

 NI-9853

https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf

CAN and LIN

Automotive Diagnostic Command Set User Manual

Automotive Diagnostic Command Set User Manual

July 2014

372139G-01

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office websites, which provide up-to-date contact information,

support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on National Instruments

documentation, refer to the National Instruments website at ni.com/info and enter the Info Code feedback.

© 2007–2014 National Instruments. All rights reserved.

 Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version, refer to
ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS OR IMPLIED
WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY
ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to substantially conform to
the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially in accordance with the
applicable documentation provided with the software and (ii) the software media will be free from defects in materials and workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair or replace the affected
product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be warranted for the remainder of the original warranty
period or ninety (90) days, whichever is longer. If NI elects to repair or replace the product, NI may use new or refurbished parts or products that are
equivalent to new in performance and reliability and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for examining and testing Hardware
not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance, installation, repair, or calibration
(performed by a party other than NI); unauthorized modification; improper environment; use of an improper hardware or software key; improper use
or operation outside of the specification for the product; improper voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other
act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL APPLY EVEN IF
SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND AND NI
DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE PRODUCTS, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY
WARRANTIES THAT MAY ARISE FROM USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE OPERATION OF THE
PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the warranty terms in the
separate agreement shall control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

• Notices are located in the <National Instruments>_Legal Information and <National Instruments> directories.

• EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

• Review <National Instruments>_Legal Information.txt for information on including legal information in installers built with NI
products.

U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication, reproduction, release,
modification, disclosure or transfer of the technical data included in this manual is governed by the Restricted Rights provisions under Federal
Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal Acquisition Regulation Supplement Section 252.227-7014 and
252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology and vernier.com are
trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and TargetBox™ and
Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United
States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance
policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND RELIABILITY OF THE
PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR APPLICATION, INCLUDING THE
APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING IN THE OPERATION OF
NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING
SYSTEMS OR SUCH OTHER MEDICAL DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR
SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST FAILURES,
INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES.

© National Instruments vii Automotive Diagnostic Command Set User Manual

Contents

About This Manual
Related Documentation..xv

Activating Your Software
How Do I Activate My Software? ...xvii

What is Activation? ...xvii

What is the NI Activation Wizard?..xvii

What Information Do I Need to Activate?...xviii

How Do I Find My Product Serial Number? ...xviii

What is a Computer ID? ..xviii

How Can I Evaluate NI Software? ..xix

Moving Software After Activation ..xix

Deactivating a Product...xix

Using Windows Guest Accounts ...xix

Chapter 1
Introduction

KWP2000 (Key Word Protocol 2000)...1-1

Transport Protocol ...1-2

Diagnostic Services ...1-2

Diagnostic Service Format ..1-2

Connect/Disconnect...1-3

GetSeed/Unlock...1-3

Read/Write Memory..1-3

Measurements..1-4

Diagnostic Trouble Codes ...1-4

Input/Output Control ...1-4

Remote Activation of a Routine ..1-4

External References...1-4

UDS (Unified Diagnostic Services)...1-5

Diagnostic Services ...1-5

Diagnostic Service Format ..1-6

External References...1-6

OBD (On-Board Diagnostic) ...1-6

Contents

Automotive Diagnostic Command Set User Manual viii ni.com

Chapter 2
Installation and Configuration

Installation ... 2-1

LabVIEW Real-Time (RT) Configuration .. 2-2

Hardware and Software Requirements .. 2-3

Chapter 3
Application Development

Choosing the Programming Language .. 3-1

LabVIEW .. 3-1

LabWindows/CVI ... 3-1

Visual C++ 6 ... 3-2

Other Programming Languages .. 3-3

Application Development on CompactRIO or R Series Using an NI 985x or

NI 986x C Series Module ... 3-4

Chapter 4
Using the Automotive Diagnostic Command Set

Structure of the Automotive Diagnostic Command Set .. 4-1

Automotive Diagnostic Command Set API Structure... 4-2

General Programming Model .. 4-3

Available Diagnostic Services... 4-4

Tweaking the Transport Protocol .. 4-4

Chapter 5
Automotive Diagnostic Command Set API for LabVIEW

Section Headings ... 5-1

Purpose.. 5-1

Format ... 5-1

Input and Output ... 5-1

Description .. 5-1

List of VIs.. 5-2

General Functions.. 5-10

Close Diagnostic.vi ... 5-10

Convert from Phys.vi .. 5-12

Convert to Phys.vi... 5-14

Create Extended CAN IDs.vi.. 5-16

Diag Get Property.vi ... 5-17

Diag Set Property.vi .. 5-20

Diagnostic Frame Recv.vi... 5-23

Contents

© National Instruments ix Automotive Diagnostic Command Set User Manual

Diagnostic Frame Send.vi ...5-25

Diagnostic Service.vi...5-27

DTC to String.vi ..5-29

Get Time Stamp.vi...5-30

OBD Open.vi...5-32

Open Diagnostic.vi ..5-36

Open Diagnostic on IP.vi ..5-40

Open Diagnostic on LIN.vi ...5-42

VWTP Connect.vi ...5-45

VWTP Connection Test.vi ..5-47

VWTP Disconnect.vi...5-49

DoIP Functions..5-51

DoIP Activate Routing.vi..5-51

DoIP Connect.vi..5-53

DoIP Disconnect.vi ...5-55

DoIP Get Diagnostic Power Mode.vi ...5-57

DoIP Get DoIP Entity Status.vi ..5-59

DoIP Get Entities.vi ..5-61

DoIP Send Vehicle Identification Request.vi5-64

DoIP Send Vehicle Identification Request w EID.vi........................5-66

DoIP Send Vehicle Identification Request w VIN.vi5-68

KWP2000 Services ..5-70

ClearDiagnosticInformation.vi..5-70

ControlDTCSetting.vi ...5-73

DisableNormalMessageTransmission.vi ...5-76

ECUReset.vi ..5-78

EnableNormalMessageTransmission.vi ..5-80

InputOutputControlByLocalIdentifier.vi...5-82

ReadDataByLocalIdentifier.vi...5-84

ReadDTCByStatus.vi ..5-86

ReadECUIdentification.vi ...5-89

ReadMemoryByAddress.vi ...5-91

ReadStatusOfDTC.vi...5-93

RequestRoutineResultsByLocalIdentifier.vi ...5-96

RequestSeed.vi ..5-98

SendKey.vi ..5-100

StartDiagnosticSession.vi..5-102

StartRoutineByLocalIdentifier.vi ..5-104

StopDiagnosticSession.vi ..5-106

StopRoutineByLocalIdentifier.vi ..5-108

TesterPresent.vi ...5-110

WriteDataByLocalIdentifier.vi..5-112

WriteMemoryByAddress.vi ..5-114

Contents

Automotive Diagnostic Command Set User Manual x ni.com

UDS (DiagOnCAN) Services.. 5-116

UDS ClearDiagnosticInformation.vi .. 5-116

UDS CommunicationControl.vi.. 5-119

UDS ControlDTCSetting.vi .. 5-121

UDS DiagnosticSessionControl.vi.. 5-123

UDS ECUReset.vi... 5-125

UDS InputOutputControlByIdentifier.vi .. 5-127

UDS ReadDataByIdentifier.vi .. 5-129

UDS ReadMemoryByAddress.vi.. 5-131

UDS ReportDTCBySeverityMaskRecord.vi .. 5-133

UDS ReportDTCByStatusMask.vi ... 5-136

UDS ReportSeverityInformationOfDTC.vi .. 5-139

UDS ReportSupportedDTCs.vi... 5-142

UDS RequestDownload.vi .. 5-145

UDS RequestSeed.vi ... 5-147

UDS RequestTransferExit.vi .. 5-149

UDS RequestUpload.vi ... 5-151

UDS RoutineControl.vi... 5-153

UDS SendKey.vi ... 5-155

UDS TesterPresent.vi.. 5-157

UDS TransferData.vi .. 5-159

UDS WriteDataByIdentifier.vi ... 5-162

UDS WriteMemoryByAddress.vi ... 5-164

UDS06 ReadMemoryByAddress.vi.. 5-166

UDS06 WriteMemoryByAddress.vi ... 5-168

OBD (On-Board Diagnostics) Services... 5-170

OBD Clear Emission Related Diagnostic Information.vi 5-170

OBD Request Control Of On-Board Device.vi .. 5-172

OBD Request Current Powertrain Diagnostic Data.vi.................................... 5-174

OBD Request Emission Related DTCs.vi... 5-176

OBD Request Emission Related DTCs During Current Drive Cycle.vi......... 5-179

OBD Request On-Board Monitoring Test Results.vi 5-182

OBD Request Permanent Fault Codes.vi .. 5-184

OBD Request Powertrain Freeze Frame Data.vi .. 5-187

OBD Request Supported PIDs.vi.. 5-189

OBD Request Vehicle Information.vi... 5-191

WWH-OBD (World-Wide-Harmonized On-Board Diagnostics) Services 5-193

WWH-OBD Clear Emission Related DTCs.vi ... 5-193

WWH-OBD Convert DTCs to J1939.vi ... 5-195

WWH-OBD Convert DTCs to J2012.vi ... 5-197

WWH-OBD Request DID.vi .. 5-199

WWH-OBD Request DTC Extended Data Record.vi 5-201

WWH-OBD Request Emission Related DTCs.vi... 5-203

WWH-OBD Request Freeze Frame Information.vi 5-206

Contents

© National Instruments xi Automotive Diagnostic Command Set User Manual

WWH-OBD Request RID.vi ...5-208

WWH-OBD Request Supported DIDs.vi..5-210

WWH-OBD Request Supported RIDs.vi ..5-212

Chapter 6
Automotive Diagnostic Command Set API for C

Section Headings ...6-1

Purpose ..6-1

Format..6-1

Input and Output..6-1

Description ..6-1

List of Data Types..6-2

List of Functions ..6-3

General Functions ..6-13

ndCloseDiagnostic...6-13

ndConvertFromPhys..6-14

ndConvertToPhys ..6-16

ndCreateExtendedCANIds ..6-18

ndDiagFrameRecv...6-20

ndDiagFrameSend ...6-22

ndDiagnosticService..6-23

ndDTCToString...6-25

ndGetProperty..6-26

ndGetTimeStamp...6-29

ndOBDOpen ..6-30

ndOpenDiagnostic ...6-33

ndOpenDiagnosticOnIP...6-37

ndOpenDiagnosticOnLIN..6-39

ndSetProperty ..6-41

ndStatusToString ...6-44

ndVWTPConnect ..6-46

ndVWTPConnectionTest ..6-48

ndVWTPDisconnect..6-49

DoIP Functions..6-50

ndDoIPActivateRouting..6-50

ndDoIPConnect ...6-52

ndDoIPDisconnect ..6-54

ndDoIPEntityStatus...6-55

ndDoIPGetDiagPowerMode ...6-57

ndDoIPGetEntities ..6-58

ndDoIPSendVehicleIdentRequest...6-60

ndDoIPSendVehicleIdentReqEID ..6-61

ndDoIPSendVehicleIdentReqVIN ..6-62

Contents

Automotive Diagnostic Command Set User Manual xii ni.com

KWP2000 Services.. 6-63

ndClearDiagnosticInformation.. 6-63

ndControlDTCSetting ... 6-65

ndDisableNormalMessageTransmission... 6-67

ndECUReset.. 6-68

ndEnableNormalMessageTransmission.. 6-70

ndInputOutputControlByLocalIdentifier .. 6-71

ndReadDataByLocalIdentifier .. 6-73

ndReadDTCByStatus .. 6-75

ndReadECUIdentification... 6-78

ndReadMemoryByAddress ... 6-80

ndReadStatusOfDTC .. 6-82

ndRequestRoutineResultsByLocalIdentifier... 6-85

ndRequestSeed .. 6-87

ndSendKey .. 6-89

ndStartDiagnosticSession.. 6-91

ndStartRoutineByLocalIdentifier.. 6-92

ndStopDiagnosticSession.. 6-94

ndStopRoutineByLocalIdentifier .. 6-95

ndTesterPresent ... 6-97

ndWriteDataByLocalIdentifier ... 6-99

ndWriteMemoryByAddress .. 6-101

UDS (DiagOnCAN) Services.. 6-103

ndUDSClearDiagnosticInformation.. 6-103

ndUDSCommunicationControl... 6-105

ndUDSControlDTCSetting ... 6-107

ndUDSDiagnosticSessionControl ... 6-108

ndUDSECUReset.. 6-109

ndUDSInputOutputControlByIdentifier ... 6-111

ndUDSReadDataByIdentifier ... 6-113

ndUDSReadMemoryByAddress ... 6-115

ndUDSReportDTCBySeverityMaskRecord ... 6-117

ndUDSReportDTCByStatusMask .. 6-120

ndUDSReportSeverityInformationOfDTC ... 6-123

ndUDSReportSupportedDTCs.. 6-126

ndUDSRequestDownload ... 6-129

ndUDSRequestSeed .. 6-131

ndUDSRequestTransferExit.. 6-133

ndUDSRequestUpload .. 6-135

ndUDSRoutineControl.. 6-137

ndUDSSendKey .. 6-139

ndUDSTesterPresent ... 6-141

ndUDSTransferData.. 6-143

ndUDSWriteDataByIdentifier .. 6-145

Contents

© National Instruments xiii Automotive Diagnostic Command Set User Manual

ndUDSWriteMemoryByAddress ..6-147

ndUDS06ReadMemoryByAddress ...6-149

ndUDS06WriteMemoryByAddress ..6-151

OBD (On-Board Diagnostics) Services ...6-153

ndOBDClearEmissionRelatedDiagnosticInformation6-153

ndOBDRequestControlOfOnBoardDevice ...6-154

ndOBDRequestCurrentPowertrainDiagnosticData ...6-156

ndOBDRequestEmissionRelatedDTCs ...6-158

ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle6-160

ndOBDRequestOnBoardMonitoringTestResults ..6-162

ndOBDRequestPermanentFaultCodes ..6-164

ndOBDRequestPowertrainFreezeFrameData..6-166

ndOBDRequestVehicleInformation ..6-168

WWH-OBD (World-Wide-Harmonized On-Board Diagnostics) Services...................6-170

ndWWHOBDClearEmissionRelatedDTCs...6-170

ndWWHOBDConvertDTCsToJ1939..6-171

ndWWHOBDConvertDTCsToJ2012..6-173

ndWWHOBDRequestDID ..6-175

ndWWHOBDRequestDTCExtendedDataRecord ...6-177

ndWWHOBDRequestEmissionRelatedDTCs...6-179

ndWWHOBDRequestFreezeFrameInformation ...6-182

ndWWHOBDRequestRID ..6-184

ndWWHOBDRequestSupportedDIDs ..6-186

ndWWHOBDRequestSupportedRIDs ..6-188

Appendix A
NI Services

Index

© National Instruments xv Automotive Diagnostic Command Set User Manual

About This Manual

This manual provides instructions for using the Automotive Diagnostic

Command Set. It contains information about installation, configuration,

and troubleshooting, and also contains Automotive Diagnostic Command

Set function reference for LabVIEW-based and C-based APIs.

Related Documentation

The following documents contain information that you might find helpful

as you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of

Digital Information—Controller Area Network (CAN) for High-Speed

Communication

• CAN Specification Version 2.0, 1991, Robert Bosch GmbH.,

Postfach 106050, D-70049 Stuttgart 1

• CiA Draft Standard 102, Version 2.0, CAN Physical Layer for

Industrial Applications

• LIN Specification Package, Revision 2.2

• ISO 14230:1999(E), Road Vehicles, Diagnostic Systems, Keyword

Protocol 2000

• ISO 14229:1998(E), Road Vehicles, Diagnostic Systems, Diagnostic

Services Specification

• ISO 157651:2004(E), Road Vehicles, Diagnostics on Controller Area

Networks (CAN)

• ISO 15031-5:2006(E), Road Vehicles, Communication Between

Vehicle and External Equipment for Emissions-Related Diagnostics

• ISO 27145:2012(E), Road Vehicles, Implementation of World-Wide

Harmonized On-Board Diagnostics (WWH-OBD) Communication

Requirements

• NI-CAN Hardware and Software Manual

© National Instruments xvii Automotive Diagnostic Command Set User Manual

Activating Your Software

This section describes how to use the NI Activation Wizard to activate your

software.

How Do I Activate My Software?

Use the NI Activation Wizard to obtain an activation code for your

software. You can launch the NI Activation Wizard two ways:

• Launch the product and choose to activate your software from the list

of options presented.

• Launch NI License Manager by selecting Start»All Programs»

National Instruments»NI License Manager. Click the Activate

button in the toolbar.

Notes If your software is a part of a Volume License Agreement (VLA), contact your

VLA administrator for installation and activation instructions.

NI software for Mac OS X and Linux operating systems does not require activation.

What is Activation?

Activation is the process of obtaining an activation code to enable your

software to run on your computer. An activation code is an alphanumeric

string that verifies the software, version, and computer ID to enable

features on your computer. Activation codes are unique and are valid on

only one computer.

What is the NI Activation Wizard?

The NI Activation Wizard is a part of NI License Manager that steps you

through the process of enabling software to run on your machine.

Activating Your Software

Automotive Diagnostic Command Set User Manual xviii ni.com

What Information Do I Need to Activate?

You need your product serial number, user name, and organization. The

NI Activation Wizard determines the rest of the information. Certain

activation methods may require additional information for delivery. This

information is used only to activate your product. Complete disclosure of

the National Instruments software licensing information privacy policy is

available at ni.com/activate/privacy. If you optionally choose to

register your software, your information is protected under the National

Instruments privacy policy, available at ni.com/privacy.

How Do I Find My Product Serial Number?

Your serial number uniquely identifies your purchase of NI software. You

can find your serial number on the Certificate of Ownership included in

your software kit. If your software kit does not include a Certificate of

Ownership, you can find your serial number on the product packing slip or

on the shipping label.

If you have installed a previous version using your serial number, you can

find the serial number by selecting the Help»About menu item within the

application or by selecting your product within NI License Manager

(Start»All Programs»National Instruments»NI License Manager).

You can also contact your local National Instruments branch.

What is a Computer ID?

The computer ID contains unique information about your computer.

National Instruments requires this information to enable your software.

You can find your computer ID through the NI Activation Wizard or by

using NI License Manager, as follows:

1. Launch NI License Manager by selecting Start»All Programs»

National Instruments»NI License Manager.

2. Click the Display Computer Information button in the toolbar.

For more information about product activation and licensing, refer to

ni.com/activate.

Activating Your Software

© National Instruments xix Automotive Diagnostic Command Set User Manual

How Can I Evaluate NI Software?

You can install and run most NI application software in evaluation

mode. This mode lets you use a product with certain limitations, such as

reduced functionality or limited execution time. Refer to your product

documentation for specific information on the product’s evaluation mode.

Moving Software After Activation

To transfer your software to another computer, install and activate it on the

second computer. You are not prohibited from transferring your software

from one computer to another and you do not need to contact or inform NI

of the transfer. Because activation codes are unique to each computer, you

will need a new activation code. Refer to How Do I Activate My Software?

to acquire a new activation code and reactivate your software.

Deactivating a Product

To deactivate a product and return the product to the state it was in before

you activated it, right-click the product in the NI License Manager tree and

select Deactivate. If the product was in evaluation mode before you

activated it, the properties of the evaluation mode may not be restored.

Using Windows Guest Accounts

NI License Manager does not support Microsoft Windows Guest accounts.

You must log in to a non-Guest account to run licensed NI application

software.

© National Instruments 1-1 Automotive Diagnostic Command Set User Manual

1
Introduction

Diagnostics involve remote execution of routines, or services, on ECUs.

To execute a routine, you send a byte string as a request to an ECU, and the

ECU usually answers with a response byte string. Several diagnostic

protocols such as KWP2000 and UDS standardize the format of the

services to be executed, but those standards leave a large amount of room

for manufacturer-specific extensions. A newer trend is the emission-related

legislated OnBoard Diagnostics (OBD), which is manufacturer

independent and standardized in SAE J1979 and ISO 15031-5. This

standard adds another set of services that follow the same scheme.

Because diagnostics were traditionally executed on serial communication

links, the byte string length is not limited. For newer, CAN, LIN, or

Ethernet-based diagnostics, this involves using a transport protocol that

segments the arbitrarily long byte strings into pieces that can be transferred

over the CAN or LIN bus, and reassembles them on the receiver side.

Several transport protocols accomplish this task. The Automotive

Diagnostic Command Set implements the ISO TP (standardized in ISO

15765-2) for CAN and LIN-based diagnostics, the manufacturer-specific

VW TP 2.0 for CAN-based diagnostics, and the Diagnostics on IP (DoIP)

transport protocol (standardized as ISO 13400) for Ethernet-based

diagnostics.

Note The Automotive Diagnostic Command Set is designed for CAN, LIN, or

Ethernet-based diagnostics only. Diagnostics on serial lines (K-line and L-line) or FlexRay

are not in the scope of the Automotive Diagnostic Command Set.

KWP2000 (Key Word Protocol 2000)

The KWP2000 protocol has become a de facto standard in automotive

diagnostic applications. It is standardized as ISO 14230-3. KWP2000

describes the implementation of various diagnostic services you can access

through the protocol. You can run KWP2000 on several transport layers

such as K-line (serial) or CAN.

Chapter 1 Introduction

Automotive Diagnostic Command Set User Manual 1-2 ni.com

Transport Protocol
As KWP2000 uses messages of variable byte lengths, a transport protocol

is necessary on layers with only a well defined (short) message length, such

as CAN. The transport protocol splits a long KWP2000 message into pieces

that can be transferred over the network and reassembles those pieces to

recover the original message.

KWP2000 runs on CAN on various transport protocols such as ISO TP

(ISO 15765-2), TP 1.6, TP 2.0 (Volkswagen), SAE J1939-21, and

Diagnostic Over IP (ISO 13400).

Note For KWP2000, the Automotive Diagnostic Command Set supports only the ISO TP

(standardized in ISO 15765-2), manufacturer-specific VW TP 2.0 transport protocols, and

Diagnostic Over IP (ISO 13400).

Diagnostic Services
The diagnostic services available in KWP2000 are grouped in functional

units and identified by a one-byte code (ServiceId). The standard does not

define all codes; for some codes, the standard refers to other SAE or ISO

standards, and some are reserved for manufacturer-specific extensions. The

Automotive Diagnostic Command Set supports the following services:

• Diagnostic Management

• Data Transmission

• Stored Data Transmission (Diagnostic Trouble Codes)

• Input/Output Control

• Remote Activation of Routine

Note Upload/Download and Extended services are not part of the Automotive Diagnostic

Command Set.

Diagnostic Service Format
Diagnostic services have a common message format. Each service defines

a Request Message, Positive Response Message, and Negative Response

Message.

The Request Message has the ServiceId as first byte, plus additional

service-defined parameters. The Positive Response Message has an echo of

the ServiceId with bit 6 set as first byte, plus the service-defined response

parameters.

Chapter 1 Introduction

© National Instruments 1-3 Automotive Diagnostic Command Set User Manual

The Negative Response Message is usually a three-byte message: it has the

Negative Response ServiceId as first byte, an echo of the original ServiceId

as second byte, and a ResponseCode as third byte. The only exception to

this format is the negative response to an EscapeCode service; here, the

third byte is an echo of the user-defined service code, and the fourth byte

is the ResponseCode. The KWP2000 standard partly defines the

ResponseCodes, but there is room left for manufacturer-specific

extensions. For some of the ResponseCodes, KWP2000 defines an error

handling procedure. Because both positive and negative responses have an

echo of the requested service, you can always assign the responses to their

corresponding request.

Connect/Disconnect
KWP2000 expects a diagnostic session to be started with

StartDiagnosticSession and terminated with StopDiagnosticSession.

However, StartDiagnosticSession has a DiagnosticMode parameter that

determines the diagnostic session type. Depending on this type, the ECU

may or may not support other diagnostic services, or operate in a restricted

mode where not all ECU functions are available. The DiagnosticMode

parameter values are manufacturer specific and not defined in the standard.

For a diagnostic session to remain active, it must execute the TesterPresent

service periodically if no other service is executed. If the TesterPresent

service is missing for a certain period of time, the diagnostic session is

terminated, and the ECU returns to normal operation mode.

GetSeed/Unlock
A GetSeed/Unlock mechanism may protect some diagnostic services.

However, the applicable services are left to the manufacturer and not

defined by the standard.

You can execute the GetSeed/Unlock mechanism through the

SecurityAccess service. This defines several levels of security, but the

manufacturer assigns these levels to certain services.

Read/Write Memory
Use the Read/WriteMemoryByAddress services to upload/download data

to certain memory addresses on an ECU. The address is a three-byte

quantity in KWP2000 and a five-byte quantity (four-byte address and

one-byte extension) in the calibration protocols.

Chapter 1 Introduction

Automotive Diagnostic Command Set User Manual 1-4 ni.com

The Upload/Download functional unit services are highly manufacturer

specific and not well defined in the standard, so they are not a good way to

provide a general upload/download mechanism.

Measurements
Use the ReadDataByLocal/CommonIdentifier services to access ECU data

in a way similar to a DAQ list. A Local/CommonIdentifier describes a list

of ECU quantities that are then transferred from the ECU to the tester. The

transfer can be either single value or periodic, with a slow, medium, or fast

transfer rate. The transfer rates are manufacturer specific; you can use the

SetDataRates service to set them, but this setting is manufacturer specific.

Note The Automotive Diagnostic Command Set supports single-point measurements.

Diagnostic Trouble Codes
A major diagnostic feature is the readout of Diagnostic Trouble Codes

(DTCs). KWP2000 defines several services that access DTCs based on

their group or status.

Input/Output Control
KWP2000 defines services to modify internal or external ECU signals.

One example is redirecting ECU sensor inputs to stimulated signals. The

control parameters of these commands are manufacturer specific and not

defined in the standard.

Remote Activation of a Routine
These services are similar to the ActionService and DiagService

functions of CCP. You can invoke an ECU internal routine identified by a

Local/CommonIdentifier or a memory address. Contrary to the CCP case,

execution of this routine can be asynchronous; that is, there are separate

Start, Stop, and RequestResult services.

The control parameters of these commands are manufacturer specific and

not defined in the standard.

External References
For more information about the KWP2000 Standard, refer to the

ISO 14230-3 standard.

Chapter 1 Introduction

© National Instruments 1-5 Automotive Diagnostic Command Set User Manual

UDS (Unified Diagnostic Services)

The UDS protocol has become a de facto standard in automotive diagnostic

applications. It is standardized as ISO 14229. UDS describes the

implementation of various diagnostic services you can access through the

protocol.

As UDS uses messages of variable byte lengths, a transport protocol is

necessary on layers with only a well defined (short) message length, such

as CAN or LIN. The transport protocol splits a long UDS message into

pieces that can be transferred over the network and reassembles those

pieces to recover the original message.

UDS runs on CAN, LIN, and Ethernet on various transport protocols.

Note The Automotive Diagnostic Command Set supports only the ISO TP (standardized

in ISO 15765-2), manufacturer-specific VW TP 2.0 transport protocols, and Diagnostic

Over IP (ISO 13400).

Diagnostic Services
The diagnostic services available in UDS are grouped in functional units

and identified by a one-byte code (ServiceId). Not all codes are defined in

the standard; for some codes, the standard refers to other standards, and

some are reserved for manufacturer-specific extensions. The Automotive

Diagnostic Command Set supports the following services:

• Diagnostic Management

• Data Transmission

• Stored Data Transmission (Diagnostic Trouble Codes)

• Input/Output Control

• Remote Activation of Routine

For UDS on LIN, a slave node must support a set of ISO 14229-1 diagnostic

services such as:

• Node identification (reading hardware and software version, hardware

part number, and diagnostic version)

• Reading data parameters (reading ECU internal values such as oil

temperature and vehicle speed)

• Writing parameter values if applicable

Chapter 1 Introduction

Automotive Diagnostic Command Set User Manual 1-6 ni.com

Note For more information about the LIN Diagnostic service implementations, refer to

the LIN Specification Package, Revision 2.2, from the LIN Consortium.

Diagnostic Service Format
Diagnostic services have a common message format. Each service defines

a Request Message, a Positive Response Message, and a Negative

Response Message. The general format of the diagnostic services complies

with the KWP2000 definition; most of the Service Ids also comply with

KWP2000. The Request Message has the ServiceId as first byte, plus

additional service-defined parameters. The Positive Response Message has

an echo of the ServiceId with bit 6 set as first byte, plus the service-defined

response parameters.

Note Some parameters to both the Request and Positive Response Messages are optional.

Each service defines these parameters. Also, the standard does not define all parameters.

The Negative Response Message is usually a three-byte message: it has the

Negative Response ServiceId (0x7F) as first byte, an echo of the original

ServiceId as second byte, and a ResponseCode as third byte. The UDS

standard partly defines the ResponseCodes, but there is room left for

manufacturer-specific extensions. For some of the ResponseCodes, UDS

defines an error handling procedure.

Because both positive and negative responses have an echo of the requested

service, you always can assign the responses to their corresponding request.

External References
For more information about the UDS Standard, refer to the ISO 15765-3

standard.

OBD (On-Board Diagnostic)

On-Board Diagnostic (OBD) systems are present in most cars and light

trucks on the road today. On-Board Diagnostics refer to the vehicle’s

self-diagnostic and reporting capability, which the vehicle owner or a

repair technician can use to query status information for various vehicle

subsystems.

The amount of diagnostic information available via OBD has increased

since the introduction of on-board vehicle computers in the early 1980s.

Modern OBD implementations use a CAN communication port to provide

real-time data and a standardized series of diagnostic trouble codes

Chapter 1 Introduction

© National Instruments 1-7 Automotive Diagnostic Command Set User Manual

(DTCs), which identify and remedy malfunctions within the vehicle. In the

1970s and early 1980s, manufacturers began using electronic means to

control engine functions and diagnose engine problems. This was primarily

to meet EPA emission standards. Through the years, on-board diagnostic

systems have become more sophisticated. OBD-II, a standard introduced in

the mid 1990s, provides almost complete engine control and also monitors

parts of the chassis, body, and accessory devices, as well as the car’s

diagnostic control network. The newest standard was introduced in 2012 as

WWH-OBD.

The On-Board Diagnostic (OBD) standard defines a minimum set of

diagnostic information for passenger cars and light and medium-duty

trucks, which must be exchanged with any off-board test equipment.

© National Instruments 2-1 Automotive Diagnostic Command Set User Manual

2
Installation and Configuration

This chapter explains how to install and configure the Automotive

Diagnostic Command Set.

Installation

This section discusses the Automotive Diagnostic Command Set

installation for Microsoft Windows.

Note You need administrator rights to install the Automotive Diagnostic Command Set on

your computer.

Follow these steps to install the Automotive Diagnostic Command Set

software:

1. Insert the Automotive Diagnostic Command Set CD into the CD-ROM

drive.

2. Open Windows Explorer.

3. Access the CD-ROM drive.

4. Double-click on autorun.exe to launch the software interface.

5. Start the installation. The installation program guides you through the

rest of the installation process.

6. If you have not already installed NI-CAN, the Automotive Diagnostic

Command Set installer automatically installs the NI-CAN driver on

your computer.

Within the Devices & Interfaces branch of the MAX Configuration

tree, NI CAN hardware is listed along with other hardware in the local

computer system. If the CAN hardware is not listed here, MAX is not

configured to search for new devices on startup. To search for the new

hardware, press <F5>. To verify installation of the CAN hardware,

right-click the CAN device, then select Self-test. If the self-test passes,

the card icon shows a checkmark. If the self-test fails, the card icon

shows an X mark, and the Test Status in the right pane describes the

problem.

Chapter 2 Installation and Configuration

Automotive Diagnostic Command Set User Manual 2-2 ni.com

Refer to Appendix A, Troubleshooting and Common Questions, of the

NI-CAN User Manual for information about resolving hardware

installation problems.

If you are using the Automotive Diagnostic Command Set on an NI-XNET

device, install the NI-XNET driver 1.0 or higher, NI-CAN 2.7 or higher,

and the NI-CAN Compatibility Library on your computer.

The MAX Configuration tree Devices and Interfaces branch lists

NI-XNET hardware (along with other local computer system hardware). If

the NI-XNET hardware is not listed there, MAX is not configured to search

for new devices on startup. To search for the new hardware, press <F5>. To

verify CAN hardware installation, right-click the CAN device and select

Self-Test. If the self-test passes, the card icon shows a checkmark. If the

self-test fails, the card icon shows an X mark, and the Test Status in the

right pane describes the problem. Refer to Chapter 6, Troubleshooting and

Common Questions, of the NI-XNET User Manual for information about

resolving hardware installation problems. The NI-XNET CAN hardware

interfaces are listed under the device name. To change the interface name,

select a new one from the Interface Name box in the middle pane.

When installation is complete, you can access the Automotive Diagnostic

Command Set functions in your application development environment.

LabVIEW Real-Time (RT) Configuration

LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming

with the power of real-time systems. When you use a National Instruments

PXI controller as a LabVIEW RT system, you can install a PXI CAN card

and use the NI-CAN or NI-XNET APIs to develop real-time applications.

As with any NI software library for LabVIEW RT, you must install the

Automotive Diagnostic Command Set software to the LabVIEW RT target

using the Remote Systems branch in MAX. For more information, refer to

the LabVIEW RT documentation.

After you install the PXI CAN cards and download the Automotive

Diagnostic Command Set software to the LabVIEW RT system, you must

verify the installation.

Chapter 2 Installation and Configuration

© National Instruments 2-3 Automotive Diagnostic Command Set User Manual

Hardware and Software Requirements

You can use the Automotive Diagnostic Command Set on the following

hardware:

• National Instruments NI-CAN hardware Series 1 or 2 with the

NI-CAN driver software version 2.3 or later installed.

• National Instruments NI-XNET hardware with the NI-XNET driver

software version 1.0 or later installed.

• National Instruments CompactRIO or R Series Multifunction RIO

hardware and the NI 9853 or NI 9852 CompactRIO CAN modules.

Note You can use the Automotive Diagnostic Command Set with LabVIEW 2009 or

newer on CompactRIO systems or National Instruments R Series Multifunction RIO

hardware.

© National Instruments 3-1 Automotive Diagnostic Command Set User Manual

3
Application Development

This chapter explains how to develop an application using the Automotive

Diagnostic Command Set API.

Choosing the Programming Language

The programming language you use for application development

determines how to access the Automotive Diagnostic Command Set APIs.

LabVIEW
Automotive Diagnostic Command Set functions and controls are in the

LabVIEW palettes. In LabVIEW, the Automotive Diagnostic Command

Set palette is in the top-level NI Measurements palette.

Chapter 5, Automotive Diagnostic Command Set API for LabVIEW,

describes each LabVIEW VI for the Automotive Diagnostic Command Set

API.

To access the VI reference from within LabVIEW, press <Ctrl-H> to open

the Help window, click the appropriate Automotive Diagnostic Command

Set VI, and follow the link. The Automotive Diagnostic Command Set

software includes a full set of LabVIEW examples. These examples teach

programming basics as well as advanced topics. The example help

describes each example and includes a link you can use to open the VI.

LabWindows/CVI
Within LabWindows™/CVI™, the Automotive Diagnostic Command Set

function panel is in Libraries»Automotive Diagnostic Command Set. As

with other LabWindows/CVI function panels, the Automotive Diagnostic

Command Set function panel provides help for each function and the

ability to generate code. Chapter 6, Automotive Diagnostic Command Set

API for C, describes each Automotive Diagnostic Command Set API

function. You can access the reference for each function directly from

within the function panel. The Automotive Diagnostic Command Set API

header file is nidiagcs.h. The Automotive Diagnostic Command Set

API library is nidiagcs.lib. The toolkit software includes a full set of

Chapter 3 Application Development

Automotive Diagnostic Command Set User Manual 3-2 ni.com

LabWindows/CVI examples. The examples are in the LabWindows/CVI

\samples\Automotive Diagnostic Command Set directory. Each

example includes a complete LabWindows/CVI project (.prj file). The

example description is in comments at the top of the .c file.

Visual C++ 6
The Automotive Diagnostic Command Set software supports Microsoft

Visual C/C++ 6.

The header file for Visual C/C++ 6 is in the Program Files\National

Instruments\Shared\ExternalCompilerSupport\C\include

folder. To use the Automotive Diagnostic Command Set API, include the

nidiagcs.h header file in the code, then link with the nidiagcs.lib

library file. The library file is in the Program Files\National

Instruments\Shared\ExternalCompilerSupport\C\lib32\msvc

folder.

For C applications (files with a .c extension), include the header file by

adding a #include to the beginning of the code, as follows:

#include "nidiagcs.h"

For C++ applications (files with a .cpp extension), define __cplusplus

before including the header, as follows:

#define __cplusplus

#include "nidiagcs.h"

The __cplusplus define enables the transition from C++ to the C

language functions.

Chapter 6, Automotive Diagnostic Command Set API for C, describes each

function.

