COMPREHENSIVE SERVICES APEX WAVES

We offer competitive repair and calibration services, as well as easily
accessible documentation and free downloadable resources.

Bridging the gap between the
SELL YOUR SURPLUS manufacturer and your legacy

v) test system.
We buy new, used, decommissioned, and surplus parts from every NI series.

We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal
O 1-800-915-6216

@ www.apexwaves.com

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

9 sales@apexwaves.com

Alltrademarks, brands, and brand names are the property of their respective owners.

Request a Quote =cuckize NJ-9802

https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9802?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9802?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9802?aw_referrer=pdf

NI cR10O-9951

CompactRIO" Module Development Kit User Manual
Software User Manual

November 2017 ‘7NAT|ONA|.
375951B-01 ’ INSTRUMENTS

Worldwide Technical Support and Product Information
ni.com

Worldwide Offices

Visitni.com/niglobal to access the branch office websites, which provide up-to-date
contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on NI
documentation, refer to the NI website at ni . com/info and enter the Info Code feedback.

© 2011-2017 National Instruments. All rights reserved.

http://ni.com
http://ni.com/niglobal
http://ni.com/info

Legal Information

Limited Warranty

This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version,
refer to ni . com/manuals. NI reviews this document carefully for technical accuracy; however, NIl MAKES NO EXPRESS
OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND
SHALL NOT BE LIABLE FOR ANY ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to
substantially conform to the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially
in accordance with the applicable documentation provided with the software and (ii) the software media will be free from
defects in materials and workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair
or replace the affected product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be
warranted for the remainder of the original warranty period or ninety (90) days, whichever is longer. If NI elects to repair or
replace the product, NI may use new or refurbished parts or products that are equivalent to new in performance and reliability
and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for
examining and testing Hardware not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance,
installation, repair, or calibration (performed by a party other than NI); unauthorized modification; improper environment;
use of an improper hardware or software key; improper use or operation outside of the specification for the product; improper
voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL
APPLY EVEN IF SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND AND NI DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE
PRODUCTS, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY WARRANTIES THAT MAY ARISE FROM
USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS
OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE
OPERATION OF THE PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the
warranty terms in the separate agreement shall control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,

including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the
prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected
by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials
belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the
terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

¢ Notices are located in the <National Instruments>_Legal Information and <National Instruments>
directories.

* EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

* Review <National Instruments>_Legal Information.txt for information on including legal information in
installers built with NI products.

U.S. Government Restricted Rights

If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication,
reproduction, release, modification, disclosure or transfer of the technical data included in this manual is governed by the
Restricted Rights provisions under Federal Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal
Acquisition Regulation Supplement Section 252.227-7014 and 252.227-7015 for military agencies.

Trademarks

Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on NI trademarks.
ARM, Keil, and pVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.
DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology
and vernier.com are trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.
FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and
Simulink Coder™, TargetBox ", and Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.
The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

™

The ExpressCar
license.

word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft
Corporation in the United States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from NI and have no
agency, partnership, or joint-venture relationship with NI.

Patents

For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software,
the patents. txt file on your media, or the National Instruments Patent Notice at ni . com/patents.

Export Compliance Information

Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance
policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND
RELIABILITY OF THE PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR
APPLICATION, INCLUDING THE APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM
OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE
PERFORMANCE, INCLUDING IN THE OPERATION OF NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR
TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING SYSTEMS OR SUCH OTHER MEDICAL
DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD
LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST
FAILURES, INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK
USES.

Contents

About This Manual

ReqUIrEd SOTIWATEc.ooviuiiiieiiitiiiteie ettt sttt ix
Related DOCUMENLALIONcc.eeiiieriieiieieeteeiecte ettt stae st beesbeenaeesseeaseeenas ix

Chapter 1

CompactRIO Module Development Kit 2 Software Overview
BIOCK DIQ@IAM......couiiiieiieiiiiieeieeee ettt ettt ettt s ae bbb eneen 1-3
Designing the Module API.........cccooiiiiiiiiiieteeee e 1-5
LabVIEW FPGA API EICMENtSc.coueuiiiirieiiiiiieieieiceiecetee e 1-5
[/O ChANNEL.....c.eouiieiiieiiee et
Module Sub-Item....
T/O INOGE ...ttt st sttt sttt enean
Property NOGE....c.ovuiiiieiiiieiieeee ettt
Method Node..........c.coueneee
Recommended API Elements..............
Creating Parallel DIO API Elements.......
Development Mode versus Release Modeooveveieieniininieinceieieiesiese e 1-6
MDK and NI-RIO VEISIONScceruiruirieieieienienieeieeieeieeiteteteiesaestesee e steseeneeneensesaennes 1-8

Chapter 2

Module XML Files

Module TYPe XML Fileccueeuieieieieieierieieeteee ettt ettt sbe e e eseensennen 2-1
Module Support XML File......c..ccoviiniiiiiiinieiniceescnieenc ettt 2-1
MOAUIE NAIME ...ttt sttt sttt et et s e et et et et b sbesbe e bt bt eseeneenean 2-2

Chapter 3
C Series Communication Core

Using the C Series Communication COTE........c.coeeeuerieuinieieinieinereienieeneeneieseeeeeenenens
Adding the MDK API Palette..........ccccoveriminiiinieinenicinccneieence e

I/O References CIUSLET...........ccueiriiiiiiieiiicieeietcee ettt st
C Series Communication Core MDK API
Command INEEITACEc.ceviriereiiirieicirceeecte et
Command VI ...c..cooiiiiiiie e e e

Identify Module V..ot

Change Mode VI ..ottt

Read EEPROM VI

Write EEPROM V1....ooiiiiiiiiiiiiniicicinisectse ettt

SPISAIt Voot ce s e e e sttt

SPIBYLE Vet

© National Instruments | v

Contents

SPIENA V.ot 3-8
Advanced COmMMANASeoueuirieiiiieiiieeeeet e 3-8

TIMING INEEITACE ..eveevieiieiieieieee ettt enes 3-9
Pulse Convert V......oooi oottt ettt et sae v ens 39
Wait 0N DONE V..oooiiiiiiiiiieeeeeee ettt et 39
Wait Base Clock Ticks VI ...coooiiiiiiiiiiiiiiecieesceeeeeeeeeteee e 3-10

Status INTETTACE ...ttt 3-10
Module Status VIoc.oooiieiieieeee e 3-10

Configuration INTEITACE........cveieieieieieteeee et nees 3-11
Configuration Register VIcccocooeiiniiiiiniiniiiiniciceecnceneeeesecee e 3-11

Debug INEITACE.c.couiieiiiciitiicicrcee ettt 3-12
Debug Register VIoouiiiiiiiiiiiieeeeeeee ettt 3-12

C Series Communication Core MDK SCTL API.......ccoocooiiiiiineeeneee e 3-14

C Series Communication Interfaces (SCTL)ccccevveveriiriireieeieeeieieeeeeve e 3-14
Command (SCTL) VI ...oooioioieieiieieeeeeeee ettt
Module Status (SCTL) VL....co.coiiiiiiiriiinencieeeee et
Pulse Convert (SCTL) VIcoooiiiiiiiieientiene ettt
Wait on Done (SCTL) VI

Wait Base Clock Ticks (SCTL) VI....
Configuration Register (SCTL) VI....

Debug Register (SCTL) V..ot ee e

Using VIs Outside and Inside of the SCTLc.ccccoviiniiiniiiinincncceeccceees
DiIGIAL I/ ettt et e te st beetesae e
Digital Input and Output INterfacescocevuerierierirenenineneee e
Digital Input I/O NOEceiueiriiieieees s

Digital Output I/O NOGEoveuiieieiiieieieeee e

Set Output Enable Method Node....

Using SPI_CLK as a Digital Line (DIO 8).....
Reserved Digital Lines..........ccccceeeeveeeeenenenn
~ID. SELECT oot ee e eeeeee e eees e s s ese e ees s eees s seneeees
~CONVERT L.ttt st st

~SPI_CS, SPI_CLK, MOSI, MISO.....coiieririeiere sttt
SPL FUNC ..ot
Using the Wait Base Clock Ticks Method
Module Status Behavior...........c..cccoveeeunene.
INEEINAL EITOIS ..ottt et ettt e et e et e e e ae e e etaeeetaeeeaneeas
Module MOde DELaIlSc.oooviiiieiieeieeei ettt ettt ettt re v e ens
SUPPOTLEA MOAESoveniiieeiicieeieeieeeee ettt ettt a e se e sessenaensens
MOAE TTANSILIONSvveeeereeeerieeeeeeeeteeeeteeeeteeeeteeeeeeeeeteeeeteeeeseeeeaseeeeseeeeseeeesseeenseeeseeenns

vi ni.com

CompactRIO Module Development Kit Software Manual

Chapter 4

Internal Channels

Internal Channel TYPES......ccuerververirieieieieieietesiestestesiesteeeeeseesseaetessesaessesseesesseeseensenees 4-2
Asynchronous Internal Channeloocvecinirieiiniininnncncee e 4-2
Blocking Internal Channel.............ccceciveininieineiiniieeneteeeeeceeeeeeese e 4-2
Occurrence Internal Channel............cocooeiiiiiiiiniiiiiineee e 4-2

DAtA TYPES ..ttt ettt ettt sttt sttt ettt ettt b e bt 4-3

Chapter 5

Development and Export Process

Internal Support Development Process 5-1

Module Support Filesc.c...... .. 5-1
Module TYPE XIML....coouiiiiiriiieieieieeeteee ettt 5-1
Module SUPPOTt XMLcvieeiiiiieiieeieieeieeieteeee ettt neenees 5-2
Module Specific I/O References Controlc.ocoeereinieinenincneieneineneeneenenne 5-2
Validating the Internal Module Support............cccoeciririnennincineinineereereeene 5-3
Using the Internal Module Support.............. ..5-4
Deployable Support Development Process .55
Export Utilityoccoveeeeereieeniececeeee ..5-6
EXclude from EXPOTtccveieieiiieieiiiescsteeeecet ettt eseenaens 5-6
Development Mode EXPOITco.cvvuiiiinieineniiinicineniceccnreeeecseee e 5-6
Release Mode EXPOIT.......ccoiriiuerieirieirinieinieteieteicniee sttt ettt ne 5-8
Module Support VI Ta@INg........ccueverierieniniinieniieiieieiteeetee et 5-8
Using the Deployable Module Supportc.coiireereirinieenereee e 5-9
Shipping the Deployable Module Supportc.coeeereirenireneirceeeceeeseeee 5-10
Chapter 6
Modules Support Vis
Viewing Terminal Numbers in the Context Help........cccooeveireniniineininenceeeeen 6-1
Module RESOUICE VI.......coouiuiiiieiciiinieiiiinieicieineeetese sttt ettt 6-2
Module Resource VI Connector Paneccccccovvveeiininciiininccnniecineeeene 6-2
Handling API Element Operations............cccoueereieinueerienieeneenieniereneesesieeseneenene 6-2
Stopping the Module Resource VI ..o 6-4
Node VIS...cociiiiciciecieecceene ..6-5
Method and Property Node VIs........ccccoceveneneee. .. 6-6
Method and Property Node VI Terminals . ..6-6
Inside Method and Property Node VIS.......ccccveeivieieiecinieieieeieseseese e 6-7
Error Handling V.......c.cooiiiiiiiiiiiieiccreet ettt 6-7
Error Handling VI Terminalscccccoecereninineineninenieinieenenee e 6-7
TJO NOAE VIS .ttt s 6-8
Node Scoped /O Node VI Terminalsccccoevererernienienienieneneneeceeeeeene 6-9
Channel Scoped I/O Node VI Terminals..........cccoceeueeneirinieineenceeeeeene 6-10

© National Instruments | vii

Contents

Merged I/0O Node VIScriptInfo (Advanced)..........ccoevrereirenineneieeenc e 6-10
Err0r Codescouevruirieiiieieiiieeseeee e
Creating Custom Error Code Files

Chapter 7
Modules Support VI Best Practices

Error Terminals on Interface Method NOAEScccoueirireinieinercceceeee e
Changing INEITACESccvevveriirieiieieteiee ettt ettt testesresseeseeseeneensens
Using Channel Scoped VIs to Create a Channel List
Using the Module Status.......c.coccveireirieinenieicineeeee ettt s

Chapter 8
Module Manufacturing

Chapter 9
Using the MDK 2 Examples

Module SUbItem ICOMNS........c.ccuririeuiiriricieiiirieicereee e

Module Support Development

Release Mode Projects

MDK 2 Example Modules................
MDK-MFGcccoceveuirenrrerenene

MDK-9901.............

MDEK-9902 ...ttt ettt

MDK-9903 ...t

Appendix A
Module XML

Appendix B
Module Support XML Example

Appendix C
Using MDK with cRIO-904x Controllers

Appendix D
NI Services

Viii ni.com

About This Manual

This manual contains information about using the CompactRIO Module Development Kit 2
software. Many of the concepts discussed in this manual are described in further detail in the
CompactRIO Module Development Kit Hardware User Manual. Refer to the CompactRIO
Module Development Kit Hardware User Manual for more information about the CompactRIO
Module Development kit.

Required Software

The following software is required to use the CompactRIO Module Development Kit:

o 0o o o oo

LabVIEW 2017 SP1

LabVIEW FPGA Module 2017
LabVIEW Real-Time Module 2017
CompactRIO Device Drivers 17.6
CompactRIO Module Support 4.0.1

CompactRIO Module Development Kit 2.1

Related Documentation

The following documents contain information that you may find helpful as you read this manual:

Getting Started with CompactRIO and LabVIEW—Use this tutorial to learn how to develop
a CompactRIO application in LabVIEW. While developing the application, you can learn
concepts and techniques that you can apply when you develop your own CompactRIO
application. You can download the latest version of this document from the NI Web site at
ni.com/manuals.

CompactRIO Module Development Kit Hardware User Manual—Use this manual to learn
the mechanical and electrical requirements for developing a custom CompactRIO module.

LabVIEW Help—Use the LabVIEW Help to access information about LabVIEW
programming concepts, step-by-step instructions for using LabVIEW, and reference
information about LabVIEW VIs, functions, palettes, menus, tools, properties, methods,
events, dialog boxes, and so on. Access the LabVIEW Help by selecting Help»Search the
LabVIEW Help. You also can navigate on the Contents tab to the FPGA Module help and
the C Series Reference and Procedures help.

© National Instruments | ix

CompactRIO Module
Development Kit 2 Software
Overview

The CompactRIO Module Development Kit 2 (MDK 2) consists of two main software
components.

The first component is the C Series Communication Core that communicates with the C Series
module hardware. The C Series Communication Core is an IP block provided by National
Instruments that exposes software interfaces that conform to the C Series architecture
specification. Using the interfaces of the C Series Communication Core, you can write VIs that
will communicate with your module.

The second component gives third party module developers the ability to script their own
Module Support VIs beneath I/O, method, and property nodes. You will write VIs to
communicate with your module hardware using the C Series Communication Core. The end user
of your module will have an API composed of I/O, method, and property nodes just like an

NI module. Because the Module Support VIs that you provide are scripted beneath the end user
API nodes, your modules will look and behave like NI modules.

The end user API along with the Module Support VIs and the C Series Communication Core
make up the software layers that are shown in Figure 1-1.

© National Instruments | 1-1

Chapter 1

CompactRIO Module Development Kit 2 Software Overview

Figure 1-1. MDK 2 Software Layers

End User
API

Module
Support Vis

Module

Communication

d Mod1

My Module Method

=+ Mod1{My Module Subltem 1

AN Mod1 My 10 Channel 05 £ D

My Subltem Method

= Mad1

Bantod1 iy 10 Channel 13| b my Parameter 1

3 Input

¥ My Module Property |

My Parameter 2

Output

[

s Maod1/Command Interface

5 |™ % ModijConfiguration Inkerface

Access Configuration Register

., 5
Perform Command 3 Adtrass # Mod1/Status Interfacs 5o Modi/Tiing Interface. 8
r Command Type Check Moduls Skatus
= 3 Writs Enable Pulse Comvert
» Wrike: Diata Madule Status
head Doto il Wirite Diata
Read Data ¥
Command | | Register | | Convert

VHDL Communication Core

Module ID

()

cRIO I/O Lines

The end user API consists of I/O, method, and property nodes that provide the end user with an
easy-to-use interface that is consistent with NI modules.

The Module Support VIs layer contains all the complex code that handles the operation of the
C Series module. You will write the VIs that make up this layer.

The Module Communication layer contains the C Series Communication Core. The C Series
Communication Core exposes the following interfaces through method nodes on the LabVIEW
FPGA block diagram.

SPI

EEPROM
Mode Change
Module Identification

Pulsing Convert
Digital I/O

Additionally, there are two XML files you will write that allow your module to be identified by
NI-RIO and added to an FPGA target. The XML files also specify how you want the Module
Support VIs to be scripted beneath the end customer nodes.

1-2

| ni.com

CompactRIO Module Development Kit Software Manual

Block Diagram

Figure 1-2 shows what happens when LabVIEW FPGA code is compiled. The third party
module provides the end user with an API of I/O nodes (AO0, AO1, AO2). When the FPGA is
compiled, the I/O nodes are replaced with Module Support VIs that the third party module
developer provides. The Module Support VIs directly communicate with the module using the

C Series Communication Core.

© National Instruments | 1-3

Chapter 1

CompactRIO Module Development Kit 2 Software Overview

Figure 1-2. MDK 2 Implementation

T,

0

Command | | Register |

Convert

VHDL Communication Core

cRIO I/O Lines

1-4

ni.com

CompactRIO Module Development Kit Software Manual

Designing the Module API

The end user API of your module is defined in the Module Support XML. Like NI modules,
third-party modules have I/O channels and module sub-items visible in the LabVIEW project.
On the block diagram, your module will have I/O nodes, method nodes, and property nodes.
Each of these API elements have a different purpose. NI recommends that you follow these
guidelines when designing your APL.

LabVIEW FPGA API Elements

LabVIEW FPGA provides several different types of API elements. Each of these API elements
have a different purpose.

I/0 Channel

Use I/0 channels to represent the following physical channels on the module connector:

* Analog input
* Analog output
« Digital input
* Digital output

An I/O channel supports I/O nodes, property nodes, and method nodes.

Module Sub-ltem

Use module sub-items to expose capabilities of the module that are not traditional analog or
digital physical channels, such as serial ports. Module sub-resources support method nodes or
property nodes.

I1/0O Node

Use 1/0 nodes as the primary mechanism for acquiring data from your module. I/O nodes are
available for each of the I/O channels on the module and can be configured as read, write, or
bi-directional.

Property Node

Use property nodes to read the module EEPROM and to write and read various runtime settings
that the module or I/O channels may have. Running a property node can induce communication
with the module or set a register in the FPGA and not perform any module communication.
Property nodes can only have a single input or output and can be configured to read, write, or
bi-directional.

Method Node

Use method nodes for module operations that I/O nodes and property nodes do not handle well.
Any operation that has multiple inputs and/or outputs, or operations that gather data from the
module should use a method node.

© National Instruments | 1-5

Chapter 1 CompactRIO Module Development Kit 2 Software Overview

Recommended API Elements

You can define API elements that are useful for your module. NI recommends that you always
support the following three property nodes:

* Vendor ID
* Module ID (Product ID in the EEPROM, not the module model code)

. Serial number

This allows end user applications to detect and identify any module that is in a slot configured
for your module.

Creating Parallel DIO API Elements

You will write Module Support VIs that execute underneath your end user API elements.
However, you may also specify parallel DIO API elements in your Module Support XML. These
API elements do not use Module Support VIs beneath them. Instead, parallel DIO I/O nodes
provide a direct connection between the end user block diagram, the C Series Communication
Core and ultimately the FPGA pins.

Parallel DIO I/O nodes may be used both inside and outside of the Single Cycle Timed Loop
(SCTL). DIO lines 0-7 of the cRIO bus may be used for parallel DIO I/O nodes.

Refer to the Module Support XML section of Appendix A, Module XML, for more information
on the parallel DIO I/O nodes.

Development Mode versus Release Mode

You can use MDK 2 software in Development mode and Release mode.

In Development mode, the interfaces to the C Series Communication Core are visible in the
LabVIEW project. You can add these method nodes on the block diagram to communicate with
your module. When creating or editing your Module Support Vls, you will be using the module
in Development mode.

In Release mode, the interfaces to the C Series Communication Core are hidden in the LabVIEW
project. Instead, the end user APIs that are defined in the XML are visible. Release mode is what
end users use. The C Series Communication Core interfaces and your Module Support VIs are
hidden from the end user; only the end customer API is visible in the LabVIEW project.

Refer to Chapter 5, Development and Export Process, for more information about creating
module support in Development and Release modes.

1-6 | ni.com

CompactRIO Module Development Kit Software Manual

You will frequently switch between Development mode and Release mode if you are creating
module support to deploy to end users. If you create a LabVIEW project that uses your module
while the module is in Development mode, you can only use that project when the module is in
Development mode. If you open that project when the module is in Release mode, there will be
broken I/O items in the project as shown in Figure 1-3.

