

 NI-9853

https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf

CAN

ECU Measurement and Calibration Toolkit User Manual

ECU M&C Toolkit User Manual

October 2015

371601P-01

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office websites, which provide up-to-date contact information,

support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on NI documentation, refer to the

NI website at ni.com/info and enter the Info Code feedback.

© 2005–2015 National Instruments. All rights reserved.

http://ni.com/info

 Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version, refer to
ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS OR IMPLIED
WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY
ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to substantially conform to
the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially in accordance with the
applicable documentation provided with the software and (ii) the software media will be free from defects in materials and workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair or replace the affected
product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be warranted for the remainder of the original warranty
period or ninety (90) days, whichever is longer. If NI elects to repair or replace the product, NI may use new or refurbished parts or products that are
equivalent to new in performance and reliability and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for examining and testing Hardware
not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance, installation, repair, or calibration
(performed by a party other than NI); unauthorized modification; improper environment; use of an improper hardware or software key; improper use
or operation outside of the specification for the product; improper voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other
act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL APPLY EVEN IF
SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND AND NI
DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE PRODUCTS, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY
WARRANTIES THAT MAY ARISE FROM USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE OPERATION OF THE
PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the warranty terms in the
separate agreement shall control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

• Notices are located in the <National Instruments>_Legal Information and <National Instruments> directories.

• EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

• Review <National Instruments>_Legal Information.txt for information on including legal information in installers built with NI
products.

U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication, reproduction, release,
modification, disclosure or transfer of the technical data included in this manual is governed by the Restricted Rights provisions under Federal
Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal Acquisition Regulation Supplement Section 252.227-7014 and
252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on NI trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology and vernier.com are
trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and
Simulink Coder™, TargetBox™, and Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United
States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from NI and have no agency, partnership, or
joint-venture relationship with NI.

Patents
For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your
media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance policy and how to
obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND RELIABILITY OF THE
PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR APPLICATION, INCLUDING THE
APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING IN THE OPERATION OF
NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING
SYSTEMS OR SUCH OTHER MEDICAL DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR
SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST FAILURES,
INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES.

© National Instruments v ECU M&C Toolkit User Manual

Contents

About This Manual
Related Documentation..xiii

Activating Your Software
How Do I Activate My Software? ...xv

What is Activation? ...xv

What is the NI Activation Wizard?..xv

What Information Do I Need to Activate?...xv

How Do I Find My Product Serial Number? ...xvi

What is a Computer ID? ..xvi

How Can I Evaluate NI Software? ..xvi

Moving Software After Activation ..xvii

Deactivating a Product...xvii

Using Windows Guest Accounts ...xvii

Chapter 1
Introduction

CAN Calibration Protocol (CCP) Overview ...1-2

CCP Protocol Version ...1-2

Universal Measurement and Calibration Protocol (XCP) Overview.............................1-3

XCP Protocol Version ...1-3

Measurement and Calibration Databases...1-4

ECU Measurements ...1-4

ECU Characteristics...1-4

Chapter 2
Installation and Configuration

Installation ...2-1

License Management Overview ..2-1

Activate ECU M&C Toolkit..2-2

Terms...2-3

Moving Software After Activation..2-4

Volume License Program..2-4

Online Activation ..2-4

Home Computer Use ...2-4

Privacy Policy..2-4

LabVIEW Real-Time (RT) Configuration ..2-5

PXI System..2-5

Contents

ECU M&C Toolkit User Manual vi ni.com

NI-CAN on PXI RT System ... 2-5

NI-XNET on PXI RT System ... 2-5

CompactRIO System... 2-5

DOS Command Prompt .. 2-6

Web Browsers ... 2-7

LabVIEW Real-Time Graphical File Transfer Utility 2-7

LabVIEW .. 2-9

Hardware and Software Requirements .. 2-10

Chapter 3
Application Development

Choose the Programming Language ... 3-1

LabVIEW .. 3-1

LabWindows/CVI ... 3-1

Visual C++ 6 ... 3-2

Other Programming Languages .. 3-3

Application Development on CompactRIO or R Series Using an NI 985x or NI 986x C Series

Module.. 3-4

Debugging An Application.. 3-6

NI I/O Trace .. 3-6

CCP/XCP-Spy... 3-6

Saving Captured Communication Data .. 3-8

Capture Options .. 3-8

Call History Depth.. 3-8

Capturing Data.. 3-8

Selecting Which CCP and XCP Commands to View....................... 3-8

Chapter 4
Using the ECU M&C API

Structure of the ECU M&C API ... 4-1

ECU M&C Channel Functions ... 4-2

What is an ECU Measurement?.. 4-2

What is an ECU Characteristic? ... 4-2

ECU M&C CCP and XCP Functions ... 4-3

Basic Programming Model.. 4-3

ECU Open ... 4-5

ASAM MCD 2MC Communication Properties for CCP or XCP with CAN. 4-5

CRO ID... 4-5

DTO ID... 4-5

Station Address... 4-5

Baudrate.. 4-6

ASAM MCD 2MC Communication Properties for XCP with UDP or TCP.. 4-6

Contents

© National Instruments vii ECU M&C Toolkit User Manual

IP Address or hostname ..4-6

Port number...4-6

ECU Connect...4-6

ECU Disconnect ..4-7

ECU Close ...4-7

Characteristic Read and Write...4-7

Access Characteristics...4-7

Characteristic Read ...4-8

Characteristic Write ..4-8

Measurement Task...4-9

DAQ Initialize...4-10

DAQ Start Stop ...4-10

DAQ Read...4-11

DAQ Write ..4-12

DAQ Clear ..4-13

Memory Programming ..4-13

Program Start ..4-14

Clear Memory ...4-15

Program...4-15

Program Reset ...4-15

Optional Steps for the XCP Protocol ..4-15

Additional Programming Topics ...4-16

Get Names ...4-16

Set/Get Properties..4-16

Generic CCP Functions ...4-17

Generic XCP Functions...4-18

Seed and Key Algorithm ...4-19

Definition for Seed and Key Algorithm..4-19

Seed and Key Example ...4-20

Checksum Algorithm ..4-21

Seed and Key and Checksum Algorithms for VxWorks Targets4-23

Chapter 5
ECU M&C API for LabVIEW

Section Headings ...5-1

Purpose ..5-1

Format..5-1

Input and Output..5-1

Description ..5-1

List of VIs ..5-1

MC Build Checksum.vi ...5-6

MC Calc Checksum.vi...5-9

MC CCP Action Service.vi ...5-12

Contents

ECU M&C Toolkit User Manual viii ni.com

MC CCP Diag Service.vi .. 5-14

MC CCP Get Active Cal Page.vi .. 5-16

MC CCP Get Result.vi.. 5-18

MC CCP Get Session Status.vi ... 5-20

MC CCP Get Version.vi ... 5-22

MC CCP Move Memory.vi... 5-24

MC CCP Select Cal Page.vi.. 5-26

MC CCP Set Session Status.vi.. 5-28

MC Characteristic Read.vi .. 5-30

MC Characteristic Read Single Value.vi .. 5-32

MC Characteristic Write.vi ... 5-34

MC Characteristic Write Single Value.vi ... 5-36

MC Clear Memory.vi .. 5-38

MC Conversion Create.vi ... 5-40

MC DAQ Clear.vi ... 5-42

MC DAQ Initialize.vi ... 5-44

MC DAQ List Initialize.vi .. 5-47

MC DAQ Read.vi ... 5-50

MC DAQ Start Stop.vi.. 5-56

MC DAQ Write.vi... 5-59

MC Database Close.vi... 5-62

MC Database Create.vi ... 5-64

MC Database Open.vi ... 5-66

MC Double to Text.vi ... 5-68

MC Download.vi... 5-70

MC ECU Close.vi ... 5-72

MC ECU Connect.vi ... 5-74

MC ECU Create.vi .. 5-76

MC ECU Deselect.vi... 5-81

MC ECU Disconnect.vi .. 5-83

MC ECU Open.vi.. 5-85

MC ECU Select.vi... 5-89

MC ECU Set Calibration Page.vi ... 5-93

MC Event Create.vi... 5-95

MC Generic.vi... 5-97

MC Get Names.vi ... 5-99

MC Get Property.vi... 5-103

MC Measurement Create.vi .. 5-145

MC Measurement Read.vi .. 5-147

MC Measurement Write.vi ... 5-149

MC Program.vi.. 5-151

MC Program Reset.vi.. 5-153

MC Program Start.vi ... 5-155

MC Set Property.vi ... 5-157

Contents

© National Instruments ix ECU M&C Toolkit User Manual

MC Text To Double.vi ..5-176

MC Upload.vi ..5-178

MC XCP Copy Cal Page.vi ...5-180

MC XCP Get Cal Page.vi..5-182

MC XCP Get ID.vi ..5-184

MC XCP Get Status.vi ..5-186

MC XCP Program Prepare.vi ..5-191

MC XCP Program Verify.vi..5-193

MC XCP Set Cal Page.vi...5-196

MC XCP Set Request.vi ..5-198

MC XCP Set Segment Mode.vi...5-201

Chapter 6
ECU M&C API for C

Section Headings ...6-1

Purpose ..6-1

Format..6-1

Input and Output..6-1

Description ..6-1

List of Data Types..6-1

List of Functions ..6-2

mcBuildChecksum ..6-6

mcCalculateChecksum ..6-10

mcCCPActionService..6-12

mcCCPDiagService...6-14

mcCCPGetActiveCalPage...6-16

mcCCPGetResult...6-17

mcCCPGetSessionStatus...6-18

mcCCPGetVersion ..6-19

mcCCPMoveMemory..6-20

mcCCPSelectCalPage..6-22

mcCCPSetSessionStatus..6-23

mcCharacteristicRead..6-25

mcCharacteristicReadSingleValue ..6-26

mcCharacteristicWrite...6-28

mcCharacteristicWriteSingleValue ...6-29

mcClearMemory..6-31

mcConversionCreate ...6-32

mcDAQClear...6-34

mcDAQInitialize ...6-35

mcDAQListInitialize ...6-38

mcDAQRead ...6-40

mcDAQReadTimestamped..6-43

Contents

ECU M&C Toolkit User Manual x ni.com

mcDAQStartStop .. 6-46

mcDAQWrite .. 6-48

mcDatabaseClose .. 6-50

mcDatabaseOpen .. 6-51

mcDatabaseOpenEx .. 6-52

mcDoubleToText .. 6-53

mcDownload ... 6-55

mcECUConnect .. 6-57

mcECUCreate ... 6-58

mcECUDeselect .. 6-62

mcECUDisconnect.. 6-63

mcECUSelectEx.. 6-64

mcECUSetCalibrationPage... 6-67

mcEventCreate .. 6-69

mcGeneric ... 6-70

mcGetNames... 6-72

mcGetNamesLength.. 6-75

mcGetProperty .. 6-78

mcMeasurementCreate.. 6-104

mcMeasurementRead.. 6-106

mcMeasurementWrite ... 6-107

mcProgram .. 6-108

mcProgramReset ... 6-110

mcProgramStart .. 6-111

mcSetProperty ... 6-112

mcStatusToString.. 6-124

mcTextToDouble .. 6-126

mcUpload .. 6-128

mcXCPCopyCalPage .. 6-130

mcXCPGetCalPage... 6-132

mcXCPGetId... 6-134

mcXCPGetStatus .. 6-136

mcXCPProgramPrepare .. 6-140

mcXCPProgramVerify.. 6-142

mcXCPSetCalPage.. 6-144

mcXCPSetRequest .. 6-146

mcXCPSetSegmentMode.. 6-148

Appendix A
Summary of the CCP Standard

Contents

© National Instruments xi ECU M&C Toolkit User Manual

Appendix B
NI Services

Glossary

Index

© National Instruments xiii ECU M&C Toolkit User Manual

About This Manual

This manual provides instructions for using the ECU Measurement &

Calibration (ECU M&C) Toolkit. It contains information about installation,

configuration, and troubleshooting, and also contains ECU M& C function

references for LabVIEW-based and C-based APIs.

Use the ECU M&C Toolkit Installation Guide in the jewel case of the

program CD to install the ECU M&C Toolkit software. Use this manual to

learn the basics of ECU Measurement and Calibration, as well as how to

develop an application.

Related Documentation

The following documents contain information that you may find helpful as

you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of

Digital Information—Controller Area Network (CAN) for High-Speed

Communication

• CAN Specification Version 2.0, 1991, Robert Bosch GmbH.,

Postfach 106050, D-70049 Stuttgart 1

• CiA Draft Standard 102, Version 2.0, CAN Physical Layer for

Industrial Applications

• CAN Calibration Protocol Specification, Version 2.1, ASAP

Arbeitskreis zur Standardisierung von Applikationssystemen

Standardization of Application/Calibration Systems task force

• Interface Specification Interface 2 (ASAM MCD 2MC/ASAP2)

Version 1.51 Release 2003-03-11, Applications Systems

Standardization Working Group

• XCP Version 1.0, The Universal Measurement and Calibration

Protocol Family, Association for Standardization of Automation and

Measuring Systems:

– Part 1, Overview

– Part 2, Protocol Layer Specification

– Part 3, XCP on CAN - Transport Layer Specification

– Part 3, XCP on Ethernet - Transport Layer Specification

– Part 4, Interface Specification

• NI-CAN Hardware and Software Manual

© National Instruments xv ECU M&C Toolkit User Manual

Activating Your Software

This section describes how to use the NI Activation Wizard to activate your

software.

How Do I Activate My Software?

Use the NI Activation Wizard to obtain an activation code for your

software. You can launch the NI Activation Wizard two ways:

• Launch the product and choose to activate your software from the list

of options presented.

• Launch NI License Manager by selecting Start»All Programs»

National Instruments»NI License Manager. Click the Activate

button in the toolbar.

Notes If your software is a part of a Volume License Agreement (VLA), contact your

VLA administrator for installation and activation instructions.

NI software for Mac OS X and Linux operating systems does not require activation.

What is Activation?

Activation is the process of obtaining an activation code to enable your

software to run on your computer. An activation code is an alphanumeric

string that verifies the software, version, and computer ID to enable

features on your computer. Activation codes are unique and are valid on

only one computer.

What is the NI Activation Wizard?

The NI Activation Wizard is a part of NI License Manager that steps you

through the process of enabling software to run on your machine.

What Information Do I Need to Activate?

You need your product serial number, user name, and organization. The

NI Activation Wizard determines the rest of the information. Certain

activation methods may require additional information for delivery. This

information is used only to activate your product. Complete disclosure of

Activating Your Software

ECU M&C Toolkit User Manual xvi ni.com

the National Instruments software licensing information privacy policy is

available at ni.com/activate/privacy. If you optionally choose to

register your software, your information is protected under the National

Instruments privacy policy, available at ni.com/privacy.

How Do I Find My Product Serial Number?

Your serial number uniquely identifies your purchase of NI software. You

can find your serial number on the Certificate of Ownership included in

your software kit. If your software kit does not include a Certificate of

Ownership, you can find your serial number on the product packing slip or

on the shipping label.

If you have installed a previous version using your serial number, you can

find the serial number by selecting the Help»About menu item within the

application or by selecting your product within NI License Manager

(Start»All Programs»National Instruments»NI License Manager).

You can also contact your local National Instruments branch.

What is a Computer ID?

The computer ID contains unique information about your computer.

National Instruments requires this information to enable your software.

You can find your computer ID through the NI Activation Wizard or by

using NI License Manager, as follows:

1. Launch NI License Manager by selecting Start»All Programs»

National Instruments»NI License Manager.

2. Click the Display Computer Information button in the toolbar.

For more information about product activation and licensing, refer to

ni.com/activate.

How Can I Evaluate NI Software?

You can install and run most NI application software in evaluation

mode. This mode lets you use a product with certain limitations, such as

reduced functionality or limited execution time. Refer to your product

documentation for specific information on the product’s evaluation mode.

Activating Your Software

© National Instruments xvii ECU M&C Toolkit User Manual

Moving Software After Activation

To transfer your software to another computer, install and activate it on the

second computer. You are not prohibited from transferring your software

from one computer to another and you do not need to contact or inform NI

of the transfer. Because activation codes are unique to each computer, you

will need a new activation code. Refer to How Do I Activate My Software?

to acquire a new activation code and reactivate your software.

Deactivating a Product

To deactivate a product and return the product to the state it was in before

you activated it, right-click the product in the NI License Manager tree and

select Deactivate. If the product was in evaluation mode before you

activated it, the properties of the evaluation mode may not be restored.

Using Windows Guest Accounts

NI License Manager does not support Microsoft Windows Guest accounts.

You must log in to a non-Guest account to run licensed NI application

software.

© National Instruments 1-1 ECU M&C Toolkit User Manual

1
Introduction

The ECU Measurement and Calibration (ECU M&C) Toolkit contains a

development system for an electronic control unit (ECU) based on existing

ASAM standards. The function set of the ECU M&C Toolkit enables

engineers to optimize and verify the functionality of electronic controller

devices. Most ECUs interact with other ECUs, external sensors, and

actuators in a Controller Area Network (CAN). During the development

and verification phase of an ECU, engineers access the ECU for acquired

data (Measurement), or to adjust parameters inside the ECU itself

(calibration). Since the bandwidth and number of identifiers for a CAN

network are limited the Association for Standardization of Automation and

Measuring Systems (ASAM e.V.) has specified the CAN Calibration

Protocol (CCP), a protocol layer based on CAN, to access the measurement

and calibration data in an ECU.

To build on the functionality of the CAN Calibration Protocol (CCP),

ASAM defined the new protocol specification XCP (Universal

Measurement and Calibration Protocol) which can be considered an

improved and generalized version of CCP. The X represents the various

transportation layers used by the members of the XCP protocol family—for

instance, XCP on CAN, XCP on TCP/IP, XCP on UDP/IP, XCP on USB,

etc.

The ECU M&C Toolkit is particularly suited to the automotive industry and

their component suppliers. It provides a function set that can be used in the

development or verification phase of an ECU. Access to the data inside an

ECU takes place based on information stored in an ASAM MCD 2MC

(*.A2L) database file provided by the ECU supplier. Selecting each signal

by its name provides convenient access to the data inside an ECU. The ECU

M&C Toolkit uses CCP and XCP as the fundamental communication

protocols and to support ECU database (*.A2L) files. You can easily switch

between the CCP and XCP protocol layers through software.

Chapter 1 Introduction

ECU M&C Toolkit User Manual 1-2 ni.com

CAN Calibration Protocol (CCP) Overview

The CAN Calibration Protocol is a CAN-based master-slave protocol for

calibration and data acquisition. A single master device (host) can be

connected to one or more slave devices. The host must establish a logical

point-to-point connection to the slave device before the slave device may

accept commands from the host. The slave device must acknowledge each

command received from the host within a specified time after the

connection between host and slave has been established.

CCP defines two function sets—one for control/memory transfer and

one for data acquisitions that are independent of each other and may run

asynchronously. The control commands are used to carry out functions in

the slave device and may use the slave to perform tasks on other devices.

The data acquisition commands are used for continuous data acquisition

from a slave device. The devices continuously transmit internal data

according to a list that has been configured by the host. Data acquisition is

initiated by the host, then executed by the slave device, and may be based

on a fixed sampling rate or be event-driven.

The communication of controllers with a master device through CCP is

based on the CAN 2.0B standard (11-bit and 29-bit identifier), which

includes 2.0A (11-bit identifier) for data acquisition from the controllers,

memory transfers to the controllers, and control functions in the controllers

for calibration.

The ECU M&C Toolkit abstracts the CCP communication layer so that it

is transparent to the user. For most cases it is sufficient that the underlying

CCP communication is handled by the toolkit kernel itself. Nevertheless,

the ECU M&C Toolkit offers direct access to the low level CCP commands

if a non-standard timing behavior or independent user defined command

sequence is needed.

CCP Protocol Version
The ECU M&C Toolkit supports the CAN Calibration Protocol

specification, version 2.1.

Chapter 1 Introduction

© National Instruments 1-3 ECU M&C Toolkit User Manual

Universal Measurement and Calibration Protocol (XCP)
Overview

The Universal Measurement and Calibration Protocol (XCP) is a

single-master/single-slave protocol for calibration and data acquisition

based on various transport layers. Communication is always initiated by the

XCP master. An XCP slave must respond to requests from the master

within a specified time. The XCP protocol uses a soft master/slave

principle: once the master establishes a communication channel with the

slave, the slave can send certain messages (Events, Service Requests and

Data Acquisition messages) autonomously. In addition, the master sends

Data Stimulation messages without expecting a direct response from the

slave.

The XCP builds a continuous, logical, unambiguous point-to-point

connection with 1 specific slave when establishing a communication

channel. The XCP slave cannot handle multiple connections. The master is

not allowed to broadcast XCP messages to multiple slaves at the same time.

The identification parameters of the Transport Layer (for instance, CAN

identifiers on CAN) must be chosen in such a way that they build

independent and unambiguously distinguishable communication channels.

The ECU M&C Toolkit abstracts the XCP communication layer so that it

is transparent to the user. For most cases it is sufficient that the underlying

XCP communication is handled by the toolkit kernel. Nevertheless, the

ECU M&C Toolkit offers direct access to the low level XCP commands if

a non-standard timing behavior or independent user defined command

sequence is required.

XCP Protocol Version
The ECU M&C Toolkit supports the XCP Calibration Protocol

Specification, version 1.0.

For further information related to the XCP protocol, refer to the XCP

Calibration Protocol Specification, version 1.0, The Universal

Measurement and Calibration Protocol Family, Part 1, by ASAM e.V.

Chapter 1 Introduction

ECU M&C Toolkit User Manual 1-4 ni.com

Measurement and Calibration Databases

The ASAP description file (ASAP2 or ASAM MCD 2MC) is used to

describe the ECU internal memory configuration. An ASAM MCD 2MC

description file with the file extension .A2L contains information and

access locations for the relevant data objects in the ECU, such as:

• Project relevant information

• ECU data structure

• Conversion procedures for representation in physical units

• Descriptions of the available Measurement channels inside the ECU

• Descriptions of the available Characteristics inside the ECU

• Descriptions of how to access the ECU over CAN

Note Use of the ECU M&C Toolkit requires an existing ASAM MCD 2MC database file.

These files can be generated by various third-party utilities. A database editor for ASAM

MCD 2MC databases is not part of the ECU M&C Toolkit.

ECU Measurements

The ECU M&C Toolkit provides the user access to ECU internal physical

values defined by their names in the ASAM MCD 2MC database file.

Based on this information, the ECU M&C Toolkit communicates through

CCP or XCP to the ECU. A DAQ (data acquisition) list can be set up, which

sends ECU internal data synchronously or asynchronously to the CCP or

XCP master. The ECU M&C Toolkit provides a way to configure several

Measurement channels into a single Measurement task. The term task

refers to a list of measurements (channels) read or written together. A

common use of the task concept is to read DAQ channels available on the

ECU.

ECU Characteristics

ECU Characteristics are maps of ECU internal variables, which may be

used as calibration information or set-point information. The ECU memory

content of Characteristics can be read or even changed with the help of the

ECU M&C Toolkit.

© National Instruments 2-1 ECU M&C Toolkit User Manual

2
Installation and Configuration

This chapter explains how to install and configure the ECU M&C Toolkit.

Installation

This section discusses the installation of the ECU M&C Toolkit for

Microsoft Windows.

Note You need administrator rights to install the ECU M&C Toolkit on your computer.

1. Insert the ECU M&C Toolkit CD into the CD-ROM drive.

2. Open Windows Explorer.

3. Access the CD-ROM drive.

4. Double-click on autorun.exe. This will launch the software

interface.

5. Start the installation. The installation program will guide you through

the rest of the installation process.

6. When installation is complete, the National Instruments

License Manager will launch automatically to activate your license.

License Management Overview

License management is the process of controlling access to products based

on an explicit license agreement. The ECU M&C Toolkit requires an

activated license in order to launch, so a license must be acquired and

activated before the product can be used. The activation process involves

using the Activation Wizard to send the following information to National

Instruments:

• The product you are activating: ECU Measurement and Calibration

Toolkit

• The serial number of the product

• The version of the product

• Your name

Chapter 2 Installation and Configuration

ECU M&C Toolkit User Manual 2-2 ni.com

• Your organization

• A computer ID that uniquely identifies your system

National Instruments uses this information to generate an activation code,

which is used to activate the ECU M&C Toolkit on your system. National

Instruments does not use this information for any other purpose. Refer to

the Privacy Policy section for information on the National Instruments

privacy policy regarding your personal information.

The Activation Wizard offers a variety of options you can use to obtain an

activation code from National Instruments, including an automatic option

through an Internet connection, or through email, by telephone, or by fax.

Activate ECU M&C Toolkit

The ECU M&C Toolkit must be activated before using it, in accordance

with its license agreement. To activate the ECU M&C Toolkit, you must

first purchase a license. For information on purchasing licenses, contact

your local National Instruments sales representative or visit ni.com.

Once you have purchased a license, you can activate your product using the

Activation Wizard. Activation is simple and you can activate your software

24 hours a day, 7 days a week.

Complete the following steps to activate the ECU M&C Toolkit.

1. Locate your serial number.

Your serial number uniquely identifies your purchase of NI software.

You can find it on the Certificate of Ownership included in your

software kit. If you subscribe to NI Developer Suite or Academic

Software Solutions, use the original serial number you received with

your initial purchase.

2. Install your software.

Chapter 2 Installation and Configuration

© National Instruments 2-3 ECU M&C Toolkit User Manual

3. Launch the License Activation Wizard.

If you installed your software for the first time and the installer did not

launch the License Activation Wizard for you, perform the following

steps:

a. Launch the NI License Manager by selecting Start»Programs»

National Instruments»NI License Manager.

b. Click the Activate button on the toolbar.

The wizard will guide you through the activation process.

4. Save your activation code for future use (optional).

You can reactivate your software at any time. The activation wizard

provides you with the option to receive an email confirmation of your

activation code. To apply this activation code in the future, launch the

Activation Wizard and choose to apply a 20-character activation code.

If you reinstall your software on the same computer, the same activation

code will work.

For more information on activation, refer to your product documentation,

or visit ni.com/activate.

National Instruments uses activation to better support evaluation of our

software, to enable additional software features, and to support license

management in large organizations. To find out more about National

Instruments software licensing, visit ni.com/activate to find frequently

asked questions, resources, and technical support.

Terms

Table 1. Definition of Activation Terms

Serial Number A 9-character, alphanumeric string that uniquely identifies your purchase

of a single copy of software, included in your software kit on your

Certificate of Ownership. The serial number for hardware products is

printed either on the product box or on the device.

Computer ID or

Device ID

A 16-character ID that uniquely identifies your computer or NI hardware,

generated during the activation process.

Activation Code A 20-character code that enables NI software to run on your computer,

based on your serial number and computer ID. You generate and install

an activation code by completing the activation process.

Chapter 2 Installation and Configuration

ECU M&C Toolkit User Manual 2-4 ni.com

Moving Software After Activation
To transfer your software to another computer, install and reactivate it on

the second computer. You are not prohibited from transferring your

software from one computer to another. Because activation codes are

unique to each computer, you will need a new activation code. Follow the

steps on the previous page to acquire a new activation code and reactivate

your software.

Volume License Program
National Instruments offers volume licenses through the NI Volume

License Program. The NI Volume License Program makes managing

software licenses and maintenance easy. For more information, refer to

ni.com/vlp.

Online Activation
Activation is available on ni.com/activate 24 hours a day, 7 days a

week. You can retrieve an activation code from any computer that has an

Internet connection. NI does not require that the computer on which you

run NI software have Internet or email access.

Home Computer Use
National Instruments permits you to use this software at home. Refer to the

NI License Manager help file or the software end-user license agreement in

the installer or online at ni.com/legal/license for more information.

Privacy Policy
National Instruments respects your privacy. For more information about

the National Instruments activation information privacy policy, go to

ni.com/activate/privacy.

Upon successful activation, you can use the product immediately.

Note If the ECU M&C Toolkit was in use before you began the activation process, you

may need to restart it for the change to take effect.

Tip In the NI License Manager, products that have not been activated are denoted either

by a yellow stoplight or a red stoplight, depending whether the product is in evaluation

mode or is unusable. Activated products are denoted by a green stoplight.

Chapter 2 Installation and Configuration

© National Instruments 2-5 ECU M&C Toolkit User Manual

LabVIEW Real-Time (RT) Configuration

LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming

with the power of real-time systems.

PXI System
When you use a National Instruments PXI controller as a LabVIEW RT

system, you can install a PXI CAN or PXI XNET card and use the

ECU M&C Toolkit to develop real-time applications for CCP or XCP.

As with any other NI product for LabVIEW RT, you must download the

ECU M&C Toolkit software to the LabVIEW RT system using the

Remote Systems branch in MAX. For more information, refer to the

LabVIEW RT documentation.

After installing the PXI CAN cards and downloading the NI-CAN or

NI-XNET and ECU M&C Toolkit software to the LabVIEW RT system,

you need to verify the installation.

NI-CAN on PXI RT System
Within the MAX Tools menu, select NI-CAN»RT Hardware

Configuration. The RT Hardware Configuration tool provides features

similar to Devices and Interfaces on the local system. Use the RT

Hardware Configuration tool to self-test the CAN cards and assign an

interface name to each physical CAN port.

NI-XNET on PXI RT System
After you install the PXI XNET cards and download the NI-XNET

software to the LabVIEW RT system, you need to verify the installation.

Find your PXI target device in MAX under Network Devices and expand

the tree. Browse to Devices and Interfaces and open the NI-XNET

Devices group. Perform a self-test for all installed NI-XNET devices.

On the RT target, you can configure your NI-XNET hardware the same

way as on the local system.

CompactRIO System
After you have installed the CompactRIO CAN modules and downloaded

the NI-RIO and ECU M&C Toolkit software, you need to enable the

CompactRIO Reconfigurable Embedded Chassis for use in LabVIEW.

For more information, refer to the MAX help.

Chapter 2 Installation and Configuration

ECU M&C Toolkit User Manual 2-6 ni.com

Note You can use the ECU M&C Toolkit with LabVIEW 2009 or newer on CompactRIO

Systems only.

To use the ECU M&C Toolkit on the LabVIEW RT system, you must also

download the ASAM MCD 2MC database file to the RT target. The

LabVIEW Real-Time Engine that runs on the PXI LabVIEW Real-Time

controller supports a File Transfer Protocol (FTP) server. You can access

the LabVIEW RT target FTP server using any standard FTP utility for

transferring files to and from the hard drive or compact flash. The following

sections demonstrate how to transfer files from and to your LabVIEW

Real-Time target using various FTP clients.

DOS Command Prompt
You can run a native FTP client from the DOS command prompt on a

Windows PC. To open the FTP client, click Start»Run to open the

user-command dialog box. Type command, and click Enter. This opens a

window with a DOS prompt.

Then use the following table to enter a sequence of commands that may be

used to access the FTP server of your RT target.

Note w.x.y.z represents the IP address of the RT target in this document.

Table 2-1. Example of FTP Transfer

Command Result

ftp Open a connection to the FTP server.

open w.x.y.z

(username) Enter your username and password here or press the Enter key

twice if these security settings have not been applied.
(password)

help View a list of commands.

cd ni-rt\system\www Change to the desired directory.

dir View the files present.

get index.htm c:\index.htm Copy the file.

cd \ Change directory back to the root (c:\).

cd d: Change directories to the external compact flash.

Chapter 2 Installation and Configuration

© National Instruments 2-7 ECU M&C Toolkit User Manual

Web Browsers
You can also use Internet Explorer or Netscape Navigator to ftp files to and

from the controller. This is an easier method of transfer, since there is no

need to learn ftp commands—instead the files are simply copied and pasted

as they would be in a Windows Explorer window. The disadvantage of this

method is that Internet Explorer sometimes caches old information, so you

will need to refresh occasionally.

If w.x.y.z is the IP address of your RT target, open Internet Explorer to

access the hard drive or internal compact flash, or type the following in the

address field:

ftp://w.x.y.z/

If a username and password are required, then use the following format:

ftp://username:password@w.x.y.z/

To access the external compact flash, open Internet Explorer and type the

following in the address field:

ftp://w.x.y.z/d:/

To enter a directory, double-click on its icon. Right-click on a file or folder

and choose cut, copy, paste or delete to perform those actions.

LabVIEW Real-Time Graphical File Transfer Utility
LabVIEW Real-Time Module versions 7.0 and later include a File Transfer

Utility that can be used to access your RT target. This method helps you

avoid the caching problem encountered when using web browsers. You can

find this utility in the Measurement and Automation Explorer (MAX). To

open the utility, right-click on the desired RT target under the Remote

Systems list and choose File Transfer, as shown in Figure 2-2.

put c:\index.htm index.htm Copy the file from the FTP client machine to the target.

dir Verify the copied file on the target.

cd c: Change directory back to the internal compact flash or hard

drive.

quit Disconnect from the FTP server.

Table 2-1. Example of FTP Transfer (Continued)

Command Result

Chapter 2 Installation and Configuration

ECU M&C Toolkit User Manual 2-8 ni.com

Figure 2-2. FTP Utility Access in MAX

At this point, you are prompted for a username and password. If these

security features have not been enabled, check the Anonymous Login box

as shown in Figure 2-3.

Figure 2-3. FTP Login Dialog Box

The upper section of the utility interface shows the current directory and

contents on the remote RT target, while the lower section gives information

for the host or local machine. To copy a file (TestECU.a2l, for instance)

to the RT target, complete the following steps, referring to Figure 2-4 for

details.

1. In the Current Directory section, navigate through the tree structure to

the System folder.

2. In the local directory section, navigate through the tree structure to the

location of the file you want to transfer and highlight the file.

3. Click the To Remote button to copy the file.

Chapter 2 Installation and Configuration

© National Instruments 2-9 ECU M&C Toolkit User Manual

Figure 2-4. Transferring Files With the FTP Utility

LabVIEW
You also can use LabVIEW to programmatically access the FTP server of

a LabVIEW Real-Time target.

The DataSocket Read function has the ability to read raw text, tabbed text,

and .wav files from an FTP server. For more information on this, refer to

the LabVIEW User Manual.

The LabVIEW Internet Developers Toolkit allows you to send files or raw

data to an FTP server, as well as sending emails and adding security to your

web-based applications.

Chapter 2 Installation and Configuration

ECU M&C Toolkit User Manual 2-10 ni.com

Hardware and Software Requirements

You can use the ECU M&C Toolkit on the following hardware:

• National Instruments NI-CAN hardware Series 1 or 2 with the

NI-CAN driver software version 2.3 or later installed.

• National Instruments NI-XNET hardware with the NI-XNET driver

software version 1.0 or later installed.

• National Instruments CompactRIO or R Series Multifunction RIO

hardware and the NI 9853 or NI 9852 CompactRIO CAN modules.

Note You can use the ECU M&C Toolkit with LabVIEW 2009 or newer on CompactRIO

systems or National Instruments R Series Multifunction RIO hardware.

© National Instruments 3-1 ECU M&C Toolkit User Manual

3
Application Development

This chapter explains how to develop an application using the ECU M&C

API.

Choose the Programming Language

The programming language you use for application development

determines how to access the ECU M&C Toolkit APIs.

LabVIEW
ECU M&C Toolkit functions and controls are available in the LabVIEW

palettes. In LabVIEW, the ECU M&C Toolkit palette is located:

• Within the All Functions palette for LabVIEW 7.1

• Within the Addons palette for LabVIEW 8.0 and 8.1

The reference for each ECU M&C Toolkit API function is in Chapter 5,

ECU M&C API for LabVIEW. To access the reference for a function

from within LabVIEW, press <Ctrl-H> to open the Help window,

click the appropriate ECU M&C function, and then follow the link.

The ECU M&C Toolkit software includes a full set of examples for

LabVIEW. These examples teach programming basics as well as advanced

topics. The example help describes each example and includes a link you

can use to open the VI.

LabWindows/CVI
Within LabWindows™/CVI™, the ECU M&C Toolkit function panel is in

Libraries»ECU Measurement and Calibration Toolkit. Like other

LabWindows/CVI function panels, the ECU M&C Toolkit function

panel provides help for each function and the ability to generate code.

The reference for each API function is located in Chapter 6, ECU M&C

API for C. You can access the reference for each function directly from

within the function panel. The header file for the ECU M&C Toolkit APIs

is niemc.h. The library for the ECU M&C Toolkit APIs is niemcc.lib.

Chapter 3 Application Development

ECU M&C Toolkit User Manual 3-2 ni.com

The toolkit software includes a full set of examples for LabWindows/CVI.

The examples are installed in the LabWindows/CVI directory under

samples\ecumc. Each example provides a complete LabWindows/CVI

project (.prj file).

A description of each example is provided in comments at the top of the

.c file.

Visual C++ 6
The ECU M&C Toolkit software supports Microsoft Visual C/C++ 6.

The header file for Visual C/C++ 6 is in the Program Files\National

Instruments\Shared\ExternalCompilerSupport\C\include

folder.

To use the ECU M&C API, include the niemc.h header file in the code,

then link with the niemcc.lib library file.

The niemcc.lib library file is in the Program Files\National

Instruments\Shared\ExternalCompilerSupport\C\lib32\msvc

folder.

For C applications (files with a .c extension), include the header file by

adding a #include to the beginning of the code, like this:

#include "niemc.h"

For C++ applications (files with a .cpp extension), define __cplusplus

before including the header, like this:

#define __cplusplus

#include "niemc.h"

The __cplusplus define enables the transition from C++ to the C

language functions.

The reference for each API function is in Chapter 6, ECU M&C API for C.

On Windows Vista (with Standard User Account), the typical path to the

C examples folder is \Users\Public\Documents\National

Instruments\ECU Measurement and Calibration Toolkit\

Examples\MS Visual C.

On Windows XP/2000, the typical path to the C examples folder is

\Documents and Settings\All Users\Documents\National

Instruments\ECU Measurement and Calibration Toolkit\

Examples\MS Visual C.

Chapter 3 Application Development

© National Instruments 3-3 ECU M&C Toolkit User Manual

Each example is in a separate folder. A description of each example is in

comments at the top of the .c file. At the command prompt, after setting

MSVC environment variables (such as with MS vcvars32.bat), you can

build each example using a command such as:

cl /I<HDir> measure.c <LibDir>\niemcc.lib

<HDir> is the folder where niemc.h can be found.

<LibDir> is the folder where niemcc.lib can be found.

Other Programming Languages
The ECU M&C Toolkit software does not provide formal support for

programming languages other than those described in the preceding

sections. If the programming language provides a mechanism to call a

Dynamic Link Library (DLL), you can create code to call ECU M&C

Toolkit functions. All functions for the ECU M&C API are located in

niemcc.dll. If the programming language supports the Microsoft Win32

APIs, you can load pointers to ECU M&C Toolkit functions in the

application. The following text demonstrates use of the Win32 functions

for C/C++ environments other than Visual C/C++ 6. For more detailed

information, refer to Microsoft documentation.

The following C language code fragment illustrates how to call Win32

LoadLibrary to load the DLL for the ECU M&C API:

#include <windows.h>

#include "niemc.h"

HINSTANCE NiMcLib = NULL;

NiMcLib = LoadLibrary("niemcc.dll");

Next, the application must call the Win32 GetProcAddress function to

obtain a pointer to each ECU M&C Toolkit function that the application

will use. For each function, you must declare a pointer variable using the

prototype of the function. For the prototypes of each ECU M&C Toolkit

function, refer to Chapter 6, ECU M&C API for C.

Before exiting the application, you must unload the ECU M&C Toolkit

DLL as follows:

FreeLibrary (NiMcLib);

Chapter 3 Application Development

ECU M&C Toolkit User Manual 3-4 ni.com

Application Development on CompactRIO or R Series
Using an NI 985x or NI 986x C Series Module

To run a project on an FPGA target with an NI 985x C Series module, you

need an FPGA bitfile (.lvbitx). The FPGA bitfile is downloaded to the

FPGA target on the execution host. A bitfile is a compiled version of an

FPGA VI. FPGA VIs, and thus bitfiles, define the CAN, analog, digital,

and pulse width modulation (PWM) inputs and outputs of an FPGA target.

The ECU M&C Toolkit includes FPGA bitfiles for several FPGA targets.

If your target is not included in the examples, you can use the examples as

a template and adjust them based on your installed FPGA target.

The default bitfiles are sufficient for a basic ECU M&C application.

However, in some situations you may need to modify the existing FPGA

code or create a custom bitfile. For example, to use additional I/O on the

FPGA target, you must add these I/O to the FPGA VI. You must install the

LabVIEW FPGA Module to create these files.

Modify the FPGA VI according to the following guidelines:

• Do not modify, remove, or rename any block diagram controls and

indicators named __CAN0 Rx Data, __CAN0 Rx Ready, __CAN0 Tx

Data Frame, __CAN0 Tx Ready, __CAN0 Bit Timing, __CAN0

FPGA Is Running, __CAN0 Start, __CAN0 FIFO Full, or __CAN0

FIFO Empty. If you intend to use multiple CAN 985x modules on your

FPGA, you need to duplicate and rename all controls and indicators

accordingly.

• Do not modify the CAN read and write code except to filter CAN IDs

on the receiving side to minimize the amount of CAN data transfers to

the host.

• As you create controls or indicators, ensure that each control name is

unique within the VI.

Refer to the LabVIEW FPGA Module documentation for more information

about creating FPGA VIs and bitfiles for an FPGA target.

When using the ECU M&C Toolkit on CompactRIO with an

NI 985x C Series module, the interface name is based on the

bitfile you use and the interface name you set. For example,

MyInterface@MyBitfile.lvbitx, CAN@lvbitfile.lvbitx,

or CAN0@mybitfile.lvbitx.

Chapter 3 Application Development

© National Instruments 3-5 ECU M&C Toolkit User Manual

The interface name you use must be part of all parameters in the FPGA

code for the CAN communication. Also, the ECU M&C Toolkit needs the

interface name for correct functionality.

If you define the interface name to be CAN0, you must name the parameters

as follows:

• __CAN0 Rx Data

• __CAN0 Rx Ready

• __CAN0 Tx Data Frame

• __CAN0 Tx Ready

• __CAN0 Bit Timing

• __CAN0 FPGA Is Running

• __CAN0 Start

• __CAN0 FIFO Full

• __CAN0 FIFO Ready

In addition, you need to set the name of the internally used FIFO to

__CAN0 FIFO (the FIFO is set to U32, 1029 elements, target scoped, and

block memory).

After recompiling your FPGA VI, copy the bitfile to the root directory of

your CompactRIO controller and specify the bitfile in the interface name.

Or copy the file to any location on the CompactRIO controller and specify

an absolute path or path relative to the root for the bitfile.

If you are using an NI-XNET 986x C Series module on your CompactRIO

target, you need to start an FPGA VI on the target before accessing the port

with the ECU M&C Toolkit. Refer to the Getting Started with CompactRIO

section in the NI-XNET Hardware and Software Manual for more

information about compiling the FPGA VI. When the VI is running, you

can access the NI 986x module as you would program on a Windows or

PXI LabVIEW Real-Time target.

Chapter 3 Application Development

ECU M&C Toolkit User Manual 3-6 ni.com

Debugging An Application

NI I/O Trace
The NI I/O Trace (formerly NI-Spy) tool monitors function calls to the

ECU M&C API to aid in the debugging of an application. To launch this

tool, open the Software branch of the MAX configuration tree, right-click

NI I/O Trace, and select Launch NI I/O Trace.

If you have more than one National Instruments driver installed on your

computer, you can specify which APIs you want to monitor at any time. By

default, all installed APIs are enabled. To select the APIs to monitor, select

Tools»Options, select the View Selection tab, and select the desired APIs

under Installed API Choices.

CCP/XCP-Spy
The CCP/XCP-Spy tool monitors CCP and XCP protocol communication

to aid in the debugging of an application. Launch this tool from the Start

menu in Start»Programs»National Instruments»ECU Measurement

and Calibration Toolkit»CCP and XCP Spy.

Chapter 3 Application Development

© National Instruments 3-7 ECU M&C Toolkit User Manual

Figure 3-1. CCP/XCP Spy

CCP/XCP-Spy is an application that monitors, records, and displays

CCP and XCP communication commands and parameters called by

your ECU M&C application using the CCP or XCP protocol. Use

CCP/XCP-Spy to analyze your application's communication and to

verify that the communication with your ECU slave is correct.

You can use this application on Windows only when the ECU M&C master

also is running on Windows.

CCP/XCP-Spy may slow down the performance of your application,

communication to your ECU slave, and the entire system. You should use

CCP/XCP-Spy only while you are debugging or when performance is not

critical.

For further information about the displayed CCP or XCP commands and

parameters, refer to the ASAM XCP Part 2 Protocol Layer Specification or

CAN Calibration Protocol Version 2.1 specification documents.

Chapter 3 Application Development

ECU M&C Toolkit User Manual 3-8 ni.com

Saving Captured Communication Data
To save the information displayed in the CCP/XCP-Spy capture window,

select File»Save As. In the dialog box that appears, select a name for the

capture file. A .xlg extension usually is used for saving CCP/XCP-Spy

capture information. The CCP/XCP-Spy log is stored in ASCII format, so

you can view the .xlg file in any ASCII editor.

Capture Options
To view or modify the CCP/XCP-Spy capture options, select

Spy»Options. By default, CCP/XCP-Spy displays 250 calls in the capture

window.

Call History Depth
The call history depth reflects the maximum number of API calls that

CCP/XCP-Spy can display. When the number of captured API calls

exceeds the call history depth, only the most recent calls are kept.

Capturing Data
By default, capture is activated when you open CCP/XCP-Spy. When

capture is off, the blue arrow (start button) is enabled. When capture is on,

the red X (stop button) is enabled. To turn capture on, click the blue arrow

button on the toolbar. To turn capture off, click the red button on the

toolbar.

Selecting Which CCP and XCP Commands to View
You can specify which command you want to spy on at any time.

By default, CCP/XCP commands are enabled. To select/deselect the

CCP/XCP commands to spy on, select Spy»Options, then select the

commands under Capture.

Commands—Captures all CCP/XCP commands.

DAQ Messages—Captures all DAQ list commands (ECU measurement

commands).

STIM Messages—Captures all STIM list (ECU slave stimulation

commands).

© National Instruments 4-1 ECU M&C Toolkit User Manual

4
Using the ECU M&C API

This chapter helps you get started with the ECU M&C API.

Structure of the ECU M&C API

The ECU M&C API is divided into three main function categories, the

high-level Channel-based functions, and the generic low-level CCP and

XCP functions. The ECU M&C Channel functions provide an easy way to

access ECU internal data through named channels. The ECU M&C CCP

functions provide direct access to the CCP commands on a very low

programming level. The ECU M&C XCP functions provide direct access

to the XCP commands on a very low programming level. Figure 4-1

outlines the three function categories.

Figure 4-1. ECU Architectural Overview

Channel Functions CCP Functions

Measurement R/W CCP Commands

XCP Functions

XCP Commands

ECU M&C Toolkit

Database Task

ECU Task

DAQ Task Characteristic R/W

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-2 ni.com

ECU M&C Channel Functions
With the ECU M&C Channel functions there are a number of ways to

access memory content in an ECU. The starting point is always the creation

of a database task, which is the link to a valid ASAM MCD 2MC database

file (*.A2L file), and the selection of the protocol (CCP or XCP). With the

database task reference it is possible to create an ECU task reference, which

links to the selected ECU. Depending on the application scenario, the ECU

task reference can be used for the following:

• Creation of a Measurement task to measure ECU internal data

continuously or on demand

• Direct read/write of 0- to 2-dimensional Characteristics

• Read/write of single Measurement values on demand

What is an ECU Measurement?
An ECU Measurement, called ECU Data Acquisition (DAQ) in the CCP

and XCP specifications, is a definition of specific procedures and CAN

messages sent from the slave device (ECU) to the master device for fast

data acquisition (DAQ).

The XCP protocol supports synchronous data transfer in both directions,

from Master to Slave (DAQ list) and from Slave to Master (STIM list). XCP

allows several DAQ lists, which may be simultaneously active. The

sampling and transfer of each DAQ list is triggered by individual events in

the slave. To allow reduction of the transfer rate, a transfer rate prescaler

may be applied to the DAQ lists.

What is an ECU Characteristic?
An ECU Characteristic represents an ECU internal memory range with

defined access methods through the CCP protocol. The memory range of a

single Characteristic can be structured in three ways:

• 0-dimensional—a single value

• 1-dimensional—a curve of values

• 2-dimensional—a field of values

A Characteristic may be defined as read-only or read and write accessible.

Chapter 4 Using the ECU M&C API

© National Instruments 4-3 ECU M&C Toolkit User Manual

ECU M&C CCP and XCP Functions
The ECU M&C Channel functions do not expose the method used for

ECU memory access. However, some applications may need specific

CCP or XCP command sequences, or custom designed commands, which

are not supported by the CCP or XCP protocols. For these applications, the

ECU M&C CCP functions and the ECU M&C XCP functions provide

access to the ECU information at a very low level.

Basic Programming Model

The flowchart in Figure 4-2 illustrates the process to initiate

communication to an ECU with the ECU M&C Channel functions. A

description of each step in the decision process follows the flowchart.

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-4 ni.com

Figure 4-2. ECU Communication Decision Chart

ECU Disconnect

ECU Close

ECU Connect

Set Station Address

Set CRO ID

Set DTO ID

Set Baudrate

ECU Open

Using CCP or

XCP on CAN

Using CCP

NoYes

Yes

Yes

Set IP Address

or Hostname

No

No

Set Port Number

Generic XCP

Functions
Generic CCP

Functions

Characteristic

Read/Write

Measurement

Task

A2L file

contains communication

properties?

Chapter 4 Using the ECU M&C API

© National Instruments 4-5 ECU M&C Toolkit User Manual

ECU Open
The ECU Open function combines the opening of a selected ASAM MCD

2MC database file with the .A2L file extension and the selection of a stored

ECU name. The required parameters are the ASAM MCD 2MC database

path and filename, and the dedicated CAN interface if you are using CCP

or XCP with CAN. The CAN interface is used for communication with

the ECU. If you are using XCP with UDP or TCP, a port number and

IP address or hostname must be defined in the A2L database.

The function to open and select an ECU is MC ECU Open.vi in LabVIEW

or mcDatabaseOpen followed by mcECUSelectEx in C.

Note The import of ASAM MCD 2MC database files into MAX is not supported.

ASAM MCD 2MC Communication Properties for CCP or XCP with CAN
If your ASAM MCD 2MC database file already contains communication

properties, you can directly open the communication to your selected ECU.

If the communication properties are not stored in the ASAM MCD 2MC

file, the communication properties must be manually set. To establish

communication through CCP or XCP with CAN, the target ECU slave

should be addressed by setting the following properties.

