COMPREHENSIVE SERVICES APEX WAVES

We offer competitive repair and calibration services, as well as easily
accessible documentation and free downloadable resources.

Bridging the gap between the
SELL YOUR SURPLUS manufacturer and your legacy

v) test system.
We buy new, used, decommissioned, and surplus parts from every NI series.

We work out the best solution to suit your individual needs.

Sell For Cash Get Credit Receive a Trade-In Deal
O 1-800-915-6216

@ www.apexwaves.com

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

9 sales@apexwaves.com

Alltrademarks, brands, and brand names are the property of their respective owners.

Request a Quote =cuckire NJ-9853

https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf

CAN

NI-CAN" Hardware and Software Manual

May 2017 ¢ NATIONAL
3702897-01 "INSTRUMENTS‘”

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visitni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information,
support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni . com/info and enter the Info Code feedback.

© 1996-2017 National Instruments. All rights reserved.

Legal Information

Limited Warranty

This document is provided ‘as is” and is subject to being changed, without notice, in future editions. For the latest version, refer to
ni.com/manuals. NI reviews this document carefully for technical accuracy; however, Nl MAKES NO EXPRESS OR IMPLIED
WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY
ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to substantially conform to
the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially in accordance
with the applicable documentation provided with the software and (ii) the software media will be free from defects in materials and
workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair or replace the affected
product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be warranted for the remainder of the original warranty
period or ninety (90) days, whichever is longer. If NI elects to repair or replace the product, NI may use new or refurbished parts or products that are
equivalent to new in performance and reliability and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for examining and testing
Hardware not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance, installation, repair, or calibration
(performed by a party other than NI); unauthorized modification; improper environment; use of an improper hardware or software key; improper use
or operation outside of the specification for the product; improper voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other
act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL APPLY EVEN IF
SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND AND NI
DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE PRODUCTS, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY
WARRANTIES THAT MAY ARISE FROM USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE OPERATION OF THE
PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the warranty terms in the
separate agreement shall control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

* Notices are located in the <National Instruments>_Legal Information and <National Instruments> directories.
¢ EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

* Review <National Instruments>_Legal Information.txt for information on including legal information in installers built with NI
products.

U.S. Government Restricted Rights

If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication, reproduction, release,
modification, disclosure or transfer of the technical data included in this manual is governed by the Restricted Rights provisions under Federal
Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal Acquisition Regulation Supplement Section 252.227-7014 and
252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni .com/trademarks for more information on National Instruments trademarks.

ARM, Keil, and pVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.
TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.
EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.
CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology and vernier . comare
trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.
Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and TargetBox™ and

™

Target Language Compiler ™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United
States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents. txt file on your media, or the National Instruments Patent Notice at ni .com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance
policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND RELIABILITY OF THE
PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR APPLICATION, INCLUDING THE
APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING IN THE OPERATION OF
NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING
SYSTEMS OR SUCH OTHER MEDICAL DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR
SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST FAILURES,
INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES.

Compliance

Electromagnetic Compatibility Information

This hardware has been tested and found to comply with the applicable regulatory requirements and limits for electromagnetic
compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)!. These requirements and limits are
designed to provide reasonable protection against harmful interference when the hardware is operated in the intended
electromagnetic environment. In special cases, for example when either highly sensitive or noisy hardware is being used in close
proximity, additional mitigation measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee that interference will
not occur in a particular installation. To minimize the potential for the hardware to cause interference to radio and television
reception or to experience unacceptable performance degradation, install and use this hardware in strict accordance with the
instructions in the hardware documentation and the DoC!.

If this hardware does cause interference with licensed radio communications services or other nearby electronics, which can be
determined by turning the hardware off and on, you are encouraged to try to correct the interference by one or more of the
following measures:

* Reorient the antenna of the receiver (the device suffering interference).

e Relocate the transmitter (the device generating interference) with respect to the receiver.

e Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC requirements for
special EMC environments such as, for marine use or in heavy industrial areas. Refer to the hardware’s user documentation and
the DoC! for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to disturbances or may
cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to correct the
interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to operate the hardware
under the local regulatory rules.

I' The Declaration of Conformity (DoC) contains important EMC compliance information and instructions for the user or
installer. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line,
and click the appropriate link in the Certification column.

Contents

About This Manual
PCI-CAN oottt e et e et e e et e e e e ataeeeteeesteaeeaseeeeaaaeeeaseaann Xvii
PXI-BAOX ...ttt ettt e e et e e e ta e e e eate e e e taeeeteeeetaaeeeaaaaeas Xvii
PCOMOCTIA-CAN e ettt e et e et e e et e e e e aaee e e teeeeareeetaeeeeaaaaans Xvii
USB-CAN ettt et e e et e e et e e e tt e e eetteeeeaaeeeeateaeetseeeseeeeeaseaans Xviii
USB LIN ..ot e e e e e e et e e et e e e eataeeeaaeeeeaseeeeaseeeeasaeeeseaaan Xviii
Related DOCUMENEAION.cccuiiiiiiieeiiee et ettt et ettt e eete e eeteeeeteeeeetaeeeaaeeeeareeas Xix
Chapter 1
Introduction
CAN OVEIVIEW ..uvvriiieeeeiieie e e ettt e e e ettt e e e e e et eeeeeetae e e e e eeaaaeeeeeeasssseeseeaassseaeeeaesaaeeaeans 1-1
Simplified CAN Data Frame...........ccocoiieieiiiieiieieneeeseee st 1-1
LIN OVEIVIEW .ttt e ettt e e e ettt e e e e e taaeeeeeeasbeeeeeeensseseeeeeessaseaeeas 1-2
NI CAN Hardware OVEIVIEWcecieeiiuiieieeeiiiiieeeeeeieeeeeeeeieeeeeeeetreeeeeeeasreeeeeeenaaeeeeens 1-2
About the NI CAN Series 2 Hardwarecccoeeeeveiiieiieciiieeeeeecieeee e 1-2
SerieS 2 VS. SEIIES 1 ..uuviiiiieiiiiieeeeeeee ettt et raae e e e eaees 1-4
PCLand PXI.......ooioieee e 1-6
PCMUCIA ..o 1-7
PCMCTA CADIES ... 1-7
About the USB-847x Hardware.............ccooeiviiiiiiiiiiieee e 1-8
CAN: USB-8472, USB-8472s, USB-8473, USB-8473s.....cccccuu...... 1-8
LIN: USB-8476, USB-8476Seeeeiueeeeeeeeeeeeeeee e 1-9
NI-CAN SOftWare OVEIVIEWccuveeieuriieeieeeeiteeeeceeeeeeteeeeeeeeeeteeeeeaeeeeeaeeeeereeeeneeeeneeean 1-9
VA X ettt e s 1-9
Frame APL ... et 1-10
Channel APL ... et eaaae e e 1-10
Chapter 2
Installation and Configuration
Safety INfOrmationcocecuiriiriiiiniiieeecee et 2-1
Measurement & Automation Explorer (MAX) ..cccooveevirieninienienienienicieneenieeeeneeeee 2-3
Verify Installation of CAN and LIN Hardwareccoceeeeenieeiiinneinieeeenie e 2-3
Configure CAN and LIN POTItS.......cccecirriiiiiiniienieeieeee ettt 2-4
CAN CRANNEIS.....oeiiciiieiiieeeiie ettt ear e et eeeetveeeeaaeeeseveeesaseeessseesseeeans 2-4
LabVIEW Real-Time (RT) Configurationcccoeceerevercieenieeneeneenieeneeseeenieesneennes 2-5
PXT SYSRIM ..coiiiiniiiiiieiieie ettt ettt ettt ettt e e et e s beesaee st e enbaesanesanes 2-6
CompPactRIO SYSIEMeeiiiiiieeiieiie ettt sttt st et 2-6

© National Instruments vii NI-CAN Hardware and Software Manual

Contents

Chapter 3
NI CAN and LIN Hardware

Philips STA1000 CAN CONLIOIIEToveeiiriieiiriiiieniieiesieeeeeese ettt 3-1
PCI-CAN L.ttt et s b e s eae 3-2
High-Speed Physical Layer........c.ccoccovieiiniiniiiiiiiieeccee e 3-2
TTANSCRIVET ..evvienieiiiieiiciieieete ettt ettt 3-2
Bus Power ReqUIr€ments..........coeevereeieneeienenienienieneseesiesiceeene 3-2
VBAT JUMPET....coiiiiiiiniiiiieeiecc ettt 3-2
Low-Speed/Fault-Tolerant Physical Layerc.ccccceveevenieniniencnienencene, 3-4
TTANSCRIVET ..evvinieiieiieiieiiciiste ettt 3-4
Bus Power ReqUIr€ments..........co.eevereeienieienenienienienesteseesieeiene 3-5
VBAT JUMPET ...ttt sttt sttt st 3-5
Low-Speed/Fault-Tolerant VBAT Jumper Settings........c..ccccceuenen. 3-6
Single Wire Physical Layer..........ccccoceriiiiiiriiniinieiecieic et 3-7
TTANSCRIVET ..eviiiiiiiiie sttt 3-7
Bus Power ReqUIr€ments..........coeevereeieneeienennienenienestesesieeiene 3-7
VBAT JUMPET..c.tiiuiiitieiiiieieeitete ettt ettt sttt s 3-8
XS Software Selectable Physical Layer..........cccccoevvieniinenieniineenenieneeeee, 3-8
RTST ettt e st s st 3-9
PXI-BA0X ...ttt ettt s 3-11
High-Speed Physical Layer........ccccocoviiiiniiiininiiiieieecteceeceteeee e 3-11
TIANSCEIVET «..veviiiiiiiiiiictctctet ettt s 3-11
Bus Power ReqUIr€ments.co.eevereeieneeienenienieneeniesteseesieeniene 3-11
VBAT JUMPET....coiiiiiiiiiiieeecteneeee ettt 3-11
Low-Speed/Fault-Tolerant Physical Layerc.cccccevvevvieninieninnenenieneenee, 3-13
TIANSCEIVET «..cuiiiiiiiiictiitectetetee ettt st 3-13
Bus Power ReqUIr€ments.co.eevereeieneeienenienenieiesiesiesieeiene 3-13
VBAT JUMPET ...ttt sttt 3-14
Single Wire Physical Layer..........ccocooeriiiiiiniiiinieieieee et 3-15
TIANSCEIVET «..ueviiiiiiiieiiiierteteteee ettt st 3-15
Bus Power ReqUIr€ments.co.eevereeieneeieneniienienieieeeeeeeieeene 3-16
VBAT JUMPET ...ttt sttt 3-16
XS Software Selectable Physical Layer..........ccccoovevienenieninieninienenieneenee, 3-16
PXI Trigger Bus (RTSI)..cc.coiiiiiiiiiiiieieneetei ettt 3-18
PCMCTA-CAN ...ttt ettt ettt s st sae e 3-20
PCMCIA-CAN High-Speed Cables.........cocevuererieniinieniiiienienienceeerieeeeene 3-20
TIANSCEIVET ...uiiiiiiiiieiiiiertetetetee ettt st 3-20
Bus Power ReqUIr€ments.co.eevereeieneeieneniienienieieeeeeeeieeene 3-20

NI-CAN Hardware and Software Manual viii ni.com

Contents

PCMCIA-CAN Low-Speed/Fault-Tolerant Cablesc...ccoceeveeriirnieneennne. 3-21
TTANSCERIVET ettt ettt et sttt et 3-21

Bus Power Requir€ments...........ccocueeveenieriieenienieeeeneeeeesee e 3-21

PCMCIA-CAN Single Wire Cables.........ccooeevieriienienieniienieeieesieeeie e 3-22
TTANSCERIVET ettt ettt ettt et st e b s 3-22

Bus Power ReqUirements...........ccocueeveeniirrieeneenieeneesieeeesee e 3-22

SYNCATONIZAION ...uveiniieiiieiieeieeie ettt 3-23

USB-CAN .ttt ettt sttt ettt ettt b bt s b s st beee 3-25
USB-8473/USB-8473s: High-Speed Physical Layercccccevceeveiiiniennnnne. 3-25
TIANSCEIVET ..ottt sttt s 3-26

Bus Power ReqUIr€mMents............coecueevueenieerieeneenieeeeseeeieesee e 3-26

LED INAICALOTS c..veiivieiieiiiieieeeie ettt ete et sve et e st esereenes 3-26
USB-8472/USB-8472s: Low-Speed/Fault-Tolerant Physical Layer............... 3-27
TIANSCEIVET ..ottt ettt s 3-27

Bus Power ReqUITEMentsccevueeriienieiriienienieeeeeteeeesee e 3-27

LED INAICALOTS c..veiivieiieiiiieiieeieeieeste ettt et sve et e sereebeeseneenees 3-28

USBLIN ettt ettt h bttt bbbttt ettt et ebe b e 3-28
USB-8476/USB-84768: LINcccuiiiiiiiiiiiniinieniesierteiee et 3-28
TANSCEIVET ..ottt ettt s 3-28

Bus Power ReqUIrEMentsc.ccevueeriienieerieenienieeeeeeeeieesee e 3-28

LED INAICALOTS c..veiitieniieiiiieiieeieeieeste ettt eve et sve et e sreebeesereenees 3-29

Synchronization in USB-CAN/LIN DEVICESc.cervuiriierieniieniienieeieesieeieesieeeieenaeens 3-29
CAN for CompactRIOooviiiiiiiiieiieeieeee ettt sttt st ebaesaae e 3-32
What is CompactRIOY........cocuieriiiiiiiienie ettt s 3-32

INT 9850 ettt sttt st ettt eb e bbbttt nen 3-32

Chapter 4
Connectors and Cables

High-Speed CAN Pinout Cableccevieiiniiiinieieieeeeeeeeee e 4-1
High-Speed PCI, PXI, and USB Connector Pinout...........c.cccoceveeviineennncnnee. 4-1
PCMCIA Connector PINOULccoviieiiieeciieeeieeeeieeeeiee e 4-2
Cabling Requirements for High-Speed CAN........cccceveveinencencnen. 4-4
Cable Lengthsoooiieiiiieieeeeee e e 4-4
NUMDET Of DEVICES ..veiiuviiieiiiieiieeeie e e 4-5
Cable Termination.............coovieeeiieeeiieeeieeeeieeeeie e eeveeeeeieeeeaaeeeareeas 4-5
Cabling EXample........cccoeeieriiieniiieiieieceeeete e 4-6
Low-Speed/Fault-Tolerant CAN Pinout Cable..........cccccoceeveniininiininieninienceeeeeen 4-6
Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout................. 4-6
PCMCIA Connector Pinout PCMCIA Connector Pinout................. 4-8
Cabling Requirements for Low-Speed/Fault-Tolerant CANcccecenueeee. 4-9
NUMDbET Of DEVICES ..veiiuviiieiiiieiiieeie e e 4-10
TermMUNALIONccvvieiiiieieiie ettt ettt e et e et eeeteeeeaeeeeaaaeean 4-10

© National Instruments ix NI-CAN Hardware and Software Manual

Contents

Determining the Necessary Termination Resistance for the

BOArd......cociiiiiiiiei e 4-10
Software Selectable Termination (USB-8472s only)c..cccecveeueene 4-13
Replacing the Termination Resistors on Your PCI-CAN/LS
BOArd......cocviiiiiiiiei e 4-13
Replacing the Termination Resistors on the PXI-8460 Board 4-15
Replacing the Termination Resistors on the PCMCIA-CAN/LS Cable......... 4-16
Cabling EXamPIEcc.coviiiiiiiiiniiiiietceteeece et 4-17
Single Wire CAN Pinout Cable..........coocueiviiiiiiiiiiiiieeeeceteeee e 4-17
Single Wire PCI and PXI Connector Pinout...........ccocveevieeniiineenienciieniennene 4-17
PCMCIA-CAN Connector PInOULc..coeeevereenieneenenieneneeniennens 4-19
Cabling Requirements for Single Wire CANcccccovviivviiniiienienieeieeneeenn 4-20
Cable Length.......cocioiiiiiiiieieceeeee e 4-20
NUmber Of DEVICESccueeuviriiriiniieieieitenceectertee sttt 4-20
Termination (Bus Loading)c.ccevveriieviieniieiiiinieeieeiee e 4-20
Cabling EXaMPIEcceeviiiiieiiiiiieieeee ettt 4-21
XS CAN Pinout Cable........cocceviriiniiiinieieniintenitetesieet ettt sttt 4-21
XS PCI and PXI Connector PINOULcoccouererierienieniinieiinienceecnieeeeene 4-21
Cabling Requirements for XS CAN.....ccccovviiviiriitiiieeecie et 4-23
External Transceiver EXample.........cccoovvevierniiniiinienieciienieeieee 4-24
LI ettt bttt et et e b e eb bt bttt be bt et eaee 4-24
USB-LIN Connector PINOUL..........cocevirieriniiienieicnieeieceeeniceee e 4-24
Cabling Requirements for LIN Specifications (LIN)ccccocveevveniieriieenieennen. 4-26
Cable SPecifiCationscccecueeriieriieriienie ettt 4-26
Cable Lengthscccierieriieiieeieeieeseeie et 4-26
NUmber Of DEVICEScc.eeuveriiriiniieieieieenceecere ettt 4-26
TErMINAtION ..c..coveiiriiiieiiiniieteteet ettt ettt 4-26

Chapter 5
Application Development

Choose the Programming Languageccccoeeererienenieiienieeeceienicee e 5-1
LabVIEW ..ottt sttt st 5-1
LabWindowWs/C VIco.coiiiiiiiiieieeteee ettt 5-2
VISUAL CA O ettt s 5-2
Borland C/CH ..ottt s 5-3
Microsoft Visual BasiC.......ccoerieriiriieniieienieeienieee et 5-4
Other Programming Languagesc..cccceveeveriiiieniiniienieieneeeeseeeeesieeee e 5-4