Figure 1-3. Opening a Development Mode Project in Release Mode

E) Project Explorer - DevelopmentModeProject.lvproj ™ g@
File Edit Wiew Project Operate Tools Window Help

REE] IEETER SR I

Items | Files

= Tg;l, Project: DevelopmentModeProject. lvproj
2. 1) My Computer
2§58 FPGA Target (cRIO-9101)
+- [Chassis IJO
S [Modl
& Mod1{Command Interface {crio_Mod1{Command Interface)
% Mod1 fConfiguration Interface {crio_Mod1}/Configuration Interface)
& Mod1{DataChan {crio_Modl/DataChan)
% Mod1/Debug Interface {crio_Mod1/Debug Interface)
& Mod1/DIC{7:0) (crio_IMod1/DIOC7:00)
- fip Mod1jDIO0 (erio_Mad1/DION)
- #p Mod1{DIOY (erio_Mad1/DIOL)
- fip ModtjDIOR (crio_Mad1{DIOZ)
- #p Mod1{DIO3 (erio_Mad1/DIO3)
- fip Mod1jDIO4 (crio_Mad1{DIOH)
- o Mod1{DIOS (crio_Mod1/DIOS)
- fip Mod1jDIOE (crio_Mad1{DIOE)
- o Mod1{DIO7 (crio_Mod1/DIOT)
-~ fip Mod1/DI0S (crin_Mad1/DI0S)
% Mod1 My AsyncChan (crio_Modl My AsyncChan)
& Mod1{MyBlockingChan {crio_Mod1 MyBlockingChan)
% Mod1 My OccurrenceChan {orio_Mod1 /My OccurrenceChan)
% Mod1/MNodeCompleteChan {crio_Mod1 /NodeCompleteChan)
% Mod1fStartModechan {crio_Mod1StartModeChan)
& Mod15tatus Interface (crio_Mod1/Status Interface)
% Mod1)Timing Interface {crio_Maodl)Timing Interface)
40 MHz Onboard Clock
- 0 Madt (Slat 1, MDK-0001)
Dependencies
‘% Build Specifications
_-L;" Dependencies
‘-'Q; Build Specifications

)

© National Instruments | 1-7

Chapter 1 CompactRIO Module Development Kit 2 Software Overview

If you create a LabVIEW project that uses your module in Release mode, you can only use that
project when the module is in Release mode. If you open that project when the module is in
Development mode, there will be broken /0 items in the project as shown in Figure 1-4.

Figure 1-4. Opening a Release Mode Project in Development Mode

ﬂproject Explorer - ReleaseModeProject. lvproj ™ E]@
File Edit Wiew Project Operate Tools Window Help
[0 Ser | ek @& o] [o]

Items | Files

=3 Tg;l, Project: ReleaseModeProject. lvproj

2. 1] My Computer

= §8 FPGA Target (cRIO-9101)

[Chassis IfO
+ [Modi
40 MHz Onboard Clock
Maod1 {Slat 1, MOK-0002)
ModifCommand Interface _UMIQUE_1648 {crio_MaodiCommand Interface_UMIGQUE_1648)
Mod1fConfiguration Interface_UMNIQUE _2313 {crio_Mod1/Configuration Interface _UMIQUE_2313)
Mod1DataChan_UMIQUE_756 {crio_Mod1/DataChan_UNIQUE_756)
Mod1Debug Interface_UMIQUE_1432 {crio_Mod1/Debug Interface_UNIGUE_1432)
Mad1 D000 :01_UMIDUE_462 (crio_Mad1/DI007:0)_UNIQUE_462)
Mod1fDI00_UMIGUE_268 (crio_Mad1/DI00_UNIQUE_268)
Mod1DI01_UMIGUE_269 (erio_Mad1/DI01_UNIQUE_269)
Mad1/DI02_UNIQUE_270 (crio_Mod1/DIOZ_UNIQUE_270)
Mod1 D103 _UMIGUE_271 {crio_Mad1/DI05_UNIQUE_271)
Mod1DIC4_UNIQUE_272 (crio_Mad1/DI04_UNIQUE_272)
Mod1 D105 _UMIGUE_273 (crio_Mad1{DI0S_UNIQUE_273)
Mod1DI06_UNIGUE_274 (crio_Mad1/DIO6_UNIQUE_274)
Maod1 D107 _UMIGUE_275 (crio_Mad1/DI07_UNIQUE_275)
Mod1DI0S_UNIGUE_276 (crio_Mad1/DIOS_UNIQUE_276)
Mod1 fMyasyncChan_UMIQUE_1086 {crio_fMod MyAsyncChan_URMIGUE _1086)
Mad1MyEBlockingChan_UMIQUE_1385 (crio_Mad1 /MyBlockingChan_UNIQUE_1385)
Mod 1 fMyOccurrenceChan_IUNIQUE_1609 {crio_Mod1 fMyOccurrenceChan_UNIQUE _1609)
Mod1 fNodeCompleteChan_UMIQUE_1593 {crio_Maod1/ModeCompleteChan_UMIGQUE_1593)
% Mod1yStartModeChan_UNIQUE_1294 {crio_Mod1/StartNodeChan_UNIQUE_1294)
% Mod1fStatus Interface_UMIQUE 1589 {crio_Mod1/Status Interface_UNIGQUE_1589)
% Mod 1) Timing Interface_UNIQUE_1561 {crio_Mod1)Timing Interface_UNIQUE_1561)
_-E' Dependencies
‘% Build Specifications
_-E' Dependencies
-, Build Specifications

FEERETERRET RS

Use caution when creating and opening projects with third party modules on your development
computer to avoid broken I/O items in the project.

MDK and NI-RIO Versions

MDK 2 installs documentation, LabVIEW examples, and API palettes. NI-RIO installs the files
that allow you to create and run MDK 2 modules. Support for MDK 2 is included in
CompactRIO Module Support 4.0.1, which requires NI-RIO 4.0. Versions of NI-RIO later than
4.0 will not require installing the separate CompactRIO Module Support patch.

1-8 | ni.com

CompactRIO Module Development Kit Software Manual

Future versions of NI-RIO may include improvements to the MDK support and increase the
MDK version number. If you update to a newer version of NI-RIO, check what version of MDK
is installed with that version of NI-RIO using the
Mdk2Utility_GetInstalledMDKVersion.vi utility located at
labview\vi.lib\LabVIEW Targets\FPGA\cRIO\shared\nicrio_Mdk2Utility.

Note Go toni.com/info and enter criomdkupdate for information about
updates in the latest MDK support installed with NI-RIO.

Module support developed in a particular version of LabVIEW does not work in previous
versions of LabVIEW, but generally works in later versions. However, updates to LabVIEW
might prevent module support created in a previous version of LabVIEW from working. NI
recommends that you test your module support in each new version of LabVIEW. The utility
also displays the oldest compatible version of MDK.

© National Instruments | 1-9

Module XML Files

@ Note The XML files used to develop module support are case sensitive. Take care
to ensure that all of your tags and values use the correct case.

The XML tags use a variety of data types. These data types are enforced by XML schemas and
the rules checker. Refer to Table A-1, XML Data Types, in Appendix A, Module XML, for more
information on these data types.

Some of the tags in the XML specify integer values. Depending on what is being specified, it
may be useful to write the number in hexadecimal. To use a hexadecimal number, prefix 0x to
the number. For example, the decimal number 4243 can be specified as 0x1093.

Module Type XML File

The Module Type XML file adds your module to the LabVIEW project and assists the module
detection.

When a module is installed in a CompactRIO chassis, the C Series Communication Core
automatically reads the module EEPROM and compares what is read against values that are
pulled from the Module Type XML file.

Refer to the Module Type XML section of Appendix A, Module XML, for more information on
the Module Type XML.

Module Support XML File

The Module Support XML file specifies the following:

* the hardware functionality of your module

« the API of the module (I/O nodes, method nodes and property nodes)

* how the VI scripting tools connect the Module Support VIs during code generation

Refer to Appendix A, Module XML, and Appendix B, Module Support XML Example, for more
information and an example of a Module Support XML file.

© National Instruments | 2-1

Chapter 2 Module XML Files

Module Name

The module name is specified in both the Module Type and Module Support XML files. The
module name is used as an identifier when naming all of your module support files. Use the
format shown in Figure 2-1 for your module name:

Figure 2-1. Model Name Format

AA 1234 or AA-1234

1 Company Code 2 Module Model Code

The company code is a two or four letter character string to represent the name of your company.
NI recommends that you use an acronym for your company code that it is consistent with NI
modules, such as the NI 9263.

The module model code must match what is stored in the module EEPROM and Module
Type XML.

All of your filenames must be unique. It is important that you select a module name that is
unlikely to conflict with third party modules made by other vendors. All files, including XML
and Vs, should be pre-pended with the module name. NI will advise you on a company code
when you contact NI for a C Series vendor ID. If you already have a vendor ID, contact NI for
assistance with your company code.

2-2 | ni.com

C Series Communication
Core

The C Series Communication Core exposes the following interfaces of the C Series specification
through the following I/O items.

Command interface

Timing interface

Status interface

DIOO through DIOS (digital lines)
DIO (7:0) (digital port)
Configuration interface

Debug interface

When in Development mode, each of these interfaces appear as 1/0 items in the LabVIEW
project. The digital I/O (DIO) interfaces have I/O nodes defined for them and the rest of the
interfaces use method nodes to perform operations.

Note These interfaces are exposed as I/O items on the module so that I/O references

can be used on them. This is important when scripting the Module Support VIs
beneath end user API nodes. Using 1/O references allows you to create a single VI to
use with your module in any chassis slot.

© National Instruments | 3-1

Chapter 3 C Series Communication Core

Using the C Series Communication Core

Use the MDK API and MDK SCTL API palettes, shown in Figure 3-1, to access the C Series
Communication Core interfaces.

Figure 3-1. MDK APl and MDK SCTL API Palettes

MDK APT /| |MDKSCTL APT =

N EYESE =] i EVESL =
EIo HOR| [RIo HBR| |RI0 HOK| (RIS HOR EI0 HOK| (KI0 HOR] |EIO HOH| [KI0 HOH

37 | (M| (e (M s | (M| |30 | |E@
EIo HOR| [RIo HBR| |RI0 HOK| (RIS HOR EI0 HOK| (KI0 HOH] |EIO HOK

ol 7

l!03I5F'1 l!03I5F'1 !03' & !}g‘:’p G #G- #Q
EIo HOR| [RIo HBR| |RI0 HOK| (RIS HOR
TV || He|| &

RIo HOKE| [RI0 HDE

&_|[8,

The MDK API palette contains VIs that execute outside of the Single-Cycle Timed Loop
(SCTL). The MDK SCTL API palette contains VIs that execute within the SCTL. Use these VIs
correctly inside and outside of the SCTL to prevent errors from occurring during code
generation.

Adding the MDK API Palette
In order to use the MDK API, you must copy the palette files into your LabVIEW installation.

Copy the palette files from C: \Program Files\National Instruments\
CompactRIO\CompactRIO MDK 2\LabVIEW API Palette_CrioMdk2Api to
C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\FPGA\
menus \FPGACategories\Programming_CrioMdk2Api.

@ Note You must restart LabVIEW after copying the palette files.

3-2 | ni.com

CompactRIO Module Development Kit Software Manual

I/O References Cluster

Each of the API VIs contain an I/O References cluster input shown in Figure 3-2.
Figure 3-2. 1/0 References Cluster

Mod1/Channellist
Modl/MyOccurrenceChan
Maod1,/MyBlackingChan

When debugging or using the module in Development mode, use the I/O References cluster
to set which module (chassis slot) the particular API VI executes on. When the module is used
in Release mode, an I/O reference cluster configured for the correct slot is scripted onto the
diagram at compile time.

© National Instruments | 3-3

Chapter 3 C Series Communication Core

C Series Communication Core MDK API

The following API VIs expose the interfaces of the C Series Communication Core.

Command Interface

The Command interface exposes most of the C Series Communication Core functionality. Use
the Command interface to perform the following operations:

* Module identification
* Mode change

* EEPROM read

* EEPROM write

« SPI

All of these operations go through the same interface because they share hardware resources.
Only one of these operations may run at a time, which is enforced by exposing them through a
single interface.

Command VI

The Command VI directly exposes the Perform Command method of the Command interface.
It is a wrapper of the Perform Command Method Node.

nicrio_Mdk2Api_Command.vi (4833)

10 References [2]
Write Data [0] R0 HOR [4] Read Data
Command Type [5] J i

Perform Command Method Node

The Command interface exposes a single Perform Command Method Node.

B s modi{Command Inkerface
Perfarm Cammand

> Command Type
2 Write Data
Read Data M

The Perform Command Method Node exposes several types of operations. Use the Command
Type terminal of the method node to select the operation.

3-4 | ni.com

CompactRIO Module Development Kit Software Manual

|dentify Module VI

The Identify Module VI is a wrapper around the Command interface that performs the Identify
Module command.

nicrio_Mdk2Api_IdentifyModule.vi {4833)

10 References [Z])

RI0 HOKE

P o

=+ I

Identify Module Command

The Identify Module command reads start sentinel, vendor ID, and the module model code on
the EEPROM of a module to determine if they are correct. Identify Module automatically runs
when a chassis powers on or a new module is installed in the chassis.

The module must be in ID mode before running the Identify Module command. If the module is
not in ID mode, this operation will fail.

The result of the Identify Module command may be read by the Module Status interface.

Change Mode VI

The Change Mode VI is a wrapper around the Command interface that performs the Change
Mode command.

nicrio_Mdk2Api_ChangeMode.vi (4833)

10 References [2]
Mode [0] —JETi oK

EEY

Change Mode Command

The Change Mode command changes the states of the ~ID_SELECT and FUNC lines that put
the module in a different mode of operation. Refer to Table 3-1 for a list of Change Mode
options. You must use the Change Mode command to place the module in a different mode of
operation.

Table 3-1. Change Mode Options

Option Mode of Operation
0 Idle (always enabled)
1 ID (always enabled)
2 Auxiliary Communication (enabled by Module Support XML)
3 Normal Operation (enabled by Module Support XML)

© National Instruments | 3-5

Chapter 3 C Series Communication Core
— Note The Change Mode command cannot run at the same time as the Output
= Enable Method Node on the DIO lines. Running these two operations simultaneously
results in a failure.

Read EEPROM VI

The Read EEPROM VI is a wrapper around the Command interface that performs the Read
EEPROM command.

nicrio_Mdk2Api_ReadEEPROM.vi (4833)

10 References [2]
&Tn iee—— [4] Fead Data
L L

=+ EE

Read EEPROM Command

The Read EEPROM command performs a single byte EEPROM read on the module. The data
returns through the Read Data terminal of the method node.

The module must be in ID mode before running the Read EEPROM command. If the module is
not in ID mode, this operation will fail.

The EEPROM address that is being accessed is configured through the Configuration Register
interface.

Write EEPROM VI

The Write EEPROM VI is a wrapper around the Command interface that performs the Write
EEPROM command.

nicrio_MdkZApi_WriteEEPRDM.vi (4833)

10 References [2]
Write Data [0] —

=
=
=
x
=
=

)

m
m

Write EEPROM Command

The Write EEPROM command performs a single byte EEPROM write on the module. Wire the
data to be written to the Write Data terminal of the method node.

The module must be in ID mode before running the Write EEPROM command. If the module is
not in ID mode, this operation will fail.

The EEPROM address that is being accessed is configured through the Configuration Register
interface.

3-6 | ni.com

CompactRIO Module Development Kit Software Manual

SPI Start VI

The SPI Start VI is a wrapper around the Command interface that performs the SPI Start
command.

nicrio_Mdk2Api_SPIstart.vi {4833)

10 References [Z] e

RI0 HOK

e

=+ ZFI

SPI Start Command

The SPI Start command begins an SPI transfer with the module. The module must be in a
mode that supports SPI. ID mode always supports SPI. Normal Operation and Auxiliary
Communication modes may support SPI if it is configured in the Module Support XML.

The SPI Start command asserts ~SPI_CS (drive it low).

You must run the SPI Start command before any other SPI commands are attempted.

SPI Byte VI

The SPI Byte VI is a wrapper around the Command interface that performs the SPI Byte
command.

nicrio_Mdk2ZApi_SPIByte.vi (4833)

10 References [2]
SpiDataCut [0] ——fE6 Aok [4] SpiDataln
Initiate SPI Transfer (TY [5] | @low

=+ SFI

Use the Initiate SPI Transfer input to execute a new SPI byte transfer or wait for the last byte
transfer to complete. Set the Initiate SPI Transfer input to TRUE to run the SPI Byte command.
Set the Initiate SPI Transfer input to FALSE to run the SPI Wait command.

SPI Byte Command

The SPI Byte command initiates a single byte SPI transfer with the module. SPI Byte commands
are pipelined. This means that the first time this command is called, the Write Data () goes out
on the SPI bus and zeros are returned on the Read Data terminal. The second time this operation
is called, the Write Data (1) will go out on the SPI bus and the previous SPI Byte Read Data (n-1)
is returned.

You can only run the SPI Byte command once the SPI transfer has been started with the SPI Start
command.

© National Instruments | 3-7

Chapter 3 C Series Communication Core

SPI Wait Command

The SPI Wait command waits until the previously run SPI byte has completed. The Write Data
is ignored and the previously run SPI Byte read data is returned.

You can only run the SPI Wait command after starting the SPI transfer with the SPI Start
command.

SPI End VI

The SPI End VI is a wrapper around the Command interface that performs the SPI End
command.

nicrio_Mdk2Api_SPIEnd.vi (4833}
10 References [Z]

SPI End Command

The SPI End command ends an SPI transfer with the module. The SPI End command de-asserts
~SPI_CS (drive it high).

You can only run the SPI End command after starting the SPI transfer with the SPI Start
command.

Advanced Commands

The following commands combine the functionality of two commands.

SPI Byte & Start

The SPI Byte & Start command combines the functionality of the SPI Start and SPI Byte
commands. As soon as ~SPI_CS is asserted, the SPI engine will begin transferring the first byte
of the SPI transfer.

SPI Byte & End

The SPI Byte & End command combines the functionality of the SPI End and SPI Byte
commands. When the SPI byte initiated by this command completes, the ~SPI CS signal will
de-assert and the SPI transfer will complete.

Because the SPI Byte commands are pipelined, the data returned from the SPI Byte & End
command will be the second-to-last SPI Byte read data. You can run an SPI Wait command after
this to retrieve the final SPI Byte read data.

3-8 | ni.com

CompactRIO Module Development Kit Software Manual

Timing Interface

The Timing interface exposes portions of the C Series Communication Core that relate to timing
the operation of the module.

Pulse Convert VI

The Pulse Convert VI pulses the ~CONVERT line. It is a wrapper of the Pulse Convert Method
Node.

nicrio_MdkZApi_PulseCony.vi (4833)
10 References [2] —y

RI0HODH

3r

Pulse Convert Method Node

The Pulse Convert Method Node performs a single pulse on the ~CONVERT line of the
CompactRIO bus. The pulse will be the width specified in the Module Support XML.

B Mod1 [Timing Inkerface &

Pulse Converk

A fatal error occurs if the Pulse Convert Method Node is run with the module in a mode that does
not support the Convert Pulse operation as defined in the Module Support XML. Only Normal
Operation mode supports the Pulse Convert Method Node.

Wait on Done VI

The Wait on Done VI waits until the ~DONE line is low. It is a wrapper of the Wait on Done
Method Node.

nicrio_Mdk2Api_WaitOnDone.vi {4833}
10 References [Z] |

7o e [4] Timed Out?

Ha

Wait on Done Method Node

The Wait on Done Method Node waits until the ~DONE line is low. If the ~NDONE line is already
low when the Wait on Done Method Node is executed, it returns immediately. If the ~DONE
line is not low before the timeout expires, the method node completes with a timeout.

© National Instruments | 3-9

Chapter 3 C Series Communication Core

When executing, the Wait on Done Method Node will wait a few more clock ticks than specified
in the XML before returning with a timeout. This is due to LabVIEW FPGA overhead when
executing the method node.

By Mod1{Timing Interface &

wWait on Done
Timed Cuk? K

A fatal error occurs if the Wait on Done Method Node is run with the module in a mode that does
not support the Wait on Done operation as defined in the Module Support XML. Only Normal
Operation mode supports the Wait on Done Method Node.

Wait Base Clock Ticks VI

The Wait Base Clock Ticks VI waits for the specified number of 25 ns base clock ticks. It is a
wrapper of the Wait Base Clock Ticks Method Node.

nicrio_Mdk2Api_WaitBaseClockTicks.vi (4833)

10 References [Z]
Count {Ticks) [0]

Wait Base Clock Ticks Method Node

The Wait Base Clock Ticks Method Node waits for the specified number of 25 ns base clock
ticks, which is useful because it always waits the same amount of time no matter what the top
level clock is. This is necessary to get accurate timing of module operations since you do not
have control over the top level clock that the end user uses.

B Mod1 [Timing Inkerface &

Wi ait Base Clock Ticks
> Count (Ticks)

Status Interface

The Status interface exposes portions of the C Series Communication Core that relate to the
status of the module.

Module Status VI

The Module Status VI returns the module status of the C Series Communication Core. It is a
wrapper of the Check Module Status Method Node.

nicrio_MdkZApi_ModuleStatus.vi (4833)
10 References [Z]

ko Aoe— [4] Module Status

-
2

3-10 | ni.com

CompactRIO Module Development Kit Software Manual

Check Module Status Method

The Check Module Status Method Node returns the status of the module. This status is based on
the presence of the module in the chassis and the result of the previously run Identify Module
command.

B podijStatus Interface b

Zheck Maodule Stakus
Module Skatus ¥

Refer to Table 3-2 for a list of module statuses.

Table 3-2. Module Statuses

Status Description

Unknown (0) The chassis is powering up and the presence of the module has not yet been
determined. The module status also briefly transitions to unknown during an
Identify Module command.

Correct (1) The module has been detected as present in the chassis and the EEPROM contents
match the expected vendor ID and module model code.

Incorrect (2) The module has been detected as present in the chassis and the EEPROM contents
do not match the expected vendor ID and module model code.

No Module (3) The module has not been detected as present in the chassis.

Invalid (4) The module has been detected as present in the chassis and the EEPROM start
sentinel does not match the expected value.
Incorrect The slot is not configured for LabVIEW FPGA.
Program Mode
(5

@ Note The Incorrect Program Mode status is only available in NI-RIO 17.6 and later.

