibility with older releases of the

NI-488.2 driver, where the naming conventions of the buses are

different. Do not check the Auto Configure checkbox if you want to

change the order that device-identifying software uses GPIB interfaces.

Bus/Device Frame
Items in the bus/device frame configure characteristics of a bus, a

device, or either. Table 6-1 lists the primary bus/device options

available in NI-488 Config. The sections following the table describe

the options in more detail.

Chapter 6 GPIB Configuration Utility

© National Instruments Corporation 6-7 NI-488.2 User Manual for MacOS

For information on product-specific options, such as the Serial or

IP Address pop-up boxes, refer to the getting started manual that

came with your GPIB hardware.

Table 6-1. Bus/Device Options in NI-488 Config

Option Type Default Setting

Primary Address Bus/Device 0

Secondary Address Bus/Device None

Timeout Bus/Device 10 sec

Read END on EOS Bus/Device Disabled

Write END on EOS Bus/Device Disabled

Write END on Last Byte Bus/Device Enabled

8-bit EOS Bus/Device Disabled

EOS Byte Bus/Device 0

Bus Timing Bus Only (Interface-specific)

TNT High Speed Bus Only Disabled

DMA Bus Only Disabled

System Controller Bus Only Enabled

Assert REN when System Bus Only Enabled

Unaddressing Bus Only Disabled

Repeat Addressing Bus/Device Disabled

Rename Device Device Only dev1-dev64

Use Bus Device Only gpib0

Chapter 6 GPIB Configuration Utility

NI-488.2 User Manual for MacOS 6-8 © National Instruments Corporation

Options for Buses or Devices
Select the device or bus you want to configure from the Bus/Device

pop-up menu. The following sections describe the options available for

buses or devices. Also refer to the subsequent sections Options for

Buses Only and Options for Devices Only.

Primary Address

Each device and bus must have unique primary addresses in the range

decimal 0 to decimal 30 (hex 1E). The primary GPIB address of any

device is set within that device, either with hardware switches or, in

some cases, a software program. This address must match the address

listed in the configuration utility. Refer to the device documentation for

instructions about the device address. The primary GPIB address of all

NI-488.2 driver buses is 0, unless changed by the configuration utility.

There are no hardware switches on the interface board to select the

GPIB address. Use the Primary Address pop-up menu to select the

primary address of the bus or device.

Secondary Address

You must assign a secondary address in the range decimal 96 (hex 60)

to decimal 126 (hex 7E) to any device or bus using secondary

addressing. As with primary addressing, the secondary GPIB address of

any device is set within that device, either with hardware switches or,

in some cases, a software program. This address must match the address

listed in the configuration utility. Refer to your device documentation

for instructions. By default, secondary addressing is disabled for all

devices and boards unless you change it with the configuration utility.

Select the secondary address of the bus or device from the Secondary

Address pop-up menu. The secondary addresses are displayed in three

formats: zero-based, decimal, and hexadecimal. Only the zero-based

format is displayed in the pop-up menu box. Selecting None means that

only primary addressing is used for this bus or device. If you configure

any bus or device for secondary addressing, all buses and devices used

by the application must be configured for secondary addressing.

Chapter 6 GPIB Configuration Utility

© National Instruments Corporation 6-9 NI-488.2 User Manual for MacOS

Repeat Addressing

Normally, a device remains addressed after a read or write operation

is performed. However, some devices require addressing for each

operation. If you check the Repeat Addressing box, read or write

operations readdress the selected device even if the same operation

was just performed with that device.

Timeout

The timeout value is the approximate length of time that can elapse

before I/O functions complete. Select the I/O timeout of the bus or

device from the Timeout pop-up menu. The abbreviations used in the

Timeout pop-up menu are: µsec (microseconds), msec (milliseconds),

and sec (seconds). Selecting None means I/O for this bus or device will

never time out.

EOS Modes

The following options determine how the device I/O transmissions

terminate:

• Read END on EOS—Some devices send an EOS byte signaling the

last byte of a data message. Checking this box causes the NI-488.2

software to terminate read operations when it receives the EOS

byte.

• Write END on EOS—Checking this box causes the NI-488.2

software to assert the EOI (send End) line when the EOS character

is sent.

• Write END on Last Byte—Some devices, as Listeners, require that

the Talker terminate a data message by asserting the EOI signal line

(sending END) with the last byte. Checking this box causes the

NI-488.2 software to assert EOI on the last data byte.

• 8-bit EOS—Along with the designation of an EOS charactaer, you

can specify whether all eight bits are compared to detect EOS, or if

just the seven least significant bits (ASCII or ISO format) are

compared to detect EOS.

EOS Byte

You can program some devices to terminate a read operation when a

selected character is detected. A linefeed character (decimal 10) is a

popular EOS character.

Chapter 6 GPIB Configuration Utility

NI-488.2 User Manual for MacOS 6-10 © National Instruments Corporation

Notice that to send the EOS character to a device in a write operation,

you must explicitly include that byte in your data string.

Enter the EOS byte (0 to 255) of the bus or device in the EOS Byte

editable text box. To change the EOS byte, click inside the box, enter

the new number, and press the <return> key.

Options for Buses Only
Select the device you want to configure from the Bus/Device pop-up

menu. The following sections describe the available bus options. See

also the section Options for Buses or Devices earlier in this chapter.

Bus Timing

This pop-up menu appears when configuring a bus associated with a

NAT4882-based interface, such as the NB-GPIB-P. You can use it to

specify the T1 delay of the board source handshake capability. This

delay determines the minimum interval following Ready for Data

(RFD) after which the board may assert Data Valid (DAV) during a

write or command operation. If the total length of the GPIB cable in the

system is less than 15 m and all devices are on, you can choose the

sub-item Very High (350 ns) from the NAT4882 Timing pop-up menu.

For total cable lengths greater than 15 m, choose Low (2 µs) or High

(500 ns) depending on the maximum capability of your particular

device.

TNT High Speed

If you are using a National Instruments TNT4882C-based interface,

such as the NB-GPIB-P/TNT, a second item, TNT High Speed, appears

enabled. Initially, the sub-item High Speed Mode Disabled is checked.

If your device is capable of 1-wire high-speed handshaking, you can

enable the HS488 high-speed protocol by choosing the sub-item

corresponding to the total GPIB cable length of your setup. For

maximum performance, select the sub-item GPIB cable is 1 meter.

DMA

When the DMA box is checked, direct memory access hardware is used

for data transfers, freeing the CPU for other work. Uncheck the DMA

box to transfer data using the CPU. DMA channels are allocated for

GPIB when you check the DMA box or call the ibdma function with

v = 1 in an application program.

Chapter 6 GPIB Configuration Utility

© National Instruments Corporation 6-11 NI-488.2 User Manual for MacOS

System Controller

Generally, the NI-488.2 driver is the System Controller (SC). In some

situations, such as in a network of computers linked by the GPIB,

another device might be System Controller. Selecting the System

Controller box designates the NI-488.2 driver as System Controller.

Unselecting the box designates that it is not System Controller. Each

bus can have only one System Controller.

Assert REN when System (Controller)

Some devices must be in remote state to communicate over the GPIB.

Checking this box permits the driver to assert the Remote Enable

condition (REN) when it is System Controller, placing all instruments

subsequently addressed into remote state.

Unaddressing

Some devices must be unaddressed after each data or command

transfer. To force unaddressing commands to be sent at the end of

device functions, check the Unaddressing box. (Unchecking the

Unaddressing box slightly improves the performance of your

application, because unaddressing commands are not sent at the

end of device functions.)

Options for Devices Only
Select the device you want to configure from the Bus/Device pop-up

menu. The device is connected to the bus number that appears in the

Use Bus text box. The following sections describe the available device

options. See also the section Options for Buses or Devices earlier in

this chapter.

