

 NI-7932

https://www.apexwaves.com/modular-systems/national-instruments/flexrio/NI-7932?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/flexrio/NI-7932?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/flexrio/NI-7932?aw_referrer=pdf

FlexRIO
TM

NI-7931R/7932R/7935R User Manual

NI-793xR User Manual

August 2015

375181B-01

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office websites, which provide up-to-date

contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on National

Instruments documentation, refer to the National Instruments website at ni.com/info and

enter the Info Code feedback.

© 2015 National Instruments. All rights reserved.

http://ni.com
http://ni.com/niglobal
http://ni.com/info

Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version,
refer to ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS
OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND
SHALL NOT BE LIABLE FOR ANY ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to
substantially conform to the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially
in accordance with the applicable documentation provided with the software and (ii) the software media will be free from
defects in materials and workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair
or replace the affected product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be
warranted for the remainder of the original warranty period or ninety (90) days, whichever is longer. If NI elects to repair or
replace the product, NI may use new or refurbished parts or products that are equivalent to new in performance and reliability
and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for
examining and testing Hardware not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance,
installation, repair, or calibration (performed by a party other than NI); unauthorized modification; improper environment;
use of an improper hardware or software key; improper use or operation outside of the specification for the product; improper
voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL
APPLY EVEN IF SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND AND NI DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE
PRODUCTS, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY WARRANTIES THAT MAY ARISE FROM
USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS
OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE
OPERATION OF THE PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the
warranty terms in the separate agreement shall control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the
prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected
by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials
belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the
terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

� Notices are located in the <National Instruments>_Legal Information and <National Instruments>
directories.

� EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

� Review <National Instruments>_Legal Information.txt for information on including legal information in
installers built with NI products.

U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication,
reproduction, release, modification, disclosure or transfer of the technical data included in this manual is governed by the
Restricted Rights provisions under Federal Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal
Acquisition Regulation Supplement Section 252.227-7014 and 252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments
trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology
and vernier.com are trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered
trademarks, and TargetBox™ and Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under
license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft
Corporation in the United States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments
and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your
software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global
trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND
RELIABILITY OF THE PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR
APPLICATION, INCLUDING THE APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM
OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE
PERFORMANCE, INCLUDING IN THE OPERATION OF NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR
TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING SYSTEMS OR SUCH OTHER MEDICAL
DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD
LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST
FAILURES, INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK
USES.

Compliance

Electromagnetic Compatibility Information
This hardware has been tested and found to comply with the applicable regulatory requirements and limits

for electromagnetic compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)1.
These requirements and limits are designed to provide reasonable protection against harmful interference
when the hardware is operated in the intended electromagnetic environment. In special cases, for example
when either highly sensitive or noisy hardware is being used in close proximity, additional mitigation
measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee

that interference will not occur in a particular installation. To minimize the potential for the hardware to
cause interference to radio and television reception or to experience unacceptable performance degradation,
install and use this hardware in strict accordance with the instructions in the hardware documentation and

the DoC1.

If this hardware does cause interference with licensed radio communications services or other nearby
electronics, which can be determined by turning the hardware off and on, you are encouraged to try to correct
the interference by one or more of the following measures:

� Reorient the antenna of the receiver (the device suffering interference).

� Relocate the transmitter (the device generating interference) with respect to the receiver.

� Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch
circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC
requirements for special EMC environments such as, for marine use or in heavy industrial areas. Refer to

the hardware’s user documentation and the DoC1 for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to
disturbances or may cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to
correct the interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to
operate the hardware under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions
for the user or installer. To obtain the DoC for this product, visit ni.com/certification, search by
model number or product line, and click the appropriate link in the Certification column.

© National Instruments | vii

Contents

About This Manual
Related Documentation .. xi

Xilinx Documentation .. xiii

Additional Resources.. xiv

Chapter 1
Before You Begin
Development Requirements ... 1-1

Xilinx Licensing Information ... 1-2

Chapter 2
Mounting the NI-793xR

Mounting the NI-793xR Directly on a Flat Surface ... 2-3

Installing the Rubber Feet... 2-4

Chapter 3
Hardware Architecture
NI-7931R .. 3-1

NI-7931R Key Features.. 3-4

Clocking Architecture... 3-5

NI-7932R .. 3-6

NI-7932R Key Features.. 3-9

Clocking Architecture... 3-11

NI-7935R .. 3-12

NI-7935R Key Features.. 3-15

Clocking Architecture... 3-16

Chapter 4
Developing with LabVIEW FPGA
Developing with LabVIEW FPGA... 4-1

Adding the NI-793xR to a LabVIEW Project .. 4-1

Adding an Adapter Module to the Target... 4-1

Adding Items to the NI-793xR Target.. 4-2

Adding NI-793xR Target I/O ... 4-2

Configuring a 10 MHz Reference Clock.. 4-2

Auto-loading Bitfiles on Power-up... 4-3

Interactive Front Panel Communication... 4-3

Using the NI Common Instrument Design Libraries.. 4-4

Using niInstr Instruction Framework ... 4-4

Streaming Overview... 4-4

CLIP Adapters Overview ... 4-4

Contents

viii | ni.com

Data Trigger Overview ...4-4

Basic Elements Overview...4-5

Memory Overview..4-5

Compiling LabVIEW FPGA VIs..4-5

Download, Reset, and Run Side Effects in the LabVIEW FPGA Host Interface4-5

Streaming ..4-6

Flow Control ...4-6

DMA Streaming..4-7

Simulating FPGA Behavior ..4-8

Chapter 5
Programming the High-Speed Serial Ports
Development Flow..5-1

Developing MGT Socketed CLIP...5-2

Socketed CLIP Architecture ...5-2

Accessing the Xilinx Vivado Tools ..5-3

Generating an IP Core from the Xilinx Vivado IP Catalog......................................5-4

Modifying Third-Party IP Core Logic ..5-4

Building a Netlist from the IP Core ..5-5

Writing a VHDL Wrapper Around the Protocol IP Core ...5-7

Constraints and Hierarchy ..5-8

Documenting Your IP...5-9

Adding MGT Socketed CLIP to the LabVIEW Project ...5-9

Configuring MGT Socketed CLIP in the NI-793xR LabVIEW FPGA Targets.......5-10

Using Existing VHDL IP inside CLIP or IPIN...5-11

Improving Performance in Larger Designs through Enable Chain Removal5-11

Chapter 6
Programming with the Real-Time Target
Best Practices ..6-1

Key Concepts ..6-1

Installing and Configuring the NI-793xR...6-2

Creating a Real-Time Application ..6-2

Real-Time System Integration ..6-3

Querying Fan Speed and Temperature Sensors ..6-3

Power/Thermal Protection and Shutdown ..6-4

LabVIEW System Configuration API ..6-4

Communicating with Applications on an RT Target..6-5

Front Panel Communication ...6-5

Network Communication..6-6

Where to Go from Here ..6-6

LabVIEW Help ...6-6

LabVIEW Real-Time Module Release and Upgrade Notes6-7

NI-793xR User Manual

© National Instruments | ix

Appendix A
CLIP Signals

Appendix B
Using the Fan

Appendix C
NI Services

Glossary

© National Instruments | xi

About This Manual

The NI-7931R/7932R/7935R User Manual describes how to use the NI-7931R, NI-7932R, and

NI-7935R controllers for FlexRIO to develop high-performance embedded applications.

This manual provides detailed information about the electrical and mechanical requirements of

component-level IP (CLIP) and LabVIEW FPGA design.

Related Documentation

The following documents contain information that you may find helpful as you read this manual.

Table 1. Documentation Overview

Document Location Description

Getting started

guide for your

controller for

FlexRIO

Available from the Start menu

(Start»All Programs»National

Instruments»NI FlexRIO) and

at ni.com/manuals.

Contains information about

installing, configuring, and

troubleshooting your controller

for FlexRIO.

Specifications for

your controller for

FlexRIO

Contains specifications for your

controller for FlexRIO.

FlexRIO Help Contains information about the

controller for FlexRIO front

panel connectors and I/O,

programming instructions, and

adapter module

component-level IP (CLIP).

LabVIEW

High-Performance

FPGA Developer’s

Guide

Available at ni.com/

tutorial.

Summarizes the most effective

techniques for optimizing

throughput, latency, and FPGA

resources when using the

LabVIEW FPGA Module and

the RIO hardware platform.

www.ni.com/manuals
http://www.ni.com/tutorial/14600/en/
http://www.ni.com/tutorial/14600/en/

About This Manual

xii | ni.com

FPGA Module Help This document is a book within

the LabVIEW Help. Access this

document by navigating to

Start»All Programs»National

Instruments»LabVIEW 201x»

LabVIEW 201x Help, or by

searching for FPGA Module

Help at ni.com/manuals.

Browse to the FPGA Module

book in the Contents tab for

information about using the

LabVIEW FPGA Module.

With the LabVIEW FPGA

Module and LabVIEW, you can

create VIs that run on National

Instruments FPGA targets.

The Getting Started with the

LabVIEW FPGA book provides

links to the top resources that

you can use to get started with

LabVIEW FPGA.

The Integrating Third-Party IP

(FPGA Module) book contains

information about adding

custom HDL code to your

LabVIEW project.

Real-Time Module

Help

This document is a book within

the LabVIEW Help. Access this

document by navigating to

Start»All Programs»National

Instruments»LabVIEW 201x»

LabVIEW 201x Help, or by

searching for Real-Time Module

Help at ni.com/manuals.

Browse to the Real-Time

Module book in the Contents

tab for information about using

the LabVIEW Real-Time

Module.

The Real-Time Module

combines LabVIEW graphical

programming with the power of

a real-time operating system,

enabling you to build real-time

applications. Use this help to

access information about

real-time programming

concepts, step-by-step

instructions for using LabVIEW

with the Real-Time Module,

reference information about

Real-Time Module VIs and

functions, and information

about LabVIEW features on

real-time operating systems.

LabVIEW FPGA

Module Release and

Upgrade Notes

Available at ni.com/

manuals. You can also view

this document by selecting

Start»All Programs»National

Instruments»LabVIEW»

LabVIEW Manuals.

Contains information

about installing the

LabVIEW FPGA Module,

describes new features, and

provides upgrade information.

Table 1. Documentation Overview (Continued)

Document Location Description

www.ni.com/manuals
www.ni.com/manuals
www.ni.com/manuals
www.ni.com/manuals
www.ni.com/manuals

NI-793xR User Manual

© National Instruments | xiii

Xilinx Documentation
Xilinx FPGA documentation provides information required for the successful development of

your controller for FlexRIO. The following table provides a list of specific Xilinx documentation

resources.

All Xilinx documentation can be found at www.xilinx.com.

Table 2. Xilinx Documentation

Document Document Part Number Description

7 Series FPGAs Overview DS180 Outlines the features and

product selection of the

Xilinx 7 series FPGAs,

including Kintex-7 devices.

Kintex-7 FPGAs Data

Sheet: DC and AC Switching

Characteristics

DS182 Contains the DC and AC

switching characteristic

specifications for the

Kintex-7 FPGAs.

Vivado Design Suite:

Release Notes, Installation,

and Licensing

UG973 Provides an overview of the

new release of the Vivado

Design Suite, including

information on new and

changed features,

installation requirements for

the software, and licensing

information.

High-Speed Serial I/O Made

Simple: A Designer’s Guide,

with FPGA Applications

— Recommended for users

new to high-speed serial.

7 Series FPGAs GTX/GTH

Transceivers User Guide

UG476 Technical reference

describing the 7 series

FPGAs GTX/GTH

transceivers.

Vivado Design Suite User

Guide: Using Constraints

UG903 Describes using Xilinx

Design Constraints (XDC)

in Vivado tools.

www.xilinx.com

About This Manual

xiv | ni.com

Additional Resources

Table 3. FlexRIO Development Resources

Development

Resource Location Description

FlexRIO website ni.com/flexrio Contains information about

FlexRIO devices,

application areas, and

technical resources.

FlexRIO Instrument

Development Library

https://decibel.ni.com/

content/docs/DOC-15799

The FlexRIO Instrument

Development Library is a set

of host and FPGA code that

provides FPGA capabilities

commonly found in

instruments such as

acquisition engines, DRAM

interfaces, and trigger logic,

along with the associated

host APIs.

LabVIEW examples Available in NI Example Finder.

In LabVIEW, click Help»Find

Examples»Hardware Input

and Output»FlexRIO.

Contains examples of how to

run FPGA VIs and Host VIs

on your device.

IPNet ni.com/ipnet Contains LabVIEW FPGA

functions and intellectual

property to share.

https://decibel.ni.com/content/docs/DOC-15799
https://decibel.ni.com/content/docs/DOC-15799
http://www.ni.com/flexrio/
http://www.ni.com/ipnet/

© National Instruments | 1-1

1
Before You Begin

This section contains information you need before developing high-performance embedded

applications using the NI-7931R, NI-7932R, and NI-7935R devices.

Development Requirements

Successful system design with the NI-793xR devices may require knowledge in the following

areas, depending on your application.

� Real-time programming

� VHDL code design

� LabVIEW and LabVIEW FPGA programming

If you are unfamiliar with any of these concepts, refer to the following table for a list of resources

for learning the fundamentals required for NI-793xR development.