Configuration Interface

The Configuration interface is used to set parameters on how the different C Series
Communication Core interfaces operate.

Configuration Register VI

The Configuration Register VI provides access to the Configuration register. It is a wrapper of
the Access Configuration Register Method Node.

© National Instruments | 3-11

Chapter 3 C Series Communication Core

nicrio_Mdk2Api_ConfigReqister.vi (4833)

10 References [2]
‘Write Data [0]
Address [5]

‘Write Enable (F) [7]

—— [4] Read Data

Access Configuration Register Method Node

The Access Configuration Register Method Node exposes the Configuration Register interface.

B Mod1 fConfiguration Interface &

Access Configuration Register

3 Address
3 Write Enable
> \Write Data
Resd Data K

A fatal error occurs if an invalid address was written or read. Refer to Table 3-3 for the
Configuration register map.

Table 3-3. Configuration Register Map

Address Read/Write Name Function

0 R/W EEPROM This is the address of the EEPROM that will be
accessed through the Command interface.

Debug Interface
Use the Debug interface for prototyping, debugging and manufacturing C Series modules. Do
not use the Debug interface in Module Support Vs that ship to end users.

All of the Debug interface registers are available in Development mode. Some of the Debug
interface registers are available in Release mode. Using a register in Release mode that is not
available results in a fatal error.

Debug Register VI

The Debug Register VI provides access to the Debug register. It is a wrapper of the Access
Debug Register Method Node.

Note When writing the register, write 0 to reserved bits. When reading the register,
reserved bits should be ignored.

The Debug register returns a U16, however data read from the internal error code register should
be converted to an 116 before using it.

3-12 | ni.com

CompactRIO Module Development Kit Software Manual

nicrio_Mdk2Api_DebugReqgister.vi (4833)

10 References [2]
‘Write Data [0]
Address [5]

‘Write Enable (F) [7]

—— [4] Read Data

Access Debug Register Method Node
The Access Debug Register Method Node exposes the Debug Register interface.

B podijDebug Interface b

Access Debug Reqister

a Address
a Write Enable
2 Write Data
Read Data M

A fatal error will occur if an invalid address was written or read. Refer to Table 3-4 for the Debug
register map.

Table 3-4. Debug Register Map

Available
in
Read/ Release
Address Write Mode Name Function
0 Read Yes Internal Error | Returns the internal error code produced from
Only Code a failed operation.

Refer to Table 3-5 for a list of internal error
codes.

1 R/W No SPI Rate Write a 16-bit value to override the

Override HalfTauTicks that were specified in the
Value Module Support XML. The valid range for

SPI HalfTau is 2 to 65535.
The HalfTauTicks value is specified in 25 ns
base clock ticks and the SPI clock frequency
is automatically adjusted for different top
level clock frequencies.

2 R/W No SPI Rate Write a 1 to bit 0 of this register to enable the

Override SPI Rate Override value.
Enable

Write a 0 to bit 0 of this register to revert to
the HalfTauTicks specified in the Module
Support XML.

© National Instruments | 3-13

Chapter 3 C Series Communication Core

Table 3-4. Debug Register Map (Continued)

Available
in
Read / Release
Address Write Mode Name Function
3 R/W No Module Status Write bits to set the desired module status.
Override
Value
4 R/W No Module Status | Write a 1 to bit 0 of this register to override the
Override module status of the C Series Communication
Enable Core.
Write a 0 to bit 0 of this register to revert back
to the actual module status of the C Series
Communication Core.
5 Read No ~ID_SELECT | Returns 1 if the ~ID_SELECT Line is high.
Only Status Returns 0 if it is low.

SPI Rate Override Behavior

When you override the SPI rate value, it will only override the SPI rate as long as you remain in
the same mode. When you change modes, that mode change will update the SPI rate register
within the C Series Communication Core to the appropriate value for that mode. If you wish to
re-enable overriding the SPI rate, you must write both the SPI rate override and SPI rate override
enable registers.

Internal Error Code Behavior

A negative value returned from the Internal Error Code register indicates a fatal error. Fatal
errors are unrecoverable and you must restart the FPGA VI to continue using the C Series
Communication Core.

A positive value returned from the Internal Error Code register indicates a warning. Warnings
are cleared when they are read from the Internal Error Code register and do not affect the
functionality of the C Series Communication Core.

C Series Communication Core MDK SCTL API

The following API VIs expose the interfaces of the C Series Communication Core.

C Series Communication Interfaces (SCTL)

All of the C Series Communication Core interfaces can be accessed from both inside and outside
of an SCTL. Most of these interfaces take multiple clock cycles to complete. These interfaces
have two method nodes available on them. One may only be used outside of the SCTL and the
other may only be used inside of the SCTL. Figure 3-3 shows the Access Debug Register
Method Nodes.

3-14 | ni.com

CompactRIO Module Development Kit Software Manual

Figure 3-3. Selecting Method Nodes

By Mod1/Debug Ink=rFacs B|

I Access Debug F Debug F Visible Tkems »

» Addres{ Help

3 ‘Wrike Ena

3 wirite Dal - Description and Tip. ..

ReadDal Braskpaint 3

FPGA IO Palette »
Replace »

Find Ikem in Project
Add Mew FPGA TG,
Shioww Error Terminals

Select Method » / Access Debug Register
Select Tkem » Access Debug Register (SCTL)
Properties

The interfaces that work inside of the SCTL have the same functionality as the non-SCTL
interfaces. However, since these API VIs execute within the SCTL, there are two additional
terminals that are used for execution control. These additional control terminals are necessary
because these operations take multiple clock cycles to complete.

Use the Start terminal to start the operation. When the interface sees the Start terminal set to
TRUE, the operation begins. Once started, the operation will complete regardless of whether or
not the Start terminal is de-asserted. You may put a single cycle pulse on the Start terminal. On
the clock cycle that the operation starts, the Done terminal will change to FALSE if it was
previously true. Once the operation has completed, the Done terminal will change to true. The
Done terminal remains true until the next operation is started. Figure 3-4 shows an SCTL
Method Node.

Figure 3-4. SCTL Method Node

B g Modl/Debug Interface &
Access Debug Reqgister (SCTL)
2 Skark
Diane M

. Address
- ‘Write Enable
2 ‘Write Data

Read Data K

© National Instruments | 3-15

Chapter 3 C Series Communication Core

Command (SCTL) VI

The Command (SCTL) VI directly exposes the Perform Command method of the Command
interface. It is a wrapper of the Perform Command (SCTL) Method Node.

nicrio_Mdk2ZApi_Command_SCTL.vi {4833}

10 References [Z]

‘Write Data [0] EI0 AOR [4] Read Data
FETL
Command Type [S] = __|@i=|. ... [10] Done
Start [9]

Module Status (SCTL) VI

The Module Status (SCTL) VI returns the module status of the Communication Core.

nicrio_Mdk2api_ModuleStatus_SCTL.vi (4833)

10 References [Z] m——
B0 HOB]—— [4] Module Status
Pulse Convert (SCTL) VI

The Pulse Convert (SCTL) VI pulses the ~CONVERT line. It is a wrapper of the Pulse Convert
(SCTL) Method Node.

nicrio_Mdk2Api_PulseConvy_SCTL.vi (4833)

10 References [2] ——
EI0 HOK
FETL

start [9] - 3 [[10] Done

Wait on Done (SCTL) VI

The Wait on Done (SCTL) VI waits until the ~DONE line is low. It is a wrapper of the Wait on
Done (SCTL) Method Node.

nicrio_MdkZApi_WaitOnDone _SCTL.vi (4833}

10 References [Z] —
7o e} [4] Timed Out?
ECTL

Wait Base Clock Ticks (SCTL) VI

The Wait Base Clock Ticks (SCTL) VI waits for the specified number of 25 ns base clock ticks.
It is a wrapper of the Wait on Base Clock Ticks (SCTL) Method Node.

nicrio_Mdk2Api_WaitBaseClockTicks_SCTL.vi (4833)

10 References [2]
Count {Ticks) [1] —Efi roe

L re FUTL

3-16 | ni.com

CompactRIO Module Development Kit Software Manual

Configuration Register (SCTL) VI

The Configuration Register (SCTL) VI provides access to the Configuration register. It is a
wrapper of the Access Configuration Register (SCTL) Method Node.

nicrio_MdkZApi_ConfigRegister _SCTL.vi (4833}

10 References [Z]
‘write Data [0]
Address [5]

‘Write Enable (F) [7] -
Start [9]

[4] Read Data

Debug Register (SCTL) VI

The Debug Register (SCTL) VI provides access to the Debug register. It is a wrapper of the
Access Debug Register (SCTL) Method Node.

nicrio_Mdk2Api_DebugReqgister_SCTL.vi (4833)

10 References [Z]
‘Write Data [0]
Address [5]

‘Write Enable (F) [7] -
Start [9]

Using VlIs Outside and Inside of the SCTL

The API VIs that are instantiated outside of the SCTL use normal LabVIEW arbitration between
multiple instantiations of the same method node. If two method nodes try to access the same
interface at the same time, the LabVIEW arbiter makes one method node wait until the other one
completes.

[4] Read Data

The API VIs that are instantiated inside of the SCTL do not use arbitration. When the SCTL
method nodes are placed on the LabVIEW block diagram, there is never any arbitration between
the method node and the C Series Communication Core. This means that only one of each of
these SCTL interfaces may be placed on the LabVIEW block diagram. This is why the MDK
SCTL API palette does not have the same Command interface wrapper VIs that the MDK API
palette has.

Digital 1/0

The C Series Communication Core also provides eight DIO channels. These DIO channels do
not have API VIs. You can directly instantiate the I/O and method nodes to access the DIO lines.

Digital Input and Output Interfaces

The C Series Communication Core exposes nine DIO lines. Lines 7:0 are also available in an
8-bit port.

© National Instruments | 3-17

Chapter 3 C Series Communication Core
Digital Input 1/0 Node
You can read the state of the DIO lines with the Digital Input I/0O Node.

Right-click on the I/0 Node and select Properties to configure the number of input
synchronization registers for the I/O Node.

Digital Output I/0O Node

You can write to the DIO lines using the Digital Output I/O Node.

Set Output Enable Method Node
You can change the direction of a DIO line with the Set Output Enable Method Node.

Bug Modijoioo o™
Set Qukput Enable
» Enable

é Note The Change Mode command cannot run at the same time as the Output
Enable Method Node on the DIO lines. Running these two operations simultaneously
results in a failure.

3-18 | ni.com

sjuswiniisu| [euolieN @

61-€

Figure 3-5. SPI Clock Timing

[EmomoE] OxAA 0x00 0xBB '_ 0xCC 0x00 El 0xDD [T FEE]

©)

~SPI_CS —'—l

ZIPIYIIIZOEC __________.________:__@
®

SPI_Clk —
MOSI OXAA 0xBB
MISO | X 0xCC X 0xDD

The SPI Start VI begins its execution. This causes ~SPI_CS to assert.
The SPI Start VI completes.

The first execution of the SPI Byte VI begins. The SPI Write Data is 0xAA. The Initiate SPI Transfer is set to TRUE, which causes the SPI engine to start toggling
SPI_CLK. The data 0xAA then goes out to the module on the MOSI line.

The SPI Byte VI completes the first execution almost immediately after it starts, because it was priming the pipeline of the SPI engine. The SPI Read data
returned is 0x00 which should be ignored. The data read from the module on the first SPI byte will be returned by the next execution of the SPI Byte VI. At this
point the SPI engine is SPling the first byte.

SPI Byte VI begins its second execution. lts SPI Write Data is 0xBB. It has Initiate SPI Transfer set to TRUE which will cause the SPI engine to continue toggling
SPI_CLK. The data 0xBB will go out to the module on the MOSI line.

SPI Byte VI completes its second execution after the first byte is SPled to the module. The SPI Read data returned is 0xCC which was read from the module
on MISO. At this point the SPI engine is SPling the second byte.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

0c-€

woo'iu

10

SPI Byte VI begins its third execution. Its SPI Write Data is 0x00. It has Initiate SPI Transfer set to FALSE which will cause the SPI engine to not start another
SPI byte. Because of this, the SPI Write Data is ignored in this execution. This VI will only wait until the last byte of SPI Read data is read by the FPGA before
completing.

SPI Byte VI completes its third execution. The SPI Read data returned is 0xDD which was read from the module on MISO. At this point the SPI engine is not
toggling SPI_CLK.

SPI Stop VI begins its execution. This causes ~SPI_CS to de-assert.
SPI End VI completes.

¢ Je1deyp

2100 UONBOIUNWIWOY S8LI8S D

CompactRIO Module Development Kit Software Manual

Using SPI_CLK as a Digital Line (DIO 8)

The SPI engine uses SPI_CLK (DIO 8) to perform module communication. To ensure correct
mode transitions, SPI_CLK (DIO 8) must idle high when not in use, which the C Series
Communication Core SPI engine handles.

You can use SPI_CLK (DIO 8) as a digital line. Observe the following requirements if you use
the SPI_CLK (DIO 8) as a digital line.

* SPI CLK must not be exposed to the end user as general purpose DIO

* SPI_CLK must idle high

« SPI_CLK must remain high during all mode transitions

NI does not recommend that you use SPI_CLK (DIO8) as a digital line in your module design.

Refer to CompactRIO Module Development Kit Hardware User Manual for more information
on the SPI_CLK (DIO 8).

Reserved Digital Lines

Most of the CompactRIO bus lines may be configured for DIO. However, depending on the
mode and what subsystems of the C Series Communication Core are enabled, some
CompactRIO bus lines may be reserved and not available for DIO.

~ID_SELECT

The ~ID_SELECT line is always reserved by the C Series Communication Core. DIO operations
are not available on the ~ID_SELECT line. You may query the state of the ~ID_SELECT line
by reading the ~ID_SELECT Status Debug register.

~CONVERT

The ~CONVERT line is reserved by the C Series Communication Core in Normal Operation
mode when the <ConvertPulseConfiguration> section is specified in the Module
Support XML. When the convert pulse functionality of the C Series Communication Core is
enabled, ~CONVERT cannot be used as a DIO line in Normal Operation mode.

~DONE

The ~DONE line is reserved by the C Series Communication Core in Normal Operation mode
when the <DoneWaitConfiguration> section is specified in the Module Support XML.
When the done wait functionality of the C Series Communication Core is enabled, ~DONE
cannot be used as a DIO line in Normal Operation mode.

~SPI_CS, SPI_CLK, MOSI, MISO

The four SPI lines are reserved by the C Series Communication Core in Normal Operation or
Auxiliary Communication mode when the <SPIConfiguration> section is specified in the

© National Instruments | 3-21

Chapter 3 C Series Communication Core

Module Support XML for that mode. When the SPI functionality of the C Series Communication
Core is enabled for a particular mode, the four SPI lines may not be used as DIO lines when in
that mode.

SPI_FUNC

The SPI_FUNC line is reserved by the C Series Communication Core in Auxiliary
Communication mode. The state of SPI_FUNC is always outputting low in Auxiliary
Communication mode as defined by the CompactRIO Module Development Kit Hardware User
Manual. The SPI_FUNC line may not be used as a DIO line in that mode.

Using the Wait Base Clock Ticks Method

When writing your Module Support VIs, you may have to hard code some waits to meet the
timing requirements of your module. For example, you may include waits between pulsing
~CONVERT and starting SPI or after SPI to run a mode transition.

LabVIEW provides a Wait primitive that you can configure to wait in units of ticks or
microseconds. When configured to wait for microseconds, the Wait primitive always waits the
same amount of time regardless of what the FPGA top level clock is set to. When configured to
wait on a number of ticks, the Wait primitive waits different amounts of time depending on the
FPGA top level clock frequency.

If you need to wait a constant period of time that needs more resolution than an integer number
of microseconds, you can use the Wait Base Clock Ticks method. This method node always
waits the same number of 25 ns base clock ticks regardless of the FPGA top level clock
frequency.

Module Status Behavior

The C Series Communication Core automatically detects and identifies C Series modules. When
the FPGA powers up, the module status starts in the Unknown state. C Series modules may take
up to two seconds to power-up. The C Series Communication Core waits up to two seconds
while checking the ~ID_SELECT line to see if a module is present in the slot. If the
~ID_SELECT line is pulled up before the two seconds expire, the C Series Communication Core
will put the module into ID mode to identify it. If the ~ID_SELECT line is not pulled up before
the two seconds expire, the C Series Communication Core will determine that a module is not
present and set the module status to No Module.

Some of the interfaces on the C Series Communication Core are blocked when the module status
is Unknown. The interfaces are blocked because you may access them as soon as the FPGA VI
starts. At that time, there may be a module in the slot that has not yet powered up. Those method
nodes on the C Series Communication Core need to wait until the module is identified as
Correct, Incorrect or No Module.

3-22 | ni.com

CompactRIO Module Development Kit Software Manual

When a module is inserted into the chassis or when the Identify Module command is run, the
module status becomes Unknown while the module is being identified.

The following interfaces are blocked while the module status is Unknown.
« SPI

. EEPROM

* Change Mode

e Identify Module

* Pulse Convert

* Wait on Done

* Output Enable methods on DIO lines

The following interfaces are not blocked while the module status is Unknown.
* Module Status

* Configuration Register

* Debug Register

* Wait for Base Clock Ticks

* I/O nodes on DIO lines

When the module status is No Module or Incorrect Program Mode, the C Series Communication
Core goes into Idle mode and tri-states all of the CompactRIO bus lines. The Configuration and
Debug registers may still be read or written to when the module status is No Module or Incorrect
Program Mode. All other operations are ignored when the module status is No Module or
Incorrect Program Mode.

Internal Errors

Incorrect or invalid sequences of operations on the C Series Communication Core results in a
fatal error. This means that when an invalid operation is attempted, the C Series Communication
Core goes into a state where it can no longer be used due to the fatal error. The C Series
Communication Core will transition to the Idle mode and the module status will return No
Module. All of the CompactRIO bus outputs to the module will be tri-stated.

Operations that can cause a fatal error include:

* Invalid command type

+ Invalid Configuration or Debug register address

* Trying to SPI byte or SPI end when a SPI transfer has not yet been started
* Trying to SPI start when a SPI transfer has already been started

* Attempting to perform a mode change while a DIO Set Output Enable Method Node is
running

© National Instruments | 3-23

Chapter 3

C Series Communication Core

* Trying to SPI, pulse ~CONVERT, access the EEPROM, or Wait on Done when in a mode

that does not support those operations

You can read the Debug register to get an internal error code. This internal error code indicates

what invalid operation caused the fatal error.

Refer to Table 3-5, for a full list of internal error codes.

Table 3-5. Internal Errors

mode)

Error
Error Code Description
None 0 No error.
Change Mode (invalid mode) -1 You attempted to change a mode that is not supported.
Identify Module (not in ID -2 You attempted to run the identify module commend
mode) when not in ID mode.
EEPROM Write (incorrect -3 You attempted to run an EEPROM write command
module) when the module was not correct.
SPI (not started) -4 The SPI transfer has not been started.
SPI (already started) -5 You attempted to start a SPI transfer when one had
already been started.
SPI (not in correct mode) -6 You attempted to start a SPI transfer when in a mode
that does not support SPI.
Invalid Command -7 You attempted to run a invalid command type.
Change Mode and Output -8 You attempted to run a mode change command when
Enable running an output enable method for DIO.
Invalid Configuration -9 You attempted to access an invalid register (or did
Register read/write on a register that did not support read/write).
Invalid Debug Register -10 You attempted to access an invalid debug register (or
did read/write on a register that did not support
Pulse Convert (not in correct -11 You attempted to pulse ~CONVERT in a mode that
mode) does not support pulse ~CONVERT.
Wait on Done (not in correct -12 You attempted to wait for done in a mode that does not

support wait for done.

3-24 | ni.com

CompactRIO Module Development Kit Software Manual

Table 3-5. Internal Errors (Continued)

Error
Error Code Description
EEPROM Read or Write (not -13 You attempted an EEPROM read/write when not in ID
in ID mode) mode.
EEPROM Write Timeout 14 EEPROM write timeout.
SPI Divide Rate -15 Attempted to write the SPI divide rate override register
(accessed during SPI transfer) during a SPI transfer.

When the C Series Communication Core encounters a fatal error, it cannot recover. The module
will be unusable until the FPGA is reset. This can be done by restarting the FPGA VI.

Module Mode Details

Supported Modes

All modules must support ID and Idle modes as described in the CompactRIO Module
Development Kit Hardware User Manual. In addition to those modes, your module may
optionally support Normal Operation and Auxiliary Communication modes. You enable these
modes when you specify them in the Module Support XML.

Transitioning to modes that are not enabled results in a fatal error on the C Series
Communication Core.

Mode Transitions

The C Series Communication Core handles all mode changes. All of the timing requirements
that are mentioned in the CompactRIO Module Development Kit Hardware User Manual are
met when the mode is changed.

Initially, DIO lines 0:7 are set to input, tri-stated, with the output value set to 0. When
transitioning to a mode where a line is configured as a digital line, input, output, or bi-directional,
the line will go to whatever values were previously set through the digital I/O nodes and Set
Output Enable methods.

If a line is used by the SPI engine in one mode and is used as a DO in another mode, you can run
the DO and Set Output Enable methods before changing the mode to prepare the line to go into
the desired state when the mode change completes.

When the module is removed from the chassis, the Output Enable settings are cleared and all of
the lines go back to their default state. For bi-directional DIO lines, you must re-run the Output
Enable methods to reset the line directions when the module is installed in the chassis again.

© National Instruments | 3-25

Internal Channels

Internal channels are data transfer mechanisms that allow concurrently running LabVIEW code
to communicate.

You can access internal channels using method nodes on I/O channels. Each internal channel
is represented in a LabVIEW project as an I/O channel on the module. This means that each
module in a chassis has a unique set of internal channels.