Rename Device

You can rename the device displayed in the Bus/Device pop-up menu

by clicking the Rename Device button and entering the new name. This

feature is helpful when configuring a large number of devices, because

the new name of the device that you entered appears in the Bus/Device

pop-up menu. However, to avoid the confusion of naming and renaming

devices, use the NI-488 function ibdev in new applications to

dynamically configure new devices. You can use ibdev to configure

the driver from your program instead of from the configuration utility.

Chapter 6 GPIB Configuration Utility

NI-488.2 User Manual for MacOS 6-12 © National Instruments Corporation

Use Bus

You can connect the device displayed on the Bus/Device pop-up menu

to a different bus by selecting the new bus from the Use Bus pop-up

menu. The new bus number appears to the left of the device name in the

Bus/Device pop-up menu.

Exiting the Configuration Utility

To exit the configuration utility, click on the close box in the upper left

corner of the configuration screen.

An alert message displays if you close the utility while any of the

following conditions applies:

• The Macintosh must be restarted to load new drivers or change the

serial port, PCI buffers, or ENET connection settings.

• A device GPIB address conflicts with the GPIB address of the bus

to which it is connected. Each GPIB address must be unique.

• No GPIB board is in the slot associated with one of the buses.

• A bus or device I/O timeout is set to None (disabled).

© National Instruments Corporation A-1 NI-488.2 User Manual for MacOS

Appendix

AStatus Word Conditions

This appendix gives a detailed description of the conditions reported in

the status word, ibsta.

For information about how to use ibsta in your application program,

refer to Chapter 2, Developing Your Application.

If a function call returns an ENEB or EDVR error, all status word bits

except the ERR bit are cleared, indicating that it is not possible to obtain

the status of the GPIB board.

Each bit in ibsta can be set for device calls (dev), board calls (brd), or

both (dev, brd).

Table A-1 lists the status word bits.

Table A-1. Status Word Bits

Mnemonic

Bit

Pos.

Hex

Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

Appendix A Status Word Conditions

NI-488.2 User Manual for MacOS A-2 © National Instruments Corporation

ERR (dev, brd)

ERR is set in the status word following any call that results in an error.

You can determine the particular error by examining the error variable

iberr. Appendix B, Error Codes and Solutions, describes error codes

that are recorded in iberr along with possible solutions. ERR is cleared

following any call that does not result in an error.

TIMO (dev, brd)

TIMO indicates that the timeout period has been exceeded. TIMO is set

in the status word following an ibwait call if the TIMO bit of the

ibwait mask parameter is set and the time limit expires. TIMO is also

set following any synchronous I/O functions (for example, ibcmd,

ibrd, ibwrt, Receive, Send, and SendCmds) if a timeout occurs

during one of these calls. TIMO is cleared in all other circumstances.

END (dev, brd)

END indicates either that the GPIB EOI line has been asserted or that

the EOS byte has been received, if the software is configured to

terminate a read on an EOS byte. If the GPIB board is performing a

shadow handshake as a result of the ibgts function, any other function

can return a status word with the END bit set if the END condition

occurs before or during that call. END is cleared when any I/O

operation is initiated.

Mnemonic

Bit

Pos.

Hex

Value Type Description

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Table A-1. Status Word Bits (Continued)

Appendix A Status Word Conditions

© National Instruments Corporation A-3 NI-488.2 User Manual for MacOS

Some applications might need to know the exact I/O read termination

mode of a read operation—EOI by itself, the EOS character by itself, or

EOI plus the EOS character. You can use the ibconfig function

(option IbcEndBitIsNormal) to enable a mode in which the END bit

is set only when EOI is asserted. In this mode, if the I/O operation

completes because of the EOS character by itself, END is not set. The

application should check the last byte of the received buffer to see if it

is the EOS character.

SRQI (brd)

SRQI indicates that a GPIB device is requesting service. SRQI is set

whenever the GPIB board is CIC, the GPIB SRQ line is asserted, and

the automatic serial poll capability is disabled. SRQI is cleared either

when the GPIB board ceases to be the CIC or when the GPIB SRQ line

is unasserted.

RQS (dev)

RQS appears in the status word only after a device-level call and

indicates that the device is requesting service. RQS is set whenever bit

6 is asserted in the serial poll status byte of the device. The serial poll

that obtains the status byte can be the result of a call to ibrsp, or the

poll might be automatic if automatic serial polling is enabled. Do not

issue an ibwait on RQS for a device that does not respond to serial

polls. RQS is cleared when an ibrsp reads the serial poll status byte

that caused the RQS.

CMPL (dev, brd)

CMPL indicates the condition of I/O operations. It is set whenever an

I/O operation is complete. CMPL is cleared while the I/O operation is

in progress.

Appendix A Status Word Conditions

NI-488.2 User Manual for MacOS A-4 © National Instruments Corporation

LOK (brd)

LOK indicates whether the board is in a lockout state. While LOK is set,

the EnableLocal routine or ibloc function is inoperative for that

board. LOK is set whenever the GPIB board detects that the Local

Lockout (LLO) message has been sent either by the GPIB board or by

another Controller. LOK is cleared when the System Controller

unasserts the Remote Enable (REN) GPIB line.

REM (brd)

REM indicates whether or not the board is in the remote state. REM is

set whenever the Remote Enable (REN) GPIB line is asserted and the

GPIB board detects that its listen address has been sent either by the

GPIB board or by another Controller. REM is cleared in the following

situations:

• When REN becomes unasserted

• When the GPIB board as a Listener detects that the Go to Local

(GTL) command has been sent either by the GPIB board or by

another Controller

• When the ibloc function is called while the LOK bit is cleared in

the status word

CIC (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge. CIC

is set when the SendIFC routine or ibsic function is executed either

while the GPIB board is System Controller or when another Controller

passes control to the GPIB board. CIC is cleared either when the GPIB

board detects Interface Clear (IFC) from the System Controller or when

the GPIB board passes control to another device.

ATN (brd)

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set

whenever the GPIB ATN line is asserted, and it is cleared when the

ATN line is unasserted.

Appendix A Status Word Conditions

© National Instruments Corporation A-5 NI-488.2 User Manual for MacOS

TACS (brd)

TACS indicates whether the GPIB board is addressed as a Talker.

TACS is set whenever the GPIB board detects that its talk address

(and secondary address, if enabled) has been sent either by the GPIB

board itself or by another Controller. TACS is cleared whenever the

GPIB board detects the Untalk (UNT) command, its own listen address,

a talk address other than its own talk address, or Interface Clear (IFC).

LACS (brd)

LACS indicates whether the GPIB board is addressed as a Listener.

LACS is set whenever the GPIB board detects that its listen address

(and secondary address, if enabled) has been sent either by the GPIB

board itself or by another Controller. LACS is also set whenever the

GPIB board shadow handshakes as a result of the ibgts function.

LACS is cleared whenever the GPIB board detects the Unlisten (UNL)

command, its own talk address, Interface Clear (IFC), or that the

ibgts function has been called without shadow handshake.

DTAS (brd)

DTAS indicates whether the GPIB board has detected a device trigger

command. DTAS is set whenever the GPIB board, as a Listener, detects

that the Group Execute Trigger (GET) command has been sent by

another Controller. DTAS is cleared on any call immediately following

an ibwait call, if the DTAS bit is set in the ibwait mask parameter.

DCAS (brd)

DCAS indicates whether the GPIB board has detected a device clear

command. DCAS is set whenever the GPIB board detects that the

Device Clear (DCL) command has been sent by another Controller, or

whenever the GPIB board as a Listener detects that the Selected Device

Clear (SDC) command has been sent by another Controller. DCAS is

cleared on any call immediately following an ibwait call, if the DCAS

bit was set in the ibwait mask parameter. It also clears on any call

immediately following a read or write.

© National Instruments Corporation B-1 NI-488.2 User Manual for MacOS

Appendix

BError Codes and Solutions

This appendix lists a description of each error, some conditions under

which it might occur, and possible solutions.