Table 1-1. Fundamentals Resources

Concept Resources

Real-time programming Real-time programming courses are

available at ni.com/training. You can

also refer to the LabVIEW Real-Time

Module Help at ni.com/manuals.

VHDL code design Some VHDL training or experience is

required before implementing custom

protocols with the high-speed serial

transceivers. Do not attempt to develop

Component-Level IP (CLIP) without

VHDL knowledge. Refer to the FlexRIO

Help for more information about CLIP.

LabVIEW and LabVIEW FPGA

programming

LabVIEW and LabVIEW FPGA training

are available at ni.com/training. You

can also refer to the NI LabVIEW

High-Performance FPGA Developer’s

Guide, available at ni.com/tutorials.

http://www.ni.com/training/
http://www.ni.com/manuals/
http://www.ni.com/tutorials/
http://www.ni.com/training/

1-2 | ni.com

Chapter 1 Before You Begin

Xilinx Licensing Information

Refer to the Xilinx Documentation section of About This Manual for a list of Xilinx

documentation that contains important Xilinx licensing information.

© National Instruments | 2-1

2
Mounting the NI-793xR

This section contains information about mounting the NI-793xR devices.

Note Before you begin mounting the NI-793xR, refer to the getting started guide

for your NI-793xR for instructions about wiring power to the NI-793xR, powering

on the NI-793xR, and connecting the NI-793xR to a host computer.

Caution The NI-793xR mounting orientation is not restricted; however, when

mounting the NI-793xR upside-down, ensure that the FlexRIO adapter module is

supported if you expect shock greater than 30 g/11 ms.

Caution In order to obtain the maximum allowable ambient temperature as

specified in your device’s specifications document, you must maintain at least 1 in.

of clearance on either side of the NI-793xR. Refer to Figure 2-1 for fan clearance

information.

Figure 2-1. Fan Clearance

Keep Out

Zone

1.0 in.
(25.4 mm)

1.0 in.
(25.4 mm)

2-2 | ni.com

Chapter 2 Mounting the NI-793xR

You can mount the NI-793xR in a variety of configurations. The following table lists the

ecommended mounting methods.

The following sections contain instructions for the mounting methods. Before using any of these

mounting methods, record the serial number from the back of the device. You will be unable to

read the serial number from the back of the device after you have mounted it.

Caution You must provide physical support for any FlexRIO adapter modules

during the mounting process.

Table 2-1. Mounting Options

Method Required Accessory Kit NI Part Number

Direct mounting — —

Panel Panel Mount Accessory Kit 784365-01

© National Instruments | 2-3

NI-793xR User Manual

Mounting the NI-793xR Directly on a Flat Surface
For applications sensitive to shock and vibration, NI recommends mounting the device directly

on a flat, rigid surface using the mounting holes in the device.

You will need the following items to mount the device directly on a flat surface:

� Three screws, M4, 7 mm + thickness of mounting surface

Complete the following steps to mount the device.

1. Use the dimensions shown in Figure 2-2 to drill the holes required for mounting the device.

2. Drill clearance holes 4.5 mm in diameter.

3. Align the device on the surface.

4. Fasten the device to the surface with the screws.

Figure 2-2. NI-793xR Dimensions

2.433

4.400

9.214 in
.

6.050 in
.

5.137 in
.

2-4 | ni.com

Chapter 2 Mounting the NI-793xR

Installing the Rubber Feet
The NI-793xR ships with optional rubber feet. Install the rubber feet to the bottom of the device,

as shown in Figure 2-3.

Caution Do not install rubber feet when directly mounting the NI-793xR. The

rubber feet will prevent full contact between the unit and the mounting surface.

Figure 2-3. Installing the Rubber Feet

© National Instruments | 3-1

3
Hardware Architecture

This chapter contains information about the NI-793xR hardware architecture.

NI-7931R

The NI-7931R is an embedded FlexRIO controller with an embedded processor and

reconfigurable FPGA.

Note The NI-7931R hardware does not require calibration.

The following figure shows the NI-7931R front panel connectors. For more information about

the front panel connectors, refer to your device’s specifications document and the FlexRIO Help.

For information about connecting the device to a host computer, refer to the NI-7931R Getting

Started Guide.

Figure 3-1. NI-7931R Front Panel Connectors

1 TRIG
2 REF IN
3 µSD card
4 USB device port
5 USB host

6 1 Gb Ethernet

7 LED indicators*

8 Reset

9 DC power source†

10 FlexRIO adapter module connector‡

* Refer to Figure 3-2 for LED placement.
† Refer to the NI-7931R Getting Started Guide for instructions about how to wire power to the NI-7931R.
‡ Refer to Figure 3-3 for the pinout.

7

3 4 6

9

5 8

10

21

3-2 | ni.com

Chapter 3 Hardware Architecture

The following figure shows the NI-7931R LEDs in more detail.

Figure 3-2. NI-7931R LEDs

RT User

LED

Power

LED

Status

LED

FPGA User

LED

© National Instruments | 3-3

NI-793xR User Manual

The following figure shows the available signals on the NI-7931R adapter module connector.

Figure 3-3. NI-7931R FPGA Connector Pinout

Note Pins S72 and S146 are shorted together.

B
a
n

k
 1

PCB

Primary Side

+3.3V

SCL

TB_Present_n

+12V

Vcco

RSVD

GND

IOModSyncClk_n

IOModSyncClk

GND

GPIO_0_n

GPIO_0

GND

GPIO_1_n

GPIO_1

GND

GPIO_CC_2_n

GPIO_CC_2

GND

GPIO_3_n

GPIO_3

GND

GPIO_4_n

GPIO_4

GND

GPIO_5_n

GPIO_5

GND

GPIO_6_n

GPIO_6

GND

GPIO_7_n

GPIO_7

GND

GPIO_8_n

GPIO_8

GND

GPIO_9_n

GPIO_9

GND

GPIO_10_n

GPIO_10

GND

GPIO_11_n

GPIO_11

GND

GPIO_12_n

GPIO_12

GND

GND

GPIO_13_n

GPIO_13

P2

P1

S148

S147

S146

S145

S144

S143

G36

S142

S141

G35

S140

S139

G34

S138

S137

G33

S136

S135

G32

S134

S133

G31

S132

S131

G30

S130

S129

G29

S128

S127

G28

S126

S125

G27

S124

S123

G26

S122

S121

G25

S120

S119

G24

S118

S117

G23

S116

S115

G22

G37

P2

P1

S74

S73

S72

S71

S70

S69

G36

S68

S67

G35

S66

S65

G34

S64

S63

G33

S62

S61

G32

S60

S59

G31

S58

S57

G30

S56

S55

G29

S54

S53

G28

S52

S51

G27

S50

S49

G26

S48

S47

G25

S46

S45

G24

S44

S43

G23

S42

S41

G22

G37

+12V

+3.3V

SDA

TB_Power_Good

Vcco

Veeprom

TDC_Assert_CLK_n

TDC_Assert_CLK

GND

GPIO_24_n

GPIO_24

GND

GPIO_25_n

GPIO_25

GND

GPIO_CC_26_n

GPIO_CC_26

GND

GPIO_27_n

GPIO_27

GND

GPIO_28_n

GPIO_28

GND

GPIO_29_n

GPIO_29

GND

GPIO_30_n

GPIO_30

GND

GPIO_31_n

GPIO_31

GND

GPIO_32_n

GPIO_32

GND

GPIO_33_n

GPIO_33

GND

GPIO_34_n

GPIO_34

GND

GPIO_35_n

GPIO_35

GND

GPIO_36_n

GPIO_36

GND

GPIO_37_n

GPIO_37

GND

GND

PCB

Secondary Side

B
a
n

k
 0

PCB

Primary Side

GND

GPIO_CC_14_n

GPIO_CC_14

GND

GPIO_15_n

GPIO_15

GND

GPIO_16_n

GPIO_16

GND

GPIO_17_n

GPIO_17

GND

GPIO_18_n

GPIO_18

GND

GPIO_19_n

GPIO_19

GND

GPIO_20_n

GPIO_20

GND

GPIO_21_n

GPIO_21

GND

GPIO_22_n

GPIO_22

GND

GPIO_23_n

GPIO_23

GND

GPIO_58_n

GPIO_58

GND

GPIO_59_n

GPIO_59

GND

GPIO_CC_60_n

GPIO_CC_60

GND

GPIO_61_n

GPIO_61

GND

GPIO_62_n

GPIO_62

GND

GPIO_63_n

GPIO_63

GND

GND

GPIO_64_n

GPIO_64

GPIO_65_n

GPIO_65

GND

GPIO_66_n

GPIO_67_n

GPIO_66

GND

GND

GPIO_67

G20

G21

S114

S113

S112

S111

S110

S109

G18

S108

S107

G17

S106

S105

G16

S104

S103

G15

S102

S101

G14

S100

S99

G13

S98

S97

G12

S96

S95

G11

S94

S93

G10

S92

S91

G9

S90

S89

G8

S88

S87

G7

S86

S85

G6

S84

S83

G5

S82

S81

G4

G19

S80

S79

G3

S78

S77

G2

S76

S75

G1

G20

G21

S40

S39

S38

S37

S36

S35

G18

S34

S33

G17

S32

S31

G16

S30

S29

G15

S28

S27

G14

S26

S25

G13

S24

S23

G12

S22

S21

G11

S20

S19

G10

S18

S17

G9

S16

S15

G8

S14

S13

G7

S12

S11

G6

S10

S9

G5

S8

S7

G4

G19

S6

S5

G3

S4

S3

G2

S2

S1

G1

GND

GND

GPIO_CC_38_n

GPIO_CC_38

GPIO_39_n

GPIO_39

GPIO_40_n

GPIO_40

GND

GPIO_41_n

GPIO_41

GND

GPIO_42_n

GPIO_42

GND

GPIO_43_n

GPIO_43

GND

GPIO_44_n

GPIO_44

GND

GPIO_45_n

GPIO_45

GND

GPIO_46_n

GPIO_46

GND

GPIO_47_n

GPIO_47

GND

GPIO_48_n

GPIO_48

GND

GPIO_49_n

GPIO_49

GND

GPIO_CC_50_n

GPIO_CC_50

GND

GPIO_51_n

GPIO_51

GND

GPIO_52_n

GPIO_52

GND

GPIO_53_n

GPIO_53

GND

GPIO_54_n

GPIO_54

GND

GPIO_55_n

GPIO_55

GND

GPIO_56_n

GPIO_56

GND

GPIO_57_n

GPIO_57

GND

GND

PCB

Secondary Side

B
a
n

k
 2

B
a

n
k
 1

B
a
n

k
 2

B
a

n
k
 0

3-4 | ni.com

Chapter 3 Hardware Architecture

NI-7931R Key Features
The NI-7931R device includes the following key features. Refer to the NI-7931R Specifications

for more details.

� Kintex-7 XC7K325T FPGA

� 2 GB onboard FPGA-accessible DRAM

� NI Linux Real-Time (32-bit) controller

� FPGA to host data transfer rates of 200 MB/s (single direction), 150 MB/s (bidirectional)

� Real-Time processor to USB external storage data transfer rates of 60 MB/s

� Real-Time processor to SD external storage data transfer rates of 12.0 MB/s (read),

9.0 MB/s (write)

The following figure illustrates the key components of the NI-7931R architecture.

Figure 3-4. NI-7931R Architecture Key Components

RT Host

RT

Controller

RAM

NV Storage

RT Clock

Watch Dog

LabVIEW

Host VI

Interrupts

DMA

Controls/Indicators

NI-Defined Bus

Interfaces/Streaming IP

Memory

Controller

DRAM

REF IN

Adapter

Module

User Selected

Adapter Module

CLIP

SD

1 Gig E

USB

TRIG

LV FPGA VI

Clocking

Architecture

© National Instruments | 3-5

NI-793xR User Manual

Clocking Architecture
The NI-7931R device includes dedicated clocking hardware to provide a flexible clocking

solution for your FlexRIO system. Refer to Chapter 4, Developing with LabVIEW FPGA, for

information about configuring clocks with LabVIEW FPGA.

The NI-7931R clocking architecture includes the following clocks:

� 10 MHz Reference Clock

� 40 MHz Onboard Clock (default)

� 100 MHz Clock

� 200 MHz Clock

� DRAM Clock

The following figure illustrates the clocking circuitry on the NI-7931R.

Figure 3-5. NI-7931R Clocking Diagram

Memory

Controller

PLL

40 MHz

100 MHz

100

MHz

10 MHz

Reference Clock

Kintex-7 FPGA

200 MHz

DRAM

Clock

166 MHz

Adapter

Module

PLL

100 MHz

Oscillator

REF IN

IoModSyncClock

Ref Clk Enable

3-6 | ni.com

Chapter 3 Hardware Architecture

NI-7932R

The NI-7932R is an embedded FlexRIO controller with a LabVIEW Real-Time processor and

reconfigurable FPGA. The NI-7932R includes a high-speed serial interface that uses Xilinx

multi-gigabit transceiver (MGT) technology; you can reuse existing protocol IP that works with

MGTs, or you can develop your own protocol IP. Refer to Chapter 5, Programming the

High-Speed Serial Ports, for information about interfacing with MGTs via the SFP+ ports.

Note The NI-7932R hardware does not require calibration.

The following figure shows the NI-7932R front panel connectors. For more information about

the front panel connectors, refer to your device’s specifications document and the FlexRIO Help.