Cho0se Which API T USEcueviiiiriieiiniieie ittt s 5-6

NI-CAN Hardware and Software Manual X ni.com

Contents

Chapter 6
Using the Channel API

Choose Source of Channel Configurationcoocceceeiereriereniere e 6-1
Already Have a CAN Database File?.........ccocoiiiiiiiiiiiiiieeeeeeeeee, 6-2
Application Uses a Subset of Channels?..........cccoceverieninenenieneeeeeeee. 6-2
Import CAN Database into MAX.......cccoocirieriiieieeierieee e 6-2
Access CAN Database within Application..........ccccoeceerereerenieienieneeeeee e 6-3
User Must Create within Application?........cccceeeuereerierieiieneereeeeeeeeee e 6-3
Use Create Message Function in Applicationceceeeeveeeeneeceneeceneeenne. 6-3
Create i MAX ..ottt sttt 6-4

Channel API Basic Programming Modelccccoooiiiiiiiiiniiieeeeeee e 6-4
IIE SEALT ..ttt 6-5
ReEAd.....oii e 6-6

SAMPIE TALE = 0 .ot 6-6
SAMPIE TALE > 0 .ot 6-7
Read TIimeStampedcc.evueeueriierieniieieee ettt sttt eae et s eneas 6-8
WL .. e s 6-8
SAMPIE Tate = 0 ..o e 6-9
sample rate > 0, Output Modec.cecuieieiiiiiiiiiiii e 6-9
sample rate > 0, Output Recent mode........c.ccceveerierneinicnneeneennen. 6-10
CIEAT .. 6-10

Channel API Additional Programming TOPICS.......c.ccerueriereriienieeieseeeerie e 6-11
GEE NAIMES ...t s 6-11
SYNCRIONIZATION ...ttt s 6-11
T g 0] 053 TSRS 6-12

Frame to Channel CONVEISIONccoiuiiiiiiiiiiiiicieieee e 6-12
When Should I Use Frame to Channel Conversion?............ccccceceevenieneenenne. 6-13

LOZEING ..ttt ettt sttt ettt 6-13
CompactRIOc.coriiiiiiiiii e 6-14
Development without CAN Hardware.........ccocceeceevienienneenicnneennne. 6-15
Database QUETIES.......c.uuveeiieeiiiiee ettt e e e e e vaee s 6-15
Enhance an Existing Frame API Applicationccccceeceevereeneennen. 6-15
USB-8ATX ottt sttt ettt s 6-15
Virtual Bus TImMinNg.......ccoeouieieiieieieee et 6-16
LIMILATIONS. .c.euteireiieiieieeiceene sttt ettt sttt ene s 6-17
Programming Model for Virtual Bus Timing Disabledc.cccccevieeeennrnnee. 6-21

Mode Dependent Channels...........oocueereerieiiienienieenieeeeee ettt 6-23

Mode Dependent Channels in MAXccooiiiiiiiiiniiiniiiceeeeeceee e 6-24

© National Instruments Xi NI-CAN Hardware and Software Manual

Contents

Chapter 7
Channel API for LabVIEW

Section HEAdINgScoouviiiiiiiiiiieieeieeeeet ettt et 7-1
LISt OF VIS ettt sttt ettt eae b 7-1
CAN CIEAI. VI ..ttt e s e 7-4
CAN Clear with NI-DAQ . Vi...couiiuiriiiriiniiienienteteieteeeeeteeeiesie ettt eeae 7-6
CAN Clear with NI-DAQIMIX.VI c..uuuiiiiiiieiiiieee ettt e et eeettae e e e e araeeeeeeannees 7-8
CAN Clear Multiple with NI-DAQ.Vi...cceeieiieieniieieieeeieieeieee ettt 7-10
CAN Clear Multiple with NI-DAQMX.Vi.ecueeririeriirierieeiierieeiieeeiceee e see e eee e 7-12
CAN Connect Terminals. Vicocoereruerierierieiiintneeieeente ettt seesnene 7-14
CAN Create MESSAZE. VI couveiruiieiieniiieieeeiteeie ettt ettt ettt et st et st e b e saae e es 7-24
CAN Create MessageEX. Vi.....cooioieiieeieiieieeie sttt sne e e 7-30
CAN Disconnect TerminalS. Vi «.....c.coceeueeueruerienienieieieinenenesesesene ettt see s 7-37
CAN Gt NAMES. Vi1t s e s s 7-39
CAN Gt PrOPerty.Vi...ceoueeeieiieeieiieeiete ettt sttt ettt see et be st ae st esbeeneens 7-42
CAN INIALIZE. VI c.veeveevieiiiteniertetceeeteet ettt ettt ettt b e sr et eae 7-55
CAN INIE STATT.VI coveviiiititeietc ettt ettt et et ea e b s et ene 7-59
CAN REAALVI .ttt ettt st st ene b 7-65
CAN Set PrOPEITY . Vi eueeiueeieieieiietieiiestt ettt ettt ettt sttt e e see et e sbeeaesaeeneesbeeneans 7-73
CAN SEATT VI ettt sttt st ettt ettt et ebe b ebesbe b s besae s ennenne 7-88
CAN SEOP.VI ettt ettt ettt ettt st sat et b e sa s seennene 7-90
CAN Sync Start with NI-DAQ.Vi...ocoiiiiiiiiiiice e 7-92
CAN Sync Start with NI-DAQMX. VI.c..coiiiiiiiiiiiiiiiiiiiiiciceeecceeee e 7-94
CAN Sync Start Multiple with NI-DAQ.Vi..c..ccueoiiiriririnininenenenecceeceeeeeeveeeene 7-97
CAN Sync Start Multiple with NI-DAQMX.Vi.ceoteriiiriiniiiiienienieeneeeeesee e 7-100
CAN WIHLE. VI ettt sttt et ettt et ea b b st et ene 7-103

Chapter 8
Channel API for C

SeCtiON HEAdINZSveeviieiieiie ittt ettt et e s aae e sbeesaveennee s 8-1
DALA TYPES cuvteuteeieeitie ettt ettt ettt e et e bt e st e et e esate s be e st e sabeesatesabeesbeeenbeebeesaseeneenneas 8-1
LiSt Of FUNCHONSeiiiiiiiiciiieeiteeeeee ettt ve e e st e e e tae e eataeeenebeeeaaseeeenaaans 8-2
NCECIRAT ... et eiiee ettt ettt e ettt e ettt e e e atb e e etbee e tbeeesabeseestseeesssaeetseeeassseesnsseasnsseaans 8-4
NCtCONNECtTEIMINALS.viiiiiiieeiiie et eve e e b e e aree e sbae e eaaaeeeaes 8-5
NCECTEALEIMESSAZEvveevveentieeieeite et et et e et e st e steebeesbeebeesbteesbeesbeesaseensaesaseenseessnesasens 8-15
NCLCTEALEMESSAZEEX ..uviiiiiiiieiieeie ettt ettt st e esae e enbeesaaesase s 8-20
NCtDISCONNECtTEIMINALSccvviiieiiiiieiie ettt et e et e e tb e e eeree e saveeeeareeens 8-26
NCEGEIINAINES ..e.vviieeiiiieciiieeciee e ettt e eite e ettt e e ettt e e ebeeestaeeestbeeeessesasssseeastseeasseeeansseasnseeanns 8-28
NCEGENAMESLENGN ..c..veiiiiiiiiiie ettt e 8-31
NCEGEIPTOPETTY ..evvteieiieiie ettt ettt ettt e ettt ste e bt e st e et esaaeesbeesabeenbeesseesnseesaesases 8-33
NCHINIEIALIIZEeeeeeiiie e et e et e ettt e e te e e e aaeeesbaeeeasaeesnaeeesnreaanns 8-44
NCHINIESEATT ..ot et e e et e e eev e e e tte e e e tbeeetseeeasaeeeaseeesnreeanns 8-47

NI-CAN Hardware and Software Manual Xii ni.com

Contents

NCEREAA ..ttt sttt st at e sttt 8-53
NCtREAdTIMESAMPEd......coiuiiiiiiriieiiieiteete ettt sttt et e 8-57
NCESEEPTOPEITY ...ttt ettt et st e bt st e baesareenee 8-60
DICESTATT Lttt ettt ettt ettt et et e sa e e b e e s it e e bt e sabeeabeesateeabe e bt e sabe e bt e sateebaesabeennes 8-75
TICESTOP +nttenteenteeeit et e et e et e b e et et e sab e bt e sht e e bt e s ate st e e sateea bt esbeesabe e bt e sabe e bt e sateenbeenneeeabs 8-76
NICEWTIER ..ttt ettt st et s e et e st e et e s at e eabe e bt e sabe e bt e sateenbaesateenbes 8-77

Chapter 9
Using the Frame API

Choose Which ObjJects TO USE.......coeeiirieriiniiienieerienitee ettt 9-1
Using CAN Network Interface ODbjects.......coccevervienienenienienienineeneeeeneennen 9-1
Using LIN Network Interface ODJECtScoceveevierienenienienieneneeneeeeneeen 9-2
USING CAN ODJECLS ..cuvevieniiiieiieiieieeitenie sttt sttt et ettt st e naeeaees 9-3
Frame API Basic Programming Model for CANc..ccceiiniininiininienceeeceneeen 9-4
Frame API Basic Programming Model for LINccccoociivininininininieieeeeeeeenee. 9-7
LIN Interface as Bus MONItOL........cc.ccceviviririninienieicieieieeereeeeecee e 9-7
LIN Interface as Master........cccoueiiieiiiiineniieienie ettt 9-10
LIN Interface as S1ave DeviCe..........cccoviviririninienienieieicieiereeeceeeese e 9-14
LIN Interface Accesses Single Subscribing Slave Device..........ccccevereennennee. 9-17
LIN Interface Accesses Single Publishing Slave Device........cccccocevireennennee. 9-20
LIN Interface Sleep and Wakeup Behavior...........ccoceeoeviiiiniinininncnenennee. 9-23
Frame API Additional Programming TOPICS.......c.ccecuerierienienieniinieieneene e 9-25
RTST ettt ettt ettt 9-25
RemMOte Frames.......cccocoeiiiiiniiiiniinicicicccteee st 9-25
USING QUEUES. ...ttt ettt st ettt et sbe et b e stesbeetesbeenaesbeenaesaeas 9-26
State TIANSILIONSeveuviieieieieieiiee ettt s 9-26
EMPLY QUEUES ...ceveiiiiiiiieiiiiieieeteetet ettt st s s 9-26
FUIl QUEUES.....eeeeeeiieiieeeetee ettt ettt e e e e e e e ete e e e ateeeeaaaeeeaveaaan 9-27
Disabling QUEUES.......ccueruieiiriieiieiieieeitee ettt ettt e e eaees 9-27
Using the CAN Network Interface Object with CAN Objects.......cc..coceeneeeeee. 9-27
Detecting State Changes..........coeevuerieeienienienieeie ettt s enees 9-29
Frame to Channel CONVerSion.......c..cccecveeieieinininiinienieieerereeeeeeee e 9-29
Differences between CAN and LINccccocooeviiiiiiiiiiiniiininncneseeeenes 9-30

Chapter 10
Frame API for LabVIEW

Section HEAINES ..c.veeriiiiiiiiiiiieeiee ettt sttt s 10-1
LISt OF VIS .ttt ettt st s b et s b et e ettt e eae et e eaeenean 10-2
NCACTION. VIt ettt st ettt et s e et e s bt e e abe e bt e sabeebeesaeeenbaesaeeeanes 10-4
NCCLOSEVI ettt ettt et sttt s ittt sbe e st e bt e st ebaesaeeenres 10-8
NCCONTIGCANNEL VI ..ttt ettt ettt a et eaeeaeeaeeeesaeenaesaeen 10-10
NCCONTIGCANNEIRTSL Vi .ueieiiiieeieiiieiiee ettt 10-15

© National Instruments Xiii NI-CAN Hardware and Software Manual

Contents

NCCONTIGCANOD] . Vieeiiiiiiiiiiiiieeieeieeeieeee et
NCConfigCANODBJRTSL VI .coviiiiiiniiniiiiieiieeie e
ncConnectTerminals.Vi......ooocvieeeieeiciie et
ncDisconnectTerminalS. Vi....c.ooecvveeccieeeciie e
Lo € N i & U T RSP SP
ncGetHardwareInfo.vi......ccoccvveeeiiiiciiieeie e
NCGEtTIMET. Vi..uiiieiiieeciieeee ettt ae e
NCOPCIL ViLueiiiiiiriieeieeiie ettt ettt ettt s sbe et st e saeesabe e
NCREAANCE. VI 1eeeiiiieciiie ettt e e ae e
NCREAANEIMUIL. VIoviiiiiiieiiicceecce e
NCREAAOD] . Vi c.eviiiiiiiiiiieie e
NCREAAODIMUIL. VI ..t
NCSELALLT. VIL.uiiiiiiiieciiee ettt ettt e e e e eae e e e veeeeereeeaaeeeereeens
NCWaItFOIrState. Vi...o.ooooiviiieiiiceiee e
NCWTIIENEL VI 1ot
NCWIIENEtMULIL. Vi....oviiiiiieciicccieee e
NCWTIEOD]. VI ettt ettt st

Chapter 11
Frame API for C

Section Headingscoveeieririenerienienienieeeeeeecetese e
Data TYPES ...eerieeieeriiiiieeeie ettt ettt e
List of FUNCHONScoccuiiiiiiieeiieeeeeee e e e
NCACHION ..ottt et eeta e e et e e e eaaee e earaeean
NCCIOSEODIECL. ...cueeiieiieiieiieieeiteeete et
NCCONTIZ .ttt
NcConnectTerminalS..........cooevieeiieeiiieeeiee e
NCCreateNOtTICAtION.eeeeiiiieiiic e
ncDisconnectTerminalsooooevviiiiieieiieieiie e
NCGELALIIDULE ...t
ncGetHardwareInfocoooiiieiiiiiiiiiccceeeeee e
NCOPENODJECT ...ttt
NCREAAoiiiiiiie e e
NCREAAMULLooviiiiiiicce e
NCSELALIIDULEvviiciiii et
NCSEAtUSTOSIING ..eovieiiiiiiieiiee e
NCWaItFOIrStateccoeeiiiiiiie e
NCWTILE .oviiiiiieetie ettt e e et e et e e e te e e etae e eaaee s
NCWIIEMUIL ...t

NI-CAN Hardware and Software Manual Xiv

ni.com

Contents

Appendix A

Troubleshooting and Common Questions
Troubleshooting with the Measurement & Automation Explorer MAX) A-1
Troubleshooting Self Test Failures........ccocoeieiirieiirieese e A-2
CommMON QUESTIONS.cccuuriieeeeiiiieeeeeiiitteeeeeeetteeeeeeetaeeeeeeeeaaeeeeeesssseeseeaassseaeeeaasreseeeans A-3

Appendix B

Summary of the CAN Standard
History and Use 0f CAN ..ottt sttt e B-1
CAN Identifiers and Message Priority..........coceveeeerinienenienenieiesceeecee e B-2
CAN FLAMIES ...veeniiiieieitet ettt ettt ettt ettt et et enbeenees B-3
CAN Error Detection and COnfinementc..coceeverienernienenienenieneeeeie e eeenees B-5
LOW-SPEEA CAN ...ttt sttt ettt b et st sae ettt st enaeeaees B-8

Appendix C

Summary of the LIN Standard
History and Use Of LINcccciiiriiiiiiiienieiieesteee ettt e C-1
LIN Frame FOrmat........cccccoiiiiiiiiiniinieiieteeeenee ettt st e C-1
LIN BUS TIMING .c..ttiiiiiiiieiieiieenite sttt ettt sit s teesttesbeesttesateesbeesasesnbeessaesnseenssessseenses C-4
LIN Topology and BEhavior..........cccueviieriiiiieniienieeieesieeiee sttt C-5
LIN Error Detection and COnfinementcoceoereevienienenienenienieneenieeeenee e C-6
LIN Sleep and WaKeUPc..oovieriiriieiieeieeite sttt ettt sttt s esaee e essaesaneenees C-6
AdVanced Frame TYPEScevieeieriiienieeiteriie ettt ettt st sate b e siaeesbeesiaessseenes C-7
Additional LIN Information.........coccecuererieniniininieninieneneenenieeeseeeeeieete e enees C-8

Appendix D

Frame Types for CAN and LIN Hardware

Appendix E

Specifications
PCI-CAN SEIIES 2.ttt ettt sttt ettt sttt ettt e ettt et e e eaeebe b e E-1
PXI-8A0X SEIIES 2 ..ttt ettt ettt sttt et sae et sbe et e b eaees E-4
PCMCTA-CAN SEIIES 2...ueuiuiitiieitesiesiestesteteit ettt ettt sie st st beseestesestete s et eneeaeeseaneees E-7
USB-CAN and USB-LINccciiiiiiiiiiiiieeeieeiee ettt eee e E-10

© National Instruments XV NI-CAN Hardware and Software Manual

Contents

Appendix F
NI-XNET Compatibility for NI-CAN

OVerview and PUIPOSE........ccouiiiiriiiiirieeee ettt F-1
Installation and CONfigUIAtIONec.ieuirtieieetieieeteeee ettt F-1
LIMITATIONS ...t F-3
Broken Compatibilitycoceerieriiiiiinieniieeceeetee et F-3

Appendix G
NI Services

Glossary

Index

NI-CAN Hardware and Software Manual XVi ni.com

About This Manual

PCI-CAN

Use the NI-CAN Software and Hardware Installation Guide included with
your kit to install and configure the NI-CAN hardware and software. Use
this manual to learn the basics of NI-CAN, as well as how to develop an
application.

This manual contains specific programmer reference information about
each NI-CAN function and VI.

This manual also describes the hardware features. Unless otherwise noted,
this manual applies to the NI CAN Series 2 products, which include the
following.