The following table lists the GPIB error codes.

Table B-1. GPIB Error Codes

Error

Mnemonic

iberr

Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EDMA 8 No DMA channel available

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

Appendix B Error Codes and Solutions

NI-488.2 User Manual for MacOS B-2 © National Instruments Corporation

EDVR (0)

EDVR is returned for the following reasons:

• When the board or device name passed to ibfind is not configured

in the software

• When an invalid unit descriptor is passed to any function call

• When the driver is not installed. In this case, ibcnt contains a

system level error code

Solutions
Following are some possible solutions:

• Use ibdev to open a device without specifying its symbolic name.

• Use only device or board names that are configured in the utility

program NI-488 Config as parameters in the ibfind function.

• Use the unit descriptor returned from the ibfind function as the

first parameter in subsequent NI-488 functions. Examine the

variable after the ibfind and before the failing function to make

sure it was not corrupted.

• Make sure the NI-488.2 driver is installed by checking to see if

NI-488 INIT is in the Extensions folder in the System Folder.

ECIC (1)

ECIC is returned when one of the following board functions or routines

is called while the board is not CIC:

• Any device-level NI-488 functions that affect the GPIB

• Any board-level NI-488 functions that issue GPIB command bytes

such as ibcmd, ibcmda, ibln, ibrpp, ibcac, ibgts

Error

Mnemonic

iberr

Value Meaning

ETAB 20 Table problem

ELCK 21 Board or device is locked

Table B-1. GPIB Error Codes (Continued)

Appendix B Error Codes and Solutions

© National Instruments Corporation B-3 NI-488.2 User Manual for MacOS

• Any of the NI-488.2 routines that issue GPIB command bytes such

as SendCmds, PPoll, Send, Receive

Solutions
Following are some possible solutions:

• Use ibsic or SendIFC to make the GPIB board become CIC on the

GPIB.

• Use ibrsc 1 to make sure your GPIB board is configured as

System Controller.

• In multiple CIC situations, always be certain that the CIC bit

appears in the status word ibsta before attempting these calls. If it

does not appear, you can perform an ibwait (for CIC) call to delay

further processing until control is passed to the board.

ENOL (2)

ENOL usually occurs when a write operation is attempted with no

Listeners addressed. For a device write, this error indicates that the

GPIB address configured for that device in the software does not match

the GPIB address of any device connected to the bus, that the GPIB

cable is not connected to the device, or that the device is not

powered on.

ENOL can occur in situations in which the GPIB board is not the CIC

and the Controller asserts ATN before the write call in progress has

ended.

Solutions
Following are some possible solutions:

• Make sure that the GPIB address of your device matches the GPIB

address of the device to which you want to write data.

• Use the appropriate hex code in ibcmd to address your device.

• Check your cable connections and make sure at least two-thirds of

your devices are powered on.

• Call ibpad (or ibsad, if necessary) to match the configured

address to the device switch settings.

• Reduce the write byte count to that which is expected by the

Controller.

Appendix B Error Codes and Solutions

NI-488.2 User Manual for MacOS B-4 © National Instruments Corporation

EADR (3)

EADR occurs when the GPIB board is CIC and is not properly

addressing itself before read and write functions. This error is usually

associated with board-level functions.

EADR is also returned by the function ibgts when the

shadow-handshake feature is requested and the GPIB ATN line is

already unasserted. In this case, the shadow handshake is not possible

and the error is returned to notify you of that fact.

Solutions
Following are some possible solutions:

• Make sure that the GPIB board is addressed correctly before calling

ibrd, ibwrt, RcvRespMsg, or SendDataBytes.

• Avoid calling ibgts except immediately after an ibcmd call.

(ibcmd causes ATN to be asserted.)

EARG (4)

EARG results when an invalid argument is passed to a function call.

The following are some examples:

• ibtmo called with a value not in the range 0 through 17

• ibpad or ibsad called with invalid addresses

• ibppc called with invalid parallel poll configurations

• A board-level NI-488 call made with a valid device descriptor or a

device-level NI-488 call made with a board descriptor

• An NI-488.2 routine called with an invalid address

• PPollConfig called with an invalid data line or sense bit

Solutions
Following are some possible solutions:

• Make sure that the parameters passed to the NI-488 function or

NI-488.2 routine are valid.

• Do not use a device descriptor in a board function or vice-versa.

Appendix B Error Codes and Solutions

© National Instruments Corporation B-5 NI-488.2 User Manual for MacOS

ESAC (5)

ESAC results when ibsic, ibsre, SendIFC, or EnableRemote is

called when the GPIB board does not have System Controller

capability.

Solutions
Give the GPIB board System Controller capability by calling ibrsc 1

or by using NI-488 Config to configure that capability into the

software.

EABO (6)

EABO indicates that an I/O operation has been canceled, usually due to

a timeout condition. Other causes for this error are calling ibstop or

receiving the Device Clear message from the CIC while performing an

I/O operation.

Frequently, the I/O is not progressing (the Listener is not continuing to

handshake or the Talker has stopped talking), or the byte count in the

call which timed out was more than the other device was expecting.

Solutions
Following are some possible solutions:

• Use the correct byte count in input functions or have the Talker use

the END message to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo.

• Make sure that you have configured your device to send data before

you request data.

ENEB (7)

ENEB occurs when there is no GPIB board present. This happens when

the board is not physically plugged into the system, or there is a conflict

in the system.

Appendix B Error Codes and Solutions

NI-488.2 User Manual for MacOS B-6 © National Instruments Corporation

Solutions
Verify that all GPIB interfaces and external controller boxes are

plugged in securely, powered on, and configured properly in the GPIB

configuration.

EDMA (8)

EDMA occurs when the driver is unable to allocate a DMA channel.

Solutions
Verify that other boards are not using all seven available DMA

channels. Disconnect the RTSI connector from the other DMA boards

temporarily.

EOIP (10)

EOIP occurs when an asynchronous I/O operation has not finished

before some other call is made. During asynchronous I/O, you can only

use ibstop, ibwait, and ibonl, or perform other non-GPIB

operations. Once the asynchronous I/O has begun, further GPIB calls

other than ibstop, ibwait, or ibonl are strictly limited. If a call might

interfere with the I/O operation in progress, the driver returns EOIP.

Solutions
Resynchronize the driver and the application before making any further

GPIB calls. Resynchronization is accomplished by using one of the

following three functions:

• ibwait—If the returned ibsta contains CMPL then the driver and

application are resynchronized.

• ibstop—The I/O is canceled; the driver and application are

resynchronized.

• ibonl—The I/O is canceled and the interface is reset; the driver

and application are resynchronized.

Appendix B Error Codes and Solutions

© National Instruments Corporation B-7 NI-488.2 User Manual for MacOS

ECAP (11)

ECAP results when your GPIB board lacks the ability to carry out an

operation or when a particular capability has been disabled in the

software and a call is made that requires the capability.

Solutions
Check the validity of the call, or make sure your GPIB interface board

and the driver both have the needed capability.

EFSO (12)

EFSO results when an ibrdf or ibwrtf call encounters a problem

performing a file operation. Specifically, this error indicates that the

function is unable to open, create, seek, write, or close the file being

accessed. The specific system error code for this condition is contained

in ibcnt.

Solutions
Following are some possible solutions:

• Make sure the file is in the same folder as your application.

• Make sure there is enough room on the disk to hold the file.

EBUS (14)

EBUS results when certain GPIB bus errors occur during device

functions. All device functions send command bytes to perform

addressing and other bus management. Devices are expected to

accept these command bytes within the time limit specified by the

default configuration or the ibtmo function. EBUS results if a

timeout occurred while sending these command bytes.

Solutions
Following are some possible solutions:

• Verify that the instrument is operating correctly.