Figure 4-1 shows how you can use internal channels to communicate between concurrently
running LabVIEW code.

Figure 4-1. Using Internal Channels

[[}

By Mod1 /DataChan
Write Data Write Channel
=— Wirite Data

B Mod1 /DataChan
Read Channel Read Data
Read Data ¥—Jiie ||

[

o [
-]

All of the methods on a particular channel access a shared resource that contains the data
memory of the channel. The LabVIEW FPGA arbiters, shown in Figure 4-2, handle multiple
accesses to the channel.

Figure 4-2. LabVIEW Arbiters Handling Multiple Accesses

Clk A (top-level) Clk A (top-level)

Channel Resource

© National Instruments | 4-1

Chapter 4 Internal Channels

You can use internal channels inside and outside of SCTLs. There is no restriction on how many
nodes you can be place on a block diagram.

A module can use as many internal channels as required. However, NI recommends that you try
to implement your module support with as few internal channels as possible to minimize FPGA
utilization.

Internal Channel Types

MDK 2 provides three different types of internal channels. Each of these differ in how read and
write nodes operate with respect to each other.

Asynchronous Internal Channel

When writing to an Asynchronous Internal Channel, the write will return as soon as the data
reaches the flip-flops in the resource entity of the channel. When reading from an asynchronous
channel, the read will return immediately with the most recent data from the flip-flops.

Use the Asynchronous Internal Channel when you have multiple readers or writers for the data
and you do not need to synchronize the reads and writes. For example, use an Asynchronous

Internal Channel for status or error information in the Module Resource VI. All of the node VIs
can read the data on that channel before starting to check if the module is in an error condition.

Blocking Internal Channel

When writing to a Blocking Internal Channel, the write method node will not complete until the
channel resource is read from a read method. If a read method node is called before the channel
resource has been updated with new data, the Blocking Internal Channel will block until new
data is written to the resource.

Use the Blocking Internal Channel when you want to synchronize parallel loops in LabVIEW.
For example, use the Blocking Internal Channel to synchronize dataflow in the Module
Resource VI and node VI.

Occurrence Internal Channel

The Occurrence Internal Channel has Send Occurrence and Check Occurrence methods.
Sending an occurrence will set a flag in the channel resource. When you check for an occurrence,
the Occurrence Internal Channel will tell you whether or not that flag has been set and clear it.
Sending multiple occurrences without checking does not change the state of the flag, it just keeps
setting it. These methods do not block and always return immediately.

Use the Occurrence Internal Channel when you do not have any data to send. For example, use
the Occurrence Internal Channel to send simple Go or Done commands between the Module
Resource and Node Vls.

4-2 | ni.com

CompactRIO Module Development Kit Software Manual

Data Types

When writing the Module Support XML, you will specify the data type of each internal channel.
MDK 2 supports both standard data types and custom controls. When using a custom control, it
must be a Control; you cannot use Type Def or Strict Type Def.

If you change the data type of an internal channel, you must re-create any instantiations of
method nodes for the internal channel on LabVIEW block diagrams.

© National Instruments | 4-3

Development and Export
Process

You can use MDK 2 to develop module support for internal use or to ship to your customers. NI
recommends you begin your module support development with the internal process to get
familiar with MDK 2 before creating support for your customers.

Pre-pend all of your support files with the name of your module to prevent name collisions with
other modules and LabVIEW VIs when your module support is loaded into LabVIEW.

Internal Support Development Process

Use the internal module support development process only if you need to communicate with
your module internally and do not intend on deploying module support to your customers. The
internal support development process does not script any Module Resource VIs or Module
Support VIs beneath I/0 nodes. It only allows you to use the C Series Communication Core
interfaces in your LabVIEW FPGA block diagram.

When developing module support for internal use, all of the files will be created in the LabVIEW
modules support folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\FPGA\
cRIO\other\MDK-1234

Note This document refers to the module in development as MDK-1234. In the
following sections, use the name of your module.

Module Support Files

Create the following files for internal module support.

Module Type XML

Complete the following steps to create a Module Type XML file.
1. Name the XML file MDK-1234_ModuleType.xml

2. Create the following folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\
FPGA\cRIO\other\MDK-1234\nicrio_configToolPlugin.1llb

This folder is named so that the NI-RIO driver can find your Module Type XML file.
3. Place the XML file in the nicrio_configToolPlugin.1l1lb folder.

© National Instruments | 5-1

Chapter 5 Development and Export Process

Refer to the Module Type XML section of Appendix A, Module XML, for more information on
creating the Module Type XML file.

Module Support XML
Complete the following steps to create a Module Support XML file.

1. Name the XML file MDK-1234_ModuleSupport .xml.

2. Place the XML file in the following folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\
NI\FPGA\cRIO\other\MDK-1234

@ Note When creating the Module Support XML file, ensure that the
<DevelopmentMode> tag is set to TRUE. This enables the C Series
Communication Core and Internal Channel Method Nodes and disables the end user
API I/O, method and property nodes.

Refer to the Module Support XML section of Appendix A, Module XML, for more information
on creating the Module Support XML file.

Module Specific I/O References Control

Using a module specific I/O References Control is optional when creating internal module
support. It is only needed if you are using internal channels. The module specific /O References
Control is automatically generated by the utility located in:

C:\Program Files\National Instruments\LabVIEW 2011\vi.lib\
LabVIEW Targets\FPGA\cRIO\shared\nicrio_Mdk2Utility\
Mdk2Utility_ CreateIOReferenceClusterControl.vi

Run this VI and point it to the following folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\FPGA\
cRIO\other\MDK-1234

This creates the module specific I/O References cluster shown in Figure 5-1. The I/O References
cluster contains two clusters of I/O references. The top cluster contains I/O references for the
C Series Communication Core and the bottom cluster contains I/O references for internal
channels. LabVIEW FPGA does not support empty clusters on the block diagram, so you must
specify at least one internal channel in your XML. Having no internal channels results in an
empty cluster and broken Vls.

5-2 | ni.com

CompactRIO Module Development Kit Software Manual

Figure 5-1. Module Specific /0O Reference Cluster

Mod1/Debug Interface

Mod1fChannelList
Mod1MyOcourrenceChan
Mod1MyBlockingZhan

Validating the Internal Module Support

Once the Module Support XML file is created, validate the XML by running the Module Support
Export utility. On the front panel of the VI, select Validate XML Only (No Export) as the
Export Type. This only performs the XML validation and does not create a module support
export.

C:\Program Files\National Instruments\LabVIEW 2011\vi.lib\
LabVIEW Targets\FPGA\cRIO\shared\nicrio_Mdk2Utility\
Mdk2Utility_GenerateModuleSupportExport.vi

© National Instruments | 5-3

Chapter 5 Development and Export Process

Using the Internal Module Support

You can now add your FPGA target to a LabVIEW project. LabVIEW will discover your
module if it is connected. Complete the following steps to add your module to a LabVIEW
project if the module is offline.

1. Right-click the FPGA Target in the Project Explorer window and select New»C Series
Modules from the shortcut menu to display the Add Targets and Devices dialog box.

2. Click the New target or device radio button, select C Series Module, and click the OK
button to display the New C Series Module dialog box.

3. Select your module from the Module Type pull-down menu and click the OK button.

After the module is added to the project, the C Series Communication Core and internal channel
I/O items appear in the project. Figure 5-2 shows a LabVIEW project ready to begin writing your
Module Support VIs using these I/O items.

5-4 | ni.com

CompactRIO Module Development Kit Software Manual

Figure 5-2. Internal Module Support LabVIEW Project

ﬁpruject Explorer - InternalM... E]@

File Edit Wew Project Operate Tools Window |

| Se| % IELYER

Items | Files

= ﬂ_gg, Project: InternalModuleSupport. lvproj

= B My Computer

2§} FPGA Target (cRIO-3101)

+- [Chassis [jo
5[Modt

- $, Mod1fCommand Interface
%_, Mod1/Configuration Interface
-, Mod1jDebug Interface
%ﬁ Mod1/DI0(7:0)
- g, ModljDI00
-, Modl/DIOL
- &, ModljDIoz
- &, Modl/DIO3
%& Mod1/DI04
g::f* Mad1/DI0S
-, Mod1/DIOS
- %, Modl/DIO7
- &, Mod1/DIOB
g& Mod1/Stakus Interface
%ﬁ Mod1/Timing Interface
40 MHz Onboard Clock,
Madi (Slot 1, MDK-0003)
Dependencies
Build Specifications

o ES

*
.
E

@

T._‘E‘ Dependencies
+_ Build Specifications

Deployable Support Development Process

The deployable development process is similar to the internal development process, except that
all of the module support files (XML and VIs) are created in a folder outside of the LabVIEW
modules directory.

The directory where you create your module support files is called the development folder. This
is a different folder than the LabVIEW modules support folder where the files are used by
LabVIEW.

© National Instruments | 5-5

Chapter 5 Development and Export Process

Export Utility

When the XML files are created, run the Module Support Export utility to export the support
files into the LabVIEW modules support folder. It is important to use the utility because the
export process manipulates some properties of the Module Support VIs and the utility modifies
the files that get installed into the LabVIEW module support folder instead of the source files.

There are two different types of exports that you can perform.
* Development mode export—use to create the module support folder in LabVIEW that lets
you create Module Support Vs.

* Release mode export—use to create the module support folder in LabVIEW that lets you
test your module in release mode.

Set the Export Type control to perform the desired type of export.

When performing the export, the utility verifies that your XML files follow the required schema.
It also validates your XML and Module Support VIs using a series of rules.

You do not need to run a separate utility to create the module specific I/O References cluster. The
module specific I/O References cluster is automatically generated by the export utility.

The export utility is found in the following folder:

C:\Program Files\National Instruments\LabVIEW 2011\vi.lib\
LabVIEW Targets\FPGA\cRIO\shared\nicrio_Mdk2Utility\
Mdk2Utility_GenerateModuleSupportExport.vi

Note All development VIs and LabVIEW projects should be closed before running
the export utility.

Exclude from Export

You may place a folder within your development directory called ExcludeFromExport.
This folder and the contents in it will not be copied into the Module Support folder during the
export. Use this folder to place the VIs and LabVIEW projects that were used to facilitate the
development of your Module Support VIs. The Module Support VIs must be developed within
the context of a LabVIEW project that contains your module in development mode. When
developing your module support Vs, it is useful to have some test VIs that you can use to
instantiate your Module Support VIs for debugging. NI recommends that you use the
ExcludeFromExport folder to save these files.

Development Mode Export

After you create the two XML files, create a Development mode export to install the XML files
into the LabVIEW hierarchy. This allows you to create your Module Support Vs.

Save your Module Support VIs in the Development folder as you create them.

5-6 | ni.com

CompactRIO Module Development Kit Software Manual

The Export utility performs the following tasks in Development mode:

1. Loads the Module Type and Module Support XML files.
a. Verifies that the XML passes the schema.
b. Validates the XML using a series of rules.

2. Creates the I/O Reference Control based on the contents of the Module Support XML file.
Copies the module support files (XML and internal channel controls) to the export location
in the LabVIEW modules directory.

4. Modifies the <DevelopmentMode> XML tag of the Module Support file to enable
Development mode.

Do not modify or save any of the VIs in the Module Support folder. All changes will be lost when
you run the export utility again. Also, be sure to not instantiate any controls or VIs from the
LabVIEW Module Support folder in your Module Support VIs. All controls and indicators used
in the Module Support VIs should be sourced from the development folder.

Your development folder will look something like this:
<MDK-1234>
- <nicrio_configToolPlugin.llb>
- MDK-1234_ModuleType.xml
- MDK-1234_ModuleSupport.xml
- MDK-1234_TIOReferences.ctl
- MDK-1234_ModuleResource.vi
- MDK-1234_MyInternalChannelControl.ctl
- MDK-1234_MethodNode.vi
- MDK-1234_IONode.vi
- MDK-1234_PropertyNode.vi

When you do a development mode export, your LabVIEW module support folder will look like
this:
<MDK-1234>
- <nicrio_configToolPlugin.llb>
- MDK-1234_ModuleType.xml
- MDK-1234_ModuleSupport.xml
- MDK-1234_MyInternalChannelControl.ctl

Notice that only the XML and internal channel control files are installed in LabVIEW. These
files are necessary to have the module show up in LabVIEW and allow you to develop your
Module Support VIs.

© National Instruments | 5-7

Chapter 5 Development and Export Process

Release Mode Export

When you are ready to test the Release mode operation of your module, run the Export utility in
Release mode. This copies all of the contents of the development folder to the LabVIEW module
folder.

Once the export is completed, do not modify the files located in the LabVIEW modules support
folder. A subsequent export will overwrite them and any changes will be lost. All file changes
should be done in the development folder.

The Export utility performs the following tasks in Release mode:.
1. Loads the Module Type and Module Support XML files.

a. Verifies that the XML passes the schema.

b. Validates the XML using a series of rules.

2. Creates the I/O Reference Control based on the contents of the Module Support XML file.
Copies all of the module support files to the export location in the LabVIEW modules
directory.

4. Removes <DevelopmentMode> XML tag of the Module Support file to enable Release
mode.

5. Validates the VIs using a series of rules.

Adds a special tag to the exported VIs.

Locks and password protects the exported VIs with a password you provide.

Module Support VI Tagging

When using the module in Release mode, the Module Support Vs are scripted during code
generation. It is important that the VIs follow the requirements of MDK 2 and pass a series of
rules that verify this. Once the Vs are verified, they get a special tag placed using a hidden VI
property. If the VI does not pass any of the rules, the tag is not be placed on the VI.

During code generation, NI-RIO verifies that all of the Module Support VIs have the special tag.
If any of the VIs do not have the tag, then the compile stops and the user gets a code generation
error. This is how MDK 2 prevents LabVIEW from attempting to compile invalid Module
Support VIs.

During the export process, the Module Support VIs are locked and password protected after

the tag is added. If the module is unlocked and saved, the tag is be removed. This means that
the module support will no longer compile in LabVIEW FPGA.

5-8 | ni.com

CompactRIO Module Development Kit Software Manual

Using the Deployable Module Support

You can now add your FPGA target to a LabVIEW project. LabVIEW will discover your

module if it is connected. Complete the following steps to add your module to a LabVIEW

project if the module is offline.

1. Right-click the FPGA Target in the Project Explorer window and select New»C Series
Modules from the shortcut menu to display the Add Targets and Devices dialog box.

2. Click the New target or device radio button, select C Series Module, and click the OK
button to display the New C Series Module dialog box.

3. Select your module from the Module Type pull-down menu and click the OK button.

If you are doing a Development mode export, you should be able to add the module to a
LabVIEW project and see the C Series Communication Core interface I/O and internal channel
I/O items added to the project. Refer to Figure 5-3 for an image of a LabVIEW project with
interface I/O and internal channel I/O items in the project. You are now ready to develop Module
Support VIs.

If you are doing a Release mode export, you should be able to add the module to a LabVIEW
project and see that the end user I/O items added to the project as shown in Figure 5-3. You are
now ready to test the module in Release mode.

Figure 5-3. Release Mode Export

:ﬂpmject Explorer - Release ... g@

Fle Edit Wiew Project Operate Tools Window

el=1" I IETHE

Tkems | Files

= 'Egg, Project: Release Mode Proj. lvproj
2. B My Computer
= §8} FPGA Target (cRIO-9101)
w [Chassis T}/O
5 [Modt
ke gy, ModljMyAlo
-, ModljMyall
b, ModifMyalz
b gy, ModLiMyAL3
40 MHz Onboard Clock
- [} Modt (Slat 1, MDK-0004)
'-'q_" Dependencies
"6_ EBuild Specifications
-5 Dependencies
- . Build Specifications

© National Instruments | 5-9

Chapter 5 Development and Export Process

Shipping the Deployable Module Support

The module support folder created by the Release mode export is saved in the following
LabVIEW folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\FPGA\
cRIO\other\MDK-1234

This is the folder that you will deploy to your customers and have them install onto their
computers. This module support folder can be used on any computer that has the appropriate
LabVIEW and NI-RIO distributions installed.

5-10 | ni.com

Modules Support Vls

Module Resource VIs and node VlIs are the two types of Module Support VIs in MDK 2.

Module Resource VIs are scripted once in the FPGA block diagram for each module in the
chassis and provide a place for you to put all of the code that communicates with your module.

Node Vs are scripted beneath the I/0O, method, and property nodes and communicate data
between the end user block diagram and the Module Resource VI. In general, you should not
place the C Series Communication Core API elements within node VIs. Place your complex
code in the Module Resource VI since it is instantiated only once in the FPGA. The end user can
place I/O, method and property nodes on the block diagram, which duplicates the logic that is
used to communicate with the module if C Series Communication Core API elements are placed
within the node VI.

Use the internal channels to communicate between the node VIs and the Module Resource VI.

Viewing Terminal Numbers in the Context Help

Figure 6-1 shows the VI terminal numbers in the Context Help window. It is important to enable
terminal number viewing in the Context Help window to ensure that all of the terminals on
Module Support VIs have the correct placement on the VI connector pane.

Figure 6-1. VI Terminal Numbers in the Context Help

Context Help =
nicrio_Mdk2Api_Command.vi:1 {4833) e
10 References [Z]
wyrite Data [0] FIE HEE [4] Read Data
Command Type [5] - i
v
E R »

Complete the following steps to enable terminal number viewing in the context help.
1. Go to Tools»Options.
2. Select VI Server in the Category list in the Options dialog box.

3. Check Show VI Scripting functions, properties, and methods and verify that Display
additional VI Scripting information in Context Help window contains a check in the VI
Scripting section.

© National Instruments | 6-1

Chapter 6 Modules Support Vis

Module Resource VI

The Module Resource VI handles the execution of various API elements like the I/O, method,
and property nodes. When the end user compiles the FPGA block diagram, the Module Resource
Vlis scripted into the FPGA. The Module Resource VI is never visible to the end user as shown
in Figure 6-2.

Figure 6-2. Hidden Module Resource VI

End customer YT that is using a third
party C Series module,

Mad1{a00

P o Mod1jaon®
P Modljaot ®

|Cust0mer NEVElN SEES this|

Module Resource VI Connector Pane

The Module Resource VI must use a 5-3-3-5 connector pane, which must have the Terminal 0
and Terminal 2 connections shown in Figure 6-3.

Figure 6-3. Occurrence Reference and I/O References Cluster

Module Resource Y1.vi (4833)

I References [2]
occurrence [0]

Handling API Element Operations

The Module Resource VI handles the operation of one API element at a time. If two API
elements attempt to run simultaneously, you must use a Blocking Internal Channel to make one
API element wait while the other is handled.

6-2 | ni.com

CompactRIO Module Development Kit Software Manual

An API element first performs an internal channel write (blocking channel), as shown in
Figure 6-4.

Figure 6-4. Internal Channel Write

A =
Wrike Channel

b ‘Write Data

"3" is some constant defined by the
module developer to indicate which
method is running. You could also use
an enunmerated data bvpe control For
the inkernal channel,

The value written to the internal channel indicates which type of API element is running.
Because this is a blocking internal channel, the method node waits until the channel is read
before completing.

The Module Resource VI checks the status of that blocking internal channel. When the Module
Resource VI sees that the channel has a write waiting, it reads the data from the channel.
Depending on the value read from the channel, the Module Resource VI performs different
operations specific to the API element that is running. Figure 6-5 shows the Module Resource
VI performing these tasks.

Figure 6-5. Module Resource VI

% Ta[it waiting” =
~i
L R
e = Bt olten B1°
Check Channel Status Read Channel Handle operation For APT
Channel Status W Read Data lelement #3

|

Because this is a Blocking Internal Channel, any other API elements that attempt to run are
blocked while this operation is being handled. When the Module Resource VI completes the
operation of the API element, the loop goes to the next iteration and checks the channel status.
At that time, if another API element is attempting to run, it will be handled.

© National Instruments | 6-3

Chapter 6 Modules Support Vis

Stopping the Module Resource VI

The Module Resource VI is scripted into the end user’s top level VI during code generation.
When the top level VI completes its execution, the Module Resource VI must also stop. Use an
occurrence to stop the Module Resource VI.

The Module Resource VIs connector pane must include an occurrence reference. When the top
level V1 is finished, the occurrence is set. You must stop the Module Resource VI from running
when the occurrence is set.

Note Use the standard LV FPGA Occurrence primitive to stop the Module
Resource VI. Do not use the internal channel occurrence.

Figure 6-6 shows the LabVIEW code for stopping the Module Resource VI using an occurrence.
Figure 6-6. LabVIEW Code

Flace code in the While Loop to handle API
elements and cormmunicate with the module,

OCCUFrence Skop

55 2 &>

When the Module Resource VI starts to execute, the Wait on Occurrence primitive waits until
the occurrence is set. The timeout is set to - 1, which means wait forever and the Ignore Previous
input is set to FALSE. When the top level VI completes, the occurrence is set and the Wait on
Occurrence primitive completes with no timeout (FALSE). This sets the Stop indicator to TRUE.
A local variable on the Stop indicator stops the While Loop.

It is critical that you stop the Module Resource VI when the occurrence is set. Failure to do so
will result in the end user’s top level VI hanging when its execution completes. NI recommends
that the loop rate of the Module Resource VIs While Loop be no longer than 500 ms, because it
may take up to one full loop iteration before the loop will stop. You do not want to introduce a
noticeable lag between completion of the end user’s top level VI and when the Module Resource
VI stops executing.

6-4 | ni.com

CompactRIO Module Development Kit Software Manual

Node Vs

When the LabVIEW FPGA block diagram is compiled, the API elements of the module get
replaced with the node Vs that you provide.

The method node in Figure 6-7 has its error terminals on, which cause the outer case structure
to be scripted. If the Module Support XML specifies that this method node has an error handling
VI, the VI would get scripted. This module support error handling VI is optional. If it is not
present, then the error wire simply passes through the node and the Module Support VIs will not
be able to produce any error codes on the error wire of the node.