On Windows Vista (with Standard User Account), the typical path to

the C examples folder is \Users\Public\Documents\National

Instruments\Automotive Diagnostic Command Set\ Examples\

MS Visual C.

On Windows XP/2000, the typical path to the C examples folder is

\Documents and Settings\All Users\Documents\National

Instruments\Automotive Diagnostic Command Set\ Examples\

MS Visual C.

Chapter 3 Application Development

© National Instruments 3-3 Automotive Diagnostic Command Set User Manual

Each example is in a separate folder. The example description is in

comments at the top of the .c file. At the command prompt, after setting

MSVC environment variables (such as with MS vcvars32.bat), you can

build each example using a command such as:

cl /I<HDir> GetDTCs.c <LibDir>\nidiagcs.lib

<HDir> is the folder where nidiagcs.h can be found.

<LibDir> is the folder where nidiagcs.lib can be found.

Other Programming Languages
The Automotive Diagnostic Command Set software does not provide

formal support for programming languages other than those described in

the preceding sections. If the programming language includes a mechanism

to call a Dynamic Link Library (DLL), you can create code to call

Automotive Diagnostic Command Set functions. All functions for the

Automotive Diagnostic Command Set API are in nidiagcs.dll. If the

programming language supports the Microsoft Win32 APIs, you can load

pointers to Automotive Diagnostic Command Set functions in the

application. The following section describes how to use the Win32

functions for C/C++ environments other than Visual C/C++ 6. For more

detailed information, refer to Microsoft documentation.

The following C language code fragment shows how to call Win32

LoadLibrary to load the Automotive Diagnostic Command Set API DLL:

#include <windows.h>

#include "nidiagcs.h"

HINSTANCE NiDiagCSLib = NULL;

NiMcLib = LoadLibrary("nidiagcs.dll");

Next, the application must call the Win32 GetProcAddress function to

obtain a pointer to each Automotive Diagnostic Command Set function the

application uses. For each function, you must declare a pointer variable

using the prototype of the function. For the Automotive Diagnostic

Command Set function prototypes, refer to Chapter 6, Automotive

Diagnostic Command Set API for C. Before exiting the application, you

must unload the Automotive Diagnostic Command Set DLL as follows:

FreeLibrary (NiDiagCSLib);

Chapter 3 Application Development

Automotive Diagnostic Command Set User Manual 3-4 ni.com

Application Development on CompactRIO or R Series
Using an NI 985x or NI 986x C Series Module

To run a project on an FPGA target with an NI 985x C Series module, you

need an FPGA bitfile (.lvbitx). The FPGA bitfile is downloaded to the

FPGA target on the execution host. A bitfile is a compiled version of an

FPGA VI. FPGA VIs, and thus bitfiles, define the CAN, analog, digital,

and pulse width modulation (PWM) inputs and outputs of an FPGA target.

The Automotive Diagnostic Command Set does not include FPGA bitfiles

for any FPGA target. Refer to the LabVIEW FPGA Module documentation

for more information about creating FPGA VIs and bitfiles for an FPGA

target.

The default FPGA VI is sufficient for a basic Automotive Diagnostic

Command Set application. However, in some situations you may need to

modify the existing FPGA code to create a custom bitfile. For example, to

use additional I/O on the FPGA target, you must add these I/O to the FPGA

VI. You must install the LabVIEW FPGA Module to create these files.

Modify the FPGA VI according to the following guidelines:

• Do not modify, remove, or rename any block diagram controls and

indicators named __CAN0 Rx Data, __CAN0 Rx Ready,

__CAN0 Tx Data Frame, __CAN0 Tx Ready, __CAN0 Bit Timing,

__CAN0 FPGA Is Running, __CAN0 Start, __CAN0 FIFO Full, or

__CAN0 FIFO Empty. If you intend to use multiple CAN 985x

modules on your FPGA, you need to duplicate and rename all controls

and indicators accordingly.

• Do not modify the CAN read and write code except to filter CAN IDs

on the receiving side to minimize the amount of CAN data transfers to

the host.

• As you create controls or indicators, ensure that each control name is

unique within the VI.

Refer to the LabVIEW FPGA Module documentation for more information

about creating FPGA VIs and bitfiles for an FPGA target.

When using ADCS on CompactRIO with an NI 985x C Series module, the

interface name is based on the bitfile you use and the interface name you

set. For example, MyInterface@MyBitfile.lvbitx,

CAN@lvbitfile.lvbitx, or CAN0@mybitfile.lvbitx.

Chapter 3 Application Development

© National Instruments 3-5 Automotive Diagnostic Command Set User Manual

The interface name you use must be part of all parameters in the FPGA

code for the CAN communication. Also, the ADCS needs the interface

name for correct functionality.

If you define the interface name to be CAN0, you must name the parameters

as follows:

• __CAN0 Rx Data

• __CAN0 Rx Ready

• __CAN0 Tx Data Frame

• __CAN0 Tx Ready

• __CAN0 Bit Timing

• __CAN0 FPGA Is Running

• __CAN0 Start

• __CAN0 FIFO Full

• __CAN0 FIFO Ready

In addition, you need to set the name of the internally used FIFO to

__CAN0 FIFO (the FIFO is set to U32, 1029 elements, target scoped, and

block memory).

After recompiling your FPGA VI, copy the bitfile to the root directory of

your CompactRIO controller and specify the bitfile in the interface name.

Or copy the file to any location on the CompactRIO controller and specify

an absolute path or path relative to the root for the bitfile.

If you are using an NI-XNET 986x C Series module on your CompactRIO

target, you need to start an FPGA VI on the target before accessing the port

with ADCS. Refer to the Getting Started with CompactRIO section in the

NI-XNET Hardware and Software Manual for more information about

compiling the FPGA VI. When the VI is running, you can access the

NI 986x module as you would program on a Windows or PXI LabVIEW

Real-Time target.

© National Instruments 4-1 Automotive Diagnostic Command Set User Manual

4
Using the Automotive
Diagnostic Command Set

Structure of the Automotive Diagnostic Command Set

Diagnostic Services Layer

KWP2000

Services

UDS (DiagOnCAN)

Services

OBD(OnBoard

Diag) Services

Auxiliary

Routines

Diagnostic Transport Layer

Connection

Management

Service

Execution

Auxiliary

Routines

Transport Protocols

ISO TP

(ISO 15765-2)
VW TP 2.0

CAN Layer (C++ DLL)

Base Driver

Diag Over IP

(ISO 13400)

NI-CAN NI-XNET NI-RIO Ethernet

Chapter 4 Using the Automotive Diagnostic Command Set

Automotive Diagnostic Command Set User Manual 4-2 ni.com

The Automotive Diagnostic Command Set is structured into three layers of

functionality:

• The top layer implements three sets of diagnostic services for the

diagnostic protocols KWP2000, UDS (DiagOnCAN), and OBD

(On-Board Diagnostics).

• The second layer implements general routines involving opening and

closing diagnostic communication connections, connecting and

disconnecting to/from an ECU, and executing a diagnostic service on

byte level. The latter routine is the one the top layer uses heavily.

• The third layer implements the transport protocols needed for

diagnostic communication to an ECU. The second layer uses these

routines to communicate to an ECU.

All three top layers are fully implemented in LabVIEW.

The transport protocols then execute CAN/LIN Read/Write operations

through a specialized DLL for streamlining the CAN/LIN data flow,

especially in higher busload situations.

Automotive Diagnostic Command Set API Structure

The top two layer routines are available as API functions. Each diagnostic

service for KWP2000, UDS, and OBD is available as one routine. Also

available on the top level are auxiliary routines for converting scaled

physical data values to and from their binary representations used in the

diagnostic services.

On the second layer are more general routines for opening and closing

diagnostic communication channels and executing a diagnostic service.

Auxiliary routines create the diagnostic identifiers from the logical ECU

address.

Chapter 4 Using the Automotive Diagnostic Command Set

© National Instruments 4-3 Automotive Diagnostic Command Set User Manual

General Programming Model

First, you must open a diagnostic communication link. This involves

initializing the CAN/LIN port and defining communication parameters

such as the baud rate. For CAN-based diagnostics, the CAN identifiers on

which the diagnostic communication takes place must be defined also. No

actual communication to the ECU takes place at this stage.

For the VW TP 2.0, you then must establish a communication channel to

the ECU using the VWTP Connect routine. The communication channel

properties are negotiated between the host and ECU.

After these steps, the diagnostic communication is established, and you can

execute diagnostic services of your choice. Note that for the VW TP 2.0,

VW TP?

VW TP?

Done?

VW TP?

Yes

No

Yes

Yes

No

No

No

Yes

Open Diagnostic

VWTP Connect

Execute a

Diagnostic Service

Periodically Execute

VWTP ConnectionTest

VWTP Disconnect

Close Diagnostic

Chapter 4 Using the Automotive Diagnostic Command Set

Automotive Diagnostic Command Set User Manual 4-4 ni.com

you must execute the VWTP ConnectionTest routine periodically (once per

second) to keep the communication channel open.

When you finish your diagnostic services, you must close the diagnostic

communication link. This finally closes the CAN or LIN port. For the VW

TP 2.0, you should disconnect the communication channel established

before closing.

Available Diagnostic Services

The standards on automotive diagnostic define many different services for

many purposes. Unfortunately, most services leave a large amount of room

for manufacturer-specific variants and extensions. National Instruments

implemented the most used variants while trying not to overload them with

optional parameters.

However, all services are implemented in LabVIEW and open to the user.

If you are missing a service or variant of an existing service, you can easily

add or modify it on your own.

In the C API, you can also implement your own diagnostic services using

the ndDiagnosticService routine. However, the templates from the existing

services are not available.

Tweaking the Transport Protocol

A set of global constants controls transport protocol behavior. These

constants default to maximum performance. To check the properties of an

implementation of a transport protocol in an ECU, for example, you may

want to change the constants to nonstandard values using the Get/Set

Property routines.

© National Instruments 5-1 Automotive Diagnostic Command Set User Manual

5
Automotive Diagnostic
Command Set API for LabVIEW

This chapter lists the LabVIEW VIs for the Automotive Diagnostic Command Set API and

describes the format, purpose, and parameters for each VI. The VIs are listed alphabetically

in four categories: general functions, KWP2000 services, UDS (DiagOnCAN) services, and

OBD (On-Board Diagnostics) services.

Section Headings

The following are section headings found in the Automotive Diagnostic Command Set API

for LabVIEW VIs.

Purpose
Each VI description briefly describes the VI purpose.

Format
The format section describes the VI format.

Input and Output
The input and output sections list the VI parameters.

Description
The description section gives details about the VI purpose and effect.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-2 ni.com

List of VIs

The following table is an alphabetical list of the Automotive Diagnostic Command Set VIs.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW

Function Purpose

ClearDiagnosticInformation.vi Executes the ClearDiagnosticInformation

service and clears selected Diagnostic

Trouble Codes (DTCs).

Close Diagnostic.vi Closes a diagnostic session.

ControlDTCSetting.vi Executes the ControlDTCSetting service and

modifies the generation behavior of selected

Diagnostic Trouble Codes (DTCs).

Convert from Phys.vi Converts a physical data value into a binary

representation using a type descriptor.

Convert to Phys.vi Converts a binary representation of a value

into its physical value using a type

descriptor.

Create Extended CAN IDs.vi Creates diagnostic CAN IDs according to

ISO 15765-2.

Diag Get Property.vi Gets a diagnostic global internal parameter.

Diag Set Property.vi Sets a diagnostic global internal parameter.

Diagnostic Frame Recv.vi Receives a raw CAN frame on the diagnostic

CAN ID to check for errors in the transport

protocol implementation of an ECU.

Diagnostic Frame Send.vi Sends a raw CAN frame on the diagnostic

CAN ID to check for errors in the transport

protocol implementation of an ECU.

Diagnostic Service.vi Executes a generic diagnostic service. If a

special service is not available through the

KWP2000, UDS, or OBD service functions,

you can build it using this VI.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-3 Automotive Diagnostic Command Set User Manual

DisableNormalMessageTransmission.vi Executes the

DisableNormalMessageTransmission

service. The ECU no longer transmits

its regular communication messages

(usually CAN messages).

DoIP Activate Routing.vi Defines the source and target addresses for a

DoIP TCP/IP connection.

DoIP Connect.vi Creates a TCP/IP connection to a DoIP

entity identified by its IP address.

DoIP Disconnect.vi Disconnects the TCP/IP connection to a

DoIP entity.

DoIP Get Diagnostic Power Mode.vi Gets information sbout the DoIP entity

power state.

DoIP Get DoIP Entity Status.vi Gets status information from a DoIP entity.

DoIP Get Entities.vi Returns a table of all DoIP entities (vehicles)

on the local subnet, possibly restricted to

EID or VIN.

DoIP Send Vehicle Identification Request.vi Sends a UDP request to all DoIP-capable

vehicles in the local subnet to identify

themselves.

DoIP Send Vehicle Identification Request w

EID.vi

Sends a UDP request to all DoIP-capable

vehicles with a certain EID (MAC address)

in the local subnet to identify themselves.

DoIP Send Vehicle Identification Request w

VIN.vi

Sends a UDP request to all DoIP-capable

vehicles with a certain VIN (Vehicle

Identification Number) in the local subnet to

identify themselves.

DTC to String.vi Returns a string representation (such as

P1234) for a 2-byte Diagnostic Trouble

Code (DTC).

Get Time Stamp.vi Gets timestamp information about the

first/last send/received frame of the ISO TP

for CAN and LIN.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-4 ni.com

ECUReset.vi Executes the ECUReset service and resets

the ECU.

EnableNormalMessageTransmission.vi Executes the

EnableNormalMessageTransmission

service. The ECU starts transmitting

its regular communication messages

(usually CAN messages).

InputOutputControlByLocalIdentifier.vi Executes the

InputOutputControlByLocalIdentifier

service. Modifies the ECU I/O port behavior.

OBD Clear Emission Related Diagnostic

Information.vi

Executes the OBD Clear Emission Related

Diagnostic Information service. Clears

emission-related Diagnostic Trouble Codes

(DTCs) in the ECU.

Get Time Stamp.vi Opens an OBD-II diagnostic session on a

CAN port.

OBD Request Control Of On-Board Device.vi Executes the OBD Request Control Of

On-Board Device service. Use this VI to

modify ECU I/O port behavior.

OBD Request Current Powertrain Diagnostic

Data.vi

Executes the OBD Request Current

Powertrain Diagnostic Data service.

Reads a data record from the ECU.

OBD Request Emission Related DTCs.vi Executes the OBD Request Emission

Related DTCs service. Reads all

emission-related Diagnostic Trouble Codes

(DTCs).

OBD Request Emission Related DTCs During

Current Drive Cycle.vi

Executes the OBD Request Emission

Related DTCs During Current Drive Cycle

service. Reads the emission-related

Diagnostic Trouble Codes (DTCs) that

occurred during the current (or last

completed) drive cycle.

OBD Request On-Board Monitoring Test

Results.vi

Executes the OBD Request On-Board

Monitoring Test Results service. Reads

a test data record from the ECU.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-5 Automotive Diagnostic Command Set User Manual

OBD Request Permanent Fault Codes.vi Executes the OBD Request Permanent Fault

Codes service. All permanent Diagnostic

Trouble Codes (DTCs) are read.

OBD Request Powertrain Freeze Frame Data.vi Executes the OBD Request Powertrain

Freeze Frame Data service. Reads a data

record from the ECU that has been stored

while a Diagnostic Trouble Code occurred.

OBD Request Supported PIDs.vi Executes the OBD Request Current

Powertrain Diagnostic Data service to

retrieve the valid PID values for this service.

OBD Request Vehicle Information.vi Executes the OBD Request Vehicle

Information service. Reads a set of

information data from the ECU.

Open Diagnostic.vi Opens a diagnostic session on a CAN port.

Communication to the ECU is not yet

started.

Open Diagnostic on IP.vi Opens a diagnostic session on an IP port.

Communication to the ECU is not yet

started.

Open Diagnostic on LIN.vi Opens a diagnostic session on an NI-XNET

LIN port. Communication to the ECU is not

yet started.

ReadDataByLocalIdentifier.vi Executes the ReadDataByLocalIdentifier

service. Reads a data record from the ECU.

ReadDTCByStatus.vi Executes the

ReadDiagnosticTroubleCodesByStatus

service. Reads selected Diagnostic Trouble

Codes (DTCs).

ReadECUIdentification.vi Executes the ReadECUIdentification

service. Returns ECU identification data

from the ECU.

ReadMemoryByAddress.vi Executes the ReadMemoryByAddress

service. Reads data from the ECU memory.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-6 ni.com

ReadStatusOfDTC.vi Executes the

ReadStatusOfDiagnosticTroubleCodes

service. Reads selected Diagnostic Trouble

Codes (DTCs).

RequestRoutineResultsByLocalIdentifier.vi Executes the

RequestRoutineResultsByLocalIdentifier

service. Returns results from a routine on the

ECU.

RequestSeed.vi Executes the SecurityAccess service to

retrieve a seed from the ECU.

SendKey.vi Executes the SecurityAccess service to send

a key to the ECU.

StartDiagnosticSession.vi Executes the StartDiagnosticSession service.

Sets up the ECU in a specific diagnostic

mode.

StartRoutineByLocalIdentifier.vi Executes the StartRoutineByLocalIdentifier

service. Executes a routine on the ECU.

StopDiagnosticSession.vi Executes the StopDiagnosticSession service.

Brings the ECU back in normal mode.

StopRoutineByLocalIdentifier.vi Executes the StopRoutineByLocalIdentifier

service. Stops a routine on the ECU.

TesterPresent.vi Executes the TesterPresent service. Keeps

the ECU in diagnostic mode.

UDS ClearDiagnosticInformation.vi Executes the UDS

ClearDiagnosticInformation service. Clears

selected Diagnostic Trouble Codes (DTCs).

UDS CommunicationControl.vi Executes the UDS CommunicationControl

service. Use this VI to switch on or off

transmission and/or reception of the normal

communication messages (usually CAN

messages).

UDS ControlDTCSetting.vi Executes the UDS ControlDTCSetting

service. Modifies Diagnostic Trouble Code

(DTC) generation behavior.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-7 Automotive Diagnostic Command Set User Manual

UDS DiagnosticSessionControl.vi Executes the UDS

DiagnosticSessionControl service. Sets up

the ECU in a specific diagnostic mode.

UDS ECUReset.vi Executes the UDS ECUReset service.

Resets the ECU.

UDS InputOutputControlByIdentifier.vi Executes the UDS

InputOutputControlByIdentifier service.

Use this VI to modify ECU I/O port

behavior.

UDS ReadDataByIdentifier.vi Executes the UDS ReadDataByIdentifier

service. Reads a data record from the ECU.

UDS ReadMemoryByAddress.vi Executes the UDS ReadMemoryByAddress

service. Reads data from the ECU memory.

UDS ReportDTCBySeverityMaskRecord.vi Executes the

ReportDTCBySeverityMaskRecord

subfunction of the UDS

ReadDiagnosticTroubleCodeInformation

service. Reads selected Diagnostic Trouble

Codes (DTCs).

UDS ReportDTCByStatusMask.vi Executes the ReportDTCByStatusMask

subfunction of the UDS

ReadDiagnosticTroubleCodeInformation

service. Reads selected Diagnostic Trouble

Codes (DTCs).

UDS ReportSeverityInformationOfDTC.vi Executes the

ReportSeverityInformationOfDTC

subfunction of the UDS

ReadDiagnosticTroubleCodeInformation

service. Reads selected Diagnostic Trouble

Codes (DTCs).

UDS ReportSupportedDTCs.vi Executes the ReportSupportedDTCs

subfunction of the UDS

ReadDiagnosticTroubleCodeInformation

service. Reads all supported Diagnostic

Trouble Codes (DTCs).

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-8 ni.com

UDS RequestDownload.vi Initiates a download of data to the ECU.

UDS RequestSeed.vi Executes the UDS SecurityAccess service to

retrieve a seed from the ECU.

UDS RequestTransferExit.vi Terminates a download/upload process.

UDS RequestUpload.vi Initiates an upload of data from the ECU.

UDS RoutineControl.vi Executes the UDS RoutineControl service.

Executes a routine on the ECU.

UDS SendKey.vi Executes the SecurityAccess service to send

a key to the ECU.

UDS TesterPresent.vi Executes the UDS TesterPresent service.

Keeps the ECU in diagnostic mode.

UDS TransferData.vi Transfers data to/from the ECU in a

download/upload process.

UDS WriteDataByIdentifier.vi Executes the UDS WriteDataByIdentifier

service. Writes a data record to the ECU.

UDS WriteMemoryByAddress.vi Executes the UDS WriteMemoryByAddress

service. Writes data to the ECU memory.

UDS06 ReadMemoryByAddress.vi Executes the UDS ReadMemoryByAddress

service. Reads data from the ECU memory.

UDS06 WriteMemoryByAddress.vi Executes the UDS WriteMemoryByAddress

service. Writes data to the ECU memory.

VWTP Connect.vi Establishes a connection channel to an ECU

using the VW TP 2.0.

VWTP Connection Test.vi Maintains a connection channel to an ECU

using the VW TP 2.0.

VWTP Disconnect.vi Terminates a connection channel to an ECU

using the VW TP 2.0.

WriteDataByLocalIdentifier.vi Executes the WriteDataByLocalIdentifier

service. Writes a data record to the ECU.

WriteMemoryByAddress.vi Executes the WriteMemoryByAddress

service. Writes data to the ECU memory.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-9 Automotive Diagnostic Command Set User Manual

WWH-OBD Clear Emission Related DTCs.vi Executes the WWH-OBD

ClearDiagnosticInformation service. Clears

selected Diagnostic Trouble Codes (DTCs).

WWH-OBD Convert DTCs to J1939.vi Converts DTCs to the J1939 DTC format.

WWH-OBD Convert DTCs to J2012.vi Converts DTCs to the J2012 DTC format.

WWH-OBD Request DID.vi Executes the WWH-OBD

ReadDataByIdentifier service. Reads a data

record from the ECU.

WWH-OBD Request DTC Extended Data

Record.vi

Executes the WWH-OBD

ReadDTCInformation service. Reads

selected Diagnostic Trouble Codes (DTCs).

WWH-OBD Request Emission Related DTCs.vi Executes the WWH-OBD

ReadDTCInformation service. Reads

selected Diagnostic Trouble Codes (DTCs).

WWH-OBD Request Freeze Frame

Information.vi

Executes the WWH-OBD

ReadDTCInformation service. Reads

selected Diagnostic Trouble Codes (DTCs).

WWH-OBD Request RID.vi Executes the WWH-OBD RoutineControl

service. Reads a data record from the ECU.

WWH-OBD Request Supported DIDs.vi Executes the WWH-OBD

ReadDataByIdentifier service to retrieve the

valid DID values for this service.

WWH-OBD Request Supported RIDs.vi Executes the WWH-OBD RoutineControl

service to retrieve the valid RID values for

this service.

Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-10 ni.com

General Functions

Close Diagnostic.vi

Purpose
Closes a diagnostic session.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-11 Automotive Diagnostic Command Set User Manual

Output
error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The diagnostic session specified by diag ref in is closed, and you can no longer use it for

communication to an ECU. Note that this command does not communicate the closing to

the ECU before terminating; if this is necessary, you must manually do so (for example,

by calling StopDiagnosticSession.vi) before calling Close Diagnostic.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-12 ni.com

Convert from Phys.vi

Purpose
Converts a physical data value into a binary representation using a type descriptor.

Format

Input
type descriptor is a cluster that specifies the conversion of the physical

value to its binary representation:

Start Byte gives the start byte of the binary representation. For

Convert from Phys.vi, this value is ignored and always assumed

to be 0.

Byte Length is the binary representation byte length.

Byte Order is the byte ordering of the data in the binary

representation:

0: MSB_FIRST (Motorola)

1: LSB_FIRST (Intel)

Data Type is the binary representation format:

0: Unsigned. Only byte lengths of 1–4 are allowed.

1: Signed. Only byte lengths of 1–4 are allowed.

2: Float. Only byte lengths of 4 or 8 are allowed.

Scale Factor defines the physical value scaling:

Phys = (Scale Factor) * (binary representation) + (Scale Offset)

Scale Offset (refer to Scale Factor)

value is the physical value to be converted.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-13 Automotive Diagnostic Command Set User Manual

Output
data out is the binary representation of the physical value. If you build a

record of multiple values, you can concatenate the outputs of several

instances of Convert from Phys.vi.

Description
Data input to diagnostic services (for example, WriteDataByLocalIdentifier.vi) is usually a

byte stream of binary data. If you have a description of the data input (for example, byte 3 and

4 are engine RPM scaled as .25 * × RPM in Motorola representation), you can use Convert

from Phys.vi to convert the physical value to the byte stream by filling an appropriate type

descriptor cluster.

Convert from Phys.vi converts only the portion specified by one type descriptor to a binary

representation. If your data input consists of several values, you can use Convert from

Phys.vi multiple times and concatenate their outputs.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-14 ni.com

Convert to Phys.vi

Purpose
Converts a binary representation of a value into its physical value using a type descriptor.

Format

Input
type descriptor is a cluster that specifies the conversion of the binary

representation to its physical value:

Start Byte gives the binary representation start byte in the data in

record.

Byte Length is the binary representation byte length.

Byte Order is the byte ordering of the data in the binary

representation:

0: MSB_FIRST (Motorola)

1: LSB_FIRST (Intel)

Data Type is the binary representation format:

0: Unsigned. Only byte lengths of 1–4 are allowed.

1: Signed. Only byte lengths of 1–4 are allowed.

2: Float. Only byte lengths of 4 or 8 are allowed.

Scale Factor defines the physical value scaling:

Phys = (Scale Factor) * (binary representation) + (Scale Offset)

Scale Offset (refer to Scale Factor)

data in is the data record from which physical values are to be extracted.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-15 Automotive Diagnostic Command Set User Manual

Output
value is the physical value extracted from the record.

Description
Data output from diagnostic services (for example, ReadDataByLocalIdentifier.vi) is

usually a byte stream of binary data. If you have a description of the data output (for example,

byte 3 and 4 are engine RPM scaled as .25 * × RPM in Motorola representation), you can

use Convert to Phys.vi to extract the physical value from the byte stream by filling an

appropriate type descriptor cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-16 ni.com

Create Extended CAN IDs.vi

Purpose
Creates diagnostic CAN IDs according to ISO 15765-2.

Format

Input
addressing mode specifies whether the ECU is physically or functionally

addressed.

transport protocol specifies whether normal or mixed mode addressing is

used.

source address is the logical address of the host (diagnostic tester).

target address is the ECU logical address.

Output
transmit ID is the generated CAN identifier for sending diagnostic request

messages from the host to the ECU.

receive ID is the generated CAN identifier for sending diagnostic response

messages from the ECU to the host.

Description
ISO 15765-2 specifies a method (extended/29 bit) of creating CAN identifiers for diagnostic

applications given the addressing mode (physical/functional), the transport protocol

(normal/mixed), and the 8-bit source and target addresses. This VI implements the

construction of these CAN identifiers. You can use them directly in Open Diagnostic.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-17 Automotive Diagnostic Command Set User Manual

Diag Get Property.vi

Purpose
Gets a diagnostic global internal parameter.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

property ID defines the parameter whose value is to be retrieved. You can

create the values using an Enum control.

0 Timeout Diag Command is the timeout in milliseconds the master

waits for the response to a diagnostic request message. The default is

1000 ms.

1 Timeout FC (Bs) is the timeout in milliseconds the master waits

for a Flow Control frame after sending a First Frame or the last

Consecutive Frame of a block. The default is 250 ms.

2 Timeout CF (Cr) is the timeout in milliseconds the master waits

for a Consecutive Frame in a multiframe response. The default is

250 ms for CAN and 1000 ms for LIN.

3 Receive Block Size (BS) is the number of Consecutive Frames the

slave sends in one block before waiting for the next Flow Control

frame. A value of 0 (default) means all Consecutive Frames are sent

in one run without interruption.

4 Wait Time CF (STmin) defines the minimum time for the slave to

wait between sending two Consecutive Frames of a block. Values

from 0 to 127 are wait times in milliseconds. Values 241 to 249

(Hex F1 to F9) mean wait times of 100 µs to 900 µs, respectively.

All other values are reserved. The default is 5 ms for CAN.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-18 ni.com

5 Max Wait Frames (N_WFTmax) is the maximum number of WAIT

frames the master accepts before terminating the connection. The

default is 10.

6 Wait Frames to Send (N_WAIT) is the number of WAIT frames the

master sends every time before a CTS frame is sent. If this value is

set to a negative number (for example, 0xFFFFFFFF = –1), the

master sends an OVERLOAD frame instead of a WAIT, and

reception is aborted. The default is 0 for maximum speed.

7 Time between Waits (T_W) is the number of milliseconds the

master waits after sending a WAIT frame. The default is 25.

8 Fill CAN Frames returns whether a CAN frame is transmitted with

8 bytes or less.

0: Short CAN frames are sent with DLC < 8.

1: Short CAN frames are filled to 8 bytes with Fill Byte (default).

9 Fill Byte returns the CAN frame content if filled with defined data or

random data bytes.

0–255: Byte is used optionally to fill short CAN frames.

256: Short CAN frames are filled optionally with random bytes.

The default is 255 (0xFF).

10 Invalid Response as Error returns how the toolkit handles an

invalid ECU response.

0: Invalid response is indicated by success? = FALSE only (default).

1: Invalid response is returned as an error in addition.

11 Max RspPending Count is the number of times a

ReqCorrectlyRcvd-RspPending (0x78) Negative Response Message

will be accepted to extend the command timeout (default 5). If this

message is sent more often in response to a request, an error –8120 is

returned. If the ECU implements commands with a long duration

(for example, flash commands), you may need to extend this number.

12 VWTP Command Time Out is the time in milliseconds the host

waits for a VWTP 2.0 command to be executed (default 50 ms). The

specification states this as 50 ms plus the network latency, but some

ECUs may require higher values.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-19 Automotive Diagnostic Command Set User Manual

13 STmin is the minimum time in seconds between the end of

transmission of a frame in a diagnostic request message and the start

of transmission of the next frame in the diagnostic request message

for LIN-based diagnostic communication.The default is 0.

14 P2min is the minimum time in seconds between reception of the last

frame of the diagnostic request and the response sent by the node for

LIN-based diagnostic communication. The default is 0.05.

15 Termination reads the NI-XNET Termination property. Reflections

on the CAN and LIN bus can cause communication failures. To

prevent reflections, termination can be present as external resistance

or resistance the XNET CAN or LIN board applies internally. This

property determines whether the XNET board uses termination to the

bus. For further information about appropriate terminations of a CAN

or LIN network, refer to the NI-XNET Hardware and Software

Manual. The default is 0.

error in is a cluster that describes error conditions occurring before the VI

executes. It is copied unchanged to error out and has no other effect on the

VI. It is provided for sequencing purposes only.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

property value is the requested property value.

error out describes error conditions. It is copied unchanged from the error

in cluster. It is provided for sequencing purposes only.

Description
Use this VI to request several internal diagnostic parameters, such as timeouts for the

transport protocol. Use Diag Set Property.vi to modify them.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-20 ni.com

Diag Set Property.vi

Purpose
Sets a diagnostic global internal parameter.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

property ID defines the parameter whose value is to be retrieved. You can

create the values using an Enum control.

0 Timeout Diag Command is the timeout in milliseconds the master

waits for the response to a diagnostic request message. The default is

1000 ms.

1 Timeout FC (Bs) is the timeout in milliseconds the master waits

for a Flow Control frame after sending a First Frame or the last

Consecutive Frame of a block. The default is 250 ms.

2 Timeout CF (Cr) is the timeout in milliseconds the master waits

for a Consecutive Frame in a multiframe response. The default is

250 ms for CAN and 1000 ms for LIN.

3 Receive Block Size (BS) is the number of Consecutive Frames the

slave sends in one block before waiting for the next Flow Control

frame. A value of 0 (default) means all Consecutive Frames are sent

in one run without interruption.

4 Wait Time CF (STmin) defines the minimum time for the slave to

wait between sending two Consecutive Frames of a block. Values

from 0 to 127 are wait times in milliseconds. Values 241 to 249

(Hex F1 to F9) mean wait times of 100 µs to 900 µs, respectively.

All other values are reserved. The default is 5 ms.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-21 Automotive Diagnostic Command Set User Manual

5 Max Wait Frames (N_WFTmax) is the maximum number of WAIT

frames the master accepts before terminating the connection. The

default is 10.

6 Wait Frames to Send (N_WAIT) is the number of WAIT frames the

master sends every time before a CTS frame is sent. If this value is

set to a negative number (for example, 0xFFFFFFFF = –1), the

master sends an OVERLOAD frame instead of a WAIT, and

reception is aborted. The default is 0 for maximum speed.

7 Time between Waits (T_W) is the number of milliseconds the

master waits after sending a WAIT frame. The default is 25.

8 Fill CAN Frames specifies whether a CAN frame is transmitted with

8 bytes or less.

0: Short CAN frames are sent with DLC < 8.

1: Short CAN frames are filled to 8 bytes with Fill Byte (default).

9 Fill Byte specifies the CAN frame content, filled with defined data or

random data.

0–255: Byte is used optionally to fill short CAN frames.

256: Short CAN frames are filled optionally with random bytes.

The default is 255 (0xFF).

10 Invalid Response as Error specifies how the toolkit handles an

invalid ECU response.

0: Invalid response is indicated by success? = FALSE only (default).

1: Invalid response is returned as an error in addition.

11 Max RspPending Count defines the number of times a

ReqCorrectlyRcvd-RspPending (0x78) Negative Response Message

will be accepted to extend the command timeout (default 5). If this

message is sent more often in response to a request, an error –8120 is

returned. If the ECU implements commands with a long duration

(for example, flash commands), you may need to extend this number.

12 VWTP Command Time Out sets the time in milliseconds the host

waits for a VWTP 2.0 command to be executed (default 50 ms). The

specification states this as 50 ms plus the network latency, but some

ECUs may require higher values.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-22 ni.com

13 STmin sets the minimum time in seconds between the end of

transmission of a frame in a diagnostic request message and the start

of transmission of the next frame in the diagnostic request message

for LIN-based diagnostic communication. The default is 0.

14 P2min sets the minimum time in seconds between reception of the

last frame of the diagnostic request and the response sent by the node

for LIN-based diagnostic communication. The default is 0.05.

15 Termination sets the NI-XNET Termination property. Reflections

on the CAN and LIN bus can cause communication failures. To

prevent reflections, termination can be present as external resistance

or resistance the XNET CAN or LIN board applies internally. This

property determines whether the XNET board uses termination to the

bus. For further information about appropriate terminations of a CAN

or LIN network, refer to the NI-XNET Hardware and Software

Manual. The default is 0.

property value is the value of the property to be set.

error in is a cluster that describes error conditions occurring before the VI

executes. It is copied unchanged to error out and has no other effect on the

VI. It is provided for sequencing purposes only.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

error out describes error conditions. It is copied unchanged from the error

in cluster. It is provided for sequencing purposes only.

Description
Use this VI to set several internal diagnostic parameters such as timeouts for the transport

protocol. Use Diag Get Property.vi to read them out.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-23 Automotive Diagnostic Command Set User Manual

Diagnostic Frame Recv.vi

Purpose
Receives a raw CAN frame on the diagnostic CAN ID to check for errors in the transport

protocol implementation of an ECU.

Format

Input
timeout specifies the time in milliseconds to wait for a frame on the

diagnostic identifier. If no frame arrives within this time, a timeout error is

returned.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster

to a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-24 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns up to 8 bytes of payload data from a CAN frame received

on the diagnostic identifier.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
Diagnostic Frame Recv.vi receives an arbitrary raw CAN frame on the diagnostic CAN

identifier. For example, you can check the transport protocol implementation of an ECU for

correct responses if erroneous protocol requests are issued.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-25 Automotive Diagnostic Command Set User Manual

Diagnostic Frame Send.vi

Purpose
Sends a raw CAN frame on the diagnostic CAN ID to check for errors in the transport

protocol implementation of an ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

data in is an array of up to 8 bytes sent as a CAN payload on the diagnostic

identifier.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster

to a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-26 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
Diagnostic Frame Send.vi transmits an arbitrary raw CAN frame on the diagnostic CAN

identifier. For example, you can check the transport protocol implementation of an ECU for

robustness if erroneous protocol requests are issued.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-27 Automotive Diagnostic Command Set User Manual

Diagnostic Service.vi

Purpose
Executes a generic diagnostic service. If a special service is not available through the

KWP2000, UDS, or OBD service functions, you can build it using this VI.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

require response? indicates whether a diagnostic service expects a

response (TRUE) or not (FALSE). In the latter case, error code is returned

as 0, and data out as an empty array.

data in defines the diagnostic service request message sent to the ECU as

a stream of bytes.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-28 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

error code is the error code sent with a negative response message. In

addition, the error cluster indicates an error and gives a more detailed

description. If no negative response message occurred, 0 is returned.

data out returns the diagnostic service response message (positive or

negative) the ECU sends as a stream of bytes.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
Diagnostic Service.vi is a generic routine to execute any diagnostic service. The request and

response messages are fed unmodified to the data in input and retrieved from the data out

output, respectively. No interpretation of the contents is done, with one exception: the error

number is retrieved from a negative response, if one occurs. In this case, an error also is

communicated through the error out cluster.