• Check for loose or faulty cabling or several powered-off

instruments on the GPIB.

• If the timeout period is too short for the driver to send command

bytes, increase the timeout period.

Appendix B Error Codes and Solutions

NI-488.2 User Manual for MacOS B-8 © National Instruments Corporation

ESTB (15)

ESTB is reported only by the ibrsp function. ESTB indicates that one

or more serial poll status bytes received from automatic serial polls

have been discarded because of a lack of storage space. Several older

status bytes are available; however, the oldest is being returned by the

ibrsp call.

Solutions
Following are some possible solutions:

• Call ibrsp more frequently to empty the queue.

• Disable autopolling with the ibconfig function or the

NI-488 Config utility.

ESRQ (16)

ESRQ occurs only during the ibwait function or the WaitSRQ

routine. ESRQ indicates that a wait for RQS is not possible because

the GPIB SRQ line is stuck on. This situation can be caused by the

following events:

• Usually, a device unknown to the software is asserting SRQ.

Because the software does not know of this device, it can never

serial poll the device and unassert SRQ.

• A GPIB bus tester or similar equipment might be forcing the SRQ

line to be asserted.

• A cable problem might exist involving the SRQ line.

Although the occurrence of ESRQ warns you of a definite GPIB

problem, it does not affect GPIB operations, except that you cannot

depend on the RQS bit while the condition lasts.

Solutions
Check to see if other devices not used by your application are asserting

SRQ. Disconnect them from the GPIB if necessary.

Appendix B Error Codes and Solutions

© National Instruments Corporation B-9 NI-488.2 User Manual for MacOS

ETAB (20)

ETAB occurs only during the FindLstn, FindRQS, and ibevent

functions. ETAB indicates that there was some problem with a table

used by the following functions:

• In the case of FindLstn, ETAB means that the given table did not

have enough room to hold all the addresses of the Listeners found.

• In the case of FindRQS, ETAB means that none of the devices in

the given table were requesting service.

• In the case of ibevent, ETAB means the event queue overflowed

and event information was lost.

Solutions
In the case of FindLstn, increase the size of result arrays. In the case

of FindRQS, check to see if other devices not used by your application

are asserting SRQ. Disconnect them from the GPIB if necessary. In the

case of ETAB returned from ibevent, call ibevent more often to

empty the queue.

ELCK (21)

ELCK occurs if the requested GPIB-ENET board or device is being

used through another connection.

Solutions
Wait for the lock on the board or device to be released, or try using

ibunlock if you previously used iblock to lock access to the

connection.

© National Instruments Corporation C-1 NI-488.2 User Manual for MacOS

Appendix

CCustomer Communication

For your convenience, this appendix contains forms to help you gather the information necessary to

help us solve your technical problems and a form you can use to comment on the product

documentation. When you contact us, we need the information on the Technical Support Form and the

configuration form, if your manual contains one, about your system configuration to answer your

questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to

quickly provide the information you need. Our electronic services include a bulletin board service,

an FTP site, a fax-on-demand system, and e-mail support. If you have a hardware or software

problem, first try the electronic support systems. If the information available on these systems

does not answer your questions, we offer fax and telephone support through our technical support

centers, which are staffed by applications engineers.

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files

and documents to answer most common customer questions. From these sites, you can also download

the latest instrument drivers, updates, and example programs. For recorded instructions on how to use

the bulletin board and FTP services and for BBS automated information, call (512) 795-6990. You can

access these services at:

United States: (512) 794-5422

Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59

Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use

your Internet address, such as joesmith@anywhere.com, as your password. The support files and

documents are located in the /support directories.

Bulletin Board Support

FTP Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide

range of technical information. You can access Fax-on-Demand from a touch-tone telephone at

(512) 418-1111.

You can submit technical support questions to the applications engineering team through e-mail at the

Internet address listed below. Remember to include your name, address, and phone number so we can

contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical

support number for your country. If there is no National Instruments office in your country, contact the

source from which you purchased your software to obtain support.

Telephone Fax

Australia 03 9879 5166 03 9879 6277

Austria 0662 45 79 90 0 0662 45 79 90 19

Belgium 02 757 00 20 02 757 03 11

Canada (Ontario) 905 785 0085 905 785 0086

Canada (Quebec) 514 694 8521 514 694 4399

Denmark 45 76 26 00 45 76 26 02

Finland 09 725 725 11 09 725 725 55

France 01 48 14 24 24 01 48 14 24 14

Germany 089 741 31 30 089 714 60 35

Hong Kong 2645 3186 2686 8505

Israel 03 5734815 03 5734816

Italy 02 413091 02 41309215

Japan 03 5472 2970 03 5472 2977

Korea 02 596 7456 02 596 7455

Mexico 5 520 2635 5 520 3282

Netherlands 0348 433466 0348 430673

Norway 32 84 84 00 32 84 86 00

Singapore 2265886 2265887

Spain 91 640 0085 91 640 0533

Sweden 08 730 49 70 08 730 43 70

Switzerland 056 200 51 51 056 200 51 55

Taiwan 02 377 1200 02 737 4644

United States 512 795 8248 512 794 5678

United Kingdom 01635 523545 01635 523154

Fax-on-Demand Support

E-Mail Support (currently U.S. only)

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use

the completed copy of this form as a reference for your current configuration. Completing this form

accurately before contacting National Instruments for technical support helps our applications

engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,

include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___)___________________ Phone (___) __

Computer brand ________________ Model ________________ Processor___________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter __________________________

Mouse ___yes ___no Other adapters installed _______________________________________

Hard disk capacity _____MB Brand ___

Instruments used ___

National Instruments hardware product model __________ Revision ______________________

Configuration ___

National Instruments software product ____________________________ Version ____________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem:__

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.

This information helps us provide quality products to meet your needs.

Title: NI-488.2™ User Manual for MacOS

Edition Date: July 1997

Part Number: 320897B-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

Phone (___)__________________________ Fax (___) _________________________________

Mail to: Technical Publications Fax to: Technical Publications

National Instruments Corporation National Instruments Corporation

6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039

© National Instruments Corporation G-1 NI-488.2 User Manual for MacOS

Glossary

A

AC alternating current.

acceptor handshake Listeners use this GPIB interface function to receive data, and all

devices use it to receive commands. See source handshake and

handshake.

access board The GPIB board that controls and communicates with the devices on the

bus that are attached to it.

ANSI American National Standards Institute.

ASCII American Standard Code for Information Interchange.

automatic serial polling A feature of the NI-488.2 software in which serial polls are executed

(autopolling) automatically by the driver whenever a device asserts the GPIB SRQ

line.

Prefix Meanings Value

n- nano- 10–9

µ- micro- 10–6

m- milli- 10–3

k- kilo- 10
3

M- Mega- 10
6

Glossary

NI-488.2 User Manual for MacOS G-2 © National Instruments Corporation

B

board-level function A rudimentary function that performs a single operation.

boot See startup.

C

CFE Configuration Enable is the GPIB command which precedes CFGn and

is used to place devices into their configuration mode.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE and are

used to configure all devices for the number of meters of cable in the

system so that HS488 transfers occur without errors.

CIC See Controller-In-Charge.

configuration The process of altering the software parameters in the driver that

describe characteristics of the devices and boards.

Controller-In-Charge The device that manages the GPIB by sending interface messages to

(CIC) other devices.

CPU Central processing unit.

D

DAV (Data Valid) One of the three GPIB handshake lines. See handshake.

DCL Device Clear is the GPIB command used to reset the device or internal

functions of all devices. See SDC.

dec Decimal.

Device Clear See DCL.

device-level function A function that combines several rudimentary board operations into one

function so that the user does not have to be concerned with bus

management or other GPIB protocol matters.

DIO1 through DIO8 The GPIB lines that are used to transmit command or data bytes from

one device to another.