CRO ID
The CRO ID (Command Receive Object) is used to send commands and

data from the host to the slave device.

DTO ID
The DTO ID (Data Transmission Object) is used by the ECU to respond

to CCP commands, and to send data and status information to the CCP

master.

Station Address
CCP is based on the idea that several ECUs can share the same CAN

Arbitration IDs for CCP communication. To avoid communication

conflicts, CCP defines a Station Address that must be unique for all ECUs

sharing the same CAN Arbitration IDs. Unless an ECU has been addressed

by its Station Address, the ECU must not react to CCP commands sent by

the CCP master.

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-6 ni.com

Baudrate
The baudrate property may be missing in an A2L database file and can be

set explicitly within the application. This property provides the baud rate at

which communication will occur, and applies to all tasks initialized with

the interface. You can specify one of the predefined baud rates, or specify

advanced baud rates which refer to the settings of the Bit Timing Register 0

(BTR0) and 1 (BTR1). For more information, refer to the Interface

Properties dialog in MAX, or the NI-CAN Hardware and Software

Manual. The baud rate is originally set within MAX.

ASAM MCD 2MC Communication Properties for XCP with UDP or TCP
If the XCP communication properties are not stored in the ASAM MCD

2MC file, the communication properties must be manually set. To establish

communication through XCP with UDP or TCP the target ECU slave

should be addressed by setting the following properties.

IP Address or hostname
The IP address refers to the identifier for a computer or device on a TCP/IP

network. Networks using the TCP/IP protocol route messages based on the

IP address of the destination.

A hostname describes the unique name by which a device is known on a

network. Hostnames are used by various naming systems: NIS, DNS,

SMB, etc. Hostnames are high-level aliases which ultimately correlate to

unique network hardware MAC addresses.

Port number
In TCP/IP and UDP networks, a port is an end-point to a logical connection

through which a client program specifies a server program on a computer

in a network. Port numbers range from 0 to 65536, but only port numbers

0 to 1024 are reserved for privileged services and designated as

well-known ports.

ECU Connect
The ECU Connect function establishes communication to the selected

ECU through CCP using the CCP CONNECT command or through XCP

using the CONNECT command. It establishes a logical connection to an

ECU. Unless a slave device (ECU) is unconnected, it must not execute or

respond to any command sent by the application. The only exception to this

Chapter 4 Using the ECU M&C API

© National Instruments 4-7 ECU M&C Toolkit User Manual

rule is the Test command, in which case the slave with the specified address

may acknowledge the command. Only a single slave can be connected to

the application at a time. After a successful ECU Connect you can create

a Measurement Task or read/write a Characteristic.

The function to open and select an ECU is MC ECU Connect.vi in

LabVIEW and mcECUConnect in C.

ECU Disconnect
The ECU Disconnect function permanently disconnects the specified

slave and ends the measurement and calibration session. When the

measurement and calibration session is terminated, all DAQ lists for the

device are stopped and cleared, and the protection masks of the device are

set to their default values.

The function to disconnect an ECU is MC ECU Disconnect.vi in

LabVIEW or mcECUDisconnect in C.

ECU Close
The MC ECU Close function deselects the ECU and closes the remaining

database reference handle. MC ECU Close must always be the final

ECU M&C function call. If you do not use MC ECU Close, the remaining

task configurations can cause problems in the execution of subsequent

ECU M&C applications.

The function to close an ECU is MC ECU Close.vi in LabVIEW. To

deselect the ECU and close the database reference handle in C, call the

function mcECUDeselect followed by mcDatabaseClose.

Characteristic Read and Write

Access Characteristics
To access the Characteristics of an ECU you must select and connect to

the specified ECU through the procedure given above. The function

to open and select an ECU is MC ECU Open.vi in LabVIEW, or

mcDatabaseOpen followed by mcECUSelectEx in C. Once the ECU has

been connected an ECU Reference handle (ECU ref out in LabVIEW,

ECURefNum in C) must be acquired before any additional actions can be

performed.

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-8 ni.com

Characteristic Read
The application must call the Read Characteristic function to obtain

scaled floating point samples. The application typically calls Read

Characteristic on demand. Calling Read Characteristic in a loop can

cause significant CAN network traffic, as Characteristics may contain large

amounts of data.

The function to read 0- to 2-dimensional Characteristics is

MC Characteristic Read.vi in LabVIEW or mcCharacteristicRead

in C. The function to read single double values as Characteristics is

MC Characteristic Read Single Value.vi in LabVIEW or

mcCharacteristicReadSingleValue in C.

Before reading a Characteristic, it may be helpful to verify the dimension

of the Characteristic based on the definition in the ASAM MCD 2MC

database file. Depending on the dimension of the Characteristic, use the

appropriate Read function for reading a double, a 1D array of doubles, or

a 2D array of doubles.

The function to verify a dimension of a named Characteristic is MC Get

Property.vi with the parameter Characteristic/Dimension in LabVIEW

or mcGetProperty with the parameter mcPropChar_Dimension in C.

Characteristic Write
The application must call the Write Characteristic function to output

scaled floating-point samples. The application typically calls Write

Characteristic on demand. Calling Write Characteristic in a loop can

cause significant network traffic, as Characteristics may contain large

amounts of data.

The function to write a Characteristic is MC Characteristic Write.vi in

LabVIEW or mcCharacteristicWrite in C.

Before writing a Characteristic, it may be helpful to verify the dimension

of the Characteristic based on the definition in the ASAM MCD 2MC

database file. Depending on the dimension of the Characteristic, use the

appropriate Write function for writing a double, a 1D array of doubles, or

a 2D array of doubles.

The function to verify a dimension of a named Characteristic is MC Get

Property.vi with the parameter Characteristic/Dimension in LabVIEW

or mcGetProperty with the parameter mcPropChar_Dimension in C.

Chapter 4 Using the ECU M&C API

© National Instruments 4-9 ECU M&C Toolkit User Manual

Measurement Task
To create a Measurement task you need to select available Measurement

signals from an ASAM MCD 2MC database file. Create a valid ECU

Reference handle as described in the Access Characteristics section.

The flowchart in Figure 4-3 shows the process to perform an ECU

Measurement task. A description of each step in the decision process

follows the flowchart.

Figure 4-3. ECU Measurement Setup Flowchart

ECU DAQ Init

ECU DAQ Read

ECU DAQ Clear

ECU Close

ECU DAQ

Start/Stop

DAQ list or

Polling mode

Yes

ECU DAQ Write
No

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-10 ni.com

DAQ Initialize
The DAQ Initialize function initializes a list of Measurement channels as

a single Measurement task. The communication for that Measurement task

is started by the first DAQ Read function. The DAQ Initialize function is

MC DAQ Initialize.vi in LabVIEW or mcDAQInitialize in other

languages.

The DAQ Initialize function uses the following input parameters:

Measurement list

Specifies the list of channels for the task with one string for each channel.

ECU Reference handle

Typically, the ECU Reference handle is created by opening the ASAM

MCD 2MC database using the ECU Open function, then connecting to an

ECU using the ECU Connect function.

Mode

Specifies the input mode to use for the task. This determines the data

transfer for the task (Polling, DAQ list, or STIM list).

SampleRate

Specifies the sampling rate for a specific DAQ list or STIM list. The sample

rate is specified in Hertz (samples per second). For more information, refer

to the DAQ Read section.

DTO ID

If you are using the CCP protocol, the DTO ID (Data Transmission

Object) is used by the ECU to respond to CCP commands, and to send data

and status information to the CCP master.

DAQ Start Stop
The optional function DAQ Start Stop starts or stops the transmission of

the DAQ lists for an ECU M&C Measurement task. If you do not specify

MC DAQ Start Stop.vi before your first DAQ Read or DAQ Write

function, MC DAQ Start Stop.vi is implicitly performed by the first

DAQ Read or DAQ Write call. After you start the transmission of the

DAQ lists or STIM lists, you can no longer change the configuration of the

Measurement task with Set Property. MC DAQ Start Stop.vi is

implicitly performed by DAQ Clear to stop transmission of the DAQ lists.

Chapter 4 Using the ECU M&C API

© National Instruments 4-11 ECU M&C Toolkit User Manual

The function to start a DAQ list is MC DAQ Start Stop.vi in LabVIEW or

mcDAQStartStop in C.

DAQ Read
The application must call the DAQ Read function to obtain floating-point

samples. The application typically calls DAQ Read in a loop until done.

The Read function is MC DAQ Read.vi in LabVIEW (all types that do not

end in Time & Dbl) or mcDAQRead in other languages.

The behavior of Read depends on the initialized sample rate and the

selected mode.

sample rate = 0

DAQ Read returns a single sample from the most recent message(s)

received from the network. One sample is returned for every channel in the

DAQ Initialize list.

Figure 4-4 shows an example of DAQ Read with a sample rate = 0. A, B,

and C represent messages for the initialized channels. def represents the

default value 0. If no message is received after the start of the application,

the default value 0 is returned along with a warning.

Figure 4-4. Example of Read With Sample Rate = 0

def

Read

A

Read

C

Read

A B C

Start

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-12 ni.com

sample rate > 0

DAQ Read returns an array of samples for every channel in the DAQ

Initialize list. Each time the clock ticks at the specified rate, a sample from

the most recent message(s) is inserted into the arrays. In other words, the

samples are repeated in the array at the specified rate until a new message

is received. By using the same sample rate with NI-DAQ Analog Input

channels or NI-DAQmx Analog Input channels, you can compare

ECU DAQ and NI-DAQ/NI-DAQmx samples over time.

Figure 4-5 shows an example of DAQ Read with a sample rate > 0. A, B,

and C represent messages for the initialized channels. delta-t represents the

time between samples as specified by the sample rate. def represents the

default value 0.

Figure 4-5. Example of Read With Sample Rate > 0

DAQ Write
If you are using XCP and the DAQ initialize mode is set to STIM list the

application must call the DAQ Write function to output floating-point

samples. The application typically calls DAQ Write in a loop until done.

The DAQ Write function is MC DAQ Write.vi in LabVIEW or

mcDAQWrite in other languages.

A B C

Start

def

Read

A Cdef def def A A A A B B B C C

∆t

Chapter 4 Using the ECU M&C API

© National Instruments 4-13 ECU M&C Toolkit User Manual

DAQ Clear
DAQ Clear must always be the final function called for a specific

Measurement task. If you do not use DAQ Clear, the remaining

Measurement task configuration can cause problems in the execution of

subsequent ECU M&C applications. Because this function clears the

Measurement task, the Measurement task reference is transferred into an

ECU reference task handle. To change the properties of a running

Measurement task, use DAQ Start Stop to stop the task, Set Property to

change the desired DAQ property, then DAQ Start Stop to restart the

Measurement task again.

The function to clear a DAQ list is MC DAQ Clear.vi in LabVIEW or

mcDAQClear in C.

Memory Programming
The ECU Measurement and Calibration Toolkit allows you to issue a

memory programming sequence for your ECU after you create an ECU

Reference handle as described in the Basic Programming Model section.

The flowchart in Figure 4-6 illustrates the general process of a memory

programming sequence of an ECU with the ECU M&C functions.

A description of each step in the decision process follows the flowchart.

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-14 ni.com

Figure 4-6. Memory Programming Process Decision Chart

Program Start
The Program Start function sets the ECU into the memory programming

mode. Note that in this mode specific features might be restricted, for

instance, the ECU might refuse to change into the programming mode

while a DAQ list is running. The Program Start function is MC Program

Start.vi in LabVIEW and mcProgramStart in other languages.

Using

XCP?

Clear

Memory before

Programming?

Yes

Yes

No

Using

XCP?

Yes

No

No

Optional:

XCP Program Prepare

Program Start

Program

Program Reset

Clear Memory

Optional:

Set XCP Program Properties

Optional:

XCP Program Verify

Chapter 4 Using the ECU M&C API

© National Instruments 4-15 ECU M&C Toolkit User Manual

Clear Memory
It might be necessary to clear the memory before it is reprogrammed. The

details are ECU-dependent. The Clear Memory function performs the

memory clearing operation. It is MC Clear Memory.vi in LabVIEW or

mcClearMemory in other languages.

Program
The Program function actually downloads the new code to the ECU. It is

MC Program.vi in LabVIEW or mcProgram in other languages.

Program Reset
The Program Reset function terminates a programming sequence. Note that

for the XCP protocol, Program Reset performs a hardware reset of the

ECU and causes a disconnect. You have to reconnect to the ECU using the

ECU Connect function to perform further operations. The Program Reset

function is MC Program Reset.vi in LabVIEW and mcProgramReset in

other languages.

Optional Steps for the XCP Protocol

XCP Program Prepare

An ECU using the XCP protocol might require an XCP

PROGRAM_PREPARE command before a programming sequence is

started. This command can be issued with the XCP Program Prepare

function. It is MC XCP Program Prepare.vi in LabVIEW and

mcXCPProgramPrepare in other languages.

Set XCP Programming Properties

XCP allows the programming process to be controlled by several variables.

These are the Compression Method, Encryption Method,

Programming Method, and Access Method properties. They default to 0,

but can be set to any value before the programming process starts. The

allowed values for these properties are ECU-specific. If any of these

properties is set to a nonzero value, an appropriate PROGRAM_FORMAT

XCP command is issued before the programming takes place. Note that the

Access Method property also affects the Clear Memory function.

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-16 ni.com

XCP Program Verify

After the memory programming XCP allows to verify whether the

operation was successful by the PROGRAM_VERIFY XCP command.

The details of this command are highly ECU-specific. This command can

be issued using the XCP Program Verify function. It is MC XCP

Program Verify.vi in LabVIEW and mcXCPProgramVerify in other

languages.

Additional Programming Topics

The following sections provide information you can use to extend the basic

programming model.

Get Names
If you are developing an application that another person will use, you may

not want to specify a fixed channel list for a Measurement task or a fixed

channel for a Characteristic in the application. Ideally, you want the

end-user to select the channels of interest from user interface controls such

as list boxes. The Get Names function queries an ASAM MCD 2MC

database and returns a list of all channels in that database regarding the

selected query mode. You can use this list to populate user-interface

controls. The user can then select channels from these controls, avoiding

the need to type in each name. Once the user makes the selections, the

application can pass the resulting list to the appropriate function, such as

DAQ Initialize, for an ECU Measurement channel list. The Get Names

function is MC Get Names.vi in LabVIEW or mcGetNames in C.

Set/Get Properties
If you need to change particular parameters within an application, such as

the DTO ID, use the following sequence:

1. Initialize the Measurement task as stopped. The Initialize function is

MC DAQ Initialize.vi in LabVIEW or mcDAQInitialize in C.

2. Use Set Property to specify the new value for the DTO_ID property.

The Set Property function is MC Set Property.vi in LabVIEW or

mcSetProperty in C.

3. Start the Measurement task with the DAQ Start Stop function. The

DAQ Start Stop function is MC DAQ Start Stop.vi in LabVIEW or

mcDAQStartStop in C. You can also start the Measurement task

implicitly by issuing DAQ Read.

Chapter 4 Using the ECU M&C API

© National Instruments 4-17 ECU M&C Toolkit User Manual

After the task is started you may need to change properties again. To change

properties within the application, use the DAQ Start Stop function to stop

the Measurement task, Set Property to change properties, then start the

task again.

You also can use the Get Property function to get the value of any property.

The Get Property function returns values whether the task is running or

not. The Get Property function is MC Get Property.vi in LabVIEW or

mcGetProperty in C.

Generic CCP Functions
The generic ECU M&C CCP functions provide direct access to the

CCP commands on a very low programming level. For further information

for the use and parameters of the CCP commands, refer to the CAN

Calibration Protocol Specification, Version 2.1. Table 4-1 provides an

overview of the CCP commands and their corresponding LabVIEW VIs or

C functions.

Table 4-1. Overview of the CCP Commands with Related VIs and C Functions

CCP Command LabVIEW VI Name C Function Name

ACTION_SERVICE MC CCP Action Service.vi mcCCPActionService

BUILD_CHKSUM MC Build Checksum.vi mcBuildChecksum

CLEAR_MEMORY MC Clear Memory.vi mcClearMemory

DIAG_SERVICE MC CCP Diag Service.vi mcCCPDiagService

DNLOAD MC Download.vi mcDownload

GET_ACTIVE_CAL_PAGE MC CCP Get Active Cal

Page.vi

mcCCPGetActiveCalPage

GET_CCP_VERSION MC CCP Get Version.vi mcCCPGetVersion

GET_S_STATUS MC CCP Get Session

Status.vi

mcCCPGetSessionStatus

MOVE MC CCP Move Memory.vi mcCCPMoveMemory

PROGRAM MC Program.vi mcProgram

SELECT_CAL_PAGE MC CCP Select Cal Page.vi mcCCPSelectCalPage

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-18 ni.com

Generic XCP Functions
The generic ECU M&C XCP functions provide direct access to the XCP

commands on a very low programming level. For more information about

the use and parameters of the XCP commands, refer to the ASAM XCP

Part 2 Protocol Layer Specification. Table 4-2 provides an overview of the

XCP commands with their corresponding LabVIEW VIs or C functions.

SET_S_STATUS MC CCP Set Session

Status.vi

mcCCPSetSessionStatus

UPLOAD MC Upload.vi mcUpload

Table 4-2. Overview of the XCP Commands with Related VIs and C Functions

XCP Command LabVIEW VI Name C Function Name

BUILD_CHKSUM MC Build Checksum.vi mcBuildChecksum

CLEAR_MEMORY MC Clear Memory.vi mcClearMemory

COPY_CAL_PAGE MC XCP Copy Cal Page.vi mcXCPCopyCalPage

DOWNLOAD MC Download.vi mcDownload

GET_CAL_PAGE MC XCP Get Cal Page.vi mcCCPGetActiveCalPage

GET_ID MC XCP Get ID.vi mcXCPGetId

GET_STATUS MC XCP Get Status.vi mcXCPGetStatus

PROGRAM MC Program.vi mcProgram

PROGRAM_PREPARE MC XCP Program

Prepare.vi

mcXCPProgramPrepare

PROGRAM_RESET MC Program Reset.vi mcProgramReset

PROGRAM_START MC Program Start.vi mcProgramStart

PROGRAM_VERIFY MC XCP Program Verify.vi mcXCPProgramVerify

SET_CAL_PAGE MC XCP Set Cal Page.vi mcXCPSetCalPage

SET_REQUEST MC XCP Set Request.vi mcXCPSetRequest

Table 4-1. Overview of the CCP Commands with Related VIs and C Functions (Continued)

CCP Command LabVIEW VI Name C Function Name

Chapter 4 Using the ECU M&C API

© National Instruments 4-19 ECU M&C Toolkit User Manual

Seed and Key Algorithm
To restrict access to an ECU, you can add a defined login mechanism to

ECU software. The Association for Standardization of Automation and

Measuring Systems (ASAM) defines this seed, which may be stored in the

A2L file. A typical login mechanism may happen as follows:

1. Connect to the ECU.

2. Exchange station identifications.

3. Get the seed for the key.

4. Calculate the key using a seed and key DLL as ASAM defines.

5. Unlock the ECU protection by sending the calculated key.

ASAM AE Common defines the seed and key algorithm in the Seed and

Key and Checksum Calculation API Version 1.0. The specification defines

the Win32 APIs for seed and key calculation and checksum calculation.

Definition for Seed and Key Algorithm
Function name: ASAP1A_CCP_ComputeKeyFromSeed

The calling convention is as defined in the WIN32 API Specification for

ASAP1b, section 2.4.

SET_SEGMENT_MODE MC XCP Set Segment

Mode.vi

mcXCPSetSegmentMode

UPLOAD MC Upload.vi mcUpload

Parameter Description

1 Pointer to the seed data, retrieved from the ECU

GET_SEED command.

2 Seed data size in number of bytes.

3 Pointer to key data, returning the calculated.

4 Key data size in number of bytes.

5 Key data size in number of bytes.

Table 4-2. Overview of the XCP Commands with Related VIs and C Functions (Continued)

XCP Command LabVIEW VI Name C Function Name

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-20 ni.com

Seed and Key Example
The following example shows a possible header file for a library for key

calculation.

/*

// Header file for ASAP1a CCP V2.1 Seed and Key Algorithm

*/

#ifndef _SEEDKEY_H_

#define _SEEDKEY_H_

#ifndef DllImport

#define DllImport __declspec(dllimport)

#endif

#ifndef DllExport

#define DllExport __declspec(dllexport)

#endif

#ifdef SEEDKEYAPI_IMPL // only defined by implementor of SeedKeyApi

#define SEEDKEYAPI DllExport __cdecl

#else

#define SEEDKEYAPI DllImport __cdecl

#endif

#ifdef __cplusplus

extern "C" {

#endif

BOOL SEEDKEYAPI ASAP1A_CCP_ComputeKeyFromSeed (BYTE *Seed,

unsigned short SizeSeed, BYTE *Key, unsigned short MaxSizeKey,

unsigned short *SizeKey);

// Seed: Pointer to seed data

// SizeSeed:Size of seed data (length of "Seed")

// Key: Pointer, where DLL should insert the calculated key data.

// MaxSizeKey: Maximum size of "Key".

// SizeKey: Should be set from DLL corresponding to the number of data

// inserted to "Key" (at most "MaxSizeKey")

// Result: The value FALSE (= 0) indicates that the key could not be

// calculated from seed data (for example, "MaxSizeKey" is too small).

// TRUE (!= 0) indicates success of key calculation.

#ifdef __cplusplus

}

#endif

#endif //_SEEDKEY_H_

Chapter 4 Using the ECU M&C API

© National Instruments 4-21 ECU M&C Toolkit User Manual

Checksum Algorithm
ASAM proposed a WIN32 API function to have a common interface to

implement the checksum algorithms for verifying ECU calibration and

program data. For details, refer to the ASAM Seed and Key and Checksum

Calculation API Version 1.0.

Definition for a Checksum Algorithm

Function name: BOOL CalcChecksum(struct TRange *ptr, int

nRanges, BYTE *pnChecksum, int *pnSignificant, WORD

nFlags)

TRange is defined as follows:

struct TRange

{

char *pMem;

unsigned long lLen;

}

Parameter Description

1 Pointer to an array of ranges, stored in structures of

type TRange.

2 Number of ranges stored in the array that

parameter 1 points to.

3 Pointer to a byte array where the checksum must be

stored. The DLL writes a maximum of 8 bytes, so the

caller should reserve space for 8 bytes of data.

4 Length of actually calculated checksum (1...8).

5 Flag field for commanding how the algorithm works.

Currently, only bit 0 is defined:

Bit 0 = 0: pnChecksum receives the algorithm

checksum calculation result.

Bit 0 = 1: pnChecksum points to a checksum that is

compared within the DLL with the checksum that the

algorithm calculates. Returns TRUE if the

checksums are identical, FALSE otherwise.

All other bits are reserved and should be set to 0.

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-22 ni.com

The calling convention is as defined in the WIN32 API Specification for

ASAP1b, chapter 2.4.

Checksum Algorithm Example

The following example shows a possible header file for a library for

checksum calculation.

/*

// checksum.h

// Header file for Checksum Algorithm

*/

#ifndef _CHECKSUM_H

#define _CHECKSUM_H

#ifdef __cplusplus

extern "C" {

#endif

#ifndef DllImport

#define DllImport __declspec(dllimport)

#endif

#ifndef DllExport

#define DllExport __declspec(dllexport)

#endif

#ifdef CHECKSUMAPI_IMPL // only defined by implementor of ChecksumApi

#define CHECKSUMAPI DllExport __cdecl

#else

#define CHECKSUMAPI DllImport __cdecl

#endif

struct TRange

{

char *pMem;

unsigned long lLen;

};

#ifdef __cplusplus

extern "C" {

#endif

BOOL CHECKSUMAPI CalcChecksum(struct TRange *ptr,

int nRanges,

BYTE *pnChecksum,

int *pnSignificant,

WORD nFlags);

#ifdef __cplusplus

}

#endif

#endif //_CHECKSUM_H

Chapter 4 Using the ECU M&C API

© National Instruments 4-23 ECU M&C Toolkit User Manual

Seed and Key and Checksum Algorithms for VxWorks
Targets
LabVIEW RT users can run the ECU Measurement and Calibration Toolkit

on either a LabVIEW RT target such as a PXI controller or an Intel-based

CompactRIO running the Pharlap operating system, which supports Win32

calls, or on a PowerPC-based CompactRIO controller running a Windriver

VxWorks operating system.

If you are using a CompactRIO target with a PowerPC controller running a

VxWorks operating system, you cannot use any Win32 function calls based

on a DLL. However, the GNU tool chain distributed with VxWorks can

compile shared libraries for controllers running Wind River VxWorks,

including the CompactRIO 901x and 907x series. You can access the shared

libraries (*.OUT modules) for VxWorks through the ECU Measurement

and Calibration Toolkit by using a C/C++ function definition that is slightly

different from the ASAM specification, due to the differences between

Win32 DLLs and VxWorks OUT modules.

You can obtain the GNU tool chain for VxWorks by either purchasing a

VxWorks development license from Wind River or downloading the

redistributable GNU tool chain from ni.com. If you purchase VxWorks,

you can use the Wind River Workbench IDE, featuring source code-level

debugging and build management. The redistributable GNU tool chain

downloadable on ni.com offers debugging only at the assembly code level,

and you must use the included GNU Make to build binaries.

Note LabVIEW 2009 RT installs version 6.3 of the VxWorks OS to compatible targets.

All builds should be targeted to corresponding versions and use corresponding header files.

As new versions of LabVIEW RT become available, different versions of VxWorks may

be installed and may require you to rebuild your libraries. Refer to the readme file for

LabVIEW RT to find the corresponding VxWorks OS version.

Example of a Header for a Seed and Key and Checksum
Algorithm for a VxWorks Target

The module name of the compiled out file must correspond to the seed and

key and checksum function name defined in the ASAM A2L database.

The following example uses the seed and key module name

ccpecu.out. Therefore, the seed and key function is named

ccpecu_ASAP1A_CCP_ComputeKeyFromSeed. The example uses the

prefix in addition to the ASAM standard, because the VxWorks OS requires

unique function names across all loaded modules. Therefore, multiple

Chapter 4 Using the ECU M&C API

ECU M&C Toolkit User Manual 4-24 ni.com

modules must not export functions with the same names. To support

multiple ECUs with the ECU Measurement and Calibration Toolkit, each

seed and key and checksum function must have a unique name. To achieve

unique function names for the seed and key and checksum functions, these

functions have the module name (in lower case) followed by an underline

as a prefix.

The following example shows a possible header file for a module used for

seed and key and checksum calculation under VxWorks targets.

#ifndef __CCPECU_h__

#define __CCPECU_h__

/// \brief defines the name of the Seed-Key function

///

/// Here the name of the seed key function is defined.

/// The name of the seed key function is the name of the module in lower case

/// letters followed by an underscore and the function name

/// "ASAP1A_CCP_ComputeKeyFromSeed".

/// \todo replace the prefix "ccpecu_" by the name of your module in lower

/// case letters.

#define SEED_KEY_NAME ccpecu_ASAP1A_CCP_ComputeKeyFromSeed

/// \brief defines the name of the Checksum function

///

/// Here the name of the Checksum function is defined.

/// The name of the Checksum function is the name of the module in lower case

/// letters followed by an underscore and the function name

/// "CalcChecksum".

/// \todo replace the prefix "ccpecu_" by the name of your module in lower

/// case letters.

#define CALC_CHECKSUM_NAME ccpecu_CalcChecksum

struct TRange

{

 char *pMem;

 unsigned long lLen;

};

#ifdef __cplusplus

 extern "C" {

#endif

Chapter 4 Using the ECU M&C API

© National Instruments 4-25 ECU M&C Toolkit User Manual

/// \brief Function to calculate a key from a given seed to

/// unlock an ECU resource.

///

/// This function calculates a key from a given seed so that you are

/// able to unlock the access to an ECU resource. The seed is generated

/// by the ECU and needs to be queried before you can unlock an ECU resource.

bool SEED_KEY_NAME(

 unsigned char *Seed, ///< Seed provided by the ECU

 unsigned short SizeSeed, ///< Size of the seed provided by the ECU

 unsigned char *Key, ///< Pointer to a buffer to return the key

 unsigned short MaxSizeKey, ///< Size of the buffer provided to

 ///< return the key

 unsigned short *SizeKey ///< returns the size of the calculated key

)

__attribute__ ((section (".export")));

/// \brief Function to calculate a checksum over a given memory range.

///

/// This function calculates a checksum over a given memory range. The

/// function is used, for example, to verify data after a download or

/// programming action.

bool CALC_CHECKSUM_NAME (

 struct TRange *ptr, ///< Description of the memory area

 ///< to be checked

 int nRanges, ///< Number of memory blocks to be checked

 unsigned char *pnCheckSum, ///< Pointer to a buffer to return

 ///< the checksum

 int *pnSignificant, ///< Size of the buffer to

 ///< return the checksum

 unsigned short nFlags ///< flags for calculating the checksum

)

__attribute__ ((section (".export")));

#ifdef __cplusplus

 }

#endif

#endif // __CCPECU_h__

© National Instruments 5-1 ECU M&C Toolkit User Manual

5
ECU M&C API for LabVIEW

This chapter lists the LabVIEW VIs for the ECU M&C API and describes the format,

purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically. Unless

otherwise stated, each VI suspends execution of the calling thread until it completes.

Section Headings

The following are section headings found in the ECU M&C API for LabVIEW VIs.

Purpose
Each VI description includes a brief statement of the purpose of the VI.

Format
The format section describes the format of each VI.

Input and Output
The input and output parameters for each VI are listed.

Description
The description section gives details about the purpose and effect of each VI.

List of VIs

The following table is an alphabetical list of the ECU M&C Toolkit VIs.

Table 5-1. ECU M&C API VIs for LabVIEW

Function Purpose

MC Build Checksum.vi Calculates a checksum over a defined memory range within the

ECU.

MC Calc Checksum.vi Calculates the checksum of a data block in memory.

MC CCP Action Service.vi Calls an implementation-specific action service on the ECU.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-2 ni.com

MC CCP Diag Service.vi Calls a diagnostic service on the ECU.

MC CCP Get Active Cal

Page.vi

Retrieves the ECU Memory Transfer Address pointer to the

calibration data page.

MC CCP Get Result.vi Uploads requested data.

MC CCP Get Session

Status.vi

Retrieves the current calibration status of the ECU.

MC CCP Get Version.vi Retrieves the version of the CCP implemented in the ECU.

MC CCP Move Memory.vi Moves a memory block on the ECU.

MC CCP Select Cal Page.vi Sets the beginning of the calibration data page.

MC CCP Set Session

Status.vi

Updates the ECU with the current state of the calibration session.

MC Characteristic Read.vi Reads data from a named Characteristic on the ECU which is

identified by the ECU Reference handle. The Poly VI returns a

specific double, 1D, or 2D double array.

MC Characteristic Read

Single Value.vi

Reads a value from a named Characteristic on the ECU which is

identified by the ECU Reference handle.

MC Characteristic Write.vi Writes the value(s) of a named Characteristic to an ECU

identified by the ECU ref handle. The Poly VI writes the selected

type double, 1D or 2D array.

MC Characteristic Write

Single Value.vi

Writes a value to a named Characteristic on the ECU.

MC Clear Memory.vi Clears the contents of a specified memory block.

MC Conversion Create.vi Creates a signal conversion object in memory.

MC DAQ Clear.vi Stops communication for the Measurement task and then clears

the configuration.

MC DAQ Initialize.vi Initializes a Measurement task for the specified Measurement

channel list.

MC DAQ List Initialize.vi Defines a DAQ list on a specific DAQ list number and initializes

the Measurement task for the specified Measurement channel list.

Table 5-1. ECU M&C API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-3 ECU M&C Toolkit User Manual

MC DAQ Read.vi Reads samples from a Measurement task. Samples are obtained

from received CAN messages.

MC DAQ Start Stop.vi Starts or stops transmission of the DAQ lists for the specified

Measurement task.

MC DAQ Write.vi Writes samples to a Measurement task.

MC Database Close.vi Closes a specified A2L Database.

MC Database Create.vi Creates an A2L database in memory, for using the ECU M&C

Toolkit VIs without access to a valid ASAM A2L file.

MC Database Open.vi Opens a specified A2L Database.

MC Double to Text.vi Converts a numerical value to a text string using an enumeration

or range text type scaling.

MC Download.vi Downloads data to an ECU.

MC ECU Close.vi Closes the selected ECU and the associated A2L database.

MC ECU Connect.vi Establishes the communication to the selected ECU through the

CCP protocol. After a successful ECU Connect you can create a

Measurement Task or read/write a Characteristic.

MC ECU Create.vi Creates an ECU object in memory.

MC ECU Deselect.vi Deselects an ECU and invalidates the ECU reference handle.

MC ECU Disconnect.vi Permanently disconnects the CCP communication to the selected

ECU and ends the calibration session.

MC ECU Open.vi Opens a specified A2L database and selects the first ECU found

in the database. If there are several ECUs stored in the A2L

database use the Database Open and ECU Select VIs.

MC ECU Select.vi Selects an ECU from the names stored in an A2L database.

MC ECU Set Calibration

Page.vi

Sets the appropriate RAM or ROM calibration page on the ECU.

MC Event Create.vi Creates an Event object in memory.

MC Generic.vi Sends a generic CCP or XCP command.

Table 5-1. ECU M&C API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-4 ni.com

MC Get Names.vi Gets an array of ECU names, Measurement names, Characteristic

names, Event names, Calibration page names, or Group names

from a specified A2L database file.

MC Get Property.vi Gets a property for the object referenced by the reference in

terminal. The poly VI selection determines the property to get.

MC Measurement Create.vi Creates a Measurement object in memory.

MC Measurement Read.vi Reads a single Measurement value from the ECU.

MC Measurement Write.vi Writes a single Measurement value to the ECU.

MC Program.vi Programs a memory block on the ECU.

MC Program Reset.vi Indicates the end of a programming sequence.

MC Program Start.vi Indicates the start of a programming sequence.

MC Set Property.vi Sets a property for the specified A2L database file, Measurement

task or Characteristic. The poly VI selection determines the

property to set.

MC Text To Double.vi Converts a text value into the numeric representation using an

enumeration or range text type scaling.

MC Upload.vi Uploads data from an ECU.

MC XCP Copy Cal Page.vi Forces a copy transaction of one calibration page to another.

MC XCP Get Cal Page.vi Queries a calibration page setting.

MC XCP Get ID.vi Queries session configuration or slave device identification.

MC XCP Get Status.vi Queries the current session status from an ECU slave device.

MC XCP Program

Prepare.vi

Prepares the programming of non volatile memory.

MC XCP Program Verify.vi Performs a non-volatile memory certification task on the ECU

device.

MC XCP Set Cal Page.vi Sets a calibration page.

Table 5-1. ECU M&C API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-5 ECU M&C Toolkit User Manual

MC XCP Set Request.vi Performs a request to save session and device information to

non-volatile memory.

MC XCP Set Segment

Mode.vi

Sets the mode of a specified segment.

Table 5-1. ECU M&C API VIs for LabVIEW (Continued)

Function Purpose

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-6 ni.com

MC Build Checksum.vi

Purpose
Calculates a checksum over a defined memory range within the ECU.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the source address.

Extension contains the extension part of the source address.

Block size determines the size of the block for which the checksum must

be calculated.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-7 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Type of checksum returns the type of the calculated checksum. If you are

using the CCP protocol, type of checksum is 0xFF. For XCP, refer to the

Description section.

Checksum returns the calculated checksum.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Build Checksum.vi calculates the checksum of a specified memory block inside the

ECU starting at the selected Memory Transfer Address (MTA). The checksum algorithm is

not specified by CCP and the checksum algorithm may be different on different devices.

If you are using the CCP protocol, MC Build Checksum.vi implements the CCP

BUILD_CHKSUM command. The checksum algorithm is not specified by CCP and the

checksum algorithm may be different on different devices.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-8 ni.com

If you are using the XCP protocol, MC Build Checksum.vi implements the

BUILD_CHECKSUM command of the XCP specification. The result of the checksum

calculation is returned in Checksum regardless of the checksum type. The following values

for type of checksum are defined in the XCP specification:

If type of checksum is returned as 0xFF (XCP_USER_DEFINED), the slave can indicate

that the master for calculating the checksum must use a user-defined algorithm implemented

in an externally calculated function (for instance, Win32 DLL, UNIX shared object file, etc.).

The master gets the name of the external function file to be used for this slave from the ASAM

MCD 2MC description file or from a property which can be set.

For a detailed description of the checksum algorithm, refer to the XCP Part 2 Protocol Layer

Specification.

Type Name Description

0x01 XCP_ADD_11 Add BYTE into a BYTE checksum, ignore

overflows

0x02 XCP_ADD_12 Add BYTE into a WORD checksum, ignore

overflows

0x03 XCP_ADD_14 Add BYTE into a DWORD checksum,

ignore overflows

0x04 XCP_ADD_22 Add WORD into a WORD checksum,

ignore overflows, block size must be

modulo 2

0x05 XCP_ADD_24 Add WORD into a DWORD checksum,

ignore overflows, block size must be

modulo 2

0x06 XCP_ADD_44 Add DWORD into DWORD, ignore

overflows, block size must be modulo 4

0x07 XCP_CRC_16 Refer to CRC error detection algorithms

0x08 XCP_CRC_16_CITT Refer to CRC error detection algorithms

0x09 XCP_CRC_32 Refer to CRC error detection algorithms

0xFF XCP_USER_DEFINED User defined algorithm in externally

calculated function

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-9 ECU M&C Toolkit User Manual

MC Calc Checksum.vi

Purpose
Calculates the checksum of a data block in memory.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Data is a byte array upon which the checksum calculation is performed.

Type of checksum specifies the kind of checksum which is calculated.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-10 ni.com

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Checksum is the calculated checksum.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Calc Checksum.vi implements a checksum calculation over a given data block. The

checksum algorithm is performed by the ECU M&C toolkit using a predefined algorithm

(XCP only) or over a dedicated checksum function provided by a specific DLL. The

Checksum DLL is defined in the A2L data base and can be changed by the application by the

MC Set Property.vi using the Checksum DLL Name property.

If you are using the CCP protocol, type of checksum must always be set to 0xFF, as CCP

supports an external checksum DLL only. If using XCP, the following values for type of

checksum are defined in the XCP specification:

Type Name Description

0x01 XCP_ADD_11 Add BYTE into a BYTE checksum, ignore overflows

0x02 XCP_ADD_12 Add BYTE into a WORD checksum, ignore overflows

0x03 XCP_ADD_14 Add BYTE into a DWORD checksum, ignore overflows

0x04 XCP_ADD_22 Add WORD into a WORD checksum, ignore overflows,

blocksize must be modulo 2

0x05 XCP_ADD_24 Add WORD into a DWORD checksum, ignore overflows,

blocksize must be modulo 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-11 ECU M&C Toolkit User Manual

For a detailed description of the checksum algorithm, refer to the MC Build Checksum.vi or

the XCP Part 2 Protocol Layer Specification.

For more detailed information about CRC algorithms, refer to the following site:

http://www.repairfaq.org/filipg/LINK/F_crc_v34.html

0x06 XCP_ADD_44 Add DWORD into DWORD, ignore overflows, blocksize

must be modulo 4

0x07 XCP_CRC_16 See CRC error detection algorithms

0x08 XCP_CRC_16_CITT See CRC error detection algorithms

0x09 XCP_CRC_32 See CRC error detection algorithms

0xFF XCP_USER_DEFINED User defined algorithm, in externally calculated function

Type Name Description

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-12 ni.com

MC CCP Action Service.vi

Purpose
Calls an implementation-specific action service on the ECU (CCP only).

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Service No determines the service that is executed inside the ECU. For

more information about the services that are implemented in the ECU, refer

to the documentation for the ECU.

Params passes an array to the ECU that might be needed by the ECU to

run the service. Since this VI has no knowledge about how the data is

interpreted by the ECU, you are responsible for providing the data in the

correct byte ordering.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-13 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Data type is a data type qualifier that determines the data format of the

result.

Result returns information from the action service.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Action Service.vi implements the CCP command ACTION_SERVICE. The ECU

carries out the requested service and automatically uploads the requested action service return

information.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-14 ni.com

MC CCP Diag Service.vi

Purpose
Calls a diagnostic service on the ECU (CCP only).

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Service no determines the diagnostic service that is executed inside the

ECU. For more information about the services that are implemented in the

ECU, refer to the documentation for the ECU.

Params passes an array to the ECU that might be needed by the ECU to

run the service. Since this VI has no knowledge about how the data is

interpreted by the ECU, you are responsible for providing the data in the

correct byte ordering.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-15 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Data Type returns a Data Type Qualifier which provides information about

the data type of the result of the diagnostic service.

Result contains the information returned from the diagnostic service,

uploaded from the ECU by the CCP master.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Diag Service.vi implements the CCP command DIAG_SERVICE, which starts a

diagnostic service on the ECU and waits until it is finished. The selected Service no specifies

the diagnostic service that is executed inside the ECU. For more information about the

available services that are implemented in the ECU, refer to the documentation for the ECU.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-16 ni.com

MC CCP Get Active Cal Page.vi

Purpose
Retrieves the ECU Memory Transfer Address pointer to the calibration data page (CCP only).

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Address is a cluster which contains the following values.

Address specifies the address part of the active calibration page

address.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-17 ECU M&C Toolkit User Manual

Extension contains the extension part of the active calibration

page address.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Get Active Cal Page.vi retrieves the ECU Memory Transfer Address pointer of

the active calibration data page.

MC CCP Get Active Cal Page.vi implements the CCP command

GET_ACTIVE_CAL_PAGE defined by the CCP specification.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-18 ni.com

MC CCP Get Result.vi

Purpose
Uploads requested data (CCP only).

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Block size is the size of the data block, in bytes, to be uploaded.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Data is a byte array which receives the uploaded data information from the

ECU.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-19 ECU M&C Toolkit User Manual

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Get Result.vi uploads data bytes from the ECU. It is assumed that the Memory

Transfer Address 0 (MTA0) has been set by a previous VI like MC Generic.vi with the

command SET_MTA.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-20 ni.com

MC CCP Get Session Status.vi

Purpose
Retrieves the current calibration status of the ECU (CCP only).

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

status qualifier describes an additional status qualifier. The additional

status qualifier is manufacturer and/or project specific and is not part of the

CCP protocol specification.

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-21 ECU M&C Toolkit User Manual

session status is the actual session status which is returned from the ECU.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

additional status describes an additional status qualifier. If the status

qualifier does not contain additional status information, the additional

status parameter must be set to FALSE. If the additional status parameter

is not FALSE, it may be used to determine the type of the additional status

information.

Description
MC CCP Get Session Status.vi retrieves the session status of the ECU. The return value

session status is a bit mask that represents several session states inside the ECU. status

qualifier specifies the additional status information. additional status contains the additional

status information. The content of these parameters is project specific and not defined by CCP.

For more information about these parameters, refer to the documentation for the ECU.

MC CCP Get Session Status.vi implements the CCP command GET_S_STATUS defined

by the CCP specification.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-22 ni.com

MC CCP Get Version.vi

Purpose
Retrieves version of the CCP implemented in the ECU (CCP only).

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Major version returns the major version number of the CCP

implementation.

Minor version returns the minor version number of the CCP

implementation.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-23 ECU M&C Toolkit User Manual

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Get Version.vi can be used to query the CCP version implemented in the ECU.

This command performs a mutual identification of the protocol version in the slave device to

agree on a common protocol version.

MC CCP Get Version.vi implements the CCP command GET_CCP_VERSION defined by

the CCP specification.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-24 ni.com

MC CCP Move Memory.vi

Purpose
Moves a memory block on the ECU (CCP only).

Format

Input

Block size determines the size of memory block in bytes which should be

moved from the source address to the destination address.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Source is a cluster which contains the following values.

Address specifies the address part of the source address from

which the memory block is copied.

Extension specifies the extension part of the source address.

Destination is a cluster which contains the following values.

Address specifies the address part of the destination address to

which the memory block is copied.

Extension specifies the extension part of the destination address.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-25 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Move Memory.vi is used to move the memory contents of an ECU from one

memory location to another. Before calling the CCP MOVE command this function sets the

Memory Transfer Address pointers MTA0 as defined in the source cluster and MTA1 as

defined in the destination cluster to appropriate values.

MC CCP Move Memory.vi implements the CCP command MOVE defined by the CCP

specification.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-26 ni.com

MC CCP Select Cal Page.vi

Purpose
Sets the beginning of the calibration data page (CCP only).

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the address.

Extension contains the extension part of the address.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-27 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC CCP Select Cal Page.vi implements the CCP command SELECT_CAL_PAGE.

The operation of the command depends on the ECU implementation.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-28 ni.com

MC CCP Set Session Status.vi

Purpose
Updates the ECU with the current state of the calibration session (CCP only).

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Session status is the new status to be set in the ECU.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-29 ECU M&C Toolkit User Manual

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI implements the CCP SET_S_STATUS command and is used to keep the ECU

informed about the current state of the calibration session. The session status bits of an ECU

can be read and written. Possible conditions are: reset on power-up, session log-off, and in

applicable error conditions. The calibration session status is organized as a bit mask with the

following assignment.

Table 5-2. Bit Mask Assignment for Calibration Session Status

Bit Name Description

0 CAL Calibration data initialized.

1 DAQ DAQ list(s) initialized.

2 RESUME Request to save DAQ set-up during shutdown in CCP slave.

CCP slave automatically restarts DAQ after start-up.

3 Reserved —

4 Reserved —

5 Reserved —

6 STORE Request to save calibration data during shut-down in CCP slave.

7 RUN Session in progress.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-30 ni.com

MC Characteristic Read.vi

Purpose
Reads data from a named Characteristic on the ECU which is identified by the ECU

Reference handle. The Poly VI returns a specific double, 1D, or 2D double array.

Format

Input

Characteristic name is the name of the Characteristic defined in the A2L

database.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-31 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Characteristic is a poly output value which represents the data read from

the ECU. The type of the poly output is determined by the poly VI

selection. For information on the different poly VI types provided by MC

Characteristic Read.vi, refer to the Poly VI Types section.

To select the data type, right-click the VI, go to Select Type, and select the

type by name.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

Poly VI Types

Table 5-3. Poly VI Types for the Value Parameter

VI Type Description

Parameter (DBL) Returns a single double value for the selected Characteristic name.

Curve (1D) Returns a 1-dimensional array of double values for the selected

Characteristic name.

Field (2D) Returns a 2-dimensional array of double values for the selected

Characteristic name.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-32 ni.com

MC Characteristic Read Single Value.vi

Purpose
Reads a value from a named Characteristic on the ECU which is identified by the ECU

Reference handle.

Format

Input

Characteristic name is the name of the Characteristic defined in the A2L

database.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

x is the horizontal index if the Characteristic consists of 1 or 2 dimensions.

y is the vertical index if the Characteristic consists of 2 dimensions.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-33 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Characteristic value returns a single sample for the specified

Characteristic.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Characteristic Read Single Value.vi reads a value from a specified Characteristic on

the ECU which is identified by the ECU Reference handle. The value to be read is identified

by the x and y indices. If the Characteristic array has 0 or 1 dimensions, y and/or x can be left

unwired.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-34 ni.com

MC Characteristic Write.vi

Purpose
Writes the value(s) of a named Characteristic to an ECU identified by the ECU ref handle.

The Poly VI writes the selected type double, 1D or 2D array.

Format

Input

Characteristic name is the name of a Characteristic stored in the A2L

database file to which one or more values may be written.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Characteristic writes the data for the Characteristic channel initialized by

Characteristic name. Characteristic values are listed in the Poly VI Types

section.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-35 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

Poly VI Types

Table 5-4. Poly VI Types for the Characteristic Parameter

VI Type Description

Parameter (DBL) Writes a single double value to the selected Characteristic name.

Curve (1D) Writes a 1-dimensional array of double values to the selected

Characteristic name.

Field (2D) Writes a 2-dimensional array of double values to the selected

Characteristic name.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-36 ni.com

MC Characteristic Write Single Value.vi

Purpose
Writes a value to a named Characteristic on the ECU.

Format

Input

Characteristic name is the name of a Characteristic stored in the A2L

database file to which one value may be written.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

x is an input that refers to the array offset if the Characteristic is defined in

the A2L database file as 1- or 2-dimensional. If the Characteristic is defined

as having 0 dimensions, the input can be left unwired.

y is an input that refers to the array offset if the Characteristic is defined in

the A2L database file as 2-dimensional. If the Characteristic is defined as

having 0 or 1 dimensions, the input can be left unwired.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-37 ECU M&C Toolkit User Manual

source identifies the VI where the error occurred.

Characteristic value is the value to be set for the Characteristic.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Characteristic Write Single Value.vi writes a value to a defined Characteristic on the

ECU which is identified by the ECU Reference handle. The location to which the value is

written is identified by the x and y indices. If the Characteristic array has 0 or 1 dimensions,

y and/or x can be left unwired.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-38 ni.com

MC Clear Memory.vi

Purpose
Clears the contents of a specified memory block.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the source address.

Extension contains the extension part of the source address.

Block size determines the size of the block that must be cleared.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-39 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Clear Memory.vi can be used to erase the FLASH EPROM prior to reprogramming. If

you are using CCP, the CCP Memory Transfer address (MTA0) pointer is set to the memory

location to be erased specified by the parameters Address and Extension. MC Clear

Memory.vi implements the CCP CLEAR_MEMORY command defined by the CCP

specification.

If you are using the XCP protocol, MC Clear Memory.vi implements the

PROGRAM_CLEAR command.

For further details on how to clear parts of non-volatile memory in the ECU refer to the

ASAM XCP Protocol Layer Specification.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-40 ni.com

MC Conversion Create.vi

Purpose
Creates a signal conversion object in memory.

Format

Input

Conversion Name identifies the conversion object that handles the scaling

of a measurement.

ECU ref in is the task reference that links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Create.vi.

Factor configures the scaling factor used to convert raw measurement data

in the message to/from scaled floating-point units. The factor is the A in the

linear scaling formula AX+B, where X is the raw data, and B is the scaling

offset.

Offset configures the scaling offset used to convert raw data in the

measurement message to/from scaled floating-point units. The scaling

offset is the B in the linear scaling formula AX+B, where X is the raw data,

and A is the scaling factor.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-41 ECU M&C Toolkit User Manual

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Unit configures the measurement channel unit string. You can use this

value to display units (such as volts or RPM) along with the samples of the

channel.