PXI-846x

PCI-CAN Series 2 (High-Speed; 1 port)

PCI-CAN/2 Series 2 (High-Speed; 2 ports)

PCI-CAN/LS Series 2 (Low-Speed/Fault-Tolerant; 1 port)
PCI-CAN/LS?2 Series 2 (Low-Speed/Fault-Tolerant; 2 ports)
PCI-CAN/XS Series 2 (Software Selectable; 1 port)
PCI-CAN/XS?2 Series 2 (Software Selectable; 2 ports)

PCMCIA-CAN

PXI-8461 Series 2 (High-Speed; 1 or 2 ports)
PX1-8460 Series 2 (Low-Speed/Fault-Tolerant; 1 or 2 ports)
PX1-8464 Series 2 (Software Selectable; 1 or 2 ports)

© National Instruments

PCMCIA-CAN Series 2 (High-Speed; 1 port)

PCMCIA-CAN7/2 Series 2 (High-Speed; 2 ports)
PCMCIA-CAN/LS Series 2 (Low-Speed/Fault-Tolerant; 1 port)
PCMCIA-CAN/LS2 Series 2 (Low-Speed/Fault-Tolerant; 2 port)
PCMCIA-CAN/SW Series 2 (Single Wire; 1 port)

XVii NI-CAN Hardware and Software Manual

About This Manual

USB-CAN

e PCMCIA-CAN/HS/LS Series 2 (1 port High-Speed,
1 port Low-Speed/Fault-Tolerant)

¢ PCMCIA-CAN/HS/SW Series 2 (1 port High-Speed,
1 port Single Wire)

USB-LIN

e USB-8473 (High-Speed CAN; 1 port)
e USB-8473s (High-Speed CAN; 1 port, with Synchronization)
e USB-8472 (Low-Speed CAN; 1 port)
e USB-8472s (Low-Speed CAN; 1 port, with Synchronization)

e USB-8476 (LIN; 1 port)
e USB-8476s (LIN; 1 port, with Synchronization)

NI-CAN hardware products that pre-date the Series 2 product line are now
referred to as Series 1. NI CAN Series 2 products contain several
enhancements over Series 1 products, including the Philips SJA1000 CAN
controller, improved RTSI synchronization features, updated CAN
transceivers, and XS Software Selectable hardware for PCI and PXI.
NI-CAN software continues to fully support Series 1 hardware. However,
some advanced features are available only with Series 2 hardware. For
instance, with PCMCIA, both the card and the cable must be Series 2 to use
the advanced features. For a complete description of the differences
between Series 1 and Series 2 NI CAN hardware, refer to the Series 2 Vs.
Series I section of Chapter 1, Introduction.

To obtain complete documentation of NI CAN Series 1 hardware, refer to
the previous version of the NI-CAN Hardware and Software Manual,
part number 370289x-01, where x is the letter preceding the one used

in this manual. The previous version of this manual is available at
ni.com/manuals.

NI-CAN Hardware and Software Manual XVili ni.com

About This Manual

Related Documentation

© National Instruments

The following documents contain information that you might find helpful
as you read this manual:

ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of
Digital Information—Controller Area Network (CAN) for High-Speed
Communication

ANSI/ISO Standard 11519-1, 2 Road Vehicles—Low Speed Serial
Data Communications, Part 1 and 2

CAN Specification Version 2.0, 1991, Robert Bosch GmbH., Postfach
106050, D-70049 Stuttgart 1

CiA Draft Standard 102, Version 2.0, CAN Physical Layer for
Industrial Applications

CompactPClI Specification, Revision 2.0, PCI Industrial Computers
Manufacturers Group

DeviceNet Specification, Version 2.0, Open DeviceNet Vendor
Association

PXI Hardware Specification, Revision 2.1, National Instruments
Corporation

PXI Software Specification, Revision 2.1, National Instruments
Corporation

LabVIEW Online Reference

Measurement and Automation Explorer (MAX) Online Reference
Microsoft Win32 Software Development Kit (SDK) Online Help
SAE J2411, Single Wire CAN Recommended Practices

Xix NI-CAN Hardware and Software Manual

Introduction

CAN Overview

This chapter provides an introduction to the Controller Area Network
(CAN), the Local Interconnect Network (LIN), and the National
Instruments products for CAN and LIN.

The data frame is the fundamental unit of data transfer on a CAN network.
Figure 1-1 shows a simplified view of the CAN data frame.

<4— Identifier Length Data

Figure 1-1. CAN Data Frame

Simplified CAN Data Frame

© National Instruments

When multiple CAN devices transmit a frame at the same time, the
identifier (ID) resolves the collision. The highest priority ID continues, and
the lower priority IDs retry immediately afterward. The ISO 11898 CAN
standard specifies two ID formats: the standard format of 11 bits and the
extended format of 29 bits.

The ID is followed by a length code that specifies the number of data bytes
in the frame. The length ranges from O to 8 data bytes. The ID value
determines the meaning of the data bytes.

In addition to the data frame, the CAN standard specifies the remote frame.
The remote frame includes the ID, but no data bytes. A CAN device
transmits the remote frame to request that another device transmit the
associated data frame for the ID. In other words, the remote frame provides
a mechanism to poll for data.

The preceding information provides a simplified description of CAN frames.
The CAN frame format includes many other fields, such as for error checking
and acknowledgement. For more detailed information on the ISO 11898
CAN standard, refer to Appendix B, Summary of the CAN Standard.

1-1 NI-CAN Hardware and Software Manual

Chapter 1 Introduction

LIN Overview

The LIN bus uses a Master/Slave approach, comprised of a LIN Master and
one or more LIN Slaves. Figure 1-2 shows a simplified view of the LIN
message frame.

Idi Message Header 4>|47 Message Response 4>|

| Break | Sync |Identifier | Data | Checksum |

Figure 1-2. LIN Message Frame

The message header consists of a break used to identify the start of the
frame and the sync field used by the slave node for clock synchronization.
The identifier (ID) consists of a 6-bit message ID and a 2-bit parity field.
The ID denotes a specific message address, but not the destination. Upon
reception and interpretation of the ID one slave will begin the message
response. The message response consists of 1-8 bytes of data and an 8-bit
checksum.

The sequencing of message frames is controlled by the master and is fixed
in a schedule. The schedule may be changed as needed.

The proceeding information provides a simplified description of the LIN
message frame. For more details on the LIN message frame and on the LIN
specification, refer to Appendix C, Summary of the LIN Standard.

NI CAN Hardware Overview

This section describes the NI CAN and LIN hardware.

About the NI CAN Series 2 Hardware

NI CAN Series 2 hardware and the NI-CAN software package provide an
easy and powerful way to use a desktop or notebook PC to interface to a
CAN bus. The hardware features the Philips SJA1000 CAN controller,
which is CAN 2.0B compatible and supports a variety of transfer rates up
to 1 Mbps. All NI CAN Series 2 hardware uses the Intel 386EX embedded
processor to implement time-critical features provided by the NI-CAN
software. NI CAN Series 2 hardware supports High-Speed and

NI-CAN Hardware and Software Manual 1-2 ni.com

Chapter 1 Introduction

Low-Speed/Fault-Tolerant physical layers, which fully conform to the
ISO 11898 physical layer specification for CAN. In addition, NI CAN
Series 2 hardware supports Single Wire CAN.

PCI-CAN Series 2 hardware supports the Real-Time System Integration
(RTSI) bus as a way to synchronize multiple interface cards in a system by
sharing common timing and triggering signals.

PX1-846x Series 2 hardware supports the PXI trigger bus as a way to
synchronize multiple interface cards in a system by sharing common timing
and triggering signals.

PCMCIA-CAN Series 2 cards provide a way to synchronize multiple
devices by using the PCMCIA-CAN Synchronization cable to externally
connect to shared timing and triggering signals. For more information
about the synchronization capabilities of the NI CAN Series 2 hardware,
refer to the RTSI section, the PXI Trigger Bus (RTSI) section, or the
Synchronization section of Chapter 3, NI CAN and LIN Hardware, for the
appropriate hardware type.

PCI-CAN Series 2 hardware is software configurable and compliant with
the PCI Local Bus Specification. It features the National Instruments MITE
bus interface chip that connects the card to the PCI I/O bus. With a
PCI-CAN Series 2 card, you can make the PC-compatible computer with
PCI Local Bus slots communicate with and control CAN devices.

PXI-846x Series 2 hardware is software configurable and compliant with
the PXI Specification and the CompactPCI Specification. It features the
National Instruments MITE bus interface chip that connects the card to the
PXTI or CompactPCI I/O bus. With a PXI-846x Series 2 card, you can make
the PXI or CompactPCI chassis communicate with and control CAN
devices.

PCMCIA-CAN Series 2 hardware is a 16-bit, Type II PC Card that is
software configurable and compliant with the PCMCIA standards for
16-bit PC Cards. With a PCMCIA-CAN Series 2 card, you can make the
PC-compatible notebook with PCMCIA slots communicate with and
control CAN devices.

© National Instruments 1-3 NI-CAN Hardware and Software Manual

Chapter 1

Introduction

Series 2 Vs. Series 1

The technical information in this manual applies to the NI CAN Series 2
hardware. You can easily identify the series of the NI CAN hardware by
looking at the label. Use Figure 1-3, Figure 1-4, Figure 1-5, and Figure 1-6
to determine if the hardware is Series 1 or Series 2. If the label does not
indicate Series 2, the hardware is Series 1. For complete documentation of
NI CAN Series 1 hardware, refer to ni . com/manuals and search for the
part number 370289E-01 to access the October 2002 edition of the NI-CAN

Hardware and Software Manual.

~

PCI-CAN Q

I [

N
I I
O NI PCI-CAN
Series 2

Figure 1-3. NI PCI-CAN Hardware Series 1 and 2 Labels

@) O

¢ NATIONAL
’ INSTRUMENTS

NI PXI-8461
CAN

@) O

¢ NATIONAL
’ INSTRUMENTS

NI PXI-8461
CAN

Series 2

NI-CAN Hardware and Software Manual

Figure 1-4. NI PXI-CAN Hardware Series 1 and 2 Labels

ni.com

Chapter 1 Introduction

\\ \\
PCMCIA-CAN NI PCMCIA-CAN ;
with high & low speed CAN support Series 2
N N
§ §
g g
IWiNSTRUMENTS IWiNSTRUMENTS £
7 7

Figure 1-5. NI PCMCIA-CAN Hardware Series 1 and 2 Labels

Figure 1-6. NI PCMCIA-CAN Series 1 and 2 Cables

© National Instruments 1-5 NI-CAN Hardware and Software Manual

Chapter 1 Introduction

The hardware series is also displayed in MAX, as shown in Figure 1-7.

¥, PCI-CAN/2 - Measurement & Automation Explorer
File Edit Yew Tools Help

=10l

J B self-test

[y Syskbern
Data Meighborhood
i tfaces

Il - Ipcr-cany2

| Drescripkion
The serial number of the device

| alue
DZ2BBE2

Atkribute
[serial Nurnber

Hardware Series

B Test Status Passed Self-test result of the device

¥ PCI-CAN/LS2 - Measurement & Automation Explorer
File Edit Wiew Tools Help

=10]

J B self-test

[rata Meighborhood
Devices and Interfaces

|

« |PCI-CAN/LS2

& show/Hide

| Descripkion
The serial number of the device
Hardware Series
Self-test result of the device

Attribute | Walue

[Serial Number C2C4CD
Series 1

B Test Status Passed

Figure 1-7. Hardware Series Displayed in MAX

The new and improved features supported only by NI CAN Series 2
hardware include:

PCI and PXI

NI-CAN Hardware and Software Manual

Philips SJA1000 CAN controller. Series 1 hardware supported the
Intel 82527 CAN controller. For more specific information about the
SJA1000 CAN controller, refer to the Philips SJAI1000 CAN
Controller section of Chapter 3, NI CAN and LIN Hardware.

Improved RTSI synchronization features. For more information about
the synchronization capabilities of the NI CAN Series 2 hardware,
refer to the RTSI section, the PXI Trigger Bus (RTSI) section, or the
Synchronization section of Chapter 3, NI CAN and LIN Hardware,
for the appropriate hardware type.

Single Wire CAN support.

XS Software selectable physical layer hardware. This feature allows
you to easily configure a CAN port in software to be a High-Speed,
Low-Speed/Fault-Tolerant, Single Wire, or external transceiver
interface.

1-6 ni.com

Chapter 1 Introduction

e Upgraded CAN transceivers. High-speed hardware uses the Philips
TJA1041 transceiver; Low-Speed/Fault-Tolerant hardware uses the
Philips TJA1054A transceiver. Both transceivers have increased
voltage tolerance and improved EMC performance over their NI CAN
Series 1 predecessors.

¢ Internally powered physical layer with independent jumper option for
controlling the VBAT transceiver input pin either internally or
externally. This means High-Speed and Low-Speed/Fault-Tolerant
hardware is fully functional by default without supplying any bus
power. A jumper option exists to select the source for the VBAT
transceiver pin between internal (default) or external. Note that Single
Wire CAN requires external bus power.

PCMCIA

e Philips SJA1000 CAN controller. Series 1 hardware supported the
Intel 82527 CAN controller. For more specific information about the
SJA1000 CAN controller, refer to the Philips SJA1000 CAN
Controller section of Chapter 3, NI CAN and LIN Hardware.

* Synchronization capability for PCMCIA hardware. For more
information about PCMCIA synchronization, refer to the
Synchronization section of Chapter 3, NI CAN and LIN Hardware.

¢ Improved performance and reduced power consumption. For more
information, refer to Appendix C, Summary of the LIN Standard.

PCMCIA Cables

e Single Wire CAN support.

¢ Upgraded CAN transceivers. High-speed hardware uses the Philips
TJA1041 transceiver; Low-Speed/Fault-Tolerant hardware uses the
Philips TJA1054A transceiver. Both transceivers have increased
voltage tolerance and improved EMC performance over their NI CAN
Series 1 predecessors.

e Internally powered physical layer for High-Speed and
Low-Speed/Fault Tolerant. This means High-Speed and
Low-Speed/Fault-Tolerant hardware is fully functional by default
without supplying any bus power. Note that Single Wire CAN requires
external bus power.

© National Instruments 1-7 NI-CAN Hardware and Software Manual

Chapter 1 Introduction

* NI-CAN 2.2 is required for full functionality of the PCMCIA cables.
Using these cables with any version of NI-CAN prior to 2.2 will
prevent use of the following functions:

— High-speed error reporting
— Transceiver sleep modes

— Single-wire transceivers

About the USB-847x Hardware

NI USB-847x hardware provides a powerful and flexible way to interface
any desktop or notebook PC to a CAN or LIN bus via USB. All CAN
hardware features the Philips STA1000 CAN controller, which is

CAN 2.0B compatible and supports a variety of transfer rates up to 1 Mbps.
The SJA1000 also includes a number of features well-suited to diagnostic
applications. USB-847x hardware supports High-Speed and
Low-Speed/Fault-Tolerant physical layers, which fully conform to the
ISO 11898 specification for CAN. All LIN devices are LIN 1.3, LIN 2.0
and SAE J2602 compliant and support the full range of LIN baud rates.

NI USB-847x with Sync series hardware is based on a powerful USB 2.0
compatible microcontroller capable of host data transfer rates up to

480 Mbps. The hardware includes onboard buffers to prevent dropped
frames at high CAN data rates. All USB-847x CAN devices are fully
powered from the USB and require no external power supply.

Additionally, USB-847x with Sync series hardware provides a way to
synchronize multiple devices by using an external sync connector to share
common timing and triggering signals. USB-847x with Sync series
hardware can share a timebase with each other or with a variety of data
acquisition products.

CAN: USB-8472, USB-8472s, USB-8473, USB-8473s

e Philips SJA1000 CAN controller. For more specific information about
the SJA1000 CAN controller, refer to the Philips SJA1000 CAN
Controller section of Chapter 3, NI CAN and LIN Hardware.

e Synchronization via RTSI or any 1/10/20 MHz timebase source. For
more information refer to the ncConnectTerminals function within
the Frame API.

e High-Speed hardware uses the Philips TJA1041 transceiver;
Low-Speed/Fault-Tolerant hardware uses the Philips TIA1054A
transceiver. Both transceivers have increased voltage tolerance and
improved EMC performance over NI CAN Series 1 hardware.

NI-CAN Hardware and Software Manual 1-8 ni.com

Chapter 1 Introduction

Low-Speed/Fault-Tolerant CAN support with software selectable bus
termination.

High performance USB 2.0 connection with data transfer rates up to
480 Mbps.

Fully powered by the USB. No bus power needed.

LIN: USB-8476, USB-8476s

Synchronization via RTSI or any 1/10/20 MHz timebase source. For
more information refer to the ncConnectTerminals functions within
the Frame API.

Software selectable master/slave termination.

Amtel ATA6625 LIN transceiver with —27V to 40V LIN bus voltage
tolerance.

High performance USB 2.0 connection with data transfer rates up to
480 Mbps.

Hardware VBat detection.

NI-CAN Software Overview

MAX

© National Instruments

The NI-CAN software provides full-featured Application Programming
Interfaces (APIs), plus tools for configuration and analysis within National
Instruments Measurement & Automation Explorer (MAX). The NI-CAN
APIs enable you to develop applications that are customized to the test and
simulation requirements.

The NI-CAN features within MAX enable you to:

Verify the installation of the NI CAN hardware.
Configure software properties for each CAN port.
Create or import configuration information for the Channel API.

Interact with the CAN network using various tools.

For more information, refer to Chapter 2, Installation and Configuration.

1-9 NI-CAN Hardware and Software Manual

Chapter 1 Introduction

Frame API

As described in the CAN Overview section, the frame is the fundamental
unit of data transfer on a CAN network. The NI-CAN Frame API provides
a set of functions to write and read CAN frames.

Within the Frame API, the data bytes of each frame are not interpreted, but
are transferred in their raw format. For example, you can transmit a data
frame by calling a write function with the ID, length, and array of data
bytes.

For more information, refer to Chapter 9, Using the Frame API.

Channel API

A typical CAN data frame contains multiple values encoded as raw fields.
Figure 1-8 shows an example set of fields for a 6-byte data frame.

CAN Message Properties il
Mame ICruiseEnntrol 0F, I
Arbitration |0 [Hex
Walue 03[23] ' Standard ﬂl
" Extended Help |
Data Bytes m
Interface ANY hd

Meszage Overview:

yoBE B 4 3 2 10

— Meszage Channels

CruiseCtiCoastSwitch |
CruizeCtlEnableSwitch
CruiseChiResumes witch

=l

| agd | | Edt |

EruiseCtlISetSwh

Cormnrment:

Figure 1-8. Example of CruiseControl Message

NI-CAN Hardware and Software Manual 1-10 ni.com

Chapter 1 Introduction

Bytes 1 to 2 contain a CruiseCtrlSetSpeed ficld that represents a vehicle
speed in kilometers per hour (km/h). Most CAN devices do not transmit
values as floating-point units such as 115.6 km/h. Therefore, this field
consists of a 16-bit unsigned integer in which each increment represents
0.0039 km/h. For example, if the field contains the value 25000, that
represents (25000 * 0.0039) = 97.5 km/h.