Glossary

© National Instruments Corporation G-3 NI-488.2 User Manual for MacOS

DMA High-speed data transfer between the GPIB board and memory that is

(direct memory access) not handled directly by the CPU. Not available on some systems. See

programmed I/O.

driver Device driver software installed within the operating system.

E

END or END message A message that signals the end of a data string. END is sent by asserting

the GPIB End or Identify (EOI) line with the last data byte.

EOI (End or Identify) A GPIB line that is used to signal either the last byte of a data message

(END) or the parallel poll Identify (IDY) message.

EOS End-of-string.

EOS byte A 7- or 8-bit end-of-string character that is sent as the last byte of a data

message.

EOT End of transmission.

ESB The Event Status bit is part of the IEEE 488.2-defined status byte which

is received from a device responding to a serial poll.

F

FIFO first-in-first-out.

G

GET Group Execute Trigger is the GPIB command used to trigger a device

or internal function of an addressed Listener.

Go To Local See GTL.

GPIB General Purpose Interface Bus is the common name for the

communications interface system defined in ANSI/IEEE Standard

488.1-1987 and ANSI/IEEE Standard 488.2-1987.

GPIB address The address of a device on the GPIB, composed of a primary address

(MLA and MTA) and an optional secondary address (MSA). The GPIB

board has both a GPIB address and an I/O address.

Glossary

NI-488.2 User Manual for MacOS G-4 © National Instruments Corporation

GPIB board Refers to the National Instruments family of GPIB interface boards.

Group Executed Trigger See GET.

GTL Go To Local is the GPIB command used to place an addressed Listener

in local (front panel) control mode.

H

handshake The mechanism used to transfer bytes from the Source Handshake

function of one device to the Acceptor Handshake function of another

device. The three GPIB lines DAV, NRFD, and NDAC are used in an

interlocked fashion to signal the phases of the transfer, so that bytes can

be sent asynchronously (for example, without a clock) at the speed of

the slowest device. For more information about handshaking, refer to

the ANSI/IEEE Standard 488.1-1987.

hex Hexadecimal; a number represented in base 16. For example,

decimal 16 = hex 10.

high-level function See device-level function.

Hz Hertz.

I

ibcnt After each NI-488.2 I/O function, this global variable contains the

actual number of bytes transmitted.

iberr A global variable that contains the specific error code associated with a

function call that failed.

IBIC 488.2 IBIC 488.2, the Interface Bus Interactive Control utility, is used to

communicate with GPIB devices, troubleshoot problems, and develop

your application.

ibsta At the end of each function call, this global variable (status word)

contains status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices and used to

manage the GPIB.

Glossary

© National Instruments Corporation G-5 NI-488.2 User Manual for MacOS

I/O (Input/Output) In the context of this manual, the transmission of commands or

messages between the computer via the GPIB board and other devices

on the GPIB.

I/O address The address of the GPIB board from the point of view of the CPU, as

opposed to the GPIB address of the GPIB board. Also called port

address or board address.

ist An Individual Status bit of the status byte used in the Parallel Poll

Configure function.

K

KB Kilobytes of memory.

L

LAD (Listen Address) See MLA.

language interface Code that enables an application program that uses NI-488 functions or

NI-488.2 routines to access the driver.

listen address See MLA.

Listener A GPIB device that receives data messages from a Talker.

low-level function See board-level function.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined status byte

which is received from a device responding to a serial poll.

MB Megabytes of memory.

memory-resident Resident in RAM.

MLA A GPIB command used to address a device to be a Listener. It can be

(My Listen Address) any one of the 31 primary addresses.

Glossary

NI-488.2 User Manual for MacOS G-6 © National Instruments Corporation

MSA My Secondary Address is the GPIB command used to address a device

(My Secondary Address) to be a Listener or a Talker when extended (two byte) addressing is

used. The complete address is a MLA or MTA address followed by an

MSA address. There are 31 secondary addresses for a total of 961

distinct listen or talk addresses for devices.

MTA (My Talk Address) A GPIB command used to address a device to be a Talker. It can be any

one of the 31 primary addresses.

N

NDAC One of the three GPIB handshake lines. See handshake.

(Not Data Accepted)

NI-488 Config The NI-488.2 driver configuration control panel utility.

NRFD One of the three GPIB handshake lines. See handshake.

(Not Ready For Data)

P

parallel poll The process of polling all configured devices at once and reading a

composite poll response. See serial poll.

PIO See programmed I/O.

PPC Parallel Poll Configure is the GPIB command used to configure an

(Parallel Poll Configure) addressed Listener to participate in polls.

PPD Parallel Poll Disable is the GPIB command used to disable a configured

(Parallel Poll Disable) device from participating in polls. There are 16 PPD commands.

PPE Parallel Poll Enable is the GPIB command used to enable a configured

(Parallel Poll Enable) device to participate in polls and to assign a DIO response line. There

are 16 PPE commands.

PPU Parallel Poll Unconfigure is the GPIB command

(Parallel Poll used to disable anydevice from participating in

Unconfigure) polls.

programmed I/O Low-speed data transfer between the GPIB board and memory in which

the CPU moves each data byte according to program instructions. See

DMA.

Glossary

© National Instruments Corporation G-7 NI-488.2 User Manual for MacOS

R

RAM Random-access memory.

RQS Request Service.

S

SC See System Controller.

SDC Selected Device Clear is the GPIB command used to reset internal or

device functions of an addressed Listener. See DCL and IFC.

serial poll The process of polling and reading the status byte of one device at a

time. See parallel poll.

Service Request See SRQ.

source handshake The GPIB interface function that transmits data and commands. Talkers

use this function to send data, and the Controller uses it to send

commands. See acceptor handshake and handshake.

SPD Serial Poll Disable is the GPIB command used to

(Serial Poll Disable) cancel an SPE command.

SPE Serial Poll Enable is the GPIB command used to enable a specific

(Serial Poll Enable) device to be polled. That device must also be addressed to talk.

See SPD.

SRQ (Service Request) The GPIB line that a device asserts to notify the CIC that the device

needs servicing.

startup To load the operating system programs from floppy or hard disk into

memory and to begin executing the code. A hard boot is when power is

applied to the computer.

status byte The IEEE 488.2-defined data byte sent by a device when it is serially

polled.

status word See ibsta.

System Controller The single designated Controller that can assert control (become CIC of

the GPIB) by sending the Interface Clear (IFC) message. Other devices

can become CIC only by having control passed to them.

Glossary

NI-488.2 User Manual for MacOS G-8 © National Instruments Corporation

T

TAD (Talk Address) See MTA.

Talker A GPIB device that sends data messages to Listeners.

TCT Take Control is the GPIB command used to pass control of the bus from

the current Controller to an addressed Talker.

timeout A feature of the NI-488.2 driver that prevents I/O functions from

hanging indefinitely when there is a problem on the GPIB.

TLC An integrated circuit that implements most of the GPIB Talker,

Listener, and Controller functions in hardware.

TTL Transistor-transistor logic.

U

ud (unit descriptor) A variable name and first argument of each function call that contains

the unit descriptor of the GPIB interface board or other GPIB device

that is the object of the function.

UNL Unlisten is the GPIB command used to unaddress any active Listeners.

UNT Untalk is the GPIB command used to unaddress an active Talker.

© National Instruments Corporation I-1 NI-488.2 User Manual for MacOS

Index

Numbers/Symbols
! (Repeat Previous Function), IBIC 488.2, 4-18

$ (Execute Indirect File) function,

IBIC 488.2, 4-18

A
address syntax, IBIC 488.2, 4-5

addressing, GPIB

address bits (illustration), 1-2

configuring in NI-488 Config utility

Primary Address option, 6-8

Repeat Addressing option, 6-9

Secondary Address option, 6-8

Unaddressing option, 6-11

overview, 1-2

repeat addressing, 3-4

AllSpoll routine, 5-9, 5-11

ANSI/IEEE Standard 488.1-1987, 1-1

application development. See debugging

applications; programming.

