
 
 NI-9802

https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9802?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9802?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9802?aw_referrer=pdf


NI cRIO-9951

CompactRIO
TM

 Module Development Kit User Manual

Software User Manual

CompactRIO Module Development Kit Software Manual

November 2017

375951B-01



Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office websites, which provide up-to-date 

contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on NI 

documentation, refer to the NI website at ni.com/info and enter the Info Code feedback.

© 2011–2017 National Instruments. All rights reserved.

http://ni.com
http://ni.com/niglobal
http://ni.com/info


Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version, 
refer to ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS 
OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND 
SHALL NOT BE LIABLE FOR ANY ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to 
substantially conform to the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially 
in accordance with the applicable documentation provided with the software and (ii) the software media will be free from 
defects in materials and workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair 
or replace the affected product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be 
warranted for the remainder of the original warranty period or ninety (90) days, whichever is longer. If NI elects to repair or 
replace the product, NI may use new or refurbished parts or products that are equivalent to new in performance and reliability 
and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for 
examining and testing Hardware not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance, 
installation, repair, or calibration (performed by a party other than NI); unauthorized modification; improper environment; 
use of an improper hardware or software key; improper use or operation outside of the specification for the product; improper 
voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL 
APPLY EVEN IF SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF 
ANY KIND AND NI DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE 
PRODUCTS, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY WARRANTIES THAT MAY ARISE FROM 
USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 
REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS 
OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE 
OPERATION OF THE PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the 
warranty terms in the separate agreement shall control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, 
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the 
prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected 
by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials 
belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the 
terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

� Notices are located in the <National Instruments>\_Legal Information and <National Instruments> 
directories.

� EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

� Review <National Instruments>\_Legal Information.txt for information on including legal information in 
installers built with NI products.

U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication, 
reproduction, release, modification, disclosure or transfer of the technical data included in this manual is governed by the 
Restricted Rights provisions under Federal Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal 
Acquisition Regulation Supplement Section 252.227-7014 and 252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on NI trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.



CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology 
and vernier.com are trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and 
Simulink Coder™, TargetBox™, and Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under 
license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft 
Corporation in the United States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from NI and have no 
agency, partnership, or joint-venture relationship with NI.

Patents
For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, 
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance 
policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND 
RELIABILITY OF THE PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR 
APPLICATION, INCLUDING THE APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM 
OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL 
SYSTEMS, HAZARDOUS ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE 
PERFORMANCE, INCLUDING IN THE OPERATION OF NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR 
TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING SYSTEMS OR SUCH OTHER MEDICAL 
DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD 
LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM 
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST 
FAILURES, INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS 
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK 
USES.



© National Instruments | v

Contents

About This Manual
Required Software ............................................................................................................ ix

Related Documentation .................................................................................................... ix

Chapter 1
CompactRIO Module Development Kit 2 Software Overview
Block Diagram.................................................................................................................. 1-3

Designing the Module API ............................................................................................... 1-5

LabVIEW FPGA API Elements ............................................................................... 1-5

I/O Channel....................................................................................................... 1-5

Module Sub-Item.............................................................................................. 1-5

I/O Node ........................................................................................................... 1-5

Property Node................................................................................................... 1-5

Method Node .................................................................................................... 1-5

Recommended API Elements ................................................................................... 1-6

Creating Parallel DIO API Elements........................................................................ 1-6

Development Mode versus Release Mode ....................................................................... 1-6

MDK and NI-RIO Versions ............................................................................................. 1-8

Chapter 2
Module XML Files
Module Type XML File ................................................................................................... 2-1

Module Support XML File ............................................................................................... 2-1

Module Name ................................................................................................................... 2-2

Chapter 3
C Series Communication Core
Using the C Series Communication Core......................................................................... 3-2

Adding the MDK API Palette................................................................................... 3-2

I/O References Cluster...................................................................................................... 3-3

C Series Communication Core MDK API ....................................................................... 3-4

Command Interface .................................................................................................. 3-4

Command VI .................................................................................................... 3-4

Identify Module VI........................................................................................... 3-5

Change Mode VI .............................................................................................. 3-5

Read EEPROM VI............................................................................................ 3-6

Write EEPROM VI........................................................................................... 3-6

SPI Start VI....................................................................................................... 3-7

SPI Byte VI....................................................................................................... 3-7



Contents

vi | ni.com

SPI End VI ................................................................................................................3-8

Advanced Commands .......................................................................................3-8

Timing Interface .......................................................................................................3-9

Pulse Convert VI...............................................................................................3-9

Wait on Done VI...............................................................................................3-9

Wait Base Clock Ticks VI ................................................................................3-10

Status Interface .........................................................................................................3-10

Module Status VI ..............................................................................................3-10

Configuration Interface.............................................................................................3-11

Configuration Register VI ................................................................................3-11

Debug Interface.........................................................................................................3-12

Debug Register VI ............................................................................................3-12

C Series Communication Core MDK SCTL API .............................................................3-14

C Series Communication Interfaces (SCTL) ............................................................3-14

Command (SCTL) VI .......................................................................................3-16

Module Status (SCTL) VI.................................................................................3-16

Pulse Convert (SCTL) VI .................................................................................3-16

Wait on Done (SCTL) VI .................................................................................3-16

Wait Base Clock Ticks (SCTL) VI...................................................................3-16

Configuration Register (SCTL) VI ...................................................................3-17

Debug Register (SCTL) VI...............................................................................3-17

Using VIs Outside and Inside of the SCTL ......................................................................3-17

Digital I/O .........................................................................................................................3-17

Digital Input and Output Interfaces ..........................................................................3-17

Digital Input I/O Node......................................................................................3-18

Digital Output I/O Node ...................................................................................3-18

Set Output Enable Method Node ......................................................................3-18

Using SPI_CLK as a Digital Line (DIO 8).......................................................................3-21

Reserved Digital Lines......................................................................................................3-21

~ID_SELECT ...........................................................................................................3-21

~CONVERT .............................................................................................................3-21

~DONE .....................................................................................................................3-21

~SPI_CS, SPI_CLK, MOSI, MISO..........................................................................3-21

SPI_FUNC ................................................................................................................3-22

Using the Wait Base Clock Ticks Method........................................................................3-22

Module Status Behavior....................................................................................................3-22

Internal Errors ...................................................................................................................3-23

Module Mode Details .......................................................................................................3-25

Supported Modes ......................................................................................................3-25

Mode Transitions ......................................................................................................3-25



CompactRIO Module Development Kit Software Manual

© National Instruments | vii

Chapter 4
Internal Channels
Internal Channel Types..................................................................................................... 4-2

Asynchronous Internal Channel ............................................................................... 4-2

Blocking Internal Channel........................................................................................ 4-2

Occurrence Internal Channel .................................................................................... 4-2

Data Types........................................................................................................................ 4-3

Chapter 5
Development and Export Process
Internal Support Development Process ............................................................................ 5-1

Module Support Files ............................................................................................... 5-1

Module Type XML........................................................................................... 5-1

Module Support XML ...................................................................................... 5-2

Module Specific I/O References Control ................................................................. 5-2

Validating the Internal Module Support ................................................................... 5-3

Using the Internal Module Support .......................................................................... 5-4

Deployable Support Development Process ...................................................................... 5-5

Export Utility ............................................................................................................ 5-6

Exclude from Export ................................................................................................ 5-6

Development Mode Export ...................................................................................... 5-6

Release Mode Export................................................................................................ 5-8

Module Support VI Tagging..................................................................................... 5-8

Using the Deployable Module Support .................................................................... 5-9

Shipping the Deployable Module Support ............................................................... 5-10

Chapter 6
Modules Support VIs
Viewing Terminal Numbers in the Context Help............................................................. 6-1

Module Resource VI......................................................................................................... 6-2

Module Resource VI Connector Pane ...................................................................... 6-2

Handling API Element Operations ........................................................................... 6-2

Stopping the Module Resource VI ........................................................................... 6-4

Node VIs........................................................................................................................... 6-5

Method and Property Node VIs................................................................................ 6-6

Method and Property Node VI Terminals ........................................................ 6-6

Inside Method and Property Node VIs ............................................................. 6-7

Error Handling VI..................................................................................................... 6-7

Error Handling VI Terminals ........................................................................... 6-7

I/O Node VIs ............................................................................................................ 6-8

Node Scoped I/O Node VI Terminals .............................................................. 6-9

Channel Scoped I/O Node VI Terminals.......................................................... 6-10



Contents

viii | ni.com

Merged I/O Node VIScriptInfo (Advanced).....................................................................6-10

Error Codes .......................................................................................................................6-13

Creating Custom Error Code Files............................................................................6-13

Chapter 7
Modules Support VI Best Practices
Error Terminals on Interface Method Nodes ....................................................................7-1

Changing Interfaces ..........................................................................................................7-1

Using Channel Scoped VIs to Create a Channel List .......................................................7-2

Using the Module Status...................................................................................................7-3

Chapter 8
Module Manufacturing

Chapter 9
Using the MDK 2 Examples

Module SubItem Icons......................................................................................9-1

Module Support Development..........................................................................9-1

Release Mode Projects......................................................................................9-1

MDK 2 Example Modules ................................................................................................9-1

MDK-MFG ...............................................................................................................9-1

MDK-9901................................................................................................................9-1

MDK-9902................................................................................................................9-2

MDK-9903................................................................................................................9-2

Appendix A
Module XML

Appendix B
Module Support XML Example

Appendix C
Using MDK with cRIO-904x Controllers

Appendix D
NI Services



© National Instruments | ix

About This Manual

This manual contains information about using the CompactRIO Module Development Kit 2 

software.  Many of the concepts discussed in this manual are described in further detail in the 

CompactRIO Module Development Kit Hardware User Manual.  Refer to the CompactRIO 
Module Development Kit Hardware User Manual for more information about the CompactRIO 

Module Development kit.

Required Software

The following software is required to use the CompactRIO Module Development Kit:

 LabVIEW 2017 SP1

 LabVIEW FPGA Module 2017

 LabVIEW Real-Time Module 2017

 CompactRIO Device Drivers 17.6

 CompactRIO Module Support 4.0.1

 CompactRIO Module Development Kit 2.1

Related Documentation

The following documents contain information that you may find helpful as you read this manual:

� Getting Started with CompactRIO and LabVIEW—Use this tutorial to learn how to develop 

a CompactRIO application in LabVIEW. While developing the application, you can learn 

concepts and techniques that you can apply when you develop your own CompactRIO 

application. You can download the latest version of this document from the NI Web site at 

ni.com/manuals.

� CompactRIO Module Development Kit Hardware User Manual—Use this manual to learn 

the mechanical and electrical requirements for developing a custom CompactRIO module.

� LabVIEW Help—Use the LabVIEW Help to access information about LabVIEW 

programming concepts, step-by-step instructions for using LabVIEW, and reference 

information about LabVIEW VIs, functions, palettes, menus, tools, properties, methods, 

events, dialog boxes, and so on. Access the LabVIEW Help by selecting Help»Search the 
LabVIEW Help. You also can navigate on the Contents tab to the FPGA Module help and 

the C Series Reference and Procedures help.
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1
CompactRIO Module 
Development Kit 2 Software 
Overview

The CompactRIO Module Development Kit 2 (MDK 2) consists of two main software 

components.

The first component is the C Series Communication Core that communicates with the C Series 

module hardware. The C Series Communication Core is an IP block provided by National 

Instruments that exposes software interfaces that conform to the C Series architecture 

specification. Using the interfaces of the C Series Communication Core, you can write VIs that 

will communicate with your module.

The second component gives third party module developers the ability to script their own 

Module Support VIs beneath I/O, method, and property nodes. You will write VIs to 

communicate with your module hardware using the C Series Communication Core. The end user 

of your module will have an API composed of I/O, method, and property nodes just like an 

NI module. Because the Module Support VIs that you provide are scripted beneath the end user 

API nodes, your modules will look and behave like NI modules.

The end user API along with the Module Support VIs and the C Series Communication Core 

make up the software layers that are shown in Figure 1-1.
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Figure 1-1.  MDK 2 Software Layers

The end user API consists of I/O, method, and property nodes that provide the end user with an 

easy-to-use interface that is consistent with NI modules.

The Module Support VIs layer contains all the complex code that handles the operation of the 

C Series module. You will write the VIs that make up this layer.

The Module Communication layer contains the C Series Communication Core. The C Series 

Communication Core exposes the following interfaces through method nodes on the LabVIEW 

FPGA block diagram. 

� SPI

� EEPROM

� Mode Change

� Module Identification

� Pulsing Convert

� Digital I/O

Additionally, there are two XML files you will write that allow your module to be identified by 

NI-RIO and added to an FPGA target. The XML files also specify how you want the Module 

Support VIs to be scripted beneath the end customer nodes.

cRIO I/O Lines

Command Register Convert

VHDL Communication Core

SPI

MUX

Module ID

End User

API

Module

Support VIs

Module

Communication



© National Instruments | 1-3

CompactRIO Module Development Kit Software Manual

Block Diagram

Figure 1-2 shows what happens when LabVIEW FPGA code is compiled. The third party 

module provides the end user with an API of I/O nodes (AO0, AO1, AO2). When the FPGA is 

compiled, the I/O nodes are replaced with Module Support VIs that the third party module 

developer provides. The Module Support VIs directly communicate with the module using the 

C Series Communication Core.



1-4 | ni.com

Chapter 1 CompactRIO Module Development Kit 2 Software Overview

Figure 1-2.  MDK 2 Implementation
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Designing the Module API

The end user API of your module is defined in the Module Support XML. Like NI modules, 

third-party modules have I/O channels and module sub-items visible in the LabVIEW project. 

On the block diagram, your module will have I/O nodes, method nodes, and property nodes. 

Each of these API elements have a different purpose. NI recommends that you follow these 

guidelines when designing your API.

LabVIEW FPGA API Elements
LabVIEW FPGA provides several different types of API elements. Each of these API elements 

have a different purpose.

I/O Channel
Use I/O channels to represent the following physical channels on the module connector:

� Analog input

� Analog output

� Digital input

� Digital output

An I/O channel supports I/O nodes, property nodes, and method nodes.

Module Sub-Item
Use module sub-items to expose capabilities of the module that are not traditional analog or 

digital physical channels, such as serial ports. Module sub-resources support method nodes or 

property nodes.

I/O Node
Use I/O nodes as the primary mechanism for acquiring data from your module. I/O nodes are 

available for each of the I/O channels on the module and can be configured as read, write, or 

bi-directional.

Property Node
Use property nodes to read the module EEPROM and to write and read various runtime settings 

that the module or I/O channels may have. Running a property node can induce communication 

with the module or set a register in the FPGA and not perform any module communication. 

Property nodes can only have a single input or output and can be configured to read, write, or 

bi-directional.

Method Node
Use method nodes for module operations that I/O nodes and property nodes do not handle well. 

Any operation that has multiple inputs and/or outputs, or operations that gather data from the 

module should use a method node.
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Recommended API Elements
You can define API elements that are useful for your module. NI recommends that you always 

support the following three property nodes:

� Vendor ID

� Module ID (Product ID in the EEPROM, not the module model code)

� Serial number

This allows end user applications to detect and identify any module that is in a slot configured 

for your module.

Creating Parallel DIO API Elements
You will write Module Support VIs that execute underneath your end user API elements. 

However, you may also specify parallel DIO API elements in your Module Support XML. These 

API elements do not use Module Support VIs beneath them. Instead, parallel DIO I/O nodes 

provide a direct connection between the end user block diagram, the C Series Communication 

Core and ultimately the FPGA pins.

Parallel DIO I/O nodes may be used both inside and outside of the Single Cycle Timed Loop 

(SCTL). DIO lines 0-7 of the cRIO bus may be used for parallel DIO I/O nodes.

Refer to the Module Support XML section of Appendix A, Module XML, for more information 

on the parallel DIO I/O nodes.

Development Mode versus Release Mode

You can use MDK 2 software in Development mode and Release mode. 

In Development mode, the interfaces to the C Series Communication Core are visible in the 

LabVIEW project. You can add these method nodes on the block diagram to communicate with 

your module. When creating or editing your Module Support VIs, you will be using the module 

in Development mode.

In Release mode, the interfaces to the C Series Communication Core are hidden in the LabVIEW 

project. Instead, the end user APIs that are defined in the XML are visible. Release mode is what 

end users use. The C Series Communication Core interfaces and your Module Support VIs are 

hidden from the end user; only the end customer API is visible in the LabVIEW project.

Refer to Chapter 5, Development and Export Process, for more information about creating 

module support in Development and Release modes.
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You will frequently switch between Development mode and Release mode if you are creating 

module support to deploy to end users. If you create a LabVIEW project that uses your module 

while the module is in Development mode, you can only use that project when the module is in 

Development mode. If you open that project when the module is in Release mode, there will be 

broken I/O items in the project as shown in Figure 1-3.

Figure 1-3.  Opening a Development Mode Project in Release Mode
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If you create a LabVIEW project that uses your module in Release mode, you can only use that 

project when the module is in Release mode. If you open that project when the module is in 

Development mode, there will be broken I/O items in the project as shown in Figure 1-4.

Figure 1-4.  Opening a Release Mode Project in Development Mode

Use caution when creating and opening projects with third party modules on your development 

computer to avoid broken I/O items in the project.

MDK and NI-RIO Versions

MDK 2 installs documentation, LabVIEW examples, and API palettes. NI-RIO installs the files 

that allow you to create and run MDK 2 modules. Support for MDK 2 is included in 

CompactRIO Module Support 4.0.1, which requires NI-RIO 4.0. Versions of NI-RIO later than 

4.0 will not require installing the separate CompactRIO Module Support patch.
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Future versions of NI-RIO may include improvements to the MDK support and increase the 

MDK version number. If you update to a newer version of NI-RIO, check what version of MDK 

is installed with that version of NI-RIO using the 

Mdk2Utility_GetInstalledMDKVersion.vi utility located at 

labview\vi.lib\LabVIEW Targets\FPGA\cRIO\shared\nicrio_Mdk2Utility.