All specialized diagnostic services call Diagnostic Service.vi internally.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-29 Automotive Diagnostic Command Set User Manual

DTC to String.vi

Purpose
Returns a string representation (such as P1234) for a 2-byte Diagnostic Trouble Code (DTC).

Format

Input
DTC (num) is the DTC number as returned in the clusters of

ReadDTCByStatus.vi, ReadStatusOfDTC.vi,

UDS ReportDTCBySeverityMaskRecord.vi,

UDS ReportDTCByStatusMask.vi,

UDS ReportSeverityInformationOfDTC.vi,

UDS ReportSupportedDTCs.vi, OBD Request Emission Related

DTCs.vi, or OBD Request Emission Related DTCs During Current

Drive Cycle.vi.

Note This VI converts only 2-byte DTCs. If you feed in larger numbers, the VI returns

garbage.

Output
DTC (string) is the DTC string representation.

Description
The SAE J2012 standard specifies a naming scheme for 2-byte DTCs consisting of one letter

and four digits. Use DTC to String.vi to convert a DTC numerical representation to this

name.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-30 ni.com

Get Time Stamp.vi

Purpose
Gets timestamp information about the first/last send/received frame of the ISO TP for CAN

and LIN.

Format

Input

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on LIN.vi and wired through

subsequent diagnostic VIs. Normally, it is not necessary to manually

manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster

to a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-31 Automotive Diagnostic Command Set User Manual

Output
Time Stamp write first contains the timestamp of the first write frame.

This is usually the FF or SF of the ISO TP.

diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

Time Stamp write last contains the timestamp of the last write frame. This

is usually the last CF or SF of the ISO TP.

Time Stamp read first contains the timestamp of the first read frame. This

is usually the FF or SF of the ISO TP.

Time Stamp read last contains the timestamp of the last read frame. This

is usually the CF or SF of the ISO TP.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
Get Time Stamp.vi gets the first and last write CAN or LIN frame and the first and last read

CAN or LIN frame if the ISO TP transport protocol is used. For all other transport protocols,

the timestamps are always 0.

The UDS Read ECU Information example includes an example for getting the timestamp.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-32 ni.com

OBD Open.vi

Purpose
Opens an OBD-II diagnostic session on a CAN port.

Format

Input
CAN interface specifies the CAN interface on which the diagnostic

communication should take place.

NI-CAN

The CAN interface is the name of the NI-CAN Network Interface Object

to configure. This name uses the syntax CANx, where x is a decimal number

starting at 0 that indicates the CAN network interface (CAN0, CAN1, up to

CAN63). CAN network interface names are associated with physical CAN

ports using Measurement and Automation Explorer (MAX).

NI-XNET

By default, the Automotive Diagnostic Command Set uses NI-CAN for

CAN communication. This means you must define an NI-CAN interface

for your NI-XNET hardware (NI-CAN compatibility mode) to use your

XNET hardware for CAN communication. However, to use your NI-XNET

interface in the native NI-XNET mode (meaning it does not use the

NI-XNET Compatibility Layer), you must define your interface

under NI-XNET Devices in MAX and pass the NI-XNET interface

name that the Automotive Diagnostic Command Set will use. To do

this, add @nixnet to the protocol string (for example, CAN1@nixnet). The

interface name is related to the NI-XNET hardware naming under Devices

and Interfaces in MAX.

Note By selecting nixnet as the interface string, the Automotive Diagnostic Command Set

uses the Frame Input and Output Queued sessions. To force the use of Frame Input and

Output Stream sessions instead, select ni_genie_nixnet as the interface string (for example,

CAN1@ni_genie_nixnet). An application instance can use only one Frame Input Stream

Session and one Frame Output Stream Session at a time, so use the default name nixnet as

the interface string, so that multiple NI-XNET Frame Queued Sessions can coexist on a

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-33 Automotive Diagnostic Command Set User Manual

single interface, and the Frame Input and Output Stream Sessions may be used, for

example, for a Frame logging/replay use case.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that

handles the CAN communication between the host system and FPGA. To

access the CAN module on the FPGA, you must specify the bitfile name

after the @ (for example, CAN1@MyBitfile.lvbitx). To specify a special

RIO target, you can specify that target by its name followed by the bitfile

name (for example, CAN1@RIO1,MyBitfile.lvbitx). Currently, only a

single CAN interface is supported. RIO1 defines the RIO target name as

defined in your LabVIEW Project definition. The lvbitx filename represents

the filename and location of the bitfile on the host if using RIO or on a

CompactRIO target. This implies that you must download the bitfile to the

CompactRIO target before you can run your application. You may specify

an absolute path or a path relative to the root of your target for the bitfile.

baudrate is the diagnostic communication baud rate.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster

to a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a cluster containing all necessary diagnostic session

information. Wire this cluster as a handle to all subsequent diagnostic

VIs and close it using Close Diagnostic.vi.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-34 ni.com

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use this VI to open a diagnostic communication channel to an ECU for OBD-II. The CAN

port specified as input is initialized, and a handle to it is stored (among other internal data)

in the diag ref out cluster, which serves as reference for further diagnostic functions.

Possible examples of selections for the interface parameter for the various hardware targets

are as follows.

Using NI-CAN hardware:

• CAN0—uses CAN interface 0.

• CAN1—uses CAN interface 1 and so on with the form CANx.

• CAN256—uses virtual NI-CAN interface 256.

Using NI-XNET hardware with NI-XNET Frame Input/Output-based sessions:

• CAN1@nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@nixnet—uses CAN interface 2 of an NI-XNET device and so on with the form

CANx.

Using NI-XNET hardware with NI-XNET Stream Input/Output-based sessions:

• CAN1@ni_genie_nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@ni_genie_nixnet—uses CAN interface 2 of an NI-XNET device and so on with

the form CANx.

Using R Series:

• CAN1@RIO1, c:\temp\MyFpgaBitfile.lvbitx—uses a named target RIO1 as compiled

into the bitfile at location c:\temp\MyFpgaBitfile.lvbitx.

Using CompactRIO

• CAN1@ \MyFpgaBitfile.lvbitx—uses compiled bitfile MyFpgaBitfile.lvbitx,

which must be FTP copied to the root of the CompactRIO target.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-35 Automotive Diagnostic Command Set User Manual

First, communication to the ECU is tried on the default 11-bit OBD CAN identifiers; if that

fails, the default 29-bit OBD CAN identifiers are tried. If that also fails, the VI returns an

error.

You can overwrite the default OBD CAN identifiers optionally with any other identifiers.

In general, it is not necessary to manipulate the diag ref out cluster contents.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-36 ni.com

Open Diagnostic.vi

Purpose
Opens a diagnostic session on a CAN port. Communication to the ECU is not yet started.

Format

Input
CAN interface specifies the CAN interface on which the diagnostic

communication should take place. The values are CAN0, CAN1, and so on.

NI-CAN

The CAN interface is the name of the NI-CAN Network Interface Object

to configure. This name uses the syntax CANx, where x is a decimal number

starting at 0 that indicates the CAN network interface (CAN0, CAN1, up to

CAN63). CAN network interface names are associated with physical CAN

ports using Measurement and Automation Explorer (MAX).

NI-XNET

By default, the Automotive Diagnostic Command Set uses NI-CAN for

CAN communication. This means you must define an NI-CAN interface

for your NI-XNET hardware (NI-CAN compatibility mode) to use your

XNET hardware for CAN communication. However, to use your NI-XNET

interface in the native NI-XNET mode (meaning it does not use the

NI-XNET Compatibility Layer), you must define your interface

under NI-XNET Devices in MAX and pass the NI-XNET interface

name that the Automotive Diagnostic Command Set will use. To do

this, add @nixnet to the protocol string (for example, CAN1@nixnet). The

interface name is related to the NI-XNET hardware naming under Devices

and Interfaces in MAX.

Note By selecting nixnet as the interface string, the Automotive Diagnostic Command Set

uses the Frame Input and Output Queued sessions. To force the use of Frame Input and

Output Stream sessions instead, select ni_genie_nixnet as the interface string (for example,

CAN1@ni_genie_nixnet). An application instance can use only one Frame Input Stream

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-37 Automotive Diagnostic Command Set User Manual

Session and one Frame Output Stream Session at a time, so use the default name nixnet as

the interface string, so that multiple NI-XNET Frame Queued Sessions can coexist on a

single interface, and the Frame Input and Output Stream Sessions may be used, for

example, for a Frame logging/replay use case.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that

handles the CAN communication between the host system and FPGA. To

access the CAN module on the FPGA, you must specify the bitfile name

after the @ (for example, CAN1@MyBitfile.lvbitx). To specify a special

RIO target, you can specify that target by its name followed by the bitfile

name (for example, CAN1@RIO1,MyBitfile.lvbitx). Currently, only a

single CAN interface is supported. RIO1 defines the RIO target name as

defined in your LabVIEW Project definition. The lvbitx filename represents

the filename and location of the bitfile on the host if using RIO or on a

CompactRIO target. This implies that you must download the bitfile to the

CompactRIO target before you can run your application. You may specify

an absolute path or a path relative to the root of your target for the bitfile.

baudrate is the diagnostic communication baud rate.

transport protocol specifies the transport protocol for transferring the

diagnostic service messages over the CAN network. The following values

are valid and can be obtained through an enum control:

0 ISO TP—Normal Mode: The ISO TP as specified in ISO 15765-2

is used; all eight data bytes of the CAN messages are used for data

transfer.

1 ISO TP—Mixed Mode: The ISO TP as specified in ISO 15765-2 is

used; the first data byte is used as address extension.

2 VW TP 2.0

3 Diagnostic Over IP (DoIP): The DoIP TP as specified in ISO 13400

is used.

transmit ID is the CAN identifier for sending diagnostic request messages

from the host to the ECU. To specify an extended (29-bit) ID, OR the value

with 0x20000000.

receive ID is the CAN identifier or sending diagnostic response messages

from the ECU to the host. To specify an extended (29-bit) ID, OR the value

with 0x20000000.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-38 ni.com

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a cluster containing all necessary diagnostic session

information. Wire this cluster as a handle to all subsequent diagnostic VIs

and close it using Close Diagnostic.vi.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
Open Diagnostic.vi opens a diagnostic communication channel to an ECU. The CAN port

specified as input is initialized, and a handle to it is stored (among other internal data) in the

diag ref out cluster, which serves as reference for further diagnostic functions.

Possible examples of selections for the interface parameter for the various hardware targets

are as follows.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-39 Automotive Diagnostic Command Set User Manual

Using NI-CAN hardware:

• CAN0—uses CAN interface 0.

• CAN1—uses CAN interface 1 and so on with the form CANx.

• CAN256—uses virtual NI-CAN interface 256.

• CAN257—uses virtual NI-CAN interface 257.

Using NI-XNET hardware with NI-XNET Frame Input/Output-based sessions:

• CAN1@nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@nixnet—uses CAN interface 2 of an NI-XNET device and so on with the form

CANx.

Using NI-XNET hardware with NI-XNET Stream Input/Output-based sessions:

• CAN1@ni_genie_nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@ni_genie_nixnet—uses CAN interface 2 of an NI-XNET device and so on with

the form CANx.

Using R Series:

• CAN1@RIO1, c:\temp\MyFpgaBitfile.lvbitx—uses a named target RIO1 as compiled

into the bitfile at c:\temp\MyFpgaBitfile.lvbitx.

Using CompactRIO

• CAN1@ \MyFpgaBitfile.lvbitx—uses compiled bitfile MyFpgaBitfile.lvbitx,

which must be FTP copied to the root of the CompactRIO target.

Note No communication to the ECU takes place at this point. To open a diagnostic session

on the ECU, call StartDiagnosticSession.vi or UDS DiagnosticSessionControl.vi.

In general, it is not necessary to manipulate the diag ref out cluster contents, with one notable

exception: If you use the ISO TP—Mixed Mode transport protocol, you must store the

address extensions for transmit and receive in the appropriate cluster members.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-40 ni.com

Open Diagnostic on IP.vi

Purpose
Opens a diagnostic session on an IP port. Communication to the ECU is not yet started.

Format

Input
dynamic port defines whether the standard UDP port

13401 (UDP_TEST_EQUIPMENT_LISTEN) is used for

communication (FALSE) or a dynamically assigned UDP port

(UDP_TEST_EQUIPMENT_REQUEST) is opened (TRUE). Default

is TRUE.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-41 Automotive Diagnostic Command Set User Manual

Output
Diag reference out is a cluster containing all necessary information about

the diagnostic session. Wire this output as a handle to all subsequent

diagnostic VIs, and close it using Close Diagnostic.vi.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
Open Diagnostic on IP.vi opens a Diagnostic on Internet Protocol (DoIP) communication

channel to an ECU. The UDP port specified as input is initialized, and a handle to it is stored

(among other internal data) in the Diag reference out cluster, which serves as reference for

further diagnostic functions.

Note that no communication to an ECU takes place at this point. To open a diagnostic session

on an ECU, call DoIP Get Entities.vi to find out which DoIP entities (DoIP-capable ECUs)

exist in the network. You need to create a TCP/IP connection to the selected DoIP entity using

DoIP Connect.vi. After that, you can execute diagnostic services on the TCP/IP connection.

This VI replaces the standard (CAN-based) Open Diagnostic.vi, because the CAN

parameters are no longer relevant for IP-based diagnostics.

In general, you do not need to manipulate the Diag reference out cluster contents.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-42 ni.com

Open Diagnostic on LIN.vi

Purpose
Opens a diagnostic session on an NI-XNET LIN port. Communication to the ECU is not yet

started.

Format

Input
Interface specifies the LIN interface on which the diagnostic

communication should take place, and points to the corresponding database

cluster. The values for the XNET hardware interface names are LIN1,

LIN2, and so on.

The Automotive Diagnostic Command Set supports NI-XNET LIN devices

for LIN communication only. To use your NI-XNET interface, define

your interface under NI-XNET Devices in MAX and pass the NI-XNET

interface name that the Automotive Diagnostic Command Set will use.

To do this, add @nixnet to the protocol string (for example, LIN1@nixnet).

The interface name is related to the NI-XNET hardware naming under

Devices and Interfaces in MAX.

The Automotive Diagnostic Command Set requires valid assignments to a

LIN database such as LDF or FIBEX. To communicate with hardware

products on the external network, applications must understand how that

hardware communicates in the actual embedded system, such as the

vehicle. This embedded communication is described within a standardized

file, such as FIBEX (.xml) or LDF (.ldf) for LIN. Within NI-XNET, this

file is referred to as a database. The database contains many object classes,

each of which describes a distinct entity in the embedded system.

For LIN, select a LIN database and cluster to assign all settings from the

selected cluster automatically, such as the LIN Baudrate, Master Request

Frame, Slave Response Frame, or LIN Diagnostic Schedule.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-43 Automotive Diagnostic Command Set User Manual

Using NI-XNET hardware, the Interface string should look like the

following examples:

• LIN1@nixnet:XNET_LIN_Database—Uses LIN interface 1 of an

NI-XNET device and assigns properties such as baudrate

automatically from the XNET alias XNET_LIN_Database.

• LIN2@nixnet:XNET_LIN_Database—Uses LIN interface 2 of an

NI-XNET device and so on, with the form LINx.

Refer to the NI-XNET Hardware and Software Manual to assign a database

cluster alias.

MasterReqFrame selects the Master Request Frame from an LDF or

FIBEX database. If you assign an empty string (default) as

MasterReqFrame, the name as defined in the LIN MasterReq standard is

used.

SlaveRespFrame selects the Slave Response Frame from an LDF or

FIBEX database. If you assign an empty string (default) as

SlaveRespFrame, the name as defined in the LIN SlaveResp standard is

used.

Baud Rate is the diagnostic communication baud rate. The default is –1,

which reuses the baudrate of the selected LIN cluster from the assigned

FIBEX or LDF database. To change the baudrate from the database, select

a valid LIN baudrate.

NAD is the address of the slave node being addressed in a request. NAD

also indicates the source of a response. NAD values are 1–127 (0x7F),

while 0 (zero) and 128 (0x80)–255 (0xFF) are reserved for other purposes.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-44 ni.com

Output
Diag Ref Out is a cluster containing all necessary information about the

diagnostic session. Wire this output as a handle to all subsequent diagnostic

VIs, and close it using Close Diagnostic.vi.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
Open Diagnostic on LIN.vi opens a diagnostic LIN communication channel to an ECU. The

LIN port specified as input is initialized, and a handle to it is stored (among other internal

data) in the diag ref out cluster, which serves as reference for further diagnostic functions.

A possible example of selections for the interface parameter for the NI-XNET hardware

targets is:

• LIN1@nixnet:[LIN Cluster]—Uses LIN interface 1 of an NI-XNET device and

settings of the LIN database of [LIN Cluster] alias as defined by NI-XNET.

Note No communication to the ECU takes place at this point. To open a diagnostic session

on the ECU, call StartDiagnosticSession.vi or UDS DiagnosticSessionControl.vi. Open

Diagnostic on LIN.vi supports only NI-XNET LIN hardware. A valid LIN cluster of a

LDF or FIBEX database must be assigned also.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-45 Automotive Diagnostic Command Set User Manual

VWTP Connect.vi

Purpose
Establishes a connection channel to an ECU using the VW TP 2.0.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

channel ID defines the CAN identifier on which the ECU responds for this

connection. The ECU defines the ID on which the host transmits.

application type specifies the type of communication that takes place on

the communication channel. For diagnostic applications, specify

KWP2000 (1). The other values are for manufacturer-specific purposes.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-46 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
For the VW TP 2.0, you must establish a connection to the ECU before any diagnostic

communication can occur. This VI sets up a unique communication channel to an ECU for

subsequent diagnostic service requests.

Note You must maintain the communication link you created by periodically (at least

once a second) calling VWTP Connection Test.vi.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special

communication link.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-47 Automotive Diagnostic Command Set User Manual

VWTP Connection Test.vi

Purpose
Maintains a connection channel to an ECU using the VW TP 2.0.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-48 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
For the VW TP 2.0, you must periodically maintain the connection link to the ECU so that

the ECU does not terminate it.

This VI sends a Connection Test message to the ECU and evaluates its response, performing

the steps necessary to maintain the connection.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special

communication link.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-49 Automotive Diagnostic Command Set User Manual

VWTP Disconnect.vi

Purpose
Terminates a connection channel to an ECU using the VW TP 2.0.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-50 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
For the VW TP 2.0, you must disconnect the connection link to the ECU to properly terminate

communication to the ECU. This VI sends the proper disconnect messages and unlinks the

communication.

You can create a new connection to the same ECU using VWTP Connect.vi again.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special

communication link.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-51 Automotive Diagnostic Command Set User Manual

DoIP Functions

DoIP Activate Routing.vi

Purpose
Defines the source and target addresses for a DoIP TCP/IP connection.

Format

Input
Diag reference in specifies the diagnostic session handle, obtained from

Open Diagnostic on IP.vi and wired through subsequent diagnostic VIs.

Normally, it is not necessary to manually manipulate the elements of this

cluster.

Source Address is the DoIP source address of the tester that starts the

communication.

Activation Type indicates the specific type of routing activation that may

require different types of authentication and/or confirmation. Defined

values are:

0 Default.

1 WWH-OBD (worldwide harmonized onboard diagnostic).

0xE0 Use an OEM-pecific central security approach.

Values 2 to 0xDF are reserved. Values 0xE0 to 0xFF are OEM specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-52 ni.com

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
Diag reference out is a copy of Diag reference in. You can wire it to

subsequent diagnostic VIs.

Target Address is the logical address of the responding DoIP entity.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
DoIP Activate Routing.vi establishes a route for the DoIP messages and assigns an endpoint

Target Address. After successfully establishing a route, diagnostic messages can be

exchanged with the target DoIP entity using any diagnostic service VI.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-53 Automotive Diagnostic Command Set User Manual

DoIP Connect.vi

Purpose
Creates a TCP/IP connection to a DoIP entity identified by its IP address.

Format

Input
Diag reference in specifies the diagnostic session handle, obtained from

Open Diagnostic on IP.vi and wired through subsequent diagnostic VIs.

Normally, it is not necessary to manually manipulate the elements of this

cluster.

address is the IP address of the DoIP entity to connect to (a string in a.b.c.d

notation).

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Source Address is the DoIP source address of the tester that starts the

communication. You can leave this input unwired if you are activating a

route through DoIP Activate Routing.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-54 ni.com

Target Address is the DoIP target address of the device under test that

should be connected to. You can leave this input unwired if you are

activating a route through DoIP Activate Routing.vi.

Output
Diag reference out is a copy of Diag reference in. You can wire it to

subsequent diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
DoIP Connect.vi creates a unique TCP/IP data connection to a certain DoIP entity identified

by its IP address. The IP address might be retrieved from DoIP Get Entities.vi. The TCP/IP

data connection is needed to exchange diagnostic service requests.

You can specify Source Address and Target Address at this point or leave them blank if a

routing activation is executed later using DoIP Activate Routing.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-55 Automotive Diagnostic Command Set User Manual

DoIP Disconnect.vi

Purpose
Disconnects the TCP/IP connection to a DoIP entity.

Format

Input
Diag reference in specifies the diagnostic session handle, obtained from

Open Diagnostic on IP.vi and wired through subsequent diagnostic VIs.

Normally, it is not necessary to manually manipulate the elements of this

cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-56 ni.com

Output
Diag reference out is a copy of Diag reference in. You can wire it to

subsequent diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
DoIP Disconnect.vi terminates the TCP/IP connection to the connected DoIP entity. After

executing this VI, diagnostic services no longer can be executed on that DoIP entity. You can

reconnect with DoIP Connect.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-57 Automotive Diagnostic Command Set User Manual

DoIP Get Diagnostic Power Mode.vi

Purpose
Gets information about the DoIP entity power state.

Format

Input
Diag reference in specifies the diagnostic session handle, obtained from

Open Diagnostic on IP.vi and wired through subsequent diagnostic VIs.

Normally, it is not necessary to manually manipulate the elements of this

cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-58 ni.com

Output
Diag reference out is a copy of Diag reference in. You can wire it to

subsequent diagnostic VIs.

power mode identifies whether the vehicle is in Diagnostic Power Mode

and ready to perform reliable diagnostics. Possible values are:

0 Not ready

1 Ready

All other values are reserved.

ok? indicates successful receipt of a positive response message for this

diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
DoIP Get Diagnostic Power Mode.vi retrieves the Diagnostic Power Mode of a vehicle. For

example, test equipment can use this information to verify whether the vehicle is in

Diagnostic Power Mode, which allows for performing reliable diagnostics on the vehicle’s

components.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-59 Automotive Diagnostic Command Set User Manual

DoIP Get DoIP Entity Status.vi

Purpose
Gets status information from a DoIP entity.

Format

Input
Diag reference in specifies the diagnostic session handle, obtained from

Open Diagnostic on IP.vi and wired through subsequent diagnostic VIs.

Normally, it is not necessary to manually manipulate the elements of this

cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-60 ni.com

Output
Diag reference out is a copy of Diag reference in. You can wire it to

subsequent diagnostic VIs.

node type is a U8 ring that indicates the type of DoIP entity. Possible

values are:

0 DoIP gateway

1 DoIP node

All other values are reserved.

ok? indicates successful receipt of a positive response message for this

diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

max sockets represents the maximum number of concurrent TCP/IP

sockets allowed with this DoIP entity excluding the reserve socket required

for socket handling.

cur sockets is the number of currently established TCP/IP sockets.

Description
DoIP Get DoIP Entity Status.vi identifies certain operating conditions of the responding

DoIP entity. For example, this allows for test equipment to detect existing diagnostic

communication sessions as well as the capabilities of a DoIP entity.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-61 Automotive Diagnostic Command Set User Manual

DoIP Get Entities.vi

Purpose
Returns a table of all DoIP entities (vehicles) on the local subnet, possibly restricted to EID

or VIN.

Format

Input
Diag reference in specifies the diagnostic session handle, obtained from

Open Diagnostic on IP.vi and wired through subsequent diagnostic VIs.

Normally, it is not necessary to manually manipulate the elements of this

cluster.

DoIP Open Type is a U16 ring. It defines which DoIP entities this

command queries and lists. Allowed values are VIN, EID, and All.

VIN or EID depends on the DoIP Open Type:

DoIP Open Type VIN or EID Value

VIN VIN or EID is a 17-character Vehicle Identification

Number. Only DoIP entities for this VIN are listed.

EID VIN or EID is an Entity ID (usually a MAC

address). Only the DoIP entity with this ID is listed.

Specify the EID as xx-xx-xx-xx-xx-xx, where each x

is a hexadecimal digit.

All VIN or EID is ignored.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-62 ni.com

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
Diag reference out is a copy of Diag reference in. You can wire it to

subsequent diagnostic VIs.

DoIP Entities is an array of clusters, each of which contains the description

of one DoIP entity that responded to the command:

VIN is the 17-character Vehicle Identification Number of the

DoIP entity. It can be blank if the DoIP entity does not yet belong

to a vehicle.

Source Address is the 16-bit DoIP address of this entity. This

address can distinguish multiple DoIP entities within a vehicle.

EID is a 6-byte array of the Entity ID, which is usually the DoIP

device MAC address.

GID is a unique 6-byte group identification of DoIP entities that

belong to the same vehicle. It is used as long as a VIN is not yet

defined.

IP Address is the IP Address of this DoIP entity in a.b.c.d

notation. Use this IP address to connect to the DoIP entity using

DoIP Connect.vi.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-63 Automotive Diagnostic Command Set User Manual

source identifies the VI where the error occurred.

Description
DoIP Get Entities.vi uses a UDP broadcast to identify all DoIP entities in the local subnet

matching a certain condition. The entities responding are returned in the DoIP Entities

cluster array.

The conditions are either a common VIN or EID or simply all entities connected. Refer to the

DoIP Open Type and VIN or EID descriptions.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-64 ni.com

DoIP Send Vehicle Identification Request.vi

Purpose
Sends a UDP request to all DoIP-capable vehicles in the local subnet to identify themselves.

Format

Input
Diag reference in specifies the diagnostic session handle, obtained from

Open Diagnostic on IP.vi and wired through subsequent diagnostic VIs.

Normally, it is not necessary to manually manipulate the elements of this

cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-65 Automotive Diagnostic Command Set User Manual

Output
Diag reference out is a copy of Diag reference in. You can wire it to

subsequent diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
DoIP Send Vehicle Identification Request.vi sends a Vehicle Identification Request to all

DoIP entities in the local subnet.

Usually, this is done as part of DoIP Get Entities.vi and does not need to be executed

separately.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-66 ni.com

DoIP Send Vehicle Identification Request w EID.vi

Purpose
Sends a UDP request to all DoIP-capable vehicles with a certain EID (MAC address) in the

local subnet to identify themselves.

Format

Input
Diag reference in specifies the diagnostic session handle, obtained from

Open Diagnostic on IP.vi and wired through subsequent diagnostic VIs.

Normally, it is not necessary to manually manipulate the elements of this

cluster.

EID is the Entity ID (usually the MAC address) of the DoIP entity assumed

to respond. Specify the EID as xx-xx-xx-xx-xx-xx, where each x stands for a

hexadecimal digit.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-67 Automotive Diagnostic Command Set User Manual

Output
Diag reference out is a copy of Diag reference in. You can wire it to

subsequent diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
DoIP Send Vehicle Identification Request w EID.vi sends a Vehicle Identification Request

to all DoIP entities in the local subnet identified by the given EID.

Usually, this is done as part of DoIP Get Entities.vi and does not need to be executed

separately.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-68 ni.com

DoIP Send Vehicle Identification Request w VIN.vi

Purpose
Sends a UDP request to all DoIP-capable vehicles with a certain VIN (Vehicle Identification

Number) in the local subnet to identify themselves.

Format

Input
Diag reference in specifies the diagnostic session handle, obtained from

Open Diagnostic on IP.vi and wired through subsequent diagnostic VIs.

Normally, it is not necessary to manually manipulate the elements of this

cluster.

VIN is the 17-character Vehicle Identification Number of the DoIP entity

assumed to respond.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-69 Automotive Diagnostic Command Set User Manual

Output
Diag reference out is a copy of Diag reference in. You can wire it to

subsequent diagnostic VIs.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
DoIP Send Vehicle Identification Request w VIN.vi sends a Vehicle Identification Request

to all DoIP entities in the local subnet identified by the given VIN.

Usually, this is done as part of DoIP Get Entities.vi and does not need to be executed

separately.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-70 ni.com

KWP2000 Services

ClearDiagnosticInformation.vi

Purpose
Executes the ClearDiagnosticInformation service and clears selected Diagnostic Trouble

Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

The DTC descriptor is given here as a parameter basically to convert the

group of DTC parameter to a binary representation according to DTC

Byte Length and Byte Order.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-71 Automotive Diagnostic Command Set User Manual

group of DTC specifies the group of Diagnostic Trouble Codes to be

cleared. The following values have a special meaning, and you can specify

them through a ring control:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network-related DTCs

0xFF00 All DTCs

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-72 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI clears the diagnostic information on the ECU memory. If the group of DTC

parameter is present, the ECU is requested to clear all memory including the DTCs.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-73 Automotive Diagnostic Command Set User Manual

ControlDTCSetting.vi

Purpose
Executes the ControlDTCSetting service and modifies the generation behavior of selected

Diagnostic Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

The DTC descriptor is given here as a parameter basically to convert the

group of DTC parameter to a binary representation according to DTC

Byte Length and Byte Order.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

data in specifies application-specific data that control DTC generation.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-74 ni.com

group of DTC specifies the group of Diagnostic Trouble Codes to be

controlled. The following values have a special meaning, and you can

specify them through a ring control:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network-related DTCs

0xFF00 All DTCs

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-75 Automotive Diagnostic Command Set User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-76 ni.com

DisableNormalMessageTransmission.vi

Purpose
Executes the DisableNormalMessageTransmission service. The ECU no longer transmits its

regular communication messages (usually CAN messages).

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

response required? indicates whether the ECU answers this service

(TRUE, default) or not (FALSE). In the latter case, success? is TRUE.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-77 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-78 ni.com

ECUReset.vi

Purpose
Executes the ECUReset service. Resets the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

mode indicates the reset mode:

Hex Description

01 PowerOn

This value identifies the PowerOn ResetMode, a simulated

PowerOn reset that most ECUs perform after the ignition

OFF/ON cycle. When the ECU performs the reset, the client

(tester) re-establishes communication.

02 PowerOnWhileMaintainingCommunication

This value identifies the PowerOn ResetMode, a simulated

PowerOn reset that most ECUs perform after the ignition

OFF/ON cycle. When the ECU performs the reset, the server

(ECU) maintains communication with the client (tester).

03–7F Reserved

80–FF ManufacturerSpecific

This range of values is reserved for vehicle manufacturer-specific

use.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-79 Automotive Diagnostic Command Set User Manual

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI requests the ECU to perform an ECU reset effectively based on the mode parameter

value content. The vehicle manufacturer determines when the positive response message is

sent.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-80 ni.com

EnableNormalMessageTransmission.vi

Purpose
Executes the EnableNormalMessageTransmission service. The ECU starts transmitting its

regular communication messages (usually CAN messages).

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

response required? indicates whether the ECU answers this service

(TRUE, default) or not (FALSE). In the latter case, success? is TRUE.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-81 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-82 ni.com

InputOutputControlByLocalIdentifier.vi

Purpose
Executes the InputOutputControlByLocalIdentifier service. Modifies ECU I/O port behavior.

Format

Input
data in defines application-specific data for this service.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

local ID defines the local identifier of the I/O to be manipulated. The values

are application specific.

mode defines the type of I/O control. The values are application specific.

The usual values are:

0: ReturnControlToECU

1: ReportCurrentState

4: ResetToDefault

5: FreezeCurrentState

7: ShortTermAdjustment

8: LongTermAdjustment

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-83 Automotive Diagnostic Command Set User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns application-specific data for this service.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI substitutes a value for an input signal or internal ECU function. It also controls an

output (actuator) of an electronic system referenced by the local ID parameter.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-84 ni.com

ReadDataByLocalIdentifier.vi

Purpose
Executes the ReadDataByLocalIdentifier service. Reads a data record from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

local ID defines the local identifier of the data to be read. The values are

application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-85 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the data record from the ECU. If you know the record data

description, you can interpret this record using Convert from Phys.vi.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI requests data record values from the ECU identified by the local ID parameter.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-86 ni.com

ReadDTCByStatus.vi

Purpose
Executes the ReadDiagnosticTroubleCodesByStatus service. Reads selected Diagnostic

Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description

and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-87 Automotive Diagnostic Command Set User Manual

mode defines the type of DTCs to be read. The values are application

specific. The usual values are:

2: AllIdentified

3: AllSupported

group of DTC specifies the group of Diagnostic Trouble Codes to be read.

The following values have a special meaning, and you can specify them

through a ring control:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network-related DTCs

0xFF00 All DTCs

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default

2-byte DTCs, you can use DTC to String.vi to convert this to

readable format as defined by SAE J2012.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-88 ni.com

Status is the DTC status. Usually, this is a bit field with the

following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Add Data contains optional additional data for this DTC. Usually,

this does not contain valid information (refer to DTC descriptor)

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI reads DTCs by status from the ECU memory. If you use the optional group of DTC

parameter, the ECU reports DTCs only with status information based on the functional group

selected by group of DTC.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-89 Automotive Diagnostic Command Set User Manual

ReadECUIdentification.vi

Purpose
Executes the ReadECUIdentification service. Returns ECU identification data.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

mode indicates the type of identification information to be returned. The

values are application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-90 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the ECU identification data.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI requests identification data from the ECU. The mode parameter identifies the type of

identification data requested. The ECU returns identification data that the data out parameter

can access. The data out format and definition are vehicle manufacturer specific.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-91 Automotive Diagnostic Command Set User Manual

ReadMemoryByAddress.vi

Purpose
Executes the ReadMemoryByAddress service. Reads data from the ECU memory.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

address defines the memory address from which data are to be read. Notice

that only three bytes are sent to the ECU, so the address must be in the range

0–FFFFFF (hex).

size defines the length of the memory block to be read.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-92 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

Data out returns the memory data from the ECU.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI requests memory data from the ECU identified by the address and size parameters.

The data out format and definition are vehicle manufacturer specific. data out includes

analog input and output signals, digital input and output signals, internal data, and system

status information if the ECU supports them.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-93 Automotive Diagnostic Command Set User Manual

ReadStatusOfDTC.vi

Purpose
Executes the ReadStatusOfDiagnosticTroubleCodes service. Reads selected Diagnostic

Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description

and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-94 ni.com

group of DTC specifies the group of Diagnostic Trouble Codes to be read.

The following values have a special meaning, and you can specify them

through a ring control:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network-related DTCs

0xFF00 All DTCs

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default

2-byte DTCs, you can use DTC to String.vi to convert this to

readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with the

following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-95 Automotive Diagnostic Command Set User Manual

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Add Data contains optional additional data for this DTC. Usually,

this does not contain valid information (refer to DTC descriptor)

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI reads diagnostic trouble codes from the ECU memory. If you use the optional group

of DTC parameter, the ECU reports DTCs based only on the functional group selected by

group of DTC.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-96 ni.com

RequestRoutineResultsByLocalIdentifier.vi

Purpose
Executes the RequestRoutineResultsByLocalIdentifier service. Returns results from a routine

on the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

local ID defines the local identifier of the routine from which this VI

retrieves results. The values are application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-97 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns application-specific output parameters from the routine.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI requests results (for example, exit status information) referenced by local ID and

generated by the routine executed in the ECU memory.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-98 ni.com

RequestSeed.vi

Purpose
Executes the SecurityAccess service to retrieve a seed from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

access mode indicates the security level to be granted. The values are

application specific. This is an odd number, usually 1.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-99 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

seed out returns the seed from the ECU.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using RequestSeed.vi with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using SendKey.vi with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is

returned.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-100 ni.com

SendKey.vi

Purpose
Executes the SecurityAccess service to send a key to the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

access mode indicates the security level to be granted. The values are

application specific. This is an even number, usually 2.

key in defines the key data to be sent to the ECU.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-101 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using RequestSeed.vi with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using SendKey.vi with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is

returned.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-102 ni.com

StartDiagnosticSession.vi

Purpose
Executes the StartDiagnosticSession service. Sets up the ECU in a specific diagnostic mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

mode indicates the diagnostic mode into which the ECU is brought. The

values are application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-103 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI enables different diagnostic modes in the ECU. The possible diagnostic modes are

not defined in the ISO 14230 standard and are application specific. A diagnostic session starts

only if communication with the ECU is established. For more details about starting

communication, refer to the ISO 14230-2 standard. If no diagnostic session has been

requested after Open Diagnostic.vi, a default session is automatically enabled in the ECU.

The default session supports at least the following services:

• The StopCommunication service (refer to Close Diagnostic.vi and the ISO 14230-2

standard).