For information about connecting the device to a host computer, refer to the NI-7932R Getting

Started Guide.

Figure 3-6. NI-7932R Front Panel Connectors

1 TRIG
2 REF IN
3 uSD card
4 USB device port
5 USB host
6 1 Gb Ethernet

7 LED indicators*

8 Reset

9 DC power source†

10 FlexRIO adapter module connector‡

11 SFP+ connectors

* Refer to Figure 3-7 for LED placement.
† Refer to the NI-7932R Getting Started Guide for instructions about how to wire power to the NI-7932R.
‡ Refer to Figure 3-8 for the pinout.

11

7

3 4 6

9

5 8

21

10

© National Instruments | 3-7

NI-793xR User Manual

The following figure shows the NI-7932R LEDs in more detail.

Figure 3-7. NI-7932R LEDs

RT User

LED

Power

LED

Status

LED

FPGA User

LED

3-8 | ni.com

Chapter 3 Hardware Architecture

The following figure shows the available signals on the NI-7932R adapter module connector.

Figure 3-8. NI-7932R FPGA Connector Pinout

Note Pins S72 and S146 are shorted together.

B
a
n

k
 1

PCB

Primary Side

+3.3V

SCL

TB_Present_n

+12V

Vcco

RSVD

GND

IOModSyncClk_n

IOModSyncClk

GND

GPIO_0_n

GPIO_0

GND

GPIO_1_n

GPIO_1

GND

GPIO_CC_2_n

GPIO_CC_2

GND

GPIO_3_n

GPIO_3

GND

GPIO_4_n

GPIO_4

GND

GPIO_5_n

GPIO_5

GND

GPIO_6_n

GPIO_6

GND

GPIO_7_n

GPIO_7

GND

GPIO_8_n

GPIO_8

GND

GPIO_9_n

GPIO_9

GND

GPIO_10_n

GPIO_10

GND

GPIO_11_n

GPIO_11

GND

GPIO_12_n

GPIO_12

GND

GND

GPIO_13_n

GPIO_13

P2

P1

S148

S147

S146

S145

S144

S143

G36

S142

S141

G35

S140

S139

G34

S138

S137

G33

S136

S135

G32

S134

S133

G31

S132

S131

G30

S130

S129

G29

S128

S127

G28

S126

S125

G27

S124

S123

G26

S122

S121

G25

S120

S119

G24

S118

S117

G23

S116

S115

G22

G37

P2

P1

S74

S73

S72

S71

S70

S69

G36

S68

S67

G35

S66

S65

G34

S64

S63

G33

S62

S61

G32

S60

S59

G31

S58

S57

G30

S56

S55

G29

S54

S53

G28

S52

S51

G27

S50

S49

G26

S48

S47

G25

S46

S45

G24

S44

S43

G23

S42

S41

G22

G37

+12V

+3.3V

SDA

TB_Power_Good

Vcco

Veeprom

TDC_Assert_CLK_n

TDC_Assert_CLK

GND

GPIO_24_n

GPIO_24

GND

GPIO_25_n

GPIO_25

GND

GPIO_CC_26_n

GPIO_CC_26

GND

GPIO_27_n

GPIO_27

GND

GPIO_28_n

GPIO_28

GND

GPIO_29_n

GPIO_29

GND

GPIO_30_n

GPIO_30

GND

GPIO_31_n

GPIO_31

GND

GPIO_32_n

GPIO_32

GND

GPIO_33_n

GPIO_33

GND

GPIO_34_n

GPIO_34

GND

GPIO_35_n

GPIO_35

GND

GPIO_36_n

GPIO_36

GND

GPIO_37_n

GPIO_37

GND

GND

PCB

Secondary Side

B
a
n

k
 0

PCB

Primary Side

GND

GPIO_CC_14_n

GPIO_CC_14

GND

GPIO_15_n

GPIO_15

GND

GPIO_16_n

GPIO_16

GND

GPIO_17_n

GPIO_17

GND

GPIO_18_n

GPIO_18

GND

GPIO_19_n

GPIO_19

GND

GPIO_20_n

GPIO_20

GND

GPIO_21_n

GPIO_21

GND

GPIO_22_n

GPIO_22

GND

GPIO_23_n

GPIO_23

GND

GPIO_58_n

GPIO_58

GND

GPIO_59_n

GPIO_59

GND

GPIO_CC_60_n

GPIO_CC_60

GND

GPIO_61_n

GPIO_61

GND

GPIO_62_n

GPIO_62

GND

GPIO_63_n

GPIO_63

GND

GND

GPIO_64_n

GPIO_64

GPIO_65_n

GPIO_65

GND

GPIO_66_n

GPIO_67_n

GPIO_66

GND

GND

GPIO_67

G20

G21

S114

S113

S112

S111

S110

S109

G18

S108

S107

G17

S106

S105

G16

S104

S103

G15

S102

S101

G14

S100

S99

G13

S98

S97

G12

S96

S95

G11

S94

S93

G10

S92

S91

G9

S90

S89

G8

S88

S87

G7

S86

S85

G6

S84

S83

G5

S82

S81

G4

G19

S80

S79

G3

S78

S77

G2

S76

S75

G1

G20

G21

S40

S39

S38

S37

S36

S35

G18

S34

S33

G17

S32

S31

G16

S30

S29

G15

S28

S27

G14

S26

S25

G13

S24

S23

G12

S22

S21

G11

S20

S19

G10

S18

S17

G9

S16

S15

G8

S14

S13

G7

S12

S11

G6

S10

S9

G5

S8

S7

G4

G19

S6

S5

G3

S4

S3

G2

S2

S1

G1

GND

GND

GPIO_CC_38_n

GPIO_CC_38

GPIO_39_n

GPIO_39

GPIO_40_n

GPIO_40

GND

GPIO_41_n

GPIO_41

GND

GPIO_42_n

GPIO_42

GND

GPIO_43_n

GPIO_43

GND

GPIO_44_n

GPIO_44

GND

GPIO_45_n

GPIO_45

GND

GPIO_46_n

GPIO_46

GND

GPIO_47_n

GPIO_47

GND

GPIO_48_n

GPIO_48

GND

GPIO_49_n

GPIO_49

GND

GPIO_CC_50_n

GPIO_CC_50

GND

GPIO_51_n

GPIO_51

GND

GPIO_52_n

GPIO_52

GND

GPIO_53_n

GPIO_53

GND

GPIO_54_n

GPIO_54

GND

GPIO_55_n

GPIO_55

GND

GPIO_56_n

GPIO_56

GND

GPIO_57_n

GPIO_57

GND

GND

PCB

Secondary Side

B
a
n

k
 2

B
a

n
k
 1

B
a
n

k
 2

B
a

n
k
 0

© National Instruments | 3-9

NI-793xR User Manual

NI-7932R Key Features
The NI-7932R device includes the following key features. Refer to the NI-7932R Specifications

for more details.

� SFP+ line rates of 3.125 Gbps, 6.25 Gbps, and 10.3125 Gbps

� Kintex-7 XC7K325T FPGA

� 2 GB onboard FPGA-accessible DRAM

� NI Linux Real-Time (32-bit) controller

� FPGA to host data transfer rates of 200 MB/s (single direction), 150 MB/s (bidirectional)

� Real-Time processor to USB external storage data transfer rates of 60 MB/s

� Real-Time processor to SD external storage data transfer rates of 12.0 MB/s (read),

9.0 MB/s (write)

3-10 | ni.com

Chapter 3 Hardware Architecture

The following figure illustrates the key components of the NI-7932R architecture.

Figure 3-9. NI-7932R Architecture Key Components

RT Host

RT

Controller

RAM

NV Storage

RT Clock

Watch Dog

LabVIEW

Host VI

Interrupts

DMA

Controls/Indicators

NI-Defined Bus

Interfaces/Streaming IP

Memory

Controller

DRAM

REF IN

Adapter

Module

SFP+

User Selected

Adapter Module

CLIP

SD

1 Gig E

USB

TRIG

User Defined

Socketed

CLIP

LV FPGA VI

Clocking

Architecture

© National Instruments | 3-11

NI-793xR User Manual

Clocking Architecture
The NI-7932R device includes dedicated clocking hardware to provide a flexible clocking

solution for your FlexRIO system. Refer to Chapter 4, Developing with LabVIEW FPGA, for

information about configuring clocks with LabVIEW FPGA.

The NI-7932R clocking architecture includes the following clocks:

� 10 MHz Reference Clock

� 40 MHz Onboard Clock (default)

� 100 MHz Clock

� 156.25 MHz Clock/312.5 MHz MGT Clock1

� 200 MHz Clock

� DRAM Clock

The following figure illustrates the clocking circuitry on the NI-7932R.

Figure 3-10. NI-7932R Clocking Diagram

1 This clock is user-selectable for either 156.25 MHz or 312.5 MHz.

Memory

Controller

PLL

40 MHz

100 MHz

100

MHz

10 MHz

Reference Clock

Kintex-7 FPGA

200 MHz

DRAM

Clock

166 MHz

MGT

Oscillator

MGT

Ref

Clk156.25 MHz/

312.5 MHz

Frequency

Select

Adapter

Module

PLL

100 MHz

Oscillator

REF IN

Ref Clk Enable

IoModSyncClock

3-12 | ni.com

Chapter 3 Hardware Architecture

NI-7935R

The NI-7935R is an embedded FlexRIO controller with a LabVIEW Real-Time processor and

reconfigurable FPGA. The NI-7935R includes a high-speed serial interface that uses Xilinx

multi-gigabit transceiver (MGT) technology; you can reuse existing protocol IP that works with

MGTs, or you can develop your own protocol IP. Refer to Chapter 5, Programming the

High-Speed Serial Ports, for information about interfacing with MGTs via the SFP+ ports.

Note The NI-7935R hardware does not require calibration.

The following figure shows the NI-7935R front panel connectors. For more information about

the front panel connectors, refer to your device’s specifications document and the FlexRIO Help.

For information about connecting the device to a host computer, refer to the NI-7935R Getting

Started Guide.

Figure 3-11. NI-7935R Front Panel Connectors

1 TRIG
2 REF IN
3 uSD card
4 USB device port
5 USB host
6 1 GB Ethernet

7 LED indicators*

8 Reset

9 DC power source†

10 FlexRIO adapter module connector‡

11 SFP+ connectors

* Refer to Figure 3-12 for LED placement.
† Refer to the NI-7935R Getting Started Guide for instructions about how to wire power to the NI-7935R.
‡ Refer to Figure 3-13 for the pinout.

11

7

3 4 6

9

5 8

21

10

© National Instruments | 3-13

NI-793xR User Manual

The following figure shows the NI-7935R LEDs in more detail.

Figure 3-12. NI-7935R LEDs

RT User

LED

Power

LED

Status

LED

FPGA User

LED

3-14 | ni.com

Chapter 3 Hardware Architecture

The following figure shows the available signals on the NI-7935R adapter module connector.

Figure 3-13. NI-7935R FPGA Connector Pinout

Note Pins S72 and S146 are shorted together.