Bytes 3 to 4 contain another unsigned integer VehicleSpeed that represents
speed in km/h. Bytes O and 5 contain various Boolean fields for which 1
indicates “on” and 0 indicates “off.”

When you use the NI-CAN Frame API to read CAN data frames, you must
write code in the application to convert each raw field to physical units such
as km/h. The NI-CAN Channel API enables you to specify this conversion
information at configuration time instead of within the application. This
configuration information can be imported from Vector CANdb files, or
specified directly in MAX.

For each ID you read or write on the CAN network, you specify a number
of fields. For each field, you specify its location in the frame, size in bits,
and a formula to convert to/from floating-point units. In other words, you
specify the meaning of various fields in each CAN data frame. In NI-CAN
terminology, a data frame for which the individual fields are described is
called a message.

In other National Instruments software products such as NI-DAQ,
NI-DAQmzx, and FieldPoint, an application reads or writes a floating-point
value using a channel, which is typically converted to/from a raw value in
the measurement hardware. The NI-CAN Channel API also uses the term
channel to refer to floating-point values converted to/from raw fields in
messages. In CAN products of other vendors, this concept is often referred
to as a signal. When a CAN message is received, NI-CAN converts the raw
fields into physical units, which you then obtain using the Channel API
read function. When you call the Channel API write function, you provide
floating-point values in physical units, which NI-CAN converts into raw
fields and transmits as a CAN message.

For more information, refer to Chapter 6, Using the Channel API.

© National Instruments 1-11 NI-CAN Hardware and Software Manual

Installation and Configuration

This chapter explains how to install and configure CAN hardware.

Safety Information

© National Instruments

The following section contains important safety information that you must
follow when installing and using the module.

Do not operate the module in a manner not specified in this document.
Misuse of the module can result in a hazard. You can compromise the safety
protection built into the module if the module is damaged in any way. If the
module is damaged, return it to National Instruments (NI) for repair.

Do not substitute parts or modify the module except as described in this
document. Use the module only with the chassis, modules, accessories, and
cables specified in the installation instructions. You must have all covers
and filler panels installed during operation of the module.

Do not operate the module in an explosive atmosphere or where there may
be flammable gases or fumes. If you must operate the module in such an
environment, it must be in a suitably rated enclosure.

If you need to clean the module, use a soft, nonmetallic brush. Make sure
that the module is completely dry and free from contaminants before
returning it to service.

Operate the module only at or below Pollution Degree 2. Pollution is
foreign matter in a solid, liquid, or gaseous state that can reduce dielectric
strength or surface resistivity. The following is a description of pollution
degrees:

Pollution Degree 1 means no pollution or only dry, nonconductive pollution
occurs. The pollution has no influence.

Pollution Degree 2 means that only nonconductive pollution occurs in most
cases. Occasionally, however, a temporary conductivity caused by
condensation must be expected.

2-1 NI-CAN Hardware and Software Manual

Chapter 2

Installation and Configuration

Pollution Degree 3 means that conductive pollution occurs, or dry,
nonconductive pollution occurs that becomes conductive due to
condensation.

You must insulate signal connections for the maximum voltage for which
the module is rated. Do not exceed the maximum ratings for the module.
Do not install wiring while the module is live with electrical signals.

Do not remove or add connector blocks when power is connected to the
system. Avoid contact between your body and the connector block signal
when hot swapping modules. Remove power from signal lines before
connecting them to or disconnecting them from the module.

Operate the module at or below the installation category! marked on the
hardware label. Measurement circuits are subjected to working voltages?
and transient stresses (overvoltage) from the circuit to which they are
connected during measurement or test. Installation categories establish
standard impulse withstand voltage levels that commonly occur in
electrical distribution systems. The following is a description of installation
categories:

e Installation Category I is for measurements performed on circuits not
directly connected to the electrical distribution system referred to as
MAINS?3 voltage. This category is for measurements of voltages from
specially protected secondary circuits. Such voltage measurements
include signal levels, special equipment, limited-energy parts of
equipment, circuits powered by regulated low-voltage sources, and
electronics.

* Installation Category II is for measurements performed on circuits
directly connected to the electrical distribution system. This category
refers to local-level electrical distribution, such as that provided by a
standard wall outlet (for example, 115 AC voltage for U.S. or 230 AC
voltage for Europe). Examples of Installation Category II are
measurements performed on household appliances, portable tools, and
similar modules.

e Installation Category III is for measurements performed in the building
installation at the distribution level. This category refers to
measurements on hard-wired equipment such as equipment in fixed
installations, distribution boards, and circuit breakers. Other examples

! Installation categories, also referred to as measurement categories, are defined in electrical safety standard IEC 61010-1.

2 Working voltage is the highest rms value of an AC or DC voltage that can occur across any particular insulation.

3 MAINS is defined as a hazardous live electrical supply system that powers equipment. Suitably rated measuring circuits may
be connected to the MAINS for measuring purposes.

NI-CAN Hardware and Software Manual 2-2 ni.com

Chapter 2 Installation and Configuration

are wiring, including cables, bus bars, junction boxes, switches, socket
outlets in the fixed installation, and stationary motors with permanent
connections to fixed installations.

e Installation Category IV is for measurements performed at the primary
electrical supply installation (<1,000 V). Examples include electricity
meters and measurements on primary overcurrent protection devices
and on ripple control units.

Measurement & Automation Explorer (MAX)

Measurement & Automation Explorer (MAX) provides access to all of the
National Instruments products. Like other NI software products, NI-CAN
uses MAX as the centralized location for all configuration and tools.

To launch MAX, select the Measurement & Automation shortcut on
the desktop, or within the Windows Programs menu under National
Instruments»Measurement & Automation.

For information on the NI-CAN software within MAX, consult the online
help within MAX.

A reference is located in the MAX Help menu under Help Topics»
NI-CAN.

View help for items in the MAX Configuration tree by using the built-in
MAX help pane. If this help pane is not shown on the far right, select the
Show/Hide button in the upper right.

View help for a dialog box by selecting the Help button in the window.

Verify Installation of CAN and LIN Hardware

Within the Devices & Interfaces branch of the MAX Configuration tree,
NI CAN and LIN hardware is listed, as shown in Figure 2-1.

© National Instruments 2-3 NI-CAN Hardware and Software Manual

Chapter 2 Installation and Configuration

e PCI-CAN/LS2 - Measurement & Automation Explorer = =
File Edit View Tools Help
4 E3 My System ~ || [Self-test ¢ Show Help
. [gll Data Neighborhood
4 B Devices and Interfaces Attribute Value Description
a @ NI-CAN Devices B Serial Number CE09B0 The serial number of the device
> B Series 1 Hardware Series
- W PCl-CAN/2 [Test Status Untested Self-test result of the device
> W PCl-CAN/LSZ
> W PCl-CAN/XS2
- R USB-8472s v < >
< =t > W Board Properties

Figure 2-1. NI-CAN Cards Listed in MAX

If the CAN or LIN hardware is not listed here, MAX is not configured
to search for new devices on startup. To search for the new hardware,
press <F5>.

To verify installation of the CAN or LIN hardware, right-click the CAN or
LIN device, then select Self-test. If the self-test passes, the card icon shows
a checkmark. If the self-test fails, the card icon shows an X mark, and the
Test Status in the right pane describes the problem. Refer to Appendix A,
Troubleshooting and Common Questions, for information about resolving
hardware installation problems.

Configure CAN and LIN Ports

CAN Channels

The physical ports of the CAN and LIN hardware are listed under the name
of the device. To configure software properties for each port, right-click the
port and select Properties.

In the Properties dialog, you assign an interface name to the port, such as
CANO or CANI. The interface name identifies the physical port within
NI-CAN APIs.

The Properties dialog also contains the default baud rate for MAX tools
and the Channel APL

Within the Data Neighborhood branch of the MAX Configuration tree,
the CAN Channels branch lists information for the NI-CAN Channel API,
as shown in Figure 2-2.

NI-CAN Hardware and Software Manual 2-4 ni.com

Chapter 2 Installation and Configuration

File Edit View Tools Help
4 B3 My System Test Panel i !q_f;;g] Delete | Properties < Show Help
4 [gll Data Neighborhood f
4 [CAN Channels Attribute Value Description
4 TransmissionFluids ((x52) [Channel Name TransmissionF... Channel name assigned by the user
*B ClutchPressure M Start Bit 16 Start bit of the channel in the CAN message
A8 TransmissionOilLevel B Mumber of Bits 8 Mumber of bits used for this channel
{*8 TransmissionFilterPressure | [Byte Order Intel Byte order of the value
#B TransmissionOilPressure @ Data Type Unsigned Data type represented by the bits
B TransmissionOilTemp [5caling Factor 0.160000 Factor 'a' for linear scaling y = ax + b
InstrumentPanel ((x25) [Scaling Offset 0.000000 Offset 'b' for linear scalingy = ax + b
ﬁ’ Bevices and ntertaces B Minimum Value 0.000000 Minimum value allowed on this channel
! 53 Saftiiare B Maximum Value 4000000 Maximum value allowed on this channel
Bl Remote Systems || Default Value 0.000000 Before channel value set first time
& Unit bar
B Cornment:
< >
*B Channel Properties

Figure 2-2. CAN Channels in MAX

The CAN Channels branch lists CAN messages for use with the Channel
API. A set of channels is specified for each message.

For information about creating information under CAN Channels, refer to
the Choose Source of Channel Configuration section of Chapter 6, Using
the Channel API.

LabVIEW Real-Time (RT) Configuration

© National Instruments

LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming
with the power of real-time systems. When you use a National Instruments
PXIT Controller you can install a PXI-CAN card and use the NI-CAN API
to develop real-time applications. For example, you can simulate the
behavior of a control algorithm within a CAN device, using data from
received CAN messages to generate outgoing CAN messages with
deterministic response times. This and other real-time applications can also
be developed if you are using CompactRIO as your LabVIEW RT system.
You can install a CompactRIO CAN module and use the NI-CAN software
and the LabVIEW FPGA T/O to develop your applications.

When you install the NI-CAN software, the installer checks for the
presence of the LabVIEW RT module. If LabVIEW RT exists, the NI-CAN
installer copies components for LabVIEW RT to the Windows system.
As with any other NI product for LabVIEW RT, you then download the

2-5 NI-CAN Hardware and Software Manual

Chapter 2 Installation and Configuration

PXI System

NI-CAN software to the LabVIEW RT system using the Remote Systems
branch in MAX. For more information, refer to the LabVIEW RT
documentation.

USB-847x hardware is not supported under LabVIEW RT.

After you have installed the PXI CAN cards and downloaded the NI-CAN
software to the LabVIEW RT system, you need to verify the installation.
Within the Tools menu in MAX, select NI-CAN»RT Hardware
Configuration. The RT Hardware Configuration tool provides features
similar to Devices & Interfaces on the local system. Use the RT Hardware
Configuration tool to self-test the CAN cards and assign an interface name
to each physical CAN port.

To use the Channel API on the LabVIEW RT system, you must also
download channel configuration information. Right-click the CAN
Channels heading, then select Send to RT System. This downloads all
information under CAN Channels to the LabVIEW RT system, so you can
execute the same LabVIEW VIs on the LabVIEW RT system as on the
Windows system.

CompactRIO System

After you have installed the CompactRIO CAN modules and downloaded
NI-RIO and NI-CAN software, you need to enable the CompactRIO
Reconfigurable Embedded Chassis for use in LabVIEW. For instructions
on how to enable the CompactRIO Reconfigurable Embedded Chassis for
use in LabVIEW, refer to the MAX help.

To use the Channel API on the LabVIEW RT system, you must download
the channel configuration information. Right-click the CAN Channels
heading, then select Send to RT System. This downloads all the
information under CAN Channels to the LabVIEW RT system. To utilize
the CAN channels on the CompactRIO system, you need to use Frame to
Channel Conversion. For more information, refer to the Frame to Channel
Conversion section of Chapter 6, Using the Channel API.

NI-CAN Hardware and Software Manual 2-6 ni.com

Tools

Chapter 2 Installation and Configuration

NI-CAN provides tools that you can launch from MAX.

¢ Bus Monitor—Displays statistics for CAN or LIN frames. This
provides a basic tool to analyze CAN or LIN network traffic. Launch
this tool by right-clicking a CAN or LIN interface (port).

e Test Panel—Read or write physical units for a CAN channel. This
provides a simple debugging tool to experiment with CAN channels.
Launch this tool by right-clicking a CAN channel.

e NI-Spy—Monitor function calls to the NI-CAN APIs. This tool helps
in debugging programming problems in the application. To launch this
tool, open the Software branch of the MAX Configuration tree,
right-click NI Spy, and select Launch NI Spy.

¢ FP1300 Configuration—FieldPoint 1300 is the National Instruments
modular I/O product for CAN. If you have installed the software for
the FP1300 product, launch this tool by right-clicking a CAN interface
(port).

Using NI-CAN with NI-DNET

© National Instruments

DeviceNet is a higher-level protocol based on CAN, typically used for
industrial automation or machine control applications. NI-DNET is the
National Instruments software for DeviceNet.

NI-CAN uses the same software infrastructure as NI-DNET, so both APIs
can be used with the same CAN card. The general rule is that each CAN
card can only be used for one API at a time.

Use of NI-DNET is restricted to port 1 (top port) of Series 1 CAN cards.
National Instruments hardware kits for CAN ship with Series 2 cards,
which cannot be used with NI-DNET. National Instruments hardware kits
for DeviceNet ship with Series 1 cards, which can be used with both
NI-DNET and NI-CAN. For information on identification of the series,
refer to the NI CAN Hardware Overview section of Chapter 1,
Introduction.

You can view each Series 1 CAN card in MAX with either DeviceNet or
CAN features. To change the view of a CAN card in MAX, right-click the
card and select Protocol. In this dialog you can select either DeviceNet for
NI-DNET, or CAN for NI-CAN. When the CAN protocol is selected, you
can access CAN tools in MAX, such as the Bus Monitor tool.

2-7 NI-CAN Hardware and Software Manual

Chapter 2

Installation and Configuration

In order to develop NI-DNET applications, you must install NI-DNET
components such as documentation and examples. The NI-DNET software
components are available within the NI-CAN installer.

Launch the setup.exe program for the NI-CAN installer in the same
manner as the original installation (CD or ni . com download). Within the
installer, select both NI-DNET and NI-CAN components in the feature
tree.

When you right-click a port in MAX and select Properties, the resulting
Interface selection uses the syntax CANx or DNETx based on the protocol
selection. Regardless of which protocol is selected, the number x is the only
relevant identifier with respect to NI-CAN and NI-DNET functions. For
example, if you select DNETO as an interface in MAX, you can run an
NI-DNET application that uses DNETO, then you can run an NI-CAN
application that uses CANO. Both applications refer to the same port, and
can run at different times, but not simultaneously.

NI-CAN Hardware and Software Manual 2-8 ni.com

NI CAN and LIN Hardware

This chapter describes the NI CAN Series 2 and USB-847x hardware.

Philips SJA1000 CAN Controller

All NI CAN Series 2 and USB-847x CAN hardware uses the Philips
SJA1000 controller to implement the CAN protocol. This chip is

CAN 2.0B compatible, and supports both 11-bit and 29-bit identifiers.
Using the NI-CAN software package with the SJTA1000 enables features
such as:

* Listen only mode—In this mode, the CAN controller does not provide
an acknowledge signal on the bus, even if a message is received
successfully. This mode is useful for passively monitoring a CAN bus.
This feature is provided as the Listen Only attribute of the Frame API
and the Interface Listen Only property of the Channel API.

* 64-byte receive FIFO—Helps prevent data overrun errors.

¢ Single/dual acceptance filter—Allows flexible filtering of CAN
messages through programming of acceptance mask and comparator
registers. This feature is provided as the Series 2 Filter Mode attribute
of the Frame API and the Interface Series 2 Filter Mode property of the
Channel APL

e Self-reception request—When enabled, a successfully transmitted
message is received simultaneously. This feature is provided as the
Self Reception attribute of the Frame API and the Interface Self
Reception property of the Channel API.

* Read/Write access to error counters—These counters are provided
as the Receive (and Transmit) Error Counter attribute of the Frame
API, and the Interface Receive (and Transmit) Error Counter property
of the Channel API.

© National Instruments 3-1 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

PCI-CAN

High-Speed Physical Layer

The CAN physical layer circuitry interfaces the CAN protocol controller to
the physical bus wires. The PCI-CAN High-Speed physical layer is
powered internally (from the card) through a DC-DC converter, and is
optically isolated up to 60 Vpc (continuous) channel-to-bus. This isolation
protects the NI CAN hardware and the PC it is installed in from being
damaged by high-voltage spikes on the CAN bus.

Transceiver

PCI-CAN High-Speed hardware uses the Philips TJA1041 High-Speed
CAN transceiver. The TJA1041 is fully compatible with the ISO 11898
standard and supports baud rates up to 1 Mbps. This device also supports
advanced power management through a low-power sleep mode. This
feature is provided as the Transceiver Mode attribute of the Frame API
and the Interface Transceiver Mode property of the Channel API. For
detailed TJA1041 specifications, refer to the Philips TIA1041 data sheet.

Bus Power Requirements

Because the High-Speed physical layer is completely powered internally,
there is no need to supply bus power. The V—signal serves as the reference
ground for the isolated signals. Refer to the High-Speed PCI, PXI, and USB
Connector Pinout section of Chapter 4, Connectors and Cables, for
information about how to connect signals to a High-Speed CAN interface.

VBAT Jumper

The TIA1041 features a battery voltage input pin, VBAT. This signal can
be supplied either internally or externally through the CAN bus V+ signal,
as controlled by the VBAT jumper setting. By default, the jumper is set to
INT, and VBAT is supplied internally. Some applications may require
explicit control of the transceiver VBAT pin; for example, to test the
performance of CAN devices on a network where battery power is lost.
If external control of VBAT is required, you can configure the PCI-CAN
hardware by switching the VBAT jumper from its default INT position to
EXT, as shown in Figure 3-1.