Output

ECU ref out is the task reference that links to the selected ECU.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use MC Conversion Create.vi to create a conversion object in memory instead of referring

to measurement properties defined in the A2L database.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-42 ni.com

MC DAQ Clear.vi

Purpose
Stops communication for the Measurement task and then clears the configuration.

Format

Input

DAQ ref in is the task reference which links to the Measurement task. This

reference is originally returned from MC DAQ Initialize.vi, and then

wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. Unlike other VIs, this VI will

execute when status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the ECU reference upon which MC DAQ Initialize.vi was

called. Wire this to subsequent ECU operations.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-43 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC DAQ Clear.vi must always be the final ECU M&C VI called for a Measurement task. If

you do not use the MC DAQ Clear.vi, the remaining task configurations can cause problems

in execution of subsequent ECU M&C applications.

Because this VI clears the Measurement task, the Measurement task reference is not wired as

an output but is transferred into an ECU reference task handle. To change properties of a

running Measurement task, use MC DAQ Start Stop.vi to stop the task, MC Set Property.vi

to change the desired DAQ property, and then MC DAQ Start Stop.vi to restart the

Measurement task again.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-44 ni.com

MC DAQ Initialize.vi

Purpose
Initializes a Measurement task for the specified Measurement channel list.

Format

Input

Measurement list is the array of channel names to initialize as a

Measurement task. Each channel name is provided in an array entry.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Mode specifies the I/O mode for the task. For an overview of the I/O

modes, including figures, refer to the Basic Programming Model section of

Chapter 4, Using the ECU M&C API.

Mode=0

DAQ List: The data is transmitted from the ECU in equidistant time

intervals as defined in the A2L database. The data can be read back with the

MC DAQ Read.vi as Single point data using a sample rate = 0 or as

waveform using a sample rate > 0. Input channel data are received from the

DAQ messages. Use MC DAQ Read.vi to obtain input samples as

single-point, array, or waveform.

Mode=1

Polling: In this mode the data from the Measurement task are acquired

from the ECU whenever the MC DAQ Read.vi is called.

Mode=2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-45 ECU M&C Toolkit User Manual

STIM List: In this mode the data from the Measurement task are sent to the

ECU whenever MC DAQ Write.vi is called.

Mode = 3

Timestamped read: The data is transmitted from the ECU in equidistant

time intervals as defined in the A2L database. The data can be read back

with MC DAQ Read.vi as timestamped data array. Input channel data are

received from the DAQ messages. Use MC DAQ Read.vi to obtain input

samples as an array of sample/timestamp pairs (poly VI types ending in

Timestamped Dbl). Use this input mode to read samples with timestamps

that indicate when each channel is received from the network.

Sample rate specifies the timing to use for samples of the task. The sample

rate is specified in Hertz (samples per second). A sample rate of zero means

to sample immediately. If the Mode is defined as DAQ list, a sample rate

of zero means that MC DAQ Read.vi returns a single point from the most

recent message received, and greater than zero means that MC DAQ

Read.vi returns samples timed at the specified rate. If the Mode is defined

as Polling, the sample rate is ignored.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

DTO_ID is the CAN identifier for the Data Transmission Object (DTO)

used by the ECU to transmit the DAQ list data to the host. If the DTO_ID

terminal is unwired the ECU will use the same identifier for sending the

DAQ list data as for the normal CCP communication.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-46 ni.com

Output

DAQ ref out is a task reference for the Measurement task created. Wire this

task reference to subsequent VIs for this Measurement task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC DAQ Initialize.vi does not start the transmission of the DAQ lists from the ECU to or

from the application through CCP or XCP. This enables you to use MC Set Property.vi to

change the properties of a Measurement task. After you change properties use MC DAQ

Start Stop.vi to start the communication for the Measurement task.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-47 ECU M&C Toolkit User Manual

MC DAQ List Initialize.vi

Purpose
Defines a DAQ list on a specific DAQ list number and initializes the Measurement task for

the specified Measurement channel list.

Format

Input

DAQ List No specifies which DAQ list entry number should be used for

the defined Measurement channel list for the selected ECU. To query the

available DAQ List numbers on the ECU use MC Get Property.vi and

select DAQ List Number in the Poly VI.

Measurement list is the array of channel names to initialize as a

Measurement task. Each channel name is provided in an array entry.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Mode specifies the I/O mode for the task. For an overview of the I/O

modes, including figures, refer to the Basic Programming Model section of

Chapter 4, Using the ECU M&C API.

Mode=0

DAQ List: The data is transmitted from the ECU in equidistant time

intervals as defined in the A2L database. The data can be read back with the

MC DAQ Read.vi as Single point data using a sample rate = 0 or as

waveform using a sample rate > 0. Input channel data are received from the

DAQ messages. Use MC DAQ Read.vi to obtain input samples as

single-point, array, or waveform.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-48 ni.com

Mode=1

Polling: In this mode the data from the Measurement task are acquired

from the ECU whenever the MC DAQ Read.vi is called.

Mode=2

STIM List: In this mode the data from the Measurement task are sent to the

ECU whenever MC DAQ Write.vi is called.

Mode = 3

Timestamped read: The data is transmitted from the ECU in equidistant

time intervals as defined in the A2L database. The data can be read back

with MC DAQ Read.vi as timestamped data array. Input channel data are

received from the DAQ messages. Use MC DAQ Read.vi to obtain input

samples as an array of sample/timestamp pairs (Poly VI types ending in

Timestamped Dbl). Use this input mode to read samples with timestamps

that indicate when each channel is received from the network.

Sample rate specifies the timing to use for samples of the task. The sample

rate is specified in Hertz (samples per second). A sample rate of zero means

to sample immediately. If the Mode is defined as DAQ List, a sample rate

of zero means that MC DAQ Read.vi returns a single point from the most

recent message received, and greater than zero means that MC DAQ

Read.vi returns samples timed at the specified rate. If the Mode is defined

as Polling, the sample rate is ignored.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-49 ECU M&C Toolkit User Manual

DTO_ID is the CAN identifier for the Data Transmission Object (DTO)

used by the ECU to transmit the DAQ list data to the host. If the DTO_ID

terminal is unwired the ECU will use the same identifier for sending the

DAQ list data as for the normal CCP communication.

Output

DAQ ref out is a task reference for the Measurement task created. Wire this

task reference to subsequent VIs for this Measurement task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
If an ECU offers a reduced and specific range of DAQ list entry numbers use

MC DAQ List Initialize.vi to setup your Measurement list. MC DAQ List Initialize.vi does

not start the transmission of the DAQ lists from the ECU to the application or vice versa

through CCP or XCP. This enables you to use MC Set Property.vi to change the properties

of a Measurement task. After you change properties use MC DAQ Start Stop.vi to start the

communication for the Measurement task. To query the available DAQ list entry numbers use

MC Get Property.vi with the Poly option selection DAQ List Numbers.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-50 ni.com

MC DAQ Read.vi

Purpose
Reads samples from a Measurement task.

Format

Input

DAQ ref in is the task reference from the previous Measurement task VI.

The task reference is originally returned from MC DAQ Initialize.vi, and

then wired through subsequent Measurement task VIs.

Number of samples specifies the number of samples to read for the

Measurement task. For single-sample Poly VI types, MC DAQ Read.vi

always returns one sample, so this input is ignored.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-51 ECU M&C Toolkit User Manual

Output

DAQ ref out is the same as DAQ ref in. Wire the task reference to

subsequent VIs for this task.

Number of samples returned indicates the number of samples returned in

the samples output.

Value is a poly output that returns the samples read from the received CAN

messages of the DAQ list. The type of the poly output is determined by the

poly VI selection. For information on the different poly VI types provided

by MC DAQ Read.vi, refer to the Poly VI Types section.

To select the data type, right-click the VI, go to Select Type, and select the

type by name.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

Poly VI Types

The name of each Poly VI type uses the following conventions:

• The first term is either 1Chan or NChan. This indicates whether the type returns data for

a single channel or multiple channels. NChan types return an array of analogous 1Chan

types, one entry for each channel initialized in channel list of MC DAQ Initialize.vi.

1Chan types are convenient because no array indexing is required, but you are limited to

reading only one channel.

• The second term is either 1Samp or NSamp. This indicates whether the type returns a

single sample, or an array of multiple samples. 1Samp types are often used for single

point control applications, such as within LabVIEW RT.

• The third term indicates the data type used for each sample. The type Dbl indicates

double-precision (64-bit) floating point. The type Wfm indicates the waveform data type.

The types 1D and 2D indicate one and two-dimensional arrays, respectively.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-52 ni.com

1Chan 1Samp Dbl

Returns a single sample for the first channel initialized in channel list. If the initialized sample

rate is greater than zero, this poly VI type waits for the next sample time, and then returns a

single sample. This enables you to execute a control loop at a specific rate. If the initialized

sample rate is zero, this poly VI immediately returns a single sample. The samples output

returns a single sample from the most recent message received. If no message has been

received since you started the task, the value of 0 is returned in samples. You can use error

out to determine whether a new message has been received since the previous call to MC

DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been received, the warning

code 3FF60009 hex is returned in error out. If a new message has been received, the success

code 0 is returned in error out. Unless an error occurs, number of samples returned is one.

NChan 1Samp 1D Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists of

a single sample. The order of channel entries in samples is the same as the order in the original

channel list. If the initialized sample rate is greater than zero, this poly VI type waits for the

next sample time, then returns a single sample for each channel. This enables you to execute

a control loop at a specific rate. If the initialized sample rate is zero, this poly VI immediately

returns a single sample for each channel. The samples output returns a single sample for each

channel from the most recent message received. If no message has been received for a channel

since you started the task a 0 is returned in samples. You can specify channels in channel list

that span multiple messages. A sample from the most recent message is returned for all

channels. You can use error out to determine whether a new message has been received since

the previous call to MC DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been

received for one or more channels, the warning code 3FF60009 hex is returned in error out.

If a new message has been received for all channels, the success code 0 is returned in

error out. Unless an error occurs, number of samples returned is one. The samples array

is indexed by channel, and the entry for each channel contains a single sample. If you need to

determine the number of channels in the task after initialization, get the Number of Channels

property for the task reference.

1Chan NSamp 1D Dbl

Returns an array of samples for the first channel initialized in channel list. The initialized

sample rate must be greater than zero for this poly VI, because each sample in the array

indicates the value of the CAN channel at a specific point in time. In other words, the sample

rate specifies a virtual clock that copies the most recent value from CAN messages for each

sample time. The changes in sample values from message to message enable you to view the

CAN channel over time, such as for comparison with other CAN or DAQ input channels. This

VI waits until all samples arrive in time before returning.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-53 ECU M&C Toolkit User Manual

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to read

the most recent sample for a task, use the 1Chan 1Samp Dbl type. If no message has been

received since you started the task a 0 is returned in all entries of the samples array. You can

use error out to determine whether a new message has been received since the previous call

to MC DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been received, the

warning code 3FF60009 hex is returned in error out. If a new message has been received, the

success code 0 is returned in error out. Unless an error occurs, the number of samples

returned is equal to number of samples to read.

NChan NSamp 2D Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists of

an array of value. The order of channel entries in value is the same as the order in the original

channel list. The initialized sample rate must be greater than zero for this poly VI, because

each sample in the array indicates the value of each CAN channel at a specific point in time.

In other words, the sample rate specifies a virtual clock that copies the most recent value from

CAN messages for each sample time. The changes in sample values from message to message

enable you to view the CAN channels over time, such as for comparison with other CAN or

DAQ input channels. This VI waits until all samples arrive in time before returning.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to read

the most recent samples for a task, use the NChan 1Samp 1D Dbl type. If no message has been

received for a channel since you started the task, the Default Value of the channel is returned

in value. You can specify channels in channel list that span multiple messages. At each point

in time, a sample from the most recent message is returned for all channels. You can use error

out to determine whether a new message has been received since the previous call to MC

DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been received for one or more

channels, the warning code 3FF60009 hex is returned in error out. If a new message has been

received for all channels, the success code 0 is returned in error out. Unless an error occurs,

the number of samples returned is equal to number of samples to read. If you need to

determine the number of channels in the task after initialization, get the Number of Channels

property for the task reference.

1Chan NSamp Wfm

Returns a single waveform for the first channel initialized in channel list. The initialized

sample rate must be greater than zero for this poly VI, because each sample in the array

indicates the value of the CAN channel at a specific point in time. In other words, the sample

rate specifies a virtual clock that copies the most recent value from CAN messages for each

sample time. The changes in sample values from message to message enable you to view the

CAN channel over time, such as for comparison with other CAN or DAQ input channels. This

VI waits until all samples arrive in time before returning. The start time of a waveform

indicates the time of the first CAN sample in the array. The delta time of a waveform indicates

the time between each sample in the array, as determined by the original sample rate.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-54 ni.com

If the initialized sample rate is zero, this poly VI returns an error. If the intent is to simply read

the most recent sample for a task, use the 1Chan 1Samp Dbl type. If no message has been

received since you started the task a 0 is returned in all entries of the value waveform. You

can use error out to determine whether a new message has been received since the previous

call to MC DAQ Read.vi (or MC DAQ Start Stop.vi). If no message has been received, the

warning code 3FF60009 hex is returned in error out. If a new message has been received, the

success code 0 is returned in error out. Unless an error occurs, the number of samples

returned is equal to number of samples to read.

NChan NSamp 1D Wfm

Returns an array, one entry for each channel initialized in channel list. Each entry consists of

a single waveform. The order of channel entries in value is the same as the order in the

original channel list. The initialized sample rate must be greater than zero for this poly VI,

because each sample in the array of a waveform indicates the value of the CAN channel at a

specific point in time. In other words, the sample rate specifies a virtual clock that copies the

most recent value from CAN messages for each sample time. The changes in sample values

from message to message enable you to view the M&C DAQ channel over time, such as for

comparison with other CAN or DAQ input channels. This VI waits until all samples arrive in

time before returning. The start time for each waveform indicates the time of the first CAN

sample in the array. The delta time of a waveform indicates the time between each sample in

the array, as determined by the original sample rate.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to read

the most recent samples for a task, use the NChan 1Samp 1D Dbl type. If no message has been

received for a channel since you started the task a 0 is returned in value. You can specify

channels in channel list that span multiple messages. At each point in time, a sample from the

most recent message is returned for all channels. You can use error out to determine whether

a new message has been received since the previous call to MC DAQ Read.vi (or MC DAQ

Start Stop.vi). If no message has been received for one or more channels, the warning code

3FF60009 hex is returned in error out. If a new message has been received for all channels,

the success code 0 is returned in error out. Unless an error occurs, the number of samples

returned is equal to number of samples to read. If you need to determine the number of

channels in the task after initialization, get the Number of Channels property for the task

reference.

MC Read Multi Chan Multi Samp 2D Time & Dbl

Returns an array with one entry for each channel initialized in the measurement list. Each

entry consists of an array of clusters. Each cluster corresponds to a received signal for the

channels initialized in the measurement list. Each cluster contains the sample value and a

timestamp that indicates when the measurement channel was received. The order of channel

entries in samples is the same as the order in the original channel list. To use this type, you

must set the initialized mode to timestamped read. The VI does not wait for messages, but

instead returns samples from the messages received since the previous call to MC DAQ

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-55 ECU M&C Toolkit User Manual

Read.vi. The number of samples returned is indicated in the number of samples returned

output, up to a maximum of number of samples to read messages. If no new message has

been received, the number of samples returned is 0, and error out indicates success.

Because the timing of values in samples is determined by when the message is received, the

sample rate input is not used with this poly VI type. To determine the number of channels in

the task after initialization, get the Number of Channels property for the task reference.

MC Read NChan NSamp Time-Value XY Array

Returns an array of clusters with one entry for each channel initialized in the measurement

list. Each entry consists of a cluster of a timestamp array and a value (double) array. The

timestamp and value arrays have N data points each, one for each sample returned. The

timestamp sample indicates when the respective measurement sample was received. The

order of channel entries in samples is the same as the order in the original channel list. You

can wire the output of this type directly to a LabVIEW XY graph display. To use this type,

you must set the initialized mode to timestamped read. The VI waits for Number of samples

messages. The number of samples returned is indicated in the number of samples returned

output, up to a maximum of number of samples to read messages. If no new message has

been received, the number of samples returned is 0, and error out indicates success. To

avoid blocking, use mcPropDAQ_SamplesPending to check the number of available data

points.

Because the timing of values in samples is determined by when the message is received, the

sample rate input is not used with this poly VI type. To determine the number of channels in

the task after initialization, get the Number of Channels property for the task reference.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-56 ni.com

MC DAQ Start Stop.vi

Purpose
Starts or stops transmission of the DAQ lists for the specified Measurement task.

Format

Input

DAQ ref in is the task reference from the previous Measurement task VI.

The task reference is originally returned from MC DAQ Initialize.vi, and

then wired through subsequent Measurement task VIs.

mode indicates the type of function to be performed.

Stop DAQ List

Configures the ECU to stop transmitting a DAQ task. If stopped, properties

of the DAQ task can be changed using MC Set Property.vi. This function

is performed automatically before MC DAQ Clear.vi.

Start DAQ List

Configures the ECU to start sending data for a DAQ task. Ensure that the

DAQ list has not yet been transferred to the ECU first. Once started,

properties of the DAQ list can no longer be changed using MC Set

Property.vi. This function is performed automatically before the first read

of the DAQ list with MC DAQ Read.vi.

Transmit DAQ List to ECU

Transfers the DAQ list to the ECU, but does not start it. For example, use

this mode if you want to change the session status before starting the DAQ

list. For some ECUs this is necessary.

Prepare For Start All

Prepares DAQ or STIM lists to be started by only one command. This is

useful when multiple DAQ or STIM lists are used with the same ECU.

After preparing the DAQ/STIM lists with this command, use the same VI

with the mode Start All DAQ Lists to start all lists at the same time.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-57 ECU M&C Toolkit User Manual

Start All DAQ Lists

Starts all previously prepared DAQ or STIM lists at the same time.

Stop All DAQ Lists

Stops all running DAQ or STIM lists on the same ECU with one command.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

DAQ ref out is the same as DAQ ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC DAQ Start Stop.vi is optional to start or stop transmission of the DAQ lists for an M&C

Measurement task to use MC DAQ Read.vi. If you do not specify MC DAQ Start Stop.vi

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-58 ni.com

(Start DAQ list) before your first Read VI, it is implicitly performed by the first MC DAQ

Read.vi call.

After you start the transmission of the DAQ lists, you can no longer change the configuration

of the task with MC Set Property.vi. You must call MC DAQ Start Stop.vi (Stop DAQ list)

first.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-59 ECU M&C Toolkit User Manual

MC DAQ Write.vi

Purpose
Writes samples to an ECU DAQ list.

Format

Input

DAQ ref in is the task reference from the previous Measurement task VI.

The task reference is originally returned from MC DAQ Initialize.vi, and

then wired through subsequent Measurement task VIs.

Number of samples specifies the number of samples to write for the

Measurement task. For single-sample Poly VI types, MC DAQ Write.vi

always returns one sample, so this input is ignored.

Value is a poly output that writes samples to the ECU STIM list. The type

of the poly output is determined by the poly VI selection. For information

on the different poly VI types provided by MC DAQ Write.vi, refer to the

Poly VI Types section.

To select the data type, right-click the VI, go to Select Type, and select the

type by name.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-60 ni.com

source identifies the VI where the error occurred.

Output

DAQ ref out is the same as DAQ ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

Poly VI Types

The name of each Poly VI type uses the following conventions:

• The first term is either 1Chan or NChan. This indicates whether the type writes data to a

single channel or multiple channels. NChan types write an array of analogous 1Chan

types, one entry for each channel initialized in channel list of MC DAQ Initialize.vi.

1Chan types are convenient because no array indexing is required, but you are limited to

writing only one channel.

• The second term is either 1Samp or NSamp. This indicates whether the type writes a

single sample, or an array of multiple samples. 1Samp types are often used for single

point control applications, such as within LabVIEW RT.

• The third term indicates the data type used for each sample. The type Dbl indicates

double-precision (64-bit) floating point. The type Wfm indicates the waveform data type.

The types 1D and 2D indicate one and two-dimensional arrays, respectively.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-61 ECU M&C Toolkit User Manual

1Chan 1Samp Dbl

Writes a single sample for the first channel initialized in the channel list. If the initialized

sample rate is greater than zero, this poly VI type waits for the next sample time, and then

writes a single sample. This enables you to execute a control loop at a specific rate. If the

initialized sample rate is zero, this poly VI immediately writes a single sample. If no message

has been received since you started the task, the value of 0 is returned in samples. You can use

error out to determine whether a new message has been received since the previous call to

MC DAQ Write.vi (or MC DAQ Start Stop.vi). If no message has been received, the

warning code 3FF60009 hex is returned in error out. If a new message has been received, the

success code 0 is returned in error out.

NChan 1Samp 1D Dbl

Writes an array, one entry for each channel initialized in the channel list. Each entry consists

of a single sample. The order of channel entries in samples is the same as the order in the

original channel list. If the initialized sample rate is greater than zero, this poly VI type waits

for the next sample time, then writes a single sample for each channel. This enables you to

execute a control loop at a specific rate. If the initialized sample rate is zero, this poly VI

immediately writes a single sample for each channel. The samples output returns a single

sample for each channel from the most recent message received. If no message has been

received for a channel since you started the task a 0 is returned in samples. You can specify

channels in channel list that span multiple messages. A sample from the most recent message

is returned for all channels. You can use error out to determine whether a new message has

been received since the previous call to MC DAQ Write.vi (or MC DAQ Start Stop.vi). If

no message has been received for one or more channels, the warning code 3FF60009 hex is

returned in error out. If a new message has been received for all channels, the success code

0 is returned in error out. Unless an error occurs, number of samples returned is one. The

samples array is indexed by channel, and the entry for each channel contains a single sample.

If you need to determine the number of channels in the task after initialization, get the

Number of Channels property for the task reference.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-62 ni.com

MC Database Close.vi

Purpose
Closes a specified A2L Database.

Format

Input

DB reference in is the task reference from the initial database task VI.

The task reference is originally returned from MC Database Open.vi.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. Unlike other VIs, this VI will

execute when status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-63 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Database Close.vi must always be the final M&C VI called for each communication

task. If you do not use MC Database Close.vi, the remaining task configurations can cause

problems in the execution of subsequent Measurement and Calibration applications.

MC Database Close.vi is an advanced function for database handling. In most cases it is

sufficient to use MC ECU Close.vi instead.

Unlike other VIs, MC Database Close.vi will execute when status is TRUE in Error in.

Because this VI clears the task, the task reference is not wired as an output.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-64 ni.com

MC Database Create.vi

Purpose
Creates an ASAM A2L database in memory.

Format

Input

DB name is a database name associated with the database created in

memory. Use the string syntax :<myname>: for the A2L database if using

multiple databases in memory. (For example, if using two databases in

memory, use :MyDatabase1: as the DB name for the first database and

:MyDatabase2: for the second DB name created in memory.)

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

DB ref out is the task reference that links to the opened database file.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-65 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Creates an A2L Database. Use MC Database Create.vi to create ECU and measurement

objects in memory, if you do not have access to a valid A2L database file.

MC Database Create.vi does not start communication. After creating an A2L database in

memory, you typically create an ECU object using MC ECU Create.vi, a scaling object using

MC Conversion Create.vi, a measurement object using MC Measurement Create.vi, and

an event using MC Event Create.vi.

Note MC Database Create.vi does not support creating objects to access characteristics.

To access a characteristic, assign a valid A2L database file with defined characteristics.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-66 ni.com

MC Database Open.vi

Purpose
Opens a specified A2L Database.

Format

Input

DB path is a path to a A2L database file from which to get channel names.

The file must use a .A2L extension. You can generate A2L database files

with several 3rd party tools.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

DB reference out is the task reference which links to the opened database

file.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-67 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Opens a specified A2L Database. MC Database Open.vi enables you to query all defined

ECU names in the A2L Database using the MC Get Names.vi and selecting the property

ECU Names. MC Database Open.vi does not start communication.

MC Database Open.vi is an advanced function for database handling. In most cases it is

sufficient to use MC ECU Open.vi instead.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-68 ni.com

MC Double to Text.vi

Purpose
Converts a numerical value to a text string using an enumeration or range text type scaling.

Format

Input

object name indicates the object (measurement or characteristic) for which

the COMPU_VTAB scaling is performed. If no COMPU_VTAB scaling is

available for the object, TextValue is just a string representation of the

value specified in value.

ECU ref in is the task reference that links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

object type is a U32 ring that indicates the type of the object named in

object name. Valid values are:

1 Measurement Name

2 Characteristic Name

value is the numerical value to be converted. For example, this could have

been returned from MC Characteristic Read.vi or MC Measurement

Read.vi.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-69 ECU M&C Toolkit User Manual

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

TextValue is the resulting converted text string. If the value specified is

listed in a COMPU_VTAB scaling for the characteristic or measurement

specified in object name, the respective text is returned. If no such value is

available, a string representation of the double value is returned.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Double To Text.vi performs text conversion for measurement or characteristic values.

Especially if the measurement or characteristic has an associated enumeration or range text

type scaling, the textual representation of the value is returned. If no such value is present,

either because the object does not have a text scaling or the value does not have a textual

representation in the table, a string representation of the double value is returned.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-70 ni.com

MC Download.vi

Purpose
Downloads data to an ECU.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the destination address.

Extension contains the extension part of the destination address.

Data contains the information to be downloaded.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-71 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Download.vi is used to download data to an ECU. The data is stored starting at the

location specified by the Address and Extension parameters.

On XCP protocol, when the slave supports the block mode, ECU sends the data in blocks

using the DOWNLOAD_NEXT command.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-72 ni.com

MC ECU Close.vi

Purpose
Closes the selected ECU and the associated A2L database.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. Unlike other VIs, this VI will

execute when status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-73 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC ECU Close.vi is the very last VI which must be called. It deselects the ECU and closes

the remaining database reference handle. MC ECU Close.vi must always be the final M&C

VI. If you do not use MC ECU Close.vi, the remaining task configurations can cause

problems in the execution of subsequent M&C applications. If you just want to deselect the

ECU connections, call MC ECU Deselect.vi.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-74 ni.com

MC ECU Connect.vi

Purpose
Establishes the communication to the selected ECU through the CCP or XCP protocol. After

a successful ECU Connect you can create a Measurement Task or read/write a Characteristic.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-75 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
If you are using the CCP protocol, MC ECU Connect.vi implements the CCP CONNECT

command. If you are using the XCP protocol, MC ECU Connect.vi implements the XCP

command CONNECT. It establishes a logical connection to an ECU, using the provided ECU

Reference handle. Unless a slave device (ECU) is disconnected, it must not execute or

respond to any command sent by the application. Only one CCP slave can be connected to the

application at a time from a set of CCP slaves sharing identical CRO and DTO identifiers.

MC ECU Connect.vi is an optional function and is automatically performed before

MC Characteristic Read.vi, MC Characteristic Write.vi, MC DAQ Initialize.vi, any

MC CCP xxx command, or any MC XCP xxx command is performed.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-76 ni.com

MC ECU Create.vi

Purpose
Creates an ECU object in memory.

Format

Input

Protocol and Interface selects target communication protocol CCP or

XCP and the desired interface to use for this task. The interface input uses

a string xxx:yyy, where xxx defines one of the two available protocols, CCP

or XCP, and yyy defines the desired interface to use, such as CAN0 for CCP,

or XCP, UDP, or TCP for XCP. The protocol and interface input is required,

as this parameter is not defined in the A2L database. The default baud rate

for CCP or XCP on CAN, or the IP address for XCP on UDP/TCP, may be

defined in the A2L database, but you can change it by setting the Interface

Baud Rate or IP Address property with MC Set Property.vi.

NI-CAN

The special CAN interface values 256 and 257 refer to virtual interfaces.

For more information about using virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using The Channel API, in the

NI-CAN Hardware and Software User Manual.

NI-XNET

By default, the ECU Measurement and Calibration Toolkit uses NI-CAN

for CAN communication. This means you must define an NI-CAN

interface for your NI-XNET hardware (NI-CAN compatibility mode) to

use your XNET hardware for CAN communication. However, to use your

NI-XNET interface in the native NI-XNET mode (meaning it does not use

the NI-XNET Compatibility Layer), you must define your interface under

NI-XNET Devices in MAX and pass the NI-XNET interface name that the

ECU Measurement and Calibration Toolkit will use. To do this, add

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-77 ECU M&C Toolkit User Manual

nixnet to the Protocol and Interface string (for example,

CCP:CAN1@nixnet). The interface name is related to the NI-XNET

hardware naming under Devices and Interfaces in MAX.

Note By selecting nixnet as Protocol and Interface string, the ECU Measurement and

Calibration Toolkit uses the Frame Input and Output Queued sessions. To force the ECU

Measurement and Calibration Toolkit to use Frame Input and Output Stream sessions

instead, select ni_genie_nixnet as Protocol and Interface string (for example,

CCP:CAN1@ni_genie_nixnet). An application instance can use only one Frame Input

Stream Session and one Frame Output Stream Session at a time, so use the default name

nixnet as Protocol and Interface string, so that multiple NI-XNET Frame Queued

Sessions can coexist on a single interface, and the Frame Input and Output Stream Sessions

may be used, for example, for a Frame logging/replay use case.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that

handles the CAN communication between the host system and FPGA. To

access the CAN module on the FPGA, you must specify the bitfile name

after the @ (for example, CCP:CAN1@MyBitfile.lvbitx). To specify a

special RIO target, you can specify that target by its name followed by the

bitfile name (for example, XCP:CAN1@RIO1,MyBitfile.lvbitx). Currently,

only a single CAN interface is supported. RIO1 defines the RIO target

name as defined in your LabVIEW Project definition. The lvbitx filename

represents the filename and location of the bitfile on the host if using RIO

or on a CompactRIO target. This implies that you must download the bitfile

to the CompactRIO target before you can run your application. You may

specify an absolute path or a path relative to the root of your target for the

bitfile.

ECU Name sets the ECU object name. For all related ECU functions such

as MC ECU Select.vi, use this name as reference.

DB ref in is the task reference that links to the opened database file.

Communication Params is a cluster that contains the following values.

CRO ID sets the CAN identifier for the Command Receive Object

(CRO) ID, which sends commands and data from the host to the

slave device.

DTO ID sets the Data Transmission Object (DTO) ID, which the

ECU uses to respond to CCP commands and send data and status

information to the CCP master application.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-78 ni.com

Baud rate sets the baud rate in use by the selected CAN interface.

This property applies to all tasks initialized with the NI-CAN

interface. You can specify the following basic baud rates as the

numeric rate: 33333, 83333, 100000, 125000, 200000, 250000,

400000, 500000, 800000, and 1000000. You can specify the

advanced baud rate as 8000XXYY hex, where YY is the value of Bit

Timing Register 0 (BTR0), and XX is the value of Bit Timing

Register 1 (BTR1).

Station Address sets the slave device station address. A CCP

address is based on the idea that several ECUs can share the same

CAN Arbitration IDs for CCP communication. To avoid

communication conflicts, CCP defines a station address that must

be unique for all ECUs sharing the same CAN Arbitration IDs.

Unless an ECU has been addressed by its station address, the ECU

must not react to CCP commands sent by the CCP master.

Byte Order sets the byte order of the CCP slave device.

0—MSB_LAST

The CCP slave device uses the MSB_LAST (Intel) byte ordering.

1—MSB_FIRST

The CCP slave device uses the MSB_FIRST (Motorola) byte ordering.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the task reference that links to the selected ECU.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-79 ECU M&C Toolkit User Manual

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-80 ni.com

Description
Use MC ECU Create.vi to create an ECU object in memory instead of referring to an ECU

object defined in the A2L database. MC ECU Create.vi provides an alternative in which you

create the ECU and DAQ List configuration within the application, without using an A2L

database. MC ECU Create.vi creates an ECU reference handle linked to the selected ECU

name. MC ECU Create.vi does not start communication. This enables you to use MC Set

Property.vi to change the properties of an ECU task and to create an event channel object

manually using MC Event Create.vi, create a measurement object using MC Measurement

Create.vi, and create a conversion rule using MC Conversion Create.vi. After you change

properties, use MC ECU Connect.vi to start communication for the task and logically

connect to the selected ECU.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-81 ECU M&C Toolkit User Manual

MC ECU Deselect.vi

Purpose
Deselects an ECU and invalidates the ECU reference handle.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. Unlike other VIs, this VI will

execute when status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

DB ref out is the task reference which links to the opened database file.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-82 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC ECU Deselect.vi deselects the communication to the ECU. After calling this VI you can

establish the communication to another ECU defined in the A2L database using MC ECU

Select.vi.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-83 ECU M&C Toolkit User Manual

MC ECU Disconnect.vi

Purpose
Disconnects the CCP or XCP communication to the selected ECU.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-84 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC ECU Disconnect.vi implements the CCP or XCP command DISCONNECT. MC ECU

Disconnect.vi permanently disconnects the specified CCP or XCP slave from the

communication and ends the calibration session. When the calibration session is terminated,

all DAQ lists of the device are stopped and cleared and the protection masks of the device are

set to their default values.

MC ECU Disconnect.vi is an optional function and is automatically performed prior to any

MC ECU Deselect.vi or MC ECU Close.vi call.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-85 ECU M&C Toolkit User Manual

MC ECU Open.vi

Purpose
Opens a specified A2L database and selects the first ECU found in the database. If there are

several ECUs stored in the A2L database use the Database Open and ECU Select VIs.

Format

Input

protocol and interface selects target communication protocol CCP or

XCP and the desired interface to use for this task. The interface input uses

a string xxx:yyy where xxx defines one of the two available protocols “CCP”

or “XCP” and yyy defines the desired interface to use like “CAN0” for CCP

or XCP or “UDP” or “TCP” for XCP. The protocol and interface input is

required as this parameter is not defined in the A2L database.

The default baud rate for CCP or XCP on CAN, or the IP address for XCP

on UDP/TCP, may be defined in the A2L database, but you can change it

by setting the Interface Baud Rate or IP Address property with MC Set

Property.vi.

NI-CAN

The special CAN interface values 256 and 257 refer to virtual interfaces.

For more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using The Channel API, in the

NI-CAN Hardware and Software User Manual.

NI-XNET

If you use NI-XNET hardware and select the xxx:yyy syntax, the

ECU M&C Toolkit uses the XNET NI-CAN compatibility library (XCL)

internally if the XNET interface is defined in MAX under NI-CAN

Devices. To force use of the native XNET API, you must use the

xxx:yyy@nixnet syntax. The interface name is related to the NI-XNET

hardware naming under Devices and Interfaces in MAX.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-86 ni.com

Note By selecting nixnet as Protocol and Interface string, the ECU Measurement and

Calibration Toolkit uses the Frame Input and Output Queued sessions. To force the ECU

Measurement and Calibration Toolkit to use Frame Input and Output Stream sessions

instead, select ni_genie_nixnet as Protocol and Interface string (for example,

CCP:CAN1@ni_genie_nixnet). An application instance can use only one Frame Input

Stream Session and one Frame Output Stream Session at a time, so use the default name

nixnet as Protocol and Interface string, so that multiple NI-XNET Frame Queued

Sessions can coexist on a single interface, and the Frame Input and Output Stream Sessions

may be used, for example, for a Frame logging/replay use case.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that

handles the CAN communication between the host system and FPGA. To

access the CAN module on the FPGA, you must specify the bitfile name

after the @ (for example, CCP:CAN1@MyBitfile.lvbitx). To specify a

special RIO target, you can specify that target by its name followed by the

bitfile name (for example, XCP:CAN1@RIO1,MyBitfile.lvbitx). Currently,

only a single CAN interface is supported. RIO1 defines the RIO target

name as defined in your LabVIEW Project definition. The lvbitx filename

represents the filename and location of the bitfile on the host. You may use

just the filename without the folder if the bitfile is in the same folder as the

LabVIEW Project (*.lvproj).

DB path is a path to a A2L database file from which to get channel names.

The file must use a .A2L extension. You can generate A2L database files

with several 3rd party tools.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

CAN interface specifies the CAN interface to use for this task. For

compatibility reasons, if you are using the CCP protocol you can only

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-87 ECU M&C Toolkit User Manual

specify the CAN interface to use for this CCP task. The interface input uses

a ring typedef in which value 0 selects CAN0, value 1 selects CAN1, and

so on. As the ECU M&C API is based on the NI-CAN Channel API, the

NI-CAN Frame API cannot used on the same CAN network interface

simultaneously. If the CAN network interface is already initialized in the

Frame API, this function returns an error.

If you use NI-XNET or CompactRIO/R Series hardware, use the protocol

and interface parameter instead.

Output

ECU ref out is the task reference which links to the selected ECU.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC ECU Open.vi opens a specified A2L database and selects the first ECU found in the

database. If there are several ECUs stored in the A2L database use MC Database Open.vi

and MC ECU Select.vi to select a specific ECU.

Possible selections for the interface and protocol parameter for the various hardware targets

are as follows.

Using CAN hardware:

• CCP:CAN0—uses CCP on CAN interface 0

• CCP:CAN1—uses CCP on CAN interface 1, and so on with the form CANx

• CCP:CAN256—uses CCP on virtual CAN interface 256

• CCP:CAN257—uses CCP on virtual CAN interface 257

• XCP:CAN0—uses XCP on CAN interface 0

• XCP:CAN1—uses XCP on CAN interface 1, and so on with the form CANx

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-88 ni.com

• XCP:UDP—uses XCP on UDP

• XCP:TCP—uses XCP on TCP

Using NI-XNET hardware with NI-XNET Frame Input/Output-based sessions:

• CCP:CAN1@nixnet—uses CCP on CAN interface 1

• CCP:CAN2@nixnet—uses CCP on CAN interface 2, and so on with the form CANx

• XCP:CAN1@nixnet—uses XCP on CAN interface 1

• XCP:CAN1@nixnet—uses XCP on CAN interface 2, and so on with the form CANx

• XCP:UDP—uses XCP on UDP

• XCP:TCP—uses XCP on TCP

Using NI-XNET hardware with NI-XNET Stream Input/Output-based sessions:

• CCP:CAN1@ni_genie_nixnet—uses CCP on CAN interface 1

• CCP:CAN2@ni_genie_nixnet—uses CCP on CAN interface 2, and so on with the

form CANx

• XCP:CAN1@ni_genie_nixnet—uses XCP on CAN interface 1

• XCP:CAN1@ni_genie_nixnet—uses XCP on CAN interface 2, and so on with the

form CANx

Using CompactRIO or R Series:

• CCP:CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses CCP on named target RIO1

as compiled into the bitfile at c:\temp\MyFpgaBitfile.lvbitx

• XCP:CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses XCP on named target RIO1

as compiled into the bitfile at c:\temp\MyFpgaBitfile.lvbitx

Note You can download the ASAM MCD 2MC database configuration file to a LabVIEW

RT target by the File Transfer Protocol (FTP). An FTP file transfer is possible within

MAX. Refer to the LabVIEW Real-Time Graphical File Transfer Utility section of

Chapter 2, Installation and Configuration, for instructions on performing an FTP transfer

through MAX.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-89 ECU M&C Toolkit User Manual

MC ECU Select.vi

Purpose
Selects an ECU based upon the names stored in an A2L database.

Format

Input

protocol and interface selects target communication protocol CCP or

XCP and the desired interface to use for this task. The interface input uses

a string xxx:yyy where xxx defines one of the two available protocols “CCP”

or “XCP” and yyy defines the desired interface to use like “CAN0” for CCP

or XCP or “UDP” or “TCP” for XCP. The protocol and interface input is

required as this parameter is not defined in the A2L database.

The default baud rate for CCP or XCP on CAN, or the IP address for XCP

on UDP/TCP, may be defined in the A2L database, but you can change it

by setting the Interface Baud Rate or IP Address property with MC Set

Property.vi.

NI-CAN

The special CAN interface values 256 and 257 refer to virtual interfaces.

For more information about using virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using The Channel API, in the

NI-CAN Hardware and Software User Manual.

NI-XNET

If you use NI-XNET hardware and select the xxx:yyy syntax, the

ECU M&C Toolkit uses the XNET NI-CAN compatibility library (XCL)

internally if the XNET interface is defined in MAX under NI-CAN

Devices. To force use of the native XNET API, you must use the

xxx:yyy@nixnet syntax. The interface name is related to the NI-XNET

hardware naming under Devices and Interfaces in MAX.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-90 ni.com

Note By selecting nixnet as Protocol and Interface string, the ECU Measurement and

Calibration Toolkit uses the Frame Input and Output Queued sessions. To force the ECU

Measurement and Calibration Toolkit to use Frame Input and Output Stream sessions

instead, select ni_genie_nixnet as Protocol and Interface string (for example,

CCP:CAN1@ni_genie_nixnet). An application instance can use only one Frame Input

Stream Session and one Frame Output Stream Session at a time, so use the default name

nixnet as Protocol and Interface string, so that multiple NI-XNET Frame Queued

Sessions can coexist on a single interface, and the Frame Input and Output Stream Sessions

may be used, for example, for a Frame logging/replay use case.

CompactRIO or R Series

If using CompactRIO or R Series hardware, you must provide a bitfile that

handles the CAN communication between the host system and FPGA. To

access the CAN module on the FPGA, you must specify the bitfile name

after the @ (for example, CCP:CAN1@MyBitfile.lvbitx). To specify a

special RIO target, you can specify that target by its name followed by the

bitfile name (for example, XCP:CAN1@RIO1,MyBitfile.lvbitx). Currently,

only a single CAN interface is supported. RIO1 defines the RIO target

name as defined in your LabVIEW Project definition. The lvbitx filename

represents the filename and location of the bitfile on the host. You may use

just the filename without the folder if the bitfile is in the same folder as the

LabVIEW Project (*.lvproj).

DB reference in is the task reference which links to the opened database

file.

ECU name is the ECU name to select out of a A2L Database file, with

which to initialize all subsequent tasks.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-91 ECU M&C Toolkit User Manual

CAN interface specifies the CAN interface to use for this task. For

compatibility reasons, if you are using the CCP protocol you can only

specify the CAN interface to use for this CCP task. The interface input uses

a ring typedef in which value 0 selects CAN0, value 1 selects CAN1, and

so on. As the ECU M&C API is based on the NI-CAN Channel API, the

NI-CAN Frame API cannot be used on the same CAN network interface

simultaneously. If the CAN network interface is already initialized in the

Frame API, this function returns an error.

Output

ECU ref out is the task reference which links to the selected ECU.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC ECU Select.vi creates an ECU reference handle linked to the selected ECU name.

MC ECU Select.vi does not start communication. This enables you to use MC Set

Property.vi to change the properties of an ECU task. After you change properties, use

MC ECU Connect.vi to start communication for the task and logically connect to the

selected ECU. Prior to calling MC ECU Select.vi, an available ECU name can be queried

by calling MC Get Property.vi with the parameter ECU/Name.

Possible selections for the interface and protocol parameter for the various hardware targets

are as follows.

Using NI-CAN hardware:

• CCP:CAN0—uses CCP on CAN interface 0

• CCP:CAN1—uses CCP on CAN interface 1, and so on with the form CANx

• CCP:CAN256—uses CCP on virtual CAN interface 256

• CCP:CAN257—uses CCP on virtual CAN interface 257

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-92 ni.com

• XCP:CAN0—uses XCP on CAN interface 0

• XCP:CAN1—uses XCP on CAN interface 1, and so on with the form CANx

• XCP:UDP—uses XCP on UDP

• XCP:TCP—uses XCP on TCP

Using NI-XNET hardware with NI-XNET Frame Input/Output-based sessions:

• CCP:CAN1@nixnet—uses CCP on CAN interface 1

• CCP:CAN2@nixnet—uses CCP on CAN interface 2, and so on with the form CANx

• XCP:CAN1@nixnet—uses XCP on CAN interface 1

• XCP:CAN1@nixnet—uses XCP on CAN interface 2, and so on with the form CANx

• XCP:UDP—uses XCP on UDP

• XCP:TCP—uses XCP on TCP

Using NI-XNET hardware with NI-XNET Stream Input/Output-based sessions:

• CCP:CAN1@ni_genie_nixnet—uses CCP on CAN interface 1

• CCP:CAN2@ni_genie_nixnet—uses CCP on CAN interface 2, and so on with the

form CANx

• XCP:CAN1@ni_genie_nixnet—uses XCP on CAN interface 1

• XCP:CAN1@ni_genie_nixnet—uses XCP on CAN interface 2, and so on with the

form CANx

Using CompactRIO or R Series:

• CCP:CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses CCP on named target RIO1

as compiled into the bitfile at c:\temp\MyFpgaBitfile.lvbitx

• XCP:CAN1@RIO1,c:\temp\MyFpgaBitfile.lvbitx—uses XCP on named target RIO1

as compiled into the bitfile at c:\temp\MyFpgaBitfile.lvbitx

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-93 ECU M&C Toolkit User Manual

MC ECU Set Calibration Page.vi

Purpose
Sets the appropriate RAM or ROM calibration page on the ECU.

Format

Input

ECU ref in is the task reference that links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Create.vi, and then wired through subsequent VIs.

use RAM? indicates which page should be set. Set this input to TRUE for

the RAM page or FALSE for the ROM page.

map Addresses? activates address mapping from the ROM page to the

target page specified in use RAM?.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-94 ni.com

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC ECU Set Calibration Page.vi tries to identify a single RAM or ROM page on the ECU

and select it according to the use RAM? input.

To identify an appropriate page, the VI searches the calibration page information from the

A2L file or the online information from the ECU. If the VI can identify a unique calibration

page, it is activated in the ECU, and the VI returns success.

If the VI cannot identify a unique page, an error is returned indicating this, and no further

action is taken. This does not, however, state a fault, but just the algorithm’s inability to

uniquely identify the desired page. In this case, you can use the calibration page-related ECU

properties (MC Get Property.vi, ECU»CCP»Cal Pages»… or ECU»XCP»Cal Pages»…)

to gain the information about available calibration pages, and manually select the correct page

using MC CCP Select Cal Page.vi or MC XCP Set Cal Page.vi.

The map Addresses? input activates the address mapping from the ROM page, assumed to

be the reference page to the target page specified in use RAM?. Address mapping is

supported only for the CCP protocol and requires a unique ROM and unique RAM page in

the A2L file. Addresses of measurements and characteristics in the A2L file must point to the

ROM page as a reference page.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-95 ECU M&C Toolkit User Manual

MC Event Create.vi

Purpose
Creates an Event object in memory.

Format

Input

ECU ref in is the task reference that links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Create.vi.

Event Name identifies the event channel object. Use this name as a

reference in MC Measurement Create.vi to identify the event channel.

Event Number specifies the generic signal source that effectively

determines the data transmission timing. To allow a reduction of the desired

transmission rate, a prescaler may be applied to the event channel. The

prescaler value factor must be greater than or equal to 1 and can be set using

MC Set Property.vi using the DAQ Prescaler property.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-96 ni.com

Output

ECU ref out is the task reference that links to the selected ECU.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use MC Event Create.vi to create an Event object in memory instead of referring to a

predefined measurement in the A2L database. Assign the event channel object by name to a

DAQ List in MC Measurement Create.vi.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-97 ECU M&C Toolkit User Manual

MC Generic.vi

Purpose
Sends a generic CCP or XCP command.

Format

Input

Timeout is the time limit, in milliseconds, during which a specified

command must complete.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Command is the CCP or XCP command to be sent to the ECU.

Data contains a 1-dimensional array of byte information to send to the

ECU.

Buffer size for return value sets the maximum length of the Return value

data array.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-98 ni.com

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error code describes the error returned from the ECU during the

communication.

Return value may contain an array of bytes returned from the ECU as a

response to the CCP command sent.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Generic.vi implements any generic CCP or XCP command that can be used to execute

user-defined commands that are not defined in the CCP or XCP standard or not covered by

the available LabVIEW CCP/XCP VIs.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-99 ECU M&C Toolkit User Manual

MC Get Names.vi

Purpose
Gets an array of ECU names, Measurement names, Characteristic names, Event names,

Calibration page names, or Group names from a specified A2L database file.

Format

Input

Type (mode) is an input that specifies the type of names to return.

The value of Type (mode) is an enumeration:

0—ECU Names returns a list of ECU names. You can write this list to

MC ECU Select.vi. This is the default value.

1—Measurement Names returns a list of Measurement names.

2—Characteristic Names returns a list of Characteristic names.

3—Event Channel Names returns a list of Event Channel names.

4—Defined Pages Names returns a list of Calibration page names.

5—Group Names returns a list of Group names.

6—Group–Subgroup Names returns a list of Subgroup names of the

specified Group name.

7—Group–Measurement Names returns a list of Measurement names

within the specified Group.

8—Group–Characteristic Names returns a list of Characteristic names

within the specified Group.

9—Function Names returns a list of Function names within the specified

ECU.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-100 ni.com

10—Function–DefCharacteristic Names returns a list of Characteristic

names referred by the DEF_CHARACTERISTIC keyword within the

related Function.

11—Function–RefCharacteristic Names returns a list of Characteristic

names referred by the REF_CHARACTERISTIC keyword within the

related Function.

12—Function–InMeasurement Names returns a list of Measurement

names referred by the IN_MEASUREMENT keyword within the related

Function.

13—Function–OutMeasurement Names returns a list of Measurement

names referred by the OUT_MEASUREMENT keyword within the related

Function.

14—Function–LocMeasurement Names returns a list of Measurement

names referred by the LOC_MEASUREMENT keyword within the related

Function.

15—Function–SubFunction Names returns a list of Function names

referred by the SUB_FUNCTION keyword within the related Function.

16—Group–Function List Names returns a list of Function names

referred by the FUNCTION_LIST keyword within the related Group.

Reference in must be an ECU M&C task reference or an A2L database

reference.

ECU name If a valid A2L database reference is passed to the reference in

terminal, the ECU name terminal is used to select one of the ECUs inside

the A2L database. Then, MC Get Names.vi will report the names of all

objects of the specified type inside the ECU, based on the name provided.

If you do not provide a name, the first ECU in the A2L file is selected.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-101 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Reference out is a copy of the reference which was passed to the

reference in terminal.

Names list out returns the array of names, one string entry per name. To

start a Measurement task or access a Characteristic for all channels returned

from MC Get Names.vi, wire channel list to MC DAQ Initialize.vi.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Get Names.vi is used to query the names contained within an A2L file.

The ECU name terminal is ignored if a valid ECU reference is connected to the reference in

terminal. In that instance, MC Get Names.vi will report the names of all objects of the

specified type inside the referenced ECU.

If type = 1, type = 2, or type = 3, the corresponding ECU name must be referenced in order

to access ECU-specific properties.