Note Go to ni.com/info and enter criomdkupdate for information about 

updates in the latest MDK support installed with NI-RIO.

Module support developed in a particular version of LabVIEW does not work in previous 

versions of LabVIEW, but generally works in later versions. However, updates to LabVIEW 

might prevent module support created in a previous version of LabVIEW from working. NI 

recommends that you test your module support in each new version of LabVIEW. The utility 

also displays the oldest compatible version of MDK.
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Module XML Files

Note The XML files used to develop module support are case sensitive. Take care 

to ensure that all of your tags and values use the correct case.

The XML tags use a variety of data types. These data types are enforced by XML schemas and 

the rules checker. Refer to Table A-1, XML Data Types, in Appendix A, Module XML, for more 

information on these data types.

Some of the tags in the XML specify integer values. Depending on what is being specified, it 

may be useful to write the number in hexadecimal. To use a hexadecimal number, prefix 0x to 

the number. For example, the decimal number 4243 can be specified as 0x1093.

Module Type XML File

The Module Type XML file adds your module to the LabVIEW project and assists the module 

detection. 

When a module is installed in a CompactRIO chassis, the C Series Communication Core 

automatically reads the module EEPROM and compares what is read against values that are 

pulled from the Module Type XML file. 

Refer to the Module Type XML section of Appendix A, Module XML, for more information on 

the Module Type XML.

Module Support XML File

The Module Support XML file specifies the following:

� the hardware functionality of your module

� the API of the module (I/O nodes, method nodes and property nodes)

� how the VI scripting tools connect the Module Support VIs during code generation

Refer to Appendix A, Module XML, and Appendix B, Module Support XML Example, for more 

information and an example of a Module Support XML file.
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Module Name

The module name is specified in both the Module Type and Module Support XML files. The 

module name is used as an identifier when naming all of your module support files. Use the 

format shown in Figure 2-1 for your module name:

Figure 2-1.  Model Name Format

The company code is a two or four letter character string to represent the name of your company. 

NI recommends that you use an acronym for your company code that it is consistent with NI 

modules, such as the NI 9263.

The module model code must match what is stored in the module EEPROM and Module 

Type XML.

All of your filenames must be unique. It is important that you select a module name that is 

unlikely to conflict with third party modules made by other vendors. All files, including XML 

and VIs, should be pre-pended with the module name. NI will advise you on a company code 

when you contact NI for a C Series vendor ID. If you already have a vendor ID, contact NI for 

assistance with your company code.

1 Company Code 2 Module Model Code

1 2 1 2

AA 1234 or AA-1234
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3
C Series Communication 
Core

The C Series Communication Core exposes the following interfaces of the C Series specification 

through the following I/O items.

� Command interface

� Timing interface

� Status interface

� DIO0 through DIO8 (digital lines)

� DIO (7:0) (digital port)

� Configuration interface

� Debug interface

When in Development mode, each of these interfaces appear as I/O items in the LabVIEW 

project. The digital I/O (DIO) interfaces have I/O nodes defined for them and the rest of the 

interfaces use method nodes to perform operations.

Note These interfaces are exposed as I/O items on the module so that I/O references 

can be used on them. This is important when scripting the Module Support VIs 

beneath end user API nodes. Using I/O references allows you to create a single VI to 

use with your module in any chassis slot. 
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Using the C Series Communication Core

Use the MDK API and MDK SCTL API palettes, shown in Figure 3-1, to access the C Series 

Communication Core interfaces.

Figure 3-1.  MDK API and MDK SCTL API Palettes

The MDK API palette contains VIs that execute outside of the Single-Cycle Timed Loop 

(SCTL). The MDK SCTL API palette contains VIs that execute within the SCTL. Use these VIs 

correctly inside and outside of the SCTL to prevent errors from occurring during code 

generation.

Adding the MDK API Palette
In order to use the MDK API, you must copy the palette files into your LabVIEW installation.

Copy the palette files from C:\Program Files\National Instruments\

CompactRIO\CompactRIO MDK 2\LabVIEW API Palette\_CrioMdk2Api to 

C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\FPGA\

menus\FPGACategories\Programming\_CrioMdk2Api.

Note You must restart LabVIEW after copying the palette files.
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I/O References Cluster

Each of the API VIs contain an I/O References cluster input shown in Figure 3-2.

Figure 3-2.  I/O References Cluster

When debugging or using the module in Development mode, use the I/O References cluster 

to set which module (chassis slot) the particular API VI executes on. When the module is used 

in Release mode, an I/O reference cluster configured for the correct slot is scripted onto the 

diagram at compile time.
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C Series Communication Core MDK API

The following API VIs expose the interfaces of the C Series Communication Core.

Command Interface
The Command interface exposes most of the C Series Communication Core functionality. Use 

the Command interface to perform the following operations:

� Module identification

� Mode change

� EEPROM read

� EEPROM write

� SPI

All of these operations go through the same interface because they share hardware resources. 

Only one of these operations may run at a time, which is enforced by exposing them through a 

single interface.

Command VI
The Command VI directly exposes the Perform Command method of the Command interface. 

It is a wrapper of the Perform Command Method Node.

Perform Command Method Node

The Command interface exposes a single Perform Command Method Node.

The Perform Command Method Node exposes several types of operations. Use the Command 

Type terminal of the method node to select the operation.
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Identify Module VI
The Identify Module VI is a wrapper around the Command interface that performs the Identify 

Module command.

Identify Module Command

The Identify Module command reads start sentinel, vendor ID, and the module model code on 

the EEPROM of a module to determine if they are correct. Identify Module automatically runs 

when a chassis powers on or a new module is installed in the chassis.

The module must be in ID mode before running the Identify Module command. If the module is 

not in ID mode, this operation will fail.

The result of the Identify Module command may be read by the Module Status interface.

Change Mode VI
The Change Mode VI is a wrapper around the Command interface that performs the Change 

Mode command.

Change Mode Command

The Change Mode command changes the states of the ~ID_SELECT and FUNC lines that put 

the module in a different mode of operation. Refer to Table 3-1 for a list of Change Mode 

options. You must use the Change Mode command to place the module in a different mode of 

operation.

Table 3-1.  Change Mode Options

Option Mode of Operation

0 Idle (always enabled)

1 ID (always enabled)

2 Auxiliary Communication (enabled by Module Support XML)

3 Normal Operation (enabled by Module Support XML)
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Note The Change Mode command cannot run at the same time as the Output 

Enable Method Node on the DIO lines. Running these two operations simultaneously 

results in a failure.

Read EEPROM VI
The Read EEPROM VI is a wrapper around the Command interface that performs the Read 

EEPROM command.

Read EEPROM Command

The Read EEPROM command performs a single byte EEPROM read on the module. The data 

returns through the Read Data terminal of the method node.

The module must be in ID mode before running the Read EEPROM command. If the module is 

not in ID mode, this operation will fail.

The EEPROM address that is being accessed is configured through the Configuration Register 

interface.

Write EEPROM VI
The Write EEPROM VI is a wrapper around the Command interface that performs the Write 

EEPROM command.

Write EEPROM Command

The Write EEPROM command performs a single byte EEPROM write on the module. Wire the 

data to be written to the Write Data terminal of the method node.

The module must be in ID mode before running the Write EEPROM command. If the module is 

not in ID mode, this operation will fail.

The EEPROM address that is being accessed is configured through the Configuration Register 

interface.
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SPI Start VI
The SPI Start VI is a wrapper around the Command interface that performs the SPI Start 

command.

SPI Start Command

The SPI Start command begins an SPI transfer with the module. The module must be in a 

mode that supports SPI. ID mode always supports SPI. Normal Operation and Auxiliary 

Communication modes may support SPI if it is configured in the Module Support XML.

The SPI Start command asserts ~SPI_CS (drive it low).

You must run the SPI Start command before any other SPI commands are attempted.

SPI Byte VI
The SPI Byte VI is a wrapper around the Command interface that performs the SPI Byte 

command.

Use the Initiate SPI Transfer input to execute a new SPI byte transfer or wait for the last byte 

transfer to complete. Set the Initiate SPI Transfer input to TRUE to run the SPI Byte command. 

Set the Initiate SPI Transfer input to FALSE to run the SPI Wait command.

SPI Byte Command

The SPI Byte command initiates a single byte SPI transfer with the module. SPI Byte commands 

are pipelined. This means that the first time this command is called, the Write Data (n) goes out 

on the SPI bus and zeros are returned on the Read Data terminal. The second time this operation 

is called, the Write Data (n) will go out on the SPI bus and the previous SPI Byte Read Data (n-1) 

is returned.

You can only run the SPI Byte command once the SPI transfer has been started with the SPI Start 

command.
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SPI Wait Command

The SPI Wait command waits until the previously run SPI byte has completed. The Write Data 

is ignored and the previously run SPI Byte read data is returned.

You can only run the SPI Wait command after starting the SPI transfer with the SPI Start 

command.

SPI End VI
The SPI End VI is a wrapper around the Command interface that performs the SPI End 

command.

SPI End Command

The SPI End command ends an SPI transfer with the module. The SPI End command de-asserts 

~SPI_CS (drive it high). 

You can only run the SPI End command after starting the SPI transfer with the SPI Start 

command.

Advanced Commands
The following commands combine the functionality of two commands.

SPI Byte & Start

The SPI Byte & Start command combines the functionality of the SPI Start and SPI Byte 

commands. As soon as ~SPI_CS is asserted, the SPI engine will begin transferring the first byte 

of the SPI transfer.

SPI Byte & End

The SPI Byte & End command combines the functionality of the SPI End and SPI Byte 

commands. When the SPI byte initiated by this command completes, the ~SPI_CS signal will 

de-assert and the SPI transfer will complete.

Because the SPI Byte commands are pipelined, the data returned from the SPI Byte & End 

command will be the second-to-last SPI Byte read data. You can run an SPI Wait command after 

this to retrieve the final SPI Byte read data.
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Timing Interface
The Timing interface exposes portions of the C Series Communication Core that relate to timing 

the operation of the module.

Pulse Convert VI
The Pulse Convert VI pulses the ~CONVERT line. It is a wrapper of the Pulse Convert Method 

Node.

Pulse Convert Method Node

The Pulse Convert Method Node performs a single pulse on the ~CONVERT line of the 

CompactRIO bus. The pulse will be the width specified in the Module Support XML.

A fatal error occurs if the Pulse Convert Method Node is run with the module in a mode that does 

not support the Convert Pulse operation as defined in the Module Support XML. Only Normal 

Operation mode supports the Pulse Convert Method Node.

Wait on Done VI
The Wait on Done VI waits until the ~DONE line is low. It is a wrapper of the Wait on Done 

Method Node.

Wait on Done Method Node

The Wait on Done Method Node waits until the ~DONE line is low. If the ~DONE line is already 

low when the Wait on Done Method Node is executed, it returns immediately. If the ~DONE 

line is not low before the timeout expires, the method node completes with a timeout.
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When executing, the Wait on Done Method Node will wait a few more clock ticks than specified 

in the XML before returning with a timeout. This is due to LabVIEW FPGA overhead when 

executing the method node.

A fatal error occurs if the Wait on Done Method Node is run with the module in a mode that does 

not support the Wait on Done operation as defined in the Module Support XML. Only Normal 

Operation mode supports the Wait on Done Method Node.

Wait Base Clock Ticks VI
The Wait Base Clock Ticks VI waits for the specified number of 25 ns base clock ticks. It is a 

wrapper of the Wait Base Clock Ticks Method Node.

Wait Base Clock Ticks Method Node

The Wait Base Clock Ticks Method Node waits for the specified number of 25 ns base clock 

ticks, which is useful because it always waits the same amount of time no matter what the top 

level clock is. This is necessary to get accurate timing of module operations since you do not 

have control over the top level clock that the end user uses.

Status Interface
The Status interface exposes portions of the C Series Communication Core that relate to the 

status of the module.

Module Status VI
The Module Status VI returns the module status of the C Series Communication Core. It is a 

wrapper of the Check Module Status Method Node.



© National Instruments | 3-11

CompactRIO Module Development Kit Software Manual

Check Module Status Method

The Check Module Status Method Node returns the status of the module. This status is based on 

the presence of the module in the chassis and the result of the previously run Identify Module 

command.

Refer to Table 3-2 for a list of module statuses.

Note The Incorrect Program Mode status is only available in NI-RIO 17.6 and later.

Configuration Interface
The Configuration interface is used to set parameters on how the different C Series 

Communication Core interfaces operate.

Configuration Register VI
The Configuration Register VI provides access to the Configuration register. It is a wrapper of 

the Access Configuration Register Method Node. 

Table 3-2.  Module Statuses

Status Description

Unknown (0) The chassis is powering up and the presence of the module has not yet been 

determined. The module status also briefly transitions to unknown during an 

Identify Module command.

Correct (1) The module has been detected as present in the chassis and the EEPROM contents 

match the expected vendor ID and module model code.

Incorrect (2) The module has been detected as present in the chassis and the EEPROM contents 

do not match the expected vendor ID and module model code.

No Module (3) The module has not been detected as present in the chassis.

Invalid (4) The module has been detected as present in the chassis and the EEPROM start 

sentinel does not match the expected value.

Incorrect 

Program Mode 

(5)

The slot is not configured for LabVIEW FPGA.
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Access Configuration Register Method Node

The Access Configuration Register Method Node exposes the Configuration Register interface.

A fatal error occurs if an invalid address was written or read. Refer to Table 3-3 for the 

Configuration register map.

Debug Interface
Use the Debug interface for prototyping, debugging and manufacturing C Series modules. Do 

not use the Debug interface in Module Support VIs that ship to end users.

All of the Debug interface registers are available in Development mode. Some of the Debug 

interface registers are available in Release mode. Using a register in Release mode that is not 

available results in a fatal error.

Debug Register VI
The Debug Register VI provides access to the Debug register. It is a wrapper of the Access 

Debug Register Method Node.

Note When writing the register, write 0 to reserved bits. When reading the register, 

reserved bits should be ignored.

The Debug register returns a U16, however data read from the internal error code register should 

be converted to an I16 before using it.

Table 3-3.  Configuration Register Map

Address Read/Write Name Function

0 R/W EEPROM This is the address of the EEPROM that will be 

accessed through the Command interface.
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Access Debug Register Method Node

The Access Debug Register Method Node exposes the Debug Register interface.

A fatal error will occur if an invalid address was written or read. Refer to Table 3-4 for the Debug 

register map.

Table 3-4.  Debug Register Map

Address

Read / 

Write

Available 

in 

Release 

Mode Name Function

0 Read 

Only

Yes Internal Error 

Code

Returns the internal error code produced from 

a failed operation.

Refer to Table 3-5 for a list of internal error 

codes.

1 R/W No SPI Rate 

Override 

Value

Write a 16-bit value to override the 

HalfTauTicks that were specified in the 

Module Support XML. The valid range for 

SPI HalfTau is 2 to 65535.

The HalfTauTicks value is specified in 25 ns 

base clock ticks and the SPI clock frequency 

is automatically adjusted for different top 

level clock frequencies.

2 R/W No SPI Rate 

Override 

Enable

Write a 1 to bit 0 of this register to enable the 

SPI Rate Override value. 

Write a 0 to bit 0 of this register to revert to 

the HalfTauTicks specified in the Module 

Support XML.
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SPI Rate Override Behavior

When you override the SPI rate value, it will only override the SPI rate as long as you remain in 

the same mode. When you change modes, that mode change will update the SPI rate register 

within the C Series Communication Core to the appropriate value for that mode. If you wish to 

re-enable overriding the SPI rate, you must write both the SPI rate override and SPI rate override 

enable registers.

Internal Error Code Behavior

A negative value returned from the Internal Error Code register indicates a fatal error. Fatal 

errors are unrecoverable and you must restart the FPGA VI to continue using the C Series 

Communication Core.

A positive value returned from the Internal Error Code register indicates a warning. Warnings 

are cleared when they are read from the Internal Error Code register and do not affect the 

functionality of the C Series Communication Core.

C Series Communication Core MDK SCTL API

The following API VIs expose the interfaces of the C Series Communication Core.

C Series Communication Interfaces (SCTL)
All of the C Series Communication Core interfaces can be accessed from both inside and outside 

of an SCTL. Most of these interfaces take multiple clock cycles to complete. These interfaces 

have two method nodes available on them. One may only be used outside of the SCTL and the 

other may only be used inside of the SCTL. Figure 3-3 shows the Access Debug Register 

Method Nodes.

3 R/W No Module Status 

Override 

Value

 Write bits to set the desired module status.

4 R/W No Module Status 

Override 

Enable

Write a 1 to bit 0 of this register to override the 

module status of the C Series Communication 

Core.

Write a 0 to bit 0 of this register to revert back 

to the actual module status of the C Series 

Communication Core.

5 Read 

Only

No ~ID_SELECT 

Status

Returns 1 if the ~ID_SELECT Line is high. 

Returns 0 if it is low.

Table 3-4.  Debug Register Map (Continued)

Address

Read / 

Write

Available 

in 

Release 

Mode Name Function
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Figure 3-3.  Selecting Method Nodes

The interfaces that work inside of the SCTL have the same functionality as the non-SCTL 

interfaces. However, since these API VIs execute within the SCTL, there are two additional 

terminals that are used for execution control. These additional control terminals are necessary 

because these operations take multiple clock cycles to complete.

Use the Start terminal to start the operation. When the interface sees the Start terminal set to 

TRUE, the operation begins. Once started, the operation will complete regardless of whether or 

not the Start terminal is de-asserted. You may put a single cycle pulse on the Start terminal. On 

the clock cycle that the operation starts, the Done terminal will change to FALSE if it was 

previously true. Once the operation has completed, the Done terminal will change to true. The 

Done terminal remains true until the next operation is started. Figure 3-4 shows an SCTL 

Method Node.

Figure 3-4.  SCTL Method Node
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Command (SCTL) VI
The Command (SCTL) VI directly exposes the Perform Command method of the Command 

interface. It is a wrapper of the Perform Command (SCTL) Method Node.