B
a
n

k
 1

PCB

Primary Side

+3.3V

SCL

TB_Present_n

+12V

Vcco

RSVD

GND

IOModSyncClk_n

IOModSyncClk

GND

GPIO_0_n

GPIO_0

GND

GPIO_1_n

GPIO_1

GND

GPIO_CC_2_n

GPIO_CC_2

GND

GPIO_3_n

GPIO_3

GND

GPIO_4_n

GPIO_4

GND

GPIO_5_n

GPIO_5

GND

GPIO_6_n

GPIO_6

GND

GPIO_7_n

GPIO_7

GND

GPIO_8_n

GPIO_8

GND

GPIO_9_n

GPIO_9

GND

GPIO_10_n

GPIO_10

GND

GPIO_11_n

GPIO_11

GND

GPIO_12_n

GPIO_12

GND

GND

GPIO_13_n

GPIO_13

P2

P1

S148

S147

S146

S145

S144

S143

G36

S142

S141

G35

S140

S139

G34

S138

S137

G33

S136

S135

G32

S134

S133

G31

S132

S131

G30

S130

S129

G29

S128

S127

G28

S126

S125

G27

S124

S123

G26

S122

S121

G25

S120

S119

G24

S118

S117

G23

S116

S115

G22

G37

P2

P1

S74

S73

S72

S71

S70

S69

G36

S68

S67

G35

S66

S65

G34

S64

S63

G33

S62

S61

G32

S60

S59

G31

S58

S57

G30

S56

S55

G29

S54

S53

G28

S52

S51

G27

S50

S49

G26

S48

S47

G25

S46

S45

G24

S44

S43

G23

S42

S41

G22

G37

+12V

+3.3V

SDA

TB_Power_Good

Vcco

Veeprom

TDC_Assert_CLK_n

TDC_Assert_CLK

GND

GPIO_24_n

GPIO_24

GND

GPIO_25_n

GPIO_25

GND

GPIO_CC_26_n

GPIO_CC_26

GND

GPIO_27_n

GPIO_27

GND

GPIO_28_n

GPIO_28

GND

GPIO_29_n

GPIO_29

GND

GPIO_30_n

GPIO_30

GND

GPIO_31_n

GPIO_31

GND

GPIO_32_n

GPIO_32

GND

GPIO_33_n

GPIO_33

GND

GPIO_34_n

GPIO_34

GND

GPIO_35_n

GPIO_35

GND

GPIO_36_n

GPIO_36

GND

GPIO_37_n

GPIO_37

GND

GND

PCB

Secondary Side

B
a
n

k
 0

PCB

Primary Side

GND

GPIO_CC_14_n

GPIO_CC_14

GND

GPIO_15_n

GPIO_15

GND

GPIO_16_n

GPIO_16

GND

GPIO_17_n

GPIO_17

GND

GPIO_18_n

GPIO_18

GND

GPIO_19_n

GPIO_19

GND

GPIO_20_n

GPIO_20

GND

GPIO_21_n

GPIO_21

GND

GPIO_22_n

GPIO_22

GND

GPIO_23_n

GPIO_23

GND

GPIO_58_n

GPIO_58

GND

GPIO_59_n

GPIO_59

GND

GPIO_CC_60_n

GPIO_CC_60

GND

GPIO_61_n

GPIO_61

GND

GPIO_62_n

GPIO_62

GND

GPIO_63_n

GPIO_63

GND

GND

GPIO_64_n

GPIO_64

GPIO_65_n

GPIO_65

GND

GPIO_66_n

GPIO_67_n

GPIO_66

GND

GND

GPIO_67

G20

G21

S114

S113

S112

S111

S110

S109

G18

S108

S107

G17

S106

S105

G16

S104

S103

G15

S102

S101

G14

S100

S99

G13

S98

S97

G12

S96

S95

G11

S94

S93

G10

S92

S91

G9

S90

S89

G8

S88

S87

G7

S86

S85

G6

S84

S83

G5

S82

S81

G4

G19

S80

S79

G3

S78

S77

G2

S76

S75

G1

G20

G21

S40

S39

S38

S37

S36

S35

G18

S34

S33

G17

S32

S31

G16

S30

S29

G15

S28

S27

G14

S26

S25

G13

S24

S23

G12

S22

S21

G11

S20

S19

G10

S18

S17

G9

S16

S15

G8

S14

S13

G7

S12

S11

G6

S10

S9

G5

S8

S7

G4

G19

S6

S5

G3

S4

S3

G2

S2

S1

G1

GND

GND

GPIO_CC_38_n

GPIO_CC_38

GPIO_39_n

GPIO_39

GPIO_40_n

GPIO_40

GND

GPIO_41_n

GPIO_41

GND

GPIO_42_n

GPIO_42

GND

GPIO_43_n

GPIO_43

GND

GPIO_44_n

GPIO_44

GND

GPIO_45_n

GPIO_45

GND

GPIO_46_n

GPIO_46

GND

GPIO_47_n

GPIO_47

GND

GPIO_48_n

GPIO_48

GND

GPIO_49_n

GPIO_49

GND

GPIO_CC_50_n

GPIO_CC_50

GND

GPIO_51_n

GPIO_51

GND

GPIO_52_n

GPIO_52

GND

GPIO_53_n

GPIO_53

GND

GPIO_54_n

GPIO_54

GND

GPIO_55_n

GPIO_55

GND

GPIO_56_n

GPIO_56

GND

GPIO_57_n

GPIO_57

GND

GND

PCB

Secondary Side

B
a
n

k
 2

B
a

n
k
 1

B
a
n

k
 2

B
a

n
k
 0

© National Instruments | 3-15

NI-793xR User Manual

NI-7935R Key Features
The NI-7935R device includes the following key features. Refer to the NI-7935R Specifications

for more details.

� SFP+ line rates of 3.125 Gbps, 6.25 Gbps, and 10.3125 Gbps

� Kintex-7 XC7K410T FPGA

� 2 GB onboard FPGA-accessible DRAM

� NI Linux Real-Time (32-bit) controller

� FPGA to host data transfer rates of 200 MB/s (single direction), 150 MB/s (bidirectional)

� Real-Time processor to USB external storage data transfer rates of 60 MB/s

� Real-Time processor to SD external storage data transfer rates of 12.0 MB/s (read),

9.0 MB/s (write)

The following figure illustrates the key components of the NI-7935R architecture.

Figure 3-14. NI-7935R Architecture Key Components

RT Host

RT

Controller

RAM

NV Storage

RT Clock

Watch Dog

LabVIEW

Host VI

Interrupts

DMA

Controls/Indicators

NI-Defined Bus

Interfaces/Streaming IP

Memory

Controller

DRAM

REF IN

Adapter

Module

SFP+

User Selected

Adapter Module

CLIP

SD

1 Gig E

USB

TRIG

User Defined

Socketed

CLIP

LV FPGA VI

3-16 | ni.com

Chapter 3 Hardware Architecture

Clocking Architecture
The NI-7935R device includes dedicated clocking hardware to provide a flexible clocking

solution for your FlexRIO system. Refer to Chapter 4, Developing with LabVIEW FPGA, for

information about configuring clocks with LabVIEW FPGA.

The NI-7935R clocking architecture includes the following clocks:

� 10 MHz Reference Clock

� 40 MHz Onboard Clock (default)

� 100 MHz Clock

� 156.25 MHz Clock/312.5 MHz MGT Clock1

� 200 MHz Clock

� DRAM Clock

1 This clock is user-selectable for either 156.25 MHz or 312.5 MHz.

© National Instruments | 3-17

NI-793xR User Manual

The following figure illustrates the clocking circuitry on the NI-7935R.

Figure 3-15. NI-7935R Clocking Diagram

Memory

Controller

PLL

40 MHz

100 MHz

100

MHz

10 MHz

Reference Clock

Kintex-7 FPGA

200 MHz

DRAM

Clock

166 MHz

MGT

Oscillator

MGT

Ref

Clk156.25 MHz/

312.5 MHz

Frequency

Select

Adapter

Module

PLL

100 MHz

Oscillator

REF IN

Ref Clk Enable

IoModSyncClock

© National Instruments | 4-1

4
Developing with LabVIEW
FPGA

This chapter contains information about developing your NI-793xR-based project with

LabVIEW FPGA. LabVIEW FPGA provides FPGA target support, configuration for clocking

and routing, and interfacing with LabVIEW on your host computer for a fully integrated

development experience.

Refer to the NI LabVIEW High-Performance FPGA Developer’s Guide for information about

techniques to optimize throughput, latency, and FPGA resources. Refer to the Related

Documentation section of this manual for a full list of LabVIEW FPGA documentation that you

may find helpful as you develop your application.

Developing with LabVIEW FPGA

For information about installing FlexRIO Support, installing the NI-793xR, and installing an

adapter module, refer to the getting started guide for your NI-793xR device.

Adding the NI-793xR to a LabVIEW Project
1. Launch LabVIEW. The LabVIEW Getting Started window appears.

2. Click Create Project or open an existing project.

3. Right-click the project root in the Project Explorer window and select New»Targets and

Devices from the shortcut menu to display the Add Targets and Devices dialog box.

a. If the hardware is connected to the host, select Existing target or device. Select your

device under Real-Time FlexRIO and click OK.

b. If the hardware is not connected to the host, select New target or device. Select your

device under Real-Time FlexRIO and click OK.

Adding an Adapter Module to the Target
Skip this section if you are not using an adapter module.

1. Expand the FPGA target by clicking the + button, then right-click IO Module and select

Properties.

2. Select the General category and check the Enable IO Module box.

3. Select your adapter module from the IO Modules list, and select the CLIP you want to use

from the Component Level IP box.

4. Click OK.

4-2 | ni.com

Chapter 4 Developing with LabVIEW FPGA

Adding Items to the NI-793xR Target
You can add new or existing FPGA VIs, FPGA I/O items, FPGA FIFO, or FPGA clocks to the

NI-793xR target in the Project Explorer window. You can also use folders to organize items

under the FPGA target in the Project Explorer window. You might use the folder option for

organizing items if you intend to use multiple FPGA I/O items.

Complete the following steps to add an item to the NI-793xR target in the Project Explorer

window.

1. Right-click the FPGA target and select New from the shortcut menu to add a new item, such

as a VI, FPGA I/O item, or folder. Then select the item you want to add to the project. The

item appears in the Project Explorer window under the FPGA target.

2. Double-click the new item in the Project Explorer window to edit or configure the item.

If you added an FPGA base clock, right-click the FPGA base clock and select Properties

from the shortcut menu to configure the clock.

Note You also can drag and drop existing items into the FPGA target in the Project

Explorer window.

Adding NI-793xR Target I/O
Complete the following steps to add target I/O for the NI-793xR and to access signals from any

instantiated CLIP on the block diagram:

1. Place an FPGA I/O node on the FPGA target block diagram. The FPGA I/O node is located

on the palette under Functions»FPGA I/O»FPGA I/O Node.

2. Right-click the FPGA I/O node and select Add New FPGA I/O.

3. In the New FPGA I/O dialog box, select resources under Available Resources and add

them to New FPGA I/O using the right arrow button.

4. To remove a resource, select the resource under New FPGA I/O and click the left arrow

button.

5. Click OK.

Configuring a 10 MHz Reference Clock

Note By default, the NI-793xR derives its 10 MHz Reference Clock from an

internal oscillator.

To source an external 10 MHz reference clock from the REF IN front panel, complete the

following steps.

1. Once the target has been added to the project, expand the FPGA target and right-click

Reference Clock Source (Onboard 10 MHz Clock) and select Properties.

2. Enable the Use the external front panel clock input as the reference clock checkbox.

3. Click OK.

© National Instruments | 4-3

NI-793xR User Manual

For information about optimizing your LabVIEW FPGA code for throughput, latency, or

resource utilization, refer to the High-Performance LabVIEW FPGA Developer’s Guide.

Auto-loading Bitfiles on Power-up
You can configure the NI-793xR to auto-load a bitfile on power-up, or you can use a startup

executable on the Real-Time controller to load a specific bitfile when the device powers up.

Complete the following steps to auto-load a bitfile on the NI-793xR.

1. In MAX, expand Remote Systems and select your NI-793xR target from the list of

Real-Time targets.

2. Expand Devices and Interfaces and select the NI-793xR FPGA target.

Note You must select the NI-793xR FPGA target under Devices and Interfaces.

Selecting the NI-793xR target directly under Remote Systems updates the

Real-Time controller firmware and not the FPGA firmware.

3. Navigate to your bitfile and select Open.

4. In the Update Firmware window, select Begin Update. This process may take a few

minutes to complete.

5. Restart your controller.

In addition to using MAX to auto-load bitfiles for FPGA, you can use the system configuration

API to programmatically set the bitfile that is auto-loaded on power-up.

Interactive Front Panel Communication
Use interactive front panel communication to communicate with an FPGA VI running on an

FPGA target with no additional programming. With interactive front panel communication, the

host computer displays the FPGA VI front panel window and the FPGA target executes the

FPGA VI block diagram.

The LabVIEW front panel window communicates with the FPGA target block diagram through

the controls and indicators. You can communicate with an FPGA target connected directly to

host computer or connected to a remote system over the network. As the FPGA target block

diagram continues to run, the host computer updates values on the FPGA VI front panel window

as often as possible. The execution rate of the FPGA VI is not affected by communication with

the host computer. However, the front panel data you share during interactive front panel

communication is not deterministic.

Use interactive front panel communication between the FPGA target and the host computer to

control and test VIs running on the FPGA target. After downloading and running the FPGA VI,

keep LabVIEW open on the host computer to display and interact with the front panel window

of the FPGA VI.

4-4 | ni.com

Chapter 4 Developing with LabVIEW FPGA

During interactive front panel communication, you cannot use LabVIEW debugging tools,

including probes, execution highlighting, breakpoints, and single-stepping. To identify errors

before you compile, download, and run the FPGA VI on the FPGA target, consider using a test

bench.

Note You cannot use interactive front panel communication while the FPGA is

configured to execute on a third-party simulator. You can either use a host VI to

execute the FPGA VI or change the execution mode of the FPGA target by

right-clicking the FPGA target in the Project Explorer window and selecting Select

Execution Mode.

Using the NI Common Instrument Design Libraries
NI provides instrument design libraries that you can use to create application-specific

instrumentation designs for NI-793xR devices. The following sections provide an overview of

the instrument design libraries. The instrument design libraries are located at <LVDir>\

instr.lib_niInstr. For information about the VIs in each instrument design library, refer

to the Programming section of the FlexRIO Help.

Using niInstr Instruction Framework
Use the Instruction Framework instrument design library to build a communication network in

LabVIEW FPGA. Standard communication methods, such as using controls and indicators to

pass information between the host and the FPGA, may not scale well for large applications. Use

the Instruction Framework to provide a scalable communication framework that larger

applications may require, at the cost of increased complexity. Certain instrument design libraries

require the use of the Instruction Framework.

Streaming Overview
The Streaming Instrument Design Library provides a consistent mechanism to handle both finite

and continuous transfer streams. It provides stream monitoring and handshaking. It contains VIs

for both the Host and FPGA.

CLIP Adapters Overview
The CLIP Adapters instrument design library includes AXI4-Lite and AXI4-Stream wrappers.

These wrappers implement protocol timing and signaling into simple reader or writer endpoints

that present 4-wire handshaking to the diagram. This handshaking allows for easier transition to

many FPGA features without the need to implement this state logic on your own.

Data Trigger Overview
This instrument design library can be used to generate a trigger on an input signal under various

conditions. The triggers produced by this library are typically consumed by the acquisition block

in order to determine when to start and stop acquiring data.

This library supports multiple trigger types, data types, and samples per cycle.