If type = 6, type = 7, or type = 8, the corresponding Group name must be referenced in order

to access the group properties.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-102 ni.com

If using MC Get Names.vi to query the list of supported event channels on an ECU, the event

channels might be stored inside the ECU instead of the A2L file. To query these event channel

names from the ECU directly, connect to the ECU using MC ECU Connect.vi before using

MC Get Names.vi.

If using MC Get Names.vi to query the Group names and related hierarchy to build, for

example, a tree user control to query these event channels, use MC Get Property.vi with the

Group–Is Root? parameter.

Note For more details on how to query the Group information out of an A2L file, refer to

the installed advanced example (Read A2L Group.vi) in the Example Finder.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-103 ECU M&C Toolkit User Manual

MC Get Property.vi

Purpose
Gets a property for the object referenced by the reference in terminal. The poly VI selection

determines the property to get.

Format

Input

Name specifies an individual channel within the task defined by reference

in. The default (unwired) value of name is empty, which means the

property applies to the entire task, not a specific channel. If a property

relates to Measurement or Characteristic channels and does not apply to the

entire task, but an individual channel or message within the task, you must

wire the name of a Measurement or Characteristic channel from channel

list into the name input. For other properties you must leave name unwired

(empty).

Reference in is the reference to any opened A2L database, a selected ECU,

or an ECU which is already connected (with MC Database Open.vi,

MC ECU Select.vi, MC ECU Open.vi, or MC ECU Connect.vi).

The type of this reference depends on the property you want to get.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-104 ni.com

source identifies the VI where the error occurred.

Output

Reference out contains an ECU M&C task reference which can be wired

through subsequent ECU M&C VIs.

Value is a poly output value that returns the property value. You select the

property returned in value by selecting the poly VI type. The data type of

value is also determined by the poly VI selection. For information about the

different properties provided by MC Get Property.vi, refer to the Poly VI

Types section. To select the property, right-click the VI, go to Select Type,

and select the property by name.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-105 ECU M&C Toolkit User Manual

Description

Poly VI Types

Table 5-5. Poly Values for Value Output

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

— — — DB File

Name

Returns the A2L Database

file name with which the

task has been opened. The

value of this property cannot

be changed using MC Set

Property.vi.

ECU — — Byte Order Returns the byte order of the

CCP slave device.

0—MSB_LAST

The CCP Slave device uses

the MSB_LAST (Intel) byte

ordering.

1—MSB_FIRST

The CCP Slave device uses

the MSB_FIRST

(Motorola) byte ordering.

ECU — — Seedkey/

Checksum

DLL Path

This property determines

the directory where the

ECU M&C Toolkit expects

to find the Seedkey or

Checksum DLL. If the

property is an empty string

(default), the ECU M&C

Toolkit expects the DLLs in

the same directory as the

A2L file. If your DLLs are

in a different directory, set

this property pointing to this

directory.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-106 ni.com

ECU — — Checksum

DLL Name

Returns the file name of the

Checksum DLL used for

verifying the checksum.

ECU — — LogFile Path Returns the filename (full

path) where the CCP or

XCP protocol traffic is

logged in ASCII format for

debugging purposes. An

empty path indicates no

logging (default). Note that

on RT and cRIO systems,

the logfile is created on the

target system and must be

transferred to the host after

logging has been

completed.

Note that no additional

CAN port is used for the

logging, which makes this

method superior to any

other method such as

running a bus monitor

parallel.

ECU — — Command

Byte Order

Returns the byte order for

the defined Measurement or

Characteristic:

0—MSB_LAST

The CCP Slave device uses

the MSB_LAST (Intel) byte

ordering.

1—MSB_FIRST

The CCP Slave device uses

the MSB_FIRST

(Motorola) byte ordering.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-107 ECU M&C Toolkit User Manual

ECU — — Name Returns the Name of the

selected ECU opened by

MC ECU Open.vi or MC

ECU Select.vi.

ECU — — Comment Returns the Comment

string of the selected ECU.

ECU — — DAQ List

Number

Returns an array of DAQ list

numbers for all DAQ lists

defined in the A2L file.

ECU — — Event

Channel

Translates the event channel

name to the event channel

number. Pass the event

channel name in the Name

parameter of Get Property.

ECU CCP — Baud Rate Returns the Baud Rate in

use by the Interface. Basic

baud rates such as 125000

and 500000 are specified as

the numeric rate. Advanced

baud rates are specified as

8000XXYY hex, where YY is

the value of Bit Timing

Register 0 (BTR0), and XX

is the value of Bit Timing

Register 1 (BTR1) of the

CAN controller chip. For

more information, refer to

the Interface Properties

dialog in MAX. The value

of this property is originally

set within MAX, but it can

be changed using

MC Set Property.vi.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-108 ni.com

ECU CCP — CRO ID Returns the CRO ID

(Command Receive Object)

which is used to send

commands and data from

the host to the slave device.

ECU CCP — CRO Task Returns the NI-CAN task

reference for the CRO

(Command Receive Object,

the CAN task writing

frames to the slave device).

For example, you might use

this to set CAN properties

for this task. Handle with

extreme care, as those

properties are usually set

correctly by the ECU M&C

Toolkit itself.

ECU CCP — DTO ID Returns the DTO ID (Data

Transmission Object)

which is used by the ECU to

respond to CCP commands

and send data and status

information to the CCP

master.

ECU CCP — DTO Task Returns the NI-CAN task

reference for the DTO ID

(Data Transmission Object,

the CAN task reading

frames from the slave

device). For example, you

might use this to set CAN

properties for this task.

Handle with extreme care,

as those properties are

usually set correctly by the

ECU M&C Toolkit itself.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-109 ECU M&C Toolkit User Manual

ECU CCP — ID Returns the slave device

identifier. This ID

information is optional and

specific to the ECU

implementation. For more

information about the CCP

slave ID, refer to the

documentation for the ECU.

ECU CCP — ID Data Byte Returns a data type qualifier

of the slave device

identifier. This ID

information is optional and

specific to the ECU

implementation. For more

information about the CCP

slave ID, refer to the

documentation for the ECU.

ECU CCP — Interface Returns the interface

initialized for the task, such

as with MC DAQ

Initialize.vi.

ECU CCP — Master ID Returns CCP Master ID

information. This ID

information is optional and

specific to the ECU

implementation. For more

information about the CCP

master ID, refer to the

documentation for the ECU.

ECU CCP — SeedKey Cal

Name

Returns the filename of the

SeedKey DLL used for

Calibration purposes. If

SeedKey is configured for

remote access, the output is

RSK:<server ip

address>,<port>.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-110 ni.com

ECU CCP — SeedKey

DAQ Name

Returns the filename of the

SeedKey DLL used for

DAQ purposes. If SeedKey

is configured for remote

access, the output is

RSK:<server ip

address>,<port>.

ECU CCP — SeedKey

Prog Name

Returns the filename of the

SeedKey DLL used for

programming purposes. If

SeedKey is configured for

remote access, the output is

RSK:<server ip

address>,<port>.

ECU CCP — Single Byte

DAQ List?

Determines if an ECU

supports single-byte or

multi-byte DAQ list entries.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-111 ECU M&C Toolkit User Manual

ECU CCP — Termination For all XNET devices, the

termination is software

selectable. XNET provides

the option of 80 between

Bus Plus and Bus Minus or

no termination. The

Termination property

configures the onboard

termination of the

NI-XNET interface CAN

connector (port). The

Boolean property supports

two values: TRUE =

Termination ON and

FALSE = Termination Off.

However, different CAN or

LIN hardware has different

termination requirements,

and the termination values

have different meanings.

Refer to the Termination

attribute in the XNET API

for more details. (This

property is supported for

NI-XNET devices only.)

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-112 ni.com

ECU XCP CAN Termination For all XNET devices, the

termination is software

selectable. XNET provides

the option of 80  between

Bus Plus and Bus Minus or

no termination. The

Termination property

configures the onboard

termination of the

NI-XNET interface CAN or

LIN connector (port). The

Boolean property supports

two values: TRUE =

Termination ON and

FALSE = Termination Off.

However, different CAN or

LIN hardware has different

termination requirements,

and the termination values

have different meanings.

Refer to the Termination

attribute in the XNET API

for more details. (This

property is supported for

NI-XNET devices only.)

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-113 ECU M&C Toolkit User Manual

ECU CCP — Station

Address

Returns the Station

Address of the slave device.

CCP is based on the idea,

that several ECUs can share

the same CAN Arbitration

IDs for CCP

communication. To avoid

communication conflicts

CCP defines a Station

Address that must be

unique for all ECUs sharing

the same CAN Arbitration

IDs. Unless an ECU has

been addressed by its

Station Address, the ECU

must not react to CCP

commands sent by the CCP

master.

ECU CCP Misc Skip

EXCHANGE

ID

Returns a Boolean

value that indicates whether

or not the EXCHANGE_ID

command should be

suppressed during

connection to the ECU.

ECU CCP Optional

Commands

ACTION

SERVICE

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

ACTION_SERVICE.

ECU CCP Optional

Commands

BUILD

CHECKSUM

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

BUILD_CHKSUM.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-114 ni.com

ECU CCP Optional

Commands

CLEAR

MEMORY

Returns a Boolean value

that indicates whether the

ECU supports the optional

ASAM CCP Command

CLEAR_MEMORY.

ECU CCP Optional

Commands

CLEAR

MEMORY

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

CLEAR_MEMORY.

ECU CCP Optional

Commands

DIAG

SERVICE

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

DIAG_SERVICE.

ECU CCP Optional

Commands

DNLOAD 6 Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

DNLOAD_6.

ECU CCP Optional

Commands

GET

ACTIVE

CAL PAGE

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

GET_ACTIVE_CAL_

PAGE.

ECU CCP Optional

Commands

GET S

STATUS

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

GET_S_STATUS.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-115 ECU M&C Toolkit User Manual

ECU CCP Optional

Commands

GET SEED Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

GET_SEED.

ECU CCP Optional

Commands

MOVE Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command MOVE.

ECU CCP Optional

Commands

PROGRAM Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

PROGRAM.

ECU CCP Optional

Commands

PROGRAM

6

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

PROGRAM_6.

ECU CCP Optional

Commands

SELECT

CAL PAGE

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

SELECT_CAL_PAGE.

ECU CCP Optional

Commands

SET S

STATUS

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

SET_S_STATUS.

ECU CCP Optional

Commands

SHORT UP Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

SHORT_UP.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-116 ni.com

ECU CCP Optional

Commands

START

STOP ALL

Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command

START_STOP_ALL.

ECU CCP Optional

Commands

TEST Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command TEST.

ECU CCP Optional

Commands

UNLOCK Returns a Boolean value

that indicates whether the

ECU supports the optional

CCP Command UNLOCK.

ECU Misc — Timing

Factor

Returns the used timing

factor, which you can use to

increase CCP or XCP

command timeout values.

For details on the default

Command Timeout values,

refer to the CCP or XCP

Protocol Specification.

ECU XCP — Compression

Method

Returns the selected

compression method used

for MC Program.vi.

0—data is uncompressed.

0x80...0xFF—User defined.

ECU XCP — Encryption

Method

Returns the selected

encryption method used for

MC Program.vi.

0x00—data is not encrypted

0x80...0xFF—User defined

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-117 ECU M&C Toolkit User Manual

ECU XCP — Access

Method

Returns the selected access

mode:

0x00—Absolute Access

Mode (default). The MTA

uses physical addresses

0x01—Functional Access

Mode. The MTA functions

as a block sequence number

of the new flash content file.

0x80...0xFF—User

defined. It is possible to use

different access modes for

clearing and programming.

ECU XCP — Programming

Method

Returns the selected

programming method used

for MC Program.vi.

0x00—Sequential

programming,

0x80...0xFF—User defined.

ECU XCP — SeedKey

DLL

Returns the filename of the

SeedKey DLL. If SeedKey

is configured for remote

access, the output is

RSK:<server ip

address>,<port>.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-118 ni.com

ECU XCP CAN Baudrate Returns the Baud Rate in

use by the NI-CAN

Interface. Basic baud rates

such as 125000 and 500000

are specified as the numeric

rate. Advanced baud rates

are specified as 8000XXYY

hex, where YY is the value of

Bit Timing Register 0

(BTR0), and XX is the value

of Bit Timing Register 1

(BTR1) of the CAN

controller chip. For more

information, refer to the

Interface Properties dialog

in MAX. The value of this

property is originally set

within MAX, but it can be

changed using MC Set

Property.vi.

ECU XCP CAN CRO Id Returns the CRO ID

(Command Receive Object)

which is used to send

commands and data from

the host to the slave device.

ECU XCP CAN DTO Id Returns the DTO ID (Data

Transmission Object) which

is used by the ECU to

respond to XCP commands

and send data and status

information to the XCP

master.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-119 ECU M&C Toolkit User Manual

ECU XCP Ethernet IP Address Returns the IP address of the

slave device. A slave device

connected by Ethernet and

TCP/IP or UDP/IP protocol

is addressed by its

IP Address and Port

number.

ECU XCP Ethernet IP Port Returns the IP Port number

of the slave device. A slave

device connected by

Ethernet and TCP/IP or

UDP/IP protocol is

addressed by its IP Address

and Port number.

ECU XCP Timeout T1

T2

T3

T4

T5

T6

T7

Returns one of the seven

timeout values (in

milliseconds) defined in the

XCP standard for the

various XCP commands.

For details of which timeout

applies to a specific

command, refer to the XCP

standard. The values

typically are read from an

A2L file but may be

overridden manually.

Note that the Timing

Factor property might

modify this value.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-120 ni.com

ECU CCP Timeout T_std Returns the timeout value

(in milliseconds) for most of

the CCP commands. For

details of which timeout

applies to a specific

command, refer to the CCP

standard. Default: 40.

Standard: 25. The default is

chosen slightly higher to

allow for slower ECUs.

Note that the Timing

Factor property might

modify this value.

ECU CCP Timeout T_pgm Returns the timeout value

(in milliseconds) for the

CCP programming

commands. For details of

which timeout applies to a

specific command, refer to

the CCP standard. Default:

120. Standard: 100. The

default is chosen slightly

higher to allow for slower

ECUs.

Note that the Timing

Factor property might

modify this value.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-121 ECU M&C Toolkit User Manual

ECU CCP Timeout T_mem Returns the timeout value

(in milliseconds) for the

CCP memory commands.

For details of which timeout

applies to a specific

command, refer to the CCP

standard. Default and

Standard: 30000.

Note that the Timing

Factor property might

modify this value.

ECU CCP Timeout T_diag Returns the timeout value

(in milliseconds) for the

CCP DIAG_SERVICE

command. Default and

Standard: 500.

Note that the Timing

Factor property might

modify this value.

ECU CCP Timeout T_act Returns the timeout value

(in milliseconds) for the

CCP ACTION_SERVICE

command. Default: 500.

Standard: 5000.

Note that the Timing

Factor property might

modify this value.

ECU CCP Cal Pages Number of

Pages

Returns the number of

DEFINED_PAGES

structures for this ECU in

the A2L file.

ECU CCP Cal Pages Page Number Returns the page number of

the page selected with the

name input.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-122 ni.com

ECU CCP Cal Pages Page Flags Returns the page flags of the

page selected with the name

input.

The value returned is a

bitmask ored from the

following values:

1 RAM page

2 ROM page

4 FLASH page

8 EEPROM page

16 RAM_INIT_BY_

ECU

RAM page initialized

at ECU startup.

32 RAM_INIT_BY_

TOOL

RAM page that the

calibration tool

initializes.

64 AUTO_FLASH_

BACK

RAM page

automatically flashed

back.

128 FLASH_BACK

RAM page that the

calibration tool can

flash back.

256 DEFAULT

Page is standard

(fallback).

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-123 ECU M&C Toolkit User Manual

ECU CCP Cal Pages Page Address Returns the memory address

(and extension) of the page

selected with the name

input.

ECU XCP Cal Pages Number of

Segments

Returns the number of XCP

memory segments found for

this ECU.

ECU XCP Cal Pages Number of

Pages

Returns the number of

memory pages defined for

the memory segment

specified in the segment

input (0..N-1, where N is the

value returned from the

Number of Segments

property).

ECU XCP Cal Pages Address

Extension

Returns the address

extension for the memory

segment specified in the

segment input (0..N-1,

where N is the value

returned from the Number

of Segments property).

ECU XCP Cal Pages Compression

Method

Returns the compression

method for the memory

segment specified in the

segment input (0..N-1,

where N is the value

returned from the Number

of Segments property).

A value of 0 means no

compression. Other values

are user defined.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-124 ni.com

ECU XCP Cal Pages Encryption

Method

Returns the encryption

method for the memory

segment specified in the

segment input (0..N-1,

where N is the value

returned from the Number

of Segments property).

A value of 0 means no

encryption. Other values are

user defined.

ECU XCP Cal Pages Page Number Returns the logical page

number for the memory

segment page specified in

the segment input (0..N-1,

where N is the value

returned from the Number

of Segments property) and

page input (0..M-1, where

M is the value returned from

the Number of Pages

property).

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-125 ECU M&C Toolkit User Manual

ECU XCP Cal Pages ECU Access Returns a flag indicating

ECU access rights for the

memory segment page

specified in the segment

input (0..N-1, where N is the

value returned from the

Number of Segments

property) and page input

(0..M-1, where M is the

value returned from the

Number of Pages

property).

Defined values are:

0 ECU access not allowed

1 ECU access allowed

without XCP access only

2 ECU access allowed

with XCP access only

3 ECU access allowed

always

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-126 ni.com

ECU XCP Cal Pages XCP Read

Access

Returns a flag indicating

XCP Read access rights for

the memory segment page

specified in the segment

input (0..N-1, where N is the

value returned from the

Number of Segments

property) and page input

(0..M-1, where M is the

value returned from the

Number of Pages

property).

Defined values are:

0 XCP Read access not

allowed

1 XCP Read access

allowed without ECU

access only

2 XCP Read access

allowed with ECU

access only

3 XCP Read access

allowed always

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-127 ECU M&C Toolkit User Manual

ECU XCP Cal Pages XCP Write

Access

Returns a flag indicating

XCP Write access rights for

the memory segment page

specified in the segment

input (0..N-1, where N is the

value returned from the

Number of Segments

property) and page input

(0..M-1, where M is the

value returned from the

Number of Pages

property).

Defined values are:

0 XCP Write access not

allowed

1 XCP Write access

allowed without ECU

access only

2 XCP Write access

allowed with ECU

access only

3 XCP Write access

allowed always

ECU XCP Cal Pages Page

InitSegment

Returns the number of the

segment that initializes the

memory segment page

specified in the segment

input (0..N-1, where N is the

value returned from the

Number of Segments

property) and page input

(0..M-1, where M is the

value returned from the

Number of Pages

property).

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-128 ni.com

Characteristic — — Address Returns the address of the

selected Characteristic in

the memory of the ECU.

Characteristic — — Byte Order Returns the specified byte

order:

0—Intel format

Bytes are in little-endian

order, with least-significant

bit first.

1—Motorola format

Bytes are in big-endian

order, with most-significant

bit first.

Characteristic — — Comment Returns the Comment

string of the selected

Characteristic.

Characteristic — — Data Type Returns the data type of the

Characteristic.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-129 ECU M&C Toolkit User Manual

Characteristic — — Dimension Returns the dimension of a

Characteristic.

0—0 dimension

The Characteristic can be

accessed (read/write)

through a double value.

1—1 dimension

The Characteristic can be

accessed (read/write)

through a one-dimensional

array of double values.

2—2 dimensions

The Characteristic can be

accessed (read/write)

through a two-dimensional

array of double values.

Characteristic — — Extension Returns additional address

information. For instance it

can be used, to distinguish

different address spaces of

an ECU

(multi-microcontroller

devices).

Characteristic — — Maximum Returns the maximum value

of the Characteristic.

Characteristic — — Minimum Returns the minimum value

of the Characteristic.

Characteristic — — Read Only? Returns if a Characteristic is

set to Read Only. In this

case it is not allowed to call

MC Characteristic

Write.vi for this

Characteristic.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-130 ni.com

Characteristic — — Sizes Returns the array Sizes for X

and Y direction of the

Characteristic.

Characteristic — — Unit Returns the unit string

defined for this

Characteristic in the A2L

database.

Characteristic — — X Axis Returns X-axis values on

which the Characteristic is

defined. It is valid if

the dimension of the

selected Characteristic is 1

or 2.

Characteristic — — Y Axis Returns Y-axis values on

which the Characteristic is

defined. It is valid if the

dimension of the selected

Characteristic is 2.

Characteristic Scaling — Factor Returns the scaling factor

defined for this

Characteristic in the A2L

database.

Characteristic Scaling — Offset Returns the scaling offset

defined for this

Characteristic in the A2L

database.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-131 ECU M&C Toolkit User Manual

Characteristic Scaling — Type Returns the scaling type

defined for this

Characteristic in the A2L

database.

0: Unknown

The scaling type could not

be derived from the A2L file

content.

1: Rational Function

The related scaling is based

on a rational function of

second order. This covers

also the linear scaling, given

by factor and offset.

2: Enumeration Text

The related scaling is based

on the COMPU_VTAB

keyword within the

A2L file.

• Read VIs return

nonscaled, numeric

values.

• Write VIs accept

nonscaled, numeric

values.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-132 ni.com

• It is possible to use MC

Double to Text.vi and

MC Text To Double.vi

to convert between

enumeration text values

and double values.

3: Range Text

The related scaling is based

on the

COMPU_VTAB_RANGE

keyword within the A2L

file.

• Read VIs return

nonscaled, numeric

values.

• Write VIs accept

nonscaled, numeric

values.

• It is possible to use MC

Double to Text.vi and

MC Text To Double.vi

to convert between range

text values and double

values.

4: Formula

The related scaling is based

on the FORMULA keyword

within the A2L file, using a

free formula to calculate the

values.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-133 ECU M&C Toolkit User Manual

5: Table (Using

Interpolation)

The related scaling is based

on the TAB_INTP keyword

within the A2L file, using

interpolation between x-y

pairs.

6: Table (Without

Interpolation)

The related scaling is based

on the TAB_NOINTP

keyword within the A2L

file, using x-y pairs without

interpolation.

Characteristic Scaling — Text Values If the scaling type is

2 = Enumeration Text or 3 =

Range Text, you can use this

property to request the list

of text values that can be

converted into raw values.

Group — — Is Root? Returns whether the

selected Group is a

root-level Group entity.

Group — — Comment Returns the Comment

string of the selected Group.

Function — — Comment Returns the Comment

string of the selected

Function.

DAQ — — Event

Channel

Name

Returns the selected event

channel name to which the

Measurement task is

assigned.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-134 ni.com

DAQ — — Mode Returns the selected I/O

mode for the M&C

Measurement task.

0—DAQ List

The data is transmitted by

the ECU based on an event

channel, which can be

equidistant in time or

sporadic. The data can be

read back with the MC

DAQ Read.vi as Single

point data using

sample rate = 0, or as a

waveform using a

sample rate > 0. Input

channel data is received

from the DAQ messages.

Use MC DAQ Read.vi to

obtain input samples as

single-point, array, or

waveform.

1—Polling

In this mode the data from

the Measurement task is

uploaded from the ECU

whenever

MC DAQ Read.vi is called.

DAQ — — # Channels Returns the number of

channels initialized in a

DAQ channel list of a M&C

Measurement task. This is

the number of array entries

required when using MC

DAQ Read.vi.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-135 ECU M&C Toolkit User Manual

DAQ — — Prescaler Returns the prescaling

factor which is used

to reduce the desired

transmission frequency of

the associated DAQ list.

DAQ — — Sample Rate Returns the selected

Sample Rate in Hz for the

M&C Measurement task,

which may be obtained with

MC DAQ Initialize.vi.

DAQ — — Samples

Pending

Returns the number of

samples available to be read

using MC DAQ Read.vi. If

you set the number of

samples to read input of MC

DAQ Read.vi to this value,

DAQ Read returns

immediately without

waiting. This property

applies only to tasks

initialized with mode of

Input and sample rate

greater than zero. For all

other configurations, it

returns an error. If this

property is queried before

the DAQ list is started, it

always returns zero. Start

the DAQ list first with MC

DAQ Start Stop.vi before

you query this property.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-136 ni.com

DAQ — — Time Since

Last Frame

Indicates how much time

has passed (in seconds)

since the measurement

session received the last

DAQ frame. You can reuse

this property to restart the

measurement when the

value increases a threshold

(for example, 0.5 seconds),

assuming the ECU stopped

sending DAQ messages and

must be restarted.

DAQ CCP — DTO ID Returns the DTO ID (Data

Transmission Object)

which is used by the ECU to

send DAQ list data to the

CCP master.

DAQ CCP — DTO Task Returns the NI-CAN task

reference for the DTO ID

(Data Transmission Object,

the CAN task reading

frames from the slave

device). For example, you

might use this to set CAN

properties for this task.

Handle with extreme care,

as those properties are

usually set correctly by the

ECU M&C Toolkit itself.

DAQ List — — CAN ID Returns the CAN ID for the

specified DAQ list if

mcPropDAQList_

CANIdSelectMode ==

CAN_ID_FIXED.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-137 ECU M&C Toolkit User Manual

DAQ List — — CAN ID

Select Mode

Returns the condition for

selecting the CAN ID for

the specified DAQ list.

0—CAN_ID_FIXED

The CAN Identifier is

a predefined fixed number.

1—CAN_ID_

VARIABLE

The CAN Identifier is

a variable number.

2—CAN_ID_DTO_ID

The CAN Identifier is the

same as the DTO identifier.

DAQ List — — Excluded

DAQ Lists

Returns an array containing

the numbers of DAQ lists

not working together with

the current DAQ list.

DAQ List — — First PID Returns the first Packet ID

for the specified DAQ list.

DAQ List — — MAX Length Returns the maximal length

of the DAQ list.

DAQ List — — Reduction

Allowed

Returns whether or not the

specified DAQ list allows

reduction.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-138 ni.com

DAQ List — — Name Name of the DAQ list

(measurement source). Pass

the DAQ list number

converted to a string in the

Name parameter of

Get Property. The

available DAQ list number

can be obtained by the ECU

DAQ List Numbers

property.

DAQ List — — Display

Identifier

Optional property you can

use as a display name as an

alternative to the DAQ List

Name property.

Measurement — — Address Returns the address part of

the address of the selected

Measurement in the

memory of the control unit.

Measurement — — Byte Order Returns the specified byte

order:

0—Intel format

Bytes are in little-endian

order, with least-significant

bit first.

1—Motorola format

Bytes are in big-endian

order, with most-significant

bit first.

Measurement — — Comment Returns the Comment

string of the selected

Measurement.

Measurement — — Data Type Returns the data type of the

Measurement task.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-139 ECU M&C Toolkit User Manual

Measurement — — Extension Returns the extension part

of the address. This optional

parameter may contain

additional address

information defined in the

A2L database. For instance,

it can be used to distinguish

different address spaces

of an ECU

(multi-microcontroller

devices).

Measurement — — Is Virtual? Indicates whether the

Measurement is virtual.

Virtual Measurements are

not transmitted by the ECU

but are calculated in the

application. They return an

error when opened in a DAQ

list.

Measurement — — Maximum Returns the maximum value

of the Measurement.

Measurement — — Minimum Returns the minimum value

of the Measurement.

Measurement — — Read Only? Returns TRUE if the selected

Measurement is read only

and can only be accessed

through

MC DAQ Read.vi, or

returns FALSE if the

Measurement can be

accessed through

MC Measurement

Write.vi as well.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-140 ni.com

Measurement — — Unit Returns the unit string

defined for this

Measurement in the A2L

database.

Measurement Scaling — Factor Returns the scaling factor

defined for this

Measurement in the A2L

database.

Measurement Scaling — Offset Returns the scaling offset

defined for this

Measurement in the A2L

database.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-141 ECU M&C Toolkit User Manual

Measurement Scaling — Type Returns the scaling type

defined for this

Measurement in the A2L

database.

0: Unknown

The type of the scaling

could not be derived from

the A2L file content.

1: Rational Function

The related scaling is based

on a rational function of

second order. This also

covers the linear scaling,

given by factor and offset.

2: Enumeration Text

The related scaling is based

on the COMPU_VTAB

keyword within the

A2L file.

• Read VIs return

nonscaled, numeric

values.

• Write VIs accept

nonscaled, numeric

values.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-142 ni.com

• It is possible to use MC

Double to Text.vi and

MC Text To Double.vi

to convert between

enumeration text values

and double values.

3: Range Text

The related scaling is based

on the

COMPU_VTAB_RANGE

keyword within the A2L

file.

• Read VIs return

nonscaled, numeric

values.

• Write VIs accept

nonscaled, numeric

values.

• It is possible to use MC

Double to Text.vi and

MC Text To Double.vi

to convert between range

text values and double

values.

4: Formula

The related scaling is based

on the FORMULA keyword

within the A2L file, using a

free formula to calculate the

values.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-143 ECU M&C Toolkit User Manual

5: Table (Using

Interpolation)

The related scaling is based

on the TAB_INTP keyword

within the A2L file, using

interpolation between x-y

pairs.

6: Table (Without

Interpolation)

The related scaling is based

on the TAB_NOINTP

keyword within the A2L

file, using x-y pairs without

interpolation.

Measurement Scaling — Text Values If the scaling type is

2 = Enumeration Text or

3 = Range Text, you can use

this property to request the

list of text values that can be

converted into raw values.

Version — — Build Returns the build number of

the ECU M&C software.

This number applies to the

Development, Alpha, and

Beta phases only, and

should be ignored for the

Release phase.

Version — — Comment Returns a comment string

for the ECU M&C software.

If you received a custom

release of ECU M&C from

National Instruments, this

comment often describes

special features of the

release.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-144 ni.com

Version — — Major Returns the major version of

the ECU M&C software,

such as the 1 in version

1.2.5.

Version — — Minor Returns the minor version of

the ECU M&C software,

such as the 2 in version

1.2.5.

Version — — Update Returns the update version

of the ECU M&C software,

such as the 5 in version

1.1.5.

Table 5-5. Poly Values for Value Output (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-145 ECU M&C Toolkit User Manual

MC Measurement Create.vi

Purpose
Creates a Measurement object in memory.

Format

Input

Conversion Name identifies the referred conversion object defined by

MC Conversion Create.vi.

Measurement Name sets the measurement object name.

ECU ref in is the task reference that links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Create.vi.

Address is a cluster that contains the following values:

Address specifies the address part of the source address.

Extension contains the extension part of the source address.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-146 ni.com

Data Type sets the measurement task data type. Data Type can contain the

following values:

Data Type Data Format

0 Unsigned byte

1 Signed byte

2 Unsigned word

3 Signed word

4 Unsigned long

5 Signed long

6 Float 32

Output

ECU ref out is the task reference that links to the selected ECU.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use MC Measurement Create.vi to create a measurement object in memory instead of

referring to a predefined measurement in the A2L database.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-147 ECU M&C Toolkit User Manual

MC Measurement Read.vi

Purpose
Reads a single Measurement value from the ECU.

Format

Input

Measurement name is the name of a measurement channel stored in the

A2L database file you want to read.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Value returns a single sample for the Measurement channel initialized in

measurement name.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-148 ni.com

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Measurement Read.vi performs a single point read of a single Measurement from the

selected ECU without opening a Measurement task.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-149 ECU M&C Toolkit User Manual

MC Measurement Write.vi

Purpose
Writes a single Measurement value to the ECU.

Format

Input

Measurement name is the name of a Measurement channel stored in the

A2L database file to which to write a Measurement value.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Value writes a single sample for the Measurement channel initialized in

measurement name.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-150 ni.com

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Measurement Write.vi performs a single point write of a Measurement into the selected

ECU without opening a Measurement task. MC Measurement Write.vi can only be

performed if the Measurement is not set to read only. To query if an ECU Measurement

channel can be accessed by MC Measurement Write.vi, first call MC Get Property.vi with

the parameter Measurement/Read Only?.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-151 ECU M&C Toolkit User Manual

MC Program.vi

Purpose
Programs a memory block on the ECU.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the destination address.

Extension contains the extension part of the destination address.

Data contains the byte array to be transmitted to the ECU.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-152 ni.com

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
If you are using the CCP protocol, MC Program.vi implements the CCP command

PROGRAM. The command is used to program the specified data into nonvolatile ECU

memory (Flash, EEPROM, etc.). Programming starts at the selected MTA0 address and

extension defined in the Address cluster.

If you are using the XCP protocol, MC Program.vi implements the XCP command

PROGRAM. The command is used to program a non-volatile memory segment in the

ECU slave. The end of the programming sequence is indicated by using the MC Program

Reset.vi command which executes the XCP command PROGRAM_RESET. The slave

device will move into a disconnected state. Usually a hardware reset of the slave device is

executed. This command may support block transfer similar to the commands DOWNLOAD

and DOWNLOAD_NEXT.

For further information on how to use the MC Program.vi and details on block mode

transfers, refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-153 ECU M&C Toolkit User Manual

MC Program Reset.vi

Purpose
Indicates the end of a programming sequence.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-154 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
If you are using the XCP protocol, MC Program Reset.vi implements the XCP command

PROGRAM_RESET. This optional command indicates the end of a non-volatile memory

programming sequence and may or may not have a response from the ECU. In either case,

the slave device will go into a disconnected state.

MC Program Reset.vi may be used to reset a slave device for other purposes. For further

information on how to use program ECU memory and to use the MC Program Reset.vi

command refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-155 ECU M&C Toolkit User Manual

MC Program Start.vi

Purpose
Indicates the start of a programming sequence.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-156 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
If you are using the XCP protocol, MC Program Start.vi implements the XCP command

PROGRAM_START. This optional command indicates the beginning of a programming

sequence into a non-volatile memory area. If the slave device is not in a state which permits

programming, an error is returned. The memory programming commands The end of a

non-volatile memory programming sequence is indicated by using the MC Program Start.vi

function.

For further information on how to use program ECU memory and to use the MC Program

Start.vi command refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-157 ECU M&C Toolkit User Manual

MC Set Property.vi

Purpose
Sets a property for the specified A2L database file, Measurement Task or Characteristic

referenced by the reference in terminal. The poly VI selection determines the property to set.

Format

Input

Name is not used, and can be left unwired. This parameter may be used for

further extensions.

Reference in specifies a valid task handle depending on the information

which must be set. If a generic property must be set, a DB ref handle is

needed. If a Measurement property must be set, a valid DAQ ref handle

must be wired into reference in. If an ECU property must be set, a valid

ECU ref handle must be wired into reference in.

Value is a poly input that specifies the property value. You select the

property to set as value by selecting the poly VI type. The data type of value

is also determined by the poly VI selection. For information on the different

properties provided by MC Set Property.vi, refer to the Poly VI Types

section. To select the property, right-click the VI, go to Select Type and

select the property by name.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-158 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Reference out is a copy of the reference in terminal which can be wired

through subsequent ECU M&C VIs.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
There are four types of properties which can be modified in the poly input value:

ECU-specific properties, DAQ-specific properties, Characteristic-specific properties,

and Measurement-specific properties.

ECU-Specific Properties

ECU-specific properties relate to the setting of the ECU. If you need to change a property of

the ECU you need a valid ECU reference, but the ECU should not be connected. First, call

MC ECU Open.vi, followed by MC Set Property.vi and then MC ECU Connect.vi. If you

have already connected to the ECU, you can change an ECU property by calling MC ECU

Disconnect.vi, followed by MC Set Property.vi, and then MC ECU Connect.vi again.

Refer to Table 5-6 for a list of ECU-specific properties that can be used to define the poly

input value.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-159 ECU M&C Toolkit User Manual

DAQ-Specific Properties

You cannot set a property while the task is running. If you need to change a property prior to

starting the task, call MC DAQ Initialize.vi, followed by MC Set Property.vi and then

MC DAQ Start Stop.vi. After you start the task, you also can change a property by calling

MC DAQ Start Stop.vi, followed by MC Set Property.vi, and then restart the task with

MC DAQ Start Stop.vi. Refer to Table 5-7 for a list of DAQ-specific properties that can be

used to define the poly input value.

Poly VI Types

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

ECU — — Byte Order Sets the byte order of the

CCP slave device.

0—MSB_LAST

The CCP slave device uses

the MSB_LAST (Intel) byte

ordering.

1—MSB_FIRST

The CCP slave device uses

the MSB_FIRST

(Motorola) byte ordering.

ECU — — Command

Byte Order

Sets the byte order of the

CCP or XCP commands.

0—MSB_LAST

The CCP slave device uses

the MSB_LAST (Intel) byte

ordering.

1—MSB_FIRST

The CCP slave device uses

the MSB_FIRST

(Motorola) byte ordering.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-160 ni.com

ECU — — Seedkey/

Checksum

DLL Path

Determines the directory

where the ECU M&C

Toolkit expects to find the

Seedkey or Checksum DLL.

If the property is an empty

string (default), the ECU

M&C Toolkit expects the

DLLs in the same directory

as the A2L file. If your

DLLs are in a different

directory, set this property

pointing to this directory.

ECU — — Checksum

DLL Name

Sets the file name of the

Checksum DLL used for

verifying the checksum.

ECU — — Logfile Path Sets a filename (full path)

where the CCP or XCP

protocol traffic is logged in

ASCII format for debugging

purposes. Setting this

parameter to an empty path

disables logging (default).

Note that on RT and cRIO

systems, the logfile is

created on the target system

and must be transferred to

the host after logging has

been completed.

Note that no additional

CAN port is used for the

logging, which makes this

method superior to any other

method such as running a

bus monitor parallel.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-161 ECU M&C Toolkit User Manual

ECU CCP — Baud Rate Sets the Baud Rate in use

by the interface. This

property applies to all tasks

initialized with the

Interface. You can specify

the following basic baud

rates as the numeric rate:

33333, 83333, 100000,

125000, 200000, 250000,

400000, 500000, 800000,

and 1000000. You also can

specify advanced baud rates

in the form 8000XXYY hex,

where YY is the value of Bit

Timing Register 0 (BTR0),

and XX is the value of Bit

Timing Register 1 (BTR1).

ECU CCP — CRO ID Sets the CRO ID

(Command Receive Object)

which is used to send

commands and data from

the host to the slave device.

ECU CCP — DTO ID Sets the DTO ID, which is

the CAN identifier for the

Data Transmission Object

(DTO). The DTO is used by

the CCP slave devices to

return data and status

information to the

application.

ECU CCP — Master ID Sets the CAN identifier of

the CCP master that is used

by the CCP command

EXCHANGE_ID as a

parameter.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-162 ni.com

ECU CCP — SeedKey Cal

Name

Sets the filename of the

SeedKey DLL used for

Calibration purposes. For

Remote Seedkey access

(refer to the LabVIEW

examples), set the name to

RSK:<server ip

address>,<port>.

ECU CCP — SeedKey

DAQ Name

Sets the filename of the

SeedKey DLL used for

DAQ purposes. For Remote

Seedkey access (refer to the

LabVIEW examples), set

the name to RSK:<server ip

address>,<port>.

ECU CCP — SeedKey Prog

Name

Sets the filename of the

SeedKey DLL used for

programming purposes. For

Remote Seedkey access

(refer to the LabVIEW

examples), set the name to

RSK:<server ip

address>,<port>.

ECU CCP — Single Byte

DAQ List?

Sets the ECU to support

single-byte or multi-byte

DAQ list entries.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-163 ECU M&C Toolkit User Manual

ECU CCP — Termination For all XNET devices, the

termination is software

selectable. XNET provides

the option of 80 between

Bus Plus and Bus Minus or

no termination. The

Termination property

configures the onboard

termination of the NI-XNET

interface CAN connector

(port). The Boolean

property supports two

values: TRUE =

Termination ON and

FALSE = Termination Off.

However, different CAN or

LIN hardware has different

termination requirements,

and the termination values

have different meanings.

Refer to the Termination

attribute in the XNET API

for more details. (This

property is supported for

NI-XNET devices only.)

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-164 ni.com

ECU XCP CAN Termination For all XNET devices, the

termination is software

selectable. XNET provides

the option of 80  between

Bus Plus and Bus Minus or

no termination. The

Termination property

configures the onboard

termination of the NI-XNET

interface CAN or LIN

connector (port). The

Boolean property supports

two values: TRUE =

Termination ON and

FALSE = Termination Off.

However, different CAN or

LIN hardware has different

termination requirements,

and the termination values

have different meanings.

Refer to the Termination

attribute in the XNET API

for more details. (This

property is supported for

NI-XNET devices only.)

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-165 ECU M&C Toolkit User Manual

ECU CCP — Station

Address

Sets the Station Address of

the slave device. CCP is

based on the idea that

several ECUs can share the

same CAN Arbitration IDs

for CCP communication.

To avoid communication

conflicts, CCP defines a

Station Address that must

be unique for all ECUs

sharing the same CAN

Arbitration IDs. Unless an

ECU has been addressed by

its Station Address, the

ECU must not react to CCP

commands sent by the CCP

master.

ECU CCP Misc Skip

EXCHANGE

ID

Sets whether or not the CCP

command EXCHANGE_ID

should be suppressed during

connection to the ECU.

ECU CCP Optional

Commands

ACTION

SERVICE

Sets whether the ECU

supports the optional

ASAM CCP Command

ACTION_SERVICE.

ECU CCP Optional

Commands

BUILD

CHECKSUM

Sets whether the ECU

supports the optional

ASAM CCP Command

BUILD_CHKSUM.

ECU CCP Optional

Commands

CLEAR

MEMORY

Sets whether the ECU

supports the optional

ASAM CCP Command

CLEAR_MEMORY.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-166 ni.com

ECU CCP Optional

Commands

CLEAR

MEMORY

Sets whether the ECU

supports the optional

ASAM CCP Command

CLEAR_MEMORY.

ECU CCP Optional

Commands

DIAG

SERVICE

Sets whether the ECU

supports the optional

ASAM CCP Command

DIAG_SERVICE.

ECU CCP Optional

Commands

DNLOAD 6 Sets whether the ECU

supports the optional

ASAM CCP Command

DNLOAD_6.

ECU CCP Optional

Commands

GET

ACTIVE

CAL PAGE

Sets whether the ECU

supports the optional

ASAM CCP Command

GET_ACTIVE_CAL_

PAGE.

ECU CCP Optional

Commands

GET S

STATUS

Sets whether the ECU

supports the optional

ASAM CCP Command

GET_S_STATUS.

ECU CCP Optional

Commands

GET SEED Sets whether the ECU

supports the optional

ASAM CCP Command

GET_SEED.

ECU CCP Optional

Commands

MOVE Sets whether the ECU

supports the optional

ASAM CCP Command

MOVE.

ECU CCP Optional

Commands

PROGRAM Sets whether the ECU

supports the optional

ASAM CCP Command

PROGRAM.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-167 ECU M&C Toolkit User Manual

ECU CCP Optional

Commands

PROGRAM 6 Sets whether the ECU

supports the optional

ASAM CCP Command

PROGRAM_6.

ECU CCP Optional

Commands

SELECT

CAL PAGE

Sets whether the ECU

supports the optional

ASAM CCP Command

SELECT_CAL_PAGE.

ECU CCP Optional

Commands

SET S

STATUS

Sets whether the ECU

supports the optional

ASAM CCP Command

SET_S_STATUS.

ECU CCP Optional

Commands

SHORT UP Sets whether the ECU

supports the optional

ASAM CCP Command

SHORT_UP.

ECU CCP Optional

Commands

START

STOP ALL

Sets whether the ECU

supports the optional

ASAM CCP Command

START_STOP_ALL.

ECU CCP Optional

Commands

TEST Sets whether the ECU

supports the optional

ASAM CCP Command

TEST.

ECU CCP Optional

Commands

UNLOCK Sets whether the ECU

supports the optional

ASAM CCP Command

UNLOCK.

ECU Misc — Timing

Factor

Sets the timing factor to

increase the XCP or CCP

Command timeouts by this

value. For details on the

default Command Timeout

values, refer to the CCP or

XCP Protocol Specification.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-168 ni.com

ECU XCP — SeedKey DLL Sets the file name of the

XCP SeedKey DLL. For

Remote Seedkey access

(refer to the LabVIEW

examples), set the name to

RSK:<server ip

address>,<port>.

ECU XCP — Access

Method

Sets the selected access

mode:

0x00—Absolute Access

Mode (default). The MTA

uses physical addresses

0x01—Functional Access

Mode. The MTA functions

as a block sequence number

of the new flash content file.

0x80...0xFF—User

defined. It is possible to use

different access modes for

clearing and programming.

ECU XCP — Compression

Method

Sets the selected

compression method used

for MC Program.vi.

0—data is uncompressed.

0x80...0xFF—User defined.

ECU XCP — Encryption

Method

Sets the selected encryption

method used for MC

Program.vi.

0x00—data is not encrypted

0x80...0xFF—User defined

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-169 ECU M&C Toolkit User Manual

ECU XCP — Programming

Method

Sets the selected

programming method used

for MC Program.vi.

0x00—Sequential

programming.

0x80...0xFF—User defined.

ECU XCP CAN Baudrate Sets the Baud Rate in use by

the NI-CAN Interface.

Basic baud rates such as

125000 and 500000 are

specified as the numeric

rate. Advanced baud rates

are specified as 8000XXYY

hex, where YY is the value of

Bit Timing Register 0

(BTR0), and XX is the value

of Bit Timing Register 1

(BTR1) of the CAN

controller chip.

ECU XCP CAN CRO Id Sets the CRO ID (Command

Receive Object) which is

used to send commands and

data from the host to the

slave device.

ECU XCP CAN DTO Id Sets the DTO ID (Data

Transmission Object) which

is used by the ECU to

respond to XCP commands

and send data and status

information to the XCP

master.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-170 ni.com

ECU XCP Ethernet IP Address Sets the IP address of the

slave device. A slave device

connected by Ethernet and

TCP/IP or UDP/IP protocol

is addressed by its IP

Address and Port number.

ECU XCP Ethernet IP Port Sets the IP Port number of

the slave device. A slave

device connected by

Ethernet and TCP/IP or

UDP/IP protocol is

addressed by its IP Address

and Port number.

ECU XCP Timeout T1

T2

T3

T4

T5

T6

T7

Sets one of the seven

timeout values (in

milliseconds) defined in the

XCP standard for the

various XCP commands.

For details of which timeout

applies to a specific

command, refer to the XCP

standard. The values are

typically read from an A2L

file but may be overridden

manually.

Note that the Timing

Factor property may

modify this value.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-171 ECU M&C Toolkit User Manual

ECU CCP Timeout T_std Sets the timeout value (in

milliseconds) for most of

the CCP commands. For

details of which timeout

applies to a specific

command, refer to the CCP

standard. Default: 40.

Standard: 25. The default is

chosen slightly higher to

allow for slower ECUs.

Note that the Timing

Factor property may

modify this value.

ECU CCP Timeout T_pgm Sets the timeout value (in

milliseconds) for the CCP

programming commands.

For details of which timeout

applies to a specific

command, refer to the CCP

standard. Default: 120.

Standard: 100. The default

is chosen slightly higher to

allow for slower ECUs.

Note that the Timing

Factor property may

modify this value.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-172 ni.com

ECU CCP Timeout T_mem Sets the timeout value (in

milliseconds) for the CCP

memory commands. For

details of which timeout

applies to a specific

command, refer to the CCP

standard. Default and

Standard: 30000.

Note that the Timing

Factor property may

modify this value.

ECU CCP Timeout T_diag Sets the timeout value (in

milliseconds) for the

CCP DIAG_SERVICE

command. Default and

Standard: 500.

Note that the Timing

Factor property may

modify this value.

ECU CCP Timeout T_act Sets the timeout value (in

milliseconds) for the

CCP ACTION_SERVICE

command. Default: 500.

Standard: 5000.

Note that the Timing

Factor property may

modify this value.

Table 5-6. ECU-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-173 ECU M&C Toolkit User Manual

Table 5-7. DAQ-Specific Property Value Types for the POLY Input Value

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

DAQ — — Event

Channel

Name

Sets the event channel name to

which the Measurement task is

assigned. If there is no event

channel name defined in the

A2L file, you can set the Event

Channel Number manually by

passing a decimal number as a

string.

DAQ — — Mode Sets the selected I/O mode for

the M&C Measurement task.

0—DAQ List

The data is transmitted from the

ECU in equidistant time

intervals as defined in the A2L

database. The data can be read

back with the MC DAQ

Read.vi as Single point data

using sample rate = 0, or as a

waveform using a sample rate >

0. Input channel data is received

from the DAQ messages. Use

MC DAQ Read.vi to obtain

input samples as single-point,

array, or waveform.

1—Polling

In this mode the data from the

Measurement task is uploaded

from the ECU whenever

MC DAQ Read.vi is called.

DAQ — — Prescaler Sets the prescaling factor, which

reduces the desired

transmission frequency of the

associated DAQ list.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-174 ni.com

DAQ — — Sample

Rate

SampleRate specifies the

timing to use for the samples of

the (NI-CAN) task. The sample

rate is specified in Hertz

(samples per second). A sample

rate of zero means to sample

immediately.

For a DAQMode of

mcDAQModeDAQList,

SampleRate of zero means that

MC DAQ Read.vi returns a

single sample from the most

recent messages received, and

greater than zero means that

MC DAQ Read.vi returns

samples timed at the specified

rate. For DAQMode of

mcDAQModePolling,

SampleRate is ignored.

DAQ CCP — DTO ID Sets the DTO ID (Data

Transmission Object) which is

used by the ECU to send DAQ

list data to the CCP master.

Table 5-7. DAQ-Specific Property Value Types for the POLY Input Value (Continued)

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-175 ECU M&C Toolkit User Manual

Characteristic-Specific Properties

Measurement-Specific Properties

Table 5-8. Characteristic-Specific Property Value Types for the PropertyID Input Value

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Characteristic — — X Axis Sets the X-axis values on which

the Characteristic is defined.

The Characteristic dimension

must be at least 1.

Characteristic — — Y Axis Sets the Y-axis values on which

the Characteristic is defined.

The Characteristic dimension

must be 2.

Characteristic — — Byte

Order

Sets the specified byte order of

the entire characteristic:

0—Intel format

Bytes are in little-endian order,

with least-significant bit first.

1—Motorola format

Bytes are in big-endian order,

with most-significant bit first.

Table 5-9. Measurement-Specific Property Value Types for the PropertyID Input Value

Type Hierarchy

Sub-Hierarchy

Param DescriptionSub 1 Sub 2

Measurement — — Byte

Order

Sets the specified byte order of

the selected Measurement:

0—Intel format

Bytes are in little-endian order,

with least-significant bit first.

1—Motorola format

Bytes are in big-endian order,

with most-significant bit first.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-176 ni.com

MC Text To Double.vi

Purpose
Converts a text value into the numeric representation using an enumeration or range text type

scaling.

Format

Input

object name indicates the object (measurement or characteristic) for which

the enumeration or range text scaling is performed.