Figure 6-7. Method Node

My Parameter O Mo Error Vt[

| usﬂ My Parameter 2
.

My Parameter 1

[

ODooooOoDooMO0DDoooooooooon

10 References
i 3

efror ouk
- i e e L55H|

Error in

Iooo0000o0o0000o0o000000000000

The Module Support VIs can only produce an error code. The error cluster that comes out of the
node VI is merged with the incoming error. Third party Module Support VIs do not have access
to the incoming error. The code executes if no error is passed in, or does not execute if an error
is passed in. Any outputs of the node are zero or false when an error is passed into it.

Each Module Support VI shown in Figure 6-7 is scripted into a separate frame in the sequence
structure. This order is determined by the <SequenceOrder> tag from the Module Support
XML.

Data can transfer from one frame to the next using the Instance Data wire. Use the
<UselInstanceData> tagin the Module Support XML to enable the Instance Data wire. When
Instance Data is enabled for the method node, all VIs that are scripted must support it.

© National Instruments | 6-5

Chapter 6 Modules Support Vis

If the end user does not have enable error handling on the method node as shown in Figure 6-8,
the error handling portion does not get scripted.

Figure 6-8. Method Node without Error Handling

My Parameter 0
@ Iy Parameter 2

My Parameter 1

oooooogoao

I0 References

10 0000000000000 LT

Method and Property Node VIs

Only one method and property node VI is permitted in addition to the optional Error
Handling VI.

Method and Property Node VI Terminals

I/ References [2]

ProjectItemID [1]
Iy Parameter 0 [0]
My Parameter 1 [S]

[4] My Parameter 2

[14] Instance Data Out

The method node VI has three required terminals:
* Terminal 1—ProjectltemID
* Terminal 2—I/O References

* Terminal 14—Instance Data Out is only required when the <UseInstanceData> tagis
set to TRUE and must match Instance Data In of the next VI in the sequence

On method node Vs, terminals 0, 5, 7, 9, 11 are write parameters and terminals 4, 6, 8, 10, 15
are read parameters.

The property node VI only permits the following parameter terminals:
* Terminal 0—Write Property Node Parameter

* Terminal 4—Read Property Node Parameter

6-6 | ni.com

CompactRIO Module Development Kit Software Manual

Inside Method and Property Node VlIs

The first thing a node VI should do is use a blocking internal channel to tell the Module Resource
VI that a node VI is attempting to run. The data should indicate what type of node VI it is.

After the Module Resource VI reads the channel data, the node and Module Resource VIs are
free to communicate with each other using internal channels. You may use any type of internal
channel within the node VI to communicate with the Module Resource VI. In general, all
communication with the C Series Communication Core and all data processing should be done
in the Module Resource VI.

Once the operation has completed, you may use an Occurrence internal channel to make the node
VI wait until the Module Resource VI is done with the operation and ready to allow another
operation to begin.

The use of the Blocking Internal Channel at the start of the node VI and the occurrence internal
channel at the end of the node VI, shown in Figure 6-9, creates a request/release protocol. When
the node VI begins, it will request the Module Resource VI. The node VI will wait until the
Module Resource VI releases it. Using this protocol, you can ensure that only one node VI will
execute at a time.

Figure 6-9. Internal Channels

1t

O B TR T T e e B B T e Sy e By I e O e O O B R e S T

L

TS ke 0t o T~

m._ .‘

4080 SR-D-RUB--R-RR-R-RiA-B- §oRRR-BR<E-A-h-0d-0i8-8-8-30-0-8-0-000 8 4B a g

My Parmmetm 0

iy Pavaees 1

et g, It e e L ok e
Thes tprnrial s optonal ared mags onky b
presert £ & & spechesd i tha {84,

et Dt ot

Ilﬁl “ It [

Error Handling VI

The Error Handling VI can be optionally specified in the Module Support XML. When
specified, the Error Handling VI will be scripted into the diagram if error terminals are enabled
on the end user API node. The purpose of the Error Handling VI is to let API elements produce
error codes that will be received by the end user.

Error Handling VI Terminals

10 References [2]

Instance Data In [12] [13] error out

© National Instruments | 6-7

Chapter 6 Modules Support Vis

The Error Handling VI has two required terminals:
. Terminal 2—I/O References cluster

. Terminal 13—error out

The Instance Data In terminal is required when the <UseInstanceData> tag is set to TRUE:

* Terminal 12—Instance Data In (must match Instance Data Out of the previous
sequence VI)

I/0O Node Vls

I/0 nodes differ from method and property nodes. I/O nodes are growable. This means that
you can expand an I/O node to contain many 1/O items. All of the I/O items in a grown node
are expected to execute atomically. Refer to Handling API Element Operations for more
information on the differences between 1/0, method, and property nodes and when to use them.

Because a single grown I/O node must execute all of its I/O items at the same time, we need a
more advanced scripting capability.

Figure 6-10 shows three different Node Vs, in addition to the Error Handling VI, being scripted
into the grown I/O node. The first and third VIs are node scoped. The second VI is channel
scoped. When specifying the VIs in the Module Support XML, you can use the <VIScope> tag
to specify which type they are.

Figure 6-10. Node VIs Being Scripted into the Grown I/O Node

emorin error out
] Alp=T]
modijaoo | |
1
Mod1JA01
=
mod1ja0z
No Error_~]
'F
=
e o000 00g 000000000 0000000000000 0000000000 Eoooo 00000 ooo0
i e
— S 5
Mod1jA00
Mod1ja01
Mod1fRo2
=¥
"|1:"‘ £ (e NeNeNeNsNsNsNeNoNeReNeNeNeNsNaN N sHeNaNeNeNeNsNeNaNeNsNeReNcNeNeNeNe NN N efeN s eNeNaNeNe NN NN s eNsNeNoNeNsNsNaNeN]
e -

The node scoped VlIs are only instantiated once for the grown I/0O node. The channel scoped VIs
are instantiated for every 1/O item in the grown node.

6-8 | ni.com

CompactRIO Module Development Kit Software Manual

When using these Vs in sequence, it is possible to make all of the I/O items in the grown node

act atomically. For example, the above VI s for an analog output module. When it runs, all three

channels are updated simultaneously. Here is how it works:

1. Seq 0 (node scoped)—Uses the blocking channel to tell the Module Resource VI that an
[/0 node is going to run.

2. Seq 1 (channel scoped)—Sends the output data to the Module Resource VI. The
ProjectItemID is used to identify that the data for the AO channel is being written.

3. Seq2 (node scoped)—Tells the Module Resource VI to SPI the AO data to the module and
pulse ~CONVERT. This makes all three AO channels update simultaneously.

An I/O node may have multiple node and channel scoped levels. However, one of the channel
scoped levels must have the <VIHasTerminalConnections> tagsetto TRUE in the Module
Support XML. That particular VI will have the data terminal of the I/O node wired to it. Other
channel scoped VIs will not have any connections to the I/O node terminals.

Node Scoped I/O Node VI Terminals

I/ References [2]

Inskance Data In [12] [14] Instance Data Cut

The Node Scoped I/0 Node VI has one required terminal:

. Terminal 2—I/O References cluster

The Node Scoped I/0O Node VI has required terminals if instance data is enabled:
e Terminal 12—Instance Data In (must match Instance Data Out of previous sequence)

* Terminal 14—Instance Data Out (must match Instance Data In of next sequence)

is no sequence VI before it, so there is nothing to wire to it.

Note Node scoped VIs do not have the ProjectltemID. This is because the grown
1/0 node will contain many 1/O items, each with a different ProjectItemID.

Note Instance Data In is not allowed on the first VI in the sequence because there

© National Instruments | 6-9

Chapter 6 Modules Support Vis
Channel Scoped I/0 Node VI Terminals

1) References [2]
ProjectItemID [1]
130 Terminal [0]

Inskance Data In [12] [14] Instance Data Cut

The Channel Scoped I/O Node VI has two required terminals:
* Terminal 1—ProjectltemID

. Terminal 2—I/O References cluster

The Channel Scoped I/O Node VI has required terminals if instance data is enabled:
* Terminal 12—Instance Data In (must match Instance Data Out of previous sequence)

* Terminal 14—Instance Data Out (must match Instance Data In of next sequence)

= Note Instance Data In is not allowed on the first VI in the sequence because there
is no sequence VI before it, so there is nothing to wire to it.

The Channel Scoped I/O Node VI has one required terminal if it is going to connect to the node
terminal:

* Terminal 0—Write I/O Node parameter (to I/O node)

or

* Terminal 4—Read I/O Node parameter (from I/O node)

Merged I/0O Node VIScriptinfo (Advanced)

I/0 items that use the same interface and VISriptinfo will be scripted together when placed in
the same grown I/O node. When the I/O items in a grown node are scripted together, the node
scoped VlIs in the VIScriptInfo will only be scripted once per node, and the channel scoped VIs
will be scripted once per each channel in the grown I/O node.

I/O items that use a different interface and VIScriptInfo will be scripted separately, as shown in
Figure 6-11. For example, if your module has DI and DO, the DI I/O items will be scripted
together and the DO I/O items will be scripted together.

6-10 | ni.com

CompactRIO Module Development Kit Software Manual

Figure 6-11. DI and DO from Same Module Scripted Separately

error in

error out

[i i [=11]
N Mod 1010 §) Mod/oI0
ModLjpoz A rMod1/o1L §)
OS— T TV TeER
B 1 Mod1/D03® Mod1jD11
Mod1 /D03 t
T(Ha Error P
errorin
(=t
@ :
=i Oooooooogooooooon Dooo0gooooooooo000o0o0o0oooooooooooo@gooon

=
|sCopED| ERFOR
-

error oot

Mod1 /D10
D]

Modi /D11

PTE]]

[N NaNs e NeNuNs NuNeNs NeNeNs Nunks s NuRe N NaNels NeNeNs NNk NeNeNs N NuNele Ne N Ns NaNaks NeRe s NN s Ne NeNu s NaNaks Nels}

Dooooooo

ODooooooOooooooolooooooonooo00 Cooolooooooooolooon

ModL/Do2
Ter

ETH ETH
HebE
S ERROR

ModL /D63
()

COOOOOOCOOOOOOO0O00U0000N000000000000N00000N00000000000O00E000

To script I/0 items with different interfaces and VIScriptinfos together, you must specify it in
the MergedlONodeVIScriptInfoList portion of the XML. When merging the VIScriptinfos for
different interfaces, those VIScriptInfos must be compatible and must follow the following

rules:

* They have the exact same number of VlIs specified

* They have the same settings for UselnstanceData

* All node-specific VIs (including Error Handling VI) must be the same VIs

© National Instruments | 6-11

29

woo'iu

Figure 6-12 shows how the I/O node would be scripted if the DI and DO were specified in the XML to have merged VIScriptInfo.

Figure 6-12. DI and DO from Same Module Scripted Together

error in

=

Mod1iD02

error ouk
B]
BN tad1 (D10
B Mad1/o1L
S Mod Doz
B Mod1oos®|

‘| Mo Error 't

il

Mod1jpoz

Dooooooopooooo00

ooooo

error out

|

Mod1jCI0

e

Mod1 /DTt

=

Mod1jDo3

=

OOoO0O000000000000

OO0O000000000000000

OoO0O0O0000

(sE=NsN=NsN=N=R=Ns]

e

9 se1deyp

S|A Moddng seinpopy

CompactRIO Module Development Kit Software Manual

Error Codes

NI recommends you use error codes in the API of your module. NI reserved error codes
+358600-358619 that you can use for your modules.

In addition to module specific error codes that are defined by third party module developers,
there are also two error codes that we encourage you to use:
* 65536: Module Communication Error
— Use this error code when the module is removed or invalid
(No Module or Invalid module status) and when you are unable to communicate with
the module
e 65537: Incorrect Module Error
— Use this error code when the module is incorrect
(Incorrect module status)
* 65673: Incorrect Program Mode Error

— Use this error code when the slot is in the incorrect program mode
(Incorrect Program Mode module status)

Creating Custom Error Code Files

If you create your own module-specific error codes, we recommend that you ship an error code
file as part of your deployable module support files. This allows your customers to see a custom
error description through the LabVIEW Explain Error help menu. Refer to the Defining Custom
Error Codes in Text Files topic in the LabVIEW Help for more information on creating a custom
error code file.

© National Instruments | 6-13

Modules Support VI Best
Practices

This section provides best practices for writing Module Support VIs.

Error Terminals on Interface Method Nodes

Although LabVIEW FPGA allows you to enable error terminals on the C Series Communication
Core and Internal Channel Method Nodes, NI does not recommend that you use error terminals
on these method nodes. These error terminals contains a 33-bit wide signal that must be
registered in the FPGA, which causes an unnecessary increase in FPGA utilization.

The C Series Communication Core and Internal Channel Method Nodes do not return any error
codes. Internal error information from the C Series Communication Core can be retrieved from
the debug register. Also, the Internal Channel cannot produce any errors.

Do not use the error wire to force execution order in the FPGA. Use the flat sequence structure
to control execution order. The flat sequence structure utilizes the FPGA efficiently and does not
waste any resources.

Changing Interfaces

When your XML is written and you are using your module in LabVIEW projects, use caution
when changing the end user API or the internal channels.

If you change the type or data type of the internal channel, you must delete and replace all
method nodes on the block diagram using that channel. If you change the terminals of any API
elements, you must delete and replace the terminals on the block diagram. If you add or remove
any internal channels, you should delete and re-add the module in any project that uses it in
Release mode.

If you do not replace the nodes to the I/O items that have changed on the block diagram, you
may encounter various LabVIEW and code generation errors.

The XML for these LabVIEW project items is intended to be static. LabVIEW may not properly
mutate the nodes on the block diagram when the interfaces to those project items change, which
may cause some warnings when you close LabVIEW after you make these changes.

© National Instruments | 7-1

Chapter 7 Modules Support VI Best Practices

Using Channel Scoped Vls to Create a
Channel List

InstanceData sends information from one sequence frame of your Module Support VIs to the
next. Because channel scoped Vs are scripted in parallel, the InstanceData out of channel
scoped VIs must be ORed together, as shown in Figure 7-1, before wiring them to the
InstanceData input of the next frame. You can use this functionality to create a channel mask
that tells the Module Resource VI what channels are in the node that is executing.

Figure 7-1. Channel Scoped VIs ORed Together

-I:IDDDDELDDDDDDDDDDDDDDDDDDD Oooo0

O0O00000000000000000000000000000

Each channel scoped VI sets a bit in the instance data that corresponds to the ProjectltemID of
the I/O item that the V1 is being scripted for. Figure 7-2 shows a channel scoped VI setting a bit
in the Instance Data Out. In the XML, the ProjectltemID corresponds with the channel number
of the I/O. When the Instance Data Out signals from each of the channel scoped VIs are ORed
together, it creates a channel mask.

Figure 7-2. Setting a Bit in the Instance Data Out

[Initizlize channel mask o ZER.Os]

Inskance Data Cut
ProjectItemID
IEL R s e]]

a

St Bit in channel mask ko
correspond with ProjectItenID

7-2 | ni.com

CompactRIO Module Development Kit Software Manual

The node scoped VI sends the channel mask to the Module Resource V1, as shown in Figure 7-3.
The Module Resource VI handles all of the I/O items together.

Figure 7-3. Sending the Channel List to the Module Resource VI

I}/ References

l&==#—f [Internal Channels. CharnelList

Bug [0 Item =
Inskance Data In Write Channel
= Wyrite Daka

[5end channel list ko Module Resource Y|

Refer to the MDK-9902 example for information on creating a channel list. Using this
programming method can make multiple I/O items in a grown I/O node execute atomically in
the Module Resource VI and have a single convert pulse for all of them.

Click Start»Programs»National Instruments»NI-RIO»CompactRIO»
CompactRIO MDK 2»cRIO MDK Examples to open the MDK 2 example directory.

Using the Module Status

The Module Resource VI should constantly monitor the module status and optionally execute
the API elements depending on what the module status is. Use the following guidelines for using
the module status in the Module Resource VI.

* Unknown—Wait until the module status is determined before deciding how to proceed.
The module status will only be unknown for a short period of time while the module is
being identified.

* Correct—Allow all API elements to execute.

* Incorrect—Only allow the Module ID, Vendor ID and Serial Number Property Nodes to
execute. These property nodes should return with a warning 65537. All other API elements
should not be executed and should be returned immediately with error 65537.

* No Module, Invalid—Do not execute any API elements. Return them immediately with
error 65536.

The Module Resource VI must only utilize the Idle and ID modes of the C Series
Communication Core when the module status is incorrect or invalid. Never enter Normal
Operation and Auxiliary Communication modes when the module status is Incorrect or Invalid.

When the module status is no module, the C Series Communication Core automatically goes into
Idle mode and you cannot transition into another mode until a module is present.

© National Instruments | 7-3

Module Manufacturing

The C Series Communication Core automatically identifies your module in the chassis slot and
operates on it. The EEPROM of the module is blank during manufacturing, so the C Series
Communication Core sees your module as invalid.

To write to the EEPROM of the module during manufacturing, you can create a separate set of
module support files to make a different module type that is used during manufacturing. Use the
export utility to create a development mode export of manufacturing module support. When
writing the EEPROM of your module, you must calculate several CRC values.

During manufacturing, use the Module Status Override Debug register to make the module
status Correct in the C Series Communication Core. This allows you to perform EEPROM writes
and reads and simple manufacturing tests of your module hardware such as SPI and DIO.

Refer to the MDK-MFG example directory for an example of manufacturing module support.
Click Start»Programs»National Instruments»NI-RIO»CompactRIO»CompactRIO
MDK 2»cRIO MDK Examples to open the MDK 2 example directory.

© National Instruments | 8-1

Using the MDK 2 Examples

Click Start»Programs»National Instruments»NI-RIO»CompactRIO»CompactRIO
MDK 2»cRIO MDK Examples to open the MDK 2 example directory. The MDK examples
directory includes the Module Subltem Icons, Module Support Development, and Release Mode
Projects folders.

Module Subltem Icons

This folder contains example Module Subltem Icons that you can use with Module Subltems.
In addition to these example icons, you can create your own custom icon for your Subltem.

Module Support Development

This folder contains the module support source code for four example modules. Each of the
module support folders contain an ExcludeFromExport folder that contains a Development
mode LabVIEW project. In order to use the module in Development mode, you must first run
the Module Support Export Utility for that particular example module.

Release Mode Projects

This folder contains LabVIEW projects and VIs that use the example modules in Release mode.
In order to use the module in Release mode, you must first run the Module Support Export Utility
for that particular example module.

MDK 2 Example Modules

MDK 2 provides four example modules.

MDK-MFG

Only use the MDK-MFG module in Development mode. There is no Release mode project for
the MDK-MFG module. This example module is useful when manufacturing your module
hardware. The ExcludeFromExport folder contains examples of reading and writing the module
EEPROM and generating CRC values. It also shows how you can use the Debug interface to
override the module status.

MDK-9901

The MDK-9901 module is a four channel analog output module. The Module Support VIs

use the same communication protocol as the NI 9263. You can update the EEPROM of the

NI 9263 to match the MDK-9901 Vendor ID, Product ID, and Module Model Code. This
allows you to run the FPGA VI in the Release mode project and see voltages on the AO channels

© National Instruments | 9-1

Chapter 9 Using the MDK 2 Examples

of the NI 9263. The MDK-9901 EEPROM values can be obtained from the MDK-9901_
ModuleType.xml file. The ExcludeFromExport folder contains a Development mode project
that shows how the various API elements get scripted behind the I/0O nodes.

MDK-9902

The MDK-9902 module contains examples of all of the API elements that you can create using
MDK 2. It does not utilize any of the C Series Communication Core interfaces. Instead, it uses
the Module Resource VI, node VIs and internal channels to demonstrate how to create different
API elements. The ExcludeFromExport folder contains a Development mode project that shows
how merged VI Script Info interfaces get scripted behind a grown I/O node.

MDK-9903

The MDK-9903 module demonstrates how to use the C Series Communication Core interfaces
inside of an SCTL. Its API is a method node that may also be run inside of an SCTL. The
ExcludeFromExport folder contains a Development mode project that shows how the method
node gets scripted behind the I/O nodes.

9-2 | ni.com

Module XML

Data Types

Table A-1 lists the Module XML data types.

Table A-1. XML Data Types

Data Type Valid Range / Values
Integer Hexadecimal (i.e., 0x1234) & Decimal
String String characters
Boolean true, false
Enumerated Enumerated type; select from a list of values
SimpleName a-z, A-Z,0-9, -,
ProjectltemName a-z, A-Z,0-9,-, ,(),[1.:
RestrictedString a-z,A-Z,0-9,-, ,(G)LLL4GLNL @ # L+ %2, .7, space

Module XML

Module Type XML

All the Module Type XML tags are required. Table A-2 lists the Module Type XML tags.

Table A-2. Module Type XML Tags

XML Data
Level XML Tag Type Description
1 ModuleName String Specifies the name of the module.
It typically consists of a two letter acronym followed by the
module model code. This module name is also used to name the
files and folders that make up the module support.
1 Description String Appears in the New C Series Module dialog box when adding
a module to a LabVIEW project.

© National Instruments | A-1

Appendix A Module XML

Table A-2. Module Type XML Tags

XML Data
Level XML Tag Type Description

1 VendorID Integer It must match the Vendor ID that is stored in the module
EEPROM. The VendorID is typically specified with a leading
0x to indicate that it is hexadecimal.

1 ProductID Integer It must match the Product ID that is stored in the module
EEPROM. The ProductID is typically specified with a leading
0x to indicate that it is hexadecimal.