• The TesterPresent service (refer to TesterPresent.vi and the ISO 14230-3 standard).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-104 ni.com

StartRoutineByLocalIdentifier.vi

Purpose
Executes the StartRoutineByLocalIdentifier service. Executes a routine on the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

local ID defines the local identifier of the routine to be started. The values

are application specific.

data in defines application-specific input parameters for the routine.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-105 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns application-specific output parameters from the routine.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI starts a routine in the ECU memory. The routine in the ECU starts after the positive

response message is sent. The routine stops until StopRoutineByLocalIdentifier.vi is

issued. The routines could be either tests run instead of normal operating code or routines

enabled and executed with the normal operating code running. In the first case, you may need

to switch the ECU to a specific diagnostic mode using StartDiagnosticSession.vi or unlock

the ECU using the SecurityAccess service prior to using StartRoutineByLocalIdentifier.vi.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-106 ni.com

StopDiagnosticSession.vi

Purpose
Executes the StopDiagnosticSession service. Returns the ECU to normal mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-107 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI disables the current ECU diagnostic mode. A diagnostic session stops only if

communication is established with the ECU and a diagnostic session is running. If no

diagnostic session is running, the default session is active. StopDiagnosticSession.vi cannot

disable the default session. If the ECU has stopped the current diagnostic session, it performs

the necessary action to restore its normal operating conditions. Restoring the normal

operating conditions of the ECU may include resetting all controlled actuators if they were

activated during the diagnostic session being stopped, and resuming all normal ECU

algorithms. You should call StopDiagnosticSession.vi before disabling communication with

Close Diagnostic.vi, but only if you previously used StartDiagnosticSession.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-108 ni.com

StopRoutineByLocalIdentifier.vi

Purpose
Executes the StopRoutineByLocalIdentifier service. Stops a routine on the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

local ID defines the local identifier of the routine to be stopped. The values

are application specific.

data in defines application-specific input parameters for the routine.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-109 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns application-specific output parameters from the routine.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI stops a routine in the ECU memory referenced by the local ID parameter.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-110 ni.com

TesterPresent.vi

Purpose
Executes the TesterPresent service. Keeps the ECU in diagnostic mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

response required? indicates whether the ECU answers this service

(TRUE, default) or not (FALSE). In the latter case, success? is TRUE.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-111 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
To ensure proper ECU operation, you may need to keep the ECU informed that a diagnostic

session is still in progress. If you do not send this information (for example, because the

communication is broken), the ECU returns to normal mode from diagnostic mode after a

while.

The TesterPresent service is this “keep alive” signal. It does not affect any other ECU

operation.

Keep calling TesterPresent.vi within the ECU timeout period if no other service is executed.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-112 ni.com

WriteDataByLocalIdentifier.vi

Purpose
Executes the WriteDataByLocalIdentifier service. Writes a data record to the ECU.

Format

Input
data in defines the data record written to the ECU. If you know the record

data description, you can use Convert from Phys.vi to generate this

record.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

local ID defines the local identifier of the data to be written. The values are

application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-113 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI performs the KWP2000 WriteDataByLocalIdentifier service and writes

RecordValues (data values) to the ECU. data in identifies the data. The vehicle manufacturer

must ensure the ECU conditions are met when performing this service. Typical use cases are

clearing nonvolatile memory, resetting learned values, setting option content, setting the

Vehicle Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-114 ni.com

WriteMemoryByAddress.vi

Purpose
Executes the WriteMemoryByAddress service. Writes data to the ECU memory.

Format

Input
data in defines the memory block to be written to the ECU.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

address defines the memory address to which data are written. Notice that

only three bytes are sent to the ECU, so the address must be in the range

0–FFFFFF (hex).

size defines the length of the memory block to be written.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-115 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI performs the KWP2000 WriteDataByAddress service and writes RecordValues (data

values) to the ECU. address and size identify the data. The vehicle manufacturer must ensure

the ECU conditions are met when performing this service. Typical use cases are clearing

nonvolatile memory, resetting learned values, setting option content, setting the Vehicle

Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-116 ni.com

UDS (DiagOnCAN) Services

UDS ClearDiagnosticInformation.vi

Purpose
Executes the UDS ClearDiagnosticInformation service. Clears selected Diagnostic Trouble

Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

The DTC descriptor is given here as a parameter basically to convert the

group of DTC parameter to a binary representation according to DTC

Byte Length and Byte Order.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-117 Automotive Diagnostic Command Set User Manual

group of DTC specifies the group of Diagnostic Trouble Codes to be

cleared. The values are application specific. The following value has a

special meaning, and you can specify it through a ring control:

0xFFFFFF All DTCs

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-118 ni.com

Description
This VI clears the diagnostic information on the ECU memory. If the group of DTC

parameter is present, the ECU is requested to clear all memory including the DTCs.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-119 Automotive Diagnostic Command Set User Manual

UDS CommunicationControl.vi

Purpose
Executes the UDS CommunicationControl service. Use this VI to switch transmission and/or

reception of the normal communication messages (usually CAN messages) on or off.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

type indicates whether transmission/reception is to be switched on/off.

The usual values are:

00: enableRxAndTx

01: enableRxAndDisableTx

02: disableRxAndEnableTx

03: disableRxAndTx

communication type is a bitfield indicating the application level to

change. The usual values are:

01: application

02: networkManagement

You can change more than one level at a time.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-120 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI executes the UDS CommunicationControl service and switches transmission and/or

reception of the normal communication messages (usually CAN messages) on or off. The

type and communication type parameters are vehicle manufacturer specific (one OEM may

disable the transmission only, while another OEM may disable the transmission and the

reception based on vehicle manufacturer specific needs). The request is either transmitted

functionally addressed to all ECUs with a single request message, or transmitted physically

addressed to each ECU in a separate request message.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-121 Automotive Diagnostic Command Set User Manual

UDS ControlDTCSetting.vi

Purpose
Executes the UDS ControlDTCSetting service. Modifies Diagnostic Trouble Code (DTC)

generation behavior.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

data in specifies application-specific data that control DTC generation.

type specifies the control mode:

1: on

2: off

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-122 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-123 Automotive Diagnostic Command Set User Manual

UDS DiagnosticSessionControl.vi

Purpose
Executes the UDS DiagnosticSessionControl service. Sets up the ECU in a specific diagnostic

mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

mode indicates the diagnostic mode into which the ECU is brought.

The values are application specific. The usual values are:

01: defaultSession

02: ECUProgrammingSession

03: ECUExtendedDiagnosticSession

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-124 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

session parameter record returns implementation-dependent data from

the ECU.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-125 Automotive Diagnostic Command Set User Manual

UDS ECUReset.vi

Purpose
Executes the UDS ECUReset service. Resets the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

mode indicates the reset mode:

Hex Description

01 hardReset

02 keyOffOnReset

03 softReset

04 enableRapidPowerShutDown

05 disableRapidPowerShutDown

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-126 ni.com

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

power down time returns the minimum standby sequence time that the

server remains in the power-down sequence in seconds. A value of FF hex

indicates a failure or time not available.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI requests the ECU to perform an ECU reset effectively based on the mode parameter

value content. The vehicle manufacturer determines when the positive response message is

sent.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-127 Automotive Diagnostic Command Set User Manual

UDS InputOutputControlByIdentifier.vi

Purpose
Executes the UDS InputOutputControlByIdentifier service. Modifies ECU I/O port behavior.

Format

Input
data in defines application specific data for this service.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

ID defines the identifier of the I/O to be manipulated. The values are

application specific.

mode defines the I/O control type. The values are application specific.

The usual values are:

0: ReturnControlToECU

1: ResetToDefault

2: FreezeCurrentState

3: ShortTermAdjustment

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-128 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns application-specific data for this service.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI substitutes a value for an input signal or internal ECU function. It also controls an

output (actuator) of an electronic system referenced by the local ID parameter.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-129 Automotive Diagnostic Command Set User Manual

UDS ReadDataByIdentifier.vi

Purpose
Executes the UDS ReadDataByIdentifier service. Reads a data record from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

ID defines the identifier of the data to be read. The values are application

specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-130 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the data record from the ECU. If you know the record data

description, you can use Convert to Phys.vi to interpret this record.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI requests data record values from the ECU identified by the ID parameter.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-131 Automotive Diagnostic Command Set User Manual

UDS ReadMemoryByAddress.vi

Purpose
Executes the UDS ReadMemoryByAddress service. Reads data from the ECU memory.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

address defines the memory address from which data are to be read. Only

three bytes are sent to the ECU, so the address must be in the range

0–FFFFFF (hex).

size defines the length of the memory block to be read.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-132 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the ECU memory data.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI requests ECU memory data identified by the address and size parameters. The data

out format and definition are vehicle manufacturer specific. data out includes analog input

and output signals, digital input and output signals, internal data, and system status

information if the ECU supports them.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-133 Automotive Diagnostic Command Set User Manual

UDS ReportDTCBySeverityMaskRecord.vi

Purpose
Executes the ReportDTCBySeverityMaskRecord subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes

(DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 3 for UDS.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. For this subfunction, the

default is 2.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description

and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-134 ni.com

severity mask defines the status of DTCs to be read. The values are

application specific.

status defines the status of DTCs to be read. The values are application

specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code.

Status is the DTC status. Usually, this is a bit field with following

meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-135 Automotive Diagnostic Command Set User Manual

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Add Data contains optional additional data for this DTC.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

status avail mask is an application-specific value returned for all DTCs.

Description
This VI executes the ReportDTCBySeverityMaskRecord subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs.

For further details about this service, refer to the ISO 14229-1 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-136 ni.com

UDS ReportDTCByStatusMask.vi

Purpose
Executes the ReportDTCByStatusMask subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes

(DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 3 for UDS.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description

and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-137 Automotive Diagnostic Command Set User Manual

status mask defines the status of DTCs to be read. The values are

application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code.

Status is the DTC status. Usually, this is a bit field with following

meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-138 ni.com

Add Data contains optional additional data for this DTC. Usually,

this does not contain valid information (refer to DTC descriptor).

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

status avail mask is an application-specific value returned for all DTCs.

Description
This VI executes the ReportDTCByStatusMask subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs from the ECU.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-139 Automotive Diagnostic Command Set User Manual

UDS ReportSeverityInformationOfDTC.vi

Purpose
Executes the ReportSeverityInformationOfDTC subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes

(DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 3 for UDS.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. For this subfunction, the

default is 2.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description

and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-140 ni.com

DTC mask record defines the status of DTCs to be read. The values are

application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code.

Status is the DTC status. Usually, this is a bit field with following

meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-141 Automotive Diagnostic Command Set User Manual

Add Data contains optional additional data for this DTC.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

status avail mask is an application-specific value returned for all DTCs.

Description
This VI executes the ReportSeverityInformationOfDTC subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs from the ECU

memory.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-142 ni.com

UDS ReportSupportedDTCs.vi

Purpose
Executes the ReportSupportedDTCs subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service. Reads all supported

Diagnostic Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 3 for UDS.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description

and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-143 Automotive Diagnostic Command Set User Manual

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code.

Status is the DTC status. Usually, this is a bit field with following

meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

Add Data contains optional additional data for this DTC. Usually,

this does not contain valid information (refer to DTC descriptor).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-144 ni.com

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

status avail mask is an application-specific value returned for all DTCs.

Description
This VI executes the ReportSupportedDTCs subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service and reads all supported DTCs from the

ECU memory.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-145 Automotive Diagnostic Command Set User Manual

UDS RequestDownload.vi

Purpose
Initiates a download of data to the ECU.

Format

Input
data format identifier defines the compression and encryption scheme to

be used for the data blocks written to the ECU. A value of 0 means no

compression/no encryption. Nonzero values are not standardized and

implementation dependent.

diag ref in specifies the handle for the diagnostic session. This is obtained

from Open Diagnostic.vi or Open Diagnostic on IP.vi and wired through

subsequent diagnostic VIs. Normally, it is not necessary to manually

manipulate the elements of this cluster.

memory address defines the memory address to which data are written.

memory size defines the size of the data to be written.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-146 ni.com

source identifies the VI where the error occurred.

memory address length defines the number of bytes of the

memory address parameter that are written to the ECU. This value is

implementation dependent and must be in the range of 1–4. For example,

if this value is 2, only the two lowest bytes of the address are written to

the ECU.

memory size length defines the number of bytes of the memory size

parameter that are written to the ECU. This value is implementation

dependent and must be in the range of 1–4. For example, if this value is 2,

only the two lowest bytes of the size are written to the ECU.

Output
diag ref out is a copy of diag ref in. It can be wired to subsequent

diagnostic VIs.

block size returns the number of data bytes to be transferred to the ECU in

subsequent UDS TransferData.vi requests.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
UDS RequestDownload.vi initiates the download of a data block to the ECU. This is

required to set up the download process; the actual data transfer occurs with subsequent UDS

TransferData.vi requests. The transfer must occur in blocks of the size that this service

returns (the block size parameter). After the download completes, use the UDS

RequestTransferExit.vi service to terminate the process.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-147 Automotive Diagnostic Command Set User Manual

UDS RequestSeed.vi

Purpose
Executes the UDS SecurityAccess service to retrieve a seed from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

access mode indicates the security level to be granted. The values are

application specific. This is an odd number, usually 1.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-148 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

seed out returns the seed from the ECU.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using UDS RequestSeed.vi with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using UDS SendKey.vi with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is

returned.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-149 Automotive Diagnostic Command Set User Manual

UDS RequestTransferExit.vi

Purpose
Terminates a download/upload process.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

data in defines a data record to be written to the ECU as part of the

termination process. The meaning is implementation dependent; this might

be a checksum or a similar verification instrument.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-150 ni.com

Output
diag ref out is a copy of diag ref in. It can be wired to subsequent

diagnostic VIs.

data out returns a memory data block from the ECU as part of the

termination process. The meaning is implementation dependent; this might

be a checksum or a similar verification instrument.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
UDS RequestTransferExit.vi terminates a download or upload process initialized with UDS

RequestDownload.vi or UDS RequestUpload.vi.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-151 Automotive Diagnostic Command Set User Manual

UDS RequestUpload.vi

Purpose
Initiates an upload of data from the ECU.

Format

Input
data format identifier defines the compression and encryption scheme to

be used for the data blocks read from the ECU. A value of 0 means no

compression/no encryption. Nonzero values are not standardized and

implementation dependent.

diag ref in specifies the handle for the diagnostic session. This is obtained

from Open Diagnostic.vi or Open Diagnostic on IP.vi and wired through

subsequent diagnostic VIs. Normally, it is not necessary to manually

manipulate the elements of this cluster.

memory address defines the memory address from which data are read.

memory size defines the size of the data to be read.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-152 ni.com

source identifies the VI where the error occurred.

memory address length defines the number of bytes of the

memory address parameter that are written to the ECU. This value is

implementation dependent and must be in the range of 1–4. For example,

if this value is 2, only the two lowest bytes of the address are written to

the ECU.

memory size length defines the number of bytes of the memory size

parameter that are written to the ECU. This value is implementation

dependent and must be in the range of 1–4. For example, if this value is 2,

only the two lowest bytes of the size are written to the ECU.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

block size returns the number of data bytes to be transferred from the ECU

in subsequent UDS TransferData.vi requests.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
UDS RequestUpload.vi initiates the upload of a data block from the ECU. This is required

to set up the upload process; the actual data transfer occurs with subsequent UDS

TransferData.vi requests. The transfer must occur in blocks of the size that this service

returns (the block size parameter). After the upload completes, use the UDS

RequestTransferExit.vi service to terminate the process.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-153 Automotive Diagnostic Command Set User Manual

UDS RoutineControl.vi

Purpose
Executes the UDS RoutineControl service. Executes a routine on the ECU.

Format

Input
mode defines the service operation mode. You can obtain the values from

a ring control:

1: Start Routine

2: Stop Routine

3: Request Routine Results

Other values are application specific.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

ID defines the identifier of the routine to be started. The values are

application specific.

data in defines application-specific input parameters for the routine.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-154 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns application-specific output parameters from the routine.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI executes the UDS RoutineControl service and launches an ECU routine, stops an

ECU routine, or requests ECU routine results from the ECU.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-155 Automotive Diagnostic Command Set User Manual

UDS SendKey.vi

Purpose
Executes the SecurityAccess service to send a key to the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

access mode indicates the security level to be granted. The values are

application specific. This is an even number, usually 2.

key in defines the key data to be sent to the ECU.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-156 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using UDS RequestSeed.vi with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using UDS SendKey.vi with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is

returned.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-157 Automotive Diagnostic Command Set User Manual

UDS TesterPresent.vi

Purpose
Executes the UDS TesterPresent service. Keeps the ECU in diagnostic mode.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

response required? indicates whether the ECU answers this service

(TRUE, default) or not (FALSE). In the latter case, success? is TRUE.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-158 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
To ensure proper ECU operation, you may need to keep the ECU informed that a diagnostic

session is still in progress. If you do not send this information (for example, because the

communication is broken), the ECU returns to normal mode from diagnostic mode after a

while.

The TesterPresent service is this “keep alive” signal. It does not affect any other ECU

operation.

Keep calling UDS TesterPresent.vi within the ECU timeout period if no other service is

executed.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-159 Automotive Diagnostic Command Set User Manual

UDS TransferData.vi

Purpose
Transfers data to/from the ECU in a download/upload process.

Format

Input
block sequence counter in is used to number the data blocks to be

transferred to/from the ECU. The block sequence counter value starts at

01 hex with the first UDS TransferData.vi request that follows the UDS

RequestDownload.vi or UDS RequestUpload.vi service. Its value is

incremented by 1 for each subsequent UDS TransferData.vi request.

At the value of FF hex, the block sequence counter rolls over and starts

at 00 hex with the next UDS TransferData.vi request.

The block sequence counter is updated automatically and returned in the

block sequence counter out parameter.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

data in defines the data block to be written to the ECU.

For a download, this is a memory data block to be downloaded to the ECU.

For an upload, the meaning is implementation dependent; in most cases,

it is sufficient to leave the parameter empty (default).

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-160 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
block sequence counter out returns the updated value of the block

sequence counter.

diag ref out is a copy of diag ref in. It can be wired to subsequent

diagnostic VIs.

data out returns the memory data from the ECU.

For a download, this might contain a checksum or similar verification

instrument; the meaning is implementation dependent.

For an upload, this is a memory data block uploaded from the ECU.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-161 Automotive Diagnostic Command Set User Manual

Description
UDS TransferData.vi executes the data transfer of a download process (initiated with a

previous UDS RequestDownload.vi request) or an upload process (initiated with a previous

UDS RequestUpload.vi request). The data transfer must occur in blocks of the size returned

in the block size parameter of the respective request service. After the data transfer has

completed, terminate the operation by calling the UDS RequestTransferExit.vi service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-162 ni.com

UDS WriteDataByIdentifier.vi

Purpose
Executes the UDS WriteDataByIdentifier service. Writes a data record to the ECU.

Format

Input
data in defines the data record to be written to the ECU. If you know the

the data description record, you can use Convert from Phys.vi to generate

this record.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

ID defines the identifier of the data to be written. The values are application

specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-163 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI performs the UDS service WriteDataByIdentifier and writes RecordValues (data

values) to the ECU. data in identifies the data. The vehicle manufacturer must ensure the

ECU conditions are met when performing this service. Typical use cases are clearing

nonvolatile memory, resetting learned values, setting option content, setting the Vehicle

Identification Number, or changing calibration values.

For further details about this service, refer to the 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-164 ni.com

UDS WriteMemoryByAddress.vi

Purpose
Executes the UDS WriteMemoryByAddress service. Writes data to the ECU memory.

Format

Input
data in defines the memory block to be written to the ECU.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

address defines the memory address to which data are to be written. Only

three bytes are sent to the ECU, so the address must be in the range

0–FFFFFF (hex).

size defines the length of the memory block to be written.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-165 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
This VI performs the UDS service WriteMemoryByAddress and writes RecordValues (data

values) to the ECU. address and size identify the data. The vehicle manufacturer must ensure

the ECU conditions are met when performing this service. Typical use cases are clearing

nonvolatile memory, resetting learned values, setting option content, setting the Vehicle

Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-166 ni.com

UDS06 ReadMemoryByAddress.vi

Purpose
Executes the UDS ReadMemoryByAddress service. Reads data from the ECU memory.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

memory address defines the memory address from which data are to be

read. Note that memory address length specifies how many bytes of the

address are sent to the ECU. This defines the maximum address you can

use.

memory size defines the length of the memory block to be read. Note that

memory size length specifies how many bytes of the size are sent to the

ECU. This defines the maximum size you can use.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-167 Automotive Diagnostic Command Set User Manual

source identifies the VI where the error occurred.

memory address length specifies how many bytes of the address are sent

to the ECU. The default is 4.

memory size length specifies how many bytes of the size are sent to the

ECU. The default is 4.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the memory data from the ECU.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
Similar to UDS ReadMemoryByAddress.vi. You can define the size in bytes of the address

and size parameters (the default is 4).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-168 ni.com

UDS06 WriteMemoryByAddress.vi

Purpose
Executes the UDS WriteMemoryByAddress service. Writes data to the ECU memory.

Format

Input
data in defines the memory block to be written to the ECU.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

memory address defines the memory address to which data are to be sent.

Note that memory address length specifies how many bytes of the address

are sent to the ECU. This defines the maximum address you can use.

memory size defines the length of the memory block to be sent. Note that

memory size length specifies how many bytes of the size are sent to the

ECU. This defines the maximum size you can use.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-169 Automotive Diagnostic Command Set User Manual

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

memory address length specifies how many bytes of the address are sent

to the ECU. The default is 4.

memory size length specifies how many bytes of the size are sent to the

ECU. The default is 4.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
Similar to UDS WriteMemoryByAddress.vi. You can define the size in bytes of the address

and size parameters (the default is 4).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-170 ni.com

OBD (On-Board Diagnostics) Services

OBD Clear Emission Related Diagnostic Information.vi

Purpose
Executes the OBD Clear Emission Related Diagnostic Information service. Clears

emission-related Diagnostic Trouble Codes (DTCs) in the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-171 Automotive Diagnostic Command Set User Manual

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-172 ni.com

OBD Request Control Of On-Board Device.vi

Purpose
Executes the OBD Request Control Of On-Board Device service. Modifies ECU I/O port

behavior.

Format

Input
data in defines application-specific data for this service.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

TID defines the test identifier of the I/O to be manipulated. The values are

application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-173 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns application-specific data for this service.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-174 ni.com

OBD Request Current Powertrain Diagnostic Data.vi

Purpose
Executes the OBD Request Current Powertrain Diagnostic Data service. Reads a data record

from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

PID defines the parameter identifier of the data to be read. The SAE J1979

standard defines the values.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-175 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the ECU data record. If you know the record data

description, you can use Convert from Phys.vi to interpret this record.

You can obtain the description from the SAE J1979 standard.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-176 ni.com

OBD Request Emission Related DTCs.vi

Purpose
Executes the OBD Request Emission Related DTCs service. Reads all emission-related

Diagnostic Trouble Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 0 for OBD.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description

and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-177 Automotive Diagnostic Command Set User Manual

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default

2-byte DTCs, you can use DTC to String.vi to convert this to

readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with the

following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

Add Data contains optional additional data for this DTC. Usually,

this does not contain valid information (refer to DTC descriptor).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-178 ni.com

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-179 Automotive Diagnostic Command Set User Manual

OBD Request Emission Related DTCs During Current Drive Cycle.vi

Purpose
Executes the OBD Request Emission Related DTCs During Current Drive Cycle service.

Reads the emission-related Diagnostic Trouble Codes (DTCs) that occurred during the

current (or last completed) drive cycle.

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 0 for OBD.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description

and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-180 ni.com

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default

2-byte DTCs, you can use DTC to String.vi to convert this to

readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with the

following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

Add Data contains optional additional data for this DTC. Usually,

this does not contain valid information (refer to DTC descriptor).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-181 Automotive Diagnostic Command Set User Manual

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-182 ni.com

OBD Request On-Board Monitoring Test Results.vi

Purpose
Executes the OBD Request On-Board Monitoring Test Results service. Reads a test data

record from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

OBDMID defines the parameter identifier of the data to be read. The

SAE J1979 standard defines the values.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-183 Automotive Diagnostic Command Set User Manual

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the ECU data record. If you know the record data

description, you can use Convert from Phys.vi to interpret this record.

You can obtain the description from the SAE J1979 standard.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-184 ni.com

OBD Request Permanent Fault Codes.vi

Purpose
Executes the OBD Request Permanent Fault Codes service. All permanent Diagnostic

Trouble Codes (DTCs) are read.

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 2.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 0 for OBD.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

This VI interprets the response byte stream according to this description

and returns the resulting DTC records in the DTCs cluster array.

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-185 Automotive Diagnostic Command Set User Manual

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. For the default

2-byte DTCs, you can use DTC to String.vi to convert this to

readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with the

following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

Add Data contains optional additional data for this DTC. Usually,

this does not contain valid information (refer to DTC descriptor).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-186 ni.com

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-187 Automotive Diagnostic Command Set User Manual

OBD Request Powertrain Freeze Frame Data.vi

Purpose
Executes the OBD Request Powertrain Freeze Frame Data service. Reads an ECU data record

stored while a Diagnostic Trouble Code occurred.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

PID defines the parameter identifier of the data to be read. The SAE J1979

standard defines the values.

frame is the number of the freeze frame from which the data are to be

retrieved.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-188 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the ECU data record. If you know the record data

description, you can use Convert from Phys.vi to interpret this record.

You can obtain the description from the SAE J1979 standard.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-189 Automotive Diagnostic Command Set User Manual

OBD Request Supported PIDs.vi

Purpose
Executes the OBD Request Current Powertrain Diagnostic Data service to retrieve the valid

PID values for this service.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-190 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

PIDs out returns an array of valid PIDs for the OBD Request Current

Powertrain Diagnostic Data service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-191 Automotive Diagnostic Command Set User Manual

OBD Request Vehicle Information.vi

Purpose
Executes the OBD Request Vehicle Information service. Reads a set of information data from

the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi and wired through subsequent diagnostic VIs. Normally, it is

not necessary to manually manipulate the elements of this cluster.

info type defines the type of information to be read. The values are defined

in the SAE J1979 standard.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-192 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the vehicle information from the ECU. You can obtain the

description from the SAE J1979 standard.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

items is the number of data items (not bytes) this service returns.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-193 Automotive Diagnostic Command Set User Manual

WWH-OBD (World-Wide-Harmonized On-Board
Diagnostics) Services

WWH-OBD Clear Emission Related DTCs.vi

Purpose
Executes the WWH-OBD ClearDiagnosticInformation service. Clears selected Diagnostic

Trouble Codes (DTCs).

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-194 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The WWH-OBD ClearDiagnosticInformation service is based on the UDS

ClearDiagnosticInformation service (ISO 14229-1).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-195 Automotive Diagnostic Command Set User Manual

WWH-OBD Convert DTCs to J1939.vi

Purpose
Converts DTCs to the J1939 DTC format.

Format

Input
DTCs is a cluster that contains diagnostic trouble codes (DTCs).

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-196 ni.com

Output
DTCs J1939 contains the DTCs converted to the J1939 format.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-197 Automotive Diagnostic Command Set User Manual

WWH-OBD Convert DTCs to J2012.vi

Purpose
Converts DTCs to the J2012 DTC format.

Format

Input
DTCs is a cluster that contains diagnostic trouble codes (DTCs).

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-198 ni.com

Output
DTCs J2012 contains the DTCs converted to the J2012 format.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-199 Automotive Diagnostic Command Set User Manual

WWH-OBD Request DID.vi

Purpose
Executes the WWH-OBD ReadDataByIdentifier service. Reads a data record from the ECU.

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

data identifier defines the data identifier of the data to be read. The SAE

J1979DA standard defines the values.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-200 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the ECU data record. If you know the record data

description, you can use Convert from Phys.vi to interpret this record. You

can obtain the description from the SAE J1979DA standard.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The WWH-OBD ReadDataByIdentifier service is based on the UDS ReadDataByIdentifier

service (ISO 14229-1).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-201 Automotive Diagnostic Command Set User Manual

WWH-OBD Request DTC Extended Data Record.vi

Purpose
Executes the WWH-OBD ReadDTCInformation service. Reads selected Diagnostic Trouble

Codes (DTCs).

Format

Input
diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

DTC mask record specifies the DTC mask record.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-202 ni.com

Output
diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the ECU data record.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The WWH-OBD ReadDTCInformation service is based on the UDS ReaDTCInformation

service (ISO 14229-1).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-203 Automotive Diagnostic Command Set User Manual

WWH-OBD Request Emission Related DTCs.vi

Purpose
Executes the WWH-OBD ReadDTCInformation service. Reads selected Diagnostic Trouble

Codes (DTCs).

Format

Input
DTC descriptor is a cluster that describes the DTC records the ECU

delivers:

DTC Byte Length indicates the number of bytes the ECU sends

for each DTC. The default is 3.

Status Byte Length indicates the number of bytes the ECU sends

for each DTC’s status. The default is 1.

Add Data Byte Length indicates the number of bytes the ECU

sends for each DTC’s additional data. Usually, there is no

additional data, so the default is 0.

Byte Order indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola) (default)

1: LSB_FIRST (Intel)

The DTC descriptor is given here as a parameter to convert the group of

DTC parameters to a binary representation according to DTC Byte Length

and Byte Order.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-204 ni.com

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

DTC status mask defines the status of DTCs to be read. The values are

application specific.

DTC severity mask defines the severity information of DTCs to be read.

The values are application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output
DTCs returns the resulting DTCs as an array of clusters:

DTC is the resulting Diagnostic Trouble Code. You can use

WWH-OBD Convert DTCs to J1939.vi or WWH-OBD

Convert DTCs to J2012.vi to convert this to readable format as

SAE J1939 and SAE J2012 define.

Status is the DTC status. Usually, this is a bit field with the

following meaning:

Bit Meaning

0 testFailed

1 testFailedThisOperationCycle

2 pendingDTC

3 confirmedDTC

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-205 Automotive Diagnostic Command Set User Manual

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisOperationCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

Add Data contains optional additional data for this DTC. Usually,

this does not contain valid information (refer to DTC descriptor).

diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DTC status availability mask is an application-specific value returned for

all DTCs.

DTC severity availability mask is an application-specific value returned

for all DTCs.

DTC format identifier is an application-specific value returned for all

DTCs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The WWH-OBD ReadDTCInformation service is based on the UDS ReaDTCInformation

service (ISO 14229-1).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-206 ni.com

WWH-OBD Request Freeze Frame Information.vi

Purpose
Executes the WWH-OBD ReadDTCInformation service. Reads selected Diagnostic Trouble

Codes (DTCs).

Format

Input

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

DTC mask record defines the DTC to be read. The values are application

specific.

DTC record number specifies the snapshot record number.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-207 Automotive Diagnostic Command Set User Manual

Output

diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns the ECU data record.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The WWH-OBD ReadDTCInformation service is based on the UDS ReaDTCInformation

service (ISO 14229-1).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-208 ni.com

WWH-OBD Request RID.vi

Purpose
Executes the WWH-OBD RoutineControl service. Reads a data record from the ECU.

Format

Input

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

mode defines the service operation mode. You can obtain the values from

a ring control:

1: Start Routine

2: Stop Routine

3: Request Routine Results

Other values are application specific.

routine identifier defines the identifier of the routine to be started. The

values are application specific.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-209 Automotive Diagnostic Command Set User Manual

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output

diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

data out returns application-specific output parameters from the routine.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The WWH-OBD RoutineControl service is based on the UDS RoutineControl service (ISO

14229-1).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-210 ni.com

WWH-OBD Request Supported DIDs.vi

Purpose
Executes the WWH-OBD ReadDataByIdentifier service to retrieve the valid DID values for

this service.

Format

Input

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

DID specifies the diagnostic data identifier for this service. The following

values are valid and can be obtained through an enum control:

0 PID: parameter identifier

1 MID: monitor identifier

2 ITID: info type identifier

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-211 Automotive Diagnostic Command Set User Manual

source identifies the VI where the error occurred.

Output

diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

DIDs out returns an array of valid DIDs.

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The WWH-OBD ReadDataByIdentifier service is based on the UDS ReadDataByIdentifier

service (ISO 14229-1).

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

Automotive Diagnostic Command Set User Manual 5-212 ni.com

WWH-OBD Request Supported RIDs.vi

Purpose
Executes the WWH-OBD RoutineControl service to retrieve the valid RID values for this

service.

Format

Input

diag ref in specifies the diagnostic session handle, obtained from Open

Diagnostic.vi or Open Diagnostic on IP.vi and wired through subsequent

diagnostic VIs. Normally, it is not necessary to manually manipulate the

elements of this cluster.

error in is a cluster that describes error conditions occurring before the VI

executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Output

diag ref out is a copy of diag ref in. You can wire it to subsequent

diagnostic VIs.

RIDs out returns an array of valid RIDs.

Chapter 5 Automotive Diagnostic Command Set API for LabVIEW

© National Instruments 5-213 Automotive Diagnostic Command Set User Manual

success? indicates successful receipt of a positive response message for

this diagnostic service.

error out describes error conditions. If the error in cluster indicated an

error, the error out cluster contains the same information. Otherwise,

error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: the VI did not

execute the intended operation. A positive value means warning:

the VI executed intended operation, but an informational warning

is returned. For a description of the code, wire the error cluster to

a LabVIEW error-handling VI, such as the Simple Error

Handler.

source identifies the VI where the error occurred.

Description
The WWH-OBD RoutineControl service is based on the UDS RoutineControl service (ISO

14229-1).

© National Instruments 6-1 Automotive Diagnostic Command Set User Manual

6
Automotive Diagnostic
Command Set API for C

This chapter lists the Automotive Diagnostic Command Set API functions and describes their

format, purpose, and parameters. Unless otherwise stated, each Automotive Diagnostic

Command Set function suspends execution of the calling thread until it completes. The

functions are listed alphabetically in four categories: general functions, KWP2000 services,

UDS (DiagOnCAN) services, and OBD (On-Board Diagnostics) services.

Section Headings

The following are section headings found in the Automotive Diagnostic Command Set for

C functions.

Purpose
Each function description includes a brief statement of the function purpose.

Format
The format section describes the function format for the C programming language.

Input and Output
The input and output sections list the function parameters.

Description
The description section gives details about the function purpose and effect.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-2 ni.com

List of Data Types

The following data types are used with the Automotive Diagnostic Command Set API for

C functions.

Table 6-1. Data Types for the Automotive Diagnostic Command Set for C

Data Type Purpose

i8 8-bit signed integer

i16 16-bit signed integer

i32 32-bit signed integer

u8 8-bit unsigned integer

u16 16-bit unsigned integer

u32 32-bit unsigned integer

f32 32-bit floating-point number

f64 64-bit floating-point number

str ASCII string represented as an array of characters terminated by null

character ('\0'). This type is used with output strings. str is typically

used in the Automotive Diagnostic Command Set API as a pointer to a

string, as char*.

cstr ASCII string represented as an array of characters terminated by null

character ('\0'). This type is used with input strings. cstr is typically

used in the Automotive Diagnostic Command Set as a pointer to a string,

as const char*.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-3 Automotive Diagnostic Command Set User Manual

List of Functions

The following table contains an alphabetical list of the Automotive Diagnostic Command Set

API functions.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C

Function Purpose

ndClearDiagnosticInformation Executes the ClearDiagnostic

Information service. Clears

selected Diagnostic Trouble

Codes (DTCs).

ndCloseDiagnostic Closes a diagnostic session.

ndControlDTCSetting Executes the ControlDTCSetting

service. Modifies the generation

behavior of selected Diagnostic

Trouble Codes (DTCs).

ndConvertFromPhys Converts a physical data value

into a binary representation using

a type descriptor.

ndConvertToPhys Converts a binary representation

of a value into its physical value

using a type descriptor.

ndCreateExtendedCANIds Creates diagnostic CAN

identifiers according to

ISO 15765-2.

ndDiagFrameRecv Receives a raw CAN frame on the

diagnostic CAN ID to check for

errors in the transport protocol

implementation of an ECU.

ndDiagFrameSend Sends a raw CAN frame on the

diagnostic CAN ID to check for

errors in the transport protocol

implementation of an ECU.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-4 ni.com

ndDiagnosticService Executes a generic diagnostic

service. If a special service is not

available through the KWP2000,

UDS, or OBD service functions,

you can build it using this

function.

ndDisableNormalMessageTransmission Executes the

DisableNormalMessage

Transmission service. The ECU

no longer transmits its regular

communication messages

(usually CAN messages).

ndDoIPActivateRouting Defines the source and target

address for a DoIP TCP/IP

connection.

ndDoIPConnect Creates a TCP/IP connection to a

DoIP entity identified by its IP

address.

ndDoIPDisconnect Disconnects the TCP/IP

connection to a DoIP entity.

ndDoIPEntityStatus Gets status information from a

DoIP entity.

ndDoIPGetDiagPowerMode Gets information on the DoIP

entity power state.

ndDoIPGetEntities Returns a table of all DoIP entities

(vehicles) on the local subnet,

possibly restricted to EID or VIN.

ndDoIPSendVehicleIdentRequest Sends a UDP request to all

DoIP-capable vehicles in the local

subnet to identify themselves.

ndDoIPSendVehicleIdentReqEID Sends a UDP request to all

DoIP-capable vehicles with a

certain EID (MAC address) in the

local subnet to identify

themselves.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-5 Automotive Diagnostic Command Set User Manual

ndDoIPSendVehicleIdentReqVIN Sends a UDP request to all

DoIP-capable vehicles with a

certain VIN (Vehicle

Identification Number) in the

local subnet to identify

themselves.

ndDTCToString Returns a string representation

(such as P1234) for a 2-byte

diagnostic trouble code (DTC).

ndECUReset Executes the ECUReset service.