ECU ref in is the task reference that links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi and then wired through subsequent VIs.

object type is a U32 ring that indicates the type of the object named in

object name. Valid values are:

1 Measurement Name

2 Characteristic Name

TextValue is the text value you want to convert. Use MC Get Property.vi

(Scaling—Text Values) to request the available values.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-177 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

value returns the numeric value to be transferred to the ECU in subsequent

Write requests.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Text To Double.vi performs the conversion from the text input value into a double value.

You can use this especially if the measurement or characteristic has an associated

enumeration or range text type scaling before writing the double values to the ECU, using the

regular Write VIs (MC DAQ Write.vi, MC Measurement Write.vi, MC Characteristic

Write.vi).

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-178 ni.com

MC Upload.vi

Purpose
Uploads data from an ECU.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the source address in the

ECU from which the memory block is copied.

Extension specifies the extension part of the source address.

Block size is the size of the data block, in bytes, to be uploaded.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-179 ECU M&C Toolkit User Manual

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Data is a byte array which receives the uploaded data from the ECU.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC Upload.vi implements the UPLOAD command. A data block of the specified length,

starting at the specified address, is uploaded from the ECU. MC Upload.vi will set the

Memory Transfer Address pointer MTA0 to the appropriate value as defined in the Address

cluster.

If you are using the CCP protocol, MC Upload.vi implements the UPLOAD command. A

data block of the specified length, starting at the specified address, is uploaded from the ECU.

MC Upload.vi will set the Memory Transfer Address pointer MTA0 to the appropriate value

as defined in the Address cluster.

If you are using the XCP protocol, MC Upload.vi implements the XCP command UPLOAD.

A data block of the specified length starting at the specified address is uploaded from the

ECU. The Memory Transfer Address pointer MTA0 is post-incremented by the given number

of data elements. If the slave device does not support block transfer mode, all uploaded data

is transferred in a single response packet. If block transfer mode is supported, the uploaded

data is transferred in multiple responses on the same request packet. For the master there are

no limitations allowed concerning the maximum block size.

For further information on how to upload data and to use the MC Upload.vi command refer

to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-180 ni.com

MC XCP Copy Cal Page.vi

Purpose
Forces a copy transaction of one calibration page to another.

Format

Input

Source page specifies the logical page number of the source data page.

Source segment specifies the logical segment number of the source data

page.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Destination page specifies the logical segment number of the destination

data page.

Destination segment specifies logical page number of the destination data

page.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-181 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC XCP Copy Cal Page.vi implements the XCP command COPY_CAL_PAGE and forces

the slave to copy one calibration page to another. This command is only available if more than

one calibration page is defined. In principal, any page of any segment can be copied to any

page of any other segment but there may be restrictions.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-182 ni.com

MC XCP Get Cal Page.vi

Purpose
Queries a calibration page setting.

Format

Input

Mode specifies the access mode:

Mode = 1

The given page is used by the slave device application.

Mode = 2

The slave device XCP driver will access the given page.

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Segment specifies the selected logical data segment number.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-183 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Page returns the logical data page number.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC XCP Get Cal Page.vi implements the XCP command GET_CAL_PAGE and queries the

logical number for the calibration data page that is currently activated for the specified access

mode and data segment.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-184 ni.com

MC XCP Get ID.vi

Purpose
Queries session configuration or slave device identification.

Format

Input

Reference in is the reference to any opened A2L database, a selected ECU,

or an ECU which is already connected (with MC Database Open.vi, MC

ECU Select.vi, MC ECU Open.vi, or MC ECU Connect.vi). The type of

this reference depends on the property you want to get.

Type specifies the type of the requested identification:

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

Type Description

0 ASCII text

1 ASAM-MC2 filename without path and extension

2 ASAM-MC2 filename with path and extension

3 URL where the ASAM-MC2 file can be found

4 ASAM-MC2 file to upload

128..255 User defined

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-185 ECU M&C Toolkit User Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Reference out is a copy of the reference in terminal which can be wired

through subsequent ECU M&C VIs.

Id contains the queried identification string.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC XCP Get ID.vi implements the XCP command GET_ID and returns session

configuration or slave device identification information of the selected ECU slave device.

The supported types are implementation specific of the ECU slave device. The identification

string is ASCII text format.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-186 ni.com

MC XCP Get Status.vi

Purpose
Queries the current session status from an ECU slave device.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Session Id returns the defined session configuration ID.

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Session status returns the current status of the selected ECU.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-187 ECU M&C Toolkit User Manual

Resource mask is the current resource protection status of the selected

ECU.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC XCP Get Status.vi implements the XCP command GET_STATUS and returns all

current status information of the selected ECU slave device, including the status of the

resource protection, pending store requests and the general status of data acquisition and

stimulation.

Current Session Status

Session status contains a bit mask which is described below:

Bit

Number Flag Description

0 STORE_CAL_REQ REQuest to STORE CALibration data:

0—STORE_CAL_REQ mode is reset.

1—STORE_CAL_REQ mode is set.

1 Unused —

2 STORE_DAQ_REQ REQuest to STORE DAQ list:

0—STORE_DAQ_REQ mode is reset.

1—STORE_DAQ_REQ mode is set.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-188 ni.com

The STORE_CAL_REQ flag indicates a pending request to save the calibration data into

non-volatile memory. As soon as the request has been fulfilled, the slave will reset the

appropriate bit. The slave device may indicate this by transmitting an EV_STORE_CAL

event packet.

The STORE_DAQ_REQ flag indicates a pending request to save the DAQ list setup in

non-volatile memory. As soon as the request has been fulfilled, the slave will reset the

appropriate bit. The slave device may indicate this by transmitting an EV_STORE_DAQ

event packet.

The CLEAR_DAQ_REQ flag indicates a pending request to clear all DAQ lists in

non-volatile memory. All ODT entries are reset to address = 0, extension = 0, size = 0 and

bit_offset = FF. Session configuration ID is reset to 0. As soon as the request has been

fulfilled, the slave will reset the appropriate bit. The slave device may indicate this by

transmitting an EV_CLEAR_DAQ event packet. If the slave device does not support the

requested mode, an ERR_OUT_OF_RANGE is returned.

The DAQ_RUNNING flag indicates that at least one DAQ list has been started and is in

RUNNING mode.

The RESUME flag indicates that the slave is in RESUME mode.

3 CLEAR_DAQ_REQ REQuest to CLEAR DAQ configuration:

0—CLEAR_DAQ_REQ is reset.

1—CLEAR_DAQ_REQ is set.

4 Unused —

5 Unused —

6 DAQ_RUNNING Data Transfer:

0—The data transfer is not running.

1—The data transfer is running.

7 RESUME RESUME Mode:

0—The slave device is not in RESUME mode.

1—The slave device is in RESUME mode.

Bit

Number Flag Description

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-189 ECU M&C Toolkit User Manual

Resource mask contains the current resource protection status as a bit mask described below:

The CAL/PAG flags indicates that all commands of the CALibration/PAGing group are

protected and will return an ERR_ACCESS_LOCKED upon an attempt to execute the

command without a previous successful GET_SEED/UNLOCK sequence.

The PGM flags indicates that all the commands of the ProGraMming group are protected and

will return a ERR_ACCESS_LOCKED upon an attempt to execute the command without a

previous successful GET_SEED/UNLOCK sequence.

Bit

Number Flag Description

0 CAL/PAG REQuest to STORE CALibration data:

0—STORE_CAL_REQ mode is reset.

1—STORE_CAL_REQ mode is set.

1 Unused —

2 DAQ DAQ list commands (DIRECTION = DAQ):

0—DAQ list commands are not protected with SEED & Key

mechanism.

1—DAQ list commands are protected with SEED & Key

mechanism.

3 STIM DAQ list commands (DIRECTION = STIM):

0—DAQ list commands are not protected with SEED & Key

mechanism.

1—DAQ list commands are protected with SEED & Key

mechanism.

4 PGM ProGraMming commands:

0—ProGraMming commands are not protected with SEED &

Key mechanism.

1—ProGraMming commands are protected with SEED & Key

mechanism

5 Unused —

6 Unused —

7 Unused —

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-190 ni.com

The parameter Session Id contains the Session configuration ID. The

session configuration ID must be set by a prior MC XCP Set Request.vi call with

STORE_DAQ_REQ set. This allows the master device to verify that automatically started

DAQ lists contain the expected data transfer configuration.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-191 ECU M&C Toolkit User Manual

MC XCP Program Prepare.vi

Purpose
Prepares the programming of non volatile memory.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Address is a cluster which contains the following values.

Address specifies the address part of the source address.

Extension contains the extension part of the source address.

Code size determines the size of data code to be downloaded by the

subsequent memory programming.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI is not executed when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-192 ni.com

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC XCP Program Prepare.vi may be used to indicate a data download as a pre-condition

for non-volatile memory reprogramming. The Memory Transfer address (MTA) pointer is set

to the volatile memory location specified by the parameters Address and Extension. The

download itself is done by using subsequent standard commands like MC Download.vi. The

slave device must ensure that the target memory area is available and it is in an operational

state which permits the download of code. If not, an error will be returned.

MC XCP Program Prepare.vi implements the optional XCP PROGRAM_PREPARE

command defined by the XCP specification. For further information on how to program

non-volatile ECU memory refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-193 ECU M&C Toolkit User Manual

MC XCP Program Verify.vi

Purpose
Performs a non-volatile memory certification task on the ECU device.

Format

Input

Verification mode specifies the type of the requested identification:

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Verification type specifies the Verification Type of the requested program

verification. The Verification Type is a bit mask described below:

Type Description

0 Request to start internal routine.

1 Send a Verification Value stored in Verification value.

Verification Type Description

0x0001 Calibration area(s) of the flash.

0x0002 Code area(s) of the flash.

0x0004 Complete flash content.

0x0008 ... 0x0080 Reserved.

0x0100 ... 0xFF00 User defined.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-194 ni.com

Verification value contains the selected verification value if Mode=1.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC XCP Program Verify.vi may be used to verify the success of non-volatile memory

reprogramming.

With Verification mode set to 00 the master may request the slave to begin internal test

routines to check whether the new flash contents fits to the rest of the flash. Only the result is

of interest. With Verification mode set to 01, the master may tell the slave that it will be

sending a Verification value to the slave. The definition of the Verification mode is

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-195 ECU M&C Toolkit User Manual

project-specific. The master receives the Verification mode from the project-specific

programming flow control and passes it to the slave.

MC XCP Program Verify.vi implements the optional XCP PROGRAM_VERIFY

command defined by the XCP specification. For further information on how to program

non-volatile ECU memory refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-196 ni.com

MC XCP Set Cal Page.vi

Purpose
Sets a calibration page.

Format

Input

Mode is a bit mask described below:

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Segment specifies the selected logical data segment number.

Page specifies the logical data page number.

Bit Description

0 The given page is used by the slave device application.

1 The slave device XCP driver will access the given page.

2 Unused.

3 Unused.

4 Unused.

5 Unused.

6 Unused.

7 The logical segment number is ignored. The command applies to all segments.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-197 ECU M&C Toolkit User Manual

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC XCP Set Cal Page.vi implements the XCP command SET_CAL_PAGE and sets the

access mode for a calibration data segment, if the slave device supports calibration data page

switching. A calibration data segment and its pages are specified by logical numbers.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-198 ni.com

MC XCP Set Request.vi

Purpose
Performs a request to save session and device information to non-volatile memory.

Format

Input

Mode is a bit mask described below:

Bit Description

0 Request to store calibration data in non-volatile memory.

1 Unused.

2 Request to save all DAQ lists, which have been selected with

START_STOP_DAQ_LIST(Select) into non-volatile memory.

The slave also must store the session configuration ID in non-volatile memory.

Upon saving, the slave first must clear any DAQ list configuration that might

already be stored in non-volatile memory.

3 Request to clear all DAQ lists in non-volatile memory. All ODT entries reset to

address = 0, extension = 0, size = 0 and bit_offset = FF. Session configuration

ID reset to 0.

4 Unused.

5 Unused.

6 Unused.

7 Unused.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-199 ECU M&C Toolkit User Manual

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Session ID is a session configuration ID that is stored in non-volatile

memory together with the information requested by the Mode parameter.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-200 ni.com

Description
MC XCP Set Request.vi implements the XCP command SET_REQUEST and is used to

save session configuration information into non-volatile memory in the ECU.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

Chapter 5 ECU M&C API for LabVIEW

© National Instruments 5-201 ECU M&C Toolkit User Manual

MC XCP Set Segment Mode.vi

Purpose
Sets the mode of a specified segment.

Format

Input

ECU ref in is the task reference which links to the selected ECU. This

reference is originally returned from MC ECU Open.vi or MC ECU

Select.vi, and then wired through subsequent VIs.

Segment specifies the logical data segment number.

Mode specifies the mode for the segment.

Error in is a cluster which describes error conditions occurring before the

VI executes. If an error has already occurred, the VI returns the value of the

error in cluster to error out.

status is TRUE if an error occurred. This VI will not execute when

status is TRUE.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 5 ECU M&C API for LabVIEW

ECU M&C Toolkit User Manual 5-202 ni.com

Output

ECU ref out is the same as ECU ref in. Wire the task reference to

subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is TRUE if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
MC XCP Set Segment Mode.vi implements the XCP command SET_SEGMENT_MODE

and sets the selected segment into the specified mode. If Mode = 0 the segment disables the

FREEZE mode, if Mode = 1 the segment is set to FREEZE mode through an XCP

STORE_CAL_REQ operation.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

© National Instruments 6-1 ECU M&C Toolkit User Manual

6
ECU M&C API for C

This chapter lists the ECU M&C functions and describes the format, purpose, and parameters.

Unless otherwise stated, each ECU M&C function suspends execution of the calling thread

until it completes. The functions in this chapter are listed alphabetically.

Section Headings

The following are section headings found in the ECU M&C API for C functions.

Purpose
Each function description includes a brief statement of the purpose of the function.

Format
The format section describes the format of each function for the C programming language.

Input and Output
The input and output parameters for each function are listed.

Description
The description section gives details about the purpose and effect of each function.

List of Data Types

The following data types are used with functions of the ECU M&C API for C.

Table 6-1. Data Types for the ECU M&C API for C

Data Type Purpose

i8 8-bit signed integer

i16 16-bit signed integer

i32 32-bit signed integer

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-2 ni.com

List of Functions

The following table contains an alphabetical list of the ECU M&C Toolkit API functions.

u8 8-bit unsigned integer

u16 16-bit unsigned integer

u32 32-bit unsigned integer

f32 32-bit floating-point number

f64 64-bit floating-point number

str ASCII string represented as an array of characters terminated by null

character ('\0'). This type is used with output strings. str is typically used

in the ECU M&C API as a pointer to a string, as char*.

cstr ASCII string represented as an array of characters terminated by null

character ('\0'). This type is used with input strings. cstr is typically used

in the ECU M&C API as a pointer to a string, as const char*.

mcTypeTaskRef Reference to an initialized database task, ECU task, or Measurement task.

mcAddress C struct which represents the target address for a specific CCP operation

in the ECU.

Table 6-2. Functions for the ECU M&C API for C

Function Purpose

mcBuildChecksum Calculates a checksum over a defined memory range within the

ECU.

mcCalculateChecksum Calculates the checksum of a data block in memory.

mcCCPActionService Calls an implementation-specific action service on the ECU.

mcCCPDiagService Calls an implementation-specific diagnostic service on the ECU.

mcCCPGetActiveCalPage Retrieves the ECU Memory Transfer Address pointer to the

calibration data page.

mcCCPGetResult Uploads data from the ECU when the Memory Transfer Address

pointer 0 (MTA0) has been set.

Table 6-1. Data Types for the ECU M&C API for C (Continued)

Data Type Purpose

Chapter 6 ECU M&C API for C

© National Instruments 6-3 ECU M&C Toolkit User Manual

mcCCPGetSessionStatus Retrieves the current status of the Calibration Session.

mcCCPGetVersion Retrieves CCP version implemented in the ECU.

mcCCPMoveMemory Moves a memory block on the ECU.

mcCCPSelectCalPage Sets the specified address to be the start address of the calibration

data page.

mcCCPSetSessionStatus Updates the ECU with the current state of the calibration session.

mcCharacteristicRead Reads all data from a named Characteristic on the ECU which is

identified by the ECU Reference handle.

mcCharacteristicReadSi

ngleValue

Reads a single value from a named Characteristic on the ECU

which is identified by the ECU Reference handle.

mcCharacteristicWrite Downloads data to a Characteristic for a selected ECU.

mcCharacteristicWriteS

ingleValue

Writes a single value to a named Characteristic on the ECU.

mcClearMemory Clears the contents of the specified ECU memory.

mcConversionCreate Creates a signal conversion object in memory.

mcDAQClear Stops communication for the Measurement task and clears

the task.

mcDAQInitialize Initializes a Measurement task for the specified Measurement

channel list.

mcDAQListInitialize Defines a DAQ list on a specific DAQ list number and initializes

the Measurement task for the specified Measurement channel list.

Initializes a Measurement task for the specified Measurement

channel list.

mcDAQRead Reads samples from a Measurement task. Samples are obtained

from received CAN messages.

mcDAQReadTimestamped Reads timestamped samples from a DAQ task initialized with the

selected mode of mcDAQModeDAQListTimeStamped.

mcDAQStartStop Starts or stops the transmission of the DAQ lists for the specified

Measurement task.

mcDAQWrite Writes samples to an ECU DAQ list.

Table 6-2. Functions for the ECU M&C API for C (Continued)

Function Purpose

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-4 ni.com

mcDatabaseClose Stops transmission of the DAQ lists for the specified

Measurement task.

mcDatabaseClose Closes a specified A2L Database reference.

mcDatabaseOpen Opens a specified A2L Database.

mcDatabaseOpenEx Creates an A2L database in memory, for using the ECU M&C

Toolkit functions without access to a valid ASAM A2L file.

mcDoubleToText Converts a numerical value to a text string using an enumeration

or range text type scaling.

mcDownload Downloads data to an ECU.

mcECUConnect Establishes communication to the selected ECU through CCP.

After a successful ECU Connect you can create a Measurement

Task or read/write a Characteristic.

mcECUCreate Creates an ECU object in memory.

mcECUDeselect Deselects an ECU and invalidates the ECU reference handle.

mcECUDisconnect Disconnects CCP communication to the selected ECU.

mcECUSelectEx Selects an ECU from the names stored in an A2L database.

mcECUSetCalibrationPage Sets the appropriate RAM or ROM calibration page on the ECU.

mcEventCreate Creates an Event object in memory.

mcGeneric Sends a generic CCP command.

mcGetNames Retrieves a comma-separated list of ECU names, Measurement

names, Characteristic names, Event names, Characteristic pages,

or Group names from a specified A2L database.

mcGetNamesLength Retrieves the amount of memory required to store the names

returned by mcGetNames.

mcGetProperty Retrieves a property of the driver, the database, the ECU,

a Characteristic, a Measurement, or a Measurement task.

mcMeasurementCreate Creates a Measurement object in memory.

mcMeasurementRead Reads a single Measurement value from the ECU.

mcMeasurementWrite Writes a single Measurement value to the ECU.

Table 6-2. Functions for the ECU M&C API for C (Continued)

Function Purpose

Chapter 6 ECU M&C API for C

© National Instruments 6-5 ECU M&C Toolkit User Manual

mcProgram Programs a memory block on the ECU.

mcProgramReset Indicates the end of a programming sequence.

mcProgramStart Indicates the start of a programming sequence.

mcSetProperty Sets a property of the driver, the database, the ECU,

a Characteristic, a Measurement, or a Measurement task.

mcStatusToString Converts a status code into a descriptive string.

mcTextToDouble Converts a text string to a numerical value using an enumeration

or range text scaling.

mcUpload Uploads data from an ECU.

mcXCPCopyCalPage Forces a copy transaction of one calibration page to another.

mcXCPGetCalPage Queries a calibration page setting.

mcXCPGetId Queries session configuration or slave device identification.

mcXCPGetStatus Queries the current session status from an ECU slave device.

mcXCPProgramPrepare Prepares the programming of non volatile memory.

mcXCPProgramVerify Performs a non-volatile memory certification task on the ECU

device.

mcXCPSetCalPage Sets a calibration page.

mcXCPSetRequest Performs a request to save session and device information to

non-volatile memory.

mcXCPSetSegmentMode Sets the mode of a specified segment.

Table 6-2. Functions for the ECU M&C API for C (Continued)

Function Purpose

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-6 ni.com

mcBuildChecksum

Purpose
Calculates a checksum over a defined memory range within the ECU.

Format
mcTypeStatus mcBuildChecksum(

mcTypeTaskRef ECURefNum,

mcAddress Address,

u32 BlockSize,

u8 *ChecksumType,

u8 *SizeOfChecksum

u32 *Checksum);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Address Configures the target address for the checksum operation in the

ECU. mcAddress is a C struct consisting of:

Address

Specifies the address part of the target address.

Extension

Extension contains the extension part of the target address.

BlockSize BlockSize determines the size of the block on which the

checksum must be calculated.

ChecksumType ChecksumType returns the type of the calculated checksum.

For CCP, ChecksumType is 0xFF. For XCP, refer to the

Description section.

Output
SizeofChecksum SizeofChecksum returns the size in bytes of the calculated

checksum.

Checksum Checksum is the calculated checksum.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Chapter 6 ECU M&C API for C

© National Instruments 6-7 ECU M&C Toolkit User Manual

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcBuildChecksum is used to calculate the checksum of a specified memory block inside the

ECU starting at the selected Address.

If you are using the CCP protocol, mcBuildChecksum implements the CCP

BUILD_CHKSUM command. The checksum algorithm is not specified by CCP and the

checksum algorithm may be different on different devices.

If you are using the XCP protocol, mcBuildChecksum implements the

BUILD_CHECKSUM command of the XCP specification. The result of the checksum

calculation is returned in Checksum regardless of the checksum type. The following values

for ChecksumType are defined in the XCP specification:

Type Name Description

0x01 XCP_ADD_11 Add BYTE into a BYTE checksum, ignore overflows

0x02 XCP_ADD_12 Add BYTE into a WORD checksum, ignore

overflows

0x03 XCP_ADD_14 Add BYTE into a DWORD checksum, ignore

overflows

0x04 XCP_ADD_22 Add WORD into a WORD checksum, ignore

overflows, blocksize must be modulo 2

0x05 XCP_ADD_24 Add WORD into a DWORD checksum, ignore

overflows, blocksize must be modulo 2

0x06 XCP_ADD_44 Add DWORD into DWORD, ignore overflows,

blocksize must be modulo 4

0x07 XCP_CRC_16 Refer to CRC error detection algorithms

0x08 XCP_CRC_16_CITT Refer to CRC error detection algorithms

0x09 XCP_CRC_32 Refer to CRC error detection algorithms

0xFF XCP_USER_DEFINED User defined algorithm, in externally calculated

function

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-8 ni.com

With ChecksumType XCP_USER_DEFINED, the Slave may indicate that the Master which

calculates the checksum must use a user-defined algorithm implemented in an externally

calculated function (for instance, Win32 DLL, UNIX shared object file, etc.). The master

retrieves the name of the external function file to be used for this slave from the ASAM MCD

2MC description file.

The CRC algorithms are specified by the following parameters:

Name

The name of the algorithm. A string value starting with “XCP_”.

Width

The width of the algorithm expressed in bits. This is one less than the width of the Poly.

Poly

The polynomial. This is a binary value specified as a hexadecimal number. The top bit of the

Poly should be omitted. For example, if the Poly is 0x10110, you should specify 0x06. An

important aspect of this parameter is that it represents the unreflected polynomial. The bottom

of this parameter is always the least significant bit (LSB) of the divisor during the division,

regardless of whether the algorithm is reflected.

Init

This parameter specifies the initial value of the register when the algorithm starts. This is the

value to be assigned to the register in the direct table algorithm. In the table algorithm, we

may think of the register always commencing with the value zero, and this value being

XORed into the register after the nth bit iteration. This parameter should be specified as a

hexadecimal number.

Refin

A Boolean parameter. If it is FALSE, input bytes are processed with bit 7 being treated as the

most significant bit (MSB) and bit 0 being treated as the least significant bit. If this parameter

is TRUE, each byte is reflected before being processed.

Name Width Poly Init Refin Refout XORout

XCP_CRC_16 16 0x8005 0x0000 TRUE TRUE 0x0000

XCP_CRC16_CITT 16 0x1021 0xFFFF FALSE FALSE 0x0000

XCP_CRC_32 32 32 0x04C11DB7 0xFFFFFFFF TRUE TRUE 0xFFFFFFFF

Chapter 6 ECU M&C API for C

© National Instruments 6-9 ECU M&C Toolkit User Manual

Refout

A Boolean parameter. If it is set to FALSE, the final value in the register is fed into the

XORout stage directly. If this parameter is TRUE, the final register value is reflected first.

XORout

This is a width-bit value that should be specified as hexadecimal number. It is XORed to the

final register value (after the Refout stage) before the value is returned as the official

checksum.

For more detailed information about CRC algorithms, refer to:

http://www.repairfaq.org/filipg/LINK/F_crc_v34.html

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-10 ni.com

mcCalculateChecksum

Purpose
Calculates the checksum of a data block in memory.

Format
mcTypeStatus mcCalculateChecksum(

mcTypeTaskRef ECURefNum,

u32 BlockSize,

u8 *Data,

u8 TypeOfChecksum,

u8 *SizeOfChecksum,

u32 *Checksum);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

BlockSize BlockSize determines the size of the block on which the

checksum must be calculated.

TypeOfChecksum TypeOfChecksum specifies the type of the calculated checksum.

Output
Data Data is a byte array upon which the checksum calculation is

performed.

SizeofChecksum SizeofChecksum returns the size in bytes of the calculated

checksum.

Checksum Checksum is the calculated checksum.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-11 ECU M&C Toolkit User Manual

Description
mcCalculateChecksum implements a checksum calculation over a given data block. The

checksum algorithm is performed over a dedicated checksum function provided by a specific

DLL. The name of the Checksum DLL is defined in the A2L data base and can be changed

by the application by the mcSetProperty function using the mcPropECU_Checksum

property.

If you are using the CCP protocol, TypeOfChecksum must be set to 0xFFh, since CCP only

supports an external checksum DLL. If you are using XCP, the following values for

TypeOfChecksum are defined in the XCP specification:

For a detailed description of the checksum algorithm refer to the mcBuildChecksum

command or the XCP Part 2 Protocol Layer Specification.

For more detailed information about CRC algorithms, please refer to:

http://www.repairfaq.org/filipg/LINK/F_crc_v34.html

Type Name Description

0x01 XCP_ADD_11 Add BYTE into a BYTE checksum, ignore overflows

0x02 XCP_ADD_12 Add BYTE into a WORD checksum, ignore overflows

0x03 XCP_ADD_14 Add BYTE into a DWORD checksum, ignore

overflows

0x04 XCP_ADD_22 Add WORD into a WORD checksum, ignore

overflows, blocksize must be modulo 2

0x05 XCP_ADD_24 Add WORD into a DWORD checksum, ignore

overflows, blocksize must be modulo 2

0x06 XCP_ADD_44 Add DWORD into DWORD, ignore overflows,

blocksize must be modulo 4

0x07 XCP_CRC_16 Refer to CRC error detection algorithms

0x08 XCP_CRC_16_CITT Refer to CRC error detection algorithms

0x09 XCP_CRC_32 Refer to CRC error detection algorithms

0xFF XCP_USER_DEFINED User defined algorithm, in externally calculated

function

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-12 ni.com

mcCCPActionService

Purpose
Calls an implementation-specific action service on the ECU (CCP only).

Format
mcTypeStatus mcCCPActionService(

mcTypeTaskRef ECURefNum,

u16 ServiceNo,

u8 Params[4],

u8 *ResultLength,

u8 *DataType);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

ServiceNo ServiceNo determines the service that is executed inside the

ECU. For more information about the services that are

implemented in the ECU refer to the documentation for the ECU.

Params Params passes the parameters of the service function as an array

of bytes to the ECU. Since the parameters and their data types are

specific to the ECU implementation, you are responsible of

providing the required parameters in the correct byte ordering.

Output
*ResultLength ResultLength indicates the amount of data that can be uploaded

from the ECU as a result of the execution of the service. The result

of this service can be accessed by calling the function

mcCCPGetResult right after mcCCPActionService.

*DataType DataType is a data type qualifier that determines the data format

of the result.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-13 ECU M&C Toolkit User Manual

Description
mcCCPActionService implements the CCP command ACTION_SERVICE. The ECU

carries out the requested service and automatically sets the Memory Transfer Address MTA0

to the location from which the CCP master may upload the requested action service return

information (if applicable).

The result of this service can be accessed by calling the function mcCCPGetResult right after

mcCCPActionService.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-14 ni.com

mcCCPDiagService

Purpose
Calls an implementation-specific diagnostic service on the ECU (CCP only).

Format
mcTypeStatus mcCCPDiagService(

mcTypeTaskRef ECURefNum,

u16 ServiceNo,

u8 Params[4],

u8 *ResultLength,

u8 *DataType);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

ServiceNo ServiceNo determines the diagnostic service that is executed

inside the ECU. For more information about the services that are

implemented in the ECU refer to the documentation for the ECU.

Params Params passes an array of bytes to the ECU that might be needed

by the ECU to run the diagnostic service. Since the definition of

the parameters is specific to the implementation of the ECU, the

parameters can only be passed as an array of bytes. It is your

responsibility to pass the correct number of parameters in the

correct byte ordering to this function.

Output
*ResultLength ResultLength returns the number of bytes that can be uploaded

from the ECU as a result of the execution of the service. The result

of this service can be accessed by calling the function

mcCCPGetResult right after mcCCPDiagService.

*DataType DataType is a data type qualifier which provides information

about the data type of the result of the diagnostic service.

Chapter 6 ECU M&C API for C

© National Instruments 6-15 ECU M&C Toolkit User Manual

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcCCPDiagService implements the CCP command DIAG_SERVICE which calls a

diagnostic service on the ECU and waits until it is finished. The selected ServiceNo

specifies the diagnostic service that must be executed inside the ECU. For more information

about the available services that are implemented in the ECU refer to the documentation for

the ECU.

The result of this service can be accessed by calling the function mcCCPGetResult right after

mcCCPDiagService.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-16 ni.com

mcCCPGetActiveCalPage

Purpose
Retrieves the ECU Memory Transfer Address pointer to the calibration data page (CCP only).

Format
mcTypeStatus mcCCPGetActiveCalPage(

mcTypeTaskRef ECURefNum,

mcAddress *Address);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output
Address Returns the address for the active calibration page in the ECU.

mcAddress is a C struct consisting of:

Address

Specifies the address part of the address.

Extension

Extension contains the extension part of the address.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcCCPGetActiveCalPage retrieves the start address of the active calibration data page in

the ECU memory.

Chapter 6 ECU M&C API for C

© National Instruments 6-17 ECU M&C Toolkit User Manual

mcCCPGetResult

Purpose
Uploads data from the ECU when the Memory Transfer Address pointer 0 (MTA0) has been

set (CCP only).

Format
mcTypeStatus mcCCPGetResult(

mcTypeTaskRef ECURefNum,

u32 BlockSize,

u8 *Data);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

BlockSize BlockSize determines the size of the data block to be uploaded

from the ECU.

Output
Data Data contains the data uploaded from the ECU memory.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
This function uploads data from the ECU. It is assumed that the Memory Transfer Address 0

(MTA0) has already been set to the start address of the data to be uploaded. Functions like

mcCCPActionService or mcCCPDiagService implicitly set the Memory Transfer

Address 0 (MTA0) to the beginning of their result. To upload data from a specified address,

use mcUpload instead.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-18 ni.com

mcCCPGetSessionStatus

Purpose
Retrieves the current status of the Calibration Session (CCP only).

Format
mcTypeStatus mcCCPGetSessionStatus(

mcTypeTaskRef ECURefNum,

u8 *SessionStatus,

u8 *StatusQualifier,

u8 *AdditionalStatus);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output
SessionStatus The current SessionStatus which is returned from the ECU.

StatusQualifier The additional StatusQualifier is manufacturer and/or project

specific and is not part of the CCP protocol specification.

AdditionalStatus If the StatusQualifier does not contain additional status

information, AdditionalStatus must be set to FALSE. If

AdditionalStatus is not FALSE, it may be used to determine

the type of the additional status information

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcCCPGetSessionStatus retrieves the current calibration session status of the ECU. The

return value SessionStatus is a bit mask that represents several session states inside the

ECU. StatusQualifier and AdditionalStatus contain additional status information.

The content of these parameters is ECU specific and not defined by CCP. For more

information about the parameter SessionStatus, refer to the description of

mcCCPSetSessionStatus.

Chapter 6 ECU M&C API for C

© National Instruments 6-19 ECU M&C Toolkit User Manual

mcCCPGetVersion

Purpose
Retrieves CCP version implemented in the ECU (CCP only).

Format
mcTypeStatus mcCCPGetVersion(

mcTypeTaskRef ECURefNum,

u8 *MajorVersion,

u8 *MinorVersion);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output
MajorVersion MajorVersion returns the major version number of the CCP

implementation.

MinorVersion MinorVersion returns the minor version number of the CCP

implementation.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcCCPGetVersion can be used to query the CCP version implemented in the ECU. This

command performs a mutual identification of the protocol version in the slave device to agree

on a common protocol version.

mcCCPGetVersion implements the CCP command GET_CCP_VERSION defined by the

CCP specification.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-20 ni.com

mcCCPMoveMemory

Purpose
Moves a memory block on the ECU (CCP only).

Format
mcTypeStatus mcCCPMoveMemory(

mcTypeTaskRef ECURefNum,

mcAddress Source,

mcAddress Destination,

u32 BlockSize);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Source Configures the source address for the memory move operation in

the ECU. mcAddress is a C struct consisting of:

Address

Specifies the address part of the source address.

Extension

Extension contains the extension part of the source address.

Destination Configures the destination address for the memory move

operation in the ECU. mcAddress is a C struct consisting of:

Address

Specifies the address part of the destination address.

Extension

Extension contains the extension part of the destination address.

BlockSize BlockSize determines the size of memory block in bytes which

should be moved from the source address to the destination

address.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Chapter 6 ECU M&C API for C

© National Instruments 6-21 ECU M&C Toolkit User Manual

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcCCPMoveMemory is used to move the memory contents of an ECU from one memory

location to another. Before calling the CCP MOVE command this function sets the Memory

Transfer Address pointers MTA0 as defined in the source struct and MTA1 as defined in the

destination struct to appropriate values.

mcCCPMoveMemory implements the CCP command MOVE defined by the CCP

specification.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-22 ni.com

mcCCPSelectCalPage

Purpose
Sets the specified address to be the start address of the calibration data page (CCP only).

Format
mcTypeStatus mcCCPSelectCalPage(

mcTypeTaskRef ECURefNum,

mcAddress Address);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Address Configures the target address for the programming operation in

the ECU. mcAddress is a C struct consisting of:

Address

Specifies the address part of the target address.

Extension

Extension contains the extension part of the address.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcCCPSelectCalPage implements the CCP command SELECT_CAL_PAGE. This

command sets the beginning of the calibration data page to the specified address within

the ECU.

Chapter 6 ECU M&C API for C

© National Instruments 6-23 ECU M&C Toolkit User Manual

mcCCPSetSessionStatus

Purpose
Updates the ECU with the current state of the calibration session (CCP only).

Format
mcTypeStatus mcCCPSetSessionStatus(

mcTypeTaskRef ECURefNum,

u8 SessionStatus);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

SessionStatus SessionStatus contains the new status to be set in the ECU.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcCCPSetSessionStatus implements the CCP command SET_S_STATUS and is used to

keep the ECU informed about the current state of the calibration session. The session status

bits of an ECU can be read and written. Possible conditions are: reset on power-up, session

log-off, and in applicable error conditions. The calibration session status is organized as a bit

mask with the following assignment.

Table 6-3. Bit Mask Assignments for Calibration Session Status

Bit Name Description

0 CAL Calibration data initialized.

1 DAQ DAQ list(s) initialized.

2 RESUME Request to save DAQ set-up during shutdown in CCP slave.

CCP slave automatically restarts DAQ after start-up.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-24 ni.com

3 Reserved —

4 Reserved —

5 Reserved —

6 STORE Request to save calibration data during shut-down in CCP slave.

7 RUN Session in progress.

Table 6-3. Bit Mask Assignments for Calibration Session Status (Continued)

Bit Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-25 ECU M&C Toolkit User Manual

mcCharacteristicRead

Purpose
Reads all data from a named Characteristic on the ECU which is identified by the ECU

Reference handle.

Format
mcTypeStatus mcCharacteristicRead(

mcTypeTaskRef ECURefNum,

char *CharacteristicName,

f64 *Values,

u32 NumberOfValues);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

CharacteristicName CharacteristicName is the name of the Characteristic defined

in the A2L database file.

NumberOfValues Specifies the number of values to read. To determine the

dimension of the Characteristic use the mcGetProperty function

upfront using the parameter mcPropChar_Dimension. To

determine the size of each dimension use the mcGetProperty

function with the parameter mcPropChar_Sizes.

Output
Values Returns a single value, a 1-dimensional array, or a 2-dimensional

array of values for the selected Characteristic.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcCharacteristicRead reads values from a named Characteristic on the ECU which is

identified by the ECU Reference handle. The function returns a double, 1D, or 2D array.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-26 ni.com

mcCharacteristicReadSingleValue

Purpose
Reads a single value from a named Characteristic on the ECU which is identified by the ECU

Reference handle.

Format
mcTypeStatus mcCharacteristicReadSingleValue(

mcTypeTaskRef ECURefNum,

char *CharacteristicName,

f64 *Value,

u32 X,

u32 Y);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

CharacteristicName CharacteristicName is the name of the Characteristic defined

in the A2L database file.

X X is the horizontal index if the Characteristic consists of 1 or

2 dimensions.

Y Y is the vertical index if the Characteristic consists of

2 dimensions.

Output
Value Returns a single value from the selected Characteristic.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-27 ECU M&C Toolkit User Manual

Description
mcCharacteristicReadSingleValue reads a value from a named Characteristic on the

ECU which is identified by the ECU Reference handle. The value to be read is identified by

the X and Y indices.

If the Characteristic array is 0-dimensional, X and Y can be set to 0.

If the Characteristic array is 1-dimensional, Y can be set to 0.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-28 ni.com

mcCharacteristicWrite

Purpose
Downloads data to a Characteristic for a selected ECU.

Format
mcTypeStatus mcCharacteristicWrite(

mcTypeTaskRef ECURefNum,

char *CharacteristicName,

f64 Values,

u32 NumberOfValues);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

CharacteristicName CharacteristicName is the name of the Characteristic defined

in the A2L database file.

Values Values contains a pointer to a double, a double 1D, or 2D array

which is sent to the ECU.

NumberOfValues Specifies the number of values to write for the task.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcCharacteristicWrite writes the value(s) of a named Characteristic to an ECU

identified by the ECU reference handle ECURefNum.

Chapter 6 ECU M&C API for C

© National Instruments 6-29 ECU M&C Toolkit User Manual

mcCharacteristicWriteSingleValue

Purpose
Writes a single value to a named Characteristic on the ECU.

Format
mcTypeStatus mcCharacteristicWriteSingleValue(

mcTypeTaskRef ECURefNum,

char *CharacteristicName,

f64 Value,

u32 X,

u32 Y);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

CharacteristicName CharacteristicName is the name of the Characteristic defined

in the A2L database file, to which the values are written.

Value Value contains the value which is sent to the ECU.

X X refers to the array offset of the Characteristic defined in the A2L

database file as 1- or 2-dimensional. If the Characteristic is

defined as 0-dimensional you can set X to 0.

Y Y refers to the array offset of the Characteristic defined in the A2L

database file as 2-dimensional. If the Characteristic is defined as

0- or 1-dimensional you can set Y to 0.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-30 ni.com

Description
mcCharacteristicWriteSingleValue writes a value to a named Characteristic on the

ECU which is identified by the ECU Reference handle ECURefNum. The location to which

the value is written is identified by the X and Y indices. If the Characteristic array is

0- or 1-dimensional, Y and/or X can be set to 0.

Chapter 6 ECU M&C API for C

© National Instruments 6-31 ECU M&C Toolkit User Manual

mcClearMemory

Purpose
Clears the contents of the specified ECU memory.

Format
mcTypeStatus mcClearMemory(

mcTypeTaskRef ECURefNum,

mcAddress Address,

u32 BlockSize);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Address Configures the target address to be cleared in the ECU.

mcAddress is a C struct consisting of:

Address

Specifies the address part of the target address.

Extension

Extension contains the extension part of the target address.

BlockSize BlockSize determines the size of the block on which the

checksum must be calculated.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcClearMemory can be used to clear the contents of the non-volatile memory prior to

reprogramming it. The Memory Transfer Address 0 (MTA 0) is set to the start of the memory

block automatically by this function. The size parameter is the size of the block to be erased.

If you are using the XCP protocol, mcClearMemory implements the PROGRAM_CLEAR

command. Refer to the ASAM XCP specification for further information on how to clear

parts of non-volatile memory in the ECU.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-32 ni.com

mcConversionCreate

Purpose
Creates a signal conversion object in memory.

Format
mcTypeStatus mcConversionCreate(

mcTypeTaskRef ECURefNum,

char *ConversionName,

f64 Factor,

f64 Offset,

char *Unit);

Input
ECURefNum ECURefNum is the task reference that links to the selected ECU.

This reference is originally returned from mcECUCreate.

ConversionName ConversionName identifies the conversion object that handles

measurement scaling. Use this name as a reference in

mcConversionCreate.

Factor Factor configures the scaling factor used to convert raw

measurement data in the message to/from scaled floating-point

units. The factor is the A in the linear scaling formula AX+B,

where X is the raw data, and B is the scaling offset.

Offset Offset configures the scaling offset used to convert raw data in

the measurement message to/from scaled floating-point units. The

scaling offset is the B in the linear scaling formula AX+B, where

X is the raw data, and A is the scaling factor.

Unit Configures the measurement channel unit string. You can use this

value to display units (such as volts or RPM) along with the

channel samples.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-33 ECU M&C Toolkit User Manual

Description
Use mcConversionCreate to create a conversion object in memory instead of referring to

measurement properties defined in the A2L database.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-34 ni.com

mcDAQClear

Purpose
Stops communication for the Measurement task and clears the task.

Format
mcTypeStatus mcDAQClear(

mcTypeTaskRef *DAQRefNum);

Input
DAQRefNum DAQRefNum is the task reference which links to the selected

Measurement task. This reference is originally returned from

mcDAQInitialize.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcDAQClear must always be the final function called for a Measurement task. If you do not

use mcDAQClear, the remaining Measurement task configuration can cause problems in the

execution of subsequent applications. Because this function clears the Measurement task, the

Measurement task reference is not given as an output but is transferred into an ECU reference

task handle. To change properties of a running Measurement task, use mcDAQStartStop to

stop the task, mcSetProperty to change the desired DAQ property, then mcDAQStartStop

to restart the Measurement task.

Chapter 6 ECU M&C API for C

© National Instruments 6-35 ECU M&C Toolkit User Manual

mcDAQInitialize

Purpose
Initializes a Measurement task for the specified Measurement channel list.

Format
mcTypeStatus mcDAQInitialize(

cstr MeasurementNames,

mcTypeTaskRef ECURefNum,

i32 DAQMode,

u32 DTO_ID,

f64 SampleRate,

mcTypeTaskRef *DAQRefNum);

Input
MeasurementNames Comma-separated list of Measurement names to initialize as a

task. You can type in the channel list as a string constant or you

can obtain the list from an A2L database file by using the

mcGetNames function.

ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

DAQMode DAQMode specifies the I/O mode for the task. For an overview of

the I/O modes, including figures, refer to the Basic Programming

Model section of Chapter 4, Using the ECU M&C API.

mcDAQModeDAQList

Data is transmitted automatically by the ECU using DAQ lists.

The data can be read back with the mcDAQRead as Single point

data using sample rate = 0 or as waveform using a

sample rate > 0. Input channel data is received from the DAQ

messages.

mcDAQModePolling

In this mode the data from the Measurement task are uploaded

from the ECU whenever mcDAQRead is called.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-36 ni.com

mcDAQModeSTIMList

For XCP, this defines a DAQ list for data stimulation (STIM).

Within a DAQ task initialized with this parameter, you can call

mcDAQWrite to write stimulation data to the ECU. Calling

mcDAQRead is not allowed. For CCP, an error is returned.

mcDAQModeDAQListTimeStamped

The data is transmitted from the ECU in equidistant time intervals

as defined in the A2L database. The data can be read back with

mcDAQReadTimestamped as a timestamped data array. Input

channel data are received from the DAQ messages. Use

mcDAQReadTimestamped to obtain input samples as an array of

sample/timestamp pairs. Use this input mode to read samples with

timestamps that indicate when each channel is received from the

network.

DTO_ID DTO_ID is the CAN identifier for the Data Transmission Object

(DTO) used to transmit the data from the DAQ lists to the host.

The default value is –1 which means that the DTO ID used to

transmit the DAQ list data is the same that is used for the rest of

the CCP communication.

SampleRate SampleRate specifies the timing to use for samples of the

(NI-CAN) task. The sample rate is specified in Hertz (samples per

second). A sample rate of zero means to sample immediately.

For a DAQMode of mcDAQModeDAQList, SampleRate of zero

means that mcDAQRead returns a single sample from the most

recent messages received, and greater than zero means that

mcDAQRead returns samples timed at the specified rate. For

DAQMode of mcDAQModePolling, SampleRate is ignored.

Output
DAQRefNum DAQRefNum is the reference handle for the Measurement task.

Use this Measurement task reference in subsequent M&C DAQ

functions for this task.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-37 ECU M&C Toolkit User Manual

Description
mcDAQInitialize does not start the transmission of the DAQ lists on the ECU. This enables

you to use mcSetProperty to change the properties of a Measurement task. After you

change properties, use mcDAQStartStop to start the transmission of the Measurement task.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-38 ni.com

mcDAQListInitialize

Purpose
Defines a DAQ list on a specific DAQ list number and initializes the Measurement task for

the specified Measurement channel list. Initializes a Measurement task for the specified

Measurement channel list.

Format
mcTypeStatus mcDAQListInitialize(

cstr MeasurementNames,

mcTypeTaskRef ECURefNum,

i16 DAQListNo,

i32 DAQMode,

u32 DTO_ID,

f64 SampleRate,

mcTypeTaskRef *DAQRefNum);

Input
MeasurementNames Comma-separated list of Measurement names to initialize as a

task. You can type in the channel list as a string constant or you

can obtain the list from an A2L database file by using the

mcGetNames function.

ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

DAQListNo DAQListNo specifies which DAQ list entry number should be

used for the defined Measurement channel list for the selected

ECU. To query the available amount of DAQ List numbers on the

ECU use mcPropECU_NumberOfDefinedDAQLists with the

function mcGetProperty. To query the defined DAQ list

numbers use mcPropECU_DAQListNumbers with

mcGetProperty.

DAQMode DAQMode specifies the I/O mode for the task. For an overview of

the I/O modes, including figures, refer to the Basic Programming

Model section of Chapter 4, Using the ECU M&C API.

mcDAQModeDAQList

Data is transmitted automatically by the ECU using DAQ lists.

The data can be read back with the mcDAQRead as Single point

data using sample rate = 0 or as waveform using a

sample rate > 0. Input channel data is received from the DAQ

messages.

Chapter 6 ECU M&C API for C

© National Instruments 6-39 ECU M&C Toolkit User Manual

mcDAQModePolling

In this mode the data from the Measurement task are uploaded

from the ECU whenever mcDAQRead is called.

DTO_ID DTO_ID is the CAN identifier for the Data Transmission Object

(DTO) used to transmit the data from the DAQ lists to the host.

The default value is –1 which means that the DTO ID used to

transmit the DAQ list data is the same that is used for the rest of

the CCP communication.

SampleRate SampleRate specifies the timing to use for samples of the

(NI-CAN) task. The sample rate is specified in Hertz (samples per

second). A sample rate of zero means to sample immediately.

For a DAQMode of mcDAQModeDAQList, SampleRate of zero

means that mcDAQRead returns a single sample from the most

recent messages received, and greater than zero means that

mcDAQRead returns samples timed at the specified rate. For

DAQMode of mcDAQModePolling, SampleRate is ignored.

Output
DAQRefNum DAQRefNum is the reference handle for the Measurement task.

Use this Measurement task reference in subsequent M&C DAQ

functions for this task.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
If an ECU offers a reduced and specific range of DAQ list entry numbers use the

mcDAQListInitialize function to setup your Measurement list. mcDAQListInitialize

does not start the transmission of the DAQ lists from the ECU to the application or vice versa

through CCP or XCP. This enables you to use mcSetProperty to change the properties

of a Measurement task. After you change properties use mcDAQStartStop to start the

communication for the Measurement task. To query the available DAQ list entry numbers use

mcGetProperty with the property mcPropECU_DAQListNumbers.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-40 ni.com

mcDAQRead

Purpose
Reads samples from a Measurement task. Samples are obtained from received CAN

messages.

Format
mcTypeStatus mcDAQRead(

mcTypeTaskRef DAQRefNum,

u32 NumberOfSamplesToRead,

mcTypeTimestamp *StartTime,

mcTypeTimestamp *DeltaTime,

f64 *SampleArray,

u32 *NumberOfSamplesReturned);

Input
DAQRefNum DAQRefNum is the task reference from the previous Measurement

task function. The task reference is originally returned from

mcDAQInitialize, and then reused by subsequent

Measurement task functions.

NumberOfSamplesToRead

Specifies the number of samples to read for the task. For

single-sample input, pass 1 to this parameter.

If the initialized sample rate is zero, you must pass

NumberOfSamplesToRead no greater than 1. SampleRate of

zero means mcDAQRead immediately returns a single sample from

the most recent message(s) received.

Output
StartTime Returns the time of the first CAN sample in SampleArray. This

parameter is optional. If you pass NULL for the StartTime

parameter, the mcDAQRead function proceeds normally. If the

initialized sample rate is greater than zero, the StartTime is

determined by the sample timing. If the initialized SampleRate

is zero, the StartTime is zero, because the most recent sample is

returned regardless of timing.