1 ModelCode Integer It must match the Module Model code that is stored in the
module EEPROM. The ModelCode is typically specified as
decimal since it corresponds with the model number of the
module.

@ Note When you are prototyping your module support, make the VendorID,
ProductID, and Model Code for your module unique. NI-RIO uses these values to
identify the module and will produce an error if these values are duplicated in other
module support files.

Module Support XML

All of the Module Support XML tags and attributes are either required or optional. If an optional
tag is not present, the default value is used or the particular functionality that the tag specifies is
not included in the module support.

A-2 | nicom

sjuswinJisuj [euolieN @

eV

Table A-3 lists the Module Support XML tags, sections, and attributes.

Table A-3. MDKVersion and DevelopmentMode Tags

XML Required/
Level XML Tag Data Type Optional Description
1 MDK Version Tag String Required Specifies the version of the module development kit used to develop
the module support.
Use the Mdk2Utility GetinstalledMDKVersion.vi
utility located at labview\vi.lib\LabVIEW Targets\
FPGA\cRIO\shared\nicrio_Mdk2Utility to verify the
MDK support version that is installed with the NI-RIO version on your
computer.
1 DevelopmentMode Tag Boolean Optional Specifies what mode (Release or Development) the module appears in

the LabVIEW project.

If this tag is not present, the module support will be in Release mode.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

a4

woo'iu

Table A-4 list the tags, sections, and attributes for the Module section.

Table A-4. Module Section

XML
Level

XML Tag/
Section/Attribute

Type

Required/
Optional

Description

Module Section

Required

Defines the end user APIs of the module.

Each of the items listed in the module section of the XML corresponds to a
LabVIEW project item that appears in the project when the module is added.
Each of these project items can specify what interfaces (I/O, method and
property nodes) can be used with them. The module itself is also a project
item.

Name Attribute

ProjectltemName

Required

Specifies the name of the module.

This must match the module name defined in the ModuleType XML file.

ProjectltemID Tag

Integer

Optional

Specifies the value used by the Module Support VI scripters.

When your Module Support VIs are scripted, one of the inputs to your VI is
the value specified by the ProjectltemId. This identifies what project item
the particular VI is operation on.

SupportedInterfaceList
Section

Optional

Contains a list of interfaces, defined in another part of the XML, that are
available on the module.

For the module, these interfaces can be method or property nodes. I/O nodes
are not supported directly on the module. Each item in the
SupportedInterfaceList is put inside of Interface XML tags.

ResourceVI Section

Optional

Specifies a VI that will be scripted into the FPGA diagram at compile time.

It does not correspond to any API elements that are placed on the block
diagram. Instead, this VI is instantiated once per module in the LabVIEW
project.

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN @

g-v

Table A-4. Module Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
3 Name Attribute Simple Name Required Specifies the name of the VI that will be scripted into the FPGA diagram.
2 ModuleSubltemList — Optional Contains a list of module sub-items.
Section
Modules that have functionality that are not typical I/O can use module
sub-items instead of I/O channels. For example, the NI 9802 uses sub-items
in the LabVIEW project for two SD card slots and the NI 9871 uses
sub-items in the LabVIEW project for two serial ports.
2 ModuleSubltem — Optional Appears in the LabVIEW project under the module item.
Section
3 Name Attribute ProjectltemName Required Specifies the name of the module sub-item that appears in the LabVIEW
project
3 ProjectltemId Tag Integer Optional Specifies the value used by the Module Support VI scripters.
The range for this tag is 0 to 255.
When your Module Support VIs are scripted, one of the inputs to your VI is
the value specified by the ProjectltemId. This is used to identify what
project item the particular VI is operation on.
3 SupportedInterfaceList — Optional Contains a list of interfaces, defined in another part of the XML, that are
Section available on the module sub-item.
For module sub-items, these interfaces can be method or property nodes. /O
nodes are not supported for module sub-items. Each item in the
SupportedInterfaceList is put inside of Interface XML tags.
4 Interface Tag String Optional —

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

9v

woo'iu

Table A-4. Module Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
3 ModuleSubltemlcon SimpleName Optional Specifies the icon used in the project to show the module sub-item.
Tag (-png) . . .

Sample icons are located in the Module SubItem Icons directory.
Click Start»Programs»National Instruments»NI-RIO»CompactRIO»
CompactRIO MDK2»cRIO MDK Examples to open the MDK 2 example
directory.

2 I0ChannelList Section — Optional Contains a list of the I/O channels that will be available on your module.

3 10Channel Section — Optional Appears as an I/O item in the LabVIEW project. Like NI I/O channels, the
1/0 items will be automatically placed into a module folder in the LabVIEW
project when the module is added to the FPGA target.

4 Name Attribute ProjectltemName Required Specifies the name of the I/O channel that appears in the LabVIEW project.

4 ProjectltemId Tag Integer Optional Specifies the value used by the Module Support VI scripters.

The range for this tag is 0 to 255.

When your Module Support VIs are scripted, one of the inputs to your VI is
the value specified by the ProjectltemId. This is used to identify what
project item the particular VI is operation on.

4 SupportedInterfaceList — Optional Contains a list of interfaces, defined in another part of the XML, that are

Section

available on the module.

For I/O channel items, these interfaces can be I/0, method, or property
nodes. Each of these items in the SupportedInterfaceList is put inside of
Interface XML tags.

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN @

LY

Table A-4. Module Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
5 Interface Tag RestrictedString Optional —
5 ParallelDigitallnterface Enumerated Optional Contains interfaces for parallel digital I/O lines.

Tag

The options for this tag are DIO0-DIO7, DI0-DI7, DO0-DO7.

The support for these interfaces is provided by the MDK 2 software. When
using parallel digital I/O lines, you do not need to specify VIs that will get
scripted beneath the I/0 nodes like you do for other interfaces. Each parallel
digital I/O line is put inside ParallelDigitalInterface XML tags.

Table A-5 list the tags, sections, and attributes for the PropertyNodelnterfaceList section.

Table A-5. PropertyNodelnterfaceList Section

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
1 PropertyNodelnterface — — Contains the details for each of the Property Node interfaces that were
List Section specified in the SupportedInterfaceList sections of the project items.
2 Interface Section — — —
3 Name Attribute RestrictedString Required Specifies the name of the property node that is available on the LabVIEW

block diagram.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

8-Y

woo'iu

Table A-5. PropertyNodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
3 DataType Tag Enumerated Required Specifies the data type of the property node.
The options for this tag are 18, U8, 116, U16, 132, U32, and Boolean.
You may also specify a control name in this tag. This control may be a
cluster, array, fixed-point, or any other data type that is allowed in LabVIEW
FPGA. The control name should be specified with the . ct 1 extension, for
example MDK-1234_MyControl.ctl. The control must be located
directly inside of the module support folder and not within a subfolder.
3 Direction Tag Enumerated Required Specifies the direction of the property node. The options for this tag are
Read, Write, BiDirectional.
3 DefaultDirection Tag Enumerated Required Specifies the direction of the node when it is first placed on the block
when the diagram.
direction is . L . .
SN It is not allowed when the direction is Read or Write. The options for the
BiDirectional L .
DefaultDirection are Read and Write.
3 Nodelcon Tag Enumerated Required Specifies the icon that appears in the node on the block diagram.
The options for this tag are Al, AO, DI, DO, DIO, and Port.
3 WriteVIScriptInfo — Required Specifies the Module Support VIs for the property node and how they
Section when the should be connected.
direction of
the property
node is Write
or

BiDirectional

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN @

6-Y

Table A-5. PropertyNodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description

4 Name Attribute SimpleName Required Specifies the name of the WriteVIScriptInfo section.
This name does not appear in the end user API and is only used internally
within the XML file. This name must be unique and not used for any other
VIScriptInfo section.

4 UselnstanceData Tag Boolean Optional Specifies if the instance data terminal will be used on the Module Support
VIs.

5 VIList Section — — Contains a list of Module Support VIs that will be scripted beneath the
property node.
For property nodes, you may only specify one VI in addition to the optional
Error Handling VI.

5 VI Section — — —

6 Name Attribute SimpleName Required Specifies the name of the VI that will be scripted beneath the property node.

.vi
() Specify the VI name with the .vi extension, for example,

MDK-1234_MyVI.vi. The VI must be located directly inside of the
module support folder and not within a subfolder.

6 SequenceOrder Tag Integer Required Specifies where in the sequence of frames this particular VI will appear
when multiple VIs are scripted in sequence beneath the property node.
The range for this tag is 0 to 255.

6 VIHasTerminalConnect Boolean Optional Indicates that this particular VI contains a terminal that will be connected to

ion Tag the input or output terminal of the property node.

This tag is optional, but one and only one VI in the VIList must contain this
tag set to true.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

ol-v

woo'iu

Table A-5. PropertyNodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
6 ErrorHandling Tag Boolean Optional Indicates that this particular VI contains a terminal that will be connected to
the error output of the property node.
To have your property node produce error codes, one and only one VI in the
VIList must contain this tag set to true.
3 ReadVIScriptInfo — Required Specifies the Module Support VIs for the property node and how they
Section when the should be connected.
direction of
the property
node is Read
or
BiDirectional

Table A-6 list the tags, sections, and attributes for the MethodNodelnterfaceList section.

Table A-6. MethodNodelnterfaceList Section

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
1 MethodNodelnterfaceL — — Contains the details for each of the Method Node interfaces that are
ist Section specified in the MethodInterfaceList sections of the project items.
2 Interface Section — — —
3 Name Attribute RestrictedString Required Specifies the name of the method node that is available on the LabVIEW

block diagram.

This name must be unique and not used for any other interface section.

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN ©

bV

Table A-6. MethodNodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
3 MethodNodeTerminalL — Optional Defines the terminals that will be shown on the method node in the
ist Section LabVIEW block diagram.
If this section is not defined, the method node will not have any terminals.
4 MethodNodeTerminal — — —
Section
5 Name Attribute RestrictedString Required Specifies the name of the method node terminal that appears on the
LabVIEW block diagram.
5 DataType Tag Enumerated Required Specifies the data type of the method node.
or The options for this tag are I8, U8, 116, U16, 132, U32, and Boolean.
SimpleName You may also specify a control name in this tag. This control may be a
(.ctl) cluster, array, fixed-point, or any other data type that is allowed in LabVIEW
FPGA. The control name should be specified with the . ct1 extension, for
example MDK-1234_MyControl.ctl. The control must be located
directly inside of the module support folder and not within a subfolder.
5 Direction Tag Enumerated Required Specifies the direction of the method node terminal.
The options for this tag are Read and Write.
5 Required Tag Boolean Optional Specifies the wiring on a Write terminal. This tag can only be used with

Write terminals.

When set to true, the write terminal on the method node must have
something wired to it on the block diagram. When set to false, the write
terminal can be left unconnected and a default value will be used.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

cl-v

woo'iu

Table A-6. MethodNodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
5 TerminalOrder Tag Integer Required Specifies the order in the method node in which the terminal appears. The
order starts with the top most terminal which has a TerminalOrder of zero.
The range for this tag is 0 to 255.
3 Nodelcon Tag Enumerated Required Specifies the icon that appears in the node on the block diagram.
The options for this tag are Al, AO, DI, DO, DIO, and Port.
3 MethodVIScriptInfo — Required Specifies the Module Support VIs for the method node and how they should
Section be connected.
4 Name Attribute SimpleName Required Specifies the name of the MethodVIScriptInfo section.
This name does not appear in the end user API and is only used internally
within the XML file. This name must be unique and not used for any other
VIScriptInfo section.
4 UselnstanceData Tag Boolean Optional Specifies if the instance data terminal will be used on the Module Support
Vis.
5 VIList Section — — Contains a list of Module Support VIs that will be scripted beneath the

method node.

For method nodes, you may only specify one VI in addition to the optional
Error Handling VI.

VI Section

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN ©

eV

Table A-6. MethodNodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
6 Name Attribute SimpleName Required Specifies the name of the VI that will be scripted beneath the method node.
.vi
() Specify the VI name with the .vi extension, for example,
MDK-1234_MyVI.vi. The VI must be located directly inside of the
module support folder and not within a subfolder.
6 SequenceOrder Tag Integer Required Specifies where in the sequence of frames this particular VI will appear
when multiple VIs are scripted in sequence beneath the method node.
The range for this tag is 0 to 255.
6 TerminalConnectionLis — Optional This tag is optional, but if the method node contains any, one and only one
t Section VI in the VIList must contain this section.
7 TerminalConnection — Optional Each terminal of the method node must have a corresponding terminal
Section connection in the TerminalConnectionList.
7 Name Attribute SimpleName Required Specifies the name of the TerminalConnection section.
This name does not appear in the end user API and is only used internally
within the XML file. This name must be unique and not used for any other
TerminalConnection section.
7 NodeTerminalName RestrictedString Required Specifies the node terminal from the MethodNodeTerminalList section that
Tag is being connected.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

145

woo'iu

Table A-6. MethodNodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
7 ConnectorPaneTermina Integer Required Specifies the terminal on the Module Support VI connector pane that is
1 Tag being connected to the terminal of the method node.
The range for this tag is 0 to 255.
6 ErrorHandling Tag Boolean Optional Indicates that this particular VI contains a terminal that will be connected to

the error output of the method node.

To have your method node produce error codes, one and only one VI in the
VIList must contain this tag set to true.

Table A-7 list the tags, sections, and attributes for the IONodelnterfaceList section.

Table A-7. IONodelnterfaceList Section

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
1 IONodelnterfaceList — — Contains the details for each of the I/O Node interfaces that were specified
Section in the IONodelnterfaceList sections of the project items.
2 Interface Section — — —
3 Name Attribute SimpleName Required Specifies the name of the Interface section,

This name does not appear in the end user API. because the I/O nodes inherit
names from the project items that they are associated with. For example, the
1/0 node for the AIO project will be called AIO.

This name is only used internally within the XML file. This name must be
unique and not used for any other Interface sections.

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN ©

Sl-v

Table A-7. IONodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
3 DataType Tag Enumerated Required Specifies the data type of the I/0 node.
or The options for this tag are 18, U8, 116, U16, 132, U32, and Boolean.
SimpleName You may also specify a control name in this tag. This control may be a
(.ctl) cluster, array, fixed-point, or any other data type that is allowed in LabVIEW
FPGA. The control name should be specified with the . ct1 extension, for
example MDK-1234_MyControl.ctl. The control must be located
directly inside of the module support folder and not within a subfolder.
3 Direction Tag Enumerated Required Specifies the direction of the I/O node terminal.
The options for this tag are Read, Write, and BiDirectional.
3 DefaultDirection Tag Enumerated Required Specifies the direction of the node when it is first placed on the block
when the diagram.
direction is
SN It is not allowed when the direction is Read or Write. The options for the
BiDirectional L .
DefaultDirection are Read and Write.
3 Nodelcon Tag Enumerated Required Specifies the icon that appears in the node on the block diagram.
The options for this tag are Al, AO, DI, DO, DIO, and Port.
3 WriteVIScriptInfo — Required Specifies the Module Support VIs for the I/O node and how they should be
Section when the connected.
direction of
the I/0 node
is Write or
BiDirectional

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

9l-v

woo'iu

Table A-7. IONodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
4 Name Attribute SimpleName Required Specifies the name of the WriteVIScriptInfo section.
This name does not appear in the end user API and is only used internally
within the XML file. This name must be unique and not used for any other
VIScriptInfo section.
4 UselnstanceData Tag Boolean Optional Specifies if the instance data terminal will be used on the Module Support
VIs.
5 VIList Section — — Contains a list of Module Support VIs that will be scripted beneath the I/0
node.
For I/O nodes, you can specify multiple Module Support VIs in addition to
the Error Handling VI.
5 VI Section — — —
6 Name Attribute SimpleName Required Specifies the name of the VI that will be scripted beneath the 1/0 node.
.vi
() Specify the VI name with the .vi extension, for example,
MDK-1234_MyVI.vi. The VI must be located directly inside of the
module support folder and not within a subfolder.
6 SequenceOrder Tag Integer Required Specifies where in the sequence of frames this particular VI will appear

when multiple VIs are scripted in sequence beneath the I/O node.

The range for this tag is 0 to 255.

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN ©

L=V

Table A-7. IONodelnterfaceList Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
6 VIScope Tag Enumerated Optional Specifies how many times this VI will be scripted into a grown 1/0 Node.
The options for this tag are NodeScoped and ChannelScoped.
When set to NodeScoped, the VI will only be scripted once beneath the I/O
node no matter how many channels are in the grown node. When set to
ChannelScoped, the VI will be scripted once for each channel in the grown
I/0 node. When the tag is not present, the VI will default to NodeScoped.
6 VIHasTerminalConnect Boolean Optional Indicates that this particular VI contains a terminal that will be connected to
ion Tag the input or output terminal of the I/O node.
This tag is optional, but one and only one VI in the VIList must contain this
tag set to true.
6 ErrorHandling Tag Boolean Optional Indicates that this particular VI contains a terminal that will be connected to
the error output of the I/O node.
To have your I/O node produce error codes, one and only one VI in the
VIList must contain this tag set to true.
3 ReadVIScriptInfo — Required Specifies the Module Support VIs for the I/0 node and how they should be
Section when the connected.
direction of
the I/O node
is Read or
BiDirectional

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

8l-v

woo'iu

Table A-8 list the tags, sections, and attributes for the Merged[ONode VISCriptInfoList section.

Table A-8. MergedlONodeVISCriptinfoList Section

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
1 MergedlONodeVISCri — — Specifies how particular I/O Node interfaces will be merged when different
ptInfoList Section 1/O items are in the same grown I/O node.
2 MergelONodeVIScript — Optional Specifies VIScriptInfos that can be merged together when used in the same
Info Section grown I/0 node.
3 Name Attribute SimpleName Required Specifies the MergedlONodeVIScriptInfo section name.
This name does not appear in the end user API and is only used internally
within the XML file. This name must be unique and not used for any other
MergedIONodeVIScriptInfo section.
3 VIScriptInfoName Tag SimpleName — Two or more VIScriptinfoName tags may appear within the

MergedlONOdeVIScriptInfo section. These names correspond to the names
given to the particular VIScriptInfo (WriteVIScriptInfo, ReadVIScriptInfo)
sections that were listed in the different interfaces.

Table A-9 list the tags, sections, and attributes for the InternalChannelList section.

Table A-9. InternalChannelList Section

Section

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
1 InternalChannelList — Optional Lists the different internal channels that will be used within the Module
Section Support Vs.
2 InternalChannel — Optional Specifies how the internal channel will operate.

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN ©

61-v

Table A-9. InternalChannellList Section (Continued)
XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
3 Name Attribute SimpleName Required Specifies the InternalChannel section name.
This name does not appear in the end user API since internal channels are
hidden when the module is used in Release mode. All internal channel
names must be unique.
3 InternalChannel Type Enumerated Required Specifies which type of functionality the internal channel will have. The
Tag options for this tag are Asynchronous, Blocking, and Occurrence.
3 DataType Tag Enumerated Required Specifies the data type of the internal channel.
when the type . .
is The options for this tag are I8, U8, 116, U16, 132, U32, and Boolean.
Asynchror?ou You may also specify a control name in this tag. This control may be a
s or Blocking | cluster, array, fixed-point, or any other data type that is allowed in LabVIEW
FPGA. The control name should be specified with the . ct1 extension, for
example MDK-1234_MyControl.ctl. The control must be located
directly inside of the module support folder and not within a subfolder.
This tag is optional because the Occurrence internal channel type does not
specify a data type. If you are using the Blocking or Asynchronous internal
channel types, then you must specify a data type.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

02-v

woo'iu

Table A-10 list the tags, sections, and attributes for the ModuleModeDefinition section.

Table A-10. ModuleModeDefinition Section

PulseConfiguration
Section

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
1 ModuleModeDefinition — Required Specifies how the C Series Communication Core will operate in its different
Section modes of operation.
2 NormalOperationMode — Optional This section is optional, but all modules should contain a
Section NormalOperationMode section since this is the mode in which the primary
communication to the module occurs.
3 SPIConfiguration — Optional Reserves the following CompactRIO bus lines for the SPI engine in Normal
Section Operation mode: SPI_CLK, ~SPI_CS, MISO, MOSI. When reserved by the
SPI engine, these lines may not be used for digital I/O in Normal Operation
mode.
This section must be present in order to use the SPI interfaces of the C Series
Communication Core when the module is in Normal Operation mode.
4 SPIHalfTauTicks Tag Integer Required Specifies how wide the SPI Clock 1/27T period is in 25 ns base clock ticks.
The range for this tag is 2 to 65535.
If your module has a SPI Tau of 150 ns, the SPIHalfTauTicks tag will be set
to 3. The 150 ns SPI Clock period will be 6 base clock ticks wide. The SPI
Clock signal must be symmetric, so it will have 3 high ticks and 3 low ticks.
3 Convert — Optional Reserves the ~CONVERT line of the CompactRIO bus for the Convert

Pulse Logic when present.

This section must be present in order to use the Pulse Convert interface of
the C Series Communication Core.

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN ©

lev

Table A-10. ModuleModeDefinition Section (Continued)
XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
4 ConvertPulseWidth Tag Enumerated Required Specifies how long the convert pulse will be.
The options for this tag are Short, Medium, and Long.
These three pulse widths correspond to the convert pulse widths described
in the CompactRIO Module Development Kit Hardware User Manual.
3 DoneWaitConfiguratio — Optional Reserves the ~DONE line of the CompactRIO bus for the Done Wait Logic
n Section when present.
This section must be present in order to use the Wait on Done interface of
the C Series Communication Core.
4 DoneWaitTimeoutTick Integer Required Specifies how long the C Series Communication Core will wait to see the
s Tag ~DONE line as low before completing with a Timed Out error.
The range for this tag is 0 to 4294967294.
This value is specified in units of 25 ns base clock ticks.
3 DigitalLines Section — Optional Lists the digital I/O lines of the CompactRIO bus that will be used by the
Module Support VIs to perform basic DIO.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

(44

woo'iu

Table A-10. ModuleModeDefinition Section (Continued)

XML
Level

XML Tag/
Section/Attribute

Type

Required/
Optional

Description

DIOO to DIO8 Tags

Enumerated

Optional

Specifies the function of the DIOO to DIOS lines.
The options for these tags are:

BiDirectional—The line defaults to an input on module insertion and may
also be used as a digital output.