Module Status (SCTL) VI
The Module Status (SCTL) VI returns the module status of the Communication Core.

Pulse Convert (SCTL) VI
The Pulse Convert (SCTL) VI pulses the ~CONVERT line. It is a wrapper of the Pulse Convert 

(SCTL) Method Node.

Wait on Done (SCTL) VI
The Wait on Done (SCTL) VI waits until the ~DONE line is low. It is a wrapper of the Wait on 

Done (SCTL) Method Node.

Wait Base Clock Ticks (SCTL) VI
The Wait Base Clock Ticks (SCTL) VI waits for the specified number of 25 ns base clock ticks. 

It is a wrapper of the Wait on Base Clock Ticks (SCTL) Method Node.
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Configuration Register (SCTL) VI
The Configuration Register (SCTL) VI provides access to the Configuration register. It is a 

wrapper of the Access Configuration Register (SCTL) Method Node.

Debug Register (SCTL) VI
The Debug Register (SCTL) VI provides access to the Debug register. It is a wrapper of the 

Access Debug Register (SCTL) Method Node.

Using VIs Outside and Inside of the SCTL

The API VIs that are instantiated outside of the SCTL use normal LabVIEW arbitration between 

multiple instantiations of the same method node. If two method nodes try to access the same 

interface at the same time, the LabVIEW arbiter makes one method node wait until the other one 

completes.

The API VIs that are instantiated inside of the SCTL do not use arbitration. When the SCTL 

method nodes are placed on the LabVIEW block diagram, there is never any arbitration between 

the method node and the C Series Communication Core. This means that only one of each of 

these SCTL interfaces may be placed on the LabVIEW block diagram. This is why the MDK 

SCTL API palette does not have the same Command interface wrapper VIs that the MDK API 

palette has.

Digital I/O

The C Series Communication Core also provides eight DIO channels. These DIO channels do 

not have API VIs. You can directly instantiate the I/O and method nodes to access the DIO lines.

Digital Input and Output Interfaces
The C Series Communication Core exposes nine DIO lines. Lines 7:0 are also available in an 

8-bit port.
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Digital Input I/O Node
You can read the state of the DIO lines with the Digital Input I/O Node.

Right-click on the I/O Node and select Properties to configure the number of input 

synchronization registers for the I/O Node.

Digital Output I/O Node
You can write to the DIO lines using the Digital Output I/O Node.

Set Output Enable Method Node
You can change the direction of a DIO line with the Set Output Enable Method Node.

Note The Change Mode command cannot run at the same time as the Output 

Enable Method Node on the DIO lines. Running these two operations simultaneously 

results in a failure.



C
o

m
p
a

c
tR

IO
 M

o
d

u
le

 D
e
ve

lo
p
m

e
n

t K
it S

o
ftw

a
re

 M
a

n
u
a

l

©
 N

a
tio

n
a
l In

s
tru

m
e
n

ts
|

3
-1

9

Figure 3-5.  SPI Clock Timing

1 The SPI Start VI begins its execution. This causes ~SPI_CS to assert.

2 The SPI Start VI completes.

3 The first execution of the SPI Byte VI begins. The SPI Write Data is 0xAA. The Initiate SPI Transfer is set to TRUE, which causes the SPI engine to start toggling 
SPI_CLK. The data 0xAA then goes out to the module on the MOSI line.

4 The SPI Byte VI completes the first execution almost immediately after it starts, because it was priming the pipeline of the SPI engine. The SPI Read data 
returned is 0x00 which should be ignored. The data read from the module on the first SPI byte will be returned by the next execution of the SPI Byte VI. At this 
point the SPI engine is SPIing the first byte.

5 SPI Byte VI begins its second execution. Its SPI Write Data is 0xBB. It has Initiate SPI Transfer set to TRUE which will cause the SPI engine to continue toggling 
SPI_CLK. The data 0xBB will go out to the module on the MOSI line.

6 SPI Byte VI completes its second execution after the first byte is SPIed to the module. The SPI Read data returned is 0xCC which was read from the module 
on MISO. At this point the SPI engine is SPIing the second byte.

0xAAMOSI
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SPI_Clk
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0xBB
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7 SPI Byte VI begins its third execution. Its SPI Write Data is 0x00. It has Initiate SPI Transfer set to FALSE which will cause the SPI engine to not start another 
SPI byte. Because of this, the SPI Write Data is ignored in this execution. This VI will only wait until the last byte of SPI Read data is read by the FPGA before 
completing.

8 SPI Byte VI completes its third execution. The SPI Read data returned is 0xDD which was read from the module on MISO. At this point the SPI engine is not 
toggling SPI_CLK.

9 SPI Stop VI begins its execution. This causes ~SPI_CS to de-assert.

10 SPI End VI completes.
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Using SPI_CLK as a Digital Line (DIO 8)

The SPI engine uses SPI_CLK (DIO 8) to perform module communication. To ensure correct 

mode transitions, SPI_CLK (DIO 8) must idle high when not in use, which the C Series 

Communication Core SPI engine handles.

You can use SPI_CLK (DIO 8) as a digital line. Observe the following requirements if you use 

the SPI_CLK (DIO 8) as a digital line.

� SPI_CLK must not be exposed to the end user as general purpose DIO

� SPI_CLK must idle high

� SPI_CLK must remain high during all mode transitions

NI does not recommend that you use SPI_CLK (DIO8) as a digital line in your module design. 

Refer to CompactRIO Module Development Kit Hardware User Manual for more information 

on the SPI_CLK (DIO 8).

Reserved Digital Lines

Most of the CompactRIO bus lines may be configured for DIO. However, depending on the 

mode and what subsystems of the C Series Communication Core are enabled, some 

CompactRIO bus lines may be reserved and not available for DIO.

~ID_SELECT
The ~ID_SELECT line is always reserved by the C Series Communication Core. DIO operations 

are not available on the ~ID_SELECT line. You may query the state of the ~ID_SELECT line 

by reading the ~ID_SELECT Status Debug register.

~CONVERT
The ~CONVERT line is reserved by the C Series Communication Core in Normal Operation 

mode when the <ConvertPulseConfiguration> section is specified in the Module 

Support XML. When the convert pulse functionality of the C Series Communication Core is 

enabled, ~CONVERT cannot be used as a DIO line in Normal Operation mode.

~DONE
The ~DONE line is reserved by the C Series Communication Core in Normal Operation mode 

when the <DoneWaitConfiguration> section is specified in the Module Support XML. 

When the done wait functionality of the C Series Communication Core is enabled, ~DONE 

cannot be used as a DIO line in Normal Operation mode.

~SPI_CS, SPI_CLK, MOSI, MISO
The four SPI lines are reserved by the C Series Communication Core in Normal Operation or 

Auxiliary Communication mode when the <SPIConfiguration> section is specified in the 
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Module Support XML for that mode. When the SPI functionality of the C Series Communication 

Core is enabled for a particular mode, the four SPI lines may not be used as DIO lines when in 

that mode.

SPI_FUNC
The SPI_FUNC line is reserved by the C Series Communication Core in Auxiliary 

Communication mode. The state of SPI_FUNC is always outputting low in Auxiliary 

Communication mode as defined by the CompactRIO Module Development Kit Hardware User 
Manual. The SPI_FUNC line may not be used as a DIO line in that mode.

Using the Wait Base Clock Ticks Method

When writing your Module Support VIs, you may have to hard code some waits to meet the 

timing requirements of your module. For example, you may include waits between pulsing 

~CONVERT and starting SPI or after SPI to run a mode transition.

LabVIEW provides a Wait primitive that you can configure to wait in units of ticks or 

microseconds. When configured to wait for microseconds, the Wait primitive always waits the 

same amount of time regardless of what the FPGA top level clock is set to. When configured to 

wait on a number of ticks, the Wait primitive waits different amounts of time depending on the 

FPGA top level clock frequency.

If you need to wait a constant period of time that needs more resolution than an integer number 

of microseconds, you can use the Wait Base Clock Ticks method. This method node always 

waits the same number of 25 ns base clock ticks regardless of the FPGA top level clock 

frequency.

Module Status Behavior

The C Series Communication Core automatically detects and identifies C Series modules. When 

the FPGA powers up, the module status starts in the Unknown state. C Series modules may take 

up to two seconds to power-up. The C Series Communication Core waits up to two seconds 

while checking the ~ID_SELECT line to see if a module is present in the slot. If the 

~ID_SELECT line is pulled up before the two seconds expire, the C Series Communication Core 

will put the module into ID mode to identify it. If the ~ID_SELECT line is not pulled up before 

the two seconds expire, the C Series Communication Core will determine that a module is not 

present and set the module status to No Module.

Some of the interfaces on the C Series Communication Core are blocked when the module status 

is Unknown. The interfaces are blocked because you may access them as soon as the FPGA VI 

starts. At that time, there may be a module in the slot that has not yet powered up. Those method 

nodes on the C Series Communication Core need to wait until the module is identified as 

Correct, Incorrect or No Module.
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When a module is inserted into the chassis or when the Identify Module command is run, the 

module status becomes Unknown while the module is being identified.

The following interfaces are blocked while the module status is Unknown.

� SPI

� EEPROM

� Change Mode

� Identify Module

� Pulse Convert

� Wait on Done

� Output Enable methods on DIO lines

The following interfaces are not blocked while the module status is Unknown.

� Module Status

� Configuration Register

� Debug Register

� Wait for Base Clock Ticks

� I/O nodes on DIO lines

When the module status is No Module or Incorrect Program Mode, the C Series Communication 

Core goes into Idle mode and tri-states all of the CompactRIO bus lines. The Configuration and 

Debug registers may still be read or written to when the module status is No Module or Incorrect 

Program Mode. All other operations are ignored when the module status is No Module or 

Incorrect Program Mode.

Internal Errors

Incorrect or invalid sequences of operations on the C Series Communication Core results in a 

fatal error. This means that when an invalid operation is attempted, the C Series Communication 

Core goes into a state where it can no longer be used due to the fatal error. The C Series 

Communication Core will transition to the Idle mode and the module status will return No 

Module. All of the CompactRIO bus outputs to the module will be tri-stated.

Operations that can cause a fatal error include:

� Invalid command type

� Invalid Configuration or Debug register address 

� Trying to SPI byte or SPI end when a SPI transfer has not yet been started

� Trying to SPI start when a SPI transfer has already been started

� Attempting to perform a mode change while a DIO Set Output Enable Method Node is 

running
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� Trying to SPI, pulse ~CONVERT, access the EEPROM, or Wait on Done when in a mode 

that does not support those operations

You can read the Debug register to get an internal error code. This internal error code indicates 

what invalid operation caused the fatal error.

Refer to Table 3-5, for a full list of internal error codes.

Table 3-5.  Internal Errors

Error

Error 

Code Description

None 0 No error.

Change Mode (invalid mode) -1 You attempted to change a mode that is not supported.

Identify Module (not in ID 

mode)

-2 You attempted to run the identify module commend 

when not in ID mode.

EEPROM Write (incorrect 

module)

-3 You attempted to run an EEPROM write command 

when the module was not correct.

SPI (not started) -4 The SPI transfer has not been started.

SPI (already started) -5 You attempted to start a SPI transfer when one had 

already been started.

SPI (not in correct mode) -6 You attempted to start a SPI transfer when in a mode 

that does not support SPI.

Invalid Command -7 You attempted to run a invalid command type.

Change Mode and Output 

Enable

-8 You attempted to run a mode change command when 

running an output enable method for DIO.

Invalid Configuration 

Register

-9 You attempted to access an invalid register (or did 

read/write on a register that did not support read/write).

Invalid Debug Register -10 You attempted to access an invalid debug register (or 

did read/write on a register that did not support 

Pulse Convert (not in correct 

mode)

-11 You attempted to pulse ~CONVERT in a mode that 

does not support pulse ~CONVERT.

Wait on Done (not in correct 

mode)

-12 You attempted to wait for done in a mode that does not 

support wait for done.
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When the C Series Communication Core encounters a fatal error, it cannot recover. The module 

will be unusable until the FPGA is reset. This can be done by restarting the FPGA VI.

Module Mode Details

Supported Modes
All modules must support ID and Idle modes as described in the CompactRIO Module 
Development Kit Hardware User Manual. In addition to those modes, your module may 

optionally support Normal Operation and Auxiliary Communication modes. You enable these 

modes when you specify them in the Module Support XML.

Transitioning to modes that are not enabled results in a fatal error on the C Series 

Communication Core.

Mode Transitions
The C Series Communication Core handles all mode changes. All of the timing requirements 

that are mentioned in the CompactRIO Module Development Kit Hardware User Manual are 

met when the mode is changed.

Initially, DIO lines 0:7 are set to input, tri-stated, with the output value set to 0. When 

transitioning to a mode where a line is configured as a digital line, input, output, or bi-directional, 

the line will go to whatever values were previously set through the digital I/O nodes and Set 

Output Enable methods.

If a line is used by the SPI engine in one mode and is used as a DO in another mode, you can run 

the DO and Set Output Enable methods before changing the mode to prepare the line to go into 

the desired state when the mode change completes.

When the module is removed from the chassis, the Output Enable settings are cleared and all of 

the lines go back to their default state. For bi-directional DIO lines, you must re-run the Output 

Enable methods to reset the line directions when the module is installed in the chassis again.

EEPROM Read or Write (not 

in ID mode)

-13 You attempted an EEPROM read/write when not in ID 

mode.

EEPROM Write Timeout 14 EEPROM write timeout.

SPI Divide Rate

(accessed during SPI transfer)

-15 Attempted to write the SPI divide rate override register 

during a SPI transfer.

Table 3-5.  Internal Errors (Continued)

Error

Error 

Code Description
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Internal Channels

Internal channels are data transfer mechanisms that allow concurrently running LabVIEW code 

to communicate.

You can access internal channels using method nodes on I/O channels. Each internal channel 

is represented in a LabVIEW project as an I/O channel on the module. This means that each 

module in a chassis has a unique set of internal channels.

Figure 4-1 shows how you can use internal channels to communicate between concurrently 

running LabVIEW code.

Figure 4-1.  Using Internal Channels

All of the methods on a particular channel access a shared resource that contains the data 

memory of the channel. The LabVIEW FPGA arbiters, shown in Figure 4-2, handle multiple 

accesses to the channel.

Figure 4-2.  LabVIEW Arbiters Handling Multiple Accesses

Clk B Clk CClk A (top-level) Clk A (top-level)

Channel Resource

Write Read

Write

Arbiter

Read

Arbiter
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You can use internal channels inside and outside of SCTLs. There is no restriction on how many 

nodes you can be place on a block diagram.

A module can use as many internal channels as required. However, NI recommends that you try 

to implement your module support with as few internal channels as possible to minimize FPGA 

utilization.

Internal Channel Types

MDK 2 provides three different types of internal channels. Each of these differ in how read and 

write nodes operate with respect to each other.

Asynchronous Internal Channel
When writing to an Asynchronous Internal Channel, the write will return as soon as the data 

reaches the flip-flops in the resource entity of the channel. When reading from an asynchronous 

channel, the read will return immediately with the most recent data from the flip-flops.

Use the Asynchronous Internal Channel when you have multiple readers or writers for the data 

and you do not need to synchronize the reads and writes. For example, use an Asynchronous 

Internal Channel for status or error information in the Module Resource VI. All of the node VIs 

can read the data on that channel before starting to check if the module is in an error condition.

Blocking Internal Channel
When writing to a Blocking Internal Channel, the write method node will not complete until the 

channel resource is read from a read method. If a read method node is called before the channel 

resource has been updated with new data, the Blocking Internal Channel will block until new 

data is written to the resource.

Use the Blocking Internal Channel when you want to synchronize parallel loops in LabVIEW. 

For example, use the Blocking Internal Channel to synchronize dataflow in the Module 

Resource VI and node VI.

Occurrence Internal Channel
The Occurrence Internal Channel has Send Occurrence and Check Occurrence methods. 

Sending an occurrence will set a flag in the channel resource. When you check for an occurrence, 

the Occurrence Internal Channel will tell you whether or not that flag has been set and clear it. 

Sending multiple occurrences without checking does not change the state of the flag, it just keeps 

setting it. These methods do not block and always return immediately.

Use the Occurrence Internal Channel when you do not have any data to send. For example, use 

the Occurrence Internal Channel to send simple Go or Done commands between the Module 

Resource and Node VIs.
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Data Types

When writing the Module Support XML, you will specify the data type of each internal channel. 

MDK 2 supports both standard data types and custom controls. When using a custom control, it 

must be a Control; you cannot use Type Def or Strict Type Def.

If you change the data type of an internal channel, you must re-create any instantiations of 

method nodes for the internal channel on LabVIEW block diagrams.
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Development and Export 
Process

You can use MDK 2 to develop module support for internal use or to ship to your customers. NI 

recommends you begin your module support development with the internal process to get 

familiar with MDK 2 before creating support for your customers.

Pre-pend all of your support files with the name of your module to prevent name collisions with 

other modules and LabVIEW VIs when your module support is loaded into LabVIEW. 

Internal Support Development Process

Use the internal module support development process only if you need to communicate with 

your module internally and do not intend on deploying module support to your customers. The 

internal support development process does not script any Module Resource VIs or Module 

Support VIs beneath I/O nodes. It only allows you to use the C Series Communication Core 

interfaces in your LabVIEW FPGA block diagram.

When developing module support for internal use, all of the files will be created in the LabVIEW 

modules support folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\FPGA\

cRIO\other\MDK-1234

Note This document refers to the module in development as MDK-1234. In the 

following sections, use the name of your module.

Module Support Files
Create the following files for internal module support.

Module Type XML
Complete the following steps to create a Module Type XML file.

1. Name the XML file MDK-1234_ModuleType.xml

2. Create the following folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\

FPGA\cRIO\other\MDK-1234\nicrio_configToolPlugin.llb

This folder is named so that the NI-RIO driver can find your Module Type XML file.

3. Place the XML file in the nicrio_configToolPlugin.llb folder.
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Refer to the Module Type XML section of Appendix A, Module XML, for more information on 

creating the Module Type XML file.