© National Instruments | 4-5

NI-793xR User Manual

Basic Elements Overview
This instrument design library contains several low-level elements, such as edge detectors,

latches, and FIFOs. Using this library can be beneficial when developing new FPGA logic for

your software-designed instrument. These basic elements are used in other instrument design

libraries and the sample projects for your device.

Memory Overview
Use the Memory instrument design library to access DRAM and BRAM on the device in a

consistent manner. This library provides a basic read and write interface to DRAM and BRAM.

In addition to the basic memory interface, you can use this instrument design library to reset the

DRAM or BRAM. When memory read operations are posted to memory, there is some amount

of latency before the associated data is retrieved from memory and presented to the FPGA

diagram. Furthermore, multiple read operations can be queued up at once. You can use the

Memory instrument design library to reset those queued memory operations.

This instrument design library also adds support for arbitration between the read and write ports

of DRAM.

Compiling LabVIEW FPGA VIs
You may need to purchase and install additional licenses to compile FPGA designs that

incorporate licensed cores from Xilinx or third-party IP vendors. Refer to UG 973: Vivado

Design Suite: Release Notes, Installation, and Licensing at xilinx.com for information about

managing licenses.

The NI-793xR targets include large FPGA devices that require a 64-bit compile worker. Refer

to the FlexRIO Support Readme for more information about what platforms to use to compile

bitfiles.

You cannot add additional licenses to remote compile workers in the NI LabVIEW FPGA

Compile Cloud Service. You cannot use NI LabVIEW FPGA Compile Cloud Service to compile

designs that incorporate Xilinx or other third-party licensed cores.

Download, Reset, and Run Side Effects in the
LabVIEW FPGA Host Interface
When the NI-793xR FPGA loads, it performs a power-on self-configuration sequence that

configures various on-board hardware. This configuration occurs at the following times:

� At device power-up after the bitfile loads.

� At the first time Run is called after a new bitfile is downloaded and the bitfile is not set to

Run on Load.

� When Run is called after Reset.

4-6 | ni.com

Chapter 4 Developing with LabVIEW FPGA

For more information about Run, Reset, and other Invoke methods, refer to the

LabVIEW FPGA Module Help.

Note When self-configuration executes, the clocking configuration enters an

indeterminate state. When the clocking configuration is in an indeterminate state, you

cannot rely on clocking stability from the clocking and routing hardware on the

NI-793xR.

Streaming

Flow Control
Any application that logs information must have rigorous flow control because the FlexRIO

adapter module can generate far more data than the application nodes can process. The

FPGA-to-Host FIFO uses Ready for Input signals to communicate to the DRAM whether it is

ready to process more data. The following figure demonstrates how you can implement flow

control on an NI-793xR target.

Figure 4-1. Host-Side FIFO to FPGA Flow Control

For information about data transfer rates, refer to the following sections:

� NI-7931R Key Features

� NI-7932R Key Features

� NI-7935R Key Features

Ready?

Ready? Ready?

Ready?

Ready?

Ready?Ready?

Data
DRAM/

BRAM
MGT

Data
DRAM/

BRAM

Target

to Host

FIFO

Host

Side

FIFO

SSD

Data
DRAM/

BRAM

Target

to

Host

Host

Side

FIFO

NIL

FPGA Module Real-Time Controller

© National Instruments | 4-7

NI-793xR User Manual

DMA Streaming
The NI-793xR devices support both host-to-target streaming and target-to-host streaming

through DMA channels that connect the host to your target. Use DMA streaming to allow the

maximum throughput of data from your host application to be streamed to the target at high rates

of speed.

The NI-793xR provides up to 16 DMA channels that can be accessed by your Host. These

channels can be used in a variety of ways to meet your application’s needs. The total overall

bandwidth of the device limits your DMA use, whether you use 1 DMA channel or 16.

The maximum width of a DMA channel is 256 bits. To use the full width of the DMA channel

to achieve maximum throughput, create a data construct that matches the 256-bit data width of

the DMA channel. You can either create a cluster that contains 4 U64s, or an array of 4 U64s.

To use an array, the FIFO must be configured to return multiple elements per read/write. You can

also write up to 1,024 bits at a time from LabVIEW FPGA, and the Ready for Input connection

throttles the connection to the FIFO to prevent overflow.

Theoretically, DMA throughput is maximized and is most consistent when the DMA FIFO

buffer is sized as large as possible to absorb variations in the readiness of the host memory.

However, sizing the FIFO larger consumes block RAM resources on the FPGA and increases

the timing pressure on the FIFO. NI recommends making the FIFO as large as you can

successfully compile with, in order to sustain throughput through the PCIe bus to and from host

memory. You can change the size of the FIFO by configuring the Requested Number of

Elements for the FIFO in the project properties. You can validate the DMA sizing through

benchmarking, and you can use VIs in the Streaming Design Library to monitor the health of a

FIFO.

For more detailed information about using DMA, DMA best practices, and how to make design

decisions on how to implement DMA in your application, refer to the Transferring Data Using

Direct Memory Access topic of the LabVIEW FPGA Help.

Total throughput depends on the SCTL rate from the FPGA that is reading or writing the DMA

channels. The data throughput is calculated by the following equation:

(Data Width × Samples per Cycle) × Number of DMA FIFOs × SCTL Clock Rate =

Data Throughput

Note The total data throughput cannot exceed the maximum data specification for

your device. Refer to the Specifications document for your device for information

about data throughput limits.

Note The number of array elements fed into the DMA FIFO from the Host can limit

the maximum throughput for your application. Use large array subsets and set your

FIFO depths to be deep enough to sustain high throughput.

4-8 | ni.com

Chapter 4 Developing with LabVIEW FPGA

Simulating FPGA Behavior
You can simulate an FPGA VI that has been added to an NI-793xR target; however, you cannot

open a reference to the simulated FPGA VI from the NI-793xR target. Instead, you must open a

reference to the simulated FPGA VI by changing the application instance to My Computer. You

can select the application instance for a VI by using the application instance shortcut menu.

Note If you attempt to open a reference to a simulated FPGA target from an

NI-793xR target, a broken run arrow and an error message appear in your VI.

Complete the following steps to change the application instance for your simulated FPGA VI.

1. Navigate to the bottom left corner of the front panel window or block diagram. The application

instance selection shortcut menu displays the current application instance of the VI.

2. Right-click the shortcut menu and select the My Computer instance in which to run the VI,

as shown in the following figure.

Note Selecting a new application instance reopens the VI in the selected

application instance. The VI also remains open in the original application instance.

You also can use the Application:Default:Application property to return the default

application reference programmatically. Use the Application property to open the target

application instance programmatically.

© National Instruments | 5-1

5
Programming the
High-Speed Serial Ports

This chapter provides information about programming the multi-gigabit transceivers (MGTs)

for the NI-7932R and NI-7935R, including information about creating socketed CLIP and using

LabVIEW.

Note The NI-7931R does not have MGTs or high-speed serial ports.

Development Flow

Refer to the following diagram for an overview of the NI-793xR development process for

implementing a high-speed serial protocol.

Figure 5-1. NI-793xR Development Process

If the sample project code is sufficient for your application, you do not have to modify the IP

core, update the VHDL CLIP wrapper, or refresh the CLIP.

Update VHDL

CLIP Wrapper

Modify/regenerate

IP core using

Xilinx Vivado

Create IP core
using Xilinx Vivado
or license/buy from

third party

Write custom

protocol core IP

Create

Sample

Project

Update LabVIEW

FPGA project and

refresh CLIP

Update LabVIEW
FPGA and

LabVIEW Host
application code

Write VHDL

CLIP Wrapper

Create LabVIEW

FPGA project and

import CLIP

Write LabVIEW
FPGA and

LabVIEW Desktop
application code

Deploy
Application

No YesCompatible
IP commercially

available?

No

No

YesSample
Project Exists for

Protocol?

Start

5-2 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

Developing MGT Socketed CLIP

This section provides steps for creating socketed CLIP for use with your application. Socketed

CLIP provides the following functionality:

� Allows you to insert HDL IP into an FPGA target, enabling VHDL code to communicate

directly with an FPGA VI.

� Allows the CLIP to communicate directly with circuitry external to the FPGA.

� Allows your IP to communicate directly with both the FPGA VI and the external adapter

module connector interface.

Socketed CLIP Architecture
Figure 5-2 shows an overview of the NI-7932R socketed CLIP interface. Figure 5-3 shows an

overview of the NI-7935R socketed CLIP interface.

Figure 5-2. NI-7932R Socketed CLIP Architecture

NI-7932R

Xilinx Kintex-7 FPGA

Socketed CLIP

PORT 0 /

PORT 1

Connectors

156.25 MHz/

312.5 MHz

Clock

MGT_RefClks

High Speed
Serial IO

High-Speed Serial

Protocol IP

LabVIEW FPGA VI

+

LabVIEW FPGA
Xilinx GTXE2_CHANNEL/

GTXE2_COMMON

Primitives

© National Instruments | 5-3

NI-793xR User Manual

Figure 5-3. NI-7935R Socketed CLIP Architecture

Accessing the Xilinx Vivado Tools
Complete the following steps to run Xilinx Vivado:

1. If you installed Xilinx Vivado separately from LabVIEW FPGA, use this version.

Otherwise, LabVIEW FPGA installs LabVIEW FPGA Xilinx Tools.

Note If Vivado is installed by LabVIEW FPGA, it does not appear in Programs

and Features.

2. Open the Xilinx Vivado Tool directory by navigating to C:\NIFPGA\programs\

VivadoXXXX_Y, where XXXX and Y refer to the Xilinx Vivado tool versions. For

example, <VIVADO_DIR> version 2013.4 is located at C:\NIFPGA\programs\

Vivado2013_4.

3. Run the Xilinx Vivado batch file: <XilinxVivadoDir>\bin\vivado.bat.

You may receive the following warning when launching Vivado.

Your XILINX_EDK environment variable is undefined. You may not be

able to run some features properly. Please set up your XILINX_EDK

environment to get full functionality.

This error message is expected. You can ignore the error message if you are not using the

Xilinx Embedded Development Kit (EDK). The EDK is not required for development with

the NI-793xR.

4. Click New Project and follow the instructions in the wizard.

NI-7935R

Xilinx Kintex-7 FPGA

Socketed CLIP

PORT 0 /

PORT 1

Connectors

156.25 MHz/

312.5 MHz

Clock

MGT_RefClks

High Speed
Serial IO

High-Speed Serial

Protocol IP

LabVIEW FPGA VI

+

LabVIEW FPGA
Xilinx GTXE2_CHANNEL/

GTXE2_COMMON

Primitives

5-4 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

Generating an IP Core from the Xilinx Vivado IP Catalog
You may need to purchase and install additional licenses to generate some protocol IP core from

Xilinx or third-party IP vendors. Refer to UG 973: Vivado Design Suite: Release Notes,

Installation, and Licensing at xilinx.com for information about managing licenses.

Complete the following steps to create a Xilinx Vivado project:

1. Refer to the Xilinx Documentation section of this manual for information about licensing

before creating a Xilinx Vivado project.

2. Launch the Xilinx Vivado IP catalog.

a. Select Manage IP on the Vivado start screen.

b. Locate the appropriate IP core to launch the configuration dialog. For example, the

Aurora 64B66B IP core is located in Communication and Networking»Serial

Interfaces»Aurora 64B66B.

3. Select the IP core settings. NI recommends that you select AXI4-Stream for high-speed

data streams when possible.

Note NI does not recommend selecting AXI4-Lite for DRP accesses in the Xilinx

IP cores because compatibility with LabVIEW FPGA AXI4-Lite adapters cannot be

guaranteed. Refer to the Aurora sample projects for an example of how to use the

LabVIEW FPGA AXI4-Lite adapters to connect to DRP within the CLIP.

Modifying Third-Party IP Core Logic
If you modify a third-party IP core for your high-speed serial protocol, consult the Xilinx

Product Guide for the IP you are using before attempting to make any modifications.

Adhere to the following guidelines when modifying third-party IP core logic:

� Ensure all clocks are connected.

� Ensure AXI4-Lite management signals are connected correctly to the Xilinx DRP signals

on the GTXE2_CHANNEL and GTXE2_COMMON primitives.

� Select Include Shared Logic in example design in the IP wizard to access various

resources outside of the IP core logic, such as MGT_RefClk input buffers and QPLL

wrappers.

The following examples explain the differences in how the IBUFDS_GTE2 resource is exposed

with and without the Include Shared Logic in example design option.

� Option 1: Include the IBUFDS_GTE2 input buffer primitive inside the core by selecting

Include Shared Logic in core in the IP wizard. The image on the left in Figure 5-4 shows

this option.

� Option 2: Instantiate a single IBUFDS_GTE2 input buffer in your top level CLIP VHDL,

connect its output signal to both cores, and select Include Shared Logic in example design

in the IP wizard. The image on the right in Figure 5-4 shows this option.

© National Instruments | 5-5

NI-793xR User Manual

Note Do not modify the IP core unless you understand the required reference

clock(s) and clocking resources.

The following figure shows the difference between the top-level CLIP VHDL with shared logic

in the core (left) and without shared logic (right).