NI-CAN Hardware and Software Manual 3-2 ni.com

Chapter 3 NI CAN and LIN Hardware

D=gi=a
INT EXT
(Default)

U[][][]DDD[][][]U[][][] ﬁﬂ [][][]DDD[][]‘U[][]‘[]D”" L

‘ R80 €107

]

0
ggg% U[][][]DDD[][];]U[][][]#s gg ngnnnuuguuﬂuﬂn;]g[;uﬁg 00000000000000000
g £8 54504 I
I o= J:J, O 'g’-égﬁm LR i R D885 Hhmpa E@ﬂ%ﬁu,% 0200
P o193 e T 1 T BT 18T 135 nogenfitennne, FET D =
WOOEEEPS B 50 oo 9EC Sat ST b 0 O D
E| G:P 57 S8pgpapadit S8 e s [—], =
/ e oy wbd 2 e e 3 I
P Gone 5 o
G SR, T es teeg ﬁf;z%ﬂsgg‘s?s‘g,g‘g%
. 23, 2o S nlastdooeg,
“D]ED :EDMD:E o552 o mg o= .,mewuﬂmuuuuummuu %ﬁ%ﬁ%@%@%%
1270 uﬁuﬁafuﬁuuuuuuuuuuuu =
8 o
BL IED oS o8 3
BT finE e T]

s Corbba,, DI

Bl i

S_~Pgg []
rbd 3 fdt 0003

030 0% © ﬂﬂﬂll]]]lllllllllll]]]]]lllllll]]]]]lllllllll]]]lllllllllllllll]

s

Rot
bg

o J0g
B4 Ry ~ﬁ@aia“g [l
i 5520 5
Bruse P o Sed
o " i 552 _¢
re M2 D3 “oa p
122 I[gg ﬁgn
RIBE R126 2y
ﬁ, m2s DA K
Biome 038 ¢] 1
50 (e 8 £

4&‘"1'15@5":: R e ﬂllllll]]]lllllllllll]]]]]lllllll]]]]]lllllllll]]]lllllllllllll

88!

ﬂ]]]]]lﬂﬂll]]]]iw?'é% =,

I
LT

5 o
e
o

3"
ﬂégag

et

Figure 3-1. High-Speed VBAT Jumper Settings

With the VBAT jumper set to EXT, you must supply power on the CAN V+
signal. The power supply should be a DC power supply with an output of
8 to 27V, as specified in Table 3-1. You should take these requirements into
account when determining the bus power supply requirements for the
system.

© National Instruments 3-3 NI-CAN Hardware and Software Manual

Chapter 3

NI CAN and LIN Hardware

Table 3-1. CAN V+ Signal Power Supply
Characteristic Specification
Voltage 8-27 VDC on V+ connector pin
(referenced to V-)
Current 30 pA typical 40 HA maximum

If you are unsure how to configure VBAT, leave the jumper set to its default
value, INT.

Low-Speed/Fault-Tolerant Physical Layer

The PCI-CAN Low-Speed/Fault-Tolerant physical layer is powered
internally (from the card) through a DC-DC converter, and is optically
isolated up to 60 Vpc (continuous) channel-to-bus. This isolation protects
the NI CAN hardware and the PC it is installed in from being damaged by
high-voltage spikes on the CAN bus.

Transceiver

PCI-CAN Low-Speed/Fault-Tolerant hardware uses the Philips TTA1054A
Low-Speed/Fault-Tolerant transceiver. The TIA1054 A supports baud rates
up to 125 kbps. The transceiver can detect and automatically recover from
the following CAN bus failures:

e CAN_H wire interrupted

e CAN_L wire interrupted

e CAN_H short-circuited to battery

e CAN_L short-circuited to battery

e CAN_H short-circuited to VCC

e CAN_L short-circuited to VCC

e CAN_H short-circuited to ground

¢ CAN_L short-circuited to ground

¢ CAN_H and CAN_L mutually short-circuited

The TIA1054A supports advanced power management through a
low-power sleep mode. This feature is provided as the Transceiver Mode
attribute of the Frame API and the Interface Transceiver Mode property
of the Channel API. For detailed specifications about the TJA1054A, refer
to the Philips TJA1054 data sheet.

NI-CAN Hardware and Software Manual 3-4 ni.com

© National Instruments

Chapter 3 NI CAN and LIN Hardware

Bus Power Requirements

Because the Low-Speed/Fault-Tolerant physical layer is completely
powered internally, there is no need to supply bus power. The V- signal
serves as the reference ground for the isolated signals. Refer to the
Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout section
of Chapter 4, Connectors and Cables, for information about how to
connect signals to a Low-Speed/Fault-Tolerant CAN interface.

VBAT Jumper

The TJA1054A features a battery voltage input pin, VBAT. This signal can
be supplied either internally or externally through the CAN bus V+ signal,
as controlled by the VBAT jumper setting. By default, the jumper is set to
INT, and VBAT is supplied internally. Some applications may require
explicit control of the transceiver VBAT pin; for example, to test the
performance of CAN devices on a network where battery power is lost.

If external control of VBAT is required, you can configure the PCI-CAN
hardware by switching the VBAT jumper from its default INT position to
EXT, as shown in Figure 3-2, Low-Speed/Fault-Tolerant VBAT Jumper
Settings.

3-5 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

==y
INT EXT
(Default)

apden

qegea 0a DA Y uecs DA

, [T L
b ca DU[]U[][][]DLDD‘[]HHE

o
0 [mfm@ 0000000800002
i Ll L o
20 00010003 } ‘pf
509 gies Sfgago 0000000000000 =88 D0000000DDDINNE 60000000
amggg B By s ugﬁmgggsg fim. nﬂ:ﬁﬂf—‘ﬂﬁﬂ Q000
] 23 B3 o gme' 5P o000
J85 aED o - i]
In gfn dgp :;.‘gsg ! B
Jo -afo o oo m]%ug* | K]
=8 o ! £
03 —25, DDIDDID 9 %S
o ga K,DE e
Ie) 1S S
le) a s o8 o
© og“ﬁé’.,a“ﬂ“nﬁ% et
O|og|aks oo gs
o] — HIPHE=
[1 7

29
Sl

(00000000o00000000u00
“ba *

Ro
bg ©7

roB

|]|]|]|]|]|]|]|]|]|]|]|]|]|]|]|]|]|I|]|l|]|]|]|]|]|]|]|]|]|]|]|]|]

B4 8 ""ﬁ 205 \:wm -mﬁm s

G
a3 358 0

Figure 3-2. Low-Speed/Fault-Tolerant VBAT Jumper Settings

Low-Speed/Fault-Tolerant VBAT Jumper Settings

With the VBAT jumper set to EXT, you must supply power on the CAN
V+ signal. The power supply should be a DC power supply with an output
of 8t0 27V, as specified in Table 3-2, CAN V+ Signal Power Supply. You
should take these requirements into account when determining the bus
power supply requirements for the system.

NI-CAN Hardware and Software Manual 3-6 ni.com

Chapter 3 NI CAN and LIN Hardware

Table 3-2. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8-27 VDC on V+ connector pin
(referenced to V-)

Current 30 HA typical 125 A maximum

If you are unsure how to configure VBAT, leave the jumper set to its default
value, INT.

Single Wire Physical Layer

© National Instruments

The Single Wire physical layer is powered internally (from the card)
through a DC-DC converter. However, the Single Wire CAN transceiver
does require bus power. The physical layer is optically isolated up to

60 Vpc (continuous) channel-to-bus. This isolation protects the NI CAN
hardware and the PC it is installed in from being damaged by high-voltage
spikes on the CAN bus.

Transceiver

Single Wire hardware uses the Philips AU5790 Single Wire CAN
transceiver. The AU5790 supports baud rates up to 33.3 kbps in normal
transmission mode and 83.3 kbps in High-Speed transmission mode. The
achievable baud rate is primarily a function of the network characteristics
(termination and number of nodes on the bus), and assumes bus loading as
per SAE J2411. Each Single Wire CAN port has a local bus load resistance
of 9.09 kQ between the CAN_H and RTH pins of the transceiver to provide
protection against the loss of ground. The AU5790 also supports advanced
power management through low-power sleep and wake-up modes. For
detailed AU5790 specifications, refer to the Philips AU5790 data sheet.

Bus Power Requirements

The Single Wire physical layer requires external bus power to provide the
signal levels necessary to fully use all AU5790 operating modes. This is
because some modes require higher signal levels than the internal DC/DC
converter on the PCI-CAN board can provide. You must supply power on
the CAN V+ signal. The power supply should be a DC power supply with
an output of 8 to 18 V, as specified in Table 3-3, CAN V+ Signal Power
Supply. A power supply of 12 VDC is recommended. You should take
these requirements into account when determining requirements of the bus
power supply for the system.

3-7 NI-CAN Hardware and Software Manual

Chapter 3

NI CAN and LIN Hardware

Table 3-3. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8—18 VDC (12 VDC typical) on V+ connector
pin (referenced to V—-)

Current 40 mA typical 90 mA maximum

VBAT Jumper

Because the AU5790 requires external bus power, there is no option to
power the VBAT signal internally. For this reason, the VBAT jumper is not
present on Single Wire hardware, and external bus power must be
provided.

XS Software Selectable Physical Layer

PCI-CAN/XS hardware allows you to select each port individually in the
physical layer for one of the following transceivers:

e High-Speed
e Low-Speed/Fault-Tolerant
* Single Wire

¢ External

When an XS port is selected as High-Speed, it behaves exactly as a
dedicated High-Speed interface with the TIA1041 transceiver.

When an XS port is selected as Low-Speed/Fault-Tolerant, it behaves
exactly as a dedicated Low-Speed/Fault-Tolerant interface with the
TIA1054A transceiver.

When an XS port is selected as Single Wire, it behaves exactly as a
dedicated Single Wire interface with the AU5790 transceiver.

Note that the bus power requirements and VBAT jumper setting for an
XS port depend on the mode selected. Refer to the appropriate High-Speed,
Low-Speed/Fault-Tolerant, or Single Wire physical layer section to
determine the behavior for the mode selected. For example, the bus power
requirements and VBAT jumper operation for an XS port configured for
Single Wire mode are identical to those of a dedicated Single Wire node.

When an XS port is selected as external, all onboard transceivers are
bypassed, and the CAN controller RX, TX, and mode/status control signals
are routed directly to the I/O connector. Refer to the XS PCI and PXI

NI-CAN Hardware and Software Manual 3-8 ni.com

RTSI

© National Instruments

Chapter 3 NI CAN and LIN Hardware

Connector Pinout section of Chapter 4, Connectors and Cables, for
information about how to connect signals to an XS CAN interface.

External mode is intended for interfacing custom physical layer circuits to
NI CAN hardware. For example, to use a particular CAN transceiver that is
not supported natively by the NI CAN hardware, you can use an XS port
configured for external mode to connect to the custom-built transceiver
circuit and access the bus as usual using NI-CAN software. In addition to
the CAN controller RX and TX signals, you also can control two MODE
output pins and one STATUS input pin on an external mode port. These
MODE and STATUS signals are useful for controlling the operating mode
of the custom physical layer and monitoring for any error conditions on the
bus. These pins are provided in software as the Transceiver External
Outputs (and Inputs) attribute of the Frame API and the Interface
Transceiver External Outputs (and Inputs) property of the Channel API.

Because power is not routed through the connector of an XS port, an
external transceiver circuit requires bus power to be supplied.

You can change the transceiver type within MAX using the Properties
dialog for each port. The transceiver type selected within MAX is used as
the default for NI-CAN applications. The initial transceiver configuration
in MAX is High-Speed for Port 1 and Low-Speed/Fault-Tolerant for Port 2.

You also can change the transceiver type within the application, which
overrides the value in MAX. This feature is provided as the Transceiver
Type attribute of the Frame API, and the Interface Transceiver Type
property of the Channel APL

The RTSI bus gives you the ability to synchronize multiple NI CAN cards
with other National Instruments hardware products such as DAQ, IMAQ,
and Motion. The RTSI bus consists of a flexible interconnect scheme for

sharing timing and triggering signals in a system.

For PCI hardware, the RTSI bus interface is a connector at the top of the
card, and you can synchronize multiple cards by connecting a RTSI ribbon
cable between the cards that need to share timing and triggering signals.
Figure 3-3 shows the RTSI signal interconnect architecture for

NI PCI-CAN hardware.

3-9 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

N\

RTSI Switch
<¢——» Start Trigger
RTSIO-RTSI6 .
. —
Triggers Interface Receive Event
- 7 o <«———— Interface Transceiver Event
<¢—» 10 Hz Resync
w
3
m
n
l_
o
RTSI7
Clock ——» Master Timebase
<— 20 MHz Timebase

Figure 3-3. RTSI Signal Interconnect Architecture for NI PCI-CAN Hardware

Refer to CAN Connect Terminals.vi for a description of the RTSI signals.

NI-CAN Hardware and Software Manual 3-10 ni.com

PXI-846x

Chapter 3 NI CAN and LIN Hardware

This section describes the PXI-846x hardware.

High-Speed Physical Layer

© National Instruments

The CAN physical layer circuitry interfaces the CAN protocol controller to
the physical bus wires. The PXI-8461 physical layer is powered internally
(from the card) through a DC-DC converter, and is optically isolated up to
60 Vpc (continuous) channel-to-bus. This isolation protects the NI CAN
hardware and the PC it is installed in from being damaged by high-voltage
spikes on the CAN bus.

Transceiver

PX1-8461 hardware uses the Philips TIA1041 High-Speed CAN
transceiver. The TIA1041 is fully compatible with the ISO 11898 standard
and supports baud rates up to 1 Mbps. This device also supports advanced
power management through a low-power sleep mode. This feature is
provided as the Transceiver Mode attribute of the Frame API and the
Interface Transceiver Mode property of the Channel API. For detailed
TJA1041 specifications, refer to the Philips TIA1041 data sheet.

Bus Power Requirements

Because the High-Speed physical layer is completely powered internally,
there is no need to supply bus power. The V- signal serves as the reference
ground for the isolated signals. Refer to the High-Speed PCI, PXI, and USB
Connector Pinout section of Chapter 4, Connectors and Cables, for
information about how to connect signals to a High-Speed CAN interface.

VBAT Jumper

The TJIA1041 features a battery voltage input pin, VBAT. This signal can
be supplied either internally or externally through the CAN bus V+ signal,
as controlled by the VBAT jumper setting. By default, the jumper is set to
INT, and VBAT is supplied internally. Some applications may require
explicit control of the transceiver VBAT pin; for example, to test the
performance of CAN devices on a network where battery power is lost.
If external control of VBAT is required, you can configure the PXI-8461
hardware by switching the VBAT jumper from its default INT position to
EXT, as shown in Figure 3-4, High-Speed VBAT Jumper Settings.

3-11 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

INT
(Default)

m

bk

N

[D‘ w mﬂium s =
o fRedm OL_10 B8 oS

o o_Jofi0
®)

w232,

]
O g e e
oF

2585175 DOmg vrs

. 00 o B
s = i "“‘unnnnuunnnnnnnf‘aﬂ.,=,
Ol o o 7
L 455 @:iiﬁgﬂnmﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂwungﬁ:
ok e ShSSilomonon 2,08
o 8@ 2 R 0000000800000 S mu]imu]immmmgg
O| o Ckar fifiSs o BES b
Sk
o) [

reckton oooooooug}g

O Ow

o0 0
00

00000000

K St 00 U
CoonogooooT *,56*
ey

o 0o pe oo
g
g

oo e

[

Oz

s
O 40000 QD QO

og
q
[0l
8 oo
g3

S @b ool

Figure 3-4. High-Speed VBAT Jumper Settings

With the VBAT jumper set to EXT, you must supply power on the CAN V+
signal. The power supply should be a DC power supply with an output of
8 t0 27V, as specified in Table 3-4. You should take these requirements into
account when determining requirements of the bus power supply for the

system.

Table 3-4. CAN V+ Signal Power Supply

Characteristic

Specification

Voltage

8-27 VDC on V+ connector pin
(referenced to V-)

Current

30 pA typical 40 LA maximum

NI-CAN Hardware and Software Manual 3-12

ni.com

Chapter 3 NI CAN and LIN Hardware

If you are unsure how to configure VBAT, leave the jumper set to its default
value, INT.

Low-Speed/Fault-Tolerant Physical Layer

© National Instruments

The PXI-8460 physical layer is powered internally (from the card) through
a DC-DC converter, and is optically isolated up to 60 Vpc (continuous)

channel-to-bus. This isolation protects the NI CAN hardware and the PC it
is installed in from being damaged by high-voltage spikes on the CAN bus.

Transceiver

PX1-8460 hardware uses the Philips TIA1054 A Low-Speed/Fault-Tolerant
transceiver. The TIA1054 A supports baud rates up to 125 kbps. The
transceiver can detect and automatically recover from the following

CAN bus failures:

e CAN_H wire interrupted

¢ CAN_L wire interrupted

e CAN_H short-circuited to battery

¢ CAN_L short-circuited to battery

¢ CAN_H short-circuited to VCC

e CAN_L short-circuited to VCC

e CAN_H short-circuited to ground

e CAN_L short-circuited to ground

e CAN_H and CAN_L mutually short-circuited

The TJA1054A supports advanced power management through a
low-power sleep mode. This feature is provided as the Transceiver Mode
attribute of the Frame API and the Interface Transceiver Mode property
of the Channel API. For detailed TJA1054A specifications, refer to the
Philips TJA1054 data sheet.

Bus Power Requirements

Because the Low-Speed/Fault-Tolerant physical layer is completely
powered internally, there is no need to supply bus power. The V- signal
serves as the reference ground for the isolated signals. Refer to the
Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout section
of Chapter 4, Connectors and Cables, for information about how to
connect signals to a Low-Speed/Fault-Tolerant CAN interface.

3-13 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

VBAT Jumper

The TIA1054 A features a battery voltage input pin, VBAT. This signal can
be supplied either internally or externally through the CAN bus V+ signal,
as controlled by the VBAT jumper setting. By default, the jumper is set to
INT, and VBAT is supplied internally. Some applications may require
explicit control of the transceiver VBAT pin; for example, to test the
performance of CAN devices on a network where battery power is lost.
If external control of VBAT is required, you can configure the PXI-8460
hardware by switching the VBAT jumper from its default INT position to
EXT, as shown in Figure 3-5.