Module Support XML
Complete the following steps to create a Module Support XML file.

1. Name the XML file MDK-1234_ModuleSupport.xml.

2. Place the XML file in the following folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\

NI\FPGA\cRIO\other\MDK-1234

Note When creating the Module Support XML file, ensure that the 

<DevelopmentMode> tag is set to TRUE. This enables the C Series 

Communication Core and Internal Channel Method Nodes and disables the end user 

API I/O, method and property nodes.

Refer to the Module Support XML section of Appendix A, Module XML, for more information 

on creating the Module Support XML file.

Module Specific I/O References Control
Using a module specific I/O References Control is optional when creating internal module 

support. It is only needed if you are using internal channels. The module specific I/O References 

Control is automatically generated by the utility located in:

C:\Program Files\National Instruments\LabVIEW 2011\vi.lib\

LabVIEW Targets\FPGA\cRIO\shared\nicrio_Mdk2Utility\

Mdk2Utility_CreateIOReferenceClusterControl.vi

Run this VI and point it to the following folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\FPGA\

cRIO\other\MDK-1234

This creates the module specific I/O References cluster shown in Figure 5-1. The I/O References 

cluster contains two clusters of I/O references. The top cluster contains I/O references for the 

C Series Communication Core and the bottom cluster contains I/O references for internal 

channels. LabVIEW FPGA does not support empty clusters on the block diagram, so you must 

specify at least one internal channel in your XML. Having no internal channels results in an 

empty cluster and broken VIs.
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Figure 5-1.  Module Specific I/O Reference Cluster

Validating the Internal Module Support
Once the Module Support XML file is created, validate the XML by running the Module Support 

Export utility. On the front panel of the VI, select Validate XML Only (No Export) as the 

Export Type. This only performs the XML validation and does not create a module support 

export.

C:\Program Files\National Instruments\LabVIEW 2011\vi.lib\

LabVIEW Targets\FPGA\cRIO\shared\nicrio_Mdk2Utility\

Mdk2Utility_GenerateModuleSupportExport.vi
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Using the Internal Module Support
You can now add your FPGA target to a LabVIEW project. LabVIEW will discover your 

module if it is connected. Complete the following steps to add your module to a LabVIEW 

project if the module is offline.

1. Right-click the FPGA Target in the Project Explorer window and select New»C Series 
Modules from the shortcut menu to display the Add Targets and Devices dialog box.

2. Click the New target or device radio button, select C Series Module, and click the OK 

button to display the New C Series Module dialog box. 

3. Select your module from the Module Type pull-down menu and click the OK button. 

After the module is added to the project, the C Series Communication Core and internal channel 

I/O items appear in the project. Figure 5-2 shows a LabVIEW project ready to begin writing your 

Module Support VIs using these I/O items.
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Figure 5-2.  Internal Module Support LabVIEW Project

Deployable Support Development Process

The deployable development process is similar to the internal development process, except that 

all of the module support files (XML and VIs) are created in a folder outside of the LabVIEW 

modules directory.

The directory where you create your module support files is called the development folder. This 

is a different folder than the LabVIEW modules support folder where the files are used by 

LabVIEW.
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Export Utility
When the XML files are created, run the Module Support Export utility to export the support 

files into the LabVIEW modules support folder. It is important to use the utility because the 

export process manipulates some properties of the Module Support VIs and the utility modifies 

the files that get installed into the LabVIEW module support folder instead of the source files.

There are two different types of exports that you can perform.

� Development mode export—use to create the module support folder in LabVIEW that lets 

you create Module Support VIs.

� Release mode export—use to create the module support folder in LabVIEW that lets you 

test your module in release mode. 

Set the Export Type control to perform the desired type of export.

When performing the export, the utility verifies that your XML files follow the required schema. 

It also validates your XML and Module Support VIs using a series of rules.

You do not need to run a separate utility to create the module specific I/O References cluster. The 

module specific I/O References cluster is automatically generated by the export utility.

The export utility is found in the following folder:

C:\Program Files\National Instruments\LabVIEW 2011\vi.lib\

LabVIEW Targets\FPGA\cRIO\shared\nicrio_Mdk2Utility\

Mdk2Utility_GenerateModuleSupportExport.vi

Note All development VIs and LabVIEW projects should be closed before running 

the export utility.

Exclude from Export
You may place a folder within your development directory called ExcludeFromExport. 

This folder and the contents in it will not be copied into the Module Support folder during the 

export. Use this folder to place the VIs and LabVIEW projects that were used to facilitate the 

development of your Module Support VIs. The Module Support VIs must be developed within 

the context of a LabVIEW project that contains your module in development mode. When 

developing your module support VIs, it is useful to have some test VIs that you can use to 

instantiate your Module Support VIs for debugging. NI recommends that you use the 

ExcludeFromExport folder to save these files.

Development Mode Export
After you create the two XML files, create a Development mode export to install the XML files 

into the LabVIEW hierarchy. This allows you to create your Module Support VIs.

Save your Module Support VIs in the Development folder as you create them.
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The Export utility performs the following tasks in Development mode:

1. Loads the Module Type and Module Support XML files.

a. Verifies that the XML passes the schema.

b. Validates the XML using a series of rules.

2. Creates the I/O Reference Control based on the contents of the Module Support XML file.

3. Copies the module support files (XML and internal channel controls) to the export location 

in the LabVIEW modules directory.

4. Modifies the <DevelopmentMode> XML tag of the Module Support file to enable 

Development mode.

Do not modify or save any of the VIs in the Module Support folder. All changes will be lost when 

you run the export utility again. Also, be sure to not instantiate any controls or VIs from the 

LabVIEW Module Support folder in your Module Support VIs. All controls and indicators used 

in the Module Support VIs should be sourced from the development folder.

Your development folder will look something like this:

<MDK-1234>

- <nicrio_configToolPlugin.llb>

- MDK-1234_ModuleType.xml

- MDK-1234_ModuleSupport.xml

- MDK-1234_IOReferences.ctl

- MDK-1234_ModuleResource.vi

- MDK-1234_MyInternalChannelControl.ctl

- MDK-1234_MethodNode.vi

- MDK-1234_IONode.vi

- MDK-1234_PropertyNode.vi

When you do a development mode export, your LabVIEW module support folder will look like 

this:

<MDK-1234>

- <nicrio_configToolPlugin.llb>

- MDK-1234_ModuleType.xml

- MDK-1234_ModuleSupport.xml

- MDK-1234_MyInternalChannelControl.ctl

Notice that only the XML and internal channel control files are installed in LabVIEW. These 

files are necessary to have the module show up in LabVIEW and allow you to develop your 

Module Support VIs.
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Release Mode Export
When you are ready to test the Release mode operation of your module, run the Export utility in 

Release mode. This copies all of the contents of the development folder to the LabVIEW module 

folder.

Once the export is completed, do not modify the files located in the LabVIEW modules support 

folder. A subsequent export will overwrite them and any changes will be lost. All file changes 

should be done in the development folder.

The Export utility performs the following tasks in Release mode:.

1. Loads the Module Type and Module Support XML files.

a. Verifies that the XML passes the schema.

b. Validates the XML using a series of rules.

2. Creates the I/O Reference Control based on the contents of the Module Support XML file.

3. Copies all of the module support files to the export location in the LabVIEW modules 

directory.

4. Removes <DevelopmentMode> XML tag of the Module Support file to enable Release 

mode.

5. Validates the VIs using a series of rules.

6. Adds a special tag to the exported VIs.

7. Locks and password protects the exported VIs with a password you provide.

Module Support VI Tagging
When using the module in Release mode, the Module Support VIs are scripted during code 

generation. It is important that the VIs follow the requirements of MDK 2 and pass a series of 

rules that verify this. Once the VIs are verified, they get a special tag placed using a hidden VI 

property. If the VI does not pass any of the rules, the tag is not be placed on the VI.

During code generation, NI-RIO verifies that all of the Module Support VIs have the special tag. 

If any of the VIs do not have the tag, then the compile stops and the user gets a code generation 

error. This is how MDK 2 prevents LabVIEW from attempting to compile invalid Module 

Support VIs.

During the export process, the Module Support VIs are locked and password protected after 

the tag is added. If the module is unlocked and saved, the tag is be removed. This means that 

the module support will no longer compile in LabVIEW FPGA.
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Using the Deployable Module Support
You can now add your FPGA target to a LabVIEW project. LabVIEW will discover your 

module if it is connected. Complete the following steps to add your module to a LabVIEW 

project if the module is offline.

1. Right-click the FPGA Target in the Project Explorer window and select New»C Series 
Modules from the shortcut menu to display the Add Targets and Devices dialog box.

2. Click the New target or device radio button, select C Series Module, and click the OK 

button to display the New C Series Module dialog box. 

3. Select your module from the Module Type pull-down menu and click the OK button. 

If you are doing a Development mode export, you should be able to add the module to a 

LabVIEW project and see the C Series Communication Core interface I/O and internal channel 

I/O items added to the project. Refer to Figure 5-3 for an image of a LabVIEW project with 

interface I/O and internal channel I/O items in the project. You are now ready to develop Module 

Support VIs.

If you are doing a Release mode export, you should be able to add the module to a LabVIEW 

project and see that the end user I/O items added to the project as shown in Figure 5-3. You are 

now ready to test the module in Release mode.

Figure 5-3.  Release Mode Export
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Shipping the Deployable Module Support
The module support folder created by the Release mode export is saved in the following 

LabVIEW folder:

C:\Program Files\National Instruments\LabVIEW 2011\Targets\NI\FPGA\

cRIO\other\MDK-1234

This is the folder that you will deploy to your customers and have them install onto their 

computers. This module support folder can be used on any computer that has the appropriate 

LabVIEW and NI-RIO distributions installed.
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Module Resource VIs and node VIs are the two types of Module Support VIs in MDK 2.

Module Resource VIs are scripted once in the FPGA block diagram for each module in the 

chassis and provide a place for you to put all of the code that communicates with your module.

Node VIs are scripted beneath the I/O, method, and property nodes and communicate data 

between the end user block diagram and the Module Resource VI. In general, you should not 

place the C Series Communication Core API elements within node VIs. Place your complex 

code in the Module Resource VI since it is instantiated only once in the FPGA. The end user can 

place I/O, method and property nodes on the block diagram, which duplicates the logic that is 

used to communicate with the module if C Series Communication Core API elements are placed 

within the node VI.

Use the internal channels to communicate between the node VIs and the Module Resource VI.

Viewing Terminal Numbers in the Context Help

Figure 6-1 shows the VI terminal numbers in the Context Help window. It is important to enable 

terminal number viewing in the Context Help window to ensure that all of the terminals on 

Module Support VIs have the correct placement on the VI connector pane.

Figure 6-1.  VI Terminal Numbers in the Context Help

Complete the following steps to enable terminal number viewing in the context help.

1. Go to Tools»Options.

2. Select VI Server in the Category list in the Options dialog box.

3. Check Show VI Scripting functions, properties, and methods and verify that Display 
additional VI Scripting information in Context Help window contains a check in the VI 
Scripting section.
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Module Resource VI

The Module Resource VI handles the execution of various API elements like the I/O, method, 

and property nodes. When the end user compiles the FPGA block diagram, the Module Resource 

VI is scripted into the FPGA. The Module Resource VI is never visible to the end user as shown 

in Figure 6-2.

Figure 6-2.  Hidden Module Resource VI

Module Resource VI Connector Pane
The Module Resource VI must use a 5-3-3-5 connector pane, which must have the Terminal 0 

and Terminal 2 connections shown in Figure 6-3.

Figure 6-3.  Occurrence Reference and I/O References Cluster

Handling API Element Operations
The Module Resource VI handles the operation of one API element at a time. If two API 

elements attempt to run simultaneously, you must use a Blocking Internal Channel to make one 

API element wait while the other is handled.
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An API element first performs an internal channel write (blocking channel), as shown in 

Figure 6-4.

Figure 6-4.  Internal Channel Write

The value written to the internal channel indicates which type of API element is running. 

Because this is a blocking internal channel, the method node waits until the channel is read 

before completing.

The Module Resource VI checks the status of that blocking internal channel. When the Module 

Resource VI sees that the channel has a write waiting, it reads the data from the channel. 

Depending on the value read from the channel, the Module Resource VI performs different 

operations specific to the API element that is running. Figure 6-5 shows the Module Resource 

VI performing these tasks.

Figure 6-5.  Module Resource VI

Because this is a Blocking Internal Channel, any other API elements that attempt to run are 

blocked while this operation is being handled. When the Module Resource VI completes the 

operation of the API element, the loop goes to the next iteration and checks the channel status. 

At that time, if another API element is attempting to run, it will be handled.
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Stopping the Module Resource VI
The Module Resource VI is scripted into the end user’s top level VI during code generation. 

When the top level VI completes its execution, the Module Resource VI must also stop. Use an 

occurrence to stop the Module Resource VI.

The Module Resource VIs connector pane must include an occurrence reference. When the top 

level VI is finished, the occurrence is set. You must stop the Module Resource VI from running 

when the occurrence is set.

Note Use the standard LV FPGA Occurrence primitive to stop the Module 

Resource VI. Do not use the internal channel occurrence.

Figure 6-6 shows the LabVIEW code for stopping the Module Resource VI using an occurrence.

Figure 6-6.  LabVIEW Code

When the Module Resource VI starts to execute, the Wait on Occurrence primitive waits until 

the occurrence is set. The timeout is set to -1, which means wait forever and the Ignore Previous 

input is set to FALSE. When the top level VI completes, the occurrence is set and the Wait on 

Occurrence primitive completes with no timeout (FALSE). This sets the Stop indicator to TRUE. 

A local variable on the Stop indicator stops the While Loop.

It is critical that you stop the Module Resource VI when the occurrence is set. Failure to do so 

will result in the end user’s top level VI hanging when its execution completes. NI recommends 

that the loop rate of the Module Resource VIs While Loop be no longer than 500 ms, because it 

may take up to one full loop iteration before the loop will stop. You do not want to introduce a 

noticeable lag between completion of the end user’s top level VI and when the Module Resource 

VI stops executing.
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Node VIs

When the LabVIEW FPGA block diagram is compiled, the API elements of the module get 

replaced with the node VIs that you provide.

The method node in Figure 6-7 has its error terminals on, which cause the outer case structure 

to be scripted. If the Module Support XML specifies that this method node has an error handling 

VI, the VI would get scripted. This module support error handling VI is optional. If it is not 

present, then the error wire simply passes through the node and the Module Support VIs will not 

be able to produce any error codes on the error wire of the node.

Figure 6-7.  Method Node

The Module Support VIs can only produce an error code. The error cluster that comes out of the 

node VI is merged with the incoming error. Third party Module Support VIs do not have access 

to the incoming error. The code executes if no error is passed in, or does not execute if an error 

is passed in. Any outputs of the node are zero or false when an error is passed into it.

Each Module Support VI shown in Figure 6-7 is scripted into a separate frame in the sequence 

structure. This order is determined by the <SequenceOrder> tag from the Module Support 

XML.

 Data can transfer from one frame to the next using the Instance Data wire. Use the 

<UseInstanceData> tag in the Module Support XML to enable the Instance Data wire. When 

Instance Data is enabled for the method node, all VIs that are scripted must support it.
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If the end user does not have enable error handling on the method node as shown in Figure 6-8, 

the error handling portion does not get scripted. 

Figure 6-8.  Method Node without Error Handling

Method and Property Node VIs
Only one method and property node VI is permitted in addition to the optional Error 

Handling VI.

Method and Property Node VI Terminals

The method node VI has three required terminals:

� Terminal 1—ProjectItemID

� Terminal 2—I/O References

� Terminal 14—Instance Data Out is only required when the <UseInstanceData> tag is 

set to TRUE and must match Instance Data In of the next VI in the sequence

On method node VIs, terminals 0, 5, 7, 9, 11 are write parameters and terminals 4, 6, 8, 10, 15 

are read parameters.

The property node VI only permits the following parameter terminals:

� Terminal 0—Write Property Node Parameter

� Terminal 4—Read Property Node Parameter
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Inside Method and Property Node VIs
The first thing a node VI should do is use a blocking internal channel to tell the Module Resource 

VI that a node VI is attempting to run. The data should indicate what type of node VI it is.

After the Module Resource VI reads the channel data, the node and Module Resource VIs are 

free to communicate with each other using internal channels. You may use any type of internal 

channel within the node VI to communicate with the Module Resource VI. In general, all 

communication with the C Series Communication Core and all data processing should be done 

in the Module Resource VI.

Once the operation has completed, you may use an Occurrence internal channel to make the node 

VI wait until the Module Resource VI is done with the operation and ready to allow another 

operation to begin.

The use of the Blocking Internal Channel at the start of the node VI and the occurrence internal 

channel at the end of the node VI, shown in Figure 6-9, creates a request/release protocol. When 

the node VI begins, it will request the Module Resource VI. The node VI will wait until the 

Module Resource VI releases it. Using this protocol, you can ensure that only one node VI will 

execute at a time. 

Figure 6-9.  Internal Channels

Error Handling VI
The Error Handling VI can be optionally specified in the Module Support XML. When 

specified, the Error Handling VI will be scripted into the diagram if error terminals are enabled 

on the end user API node. The purpose of the Error Handling VI is to let API elements produce 

error codes that will be received by the end user.

Error Handling VI Terminals
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The Error Handling VI has two required terminals:

� Terminal 2—I/O References cluster

� Terminal 13—error out

The Instance Data In terminal is required when the <UseInstanceData> tag is set to TRUE:

� Terminal 12—Instance Data In (must match Instance Data Out of the previous 

sequence VI)

I/O Node VIs
I/O nodes differ from method and property nodes. I/O nodes are growable. This means that 

you can expand an I/O node to contain many I/O items. All of the I/O items in a grown node 

are expected to execute atomically. Refer to Handling API Element Operations for more 

information on the differences between I/O, method, and property nodes and when to use them.

Because a single grown I/O node must execute all of its I/O items at the same time, we need a 

more advanced scripting capability.