Resets the ECU.

ndEnableNormalMessageTransmission Executes the

EnableNormalMessage

Transmission service. The ECU

starts transmitting its regular

communication messages

(usually CAN messages).

ndGetProperty Gets a diagnostic global internal

parameter.

ndGetTimeStamp Gets timestamp information about

the first/last send/received frame

of the ISO TP for CAN and LIN.

ndInputOutputControlByLocalIdentifier Executes the

InputOutputControlBy

LocalIdentifier service. Modifies

the ECU I/O port behavior.

ndOBDClearEmissionRelatedDiagnosticInformation Executes the OBD Clear

Emission Related Diagnostic

Information service. Clears

emission-related diagnostic

trouble codes (DTCs) in the ECU.

ndOBDOpen Opens a diagnostic session on a

CAN port for OBD-II.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-6 ni.com

ndOBDRequestControlOfOnBoardDevice Executes the OBD Request

Control Of On-Board Device

service. Modifies ECU I/O port

behavior.

ndOBDRequestCurrentPowertrainDiagnosticData Executes the OBD Request

Current Powertrain Diagnostic

Data service. Reads an ECU data

record.

ndOBDRequestEmissionRelatedDTCs Executes the OBD Request

Emission Related DTCs service.

Reads all emission-related

Diagnostic Trouble Codes

(DTCs).

ndOBDRequestEmissionRelatedDTCsDuringCurrent

DriveCycle

Executes the OBD Request

Emission Related DTCs During

Current Drive Cycle service.

Reads the emission-related

Diagnostic Trouble Codes

(DTCs) that occurred during the

current (or last completed) drive

cycle.

ndOBDRequestOnBoardMonitoringTestResults Executes the OBD Request

On-Board Monitoring Test

Results service. Reads an

ECU test data record.

ndOBDRequestPermanentFaultCodes Executes the OBD Request

Permanent Fault Codes service.

All permanent Diagnostic

Trouble Codes (DTCs) are read.

ndOBDRequestPowertrainFreezeFrameData Executes the OBD Request

Powertrain Freeze Frame Data

service. Reads an ECU data

record stored while a diagnostic

trouble code occurred.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-7 Automotive Diagnostic Command Set User Manual

ndOBDRequestVehicleInformation Executes the OBD Request

Vehicle Information service.

Reads a set of information data

from the ECU.

ndOpenDiagnostic Opens a diagnostic session on a

CAN port. Communication to the

ECU is not yet started.

ndOpenDiagnosticOnIP Opens a diagnostic session on an

IP port. Communication to the

ECU is not yet started.

ndOpenDiagnosticOnLIN Opens a diagnostic session

on an NI-XNET LIN port.

Communication to the ECU is

not yet started.

ndReadDataByLocalIdentifier Executes the ReadDataByLocal

Identifier service. Reads an ECU

data record.

ndReadDTCByStatus Executes the

ReadDiagnosticTrouble

CodesByStatus service. Reads

selected Diagnostic Trouble

Codes (DTCs).

ndReadECUIdentification Executes the

ReadECUIdentification service.

Returns ECU identification data

from the ECU.

ndReadMemoryByAddress Executes the

ReadMemoryByAddress service.

Reads data from the ECU

memory.

ndReadStatusOfDTC Executes the

ReadStatusOfDiagnostic

TroubleCodes service. Reads

selected Diagnostic Trouble

Codes (DTCs).

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-8 ni.com

ndRequestRoutineResultsByLocalIdentifier Executes the

RequestRoutineResultsByLocalI

dentifier service. Returns results

from an ECU routine.

ndRequestSeed Executes the SecurityAccess

service to retrieve a seed from

the ECU.

ndSendKey Executes the SecurityAccess

service to send a key to the ECU.

ndSetProperty Set a diagnostic global internal

parameter.

ndStartDiagnosticSession Executes the

StartDiagnosticSession service.

The ECU is set up in a specific

diagnostic mode.

ndStartRoutineByLocalIdentifier Executes the

StartRoutineByLocal

Identifier service. Executes a

routine on the ECU.

ndStatusToString Returns a description for an error

code.

ndStopDiagnosticSession Executes the

StopDiagnosticSession service.

Returns the ECU to normal mode.

ndStopRoutineByLocalIdentifier Executes the

StopRoutineByLocal

Identifier service. Stops a routine

on the ECU.

ndTesterPresent Executes the TesterPresent

service. Keeps the ECU in

diagnostic mode.

ndUDS06ReadMemoryByAddress Executes the UDS

ReadMemoryByAddress service.

Reads data from the ECU

memory.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-9 Automotive Diagnostic Command Set User Manual

ndUDS06WriteMemoryByAddress Executes the UDS

WriteMemoryByAddress service.

Writes data to the ECU memory.

ndUDSClearDiagnosticInformation Executes the UDS

ClearDiagnosticInformation

service. Clears selected

Diagnostic Trouble Codes

(DTCs).

ndUDSCommunicationControl Executes the UDS

CommunicationControl service.

Switches transmission and/or

reception of the normal

communication messages

(usually CAN messages) on or

off.

ndUDSControlDTCSetting Executes the UDS

ControlDTCSetting service.

Modifies Diagnostic Trouble

Code (DTC) behavior.

ndUDSDiagnosticSessionControl Executes the UDS

DiagnosticSessionControl

service. The ECU is set up in a

specific diagnostic mode.

ndUDSECUReset Executes the UDS ECUReset

service. Resets the ECU.

ndUDSInputOutputControlByIdentifier Executes the UDS

InputOutputControlByIdentifier

service. Modifies ECU I/O port

behavior.

ndUDSReadDataByIdentifier Executes the UDS

ReadDataByIdentifier service.

Reads an ECU data record.

ndUDSReadMemoryByAddress Executes the UDS

ReadMemoryByAddress service.

Reads data from the ECU

memory.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-10 ni.com

ndUDSReportDTCBySeverityMaskRecord Executes the

ReportDTCBySeverity

MaskRecord subfunction of the

UDS ReadDiagnosticTrouble

CodeInformation service. Reads

selected Diagnostic Trouble

Codes (DTCs).

ndUDSReportDTCByStatusMask Executes the

ReportDTCByStatusMask

subfunction of the UDS

ReadDiagnosticTrouble

CodeInformation service. Reads

selected Diagnostic Trouble

Codes (DTCs).

ndUDSReportSeverityInformationOfDTC Executes the ReportSeverity

InformationOfDTC

subfunction of the UDS

ReadDiagnosticTrouble

CodeInformation service. Reads

selected Diagnostic Trouble

Codes (DTCs) are read.

ndUDSReportSupportedDTCs Executes the

ReportSupportedDTCs

subfunction of the UDS

ReadDiagnosticTrouble

CodeInformation service.

Reads all supported Diagnostic

Trouble Codes (DTCs).

ndUDSRequestDownload Initiates a download of data to the

ECU.

ndUDSRequestSeed Executes the UDS

SecurityAccess service to retrieve

a seed from the ECU.

ndUDSRequestTransferExit Terminates a download/upload

process.

ndUDSRequestUpload Initiates an upload of data from

the ECU.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-11 Automotive Diagnostic Command Set User Manual

ndUDSRoutineControl Executes the UDS

RoutineControl service. Executes

a routine on the ECU.

ndUDSSendKey Executes the UDS

SecurityAccess service to send a

key to the ECU.

ndUDSTesterPresent Executes the UDS TesterPresent

service. Keeps the ECU in

diagnostic mode.

ndUDSTransferData Transfers data to/from the ECU in

a download/upload process.

ndUDSWriteDataByIdentifier Executes the UDS

WriteDataByIdentifier service.

Writes a data record to the ECU.

ndUDSWriteMemoryByAddress Executes the UDS

WriteMemoryByAddress service.

Writes data to the ECU memory.

ndVWTPConnect Establishes a connection channel

to an ECU using the VW TP 2.0.

ndVWTPConnectionTest Maintains a connection channel to

an ECU using the VW TP 2.0.

ndVWTPDisconnect Terminates a connection channel

to an ECU using the VW TP 2.0.

ndWriteDataByLocalIdentifier Executes the WriteDataByLocal

Identifier service. Writes a data

record to the ECU.

ndWriteMemoryByAddress Executes the

WriteMemoryByAddress service.

Writes data to the ECU memory.

ndWWHOBDClearEmissionRelatedDTCs Executes the WWH-OBD

ClearDiagnosticInformation

service. Clears selected

Diagnostic Trouble Codes

(DTCs).

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-12 ni.com

ndWWHOBDConvertDTCsToJ1939 Converts DTCs to the J1939 DTC

format.

ndWWHOBDConvertDTCsToJ2012 Converts DTCs to the J2012 DTC

format.

ndWWHOBDRequestDID Executes the WWH-OBD

ReadDataByIdentifier service.

Reads a data record from the

ECU.

ndWWHOBDRequestDTCExtendedDataRecord Executes the WWH-OBD

ReadDTCInformation service.

Reads selected Diagnostic

Trouble Codes (DTCs).

ndWWHOBDRequestEmissionRelatedDTCs Executes the WWH-OBD

ReadDTCInformation service.

Reads selected Diagnostic

Trouble Codes (DTCs).

ndWWHOBDRequestFreezeFrameInformation Executes the WWH-OBD

ReadDTCInformation service.

Reads selected Diagnostic

Trouble Codes (DTCs).

ndWWHOBDRequestRID Executes the WWH-OBD

RoutineControl service. Reads a

data record from the ECU.

ndWWHOBDRequestSupportedDIDs Executes the WWH-OBD

ReadDataByIdentifier service to

retrieve the valid DID values for

this service.

ndWWHOBDRequestSupportedRIDs Executes the WWH-OBD

RoutineControl service to retrieve

the valid RID values for this

service.

Table 6-2. Functions for the Automotive Diagnostic Command Set for C (Continued)

Function Purpose

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-13 Automotive Diagnostic Command Set User Manual

General Functions

ndCloseDiagnostic

Purpose
Closes a diagnostic session.

Format
long ndCloseDiagnostic(

TD1 *diagRefIn);

Input
diagRefIn

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The diagnostic session diagRefIn specifies is closed, and you can no longer use it for

communication to an ECU. This command does not communicate the closing to the ECU

before terminating; if this is necessary, you must manually do so (for example, by calling

ndStopDiagnosticSession) before calling ndCloseDiagnostic.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-14 ni.com

ndConvertFromPhys

Purpose
Converts a physical data value into a binary representation using a type descriptor.

Format
void ndConvertFromPhys(

TD2 *typeDescriptor,

double value,

unsigned char dataOut[],

long *len);

Input
typeDescriptor

A struct that specifies the conversion of the physical value to its binary representation:

typedef struct {

long StartByte;

long ByteLength;

unsigned short ByteOrder;

unsigned short DataType;

double ScaleFactor;

double ScaleOffset;

} TD2;

StartByte is ignored by ndConvertFromPhys.

ByteLength is the number of bytes in the binary representation.

ByteOrder defines the byte order for multibyte representations. The values are:

0: MSB_FIRST (Motorola)

1: LSB_FIRST (Intel)

DataType is the binary representation format:

0: Unsigned. Only byte lengths of 1–4 are allowed.

1: Signed. Only byte lengths of 1–4 are allowed.

2: Float. Only byte lengths 4 or 8 are allowed.

ScaleFactor defines the physical value scaling:

Phys = (ScaleFactor) * (binary representation) + (ScaleOffset)

ScaleOffset (refer to ScaleFactor)

value

The physical value to be converted to a binary representation.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-15 Automotive Diagnostic Command Set User Manual

Output
dataOut

Points to the byte array to be filled with the binary representation of value.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

Description
Data input to diagnostic services (for example, ndWriteDataByLocalIdentifier) is

usually a byte array of binary data. If you have the data input description (for example, byte 3

and 4 are engine RPM scaled as .25 * × RPM in Motorola representation), you can use

ndConvertFromPhys to convert the physical value to the byte stream by filling an

appropriate typeDescriptor struct.

ndConvertFromPhys converts only the portion specified by one type descriptor to a binary

representation. If your data input consists of several values, you can use

ndConvertFromPhys multiple times on different parts of the byte array.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-16 ni.com

ndConvertToPhys

Purpose
Converts a binary representation of a value into its physical value using a type descriptor.

Format
void ndConvertToPhys(

TD2 *typeDescriptor,

unsigned char dataIn[],

long len,

double *value);

Input
typeDescriptor

A struct that specifies the conversion of the physical value to its binary representation:

typedef struct {

long StartByte;

long ByteLength;

unsigned short ByteOrder;

unsigned short DataType;

double ScaleFactor;

double ScaleOffset;

} TD2;

StartByte gives the start byte of the binary representation in the dataIn record.

ByteLength is the number of bytes in the binary representation.

ByteOrder defines the byte order for multibyte representations. The values are:

0: MSB_FIRST (Motorola)

1: LSB_FIRST (Intel)

DataType is the binary representation format:

0: Unsigned. Only byte lengths of 1–4 are allowed.

1: Signed. Only byte lengths of 1–4 are allowed.

2: Float. Only byte lengths 4 or 8 are allowed.

ScaleFactor defines the physical value scaling:

Phys = (ScaleFactor) * (binary representation) + (ScaleOffset)

ScaleOffset (refer to ScaleFactor)

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-17 Automotive Diagnostic Command Set User Manual

dataIn

Points to the byte array that contains the binary representation of value.

len

Must contain the dataIn array length.

Output
value

The physical value converted from the binary representation.

Description
Data output from diagnostic services (for example, ndReadDataByLocalIdentifier) is

usually a byte stream of binary data. If you have a description of the data output (for example,

byte 3 and 4 are engine RPM scaled as .25 * × RPM in Motorola representation), you can use

ndConvertToPhys to extract the physical value from the byte stream by filling an

appropriate typeDescriptor struct.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-18 ni.com

ndCreateExtendedCANIds

Purpose
Creates diagnostic CAN identifiers according to ISO 15765-2.

Format
void ndCreateExtendedCANIds (

unsigned short addressingMode,

unsigned short transportProtocol,

unsigned char sourceAddress,

unsigned char targetAddress,

unsigned long *transmitID,

unsigned long *receiveID);

Input
addressingMode

Specifies whether the ECU is physically or functionally addressed:

0: physical addressing

1: functional addressing

transportProtocol

Specifies whether normal or mixed mode addressing is used. The following values are

valid:

0 ISO TP—Normal Mode. The ISO TP as specified in ISO 15765-2 is used;

all eight data bytes of the CAN messages are used for data transfer.

1 ISO TP—Mixed Mode. The ISO TP as specified in ISO 15765-2 is used;

the first data byte is used as address extension.

sourceAddress

The host (diagnostic tester) logical address.

targetAddress

The ECU logical address.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-19 Automotive Diagnostic Command Set User Manual

Output
transmitID

The generated CAN identifier for sending diagnostic request messages from the host to

the ECU.

receiveID

The generated CAN identifier for sending diagnostic response messages from the ECU

to the host.

Description
ISO 15765-2 specifies a method for creating (extended/29 bit) CAN identifiers for diagnostic

applications given the addressing mode (physical/functional), the transport protocol

(normal/mixed), and the 8-bit source and target addresses. This function implements the

construction of these CAN identifiers. You can use them directly in the ndOpenDiagnostic

function.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-20 ni.com

ndDiagFrameRecv

Purpose
Receives a raw CAN frame on the diagnostic CAN ID to check for errors in the transport

protocol implementation of an ECU.

Format
long ndDiagFrameRecv(

TD1 *diagRef,

unsigned long timeout,

unsigned char dataOut[],

long *len);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

timeout

Specifies the time to wait for the arrival of a message. If no message arrives within this

time, a timeout error is returned.

Output
dataOut

Returns up to 8 bytes of payload data from a CAN frame received on the diagnostic

identifier.

len

On input, len must contain the number of bytes provided for the dataOut buffer. On

output, it returns the number of valid data bytes in dataOut.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-21 Automotive Diagnostic Command Set User Manual

Description
ndDiagFrameRecv receives an arbitrary raw CAN frame on the diagnostic CAN identifier.

For example, you can check the transport protocol implementation of an ECU for correct

responses if erroneous protocol requests are issued.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-22 ni.com

ndDiagFrameSend

Purpose
Sends a raw CAN frame on the diagnostic CAN ID to check for errors in the transport

protocol implementation of an ECU.

Format
long ndDiagFrameSend(

TD1 *diagRef,

unsigned char dataIn[],

long len);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

dataIn

An array of up to 8 bytes sent as a CAN payload on the diagnostic identifier.

len

Must contain the number of (valid) data bytes in dataIn.

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDiagFrameSend transmits an arbitrary raw CAN frame on the diagnostic CAN identifier.

For example, you can check the transport protocol implementation of an ECU for robustness

if erroneous protocol requests are issued.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-23 Automotive Diagnostic Command Set User Manual

ndDiagnosticService

Purpose
Executes a generic diagnostic service. If a special service is not available through the

KWP2000, UDS, or OBD service functions, you can build it using this function.

Format
long ndDiagnosticService(

TD1 *diagRef,

LVBoolean *requireResponse,

unsigned char dataIn[],

long len,

unsigned char dataOut[],

long *len2);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is

FALSE, dataOut returns no values, and len2 returns 0. This parameter is passed by

reference.

dataIn

Contains the request message byte sequence for the diagnostic service sent to the ECU.

len

Must contain the number of valid data bytes in dataIn.

Output
dataOut

Contains the response message byte sequence of the diagnostic service returned from the

ECU.

len2

On input, len2 must contain the number of bytes provided for the dataOut buffer.

On output, it returns the number of valid data bytes in dataOut.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-24 ni.com

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDiagnosticService is a generic routine to execute any diagnostic service. The request

and response messages are fed unmodified to the dataIn input and retrieved from the

dataOut output, respectively. No interpretation of the contents is done, with one exception:

The error number is retrieved from a negative response, if one occurs. In this case, an error is

communicated through the return value.

All specialized diagnostic services call ndDiagnosticService internally.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-25 Automotive Diagnostic Command Set User Manual

ndDTCToString

Purpose
Returns a string representation (such as P1234) for a 2-byte diagnostic trouble code (DTC).

Format
void ndDTCToString(

unsigned long DTCNum,

char DTCString[],

long *len);

Input
DTCNum

The DTC number as returned in the DTCs structs of ndReadDTCByStatus,

ndReadStatusOfDTC, ndUDSReportDTCBySeverityMaskRecord,

ndUDSReportDTCByStatusMask, ndUDSReportSeverityInformationOfDTC,

ndUDSReportSupportedDTCs, ndOBDRequestEmissionRelatedDTCs, or

ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle.

Note This function converts only 2-byte DTCs. If you feed in larger numbers, the function

returns garbage.

Output
DTCString

The DTC string representation.

len

On input, len must contain the DTCString array length (at least 6). On return,

it contains the number of valid data bytes in the DTCString array.

Description
The SAE J2012 standard specifies a naming scheme for 2-byte DTCs consisting of one letter

and four digits. Use ndDTCToString to convert the DTC numerical representation to this

name.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-26 ni.com

ndGetProperty

Purpose
Gets a diagnostic global internal parameter.

Format
uint32_t ndGetProperty(uint16_t propertyID);

Input
propertyID

Defines the parameter whose value is to be retrieved:

0 Timeout Diag Command is the timeout in milliseconds the master waits for the

response to a diagnostic request message. The default is 1000 ms.

1 Timeout FC (Bs) is the timeout in milliseconds the master waits for a Flow

Control frame after sending a First Frame or the last Consecutive Frame of a

block. The default is 250 ms.

2 Timeout CF (Cr) is the timeout in milliseconds the master waits for a

Consecutive Frame in a multiframe response. The default is 250 ms for CAN

and 1000 ms for LIN.

3 Receive Block Size (BS) is the number of Consecutive Frames the slave sends

in one block before waiting for the next Flow Control frame. A value of 0

(default) means all Consecutive Frames are sent in one run without interruption.

4 Wait Time CF (STmin) defines the minimum time for the slave to wait

between sending two Consecutive Frames of a block. Values from 0 to 127 are

wait times in milliseconds. Values 241 to 249 (Hex F1 to F9) mean wait times

of 100 µs to 900 µs, respectively. All other values are reserved. The default is

5 ms.

5 Max Wait Frames (N_WFTmax) is the maximum number of WAIT frames

the master accepts before terminating the connection. The default is 10.

6 Wait Frames to Send (N_WAIT) is the number of WAIT frames the master

sends every time before a CTS frame is sent. If you set this value to a negative

number (for example, 0xFFFFFFFF = –1), the master sends an OVERLOAD

frame instead of a WAIT, and reception is aborted. The default is 0 for

maximum speed.

7 Time between Waits (T_W) is the number of milliseconds the master waits

after sending a WAIT frame. The default is 25.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-27 Automotive Diagnostic Command Set User Manual

8 Fill CAN Frames returns whether a CAN frame is transmitted with 8 bytes or

less.

0: Short CAN frames are sent with DLC < 8.

1: Short CAN frames are filled to 8 bytes with Fill Byte (default).

9 Fill Byte returns the CAN frame content if filled with defined data or random

data bytes.

0–255: Byte is used optionally to fill short CAN frames.

256: Short CAN frames are filled optionally with random bytes.

The default is 255 (0xFF).

10 Invalid Response as Error returns how the toolkit handles an invalid ECU

response.

0: Invalid response is indicated by success = FALSE only (default).

1: Invalid response is returned as an error in addition.

11 Max RspPending Count is the number of times a

ReqCorrectlyRcvd-RspPending (0x78) Negative Response Message will be

accepted to extend the command timeout (default 5). If this message is sent

more often in response to a request, an error –8120 is returned. If the ECU

implements commands with a long duration (for example, flash commands),

you may need to extend this number.

12 VWTP Command Time Out is the time in milliseconds the host waits for a

VWTP 2.0 command to be executed (default 50 ms). The specification states

this as 50 ms plus the network latency, but some ECUs may require higher

values.

13 STmin is the minimum time in seconds between the end of transmission of a

frame in a diagnostic request message and the start of transmission of the next

frame in the diagnostic request message for LIN-based diagnostic

communication. The default is 0.

14 P2min is the minimum time in seconds between reception of the last frame of

the diagnostic request and the response sent by the node for LIN-based

diagnostic communication. The default is 0.05.

15 Termination reads the NI-XNET Termination property. Reflections on the

CAN and LIN bus can cause communication failures. To prevent reflections,

termination can be present as external resistance or resistance the XNET CAN

or LIN board applies internally. This property determines whether the XNET

board uses termination to the bus. For further information about appropriate

terminations of a CAN or LIN network, refer to the NI-XNET Hardware and

Software Manual. The default is 0.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-28 ni.com

Output
propertyValue

The requested property value.

Description
Use this function to request several internal diagnostic parameters, such as timeouts for the

transport protocol. Use ndSetProperty to modify the parameters.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-29 Automotive Diagnostic Command Set User Manual

ndGetTimeStamp

Purpose
Gets timestamp information about the first/last send/received frame of the ISO TP for CAN

and LIN.

Format
void ndGetTimeStamp (

TD1 *diagRef,

unsigned long long *timeStampWriteFirst,

unsigned long long *timeStampWriteLast,

unsigned long long *timeStampReadFirst,

unsigned long long *timeStampReadLast);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnLIN and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

Output
timeStampWriteFirst

Contains the timestamp of the first write frame. This is usually the FF or SF of the

ISO TP.

timeStampWriteLast

Contains the timestamp of the last write frame. This is usually the CF or SF of the ISO TP.

timeStampReadFirst

Contains the timestamp of the first read frame. This is usually the FF or SF of the ISO TP.

timeStampReadLast

Contains the timestamp of the last read frame. This is usually the CF or SF of the ISO TP.

Description
Use this function to get the first and last write CAN or LIN frame and the first and last read

CAN or LIN frame if the ISO TP transport protocol is used. For all other transport protocols,

the timestamps are always 0.

The received timestamps should be converted to system time using the

FileTimeToLocalFileTime and FileTimeToSystemTime functions. Add <windows.h> to

your project for this.

The UDS Get DTCs example includes an example for getting the timestamp.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-30 ni.com

ndOBDOpen

Purpose
Opens a diagnostic session on a CAN port for OBD-II.

Format
long ndOBDOpen (

char CANInterface[],

unsigned long baudrate,

unsigned long transmitID,

unsigned long receiveID,

TD1 *diagRefOut);

Input
CANInterface

Specifies the CAN interface on which the diagnostic communication should take place.

NI-CAN

The CAN interface is the name of the NI-CAN Network Interface Object to configure.

This name uses the syntax CANx, where x is a decimal number starting at 0 that indicates

the CAN network interface (CAN0, CAN1, up to CAN63). CAN network interface

names are associated with physical CAN ports using Measurement and Automation

Explorer (MAX).

NI-XNET

By default, the Automotive Diagnostic Command Set uses NI-CAN for CAN

communication. This means you must define an NI-CAN interface for your NI-XNET

hardware (NI-CAN compatibility mode) to use your XNET hardware for CAN

communication. However, to use your NI-XNET interface in the native NI-XNET mode

(meaning it does not use the NI-XNET Compatibility Layer), you must define your

interface under NI-XNET Devices in MAX and pass the NI-XNET interface name that

the Automotive Diagnostic Command Set will use. To do this, add @nixnet to the

protocol string (for example, CAN1@nixnet). The interface name is related to the

NI-XNET hardware naming under Devices and Interfaces in MAX.

Note By selecting nixnet as the interface string, the Automotive Diagnostic Command Set

uses the Frame Input and Output Queued sessions. To force the use of Frame Input and

Output Stream sessions instead, select ni_genie_nixnet as the interface string (for example,

CAN1@ni_genie_nixnet). An application instance can use only one Frame Input Stream

Session and one Frame Output Stream Session at a time, so use the default name nixnet as

the interface string, so that multiple NI-XNET Frame Queued Sessions can coexist on a

single interface, and the Frame Input and Output Stream Sessions may be used, for

example, for a Frame logging/replay use case.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-31 Automotive Diagnostic Command Set User Manual

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that handles the

CAN communication between the host system and FPGA. To access the CAN module

on the FPGA, you must specify the bitfile name after the @ (for example,

CAN1@MyBitfile.lvbitx). To specify a special RIO target, you can specify that target by

its name followed by the bitfile name (for example, CAN1@RIO1,MyBitfile.lvbitx).

Currently, only a single CAN interface is supported. RIO1 defines the RIO target name

as defined in your LabVIEW Project definition. The lvbitx filename represents the

filename and location of the bitfile on the host if using RIO or on a CompactRIO target.

This implies that you must download the bitfile to the CompactRIO target before you can

run your application. You may specify an absolute path or a path relative to the root of

your target for the bitfile.

baudrate

The diagnostic communication baud rate.

transmitID

The CAN identifier for sending diagnostic request messages from the host to the ECU.

Set to –1 (0xFFFFFFFF) for the default OBD CAN identifier.

receiveID

The CAN identifier for sending diagnostic response messages from the ECU to the host.

Set to –1 (0xFFFFFFFF) for the default OBD CAN identifier.

Output
diagRefOut

A struct containing all necessary information about the diagnostic session. This is

passed as a handle to all subsequent diagnostic functions, and you must close it using

ndCloseDiagnostic.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndOBDOpen opens a diagnostic communication channel to an ECU for OBD-II. The CAN

port specified as input is initialized, and a handle to it is stored (among other internal data)

into the diagRefOut struct, which serves as reference for further diagnostic functions.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-32 ni.com

If the transmitID and receiveID parameters are set to –1, communication is first tried on

the default 11-bit OBD CAN identifiers; if that fails, the default 29-bit OBD CAN identifiers

are tried. If that also fails, an error is returned.

If valid transmitID or receiveID parameters (11-bit or 29-bit with bit 29 set) are given,

communication is tried on these identifiers. If that fails, an error is returned.

In general, it is not necessary to manipulate the diagRefOut struct contents.

Possible examples of selections for the interface parameter for the various hardware targets

are as follows.

Using NI-CAN hardware:

• CAN0—uses CAN interface 0.

• CAN1—uses CAN interface 1 and so on with the form CANx.

• CAN256—uses virtual NI-CAN interface 256.

Using NI-XNET hardware with NI-XNET Frame Input/Output-based sessions:

• CAN1@nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@nixnet—uses CAN interface 2 of an NI-XNET device and so on with the form

CANx.

Using NI-XNET hardware with NI-XNET Stream Input/Output-based sessions:

• CAN1@ni_genie_nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@ni_genie_nixnet—uses CAN interface 2 of an NI-XNET device and so on with

the form CANx.

Using R Series:

• CAN1@RIO1, c:\temp\MyFpgaBitfile.lvbitx—uses a named target RIO1 as compiled

into the bitfile at location c:\temp\MyFpgaBitfile.lvbitx.

Using CompactRIO:

• CAN1@ \MyFpgaBitfile.lvbitx—uses compiled bitfile MyFpgaBitfile.lvbitx,

which must be FTP copied to the root of the CompactRIO target.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-33 Automotive Diagnostic Command Set User Manual

ndOpenDiagnostic

Purpose
Opens a diagnostic session on a CAN port. Communication to the ECU is not yet started.

Format
long ndOpenDiagnostic(

char CANInterface[],

unsigned long baudrate,

unsigned short transportProtocol,

unsigned long transmitID,

unsigned long receiveID,

TD1 *diagRefOut);

Input
CANInterface

Specifies the CAN interface on which the diagnostic communication should take place.

NI-CAN

The CAN interface is the name of the NI-CAN Network Interface Object to configure.

This name uses the syntax CANx, where x is a decimal number starting at 0 that indicates

the CAN network interface (CAN0, CAN1, up to CAN63). CAN network interface

names are associated with physical CAN ports using Measurement and Automation

Explorer (MAX).

NI-XNET

By default, the Automotive Diagnostic Command Set uses NI-CAN for CAN

communication. This means you must define an NI-CAN interface for your NI-XNET

hardware (NI-CAN compatibility mode) to use your XNET hardware for CAN

communication. However, to use your NI-XNET interface in the native NI-XNET mode

(meaning it does not use the NI-XNET Compatibility Layer), you must define your

interface under NI-XNET Devices in MAX and pass the NI-XNET interface name that

the Automotive Diagnostic Command Set will use. To do this, add @nixnet to the

Protocol string (for example, CAN1@nixnet). The interface name is related to the

NI-XNET hardware naming under Devices and Interfaces in MAX.

Note By selecting nixnet as the interface string, the Automotive Diagnostic Command Set

uses the Frame Input and Output Queued sessions. To force the use of Frame Input and

Output Stream sessions instead, select ni_genie_nixnet as the interface string (for example,

CAN1@ni_genie_nixnet). An application instance can use only one Frame Input Stream

Session and one Frame Output Stream Session at a time, so use the default name nixnet as

the interface string, so that multiple NI-XNET Frame Queued Sessions can coexist on a

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-34 ni.com

single interface, and the Frame Input and Output Stream Sessions may be used, for

example, for a Frame logging/replay use case.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that handles the

CAN communication between the host system and FPGA. To access the CAN module

on the FPGA, you must specify the bitfile name after the @ (for example,

CAN1@MyBitfile.lvbitx). To specify a special RIO target, you can specify that target by

its name followed by the bitfile name (for example, CAN1@RIO1,MyBitfile.lvbitx).

Currently, only a single CAN interface is supported. RIO1 defines the RIO target name

as defined in your LabVIEW Project definition. The lvbitx filename represents the

filename and location of the bitfile on the host if using RIO or on a CompactRIO target.

This implies that you must download the bitfile to the CompactRIO target before you can

run your application. You may specify an absolute path or a path relative to the root of

your target for the bitfile.

baudrate

The diagnostic communication baud rate.

transportProtocol

Specifies the transport protocol for transferring the diagnostic service messages over the

CAN network. The following values are valid:

0 ISO TP—Normal Mode. The ISO TP as specified in ISO 15765-2 is used;

all eight data bytes of the CAN messages are used for data transfer.

1 ISO TP—Mixed Mode. The ISO TP as specified in ISO 15765-2 is used;

the first data byte is used as address extension.

2 VW TP 2.0.

transmitID

The CAN identifier for sending diagnostic request messages from the host to the ECU.

receiveID

The CAN identifier for sending diagnostic response messages from the ECU to the host.

Output
diagRefOut

A struct containing all necessary information about the diagnostic session. This is passed

as a handle to all subsequent diagnostic functions, and you must close it using

ndCloseDiagnostic.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-35 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndOpenDiagnostic opens a diagnostic communication channel to an ECU. This function

initializes the CAN port specified as input and stores a handle to it (among other internal data)

into diagRefOut, which serves as reference for further diagnostic functions.

No communication to the ECU takes place at this point. To open a diagnostic session on the

ECU, call ndStartDiagnosticSession or ndUDSDiagnosticSessionControl.

In general, you do not need to manipulate the diagRefOut struct contents, except if you use

the ISO TP—Mixed Mode transport protocol, in which case you must store the address

extensions for transmit and receive in the appropriate members of that struct.

Possible examples of selections for the interface parameter for the various hardware targets

are as follows.

Using NI-CAN hardware:

• CAN0—uses CAN interface 0.

• CAN1—uses CAN interface 1 and so on with the form CANx.

• CAN256—uses virtual NI-CAN interface 256.

Using NI-XNET hardware with NI-XNET Frame Input/Output-based sessions:

• CAN1@nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@nixnet—uses CAN interface 2 of an NI-XNET device and so on with the form

CANx.

Using NI-XNET hardware with NI-XNET Stream Input/Output-based sessions:

• CAN1@ni_genie_nixnet—uses CAN interface 1 of an NI-XNET device.

• CAN2@ni_genie_nixnet—uses CAN interface 2 of an NI-XNET device and so on with

the form CANx.

Using R Series:

• CAN1@RIO1, c:\temp\MyFpgaBitfile.lvbitx—uses a named target RIO1 as compiled

into the bitfile at location c:\temp\MyFpgaBitfile.lvbitx.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-36 ni.com

Using CompactRIO

• CAN1@ \MyFpgaBitfile.lvbitx—uses compiled bitfile MyFpgaBitfile.lvbitx,

which must be FTP copied to the root of the CompactRIO target.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-37 Automotive Diagnostic Command Set User Manual

ndOpenDiagnosticOnIP

Purpose
Opens a diagnostic session on an IP port. Communication to the ECU is not yet started.

Format
long ndOpenDiagnosticOnIP(

LVBoolean *dynamicPort,

TD1 *diagRefOut);

Input
dynamicPort

Defines whether the standard UDP port 13401 (UDP_TEST_EQUIPMENT_LISTEN) is

used for communication (FALSE) or a dynamically assigned UDP port

(UDP_TEST_EQUIPMENT_REQUEST) is opened (TRUE).

Output
diagRefOut

A struct that contains all necessary information about the diagnostic session. Pass this

struct as a handle to all subsequent diagnostic functions and close it using

ndCloseDiagnostic.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-38 ni.com

Description
ndOpenDiagnosticOnIP opens a Diagnostic on Internet Protocol (DoIP) communication

channel to an ECU. The UDP port specified as input is initialized, and a handle to it is stored

(among other internal data) in diagRefOut, which serves as reference for further diagnostic

functions.

Note that no communication to an ECU takes place at this point. To open a diagnostic session

on an ECU, call ndDoIPGetEntities to find out which DoIP entities (DoIP-capable ECUs)

exist in the network. You need to create a TCP/IP connection to the selected DoIP entity using

ndDoIPConnect. After that, you can execute diagnostic services on the TCP/IP connection.

This VI replaces the standard (CAN-based) ndOpenDiagnostic, because the CAN

parameters are no longer relevant for IP-based diagnostics.

In general, it is not necessary to manipulate the diagRefOut cluster contents.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-39 Automotive Diagnostic Command Set User Manual

ndOpenDiagnosticOnLIN

Purpose
Opens a diagnostic session on an NI-XNET LIN port. Communication to the ECU is not yet

started.

Format
long ndOpenDiagnosticOnLIN(

char LINInterface[],

unsigned long baudrate,

uint8_t NAD,

char MasterReqFrame[],

char SlaveRespFrame[]

TD1 *diagRefOut);

Input
LINInterface

Specifies the NI-XNET LIN interface on which the diagnostic communication should

take place, and selects the LIN Cluster name of a registered XNET Alias.