StartTime uses the mcTypeTimestamp data type. The

mcTypeTimestamp data type is a 64-bit unsigned integer

compatible with the Microsoft Win32 FILETIME type. This

absolute time is kept in a Coordinated Universal Time (UTC)

Chapter 6 ECU M&C API for C

© National Instruments 6-41 ECU M&C Toolkit User Manual

format. UTC time is loosely defined as the current date and time

of day in Greenwich, England. Microsoft defines its UTC time

(FILETIME) as a 64-bit counter of 100 ns intervals that have

elapsed since 12:00 a.m., January 1, 1601. Because

mcTypeTimestamp is compatible with Win32 FILETIME, you

can pass it into the Win32 FileTimeToLocalFileTime

function to convert it to the local time zone, and then pass the

resulting local time to the Win32 FileTimeToSystemTime

function to convert to the Win32 SYSTEMTIME type. SYSTEMTIME

is a struct with fields for year, month, day, and so on. For more

information on Win32 time types and functions, refer to the

Microsoft Win32 documentation.

DeltaTime Returns the time between each sample in SampleArray. This

parameter is optional. If you pass NULL for the DeltaTime

parameter, the mcDAQRead function proceeds normally. If the

initialized sample rate is greater than zero, the DeltaTime is

determined by the sample timing. If the initialized sample rate is

zero, the DeltaTime is zero, because the most recent sample is

returned regardless of timing. DeltaTime uses the

mcTypeTimestamp data type. The delta time is a relative 64-bit

counter of 100 ns intervals, not an absolute UTC time.

Nevertheless, you can use functions like the Win32

FileTimeToSystemTime function to convert to the Win32

SYSTEMTIME type. In addition, you can use the 32-bit LowPart

of DeltaTime to obtain a simple 100 ns count, because values for

SampleRate as slow as 0.4 Hz are still limited to a 32-bit 100 ns

count.

SampleArray Returns a 2D array, one array for each channel initialized in

the task. The array of each channel must have

NumberOfSamplesToRead entries allocated. The order of

channel entries in SampleArray is the same as the order in

the original ChannelList. If you need to determine the

number of channels in the task after initialization, get the

mcPropDAQ_NumChannels property for the task reference. If no

message has been received since you started the task, 0 is returned

as default value for of the channel in all entries of SampleArray.

NumberOfSamplesReturned

NumberOfSamplesReturned indicates the number of samples

returned for each channel in SampleArray. The remaining entries

are left unchanged (zero).

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-42 ni.com

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
If the initialized SampleRate is greater than zero, this function returns an array of samples,

each of which indicates the value of the CAN channel at a specific point in time. The

mcDAQRead function waits for these samples to arrive in time before returning. In other

words, the SampleRate specifies a virtual clock that copies the most recent value from CAN

messages for each sample time. The changes in sample values from message to message

enable you to view the channel over time, such as for comparison with other CAN or DAQ

input channels. To avoid internal waiting, you can use mcGetProperty to obtain

nctPropSamplesPending property, and pass that as the NumberOfSamplesToRead

parameter to mcDAQRead.

If the initialized SampleRate is zero, mcDAQRead immediately returns a single sample from

the most recent message(s) received. For this single-point read, you must pass the

NumberOfSamplesToRead parameter as 1. You can use the return value of mcDAQRead to

determine whether a new message has been received since the previous call to mcDAQRead

(or mcDAQStartStop). If no message has been received, the warning code CanWarnOldData

is returned. If a new message has been received, the success code 0 is returned. If no message

has been received since you started the task, the default value of the channel

(nctPropChanDefaultValue) is returned in all entries of SampleArray.

Chapter 6 ECU M&C API for C

© National Instruments 6-43 ECU M&C Toolkit User Manual

mcDAQReadTimestamped

Purpose
Reads timestamped samples from a DAQ task initialized with the selected mode of

mcDAQModeDAQListTimeStamped.

Format
mcTypeStatus mcDAQReadTimestamped(

mcTypeTaskRef DAQRefNum,

u32 NumberOfSamplesToRead,

__int64 *TimestampArray,

double *SampleArray,

u32 *NumberOfSamplesReturned);

Input
DAQRefNum DAQRefNum is the task reference that links to the selected

measurement task. This reference is originally returned from

mcDAQInitialize or mcDAQListInitialize.

NumberOfSamplesToRead

Specifies the number of samples to read for the task.

Output
TimestampArray Returns the time at which each corresponding sample in

SampleArray was received in a CAN message. The timestamps

are returned as an array of arrays (2D array), one array for each

channel initialized in the task. The array of each channel must

have NumberOfSamplesToRead entries allocated. For example,

if you call mcDAQInitialize with ChannelList of

myDAQ1,myDAQ2, then call mcDAQReadTimestamped with

NumberOfSamplesToRead of 20, both TimestampArray and

SampleArray must be allocated as:

__int64 mcTypeTimestamp TimestampArray[2][20];

double SampleArray[2][20];

The order of channel entries in TimestampArray is the same as

the order in the original DAQ channel list. To determine the

number of channels in the DAQ task after initialization, get the

mcPropDAQ_NumChannels property for the DAQ task reference.

Each timestamp in TimestampArray uses the __int64 data type

compatible with the Microsoft Win32 FILETIME type. This

absolute time is kept in a Coordinated Universal Time (UTC)

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-44 ni.com

format. UTC time is loosely defined as the current date and time

of day in Greenwich, England. Microsoft defines its UTC time

(FILETIME) as a 64-bit counter of 100 ns intervals that have

elapsed since 12:00 a.m., January 1, 1601. Because the timestamp

is compatible with Win32 FILETIME, you can pass it into the

Win32 FileTimeToLocalFileTime function to convert it to the

local timezone, and then pass the resulting local time to the Win32

FileTimeToSystemTime function to convert to the Win32

SYSTEMTIME type. SYSTEMTIME is a struct with fields for

year, month, day, and so on. For more information about Win32

time types and functions, refer to the Microsoft Win32

documentation.

SampleArray SampleArray returns the sample value(s) for each received CAN

message. The samples are returned as an array of arrays (a 2D

array), one array for each channel initialized in the DAQ task. The

array of each channel must have NumberOfSamplesToRead

entries allocated. You must allocate SampleArray exactly as

TimestampArray, and the order of channel entries is the same for

both.

NumberOfSamplesReturned

Indicates the number of samples returned for each channel in

SampleArray, and the number of timestamps returned for each

channel in TimestampArray. The remaining entries are left

unchanged (zero).

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
Each returned sample corresponds to a received CAN message for the measurement channels

initialized in the DAQ channel list. For each sample, mcDAQReadTimestamped returns the

sample value and a timestamp that indicates when the message was received. Because the

timing of samples returned by mcDAQReadTimestamped is determined by when the message

is received, the initialized sample rate is not used.

The function waits until NumberOfSamplesToRead messages have been received. The

number of samples returned is indicated in the NumberOfSamplesReturned output, up to a

Chapter 6 ECU M&C API for C

© National Instruments 6-45 ECU M&C Toolkit User Manual

maximum of NumberOfSamplesToRead messages. If no new message has been received,

NumberOfSamplesReturned is 0, and the return value indicates success. To avoid blocking

a mcDAQReadTimestamped function, read the mcPropDAQ_SamplesPending property to

check the number of collected sample points before calling mcDAQReadTimestamped.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-46 ni.com

mcDAQStartStop

Purpose
Starts the transmission of the DAQ lists assigned to the Measurement task on the ECU.

Format
mcTypeStatus mcDAQStartStop(

mcTypeTaskRef DAQRefNum,

u32 StartStopMode);

Input
DAQRefNum DAQRefNum is the task reference from the previous Measurement

task function. The task reference is originally returned from

mcDAQInitialize, and then reused by subsequent

Measurement task functions.

StartStopMode StartStopMode indicates the type of function to be performed:

0—mcStartStopModeStop

Configures the ECU to stop transmitting a DAQ task. If stopped,

properties of the DAQ task can be changed using

mcSetProperty. This function is performed automatically

before mcDAQClear.

1—mcStartStopModeStart

Configures the ECU to start sending data for a Measurement task.

Ensure that the DAQ list has not yet been transferred to the ECU

first. Once started, properties of the DAQ list can no longer be

changed using mcSetProperty. This function is performed

automatically before the first read of the DAQ list with

mcDAQRead.

2—mcStartStopModeTransmitDAQ

Transfers the DAQ list to the ECU, but does not start it. For

example, use this mode if you want to change the session status

before starting the DAQ list. For some ECUs, this is necessary.

3—mcStartStopModePrepareStartAll

Prepares a DAQ or STIM list to be started by a single command.

This is useful when multiple DAQ or STIM lists are used with the

same ECU. After preparing the DAQ or STIM lists with this

command, use mcDAQStartStop with mode

mcStartStopModeStartAll to start all lists at the same time.

Chapter 6 ECU M&C API for C

© National Instruments 6-47 ECU M&C Toolkit User Manual

4—mcStartStopModeStartAll

Starts all previously prepared DAQ or STIM lists at the same time

with a single command.

5—mcStartStopModeStopAll

Stops all running DAQ or STIM lists on the same ECU with a

single command.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcDAQStartStop is an optional command to start or stop communication for an M&C

Measurement task. If you do not perform mcDAQStartStop (with the parameter

mcStartStopModeStart) before using mcDAQRead the Measurement task is started by the

first call of mcDAQRead. After you start the transmission of the DAQ lists, you can no longer

change the configuration of the Measurement task with mcSetProperty. You must call

mcDAQStartStop (with the parameter mcStartStopModeStop) first.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-48 ni.com

mcDAQWrite

Purpose
Writes samples to an ECU DAQ list.

Format
mcTypeStatus mcDAQWrite(

mcTypeTaskRef DAQRefNum,

u32 NumberofSamplesToWrite,

f64 *SampleArray);

Input
DAQRefNum DAQRefNum is the task reference from the previous Measurement

task function. The task reference is originally returned from

mcDAQInitialize, and then reused by subsequent

Measurement task functions.

NumberofSamplesToWrite

NumberofSamplesToWrite specifies the number of samples to

write for the ECU MC DAQ task to the ECU DAQ list. For

single-sample output, pass 1 to this parameter. The initialized

DAQ sample rate must be set to zero. A SampleRate of zero

means mcDAQWrite immediately writes a single sample to the

ECU when calling the mcDAQWrite function.You must pass

NumberOfSamplesToWrite no greater than 1.

*SampleArray SampleArray specifies a 2D array, one array for each channel

initialized in the task. The array of each channel must have

NumberOfSamplesToWrite entries allocated. The order of

channel entries in SampleArray is the same as the order in the

original ChannelList. If you must determine the number of

channels in the task after initialization, get the

mcPropDAQ_NumChannels property for the task reference.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-49 ECU M&C Toolkit User Manual

Description
For XCP STIM lists (refer to mcDAQInitialize), mcDAQWrite transfers an array of

samples to the ECU. These samples are called data stimulation packets (STIM). On the ECU

side the STIM processor buffers incoming data stimulation packets. When an event occurs

which triggers a DAQ list in data stimulation mode, the buffered data is transferred to the

memory on the slave device.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to configure data stimulation.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-50 ni.com

mcDatabaseClose

Purpose
Closes a specified A2L Database.

Format
mcTypeStatus mcDatabaseClose(

mcTypeTaskRef *DBRefNum);

Input
DBRefNum DBRefNum is the task reference from the initial database task

function. The database task reference is originally returned from

mcDatabaseOpen.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcDatabaseClose must always be the final ECU M&C function called for each database

task. If you do not use the mcDatabaseClose function, the remaining task configurations

can cause problems in the execution of subsequent Measurement and Calibration

applications.

Chapter 6 ECU M&C API for C

© National Instruments 6-51 ECU M&C Toolkit User Manual

mcDatabaseOpen

Purpose
Opens a specified A2L Database.

Format
mcTypeStatus mcDatabaseOpen(

cstr Database,

mcTypeTaskRef *DBRefNum);

Input
Database Database is a path to an A2L database file from which to get

Measurement or calibration channel names. The file must use a

.A2L extension. You can generate A2L database files with several

3rd party tools.

Output
DBRefNum DBRefNum is the task reference from the initial database task

function. The database task reference is originally returned from

mcDatabaseOpen.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
The mcDatabaseOpen function does not start communication. This enables you to query all

defined ECU names in the A2L Database using the mcGetNames function and selecting the

property value ECU Names.

To use the ECU M&C Toolkit on a LabVIEW RT system, you must download your ASAM

MCD 2MC database (*.A2L) file to the RT target.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-52 ni.com

mcDatabaseOpenEx

Purpose
Creates a specified A2L database by a name in memory.

Format
mcTypeStatus mcDatabaseOpenEx(

cstr DatabaseName,

mcTypeTaskRef *DBRefNum);

Input
DatabaseName DatabaseName is a database name associated with the database

created in memory. Use the string syntax :<myname>: for the

A2L database if using multiple databases in memory. (For

example, if using two databases in memory, use :MyDatabase1:

as DatabaseName for the first database, and :MyDatabase2: for

the second DatabaseName created in memory.)

Output
DBRefNum DBRefNum is the task reference from the initial database task

function. The database task reference is originally returned from

mcDatabaseOpen.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcDatabaseOpenEx does not start communication. Use it to create all needed objects in

memory. After creating an A2L database in memory, you typically create an ECU object

using mcECUCreate, a scaling object using mcConversionCreate, a measurement object

using mcMeasurementCreate, and an event using mcEventCreate.

Note mcDatabaseOpenEx does not support creating objects to access characteristics. To

access a characteristic, assign a valid A2L database file with defined characteristics.

Chapter 6 ECU M&C API for C

© National Instruments 6-53 ECU M&C Toolkit User Manual

mcDoubleToText

Purpose
Converts a numerical value to a text string using an enumeration or range text type scaling.

Format
mcTypeStatus mcDoubleToText(

mcTypeTaskRef ECURefNum,

u32 ObjectType,

cstr ObjectName,

double Value,

u32 SizeOfTextValue,

str TextValue);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

ObjectType Indicates the type of the object named in ObjectName. Valid

values are:

1 Measurement Name

2 Characteristic Name

ObjectName Indicates the object (measurement or characteristic) for which the

COMPU_VTAB scaling is performed. If no COMPU_VTAB

scaling is available for the object, TextValue is just a string

representation of the value specified in Value.

Value The numerical value to be converted. For example, this could have

been returned from mcCharacteristicRead or

mcMeasurementRead.

SizeOfTextValue Must contain the number of bytes in the buffer passed to

TextValue. Note that there is no way of requesting the necessary

size of this buffer. If you do not know up front how long your text

could become, specify a buffer of 256 bytes. This is the maximum

the ASAM standard allows.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-54 ni.com

Output
TextValue The buffer for the resulting converted text string. If the Value

specified is listed in a COMPU_VTAB scaling for the

characteristic or measurement specified in ObjectName, the

respective text is returned. If no such value is available, a string

representation of the double value is returned.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcDoubleToText performs text conversion for measurement or characteristic values.

Especially if the measurement or characteristic has an associated COMPU_VTAB type

scaling, the textual representation of the value is returned. If no such value is present, either

because the object does not have a text scaling or the value does not have a textual

representation in the table, a string representation of the double value is returned.

Chapter 6 ECU M&C API for C

© National Instruments 6-55 ECU M&C Toolkit User Manual

mcDownload

Purpose
Downloads data to an ECU.

Format
mcTypeStatus mcDownload(

mcTypeTaskRef ECURefNum,

mcAddress Address,

u32 BlockSize

u8 *Data);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Address Configures the target address for the download operation in the

ECU. mcAddress is a C struct consisting of:

Address

Specifies the address part of the target address.

Extension

Extension contains the extension part of the target address.

BlockSize BlockSize determines the size of the data block to be

downloaded.

Output
Data Data pointer to the information to be downloaded.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-56 ni.com

Description
mcDownload downloads data to an ECU. The data is stored starting at the selected Address

and Extension in the ECU memory. The function can download more than 5 data bytes to the

ECU.

If you are using the CCP protocol and the selected BlockSize is higher than 5 bytes,

mcDownload performs several CCP DNLOAD commands until all data bytes are

downloaded to the ECU. mcDownload implements the CCP DNLOAD command defined by

the CCP specification.

If you are using the XCP protocol, the Data block of the specified BlockSize is copied into

the ECU memory, starting at the MTA. The MTA is post-incremented by the number of

downloaded data bytes. If the slave device does not support Block Transfer Mode, all

downloaded data is transferred in a single command packet. If Block Transfer Mode is

supported, the downloaded data is transferred in multiple command packets. For the slave

however, there might be limitations concerning the maximum number of consecutive

command packets, so the number of data elements may be within a limited range. The master

device has two additional consecutive DOWNLOAD_NEXT command packets. The slave

device will acknowledge only the last DOWNLOAD_NEXT command packet. The

separation time between the command packets and the maximum number of packets are

specified in the response for the CONNECT command.

Chapter 6 ECU M&C API for C

© National Instruments 6-57 ECU M&C Toolkit User Manual

mcECUConnect

Purpose
Establishes communication to the selected ECU through CCP or XCP. After a successful

ECU Connect you can create a Measurement task or read/write a Characteristic.

Format
mcTypeStatus mcECUConnect(

mcTypeTaskRef ECURefNum);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcECUConnect implements the CCP or XCP CONNECT command.It establishes a logical

connection to an ECU, using the provided ECU Reference handle ECURefNum. Unless a slave

device (ECU) is unconnected, it must not execute or respond to any command sent by the

application. The only exception to this rule is the Test command, to which the CCP or XCP

slave with the specific address may return an acknowledgement. Only a single CCP or XCP

slave can be connected to the application at a time.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-58 ni.com

mcECUCreate

Purpose
Creates an ECU object in memory.

Format
mcTypeStatus mcECUCreate(

mcTypeTaskRef DBRefNum,

cstr ECUName,

char *Interface,

i32 ByteOrder,

u32 CRO_ID,

u32 DTO_ID,

u16 StationAddress,

u32 BaudRate,

mcTypeTaskRef *ECURefNum);

Input
DBRefNum DBRefNum is the task reference from the initial database task

function. The database task reference is originally returned from
mcDatabaseOpen.

ECUname Identifies the ECU object. Use this name as reference in

mcMeasurementCreate to create a DAQ list on the ECU.

Interface Specifies the protocol and optional interface to use for this task.

ByteOrder Sets the byte order of the CCP slave device:

0—MSB_LAST

The CCP Slave device uses the MSB_LAST (Intel) byte ordering.

1—MSB_FIRST

The CCP Slave device uses the MSB_FIRST (Motorola) byte

ordering.

CRO_ID Sets the Command Receive Object (CRO) CAN Identifier for

CCP, or XCP on CAN, which is used to send commands and data

from the host to the slave device.

DTO_ID Sets the Data Transfer Object (DTO) CAN Identifier for CCP, or

XCP on CAN, which is used to send commands and data from the

slave device to the host.

StationAddress Sets the slave device station address. CCP is based on the idea that

several ECUs can share the same CAN Arbitration IDs for CCP

communication. To avoid communication conflicts, CCP defines

a station address that must be unique for all ECUs sharing the

Chapter 6 ECU M&C API for C

© National Instruments 6-59 ECU M&C Toolkit User Manual

same CAN Arbitration IDs. Unless an ECU has been addressed by

its station address, the ECU must not react to CCP commands sent

by the CCP master.

BaudRate Sets the CAN baud rate in use by the selected interface. This

property applies to all tasks initialized with the NI-CAN or

NI-XNET interface. You can specify the following basic baud

rates as the numeric rate: 33333, 83333, 100000, 125000, 200000,

250000, 400000, 500000, 800000, and 1000000. You can specify

advanced baud rates as 8000XXYY hex, where YY is the value of

Bit Timing Register 0 (BTR0), and XX is the value of Bit Timing

Register 1 (BTR1). For more information, refer to the Interface

Properties dialog in MAX.

Output
ECURefNum ECURefNum is the task reference that links to the selected ECU.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
The function mcECUCreate is used to create an ECU object in memory instead of referring

to a predefined ECU of an A2L database.

Interface is the name of the protocol and interface the selected ECU task will use. This

string uses the syntax XXX:YYY, where X defines the selected protocol. The following strings

may be used as Y:

• String CCP refers using the CAN Calibration Protocol (CCP)

• String XCP refers using the Universal Measurement and Calibration Protocol (XCP)

Using NI-CAN

If you are using the CCP protocol with NI-CAN hardware, YYY can be associated with a

defined NI-CAN interface (CAN0, CAN1, up to CAN63). CAN network interface names are

associated with physical CAN ports using the Measurement and Automation Explorer

(MAX). For example, if you are using the CCP protocol on NI-CAN interface CAN1, the

value passed to Interface is CCP:CAN1. The special string values “CAN256” and

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-60 ni.com

“CAN257” refer to virtual interfaces. Refer to the NI-CAN Hardware and Software User

Manual for detailed information on how to use virtual NI-CAN ports.

If you are using the XCP protocol, YYY can be associated with a XCP transport layer.

The transport layers may defined as follows:

• CANxx

• TCP

• UDP

If you select CAN as the transport layer you must specify the NI-CAN interface (CAN0,

CAN1, up to CAN63). CAN network interface names are associated with physical CAN ports

using the Measurement and Automation Explorer (MAX). For example, if you are using the

XCP on NI-CAN interface CAN2 the value passed to Interface is XCP:CAN2. If you are

using the XCP on UDP the value passed to Interface is XCP:UDP. If you are using the XCP

on TCP the value passed to Interface is XCP:TCP. The special string values “CAN256” and

“CAN257” refer to virtual interfaces. Refer to the NI-CAN Hardware and Software User

Manual for detailed information on how to use virtual NI-CAN ports.

Using NI-XNET

If you are using NI-XNET hardware and select the xxx:yyy syntax, the ECU M&C Toolkit

uses the XNET NI-CAN compatibility library (XCL) internally if the XNET interface is

defined in MAX under NI-CAN Devices. To force use of the native XNET API, you must

define a unique interface name that differs from the NI-CAN-compatible interface name

under XNET Devices, or use the xxx:yyy@nixnet syntax. The interface name is related to the

NI-XNET hardware naming under Devices and Interfaces in MAX. The extension nixnet

directs the ECU M&C Toolkit to use the native NI-XNET API.

Note By selecting nixnet as Protocol and Interface string, the ECU Measurement and

Calibration Toolkit uses the Frame Input and Output Queued sessions. To force the ECU

Measurement and Calibration Toolkit to use Frame Input and Output Stream sessions

instead, select ni_genie_nixnet as Protocol and Interface string (for example,

CCP:CAN1@ni_genie_nixnet). An application instance can use only one Frame Input

Stream Session and one Frame Output Stream Session at a time, so use the default name

nixnet as Protocol and Interface string, so that multiple NI-XNET Frame Queued

Sessions can coexist on a single interface, and the Frame Input and Output Stream Sessions

may be used, for example, for a Frame logging/replay use case.

CompactRIO or R Series

If you are using CompactRIO or R Series hardware, you must provide a bitfile that

handles the CAN communication between the host system and the FPGA. To access the

CAN module on the FPGA, you must specify the bitfile name after the @ (for example,

CCP:CAN1@MyBitfile.lvbitx). To specify a special RIO target, you can specify that target by

Chapter 6 ECU M&C API for C

© National Instruments 6-61 ECU M&C Toolkit User Manual

its name followed by the bitfile name (for example, XCP:CAN1@RIO1,MyBitfile.lvbitx).

Currently, only a single CAN interface is supported. RIO1 defines the RIO target name as

defined in your LabVIEW Project definition. The lvbitx filename represents the filename and

location of the bitfile on the host. You may use just the filename without the folder if the bitfile

is in the same folder as the LabVIEW Project (*.lvproj).

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-62 ni.com

mcECUDeselect

Purpose
Deselects an ECU and invalidates the ECU reference handle.

Format
mcTypeStatus mcECUDeselect(

mcTypeTaskRef *ECURefNum);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcECUDeselect deselects the ECU and clears all internal driver data stored for this ECU.

After calling this function it is no longer possible to communicate with the specified ECU.

The task reference ECURefNum is transferred into a database handle DBRefNum.

Chapter 6 ECU M&C API for C

© National Instruments 6-63 ECU M&C Toolkit User Manual

mcECUDisconnect

Purpose
Disconnects CCP or XCP communication to the selected ECU.

Format
mcTypeStatus mcECUDisconnect(

mcTypeTaskRef ECURefNum);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcECUDisconnect implements the CCP or XCP command DISCONNECT.

mcECUDisconnect disconnects the specified CCP or XCP slave from the actual

communication and ends the calibration session. When the calibration session is terminated,

all CCP or XCP DAQ lists of the device are stopped and cleared and the protection masks of

the device are set to their default values.

mcECUDisconnect is an optional command as disconnecting from the ECU is performed by

the function mcECUDeselect.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-64 ni.com

mcECUSelectEx

Purpose
Selects an ECU from the names stored in an A2L database.

Format
mcTypeStatus mcECUSelectEx(

mcTypeTaskRef DBRefNum,

cstr ECUName,

cstr Interface,

mcTypeTaskRef *ECURefNum);

Input
DBRefNum DBRefNum is the task reference from the initial database task

function. The database task reference is originally returned from

mcDatabaseOpen.

ECUName ECUName is the selected ECU name out of an A2L Database file

with which to initialize all subsequent tasks.

Interface Specifies the protocol and optional interface to use for this task.

Output
ECURefNum ECURefNum is the task reference which links to the selected ECU.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcECUSelectEx creates an ECU reference handle to the selected ECU name. The

mcECUSelectEx function does not start communication. This enables you to use

mcSetProperty to change the properties of an ECU task. After you change properties use

mcECUConnect to start communication for the task and logically connect to the selected

ECU.

Chapter 6 ECU M&C API for C

© National Instruments 6-65 ECU M&C Toolkit User Manual

Interface is the name of the protocol and interface the selected ECU task will use. This

string uses the syntax XXX:YYY, where X defines the selected protocol. The following strings

may be used:

• String CCP refers using the CAN Calibration Protocol (CCP)

• String XCP refers using the Universal Measurement and Calibration Protocol (XCP)

If you are using the CCP protocol, YYY can be associated with a defined NI-CAN interface

(CAN0, CAN1, up to CAN63). CAN network interface names are associated with physical

CAN ports using the Measurement and Automation Explorer (MAX). For example, if you are

using the CCP protocol on NI-CAN interface CAN1, the value passed to Interface is

CCP:CAN1. The special string values “CAN256” and “CAN257” refer to virtual interfaces.

Refer to the NI-CAN Hardware and Software User Manual for detailed information on how

to use virtual NI-CAN ports.

If you are using the XCP protocol, YYY can be associated with a XCP transport layer.

The transport layers may defined as follows:

• CANxx

• TCP

• UDP

Using NI-CAN

If you select CAN as the transport layer you must specify the NI-CAN interface (CAN0,

CAN1, up to CAN63). CAN network interface names are associated with physical CAN ports

using the Measurement and Automation Explorer (MAX). For example, if you are using the

XCP on NI-CAN interface CAN2 the value passed to Interface is XCP:CAN2. If you are

using the XCP on UDP the value passed to Interface is XCP:UDP. If you are using the XCP

on TCP the value passed to Interface is XCP:TCP. The special string values “CAN256” and

“CAN257” refer to virtual interfaces. Refer to the NI-CAN Hardware and Software User

Manual for detailed information on how to use virtual NI-CAN ports.

Using NI-XNET

If you are using NI-XNET hardware and select the xxx:yyy syntax, the ECU M&C Toolkit

uses the XNET NI-CAN compability library (XCL) internally if the XNET interface is

defined in MAX under NI-CAN Devices. To force use of the native XNET API, you must

define a unique interface name that differs from the NI-CAN-compatible interface name

under XNET Devices, or use the xxx:yyy@nixnet syntax. The interface name is related to the

NI-XNET hardware naming under Devices and Interfaces in MAX. The extension nixnet

directs the ECU M&C Toolkit to use the native NI-XNET API.

Note By selecting nixnet as Protocol and Interface string, the ECU Measurement and

Calibration Toolkit uses the Frame Input and Output Queued sessions. To force the ECU

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-66 ni.com

Measurement and Calibration Toolkit to use Frame Input and Output Stream sessions

instead, select ni_genie_nixnet as Protocol and Interface string (for example,

CCP:CAN1@ni_genie_nixnet). An application instance can use only one Frame Input

Stream Session and one Frame Output Stream Session at a time, so use the default name

nixnet as Protocol and Interface string, so that multiple NI-XNET Frame Queued

Sessions can coexist on a single interface, and the Frame Input and Output Stream Sessions

may be used, for example, for a Frame logging/replay use case.

CompactRIO or R Series

If you are using CompactRIO or R Series hardware, you must provide a bitfile that

handles the CAN communication between the host system and the FPGA. To access the

CAN module on the FPGA, you must specify the bitfile name after the @ (for example,

CCP:CAN1@MyBitfile.lvbitx). To specify a special RIO target, you can specify that target by

its name followed by the bitfile name (for example, XCP:CAN1@RIO1,MyBitfile.lvbitx).

Currently, only a single CAN interface is supported. RIO1 defines the RIO target name as

defined in your LabVIEW Project definition. The lvbitx filename represents the filename and

location of the bitfile on the host. You may use just the filename without the folder if the bitfile

is in the same folder as the LabVIEW Project (*.lvproj).

Chapter 6 ECU M&C API for C

© National Instruments 6-67 ECU M&C Toolkit User Manual

mcECUSetCalibrationPage

Purpose
Sets the appropriate RAM or ROM calibration page on the ECU.

Format
mcTypeStatus mcECUSetCalibrationPage (

mcTypeTaskRef ECURefNum,

u8 UseRAM,

u8 mapAddresses);

Input
ECURefNum ECURefNum is the task reference that links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

UseRAM 0: Select ROM calibration page.

1: Select RAM calibration page.

mapAddresses 0: Do not map addresses.

1: Map addresses from ROM to the page specified in UseRAM.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcECUSetCalibrationPage tries to identify a single RAM or ROM page on the ECU and

select it according to the UseRAM input.

To identify an appropriate page, the function searches for the calibration page information

from the A2L file or online information from the ECU. If the function identifies a unique

calibration page, it is activated in the ECU, and the function returns success.

If the function does not identify a unique page, an error indicating this is returned, and no

further action is taken. This does not state a fault, but just the algorithm’s inability to uniquely

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-68 ni.com

identify the desired page. In this case, you can use the calibration page-related ECU properties

(mcGetProperty, ECU»CCP»Cal Pages»… or ECU»XCP»Cal Pages»…) to gain the

information about available calibration pages, and manually select the correct page using

mcCCPSelectCalPage or mcXCPSetCalPage.

The mapAddresses parameter activates the address mapping from the ROM page, assumed

to be the reference page to the target page specified in UseRAM. Address mapping is supported

for only the CCP protocol and requires a unique ROM and unique RAM page in the A2L file.

Addresses of measurements and characteristics in the A2L file must point to the ROM page

as a reference page.

Chapter 6 ECU M&C API for C

© National Instruments 6-69 ECU M&C Toolkit User Manual

mcEventCreate

Purpose
Creates an Event object in memory.

Format
mcTypeStatus mcEventCreate(

mcTypeTaskRef ECURefNum,

cstr EventChannelName,

u8 EventChannelNumber);

Input
ECURefNum ECURefNum is the task reference that links to the selected ECU.

This reference is originally returned from mcECUCreate.

EventChannelName EventChannelName identifies the Event Channel object.

EventChannelNumber EventChannelNumber identifies the number of the Event

Channel. The event channel number specifies the generic signal

source that effectively determines the data transmission timing. To

allow a reduction of the desired transmission rate, a prescaler may

be applied to the Event Channel. The prescaler value factor must

be greater than or equal to 1 to use mcSetProperty using

mcPropDAQ_Prescaler.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
Use the function mcEventCreate to create an Event object in memory instead of referring

to a predefined Event Channel in the A2L database. Assign the event channel object by name

to a DAQ List in mcMeasurementCreate.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-70 ni.com

mcGeneric

Purpose
Sends a generic command.

Format
mcTypeStatus mcGeneric(

mcTypeTaskRef ECURefNum,

u8 Command,

u8 *Data,

u32 DataSize,

u32 Timeout,

u8 *ErrorCode,

u8 *ReturnValue,

u32 *ReturnValueSize);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Command Command is the CCP command code to send to the ECU.

Data Data contains the parameters of the command as an array of

bytes. For more information about the parameters of the (user

defined) commands implemented in the ECU, refer to the

documentation for the ECU.

DataSize DataSize defines the number of bytes (the array size) passed in

the input parameter Data.

Timeout Timeout specifies the maximum number of milliseconds to wait

for a response from the ECU. If the Timeout expires before an

ECU response occurs, the error mcErrorTimeout is returned.

Output
ErrorCode ErrorCode describes the error returned from the ECU during the

communication.

ReturnValue ReturnValue may contain an array of bytes returned from the

ECU as a response to the command sent to the ECU.

ReturnValueSize ReturnValueSize contains the number of bytes returned from

the ECU passed to ReturnValue.

Chapter 6 ECU M&C API for C

© National Instruments 6-71 ECU M&C Toolkit User Manual

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcGeneric can be used to send commands to the ECU that are not defined by the CCP or

XCP specification. The command code in Command and the parameters of this command

defined in Data are sent to the ECU, and the data returned by the ECU is passed to the

parameter ReturnValue. Since the ECU M&C driver has no knowledge of the parameters

of the command and their data types, all parameters and return values are passed as an array

of bytes. Therefore you are responsible for the correct type casting of all parameters and

return values of this command. Make sure that all parameters are passed in the correct byte

ordering for this function. For more information about the (user defined) commands and their

parameters refer to the documentation for the ECU.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-72 ni.com

mcGetNames

Purpose
Retrieves a comma-separated list of ECU names, Measurement names, Characteristic names,

Event names, Characteristic pages, or Group names from a specified A2L database.

Format
mcTypeStatus mcGetNames(

mcTypeTaskRef RefNum,

u32 Type,

cstr ECUName,

u32 SizeOfNamesList,

str NameList);

Input
RefNum RefNum is any ECU M&C task reference which consists of a valid

link to the opened A2L database (DBRefNum), a selected ECU

(ECURefNum) or a Measurement task (DAQRefNum). RefNum

must be valid for the related Type.

Type Specifies the Type of names to return.

0—mcTypeECUNames

Returns a list of ECU names. You can pass one of the returned

names to mcECUSelectEx.

1—mcTypeMeasurementNames

Returns a list of Measurement names. You can pass the

returned NamesList to mcDAQInitialize.

2—mcTypeCharacteristicNames

Returns a list of Characteristic names. You can pass a single

name out of the NamesList to mcCharacteristicWrite

or mcCharacteristicRead.

3—mcTypeEventChannelNames

Returns a list of Event Channel names.

4—mcTypeDefinedPagesNames

Returns a list of Calibration page names.

5—mcTypeGroupNames

Returns a list of Group names.

Chapter 6 ECU M&C API for C

© National Instruments 6-73 ECU M&C Toolkit User Manual

6—mcTypeGroup_SubGroupNames

Returns a list of Subgroup names of the specified Group

name.

7—mcTypeGroup_MeasurementNames

Returns a list of Measurement names within the specified

Group.

8—mcTypeGroup_CharacteristicNames

Returns a list of Characteristic names within the specified

Group.

9—mcTypeFuncNames

Returns a list of Function names within the specified ECU.

10—mcTypeFunc_DefCharacNames

Returns a list of Characteristic names referred by the

DEF_CHARACTERISTIC keyword within the related

Function.

11—mcTypeFunc_RefCharacNames

Returns a list of Characteristic names referred by the

REF_CHARACTERISTIC keyword within the related

Function.

12—mcTypeFunc_InMeasNames

Returns a list of Measurement names referred by the

IN_MEASUREMENT keyword within the related Function.

13—mcTypeFunc_OutMeasNames

Returns a list of Measurement names referred by the

OUT_MEASUREMENT keyword within the related

Function.

14—mcTypeFunc_LocMeasNames

Returns a list of Measurement names referred by the

LOC_MEASUREMENT keyword within the related

Function.

15—mcTypeFunc_SubFuncNames

Returns a list of Function names referred by the

SUB_FUNCTION keyword within the related Function.

16—mcTypeGroup_FunctionListNames

Returns a list of Function names referred by the

FUNCTION_LIST keyword within the related Group.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-74 ni.com

ECUName If the Type = mcTypeMeasurementNames or

Type = mcTypeCharacteristicNames and RefNum contains a

DBRefNum, the corresponding ECU name must be referenced in

order to access ECU specific properties. If RefNum contains an

ECURefNum or DAQRefNum the parameter ECUName is

ignored and can be set to NULL.

SizeOfNamesList Size of the buffer provided to take the names list. After calling

mcGetNamesLength, you can allocate an array of size

SizeofNamesList, and then pass that array to mcGetNames

using the same input parameters. This ensures that mcGetNames

will return all names without error.

Output
NameList Returns the comma-separated list of names specified by Type.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
Get a comma-separated list of ECU, Measurement, Characteristic, or Event Channel names

from a specified A2L database file.

If using mcGetNames to query the list of supported event channels on an ECU, the event

channels might be stored inside the ECU instead of the A2L file. To query these event channel

names from the ECU directly, connect to the ECU using mcECUConnect before calling

mcGetNames.

Chapter 6 ECU M&C API for C

© National Instruments 6-75 ECU M&C Toolkit User Manual

mcGetNamesLength

Purpose
Retrieves the amount of memory required to store the names returned by mcGetNames.

Format
mcTypeStatus mcGetNamesLength(

mcTypeTaskRef RefNum,

u32 Type,

cstr ECUName,

u32 *SizeOfNamesList);

Input
RefNum RefNum is any ECU M&C task reference which consists of a valid

link to the opened A2L database (DBRefNum), a selected ECU

(ECURefNum) or a Measurement task (DAQRefNum). RefNum

must be valid for the related Type.

Type Specifies the Type of names to return.

0—mcTypeECUNames

Returns a list of ECU names.

1—mcTypeMeasurementNames

Returns a list of Measurement names.

2—mcTypeCharacteristicNames

Returns a list of Characteristic names.

3—mcTypeEventChannelNames

Returns a list of Event Channel names.

4—mcTypeDefinedPagesNames

Returns a list of Calibration page names.

5—mcTypeGroupNames

Returns a list of Group names.

6—mcTypeGroup_SubGroupNames

Returns a list of Subgroup names of the specified Group

name.

7—mcTypeGroup_MeasurementNames

Returns a list of Measurement names within the specified

Group.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-76 ni.com

8—mcTypeGroup_CharacteristicNames

Returns a list of Characteristic names within the specified

Group.

9—mcTypeFuncNames

Returns a list of Function names within the specified ECU.

10—mcTypeFunc_DefCharacNames

Returns a list of Characteristic names referred by the

DEF_CHARACTERISTIC keyword within the related

Function.

11—mcTypeFunc_RefCharacNames

Returns a list of Characteristic names referred by the

REF_CHARACTERISTIC keyword within the related

Function.

12—mcTypeFunc_InMeasNames

Returns a list of Measurement names referred by the

IN_MEASUREMENT keyword within the related Function.

13—mcTypeFunc_OutMeasNames

Returns a list of Measurement names referred by the

OUT_MEASUREMENT keyword within the related

Function.

14—mcTypeFunc_LocMeasNames

Returns a list of Measurement names referred by the

LOC_MEASUREMENT keyword within the related

Function.

15—mcTypeFunc_SubFuncNames

Returns a list of Function names referred by the

SUB_FUNCTION keyword within the related Function.

16—mcTypeGroup_FunctionListNames

Returns a list of Function names referred by the

FUNCTION_LIST keyword within the related Group.

ECUName If the Type = mcTypeMeasurementNames or

Type = mcTypeCharacteristicNames and RefNum contains a

DBRefNum, the corresponding ECU name must be referenced in

order to access ECU specific properties. If RefNum contains an

ECURefNum or DAQRefNum the parameter ECUName is

ignored and can be set to NULL.

Chapter 6 ECU M&C API for C

© National Instruments 6-77 ECU M&C Toolkit User Manual

Output
SizeOfNamesList Number of bytes required for mcGetNames to return all names

for the specified ECUName and Type. After calling

mcGetNamesLength, you can allocate an array of size

SizeofNamesList, then pass that array to mcGetNames using

the same input parameters. This ensures that mcGetNames will

return all names without error.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
After calling mcGetNamesLength, you can allocate an array of size SizeofNamesList,

then pass that array to mcGetNames using the same input parameters. This ensures that

mcGetNames will return all names without error.

If using mcGetNamesLength to query the length of the list of supported event channels on

an ECU, the event channels might be stored inside the ECU instead of the A2L file. To query

these event channel names from the ECU directly, connect to the ECU using mcECUConnect

before calling mcGetNamesLength.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-78 ni.com

mcGetProperty

Purpose
Retrieves a property of the driver, the database, the ECU, a Characteristic, a Measurement, or

a Measurement task.

Format
mcTypeStatus mcGetProperty(

mcTypeTaskRef RefNum,

cstr Name,

u32 PropertyID,

u32 SizeOfValue,

void *Value);

Input
RefNum RefNum is any ECU M&C task reference which consists of a valid

link to the opened A2L database (DBRefNum), a selected ECU

(ECURefNum) or a Measurement task (DAQRefNum). RefNum

must be valid for the related PropertyID type.

Name Specifies an individual name (ECU name, Measurement channel

name, or Characteristic name) within the task.

PropertyID Selects the property to get.

For a description of each property, including its data type and

PropertyId, refer to the Properties section.

SizeOfValue Number of bytes allocated for the Value output. This size

normally depends on the data type listed in the description of the

property.

Output
Value Returns the property value. PropertyId determines the data type

of the returned value.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-79 ECU M&C Toolkit User Manual

Properties

Table 6-4. Values for PropertyID

Data Type Name Description

u32 mcPropCANBaudRate Returns the CAN Baud rate for CCP or XCP on

CAN which is used to send commands and data

from the host to the slave device.

u8 mcPropCANTermination For all XNET devices, the termination is

software selectable. XNET provides the option

of 80  between Bus Plus and Bus Minus or no

termination. The Termination property

configures the onboard termination of the

NI-XNET interface CAN connector (port). The

Boolean property supports two values: TRUE =

Termination ON and FALSE = Termination Off.

However, different CAN hardware has different

termination requirements, and the termination

values have different meanings. Refer to the

Termination attribute in the XNET API for more

details. (This property is supported for

NI-XNET devices only.)

u32 mcPropChar_Address Returns the address of the selected

Characteristic in the memory of the ECU.

u32 mcPropChar_ByteOrder Returns the specified byte order:

0—Intel format

Bytes are in little-endian order, with

least-significant bit first.

1—Motorola format

Bytes are in big-endian order, with

most-significant bit first.

u8 mcPropChar_Datatype Returns the data type of the Characteristic.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-80 ni.com

u32 mcPropChar_Dimension Returns the dimension of the Characteristic:

0—0-dimensional: The Characteristic can be

accessed (read/write) through a double value.

1—1-dimensional: The Characteristic can be

accessed (read/write) through a

one-dimensional array of double value.

2—2-dimensional: The Characteristic can be

accessed (read/write) through a

two-dimensional array of double value.

u8 mcPropChar_Extension Returns additional address information.

For instance it can be used to distinguish

different address spaces of an ECU

(multi-microcontroller devices).

f64 mcPropChar_Maximum Returns the Maximum value of the

Characteristic.

f64 mcPropChar_Minimum Returns the Minimum value of the

Characteristic.

u32 mcPropChar_ReadOnly Returns if a Characteristic is set to read only.

In this case it is not allowed to call

mcCharacteristicWrite for this

Characteristic.

u32 mcPropChar_Sizes Returns the Array Sizes for the X and Y

directions of the Characteristic.

str mcPropChar_Unit Returns the unit string defined for this

Characteristic in the A2L database.

u32 mcPropChar_Unit_Size Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropChar_Unit.

f64 mcPropChar_X_Axis Returns X-axis values on which the

Characteristic is defined. Valid if the selected

Characteristic is 1- or 2-dimensional.

f64 mcPropChar_Y_Axis Returns Y-axis values on which the

Characteristic is defined, Valid if the selected

Characteristic is 2-dimensional.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-81 ECU M&C Toolkit User Manual

f64 mcPropChar_Scale_

Factor

Returns the scaling factor defined for this

Characteristic in the A2L database.

f64 mcPropChar_Scale_

Offset

Returns the scaling offset defined for this

Characteristic in the A2L database.

u32 mcPropChar_Scale_Type Returns the scaling type defined for this

Characteristic in the A2L database.

0: Unknown

The type of the scaling could not be derived

from the A2L file content.

1: Rational Function

The related scaling is based on a rational

function of second order. This covers also the

linear scaling, given by factor and offset.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-82 ni.com

2: Enumeration Text

The related scaling is based on the

COMPU_VTAB keyword within the A2L file.

• Read functions return nonscaled, numeric

values.

• Write functions accept nonscaled, numeric

values.

• It is possible to use mcDoubleToText and

mcTextToDouble to convert between

enumeration text values and double values.

3: Range Text

The related scaling is based on the

COMPU_VTAB_RANGE keyword within the

A2L file.

• Read functions return nonscaled, numeric

values.

• Write functions accept nonscaled, numeric

values.

• It is possible to use mcDoubleToText and

mcTextToDouble to convert between range

text values and double values.

4: Formula

The related scaling is based on the FORMULA

keyword within the A2L file, using a free

formula to calculate the values.

5: Table (Using Interpolation)

The related scaling is based on the TAB_INTP

keyword within the A2L file, using interpolation

between x-y pairs.

6: Table (Without Interpolation)

The related scaling is based on the

TAB_NOINTP keyword within the A2L file,

using x-y pairs without interpolation.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-83 ECU M&C Toolkit User Manual

u32 mcPropChar_Scale_

TextValues_Size

If the scaling type is 2 = Enumeration Text or

3 = Range Text, you can use this property to

request the length needed to store the

comma-separated list of text values that can be

converted into raw values (refer to the

mcPropChar_Scale_TextValues property).

str mcPropChar_Scale_

TextValues

If the scaling type is 2 = Enumeration Text or

3 = Range Text, you can use this property to

request the comma-separated list of text values

that can be converted into raw values.

u32 mcPropCmd_EXCHANGE_ID Returns whether or not the EXCHANGE_ID

command should be suppressed during

connection to the ECU.

u32 mcPropCROID Returns the CRO CAN Identifier (Command

Receive Object) for CCP or XCP on CAN

which is used to send commands and data from

the host to the slave device.

u32 mcPropDAQ_DTO_ID Returns the DTO ID (Data Transmission

Object) which is used by the ECU to respond to

send data from the DAQ lists to the CCP master.

nctType

Taskref

mcPropDAQ_DTO_Task NI-CAN task reference to the CAN Task

assigned to the DTO ID of the Measurement

task.

str mcPropDAQ_EventChannel

Name

Returns the selected event channel name to

which the Measurement task is assigned.

u32 mcPropDAQ_EventChannel

Name_Size

Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropDAQ_EventChannelName.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-84 ni.com

u32 mcPropDAQ_Mode Returns the selected mode of an M&C

Measurement task.

0—DAQ List

The data is transmitted from the ECU in

equidistant time intervals as defined in the A2L

database. The data can be read back with

mcDAQRead as Single point data using sample

rate = 0, or as waveform using a sample rate > 0.

Input channel data is received from the DAQ

messages. Use mcDAQRead to obtain input

samples as single-point, array, or waveform.

1—Polling

In this mode the data from the Measurement

task is uploaded from the ECU whenever

mcDAQRead is called.

u32 mcPropDAQ_NumChannels Returns the number of channels initialized in a

DAQ channel list of a M&C Measurement task.

This is the number of array entries required

when using mcDAQRead.

u16 mcPropDAQ_Prescaler Prescaler for the Measurement task on the ECU.

f64 mcPropDAQ_SampleRate Returns the selected Sample Rate in Hz for the

M&C Measurement task.

u32 mcPropDAQ_Samples

Pending

Returns the number of samples available for

read in DAQ tasks defined with sample rate > 0.

If this property is queried before the DAQ list is

started, it always returns 0. Start the DAQ list

first with mcDAQStartStop before you query

this property.

f64 mcPropDAQ_TimeSince

LastFrame

Indicates how much time has passed (in

seconds) since the measurement session

received the last DAQ frame. You can reuse this

property to restart the measurement when the

value increases a threshold (for example,

0.5 seconds), assuming the ECU stopped

sending DAQ messages and must be restarted.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-85 ECU M&C Toolkit User Manual

str mcPropDB_Filename Returns the A2L Database file name with which

the task has been opened. The value of this

property cannot be changed using

mcSetProperty.

u32 mcPropDB_Filename_Size Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropDB_Filename.

u32 mcPropDTOID Returns the DTO CAN Identifier (Data Transfer

Object) for CCP or XCP on CAN which is used

to send commands and data from the slave

device to the host.

u32 mcPropECU_BaudRate Returns the baud rate in use.

u32 mcPropECU_ByteOrder Returns the byte order of the slave device.

0—MSB_LAST

The Slave device uses the MSB_LAST (Intel)

byte ordering.

1—MSB_FIRST

The Slave device uses the MSB_FIRST

(Motorola) byte ordering.

u32 mcPropECU_CCP_NumPages Returns the number of DEFINED_PAGES

structures for this ECU in the A2L file.

u32 mcPropECU_CCP_PageNo Returns the page number of the page selected

with the Name input.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-86 ni.com

u32 mcPropECU_CCP_PageFlags Returns the page flags of the page selected with

the Name input.

The value returned is a bitmask ored from the

following values:

1 RAM page

2 ROM page

4 FLASH page

8 EEPROM page

16 RAM_INIT_BY_ECU

RAM page initialized at ECU startup.

32 RAM_INIT_BY_TOOL

RAM page that the calibration tool

initializes.

64 AUTO_FLASH_BACK

RAM page automatically flashed back.

128 FLASH_BACK

RAM page that the calibration tool can

flash back.

256 DEFAULT

Page is standard (fallback).

u32 mcPropECU_CCP_

PageAddress

Returns the memory address of the page

selected with the Name input.

u8 mcPropECU_CCP_

PageAddressExtension

Returns the memory address extension of the

page selected with the Name input.

str mcPropECU_Checksum Returns the file name of the Checksum DLL

used for verifying the checksum.

u32 mcPropECU_Checksum_

Size

Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropECU_Checksum.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-87 ECU M&C Toolkit User Manual

u32 mcPropECU_CmdByteOrder Returns the byte order for multi-byte command

parameters.

0—MSB_LAST

The CCP Slave device uses the MSB_LAST

(Intel) byte ordering.