Figure 6-10 shows three different Node VIs, in addition to the Error Handling VI, being scripted 

into the grown I/O node. The first and third VIs are node scoped. The second VI is channel 

scoped. When specifying the VIs in the Module Support XML, you can use the <VIScope> tag 

to specify which type they are.

Figure 6-10.  Node VIs Being Scripted into the Grown I/O Node

The node scoped VIs are only instantiated once for the grown I/O node. The channel scoped VIs 

are instantiated for every I/O item in the grown node.
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When using these VIs in sequence, it is possible to make all of the I/O items in the grown node 

act atomically. For example, the above VI is for an analog output module. When it runs, all three 

channels are updated simultaneously. Here is how it works:

1. Seq 0 (node scoped)—Uses the blocking channel to tell the Module Resource VI that an 

I/O node is going to run.

2. Seq 1 (channel scoped)—Sends the output data to the Module Resource VI. The 

ProjectItemID is used to identify that the data for the AO channel is being written.

3. Seq 2 (node scoped)—Tells the Module Resource VI to SPI the AO data to the module and 

pulse ~CONVERT. This makes all three AO channels update simultaneously.

An I/O node may have multiple node and channel scoped levels. However, one of the channel 

scoped levels must have the <VIHasTerminalConnections> tag set to TRUE in the Module 

Support XML. That particular VI will have the data terminal of the I/O node wired to it. Other 

channel scoped VIs will not have any connections to the I/O node terminals.

Node Scoped I/O Node VI Terminals

The Node Scoped I/O Node VI has one required terminal:

� Terminal 2—I/O References cluster

The Node Scoped I/O Node VI has required terminals if instance data is enabled:

� Terminal 12—Instance Data In (must match Instance Data Out of previous sequence)

� Terminal 14—Instance Data Out (must match Instance Data In of next sequence)

Note Instance Data In is not allowed on the first VI in the sequence because there 

is no sequence VI before it, so there is nothing to wire to it.

Note Node scoped VIs do not have the ProjectItemID. This is because the grown 

I/O node will contain many I/O items, each with a different ProjectItemID.
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Channel Scoped I/O Node VI Terminals

The Channel Scoped I/O Node VI has two required terminals:

� Terminal 1—ProjectItemID

� Terminal 2—I/O References cluster

The Channel Scoped I/O Node VI has required terminals if instance data is enabled:

� Terminal 12—Instance Data In (must match Instance Data Out of previous sequence)

� Terminal 14—Instance Data Out (must match Instance Data In of next sequence)

Note Instance Data In is not allowed on the first VI in the sequence because there 

is no sequence VI before it, so there is nothing to wire to it.

The Channel Scoped I/O Node VI has one required terminal if it is going to connect to the node 

terminal:

� Terminal 0—Write I/O Node parameter (to I/O node)

or

� Terminal 4—Read I/O Node parameter (from I/O node)

Merged I/O Node VIScriptInfo (Advanced)

I/O items that use the same interface and VISriptInfo will be scripted together when placed in 

the same grown I/O node. When the I/O items in a grown node are scripted together, the node 

scoped VIs in the VIScriptInfo will only be scripted once per node, and the channel scoped VIs 

will be scripted once per each channel in the grown I/O node.

I/O items that use a different interface and VIScriptInfo will be scripted separately, as shown in 

Figure 6-11. For example, if your module has DI and DO, the DI I/O items will be scripted 

together and the DO I/O items will be scripted together.
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Figure 6-11.  DI and DO from Same Module Scripted Separately

To script I/O items with different interfaces and VIScriptInfos together, you must specify it in 

the MergedIONodeVIScriptInfoList portion of the XML. When merging the VIScriptInfos for 

different interfaces, those VIScriptInfos must be compatible and must follow the following 

rules:

� They have the exact same number of VIs specified

� They have the same settings for UseInstanceData

� All node-specific VIs (including Error Handling VI) must be the same VIs
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Figure 6-12 shows how the I/O node would be scripted if the DI and DO were specified in the XML to have merged VIScriptInfo.

Figure 6-12.  DI and DO from Same Module Scripted Together
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Error Codes

NI recommends you use error codes in the API of your module. NI reserved error codes 

±358600–358619 that you can use for your modules.

In addition to module specific error codes that are defined by third party module developers, 

there are also two error codes that we encourage you to use:

� 65536: Module Communication Error

– Use this error code when the module is removed or invalid

(No Module or Invalid module status) and when you are unable to communicate with 

the module

� 65537: Incorrect Module Error

– Use this error code when the module is incorrect

(Incorrect module status)

� 65673: Incorrect Program Mode Error

– Use this error code when the slot is in the incorrect program mode

(Incorrect Program Mode module status)

Creating Custom Error Code Files
If you create your own module-specific error codes, we recommend that you ship an error code 

file as part of your deployable module support files. This allows your customers to see a custom 

error description through the LabVIEW Explain Error help menu. Refer to the Defining Custom 
Error Codes in Text Files topic in the LabVIEW Help for more information on creating a custom 

error code file.
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Modules Support VI Best 
Practices

This section provides best practices for writing Module Support VIs.

Error Terminals on Interface Method Nodes

Although LabVIEW FPGA allows you to enable error terminals on the C Series Communication 

Core and Internal Channel Method Nodes, NI does not recommend that you use error terminals 

on these method nodes. These error terminals contains a 33-bit wide signal that must be 

registered in the FPGA, which causes an unnecessary increase in FPGA utilization. 

The C Series Communication Core and Internal Channel Method Nodes do not return any error 

codes. Internal error information from the C Series Communication Core can be retrieved from 

the debug register. Also, the Internal Channel cannot produce any errors.

Do not use the error wire to force execution order in the FPGA. Use the flat sequence structure 

to control execution order. The flat sequence structure utilizes the FPGA efficiently and does not 

waste any resources.

Changing Interfaces

When your XML is written and you are using your module in LabVIEW projects, use caution 

when changing the end user API or the internal channels.

If you change the type or data type of the internal channel, you must delete and replace all 

method nodes on the block diagram using that channel. If you change the terminals of any API 

elements, you must delete and replace the terminals on the block diagram. If you add or remove 

any internal channels, you should delete and re-add the module in any project that uses it in 

Release mode.

If you do not replace the nodes to the I/O items that have changed on the block diagram, you 

may encounter various LabVIEW and code generation errors.

The XML for these LabVIEW project items is intended to be static. LabVIEW may not properly 

mutate the nodes on the block diagram when the interfaces to those project items change, which 

may cause some warnings when you close LabVIEW after you make these changes.
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Using Channel Scoped VIs to Create a 
Channel List

InstanceData sends information from one sequence frame of your Module Support VIs to the 

next. Because channel scoped VIs are scripted in parallel, the InstanceData out of channel 

scoped VIs must be ORed together, as shown in Figure 7-1, before wiring them to the 

InstanceData input of the next frame. You can use this functionality to create a channel mask 

that tells the Module Resource VI what channels are in the node that is executing.

Figure 7-1.  Channel Scoped VIs ORed Together

Each channel scoped VI sets a bit in the instance data that corresponds to the ProjectItemID of 

the I/O item that the VI is being scripted for. Figure 7-2 shows a channel scoped VI setting a bit 

in the Instance Data Out. In the XML, the ProjectItemID corresponds with the channel number 

of the I/O. When the Instance Data Out signals from each of the channel scoped VIs are ORed 

together, it creates a channel mask.

Figure 7-2.  Setting a Bit in the Instance Data Out
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The node scoped VI sends the channel mask to the Module Resource VI, as shown in Figure 7-3. 

The Module Resource VI handles all of the I/O items together.

Figure 7-3.  Sending the Channel List to the Module Resource VI

Refer to the MDK-9902 example for information on creating a channel list. Using this 

programming method can make multiple I/O items in a grown I/O node execute atomically in 

the Module Resource VI and have a single convert pulse for all of them.

Click Start»Programs»National Instruments»NI-RIO»CompactRIO»
CompactRIO MDK 2»cRIO MDK Examples to open the MDK 2 example directory.

Using the Module Status

The Module Resource VI should constantly monitor the module status and optionally execute 

the API elements depending on what the module status is. Use the following guidelines for using 

the module status in the Module Resource VI.

� Unknown—Wait until the module status is determined before deciding how to proceed. 

The module status will only be unknown for a short period of time while the module is 

being identified.

� Correct—Allow all API elements to execute.

� Incorrect—Only allow the Module ID, Vendor ID and Serial Number Property Nodes to 

execute. These property nodes should return with a warning 65537. All other API elements 

should not be executed and should be returned immediately with error 65537.

� No Module, Invalid—Do not execute any API elements. Return them immediately with 

error 65536.

The Module Resource VI must only utilize the Idle and ID modes of the C Series 

Communication Core when the module status is incorrect or invalid. Never enter Normal 

Operation and Auxiliary Communication modes when the module status is Incorrect or Invalid.

When the module status is no module, the C Series Communication Core automatically goes into 

Idle mode and you cannot transition into another mode until a module is present.
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Module Manufacturing

The C Series Communication Core automatically identifies your module in the chassis slot and 

operates on it. The EEPROM of the module is blank during manufacturing, so the C Series 

Communication Core sees your module as invalid.

To write to the EEPROM of the module during manufacturing, you can create a separate set of 

module support files to make a different module type that is used during manufacturing. Use the 

export utility to create a development mode export of manufacturing module support. When 

writing the EEPROM of your module, you must calculate several CRC values.

During manufacturing, use the Module Status Override Debug register to make the module 

status Correct in the C Series Communication Core. This allows you to perform EEPROM writes 

and reads and simple manufacturing tests of your module hardware such as SPI and DIO.

Refer to the MDK-MFG example directory for an example of manufacturing module support. 

Click Start»Programs»National Instruments»NI-RIO»CompactRIO»CompactRIO 
MDK 2»cRIO MDK Examples to open the MDK 2 example directory.
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Using the MDK 2 Examples

Click Start»Programs»National Instruments»NI-RIO»CompactRIO»CompactRIO 
MDK 2»cRIO MDK Examples to open the MDK 2 example directory. The MDK examples 

directory includes the Module SubItem Icons, Module Support Development, and Release Mode 

Projects folders.

Module SubItem Icons
This folder contains example Module SubItem Icons that you can use with Module SubItems. 

In addition to these example icons, you can create your own custom icon for your SubItem.

Module Support Development
This folder contains the module support source code for four example modules. Each of the 

module support folders contain an ExcludeFromExport folder that contains a Development 

mode LabVIEW project. In order to use the module in Development mode, you must first run 

the Module Support Export Utility for that particular example module.

Release Mode Projects
This folder contains LabVIEW projects and VIs that use the example modules in Release mode. 

In order to use the module in Release mode, you must first run the Module Support Export Utility 

for that particular example module.

MDK 2 Example Modules

MDK 2 provides four example modules.

MDK-MFG
Only use the MDK-MFG module in Development mode. There is no Release mode project for 

the MDK-MFG module. This example module is useful when manufacturing your module 

hardware. The ExcludeFromExport folder contains examples of reading and writing the module 

EEPROM and generating CRC values. It also shows how you can use the Debug interface to 

override the module status.

MDK-9901
The MDK-9901 module is a four channel analog output module. The Module Support VIs 

use the same communication protocol as the NI 9263. You can update the EEPROM of the 

NI 9263 to match the MDK-9901 Vendor ID, Product ID, and Module Model Code. This 

allows you to run the FPGA VI in the Release mode project and see voltages on the AO channels 
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of the NI 9263. The MDK-9901 EEPROM values can be obtained from the MDK-9901_

ModuleType.xml file. The ExcludeFromExport folder contains a Development mode project 

that shows how the various API elements get scripted behind the I/O nodes.

MDK-9902
The MDK-9902 module contains examples of all of the API elements that you can create using 

MDK 2. It does not utilize any of the C Series Communication Core interfaces. Instead, it uses 

the Module Resource VI, node VIs and internal channels to demonstrate how to create different 

API elements. The ExcludeFromExport folder contains a Development mode project that shows 

how merged VI Script Info interfaces get scripted behind a grown I/O node.

MDK-9903
The MDK-9903 module demonstrates how to use the C Series Communication Core interfaces 

inside of an SCTL. Its API is a method node that may also be run inside of an SCTL. The 

ExcludeFromExport folder contains a Development mode project that shows how the method 

node gets scripted behind the I/O nodes.
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Data Types

Table A-1 lists the Module XML data types.

Module XML

Module Type XML
All the Module Type XML tags are required. Table A-2 lists the Module Type XML tags.

Table A-1.  XML Data Types

Data Type Valid Range / Values

Integer Hexadecimal (i.e., 0x1234) & Decimal

String String characters

Boolean true, false

Enumerated Enumerated type; select from a list of values

SimpleName a-z, A-Z, 0-9, -, _

ProjectItemName a-z, A-Z, 0-9, -, _, (, ), [, ], :

RestrictedString a-z, A-Z, 0-9, -, _, (, ), [, ], :, {, }, \, !, @, #, /, +, *, ?, |, ., ^, space

Table A-2.  Module Type XML Tags

XML 

Level XML Tag

Data 

Type Description

1 ModuleName String Specifies the name of the module.

It typically consists of a two letter acronym followed by the 

module model code. This module name is also used to name the 

files and folders that make up the module support.

1 Description String Appears in the New C Series Module dialog box when adding 

a module to a LabVIEW project.
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Note When you are prototyping your module support, make the VendorID, 

ProductID, and Model Code for your module unique. NI-RIO uses these values to 

identify the module and will produce an error if these values are duplicated in other 

module support files.

Module Support XML
All of the Module Support XML tags and attributes are either required or optional. If an optional 

tag is not present, the default value is used or the particular functionality that the tag specifies is 

not included in the module support.

1 VendorID Integer It must match the Vendor ID that is stored in the module 

EEPROM. The VendorID is typically specified with a leading 

0x to indicate that it is hexadecimal.

1 ProductID Integer It must match the Product ID that is stored in the module 

EEPROM. The ProductID is typically specified with a leading 

0x to indicate that it is hexadecimal.

1 ModelCode Integer It must match the Module Model code that is stored in the 

module EEPROM. The ModelCode is typically specified as 

decimal since it corresponds with the model number of the 

module.

Table A-2.  Module Type XML Tags

XML 

Level XML Tag

Data 

Type Description
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Table A-3 lists the Module Support XML tags, sections, and attributes.

Table A-3.  MDKVersion and DevelopmentMode Tags

XML 

Level XML Tag Data Type

Required/

Optional Description

1 MDKVersion Tag String Required Specifies the version of the module development kit used to develop 

the module support.

Use the Mdk2Utility_GetinstalledMDKVersion.vi 

utility located at labview\vi.lib\LabVIEW Targets\

FPGA\cRIO\shared\nicrio_Mdk2Utility to verify the 

MDK support version that is installed with the NI-RIO version on your 

computer.

1 DevelopmentMode Tag Boolean Optional Specifies what mode (Release or Development) the module appears in 

the LabVIEW project.

If this tag is not present, the module support will be in Release mode.
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Table A-4 list the tags, sections, and attributes for the Module section.

Table A-4.  Module Section

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description

1 Module Section — Required Defines the end user APIs of the module.

Each of the items listed in the module section of the XML corresponds to a 

LabVIEW project item that appears in the project when the module is added. 

Each of these project items can specify what interfaces (I/O, method and 

property nodes) can be used with them. The module itself is also a project 

item.

2 Name Attribute ProjectItemName Required Specifies the name of the module.

This must match the module name defined in the ModuleType XML file.

2 ProjectItemID Tag Integer Optional Specifies the value used by the Module Support VI scripters.

When your Module Support VIs are scripted, one of the inputs to your VI is 

the value specified by the ProjectItemId. This identifies what project item 

the particular VI is operation on.

2 SupportedInterfaceList 

Section

— Optional Contains a list of interfaces, defined in another part of the XML, that are 

available on the module.

For the module, these interfaces can be method or property nodes. I/O nodes 

are not supported directly on the module. Each item in the 

SupportedInterfaceList is put inside of Interface XML tags.

2 ResourceVI Section — Optional Specifies a VI that will be scripted into the FPGA diagram at compile time.

It does not correspond to any API elements that are placed on the block 

diagram. Instead, this VI is instantiated once per module in the LabVIEW 

project.
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3 Name Attribute Simple Name Required Specifies the name of the VI that will be scripted into the FPGA diagram.

2 ModuleSubItemList 

Section

— Optional Contains a list of module sub-items.

Modules that have functionality that are not typical I/O can use module 

sub-items instead of I/O channels. For example, the NI 9802 uses sub-items 

in the LabVIEW project for two SD card slots and the NI 9871 uses 

sub-items in the LabVIEW project for two serial ports.

2 ModuleSubItem 

Section

— Optional Appears in the LabVIEW project under the module item.

3 Name Attribute ProjectItemName Required Specifies the name of the module sub-item that appears in the LabVIEW 

project

3 ProjectItemId Tag Integer Optional Specifies the value used by the Module Support VI scripters.

The range for this tag is 0 to 255.

When your Module Support VIs are scripted, one of the inputs to your VI is 

the value specified by the ProjectItemId. This is used to identify what 

project item the particular VI is operation on.

3 SupportedInterfaceList 

Section

— Optional Contains a list of interfaces, defined in another part of the XML, that are 

available on the module sub-item.

For module sub-items, these interfaces can be method or property nodes. I/O 

nodes are not supported for module sub-items. Each item in the 

SupportedInterfaceList is put inside of Interface XML tags.

4 Interface Tag String Optional —

Table A-4.  Module Section (Continued)

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description
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3 ModuleSubItemIcon 

Tag

SimpleName 

(.png)

Optional Specifies the icon used in the project to show the module sub-item.

Sample icons are located in the Module SubItem Icons directory. 

Click Start»Programs»National Instruments»NI-RIO»CompactRIO»
CompactRIO MDK2»cRIO MDK Examples to open the MDK 2 example 

directory.