The Automotive Diagnostic Command Set supports NI-XNET hardware for LIN

communication only. To use your NI-XNET LIN interface, you must define your LIN

interface under NI-XNET Devices in MAX and pass the NI-XNET interface name that

the Automotive Diagnostic Command Set will use.

To do this, add @nixnet to the interface string (for example, LIN1@nixnet). The interface

name is related to the NI-XNET hardware naming under Devices and Interfaces

in MAX.

The Automotive Diagnostic Command Set requires valid assignments to a LIN database

such as LDF or FIBEX. To communicate with hardware products on the external

network, applications must understand how that hardware communicates in the actual

embedded system, such as the vehicle. This embedded communication is described

within a standardized file, such as FIBEX (.xml) or LDF (.ldf) for LIN. Within

NI-XNET, this file is referred to as a database. The database contains many object

classes, each of which describes a distinct entity in the embedded system.

For LIN, you can select a LIN database and cluster to assign all settings automatically

from the selected cluster, such as the LIN Baudrate.

Using NI-XNET hardware, the Interface string should look like the following examples:

• LIN1@nixnet: XNET_LIN_Database—Uses LIN interface 1 of an NI-XNET

device and assigns the properties such as baudrate automatically from the XNET

alias XNET_LIN_Database.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-40 ni.com

• LIN2@nixnet: XNET_LIN_Database—Uses LIN interface 2 of an NI-XNET

device and so on with the form LINx.

Refer to the NI-XNET Hardware and Software Manual to assign a database cluster alias.

baudrate

The diagnostic communication baud rate. Default is –1, which reuses the baudrate of the

selected LIN cluster from the assigned FIBEX or LDF database.

MasterReqFrame

Selects the Master Request Frame from an LDF or FIBEX database. If you assign an

empty string (default) as MasterReqFrame, the name as defined in the LIN MasterReq

standard is used.

NAD

NAD is the address of the slave node being addressed in a request. NAD also is used to

indicate the source of a response. NAD values are 1–127 (0x7F), while 0 (zero) and

128 (0x80)–255 (0xFF) are reserved for other purposes.

SlaveRespFrame

Selects the Slave Response Frame from an LDF or FIBEX database. If you assign an

empty string (default) as SlaveRespFrame, the name as defined in the LIN SlaveResp

standard is used.

Output
diagRefOut

A struct that contains all necessary information about the diagnostic session. Pass this

struct as a handle to all subsequent diagnostic functions and close it using

ndCloseDiagnostic.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndOpenDiagnosticOnLIN opens a diagnostic communication channel to an ECU. This

function initializes the LIN port specified as input and stores a handle to it (among other

internal data) into diagRefOut, which serves as reference for further diagnostic functions.

No communication to the ECU takes place at this point. To open a diagnostic session on the

ECU, call ndStartDiagnosticSession or ndUDSDiagnosticSessionControl.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-41 Automotive Diagnostic Command Set User Manual

ndSetProperty

Purpose
Sets a diagnostic global internal parameter.

Format
void ndSetProperty(

unsigned short propertyID,

unsigned long propertyValue);

Input
propertyID

Defines the parameter whose value is to be modified:

0 Timeout Diag Command is the timeout in milliseconds the master waits for the

response to a diagnostic request message. The default is 1000 ms.

1 Timeout FC (Bs) is the timeout in milliseconds the master waits for a Flow

Control frame after sending a First Frame or the last Consecutive Frame of a

block. The default is 250 ms.

2 Timeout CF (Cr) is the timeout in milliseconds the master waits for a

Consecutive Frame in a multiframe response. The default is 250 ms for CAN

and 1000 ms for LIN.

3 Receive Block Size (BS) is the number of Consecutive Frames the slave sends

in one block before waiting for the next Flow Control frame. A value of 0

(default) means all Consecutive Frames are sent in one run without interruption.

4 Wait Time CF (STmin) defines the minimum time for the slave to wait

between sending two Consecutive Frames of a block. Values from 0 to 127 are

wait times in milliseconds. Values 241 to 249 (Hex F1 to F9) mean wait times

of 100 µs to 900 µs, respectively. All other values are reserved. The default is

5 ms.

5 Max Wait Frames (N_WFTmax) is the maximum number of WAIT frames

the master accepts before terminating the connection. The default is 10.

6 Wait Frames to Send (N_WAIT) is the number of WAIT frames the master

sends every time before a CTS frame is sent. If you set this value to a negative

number (for example, 0xFFFFFFFF = –1), the master sends an OVERLOAD

frame instead of a WAIT, and reception is aborted. The default is 0 for maximum

speed.

7 Time between Waits (T_W) is the number of milliseconds the master waits

after sending a WAIT frame. The default is 25.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-42 ni.com

8 Fill CAN Frames specifies whether a CAN frame is transmitted with 8 bytes or

less.

0: Short CAN frames are sent with DLC < 8.

1: Short CAN frames are filled to 8 bytes with Fill Byte (default).

9 Fill Byte specifies the CAN frame content, filled with defined data or random

data.

0–255: Byte is used optionally to fill short CAN frames.

256: Short CAN frames are filled optionally with random bytes.

The default is 255 (0xFF).

10 Invalid Response as Error specifies how the toolkit handles an invalid ECU

response.

0: Invalid response is indicated by success = FALSE only (default).

1: Invalid response is returned as an error in addition.

11 Max RspPending Count defines the number of times a

ReqCorrectlyRcvd-RspPending (0x78) Negative Response Message will be

accepted to extend the command timeout (default 5). If this message is sent

more often in response to a request, an error –8120 is returned. If the ECU

implements commands with a long duration (for example, flash commands),

you may need to extend this number.

12 VWTP Command Time Out is the time in milliseconds the host waits for a

VWTP 2.0 command to be executed (default 50 ms). The specification states

this as 50 ms plus the network latency, but some ECUs may require higher

values.

13 STmin sets the minimum time in seconds between the end of transmission of a

frame in a diagnostic request message and the start of transmission of the next

frame in the diagnostic request message for LIN-based diagnostic

communication. The default is 0.

14 P2min sets the minimum time in seconds between reception of the last frame of

the diagnostic request and the response sent by the node for LIN-based

diagnostic communication. The default is 0.05.

15 Termination sets the NI-XNET Termination property. Reflections on the

CAN and LIN bus can cause communication failures. To prevent reflections,

termination can be present as external resistance or resistance the XNET CAN

or LIN board applies internally. This property determines whether the XNET

board uses termination to the bus. For further information about appropriate

terminations of a CAN or LIN network, refer to the NI-XNET Hardware and

Software Manual. The default is 0.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-43 Automotive Diagnostic Command Set User Manual

propertyValue

The requested property value.

Output
None.

Description
Use this function to set several internal diagnostic parameters, such as timeouts for the

transport protocol. Use ndGetProperty to read them out.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-44 ni.com

ndStatusToString

Purpose
Returns a description for an error code.

Format
void ndStatusToString(

long errorCode,

char message[],

long *len);

Input
errorCode

The status code (return value) of any other diagnostic functions.

Output
message

Returns a descriptive string for the error code.

len

On input, len must contain the message array length. On return, it contains the number

of valid data bytes in the message array.

Description
When the status code returned from an Automotive Diagnostic Command Set function is

nonzero, an error or warning is indicated. This function obtains an error/warning description

for debugging purposes.

The return code is passed into the errorCode parameter. The len parameter indicates the

number of bytes available in the string for the description. The description is truncated to size

len if needed, but a size of 1024 characters is large enough to hold any description. The text

returned in message is null-terminated, so you can use it with ANSI C functions such as

printf. For C or C++ applications, each Automotive Diagnostic Command Set function

returns a status code as a signed 32-bit integer. The following table summarizes the

Automotive Diagnostic Command Set use of this status.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-45 Automotive Diagnostic Command Set User Manual

Status Code Use

The application code should check the status returned from every Automotive Diagnostic

Command Set function. If an error is detected, close all Automotive Diagnostic Command Set

handles and exit the application. If a warning is detected, you can display a message for

debugging purposes or simply ignore the warning.

The following code shows an example of handling Automotive Diagnostic Command Set

status during application debugging.

Status = ndOpenDiagnostic ("CAN0", 500000, 0, 0x7E0, 0x7E8,

&MyDiagHandle);

PrintStat (status, "ndOpenDiagnostic");

where the function PrintStat has been defined at the top of the program as:

void PrintStat(mcTypeStatus status, char *source)

{

char statusString[1024];

long len = sizeof(statusString);

if (status != 0)

{

ndStatusToString(status, statusString, &len);

printf("\n%s\nSource = %s\n", statusString, source);

if (status < 0)

{

ndCloseDiagnostic(&MyDiagHandle);

exit(1);

}

}

}

Status Code Definition

Negative Error—Function did not perform the expected behavior.

Positive Warning—Function performed as expected, but a condition arose that

may require attention.

Zero Success—Function completed successfully.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-46 ni.com

ndVWTPConnect

Purpose
Establishes a connection channel to an ECU using the VW TP 2.0.

Format
long ndVWTPConnect(

TD1 *diagRef,

unsigned long channelID,

unsigned char applicationType);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

channelID

Defines the CAN identifier on which the ECU responds for this connection. The ECU

defines the ID on which the host transmits.

applicationType

Specifies the communication type that takes place on the communication channel.

For diagnostic applications, specify KWP2000 (1). The other values are for

manufacturer-specific purposes.

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-47 Automotive Diagnostic Command Set User Manual

Description
For the VW TP 2.0, you must establish a connection to the ECU before any diagnostic

communication can occur. This function sets up a unique communication channel to an ECU

that you can use in subsequent diagnostic service requests.

You must maintain the communication link thus created by periodically (at least once a

second) calling ndVWTPConnectionTest.

No equivalent exists for the ISO TP (ISO 15765-2), as the ISO TP does not use a special

communication link.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-48 ni.com

ndVWTPConnectionTest

Purpose
Maintains a connection channel to an ECU using the VW TP 2.0.

Format
long ndVWTPConnectionTest(

TD1 *diagRef);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
For the VW TP 2.0, you must periodically maintain the connection link to the ECU, so that

the ECU does not terminate it. You must execute this periodic refresh at least once per second.

This function sends a Connection Test message to the ECU and evaluates its response,

performing the necessary steps to maintain the connection.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special

communication link.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-49 Automotive Diagnostic Command Set User Manual

ndVWTPDisconnect

Purpose
Terminates a connection channel to an ECU using the VW TP 2.0.

Format
long ndVWTPDisconnect(

TD1 *diagRef);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
For the VW TP 2.0, you must disconnect the ECU connection link to properly terminate

communication to the ECU. This function sends the proper disconnect messages and unlinks

the communication.

Use ndVWTPConnect the create a new connection to the same ECU.

There is no equivalent for the ISO TP (ISO 15765-2), as the ISO TP does not use a special

communication link.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-50 ni.com

DoIP Functions

ndDoIPActivateRouting

Purpose
Defines the source and target address for a DoIP TCP/IP connection.

Format
long ndDoIPActivateRouting (

TD1 *diagRef,

unsigned char ActivationType,

unsigned short SourceAddress,

unsigned short *TargetAddress);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnosticOnIP

and passed to subsequent diagnostic functions. Normally, it is not necessary to manually

manipulate the elements of this struct.

ActivationType

Indicates the specific type of routing activation that may require different types of

authentication and/or confirmation. Defined values are:

0 Default.

1 WWH-OBD (worldwide harmonized onboard diagnostic).

0xE0 Use OEM-specific central security approach.

Values 2 to 0xDF are reserved. Values 0xE0 to 0xFF are OEM specific.

SourceAddress

The DoIP source address of the tester that starts the communication.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-51 Automotive Diagnostic Command Set User Manual

Output
TargetAddress

The logical address of the responding DoIP entity.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDoIPActivateRouting establishes a route for the DoIP messages and assigns an

endpoint TargetAddress. After successfully establishing a route, diagnostic messages can

be exchanged with the target DoIP entity using any of the diagnostic service functions.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-52 ni.com

ndDoIPConnect

Purpose
Creates a TCP/IP connection to a DoIP entity identified by its IP address.

Format
long ndDoIPConnect(

TD1 *diagRef,

char address[],

unsigned short SourceAddress,

unsigned short TargetAddress);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnosticOnIP

and passed to subsequent diagnostic functions. Normally, it is not necessary to manually

manipulate the elements of this struct.

address

The IP address of the DoIP entity to connect to (zero-terminated string in a.b.c.d

notation).

SourceAddress

The DoIP source address of the tester that starts the communication. You can set this

input to 0 if you are activating a route through ndDoIPActivateRouting.

TargetAddress

The DoIP target address of the device under test that should be connected to. You can set

this input to 0 if you are activating a route through ndDoIPActivateRouting.

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-53 Automotive Diagnostic Command Set User Manual

Description
ndDoIPConnect creates a unique TCP/IP data connection to a certain DoIP entity identified

by its IP address. The IP address might be retrieved from ndDoIPGetEntities. The TCP/IP

data connection is needed to exchange diagnostic service requests.

You can specify SourceAddress and TargetAddress at this point or leave them blank if

a routing activation is executed later using ndDoIPActivateRouting.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-54 ni.com

ndDoIPDisconnect

Purpose
Disconnects the TCP/IP connection to a DoIP entity.

Format
long ndDoIPDisconnect(

TD1 *diagRef);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnosticOnIP

and passed to subsequent diagnostic functions. Normally, it is not necessary to manually

manipulate the elements of this struct.

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDoIPDisconnect terminates the TCP/IP connection to the connected DoIP entity. After

executing this VI, diagnostic services no longer can be executed on that DoIP entity. You can

reconnect with ndDoIPConnect.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-55 Automotive Diagnostic Command Set User Manual

ndDoIPEntityStatus

Purpose
Gets status information from a DoIP entity.

Format
long ndDoIPEntityStatus(

TD1 *diagRef,

unsigned char *nodeType,

unsigned char *maxSockets,

unsigned char *curSockets,

LVBoolean *ok);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnosticOnIP

and passed to subsequent diagnostic functions. Normally, it is not necessary to manually

manipulate the elements of this struct.

Output
nodeType

Indicates the type of DoIP entity. Possible values are:

0 DoIP gateway

1 DoIP node

All other values are reserved.

maxSockets

Represents the maximum number of concurrent TCP/IP sockets allowed with this DoIP

entity, excluding the reserve socket required for socket handling.

curSockets

The number of currently established TCP/IP sockets.

ok

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-56 ni.com

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDoIPEntityStatus serves the purpose of identifying certain operating conditions of the

responding DoIP entity. For example, this allows for test equipment to detect existing

diagnostic communication sessions as well as a DoIP entity’s capabilities.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-57 Automotive Diagnostic Command Set User Manual

ndDoIPGetDiagPowerMode

Purpose
Gets information on the DoIP entity power state.

Format
long ndDoIPGetDiagPowerMode(

TD1 *diagRef,

unsigned char *powerMode,

LVBoolean *ok);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnosticOnIP

and passed to subsequent diagnostic functions. Normally, it is not necessary to manually

manipulate the elements of this struct.

Output
powerMode

Identifies whether the vehicle is in Diagnostic Power Mode and ready to perform reliable

diagnostics. Possible values are:

0 Not ready

1 Ready

All other values are reserved.

ok

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDoIPGetDiagPowerMode retrieves a vehicle’s Diagnostic Power Mode. For example, test

equipment can use this information to verify whether the vehicle is in Diagnostic Power

Mode, which allows for performing reliable diagnostics on the vehicle’s components.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-58 ni.com

ndDoIPGetEntities

Purpose
Returns a table of all DoIP entities (vehicles) on the local subnet, possibly restricted to EID

or VIN.

Format
long ndDoIPGetEntities(

TD1 *diagRef,

unsigned short DoIPOpenType,

char VINOrEID[],

unsigned char *DoIPEntities,

unsigned long *len);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnosticOnIP

and passed to subsequent diagnostic functions. Normally, it is not necessary to manually

manipulate the elements of this struct.

DoIPOpenType

Defines which DoIP entities this command queries and lists. Allowed values are:

0 VIN (VIN is specified in VINorEID)

1 EID (EID is specified in VINorEID)

2 All (VINorEID is ignored)

Other values are reserved.

VINOrEID

Depends on DoIPOpenType:

DoIPOpenType VINOrEID Value

0 A 17-character Vehicle Identification Number. Only DoIP entities

for this VIN are listed.

1 An Entity ID (usually a MAC address). Only the DoIP entity with

this ID is listed. Specify the EID as xx-xx-xx-xx-xx-xx, where each x

stands for a hexadecimal digit.

2 Ignored.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-59 Automotive Diagnostic Command Set User Manual

Output
DoIPEntities

Returns an array of C structs, each of which describe a DoIP entity:

typedef struct

 {

 char VIN[18];

 unsigned short Address;

 unsigned char EID[6];

 unsigned char GID[6];

 char IP_Address[16];

 }

 DOIP_ENTITY;

VIN Contains the Vehicle Identification Number assigned to the DoIP

entity. Could be empty if not assigned.

Address The logical (Target) DoIP Address of the DoIP Entity.

EID Contains the Entity ID (usually the Hardware MAC address) assigned

to the DoIP entity. Could be empty (0) if not assigned.

GID Contains the Group ID assigned to the DoIP entity. Could be empty(0)

if not assigned.

IP_Address Contains the DoIP Entity IP Address (in a.b.c.d notation).

len

Returns the size of the DoIPEntities array in bytes. Must be initialized with the size

(in bytes) of the buffer provided for DoIPEntities.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDoIPGetEntities uses a UDP broadcast to identify all DoIP entities in the local subnet

matching a certain condition. The entities responding are returned in the DoIPEntities

cluster array.

The conditions are either a common VIN or EID or simply all entities connected. Refer to the

description of DoIPOpenType and VINOrEID.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-60 ni.com

ndDoIPSendVehicleIdentRequest

Purpose
Sends a UDP request to all DoIP-capable vehicles in the local subnet to identify themselves.

Format
long ndDoIPSendVehicleIdentRequest(

TD1 *diagRef);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnosticOnIP

and passed to subsequent diagnostic functions. Normally, it is not necessary to manually

manipulate the elements of this struct.

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDoIPSendVehicleIdentRequest sends a Vehicle Identification Request to all DoIP

entities in the local subnet.

Usually, this is done as part of ndDoIPGetEntities and does not need to be executed

separately.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-61 Automotive Diagnostic Command Set User Manual

ndDoIPSendVehicleIdentReqEID

Purpose
Sends a UDP request to all DoIP-capable vehicles with a certain EID (MAC address) in the

local subnet to identify themselves.

Format
long ndDoIPSendVehicleIdentReqEID(

TD1 *diagRef,

char EID[]);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnosticOnIP

and passed to subsequent diagnostic functions. Normally, it is not necessary to manually

manipulate the elements of this struct.

EID

The Entity ID (usually the MAC address) of the DoIP entity that is assumed to respond.

Specify the EID as xx-xx-xx-xx-xx-xx, where each x stands for a hexadecimal digit

(zero-terminated string).

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDoIPSendVehicleIdentReqEID sends a Vehicle Identification Request to all DoIP

entities in the local subnet identified by the given EID.

Usually, this is done as part of ndDoIPGetEntities and does not need to be executed

separately.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-62 ni.com

ndDoIPSendVehicleIdentReqVIN

Purpose
Sends a UDP request to all DoIP-capable vehicles with a certain VIN (Vehicle Identification

Number) in the local subnet to identify themselves.

Format
long ndDoIPSendVehicleIdentReqVIN(

TD1 *diagRef,

char VIN[]);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnosticOnIP

and passed to subsequent diagnostic functions. Normally, it is not necessary to manually

manipulate the elements of this struct.

VIN

The 17-character Vehicle Identification Number of the DoIP entity that is assumed to

respond (zero-terminated string).

Output

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndDoIPSendVehicleIdentReqVIN sends a Vehicle Identification Request to all DoIP

entities in the local subnet identified by the given VIN.

Usually, this is done as part of ndDoIPGetEntities and does not need to be executed

separately.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-63 Automotive Diagnostic Command Set User Manual

KWP2000 Services

ndClearDiagnosticInformation

Purpose
Executes the ClearDiagnosticInformation service. Clears selected Diagnostic Trouble Codes

(DTCs).

Format
long ndClearDiagnosticInformation(

TD1 *diagRef,

unsigned short groupOfDTC,

TD3 *DTCDescriptor,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally,

it is not necessary to manually manipulate the elements of this struct.

groupOfDTC

Specifies the group of diagnostic trouble codes to be cleared. The following values have

a special meaning:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network related DTCs

0xFF00 All DTCs

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-64 ni.com

DTCByteLength indicates the number of bytes the ECU sends for each DTC. The

default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function clears the diagnostic information on the ECU memory. groupOfDTC specifies

the type of diagnostic trouble codes to be cleared on the ECU memory.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-65 Automotive Diagnostic Command Set User Manual

ndControlDTCSetting

Purpose
Executes the ControlDTCSetting service. Modifies the generation behavior of selected

Diagnostic Trouble Codes (DTCs).

Format
long ndControlDTCSetting(

TD1 *diagRef,

unsigned short groupOfDTC,

unsigned char dataIn[],

long len,

TD3 *DTCDescriptor,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manipulate the

elements of this struct manually.

groupOfDTC

Specifies the group of diagnostic trouble codes to be controlled. The following values

have a special meaning:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network-related DTCs

0xFF00 All DTCs

dataIn

Specifies application-specific data that control DTC generation.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-66 ni.com

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

Default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. Default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

The response byte stream is interpreted according to this description, and the resulting

DTC records are returned in the DTCs struct array.

For this service, DTCByteLength and ByteOrder are used to format the groupOfDTC

parameter correctly into the request message.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-67 Automotive Diagnostic Command Set User Manual

ndDisableNormalMessageTransmission

Purpose
Executes the DisableNormalMessageTransmission service. The ECU no longer transmits its

regular communication messages (usually CAN messages).

Format
long ndDisableNormalMessageTransmission(

TD1 *diagRef,

LVBoolean *requireResponse,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is

FALSE, no response is evaluated, and success is always returned TRUE. This

parameter is passed by reference.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-68 ni.com

ndECUReset

Purpose
Executes the ECUReset service. Resets the ECU.

Format
long ndECUReset(

TD1 *diagRef,

unsigned char mode,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

mode

Indicates the reset mode:

Hex Description

01 PowerOn

This value identifies the PowerOn ResetMode, a simulated PowerOn reset that

most ECUs perform after the ignition OFF/ON cycle. When the ECU performs

the reset, the client (tester) re-establishes communication.

02 PowerOnWhileMaintainingCommunication

This value identifies the PowerOn ResetMode, a simulated PowerOn reset that

most ECUs perform after the ignition OFF/ON cycle. When the ECU performs

the reset, the server (ECU) maintains communication with the client (tester).

03–7F Reserved

80–FF ManufacturerSpecific

This range of values is reserved for vehicle manufacturer-specific use.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-69 Automotive Diagnostic Command Set User Manual

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function requests the ECU to perform an ECU reset effectively based on the mode value

content. The vehicle manufacturer determines when the positive response message is sent.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-70 ni.com

ndEnableNormalMessageTransmission

Purpose
Executes the EnableNormalMessageTransmission service. The ECU starts transmitting its

regular communication messages (usually CAN messages).

Format
long ndEnableNormalMessageTransmission(

TD1 *diagRef,

LVBoolean *requireResponse,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is

FALSE, no response is evaluated, and success is always returned TRUE. This

parameter is passed by reference.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-71 Automotive Diagnostic Command Set User Manual

ndInputOutputControlByLocalIdentifier

Purpose
Executes the InputOutputControlByLocalIdentifier service. Modifies the ECU I/O port

behavior.

Format
long ndInputOutputControlByLocalIdentifier(

TD1 *diagRef,

unsigned char localID,

unsigned char mode,

unsigned char dataIn[],

long len,

unsigned char dataOut[],

long *len2,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

localID

Defines the local identifier of the I/O to be manipulated. The values are application

specific.

mode

Defines the I/O control type. The values are application specific. The usual values are:

0: ReturnControlToECU

1: ReportCurrentState

4: ResetToDefault

5: FreezeCurrentState

7: ShortTermAdjustment

8: LongTermAdjustment

dataIn

Defines application-specific data for this service.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-72 ni.com

Output
dataOut

Returns application-specific data for this service.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function substitutes a value for an input signal or internal ECU function. It also controls

an output (actuator) of an electronic system referenced by localID.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-73 Automotive Diagnostic Command Set User Manual

ndReadDataByLocalIdentifier

Purpose
Executes the ReadDataByLocalIdentifier service. Reads an ECU data record.

Format
long ndReadDataByLocalIdentifier(

TD1 *diagRef,

unsigned char localID,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

localID

Defines the local identifier of the data to be read. The values are application specific.

Output
dataOut

Returns the data record from the ECU. If you know the record data description, you can

use the ndConvertToPhys function to interpret it.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-74 ni.com

Description
This function requests data record values from the ECU identified by the localID parameter.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-75 Automotive Diagnostic Command Set User Manual

ndReadDTCByStatus

Purpose
Executes the ReadDiagnosticTroubleCodesByStatus service. Reads selected Diagnostic

Trouble Codes (DTCs).

Format
long ndReadDTCByStatus(

TD1 *diagRef,

unsigned char mode,

unsigned short groupOfDTC,

TD3 *DTCDescriptor,

TD4 DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

mode

Defines the type of DTCs to be read. The values are application specific. The usual values

are:

2: AllIdentified

3: AllSupported

groupOfDTC

Specifies the group of diagnostic trouble codes to be cleared. The following values have

a special meaning:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network related DTCs

0xFF00 All DTCs

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-76 ni.com

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

The default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use

ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-77 Automotive Diagnostic Command Set User Manual

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not

contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function reads diagnostic trouble codes by status from the ECU memory. If you set the

optional groupOfDTC parameter to the above specified codes, the ECU reports DTCs only

with status information based on the functional group selected by groupOfDTC.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-78 ni.com

ndReadECUIdentification

Purpose
Executes the ReadECUIdentification service. Returns ECU identification data.

Format
long ndReadECUIdentification(

TD1 *diagRef,

unsigned char mode,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

mode

Indicates the type of identification information to be returned. The values are application

specific.

Output
dataOut

Returns the ECU identification data.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-79 Automotive Diagnostic Command Set User Manual

Description
This function requests identification data from the ECU. mode identifies the type of

identification data requested. The ECU returns identification data that dataOut can access.

The dataOut format and definition are vehicle manufacturer specific.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-80 ni.com

ndReadMemoryByAddress

Purpose
Executes the ReadMemoryByAddress service. Reads data from the ECU memory.

Format
long ndReadMemoryByAddress(

TD1 *diagRef,

unsigned long address,

unsigned char size,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

address

Defines the memory address from which data are read. Only three bytes are sent to the

ECU, so the address must be in the range 0–FFFFFF (hex).

size

Defines the length of the memory block to be read.

Output
dataOut

Returns the ECU memory data.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-81 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function requests ECU memory data identified by the address and size parameters.

The dataOut format and definition are vehicle manufacturer specific. dataOut includes

analog input and output signals, digital input and output signals, internal data, and system

status information if the ECU supports them.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-82 ni.com

ndReadStatusOfDTC

Purpose
Executes the ReadStatusOfDiagnosticTroubleCodes service. Reads selected Diagnostic

Trouble Codes (DTCs).

Format
long ndReadStatusOfDTC(

TD1 *diagRef,

unsigned short groupOfDTC,

TD3 *DTCDescriptor,

TD4 DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

groupOfDTC

Specifies the group of diagnostic trouble codes to be cleared. The following values have

a special meaning:

0x0000 All powertrain DTCs

0x4000 All chassis DTCs

0x8000 All body DTCs

0xC000 All network related DTCs

0xFF00 All DTCs

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

The default is 2.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-83 Automotive Diagnostic Command Set User Manual

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use

ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not

contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-84 ni.com

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function reads diagnostic trouble codes from the ECU memory. If you specify

groupOfDTC, the ECU reports DTCs based only on the functional group selected by

groupOfDTC.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-85 Automotive Diagnostic Command Set User Manual

ndRequestRoutineResultsByLocalIdentifier

Purpose
Executes the RequestRoutineResultsByLocalIdentifier service. Returns results from an ECU

routine.

Format
long ndRequestRoutineResultsByLocalIdentifier(

TD1 *diagRef,

unsigned char localID,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

localID

Defines the local identifier of the routine from which this function retrieves results.

The values are application specific.

Output
dataOut

Returns application-specific output parameters from the routine.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-86 ni.com

Description
This function requests results (for example, exit status information) referenced by localID

and generated by the routine executed in the ECU memory.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-87 Automotive Diagnostic Command Set User Manual

ndRequestSeed

Purpose
Executes the SecurityAccess service to retrieve a seed from the ECU.

Format
long ndRequestSeed(

TD1 *diagRef,

unsigned char accessMode,

unsigned char seedOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

accessMode

Indicates the security level to be granted. The values are application specific. This is an

odd number, usually 1.

Output
seedOut

Returns the seed from the ECU.

len

On input, len must contain the seedOut array length. On return, it contains the number

of valid data bytes in the seedOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-88 ni.com

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using ndRequestSeed with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using ndSendKey with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is

returned.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-89 Automotive Diagnostic Command Set User Manual

ndSendKey

Purpose
Executes the SecurityAccess service to send a key to the ECU.

Format
long ndSendKey(

TD1 *diagRef,

unsigned char accessMode,

unsigned char keyIn[],

long len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

accessMode

Indicates the security level to be granted. The values are application specific. This is an

even number, usually 2.

keyIn

Defines the key data to be sent to the ECU.

len

Must contain the number of valid data bytes in keyIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-90 ni.com

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using ndRequestSeed with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using ndSendKey with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is

returned.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-91 Automotive Diagnostic Command Set User Manual

ndStartDiagnosticSession

Purpose
Executes the StartDiagnosticSession service. The ECU is set up in a specific diagnostic mode.

Format
long ndStartDiagnosticSession(

TD1 *diagRef,

unsigned char mode,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

mode

Indicates the diagnostic mode into which the ECU is brought. The values are application

specific.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value
The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function enables different ECU diagnostic modes. The possible diagnostic modes are

not defined in ISO 14230 and are application specific. A diagnostic session starts only if

communication with the ECU is established. For more details about starting communication,

refer to ISO 14230-2. If no diagnostic session is requested after ndOpenDiagnostic,

a default session is enabled automatically in the ECU. The default session supports at least

the following services:

• The StopCommunication service (refer to ndCloseDiagnostic and the ISO 14230-2

standard).

• The TesterPresent service (refer to ndTesterPresent and the ISO 14230-3 standard).

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-92 ni.com

ndStartRoutineByLocalIdentifier

Purpose
Executes the StartRoutineByLocalIdentifier service. Executes a routine on the ECU.

Format
long ndStartRoutineByLocalIdentifier(

TD1 *diagRef,

unsigned char localID,

unsigned char dataIn[],

long len,

unsigned char dataOut[],

long *len2,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

localID

Defines the local identifier of the routine to be started. The values are application

specific.

dataIn

Defines application-specific input parameters for the routine.

len

Must contain the number of valid data bytes in dataIn.

Output
dataOut

Returns application-specific output parameters from the routine.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-93 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function starts a routine in the ECU memory. The ECU routine starts after the positive

response message is sent. The routine stops until the ndStopRoutineByLocalIdentifier

function and corresponding service are issued. The routines could be either tests that run

instead of normal operating code or routines enabled and executed with the normal operating

code running. In the first case, you may need to switch the ECU to a specific diagnostic mode

using ndOpenDiagnostic or unlock the ECU using the SecurityAccess service prior to

using ndStartRoutineByLocalIdentifier.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-94 ni.com

ndStopDiagnosticSession

Purpose
Executes the StopDiagnosticSession service. Returns the ECU to normal mode.

Format
long ndStopDiagnosticSession(

TD1 *diagRef,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function disables the current ECU diagnostic mode. A diagnostic session stops only if

communication with the ECU is established and a diagnostic session is running. If no

diagnostic session is running, the default session is active. ndStopDiagnosticSession

cannot disable the default session. If the ECU stops the current diagnostic session, it performs

the necessary action to restore its normal operating conditions. Restoring the normal

ECU operating conditions may include resetting all controlled actuators activated during

the diagnostic session being stopped, and resuming all normal ECU algorithms. You

should call ndStopDiagnosticSession before disabling communication with

ndCloseDiagnostic, but only if you previously used ndStartDiagnosticSession.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-95 Automotive Diagnostic Command Set User Manual

ndStopRoutineByLocalIdentifier

Purpose
Executes the StopRoutineByLocalIdentifier service. Stops a routine on the ECU.

Format
long ndStopRoutineByLocalIdentifier(

TD1 *diagRef,

unsigned char localID,

unsigned char dataIn[],

long len,

unsigned char dataOut[],

long *len2,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

localID

Defines the local identifier of the routine to be stopped. The values are application

specific.

dataIn

Defines application-specific input parameters for the routine.

len

Must contain the number of valid data bytes in dataIn.

Output
dataOut

Returns application-specific output parameters from the routine.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-96 ni.com

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function stops a routine in the ECU memory referenced by localID.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-97 Automotive Diagnostic Command Set User Manual

ndTesterPresent

Purpose
Executes the TesterPresent service. Keeps the ECU in diagnostic mode.

Format
long ndTesterPresent(

TD1 *diagRef,

LVBoolean *requireResponse,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is

FALSE, no response is evaluated, and success is always returned TRUE. This

parameter is passed by reference.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-98 ni.com

Description
To ensure proper ECU operation, you may need to keep the ECU informed that a diagnostic

session is still in progress. If you do not send this information (for example, because the

communication is broken), the ECU returns to normal mode from diagnostic mode after a

while.

The TesterPresent service is this “keep alive” signal. It does not affect any other ECU

operation.

Keep calling ndTesterPresent within the ECU timeout period if no other service is

executed.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-99 Automotive Diagnostic Command Set User Manual

ndWriteDataByLocalIdentifier

Purpose
Executes the WriteDataByLocalIdentifier service. Writes a data record to the ECU.

Format
long ndWriteDataByLocalIdentifier(

TD1 *diagRef,

unsigned char localID,

unsigned char dataIn[],

long len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

localID

Defines the local identifier of the data to be read. The values are application specific.

dataIn

Defines the data record to be written to the ECU. If you know the record data description,

use ndConvertFromPhys to generate this record.

len

Must contain the number of valid data bytes in dataIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-100 ni.com

Description
This function performs the WriteDataByLocalIdentifier service and writes RecordValues

(data values) to the ECU. dataIn identifies the data values to be transmitted. The vehicle

manufacturer must ensure the ECU conditions are met when performing this service. Typical

use cases are clearing nonvolatile memory, resetting learned values, setting option content,

setting the Vehicle Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-101 Automotive Diagnostic Command Set User Manual

ndWriteMemoryByAddress

Purpose
Executes the WriteMemoryByAddress service. Writes data to the ECU memory.

Format
long ndWriteMemoryByAddress(

TD1 *diagRef,

unsigned long address,

unsigned char size,

unsigned char dataIn[],

long len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

address

Defines the memory address to which data are written. Only three bytes are sent to the

ECU, so the address must be in the range 0–FFFFFF (hex).

size

Defines the length of the memory block to be written.

dataIn

Defines the memory block to be written to the ECU.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-102 ni.com

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This VI performs the KWP2000 WriteDataByAddress service and writes RecordValues (data

values) to the ECU. address and size identify the data. The vehicle manufacturer must

ensure the ECU conditions are met when performing this service. Typical use cases are

clearing nonvolatile memory, resetting learned values, setting option content, setting the

Vehicle Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 14230-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-103 Automotive Diagnostic Command Set User Manual

UDS (DiagOnCAN) Services

ndUDSClearDiagnosticInformation

Purpose
Executes the UDS ClearDiagnosticInformation service. Clears selected Diagnostic Trouble

Codes (DTCs).

Format
long ndUDSClearDiagnosticInformation(

TD1 *diagRef,

unsigned long groupOfDTC,

TD3 *DTCDescriptor,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally,

it is not necessary to manually manipulate the elements of this struct.

groupOfDTC

Specifies the group of diagnostic trouble codes to be cleared. The values are application

specific. The following value has a special meaning:

0xFFFFFF All DTCs

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC. The

default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-104 ni.com

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function clears the diagnostic information on the ECU memory. Depending on the value

of groupOfDTC, the ECU is requested to clear the corresponding DTCs. The groupOfDTC

values are application specific.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-105 Automotive Diagnostic Command Set User Manual

ndUDSCommunicationControl

Purpose
Executes the UDS CommunicationControl service. Switches transmission and/or reception of

the normal communication messages (usually CAN messages) on or off.

