COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. We Sell For Cash We Get Credit We Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

APEX WAVES

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216
www.apexwaves.com
sales@apexwaves.com

 \bigtriangledown

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote CLICK HERE NI-9213

Manufacturer: National Instruments

Board Assembly Part Numbers (Refer to Procedure 1 for identification procedure):

Part Number and Revision	Description
198854B-0#L and later	NI 9213, 16 Channel, Thermocouple Input
150112B-0#L and later	NI 9214, 16 Channel, Thermocouple Input with DIN Connector

Volatile Memory

			Battery	User ¹	System	Sanitization
Target Data	Туре	Size	Backup	Accessible	Accessible	Procedure
Module configuration	CPLD RAM	56 bits	No	No	Yes	Cycle Power
Module AI data and Status	CPLD RAM	32 bits	No	Yes	Yes	Cycle Power
Calibration data	CPLD RAM	40 bits	No	No	Yes	Cycle Power
ADC configuration	ADC RAM	15 bytes	No	No	No	Cycle Power
ADC data	ADC RAM	24 bits	No	No	No	Cycle Power

Non-Volatile Memory (incl. Media Storage)

			Battery	User	System	Sanitization
Target Data	Туре	Size	Backup	Accessible	Accessible	Procedure
Device Configuration	EEPROM	8 KB	No			
Calibration metadata				Yes	Yes	Procedure 2
• Calibration data ²				No	Yes	None
Device information				No	Yes	None
Module Operation	CPLD	570	No	No	No	None
		Macrocells				

¹ Refer to *Terms and Definitions* section for clarification of *User* and *System Accessible*.

 $^{^{2}}$ Calibration constants that are stored on the device include information for the device's full operating range. Any implications resulting from partial self-calibration can be eliminated by running the full self-calibration procedure.

Procedures

Procedure 1 – Board Assembly Part Number identification:

To determine the Board Assembly Part Number and Revision, look for the white label at the bottom of the module. The Assembly Part Number should be formatted as "######<Rev Letter>-##L" (where '#' are numbers).

Procedure 2 - Device Configuration EEPROM (Calibration Metadata):

The user-accessible areas of the Device Configuration EEPROM are exposed through a calibration Applications Programming Interface (API) in LabVIEW. Follow the instructions in KB <u>4GHLANQE</u> for changing the calibration password and clearing the user-defined information.

Terms and Definitions

Cycle Power:

The process of completely removing power from the device and its components and allowing for adequate discharge. This process includes a complete shutdown of the PC and/or chassis containing the device; a reboot is not sufficient for the completion of this process.

Volatile Memory:

Requires power to maintain the stored information. When power is removed from this memory, its contents are lost. This type of memory typically contains application specific data such as capture waveforms.

Non-Volatile Memory:

Power is not required to maintain the stored information. Device retains its contents when power is removed. This type of memory typically contains information necessary to boot, configure, or calibrate the product or may include device power up states.

User Accessible:

The component is read and/or write addressable such that a user can store arbitrary information to the component from the host using a publicly distributed NI tool, such as a Driver API, the System Configuration API, or MAX.

System Accessible:

The component is read and/or write addressable from the host without the need to physically alter the product.

Clearing:

Per *NIST Special Publication 800-88 Revision 1*, "clearing" is a logical technique to sanitize data in all User Accessible storage locations for protection against simple non-invasive data recovery techniques using the same interface available to the user; typically applied through the standard read and write commands to the storage device.

Sanitization:

Per *NIST Special Publication 800-88 Revision 1*, "sanitization" is a process to render access to "Target Data" on the media infeasible for a given level of effort. In this document, clearing is the degree of sanitization described.