1—MSB_FIRST

The CCP Slave device uses the MSB_FIRST

(Motorola) byte ordering.

u32 mcPropECU_CRO_ID Returns the CRO ID (Command Receive

Object) which is used to send commands and

data from the host to the slave device.

nctType

Taskref

mcPropECU_CRO_Task NI-CAN Task reference to the CAN Task

assigned to the CRO ID.

u32 mcPropECU_DTO_ID Returns the DTO ID (Data Transmission

Object) which is used by the ECU to respond to

CCP commands and send data and status

information to the CCP master.

nctType

Taskref

mcPropECU_DTO_Task NI-CAN Task reference to the CAN Task

assigned to the DTO ID.

i32 mcPropECU_EventChannel Translates the event channel name to the event

channel number. Pass the event channel name in

the Name parameter of GetProperty.

[u8] mcPropECU_ID Returns the slave device identifier. This ID

information is optional and specific to the ECU

implementation. For more information about the

CCP slave ID information refer to the

documentation for the ECU.

u8 mcPropECU_ID_DataType Returns a data type qualifier of the slave device

ID information. This ID information is optional

and specific to the ECU implementation. For

more information about the CCP slave ID

information refer to the documentation for the

ECU.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-88 ni.com

u8 mcPropECU_ID_Length Returns the length of the slave device identifier

in bytes.

u32 mcPropECU_Interface Returns the interface initialized for the task,

such as with mcDAQInitialize.

[u8] mcPropECU_MasterID Returns CCP master ID information. This ID

information is optional and specific to the ECU

implementation. For more information about the

CCP master ID information refer to the

documentation for the ECU.

str mcPropECU_Name Returns the name of the selected ECU opened

by mcECUSelectEx.

str mcPropECU_Comment Returns the comment of the selected ECU

opened by mcECUSelectEx.

u32 mcPropECU_Comment_Size Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropECU_Comment.

u8 mcPropECU_XCP_

NumSegments

Returns the number of XCP memory segments

found for this ECU.

u8 mcPropECU_XCP_NumPages Returns the number of memory pages defined

for the memory segment specified in the Name

input.

Specify the segment by the string

SEGMENT[<n>], where <n> is the decimal

representation of the segment number (0..N-1,

where N is the number returned from the

mcPropECU_XCP_NumSegments property).

u8 mcPropECU_XCP_

AddressExtension

Returns the memory address extension for the

memory segment specified in the Name input.

Specify the segment by the string

SEGMENT[<n>], where <n> is the decimal

representation of the segment number (0..N-1,

where N is the number returned from the

mcPropECU_XCP_NumSegments property).

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-89 ECU M&C Toolkit User Manual

u8 mcPropECU_XCP_

CompressionMethod

Returns the compression method for the

memory segment specified in the Name input.

A value of 0 means no compression. Other

values are user defined.

Specify the segment by the string

SEGMENT[<n>], where <n> is the decimal

representation of the segment number (0..N-1,

where N is the number returned from the

mcPropECU_XCP_NumSegments property).

u8 mcPropECU_XCP_

EncryptionMethod

Returns the encryption method for the memory

segment specified in the Name input.

A value of 0 means no encryption. Other values

are user defined.

Specify the segment by the string

SEGMENT[<n>], where <n> is the decimal

representation of the segment number (0..N-1,

where N is the number returned from the

mcPropECU_XCP_NumSegments property).

u8 mcPropECU_XCP_PageNo Returns the logical page number for the memory

segment page specified in the Name input.

Specify the page by the string

SEGMENT[<n>]PAGE[<m>], where <n> is

the decimal representation of the segment

number (0..N-1, where N is the number returned

from the mcPropECU_XCP_NumSegments

property) and <m> is the decimal representation

of the page number within the segment (0..M-1,

where M is the number returned from the

mcPropECU_XCP_NumPages property for this

segment).

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-90 ni.com

u8 mcPropECU_XCP_

PageECUAccess

Returns a flag indicating ECU access rights for

the memory segment page specified in the Name

input.

Defined values are:

0 ECU access not allowed

1 ECU access allowed without XCP access

only

2 ECU access allowed with XCP access only

3 ECU access allowed always

Specify the page by the string

SEGMENT[<n>]PAGE[<m>], where <n> is

the decimal representation of the segment

number (0..N-1, where N is the number returned

from the mcPropECU_XCP_NumSegments

property) and <m> is the decimal representation

of the page number within the segment (0..M-1,

where M is the number returned from the

mcPropECU_XCP_NumPages property for this

segment).

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-91 ECU M&C Toolkit User Manual

u8 mcPropECU_XCP_

PageXCPReadAccess

Returns a flag indicating XCP Read access

rights for the memory segment page specified in

the Name input.

Defined values are:

0 XCP Read access not allowed

1 XCP Read access allowed without ECU

access only

2 XCP Read access allowed with ECU

access only

3 XCP Read access allowed always

Specify the page by the string

SEGMENT[<n>]PAGE[<m>], where <n> is

the decimal representation of the segment

number (0..N-1, where N is the number returned

from the mcPropECU_XCP_NumSegments

property) and <m> is the decimal representation

of the page number within the segment (0..M-1,

where M is the number returned from the

mcPropECU_XCP_NumPages property for this

segment).

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-92 ni.com

u8 mcPropECU_XCP_

PageXCPWriteAccess

Returns a flag indicating XCP Write access

rights for the memory segment page specified in

the Name input.

Defined values are:

0 XCP Write access not allowed

1 XCP Write access allowed without ECU

access only

2 XCP Write access allowed with ECU access

only

3 XCP Write access allowed always

Specify the page by the string

SEGMENT[<n>]PAGE[<m>], where <n> is

the decimal representation of the segment

number (0..N-1, where N is the number returned

from the mcPropECU_XCP_NumSegments

property) and <m> is the decimal representation

of the page number within the segment (0..M-1,

where M is the number returned from the

mcPropECU_XCP_NumPages property for this

segment).

u8 mcPropECU_XCP_

PageInitSegment

Returns the number of the segment that

initializes the memory segment page specified

in the Name input.

Specify the page by the string

SEGMENT[<n>]PAGE[<m>], where <n> is

the decimal representation of the segment

number (0..N-1, where N is the number returned

from the mcPropECU_XCP_NumSegments

property) and <m> is the decimal representation

of the page number within the segment (0..M-1,

where M is the number returned from the

mcPropECU_XCP_NumPages property for this

segment).

[u16] mcPropECU_DAQList

Numbers

Returns an array of DAQ list numbers for all

DAQ lists defined in the A2L file.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-93 ECU M&C Toolkit User Manual

u32 mcPropECU_TimingFactor Returns the used timing factor, which you can

use to increase CCP or XCP command timeout

values. For details on the default Command

Timeout values, refer to the CCP or XCP

Protocol Specification.

u16 mcPropDAQList_Max

Length

Returns the maximum length of the DAQ list.

u32 mcPropDAQList_CANId

SelectMode

Returns how to select the CAN ID for the

specified DAQ list:

0—CAN_ID_FIXED

The CAN Identifier is a predefined fixed

number.

1—CAN_ID_VARIABLE

The CAN Identifier is a variable number.

2—CAN_ID_DTO_ID

The CAN Identifier is the same as the DTO

identifier.

u32 mcPropDAQList_CANId Returns the CAN ID for the specified DAQ list

if mcPropDAQList_CANIdSelectMode ==

CAN_ID_FIXED.

u8 mcPropDAQList_FirstPID Returns the first Packet ID for the specified

DAQ list.

u32 mcPropDAQList_NumberOf

EventChannels

Returns the number of allowed event channels

for the specified DAQ list.

u32 mcPropDAQList_

ReductionAllowed

Returns whether or not the specified DAQ list

allows reduction.

u32 mcPropDAQList_NumberOf

ExcludedDAQLists

Returns the length of the array containing the

numbers of DAQ lists not working together with

the current DAQ list.

u16 mcPropDAQList_Excluded

DAQLists

Returns an array containing the numbers of

DAQ lists not working together with the current

DAQ list.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-94 ni.com

str mcPropDAQList_Name Name of the DAQ list (measurement source).

Pass the DAQ list number converted to a string

in the Name parameter of GetProperty. The

available DAQ list number can be obtained by

the ECU_DAQListNumbers property.

str mcPropDAQList_Name_

Size

Call this property before calling

mcPropDAQList_Name to find the amount of

storage needed to get the name value.

str mcPropDAQList_Display

Identifier

Optional property you can use as a display name

as an alternative to the DAQList_Name

property.

str mcPropDAQList_Display

Identifier_Size

Call this property before calling

mcPropDAQList_DisplayIdentifier to

find the amount of storage needed to get the

display identifier value.

u32 mcPropECU_Name_Size Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropECU_Name.

str mcPropECU_SeedChkDll

Path

Determines the directory where the ECU M&C

Toolkit expects to find the Seedkey or

Checksum DLL. If the property is an empty

string (default), the ECU M&C Toolkit expects

the DLLs in the same directory as the A2L file.

If your DLLs are in a different directory, set this

property pointing to this directory.

str mcPropECU_SeedChkDll

Path_Size

Returns the required buffer size to read the

mcPropECU_SeedChkDllPath property.

str mcPropECU_SeedKey_Cal Returns the filename of the SeedKey DLL used

for Calibration purposes. If SeedKey is

configured for remote access, the output is

RSK:<server ip address>,<port>.

u32 mcPropECU_SeedKey_Cal_

Size

Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropECU_SeedKey_Cal.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-95 ECU M&C Toolkit User Manual

str mcPropECU_SeedKey_DAQ Returns the filename of the SeedKey DLL used

for DAQ purposes. If SeedKey is configured for

remote access, the output is RSK:<server ip

address>,<port>.

u32 mcPropECU_SeedKey_DAQ_

Size

Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropECU_SeedKey_DAQ.

str mcPropECU_SeedKey_Prog Returns the file name of the SeedKey DLL used

for programming purposes. If SeedKey is

configured for remote access, the output is

RSK:<server ip address>,<port>.

u32 mcPropECU_SeedKey_

Prog_Size

Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropECU_SeedKey_Prog.

str mcPropECU_SeedKey_XCP Returns the file name of the SeedKey DLL for

XCP. If SeedKey is configured for remote

access, the output is RSK:<server ip

address>,<port>.

str mcPropECU_LogFileName Returns the filename (full path) where the CCP

or XCP protocol traffic is logged in ASCII

format for debugging purposes. An empty path

indicates no logging (default). Note that on RT

and cRIO systems, the logfile is created on the

target system and must be transferred to the host

after logging has been completed.

Note that no additional CAN port is used for the

logging, which makes this method superior to

any other method such as running a bus monitor

parallel.

u32 mcPropECU_LogFileName_

Size

Returns the size of the buffer needed to retrieve

the mcPropECU_LogFileName property.

u32 mcPropECU_SeedKey_XCP_

Size

Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropECU_SeedKey_XCP.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-96 ni.com

u8 mcPropECU_Single_Byte_

DAQ_Lists

Determines if an ECU supports single-byte or

multi-byte DAQ list entries.

u32 mcPropECU_Station

Address

Returns the station address of the slave device.

CCP is based on the idea that several ECUs can

share the same CAN Arbitration IDs for CCP

communication. To avoid communication

conflicts, CCP defines a Station Address that

must be unique for all ECUs sharing the same

CAN Arbitration IDs. Unless an ECU has been

addressed by its Station Address, the ECU must

not react to CCP commands sent by the CCP

master.

u32 mcPropECU_XCP_Timeout_

T1

mcPropECU_XCP_Timeout_

T2

mcPropECU_XCP_Timeout_

T3

mcPropECU_XCP_Timeout_

T4

mcPropECU_XCP_Timeout_

T5

mcPropECU_XCP_Timeout_

T6

mcPropECU_XCP_Timeout_

T7

Returns one of the seven timeout values (in

milliseconds) defined in the XCP standard for

the various XCP commands. For details of

which timeout applies to a specific command,

refer to the XCP standard. The values are

typically read from an A2L file, but may be

overridden manually.

Note that the mcPropECU_TimingFactor

property might modify this value.

u32 mcPropECU_CCP_Timeout_

T_std

Returns the timeout value (in milliseconds) for

most of the CCP commands. For details of

which timeout applies to a specific command,

refer to the CCP standard. Default: 40.

Standard: 25. The default is chosen slightly

higher to allow for slower ECUs.

Note that the mcPropECU_TimingFactor

property might modify this value.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-97 ECU M&C Toolkit User Manual

u32 mcPropECU_CCP_Timeout_

T_pgm

Returns the timeout value (in milliseconds) for

the CCP programming commands. For details of

which timeout applies to a specific command,

refer to the CCP standard. Default: 120.

Standard: 100. The default is chosen slightly

higher to allow for slower ECUs.

Note that the mcPropECU_TimingFactor

property might modify this value.

u32 mcPropECU_CCP_Timeout_

T_mem

Returns the timeout value (in milliseconds) for

the CCP memory commands. For details of

which timeout applies to a specific command,

refer to the CCP standard. Default and

Standard: 30000.

Note that the mcPropECU_TimingFactor

property might modify this value.

u32 mcPropECU_CCP_Timeout_

T_diag

Returns the timeout value (in milliseconds) for

the CCP DIAG_SERVICE command. Default

and Standard: 500.

Note that the mcPropECU_TimingFactor

property might modify this value.

u32 mcPropECU_CCP_Timeout_

T_act

Returns the timeout value (in milliseconds) for

the CCP ACTION_SERVICE command.

Default: 500. Standard: 5000.

Note that the mcPropECU_TimingFactor

property might modify this value.

u32 mcPropGen_Version_

Build

Returns the build number of the ECU M&C

software. This number applies to Development,

Alpha, and Beta phase only, and should be

ignored for Release phase.

str mcPropGen_Version_

Comment

Returns a comment string for the ECU M&C

software. If you received a custom release of

ECU M&C from National Instruments, this

comment often describes special features of the

release.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-98 ni.com

u32 mcPropGen_Version_

Comment_Size

Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropGen_Version_Comment.

u32 mcPropGen_Version_

Major

Returns the major version of the ECU M&C

software, such as the 1 in version 1.2.5.

u32 mcPropGen_Version_

Minor

Returns the minor version of the ECU M&C

software, such as the 2 in version 1.2.5.

u32 mcPropGen_Version_

Update

Returns the update version of the ECU M&C

software, such as the 5 in version 1.2.5.

str mcPropIPAddress Returns the IP address for XCP on Ethernet

(TCP or UDP) as a string.

u32 mcPropIPAddress_Size Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropIPAddress.

u16 mcPropIPPort Returns the IP port for XCP on Ethernet (TCP or

UDP).

u32 mcPropMeas_Address Returns the address of the selected

Measurement in the memory of the control unit.

u32 mcPropMeas_ByteOrder Returns the specified byte order:

0—Intel format

Bytes are in little-endian order, with

least-significant bit first.

1—Motorola format

Bytes are in big-endian order, with

most-significant bit first.

u8 mcPropMeas_Datatype Returns the data type of the Measurement task.

u8 mcPropMeas_Extension Returns the address extension of the ECU

address. This optional parameter may contain

additional address information defined in the

A2L database. For instance it can be used, to

distinguish different address spaces of an ECU

(multi-microcontroller devices).

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-99 ECU M&C Toolkit User Manual

u32 mcPropMeas_IsVirtual Returns whether the Measurement is virtual.

Virtual Measurements are not transmitted by the

ECU but are calculated in the application. They

return an error when opened in a DAQ list.

f64 mcPropMeas_Maximum Returns the maximum value of the

Measurement.

f64 mcPropMeas_Minimum Returns the minimum value of the

Measurement.

u32 mcPropMeas_ReadOnly Returns TRUE if the selected Measurement is

read only and can only be accessed through

mcMeasurementRead, or returns FALSE if the

Measurement can be accessed through

mcMeasurementWrite as well.

str mcPropMeas_Unit Returns the unit string defined for this

Measurement in the A2L database.

u32 mcPropMeas_Unit_Size Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropMeas_Unit.

f64 mcPropMeas_Scale_

Factor

Returns the scaling factor defined for this

Measurement in the A2L database.

f64 mcPropMeas_Scale_

Offset

Returns the scaling offset defined for this

Measurement in the A2L database.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-100 ni.com

u32 mcPropMeas_Scale_Type Returns the scaling type defined for this

Measurement in the A2L database.

0: Unknown

The type of the scaling could not be derived

from the A2L file content.

1: Rational Function

The related scaling is based on a rational

function of second order. This covers also the

linear scaling, given by factor and offset.

2: Enumeration Text

The related scaling is based on the

COMPU_VTAB keyword within the A2L file.

• Read functions return nonscaled, numeric

values.

• Write functions accept nonscaled, numeric

values.

• It is possible to use mcDoubleToText and

mcTextToDouble to convert between

enumeration text values and double values.

3: Range Text

The related scaling is based on the

COMPU_VTAB_RANGE keyword within the

A2L file.

• Read functions return nonscaled, numeric

values.

• Write functions accept nonscaled, numeric

values.

• It is possible to use mcDoubleToText and

mcTextToDouble to convert between range

text values and double values.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-101 ECU M&C Toolkit User Manual

4: Formula

The related scaling is based on the FORMULA

keyword within the A2L file, using a free

formula to calculate the values.

5: Table (Using Interpolation)

The related scaling is based on the TAB_INTP

keyword within the A2L file, using interpolation

between x-y pairs.

6: Table (Without Interpolation)

The related scaling is based on the

TAB_NOINTP keyword within the A2L file,

using x-y pairs without interpolation.

u32 mcPropMeas_Scale_

TextValues_Size

If the scaling type is 2 = Enumeration Text or

3 = Range Text, you can use this property to

request the length needed to store the

comma-separated list of text values that can be

converted into raw values (refer to the

mcPropMeas_Scale_TextValues property).

str mcPropMeas_Scale_

TextValues

If the scaling type is 2 = Enumeration Text or

3 = Range Text, you can use this property to

request the comma-separated list of text values

which can be converted into raw values.

u32 mcPropOptCmd_ACTION_

SERVICE

Returns whether the ECU supports the optional

CCP Command ACTION_SERVICE.

u32 mcPropOptCmd_BUILD_

CHKSUM

Returns whether the ECU supports the optional

CCP Command BUILD_CHKSUM.

u32 mcPropOptCmd_CLEAR_

MEMORY

Returns whether the ECU supports the optional

CCP Command CLEAR_MEMORY.

u32 mcPropOptCmd_DIAG_

SERVICE

Returns whether the ECU supports the optional

CCP Command DIAG_SERVICE.

u32 mcPropOptCmd_DNLOAD_6 Returns whether the ECU supports the optional

CCP Command DNLOAD_6.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-102 ni.com

u32 mcPropOptCmd_GET_

ACTIVE_CAL_PAGE

Returns whether the ECU supports the optional

CCP Command GET_ACTIVE_CAL_PAGE.

u32 mcPropOptCmd_GET_S_

STATUS

Returns whether the ECU supports the optional

CCP Command GET_S_STATUS.

u32 mcPropOptCmd_GET_SEED Returns whether the ECU supports the optional

CCP Command GET_SEED.

u32 mcPropOptCmd_MOVE Returns whether the ECU supports the optional

CCP Command MOVE.

u32 mcPropOptCmd_PROGRAM Returns whether the ECU supports the optional

CCP Command PROGRAM.

u32 mcPropOptCmd_PROGRAM_6 Returns whether the ECU supports the optional

CCP Command PROGRAM_6.

u32 mcPropOptCmd_SELECT_

CAL_PAGE

Returns whether the ECU supports the optional

CCP Command SELECT_CAL_PAGE.

u32 mcPropOptCmd_SET_S_

STATUS

Returns whether the ECU supports the optional

CCP Command SET_S_STATUS.

u32 mcPropOptCmd_SHORT_UP Returns whether the ECU supports the optional

CCP Command SHORT_UP.

u32 mcPropOptCmd_START_

STOP_ALL

Returns whether the ECU supports the optional

CCP Command START_STOP_ALL.

u32 mcPropOptCmd_TEST Returns whether the ECU supports the optional

CCP Command TEST.

u32 mcPropOptCmd_UNLOCK Returns whether the ECU supports the optional

CCP Command UNLOCK.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-103 ECU M&C Toolkit User Manual

u8 mcPropPGM_AccessMethod Returns the selected access mode for

mcProgram and mcClearMemory:

0x00—Absolute Access Mode (default). The

MTA uses physical addresses

0x01—Functional Access Mode. The MTA

functions as a block sequence number of the

new flash content file.

0x80...0xFF—User defined. It is possible to use

different access modes for clearing and

programming.

u8 mcPropPGM_Compression

Method

Returns the selected compression method used

for mcProgram.

0—Data is uncompressed (default).

0x80...0xFF—User defined.

u8 mcPropPGM_Encryption

Method

Returns the selected encryption method used for

mcProgram.

0—Data is not encrypted (default).

0x80...0xFF—User defined.

u8 mcPropPGM_Programming

Method

Returns the selected programming method used

for mcProgram.

0—Sequential programming (default).

0x80...0xFF—User defined.

u32 mcPropGroup_IsRoot Returns a nonzero value for Groups being root.

str mcPropGroup_Comment Returns the comment of the selected Group.

u32 mcPropGroup_Comment_

Size

Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropGroup_Comment.

str mcPropFunction_Comment Returns the comment of the selected Function.

u32 mcPropFunction_Comment_

Size

Returns the number of bytes to be allocated if

you call mcGetProperty with the parameter

mcPropFunction_Comment.

Table 6-4. Values for PropertyID (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-104 ni.com

mcMeasurementCreate

Purpose
Creates a Measurement object in memory.

Format
mcTypeStatus mcMeasurementCreate(

mcTypeTaskRef ECURefNum,

char *MeasurementName,

mcAddress Address,

i32 DataType,

u8 DataSize,

char *ConversionName);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUCreate.

Address Configures the target address for the programming operation in

the ECU. mcAddress is a C struct consisting of:

Address

Specifies the address part of the programming address.

Extension

Extension contains the extension part of the address.

DataType DataType sets the data type of the measurement task.

DataType Data Format

0 Unsigned byte

1 Signed byte

2 Unsigned word

3 Signed word

4 Unsigned long

5 Signed long

6 Float 32

Chapter 6 ECU M&C API for C

© National Instruments 6-105 ECU M&C Toolkit User Manual

DataSize Sets the size of the measurement data and corresponds to the

selected DataType.

Data Format DataSize

Unsigned byte 1

Signed byte 1

Unsigned word 2

Signed word 2

Unsigned long 4

Signed long 4

Float 32 4

ConversionName ConversionName identifies the referred conversion object that

mcConversionCreate defines.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
Use mcMeasurementCreate to create a measurement object in memory instead of referring

to a predefined measurement in the A2L database.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-106 ni.com

mcMeasurementRead

Purpose
Reads a single Measurement value from the ECU.

Format
mcTypeStatus mcMeasurementRead(

mcTypeTaskRef ECURefNum,

char *MeasurementName,

f64 *Value);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

MeasurementName MeasurementName is the name of a Measurement channel stored

in the A2L database file from which a Measurement value is to be

read.

Output
Value Returns a single sample for the Measurement channel initialized

in MeasurementName.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcMeasurementRead performs a single point read (upload) of a single Measurement from

the selected ECU without opening a Measurement task.

Chapter 6 ECU M&C API for C

© National Instruments 6-107 ECU M&C Toolkit User Manual

mcMeasurementWrite

Purpose
Writes a single Measurement value to the ECU.

Format
mcTypeStatus mcMeasurementWrite(

mcTypeTaskRef ECURefNum,

char *MeasurementName,

f64 Values);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

MeasurementName MeasurementName is the name of a Measurement channel stored

in the A2L database file to which a Measurement value is to be

written.

Values Writes a single sample for the Measurement channel initialized in

MeasurementName.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcMeasurementWrite performs a single point write (download) of a Measurement into the

selected ECU without opening a Measurement task. mcMeasurementWrite can only be

performed if the Measurement channel is not set to read only. To query if an ECU

Measurement channel can be accessed by mcMeasurementWrite, call mcGetProperty

with the parameter mcPropMeas_ReadOnly.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-108 ni.com

mcProgram

Purpose
Programs a memory block on the ECU.

Format
mcTypeStatus mcProgram(

mcTypeTaskRef ECURefNum,

mcAddress Address,

u32 BlockSize,

u8 *Data);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Address Configures the target address for the programming operation in

the ECU. mcAddress is a C struct consisting of:

Address

Specifies the address part of the programming address.

Extension

Extension contains the extension part of the address.

BlockSize BlockSize determines the size of the data block which is

transferred to the ECU and used for programming from the MTA0

target.

Data data contains the byte array that is transmitted to the ECU.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-109 ECU M&C Toolkit User Manual

Description
If you are using the CCP protocol, mcProgram implements the CCP command PROGRAM.

The command is used to program the specified data into non-volatile ECU memory (Flash,

EEPROM, etc.). Programming starts at the selected MTA0 address and extension defined in

the Address struct. The mcProgram function auto-increments the ECU MTA0 address.

If you are using the XCP protocol, mcProgram implements the XCP command PROGRAM.

The command is used to program a non-volatile memory segment inside the ECU slave.

Depending on the access mode (defined by PROGRAM_FORMAT), two different concepts

are supported. The end of the memory segment is indicated when BlockSize is set to 0. The

end of the overall programming sequence is indicated by a using the mcProgramReset

command which executes the XCP command PROGRAM_RESET, causing the slave device

to move into a disconnected state. Usually a hardware reset of the slave device is executed.

This command may support block transfer similar to the commands DOWNLOAD and

DOWNLOAD_NEXT. For further information on how to use mcProgram and details on

block mode transfers refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-110 ni.com

mcProgramReset

Purpose
Indicates the end of a programming sequence.

Format
mcTypeStatus mcProgramReset(

mcTypeTaskRef ECURefNum);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
If you are using the XCP protocol, mcSetProperty implements the XCP command

PROGRAM_RESET. This optional command indicates the end of a non-volatile memory

programming sequence and may or may not have a response from the ECU. In either case,

the slave device will go into a disconnected state.

mcSetProperty may be used to reset a slave device for other purposes. For further

information on how to use program ECU memory and to use the mcSetProperty command

refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 6 ECU M&C API for C

© National Instruments 6-111 ECU M&C Toolkit User Manual

mcProgramStart

Purpose
Indicates the start of a programming sequence.

Format
mcTypeStatus mcProgramStart(

mcTypeTaskRef ECURefNum);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
If you are using the XCP protocol, mcProgramStart implements the XCP command

PROGRAM_START. This optional command the beginning of a programming sequence into

a non-volatile memory area. If the slave device is not in a state which permits programming,

an error is returned. The memory programming commands The end of a non-volatile memory

programming sequence is indicated by using the mcSetProperty function.

For further information on how to use program ECU memory and to use the

mcProgramStart command refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-112 ni.com

mcSetProperty

Purpose
Sets a property of the driver, the database, the ECU, a Characteristic, a Measurement, or a

Measurement task.

Format
mcTypeStatus mcSetProperty(

mcTypeTaskRef RefNum,

cstr Name,

u32 PropertyID,

u32 SizeOfValue,

void *Value);

Input
RefNum RefNum is any ECU M&C task reference which consists of a valid

link to the opened A2L database (DBRefNum), a selected ECU

(ECURefNum) or a Measurement task (DAQRefNum). RefNum

must be valid for the related PropertyID type.

Name Name is not used and can be set to NULL. This parameter maybe

used for further extensions.

PropertyID Selects the property to set.

For a description of each property, including its data type and

PropertyId, refer to the Properties section.

SizeOfValue Number of bytes allocated for the Value output. This size

normally depends on the data type listed in the description of the

property.

Value Provides the property value. PropertyId determines the data

type of the value.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-113 ECU M&C Toolkit User Manual

Description
There are four types of properties which can be modified in the poly input value:

ECU-specific properties, DAQ-specific properties, Characteristic-specific properties,

and Measurement-specific properties.

ECU-Specific Properties

You cannot set an ECU property while the application is connected to the ECU. If you

need to change a ECU property prior to connecting, call mcECUSelectEx, followed by

mcSetProperty, and then mcECUConnect. After you connect to the ECU, you also can

change a property by calling mcECUDisconnect, followed by mcSetProperty, and then

mcECUConnect to restart the task. Table 6-5 contains a listing of ECU-specific values for

PropertyID.

DAQ-Specific Properties

You cannot set a DAQ property while a Measurement task is running. If you need to change

a property prior to starting a Measurement task call mcDAQInitialize, followed by

mcSetProperty, and then mcDAQStartStop. After you start the Measurement task, you

also can change a property by calling mcDAQStartStop, followed by mcSetProperty, and

then mcDAQStartStop to restart the task. Table 6-6 contains a listing of ECU-specific values

for PropertyID.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-114 ni.com

Properties

Table 6-5. ECU-Specific Value Types for the PropertyID Input Value

Data Type Name Description

u32 mcPropCANBaudRate Sets the CAN Baud rate for CCP or XCP on

CAN which is used to send commands and data

from the host to the slave device.

u8 mcPropCANTermination For all XNET devices, the termination is

software selectable. XNET provides the option

of 80  between Bus Plus and Bus Minus or no

termination. The Termination property

configures the onboard termination of the

NI-XNET interface CAN connector (port). The

Boolean property supports two values: TRUE =

Termination ON and FALSE = Termination Off.

However, different CAN hardware has different

termination requirements, and the termination

values have different meanings. Refer to the

Termination attribute in the XNET API for more

details. (This property is supported for

NI-XNET devices only.)

u32 mcPropCmd_EXCHANGE_ID Sets whether or not the EXCHANGE_ID

command should be suppressed during

connection to the ECU.

u32 mcPropCROID Sets the CRO CAN Identifier (Command

Receive Object) for CCP or XCP on CAN

which is used to send commands and data from

the host to the slave device.

u32 mcPropDTOID Sets the DTO CAN Identifier (Data Transfer

Object) for CCP or XCP on CAN which is used

to send commands and data from the slave

device to the host.

Chapter 6 ECU M&C API for C

© National Instruments 6-115 ECU M&C Toolkit User Manual

u32 mcPropECU_BaudRate Sets the Baud rate in use by the selected

interface. This property applies to all tasks

initialized with the NI-CAN or NI-XNET

interface. You can specify the following basic

baud rates as the numeric rate: 33333, 83333,

100000, 125000, 200000, 250000, 400000,

500000, 800000, and 1000000. You can specify

advanced baud rates as 8000XXYY hex, where

YY is the value of Bit Timing Register 0 (BTR0),

and XX is the value of Bit Timing Register 1

(BTR1).

For more information, refer to the Interface

Properties dialog in MAX. The value of this

property is originally set within MAX, but it can

be changed using mcSetProperty.

u32 mcPropECU_ByteOrder Sets the Byte Order of the slave device.

0—MSB_LAST

The Slave device uses the MSB_LAST (Intel)

byte ordering.

1—MSB_FIRST

The Slave device uses the MSB_FIRST

(Motorola) byte ordering.

str mcPropECU_Checksum Sets the file name of the Checksum DLL used

for verifying the checksum.

u32 mcPropECU_CmdByteOrder Sets the byte order for multi-byte command

parameters.

0—MSB_LAST

The CCP Slave device uses the MSB_LAST

(Intel) byte ordering.

1—MSB_FIRST

The CCP Slave device uses the MSB_FIRST

(Motorola) byte ordering.

Table 6-5. ECU-Specific Value Types for the PropertyID Input Value (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-116 ni.com

u32 mcPropECU_CRO_ID Sets the CAN identifier for the CRO ID

(Command Receive Object), which is used to

send commands and data from the host to the

slave device.

u32 mcPropECU_DTO_ID Sets the DTO ID (Data Transmission Object)

which is used by the ECU to respond to CCP

commands and send data and status information

to the CCP master.

u32 mcPropECU_MasterID Sets CCP master ID information. This ID

information is optional and specific to the ECU

implementation. For more information about the

CCP master ID information refer to the

documentation for the ECU.

str mcPropECU_SeedChkDll

Path

Determines the directory where the ECU M&C

Toolkit expects to find the Seedkey or

Checksum DLL. If the property is an empty

string (default), the ECU M&C Toolkit expects

the DLLs in the same directory as the A2L file.

If your DLLs are in a different directory, set this

property pointing to this directory.

str mcPropECU_SeedKey_Cal Sets the filename of the SeedKey DLL used for

Calibration purposes. For Remote Seedkey

access (refer to the LabVIEW examples), set the

name to RSK:<server ip address>,<port>.

str mcPropECU_SeedKey_DAQ Sets the filename of the SeedKey DLL used for

DAQ purposes. For Remote Seedkey access

(refer to the LabVIEW examples), set the name

to RSK:<server ip address>,<port>.

str mcPropECU_SeedKey_Prog Sets the filename of the SeedKey DLL used for

programming purposes. For Remote Seedkey

access (refer to the LabVIEW examples), set the

name to RSK:<server ip address>,<port>.

str mcPropECU_SeedKey_XCP Sets the filename of the SeedKey DLL for XCP.

For Remote Seedkey access (refer to the

LabVIEW examples), set the name to

RSK:<server ip address>,<port>.

Table 6-5. ECU-Specific Value Types for the PropertyID Input Value (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-117 ECU M&C Toolkit User Manual

str mcPropECU_LogFileName Sets a filename (full path) where the CCP or

XCP protocol traffic is logged in ASCII format

for debugging purposes. Setting this value to an

empty path (NULL or empty string) disables

logging (default). Note that on RT and cRIO

systems, the logfile is created on the target

system and must be transferred to the host after

logging has been completed.

Note that no additional CAN port is used for the

logging, which makes this method superior to

any other method such as running a bus monitor

parallel.

u8 mcPropECU_Single_Byte_

DAQ_Lists

Sets the ECU to support single-byte or

multi-byte DAQ list entries.

u32 mcPropECU_Station

Address

Sets the station address of the slave device. CCP

is based on the idea that several ECUs can share

the same CAN Arbitration IDs for CCP

communication. To avoid communication

conflicts, CCP defines a Station Address that

must be unique for all ECUs sharing the same

CAN Arbitration IDs. Unless an ECU has been

addressed by its Station Address, the ECU must

not react to CCP commands sent by the CCP

master.

u32 mcPropECU_TimingFactor Sets the timing factor, which you can use to

increase CCP or XCP command timeout values.

For details on the default Command Timeout

values, refer to the CCP or XCP Protocol

Specification.

Table 6-5. ECU-Specific Value Types for the PropertyID Input Value (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-118 ni.com

u32 mcPropECU_XCP_Timeout_

T1

mcPropECU_XCP_Timeout_

T2

mcPropECU_XCP_Timeout_

T3

mcPropECU_XCP_Timeout_

T4

mcPropECU_XCP_Timeout_

T5

mcPropECU_XCP_Timeout_

T6

mcPropECU_XCP_Timeout_

T7

Sets one of the seven timeout values (in

milliseconds) defined in the XCP standard for

the various XCP commands. For details of

which timeout applies to a specific command,

refer to the XCP standard. The values are

typically read from an A2L file, but may be

overridden manually.

Note that the mcPropECU_TimingFactor

property might modify this value.

u32 mcPropECU_CCP_Timeout_

T_std

Sets the timeout value (in milliseconds) for most

of the CCP commands. For details of which

timeout applies to a specific command, refer to

the CCP standard. Default: 40. Standard: 25.

The default is chosen slightly higher to allow for

slower ECUs.

Note that the mcPropECU_TimingFactor

property might modify this value.

u32 mcPropECU_CCP_Timeout_

T_pgm

Sets the timeout value (in milliseconds) for the

CCP programming commands. For details of

which timeout applies to a specific command,

refer to the CCP standard. Default: 120.

Standard: 100. The default is chosen slightly

higher to allow for slower ECUs.

Note that the mcPropECU_TimingFactor

property might modify this value.

u32 mcPropECU_CCP_Timeout_

T_mem

Sets the timeout value (in milliseconds) for the

CCP memory commands. For details of which

timeout applies to a specific command, refer to

the CCP standard. Default and Standard: 30000.

Note that the mcPropECU_TimingFactor

property might modify this value.

Table 6-5. ECU-Specific Value Types for the PropertyID Input Value (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-119 ECU M&C Toolkit User Manual

u32 mcPropECU_CCP_Timeout_

T_diag

Sets the timeout value (in milliseconds) for the

CCP DIAG_SERVICE command. Default and

Standard: 500.

Note that the mcPropECU_TimingFactor

property might modify this value.

u32 mcPropECU_CCP_Timeout_

T_act

Sets the timeout value (in milliseconds) for the

CCP ACTION_SERVICE command.

Default: 500. Standard: 5000.

Note that the mcPropECU_TimingFactor

property might modify this value.

str mcPropIPAddress Sets the IP address for XCP on Ethernet

(TCP or UDP) as a string.

u16 mcPropIPPort Sets the IP port for XCP on Ethernet

(TCP or UDP).

u32 mcPropOptCmd_ACTION_

SERVICE

Sets whether the ECU supports the optional

CCP Command ACTION_SERVICE.

u32 mcPropOptCmd_BUILD_

CHKSUM

Sets whether the ECU supports the optional

CCP Command BUILD_CHKSUM.

u32 mcPropOptCmd_CLEAR_

MEMORY

Sets whether the ECU supports the optional

CCP Command CLEAR_MEMORY.

u32 mcPropOptCmd_DIAG_

SERVICE

Sets whether the ECU supports the optional

CCP Command DIAG_SERVICE.

u32 mcPropOptCmd_DNLOAD_6 Sets whether the ECU supports the optional

CCP Command DNLOAD_6.

u32 mcPropOptCmd_GET_

ACTIVE_CAL_PAGE

Sets whether the ECU supports the optional

CCP Command GET_ACTIVE_CAL_PAGE.

u32 mcPropOptCmd_GET_S_

STATUS

Sets whether the ECU supports the optional

CCP Command GET_S_STATUS.

u32 mcPropOptCmd_GET_SEED Sets whether the ECU supports the optional

CCP Command GET_SEED.

u32 mcPropOptCmd_MOVE Sets whether the ECU supports the optional

CCP Command MOVE.

Table 6-5. ECU-Specific Value Types for the PropertyID Input Value (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-120 ni.com

u32 mcPropOptCmd_PROGRAM Sets whether the ECU supports the optional

CCP Command PROGRAM.

u32 mcPropOptCmd_PROGRAM_6 Sets whether the ECU supports the optional

CCP Command PROGRAM_6.

u32 mcPropOptCmd_SELECT_

CAL_PAGE

Sets whether the ECU supports the optional

CCP Command SELECT_CAL_PAGE.

u32 mcPropOptCmd_SET_S_

STATUS

Sets whether the ECU supports the optional

CCP Command SET_S_STATUS.

u32 mcPropOptCmd_SHORT_UP Sets whether the ECU supports the optional

CCP Command SHORT_UP.

u32 mcPropOptCmd_START_

STOP_ALL

Sets whether the ECU supports the optional

CCP Command START_STOP_ALL.

u32 mcPropOptCmd_TEST Sets whether the ECU supports the optional

CCP Command TEST.

u32 mcPropOptCmd_UNLOCK Sets whether the ECU supports the optional

CCP Command UNLOCK.

u8 mcPropPGM_AccessMethod Selects the selected access mode for mcProgram

and mcClearMemory:

0x00—Absolute Access Mode (default). The

MTA uses physical addresses.

0x01—Functional Access Mode. The MTA

functions as a block sequence number of the

new flash content file.

0x80...0xFF—User defined. It is possible to use

different access modes for clearing and

programming.

u8 mcPropPGM_Compression

Method

Selects the selected compression method used

for mcProgram.

0—Data is uncompressed (default).

0x80...0xFF—User defined.

Table 6-5. ECU-Specific Value Types for the PropertyID Input Value (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

© National Instruments 6-121 ECU M&C Toolkit User Manual

u8 mcPropPGM_Encryption

Method

Selects the selected encryption method used for

mcProgram.

0—Data is not encrypted (default).

0x80...0xFF—User defined.

u8 mcPropPGM_Programming

Method

Selects the selected programming method used

for mcProgram.

0—Sequential programming (default).

0x80...0xFF—User defined.

Table 6-5. ECU-Specific Value Types for the PropertyID Input Value (Continued)

Data Type Name Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-122 ni.com

Table 6-6. DAQ-Specific Value Types for the PropertyID Input Value

Data Type Name Description

u32 mcPropDAQ_DTO_ID Sets the DTO ID (Data Transmission Object)

which is used by the ECU to respond to send

data from the DAQ lists to the CCP master.

str mcPropDAQ_EventChannel

Name

Sets the event channel name to which the

Measurement task is assigned. If there is no

event channel name defined in the A2L file, you

can set the Event Channel Number manually by

passing a decimal number as a string.

i32 mcPropDAQ_Mode Sets the mode of an M&C Measurement task.

0—DAQ List

The data is transmitted from the ECU in

equidistant time intervals as defined in the A2L

database. The data can be read back with

mcDAQRead as Single point data using sample

rate = 0, or as waveform using a sample rate > 0.

Input channel data is received from the DAQ

messages. Use mcDAQRead to obtain input

samples as single-point, array, or waveform.

1—Polling

In this mode the data from the Measurement

task is uploaded from the ECU whenever

mcDAQRead is called.

u16 mcPropDAQ_Prescaler Sets the Prescaler, which reduces the desired

transmission frequency of the associated DAQ

list.

Chapter 6 ECU M&C API for C

© National Instruments 6-123 ECU M&C Toolkit User Manual

Characteristic-Specific Properties

Measurement-Specific Properties

Table 6-7. Characteristic-Specific Value Types for the PropertyID Input Value

Data Type Name Description

double[] mcPropChar_X_Axis Sets the X-axis values on which the

Characteristic is defined. The Characteristic

dimension must be at least 1.

double[] mcPropChar_Y_Axis Sets the Y-axis values on which the

Characteristic is defined. The Characteristic

dimension must be 2.

u32 mcPropChar_ByteOrder Sets the specified byte order of the selected

Characteristic:

0—Intel format

Bytes are in little-endian order, with

least-significant bit first.

1—Motorola format

Bytes are in big-endian order, with

most-significant bit first.

Table 6-8. Measurement-Specific Value Types for the PropertyID Input Value

Data Type Name Description

u32 mcPropMeas_ByteOrder Sets the specified byte order of the selected

Measurement:

0—Intel format

Bytes are in little-endian order, with

least-significant bit first.

1—Motorola format

Bytes are in big-endian order, with

most-significant bit first.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-124 ni.com

mcStatusToString

Purpose
Converts a status code into a descriptive string.

Format
mcTypeStatus mcStatusToString(

mcTypeTaskRef Status,

u32 SizeofString,

str ErrorString);

Input
Status Nonzero status code returned from an ECU M&C function.

SizeofString SizeofString buffer (in bytes).

Output
ErrorString ASCII string that describes Status.

Description
When the status code returned from an ECU M&C function is nonzero, an error or warning

is indicated. This function is used to obtain a description of the error/warning for debugging

purposes.

The return code is passed into the Status parameter. The SizeofString parameter

indicates the number of bytes available in the string for the description. The description is

truncated to size SizeofString if needed, but a size of 300 characters is large enough to

hold any description. The text returned in ErrorString is null-terminated, so it can be used

with ANSI C functions such as printf. For applications written in C or C++, each

ECU M&C function returns a status code as a signed 32-bit integer. The following table

summarizes the ECU M&C use of this status.

Table 6-9. Description of Return Codes

Status Code Definition

Negative Error—Function did not perform expected behavior.

Positive Warning—Function performed as expected, but a condition arose that

may require attention.

Zero Success—Function completed successfully.

Chapter 6 ECU M&C API for C

© National Instruments 6-125 ECU M&C Toolkit User Manual

The application code should check the status returned from every ECU M&C function. If an

error is detected, you should close all ECU M&C handles and exit the application. If a

warning is detected, you can display a message for debugging purposes or simply ignore the

warning.

The following piece of code shows an example of handling ECU M&C status during

application debugging.

status= ncDatabaseOpen ("TestDataBase.A2L", &MyDbHandle);

PrintStat (status, "mcOpenDatabase");

where the function PrintStat has been defined at the top of the program as:

void PrintStat(mcTypeStatus status, char *source)

{

char statusString[300];

if(status !=0)

{

mcStatusToString(status, sizeof(statusString), statusString);

printf("\n%s\nSource = %s\n", statusString, source);

if (status < 0)

{

mcDatabaseClose(MyDbHandle);

exit(1);

}

}

}

In some situations, you may want to check for specific errors in the code. For example, when

mcCharacteristicRead times out, you may want to continue communication, rather than

exit the application. To check for specific errors, use the constants defined in niemc.h. These

constants have the same names as described in this manual. For example, to check for a

function timeout, use:

if (status == mcErrorTimeout)

...

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-126 ni.com

mcTextToDouble

Purpose
Converts a text string to a numerical value using an enumeration or range text scaling.

Format
mcTypeStatus mcTextToDouble(

mcTypeTaskRef ECURefNum,

u32 ObjectType,

cstr ObjectName,

cstr TextValue,

double *Value);

Input
ECURefNum The task reference that links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

ObjectType Indicates the type of the object named in ObjectName. Valid

values are:

1 Measurement Name

2 Characteristic Name

ObjectName Indicates the object (measurement or characteristic) for which the

enumeration or range text scaling is performed.

TextValue The text that you want to turn into the numeric representation.

Output
Value Returns the converted value.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-127 ECU M&C Toolkit User Manual

Description
mcTextToDouble performs text to double conversion for measurement or characteristic

values.

Especially if the measurement or characteristic has an associated enumeration or range text

type scaling, the text input will be converted into the numeric representation, using the related

COMPU_VTAB or COMPU_VTAB_RANGE table.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-128 ni.com

mcUpload

Purpose
Uploads data from an ECU.

Format
mcTypeStatus mcUpload(

mcTypeTaskRef ECURefNum,

mcAddress Address,

u32 BlockSize,

u8 *Data);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Address Configures the source address for the upload operation in the

ECU. mcAddress is a C struct consisting of:

Address

Specifies the address part of the source address.

Extension

Extension contains the extension part of the address.

BlockSize BlockSize is the size of the data block in bytes to be uploaded.

Output
Data Data is a byte array which receives the uploaded data information

from the ECU.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-129 ECU M&C Toolkit User Manual

Description
If you are using the CCP protocol, mcUpload implements the CCP command UPLOAD. A

data block of the specified length starting at the specified address is uploaded from the ECU.

This function sets the Memory Transfer Address pointer MTA0 to the appropriate value as

defined in the Address struct.

If you are using the XCP protocol, mcUpload implements the XCP command UPLOAD. A

data block of the specified length starting at the specified address is uploaded from the ECU.

The Memory Transfer Address pointer MTA0 is post-incremented by the given number of

data elements. If the slave device does not support block transfer mode, all uploaded data is

transferred in a single response packet. If block transfer mode is supported, the uploaded data

is transferred in multiple responses on the same request packet. There are no limitations

allowed concerning the maximum block size for the master.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to upload data and to use the mcUpload command.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-130 ni.com

mcXCPCopyCalPage

Purpose
Forces a copy transaction of one calibration page to another.

Format
mcTypeStatus mcXCPCopyCalPage(

mcTypeTaskRef ECURefNum,

u8 SourceSegment,

u8 SourcePage,

u8 DestinationSegment,

u8 DestinationPage);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

SourceSegment SourceSegment specifies the logical data segment number

source.

SourcePage SourcePage specifies the logical page number source.

DestinationSegment DestinationSegment specifies the logical data segment

number destination.

DestinationPage DestinationPage specifies the logical page number

destination.

Output
None.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Chapter 6 ECU M&C API for C

© National Instruments 6-131 ECU M&C Toolkit User Manual

Description
mcXCPCopyCalPage implements the XCP command COPY_CAL_PAGE and forces the

slave to copy one calibration page to another. This command is only available if more than

one calibration page is defined. In principal, any page of any segment can be copied to any

page of any other segment but there may be restrictions.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-132 ni.com

mcXCPGetCalPage

Purpose
Queries a calibration page setting.

Format
mcTypeStatus mcXCPGetCalPage(

mcTypeTaskRef ECURefNum,

u8 Mode,

u8 Segment,

u8 *Page);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Mode Mode specifies the access mode:

Mode = 1

The given page is used by the slave device application.

Mode = 2

The slave device XCP driver will access the given page.

Segment Segment specifies the selected logical data segment number.

Output
Page Page returns the logical data page number.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcXCPGetCalPage implements the XCP command GET_CAL_PAGE and queries the

logical number for the calibration data page that is currently activated for the specified access

mode and data segment.

Chapter 6 ECU M&C API for C

© National Instruments 6-133 ECU M&C Toolkit User Manual

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-134 ni.com

mcXCPGetId

Purpose
Queries session configuration or slave device identification.

Format
mcTypeStatus mcXCPGetId(

mcTypeTaskRef ECURefNum,

u8 Type,

u32 *Length,

char *Id);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Type Type specifies the type of the requested identification:

Output
Length Length returns the string length of the Id string.

Id Id contains the queried identification string.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Type Description

0 ASCII text

1 ASAM-MC2 filename without path and extension

2 ASAM-MC2 filename with path and extension

3 URL where the ASAM-MC2 file can be found

4 ASAM-MC2 file to upload128..255

User defined

Chapter 6 ECU M&C API for C

© National Instruments 6-135 ECU M&C Toolkit User Manual

Description
mcXCPGetId implements the XCP command GET_ID and returns session configuration or

slave device identification information of the selected ECU slave device. The supported types

are implementation specific of the ECU slave device. The identification string is ASCII text

format.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-136 ni.com

mcXCPGetStatus

Purpose
Queries the current session status from an ECU slave device.

Format
mcTypeStatus mcXCPGetStatus(

mcTypeTaskRef ECURefNum,

u8 *SessionStatus,

u8 *ResourceMask,

u16 *SessionId);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Output
SessionStatus SessionStatus returns the current status of the selected ECU.

ResourceMask ResourceMask is the current resource protection status of the

selected ECU.

SessionId SessionId returns the defined session configuration ID.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcXCPGetStatus implements the XCP command GET_STATUS and returns all current

status information of the selected ECU slave device, including the status of the resource

protection, pending store requests and the general status of data acquisition and stimulation.

Chapter 6 ECU M&C API for C

© National Instruments 6-137 ECU M&C Toolkit User Manual

Current Session Status

SessionStatus contains a bit mask which is described below:

The STORE_CAL_REQ flag indicates a pending request to save the calibration data into

non-volatile memory. As soon as the request has been fulfilled, the slave will reset the

appropriate bit. The slave device may indicate this by transmitting an EV_STORE_CAL

event packet.

The STORE_DAQ_REQ flag indicates a pending request to save the DAQ list setup in

non-volatile memory. As soon as the request has been fulfilled, the slave will reset the

appropriate bit. The slave device may indicate this by transmitting an EV_STORE_DAQ

event packet.

Bit

Number Flag Description

0 STORE_CAL_REQ REQuest to STORE CALibration data:

0—STORE_CAL_REQ mode is reset.