Format
long ndUDSCommunicationControl(

TD1 *diagRef,

unsigned char type,

unsigned char communicationType,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

type

Indicates whether transmission/reception is to be switched on/off. The usual values are:

00: enableRxAndTx

01: enableRxAndDisableTx

02: disableRxAndEnableTx

03: disableRxAndTx

communicationType

A bitfield indicating which application level is to be changed. The usual values are:

01: application

02: networkManagement

You can change more than one level at a time.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-106 ni.com

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the UDS CommunicationControl service and switches transmission

and/or reception of the normal communication messages (usually CAN messages) on or off.

The type and communication type parameters are vehicle manufacturer specific

(one OEM may disable the transmission only, while another OEM may disable the

transmission and reception based on vehicle manufacturer specific needs). The request is

either transmitted functionally addressed to all ECUs with a single request message, or

transmitted physically addressed to each ECU in a separate request message.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-107 Automotive Diagnostic Command Set User Manual

ndUDSControlDTCSetting

Purpose
Executes the UDS ControlDTCSetting service. Modifies Diagnostic Trouble Code (DTC)

behavior.

Format
long ndUDSControlDTCSetting(

TD1 *diagRef,

unsigned char type,

unsigned char dataIn[],

long len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

type

Specifies the control mode:

1: on

2: off

dataIn

Specifies application-specific data that control DTC generation.

len

Must contain the number of valid data bytes in dataIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-108 ni.com

ndUDSDiagnosticSessionControl

Purpose
Executes the UDS DiagnosticSessionControl service. The ECU is set up in a specific

diagnostic mode.

Format
long ndUDSDiagnosticSessionControl(

TD1 *diagRef,

unsigned char mode,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

mode

Indicates the diagnostic mode into which the ECU is brought. The values are application

specific. The usual values are:

01: defaultSession

02: ECUProgrammingSession

03: ECUExtendedDiagnosticSession

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-109 Automotive Diagnostic Command Set User Manual

ndUDSECUReset

Purpose
Executes the UDS ECUReset service. Resets the ECU.

Format
long ndUDSECUReset(

TD1 *diagRef,

unsigned char mode,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

mode

Indicates the reset mode:

Hex Description

01 hardReset

02 keyOffOnReset

03 softReset

04 enableRapidPowerShutDown

05 disableRapidPowerShutDown

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-110 ni.com

Description
This function requests the ECU to perform an ECU reset effectively based on the mode

parameter value content. The vehicle manufacturer determines when the positive response

message is sent. Depending the value of mode, the corresponding ECU reset event is executed

as a hard reset, key off/on reset, soft reset, or other reset.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-111 Automotive Diagnostic Command Set User Manual

ndUDSInputOutputControlByIdentifier

Purpose
Executes the UDS InputOutputControlByIdentifier service. Modifies ECU I/O port behavior.

Format
long ndUDSInputOutputControlByIdentifier(

TD1 *diagRef,

unsigned short ID,

unsigned char mode,

unsigned char dataIn[],

long len,

unsigned char dataOut[],

long *len2,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

ID

Defines the identifier of the I/O to be manipulated. The values are application specific.

mode

Defines the I/O control type. The values are application specific. The usual values are:

0: ReturnControlToECU

1: ResetToDefault

2: FreezeCurrentState

3: ShortTermAdjustment

dataIn

Defines application-specific data for this service.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-112 ni.com

Output
dataOut

Returns application-specific data for this service.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function substitutes a value for an input signal or internal ECU function. It also controls

an output (actuator) of an electronic system referenced by the ID parameter.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-113 Automotive Diagnostic Command Set User Manual

ndUDSReadDataByIdentifier

Purpose
Executes the UDS ReadDataByIdentifier service. Reads an ECU data record.

Format
long ndUDSReadDataByIdentifier(

TD1 *diagRef,

unsigned short ID,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

ID

Defines the identifier of the data to be read. The values are application specific.

Output
dataOut

Returns the ECU data record. If you know the record data description, use

ndConvertToPhys to interpret this record.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-114 ni.com

Description
This function requests data record values from the ECU identified by the ID parameter.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-115 Automotive Diagnostic Command Set User Manual

ndUDSReadMemoryByAddress

Purpose
Executes the UDS ReadMemoryByAddress service. Reads data from the ECU memory.

Format
long ndUDSReadMemoryByAddress(

TD1 *diagRef,

unsigned long address,

unsigned char size,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

address

Defines the memory address from which data are read. Only three bytes are sent to the

ECU, so the address must be in the range 0–FFFFFF (hex).

size

Defines the length of the memory block to be read.

Output
dataOut

Returns the ECU memory data.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-116 ni.com

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function requests memory data from the ECU identified by the address and size

parameters. The dataOut format and definition are vehicle manufacturer specific. dataOut

includes analog input and output signals, digital input and output signals, internal data, and

system status information if the ECU supports them.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-117 Automotive Diagnostic Command Set User Manual

ndUDSReportDTCBySeverityMaskRecord

Purpose
Executes the ReportDTCBySeverityMaskRecord subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes

(DTCs).

Format
long ndUDSReportDTCBySeverityMaskRecord(

TD1 *diagRef,

unsigned char severityMask,

unsigned char status,

TD3 *DTCDescriptor,

unsigned char *statusAvailMask,

TD4 DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

severityMask

Defines the status of DTCs to be read. The values are application specific.

status

Defines the status of DTCs to be read. The values are application specific.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

The default is 3 for UDS.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-118 ni.com

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. For this subfunction, the default is 2.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Output
statusAvailMask

An application-specific value returned for all DTCs.

DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use

ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-119 Automotive Diagnostic Command Set User Manual

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the ReportDTCBySeverityMaskRecord subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-120 ni.com

ndUDSReportDTCByStatusMask

Purpose
Executes the ReportDTCByStatusMask subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes

(DTCs).

Format
long ndUDSReportDTCByStatusMask(

TD1 *diagRef,

unsigned char statusMask,

TD3 *DTCDescriptor,

unsigned char *statusAvailMask,

TD4 DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

statusMask

Defines the status of DTCs to be read. The values are application specific.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

The default is 3 for UDS.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-121 Automotive Diagnostic Command Set User Manual

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Output
statusAvailMask

An application-specific value returned for all DTCs.

DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use

ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not

contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-122 ni.com

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the ReportDTCByStatusMask subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs from the ECU.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-123 Automotive Diagnostic Command Set User Manual

ndUDSReportSeverityInformationOfDTC

Purpose
Executes the ReportSeverityInformationOfDTC subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service. Reads selected Diagnostic Trouble Codes

(DTCs) are read.

Format
long ndUDSReportSeverityInformationOfDTC(

TD1 *diagRef,

unsigned long DTCMaskRecord,

TD3 *DTCDescriptor,

unsigned char *statusAvailMask,

TD4 DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

DTCMaskRecord

Defines the status of DTCs to be read. The values are application specific.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

The default is 3 for UDS.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. For this subfunction, the default is 2.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-124 ni.com

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Output
statusAvailMask

An application-specific value returned for all DTCs.

DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use

ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC.

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-125 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the ReportSeverityInformationOfDTC subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service and reads the selected DTCs from the ECU

memory.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-126 ni.com

ndUDSReportSupportedDTCs

Purpose
Executes the ReportSupportedDTCs subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service. Reads all supported Diagnostic Trouble

Codes (DTCs).

Format
long ndUDSReportSupportedDTCs(

TD1 *diagRef,

TD3 *DTCDescriptor,

unsigned char *statusAvailMask,

TD4 DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

The default is 3 for UDS.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-127 Automotive Diagnostic Command Set User Manual

Output
statusAvailMask

An application-specific value returned for all DTCs.

DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use

ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not

contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-128 ni.com

Description
This function executes the ReportSupportedDTCs subfunction of the UDS

ReadDiagnosticTroubleCodeInformation service and reads all supported DTCs from the

ECU memory.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-129 Automotive Diagnostic Command Set User Manual

ndUDSRequestDownload

Purpose
Initiates a download of data to the ECU.

Format
long ndUDSRequestDownload (

TD1 *diagRef,

unsigned long memoryAddress,

unsigned long memorySize,

unsigned char memoryAddressLength,

unsigned char memorySizeLength,

unsigned char dataFormatIdentifier,

unsigned long *blockSize,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

memoryAddress

Defines the memory address to which data are to be written.

memorySize

Defines the size of the data to be written.

memoryAddressLength

Defines the number of bytes of the memoryAddress parameter that are written to the

ECU. This value is implementation dependent and must be in the range of 1–4. For

example, if this value is 2, only the two lowest bytes of the address are written to

the ECU.

memorySizeLength

Defines the number of bytes of the memorySize parameter that are written to the ECU.

This value is implementation dependent and must be in the range of 1–4. For example,

if this value is 2, only the two lowest bytes of the size are written to the ECU.

dataFormatIdentifier

Defines the compression and encryption scheme for the data blocks written to the ECU.

A value of 0 means no compression/no encryption. Nonzero values are not standardized

and implementation dependent.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-130 ni.com

Output
blockSize

Returns the number of data bytes to be transferred to the ECU in subsequent

ndUDSTransferData requests.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndUDSRequestDownload initiates the download of a data block to the ECU. This is

required to set up the download process; the actual data transfer occurs with subsequent

ndUDSTransferData requests. The transfer must occur in blocks of the size this service

returns (the blockSize parameter). After the download completes, use the

ndUDSRequestTransferExit service to terminate the process.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-131 Automotive Diagnostic Command Set User Manual

ndUDSRequestSeed

Purpose
Executes the UDS SecurityAccess service to retrieve a seed from the ECU.

Format
long ndUDSRequestSeed(

TD1 *diagRef,

unsigned char accessMode,

unsigned char seedOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

accessMode

Indicates the security level to be granted. The values are application specific. This is an

odd number, usually 1.

Output
seedOut

Returns the seed from the ECU.

len

On input, len must contain the seedOut array length. On return, it contains the number

of valid data bytes in the seedOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-132 ni.com

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using ndUDSRequestSeed with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using ndUDSSendKey with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is

returned.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-133 Automotive Diagnostic Command Set User Manual

ndUDSRequestTransferExit

Purpose
Terminates a download/upload process.

Format
long ndUDSRequestTransferExit (

TD1 *diagRef,

unsigned char dataIn[],

long len,

unsigned char dataOut[],

long *len2,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

dataIn

Defines a data record to be written to the ECU as part of the termination process.

The meaning is implementation dependent; this may be a checksum or a similar

verification instrument.

len

Must be set to the buffer size for the dataIn parameter.

Output
dataOut

Returns a memory data block from the ECU as part of the termination process. The

meaning is implementation dependent; this may be a checksum or a similar verification

instrument.

len2

Must be set to the buffer size for the dataOut parameter. On return, it contains the actual

data size returned in dataOut.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-134 ni.com

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndUDSRequestTransferExit terminates a download or upload process initialized with

ndUDSRequestDownload or ndUDSRequestUpload.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-135 Automotive Diagnostic Command Set User Manual

ndUDSRequestUpload

Purpose
Initiates an upload of data from the ECU.

Format
long ndUDSRequestUpload (

TD1 *diagRef,

unsigned long memoryAddress,

unsigned long memorySize,

unsigned char memoryAddressLength,

unsigned char memorySizeLength,

unsigned char dataFormatIdentifier,

unsigned long *blockSize,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

memoryAddress

Defines the memory address from which data are to be read.

memorySize

Defines the size of the data to be read.

memoryAddressLength

Defines the number of bytes of the memoryAddress parameter that are written to the

ECU. This value is implementation dependent and must be in the range of 1–4. For

example, if this value is 2, only the two lowest bytes of the address are written to

the ECU.

memorySizeLength

Defines the number of bytes of the memorySize parameter that are written to the ECU.

This value is implementation dependent and must be in the range of 1–4. For example,

if this value is 2, only the two lowest bytes of the size are written to the ECU.

dataFormatIdentifier

Defines the compression and encryption scheme used for the data blocks written to the

ECU. A value of 0 means no compression/no encryption. Nonzero values are not

standardized and implementation dependent.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-136 ni.com

Output
blockSize

Returns the number of data bytes to be transferred from the ECU in subsequent

ndUDSTransferData requests.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndUDSRequestUpload initiates the upload of a data block from the ECU. This is

required to set up the upload process; the actual data transfer occurs with subsequent

ndUDSTransferData requests. The transfer must occur in blocks of the size that this service

returns (the blockSize parameter). After the download completes, use the

ndUDSRequestTransferExit service to terminate the process.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-137 Automotive Diagnostic Command Set User Manual

ndUDSRoutineControl

Purpose
Executes the UDS RoutineControl service. Executes a routine on the ECU.

Format
long ndUDSRoutineControl(

TD1 *diagRef,

unsigned short ID,

unsigned char mode,

unsigned char dataIn[],

long len,

unsigned char dataOut[],

long *len2,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

ID

Defines the identifier of the routine to be started. The values are application specific.

mode

Defines the operation mode for this service:

1: Start Routine

2: Stop Routine

3: Request Routine Results

Other values are application specific.

dataIn

Defines application-specific input parameters for the routine.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-138 ni.com

Output
dataOut

Returns application-specific output parameters from the routine.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function executes the UDS RoutineControl service and launches an ECU routine,

stops an ECU routine, or requests ECU routine results from the ECU.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-139 Automotive Diagnostic Command Set User Manual

ndUDSSendKey

Purpose
Executes the UDS SecurityAccess service to send a key to the ECU.

Format
long ndUDSSendKey(

TD1 *diagRef,

unsigned char accessMode,

unsigned char keyIn[],

long len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

accessMode

Indicates the security level to be granted. The values are application specific. This is an

even number, usually 2.

keyIn

Defines the key data to be sent to the ECU.

len

Must contain the number of valid data bytes in keyIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-140 ni.com

Description
The usual procedure for getting a security access to the ECU is as follows:

1. Request a seed from the ECU using ndUDSRequestSeed with access mode = n.

2. From the seed, compute a key for the ECU on the host.

3. Send the key to the ECU using ndUDSSendKey with access mode = n + 1.

4. The security access is granted if the ECU validates the key sent. Otherwise, an error is

returned.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-141 Automotive Diagnostic Command Set User Manual

ndUDSTesterPresent

Purpose
Executes the UDS TesterPresent service. Keeps the ECU in diagnostic mode.

Format
long ndUDSTesterPresent(

TD1 *diagRef,

LVBoolean *requireResponse,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

requireResponse

Indicates whether a response to this service is required. If *requireResponse is

FALSE, no response is evaluated, and success is always returned TRUE. This

parameter is passed by reference.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-142 ni.com

Description
To ensure proper ECU operation, you may need to keep the ECU informed that a diagnostic

session is still in progress. If you do not send this information (for example, because the

communication is broken), the ECU returns to normal mode from diagnostic mode after a

while.

The TesterPresent service is this “keep alive” signal. It does not affect any other ECU

operation.

Keep calling ndUDSTesterPresent within the ECU timeout period if no other service is

executed.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-143 Automotive Diagnostic Command Set User Manual

ndUDSTransferData

Purpose
Transfers data to/from the ECU in a download/upload process.

Format
long ndUDSTransferData (

TD1 *diagRef,

unsigned char *blockSequenceCounter,

unsigned char dataIn[],

long len,

unsigned char dataOut[],

long *len2,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

blockSequenceCounter

Used to number the data blocks to be transferred to/from the ECU. The block

sequence counter value starts at 01 hex with the first ndUDSTransferData request that

follows the ndUDSRequestDownload or ndUDSRequestUpload service. Its value is

incremented by 1 for each subsequent ndUDSTransferData request. At the value of

FF hex, the block sequence counter rolls over and starts at 00 hex with the next

ndUDSTransferData request.

The block sequence counter is updated automatically, and the updated value is returned.

dataIn

Defines the data block to be written to the ECU.

For a download, this is a memory data block to be downloaded to the ECU.

For an upload, the meaning is implementation dependent.

len

Must be set to the buffer size for the dataIn parameter.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-144 ni.com

Output
blockSequenceCounter

Returns the updated value of the block sequence counter (refer to the description in the

Input section).

dataOut

Returns the memory data from the ECU.

For a download, this may contain a checksum or similar verification instrument; the

meaning is implementation dependent.

For an upload, this is a memory data block uploaded from the ECU.

len2

Must be set to the buffer size for the dataOut parameter. On return, it contains the actual

data size returned in dataOut.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
ndUDSTransferData executes the data transfer of a download process (initiated with a

previous ndUDSRequestDownload request) or an upload process (initiated with a previous

ndUDSRequestUpload request). The data transfer must occur in blocks of the size that has

been returned in the block size parameter of the respective request service. After the data

transfer completes, terminate the operation by calling the ndUDSRequestTransferExit

service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-145 Automotive Diagnostic Command Set User Manual

ndUDSWriteDataByIdentifier

Purpose
Executes the UDS WriteDataByIdentifier service. Writes a data record to the ECU.

Format
long ndUDSWriteDataByIdentifier(

TD1 *diagRef,

unsigned short ID,

unsigned char dataIn[],

long len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

ID

Defines the identifier of the data to be read. The values are application specific.

dataIn

Defines the data record written to the ECU. If you know the record data description,

use ndConvertFromPhys to generate this record.

len

Must contain the number of valid data bytes in dataIn.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-146 ni.com

Description
This function performs the UDS service WriteDataByIdentifier and writes RecordValues

(data values) into the ECU. dataIn identifies the data. The vehicle manufacturer must ensure

the ECU conditions are met when performing this service. Typical use cases are clearing

nonvolatile memory, resetting learned values, setting option content, setting the Vehicle

Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-147 Automotive Diagnostic Command Set User Manual

ndUDSWriteMemoryByAddress

Purpose
Executes the UDS WriteMemoryByAddress service. Writes data to the ECU memory.

Format
long ndUDSWriteMemoryByAddress(

TD1 *diagRef,

unsigned long address,

unsigned char size,

unsigned char dataIn[],

long len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

address

Defines the memory address to which data are written. Only three bytes are sent to the

ECU, so the address must be in the range 0–FFFFFF (hex).

size

Defines the length of the memory block to be written.

dataIn

Defines the memory block to be written to the ECU.

len

Must contain the number of valid data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-148 ni.com

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
This function performs the UDS service WriteMemoryByAddress and writes RecordValues

(data values) into the ECU. address and size identify the data. The vehicle manufacturer

must ensure the ECU conditions are met when performing this service. Typical use cases are

clearing nonvolatile memory, resetting learned values, setting option content, setting the

Vehicle Identification Number, or changing calibration values.

For further details about this service, refer to the ISO 15765-3 standard.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-149 Automotive Diagnostic Command Set User Manual

ndUDS06ReadMemoryByAddress

Executes the UDS ReadMemoryByAddress service. Reads data from the ECU memory.

Format
long ndUDS06ReadMemoryByAddress(

TD1 *diagRef,

unsigned char memAddrLen,

unsigned char memSizeLen,

unsigned long address,

unsigned long size,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

memAddrLen

Defines the number of address bytes transferred to the ECU. This implicitly defines the

maximum allowed for the address parameter.

memSizeLen

Defines the number of size bytes transferred to the ECU. This implicitly defines the

maximum allowed for the size parameter.

address

Defines the memory address from which data are read.

size

Defines the length of the memory block to be read.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-150 ni.com

Output
dataOut

Returns the memory data from the ECU.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
Similar to ndUDSReadMemoryByAddress. You can define the address and size parameter

sizes in bytes.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-151 Automotive Diagnostic Command Set User Manual

ndUDS06WriteMemoryByAddress

Purpose
Executes the UDS WriteMemoryByAddress service. Writes data to the ECU memory.

Format
long ndUDS06WriteMemoryByAddress(

TD1 *diagRef,

unsigned char memAddrLen,

unsigned char memSizeLen,

unsigned long address,

unsigned long size,

unsigned char dataIn[],

long len,

LVBoolean *success);

Input
diagRef

Specifies the handle for the diagnostic session, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

memAddrLen

Defines the number of address bytes transferred to the ECU. This implicitly defines the

maximum allowed for the address parameter.

memSizeLen

Defines the number of size bytes transferred to the ECU. This implicitly defines the

maximum allowed for the size parameter.

address

Defines the memory address to which data are written.

size

Defines the length of the memory block to be written.

dataIn

Defines the memory block to be written to the ECU.

len

Must contain the number of (valid) data bytes in dataIn.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-152 ni.com

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
Similar to the ndUDSWriteMemoryByAddress. You can define the address and size

parameter sizes in bytes.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-153 Automotive Diagnostic Command Set User Manual

OBD (On-Board Diagnostics) Services

ndOBDClearEmissionRelatedDiagnosticInformation

Purpose
Executes the OBD Clear Emission Related Diagnostic Information service. Clears

emission-related diagnostic trouble codes (DTCs) in the ECU.

Format
long ndOBDClearEmissionRelatedDiagnosticInformation(

TD1 *diagRef,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

Output
success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-154 ni.com

ndOBDRequestControlOfOnBoardDevice

Purpose
Executes the OBD Request Control Of On-Board Device service. Modifies ECU I/O port

behavior.

Format
long ndOBDRequestControlOfOnBoardDevice(

TD1 *diagRef,

unsigned char TID,

unsigned char dataIn[],

long len,

unsigned char dataOut[],

long *len2,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

TID

Defines the test identifier of the I/O to be manipulated. The values are application

specific.

dataIn

Defines application-specific data for this service.

len

Must contain the number of valid data bytes in dataIn.

Output
dataOut

Returns application-specific data for this service.

len2

On input, len2 must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-155 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-156 ni.com

ndOBDRequestCurrentPowertrainDiagnosticData

Purpose
Executes the OBD Request Current Powertrain Diagnostic Data service. Reads an ECU data

record.

Format
long ndOBDRequestCurrentPowertrainDiagnosticData(

TD1 *diagRef,

unsigned char PID,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

PID

Defines the parameter identifier of the data to be read. The SAE J1979 standard defines

the values.

Output
dataOut

Returns the ECU data record. If you know the record data description, use

ndConvertToPhys to interpret this record. You can obtain the description from the

SAE J1979 standard.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-157 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-158 ni.com

ndOBDRequestEmissionRelatedDTCs

Purpose
Executes the OBD Request Emission Related DTCs service. Reads all emission-related

Diagnostic Trouble Codes (DTCs).

Format
long ndOBDRequestEmissionRelatedDTCs(

TD1 *diagRef,

TD3 *DTCDescriptor,

TD4 DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

The default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 0 for OBD.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-159 Automotive Diagnostic Command Set User Manual

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use

ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

AddData contains optional additional data for this DTC. Usually, this does not

contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-160 ni.com

ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle

Purpose
Executes the OBD Request Emission Related DTCs During Current Drive Cycle service.

Reads the emission-related Diagnostic Trouble Codes (DTCs) that occurred during the

current (or last completed) drive cycle.

Format
long ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle(

TD1 *diagRef,

TD3 *DTCDescriptor,

TD4 DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

The default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 0 for OBD.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-161 Automotive Diagnostic Command Set User Manual

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use

ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

AddData contains optional additional data for this DTC. Usually, this does not

contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-162 ni.com

ndOBDRequestOnBoardMonitoringTestResults

Purpose
Executes the OBD Request On-Board Monitoring Test Results service. Reads an ECU test

data record.

Format
long ndOBDRequestOnBoardMonitoringTestResults(

TD1 *diagRef,

unsigned char OBDMID,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

OBDMID

Defines the parameter identifier of the data to be read. The SAE J1979 standard defines

the values.

Output
dataOut

Returns the ECU test data record. If you know the record data description, use

ndConvertToPhys to interpret this record. You can obtain the description from the

SAE J1979 standard.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-163 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-164 ni.com

ndOBDRequestPermanentFaultCodes

Purpose
Executes the OBD Request Permanent Fault Codes service. All permanent Diagnostic

Trouble Codes (DTCs) are read.

Format
long ndOBDRequestPermanentFaultCodes(

TD1 *diagRef,

TD3 *DTCDescriptor,

TD4 DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC.

The default is 2.

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 0 for OBD.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and

returns the resulting DTC records in the DTCs struct array.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-165 Automotive Diagnostic Command Set User Manual

Output
DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. For the default 2-byte DTCs, use

ndDTCToString to convert this code to readable format as defined by SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisMonitoringCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisMonitoringCycle

7 warningIndicatorRequested

For OBD, this field usually does not contain valid information.

AddData contains optional additional data for this DTC. Usually, this does not

contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-166 ni.com

ndOBDRequestPowertrainFreezeFrameData

Purpose
Executes the OBD Request Powertrain Freeze Frame Data service. Reads an ECU data record

stored while a diagnostic trouble code occurred.

Format
long ndOBDRequestPowertrainFreezeFrameData(

TD1 *diagRef,

unsigned char PID,

unsigned char nFrame,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

PID

Defines the parameter identifier of the data to be read. The SAE J1979 standard defines

the values.

nFrame

The number of the freeze frame from which the data are to be retrieved.

Output
dataOut

Returns the ECU data record. If you know the record data description, use

ndConvertToPhys to interpret this record. You can obtain the description from the

SAE J1979 standard.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-167 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

ndOBDRequestVehicleInformation

Purpose
Executes the OBD Request Vehicle Information service. Reads a set of information data from

the ECU.

Format
long ndOBDRequestVehicleInformation(

TD1 *diagRef,

unsigned char infoType,

unsigned char *nItems,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic or

ndOpenDiagnosticOnIP and passed to subsequent diagnostic functions. Normally, it

is not necessary to manually manipulate the elements of this struct.

infoType

Defines the type of information to be read. The SAE J1979 standard defines the values.

Output
nItems

The number of data items (not bytes) this service returns.

dataOut

Returns the ECU vehicle information. You can obtain the description from the

SAE J1979 standard.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-169 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-170 ni.com

WWH-OBD (World-Wide-Harmonized On-Board
Diagnostics) Services

ndWWHOBDClearEmissionRelatedDTCs

Purpose
Executes the WWH-OBD ClearDiagnosticInformation service. Clears selected Diagnostic

Trouble Codes (DTCs).

Format
long ndWWHOBDClearEmissionRelatedDTCs (

TD1 *diagRef,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

Output

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The WWH-OBD ClearDiagnosticInformation service is based on the UDS

ClearDiagnosticInformation service (ISO 14229-1).

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-171 Automotive Diagnostic Command Set User Manual

ndWWHOBDConvertDTCsToJ1939

Purpose
Converts DTCs to the J1939 DTC format.

Format
long ndWWHOBDConvertDTCsToJ1939 (

TD4 DTCs[],

long lenDTCs,

TD5 DTCsJ1939[],

long *lenDTCsJ1939);

Input
DTCs

The DTC to convert as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

lenDTCs

Must contain the number of valid data bytes in DTCs.

Output
DTCsJ1939

Returns the converted DTCs to the J1939 format as an array of structs:

typedef struct {

unsigned long SPN;

unsigned long Status;

unsigned long AddData;

unsigned long FMI;

} TD5;

SPN contains the suspect parameter number for this DTC.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisOperationCycle

2 pendingDTC

3 confirmedDTC

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-172 ni.com

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisOperationCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not contain

valid information (refer to DTCDescriptor).

FMI contains the failure mode identifier.

lenDTCsJ1939

On input, lenDTCsJ1939 must contain the DTCsJ1939 array length. On return, it

contains the number of valid data bytes in the DTCsJ1939 array.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-173 Automotive Diagnostic Command Set User Manual

ndWWHOBDConvertDTCsToJ2012

Purpose
Converts DTCs to the J2012 DTC format.

Format
long ndWWHOBDConvertDTCsToJ2012 (

TD4 DTCs[],

long lenDTCs,

TD5 DTCsJ2012[],

long *lenDTCsJ2012);

Input
DTCs

The DTC to convert as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

lenDTCs

Must contain the number of valid data bytes in DTCs.

Output
DTCsJ2012

Returns the converted DTCs to the J2012 format as an array of structs:

typedef struct {

unsigned short DTC;

unsigned char FTB;

unsigned long Status;

unsigned long AddData;

} TD6;

DTC is the resulting Diagnostic Trouble Code.

FTB contains the failure type byte.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisOperationCycle

2 pendingDTC

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-174 ni.com

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

6 testNotCompletedThisOperationCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not contain

valid information (refer to DTCDescriptor).

lenDTCsJ2012

On input, lenDTCsJ2012 must contain the DTCsJ2012 array length. On return, it

contains the number of valid data bytes in the DTCsJ2012 array.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-175 Automotive Diagnostic Command Set User Manual

ndWWHOBDRequestDID

Purpose
Executes the WWH-OBD ReadDataByIdentifier service. Reads a data record from the ECU.

Format
long ndWWHOBDRequestDID (

TD1 *diagRef,

unsigned short dataIdentifier,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

dataIdentifier

Defines the data identifier of the data to be read. The SAE J1979DA standard defines the

values.

Output
dataOut

Returns the ECU data record. If you know the record data description, you can use

ndConvertFromPhys to interpret this record. You can obtain the description from the

SAE J1979DA standard.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-176 ni.com

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The WWH-OBD ReadDataByIdentifier service is based on the UDS ReadDataByIdentifier

service (ISO 14229-1).

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-177 Automotive Diagnostic Command Set User Manual

ndWWHOBDRequestDTCExtendedDataRecord

Purpose
Executes the WWH-OBD ReadDTCInformation service. Reads selected Diagnostic Trouble

Codes.

Format
long ndWWHOBDRequestDTCExtendedDataRecord (

TD1 *diagRef,

unsigned char DTCMaskRecord[],

long lenDTCMaskRecord,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

DTCMaskRecord

Specifies the DTC mask record.

lenDTCMaskRecord

Contains the number of valid data bytes in the DTCMaskRecord array.

Output
dataOut

Returns the ECU data record.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-178 ni.com

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The WWH-OBD ReadDTCInformation service is based on the UDS ReaDTCInformation

service (ISO 14229-1).

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-179 Automotive Diagnostic Command Set User Manual

ndWWHOBDRequestEmissionRelatedDTCs

Purpose
Executes the WWH-OBD ReadDTCInformation service. Reads selected Diagnostic Trouble

Codes (DTCs).

Format
long ndWWHOBDRequestEmissionRelatedDTCS (

TD1 *diagRef,

unsigned char DTCSeverityMask,

unsigned char DTCStatusMask,

TD3 * DTCDescriptor,

unsigned char *severityAvailabilityMask,

unsigned char *statusAvailabilityMask,

unsigned char *DTCFormatIdentifier,

TD4 * DTCs[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

DTCSeverityMask

Defines the severity information of DTCs to be read. The values are application specific.

DTCStatusMask

Defines the status of DTCs to be read. The values are application specific.

DTCDescriptor

A struct that describes the DTC records the ECU delivers:

typedef struct {

long DTCByteLength;

long StatusByteLength;

long AddDataByteLength;

unsigned short ByteOrder;

} TD3;

DTCByteLength indicates the number of bytes the ECU sends for each DTC. The

default is 3.

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-180 ni.com

StatusByteLength indicates the number of bytes the ECU sends for each DTC’s

status. The default is 1.

AddDataByteLength indicates the number of bytes the ECU sends for each DTC’s

additional data. Usually, there are no additional data, so the default is 0.

ByteOrder indicates the byte ordering for multibyte items:

0: MSB_FIRST (Motorola), default

1: LSB_FIRST (Intel)

This function interprets the response byte stream according to this description and returns

the resulting DTC records in the DTCs struct array.

Output
severityAvailabilityMask

An application-specific value returned for all DTCs.

statusAvailabilityMask

An application-specific value returned for all DTCs.

DTCFormatIdentifier

An application-specific value returned for all DTCs.

DTCs

Returns the resulting DTCs as an array of structs:

typedef struct {

unsigned long DTC;

unsigned long Status;

unsigned long AddData;

} TD4;

DTC is the resulting Diagnostic Trouble Code. You can use

ndWWHOBDConvertDTCsToJ1939 or ndWWHOBDConvertDTCsToJ2012 to

convert this to readable format as defined by SAE J1939 and SAE J2012.

Status is the DTC status. Usually, this is a bit field with following meaning:

Bit Meaning

0 testFailed

1 testFailedThisOperationCycle

2 pendingDTC

3 confirmedDTC

4 testNotCompletedSinceLastClear

5 testFailedSinceLastClear

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-181 Automotive Diagnostic Command Set User Manual

6 testNotCompletedThisOperationCycle

7 warningIndicatorRequested

AddData contains optional additional data for this DTC. Usually, this does not

contain valid information (refer to DTCDescriptor).

len

On input, len must contain the DTCs array length in elements. On return, it contains the

number of valid elements in the DTCs array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The WWH-OBD ReadDTCInformation service is based on the UDS ReaDTCInformation

service (ISO 14229-1).

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-182 ni.com

ndWWHOBDRequestFreezeFrameInformation

Purpose
Executes the WWH-OBD ReadDTCInformation service. Reads selected Diagnostic Trouble

Codes (DTCs).

Format
long ndWWHOBDRequestFreezeFrameInformation (

TD1 *diagRef,

unsigned char DTCMaskRecord[],

long lenDTCMaskRecord,

unsigned char DTCRecordNumber,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

DTCMaskRecord

Specifies the DTC mask record.

lenDTCMaskRecord

Contains the number of valid data bytes in the DTCMaskRecord array.

DTCRecordNumber

Specifies the snapshot record number.

Output
dataOut

Returns the ECU data record.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-183 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The WWH-OBD ReadDTCInformation service is based on the UDS ReaDTCInformation

service (ISO 14229-1).

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-184 ni.com

ndWWHOBDRequestRID

Purpose
Executes the WWH-OBD RoutineControl service. Reads a data record from the ECU.

Format
long ndWWHOBDRequestRID (

TD1 *diagRef,

unsigned char mode,

unsigned short routineIdentifier,

unsigned char dataOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

mode

Defines the service operation mode. You can obtain the values from a ring control:

1: Start Routine

2: Stop Routine

3: Request Routine Results

Other values are application specific.

routineIdentifier

Defines the identifier of the routine to be started. The values are application specific.

Output
dataOut

Returns application-specific output parameters from the routine.

len

On input, len must contain the dataOut array length. On return, it contains the number

of valid data bytes in the dataOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-185 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The WWH-OBD RoutineControl service is based on the UDS RoutineControl service (ISO

14229-1).

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-186 ni.com

ndWWHOBDRequestSupportedDIDs

Purpose
Executes the WWH-OBD ReadDataByIdentifier service to retrieve the valid DID values for

this service.

Format
long ndWWHOBDRequestSupportedDIDs (

TD1 *diagRef,

unsigned short DID,

unsigned char DIDsOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

DID

Specifies the diagnostic data identifier for this service. The following values are valid and

can be obtained through an enum control:

0 PID: parameter identifier

1 MID: monitor identifier

2 ITID: info type identifier

Output
DIDsOut

Returns an array of valid DIDs.

len

On input, len must contain the DIDsOut array length. On return, it contains the number

of valid data bytes in the DIDsOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Chapter 6 Automotive Diagnostic Command Set API for C

© National Instruments 6-187 Automotive Diagnostic Command Set User Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The WWH-OBD ReadDataByIdentifier service is based on the UDS ReadDataByIdentifier

service (ISO 14229-1).

Chapter 6 Automotive Diagnostic Command Set API for C

Automotive Diagnostic Command Set User Manual 6-188 ni.com

ndWWHOBDRequestSupportedRIDs

Purpose
Executes the WWH-OBD RoutineControl service to retrieve the valid RID values for this

service.

Format
long ndWWHOBDRequestSupportedRIDs (

TD1 *diagRef,

unsigned char RIDsOut[],

long *len,

LVBoolean *success);

Input
diagRef

Specifies the diagnostic session handle, obtained from ndOpenDiagnostic and passed

to subsequent diagnostic functions. Normally, it is not necessary to manually manipulate

the elements of this struct.

Output
RIDsOut

Returns an array of valid RIDs.

len

On input, len must contain the RIDsOut array length. On return, it contains the number

of valid data bytes in the RIDsOut array.

success

Indicates successful receipt of a positive response message for this diagnostic service.

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ndStatusToString function to obtain a descriptive string for the return value.

Description
The WWH-OBD RoutineControl service is based on the UDS RoutineControl service (ISO

14229-1).

© National Instruments A-1 Automotive Diagnostic Command Set User Manual

A
NI Services

National Instruments provides global services and support as part of our

commitment to your success. Take advantage of product services in

addition to training and certification programs that meet your needs during

each phase of the application life cycle; from planning and development

through deployment and ongoing maintenance.

To get started, register your product at ni.com/myproducts.

As a registered NI product user, you are entitled to the following benefits:

• Access to applicable product services.

• Easier product management with an online account.

• Receive critical part notifications, software updates, and service

expirations.

Log in to your National Instruments ni.com User Profile to get

personalized access to your services.

Services and Resources

• Maintenance and Hardware Services—NI helps you identify your

systems’ accuracy and reliability requirements and provides warranty,

sparing, and calibration services to help you maintain accuracy and

minimize downtime over the life of your system. Visit ni.com/

services for more information.

– Warranty and Repair—All NI hardware features a one-year

standard warranty that is extendable up to five years. NI offers

repair services performed in a timely manner by highly trained

factory technicians using only original parts at a National

Instruments service center.