Figure 5-4. Top-Level CLIP VHDL and Shared Logic

Building a Netlist from the IP Core
LabVIEW FPGA does not support Verilog source files in Component Level IP. However, you

can generate EDIF netlists from any synthesized Verilog components in the IP you’re using and

instantiate the netlist in a VHDL wrapper.The following steps are an example of how to generate

an EDIF netlist from the IP core:

1. Open the example project for your IP core in Vivado.

2. Set the appropriate top-level source file for which you plan to generate a netlist.

3. Run synthesis.

4. Open the Synthesized Design using one of the following methods.

� Select Open Synthesized Design in the Synthesis Completed pop-up window.

� Select the Design Run tab, then select Open Synthesized Design in the left hand

pane.

5. In the Tcl Console, enter write_edif <name of entity>.edf to create the netlist

that you use when you import the IP core into your LabVIEW project. The netlist location

is indicated by the Tcl Console window.

IP Core WITHOUT

Shared Logic

IP Core WITHOUT

Shared Logic

Top Level CLIP VHDLTop Level CLIP VHDL

MGT_RefClk MGT_RefClk

IBUFDS_GTE2

IBUFDS_GTE2

IBUFDS_GTE2

IP Core WITH

Shared Logic

IP Core WITH

Shared Logic

?

5-6 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

6. The following figure shows the cells associated with the design in the Netlist window.

7. To build .edf files for an associated cell, enter the following command:

write_edif -cell <name of cell> <file name>.edf

For example, to create an .edf for clock_module_i, enter the following command:

write_edif -cell clock_module_i

aurora_64b66b_clock_module.edf

Note You may have to specify a longer path name depending on the location of the

cell in your project. For example, clock_module_i may be located under

aurora_64b66b_0_block_i/clock_module_i.

8. Copy the netlist into your LabVIEW FPGA CLIP directory.

9. Include your netlist in the list of synthesis files when running the CLIP Wizard.

© National Instruments | 5-7

NI-793xR User Manual

Writing a VHDL Wrapper Around the Protocol IP Core
A VHDL wrapper is generally necessary to adapt the protocol signals to the dataflow semantics

used within the LabVIEW FPGA diagram. NI recommends that you adhere to the following

guidelines when writing a VHDL wrapper around the protocol IP core:

� Keep the interface between the CLIP and the LabVIEW FPGA diagram as simple as

possible.

Note LabVIEW stores values in big-endian format, and your IP may accept only

little-endian format. NI recommends performing any conversions in the CLIP and

keeping endian conversions off the LabVIEW diagram for ease of use.

� Do not pass asynchronous signals to the LabVIEW FPGA diagram. Register the signals in

a clock domain in the VHDL logic before passing them to the LabVIEW FPGA diagram.

� Use AXI4-Stream and AXI4-Lite interfaces for streaming data and register accesses.

NI provides AXI4-Stream and AXI4-Lite wrappers to use on the LabVIEW FPGA

diagram. Refer to the Generating an IP Core from the Xilinx Vivado IP Catalog section of

this document for more information about IP core logic.

� If you expose an AXI4-Lite endpoint, use Xilinx AXI4 interconnect IP to expose only

one AXI4-Lite endpoint to the LabVIEW FPGA diagram.

� Document the frequency of clocks coming from CLIP. Consider supporting enable chain

removal.

� Implement a state machine that allows asynchronous resets. If you declare an input signal

as a reset signal in the CLIP wizard, then that signal is asserted when the LabVIEW FPGA

VI is not running.

� Implement a state machine that resets the protocol cores when the PORT# module is absent

if your state machine does not already account for this.

� Connect various clocks from your CLIP to the DebugClks std_logic_vector in order to use

host-side frequency counter debugging utilities.

� Provide timing constraints in XDC for your CLIP. Include timing constraints for clocks

within your CLIP, but do not include pin/location constraints on MGTs transceiver lanes

and RefClks. Refer to UG 903: Vivado Design Suite User Guide: Using Constraints at

xilinx.com for more information about timing constraints in XDC for your CLIP.

� Use the TXOUTCLK and/or RXOUTCLK clock constraints for your high-speed serial

CLIP if your protocol uses it directly.

– The following is an example syntax for the constraint: create_clock -period

<period in ns> [get_pins %ClipInstancePath%/<path to your

clock pin relative to the top level CLIP VHDL>].

5-8 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

� If you generate an asynchronous reset within your CLIP VHDL, create a false path

constraint from the register that generates the reset signal. Include a “don’t touch” attribute

for any false path constraints.

– The following is an example syntax for the “don’t touch” attribute: attribute

dont_touch : string; attribute dont_touch of <signal name> :

signal is "true";

– The following is an example syntax for the false path constraint: set_false_path

-from [get_cells %ClipInstancePath%/<path to your register>]

� When writing constraints, you may need to refer to the CLIP’s instance name or the

absolute path to the CLIP instance in the VHDL hierarchy. Refer to the Constraints and

Hierarchy or more information about using the search-and-replace keywords

%ClipInstanceName% and %ClipInstancePath%.

Constraints and Hierarchy
You can include CLIP-specific user constraints in the compilation using a constraints file,

depending on your specific FPGA target. You can use this mechanism for all constraints except

pin placement constraints. For example, you can access a clock directly from a global clock input

pin through a global clock buffer for socketed CLIP. You must constrain the period of this clock.

For constraints on specific components within CLIP, you might need to specify the location of

the component within the overall VHDL hierarchy. In such cases, consider prefacing the

constraints with the following macros. Prefacing allows the constraints to be applied regardless

of the component location in the VHDL hierarchy. If you want to use this example code, copy

the code to a text file and save the file as DemoClipAdder.xdc. Add this constraints file along

with the VHD file as synthesis files in the Configuring CLIP wizard to implement this constraint.

Xilinx Vivado

create_clock -period 10.000 -name %ClipInstanceName%Clk -waveform

{0.000 5.000} -add [get_pins %ClipInstancePath%/clk]

set_clock_latency -clock [get_clocks {%ClipInstanceName%CLK}] 10.0

[get_pins {%ClipInstancePath%/cAddOut[0]}]

To instantiate the CLIP multiple times, each CLIP instance must have a unique name, and the

name must follow VHDL naming conventions. When you include these macros, you do not need

to include a separate constraints file for each instance because the FPGA Module creates a

unique instance name.

If a CLIP signal is not used, the Xilinx compilation tools might remove the signal from the

bitstream. In such cases, you might get an NGBuild error during compilation. To resolve this

issue, remove the constraint or use the signal in an FPGA VI.

Caution In order to guarantee data integrity and timing closure, verify that I/O

nodes from the CLIP are written in the same clock domain in which they are read on

the LabVIEW diagram and that I/O nodes to the CLIP are read in the same clock

© National Instruments | 5-9

NI-793xR User Manual

domain in which they are written on the LabVIEW diagram. In rare cases where

crossing clock domains is desirable, refer to KnowledgeBase 6OB8E8FM at

ni.com/kb for more information about how to write timing constraints between the

CLIP and the LabVIEW diagram in order to specify timing exceptions on these paths

and achieve timing closure. Note that data corruption might still occur when crossing

clock domains.

Documenting Your IP
NI recommends documenting the behavior of your CLIP. Refer to the following guidelines for

information about how to document your CLIP and how documenting your CLIP can affect the

rest of your design:

� Document the endianness of your CLIP in order to properly interface your CLIP to the

LabVIEW FPGA diagram. Refer to the Writing a VHDL Wrapper Around the Protocol IP

Core section of this chapter for more information about how CLIP endianness affects the

design process.

� Clearly define the portion of your entity interface that is facing the diagram, and which

portion of your entity is facing the front panel.

� Document the connector signals by describing which signals are used, which signals are

unused, and the manner in which the signal is used. Signal use can affect which ports are

active with your IP and the behavior of cables upon ingestion and removal.

� Document how you integrate AXI4-Lite signals with LabVIEW data types. Some

AXI4-Lite signals do not integrate easily with LabVIEW data types; for example, address

ports can have widths of 11, but LabVIEW only provides addresses with widths of 8, 16,

32, and 64. Additionally, the AXI4-Lite and AXI4-Stream adapters are configured for use

with fixed-point I/O.

� Document how clocks are used and how they are routed in your CLIP for use with the IP.

You must route clocks to the diagram for use with the single-cycle timed loop (SCTL) in

LabVIEW FPGA.

� Document the address map of individual components within any AXI4-Lite interfaces.

Adding MGT Socketed CLIP to the LabVIEW
Project

After configuring the MGT Socketed CLIP in VHDL, you can use LabVIEW FPGA to continue

the development process. LabVIEW FPGA provides FPGA target support, configuration for

clocking and routing, and interfacing with LabVIEW on your host computer for a fully

integrated development experience.

Refer to the Related Documentation section of this manual for a list of LabVIEW FPGA

documentation that you may find helpful as you develop your application.

5-10 | ni.com

Chapter 5 Programming the High-Speed Serial Ports

Configuring MGT Socketed CLIP in the NI-793xR
LabVIEW FPGA Targets
Complete the following steps to configure MGT Socketed CLIP in your NI-793xR LabVIEW

project:

1. Create a new project by selecting File»New»Project, or open an existing project by

selecting File»Open.

2. Right-click the project in the Project Explorer window and select New»Targets and

Devices from the shortcut menu to display the Add Targets and Devices dialog box.

3. Select New target or device and select your device.

4. Right-click the device in the Project Explorer window and select New»FPGA Target to

add an FPGA target to the Controller for FlexRIO.

5. Add the protocol IP through your CLIP. Right-click the device name and select

Properties»Component-Level IP.

Note If you are using example CLIP or pre-made CLIP, you can import the CLIP

using the dialog box, or you can click on the Create File icon to create a new CLIP

using the CLIP Wizard.

Note You can modify a CLIP by selecting the preexisting CLIP Declaration Name

and clicking Modify File.

6. If you are generating new CLIP, follow the instructions in the CLIP Wizard to interface

your CLIP with LabVIEW FPGA. You do not need to use the CLIP Wizard if you are

reusing an existing CLIP. Refer to the FPGA Module Help for more detailed information

about the CLIP Wizard. The CLIP Wizard guides you through the following tasks.

� Adding VHDL source, XDC constraints, and EDF/EDN/EDIF netlists

� Configuring device types

� Configuring generics

� Performing syntax checks

� Specifying how to use the signals in your CLIP

Note In Step 2 of the CLIP Wizard, select the appropriate Component Level IP

Type for your target.

Note After you create the CLIP and add the files, you do not need to modify the

CLIP for any changes to take place if you do not change the source paths. If you

change the source paths or modify the CLIP source files, you must use the CLIP

Wizard.

© National Instruments | 5-11

NI-793xR User Manual

7. Instantiate the CLIP in the MGT Socket. When you add a new target to the project,

LabVIEW automatically creates a compatible MGT Socket in the project. Right-click the

socket and select Properties, then select General under Category.

8. Select a declaration from the drop-down menu under Socketed Component Level IP

Declaration.

9. Click OK. The user-defined signals in your CLIP appear under the socket item in the

Project Explorer window.

10. Right-click the MGT Socket and select Clocking Selections under Category to configure

the Clocking and IO Configuration properties for your device.

Note Clocking and routing information is compile-time static and cannot be

reconfigured at runtime.

Note The NI-793xR devices support empty sockets.

11. Select the clock that your CLIP requires and explicitly assign it a connection. You must add

the clock to your LabVIEW project in order to select it from the Connections window. If

your CLIP does not require any clocks, leave this page blank.

12. Click OK.

Refer to Chapter 3, Hardware Architecture, for more information about NI-793xR clocking

capabilities.

Using Existing VHDL IP inside CLIP or IPIN
To use existing IP in your project, refer to the Importing External IP Into LabVIEW FPGA white

paper at ni.com.

CLIP does not support custom user libraries in the VHDL. If your VHDL uses custom user

libraries, use one of the following workarounds:

� Create a netlist from the VHDL and integrate the netlist using CLIP.

� Reference the default reference library instead of a custom user library.

Refer to the Creating or Acquiring IP (FPGA Module) topic in the LabVIEW FPGA Module

Help for more information about using existing VHDL IP inside CLIP or IPIN.

Improving Performance in Larger Designs through
Enable Chain Removal
By default, LabVIEW adds code to the FPGA code to enforce data flow. This code addition is

referred to as the enable chain. In larger applications, the enable chain can create routing

congestion and limit performance. You can remove the enable chain under certain

circumstances. Refer to Improving Timing Performance in Large Designs (FPGA Module) in the

LabVIEW FPGA Module Help for more information about how to remove enable chains and

when to do so.

© National Instruments | 6-1

6
Programming with the
Real-Time Target

This chapter contains information about programming with the LabVIEW Real-Time target. For

information about developing LabVIEW Real-Time applications, refer to the

LabVIEW Real-Time Module Help.

Best Practices

For information about LabVIEW Real-Time programming best practices, refer to the Real-Time

Module Best Practices topic of the Real-Time Module Help. This page includes an overview of

best practices for designing, developing, and deploying applications with LabVIEW Real-Time.

Key Concepts

The following key concepts provide the basic information you need to start using the Real-Time

FlexRIO Target.

� Real-time (RT) application—An application designed for stable execution and precise

timing.

� Determinism—The characteristic of a real-time application that describes how

consistently the application responds to external events or performs operations within a

given time limit. Maximizing determinism is often a priority when designing real-time

applications.

� Jitter—The time difference between the fastest and slowest executions of the application.

Minimizing jitter is often a priority when designing real-time applications.