ConstantOutputHigh—The line defaults to a HIGH output on module
insertion. Digital output operations on this line are ignored.

ConstantOutputLow—The line defaults to a LOW output on module
insertion. Digital output operations on this line are ignored.

InputOnly—The line defaults to an input on module insertion and may not
be used as a digital output.

Unused—The line defaults to an input on module insertion and may not be
used as a digital output.

If a DIO line is reserved by the SPI Engine, Convert Pulse logic or Done
Wait logic, it may not be listed in the DigitalLines section.

If a DIO line is not reserved or specified in the DigitalLines section, it will
default to Unused.

AuxiliaryCommunicati
on Section

Optional

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN ©

€2V

Table A-10

. ModuleModeDefinition Section (Continued)

XML
Level

XML Tag/
Section/Attribute

Type

Required/
Optional

Description

SPIConfiguration
Section

Optional

Reserves the following CompactRIO bus lines for the SPI engine in
Auxiliary mode: SPI_CLK, ~SPI_CS, MISO, MOSI. When reserved by the
SPI engine, these lines may not be used for digital I/O in Auxiliary mode.

This section must be present in order to use the SPI interfaces of the C Series
Communication Core when the module is in Normal Operation mode.

SPIHalfTauTicks Tag

Integer

Required

Specifies how wide the SPI Clock half Tau period is in 25 ns base clock
ticks.

The range for this tag is 2 to 65535.

If your module has a SPI Tau of 150 ns, the SPIHalfTauTicks tag will be set
to 3. The 150 ns SPI Clock period will be 6 base clock ticks wide. The SPI

Clock signal must be symmetric, so it will have 3 high ticks and 3 low ticks.

DigitalLines Section

Optional

Lists the digital I/O lines of the CompactRIO bus that will be used by the
Module Support Vs to perform basic DIO.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

ye-v

woo'iu

Table A-10. ModuleModeDefinition Section (Continued)

XML
Level

XML Tag/
Section/Attribute

Type

Required/
Optional

Description

DIOO to DIO8 Tags

Enumerated

Optional

Specifies the function of the DIOO to DIOS lines.
The options for these tags are:

BiDirectional—The line defaults to an input on module insertion and may
also be used as a digital output.

ConstantOutputHigh—The line defaults to a HIGH output on module
insertion. Digital output operations on this line are ignored.

ConstantOutputLow—The line defaults to a LOW output on module
insertion. Digital output operations on this line are ignored.

InputOnly—The line defaults to an input on module insertion and may not
be used as a digital output.

Unused—The line defaults to an input on module insertion and may not be
used as a digital output.

If a DIO line is reserved by the SPI Engine it may not be listed in the
DigitalLines section. The C Series Specification dictates that the FUNC line
is used to put the module in Auxiliary Communication mode. This means
that the FUNC line is reserved and may not be used as DIO in Auxiliary
mode.

If a DIO line is not reserved or specified in the DigitalLines section, it will
default to Unused.

DigitalLinelnfo Section

Optional

Specifies advanced settings on the DIO interfaces of the C Series
Communication Core.

v xipuaddy

TNX 8INPON

sjuswinJisuj [euolieN ©

gev

Table A-10. ModuleModeDefinition Section (Continued)

XML XML Tag/ Required/
Level Section/Attribute Type Optional Description
3 SCTLOutputSyncRegs — — Specifies how many synchronization registers are placed in the FPGA
Section between the digital output I/O node on the block diagram and the
CompactRIO bus pin.
4 DIOO to DIOS Tags Enumerated Optional Specifies the value that sets the number of output registers for that DIO line.
The options for these tags are 0 and 1.
If a line is not listed in the SCTLOutputSyncRegs section, it will default to
1 sync register.
3 Arbitration Section — — Specifies how the FPGA will arbitrate between multiple digital output I/O
nodes that are placed on the block diagram.
4 DIOO to DIO8 Tags Enumerated Optional Specifies the value that sets the arbitration option for that DIO line.

The options for these tags are NeverArbitrate, AlwaysArbitrate, and
ArbitratelfMultipleRequestorsOnly.

The behavior of each of these arbitration options is identical to the NI 9401.
Refer to the LabVIEW Help for more information on the NI 9401 arbitration
options.

If a line is not listed in the Arbitration section, it will default to
NeverArbitrate.

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

Module Support XML
Example

Use the following XML example for information on important XML tags, sections, and
attributes when creating your Module Support XML.

© National Instruments | B-1

cd

woo'iu

<ModuleSupport> /—| The MDKVersion tag should match what is returned by MDK2Utility_GetInstalledMDKVersion.vi |
<MDKVersion>2 ' 0</MDKVersion> The name attribute of the module should match the ModuleName listed in the ModuelType XML
file. This is what appears in the LabVIEW project.

<Module name= "MDK—I99O2 ">

. [.
<ProjectItemID>99</ProjectItemID>

Every project item (module, subitem, channel) has a ProjectltemID. These numbers should be
unique. This particular valued was selected so that it does not collide with other ProjectltemID
values defined in the XML.

I
<ResourceVI name="MDK-9902_ModuleResource.vi" />

A ResourceV| may be specified for the module. This VI handles all of the communication with
the module and executes different code depending on what API elements in running on the end
user block diagram.

<SupportedInterfaceList>

<Interface>Update Error Status</Interface>]—|

A module can support multiple Method Node and Property Node interfaces.

</SupportedInterfaceList>

<ModuleSubItemList> |

A module may contain one or more Subltems that show up under the module in the LabVIEW
project.

<ModuleSubItem name="Module SubItem 1">

The name attribute of the Subltem is what gets displayed in the LabVIEW project.

<ProjectItemID>101</ProjectItemID>

<SupportedInterfaceList>

The ProjectltemID is used by the Module Support Vs to know which Subltem the API element
is scoped to.

<Interface>Write FIFO</Interface>

<Interface>Read FIFO</Interface>
</SupportedInterfacelList>

Subltems appear in the LabVIEW project under the module. You must define an icon that will be
used to represent the Subltem. Example icons are provided with MDK 2.0.

<ModuleSubItemIcon>MDK-9902_ SubItemIcon.png</ModuleSubItemIcon>

</ModuleSubItem>

<ModuleSubItem name="Module SubItem 2">
<ProjectItemID>102</ProjectItemID>
<SupportedInterfaceList>

A Subltem can have multiple Method Node and Property Node interfaces.

<Interface>Write FIFO</Interface>
<Interface>Read FIFO</Interface>

</SupportedInterfaceList>

<ModuleSubItemIcon>MDK-9902_SubItemIcon.png</ModuleSubItemIcon>

</ModuleSubItem>

</ModuleSubItemList>

g xipuaddy

a|dwex3 X Hoddng ajnpoy

SjUBWINIISU| [BUOHEN ©

€4

A module may contain one or more I/O channels.

<IOChannelList§]

The name attribute of the I/O channel is what appears in the LabVIEW project. When the
module is added to the project, all of the I/O channels are automatically added to a folder in
the project.

I
<IOChannel name="AI0">
<ProjectItemID>0</ProjectItemID>

Because /O channels are typically numbered, it is convenient to align the ProjectltemID to

the channel number. This make mapping between the two easier in the Module Support Vls.

<SupportedInterfacelList>
<Interface>Analog Input Channel</Interface> |

An 1/O channel may support I/O, Method, and Property Node interfaces.

</SupportedInterfaceList>
</IO0Channel>

<IOChannel name="AIl">
<ProjectItemID>1</ProjectItemID>
<SupportedInterfacelList>
<Interface>Analog Input Channel</Interface>
</SupportedInterfaceList>
</IO0Channel>

<IOChannel name="AO0">
<ProjectItemID>2</ProjectItemID>
<SupportedInterfaceList>
<Interface>Analog Output Channel</Interface>
</SupportedInterfacelList>
</IO0Channel>

<IOChannel name="AOl">
<ProjectItemID>3</ProjectItemID>
<SupportedInterfaceList>
<Interface>Analog Output Channel</Interface>
</SupportedInterfacelList>
</IO0Channel>

<IOChannel name="CustomChannel">
<ProjectItemID>4</ProjectItemID>
<SupportedInterfacelList>
<Interface>Custom Channel</Interface>

<Interface>Read and Set Data Value</Interface>

<Interface>Data Value</Interface>
</SupportedInterfacelList>
</IOChannel>

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

-4

woo'iu

<IOChannel name="Parallel DIO"> When a ParallelDigitallnterface is specified on an I/O channel, it directly uses the digital I/O
nodes of the C Series Communication Core. Module Support Vs are not written to handle the

<ProjectItemID>5</ProjectItemID> /O modes for this /O channel.

<SupportedInterfaceList>
<ParallelDigitalInterface>DIO0</ParallelDigitalInterface>
</SupportedInterfaceList>

</IOChannel>
</IOChannelList>
A module may have zero, one, or more internal channels. However, if the module is being used
</Module> in Release mode, the minimum number of internal channels is one.

<InternalChannelList%]

<InternalChannel name="AnalogChannelNumberChan">
<InternalChannelType>Blocking</InternalChannelType>
<DataType>U8</DataType>

</InternalChannel>

<InternalChannel name="AnalogDataChan">
<InternalChannelType>Blocking</InternalChannelType>
<DataType>Ilé6</DataType>

</InternalChannel>

<InternalChannel name="SubItemFIFODataChan">
<InternalChannelType>Blocking</InternalChannelType>

<DataType>Il6</DataType>

</InternalChannel> Modules that support multiple API elements should use a StartNodeChan. This blocking internal

channel is used to ensure that the Module Resource VI executes only one AP element at a
time. The data type of the internal channel is used to indicate what API element is executing.

<InternalChannel name="StartNodeChan" >
<InternalChanne1Type>Blocking</InternalChannelType§1
<DataType>MDKf9902_Node0perationType.ctl</DataType2J
</InternalChannel>

<InternalChannel name="ChannelListChan">
<InternalChannelType>Blocking</InternalChannelType>
<DataType>U8</DataType>

</InternalChannel>

g xipuaddy

a|dwex3 X Hoddng ajnpoy

SjUBWINIISU| [BUOHEN ©

-9

<InternalChannel name="OccurrenceChan">
<InternalChannelType>Occurrence</InternalChannel Type>
</InternalChannel>

<InternalChannel name="ModuleErrorChan">
<InternalChannelType>Asynchronous</InternalChannelType>

<DataType>MDK-9902_ErrorChan.ctl</DataType>
</InternalChannel> L I A custom data type may be specified for internal channels.

<InternalChannel name="CustomChannelDataChan">
<InternalChannelType>Asynchronous</InternalChannelType>
<DataType>I32</DataType>

</InternalChannel>

for the 1/O channels.

</InternalChannellList> /_I The IONodelnterfaceList contains information about the 1/0O Node interfaces that were specified

<IONodeInterfaceList>]
| The name attribute of an I/0O Node interface is only used within the XML file. It does not appear
| in the LabVIEW project or on the block diagram.

[
<Interface name="Analog Input Channel">

<DataType>Il6</DataType> | An 1/0 node may be Read, Write, or BiDirectional. The value of the direction determines the
<Direction>Read</Direction> | types of ViScriptinfo that are defined for the interface.

<NodeIcon>AI</NodeIcon>

The ReadVIScriptinfo section of the XML must be specified for this I/O node because it is a

<ReadVIScriptInfo name="AIChanVIScriptInfo" >H Road 110 Node.

<UseInstanceData>true</UseInstanceData> The name attribute of the VIScriptinfo is only used within the XML file. It does not appear in the
LabVIEW project or on the block diagram.

<VIList>

<VI name="MDK-9902_AnalogIONodeReserve.vi"> [Because this I/O node specifies multiple Vls, the SequenceOrder tag must be used to
<SequenceOrder>0</SequenceOrder> | determine the order of execution.

<VIScope>NodeScoped</VIScope>
</VI>

<VI name="MDK-9902_AnalogInputNodeCreateChannelList.vi">

<SequenceOrder>1</SequenceOrder> [

Channel Scoped I/0 Node Vls are scripted for each channel in a grown I/O node.

<VIScope>ChannelScoped</VISc L
</VI>

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

9-d

woo'iu

<VI name="MDK-9902_AnalogIONodeSendChannelList.vi">
<SequenceOrder>2</SequenceOrder>
<VIScope>NodeScoped</VIScope>

</VI>

Node Scoped I/O Node Vls are scripted once for the entire node on the block diagram.

<VI name="MDK-9902_AnalogIONodeGetInputData.vi">
<SequenceOrder>3</SequenceOrder>
<VIScope>ChannelScoped</VIScope>
<VIHasTerminalConnection>true</VIHasTerminalConnection>
</VI>

<VI name="MDK-9902_AnalogIONodeError.vi">
<SequenceOrder>4</SequenceOrder>
<ErrorHandling>true</ErrorHandling>
</VI>

</VIList>
</ReadVIScriptInfo>
</Interface>

<Interface name="Analog Output Channel">
<DataType>Il6</DataType>
<Direction>Write</Direction>
<NodeIcon>AI</NodeIcon>

The Nodelcon tag specifies the type of icon that appears in the I/O node on the block diagram. |

<WriteVIScriptInfo name="AOChanvVIScriptInfo">

I [The UselnstanceData tag allows you to have an Instance Data wire scripted between the Vls in
<UselInstanceData>true</UseInstanceData> |mesmmeme

<VIList>

<VI name="MDK-9902_AnalogIONodeReserve.vi">
<SequenceOrder>0</SequenceOrder>
<VIScope>NodeScoped</VIScope>

</VI>

<VI name="MDK-9902_AnalogOutputNodeCreateChannelList.vi">
<SequenceOrder>1</SequenceOrder> One and only one VI in the ViList must have the VIHasTerminalConnection tag set to true. This
<VIScope>ChannelScoped</VIScope> VI will only contain the signal that is wired to the terminal of the I/0O node.
<VIHasTerminalConnection>true</VIHasTerminalConnection>

</VI>

g xipuaddy

a|dwex3 X Hoddng ajnpoy

sjuswinJisuj [euolieN @

/-9

<VI name="MDK-9902_AnalogIONodeSendChannellList.vi">
<SequenceOrder>2</SequenceOrder>
<VIScope>NodeScoped</VIScope>

</VI>

<VI name="MDK-9902_AnalogIONodeOutputEmpty.vi">
<SequenceOrder>3</SequenceOrder>
<VIScope>ChannelScoped</VIScope>

</VI>

<VI name="MDK-9902_AnalogIONodeError.vi">

<SequenceOrder>4</SequenceOrder> [AViList can specify one VI that is used for error handling. This VI will contain a signal that is
<ErrorHandling>true</ErrorHandling> | wired to the error out terminal of the I/O node.

</VI>

</VIList>
</WriteVIScriptInfo>
</Interface>

<Interface name="Custom Channel">
<DataType>MDK-9902_CustomChannel .ctl</DataType>

1 An 1/0 channel can specify a custom datatype.

<Direction>Read</Direction>
<NodeIcon>AI</NodeIcon>

<ReadVIScriptInfo name="CustomChannelReadVIScriptInfo">
<VIList>

<VI name="MDK-9902_CustomChannelIONode.vi">
<SequenceOrder>0</SequenceOrder>
<VIScope>ChannelScoped</VIScope>
<VIHasTerminalConnection>true</VIHasTerminalConnection>
</VI>

<VI name="MDK-9902_GeneralNodeError.vi">
<SequenceOrder>1</SequenceOrder>
<ErrorHandling>true</ErrorHandling>
</VI>

</VIList>
</ReadVIScriptInfo>

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

8-d

woo'iu

</Interface>

. - | The MethodNodelnterfaceList contains information about the Method Node interfaces that
</IONodelInterfaceLis t>—l | were specified for the module, module Subltems, and I/O channels.

<MethodNodeInterfaceList>

| The name attributes of the Method Node interface is shown in the method node on the
| LabVIEW block diagram.

I
<Interface name="Update Error Status">

<MethodNodeTerminalList>

The name attribute of the MethodNodeTerminal is shown in the method node on the LabVIEW
<MethodNodeTerminal name="Error Status"> block diagram.
<DataType>Boolean</DataType>
<Direction>Write</Direction> [The TerminalOrder determines the placement of the terminal in the method node on the ‘
<TerminalOrder>0</TerminalOrder> | LabVIEW block diagram.

</MethodNodeTerminal>

<MethodNodeTerminal name="Error Code">
<DataType>I32</DataType>
<Direction>Write</Direction>
<TerminalOrder>1</TerminalOrder>

</MethodNodeTerminal>

I The direction specifies whether the terminal is into or out of the method node. |

</MethodNodeTerminalList>
<NodeIcon>AI</NodeIcon>
<MethodVIScriptInfo name="ModuleMethodScriptInfo">

<VIList>

<VI name="MDK-9902_ModuleMethod.vi">
<SequenceOrder>0</SequenceOrder>

The TerminalConnectionList maps the MethodNodeTerminalList to the terminals of the Method
Node subVI.

The name attribute of the TerminalConnection is only used within the XML file. It does not ‘

<TerminalConnectionList> appear on the LabVIEW block diagram.

<TerminalConnection name="FirstConnection">
<NodeTerminalName>Error Status</NodeTerminalName>
<ConnectorPaneTerminal>0</ConnectorPaneTerminal>
</TerminalConnection>

g xipuaddy

a|dwex3 X Hoddng ajnpoy

SjUBWINIISU| [BUOHEN ©

6-9

<TerminalConnection name="SecondConnection">
<NodeTerminalName>Error Code</NodeTerminalName>
<ConnectorPaneTerminal>5</ConnectorPaneTerminal>

</TerminalConnection> The ConnectorPaneTerminal specifies the terminal number of the Method Node subVI that will
be connected to that particular terminal of the method node.

</TerminalConnectionList>
</VI>
<VI name:"MDK—9902_GeneralNoﬂeError.vi">
<SequenceOrder>1</SequenceOrder>
<ErrorHandling>true</ErrorHandling>
</VI>
</VIList>
</MethodVIScriptInfo>
</Interface>
<Interface name="Write FIFO">
<MethodNodeTerminalList>
<MethodNodeTerminal name="Write Data">
<DataType>Il6</DataType>
<Direction>Write</Direction>
<TerminalOrder>0</TerminalOrder>
</MethodNodeTerminal>
</MethodNodeTerminallList>
<NodeIcon>AI</NodeIcon>
<MethodvIScriptInfo name="SubItemWriteMethodScriptInfo">
<VIList>

<VI name="MDK-9902_SubItemWriteMethod.vi">
<SequenceOrder>0</SequenceOrder>

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

ol-g

woo'iu

<TerminalConnectionList>
<TerminalConnection name="FirstConnection">
<NodeTerminalName>Write Data</NodeTerminalName>
<ConnectorPaneTerminal>0</ConnectorPaneTerminal>
</TerminalConnection>
</TerminalConnectionList>
</VI>
<VI name="MDK-9902_GeneralNodeError.vi">
<SequenceOrder>7</SequenceOrder>
<ErrorHandling>true</ErrorHandling>
</VI>
</VIList>
</MethodvIScriptInfo>
</Interface>
<Interface name="Read FIFO">
<MethodNodeTerminalList>
<MethodNodeTerminal name="Read Data">
<DataType>Il6</DataType>
<Direction>Read</Direction>
<TerminalOrder>0</TerminalOrder>
</MethodNodeTerminal>
</MethodNodeTerminalList>
<NodeIcon>AI</NodeIcon>
<MethodVIScriptInfo name="SubItemReadMethodScriptInfo">
<VIList>

<VI name="MDK-9902_SubItemReadMethod.vi">
<SequenceOrder>0</SequenceOrder>

<TerminalConnectionList>

g xipuaddy

a|dwex3 X Hoddng ajnpoy

sjuswniisu| [euolieN ©

Li-9

<TerminalConnection name="FirstConnection">
<NodeTerminalName>Read Data</NodeTerminalName>
<ConnectorPaneTerminal>4</ConnectorPaneTerminal>
</TerminalConnection>

</TerminalConnectionList>

</VI>

<VI name="MDK-9902_GeneralNodeError.vi">
<SequenceOrder>7</SequenceOrder>
<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>
</MethodVIScriptInfo>

</Interface>

<Interface name="Read and Set Data Value">

Method nodes can have zero, one, or multiple terminals.

<MethodNodeTerminalList>

<MethodNodeTerminal name="New Data Value">
<DataType>I32</DataType>
<Direction>Write</Direction>
<TerminalOrder>0</TerminalOrder>

</MethodNodeTerminal>

<MethodNodeTerminal name="Previous Data Value">
<DataType>I32</DataType>
<Direction>Read</Direction>
<TerminalOrder>1</TerminalOrder>
</MethodNodeTerminal>

</MethodNodeTerminallList>
<NodeIcon>AI</NodeIcon>
<MethodVIScriptInfo name="CustomChannelMethodScriptInfo">

<VIList>

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

cl-g

woo'iu

<VI name="MDK-9902_CustomChannelMethod.vi">
<SequenceOrder>0</SequenceOrder>

<TerminalConnectionList>

<TerminalConnection name="FirstConnection">
<NodeTerminalName>New Data Value</NodeTerminalName>
<ConnectorPaneTerminal>0</ConnectorPaneTerminal>
</TerminalConnection>

<TerminalConnection name="SecondConnection">
<NodeTerminalName>Previous Data Value</NodeTerminalName>
<ConnectorPaneTerminal>4</ConnectorPaneTerminal>
</TerminalConnection>

</TerminalConnectionList>
</VI>
<VI name="MDK-9902_GeneralNodeError.vi">

<SequenceOrder>1</SequenceOrder>
<ErrorHandling>true</ErrorHandling>

</VI>
</VIList>
</MethodVIScriptInfo>
</Interface>
The PropertyNodelnterfaceList contains information about the property node interfaces
</MethodNodeInterfaceList> that were specified for the module, module Subltems, and 1/O channels.