INT
(Default)

m

K. .
ey OOOOOOODD‘D i

O Ow

00000000

S oo,

fUU[][]DUUUUJ "“D‘D ooogone
¥ "ﬁ]uuﬁ’nu’u]uuuuu'h‘u‘u’uu?ﬁfuﬂﬁhﬂuuuuuu

[

125 DCicso V-)
) %D‘D%\g CX 14 07 128 €51
s O

o
ik unnnnuuuuunnnn a'O i

w130

Uss
i Mo O0BO QD o

Figure 3-5. Low-Speed/Fault-Tolerant VBAT Jumper Settings

NI-CAN Hardware and Software Manual 3-14 ni.com

Chapter 3 NI CAN and LIN Hardware

With the VBAT jumper set to EXT, you must supply power on the CAN V+
signal. The power supply should be a DC power supply with an output of
8 to 27V, as specified in Table 3-5. You should take these requirements into
account when determining the bus power supply requirements for the

system.
Table 3-5. CAN V+ Signal Power Supply
Characteristic Specification
Voltage 8—27 VDC on V+ connector pin
(referenced to V-)
Current 30 1A typical 125 A maximum

If you are unsure how to configure VBAT, leave the jumper set to its default
value, INT.

Single Wire Physical Layer

The Single Wire physical layer is powered internally (from the card)
through a DC-DC converter. However, the Single Wire CAN transceiver
does require bus power. The physical layer is optically isolated up to

60 Vpc (continuous) channel-to-bus. This isolation protects the NI CAN
hardware and the PC it is installed in from being damaged by high-voltage
spikes on the CAN bus.

Transceiver

Single Wire hardware uses the Philips AU5790 Single Wire CAN
transceiver. The AU5790 supports baud rates up to 33.3 kbps in normal
transmission mode and 83.3 kbps in High-Speed transmission mode. The
achievable baud rate is primarily a function of the network characteristics
(termination and number of nodes on the bus), and assumes bus loading as
per SAE J2411. Each Single Wire CAN port has a local bus load resistance
of 9.09 kQ between the CAN_H and RTH pins of the transceiver to provide
protection against the loss of ground. The AU5790 also supports advanced
power management through low-power sleep and wake-up modes. For
detailed specifications of the AU5790, refer to the Philips AU5790 data
sheet.

© National Instruments 3-15 NI-CAN Hardware and Software Manual

Chapter 3

NI CAN and LIN Hardware

Bus Power Requirements

The Single Wire physical layer requires external bus power to provide the
signal levels necessary to fully use all operating modes of the AU5790.
This is because some modes require higher signal levels than the internal
DC-DC converter on the PXI-8463 board can provide. You must supply
power on the CAN V+ signal. The power supply should be a DC power
supply with an output of 8 V to 18 V, as specified in Table 3-6. A power
supply of 12 VDC is recommended. You should take these requirements
into account when determining the bus power supply requirements for the
system.

Table 3-6. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8-18 VDC (12 VDC typical) on V+ connector
pin (referenced to V-)

Current 40 mA typical 90 mA maximum

VBAT Jumper

Because the AU5790 requires external bus power, there is no option to
power the VBAT signal internally. For this reason, the VBAT jumper is not
present on Single Wire hardware, and external bus power must be
provided.

XS Software Selectable Physical Layer

PX1-8464 hardware allows each port in the physical layer to be individually
selected for one of the following transceivers:

e High-Speed
¢ Low-Speed/Fault-Tolerant
* Single Wire

¢ External

When an XS port is selected as High-Speed, it behaves exactly as a
dedicated High-Speed interface with the TIA1041 transceiver.

When an XS port is selected as Low-Speed/Fault-Tolerant, it behaves
exactly as a dedicated Low-Speed/Fault-Tolerant interface with the
TJA1054A transceiver.

NI-CAN Hardware and Software Manual 3-16 ni.com

© National Instruments

Chapter 3 NI CAN and LIN Hardware

When an XS port is selected as Single Wire, it behaves exactly as a
dedicated Single Wire interface with the AU5790 transceiver.

The bus power requirements and VBAT jumper setting for an XS port
depend on the mode selected. Refer to the appropriate High-Speed,
Low-Speed/Fault-Tolerant, or Single Wire physical layer section to
determine the behavior for the mode selected. For example, the bus power
requirements and VBAT jumper operation for an XS port configured for
Single Wire mode are identical to those of a dedicated Single Wire node.

When an XS port is selected as external, all onboard transceivers are
bypassed, and the CAN controller RX, TX, and mode/status control signals
are routed directly to the I/O connector. Refer to the XS PCI and PXI
Connector Pinout section of Chapter 4, Connectors and Cables, for
information about how to connect signals to an XS CAN interface.

External mode is intended for interfacing custom physical layer circuits to
NI CAN hardware. For example, to use a particular CAN transceiver that is
not supported natively by the NI CAN hardware, you can use an XS port
configured for external mode to connect to the custom-built transceiver
circuit and access the bus as usual using NI CAN software. In addition to
the CAN controller RX and TX signals, you also can control two MODE
output pins and one STATUS input pin on an external mode port. These
MODE and STATUS signals are useful for controlling the operating mode
of the custom physical layer and monitoring for any error conditions on the
bus. These pins are provided in software as the Transceiver External
Outputs (and Inputs) attribute of the Frame API and the Interface
Transceiver External Outputs (and Inputs) property of the Channel APIL.

Because power is not routed through the connector of an XS port, an
external transceiver circuit requires bus power to be supplied.

You can change the transceiver type within MAX using the Properties
dialog for each port. The transceiver type selected within MAX is used as
the default for NI-CAN applications. The initial transceiver configuration
in MAX is High-Speed for Port 1 and Low-Speed/Fault-Tolerant for
Port 2.

You also can change the transceiver type within the application, which
overrides the value in MAX. This feature is provided as the Transceiver
Type attribute of the Frame API, and the Interface Transceiver Type
property of the Channel API.

3-17 NI-CAN Hardware and Software Manual

Chapter 3

NI CAN and LIN Hardware

PXI Trigger Bus (RTSI)

The PXI trigger bus provides the ability to synchronize multiple NI CAN
cards with other National Instruments hardware products such as DAQ,
IMAQ, and Motion. The PXI trigger bus consists of a flexible interconnect
scheme for sharing timing and triggering signals in a system. For PXI
hardware, the PXI trigger bus is built into the chassis backplane, so all
devices in the same PXI chassis can share timing and triggering signals.
The functionality of the PXI trigger bus is very similar to the RTSI bus for
PCI hardware, with a few added features. In addition to the bused PXI
triggers, the PXI bus includes an independent PXI_Star trigger for each
slot in a chassis that is oriented in a star configuration from the star trigger
slot (slot 2). The star configuration makes PXI_Star well suited for
applications that require a trigger signal with very low skew between slots.
PX1-846x hardware can route this PXI_Star trigger to its start trigger
signal. The PXI_CIk10 signal is a 10 MHz timebase signal in a PXI
chassis. PXI-846x hardware can use this PXI_CLIk10 signal as its master
timebase for synchronization. Figure 3-6, RTSI Signal Interconnect
Architecture for NI PXI CAN Hardware, shows the RTSI signal
interconnect architecture for NI PXI CAN hardware.

NI-CAN Hardware and Software Manual 3-18 ni.com

Chapter 3 NI CAN and LIN Hardware

A RTSI Switch
<¢——» Start Trigger
RTSI.O -RTSI6 <¢—— Interface Receive Event
Triggers
- - = <¢—— Interface Transceiver Event
<¢—» 10 Hz Resync
2 PXI_Star ,
= > ———— Start Trigger
&
2
=
=
o
RTSI7 ——» Master Timebase
Clock
<¢—— 20 MHz Timebase
PXI_Clk10)
> ——» Master Timebase

Figure 3-6. RTSI Signal Interconnect Architecture for NI PXI CAN Hardware

Refer to CAN Connect Terminals.vi for a description of the RTSI signals.

© National Instruments 3-19 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

PCMCIA-CAN

For PCMCIA-CAN cards, the physical layer is implemented inside the
cable.

The three types of physical layers available for PCMCIA-CAN cards are:
e High-Speed

¢ Low-Speed/Fault-Tolerant

e Single Wire

The High-Speed and Low-Speed/Fault Tolerant cables are powered

internally through an onboard DC-DC converter. The Single Wire cables
must be powered externally, through the CAN bus.

PCMCIA-CAN High-Speed Cables

The PCMCIA-CAN High-Speed physical layer is powered internally (from
the card through a DC-DC converter), and is optically isolated up to 60 V¢
(continuous) channel-to-bus. This isolation protects the NI CAN hardware
and the PC it is installed in from being damaged by high-voltage spikes on
the CAN bus.

Transceiver

PCMCIA-CAN High-Speed hardware uses the Philips TJTA1041
High-Speed CAN transceiver. The TJA1041 is fully compatible with the
ISO 11898 standard and supports baud rates up to 1 Mbps. This device also
supports advanced power management through a low-power sleep mode.
This feature is provided as the Transceiver Mode attribute of the Frame
API and the Interface Transceiver Mode property of the Channel API.
For detailed TJA1041 specifications, refer to the Philips TIA1041 data
sheet.

Bus Power Requirements

Because the High-Speed physical layer is completely powered internally,
there is no need to supply bus power. The V—signal serves as the reference
ground for the isolated signals. Refer to the PCMCIA Connector Pinout
section of Chapter 4, Connectors and Cables, for information about how to
connect signals to a High-Speed CAN interface.

NI-CAN Hardware and Software Manual 3-20 ni.com

Chapter 3 NI CAN and LIN Hardware

PCMCIA-CAN Low-Speed/Fault-Tolerant Cables

© National Instruments

The PCMCIA-CANY/LS cable physical layer is powered internally (from
the card) through a DC-DC converter, and is optically isolated up to 60 Vpc
(continuous) channel-to-bus. This isolation protects the NI CAN hardware
and the PC it is installed in from being damaged by high-voltage spikes on
the CAN bus.

Transceiver

PCMCIA-CAN Low-Speed/Fault-Tolerant hardware uses the Philips
TJA1054A Low-Speed/Fault-Tolerant transceiver. The TJA1054A
supports baud rates up to 125 kbps. The transceiver can detect and
automatically recover from the following CAN bus failures:

¢ CAN_H wire interrupted

e CAN_L wire interrupted

¢ CAN_H short-circuited to battery

e CAN_L short-circuited to battery

e CAN_H short-circuited to VCC

¢ CAN_L short-circuited to VCC

e CAN_H short-circuited to ground

e CAN_L short-circuited to ground

¢ CAN_H and CAN_L mutually short-circuited

The TIA1054A supports advanced power management through a
low-power sleep mode. This feature is provided as the Transceiver Mode
attribute of the Frame API and the Interface Transceiver Mode property
of the Channel API. For detailed specifications about the TJA1054A, refer
to the Philips TJA1054 data sheet.

Bus Power Requirements

Because the PCMCIA-CANY/LS cable is completely powered internally,
there is no need to supply bus power. The V- signal serves as the reference
ground for the isolated signals. Refer to the PCMCIA Connector Pinout
section of Chapter 4, Connectors and Cables, for information about how to
connect signals to a Low-Speed/Fault-Tolerant CAN interface.

3-21 NI-CAN Hardware and Software Manual

Chapter 3

NI CAN and LIN Hardware

PCMCIA-CAN Single Wire Cables

The PCMCIA-CAN Single Wire physical layer is powered externally from
the CAN bus. The physical layer is optically isolated up to 60 Vpc
(continuous) channel-to-bus. This isolation protects the NI CAN hardware
and the PC in which it is installed from being damaged by high-voltage
spikes on the CAN bus.

Transceiver

PCMCIA-CAN Single Wire hardware uses the Philips AU5790 Single
Wire CAN transceiver. The AU5790 supports baud rates up to 33.3 kbps in
normal transmission mode and 83.3 kbps in High-Speed transmission
mode. The achievable baud rate is primarily a function of the network
characteristics (termination and number of nodes on the bus), and assumes
bus loading as per SAE J2411. Each Single Wire CAN port has a local bus
load resistance of 9.09 kQ between the CAN_H and RTH pins of the
transceiver to provide protection against the loss of ground. The AU5790
also supports advanced power management through low-power sleep and
wake-up modes. For detailed AU5790 specifications, refer to the Philips
AU5790 data sheet.

Bus Power Requirements

The Single Wire physical layer requires external bus power to provide the
signal levels necessary to fully use all AU5790 operating modes. You must
supply power on the CAN V+ signal. The power supply should be a DC
power supply with an output of 8 to 18 V, as specified in Table 3-7.

A power supply of 12 VDC is recommended. You should take these
requirements into account when determining requirements of the bus
power supply for the system.

Table 3-7. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8-18 VDC (12 VDC typical) on V+ connector pin
(referenced to V-)

Current 40 mA typical 90 mA maximum

NI-CAN Hardware and Software Manual 3-22 ni.com

© National Instruments

Chapter 3 NI CAN and LIN Hardware

Synchronization

The PCMCIA-CAN synchronization cable provides the ability to
synchronize a Series 2 PCMCIA-CAN card with other National
Instruments hardware or external devices. The synchronization cable
provides a flexible interconnect scheme for sharing timing and triggering
signals in a system. For example, PCMCIA-CAN synchronization is
specifically designed to integrate well with National Instruments E Series
DAQCard hardware. Timing and triggering signals can be shared by wiring
the synchronization cable signals to the appropriate terminals on a DAQ
terminal block.

The functionality of the PCMCIA-CAN synchronization cable is very
similar to the RTSI bus for PCI hardware, with a few limitations:

e Four general-purpose I/O trigger lines, as opposed to seven for RTSI

e TRIG7_CLK clock line is an input-only signal that can receive a
master timebase; the PCMCIA-CAN card cannot drive a timebase onto
TRIG7_CLK

Figure 3-7, PCMCIA-CAN Synchronization Signal Interconnect
Architecture for NI PCMCIA-CAN Hardware, shows the PCMCIA-CAN
synchronization signal interconnect architecture for NI PCMCIA-CAN
hardware.

3-23 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

RTSI Switch
<¢——» Start Trigger
TRIGO-TRIG3 .
. —
Triggers Interface Receive Event
h 4 o <&— Interface Transceiver Event
2
a <¢—» 10 Hz Resync
c
i)
T
N
c
(=
<
[$)
c
>
7}
<
O
=
O
o
TRIG7_CLK
Clock
| —— > Master Timebase

Figure 3-7. PCMCIA-CAN Synchronization Signal Interconnect Architecture
for NI PCMCIA-CAN Hardware

NI-CAN Hardware and Software Manual 3-24 ni.com

Chapter 3 NI CAN and LIN Hardware

Table 3-8, PCMCIA-CAN Trigger Lines and Wire Colors, shows the
function of each trigger line and its corresponding wire color.

Table 3-8. PCMCIA-CAN Trigger Lines and Wire Colors

Signal Function Wire Color
TRIG_0 (RTSIO) General I/0 trigger Red
TRIG_1 (RTSI1) General I/O trigger Orange
TRIG_2 (RTSI2) General I/O trigger Yellow
TRIG_3 (RTSI3) General I/O trigger Green
TRIG7_CLK Input-only timebase White
(RTSI7/RTSI Clock)
GND Ground Black, brown, blue,

purple, gray

USB-CAN

To improve the signal integrity of the trigger lines, all GND wires should
be connected to digital logic ground of the system. Unused trigger lines
may also be grounded. Refer to Appendix E, Specifications, for detailed
DC operating characteristics.

This section describes the hardware characteristics of the USB-CAN
hardware.

USB-8473/USB-8473s: High-Speed Physical Layer

© National Instruments

The USB-CAN physical layer circuitry interfaces the CAN protocol
controller to the physical bus wires. The USB-CAN High-Speed physical
layer is powered internally from the USB through a DC-DC converter, and
is optically isolated up to 500 Vp (withstand, 2s max) channel-to-bus. This
isolation protects your NI-CAN hardware and the PC it is connected to
from being damaged by high-voltage spikes on the CAN bus.

3-25 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

Transceiver

USB-CAN High-Speed hardware uses the Philips TJA1041 High-Speed
CAN transceiver. The TIA1041 is fully compatible with the ISO 11898
standard and supports baud rates up to 1 Mbps. This device also supports
advanced power management through a low-power sleep mode. This
feature is provided as the Transceiver Mode attribute of the Frame API. For
detailed TJA1041 specifications, refer to the Philips TJA1041 data sheet.

Bus Power Requirements

Because the High-Speed physical layer is completely internally powered
through USB, there is no need to supply bus power. The V- signal serves
as the reference ground for the isolated signals. Refer to the High-Speed
PCI, PXI, and USB Connector Pinout section of Chapter 4, Connectors and
Cables, for information about how to connect signals to a High-Speed CAN
interface.

LED Indicators

Table 3-9 provides a description of the LEDs on the front panel of the
USB-8473 and USB-8473s.

Table 3-9. LED Indicators for USB-8473/8473s Module

Name Function

USB Indicates connectivity to a USB Host. Green indicates
a USB full speed connection. Amber indicates a USB
high speed connection.

CAN Flashes to indicate the presence of traffic on the
CAN bus.

NI-CAN Hardware and Software Manual 3-26 ni.com

Chapter 3 NI CAN and LIN Hardware

USB-8472/USB-8472s: Low-Speed/Fault-Tolerant Physical Layer

© National Instruments

The USB-CAN Low-Speed/Fault-Tolerant physical layer is powered
internally from the USB through a DC-DC converter, and is optically
isolated up to 500 Vpc (withstand, 2s max) channel-to-bus. This isolation
protects your NI CAN hardware and the PC it is connected to from being
damaged by high-voltage spikes on the CAN bus.

Transceiver

USB-CAN Low-Speed/Fault-Tolerant hardware uses the Philips
TJA1054A Low-Speed CAN transceiver. The TJA1054A supports baud
rates up to 125 kbps. The transceiver can detect and automatically recover
from the following CAN bus failures:

¢ CAN_H wire interrupted

e CAN_L wire interrupted

e CAN_H short-circuited to battery

e CAN_L short-circuited to battery

e CAN_H short-circuited to VCC

¢ CAN_L short-circuited to VCC

e CAN_H short-circuited to ground

e CAN_L short-circuited to ground

¢ CAN_H and CAN_L mutually short-circuited

The TIA1054A supports advanced power management through a
low-power sleep mode. This feature is provided as the Transceiver Mode
attribute of the Frame API. For detailed specifications about the
TJA1054A, refer to the Philips TJA1054 data sheet.