� Real-time operating system (RTOS)—An operating system designed to run applications

with increased determinism and reduced jitter. A general-purpose operating system, like

Microsoft Windows, completes operations at unpredictable times. In contrast, each

operation an RTOS performs has a known maximum completion time. By designing an

application for an RTOS, you can make sure an application will run deterministically.

� RT target—A controller, such as an NI-793xR, that runs an RTOS.

� Stand-alone RT application—An RT application that runs automatically when you power

on an RT target.

� Device driver software—A software component that translates commands from

LabVIEW into a format appropriate for a particular RT target and any installed I/O devices.

You install the appropriate device driver software as a part of configuring your RT target.

6-2 | ni.com

Chapter 6 Programming with the Real-Time Target

� Host computer—The computer you use to design a real-time application. You deploy a

real-time application from the host computer to the RT target. You can also communicate

with the RT target through a user interface running on the host computer.

� NI Measurement & Automation Explorer (MAX)—The software you use to configure

RT targets. After you install the Real-Time Module on the host computer, you can use MAX

to install the Real-Time Module, the RTOS, and device driver software on the RT target.

� Subnet—A subdivision of a network over which devices can communicate using TCP/IP

protocol. MAX automatically detects RT targets connected to the same subnet as the host

computer.

� Shared variable—A memory space that you can read data from and write data to. You can

read and write shared variables on a single computer with single-process shared variables

or on multiple computers with network-published shared variables. Use shared variables to

publish only the latest values in a data set to one or more computers.

� RT FIFO—Acts like a fixed-size queue, where the first value you write to the FIFO queue

is the first value that you can read from the FIFO queue. An RT FIFO ensures deterministic

behavior by imposing a size restriction on the data you share and by pre-allocating memory

for the data. Use RT FIFO functions to share data between VIs or parallel loops running on

an RT target.

� Network stream—A lossless, unidirectional, one-to-one communication channel that

consists of a writer endpoint and a reader endpoint. Use network streams to stream lossless

data over a network.

Installing and Configuring the NI-793xR

Refer to the getting started guide for your NI-793xR for instructions about how to perform the

following tasks before developing a real-time application for your NI-793xR:

1. Install support for the NI-793xR on the host computer.

2. Detect and configure the NI-793xR.

3. Install software on the NI-793xR.

Creating a Real-Time Application

For step by step instructions about creating a project and adding a Real-Time target to it, refer

to the Creating a Real-Time FlexRIO Project topic of the FlexRIO Help.

For conceptual information about real-time applications, refer to Tutorial: Creating a Real-Time

Application topic in the Real-Time Module How-To book of the Real-Time Module Help.

© National Instruments | 6-3

NI-793xR User Manual

Real-Time System Integration

The following sections contain information about integrating your Real-Time system with

LabVIEW.

Querying Fan Speed and Temperature Sensors
Use the System Configuration API to query the fan sensors or the temperature sensor on the

NI-793xR. The System Configuration API can read device properties remotely from a

development machine or monitoring system, or you can access these properties locally through

the device for self-monitoring.

The NI-793xR includes four temperature sensors and one fan. Three of the temperature sensors

monitor the CPU, and one temperature sensor monitors the FPGA. Refer to the following table

for the resource you must use to access each temperature sensor and fan, as well as each

component’s operating range.

Note All temperatures are reported in degrees Celsius (°C).

Note CPU Temp 1 and FPGA Temp are both on-die temperature sensors for their

respective component. CPU Temp 2 and CPU Temp 3 are onboard temperature

sensors near the CPU. Use CPU Temp 2 and CPU Temp 3 as redundant sensors, or

for monitoring internal ambient temperature.

To query the System Fan properties, including the speed reading and PWM (pulse width

modulation) duty cycle, filter for the system resource and query the properties under the

System Resources::Fans category and the FlexRIO::System Resources::FanPWM

property. The speed reading property is in units of RPM, and the PWM property is in units of

percentage.

Table 6-1. NI-793xR Temperature Sensors and Fan

Sensor Name Resource Operating Range

CPU Temp 1 System <98 °C

CPU Temp 2 System <85 °C

CPU Temp 3 System <85 °C

System Fan System For information about the fan, refer

to the Using the Fan section.

FPGA Temp System <96 °C

Current Temp RIO0 <96 °C

6-4 | ni.com

Chapter 6 Programming with the Real-Time Target

To query the CPU Temp x and FPGA Temp sensors, filter for the system resource and query

the properties under the System Resources::Temperature Sensors category.

Figure 6-1. Querying Fan and CPU Temperatures

You can also monitor the FPGA Temp sensor on the RIO0 resource. To do this, filter for the

RIO0 resource and query the Devices & Chassis::Current Temp property.

Figure 6-2. Querying FPGA Temperature

Power/Thermal Protection and Shutdown
If the FPGA overheats or the temperature monitor cannot be read, FPGA communication is shut

down and accesses to the FPGA do not work. Additionally, a device status message appears in

MAX under the FPGA item that has been shut down. If the FPGA communication shuts down,

power cycle the system and contact NI customer support at ni.com/support. In order to

avoid seeing this error again, improve the airflow to your chassis or consider reduced FPGA

logic in your design.

You can also query the device status through the LabVIEW System Configuration API.

LabVIEW System Configuration API
The LabVIEW System Configuration API allows you to gather information and perform tasks

programmatically on both local and remote systems. The System Configuration palette is located

on the functions palette in LabVIEW under Measurement I/O.

Note If Measurement I/O does not appear on the functions palette, you can enable

it by selecting Customize»Change Visible Palette.

www.ni.com/support

© National Instruments | 6-5

NI-793xR User Manual

Complete the following steps to use the LabVIEW System Configuration API with your

NI-793xR Real-Time project.

1. Open a session and point to your target using its IP address.

2. Enter your user name and password, if applicable.

3. Open the System Configuration palette in LabVIEW.

4. Open the Property Node (Hardware) to obtain information such as the device temperature

and device model name.

Refer to the NI System Configuration API Help topic of the LabVIEW Help for more information

about using the LabVIEW System Configuration API. For information about the FlexRIO

System Configuration API, refer to the FlexRIO System Configuration Expert topic in the

FlexRIO Help.

Communicating with Applications on an
RT Target

The RT Engine on the RT target does not provide a user interface for applications. You can use

one of two communication protocols, front panel communication or network communication, to

provide a user interface on the host computer for RT target VIs.

Front Panel Communication
With front panel communication, LabVIEW and the RT Engine execute different parts of the

same VI. LabVIEW on the host computer displays the front panel of the VI while the RT Engine

executes the block diagram. A user interface thread handles the communication between

LabVIEW and the RT Engine.

Use front panel communication between LabVIEW on the host computer and the RT Engine to

control and test VIs running on an RT target. After downloading and running the VIs, keep

LabVIEW on the host computer open to display and interact with the front panel of the VI.

You also can use front panel communication to debug VIs while they run on the RT target. You

can use LabVIEW debugging tools—such as probes, execution highlighting, breakpoints, and

single stepping—to locate errors on the block diagram code. Refer to the Building, Deploying,

and Debugging Applications (Real-Time Module) topic of the Real-Time Module Help for

information about debugging applications.

Front panel communication is a good communication method to use during development

because front panel communication is a quick method for monitoring and interfacing with VIs

running on an RT target. However, front panel communication is not deterministic and can affect

the determinism of a time-critical VI. Use network communication methods to increase the

efficiency of the communication between a host computer and VIs running on the RT target.

6-6 | ni.com

Chapter 6 Programming with the Real-Time Target

Network Communication
With network communication, a host VI runs on the host computer and communicates with the

VI running on the RT target using specific network communication methods such as TCP, VI

Server, and in the case of non-networked RT Series plug-in devices, shared memory reads and

writes. You might use network communication for the following reasons:

� You want to run another VI on the host computer.

� You want to control the data exchanged between the host computer and the RT target. You

can customize communication code to specify which front panel objects get updated and

when. You also can control which components are visible on the front panel because some

controls and indicators might be more important than others.

� You want to control timing and sequencing of the data transfer.

� You want to perform additional data processing or logging.

For more information about interacting with the front panels of RT target VIs, refer to the

Interacting with the Front Panels of RT Target VIs topic in the LabVIEW Real-Time Module

Help.

Note The Interacting with the Front Panels of RT Target VIs topic in the

LabVIEW Real-Time Module Help contains information about an embedded UI,

which is not available on NI-793xR targets.

Where to Go from Here

The Real-Time Module includes a comprehensive documentation set designed to help you create

deterministic applications to run on RT targets.

LabVIEW Help
The LabVIEW Help, available by selecting Help»LabVIEW Help in LabVIEW, contains the

following information that is specific to the Real-Time Module:

� Real-Time Module Best Practices—Information about best practices for designing,

developing, and deploying applications with the Real-Time Module.

� Real-Time Module Concepts—Information about programming concepts, application

architectures, and Real-Time Module features you can use to create deterministic

applications.

� Real-Time Module How-To—Step-by-step instructions for using Real-Time Module

features.

� Real-Time VIs—Reference information about Real-Time Module VIs, functions, and

error codes.

© National Instruments | 6-7

NI-793xR User Manual

� Real-Time Operating Systems—Information about using LabVIEW on real-time

operating systems.

� Real-Time Module Error Codes—Information about error codes specific to the

Real-Time Module.

LabVIEW Real-Time Module Release and
Upgrade Notes
The LabVIEW Real-Time Module Release and Upgrade Notes contains information to help you

install and configure the Real-Time Module and a list of upgrade issues and new features.

Complete the following steps to access this document:

1. Open the labview\manuals directory.

2. Double-click RT_Release_Upgrade_Notes.pdf to open this manual.

© National Instruments | A-1

A
CLIP Signals

This chapter contains lists of CLIP signals for the NI-7932R and NI-7935R devices.

NI-7932R

Refer to the following table for a list of the NI-7932R socketed CLIP signals.

Table A-1. NI-7932R CLIP Signals

Port Direction Clock Domain Description

MGT_RefClk0_p In (pad) — Differential input clock that you

must connect to an

IBUFDS_GTE2 input buffer

primitive when this input clock

is used in your design

MGT_RefClk0_n In (pad)

SocketClk40 In Clock A 40 MHz clock that runs

continuously regardless of

connectivity. This signal is

connected to the 40 MHz

Onboard Clock signal, which

is the default top-level clock for

the LabVIEW FPGA VI.

A-2 | ni.com

Appendix A CLIP Signals

aResetSl In Async This signal is not required.

This signal is an asynchronous

reset signal from the

LabVIEW FPGA environment.

If you create an input signal to

your CLIP and assign it as Reset

in the CLIP wizard, that signal is

driven as an asynchronous reset

signal. Reset all CLIP state

machines and logic whenever

this signal is logic high.

This signal is driven high when

you call the LabVIEW FPGA

Reset invoke method. Call Run

on the FPGA VI to deassert this

signal.

Do not use CLIP inputs from the

LabVIEW FPGA VI in the

CLIP until aResetS1 is

deasserted.

Port<0..1>_RX_p In (pad) — Dedicated MGT receive signals

for Port <0..1>.
Port<0..1>_RX_n In (pad) —

Port<0..1>_TX_p Out (pad) — Dedicated MGT transmit

signals for Port <0..1>.
Port<0..1>_TX_n Out (pad) —

Port<0..1>_Tx_Fault In Async When high, indicates a laser

fault. Low indicates normal

operation.

Port<0..1>_LOS In Async When high, this input indicates

that the received optical power

is below the worst-case receiver

sensitivity. Low indicates

normal operation.

Port<0..1>_ABS In Async When high, this input indicates

that a module is plugged into the

SFP+ socket. Low indicates that

a module has been detected.

Table A-1. NI-7932R CLIP Signals (Continued)

Port Direction Clock Domain Description

© National Instruments | A-3

NI-793xR User Manual

Port<0..1>_Tx_

Disable

Out Async When high, this output shuts

down the transmitter optical

transmitter. When low,

operation is enabled.

Port<0..1>_Rs<0..1> Out Async Rate selection pins.

Port<0..1>_SCL In/Out Async Bidirectional serial clock signal

for the two-wire communication

interface on the Port <0..1>

connector.

Valid values: 0 and Z (open

drain).

This signal is also called

MODDEF1.

Port<0..1>_SDA In/Out Async Bidirectional serial data signal

for the two-wire communication

interface on the Port <0..1>

connector.

Valid values: 0 and Z (open

drain).

This signal is also called

MODDEF2.

Port<0..1>_

MacAddress

In Async Unique 48-bit MAC address

assigned to Port<0..1>. Use this

address when implementing a

network interface controller on

Port<0..1>.

Port<0..1>_

MacAddressValid

In Async When asserted, this signal

indicates that

Port<0..1>_MacAddress is

valid.

Table A-1. NI-7932R CLIP Signals (Continued)

Port Direction Clock Domain Description

A-4 | ni.com

Appendix A CLIP Signals

NI-7935R

Refer to the following table for a list of the NI-7935R socketed CLIP signals.

sPort<0..1>_

EnablePower

Out SocketClk40 Enables or disables the power

supply to Port <0..1>.

This signal is active high.

sPort<0..1>_

PowerGood

In SocketClk40 Indicates that the power supply

to the cable for Port <0..1> is

enabled.

This signal may deassert if an

over-power condition is

detected.