1—STORE_CAL_REQ mode is set.

1 Unused —

2 STORE_DAQ_REQ REQuest to STORE DAQ list:

0—STORE_DAQ_REQ mode is reset.

1—STORE_DAQ_REQ mode is set.

3 CLEAR_DAQ_REQ REQuest to CLEAR DAQ configuration:

0—CLEAR_DAQ_REQ is reset.

1—CLEAR_DAQ_REQ is set.

4 Unused —

5 Unused —

6 DAQ_RUNNING Data Transfer:

0—The data transfer is not running.

1—The data transfer is running.

7 RESUME RESUME Mode:

0—The slave device is not in RESUME mode.

1—The slave device is in RESUME mode.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-138 ni.com

The CLEAR_DAQ_REQ flag indicates a pending request to clear all DAQ lists in

non-volatile memory. All ODT entries are reset to address = 0, extension = 0, size = 0 and

bit_offset = FF. Session configuration ID is reset to 0. As soon as the request has been

fulfilled, the slave will reset the appropriate bit. The slave device may indicate this by

transmitting an EV_CLEAR_DAQ event packet. If the slave device does not support the

requested mode, an ERR_OUT_OF_RANGE is returned.

The DAQ_RUNNING flag indicates that at least one DAQ list has been started and is in

RUNNING mode.

The RESUME flag indicates that the slave is in RESUME mode.

ResourceMask contains the current resource protection status as a bit mask described below:

Bit

Number Flag Description

0 CAL/PAG REQuest to STORE CALibration data:

0—STORE_CAL_REQ mode is reset.

1—STORE_CAL_REQ mode is set.

1 Unused —

2 DAQ DAQ list commands (DIRECTION = DAQ):

0—DAQ list commands are not protected with SEED & Key

mechanism.

1—DAQ list commands are protected with SEED & Key

mechanism.

3 STIM DAQ list commands (DIRECTION = STIM):

0—DAQ list commands are not protected with SEED & Key

mechanism.

1—DAQ list commands are protected with SEED & Key

mechanism.

4 PGM ProGraMming commands:

0—ProGraMming commands are not protected with SEED &

Key mechanism.

1—ProGraMming commands are protected with SEED & Key

mechanism

5 Unused —

Chapter 6 ECU M&C API for C

© National Instruments 6-139 ECU M&C Toolkit User Manual

The CAL/PAG flags indicates that all commands of the CALibration/PAGing group are

protected and will return an ERR_ACCESS_LOCKED upon an attempt to execute the

command without a previous successful GET_SEED/UNLOCK sequence.

The PGM flags indicates that all the commands of the ProGraMming group are protected and

will return a ERR_ACCESS_LOCKED upon an attempt to execute the command without a

previous successful GET_SEED/UNLOCK sequence.

The parameter SessionId contains the Session configuration ID. The session configuration

ID must be set by a prior mcXCPSetRequest call with STORE_DAQ_REQ set. This allows

the master device to verify that automatically started DAQ lists contain the expected data

transfer configuration.

6 Unused —

7 Unused —

Bit

Number Flag Description

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-140 ni.com

mcXCPProgramPrepare

Purpose
Prepares the programming of non volatile memory.

Format
mcTypeStatus mcXCPProgramPrepare(

mcTypeTaskRef ECURefNum,

mcAddress Address,

u16 CodeSize);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Address Address is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Address

Specifies the address part of the target address.

Extension

Contains the extension part of the target address.

CodeSize CodeSize determines the size of data to be downloaded.

Output

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcXCPProgramPrepare may be used to indicate a data download as a pre-condition for

non-volatile memory reprogramming. The Memory Transfer address (MTA) pointer is set to

the volatile memory location specified by the parameters Address and Extension. The

download itself is done by using subsequent standard commands like mcDownload. The slave

device must ensure that the target memory area is available and it is in an operational state

which permits the download of code. If not, an error will be returned.

Chapter 6 ECU M&C API for C

© National Instruments 6-141 ECU M&C Toolkit User Manual

mcXCPProgramPrepare implements the optional XCP PROGRAM_PREPARE command

defined by the XCP specification. For further information on how to program non-volatile

ECU memory refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-142 ni.com

mcXCPProgramVerify

Purpose
Verifies the programming of non-volatile ECU memory.

Format
mcTypeStatus mcXCPProgramVerify(

mcTypeTaskRef ECURefNum,

u8 Mode,

u16 VerType,

u32 VerValue);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Mode Mode describes the verification mode:

VerType VerType specifies the Verification Type of the requested program

verification. The Verification Type is a bit mask described below:

VerValue VerValue contains the selected verification value if Mode=1.

Output
None.

Value Description

0 Request to start internal routine.

1 Send a Verification Value stored in VerValue.

Verification Type Description

0x0001 Calibration area(s) of the flash.

0x0002 Code area(s) of the flash.

0x0004 Complete flash content.

0x0008 ... 0x0080 Reserved.

0x0100 ... 0xFF00 User defined.

Chapter 6 ECU M&C API for C

© National Instruments 6-143 ECU M&C Toolkit User Manual

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcXCPProgramVerify implements the XCP command PROGRAM_VERIFY and performs

a flash program verification. If VerMode = 0 the master can request the slave to start internal

test routines to check whether the new flash contents fits to the rest of the flash. Only the result

is of interest. If VerMode = 01, the master can tell the slave that he is sending a Verification

Value to the slave. The definition of the Verification Mode is project specific. The master is

getting the Verification Mode from the project specific programming flow control and passing

it to the slave. The tool needs no further information about the details of the project specific

check routines. The XCP parameters allow a wide range of project specific adaptations. The

Verification Type is specified in the project specific programming flow control. The master is

getting this parameter and passing it to the slave. The definition of the Verification Value is

project specific and the use is defined in the project specific programming flow control.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

mcXCPProgramVerify can be used to verify the success of non-volatile memory

reprogramming.

With Mode set to 00 the master can request the slave to start internal test routines to check

whether the new flash contents fits to the rest of the flash. Only the result is of interest. With

Mode set to 01, the master can tell the slave that he will be sending a Verification value to the

slave. The definition of the Verification mode is project-specific. The master receives the

Verification mode from the project-specific programming flow control and passes it to the

slave.

mcXCPProgramVerify implements the optional XCP PROGRAM_VERIFY command

defined by the XCP specification. For further information on how to program non-volatile

ECU memory refer to the ASAM XCP Part 2 Protocol Layer Specification.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-144 ni.com

mcXCPSetCalPage

Purpose
Sets a calibration page.

Format
mcTypeStatus mcXCPSetCalPage(

mcTypeTaskRef ECURefNum,

u8 Mode,

u8 Segment,

u8 Page);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Mode Mode is a bit mask described below:

Segment Segment specifies the selected logical data segment number.

Page Page specifies the logical data page number.

Output
None.

Bit Description

0 The given page is used by the slave device application.

1 The slave device XCP driver will access the given page.

2 Unused.

3 Unused.

4 Unused.

5 Unused.

6 Unused.

7 The logical segment number is ignored. The command applies to all segments.

Chapter 6 ECU M&C API for C

© National Instruments 6-145 ECU M&C Toolkit User Manual

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcXCPSetCalPage implements the XCP command SET_CAL_PAGE and sets the access

mode for a calibration data segment, if the slave device supports calibration data page

switching. A calibration data segment and its pages are specified by logical numbers.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-146 ni.com

mcXCPSetRequest

Purpose
Performs a request to save session and device information to non-volatile memory.

Format
mcTypeStatus mcXCPSetRequest(

mcTypeTaskRef ECURefNum,

u8 Mode,

u16 SessionID);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Mode Mode is a bit mask described below:

SessionID SessionID is a session configuration ID that is stored in

non-volatile memory together with the information requested by

the Mode parameter.

Bit Description

0 Request to store calibration data in non-volatile memory.

1 Unused.

2 Request to save all DAQ lists, which have been selected with

START_STOP_DAQ_LIST(Select) into non-volatile memory.

The slave also must store the session configuration ID in non-volatile memory.

Upon saving, the slave first must clear any DAQ list configuration that might

already be stored in non-volatile memory.

3 Request to clear all DAQ lists in non-volatile memory. All ODT entries reset to

address = 0, extension = 0, size = 0 and bit_offset = FF. Session configuration

ID reset to 0.

4 Unused.

5 Unused.

6 Unused.

7 Unused.

Chapter 6 ECU M&C API for C

© National Instruments 6-147 ECU M&C Toolkit User Manual

Output
None.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcXCPSetRequest implements the XCP command SET_REQUEST and is used to save

session configuration information into non-volatile memory in the ECU.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to setup a request.

Chapter 6 ECU M&C API for C

ECU M&C Toolkit User Manual 6-148 ni.com

mcXCPSetSegmentMode

Purpose
Sets the mode of a specified segment.

Format
mcTypeStatus mcXCPSetSegmentMode(

mcTypeTaskRef ECURefNum,

u8 Segment,

u8 Mode);

Input
ECURefNum ECURefNum is the task reference which links to the selected ECU.

This reference is originally returned from mcECUSelectEx.

Segment Segment specifies the logical data segment number.

Mode Mode specifies the mode for the segment.

Output
None.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the mcStatusToString function of the ECU M&C API to obtain a descriptive string

for the return value.

Description
mcXCPSetSegmentMode implements the XCP command SET_SEGMENT_MODE and sets

the selected segment into the specified mode. If Mode = 0 the segment disables the FREEZE

mode, if Mode = 1 the segment is set to FREEZE mode through an XCP STORE_CAL_REQ

operation.

Refer to the ASAM XCP Part 2 Protocol Layer Specification for more information on how

to set up a request.

© National Instruments A-1 ECU M&C Toolkit User Manual

A
Summary of the CCP Standard

Controller Area Network (CAN)

Bosch developed the Controller Area Network (CAN) in the mid-1980s.

Using CAN, devices (controllers, sensors, and actuators) are connected on

a common serial bus. This network of devices can be thought of as a

scaled-down, real-time, low-cost version of the networks used to connect

personal computers. Any device on a CAN network can communicate with

any other device using a common pair of wires.

As CAN implementations increased in the automotive industry, CAN was

standardized internationally as ISO 11898. CAN chips were created by

major semiconductor manufacturers such as Intel, Motorola, and Philips.

With these developments, manufacturers of industrial automation

equipment began to consider CAN for use in industrial applications.

Comparison of the requirements for automotive and industrial device

networks showed numerous similarities, including the transition away from

dedicated signal lines, low cost, resistance to harsh environments, and high

real-time capabilities.

CAN Calibration Protocol (CCP)

The amount of electronics introduced into the automobile has increased

significantly. This trend is expected to continue as automobile

manufacturers initiate further advances in safety, reliability and comfort.

The introduction of advanced control systems—combining multiple

sensors, actuators and electronic control units—has begun to place

extensive demands on the existing Controller Area Network (CAN)

communication bus. To enable the new generation of automotive

electronics, new and highly sophisticated software, calibration,

measurement, and diagnostic equipment must be used. At this time almost

no standards exist in the area of software interfaces for such devices. Each

company has its proprietary systems and interfaces to support the

development of these high-end configurations.

Appendix A Summary of the CCP Standard

ECU M&C Toolkit User Manual A-2 ni.com

The CAN Calibration Protocol was originally developed and introduced by

Ingenieurbüro Helmut Kleinknecht, a manufacturer of calibration systems,

and is used in various application areas in the automotive industry.

Afterwards CCP was taken over by the ASAP working group and enhanced

with optional functions and is now maintained by the ASAM organization.

Scope of CCP
The CAN Calibration Protocol is a CAN-based master-slave protocol for

calibration and data acquisition using the CAN 2.0B standard (11-bit and

29-bit identifiers), which includes 2.0A (11-bit identifier). A single master

device (host) can be connected to one or more slave devices. Before a slave

device may accept commands from the host, the host must establish a

logical point-to-point connection to the slave device. After this connection

has been established, the slave device must acknowledge each command

received from the host within a specific time.

CCP offers continuous or event driven data acquisition from the controllers,

as well as memory transfers to and control functions in the controllers for

calibration purposes.

With these functions, CCP may be used in:

• The development of electronic control units (ECU)

• Systems for functional and environmental tests of an ECU

• Test systems and test stands for controlled devices (combustion

engines, gearboxes, suspension systems, climate-control systems,

body systems, anti-locking systems)

• On-board test and measurement systems of pre-series vehicles

• Any non-automotive application of CAN-based distributed electronic

control systems

CCP defines two function sets—one for control/memory transfer, and one

for data acquisitions that are independent of each other and may run

asynchronously. The control commands are used to carry out functions in

the slave device, and may use the slave to perform tasks on other devices.

The data acquisition commands are used for continuous data acquisition

from a slave device. The devices continuously transmit internal data

according to a list that has been configured by the host. Data acquisition is

initiated by the host, then executed by the slave device, and may be based

on a fixed sampling rate or be event-driven.

Appendix A Summary of the CCP Standard

© National Instruments A-3 ECU M&C Toolkit User Manual

CCP Protocol Definition
Two communication objects are defined by CCP to handle the

communication between host and slave devices—The

CommandReceiveObject (CRO), which is used to send commands and

data from the host to the slave device; and the DataTransmissionObject

(DTO), which is used to transmit handshake messages, data and status

information from the slave device to the host. Each of these message

objects is assigned a unique CAN ID. Messages that are returned from the

slave as a message to a command are called CommandReturnMessages

(CRM).

A Command Receive Object is a CAN message consisting of eight bytes.

The first byte of a CRO is the command code, followed by the command

counter byte. The command counter is generated for reference by the host

to make sure that the CRM returned by a slave device corresponds to the

correct host command. The rest of the message builds the parameter and

data fields. The structure is as follows:

A DataTransmissionObject has a PacketID (PID) as the first byte. This PID

determines how the rest of the message is interpreted. CCP differentiates

between three types of DTOs:

Command Return Messages and Event Messages have the following

structure:

0 1 2 3 4 5 6 7

CMD CTR Parameter and Data Field

PID Type

0x00—0xFD Data Acquisition Message

0xFE Event Message

0xFF Command Return Message

0 1 2 3 4 5 6 7

PID ERR Parameter and Data Field

Appendix A Summary of the CCP Standard

ECU M&C Toolkit User Manual A-4 ni.com

In the case of an Event Message, the Counter field does not contain valid

data and must be ignored by the host. For Command Return Messages the

Counter field must have the same value as the counter field of the

corresponding CRO. The error field contains information about the error

state. The parameter and data fields contain the data returned from the

slave device to the host. Command Return Messages and Event Messages

consist of eight bytes.

Data Acquisition Messages (DAQ Messages or DAMs) have a PID in the

first byte, and the rest of the message contains data. DAMs may be shorter

than eight bytes:

Since the PIDs 0x00—0xFD are reserved for Data Acquisition Messages,

a CCP slave device can send up to 253 different DAMs. Each DAQ message

can transfer up to seven bytes of data. The number of DAQ Messages

supported by a slave device depends on the device itself.

Data acquisition is performed through a CCP slave device by reading data

from a device's memory and copying it into the data field of a DAQ

message. So the CCP slave device keeps a list of entries for each DAM.

These lists are called ObjectDefinitionTables (ODTs). Each ODT entry

holds information about the memory address where data is stored inside the

device and the size of the data to be sent. The data of the first ODT entry is

placed in the first byte of the data field of the DAQ message. The data of

the next entry is placed at the first free byte of the DAQ message, and so on.

0 1 2 3 4 5 6 7

PID Parameter and Data Field

© National Instruments B-1 ECU M&C Toolkit User Manual

B
NI Services

NI provides global services and support as part of our commitment to your

success. Take advantage of product services in addition to training and

certification programs that meet your needs during each phase of the

application life cycle; from planning and development through deployment

and ongoing maintenance.

To get started, register your product at ni.com/myproducts.

As a registered NI product user, you are entitled to the following benefits:

• Access to applicable product services.

• Easier product management with an online account.

• Receive critical part notifications, software updates, and service

expirations.

Log in to your MyNI user profile to get personalized access to your

services.

Services and Resources

• Maintenance and Hardware Services—NI helps you identify your

systems’ accuracy and reliability requirements and provides warranty,

sparing, and calibration services to help you maintain accuracy and

minimize downtime over the life of your system. Visit ni.com/

services for more information.

– Warranty and Repair—All NI hardware features a one-year

standard warranty that is extendable up to five years. NI offers

repair services performed in a timely manner by highly trained

factory technicians using only original parts at a NI service center.

– Calibration—Through regular calibration, you can quantify and

improve the measurement performance of an instrument. NI

provides state-of-the-art calibration services. If your product

supports calibration, you can obtain the calibration certificate for

your product at ni.com/calibration.

http://www.ni.com/myproducts
http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/calibration

Appendix B NI Services

ECU M&C Toolkit User Manual B-2 ni.com

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, National Instruments

Alliance Partner members can help. To learn more, call your local NI

office or visit ni.com/alliance.

• Training and Certification—The NI training and certification

program is the most effective way to increase application development

proficiency and productivity. Visit ni.com/training for more

information.

– The Skills Guide assists you in identifying the proficiency

requirements of your current application and gives you options for

obtaining those skills consistent with your time and budget

constraints and personal learning preferences. Visit ni.com/

skills-guide to see these custom paths.

– NI offers courses in several languages and formats including

instructor-led classes at facilities worldwide, courses on-site at

your facility, and online courses to serve your individual needs.

• Technical Support—Support at ni.com/support includes the

following resources:

– Self-Help Technical Resources—Visit ni.com/support for

software drivers and updates, a searchable KnowledgeBase,

product manuals, step-by-step troubleshooting wizards, thousands

of example programs, tutorials, application notes, instrument

drivers, and so on. Registered users also receive access to the NI

Discussion Forums at ni.com/forums. NI Applications

Engineers make sure every question submitted online receives an

answer.

– Software Support Service Membership—The Standard Service

Program (SSP) is a renewable one-year subscription included with

almost every NI software product, including NI Developer Suite.

This program entitles members to direct access to NI Applications

Engineers through phone and email for one-to-one technical

support, as well as exclusive access to online training modules at

ni.com/self-paced-training. NI also offers flexible

extended contract options that guarantee your SSP benefits are

available without interruption for as long as you need them. Visit

ni.com/ssp for more information.

• Declaration of Conformity (DoC)—A DoC is our claim of

compliance with the Council of the European Communities using the

manufacturer’s declaration of conformity. This system affords the user

protection for electromagnetic compatibility (EMC) and product

http://www.ni.com/alliance
http://www.ni.com/training
http://www.ni.com/skills-guide
http://www.ni.com/skills-guide
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/ssp

Appendix B NI Services

© National Instruments B-3 ECU M&C Toolkit User Manual

safety. You can obtain the DoC for your product by visiting

ni.com/certification.

For information about other technical support options in your area, visit

ni.com/services, or contact your local office at ni.com/contact.

You also can visit the Worldwide Offices section of ni.com/niglobal to

access the branch office websites, which provide up-to-date contact

information, support phone numbers, email addresses, and current events.

http://www.ni.com/certification
http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/niglobal

© National Instruments G-1 ECU M&C Toolkit User Manual

Glossary

Symbol Prefix Value

m milli 10–3

k kilo 103

M mega 106

Numbers

2MC (*.A2L)

database file

See ASAM MCD 2MC.

A

A2L file ECU device database file in ASAM MCD 2MC format.

address extension An additional parameter to the address that may be used to switch between

data of several memory banks.

API Application Program Interface—A set of routines, protocols, and tools for

building software applications.

arbitration ID An 11- or 29-bit ID transmitted as the first field of a CAN frame. The

arbitration ID determines the priority of the frame, and is normally used to

identify the data transmitted in the frame.

ASAM Association of Standardization of Automation and Measurement Systems.

ASAM MCD 2MC ASAM MCD 2MC is a file interface standardized by ASAM which

describes the internal ECU data, interfaces, and communication protocols.

It contains all information about relevant data objects in the ECU like

Characteristic variables (parameters, characteristic curves, and maps),

real/virtual measurement variables, and variant dependencies. For each of

these objects information is needed, such as storage address, record layout,

data type, and conversion rules to convert the data into their physical units.

Glossary

ECU M&C Toolkit User Manual G-2 ni.com

B

baudrate A user-defined property which provides the baud rate at which

communication will occur. For more information, refer to the Interface

Properties dialog in MAX, or the NI-CAN Hardware and Software

Manual. The baud rate is originally set within MAX.

byte order The byte order refers to which bytes are most significant in multi-byte data

types. The term describes the order in which a sequence of bytes is stored

in computer memory.

C

calibration data page A portion of the ECU memory containing data that controls the behavior of

the ECU.

CAN Controller Area Network. The Controller Area Network (CAN) is a joint

development of Robert Bosch GmbH and Intel Corporation. CAN is used

in many high-end automotive control systems, like engine management, as

well as in industrial control systems. Controller chips for CAN are available

from various semiconductor manufacturers.

CCP CAN Calibration Protocol.

CCP master The CCP master device (host) is a calibration/monitoring tool for initiating

data transfers on the CAN by sending commands to slave devices.

CCP slave Typically an ECU which communicates through CCP with the CCP master.

Characteristic A Characteristic is a memory area within the ECU which defines the

behavior of a control subsystem. Calibration is a process to optimize the

Characteristic. A Characteristic can be represented by a single value

(parameter), a one-dimensional array of values (curve), or a

two-dimensional array of values (map).

Checksum DLL A Dynamic Link Library which implements a function to calculate a

checksum over a given data block.

Command Receive

Object (CRO)

A Command Receive Object (CRO) is sent from the CCP master device

to one of the slave devices. The slave device answers with a Data

Transmission Object (DTO) containing a Command Return Message

(CRM).

Glossary

© National Instruments G-3 ECU M&C Toolkit User Manual

Controller Area Network See CAN.

CRM Command Return Message—A CCP communication object used to send

commands and data from a host device to a slave device. The CRO is

8 bytes wide, consisting of a Command byte, a Command Counter byte,

and a 6-byte parameter/data field.

CRO CommandReceiveObject—A CCP communication object used to send

commands and data from a host device to a slave device. The CRO is

8 bytes wide, consisting of a Command byte, a Command Counter byte,

and a 6-byte parameter/data field.

CRO ID CAN identifier of the Command Receive Object (CRO)

D

DAQ Data Acquisition.

DAQ channel A single DAQ Measurement entry in a DAQ list.

DAQ list A list of DAQ channels that is transmitted by the ECU.

DAQ mode Data acquisition mode.

Data Transfer Object A message sent from the slave device to the master device (Command

Return Message, Event Message, or Data Acquisition Message).

database task A task reference handle to the selected ASAM MCD 2MC database file.

DLL Dynamic Link Library.

DTO See Data Transfer Object.

DTO ID CAN identifier of the DTO.

Glossary

ECU M&C Toolkit User Manual G-4 ni.com

E

ECU Electronic Control Unit—An electronic device with a central processing

unit performing programmed functions with its peripheral circuitry.

ECU M&C Channel

functions

The part of the ECU M&C Toolkit API that you use to read and write

channels.

A Characteristic or Measurement channel consists of one more

floating-point values in physical units (such as Volts, rpm, km/h, °C, and so

on) that is converted to/from a raw value in measurement hardware. The

ECU M&C API Read and Write functions provide access to Characteristic

or Measurement channels. When a CAN message is received, ECU M&C

Toolkit converts raw fields in the message into physical units, which you

then obtain using the ECU M&C API Read function. When you call a ECU

M&C API Write function, you provide floating-point values in physical

units, which ECU M&C Toolkit converts into raw fields and transmits as a

CAN message based on the CCP protocol.

ECU reference Reference handle to a selected ECU.

ECU task See ECU reference.

Event Channel Specifies the generic signal source that effectively determines the data

transmission timing.

Extended arbitration ID A 29-bit arbitration ID. Frames that use extended IDs are often referred to

as CAN 2.0 Part B (the specification which defines them).

M

Master ID A 6-byte string identifying the CCP master device.

Measurement See DAQ.

Measurement task A collection of DAQ channels that you can read or write.

Memory Transfer

Address

Address pointer in the ECU that holds the source/target address for data

sent or received via CCP. The address extension depends on the slave

controller's organization and may identify a switchable memory bank or a

memory segment.

MTA See Memory Transfer Address.

Glossary

© National Instruments G-5 ECU M&C Toolkit User Manual

O

ODT Object Descriptor Table—A list of elements (variables) used for

organization of data acquisition (DAQ).

P

PID PacketID—The first byte of a DTO corresponding to the ODT to which the

DTO is assigned. The values for DAQ list PIDs range from 0x00–0xFD.

The PIDs 0xFE and 0xFF are reserved for Event Messages and Command

Return Messages.

Prescaler A factor defined to allow reduction of the desired transmission rate. The

prescaler is applied to the Event Channel. The prescaler value factor must

be greater than or equal to 1.

S

SeedKey DLL A Dynamic Link Library that implements a function to calculate a key to a

given seed to unlock access to ECU resources.

slave device identifier An ECU-specific array of bytes used by the master device to identify the

ECU.

Station Address A property which specifies an address to generate a logical point-to-point

connection with a selected slave station for the master-slave command

protocol. One ECU may support several station addresses.

T

task reference An identifier returned as an output parameter of Database, ECU or

Measurement initialization functions.

© National Instruments I-1 ECU M&C Toolkit User Manual

Index

A
accessing Characteristics, 4-7

activating the ECU toolkit

home computer use, 2-4

moving software after installation, 2-4

online activation, 2-4

privacy policy, 2-4

procedure, 2-2

terms defined, 2-3

volume licensing, 2-4

activating your software, xv

additional programming topics, 4-16

generic CCP functions, 4-17

generic XCP functions, 4-18

Get Names, 4-16

seed and key algorithm, 4-19

Set/Get Properties, 4-16

application development

on CompactRIO or R Series using NI 985x

or NI 986x C Series module, 3-4

ASAM definition, 1-1

ASAM MCD 2MC

communication properties

Baudrate, 4-6

CRO ID, 4-5

DTO ID, 4-5

Station Address, 4-5

with CAN, 4-5

with UDP or TCP, 4-6

overview, 1-1

B
basic programming model, 4-3

Characteristic Read and Write, 4-7

communication (figure), 4-4

ECU Close, 4-7

ECU Connect, 4-6

ECU Disconnect, 4-7

ECU Open, 4-5

Measurement tasks, 4-9

Baudrate (property), 4-6

C
C functions

list of functions, 6-2

mcBuildChecksum, 6-6

mcCalculateChecksum, 6-10

mcCCPActionService, 6-12

mcCCPDiagService, 6-14

mcCCPGetActiveCalPage, 6-16

mcCCPGetResult, 6-17

mcCCPGetSessionStatus, 6-18

mcCCPGetVersion, 6-19

mcCCPMoveMemory, 6-20

mcCCPSelectCalPage, 6-22

mcCCPSetSessionStatus, 6-23

options (table), 6-23

mcCharacteristicRead, 6-25

mcCharacteristicReadSingleValue, 6-26

mcCharacteristicWrite, 6-28

mcCharacteristicWriteSingleValue, 6-29

mcClearMemory, 6-31

mcConversionCreate, 6-32

mcDAQClear, 6-34

mcDAQInitialize, 6-35

mcDAQListInitialize, 6-38

mcDAQRead, 6-40

mcDAQReadTimestamped, 6-43

mcDAQStartStop, 6-46

mcDAQWrite, 6-48

mcDatabaseClose, 6-50

mcDatabaseOpen, 6-51

Index

ECU M&C Toolkit User Manual I-2 ni.com

mcDatabaseOpenEx, 6-52

mcDoubleToText, 6-53

mcDownload, 6-55

mcECUConnect, 6-57

mcECUCreate, 6-58

mcECUDeselect, 6-62

mcECUDisconnect, 6-63

mcECUSelectEx, 6-64

mcECUSetCalibrationPage, 6-67

mcEventCreate, 6-69

mcGeneric, 6-70

mcGetNames, 6-72

mcGetNamesLength, 6-75

mcGetProperty, 6-78

options (table), 6-79

mcMeasurementCreate, 6-104

mcMeasurementRead, 6-106

mcMeasurementWrite, 6-107

mcProgram, 6-108

mcProgramReset, 6-110

mcProgramStart, 6-111

mcSetProperty, 6-112

Characteristic-specific options

(table), 6-123

DAQ-specific options (table), 6-122

ECU-specific options (table), 6-114

Measurement-specific options

(table), 6-123

mcStatusToString, 6-124

return codes (table), 6-124

mcTextToDouble, 6-126

mcUpload, 6-128

mcXCPCopyCalPage, 6-130

mcXCPGetCalPage, 6-132

mcXCPGetId, 6-134

mcXCPGetStatus, 6-136

mcXCPProgramPrepare, 6-140

mcXCPProgramVerify, 6-142

mcXCPSetCalPage, 6-144

mcXCPSetRequest, 6-146

mcXCPSetSegmentMode, 6-148

CAN calibration protocol (CCP)

overview, 1-2, A-1

version, 1-2

CAN overview, A-1

CCP

functions, 4-3

overview, A-1

protocol definition, A-3

scope, A-2

Channel functions, 4-2

Characteristic Read and Write, 4-7

Characteristics

accessing, 4-7

reading, 4-8

writing, 4-8

checksum algorithm, 4-21

definition, 4-21, 4-22

for VxWorks targets, 4-23

example, 4-23

choosing programming languages, 3-1

CompactRIO

application development on using NI

985x or NI 986x C Series module, 3-4

computer ID, xvi

CRO ID (property), 4-5

D
deactivating a product, xvii

debugging an application, 3-6

definition of activation terms, 2-3

developing an application, 3-1

documentation

NI resources, B-1

related documentation, xiii

DTO ID (property), 4-5

E
ECU API

C, 6-1

Index

© National Instruments I-3 ECU M&C Toolkit User Manual

LabVIEW, 5-1

ECU Characteristics

definition, 4-2

overview, 1-4

ECU Close, 4-7

ECU Connect, 4-6

ECU databases, 1-4

ECU Disconnect, 4-7

ECU M&C API

additional programming topics, 4-16

architecture (figure), 4-1

CCP functions overview, 4-3

Channel functions, 4-2

structure, 4-1

XCP functions overview, 4-3

ECU Measurements

DAQ Clear, 4-13

DAQ Read, 4-11

DAQ Start Stop, 4-10

DAQ Write, 4-12

definition, 4-2

DTO ID, 4-10

ECU DAQ Initialize, 4-10

ECU reference handle, 4-10

flowchart (figure), 4-9

list, 4-10

mode, 4-10

overview, 4-9

sample rate, 4-10

ECU Open, 4-5

ECU toolkit

activation, 2-2

API overview, 4-1

basic programming model, 4-3

Characteristics, 1-4

databases

ASAM MCD 2MC, 1-4

ASAP, 1-4

definition, 1-1

hardware and software requirements, 2-10

installation, 2-1

introduction, 1-1

LabVIEW RT, 2-5

license management, 2-1

Measurements, 1-4

F
FTP transfers (table), 2-6

FTP with LabVIEW, 2-9

FTP with LabVIEW RT graphical file transfer

utility, 2-7

FTP with web browsers, 2-7

G
generic CCP functions, 4-17

generic XCP functions, 4-18

Get Names, 4-16

H
help, technical support, B-1

home software use, 2-4

L
LabVIEW

list of VIs, 5-1

MC Build Checksum.vi, 5-6

MC Calc Checksum.vi, 5-9

MC CCP Action Service.vi, 5-12

MC CCP Diag Service.vi, 5-14

MC CCP Generic.vi, 5-97

MC CCP Get Active Cal Page.vi, 5-16

MC CCP Get Result.vi, 5-18

MC CCP Get Session Status.vi, 5-20

MC CCP Get Version.vi, 5-22

MC CCP Move Memory.vi, 5-24

MC CCP Select Cal Page.vi, 5-26

MC CCP Set Session Status.vi, 5-28

Index

ECU M&C Toolkit User Manual I-4 ni.com

options (table), 5-29

MC Characteristic Read Single Value.vi,

5-32

MC Characteristic Read.vi, 5-30

options (table), 5-31

MC Characteristic Write Single Value.vi,

5-36

MC Characteristic Write.vi, 5-34

options (table), 5-35

MC Clear Memory.vi, 5-38

MC Conversion Create.vi, 5-40

MC DAQ Clear.vi, 5-42

MC DAQ Initialize.vi, 5-44

MC DAQ List Initialize.vi, 5-47

MC DAQ Read.vi, 5-50

MC DAQ Start Stop.vi, 5-56

MC DAQ Write.vi, 5-59

MC Database Close.vi, 5-62

MC Database Create.vi, 5-64

MC Database Open.vi, 5-66

MC Double To Text.vi, 5-68

MC Download.vi, 5-70

MC ECU Close.vi, 5-72

MC ECU Connect.vi, 5-74

MC ECU Create.vi, 5-76

MC ECU Deselect.vi, 5-81

MC ECU Disconnect.vi, 5-83

MC ECU Open.vi, 5-85

MC ECU Select.vi, 5-89

MC ECU Set Calibration Page.vi, 5-93

MC Event Create.vi, 5-95

MC Get Names.vi, 5-99

MC Get Property.vi, 5-103

poly output values (table), 5-105

MC Measurement Create.vi, 5-145

MC Measurement Read.vi, 5-147

MC Measurement Write.vi, 5-149

MC Program Reset.vi, 5-153

MC Program Start.vi, 5-155

MC Program.vi, 5-151

MC Set Property.vi, 5-157

Characteristic-specific input values

(table), 5-175

DAQ-specific poly input values

(table), 5-173

ECU-specific poly input values

(table), 5-159

Measurement-specific input values

(table), 5-175

MC Text To Double.vi, 5-176

MC Upload.vi, 5-178

MC XCP Copy Cal Page.vi, 5-180

MC XCP Get Cal Page.vi, 5-182

MC XCP Get ID.vi, 5-184

MC XCP Get Status.vi, 5-186

MC XCP Program Prepare.vi, 5-191

MC XCP Program Verify.vi, 5-193

MC XCP Set Cal Page.vi, 5-196

MC XCP Set Request.vi, 5-198

MC XCP Set Segment Mode.vi, 5-201

LabVIEW Real-Time (RT) configuration, 2-5

CompactRIO system, 2-5

DOS prompt, 2-6

FTP transfers (table), 2-6

LabVIEW, 2-9

LabVIEW RT graphical file transfer

utility, 2-7

NI-CAN on PXI RT system, 2-5

NI-XNET on PXI RT system, 2-5

PXI system, 2-5

web browsers, 2-7

license management overview, 2-1

list of C functions, 6-2

list of LabVIEW VIs, 5-1

M
MC Build Checksum.vi, 5-6

MC Calc Checksum.vi, 5-9

MC CCP Action Service.vi, 5-12

MC CCP Diag Service.vi, 5-14

MC CCP Generic.vi, 5-97

Index

© National Instruments I-5 ECU M&C Toolkit User Manual

MC CCP Get Active Cal Page.vi, 5-16

MC CCP Get Result.vi, 5-18

MC CCP Get Session Status.vi, 5-20

MC CCP Get Version.vi, 5-22

MC CCP Move Memory.vi, 5-24

MC CCP Select Cal Page.vi, 5-26

MC CCP Set Session Status.vi, 5-28

options (table), 5-29

MC Characteristic Read Single Value.vi, 5-32

MC Characteristic Read.vi, 5-30

options (table), 5-31

MC Characteristic Write Single Value.vi, 5-36

MC Characteristic Write.vi, 5-34

options (table), 5-35

MC Clear Memory.vi, 5-38

MC Conversion Create.vi, 5-40

MC DAQ Clear.vi, 5-42

MC DAQ Initialize.vi, 5-44

MC DAQ List Initialize.vi, 5-47

MC DAQ Read.vi, 5-50

MC DAQ Start Stop.vi, 5-56

MC DAQ Write.vi, 5-59

MC Database Close.vi, 5-62

MC Database Create.vi, 5-64

MC Database Open.vi, 5-66

MC Double To Text.vi, 5-68

MC Download.vi, 5-70

MC ECU Close.vi, 5-72

MC ECU Connect.vi, 5-74

MC ECU Create.vi, 5-76

MC ECU Deselect.vi, 5-81

MC ECU Disconnect.vi, 5-83

MC ECU Open.vi, 5-85

MC ECU Select.vi, 5-89

MC ECU Set Calibration Page.vi, 5-93

MC Event Create.vi, 5-95

MC Get Names.vi, 5-99

MC Get Property.vi, 5-103

poly output values (table), 5-105

MC Measurement Create.vi, 5-145

MC Measurement Read.vi, 5-147

MC Measurement Write.vi, 5-149

MC Program Reset.vi, 5-153

MC Program Start.vi, 5-155

MC Program.vi, 5-151

MC Set Property.vi, 5-157

Characteristic-specific input values

(table), 5-175

DAQ-specific poly input values (table),

5-173

ECU-specific poly input values (table),

5-159

Measurement-specific input values

(table), 5-175

MC Text To Double.vi, 5-176

MC Upload.vi, 5-178

MC XCP Copy Cal Page.vi, 5-180

MC XCP Get Cal Page.vi, 5-182

MC XCP Get ID.vi, 5-184

MC XCP Get Status.vi, 5-186

MC XCP Program Prepare.vi, 5-191

MC XCP Program Verify.vi, 5-193

MC XCP Set Cal Page.vi, 5-196

MC XCP Set Request.vi, 5-198

MC XCP Set Segment Mode.vi, 5-201

mcBuildChecksum, 6-6

mcCCPActionService, 6-12

mcCCPCalculateChecksum, 6-10

mcCCPDiagService, 6-14

mcCCPGetActiveCalPage, 6-16

mcCCPGetResult, 6-17

mcCCPGetSessionStatus, 6-18

mcCCPGetVersion, 6-19

mcCCPMoveMemory, 6-20

mcCCPSelectCalPage, 6-22

mcCCPSetSessionStatus, 6-23

options (table), 6-23

mcCharacteristicRead, 6-25

mcCharacteristicReadSingleValue, 6-26

mcCharacteristicWrite, 6-28

mcCharacteristicWriteSingleValue, 6-29

Index

ECU M&C Toolkit User Manual I-6 ni.com

mcClearMemory, 6-31

mcConversionCreate, 6-32

mcDAQClear, 6-34

mcDAQInitialize, 6-35

mcDAQListInitialize, 6-38

mcDAQRead, 6-40

mcDAQReadTimestamped, 6-43

mcDAQStartStop, 6-46

mcDAQWrite, 6-48

mcDatabaseClose, 6-50

mcDatabaseOpen, 6-51

mcDatabaseOpenEx, 6-52

mcDoubleToText, 6-53

mcDownload, 6-55

mcECUConnect, 6-57

mcECUCreate, 6-58

mcECUDeselect, 6-62

mcECUDisconnect, 6-63

mcECUSelectEx, 6-64

mcECUSetCalibrationPage, 6-67

mcEventCreate, 6-69

mcGeneric, 6-70

mcGetNames, 6-72

mcGetNamesLength, 6-75

mcGetProperty, 6-78

options (table), 6-79

mcMeasurementCreate, 6-104

mcMeasurementRead, 6-106

mcMeasurementWrite, 6-107

mcProgram, 6-108

mcProgramReset, 6-110

mcProgramStart, 6-111

mcSetProperty, 6-112

Characteristic-specific options (table),

6-123

DAQ-specific options (table), 6-122

ECU-specific options (table), 6-114

Measurement-specific options (table),

6-123

mcStatusToString, 6-124

return codes (table), 6-124

mcTextToDouble, 6-126

mcUpload, 6-128

mcXCPCopyCalPage, 6-130

mcXCPGetCalPage, 6-132

mcXCPGetId, 6-134

mcXCPGetStatus, 6-136

mcXCPProgramPrepare, 6-140

mcXCPProgramVerify, 6-142

mcXCPSetCalPage, 6-144

mcXCPSetRequest, 6-146

mcXCPSetSegmentMode, 6-148

measurement and calibration databases, 1-4

N
NI Activation Wizard, xv

O
online software activation, 2-4

P
privacy policy, 2-4

programming languages

LabVIEW, 3-1

LabWindows/CVI, 3-1

other, 3-3

Visual C++, 3-2

R
R Series

application development on using NI

985x or NI 986x C Series module, 3-4

reactivation on another system, 2-4

reading Characteristics, 4-8

related documentation, xiii

RT configuration

DOS prompt, 2-6

FTP transfers (table), 2-6

Index

© National Instruments I-7 ECU M&C Toolkit User Manual

LabVIEW, 2-9

LabVIEW RT graphical file transfer

utility, 2-7

web browsers, 2-7

S
sample rate greater than 0, 4-12

read sample timing (figure), 4-12

sample rate=0, 4-11

read sample timing (figure), 4-11

seed and key algorithm, 4-19

definition, 4-19

example, 4-20

for VxWorks targets, 4-23

example, 4-23

serial number, finding, xvi

Set/Get Properties, 4-16

setting up an ECU Measurement

DAQ Clear, 4-13

DAQ Read, 4-11

DAQ Start Stop, 4-10

DAQ Write, 4-12

DTO ID, 4-10

ECU DAQ Initialize, 4-10

ECU reference handle, 4-10

flowchart (figure), 4-9

list, 4-10

mode, 4-10

overview, 4-9

sample rate, 4-10

software

activating, xv

evaluating, xvi

moving after activation, xvii

Station Address (property), 4-5

structure of ECU M&C API, 4-1

support, technical, B-1

T
task (concept), 1-4

technical support, B-1

U
using with FTP, 2-6

V
volume licensing program, 2-4

W
Web resources, B-1

Windows Guest accounts, xvii

writing Characteristics, 4-8

X
XCP, functions overview, 4-3

	ECU Measurement and Calibration Toolkit User Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Legal Information
	Limited Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	U.S. Government Restricted Rights
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Related Documentation

	Activating Your Software
	How Do I Activate My Software?
	What is Activation?
	What is the NI Activation Wizard?
	What Information Do I Need to Activate?
	How Do I Find My Product Serial Number?
	What is a Computer ID?
	How Can I Evaluate NI Software?
	Moving Software After Activation
	Deactivating a Product
	Using Windows Guest Accounts

	Chapter 1 Introduction
	CAN Calibration Protocol (CCP) Overview
	CCP Protocol Version

	Universal Measurement and Calibration Protocol (XCP) Overview
	XCP Protocol Version

	Measurement and Calibration Databases
	ECU Measurements
	ECU Characteristics

	Chapter 2 Installation and Configuration
	Installation
	License Management Overview
	Activate ECU M&C Toolkit
	Terms
	Table 1. Definition of Activation Terms

	Moving Software After Activation
	Volume License Program
	Online Activation
	Home Computer Use
	Privacy Policy

	LabVIEW Real-Time (RT) Configuration
	PXI System
	NI-CAN on PXI RT System
	NI-XNET on PXI RT System
	CompactRIO System
	DOS Command Prompt
	Table 2-1. Example of FTP Transfer

	Web Browsers
	LabVIEW Real-Time Graphical File Transfer Utility
	Figure 2-2. FTP Utility Access in MAX
	Figure 2-3. FTP Login Dialog Box
	Figure 2-4. Transferring Files With the FTP Utility

	LabVIEW

	Hardware and Software Requirements

	Chapter 3 Application Development
	Choose the Programming Language
	LabVIEW
	LabWindows/CVI
	Visual C++ 6
	Other Programming Languages

	Application Development on CompactRIO or R Series Using an NI 985x or NI 986x C Series Module
	Debugging An Application
	NI I/O Trace
	CCP/XCP-Spy
	Figure 3-1. CCP/XCP Spy
	Saving Captured Communication Data
	Capture Options
	Call History Depth
	Capturing Data
	Selecting Which CCP and XCP Commands to View

	Chapter 4 Using the ECU M&C API
	Structure of the ECU M&C API
	Figure 4-1. ECU Architectural Overview
	ECU M&C Channel Functions
	What is an ECU Measurement?
	What is an ECU Characteristic?

	ECU M&C CCP and XCP Functions

	Basic Programming Model
	Figure 4-2. ECU Communication Decision Chart
	ECU Open
	ASAM MCD 2MC Communication Properties for CCP or XCP with CAN
	CRO ID
	DTO ID
	Station Address
	Baudrate

	ASAM MCD 2MC Communication Properties for XCP with UDP or TCP
	IP Address or hostname
	Port number

	ECU Connect
	ECU Disconnect
	ECU Close
	Characteristic Read and Write
	Access Characteristics
	Characteristic Read
	Characteristic Write

	Measurement Task
	Figure 4-3. ECU Measurement Setup Flowchart
	DAQ Initialize
	DAQ Start Stop
	DAQ Read
	Figure 4-4. Example of Read With Sample Rate = 0
	Figure 4-5. Example of Read With Sample Rate > 0
	DAQ Write
	DAQ Clear

	Memory Programming
	Figure 4-6. Memory Programming Process Decision Chart
	Program Start
	Clear Memory
	Program
	Program Reset
	Optional Steps for the XCP Protocol

	Additional Programming Topics
	Get Names
	Set/Get Properties
	Generic CCP Functions
	Table 4-1. Overview of the CCP Commands with Related VIs and C Functions

	Generic XCP Functions
	Table 4-2. Overview of the XCP Commands with Related VIs and C Functions

	Seed and Key Algorithm
	Definition for Seed and Key Algorithm
	Seed and Key Example
	Checksum Algorithm
	Seed and Key and Checksum Algorithms for VxWorks Targets

	Chapter 5 ECU M&C API for LabVIEW
	Section Headings
	Purpose
	Format
	Input and Output
	Description

	List of VIs
	Table 5-1. ECU M&C API VIs for LabVIEW
	MC Build Checksum.vi
	MC Calc Checksum.vi
	MC CCP Action Service.vi
	MC CCP Diag Service.vi
	MC CCP Get Active Cal Page.vi
	MC CCP Get Result.vi
	MC CCP Get Session Status.vi
	MC CCP Get Version.vi
	MC CCP Move Memory.vi
	MC CCP Select Cal Page.vi
	MC CCP Set Session Status.vi
	Table 5-2. Bit Mask Assignment for Calibration Session Status

	MC Characteristic Read.vi
	Table 5-3. Poly VI Types for the Value Parameter

	MC Characteristic Read Single Value.vi
	MC Characteristic Write.vi
	Table 5-4. Poly VI Types for the Characteristic Parameter

	MC Characteristic Write Single Value.vi
	MC Clear Memory.vi
	MC Conversion Create.vi
	MC DAQ Clear.vi
	MC DAQ Initialize.vi
	MC DAQ List Initialize.vi
	MC DAQ Read.vi
	MC DAQ Start Stop.vi
	MC DAQ Write.vi
	MC Database Close.vi
	MC Database Create.vi
	MC Database Open.vi
	MC Double to Text.vi
	MC Download.vi
	MC ECU Close.vi
	MC ECU Connect.vi
	MC ECU Create.vi
	MC ECU Deselect.vi
	MC ECU Disconnect.vi
	MC ECU Open.vi
	MC ECU Select.vi
	MC ECU Set Calibration Page.vi
	MC Event Create.vi
	MC Generic.vi
	MC Get Names.vi
	MC Get Property.vi
	Table 5-5. Poly Values for Value Output

	MC Measurement Create.vi
	MC Measurement Read.vi
	MC Measurement Write.vi
	MC Program.vi
	MC Program Reset.vi
	MC Program Start.vi
	MC Set Property.vi
	Table 5-6. ECU-Specific Property Value Types for the POLY Input Value
	Table 5-7. DAQ-Specific Property Value Types for the POLY Input Value
	Table 5-8. Characteristic-Specific Property Value Types for the PropertyID Input Value
	Table 5-9. Measurement-Specific Property Value Types for the PropertyID Input Value

	MC Text To Double.vi
	MC Upload.vi
	MC XCP Copy Cal Page.vi
	MC XCP Get Cal Page.vi
	MC XCP Get ID.vi
	MC XCP Get Status.vi
	MC XCP Program Prepare.vi
	MC XCP Program Verify.vi
	MC XCP Set Cal Page.vi
	MC XCP Set Request.vi
	MC XCP Set Segment Mode.vi

	Chapter 6 ECU M&C API for C
	Section Headings
	Purpose
	Format
	Input and Output
	Description

	List of Data Types
	Table 6-1. Data Types for the ECU M&C API for C

	List of Functions
	Table 6-2. Functions for the ECU M&C API for C
	mcBuildChecksum
	mcCalculateChecksum
	mcCCPActionService
	mcCCPDiagService
	mcCCPGetActiveCalPage
	mcCCPGetResult
	mcCCPGetSessionStatus
	mcCCPGetVersion
	mcCCPMoveMemory
	mcCCPSelectCalPage
	mcCCPSetSessionStatus
	Table 6-3. Bit Mask Assignments for Calibration Session Status

	mcCharacteristicRead
	mcCharacteristicReadSingleValue
	mcCharacteristicWrite
	mcCharacteristicWriteSingleValue
	mcClearMemory
	mcConversionCreate
	mcDAQClear
	mcDAQInitialize
	mcDAQListInitialize
	mcDAQRead
	mcDAQReadTimestamped
	mcDAQStartStop
	mcDAQWrite
	mcDatabaseClose
	mcDatabaseOpen
	mcDatabaseOpenEx
	mcDoubleToText
	mcDownload
	mcECUConnect
	mcECUCreate
	mcECUDeselect
	mcECUDisconnect
	mcECUSelectEx
	mcECUSetCalibrationPage
	mcEventCreate
	mcGeneric
	mcGetNames
	mcGetNamesLength
	mcGetProperty
	Table 6-4. Values for PropertyID

	mcMeasurementCreate
	mcMeasurementRead
	mcMeasurementWrite
	mcProgram
	mcProgramReset
	mcProgramStart
	mcSetProperty
	Table 6-5. ECU-Specific Value Types for the PropertyID Input Value
	Table 6-6. DAQ-Specific Value Types for the PropertyID Input Value
	Table 6-7. Characteristic-Specific Value Types for the PropertyID Input Value
	Table 6-8. Measurement-Specific Value Types for the PropertyID Input Value

	mcStatusToString
	Table 6-9. Description of Return Codes

	mcTextToDouble
	mcUpload
	mcXCPCopyCalPage
	mcXCPGetCalPage
	mcXCPGetId
	mcXCPGetStatus
	mcXCPProgramPrepare
	mcXCPProgramVerify
	mcXCPSetCalPage
	mcXCPSetRequest
	mcXCPSetSegmentMode

	Appendix A Summary of the CCP Standard
	Appendix B NI Services
	Glossary
	Numbers
	A
	B-C
	D
	E-M
	O-T

	Index
	A-C
	D-E
	F-L
	M
	N-R
	S-X