Bus Power Requirements

Because the Low-Speed/Fault-Tolerant physical layer is completely
powered internally through USB, there is no need to supply bus power. The
V- ssignal serves as the reference ground for the isolated signals. Refer to
the Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout
section of Chapter 4, Connectors and Cables, for information about how to
connect signals to a Low-Speed/Fault-Tolerant CAN interface.

3-27 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

USB-LIN

LED Indicators

Table 3-10 provides a description of the LEDs on the front panel of the
USB-8472 and USB-8472s.

Table 3-10. LED Indicators for USB-8472/8472s Module

Name Function

USB Indicates connectivity to a USB Host. Green indicates
a USB full speed connection. Amber indicates a USB
high speed connection.

CAN Flashes to indicate the presence of traffic on the
CAN bus.

This section describes the USB-LIN hardware.

USB-8476/USB-8476s: LIN

The USB-LIN physical layer circuitry interfaces the LIN microcontroller to
the physical bus wires. The USB-LIN physical layer is powered externally
from VBat (required for the LIN bus), and is optically isolated up to

500 Vpc (withstand, 2s max) channel-to-bus. This isolation protects your
NI-LIN hardware and the PC it is connected to from being damaged by
high-voltage spikes on the LIN bus.

Transceiver

USB-LIN hardware uses the Amtel ATA6625 LIN transceiver. The
ATA6625 is fully compatible with the ISO-9141 standard and supports
baud rates up to 20 kbps. This device also supports advanced power
management through a low-power sleep mode. This feature is provided as
the Transceiver Mode attribute of the Frame API. For detailed ATA6625
specifications, refer to the Amtel ATA6625 data sheet.

Bus Power Requirements

The LIN physical layer is powered through the LIN bus VBat power. The
USB-8476 physical layer requires a DC power supply with an output of
+5 to +27 V (ATA6625) or +8 to +18 V (ATA6620), as specified in
Table 3-11, Bus Power Requirements for USB-8476. Y ou should take these
requirements into account when determining the bus power supply

NI-CAN Hardware and Software Manual 3-28 ni.com

Chapter 3 NI CAN and LIN Hardware

requirements for the system. The Gnd pin serves as the reference ground
for the isolated signals. Refer to the High-Speed PCI, PXI, and USB
Connector Pinout section of Chapter 4, Connectors and Cables, for
information about how to connect signals to a LIN interface.

Table 3-11. Bus Power Requirements for USB-8476

Characteristic Specification
Voltage +5 to +27 VDC (ATA6625) or
+8 to +18 VDC (ATA6620)

on VBat connector pin
(referenced to Gnd)

Current 55 mA maximum

LED Indicators

Table 3-12 provides a description of the LEDs on the front panel of the
USB-8476 and USB-8476s.

Table 3-12. LED Indicators for USB-8476/8476s Module

Name Function

USB Indicates connectivity to a USB Host. Green indicates a
USB full speed connection. Amber indicates a USB high
speed connection.

LIN Flashes to indicate the presence of traffic on the LIN bus.

VBAT Indicates the presence of LIN bus power.

Synchronization in USB-CAN/LIN Devices

© National Instruments

USB-847x with Sync series hardware give you the ability to synchronize
multiple NI-USB-CAN/LIN devices with each other and with a variety of
DAQ, IMAQ and Motion Products. Synchronization occurs through a
3-pin Combicon connection allowing for a shared timestamp clock, start
trigger and ground. USB-847x with Sync series hardware can synchronize
to timestamp clocks of 20 Mhz, 10 Mhz, or 1 Mhz. For 20 MHz
synchronization, ensure that the synchronization cable is shielded and
grounded. Clock frequency is detected automatically by the hardware and
illegal clock frequencies will be reported as an error. USB-847x with Sync
series hardware can also generate a clock of IMHz, allowing for accurate
CAN-CAN, CAN-LIN, and LIN-LIN synchronization.

3-29 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

1 LED indicators 3 Combicon connector
2 USB connector 4 D-SUB connector

Figure 3-8. USB-CAN Connector Cable

Table 3-13. USB-CAN Combicon Connector Pinout

Pin Description
CLK Clock pin
TRG Trigger pin
GND Ground pin

For information on the pinout of the USB-CAN D-SUB connector, refer to
the High-Speed PCI, PXI, and USB Connector Pinout section of Chapter 4,
Connectors and Cables.

NI-CAN Hardware and Software Manual 3-30 ni.com

Chapter 3 NI CAN and LIN Hardware

1 LED indicators 3 Combicon connector
2 USB connector 4 D-SUB connector

Figure 3-9. USB-LIN Connector Cable

Table 3-14. USB-LIN Combicon Gonnector Pinout

Pin Description
CLK Clock pin
TRG Trigger pin
GND Ground pin

For information on the pinout of the USB-LIN D-SUB connector, refer to
the USB-LIN Connector Pinout section of Chapter 4, Connectors and
Cables.

© National Instruments 3-31 NI-CAN Hardware and Software Manual

Chapter 3 NI CAN and LIN Hardware

CAN for CompactRIO

This section describes the use of CompactRIO with CAN.

What is CompactRI0?

National Instruments CompactRIO is an advanced embedded control and
acquisition system powered by NI reconfigurable I/O (RIO) technology.
CompactRIO combines a low-power-consumption, real-time embedded
processor with a high-performance RIO FPGA chipset. The RIO core has
built-in data transfer mechanisms to pass data to the embedded processor
for real-time analysis, post processing, data logging, or communication to
a networked host computer. CompactRIO provides direct hardware access
to the I/O circuitry of each I/O module using LabVIEW FPGA 1/O
functions. Each I/0 module includes built-in connectivity, signal
conditioning, conversion circuitry (such as ADC or DAC), and an optional
isolation barrier.

NI 985x

The NI 9853 is a CAN High-Speed I/O module for the CompactRIO
platform. For information on the NI 9853 CAN module, refer to the
NI 9853 Operating Instructions.

The NI 9852 is a CAN Low-Speed I/O module for the CompactRIO
platform. For information on the NI 9852 CAN module, refer to the
NI 9852 Operating Instructions.

For information on the software support for the NI 9853 and NI 9852
modules, refer to the LabVIEW FPGA help.

NI-CAN Hardware and Software Manual 3-32 ni.com

Connectors and Cables

This chapter describes the input and output signal connections to the

NI CAN hardware and the cabling requirements for interfacing to a CAN
network. Cables should be constructed to meet these requirements, as well
as the requirements of the other CAN devices in the network.

High-Speed CAN Pinout Cable

This section describes the High-Speed CAN pinout cable.

High-Speed PCI, PXI, and USB Connector Pinout

© National Instruments

PCI-CAN, PXI-8461, USB-8473, and USB-8473s hardware have a 9-pin
male D-SUB (DB9) connector for each port. The 9-pin D-SUB connector
follows the pinout recommended by CiA DS 102. Figure 4-1 shows the
9-pin D-SUB connector pinout.

No Connection
Optional Ground (V-)
CAN_L
CAN_H
V-
No Connection
No Connection
V+
Shield

Figure 4-1. Pinout for 9-Pin D-SUB Connector

4-1 NI-CAN Hardware and Software Manual

Chapter 4 Connectors and Cables

Table 4-1. Pinout for 9-Pin D-SUB Connector

D-SUB Pin Signal Description

1 No Connection —

2 CAN_L CAN_L bus line

3 V- CAN reference ground

4 No Connection —

5 (Shield) Optional CAN shield

6 V-) Optional CAN reference ground

7 CAN_H CAN_H bus line

8 No Connection —

9 (V+) Optional CAN power supply
if bus power or external VBAT
is required

CAN_H and CAN_L are signals lines that carry the data on the CAN
network. These signals should be connected using twisted-pair cable.

V- serves as the reference ground for CAN_H and CAN_L.

V+ supplies bus power to the CAN physical layer if external power is
required. All High-Speed Series 2 PCI, PXI, and USB hardware is powered
internally, so it is not necessary to supply V+, unless you have configured
the VBAT jumper for EXT.

Shield is an optional connection when using a shielded CAN cable.
Connecting the optional CAN shield may improve signal integrity in a
noisy environment.

PCMCIA Connector Pinout

PCMCIA-CAN cables have both a 9-pin male D-SUB and Combicon-style
pluggable screw terminal connector for each port. Figure 4-2,
PCMCIA-CAN Cable, shows the end of a PCMCIA-CAN cable. The arrow
points to pin 1 of the 5-pin screw terminal block. All of the signals on the
5-pin screw terminal are connected directly to the corresponding pins on
the 9-pin D-SUB.

NI-CAN Hardware and Software Manual 4-2 ni.com

Chapter 4 Connectors and Cables

Figure 4-2. PCMCIA-CAN Cable

Table 4-2. PCMCIA-CAN Cable Connector Pin Descriptions

D-SUB Pin Combicon Pin Signal Description
1 — No Connection —
2 2 CAN_L CAN_L bus line
3 1 V- CAN reference ground
4 — No Connection —
5 3 (Shield) Optional CAN shield
6 — Vo) Optional CAN reference ground
7 4 CAN_H CAN_H bus line
8 — No Connection —
9 5 No Connection —

© National Instruments

CAN_H and CAN_L are signal lines that carry the data on the CAN
network. These signals should be connected using twisted-pair cable.

V- serves as the reference ground for CAN_H and CAN_L.

Shield is an optional connection when using a shielded CAN cable.
Connecting the optional CAN shield may improve signal integrity in a
noisy environment.

4-3

NI-CAN Hardware and Software Manual

Chapter 4

Connectors and Cables

Cabling Requirements for High-Speed CAN
Cables should meet the physical medium requirements specified in

ISO 11898, shown in Table 4-3.

Belden cable (3084A) meets all of those requirements, and should be
suitable for most applications.

Table 4-3. 1SO 11898 Specifications for Characteristics of a CAN_H and
CAN_L Pair of Wires

Characteristic Value

Impedance 108 Q minimum, 120 Q nominal,
132 Q maximum

Length-related resistance 70 m€2 /m nominal
Specific line delay 5 ns/m nominal
Cable Lengths

The allowable cable length is affected by the characteristics of the cabling
and the desired bit transmission rates. Detailed cable length
recommendations can be found in the ISO 11898, CiA DS 102, and
DeviceNet specifications.

ISO 11898 specifies 40 m total cable length with a maximum stub length
of 0.3 m for a bit rate of 1 Mb/s. The ISO 11898 specification says that
significantly longer cable lengths may be allowed at lower bit rates, but
each node should be analyzed for signal integrity problems.

Table 4-4 lists the DeviceNet cable length specifications.

Table 4-4. DeviceNet Cable Length Specifications

Bit Rate Thick Cable Thin Cable
500 kb/s 100 m 100 m
250 kb/s 200 m 100 m
100 kb/s 500 m 100 m

NI-CAN Hardware and Software Manual 4-4 ni.com

Chapter 4 Connectors and Cables

Number of Devices

The maximum number of devices depends on the electrical characteristics
of the devices on the network. If all of the devices meet the requirements
of ISO 11898, at least 30 devices may be connected to the bus. Higher
numbers of devices may be connected if the electrical characteristics of the
devices do not degrade signal quality below ISO 11898 signal level
specifications. If all of the devices on the network meet the DeviceNet
specifications, 64 devices may be connected to the network.

Cable Termination

The pair of signal wires (CAN_H and CAN_L) constitutes a transmission
line. If the transmission line is not terminated, each signal change on the
line causes reflections that may cause communication failures.

Because communication flows both ways on the CAN bus, CAN requires
that both ends of the cable be terminated. However, this requirement does
not mean that every device should have a termination resistor. If multiple
devices are placed along the cable, only the devices on the ends of the cable
should have termination resistors. Refer to Figure 4-3 for an example of
where termination resistors should be placed in a system with more than
two devices.

CAN CAN CAN
Device Device Device

| CAN_H i

CAN - l
Dovice %209 CANL gg %1209'

Figure 4-3. Termination Resistor Placement

The termination resistors on a cable should match the nominal impedance
of the cable. ISO 11898 requires a cable with a nominal impedance of
120 € so a 120 Q resistor should be used at each end of the cable. Each
termination resistor should be capable of dissipating 0.25 W of power.

© National Instruments 4-5 NI-CAN Hardware and Software Manual

Chapter 4 Connectors and Cables

Cabling Example

Figure 4-4, Cable Connecting Two CAN Devices, shows an example of a
cable to connect two CAN devices. For the internal power configuration,

no V+ connection is required.

5-Pin

Combicon

Pin 4

Pin 2

Pin 3

Pin 5

Pin 1

9-Pin

D-Sub

Pin 7

Pin 2

Pin 5

Pin 9

Pin 3

CAN_H

120 Q
% CAN_L

1209%

SHIELD

V+

V—

Power
Connector

Ve >——
>

9-Pin

D-Sub

Pin 7

Pin 2

Pin 5

Pin 9

Pin 3

5-Pin

Combicon

Pin 4

Pin 2

Pin 3

Pin 5

Pin 1

Figure 4-4. Cable Connecting Two CAN Devices

Low-Speed/Fault-Tolerant CAN Pinout Cable

This section describes the Low-Speed/Fault-Tolerant CAN pinout cable.

Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout

PCI-CAN/LS, PXI-8460, USB-8472, and USB-8472s hardware have a

9-pin male D-SUB (DB9) connector for each port. The 9-pin D-SUB

connector follows the pinout recommended by CiA DS 102. Figure 4-5,
Pinout for 9-Pin D-SUB Connector, shows the 9-pin D-SUB connector

pinout.

NI-CAN Hardware and Software Manual

46

ni.com

© National Instruments

Chapter 4 Connectors and Cables

Optional Ground (V-)
CAN_H
No Connection

V+

No Connection
CAN_L

V-

No Connection

Shield

Figure 4-5. Pinout for 9-Pin D-SUB Connector

Table 4-5. 9-Pin D-SUB Connector Pin Descriptions

D-SUB Pin Signal Description

1 No Connection —

2 CAN_L CAN_L bus line

3 \ CAN reference ground

4 No Connection —

5 (Shield) Optional CAN shield

6 Vo) Optional CAN reference
ground

7 CAN_H CAN_H bus line

8 No Connection —

9 (V+) Optional CAN power supply
if bus power or external VBAT
is required

4-7 NI-CAN Hardware and Software Manual

Chapter 4 Connectors and Cables

CAN_H and CAN_L are signals lines that carry the data on the CAN
network. These signals should be connected using twisted-pair cable.

V- serves as the reference ground for CAN_H and CAN_L.

V+ supplies bus power to the CAN physical layer if external power is
required. All Low-Speed/Fault-Tolerant Series 2 PCI, PXI and USB
hardware is powered internally, so it is not necessary to supply V+ unless
you have configured the VBAT jumper for EXT.

Shield is an optional connection when using a shielded CAN cable.
Connecting the optional CAN shield may improve signal integrity in a
noisy environment.

PCMCIA Connector Pinout PCMCIA Connector Pinout

PCMCIA-CAN cables have both a 9-pin male D-SUB and Combicon-style
pluggable screw terminal connector for each port. Figure 4-6 shows the end
of a PCMCIA-CAN cable. The arrow points to pin 1 of the 7-pin screw
terminal block. All of the signals on the 7-pin screw terminal, except RTL
and RTH, are connected directly to the corresponding pins on the 9-pin
D-SUB.

Figure 4-6. PCMCIA-CAN/LS Cable

Table 4-6. PCMCIA-CAN/LS Cable Connector Pin Descriptions

D-SUB Pin Combicon Pin Signal Description
1 — No Connection —
2 2 CAN_L CAN_L bus line

NI-CAN Hardware and Software Manual 4-8 ni.com

Chapter 4 Connectors and Cables

Table 4-6. PCMCIA-CAN/LS Cable Connector Pin Descriptions (Continued)

D-SUB Pin Combicon Pin Signal Description
3 3 V- CAN reference ground
4 — No Connection —
5 4 (Shield) Optional CAN shield
6 — V-) Optional CAN reference ground
7 6 CAN_H CAN_H bus line
8 — No Connection —
9 5 No Connection —

CAN_H and CAN_L are signal lines that carry the data on the CAN
network. These signals should be connected using twisted-pair cable.

V- serves as the reference ground for CAN_H and CAN_L.

Shield is an optional connection when using a shielded CAN cable.
Connecting the optional CAN shield may improve signal integrity in a
noisy environment.

Cabling Requirements for Low-Speed/Fault-Tolerant CAN

© National Instruments

Cables should meet the physical medium requirements shown in Table 4-7.

Table 4-7. Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires

Characteristic Value
Length-related resistance 90 m{ 2 /m nominal
Length-related capacitance: CAN_L and 30 pF/m nominal
ground, CAN_H and ground, CAN_L and
CAN_H

Belden cable (3084A) meets all of those requirements, and should be
suitable for most applications.

4-9 NI-CAN Hardware and Software Manual

Chapter 4

Connectors and Cables

Number of Devices

The maximum number of devices depends on the electrical characteristics
of the devices on the network. If all of the devices meet the requirements of
typical Low-Speed/Fault-Tolerant CAN, up to 32 devices may be
connected to the bus. Higher numbers of devices may be connected if the
electrical characteristics of the devices do not degrade signal quality below
Low-Speed/Fault-Tolerant signal level specifications.

Termination

Every device on the low-speed CAN network requires a termination
resistor for each CAN data line: RRTH for CAN_H and RRTL for CAN_L.
Figure 4-7 shows termination resistor placement in a low-speed CAN
network.

Low-speed Low-speed Low-speed
CAN Device CAN Device CAN Device
RTH CAN_H RTL CAN_L RTH CAN_H RTL CAN_L RTH CAN_H
CAN_H

% |

Figure 4-7. Termination Resistor Placement for Low-Speed CAN

The following sections explain how to determine the correct resistor values
for the low-speed CAN card, and how to replace those resistors, if
necessary.

For USB CAN (847x) interfaces, the termination is software selectable.
Refer to the Termination attribute in ncSetAttr.vi of Chapter 10, Frame
API for LabVIEW, for more details.