2 IOChannelList Section — Optional Contains a list of the I/O channels that will be available on your module.

3 IOChannel Section — Optional Appears as an I/O item in the LabVIEW project. Like NI I/O channels, the 

I/O items will be automatically placed into a module folder in the LabVIEW 

project when the module is added to the FPGA target.

4 Name Attribute ProjectItemName Required Specifies the name of the I/O channel that appears in the LabVIEW project.

4 ProjectItemId Tag Integer Optional Specifies the value used by the Module Support VI scripters.

The range for this tag is 0 to 255.

When your Module Support VIs are scripted, one of the inputs to your VI is 

the value specified by the ProjectItemId. This is used to identify what 

project item the particular VI is operation on.

4 SupportedInterfaceList 

Section

— Optional Contains a list of interfaces, defined in another part of the XML, that are 

available on the module.

For I/O channel items, these interfaces can be I/O, method, or property 

nodes. Each of these items in the SupportedInterfaceList is put inside of 

Interface XML tags.

Table A-4.  Module Section (Continued)

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description



C
o

m
p
a

c
tR

IO
 M

o
d

u
le

 D
e
ve

lo
p
m

e
n

t K
it S

o
ftw

a
re

 M
a

n
u
a

l

©
 N

a
tio

n
a

l In
s
tru

m
e
n

ts
|

A
-7

Table A-5 list the tags, sections, and attributes for the PropertyNodeInterfaceList section.

5 Interface Tag RestrictedString Optional —

5 ParallelDigitalInterface 

Tag

Enumerated Optional Contains interfaces for parallel digital I/O lines.

The options for this tag are DIO0-DIO7, DI0-DI7, DO0-DO7.

The support for these interfaces is provided by the MDK 2 software. When 

using parallel digital I/O lines, you do not need to specify VIs that will get 

scripted beneath the I/O nodes like you do for other interfaces. Each parallel 

digital I/O line is put inside ParallelDigitalInterface XML tags.

Table A-5.  PropertyNodeInterfaceList Section

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description

1 PropertyNodeInterface

List Section

— — Contains the details for each of the Property Node interfaces that were 

specified in the SupportedInterfaceList sections of the project items.

2 Interface Section — — —

3 Name Attribute RestrictedString Required Specifies the name of the property node that is available on the LabVIEW 

block diagram.

Table A-4.  Module Section (Continued)

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description
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3 DataType Tag Enumerated Required Specifies the data type of the property node. 

The options for this tag are I8, U8, I16, U16, I32, U32, and Boolean.

You may also specify a control name in this tag. This control may be a 

cluster, array, fixed-point, or any other data type that is allowed in LabVIEW 

FPGA. The control name should be specified with the .ctl extension, for 

example MDK-1234_MyControl.ctl. The control must be located 

directly inside of the module support folder and not within a subfolder.

3 Direction Tag Enumerated Required Specifies the direction of the property node. The options for this tag are 

Read, Write, BiDirectional.

3 DefaultDirection Tag Enumerated Required 

when the 

direction is 

BiDirectional

Specifies the direction of the node when it is first placed on the block 

diagram.

It is not allowed when the direction is Read or Write. The options for the 

DefaultDirection are Read and Write.

3 NodeIcon Tag Enumerated Required Specifies the icon that appears in the node on the block diagram.

The options for this tag are AI, AO, DI, DO, DIO, and Port.

3 WriteVIScriptInfo 

Section

— Required 

when the 

direction of 

the property 

node is Write 

or 

BiDirectional

Specifies the Module Support VIs for the property node and how they 

should be connected.

Table A-5.  PropertyNodeInterfaceList Section (Continued)

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description
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4 Name Attribute SimpleName Required Specifies the name of the WriteVIScriptInfo section.

This name does not appear in the end user API and is only used internally 

within the XML file. This name must be unique and not used for any other 

VIScriptInfo section.

4 UseInstanceData Tag Boolean Optional Specifies if the instance data terminal will be used on the Module Support 

VIs.

5 VIList Section — — Contains a list of Module Support VIs that will be scripted beneath the 

property node. 

For property nodes, you may only specify one VI in addition to the optional 

Error Handling VI.

5 VI Section — — —

6 Name Attribute SimpleName 

(.vi)

Required Specifies the name of the VI that will be scripted beneath the property node.

Specify the VI name with the .vi extension, for example, 

MDK-1234_MyVI.vi. The VI must be located directly inside of the 

module support folder and not within a subfolder.

6 SequenceOrder Tag Integer Required Specifies where in the sequence of frames this particular VI will appear 

when multiple VIs are scripted in sequence beneath the property node.

The range for this tag is 0 to 255.

6 VIHasTerminalConnect

ion Tag

Boolean Optional Indicates that this particular VI contains a terminal that will be connected to 

the input or output terminal of the property node.

This tag is optional, but one and only one VI in the VIList must contain this 

tag set to true.

Table A-5.  PropertyNodeInterfaceList Section (Continued)

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description
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Table A-6 list the tags, sections, and attributes for the MethodNodeInterfaceList section.

6 ErrorHandling Tag Boolean Optional Indicates that this particular VI contains a terminal that will be connected to 

the error output of the property node.

To have your property node produce error codes, one and only one VI in the 

VIList must contain this tag set to true.

3 ReadVIScriptInfo 

Section

— Required 

when the 

direction of 

the property 

node is Read 

or 

BiDirectional

Specifies the Module Support VIs for the property node and how they 

should be connected.

Table A-6.  MethodNodeInterfaceList Section

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description

1 MethodNodeInterfaceL

ist Section

— — Contains the details for each of the Method Node interfaces that are 

specified in the MethodInterfaceList sections of the project items.

2 Interface Section — — —

3 Name Attribute RestrictedString Required Specifies the name of the method node that is available on the LabVIEW 

block diagram.

This name must be unique and not used for any other interface section.

Table A-5.  PropertyNodeInterfaceList Section (Continued)

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description
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3 MethodNodeTerminalL

ist Section

— Optional Defines the terminals that will be shown on the method node in the 

LabVIEW block diagram.

If this section is not defined, the method node will not have any terminals.

4 MethodNodeTerminal 

Section

— — —

5 Name Attribute RestrictedString Required Specifies the name of the method node terminal that appears on the 

LabVIEW block diagram.

5 DataType Tag Enumerated

or

SimpleName 

(.ctl)

Required Specifies the data type of the method node. 

The options for this tag are I8, U8, I16, U16, I32, U32, and Boolean.

You may also specify a control name in this tag. This control may be a 

cluster, array, fixed-point, or any other data type that is allowed in LabVIEW 

FPGA. The control name should be specified with the .ctl extension, for 

example MDK-1234_MyControl.ctl. The control must be located 

directly inside of the module support folder and not within a subfolder.

5 Direction Tag Enumerated Required Specifies the direction of the method node terminal.

The options for this tag are Read and Write.

5 Required Tag Boolean Optional Specifies the wiring on a Write terminal. This tag can only be used with 

Write terminals.

When set to true, the write terminal on the method node must have 

something wired to it on the block diagram. When set to false, the write 

terminal can be left unconnected and a default value will be used.

Table A-6.  MethodNodeInterfaceList Section (Continued)
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5 TerminalOrder Tag Integer Required Specifies the order in the method node in which the terminal appears. The 

order starts with the top most terminal which has a TerminalOrder of zero.

The range for this tag is 0 to 255.

3 NodeIcon Tag Enumerated Required Specifies the icon that appears in the node on the block diagram.

The options for this tag are AI, AO, DI, DO, DIO, and Port.

3 MethodVIScriptInfo 

Section

— Required Specifies the Module Support VIs for the method node and how they should 

be connected.

4 Name Attribute SimpleName Required Specifies the name of the MethodVIScriptInfo section.

This name does not appear in the end user API and is only used internally 

within the XML file. This name must be unique and not used for any other 

VIScriptInfo section.

4 UseInstanceData Tag Boolean Optional Specifies if the instance data terminal will be used on the Module Support 

VIs.

5 VIList Section — — Contains a list of Module Support VIs that will be scripted beneath the 

method node. 

For method nodes, you may only specify one VI in addition to the optional 

Error Handling VI.

5 VI Section — — —

Table A-6.  MethodNodeInterfaceList Section (Continued)
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6 Name Attribute SimpleName 

(.vi)

Required Specifies the name of the VI that will be scripted beneath the method node.

Specify the VI name with the .vi extension, for example, 

MDK-1234_MyVI.vi. The VI must be located directly inside of the 

module support folder and not within a subfolder.

6 SequenceOrder Tag Integer Required Specifies where in the sequence of frames this particular VI will appear 

when multiple VIs are scripted in sequence beneath the method node.

The range for this tag is 0 to 255.

6 TerminalConnectionLis

t Section

— Optional This tag is optional, but if the method node contains any, one and only one 

VI in the VIList must contain this section.

7 TerminalConnection 

Section

— Optional Each terminal of the method node must have a corresponding terminal 

connection in the TerminalConnectionList.

7 Name Attribute SimpleName Required Specifies the name of the TerminalConnection section.

This name does not appear in the end user API and is only used internally 

within the XML file. This name must be unique and not used for any other 

TerminalConnection section.

7 NodeTerminalName 

Tag

RestrictedString Required Specifies the node terminal from the MethodNodeTerminalList section that 

is being connected.

Table A-6.  MethodNodeInterfaceList Section (Continued)
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Table A-7 list the tags, sections, and attributes for the IONodeInterfaceList section.

7 ConnectorPaneTermina

l Tag

Integer Required Specifies the terminal on the Module Support VI connector pane that is 

being connected to the terminal of the method node.

The range for this tag is 0 to 255.

6 ErrorHandling Tag Boolean Optional Indicates that this particular VI contains a terminal that will be connected to 

the error output of the method node.

To have your method node produce error codes, one and only one VI in the 

VIList must contain this tag set to true.

Table A-7.  IONodeInterfaceList Section

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description

1 IONodeInterfaceList 

Section

— — Contains the details for each of the I/O Node interfaces that were specified 

in the IONodeInterfaceList sections of the project items.

2 Interface Section — — —

3 Name Attribute SimpleName Required Specifies the name of the Interface section,

This name does not appear in the end user API. because the I/O nodes inherit 

names from the project items that they are associated with. For example, the 

I/O node for the AI0 project will be called AI0.

This name is only used internally within the XML file. This name must be 

unique and not used for any other Interface sections.

Table A-6.  MethodNodeInterfaceList Section (Continued)
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3 DataType Tag Enumerated

or

SimpleName 

(.ctl)

Required Specifies the data type of the I/O node. 

The options for this tag are I8, U8, I16, U16, I32, U32, and Boolean.

You may also specify a control name in this tag. This control may be a 

cluster, array, fixed-point, or any other data type that is allowed in LabVIEW 

FPGA. The control name should be specified with the .ctl extension, for 

example MDK-1234_MyControl.ctl. The control must be located 

directly inside of the module support folder and not within a subfolder.

3 Direction Tag Enumerated Required Specifies the direction of the I/O node terminal.

The options for this tag are Read, Write, and BiDirectional.

3 DefaultDirection Tag Enumerated Required 

when the 

direction is 

BiDirectional

Specifies the direction of the node when it is first placed on the block 

diagram.

It is not allowed when the direction is Read or Write. The options for the 

DefaultDirection are Read and Write.

3 NodeIcon Tag Enumerated Required Specifies the icon that appears in the node on the block diagram.

The options for this tag are AI, AO, DI, DO, DIO, and Port.

3 WriteVIScriptInfo 

Section

— Required 

when the 

direction of 

the I/O node 

is Write or 

BiDirectional

Specifies the Module Support VIs for the I/O node and how they should be 

connected.
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4 Name Attribute SimpleName Required Specifies the name of the WriteVIScriptInfo section.

This name does not appear in the end user API and is only used internally 

within the XML file. This name must be unique and not used for any other 

VIScriptInfo section.

4 UseInstanceData Tag Boolean Optional Specifies if the instance data terminal will be used on the Module Support 

VIs.

5 VIList Section — — Contains a list of Module Support VIs that will be scripted beneath the I/O 

node. 

For I/O nodes, you can specify multiple Module Support VIs in addition to 

the Error Handling VI.

5 VI Section — — —

6 Name Attribute SimpleName 

(.vi)

Required Specifies the name of the VI that will be scripted beneath the I/O node.

Specify the VI name with the .vi extension, for example, 

MDK-1234_MyVI.vi. The VI must be located directly inside of the 

module support folder and not within a subfolder.

6 SequenceOrder Tag Integer Required Specifies where in the sequence of frames this particular VI will appear 

when multiple VIs are scripted in sequence beneath the I/O node.

The range for this tag is 0 to 255.

Table A-7.  IONodeInterfaceList Section (Continued)
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6 VIScope Tag Enumerated Optional Specifies how many times this VI will be scripted into a grown I/O Node.

The options for this tag are NodeScoped and ChannelScoped.

When set to NodeScoped, the VI will only be scripted once beneath the I/O 

node no matter how many channels are in the grown node. When set to 

ChannelScoped, the VI will be scripted once for each channel in the grown 

I/O node. When the tag is not present, the VI will default to NodeScoped.

6 VIHasTerminalConnect

ion Tag

Boolean Optional Indicates that this particular VI contains a terminal that will be connected to 

the input or output terminal of the I/O node.

This tag is optional, but one and only one VI in the VIList must contain this 

tag set to true.

6 ErrorHandling Tag Boolean Optional Indicates that this particular VI contains a terminal that will be connected to 

the error output of the I/O node.

To have your I/O node produce error codes, one and only one VI in the 

VIList must contain this tag set to true.

3 ReadVIScriptInfo 

Section

— Required 

when the 

direction of 

the I/O node 

is Read or 

BiDirectional

Specifies the Module Support VIs for the I/O node and how they should be 

connected.

Table A-7.  IONodeInterfaceList Section (Continued)
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Table A-8 list the tags, sections, and attributes for the MergedIONodeVISCriptInfoList section.

Table A-9 list the tags, sections, and attributes for the InternalChannelList section.

Table A-8.  MergedIONodeVISCriptInfoList Section

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description

1 MergedIONodeVISCri

ptInfoList Section

— — Specifies how particular I/O Node interfaces will be merged when different 

I/O items are in the same grown I/O node.

2 MergeIONodeVIScript

Info Section

— Optional Specifies VIScriptInfos that can be merged together when used in the same 

grown I/O node.

3 Name Attribute SimpleName Required Specifies the MergedIONodeVIScriptInfo section name.

This name does not appear in the end user API and is only used internally 

within the XML file. This name must be unique and not used for any other 

MergedIONodeVIScriptInfo section.

3 VIScriptInfoName Tag SimpleName — Two or more VIScriptInfoName tags may appear within the 

MergedIONOdeVIScriptInfo section. These names correspond to the names 

given to the particular VIScriptInfo (WriteVIScriptInfo, ReadVIScriptInfo) 

sections that were listed in the different interfaces.

Table A-9.  InternalChannelList Section

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description

1 InternalChannelList 

Section

— Optional Lists the different internal channels that will be used within the Module 

Support VIs.

2 InternalChannel 

Section

— Optional Specifies how the internal channel will operate.



C
o

m
p
a

c
tR

IO
 M

o
d

u
le

 D
e
ve

lo
p
m

e
n

t K
it S

o
ftw

a
re

 M
a

n
u
a

l

©
 N

a
tio

n
a
l In

s
tru

m
e

n
ts

|
A

-1
9

3 Name Attribute SimpleName Required Specifies the InternalChannel section name.

This name does not appear in the end user API since internal channels are 

hidden when the module is used in Release mode. All internal channel 

names must be unique.

3 InternalChannelType 

Tag

Enumerated Required Specifies which type of functionality the internal channel will have. The 

options for this tag are Asynchronous, Blocking, and Occurrence.

3 DataType Tag Enumerated Required 

when the type 

is 

Asynchronou

s or Blocking

Specifies the data type of the internal channel. 

The options for this tag are I8, U8, I16, U16, I32, U32, and Boolean.

You may also specify a control name in this tag. This control may be a 

cluster, array, fixed-point, or any other data type that is allowed in LabVIEW 

FPGA. The control name should be specified with the .ctl extension, for 

example MDK-1234_MyControl.ctl. The control must be located 

directly inside of the module support folder and not within a subfolder.

This tag is optional because the Occurrence internal channel type does not 

specify a data type. If you are using the Blocking or Asynchronous internal 

channel types, then you must specify a data type.

Table A-9.  InternalChannelList Section (Continued)
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Table A-10 list the tags, sections, and attributes for the ModuleModeDefinition section.

Table A-10.  ModuleModeDefinition Section

XML 

Level

XML Tag/

Section/Attribute Type

Required/

Optional Description

1 ModuleModeDefinition 

Section

— Required Specifies how the C Series Communication Core will operate in its different 

modes of operation.

2 NormalOperationMode 

Section

— Optional This section is optional, but all modules should contain a 

NormalOperationMode section since this is the mode in which the primary 

communication to the module occurs.

3 SPIConfiguration 

Section

— Optional Reserves the following CompactRIO bus lines for the SPI engine in Normal 

Operation mode: SPI_CLK, ~SPI_CS, MISO, MOSI. When reserved by the 

SPI engine, these lines may not be used for digital I/O in Normal Operation 

mode.

This section must be present in order to use the SPI interfaces of the C Series 

Communication Core when the module is in Normal Operation mode.

4 SPIHalfTauTicks Tag Integer Required Specifies how wide the SPI Clock 1/2τ period is in 25 ns base clock ticks.

The range for this tag is 2 to 65535.

If your module has a SPI Tau of 150 ns, the SPIHalfTauTicks tag will be set 

to 3. The 150 ns SPI Clock period will be 6 base clock ticks wide. The SPI 

Clock signal must be symmetric, so it will have 3 high ticks and 3 low ticks.

3 Convert 

PulseConfiguration 

Section

— Optional Reserves the ~CONVERT line of the CompactRIO bus for the Convert 

Pulse Logic when present.

This section must be present in order to use the Pulse Convert interface of 

the C Series Communication Core. 
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4 ConvertPulseWidth Tag Enumerated Required Specifies how long the convert pulse will be.