Assert REN When System (Controller) option,

NI-488 Config utility, 6-11

ATN (attention) line, 1-4

ATN status word condition, A-4

automatic serial polling. See serial polling.

auxiliary functions, IBIC 488.2

! (Repeat Previous Function), 4-18

$ (Execute Indirect File), 4-18

Buffer (Set Buffer Display Mode), 4-19

Help (Display Help Information), 4-17

list of functions (table), 4-16 to 4-17

n* (Repeat Function n Times), 4-18

Set (Select Device or Board), 4-17

B
BASIC. See FutureBASIC.

Buffer (Set Buffer Display Mode) function,

IBIC 488.2, 4-19

bus/device frame, NI-488 Config utility

bus only options, 6-10 to 6-11

bus or device options, 6-8 to 6-10

device only options, 6-11 to 6-12

options (table), 6-7

Bus Timing option, NI-488 Config utility, 6-10

byte count, IBIC 488.2, 4-12

C
C language

compiling, linking, and running

applications, 2-19 to 2-20

NI-488.2 software language files, 1-8

CIC protocol, for making GPIB board

Controller-in-Charge, 5-4

CIC status word condition, A-4

CMPL status word condition, A-3

communication errors

repeat addressing, 3-4

termination method, 3-4

compiling, linking, and running applications

C applications, 2-19 to 2-20

FutureBASIC applications, 2-20

configuration. See GPIB operation; NI-488

Config utility.

Index

NI-488.2 User Manual for MacOS I-2 © National Instruments Corporation

configuration errors, debugging, 3-3

Configure Enable (CFE) message, 5-3

Configure (CFGn) message, 5-3

control items, NI-488 Config utility, 6-4

Controllers

CIC protocol for making GPIB board

Controller-in-Charge, 5-4

Controller-In-Charge and System

Controller, 1-2

device-level calls and bus

management, 5-4

GPIB operation, 1-1

monitoring by Talker/Listener

applications, 5-5

System Controller option, NI-488 Config

utility, 6-11

count, IBIC 488.2, 4-12

count variables (ibcnt and ibcntl), 2-5

customer communication, xiv, C-1

D
data lines, 1-3

data transfers

high-speed (HS488), 5-2 to 5-4

enabling, 5-2 to 5-3

system configuration effects, 5-3

terminating, 5-1 to 5-2

DAV (data valid) line, 1-3

DCAS status word condition

description, A-5

waiting for messages from Controller, 5-5

debugging applications. See also IBIC 488.2.

common questions, 3-4 to 3-6

communication errors

repeat addressing, 3-4

termination method, 3-4

configuration errors, 3-3

global status variables, 3-1

GPIB error codes, 3-2 to 3-3

IBIC 488.2, 3-1 to 3-2

NI-488.2 Test, 3-1

timing errors, 3-3 to 3-4

default configuration for NI-488.2

software, 6-3

device frame, NI-488 Config utility. See

bus/device frame, NI-488 Config utility.

device-level calls and bus management, 5-4

DMA option, NI-488 Config utility, 6-10

documentation

conventions used, xiii

organization of, xii

related documentation, xiii to xiv

driver and driver utilities, NI-488.2, 1-7

DTAS status word condition

description, A-5

waiting for messages from Controller, 5-5

E
EABO error code, B-5

EADR error code, B-4

EARG error code, B-4

EBUS error code, B-7

ECAP error code, B-7

ECIC error code, B-2 to B-3

EDMA error code, B-6

EDVR error code, B-2

EFSO error code, B-7

ELCK error code, B-9

END status word condition, A-2 to A-3

ENEB error code, B-5 to B-6

ENOL error code, B-3

EOI (end or identify) line

definition (table), 1-4

termination of data transfers, 5-1 to 5-2

EOIP error code, B-6

Index

© National Instruments Corporation I-3 NI-488.2 User Manual for MacOS

EOS, configuring

ibeos function, 5-1

NI-488 Config utility

EOS Byte option, 6-9 to 6-10

EOS Modes option, 6-9

EOS comparison method, 5-1

EOS read method, 5-2

EOS write method, 5-1

ERR status word condition, A-2

error codes, IBIC 488.2 operation, 4-11

error codes and solutions

debugging applications, 3-1 to 3-2

EABO, B-5

EADR, B-4

EARG, B-4

EBUS, B-7

ECAP, B-7

ECIC, B-2 to B-3

EDMA, B-6

EDVR, B-2

EFSO, B-7

ELCK, B-9

ENEB, B-5 to B-6

ENOL, B-3

EOIP, B-6

ESAC, B-5

ESRQ, B-8

ESTB, B-8

ETAB, B-9

list of error codes (table), 3-2 to 3-3,

B-1 to B-2

error variable (iberr), 2-5

errors, debugging

common questions, 3-4 to 3-6

communication errors

repeat addressing, 3-4

termination method, 3-4

configuration errors, 3-3

GPIB error codes, 3-2 to 3-3

timing errors, 3-3 to 3-4

ESAC error code, B-5

ESRQ error code, B-8

ESTB error code, B-8

ETAB error code, B-9

Event Status bit (ESB), 5-6

Execute Indirect File function ($),

IBIC 488.2, 4-18

F
FindRQS routine, 5-10

functions. See IBIC 488.2; NI-488 functions.

G
General Purpose Interface Bus (GPIB). See

GPIB operation.

global frame, NI-488 Config utility, 6-5 to 6-6

global variables

count variables (ibcnt and ibcntl), 2-5

debugging applications, 3-1 to 3-2

error variable (iberr), 2-5

status word (ibsta), 2-3 to 2-4, A-1 to A-5

GPIB addressing. See addressing, GPIB.

GPIB configuration utility. See NI-488

Config utility.

GPIB error codes. See error codes and

solutions.

GPIB operation

addressing, 1-2

configuration

controlling more than one board, 1-5

linear and star configuration

(illustration), 1-5

requirements, 1-6 to 1-7

Controller-In-Charge and System

Controller, 1-2

interface management lines

ATN (attention), 1-4

EOI (end or identify), 1-4

IFC (interface clear), 1-4

Index

NI-488.2 User Manual for MacOS I-4 © National Instruments Corporation

REN (remote enable), 1-4

SRQ (service request), 1-4

overview, 1-1

sending messages, 1-3 to 1-4

signals and lines

data lines, 1-3

DAV (data valid), 1-3

handshake lines, 1-3

NDAC (not data accepted), 1-3

NRFD (not ready for data), 1-3

Talkers, Listeners, and Controllers, 1-1

GPIB programming techniques

device-level calls and bus

management, 5-4

high-speed data transfers, 5-2 to 5-4

enabling HS488, 5-2 to 5-3

system configuration effects, 5-3

parallel polling, 5-11 to 5-14

implementing, 5-11 to 5-14

using NI-488 functions, 5-12 to 5-13

using NI-488.2 routines, 5-13 to 5-14

serial polling, 5-5 to 5-9

automatic serial polling, 5-6 to 5-8

autopolling and interrupts, 5-7

C "ON SRQ" capability, 5-8

stuck SRQ state, 5-7

service requests

from IEEE 488 devices, 5-6

from IEEE 488.2 devices, 5-6

SRQ and serial polling

with NI-488 device

functions, 5-8

with NI-488.2 routines, 5-9

Talker/Listener applications, 5-5

requesting service, 5-5

waiting for messages from

Controller, 5-5

termination of data transfers, 5-1 to 5-2

waiting for GPIB conditions, 5-4

H
handshake lines, 1-3

Help (Display Help Information) function,

IBIC 488.2, 4-17

help frame, NI-488 Config utility, 6-4 to 6-5

high-speed data transfers (HS488), 5-2 to 5-4

enabling HS488, 5-2 to 5-3

system configuration effects, 5-3

HS488. See high-speed data transfers

(HS488).