– Calibration—Through regular calibration, you can quantify and

improve the measurement performance of an instrument. NI

provides state-of-the-art calibration services. If your product

supports calibration, you can obtain the calibration certificate for

your product at ni.com/calibration.

http://www.ni.com/myproducts
http://www.ni.com
http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/calibration

Appendix A NI Services

Automotive Diagnostic Command Set User Manual A-2 ni.com

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, National Instruments

Alliance Partner members can help. To learn more, call your local NI

office or visit ni.com/alliance.

• Training and Certification—The NI training and certification

program is the most effective way to increase application development

proficiency and productivity. Visit ni.com/training for more

information.

– The Skills Guide assists you in identifying the proficiency

requirements of your current application and gives you options for

obtaining those skills consistent with your time and budget

constraints and personal learning preferences. Visit ni.com/

skills-guide to see these custom paths.

– NI offers courses in several languages and formats including

instructor-led classes at facilities worldwide, courses on-site at

your facility, and online courses to serve your individual needs.

• Technical Support—Support at ni.com/support includes the

following resources:

– Self-Help Technical Resources—Visit ni.com/support for

software drivers and updates, a searchable KnowledgeBase,

product manuals, step-by-step troubleshooting wizards, thousands

of example programs, tutorials, application notes, instrument

drivers, and so on. Registered users also receive access to the NI

Discussion Forums at ni.com/forums. NI Applications

Engineers make sure every question submitted online receives an

answer.

– Software Support Service Membership—The Standard Service

Program (SSP) is a renewable one-year subscription included with

almost every NI software product, including NI Developer Suite.

This program entitles members to direct access to NI Applications

Engineers through phone and email for one-to-one technical

support, as well as exclusive access to online training modules at

ni.com/self-paced-training. NI also offers flexible

extended contract options that guarantee your SSP benefits are

available without interruption for as long as you need them. Visit

ni.com/ssp for more information.

• Declaration of Conformity (DoC)—A DoC is our claim of

compliance with the Council of the European Communities using the

manufacturer’s declaration of conformity. This system affords the user

protection for electromagnetic compatibility (EMC) and product

http://www.ni.com/alliance
http://www.ni.com/training
http://www.ni.com/skills-guide
http://www.ni.com/skills-guide
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/ssp

Appendix A NI Services

© National Instruments A-3 Automotive Diagnostic Command Set User Manual

safety. You can obtain the DoC for your product by visiting

ni.com/certification.

For information about other technical support options in your area, visit

ni.com/services, or contact your local office at ni.com/contact.

You also can visit the Worldwide Offices section of ni.com/niglobal to

access the branch office websites, which provide up-to-date contact

information, support phone numbers, email addresses, and current events.

http://www.ni.com/certification
http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/niglobal

© National Instruments I-1 Automotive Diagnostic Command Set User Manual

Index

A
activating your software, xvii

application development, 3-1

on CompactRIO or R Series using NI

985x or NI 986x C Series module, 3-4

Automotive Diagnostic Command Set

API

C, 6-1

LabVIEW, 5-1

API structure, 4-2

application development, 3-1

available diagnostic services, 4-4

choosing a programming language, 3-1

configuration, 2-1

general programming model (figure), 4-3

hardware requirements, 2-3

installation, 2-1

introduction, 1-1

KWP2000, 1-1

connect/disconnect, 1-3

diagnostic service format, 1-2

diagnostic services, 1-2

Diagnostic Trouble Codes, 1-4

external references, 1-4

GetSeed/Unlock, 1-3

input/output control, 1-4

measurements, 1-4

read/write memory, 1-3

remote activation of a routine, 1-4

transport protocol, 1-2

LabVIEW RT configuration, 2-2

OBD, 1-6

software requirements, 2-3

structure (figure), 4-1

tweaking the transport protocol, 4-4

UDS, 1-5

diagnostic service format, 1-6

diagnostic services, 1-5

external references, 1-6

using, 4-1

using with LabVIEW, 3-1

using with LabWindows/CVI, 3-1

using with other programming

languages, 3-3

using with Visual C++ 6, 3-2

available diagnostic services, 4-4

C
C API

DoIP functions, 6-50

general functions, 6-13

KWP2000 services, 6-63

list of data types, 6-2

list of functions, 6-3

ndClearDiagnosticInformation, 6-63

ndCloseDiagnostic, 6-13

ndControlDTCSetting, 6-65

ndConvertFromPhys, 6-14

ndConvertToPhys, 6-16

ndCreateExtendedCANIds, 6-18

ndDiagFrameRecv, 6-20

ndDiagFrameSend, 6-22

ndDiagnosticService, 6-23

ndDisableNormalMessage

Transmission, 6-67

ndDoIPActivateRouting, 6-50

ndDoIPConnect, 6-52

ndDoIPDisconnect, 6-54

ndDoIPEntityStatus, 6-55

ndDoIPGetDiagPowerMode, 6-57

ndDoIPGetEntities, 6-58

Index

Automotive Diagnostic Command Set User Manual I-2 ni.com

ndDoIPSendVehicleIdentReqEID, 6-61

ndDoIPSendVehicleIdentRequest, 6-60

ndDoIPSendVehicleIdentReqVIN, 6-62

ndDTCToString, 6-25

ndECUReset, 6-68

ndEnableNormalMessage

Transmission, 6-70

ndGetProperty, 6-26

ndGetTimeStamp, 6-29

ndInputOutputControlByLocal

Identifier, 6-71

ndOBDClearEmissionRelatedDiagnostic

Information, 6-153

ndOBDOpen, 6-30

ndOBDRequestControlOfOnBoard

Device, 6-154

ndOBDRequestCurrentPowertrain

DiagnosticData, 6-156

ndOBDRequestEmissionRelated

DTCs, 6-158

ndOBDRequestEmissionRelatedDTCs

DuringCurrentDriveCycle, 6-160

ndOBDRequestOnBoardMonitoringTest

Results, 6-162

ndOBDRequestPermanentFault

Codes, 6-164

ndOBDRequestPowertrainFreezeFrame

Data, 6-166

ndOBDRequestVehicle

Information, 6-168

ndOpenDiagnostic, 6-33

ndOpenDiagnosticOnIP, 6-37

ndOpenDiagnosticOnLIN, 6-39

ndReadDataByLocalIdentifier, 6-73

ndReadDTCByStatus, 6-75

ndReadECUIdentification, 6-78

ndReadMemoryByAddress, 6-80

ndReadStatusOfDTC, 6-82

ndRequestRoutineResultsByLocal

Identifier, 6-85

ndRequestSeed, 6-87

ndSendKey, 6-89

ndSetProperty, 6-41

ndStartDiagnosticSession, 6-91

ndStartRoutineByLocalIdentifier, 6-92

ndStatusToString, 6-44

ndStopDiagnosticSession, 6-94

ndStopRoutineByLocalIdentifier, 6-95

ndTesterPresent, 6-97

ndUDS06ReadMemoryBy

Address, 6-149

ndUDS06WriteMemoryBy

Address, 6-151

ndUDSClearDiagnostic

Information, 6-103

ndUDSCommunicationControl, 6-105

ndUDSControlDTCSetting, 6-107

ndUDSDiagnosticSessionControl, 6-108

ndUDSECUReset, 6-109

ndUDSInputOutputControlBy

Identifier, 6-111

ndUDSReadDataByIdentifier, 6-113

ndUDSReadMemoryByAddress, 6-115

ndUDSReportDTCBySeverityMask

Record, 6-117

ndUDSReportDTCByStatusMask, 6-120

ndUDSReportSeverityInformationOf

DTC, 6-123

ndUDSReportSupportedDTCs, 6-126

ndUDSRequestDownload, 6-129

ndUDSRequestSeed, 6-131

ndUDSRequestTransferExit, 6-133

ndUDSRequestUpload, 6-135

ndUDSRoutineControl, 6-137

ndUDSSendKey, 6-139

ndUDSTesterPresent, 6-141

ndUDSTransferData, 6-143

ndUDSWriteDataByIdentifier, 6-145

ndUDSWriteMemoryByAddress, 6-147

ndVWTPConnect, 6-46

ndVWTPConnectionTest, 6-48

ndVWTPDisconnect, 6-49

Index

© National Instruments I-3 Automotive Diagnostic Command Set User Manual

ndWriteDataByLocalIdentifier, 6-99

ndWriteMemoryByAddress, 6-101

ndWWHOBDClearEmissionRelated

DTCs, 6-170

ndWWHOBDConvertDTCsTo

J1939, 6-171

ndWWHOBDConvertDTCsTo

J2012, 6-173

ndWWHOBDRequestDID, 6-175

ndWWHOBDRequestDTCExtendedData

Record, 6-177

ndWWHOBDRequestEmissionRelated

DTCs, 6-179

ndWWHOBDRequestFreezeFrame

Information, 6-182

ndWWHOBDRequestRID, 6-184

ndWWHOBDRequestSupported

DIDs, 6-186

ndWWHOBDRequestSupported

RIDs, 6-188

OBD (On-Board Diagnostics)

services, 6-153

UDS (DiagOnCAN) services, 6-103

WWH-OBD (World-Wide-Harmonized

On-Board Diagnostics) services, 6-170

ClearDiagnosticInformation.vi, 5-70

Close Diagnostic.vi, 5-10

CompactRIO

application development on using

NI 985x or NI 986x C Series

module, 3-4

computer ID, xviii

configuration, 2-1

connect/disconnect, KWP2000, 1-3

ControlDTCSetting.vi, 5-73

Convert from Phys.vi, 5-12

Convert to Phys.vi, 5-14

Create Extended CAN IDs.vi, 5-16

D
deactivating a product, xix

Diag Get Property.vi, 5-17

Diag Set Property.vi, 5-20

Diagnostic Frame Recv.vi, 5-23

Diagnostic Frame Send.vi, 5-25

diagnostic service format

KWP2000, 1-2

UDS, 1-6

Diagnostic Service.vi, 5-27

diagnostic services

available, 4-4

KWP2000, 1-2

UDS, 1-5

Diagnostic Trouble Codes

KWP2000, 1-4

DisableNormalMessageTransmission.vi, 5-76

documentation

NI resources, A-1

related documentation, xv

DoIP Activate Routing.vi, 5-51

DoIP Connect.vi, 5-53

DoIP Disconnect.vi, 5-55

DoIP functions

C API, 6-50

LabVIEW API, 5-51

DoIP Get Diagnostic Power Mode.vi, 5-57

DoIP Get DoIP Entity Status.vi, 5-59

DoIP Get Entities.vi, 5-61

DoIP Send Vehicle Identification Request w

EID.vi, 5-66

DoIP Send Vehicle Identification Request w

VIN.vi, 5-68

DoIP Send Vehicle Identification

Request.vi, 5-64

DTC to String.vi, 5-29

Index

Automotive Diagnostic Command Set User Manual I-4 ni.com

E
ECUReset.vi, 5-78

EnableNormalMessageTransmission.vi, 5-80

external references

KWP2000, 1-4

UDS, 1-6

G
general functions

C API, 6-13

LabVIEW API, 5-10

general programming model (figure), 4-3

Get Time Stamp.vi, 5-30

GetSeed/Unlock, 1-3

H
hardware requirements, 2-3

help, technical support, A-1

I
input/output control, 1-4

InputOutputControlByLocalIdentifier.vi, 5-82

installation, 2-1

introduction, 1-1

K
Key Word Protocol 2000, 1-1

KWP2000

connect/disconnect, 1-3

definition, 1-1

diagnostic service format, 1-2

diagnostic services, 1-2

Diagnostic Trouble Codes, 1-4

external references, 1-4

GetSeed/Unlock, 1-3

input/output control, 1-4

measurements, 1-4

read/write memory, 1-3

remote activation of a routine, 1-4

transport protocol, 1-2

KWP2000 services

C API, 6-63

LabVIEW API, 5-70

L
LabVIEW

using with Automotive Diagnostic

Command Set, 3-1

LabVIEW API

ClearDiagnosticInformation.vi, 5-70

Close Diagnostic.vi, 5-10

ControlDTCSetting.vi, 5-73

Convert from Phys.vi, 5-12

Convert to Phys.vi, 5-14

Create Extended CAN IDs.vi, 5-16

Diag Get Property.vi, 5-17

Diag Set Property.vi, 5-20

Diagnostic Frame Recv.vi, 5-23

Diagnostic Frame Send.vi, 5-25

Diagnostic Service.vi, 5-27

DisableNormalMessage

Transmission.vi, 5-76

DoIP Activate Routing.vi, 5-51

DoIP Connect.vi, 5-53

DoIP Disconnect.vi, 5-55

DoIP functions, 5-51

DoIP Get Diagnostic Power

Mode.vi, 5-57

DoIP Get DoIP Entity Status.vi, 5-59

DoIP Get Entities.vi, 5-61

DoIP Send Vehicle Identification Request

w EID.vi, 5-66

DoIP Send Vehicle Identification Request

w VIN.vi, 5-68

DoIP Send Vehicle Identification

Request.vi, 5-64

DTC to String.vi, 5-29

Index

© National Instruments I-5 Automotive Diagnostic Command Set User Manual

ECUReset.vi, 5-78

EnableNormalMessage

Transmission.vi, 5-80

general functions, 5-10

Get Time Stamp.vi, 5-30

InputOutputControlByLocal

Identifier.vi, 5-82

KWP2000 services, 5-70

list of VIs, 5-2

OBD (On-Board Diagnostics)

services, 5-170

OBD Clear Emission Related Diagnostic

Information.vi, 5-170

OBD Open.vi, 5-32

OBD Request Control Of On-Board

Device.vi, 5-172

OBD Request Current Powertrain

Diagnostic Data.vi, 5-174

OBD Request Emission Related DTCs

During Current Drive Cycle.vi, 5-179

OBD Request Emission Related

DTCs.vi, 5-176

OBD Request On-Board Monitoring Test

Results.vi, 5-182

OBD Request Permanent Fault

Codes.vi, 5-184

OBD Request Powertrain Freeze Frame

Data.vi, 5-187

OBD Request Supported PIDs.vi, 5-189

OBD Request Vehicle

Information.vi, 5-191

Open Diagnostic on IP.vi, 5-40

Open Diagnostic on LIN.vi, 5-42

Open Diagnostic.vi, 5-36

ReadDataByLocalIdentifier.vi, 5-84

ReadDTCByStatus.vi, 5-86

ReadECUIdentification.vi, 5-89

ReadMemoryByAddress.vi, 5-91

ReadStatusOfDTC.vi, 5-93

RequestRoutineResultsByLocal

Identifier.vi, 5-96

RequestSeed.vi, 5-98

SendKey.vi, 5-100

StartDiagnosticSession.vi, 5-102

StartRoutineByLocalIdentifier.vi, 5-104

StopDiagnosticSession.vi, 5-106

StopRoutineByLocalIdentifier.vi, 5-108

TesterPresent.vi, 5-110

UDS (DiagOnCAN) services, 5-116

UDS ClearDiagnostic

Information.vi, 5-116

UDS CommunicationControl.vi, 5-119

UDS ControlDTCSetting.vi, 5-121

UDS DiagnosticSessionControl.vi, 5-123

UDS ECUReset.vi, 5-125

UDS InputOutputControlBy

Identifier.vi, 5-127

UDS ReadDataByIdentifier.vi, 5-129

UDS ReadMemoryByAddress.vi, 5-131

UDS ReportDTCBySeverityMask

Record.vi, 5-133

UDS ReportDTCByStatusMask.vi, 5-136

UDS ReportSeverityInformationOf

DTC.vi, 5-139

UDS ReportSupportedDTCs.vi, 5-142

UDS RequestDownload.vi, 5-145

UDS RequestSeed.vi, 5-147

UDS RequestTransferExit.vi, 5-149

UDS RequestUpload.vi, 5-151

UDS RoutineControl.vi, 5-153

UDS SendKey.vi, 5-155

UDS TesterPresent.vi, 5-157

UDS TransferData.vi, 5-159

UDS WriteDataByIdentifier.vi, 5-162

UDS WriteMemoryByAddress.vi, 5-164

UDS06 ReadMemoryBy

Address.vi, 5-166

UDS06 WriteMemoryBy

Address.vi, 5-168

VWTP Connect.vi, 5-45

VWTP Connection Test.vi, 5-47

VWTP Disconnect.vi, 5-49

Index

Automotive Diagnostic Command Set User Manual I-6 ni.com

WriteDataByLocalIdentifier.vi, 5-112

WriteMemoryByAddress.vi, 5-114

WWH-OBD (World-Wide-Harmonized

On-Board Diagnostics) services, 5-193

WWH-OBD Clear Emission Related

DTCs.vi, 5-193

WWH-OBD Convert DTCs to

J1939.vi, 5-195

WWH-OBD Convert DTCs to

J2012.vi, 5-197

WWH-OBD Request DID.vi, 5-199

WWH-OBD Request DTC Extended

Data Record.vi, 5-201

WWH-OBD Request Emission Related

DTCs.vi, 5-203

WWH-OBD Request Freeze Frame

Information.vi, 5-206

WWH-OBD Request RID.vi, 5-208

WWH-OBD Request Supported

DIDs.vi, 5-210

WWH-OBD Request Supported

RIDs.vi, 5-212

LabVIEW RT configuration, 2-2

LabWindows/CVI

using with Automotive Diagnostic

Command Set, 3-1

list of C functions, 6-3

list of data types, 6-2

list of LabVIEW VIs, 5-2

N
ndClearDiagnosticInformation, 6-63

ndCloseDiagnostic, 6-13

ndControlDTCSetting, 6-65

ndConvertFromPhys, 6-14

ndConvertToPhys, 6-16

ndCreateExtendedCANIds, 6-18

ndDiagFrameRecv, 6-20

ndDiagFrameSend, 6-22

ndDiagnosticService, 6-23

ndDisableNormalMessageTransmission, 6-67

ndDoIPActivateRouting, 6-50

ndDoIPConnect, 6-52

ndDoIPDisconnect, 6-54

ndDoIPEntityStatus, 6-55

ndDoIPGetDiagPowerMode, 6-57

ndDoIPGetEntities, 6-58

ndDoIPSendVehicleIdentReqEID, 6-61

ndDoIPSendVehicleIdentRequest, 6-60

ndDoIPSendVehicleIdentReqVIN, 6-62

ndDTCToString, 6-25

ndECUReset, 6-68

ndEnableNormalMessageTransmission, 6-70

ndGetProperty, 6-26

ndGetTimeStamp, 6-29

ndInputOutputControlByLocalIdentifier, 6-71

ndOBDClearEmissionRelatedDiagnostic

Information, 6-153

ndOBDOpen, 6-30

ndOBDRequestControlOfOnBoard

Device, 6-154

ndOBDRequestCurrentPowertrainDiagnostic

Data, 6-156

ndOBDRequestEmissionRelatedDTCs, 6-158

ndOBDRequestEmissionRelatedDTCsDuring

CurrentDriveCycle, 6-160

ndOBDRequestOnBoardMonitoringTest

Results, 6-162

ndOBDRequestPermanentFaultCodes, 6-164

ndOBDRequestPowertrainFreezeFrame

Data, 6-166

ndOBDRequestVehicleInformation, 6-168

ndOpenDiagnostic, 6-33

ndOpenDiagnosticOnIP, 6-37

ndOpenDiagnosticOnLIN, 6-39

ndReadDataByLocalIdentifier, 6-73

ndReadDTCByStatus, 6-75

ndReadECUIdentification, 6-78

ndReadMemoryByAddress, 6-80

ndReadStatusOfDTC, 6-82

Index

© National Instruments I-7 Automotive Diagnostic Command Set User Manual

ndRequestRoutineResultsByLocal

Identifier, 6-85

ndRequestSeed, 6-87

ndSendKey, 6-89

ndSetProperty, 6-41

ndStartDiagnosticSession, 6-91

ndStartRoutineByLocalIdentifier, 6-92

ndStatusToString, 6-44

ndStopDiagnosticSession, 6-94

ndStopRoutineByLocalIdentifier, 6-95

ndTesterPresent, 6-97

ndUDS06ReadMemoryByAddress, 6-149

ndUDS06WriteMemoryByAddress, 6-151

ndUDSClearDiagnosticInformation, 6-103

ndUDSCommunicationControl, 6-105

ndUDSControlDTCSetting, 6-107

ndUDSDiagnosticSessionControl, 6-108

ndUDSECUReset, 6-109

ndUDSInputOutputControlBy

Identifier, 6-111

ndUDSReadDataByIdentifier, 6-113

ndUDSReadMemoryByAddress, 6-115

ndUDSReportDTCBySeverityMask

Record, 6-117

ndUDSReportDTCByStatusMask, 6-120

ndUDSReportSeverityInformationOf

DTC, 6-123

ndUDSReportSupportedDTCs, 6-126

ndUDSRequestDownload, 6-129

ndUDSRequestSeed, 6-131

ndUDSRequestTransferExit, 6-133

ndUDSRequestUpload, 6-135

ndUDSRoutineControl, 6-137

ndUDSSendKey, 6-139

ndUDSTesterPresent, 6-141

ndUDSTransferData, 6-143

ndUDSWriteDataByIdentifier, 6-145

ndUDSWriteMemoryByAddress, 6-147

ndVWTPConnect, 6-46

ndVWTPConnectionTest, 6-48

ndVWTPDisconnect, 6-49

ndWriteDataByLocalIdentifier, 6-99

ndWriteMemoryByAddress, 6-101

ndWWHOBDClearEmissionRelated

DTCs, 6-170

ndWWHOBDConvertDTCsToJ1939, 6-171

ndWWHOBDConvertDTCsToJ2012, 6-173

ndWWHOBDRequestDID, 6-175

ndWWHOBDRequestDTCExtendedData

Record, 6-177

ndWWHOBDRequestEmissionRelated

DTCs, 6-179

ndWWHOBDRequestFreezeFrame

Information, 6-182

ndWWHOBDRequestRID, 6-184

ndWWHOBDRequestSupportedDIDs, 6-186

ndWWHOBDRequestSupportedRIDs, 6-188

NI Activation Wizard, xvii

O
OBD, 1-6

OBD (On-Board Diagnostics) services

C API, 6-153

LabVIEW API, 5-170

OBD Clear Emission Related Diagnostic

Information.vi, 5-170

OBD Open.vi, 5-32

OBD Request Control Of On-Board

Device.vi, 5-172

OBD Request Current Powertrain Diagnostic

Data.vi, 5-174

OBD Request Emission Related DTCs During

Current Drive Cycle.vi, 5-179

OBD Request Emission Related

DTCs.vi, 5-176

OBD Request On-Board Monitoring Test

Results.vi, 5-182

OBD Request Permanent Fault

Codes.vi, 5-184

OBD Request Powertrain Freeze Frame

Data.vi, 5-187

OBD Request Supported PIDs.vi, 5-189

Index

Automotive Diagnostic Command Set User Manual I-8 ni.com

OBD Request Vehicle Information.vi, 5-191

On-Board Diagnostic, 1-6

Open Diagnostic on IP.vi, 5-40

Open Diagnostic on LIN.vi, 5-42

Open Diagnostic.vi, 5-36

other programming languages, using with

Automotive Diagnostic Command Set, 3-3

P
programming language, choosing, 3-1

R
R Series

application development on using

NI 985x or NI 986x C Series

module, 3-4

read/write memory, 1-3

ReadDataByLocalIdentifier.vi, 5-84

ReadDTCByStatus.vi, 5-86

ReadECUIdentification.vi, 5-89

ReadMemoryByAddress.vi, 5-91

ReadStatusOfDTC.vi, 5-93

related documentation, xv

remote action of a routine, KWP2000, 1-4

RequestRoutineResultsByLocal

Identifier.vi, 5-96

RequestSeed.vi, 5-98

S
SendKey.vi, 5-100

serial number, finding, xviii

software

activating, xvii

evaluating, xix

moving after activation, xix

requirements, 2-3

StartDiagnosticSession.vi, 5-102

StartRoutineByLocalIdentifier.vi, 5-104

StopDiagnosticSession.vi, 5-106

StopRoutineByLocalIdentifier.vi, 5-108

support, technical, A-1

T
technical support, A-1

TesterPresent.vi, 5-110

transport protocol

KWP2000, 1-2

tweaking, 4-4

tweaking the transport protocol, 4-4

U
UDS, 1-5

diagnostic service format, 1-6

diagnostic services, 1-5

external references, 1-6

UDS (DiagOnCAN) services

C API, 6-103

LabVIEW API, 5-116

UDS ClearDiagnosticInformation.vi, 5-116

UDS CommunicationControl.vi, 5-119

UDS ControlDTCSetting.vi, 5-121

UDS DiagnosticSessionControl.vi, 5-123

UDS ECUReset.vi, 5-125

UDS InputOutputControlBy

Identifier.vi, 5-127

UDS ReadDataByIdentifier.vi, 5-129

UDS ReadMemoryByAddress.vi, 5-131

UDS ReportDTCBySeverityMask

Record.vi, 5-133

UDS ReportDTCByStatusMask.vi, 5-136

UDS ReportSeverityInformationOf

DTC.vi, 5-139

UDS ReportSupportedDTCs.vi, 5-142

UDS RequestDownload.vi, 5-145

UDS RequestSeed.vi, 5-147

UDS RequestTransferExit.vi, 5-149

UDS RequestUpload.vi, 5-151

Index

© National Instruments I-9 Automotive Diagnostic Command Set User Manual

UDS RoutineControl.vi, 5-153

UDS SendKey.vi, 5-155

UDS TesterPresent.vi, 5-157

UDS TransferData.vi, 5-159

UDS WriteDataByIdentifier.vi, 5-162

UDS WriteMemoryByAddress.vi, 5-164

UDS06 ReadMemoryByAddress.vi, 5-166

UDS06 WriteMemoryByAddress.vi, 5-168

Unified Diagnostic Services, 1-5

V
Visual C++ 6, using with Automotive

Diagnostic Command Set, 3-2

VWTP Connect.vi, 5-45

VWTP Connection Test.vi, 5-47

VWTP Disconnect.vi, 5-49

W
Web resources, A-1

Windows Guest accounts, xix

WriteDataByLocalIdentifier.vi, 5-112

WriteMemoryByAddress.vi, 5-114

WWH-OBD (World-Wide-Harmonized

On-Board Diagnostics) services

C API, 6-170

LabVIEW API, 5-193

WWH-OBD Clear Emission Related

DTCs.vi, 5-193

WWH-OBD Convert DTCs to J1939.vi, 5-195

WWH-OBD Convert DTCs to J2012.vi, 5-197

WWH-OBD Request DID.vi, 5-199

WWH-OBD Request DTC Extended Data

Record.vi, 5-201

WWH-OBD Request Emission Related

DTCs.vi, 5-203

WWH-OBD Request Freeze Frame

Information.vi, 5-206

WWH-OBD Request RID.vi, 5-208

WWH-OBD Request Supported DIDs.vi,

5-210

WWH-OBD Request Supported RIDs.vii,

5-212

	Automotive Diagnostic Command Set User Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Legal Information
	Limited Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	U.S. Government Restricted Rights
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Related Documentation

	Activating Your Software
	How Do I Activate My Software?
	What is Activation?
	What is the NI Activation Wizard?
	What Information Do I Need to Activate?
	How Do I Find My Product Serial Number?
	What is a Computer ID?
	How Can I Evaluate NI Software?
	Moving Software After Activation
	Deactivating a Product
	Using Windows Guest Accounts

	Chapter 1 Introduction
	KWP2000 (Key Word Protocol 2000)
	Transport Protocol
	Diagnostic Services
	Diagnostic Service Format
	Connect/Disconnect
	GetSeed/Unlock
	Read/Write Memory
	Measurements
	Diagnostic Trouble Codes
	Input/Output Control
	Remote Activation of a Routine
	External References

	UDS (Unified Diagnostic Services)
	Diagnostic Services
	Diagnostic Service Format
	External References

	OBD (On-Board Diagnostic)

	Chapter 2 Installation and Configuration
	Installation
	LabVIEW Real-Time (RT) Configuration
	Hardware and Software Requirements

	Chapter 3 Application Development
	Choosing the Programming Language
	LabVIEW
	LabWindows/CVI
	Visual C++ 6
	Other Programming Languages

	Application Development on CompactRIO or R Series Using an NI 985x or NI 986x C Series Module

	Chapter 4 Using the Automotive Diagnostic Command Set
	Structure of the Automotive Diagnostic Command Set
	Automotive Diagnostic Command Set API Structure
	General Programming Model
	Available Diagnostic Services
	Tweaking the Transport Protocol

	Chapter 5 Automotive Diagnostic Command Set API for LabVIEW
	Section Headings
	Purpose
	Format
	Input and Output
	Description

	List of VIs
	Table 5-1. Automotive Diagnostic Command Set API VIs for LabVIEW

	General Functions
	Close Diagnostic.vi
	Convert from Phys.vi
	Convert to Phys.vi
	Create Extended CAN IDs.vi
	Diag Get Property.vi
	Diag Set Property.vi
	Diagnostic Frame Recv.vi
	Diagnostic Frame Send.vi
	Diagnostic Service.vi
	DTC to String.vi
	Get Time Stamp.vi
	OBD Open.vi
	Open Diagnostic.vi
	Open Diagnostic on IP.vi
	Open Diagnostic on LIN.vi
	VWTP Connect.vi
	VWTP Connection Test.vi
	VWTP Disconnect.vi
	DoIP Functions
	DoIP Activate Routing.vi
	DoIP Connect.vi
	DoIP Disconnect.vi
	DoIP Get Diagnostic Power Mode.vi
	DoIP Get DoIP Entity Status.vi
	DoIP Get Entities.vi
	DoIP Send Vehicle Identification Request.vi
	DoIP Send Vehicle Identification Request w EID.vi
	DoIP Send Vehicle Identification Request w VIN.vi

	KWP2000 Services
	ClearDiagnosticInformation.vi
	ControlDTCSetting.vi
	DisableNormalMessageTransmission.vi
	ECUReset.vi
	EnableNormalMessageTransmission.vi
	InputOutputControlByLocalIdentifier.vi
	ReadDataByLocalIdentifier.vi
	ReadDTCByStatus.vi
	ReadECUIdentification.vi
	ReadMemoryByAddress.vi
	ReadStatusOfDTC.vi
	RequestRoutineResultsByLocalIdentifier.vi
	RequestSeed.vi
	SendKey.vi
	StartDiagnosticSession.vi
	StartRoutineByLocalIdentifier.vi
	StopDiagnosticSession.vi
	StopRoutineByLocalIdentifier.vi
	TesterPresent.vi
	WriteDataByLocalIdentifier.vi
	WriteMemoryByAddress.vi

	UDS (DiagOnCAN) Services
	UDS ClearDiagnosticInformation.vi
	UDS CommunicationControl.vi
	UDS ControlDTCSetting.vi
	UDS DiagnosticSessionControl.vi
	UDS ECUReset.vi
	UDS InputOutputControlByIdentifier.vi
	UDS ReadDataByIdentifier.vi
	UDS ReadMemoryByAddress.vi
	UDS ReportDTCBySeverityMaskRecord.vi
	UDS ReportDTCByStatusMask.vi
	UDS ReportSeverityInformationOfDTC.vi
	UDS ReportSupportedDTCs.vi
	UDS RequestDownload.vi
	UDS RequestSeed.vi
	UDS RequestTransferExit.vi
	UDS RequestUpload.vi
	UDS RoutineControl.vi
	UDS SendKey.vi
	UDS TesterPresent.vi
	UDS TransferData.vi
	UDS WriteDataByIdentifier.vi
	UDS WriteMemoryByAddress.vi
	UDS06 ReadMemoryByAddress.vi
	UDS06 WriteMemoryByAddress.vi

	OBD (On-Board Diagnostics) Services
	OBD Clear Emission Related Diagnostic Information.vi
	OBD Request Control Of On-Board Device.vi
	OBD Request Current Powertrain Diagnostic Data.vi
	OBD Request Emission Related DTCs.vi
	OBD Request Emission Related DTCs During Current Drive Cycle.vi
	OBD Request On-Board Monitoring Test Results.vi
	OBD Request Permanent Fault Codes.vi
	OBD Request Powertrain Freeze Frame Data.vi
	OBD Request Supported PIDs.vi
	OBD Request Vehicle Information.vi

	WWH-OBD (World-Wide-Harmonized On-Board Diagnostics) Services
	WWH-OBD Clear Emission Related DTCs.vi
	WWH-OBD Convert DTCs to J1939.vi
	WWH-OBD Convert DTCs to J2012.vi
	WWH-OBD Request DID.vi
	WWH-OBD Request DTC Extended Data Record.vi
	WWH-OBD Request Emission Related DTCs.vi
	WWH-OBD Request Freeze Frame Information.vi
	WWH-OBD Request RID.vi
	WWH-OBD Request Supported DIDs.vi
	WWH-OBD Request Supported RIDs.vi

	Chapter 6 Automotive Diagnostic Command Set API for C
	Section Headings
	Purpose
	Format
	Input and Output
	Description

	List of Data Types
	Table 6-1. Data Types for the Automotive Diagnostic Command Set for C

	List of Functions
	Table 6-2. Functions for the Automotive Diagnostic Command Set for C

	General Functions
	ndCloseDiagnostic
	ndConvertFromPhys
	ndConvertToPhys
	ndCreateExtendedCANIds
	ndDiagFrameRecv
	ndDiagFrameSend
	ndDiagnosticService
	ndDTCToString
	ndGetProperty
	ndGetTimeStamp
	ndOBDOpen
	ndOpenDiagnostic
	ndOpenDiagnosticOnIP
	ndOpenDiagnosticOnLIN
	ndSetProperty
	ndStatusToString
	ndVWTPConnect
	ndVWTPConnectionTest
	ndVWTPDisconnect
	DoIP Functions
	ndDoIPActivateRouting
	ndDoIPConnect
	ndDoIPDisconnect
	ndDoIPEntityStatus
	ndDoIPGetDiagPowerMode
	ndDoIPGetEntities
	ndDoIPSendVehicleIdentRequest
	ndDoIPSendVehicleIdentReqEID
	ndDoIPSendVehicleIdentReqVIN

	KWP2000 Services
	ndClearDiagnosticInformation
	ndControlDTCSetting
	ndDisableNormalMessageTransmission
	ndECUReset
	ndEnableNormalMessageTransmission
	ndInputOutputControlByLocalIdentifier
	ndReadDataByLocalIdentifier
	ndReadDTCByStatus
	ndReadECUIdentification
	ndReadMemoryByAddress
	ndReadStatusOfDTC
	ndRequestRoutineResultsByLocalIdentifier
	ndRequestSeed
	ndSendKey
	ndStartDiagnosticSession
	ndStartRoutineByLocalIdentifier
	ndStopDiagnosticSession
	ndStopRoutineByLocalIdentifier
	ndTesterPresent
	ndWriteDataByLocalIdentifier
	ndWriteMemoryByAddress

	UDS (DiagOnCAN) Services
	ndUDSClearDiagnosticInformation
	ndUDSCommunicationControl
	ndUDSControlDTCSetting
	ndUDSDiagnosticSessionControl
	ndUDSECUReset
	ndUDSInputOutputControlByIdentifier
	ndUDSReadDataByIdentifier
	ndUDSReadMemoryByAddress
	ndUDSReportDTCBySeverityMaskRecord
	ndUDSReportDTCByStatusMask
	ndUDSReportSeverityInformationOfDTC
	ndUDSReportSupportedDTCs
	ndUDSRequestDownload
	ndUDSRequestSeed
	ndUDSRequestTransferExit
	ndUDSRequestUpload
	ndUDSRoutineControl
	ndUDSSendKey
	ndUDSTesterPresent
	ndUDSTransferData
	ndUDSWriteDataByIdentifier
	ndUDSWriteMemoryByAddress
	ndUDS06ReadMemoryByAddress
	ndUDS06WriteMemoryByAddress

	OBD (On-Board Diagnostics) Services
	ndOBDClearEmissionRelatedDiagnosticInformation
	ndOBDRequestControlOfOnBoardDevice
	ndOBDRequestCurrentPowertrainDiagnosticData
	ndOBDRequestEmissionRelatedDTCs
	ndOBDRequestEmissionRelatedDTCsDuringCurrentDriveCycle
	ndOBDRequestOnBoardMonitoringTestResults
	ndOBDRequestPermanentFaultCodes
	ndOBDRequestPowertrainFreezeFrameData
	ndOBDRequestVehicleInformation

	WWH-OBD (World-Wide-Harmonized On-Board Diagnostics) Services
	ndWWHOBDClearEmissionRelatedDTCs
	ndWWHOBDConvertDTCsToJ1939
	ndWWHOBDConvertDTCsToJ2012
	ndWWHOBDRequestDID
	ndWWHOBDRequestDTCExtendedDataRecord
	ndWWHOBDRequestEmissionRelatedDTCs
	ndWWHOBDRequestFreezeFrameInformation
	ndWWHOBDRequestRID
	ndWWHOBDRequestSupportedDIDs
	ndWWHOBDRequestSupportedRIDs

	Appendix A NI Services
	Index
	A-C
	D
	E-L
	N
	O
	P-U
	V-W