The options for this tag are Short, Medium, and Long.

These three pulse widths correspond to the convert pulse widths described 

in the CompactRIO Module Development Kit Hardware User Manual.

3 DoneWaitConfiguratio

n Section

— Optional Reserves the ~DONE line of the CompactRIO bus for the Done Wait Logic 

when present.

This section must be present in order to use the Wait on Done interface of 

the C Series Communication Core.

4 DoneWaitTimeoutTick

s Tag

Integer Required Specifies how long the C Series Communication Core will wait to see the 

~DONE line as low before completing with a Timed Out error.

The range for this tag is 0 to 4294967294.

This value is specified in units of 25 ns base clock ticks.

3 DigitalLines Section — Optional Lists the digital I/O lines of the CompactRIO bus that will be used by the 

Module Support VIs to perform basic DIO.

Table A-10.  ModuleModeDefinition Section (Continued)
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4 DIO0 to DIO8 Tags Enumerated Optional Specifies the function of the DIO0 to DIO8 lines.

The options for these tags are:

BiDirectional—The line defaults to an input on module insertion and may 

also be used as a digital output.

ConstantOutputHigh—The line defaults to a HIGH output on module 

insertion. Digital output operations on this line are ignored.

ConstantOutputLow—The line defaults to a LOW output on module 

insertion. Digital output operations on this line are ignored.

InputOnly—The line defaults to an input on module insertion and may not 

be used as a digital output.

Unused—The line defaults to an input on module insertion and may not be 

used as a digital output.

If a DIO line is reserved by the SPI Engine, Convert Pulse logic or Done 

Wait logic, it may not be listed in the DigitalLines section.

If a DIO line is not reserved or specified in the DigitalLines section, it will 

default to Unused.

2 AuxiliaryCommunicati

on Section

— Optional —

Table A-10.  ModuleModeDefinition Section (Continued)
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3 SPIConfiguration 

Section

— Optional Reserves the following CompactRIO bus lines for the SPI engine in 

Auxiliary mode: SPI_CLK, ~SPI_CS, MISO, MOSI. When reserved by the 

SPI engine, these lines may not be used for digital I/O in Auxiliary mode.

This section must be present in order to use the SPI interfaces of the C Series 

Communication Core when the module is in Normal Operation mode.

4 SPIHalfTauTicks Tag Integer Required Specifies how wide the SPI Clock half Tau period is in 25 ns base clock 

ticks.

The range for this tag is 2 to 65535.

If your module has a SPI Tau of 150 ns, the SPIHalfTauTicks tag will be set 

to 3. The 150 ns SPI Clock period will be 6 base clock ticks wide. The SPI 

Clock signal must be symmetric, so it will have 3 high ticks and 3 low ticks.

3 DigitalLines Section — Optional Lists the digital I/O lines of the CompactRIO bus that will be used by the 

Module Support VIs to perform basic DIO.

Table A-10.  ModuleModeDefinition Section (Continued)
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4 DIO0 to DIO8 Tags Enumerated Optional Specifies the function of the DIO0 to DIO8 lines.

The options for these tags are:

BiDirectional—The line defaults to an input on module insertion and may 

also be used as a digital output.

ConstantOutputHigh—The line defaults to a HIGH output on module 

insertion. Digital output operations on this line are ignored.

ConstantOutputLow—The line defaults to a LOW output on module 

insertion. Digital output operations on this line are ignored.

InputOnly—The line defaults to an input on module insertion and may not 

be used as a digital output.

Unused—The line defaults to an input on module insertion and may not be 

used as a digital output.

If a DIO line is reserved by the SPI Engine it may not be listed in the 

DigitalLines section. The C Series Specification dictates that the FUNC line 

is used to put the module in Auxiliary Communication mode. This means 

that the FUNC line is reserved and may not be used as DIO in Auxiliary 

mode.

If a DIO line is not reserved or specified in the DigitalLines section, it will 

default to Unused.

2 DigitalLineInfo Section — Optional Specifies advanced settings on the DIO interfaces of the C Series 

Communication Core.

Table A-10.  ModuleModeDefinition Section (Continued)
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3 SCTLOutputSyncRegs 

Section

— — Specifies how many synchronization registers are placed in the FPGA 

between the digital output I/O node on the block diagram and the 

CompactRIO bus pin.

4 DIO0 to DIO8 Tags Enumerated Optional Specifies the value that sets the number of output registers for that DIO line.

The options for these tags are 0 and 1.

If a line is not listed in the SCTLOutputSyncRegs section, it will default to 

1 sync register.

3 Arbitration Section — — Specifies how the FPGA will arbitrate between multiple digital output I/O 

nodes that are placed on the block diagram.

4 DIO0 to DIO8 Tags Enumerated Optional Specifies the value that sets the arbitration option for that DIO line.

The options for these tags are NeverArbitrate, AlwaysArbitrate, and 

ArbitrateIfMultipleRequestorsOnly.

The behavior of each of these arbitration options is identical to the NI 9401. 

Refer to the LabVIEW Help for more information on the NI 9401 arbitration 

options.

If a line is not listed in the Arbitration section, it will default to 

NeverArbitrate.

Table A-10.  ModuleModeDefinition Section (Continued)
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Use the following XML example for information on important XML tags, sections, and 

attributes when creating your Module Support XML.
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-9902_ModuleResource.vi"/>

s</Interface>

-9902_SubItemIcon.png</ModuleSubItemIcon>

tItemID>102</ProjectItemID>

-9902_SubItemIcon.png</ModuleSubItemIcon>

</ModuleSubItemList>

The MDKVersion tag should match what is returned by MDK2Utility_GetInstalledMDKVersion.vi

The name attribute of the SubItem is what gets displayed in the LabVIEW project.

A module can support multiple Method Node and Property Node interfaces.

A SubItem can have multiple Method Node and Property Node interfaces.

The name attribute of the module should match the ModuleName listed in the ModuelType XML

file. This is what appears in the LabVIEW project.

SubItems appear in the LabVIEW project under the module. You must define an icon that will be

used to represent the SubItem. Example icons are provided with MDK 2.0.

The ProjectItemID is used by the Module Support VIs to know which SubItem the API element

is scoped to.

A module may contain one or more SubItems that show up under the module in the LabVIEW

project.

Every project item (module, subitem, channel) has a ProjectItemID. These numbers should be

unique. This particular valued was selected so that it does not collide with other ProjectItemID

values defined in the XML.

A ResourceVI may be specified for the module. This VI handles all of the communication with

the module and executes different code depending on what API elements in running on the end

user block diagram.

<ModuleSupport>

<MDKVersion>2.0</MDKVersion>

<Module name="MDK

<ProjectItemID>99</ProjectItemID>

<ResourceVI name="MDK

<SupportedInterfaceList>

<Interface>Update Error Statu

</SupportedInterfaceList>

<ModuleSubItemList>

<ModuleSubItem name="Module SubItem 1">

<ProjectItemID>101</ProjectItemID>

<SupportedInterfaceList>

<Interface>Write FIFO</Interface>

<Interface>Read FIFO</Interface>

</SupportedInterfaceList>

<ModuleSubItemIcon>MDK

</ModuleSubItem>

<ModuleSubItem name="Module SubItem 2">

<Projec

<SupportedInterfaceList>

<Interface>Write FIFO</Interface>

<Interface>Read FIFO</Interface>

</SupportedInterfaceList>

<ModuleSubItemIcon>MDK

</ModuleSubItem>
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A module may contain one or more I/O channels.

An I/O channel may support I/O, Method, and Property Node interfaces.

Because I/O channels are typically numbered, it is convenient to align the ProjectItemID to

the channel number. This make mapping between the two easier in the Module Support VIs.

The name attribute of the I/O channel is what appears in the LabVIEW project. When the

module is added to the project, all of the I/O channels are automatically added to a folder in

the project.

<Interface>Read and Set Data Value</Interface>

<Interface>Data Value</Interface>

</SupportedInterfaceList>

</IOChannel>

<IOChannelList>

<IOChannel name="AI0">

<ProjectItemID>0</ProjectItemID>

<SupportedInterfaceList>

<Interface>Analog Input Channel</Interface>

</SupportedInterfaceList>

</IOChannel>

<IOChannel name="AI1">

<ProjectItemID>1</ProjectItemID>

<SupportedInterfaceList>

<Interface>Analog Input Channel</Interface>

</SupportedInterfaceList>

</IOChannel>

<IOChannel name="AO0">

<ProjectItemID>2</ProjectItemID>

<SupportedInterfaceList>

<Interface>Analog Output Channel</Interface>

</SupportedInterfaceList>

</IOChannel>

<IOChannel name="AO1">

<ProjectItemID>3</ProjectItemID>

<SupportedInterfaceList>

<Interface>Analog Output Channel</Interface>

</SupportedInterfaceList>

</IOChannel>

<IOChannel name="CustomChannel">

<ProjectItemID>4</ProjectItemID>

<SupportedInterfaceList>

<Interface>Custom Channel</Interface>
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<IOChannel name="Parallel DIO"> 

<ProjectItemID>5</ProjectItemID>

<SupportedInterfaceList>

rallelDigitalInterface>

</SupportedInterfaceList>

</IOChannel>

</IOChannelList>

</Module>

<InternalChannelList>

<InternalChannel name="AnalogChannelNumberChan">

<InternalChannelType>Blocking</InternalChannelType>

<DataType>U8</DataType>

</InternalChannel>

<InternalChannel name="AnalogDataChan">

<InternalChannelType>Blocking</InternalChannelType>

<DataType>I16</DataType>

</InternalChannel>

<InternalChannel name="SubItemFIFODataChan">

<InternalChannelType>Blocking</InternalChannelType>

<DataType>I16</DataType>

</InternalChannel>

<InternalChannel name="StartNodeChan">

<InternalChannelType>Blocking</InternalChannelType>

<DataType>MDK-9902_NodeOperationType.ctl</DataType>

</InternalChannel>

<InternalChannel name="ChannelListChan">

<InternalChannelType>Blocking</InternalChannelType>

<DataType>U8</DataType>

</InternalChannel>

A module may have zero, one, or more internal channels. However, if the module is being used

in Release mode, the minimum number of internal channels is one.

Modules that support multiple API elements should use a StartNodeChan. This blocking internal

channel is used to ensure that the Module Resource VI executes only one API element at a

time. The data type of the internal channel is used to indicate what API element is executing.

When a ParallelDigitalInterface is specified on an I/O channel, it directly uses the digital I/O

nodes of the C Series Communication Core. Module Support VIs are not written to handle the 

I/O nodes for this I/O channel.

<ParallelDigitalInterface>DIO0</Pa



C
o

m
p
a

c
tR

IO
 M

o
d

u
le

 D
e
ve

lo
p
m

e
n

t K
it S

o
ftw

a
re

 M
a

n
u
a

l

©
 N

a
tio

n
a

l In
s
tru

m
e
n

ts
|

B
-5

The IONodeInterfaceList contains information about the I/O Node interfaces that were specified

for the I/O channels.

The name attribute of an I/O Node interface is only used within the XML file. It does not appear

in the LabVIEW project or on the block diagram.

An I/O node may be Read, Write, or BiDirectional. The value of the direction determines the

types of VIScriptInfo that are defined for the interface.

The ReadVIScriptInfo section of the XML must be specified for this I/O node because it is a 

Read I/O Node.

The name attribute of the VIScriptInfo is only used within the XML file. It does not appear in the

LabVIEW project or on the block diagram.

Because this I/O node specifies multiple VIs, the SequenceOrder tag must be used to

determine the order of execution.

-9902_ErrorChan.ctl</DataType>

nelType>

A custom data type may be specified for internal channels.

Channel Scoped I/O Node VIs are scripted for each channel in a grown I/O node.

<InternalChannel name="OccurrenceChan">

<InternalChannelType>Occurrence</InternalChannelType>

</InternalChannel>

<InternalChannel name="ModuleErrorChan">

<InternalChannelType>Asynchronous</InternalChannelType>

<DataType>MDK

</InternalChannel>

<InternalChannel name="CustomChannelDataChan">

<InternalChannelType>Asynchronous</InternalChan

<DataType>I32</DataType>

</InternalChannel>

</InternalChannelList>

<IONodeInterfaceList>

<Interface name="Analog Input Channel">

<DataType>I16</DataType>

<Direction>Read</Direction>

<NodeIcon>AI</NodeIcon>

<ReadVIScriptInfo name="AIChanVIScriptInfo">

<UseInstanceData>true</UseInstanceData>

<VIList>

<VI name="MDK-9902_AnalogIONodeReserve.vi">

<SequenceOrder>0</SequenceOrder>

<VIScope>NodeScoped</VIScope>

</VI>

<VI name="MDK-9902_AnalogInputNodeCreateChannelList.vi">

<SequenceOrder>1</SequenceOrder>

<VIScope>ChannelScoped</VISc

</VI>
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The UseInstanceData tag allows you to have an Instance Data wire scripted between the VIs in

the sequence.

One and only one VI in the VIList must have the VIHasTerminalConnection tag set to true. This

VI will only contain the signal that is wired to the terminal of the I/O node.

Node Scoped I/O Node VIs are scripted once for the entire node on the block diagram.

The NodeIcon tag specifies the type of icon that appears in the I/O node on the block diagram.

-9902_AnalogIONodeSendChannelList.vi">

-9902_AnalogIONodeGetInputData.vi">

-9902_AnalogIONodeError.vi">

el">

-9902_AnalogIONodeReserve.vi">

-9902_AnalogOutputNodeCreateChannelList.vi">

<VI name="MDK

<SequenceOrder>2</SequenceOrder>

<VIScope>NodeScoped</VIScope>

</VI>

<VI name="MDK

<SequenceOrder>3</SequenceOrder>

<VIScope>ChannelScoped</VIScope>

<VIHasTerminalConnection>true</VIHasTerminalConnection>

</VI>

<VI name="MDK

<SequenceOrder>4</SequenceOrder>

<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>

</ReadVIScriptInfo>

</Interface>

<Interface name="Analog Output Chann

<DataType>I16</DataType>

<Direction>Write</Direction>

<NodeIcon>AI</NodeIcon>

<WriteVIScriptInfo name="AOChanVIScriptInfo">

<UseInstanceData>true</UseInstanceData>

<VIList>

<VI name="MDK

<SequenceOrder>0</SequenceOrder>

<VIScope>NodeScoped</VIScope>

</VI>

<VI name="MDK

<SequenceOrder>1</SequenceOrder>

<VIScope>ChannelScoped</VIScope>

<VIHasTerminalConnection>true</VIHasTerminalConnection>

</VI>
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A VIList can specify one VI that is used for error handling. This VI will contain a signal that is

wired to the error out terminal of the I/O node.

An I/O channel can specify a custom datatype.

ScriptInfo>

-9902_CustomChannel.ctl</DataType>

CustomChannelReadVIScriptInfo">

<VI name="MDK-9902_CustomChannelIONode.vi">

<SequenceOrder>0</SequenceOrder>

<VIScope>ChannelScoped</VIScope>

<VIHasTerminalConnection>true</VIHasTerminalConnection>

</VI>

<VI name="MDK-9902_GeneralNodeError.vi">

<SequenceOrder>1</SequenceOrder>

<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>

</ReadVIScriptInfo>

<VI name="MDK-9902_AnalogIONodeSendChannelList.vi">

<SequenceOrder>2</SequenceOrder>

<VIScope>NodeScoped</VIScope>

</VI>

<VI name="MDK-9902_AnalogIONodeOutputEmpty.vi">

<SequenceOrder>3</SequenceOrder>

<VIScope>ChannelScoped</VIScope>

</VI>

<VI name="MDK-9902_AnalogIONodeError.vi">

<SequenceOrder>4</SequenceOrder>

<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>

</WriteVI

</Interface>

<Interface name="Custom Channel">

<DataType>MDK

<Direction>Read</Direction>

<NodeIcon>AI</NodeIcon>

<ReadVIScriptInfo name="

<VIList>
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The name attribute of the MethodNodeTerminal is shown in the method node on the LabVIEW

block diagram.

The TerminalOrder determines the placement of the terminal in the method node on the

LabVIEW block diagram.

The name attribute of the TerminalConnection is only used within the XML file. It does not

appear on the LabVIEW block diagram.

The TerminalConnectionList maps the MethodNodeTerminalList to the terminals of the Method

Node subVI.

The MethodNodeInterfaceList contains information about the Method Node interfaces that

were specified for the module, module SubItems, and I/O channels.

The name attributes of the Method Node interface is shown in the method node on the

LabVIEW block diagram.

The direction specifies whether the terminal is into or out of the method node.

-9902_ModuleMethod.vi">

<MethodNodeInterfaceList>

<Interface name="Update Error Status">

<MethodNodeTerminalList>

<MethodNodeTermin

<DataType>Boolean</DataType>

<Direction>Write</Direction>

<TerminalOrder>0</TerminalOrder>

</MethodNodeTerminal>

<MethodNodeTerminal name="Error Code">

<DataType>I32</DataType>

<Direction>Write</Direction>

<TerminalOrder>1</TerminalOrder>

</MethodNodeTerminal>

</MethodNodeTerminalList>

<NodeIcon>AI</NodeIcon>

<MethodVIScriptInfo name="ModuleMethodScriptInfo">

<VIList>

<VI name="MDK

<SequenceOrder>0</SequenceOrder>

<TerminalConnectionList>

<Ter

<NodeTerminalName>Error Status</NodeTerminalName>

<ConnectorPaneTerminal>0</ConnectorPaneTerminal>

</TerminalConnection>

</Interface>

</IONodeInterfaceList>

al name="Error Status">

minalConnection name="FirstConnection">
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The ConnectorPaneTerminal specifies the terminal number of the Method Node subVI that will

be connected to that particular terminal of the method node.