Table A-2. NI-7935R CLIP Signals

Port Direction Clock Domain Description

MGT_RefClk0_p In (pad) — Differential input clock that you

must connect to an

IBUFDS_GTE2 input buffer

primitive when this input clock

is used in your design

MGT_RefClk0_n In (pad) —

SocketClk40 In Clock A 40 MHz clock that runs

continuously regardless of

connectivity. This signal is

connected to the 40 MHz

Onboard Clock signal, which is

the default top-level clock for the

LabVIEW FPGA VI.

Table A-1. NI-7932R CLIP Signals (Continued)

Port Direction Clock Domain Description

© National Instruments | A-5

NI-793xR User Manual

aResetSl In Async This signal is not required.

This signal is an asynchronous

reset signal from the

LabVIEW FPGA environment.

If you create an input signal to

your CLIP and assign it as Reset

in the CLIP wizard, that signal is

driven as an asynchronous reset

signal. Reset all CLIP state

machines and logic whenever

this signal is logic high.

This signal is driven high when

you call the LabVIEW FPGA

Reset invoke method. Call Run

on the FPGA VI to deassert this

signal.

Do not use CLIP inputs from the

LabVIEW FPGA VI in the CLIP

until aResetS1 is deasserted.

Port<0..1>_RX_p In (pad) — Dedicated MGT receive signals

for Port <0..1>.
Port<0..1>_RX_n In (pad) —

Port<0..1>_TX_p Out (pad) — Dedicated MGT transmit signals

for Port <0..1>.
Port<0..1>_TX_n Out (pad) —

Port<0..1>_Tx_Fault In Async When high, indicates a laser

fault. Low indicates normal

operation.

Port<0..1>_LOS In Async When high, this input indicates

that the received optical power is

below the worst-case receiver

sensitivity. Low indicates

normal operation.

Port<0..1>_ABS In Async When high, this input indicates

that a module is plugged into the

SFP+ socket. Low indicates that

a module has been detected.

Table A-2. NI-7935R CLIP Signals (Continued)

Port Direction Clock Domain Description

A-6 | ni.com

Appendix A CLIP Signals

Port<0..1>_Tx_

Disable

Out Async When high, this output shuts

down the transmitter optical

transmitter. When low, operation

is enabled.

Port<0..1>_Rs<0..1> Out Async Rate selection pins.

Port<0..1>_SCL In/Out Async Bidirectional serial clock signal

for the two-wire communication

interface on the Port <0..1>

connector.

Valid values: 0 and Z (open

drain).

This signal is also called

MODDEF1.

Port<0..1>_SDA In/Out Async Bidirectional serial data signal

for the two-wire communication

interface on the Port <0..1>

connector.

Valid values: 0 and Z (open

drain).

This signal is also called

MODDEF2.

Port<0..1>_

MacAddress

In Async Unique 48-bit MAC address

assigned to Port<0..1>. Use this

address when implementing a

network interface controller on

Port<0..1>.

Port<0..1>_

MacAddressValid

In Async When asserted, this signal

indicates that

Port<0..1>_MacAddress is

valid.

Table A-2. NI-7935R CLIP Signals (Continued)

Port Direction Clock Domain Description

© National Instruments | A-7

NI-793xR User Manual

sPort<0..1>_

EnablePower

Out SocketClk40 Enables or disables the power

supply to Port <0..1>.

This signal is active high.

sPort<0..1>_

PowerGood

In SocketClk40 Indicates that the power supply

to the cable for Port <0..1> is

enabled.

This signal may deassert if an

over-power condition is

detected.

Table A-2. NI-7935R CLIP Signals (Continued)

Port Direction Clock Domain Description

© National Instruments | B-1

B
Using the Fan

The NI-793xR includes a low power consumption DC fan for cooling the device. The following

table lists the fan specifications.

Refer to the Sanyo Denki website for complete specifications.

Replacing the Fan
The NI-793xR includes a replaceable fan assembly. For fan troubleshooting information and to

order replacement parts , refer to ni.com/support.

Table B-1. NI-793xR Fan Specifications

Manufacturer Sanyo Denki

Manufacturer part number 9GA0412G7001

Rated voltage 12 V

Operating voltage range 7 V to 13.8 V

Rated speed 13,100 rpm

Air flow 0.36 m3/min (12.7 CFM)

Operating temperature -10 °C to 70 °C

Life expectancy (continual operation)
40,000 h (60 °C)

70,000 h (40 °C)

http://www.ni.com/support

© National Instruments | C-1

C
NI Services

National Instruments provides global services and support as part of our commitment to your

success. Take advantage of product services in addition to training and certification programs

that meet your needs during each phase of the application life cycle; from planning and

development through deployment and ongoing maintenance.

To get started, register your product at ni.com/myproducts.

As a registered NI product user, you are entitled to the following benefits:

� Access to applicable product services.

� Easier product management with an online account.

� Receive critical part notifications, software updates, and service expirations.

Log in to your National Instruments ni.com User Profile to get personalized access to your

services.

Services and Resources

� Maintenance and Hardware Services—NI helps you identify your systems’ accuracy and

reliability requirements and provides warranty, sparing, and calibration services to help you

maintain accuracy and minimize downtime over the life of your system. Visit ni.com/

services for more information.

– Warranty and Repair—All NI hardware features a one-year standard warranty that

is extendable up to five years. NI offers repair services performed in a timely manner

by highly trained factory technicians using only original parts at a National

Instruments service center.

– Calibration—Through regular calibration, you can quantify and improve the

measurement performance of an instrument. NI provides state-of-the-art calibration

services. If your product supports calibration, you can obtain the calibration certificate

for your product at ni.com/calibration.

� System Integration—If you have time constraints, limited in-house technical resources, or

other project challenges, National Instruments Alliance Partner members can help. To learn

more, call your local NI office or visit ni.com/alliance.

http://www.ni.com/myproducts
http://www.ni.com
http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/calibration
http://www.ni.com/alliance

C-2 | ni.com

Appendix C NI Services

� Training and Certification—The NI training and certification program is the most

effective way to increase application development proficiency and productivity. Visit

ni.com/training for more information.

– The Skills Guide assists you in identifying the proficiency requirements of your

current application and gives you options for obtaining those skills consistent with

your time and budget constraints and personal learning preferences. Visit ni.com/

skills-guide to see these custom paths.

– NI offers courses in several languages and formats including instructor-led classes at

facilities worldwide, courses on-site at your facility, and online courses to serve your

individual needs.

� Technical Support—Support at ni.com/support includes the following resources:

– Self-Help Technical Resources—Visit ni.com/support for software drivers and

updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting

wizards, thousands of example programs, tutorials, application notes, instrument

drivers, and so on. Registered users also receive access to the NI Discussion Forums

at ni.com/forums. NI Applications Engineers make sure every question submitted

online receives an answer.

– Software Support Service Membership—The Standard Service Program (SSP) is a

renewable one-year subscription included with almost every NI software product,

including NI Developer Suite. This program entitles members to direct access to

NI Applications Engineers through phone and email for one-to-one technical support,

as well as exclusive access to online training modules at ni.com/

self-paced-training. NI also offers flexible extended contract options that

guarantee your SSP benefits are available without interruption for as long as you need

them. Visit ni.com/ssp for more information.

� Declaration of Conformity (DoC)—A DoC is our claim of compliance with the Council

of the European Communities using the manufacturer’s declaration of conformity. This

system affords the user protection for electromagnetic compatibility (EMC) and product

safety. You can obtain the DoC for your product by visiting ni.com/certification.

For information about other technical support options in your area, visit ni.com/services,

or contact your local office at ni.com/contact.

You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch

office websites, which provide up-to-date contact information, support phone numbers, email

addresses, and current events.

http://www.ni.com/training
http://www.ni.com/skills-guide
http://www.ni.com/skills-guide
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/self-paced-training
http://www.ni.com/ssp
http://www.ni.com/certification
http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/niglobal

© National Instruments | G-1

Glossary

C

CLIP Component-level intellectual property. CLIP provides access to

adapter module physical I/O from within the LabVIEW FPGA

environment.

D

DDR3 Double data rate. This term usually refers to the communication

mechanism used to read and write DRAM.

DRAM Dynamic random-access memory

F

FPGA Field-programmable gate array.

NI-793xR modules use Xilinx Kintex-7 FPGAs.

G

GPIO General-purpose input/output

H

HDL Hardware-description language. Language that describes a

circuit’s operation, design, and organization.

L

LVFPGA LabVIEW FPGA

M

MGT Multi-gigabit transceiver. An MGT is a SerDes capable of

operating at serial bits above 1 Gb/s.

Glossary

G-2 | ni.com

P

PFI Programmable function interface

S

SCTL Single cycle timed loop

SFP+ Enhanced small form-factor pluggable

V

VHDL VHSIC Hardware Description Language

	NI-7931R/7932R/7935R User Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Legal Information
	Limited Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	U.S. Government Restricted Rights
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	Related Documentation
	Table 1. Documentation Overview
	Xilinx Documentation
	Table 2. Xilinx Documentation

	Additional Resources
	Table 3. FlexRIO Development Resources

	Chapter 1 Before You Begin
	Development Requirements
	Table 1-1. Fundamentals Resources

	Xilinx Licensing Information

	Chapter 2 Mounting the NI-793xR
	Figure 2-1. Fan Clearance
	Table 2-1. Mounting Options
	Mounting the NI-793xR Directly on a Flat Surface
	Figure 2-2. NI-793xR Dimensions

	Installing the Rubber Feet
	Figure 2-3. Installing the Rubber Feet

	Chapter 3 Hardware Architecture
	NI-7931R
	Figure 3-1. NI-7931R Front Panel Connectors
	Figure 3-2. NI-7931R LEDs
	Figure 3-3. NI-7931R FPGA Connector Pinout
	NI-7931R Key Features
	Figure 3-4. NI-7931R Architecture Key Components

	Clocking Architecture
	Figure 3-5. NI-7931R Clocking Diagram

	NI-7932R
	Figure 3-6. NI-7932R Front Panel Connectors
	Figure 3-7. NI-7932R LEDs
	Figure 3-8. NI-7932R FPGA Connector Pinout
	NI-7932R Key Features
	Figure 3-9. NI-7932R Architecture Key Components

	Clocking Architecture
	Figure 3-10. NI-7932R Clocking Diagram

	NI-7935R
	Figure 3-11. NI-7935R Front Panel Connectors
	Figure 3-12. NI-7935R LEDs
	Figure 3-13. NI-7935R FPGA Connector Pinout
	NI-7935R Key Features
	Figure 3-14. NI-7935R Architecture Key Components

	Clocking Architecture
	Figure 3-15. NI-7935R Clocking Diagram

	Chapter 4 Developing with LabVIEW FPGA
	Developing with LabVIEW FPGA
	Adding the NI-793xR to a LabVIEW Project
	Adding an Adapter Module to the Target
	Adding Items to the NI-793xR Target

	Adding NI-793xR Target I/O
	Configuring a 10 MHz Reference Clock
	Auto-loading Bitfiles on Power-up
	Interactive Front Panel Communication
	Using the NI Common Instrument Design Libraries
	Using niInstr Instruction Framework
	Streaming Overview
	CLIP Adapters Overview
	Data Trigger Overview
	Basic Elements Overview
	Memory Overview

	Compiling LabVIEW FPGA VIs
	Download, Reset, and Run Side Effects in the LabVIEW FPGA Host Interface
	Streaming
	Flow Control
	Figure 4-1. Host-Side FIFO to FPGA Flow Control
	DMA Streaming

	Simulating FPGA Behavior

	Chapter 5 Programming the High-Speed Serial Ports
	Development Flow
	Figure 5-1. NI-793xR Development Process

	Developing MGT Socketed CLIP
	Socketed CLIP Architecture
	Figure 5-2. NI-7932R Socketed CLIP Architecture
	Figure 5-3. NI-7935R Socketed CLIP Architecture

	Accessing the Xilinx Vivado Tools
	Generating an IP Core from the Xilinx Vivado IP Catalog
	Modifying Third-Party IP Core Logic
	Figure 5-4. Top-Level CLIP VHDL and Shared Logic
	Building a Netlist from the IP Core

	Writing a VHDL Wrapper Around the Protocol IP Core
	Constraints and Hierarchy
	Documenting Your IP

	Adding MGT Socketed CLIP to the LabVIEW Project
	Configuring MGT Socketed CLIP in the NI-793xR LabVIEW FPGA Targets
	Using Existing VHDL IP inside CLIP or IPIN
	Improving Performance in Larger Designs through Enable Chain Removal

	Chapter 6 Programming with the Real-Time Target
	Best Practices
	Key Concepts
	Installing and Configuring the NI-793xR
	Creating a Real-Time Application
	Real-Time System Integration
	Querying Fan Speed and Temperature Sensors
	Table 6-1. NI-793xR Temperature Sensors and Fan
	Figure 6-1. Querying Fan and CPU Temperatures
	Figure 6-2. Querying FPGA Temperature

	Power/Thermal Protection and Shutdown
	LabVIEW System Configuration API

	Communicating with Applications on an RT Target
	Front Panel Communication
	Network Communication

	Where to Go from Here
	LabVIEW Help
	LabVIEW Real-Time Module Release and Upgrade Notes

	Appendix A CLIP Signals
	Table A-1. NI-7932R CLIP Signals
	Table A-2. NI-7935R CLIP Signals

	Appendix B Using the Fan
	Table B-1. NI-793xR Fan Specifications

	Appendix C NI Services
	Glossary
	C-M
	P-V