HSS488 configuration message, 5-3

I
ibcnt and ibcntl count variables, 2-5

ibconfig function

configuring GPIB board as CIC,

5-2 to 5-3

determining assertion of EOI line, 5-2

enabling autopolling, 5-6

enabling high-speed data transfers,

5-2 to 5-3

ibdev function, IBIC 488.2, 4-12 to 4-14

ibeos function, 5-1

ibeot function, 5-1

iberr (error variable), 2-5

IBIC 488.2

auxiliary functions

! (Repeat Previous Function), 4-18

$ (Execute Indirect File), 4-18

Buffer (Set Buffer Display

Mode), 4-19

Help (Display Help

Information), 4-17

list of functions (table), 4-16 to 4-17

n* (Repeat Function n Times), 4-18

Set (Select Device or Board), 4-17

byte count, 4-12

debugging applications, 3-1 to 3-2

error information, 4-11

Index

© National Instruments Corporation I-5 NI-488.2 User Manual for MacOS

NI-488 functions commonly used with

ibdev, 4-12 to 4-14

ibrd, 4-14

ibwrt, 4-14

NI-488.2 routines commonly used with

examples, 4-1 to 4-4

Receive, 4-16

Send and SendList, 4-15

Set, 4-15

overview, 4-1

status word (ibsta), 4-11

syntax

address syntax, 4-5

NI-488 functions, 4-6 to 4-9

NI-488.2 routines, 4-9 to 4-10

number syntax, 4-5

string syntax, 4-5

ibppc function

conducting parallel polls, 5-12

unconfiguring device for parallel

polling, 5-13

ibrd function, 4-14

ibrpp function, 5-13

ibrsp function, 5-7

ibrsrv function, 5-5

ibsta. See status word (ibsta).

ibwait function

conducting serial polls, 5-7

Talker/Listener applications, 5-5

terminating stuck SRQ state, 5-7

waiting for GPIB conditions, 5-4

ibwrt function, 4-14

IFC (interface clear) line, 1-4

Interface Bus Interactive Control utility (IBIC

488.2). See IBIC 488.2.

interface management lines

ATN (attention), 1-4

EOI (end or identify), 1-4

IFC (interface clear), 1-4

REN (remote enable), 1-4

SRQ (service request), 1-4

interrupts and autopolling, 5-7

L
LACS status word condition

description, A-5

waiting for message from Controller, 5-5

lines. See signals and lines.

Listeners

definition, 1-1

Talker/Listener applications, 5-5

LOK status word condition, A-4

M
Message Available (MAV) bit, 5-6

messages, sending across GPIB, 1-3 to 1-4

N
n* (Repeat Function n Times) function,

IBIC 488.2, 4-18

NDAC (not data accepted) line, 1-3

NI-488 applications, programming. See

programming.

NI-488 Config utility

Assert REN When System (Controller)

option, 6-11

bus/device frame, 6-6 to 6-7

bus-only options, 6-10 to 6-11

bus or device options, 6-8 to 6-10

device-only options, 6-11 to 6-12

options (table), 6-7

Bus/Device menu, 6-1 to 6-2

Bus Timing option, 6-10

control items, 6-4

default configuration, 6-3

DMA option, 6-10

EOS Byte option, 6-9 to 6-10

Index

NI-488.2 User Manual for MacOS I-6 © National Instruments Corporation

EOS modes, 6-9

exiting, 6-12

global frame, 6-5 to 6-6

help frame, 6-4 to 6-5

Interface Type menu, 6-2

opening, 6-1 to 6-2

opening screen (illustration), 6-2

overview, 6-1

Primary Address pop-up menu, 6-8

Rename Device option, 6-11

Repeat Addressing option, 6-9

Secondary Address pop-up menu, 6-8

System Controller option, 6-11

Timeout pop-up menu, 6-9

TNT High Speed option, 6-10

Unaddressing option, 6-11

Use Bus option, 6-12

NI-488 functions

board functions, 2-2

device functions, 2-2

one device per board concept, 2-1 to 2-2

parallel polling, 5-11 to 5-14

serial polling, 5-5 to 5-8

using in IBIC 488.2

ibdev, 4-12 to 4-14

ibrd, 4-14

ibwrt, 4-14

syntax (table), 4-6 to 4-9

NI-488.2 applications, programming. See

programming.

NI-488.2 routines

capabilities, 2-2

parallel polling, 5-13 to 5-14

serial polling, 5-9

serial polling examples

AllSpoll, 5-11

FindRQS, 5-10

using in IBIC 488.2

Receive, 4-16

Send, 4-15

SendList, 4-15

Set, 4-15

syntax (table), 4-9 to 4-10

NI-488.2 software

C language files, 1-8

default configuration, 6-3

driver and driver utilities, 1-7

FutureBASIC language files, 1-8

NI-488.2 Test utility, 3-1 to 3-2

NRFD (not ready for data) line, 1-3

number syntax, IBIC 488.2, 4-5

O
operation of GPIB. See GPIB operation.

P
parallel polling, 5-11 to 5-14

implementing, 5-11 to 5-14

using NI-488 functions, 5-12 to 5-13

using NI-488.2 routines, 5-13 to 5-14

PPoll routine, 5-14

PPollConfig routine, 5-13

PPollUnconfig routine, 5-14

primary GPIB address

definition, 1-2

setting in NI-488 Config utility, 6-8

programming. See also debugging

applications; GPIB programming

techniques.

checking status with global variables

count variables (ibcnt and ibcntl), 2-5

error variable (iberr), 2-5

status word (ibsta), 2-3 to 2-4

choosing programming method, NI-488.2

language interface, 2-1

compiling, linking, and running

C applications, 2-19 to 2-20

FutureBASIC applications, 2-20

Index

© National Instruments Corporation I-7 NI-488.2 User Manual for MacOS

examples, NI-488.2 routines in IBIC

488.2, 4-1 to 4-4

IBIC 488.2 for communicating with

devices, 2-6

NI-488 applications

clearing devices, 2-8

configuring devices, 2-9

items to include, 2-6

NI-488 program shell

(illustration), 2-7

opening devices, 2-8

placing device offline, 2-11

processing data, 2-11

reading measurements, 2-11

triggering devices, 2-9

waiting for measurements, 2-10

NI-488.2 applications

configuring instruments,

2-16 to 2-17

finding all Listeners, 2-14

identifying instruments, 2-15 to 2-16

initialization, 2-14

initializing instruments, 2-16

items to include, 2-12

NI-488.2 program shell

(illustration), 2-13

placing board offline, 2-19

processing data, 2-19

reading measurements, 2-18

triggering instruments, 2-17

waiting for measurements,

2-17 to 2-18

Q
FutureBASIC

compiling, linking, and running

applications, 2-20

NI-488.2 software language files, 1-8

R
ReadStatusByte routine, 5-9

Receive routine, IBIC 488.2, 4-16

REM status word condition, A-4

REN (remote enable) line, 1-4

Rename Device option, NI-488 Config

utility, 6-11

repeat addressing

enabling in NI-488 Config utility, 6-9

required before GPIB activity, 3-4

Repeat Function n Times (n*),

IBIC 488.2, 4-18

Repeat Previous Function (!),

IBIC 488.2, 4-18

RQS status word condition, A-3

S
secondary GPIB address

definition, 1-2

setting in NI-488 Config utility, 6-8

Send routine, 4-15

SendCmds function, 5-3

sending messages across GPIB, 1-3 to 1-4

SendList routine, 4-15

serial polling, 5-5 to 5-9

automatic serial polling, 5-6 to 5-7

autopolling and interrupts, 5-7

C "ON SRQ" capability, 5-8

stuck SRQ state, 5-7

service requests

from IEEE 488 devices, 5-6

from IEEE 488.2 devices, 5-6

Talker/Listener applications, 5-5

SRQ and serial polling

with NI-488 device functions, 5-8

with NI-488.2 routines, 5-9

Index

NI-488.2 User Manual for MacOS I-8 © National Instruments Corporation

service requests

serial polling

IEEE 488 devices, 5-6

IEEE 488.2 devices, 5-6

stuck SRQ state, 5-7

Talker/Listener applications, 5-5

Set (Select Device or Board) function, IBIC

488.2, 4-17

Set routine, IBIC 488.2, 4-15

signals and lines

ATN (attention), 1-4

data lines, 1-3

DAV (data valid), 1-3

EOI (end or identify), 1-4

handshake lines (table), 1-3

IFC (interface clear), 1-4

interface management lines (table), 1-4

NDAC (not data accepted), 1-3

NRFD (not ready for data), 1-3

REN (remote enable), 1-4

SRQ (service request), 1-4

SRQ (service request) line

definition, 1-4

serial polling

automatic serial polling, 5-6 to 5-7

C "ON SRQ" capability, 5-8

stuck SRQ state, 5-7

using NI-488 device functions, 5-8

using NI-488.2 routines, 5-9

SRQI status word condition, A-3

status word (ibsta)