<PropertyNodeInterfaceList>]
| The name attribute of the Property Node interface is shown in the property node on the

| LabVIEW block diagram.

[
<Interface name="Data Value">

A property node can be Read, Write, or BiDirectional.
<DataType>I32</DataType>

. . . . T . v o+
<Direction>BiDirectional</Direction> |

When the direction is BiDirectional, the DefaultDirection tag must be specified.

<DefaultDirection>Read</DefaultDirect ion> 1

<NodeIcon>AI</Nodelcon> | Read and BiDirectional property nodes must specify ReadVIScriptinfo.

<ReadVIScriptInfo name="CustomChannelReadPropVIInfo" >]

g xipuaddy

a|dwex3 X Hoddng ajnpoy

sjuswniisu| [euolieN ©

€l-g

<VIList>

<VI name="MDK-9902_CustomChannelReadProperty.vi">
<SequenceOrder>0</SequenceOrder>
<VIHasTerminalConnection>true</VIHasTerminalConnection>
</VI>

<VI name="MDK-9902_GeneralNodeError.vi">
<SequenceOrder>7</SequenceOrder>
<ErrorHandling>true</ErrorHandling>
</VI>

</VIList>

</ReadVIScriptInfo>

Write and BiDirectional Property Nodes must specify WriteVIScripInfo.

<WriteVIScriptInfo name:"CustomChannelWritePropVIInfo"%]
<VIList>
<VI name="MDK-9902_CustomChannelWriteProperty.vi">
<SequenceOrder>0</SequenceOrder>
<VIHasTerminalConnection>true</VIHasTerminalConnection>
</VI>
<VI name="MDK-9902_GeneralNodeError.vi">
<SequenceOrder>7</SequenceOrder>
<ErrorHandling>true</ErrorHandling>
</VI>
</VIList>
</WriteVIScriptInfo>

</Interface>

</PropertyNodeInterfaceList>

The name attribute of the MergedlONodeVIScriptinfo is only used within the XML file.

<MergedIONodeVIScriptInfoList>

<MergedIONodeVIScriptInfo name="AnalogMergedVIScriptInfo">

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

yi-g

woo'iu

<VIScriptInfoName>AIChanVIScriptInfo</VIScriptInfoName>]

<VIScriptInfoName>AOChanVIScriptInfo< /VIScriptInfoNameﬂ

</MergedIONodeVIScriptInfo>
</MergedIONodeVIScriptInfoList>

>l

The MergedlONodeVIScriptinfo contains multiple VIScriptinfoName tags. These tags refer
to the name attribute that was set on the VIScriptinfo sections of the I/O node interfaces. All
VIScriptinfo tags listed here must be compatible.

<ModuleModeDefinition> |

The ModuleModeDefinition section contains information about the module hardware and what ‘

<NormalOperationMode>]

S|

l
[modes it supports.
[
[

Defining the NormalOperationMode section in the XML enables that mode for the module. l

<SPIConfiguration> |
<SPIHalfTauTicks>10</SPIHalfTauTicks>
</SPIConfiguration>

=1

{ Defining the SPIConfiguration section in the XML enables SPI for that mode for the module. l

<ConvertPulseConfiguration> }
<ConvertPulseWidth>Long</ConvertPulseWidth>

l Defining the ConvertPulseConfiguration section in the XML enables the Pulse Convert Method
[Node of the Timing interface for that mode for the module.

Node of the Timing interface for that mode for the module.

</ConvertPulseConfiguration> — - - - - -
/_‘ Defining the DoneWaitConfiguration section of the XML enables the Wait on Done Method ‘

>l

<DoneWaitConfiguration> |

<DoneWaitTimeoutTicks>500</DoneWaitTimeoutTicks>

</DoneWaitConfiguration>

1

All DIO lines that are not reserved by the functions that are enabled by that mode are not

<DigitalLines> |
<DIOO0>BiDirectional</DIO0>
<DIOl1>Unused</DIO1>

</DigitalLines>

</NormalOperationMode>

available for DIO by default. The DigitalLines section is used to specify functionality of DIO
lines in that mode.

[Defining the AuxiliaryCommunicationMode section in the XML enables that mode for the

<AuxiliaryCommunicationMode> |

<SPIConfiguration>
<SPIHalfTauTicks>15</SPIHalfTauTicks>
</SPIConfiguration>

<DigitalLines>
<DIO0>OutputOnly</DIO0>
<DIO1>InputOnly</DIO1>
<DIO2>ConstantOutputHigh</DIO2>
<DIO3>ConstantOutputLow</DIO3>
</DigitallLines>

| module.

g xipuaddy

a|dwex3 X Hoddng ajnpoy

sjuswniisu| [euolieN ©

si-g

</AuxiliaryCommunicationMode>

<DigitalLineInfo>

<SCTLOutputSyncRegs> |
<DIO0>1</DIO0>
<DIO1>0</DIO1>
<DI02>1</DI02>
<DIO3>0</DI0O3>

</SCTLOutputSyncRegs>

<Arbitration>}

The SCTLOutputSyncRegs section is used to specify whether or not a sync register is placed
on the output of a DO line when used inside of an SCTL. This section is optional and all lines
default to one sync register when the section is omitted.

<DIOO>NeverArbitrate</DIO0>
<DIOl1>AlwaysArbitrate</DIO1>

The Arbitration section is used to specify the arbitration option that is used when multiple DO
nodes are placed on the LabVIEW block diagram. This section is optional and all lines default
to NeverArbitrate when the section is omitted.

<DIO2>ArbitrateIfMultipleRequestorsOnly</DI0O2>

<DIO3>NeverArbitrate</DIO3>
<DIO4>NeverArbitrate</DIO4>
<DIO5>NeverArbitrate</DIO5>
<DIO6>NeverArbitrate</DIO6>
<DIO7>NeverArbitrate</DIO7>
<DIO8>NeverArbitrate</DIO8>
<DIOPort>NeverArbitrate</DIOPort>
</Arbitration>

</DigitallLineInfo>

</ModuleModeDefinition>

</ModuleSupport>

Jenuely a1emyos 1y uswdojeasg anpol Olyioedwo)

Using MDK with cRIO-904x
Controllers

cRI0O-904x Controllers

cRIO-904x is a new family of controllers that support different program modes on a slot by slot
basis. The program modes include Real-Time (DAQmx), Real-Time Scan (RSI), and LabVIEW
FPGA (FPGA I/0 Nodes).

MDK only operates in LabVIEW FPGA mode. If a module occupies a slot that is not configured
for LabVIEW FPGA, you will not be able to interact with that module using MDK.

MDK 1.5

cRIO-904x controllers support MDK 1.5. Behavior for MDK 1.5 differs between cRIO-904x
controllers and non-904x controllers. For more information on using MDK 1.5 with cRIO-904x
controllers, refer to the cRIO Module Developers Kit board at forums.ni . com.

MDK 2

cRIO-904x controllers support MDK 2. NI-RIO 17.6 releases with MDK 2.1 which enables
MDK 2 module support on cRIO-904x targets. If you do not upgrade module support from
MDK 2.0 to MDK 2.1, your module will not work on cR10-904x targets. However, your module
will continue to work on non-904x targets. Refer to the following sections for behavioral
differences between MDK 2.0 and MDK 2.1 and for behavioral differences between cRIO-904x
targets and non-904x targets.

Differences between MDK 2.0 and MDK 2.1

The C Series Communication Core MDK API contains a Check Module Status method node

which outputs an enum indicating the current status of the module. The previous values of this
enum were Unknown, Correct, Incorrect, No Module, and Invalid. Module support VIs may
use this node in the module resource VI or may use the wrapper VI from the MDK API palette.

The Check Module Status node has been updated for MDK 2.1 to output the new Incorrect
Program Mode value. This value will appear when the program mode for a slot is not
configured for LabVIEW FPGA. The Incorrect Program Mode value will never appear on
non-904x targets.

© National Instruments | C-1

https://forums.ni.com/t5/cRIO-Module-Developers-Kit/bd-p/private5

Appendix C Using MDK with cRIO-904x Controllers

Pre-existing module support will show a deprecated version of the module status enum in
NI-RIO 17.6. The wrapper VI from the MDK API palette will have a red line through the VI
icon to indicate the VI is deprecated.

Using MDK 2 on cRIO-904x Controllers

The C Series Communication Core in MDK 2 exhibits different behavior between cRIO-904x
targets and non-904x targets. Refer to the following sections for more information on using
MDK 2 with cRIO-904x targets.

Delayed Output Enable Direction Change

Output Enable changes require a typical delay of 500 ns. In rare cases, changes could require a
maximum delay of 1.75 ps. This affects the amount of time Set Output Enable method nodes and
Change Mode commands will take to complete. If your module relies on either of those
operations to complete within a fixed amount of time, you may encounter issues.

Loss of Direct Control of ID Select Line

You cannot control the ~ID_SELECT line through LabVIEW FPGA. You can read the status of
the ~ID_SELECT line using the Debug Register in Development Mode. Reading the
~ID_SELECT line status on the Debug Register requires a typical delay of 500 ns. In rare cases,
reading the status could require a maximum delay of 1.75 ps. If your module relies on reading
~ID_SELECT line within a fixed amount of time, try adding delays to the MDK Vls.

Tighter Timing Constraints

Tighter I/O timing constraints may cause failure in some modules that currently meet timing
requirements. NI expects developers to redo timing analysis with the new constraints and make
necessary changes. Module support tested on cabled expansion chassis should continue to work
on the new controllers.

Increased size of I/O Node on a per slot basis

All I/O Nodes increase by a constant adder of approximately 1.0% of a Series 7 Kintex 70T
(XC7K70T) on a slot by slot basis. If all eight slots use MDK, the available FPGA space could
reduce by approximately 10%. A VI using over 90% of the LUTs on a cRIO-9035 may fail
compilation on a 904x target with an equivalent FPGA due to the increased complexity of the
I/O Node.

Module Insertion and Removal

The C Series Communication Core will take longer to respond to module insertion and removal
events. When a module is removed from the chassis, the C Series Communication Core could
take up to half a second to report the module status as No Module. This may result in invalid
data being returned to the user during this time.

C-2 | ni.com

CompactRIO Module Development Kit Software Manual

Upgrading Module Support

Follow these steps to upgrade MDK support from 2.0 to 2.1:

1.
2.

Update the MDK version tag in the Module Support XML file to 2. 1.
Regenerate the Development Mode export of your module using the Module Support
Export utility.

Replace any instances of the deprecated Module Status wrapper VI with the new VI, which
can be found in the MDK API palette.

Note If the VIis inside a SCTL, make sure to use the SCTL version of the new

Module Status VI instead.

Note Replace instances of the deprecated Check Module Status method node with

the new method node if you are not using the Module Status VI from the MDK API
palette to read the module status.

Update your module support VIs to handle the Incorrect Program Mode module status.

Note NI recommends handling the Incorrect Program Mode status the same as

the No Module status. However, if your module resource VI generates error codes,
it should output error code 65673 rather than 65536 when the status is Incorrect
Program Mode. For an example, examine MDK-9901_ModuleResource.vi of
the MDK-9901 shipping example from the CompactRIO MDK installer.

Validate that the module works in Development Mode on a cRIO-904x target and a
non-904x target.

Regenerate the Release Mode export of your module using the Module Support Export
utility.

Validate that the module works in Release Mode on both a cRIO-904x target and a
non-904x target.

Verify that you are not running into timing issues on the new target.

Ship your new module support. The new support will retain compatability with all other
chassis, but will not work in CompactRIO Device Drivers versions prior to 17.6.

© National Instruments | C-3

NI Services

NI provides global services and support as part of our commitment to your success. Take
advantage of product services in addition to training and certification programs that meet your
needs during each phase of the application life cycle; from planning and development through
deployment and ongoing maintenance.

To get started, register your product at ni . com/myproducts.

As a registered NI product user, you are entitled to the following benefits:
* Access to applicable product services.
* Easier product management with an online account.

* Receive critical part notifications, software updates, and service expirations.

Log in to your MyNI user profile to get personalized access to your services.

Services and Resources

* Maintenance and Hardware Services—NI helps you identify your systems’ accuracy and
reliability requirements and provides warranty, sparing, and calibration services to help you
maintain accuracy and minimize downtime over the life of your system. Visit ni . com/
services for more information.

— Warranty and Repair—All NI hardware features a one-year standard warranty that
is extendable up to five years. NI offers repair services performed in a timely manner
by highly trained factory technicians using only original parts at an NI service center.

— Calibration—Through regular calibration, you can quantify and improve the
measurement performance of an instrument. NI provides state-of-the-art calibration
services. If your product supports calibration, you can obtain the calibration certificate
for your product at ni . com/calibration.

* System Integration—If you have time constraints, limited in-house technical resources, or
other project challenges, National Instruments Alliance Partner members can help. To learn
more, call your local NI office or visit ni.com/alliance.

© National Instruments | D-1

http://www.ni.com/myproducts
http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/calibration
http://www.ni.com/alliance

Appendix D NI Services

For information about other technical support options in your area, visit ni .com/services,

Training and Certification—The NI training and certification program is the most
effective way to increase application development proficiency and productivity. Visit
ni.com/training for more information.

— The Skills Guide assists you in identifying the proficiency requirements of your
current application and gives you options for obtaining those skills consistent with
your time and budget constraints and personal learning preferences. Visit ni . com/
skills-guide to see these custom paths.

— NI offers courses in several languages and formats including instructor-led classes at
facilities worldwide, courses on-site at your facility, and online courses to serve your

individual needs.

Technical Support—Support at ni . com/support includes the following resources:

— Self-Help Technical Resources—Visit ni . com/support for software drivers and
updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting

wizards, thousands of example programs, tutorials, application notes, instrument

drivers, and so on. Registered users also receive access to the NI Discussion Forums
atni.com/forums. NI Applications Engineers make sure every question submitted

online receives an answer.

— Software Support Service Membership—The Standard Service Program (SSP) is a

renewable one-year subscription included with almost every NI software product,
including NI Developer Suite. This program entitles members to direct access to

NI Applications Engineers through phone and email for one-to-one technical support,

as well as exclusive access to online training modules at ni . com/
self-paced-training. NI also offers flexible extended contract options that

guarantee your SSP benefits are available without interruption for as long as you need

them. Visit ni . com/ssp for more information.

Declaration of Conformity (DoC)—A DoC is our claim of compliance with the Council

of the European Communities using the manufacturer’s declaration of conformity. This
system affords the user protection for electromagnetic compatibility (EMC) and product
safety. You can obtain the DoC for your product by visiting ni.com/certification.

or contact your local office at ni . com/contact.

You also can visit the Worldwide Offices section of ni . com/niglobal to access the branch

office websites, which provide up-to-date contact information, support phone numbers, email
addresses, and current events.

D-2

| ni.com

http://www.ni.com/training
http://www.ni.com/skills-guide
http://www.ni.com/skills-guide
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/self-paced-training
http://www.ni.com/ssp
http://www.ni.com/certification
http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/niglobal

	NI cRIO-9951 CompactRIO Module Development Kit User Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Legal Information
	Limited Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	U.S. Government Restricted Rights
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Required Software
	Related Documentation

	Chapter 1 CompactRIO Module Development Kit 2 Software Overview
	Figure 1-1. MDK 2 Software Layers
	Block Diagram
	Figure 1-2. MDK 2 Implementation

	Designing the Module API
	LabVIEW FPGA API Elements
	I/O Channel
	Module Sub-Item
	I/O Node
	Property Node
	Method Node

	Recommended API Elements
	Creating Parallel DIO API Elements

	Development Mode versus Release Mode
	Figure 1-3. Opening a Development Mode Project in Release Mode
	Figure 1-4. Opening a Release Mode Project in Development Mode

	MDK and NI-RIO Versions

	Chapter 2 Module XML Files
	Module Type XML File
	Module Support XML File
	Module Name
	Figure 2-1. Model Name Format

	Chapter 3 C Series Communication Core
	Using the C Series Communication Core
	Figure 3-1. MDK API and MDK SCTL API Palettes
	Adding the MDK API Palette

	I/O References Cluster
	Figure 3-2. I/O References Cluster

	C Series Communication Core MDK API
	Command Interface
	Command VI
	Identify Module VI
	Change Mode VI
	Table 3-1. Change Mode Options
	Read EEPROM VI
	Write EEPROM VI
	SPI Start VI
	SPI Byte VI

	SPI End VI
	Advanced Commands

	Timing Interface
	Pulse Convert VI
	Wait on Done VI
	Wait Base Clock Ticks VI

	Status Interface
	Module Status VI
	Table 3-2. Module Statuses

	Configuration Interface
	Configuration Register VI
	Table 3-3. Configuration Register Map

	Debug Interface
	Debug Register VI
	Table 3-4. Debug Register Map

	C Series Communication Core MDK SCTL API
	C Series Communication Interfaces (SCTL)
	Figure 3-3. Selecting Method Nodes
	Figure 3-4. SCTL Method Node
	Command (SCTL) VI
	Module Status (SCTL) VI
	Pulse Convert (SCTL) VI
	Wait on Done (SCTL) VI
	Wait Base Clock Ticks (SCTL) VI
	Configuration Register (SCTL) VI
	Debug Register (SCTL) VI

	Using VIs Outside and Inside of the SCTL
	Digital I/O
	Digital Input and Output Interfaces
	Digital Input I/O Node
	Digital Output I/O Node
	Set Output Enable Method Node
	Figure 3-5. SPI Clock Timing

	Using SPI_CLK as a Digital Line (DIO 8)
	Reserved Digital Lines
	~ID_SELECT
	~CONVERT
	~DONE
	~SPI_CS, SPI_CLK, MOSI, MISO
	SPI_FUNC

	Using the Wait Base Clock Ticks Method
	Module Status Behavior
	Internal Errors
	Table 3-5. Internal Errors

	Module Mode Details
	Supported Modes
	Mode Transitions

	Chapter 4 Internal Channels
	Figure 4-1. Using Internal Channels
	Figure 4-2. LabVIEW Arbiters Handling Multiple Accesses
	Internal Channel Types
	Asynchronous Internal Channel
	Blocking Internal Channel
	Occurrence Internal Channel

	Data Types

	Chapter 5 Development and Export Process
	Internal Support Development Process
	Module Support Files
	Module Type XML
	Module Support XML

	Module Specific I/O References Control
	Figure 5-1. Module Specific I/O Reference Cluster

	Validating the Internal Module Support
	Using the Internal Module Support
	Figure 5-2. Internal Module Support LabVIEW Project

	Deployable Support Development Process
	Export Utility
	Exclude from Export
	Development Mode Export
	Release Mode Export
	Module Support VI Tagging
	Using the Deployable Module Support
	Figure 5-3. Release Mode Export

	Shipping the Deployable Module Support

	Chapter 6 Modules Support VIs
	Viewing Terminal Numbers in the Context Help
	Figure 6-1. VI Terminal Numbers in the Context Help

	Module Resource VI
	Figure 6-2. Hidden Module Resource VI
	Module Resource VI Connector Pane
	Figure 6-3. Occurrence Reference and I/O References Cluster

	Handling API Element Operations
	Figure 6-4. Internal Channel Write
	Figure 6-5. Module Resource VI

	Stopping the Module Resource VI
	Figure 6-6. LabVIEW Code

	Node VIs
	Figure 6-7. Method Node
	Figure 6-8. Method Node without Error Handling
	Method and Property Node VIs
	Method and Property Node VI Terminals
	Inside Method and Property Node VIs
	Figure 6-9. Internal Channels

	Error Handling VI
	Error Handling VI Terminals

	I/O Node VIs
	Figure 6-10. Node VIs Being Scripted into the Grown I/O Node
	Node Scoped I/O Node VI Terminals
	Channel Scoped I/O Node VI Terminals

	Merged I/O Node VIScriptInfo (Advanced)
	Figure 6-11. DI and DO from Same Module Scripted Separately
	Figure 6-12. DI and DO from Same Module Scripted Together

	Error Codes
	Creating Custom Error Code Files

	Chapter 7 Modules Support VI Best Practices
	Error Terminals on Interface Method Nodes
	Changing Interfaces
	Using Channel Scoped VIs to Create a Channel List
	Figure 7-1. Channel Scoped VIs ORed Together
	Figure 7-2. Setting a Bit in the Instance Data Out
	Figure 7-3. Sending the Channel List to the Module Resource VI

	Using the Module Status

	Chapter 8 Module Manufacturing
	Chapter 9 Using the MDK 2 Examples
	Module SubItem Icons
	Module Support Development
	Release Mode Projects
	MDK 2 Example Modules
	MDK-MFG
	MDK-9901
	MDK-9902
	MDK-9903

	Appendix A Module XML
	Table A-1. XML Data Types
	Table A-2. Module Type XML Tags
	Table A-3. MDKVersion and DevelopmentMode Tags
	Table A-4. Module Section
	Table A-5. PropertyNodeInterfaceList Section
	Table A-6. MethodNodeInterfaceList Section
	Table A-7. IONodeInterfaceList Section
	Table A-8. MergedIONodeVISCriptInfoList Section
	Table A-9. InternalChannelList Section
	Table A-10. ModuleModeDefinition Section

	Appendix B Module Support XML Example
	Appendix C Using MDK with cRIO-904x Controllers
	Appendix D NI Services