<TerminalConnection name="SecondConnection">

<NodeTerminalName>Error Code</NodeTerminalName>

</TerminalConnection>

</TerminalConnectionList>

</VI>

<VI name="MDK-9902_GeneralNodeError.vi">

<SequenceOrder>1</SequenceOrder>

<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>

</MethodVIScriptInfo>

</Interface>

<Interface name="Write FIFO">

<MethodNodeTerminalList>

<MethodNodeTerminal name="Write Data">

<DataType>I16</DataType>

<Direction>Write</Direction>

<TerminalOrder>0</TerminalOrder>

</MethodNodeTerminal>

</MethodNodeTerminalList>

<NodeIcon>AI</NodeIcon>

<MethodVIScriptInfo name="SubItemWriteMethodScriptInfo">

<VIList>

<VI name="MDK-9902_SubItemWriteMethod.vi">

<SequenceOrder>0</SequenceOrder>

<ConnectorPaneTerminal>5</ConnectorPaneTerminal>
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<TerminalConnectionList>

<TerminalConnection name="FirstConnection">

<NodeTerminalName>Write Data</NodeTerminalName>

<ConnectorPaneTerminal>0</ConnectorPaneTerminal>

</TerminalConnection>

</TerminalConnectionList>

</VI>

<VI name="MDK-9902_GeneralNodeError.vi">

<SequenceOrder>7</SequenceOrder>

<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>

</MethodVIScriptInfo>

</Interface>

<Interface name="Read FIFO">

<MethodNodeTerminalList>

<MethodNodeTerminal name="Read Data">

<DataType>I16</DataType>

<Direction>Read</Direction>

<TerminalOrder>0</TerminalOrder>

</MethodNodeTerminal>

</MethodNodeTerminalList>

<NodeIcon>AI</NodeIcon>

<MethodVIScriptInfo name="SubItemReadMethodScriptInfo">

<VIList>

<VI name="MDK-9902_SubItemReadMethod.vi">

<SequenceOrder>0</SequenceOrder>

<TerminalConnectionList>
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<TerminalConnection name="FirstConnection">

<NodeTerminalName>Read Data</NodeTerminalName>

<ConnectorPaneTerminal>4</ConnectorPaneTerminal>

</TerminalConnection>

</TerminalConnectionList>

</VI>

<VI name="MDK-9902_GeneralNodeError.vi">

<SequenceOrder>7</SequenceOrder>

<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>

</MethodVIScriptInfo>

</Interface>

<Interface name="Read and Set Data Value">

<MethodNodeTerminalList>

<MethodNodeTerminal name="New Data Value">

<DataType>I32</DataType>

<Direction>Write</Direction>

<TerminalOrder>0</TerminalOrder>

</MethodNodeTerminal>

<MethodNodeTerminal name="Previous Data Value">

<DataType>I32</DataType>

<Direction>Read</Direction>

<TerminalOrder>1</TerminalOrder>

</MethodNodeTerminal>

</MethodNodeTerminalList>

<NodeIcon>AI</NodeIcon>

<MethodVIScriptInfo name="CustomChannelMethodScriptInfo">

<VIList>

Method nodes can have zero, one, or multiple terminals.
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<VI name="MDK-9902_CustomChannelMethod.vi">

<SequenceOrder>0</SequenceOrder>

<TerminalConnectionList>

<TerminalConnection name="FirstConnection">

<NodeTerminalName>New Data Value</NodeTerminalName>

<ConnectorPaneTerminal>0</ConnectorPaneTerminal>

</TerminalConnection>

<TerminalConnection name="SecondConnection">

<NodeTerminalName>Previous Data Value</NodeTerminalName>

<ConnectorPaneTerminal>4</ConnectorPaneTerminal>

</TerminalConnection>

</TerminalConnectionList>

</VI>

<VI name="MDK-9902_GeneralNodeError.vi">

<SequenceOrder>1</SequenceOrder>

<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>

</MethodVIScriptInfo>

</Interface>

</MethodNodeInterfaceList>

<PropertyNodeInterfaceList>

ion>

<ReadVIScriptInfo name="CustomChannelReadPropVIInfo">

Read and BiDirectional property nodes must specify ReadVIScriptInfo.

When the direction is BiDirectional, the DefaultDirection tag must be specified.

A property node can be Read, Write, or BiDirectional.

The PropertyNodeInterfaceList contains information about the property node interfaces

that were specified for the module, module SubItems, and I/O channels.

The name attribute of the Property Node interface is shown in the property node on the

LabVIEW block diagram.
<Interface name="Data Value">

<DataType>I32</DataType>

<Direction>BiDirectional</Direction>

<DefaultDirection>Read</DefaultDirect

<NodeIcon>AI</NodeIcon>
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<VIList>

<VI name="MDK-9902_CustomChannelReadProperty.vi">

<SequenceOrder>0</SequenceOrder>

<VIHasTerminalConnection>true</VIHasTerminalConnection>

</VI>

<VI name="MDK-9902_GeneralNodeError.vi">

<SequenceOrder>7</SequenceOrder>

<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>

</ReadVIScriptInfo>

<WriteVIScriptInfo name="CustomChannelWritePropVIInfo">

<VIList>

<VI name="MDK-9902_CustomChannelWriteProperty.vi">

<SequenceOrder>0</SequenceOrder>

<VIHasTerminalConnection>true</VIHasTerminalConnection>

</VI>

<VI name="MDK-9902_GeneralNodeError.vi">

<SequenceOrder>7</SequenceOrder>

<ErrorHandling>true</ErrorHandling>

</VI>

</VIList>

</WriteVIScriptInfo>

</Interface>

</PropertyNodeInterfaceList>

<MergedIONodeVIScriptInfoList>

Write and BiDirectional Property Nodes must specify WriteVIScripInfo.

The name attribute of the MergedIONodeVIScriptInfo is only used within the XML file.

<MergedIONodeVIScriptInfo name="AnalogMergedVIScriptInfo">
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<VIScriptInfoName>AIChanVIScriptInfo</VIScriptInfoName>

<VIScriptInfoName>AOChanVIScriptInfo</VIScriptInfoName>

</MergedIONodeVIScriptInfo>

</MergedIONodeVIScriptInfoList>

<ModuleModeDefinition>

<NormalOperationMode>

<SPIConfiguration>

<SPIHalfTauTicks>10</SPIHalfTauTicks>

</SPIConfiguration>

<ConvertPulseConfiguration>

<ConvertPulseWidth>Long</ConvertPulseWidth>

</ConvertPulseConfiguration>

<DoneWaitConfiguration>

<DoneWaitTimeoutTicks>500</DoneWaitTimeoutTicks>

</DoneWaitConfiguration>

<DigitalLines>

<DIO0>BiDirectional</DIO0>

<DIO1>Unused</DIO1>

</DigitalLines>

</NormalOperationMode>

<AuxiliaryCommunicationMode>

<SPIConfiguration>

<SPIHalfTauTicks>15</SPIHalfTauTicks>

</SPIConfiguration>

<DigitalLines>

<DIO0>OutputOnly</DIO0>

<DIO1>InputOnly</DIO1>

<DIO2>ConstantOutputHigh</DIO2>

<DIO3>ConstantOutputLow</DIO3>

</DigitalLines>

Defining the SPIConfiguration section in the XML enables SPI for that mode for the module.

Defining the NormalOperationMode section in the XML enables that mode for the module.

Defining the ConvertPulseConfiguration section in the XML enables the Pulse Convert Method

Node of the Timing interface for that mode for the module.

Defining the DoneWaitConfiguration section of the XML enables the Wait on Done Method

Node of the Timing interface for that mode for the module.

Defining the AuxiliaryCommunicationMode section in the XML enables that mode for the

module.

The ModuleModeDefinition section contains information about the module hardware and what

modes it supports.

The MergedIONodeVIScriptInfo contains multiple VIScriptInfoName tags. These tags refer

to the name attribute that was set on the VIScriptInfo sections of the I/O node interfaces. All

VIScriptInfo tags listed here must be compatible.

All DIO lines that are not reserved by the functions that are enabled by that mode are not

available for DIO by default. The DigitalLines section is used to specify functionality of DIO

lines in that mode.
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</AuxiliaryCommunicationMode>

<DigitalLineInfo>

<SCTLOutputSyncRegs>

<DIO0>1</DIO0>

<DIO1>0</DIO1>

<DIO2>1</DIO2>

<DIO3>0</DIO3>

</SCTLOutputSyncRegs>

<Arbitration>

<DIO0>NeverArbitrate</DIO0>

<DIO1>AlwaysArbitrate</DIO1>

<DIO2>ArbitrateIfMultipleRequestorsOnly</DIO2>

<DIO3>NeverArbitrate</DIO3>

<DIO4>NeverArbitrate</DIO4>

<DIO5>NeverArbitrate</DIO5>

<DIO6>NeverArbitrate</DIO6>

<DIO7>NeverArbitrate</DIO7>

<DIO8>NeverArbitrate</DIO8>

<DIOPort>NeverArbitrate</DIOPort>

</Arbitration>

</DigitalLineInfo>

</ModuleModeDefinition>

</ModuleSupport>

The Arbitration section is used to specify the arbitration option that is used when multiple DO

nodes are placed on the LabVIEW block diagram. This section is optional and all lines default

to NeverArbitrate when the section is omitted.

The SCTLOutputSyncRegs section is used to specify whether or not a sync register is placed

on the output of a DO line when used inside of an SCTL. This section is optional and all lines

default to one sync register when the section is omitted.
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cRIO-904x Controllers

cRIO-904x is a new family of controllers that support different program modes on a slot by slot 

basis. The program modes include Real-Time (DAQmx), Real-Time Scan (RSI), and LabVIEW 

FPGA (FPGA I/O Nodes). 

MDK only operates in LabVIEW FPGA mode. If a module occupies a slot that is not configured 

for LabVIEW FPGA, you will not be able to interact with that module using MDK.

MDK 1.5

cRIO-904x controllers support MDK 1.5. Behavior for MDK 1.5 differs between cRIO-904x 

controllers and non-904x controllers. For more information on using MDK 1.5 with cRIO-904x 

controllers, refer to the cRIO Module Developers Kit board at forums.ni.com.

MDK 2

cRIO-904x controllers support MDK 2. NI-RIO 17.6 releases with MDK 2.1 which enables 

MDK 2 module support on cRIO-904x targets. If you do not upgrade module support from 

MDK 2.0 to MDK 2.1, your module will not work on cRIO-904x targets. However, your module 

will continue to work on non-904x targets. Refer to the following sections for behavioral 

differences between MDK 2.0 and MDK 2.1 and for behavioral differences between cRIO-904x 

targets and non-904x targets.

Differences between MDK 2.0 and MDK 2.1
The C Series Communication Core MDK API contains a Check Module Status method node 

which outputs an enum indicating the current status of the module. The previous values of this 

enum were Unknown, Correct, Incorrect, No Module, and Invalid. Module support VIs may 

use this node in the module resource VI or may use the wrapper VI from the MDK API palette.

The Check Module Status node has been updated for MDK 2.1 to output the new Incorrect 
Program Mode value. This value will appear when the program mode for a slot is not 

configured for LabVIEW FPGA. The Incorrect Program Mode value will never appear on 

non-904x targets.

https://forums.ni.com/t5/cRIO-Module-Developers-Kit/bd-p/private5
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Pre-existing module support will show a deprecated version of the module status enum in 

NI-RIO 17.6. The wrapper VI from the MDK API palette will have a red line through the VI 

icon to indicate the VI is deprecated.

Using MDK 2 on cRIO-904x Controllers
The C Series Communication Core in MDK 2 exhibits different behavior between cRIO-904x 

targets and non-904x targets. Refer to the following sections for more information on using 

MDK 2 with cRIO-904x targets.

Delayed Output Enable Direction Change
Output Enable changes require a typical delay of 500 ns. In rare cases, changes could require a 

maximum delay of 1.75 μs. This affects the amount of time Set Output Enable method nodes and 

Change Mode commands will take to complete. If your module relies on either of those 

operations to complete within a fixed amount of time, you may encounter issues. 

Loss of Direct Control of ID Select Line
You cannot control the ~ID_SELECT line through LabVIEW FPGA. You can read the status of 

the ~ID_SELECT line using the Debug Register in Development Mode. Reading the 

~ID_SELECT line status on the Debug Register requires a typical delay of 500 ns. In rare cases, 

reading the status could require a maximum delay of 1.75 μs. If your module relies on reading 

~ID_SELECT line within a fixed amount of time, try adding delays to the MDK VIs.

Tighter Timing Constraints
Tighter I/O timing constraints may cause failure in some modules that currently meet timing 

requirements. NI expects developers to redo timing analysis with the new constraints and make 

necessary changes. Module support tested on cabled expansion chassis should continue to work 

on the new controllers.

Increased size of I/O Node on a per slot basis
All I/O Nodes increase by a constant adder of approximately 1.0% of a Series 7 Kintex 70T 

(XC7K70T) on a slot by slot basis. If all eight slots use MDK, the available FPGA space could 

reduce by approximately 10%. A VI using over 90% of the LUTs on a cRIO-9035 may fail 

compilation on a 904x target with an equivalent FPGA due to the increased complexity of the 

I/O Node.

Module Insertion and Removal
The C Series Communication Core will take longer to respond to module insertion and removal 

events. When a module is removed from the chassis, the C Series Communication Core could 

take up to half a second to report the module status as No Module. This may result in invalid 

data being returned to the user during this time.
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Upgrading Module Support

Follow these steps to upgrade MDK support from 2.0 to 2.1:

1. Update the MDK version tag in the Module Support XML file to 2.1. 

2. Regenerate the Development Mode export of your module using the Module Support 

Export utility.

3. Replace any instances of the deprecated Module Status wrapper VI with the new VI, which 

can be found in the MDK API palette.

Note If the VI is inside a SCTL, make sure to use the SCTL version of the new 

Module Status VI instead.

Note Replace instances of the deprecated Check Module Status method node with 

the new method node if you are not using the Module Status VI from the MDK API 

palette to read the module status.

4. Update your module support VIs to handle the Incorrect Program Mode module status.

Note NI recommends handling the Incorrect Program Mode status the same as 

the No Module status. However, if your module resource VI generates error codes, 

it should output error code 65673 rather than 65536 when the status is Incorrect 
Program Mode. For an example, examine MDK-9901_ModuleResource.vi of 

the MDK-9901 shipping example from the CompactRIO MDK installer.

5. Validate that the module works in Development Mode on a cRIO-904x target and a 

non-904x target.

6. Regenerate the Release Mode export of your module using the Module Support Export 

utility.

7. Validate that the module works in Release Mode on both a cRIO-904x target and a 

non-904x target.

8. Verify that you are not running into timing issues on the new target.

9. Ship your new module support. The new support will retain compatability with all other 

chassis, but will not work in CompactRIO Device Drivers versions prior to 17.6.
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NI Services

NI provides global services and support as part of our commitment to your success. Take 

advantage of product services in addition to training and certification programs that meet your 

needs during each phase of the application life cycle; from planning and development through 

deployment and ongoing maintenance.

To get started, register your product at ni.com/myproducts.

As a registered NI product user, you are entitled to the following benefits:

� Access to applicable product services.

� Easier product management with an online account.

� Receive critical part notifications, software updates, and service expirations.

Log in to your MyNI user profile to get personalized access to your services.

Services and Resources

� Maintenance and Hardware Services—NI helps you identify your systems’ accuracy and 

reliability requirements and provides warranty, sparing, and calibration services to help you 

maintain accuracy and minimize downtime over the life of your system. Visit ni.com/

services for more information.

– Warranty and Repair—All NI hardware features a one-year standard warranty that 

is extendable up to five years. NI offers repair services performed in a timely manner 

by highly trained factory technicians using only original parts at an NI service center.

– Calibration—Through regular calibration, you can quantify and improve the 

measurement performance of an instrument. NI provides state-of-the-art calibration 

services. If your product supports calibration, you can obtain the calibration certificate 

for your product at ni.com/calibration.

� System Integration—If you have time constraints, limited in-house technical resources, or 

other project challenges, National Instruments Alliance Partner members can help. To learn 

more, call your local NI office or visit ni.com/alliance.

http://www.ni.com/myproducts
http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/calibration
http://www.ni.com/alliance
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� Training and Certification—The NI training and certification program is the most 

effective way to increase application development proficiency and productivity. Visit 

ni.com/training for more information.

– The Skills Guide assists you in identifying the proficiency requirements of your 

current application and gives you options for obtaining those skills consistent with 

your time and budget constraints and personal learning preferences. Visit ni.com/

skills-guide to see these custom paths.

– NI offers courses in several languages and formats including instructor-led classes at 

facilities worldwide, courses on-site at your facility, and online courses to serve your 

individual needs.

� Technical Support—Support at ni.com/support includes the following resources:

– Self-Help Technical Resources—Visit ni.com/support for software drivers and 

updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting 

wizards, thousands of example programs, tutorials, application notes, instrument 

drivers, and so on. Registered users also receive access to the NI Discussion Forums 

at ni.com/forums. NI Applications Engineers make sure every question submitted 

online receives an answer.

– Software Support Service Membership—The Standard Service Program (SSP) is a 

renewable one-year subscription included with almost every NI software product, 

including NI Developer Suite. This program entitles members to direct access to 

NI Applications Engineers through phone and email for one-to-one technical support, 

as well as exclusive access to online training modules at ni.com/

self-paced-training. NI also offers flexible extended contract options that 

guarantee your SSP benefits are available without interruption for as long as you need 

them. Visit ni.com/ssp for more information.

� Declaration of Conformity (DoC)—A DoC is our claim of compliance with the Council 

of the European Communities using the manufacturer’s declaration of conformity. This 

system affords the user protection for electromagnetic compatibility (EMC) and product 

safety. You can obtain the DoC for your product by visiting ni.com/certification.

For information about other technical support options in your area, visit ni.com/services, 

or contact your local office at ni.com/contact.

You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch 

office websites, which provide up-to-date contact information, support phone numbers, email 

addresses, and current events.

http://www.ni.com/training
http://www.ni.com/skills-guide
http://www.ni.com/skills-guide
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/self-paced-training
http://www.ni.com/ssp
http://www.ni.com/certification
http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/niglobal
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