ATN, A-4

CIC, A-4

CMPL, A-3

DCAS, A-5

DTAS, A-5

END, A-2 to A-3

ERR, A-2

IBIC 488.2 operation, 4-11

LACS, 5-5, A-5

list of status word bits (table), 2-4,

A-1 to A-2

LOK, A-4

REM, A-4

RQS, A-3

SRQI, A-3

TACS, 5-5, A-5

testing for ibsta conditions, 2-3 to 2-4

TIMO, A-2

string syntax, IBIC 488.2, 4-4 to 4-5

stuck SRQ state, 5-7

syntax, IBIC 488.2. See IBIC 488.2.

System Controller

configuring in NI-488 Config utility, 6-11

GPIB operation, 1-1

T
TACS status word condition

definition, A-5

waiting for message from Controller, 5-5

Talker/Listener applications

definition, 5-5

requesting service, 5-5

waiting for messages from Controller, 5-5

Talkers, 1-1

technical support, C-1

termination of data transfers

debugging applications, 3-4

GPIB programming techniques,

5-1 to 5-2

TestSRQ routine, 5-9

timeout value, setting in NI-488 Config

utility, 6-9

timing errors, 3-3 to 3-4

TIMO status word condition, A-2

TNT High Speed option, NI-488 Config

utility, 6-10

TNT4882C hardware, 5-2

Index

© National Instruments Corporation I-9 NI-488.2 User Manual for MacOS

U
Unaddressing option, NI-488 Config

utility, 6-11

Use Bus option, NI-488 Config utility, 6-12

W
WaitSRQ routine, 5-9

writing applications. See programming.

	NI-488.2™ User Manual�for MacOS
	Important Information
	Warranty
	Copyright
	Trademarks
	Warning

	Table of Contents
	About This Manual
	How to Use This Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages Across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines

	Setting Up and Configuring Your System
	Controlling More Than One Board

	Configuration Requirements

	NI-488.2 Software Components
	NI-488.2 Driver and Driver Utilities
	C Language Files
	FutureBASIC Language Files
	How the NI-488.2 Software Works with Your System

	Chapter 2 Developing Your Application
	Choosing a Programming Method
	Using the NI-488.2 Language Interface
	Using NI-488 Functions: One Device for Each Board
	NI-488 Device Functions
	NI-488 Board Functions

	Using NI-488.2 Routines: Multiple Boards and/or Mu...
	Checking Status with Global Variables
	Status Word—ibsta
	Error Variable—iberr
	Count Variables—ibcnt and ibcntl

	Using IBIC 488.2 to Communicate with Devices

	Writing Your NI-488 Application
	Items to Include
	NI-488 Program Shell
	General Program Steps and Examples
	Step 1. Open a Device
	Step 2. Clear the Device
	Step 3. Configure the Device
	Step 4. Trigger the Device
	Step 5. Wait for the Measurement
	Step 6. Read the Measurement
	Step 7. Process the Data
	Step 8. Place the Device Offline

	Writing Your NI-488.2 Application
	Items to Include

	NI-488.2 Program Shell
	General Program Steps and Examples
	Step 1. Initialization
	Step 2. Find All Listeners
	Step 3. Identify the Instrument
	Step 4. Initialize the Instrument
	Step 5. Configure the Instrument
	Step 6. Trigger the Instrument
	Step 7. Wait for the Measurement
	Step 8. Read the Measurement
	Step 9. Process the Data
	Step 10. Place the Board Offline

	Compiling, Linking, and Running
	C Applications
	FutureBASIC Applications

	Chapter 3 Debugging Your Application
	Running NI-488.2 Test
	Debugging with the Global Status Variables
	Debugging with IBIC 488.2
	GPIB Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method

	Common Questions

	Chapter 4 Interface Bus Interactive Control Utility
	Overview
	Example Using NI-488 Functions
	IBIC 488.2 Syntax
	Number Syntax
	String Syntax
	Address Syntax

	IBIC 488.2 Syntax for NI-488 Functions
	IBIC 488.2 Syntax for NI-488.2 Routines
	Status Word
	Error Information
	Count
	Common NI-488 Functions
	ibdev
	ibwrt
	ibrd

	Common NI-488.2 Routines in IBIC 488.2
	Set
	Send and SendList
	Receive

	Auxiliary Functions
	Set (Select Device or Board)
	Help (Display Help Information)
	! (Repeat Previous Function)
	n* (Repeat Function n Times)
	$ (Execute Indirect File)
	Buffer (Set Buffer Display Mode)

	Chapter 5 GPIB Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488
	Waiting for GPIB Conditions

	Device-Level Calls and Bus Management

	Talker/Listener Applications
	Waiting for Messages from the Controller
	Requesting Service

	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts
	C “ON SRQ” Capability

	SRQ and Serial Polling with NI-488 Device Function...
	SRQ and Serial Polling with NI-488.2 Routines

	Example 1: Using FindRQS
	Example 2: Using AllSpoll
	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488 Functions
	Parallel Polling with NI-488.2 Routines

	Chapter 6 GPIB Configuration Utility
	Overview
	Running the Configuration Utility
	Opening the Configuration Utility
	Default Configuration
	Control Items
	Help Frame
	Global Frame
	Bus/Device Frame
	Options for Buses or Devices
	Options for Buses Only
	Options for Devices Only

	Exiting the Configuration Utility

	Appendix A Status Word Conditions
	Appendix B Error Codes and Solutions
	Appendix C Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. Linear and Star System Configuration
	Figure 1-2. Example of Multiboard System Setup
	Figure 1-3. How the NI-488.2 Software Works with Y...
	Figure 2-1. General Program Shell Using NI-488 Dev...
	Figure 2-2. General Program Shell Using NI-488.2 R...
	Figure 6-1. Opening Screen of NI-488 Config
	Figure 6-2. Device Default Settings in NI-488 Conf...
	Figure 6-3. Help Frame in NI-488 Config
	Figure 6-4. Manual Bus Association in NI-488 Confi...

	Tables
	Table 1-1. GPIB Address Bits
	Table 1-2. GPIB Handshake Lines
	Table 1-3. GPIB Interface Management Lines
	Table 2-1. Status Word (ibsta) Layout
	Table 3-1. GPIB Error Codes
	Table 4-1. Syntax for Board-Level NI-488 Functions...
	Table 4-2. Syntax for Device-Level NI-488 Function...
	Table 4-3. Syntax for NI-488.2 Routines in IBIC 48...
	Table 4-4. Auxiliary Functions in IBIC 488.2 (Cont...
	Table 6-1. Bus/Device Options in NI-488 Config
	Table A-1. Status Word Bits (Continued)
	Table B-1. GPIB Error Codes (Continued)