Determining the Necessary Termination Resistance

for the Board

Unlike High-Speed CAN, low-speed CAN requires termination at the
low-speed CAN transceiver instead of on the cable. The termination
requires two resistors: RTH for CAN_H and RTL for CAN_L. This
configuration allows the Philips fault-tolerant CAN transceiver to detect
and recover from bus faults. You can use the PCI-CAN/LS, PXI-8460, or

NI-CAN Hardware and Software Manual 4-10 ni.com

RR THoverall —

© National Instruments

Chapter 4 Connectors and Cables

PCMCIA-CANY/LS to connect to a low-speed CAN network having from
two to 32 nodes as specified by Philips (including the port on the NI CAN
Low-Speed/Fault-Tolerant interface). You also can use the
Low-Speed/Fault-Tolerant interface to communicate with individual
low-speed CAN devices. It is important to determine the overall
termination of the existing network, or the termination of the individual
device, before connecting it to a Low-Speed/Fault-Tolerant port. Philips
recommends an overall RTH and RTL termination of 100 Q to 500 Q
(each) for a properly terminated low-speed network. The overall network
termination may be determined as follows:

1 S DR SRS B
RRTHoverall RRTHnodel RRTHnodeZ RRTHnodeS RRTHnoden

Philips also recommends an individual device RTH and RTL termination of
500 to 16 k€. The PCI-CAN/LS or PXI-8460 card ships with termination
resistor values of 510 +5% per port mounted on the PCB. The
PCI-CAN/LS or PXI-8460 kit also includes a pair of 15 k€ +5% resistors
for each port. After determining the termination of the existing network or
device, you can use the following formula to indicate which value should
be placed on the PCI-CAN/LS or PXI-8460 card in order to produce the
proper overall RTH and RTL termination of 100 to 500 €2 upon connection
of the card:

(1 n 1
RRTHoveralloflow —speedCANinterface RRTHofexistingnetworkordevice

where
Rrr overan Should be between 100 and 500 Q

Ry of low-speed CAN interface = 510 Q +5% (mounted) or
15 kQ +5% (in kit)

|RrrH = Rerr

As the formula indicates, the 510 Q +5% shipped on the card will work
with properly terminated networks having a total RTH and RTL
termination of 125 to 500 €, or individual devices having an RTH and RTL
termination of 500 to 16 k€. For communication with a network having an
overall RTH and RTL termination of 100 to 125 €, you will need to
replace the 510 Q resistors with the 15 kQ resistors in the kit. Refer to the
next section of this chapter, Replacing the Termination Resistors on the
PCMCIA-CAN/LS Cable. The PCMCIA-CAN/LS cable ships with

4-11 NI-CAN Hardware and Software Manual

Chapter 4

Rerroverall =

Rerroverann =

Connectors and Cables

screw-terminal mounted RTH and RTL values of 510 Q +5% per port. The
PCMCIA-CANU/LS cable also internally mounts a pair of 15.8 kQ +1%
resistors in parallel with the external 510 Q resistors for each port.

This produces an effective RTH and RTL of 494 Q per port for the
PCMCIA-CANV/LS cable. After determining the termination of the existing
network or device, you can use the formula below to indicate which
configuration should be used on the PCMCIA-CANY/LS cable to produce
the proper overall RTH and RTL termination of 100 to 500 € upon
connection of the cable:

1

1 n 1

RR THoflow —speedCANinterface RRTH()fexistingnetworkordevice

where
Rprii overan Should be between 100 Q and 500 Q

Rpry of PCMCIA-CAN/LS =494 Q (510 Q + 5% (external) in parallel
with 15.8 kQ + 1% (internal), or 15.8 kQ + 1% (internal) only

|Rgrr = Rerr

As the formula indicates, the 510 Q + 5% in parallel with 15.8 kQ + 1%
shipped on the cable will work with properly terminated networks having a
total RTH and RTL termination of 125 Q to 500 €2 or individual devices
having an RTH and RTL termination of 500 € to 16 K€. For
communication with a network having an overall RTH and RTL
termination of 100 Q to 125 € you will need to disconnect the 510 Q
resistors from the 7-pin pluggable screw terminal. This will make the RTH
and RTL values of the PCMCIA-CANY/LS cable equal to the internal
resistance of 15.8 kQ + 1%. To produce RTH and RTL values between 494
and 15.8 kQ on the PCMCIA-CANY/LS cable, use the following formula:

1

1 n 1

RR THofPCMCIA - CANLS RR THofexistingnetworkordevice

where
Rpyiernal Ry of PCMCIA-CAN/LS = 15.8 kQ + 1%

|Rrrr = Rerr

For information on replacing the external RTH and RTL resistors on the
PCMCIA-CAN/LS cable, refer to the Replacing the Termination Resistors
on the PCMCIA-CAN/LS Cable section of this chapter.

NI-CAN Hardware and Software Manual 4-12 ni.com

© National Instruments

Chapter 4 Connectors and Cables

Software Selectable Termination (USB-8472s only)

The USB-8472 and USB-8472s feature a software selectable bus
termination resistors, allowing the user to adjust the overall network
termination through an API call. In general, if the existing network has an
overall network termination of 125 Q or less, you should select the 5 KQ
option. For existing overall network termination above 125 €, you should
select the 1 KQ termination option.

Replacing the Termination Resistors on Your
PCI-CAN/LS Board

Complete these steps to replace the termination resistors on the
PCI-CAN/LS card, after you have determined the correct value in the
Determining the Necessary Termination Resistance for the Board section
of this chapter.

1. Remove the termination resistors on the low-speed CAN card.
Figure 4-8, Location of Termination Resistors on PCI-CAN/LS2 Card,
shows the location of the termination resistor sockets on a
PCI-CAN/LS?2 card.

4-13 NI-CAN Hardware and Software Manual

Chapter 4 Connectors and Cables

=00 535.03,00 W o banazac gazs |
O S, =0 B ik e e e B0000000000000°:_ea uuunuunn.nnu\umﬂ
—— ":;:HE ood R *“ % § ‘D [m] R0 cio7

mmgmuiw 30 00000000 2 0. D ©

@} D ?\D\ =2 g“g"gg“géggw =00000000000000 g | uuuuuununnuuum 00000000000000000
Jos SR afile ., 23 850seS © -
= il oy Snekh (B B ‘Eggﬁi;fﬁ R g CE0& @gﬁggoﬁn%%ﬁéf e va

@ l:vs.v TBET T8 15 C, § o urs,

YL 285 of5 o ;n;ugnggng:‘a‘ :é;n gnuunm]]nmmmn]]]mm]] 0% o -
== O 5 afc ofs o LSS ggillﬁ r E’EE%D. uuuuuuuuuuuu =
O] D TP mE) [Ld g

— o = oo [we 5 ggn e
o) o o GOI0T TR gmmu‘oggi
80 “D:ED oo D:[o752 o 200800 Beknon Bogs
O|go e (] O - AT &
by 3
0|95 2
]

O

000000000000000000000
“pa t

Rot
by ™

mapd p Qoo oot 000

0% 030 © ﬂ]]lﬂﬂﬂllll]]]]]lllllll]]]]]lllllllllll]]]lllllllllllllll]]lﬂ

o

o r[][][][][][][]ﬂﬂ‘\

-8

1 Port 1 Termination Resistors 2 Port 2 Termination Resistors

Figure 4-8. Location of Termination Resistors on PCI-CAN/LS2 Card

2. Cutand bend the lead wires of the resistors you want to install. Refer to
Figure 4-9.

0.3in.
(8 mm)

T
|

Figure 4-9. Preparing Lead Wires of Replacement Resistors

3. Insert the replacement resistors into the empty sockets.

4. Refer to the NI-CAN Software and Hardware Installation Guide in the
jewel case of the program CD to complete the hardware installation.

NI-CAN Hardware and Software Manual 4-14 ni.com

Chapter 4 Connectors and Cables

Replacing the Termination Resistors on the PXI-8460
Board

Complete these steps to replace the termination resistors, after you have
determined the correct value in the Determining the Necessary Termination
Resistance for the Board section of this chapter.

1. Remove the termination resistors on the PXI-8460. Figure 4-10 shows
the location of the termination resistor sockets on a PXI-8460.

MED—-———

- O C u iR N [SXeXeXeXeXeXeyulf:r:] =
° 3 Dim g %HUD =
e Pl 2 TRag Ot

s s ws O (B Mo /o0 oo o “cooodooondy " de =
D’fm ot s 8 Borires 08 2 = S Slon! =
E[55000 e = g (T s g 8n =
— S5 o oo % B0, =

i 000000000 52,00

B0 oo 20 00 8 00 00
ol

Ors,
iy e m1 oY
85 do oo g

ol
000000
000000[00000000000000|00000000

RI23 R125 CuOcso V25 0I0 CnO V28
g oose = W LRe T
B ot v

‘: ‘ -0 oD
Bl
o]
o) 6 B o
B Rt
o] Ol - - D‘mwg“’g%f
o e a 0000000080000, o7 Dom Ll
[’ﬂﬂ]O 5 L oooooo di 28 o
=
S O g
68 00,9

1 Port 1 Termination Resistors 2 Port 2 Termination Resistors

Figure 4-10. Location of Termination Resistors on a PXI-8460

© National Instruments 4-15 NI-CAN Hardware and Software Manual

Chapter 4 Connectors and Cables

2. Cutand bend the lead wires of the resistors you want to install. Refer to
Figure 4-11 for an example.

‘ 0.3in.)

: (8 mm)
0.165 in.
(4 mm)

Figure 4-11. Preparing Lead Wires of Replacement Resistors

3. Insert the replacement resistors into the empty sockets.

4. Refer to the NI-CAN Software and Hardware Installation Guide in the
jewel case of the program CD to complete the hardware installation.

Replacing the Termination Resistors on the PCMCIA-CAN/LS Cable

Complete these steps to replace the termination resistors on the
PCMCIA-CANV/LS cable after you have determined the correct value in the
Determining the Necessary Termination Resistance for the Board section
of this chapter.

1. Remove the two termination resistors on the PCMCIA-CAN/LS cable
by loosening the pluggable terminal block mounting screws for pins 1
and 2 (RTL) and pins 6 and 7 (RTH).

2. Bend and cut the lead wires of the two resistors you want to install,
as shown in Figure 4-12.

—» 03in. <—
¢ (7.62mm) !

Figure 4-12. Preparing Lead Wires of PCMCIA-CAN/LS Cable Replacement Resistors

3. Mount RTL by inserting the leads of one resistor into pins 1 and 2 of
the pluggable terminal block and tightening the mounting screws.

NI-CAN Hardware and Software Manual 4-16 ni.com

Chapter 4 Connectors and Cables

Mount RTH by inserting the leads of the second resistor into pins 6 and
7 of the pluggable terminal block and tightening the mounting screws.

4. Refer to the NI-CAN Software and Hardware Installation Guide in the
jewel case of the program CD to complete the hardware installation.

Cabling Example

Figure 4-13 shows an example of a cable to connect two low-speed CAN
devices. For the PCMCIA-CANY/LS cables, only V—, CAN_L, and CAN_H

are required to be connected to the bus.

7-Pin

Combicon

Pin 6

Pin 2

Pin 4

Pin5

Pin 3

9-Pin

D-Sub

Pin7

Pin 2

Pin 5

Pin 9

Pin 3

9-Pin
D-Sub
CAN_H
Pin7
CAN_L
Pin 2
SHIELD Pin 5
Ve Pin 9
V= Pin 3
Power
Connector

Ve >—]
-

7-Pin

Combicon

Pin 6

Pin 2

Pin 4

Pin 5

Pin 3

Figure 4-13. Cabling Example

Single Wire CAN Pinout Cable

This section describes the Single Wire CAN pinout cable.

Single Wire PCI and PXI Connector Pinout

© National Instruments

PCI-CAN/XS and PXI-8464 hardware have a 9-pin male D-SUB (DB9)
connector for each port. The 9-pin D-SUB connector follows the pinout

recommended by CiA DS 102. Figure 4-14, Pinout for 9-Pin D-SUB

Connector, shows the 9-pin D-SUB connector pinout.

4-17 NI-CAN Hardware and Software Manual

Chapter 4

Connectors and Cables
No Connection
Optional Ground (V-)
CAN_L
CAN_H
V-
No Connection
No Connection
V+
Shield
Figure 4-14. Pinout for 9-Pin D-SUB Connector
Table 4-8. 9-Pin D-SUB Connector Pin Descriptions
D-SUB Pin Signal Description
1 No Connection —
2 CAN_L CAN_L bus line
3 V- CAN reference ground
4 No Connection —
5 (Shield) Optional CAN shield
6 V-) Optional CAN reference
ground
7 CAN_H CAN_H bus line
8 No Connection —
9 V+) Optional CAN power supply if
bus power or external VBAT is
required

CAN_H and CAN_L are signals lines that carry the data on the CAN
network. These signals should be connected using twisted-pair cable.

V- serves as the reference ground for CAN_H and CAN_L.

NI-CAN Hardware and Software Manual

4-18

ni.com

Chapter 4 Connectors and Cables

V+ supplies bus power to the CAN physical layer if external power is
required. All Low-Speed/Fault-Tolerant Series 2 PCI and PXI hardware is
powered internally, so it is not necessary to supply V+ unless you have
configured the VBAT jumper for EXT.

Shield is an optional connection when using a shielded CAN cable.
Connecting the optional CAN shield may improve signal integrity in a
noisy environment.

PCMCIA-CAN Connector Pinout

PCMCIA-CAN cables have both a 9-pin male D-SUB and Combicon-style
pluggable screw terminal connector for each port. Figure 4-15 shows the
end of a PCMCIA-CAN cable. The arrow points to pin 1 of the 5-pin screw
terminal block. All of the signals on the 5-pin screw terminal are connected
directly to the corresponding pins on the 9-pin D-SUB.

Figure 4-15. PCMCIA-CAN Cable

Table 4-9. PCMCIA-CAN Cable Connector Pin Descriptions

D-SUB Pin Combicon Pin Signal Description
1 — No Connection —
2 2 No Connection —
3 1 V- CAN reference ground
4 — No Connection —
5 3 (Shield) Optional CAN shield
© National Instruments 4-19 NI-CAN Hardware and Software Manual

Chapter 4 Connectors and Cables

Table 4-9. PCMCIA-CAN Cable Connector Pin Descriptions (Continued)

D-SUB Pin Combicon Pin Signal Description
6 — (Vo) Optional CAN reference ground
7 4 CAN_H CAN_H bus line
8 — No Connection —
9 5 V+) CAN power supply

CAN_H is the signal line that carries the data on the CAN network.
V- serves as the reference ground for CAN_H.
V+ supplies bus power to the Single Wire CAN transceiver.

Shield is an optional connection when using a shielded CAN cable.
Connecting the optional CAN shield may improve signal integrity in a
noisy environment.

Cabling Requirements for Single Wire CAN

The number of nodes on the network, the total cable length of the system,
the bus loading of each node, and the clock tolerance are all interrelated.
It is therefore the responsibility of the system designer to factor in all of the
above parameters when designing a Single Wire CAN network. The SAE
J2411 standard provides some recommended specifications that can help in
making these decisions:

Cable Length

There shall be no more than 60 m between any two network system
ECU nodes.

Number of Devices

As stated previously, the maximum number of Single Wire CAN nodes
allowed on the network depends on the electrical characteristics of the
devices and cable. If all of the devices and cables meet the requirements of
J2411, between 2 and 32 devices may be networked together.

Termination (Bus Loading)

NI Single Wire CAN hardware includes a built-in 9.09 k€ load resistor as
specified by J2411.

NI-CAN Hardware and Software Manual 4-20 ni.com

Chapter 4 Connectors and Cables

Cabling Example

Figure 4-16 shows an example of a cable to connect two Single Wire CAN
devices.

9-Pin 9-Pin
D-Sub D-Sub
CAN_H
Pin7 Pin 7
HIELD
Pin 5 S Pin 5
Pin 9 V+ Pin 9
Pin 3 V= Pin 3
Power
Connector
V4 >———
V- —

Figure 4-16. Cabling Example

XS CAN Pinout Cabhle

This section describes the XS CAN pinout cable.

XS PCI and PXI Connector Pinout

© National Instruments

PCI-CAN/XS and PXI-8464 hardware have a 9-pin male D-SUB (DB9)
connector for each port.

When an XS port is selected as High-Speed, its connector pinout is
identical to a dedicated High-Speed interface as described in the
High-Speed PCI, PXI, and USB Connector Pinout section of this chapter.

When an XS port is selected as Low-Speed/Fault-Tolerant, its connector
pinout is identical to a dedicated Low-Speed/Fault-Tolerant interface as
described in the Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector
Pinout section of this chapter.

4-21 NI-CAN Hardware and Software Manual

Chapter 4

Connectors and Cables

When an XS port is selected as Single Wire, its connector pinout is
identical to a dedicated Single Wire interface as described in the Single
Wire PCI and PXI Connector Pinout section of this chapter.

When an XS port has been selected as External, a different set of signals
is routed to the 9-pin D-SUB connector. Figure 4-17 shows the 9-pin
D-SUB connector pinout for an XS port in External mode.

No Connection
Optional Ground (V-)
CAN_L
CAN_H
V-
No Connection

No Connection
V+

Shield

Figure 4-17. Pinout for 9-Pin D-SUB Connector

Table 4-10. 9-Pin D-SUB Connector Pin Descriptions

D-SUB Pin Signal Description

1 MODEO Digital output signal for external transceiver mode control
(XS port in external mode only)

2 RX RXO0 pin from SJA1000 CAN controller
(XS port in external mode only)

3 GND Ground

4 MODEI1 Digital output signal for external transceiver mode control
(XS port in external mode only)

5 No Connection Do not connect signals to this pin

6 (GND) Optional ground

7 TX TXO pin from SJA1000 CAN controller

(XS port in external mode only)

NI-CAN Hardware and Software Manual

4-22 ni.com

Chapter 4 Connectors and Cables

Table 4-10. 9-Pin D-SUB Connector Pin Descriptions (Continued)

D-SUB Pin Signal Description
8 STATUS Digital input signal for external transceiver error reporting
(XS port in external mode only)
9 No Connection Do not connect signals to this pin

RX and TX are the serial receive and transmit signals from the SJA1000
CAN controller. GND serves as the reference ground for RX and TX.

MODEO and MODETI are digital output signals for controlling the mode
selection of an external transceiver. For example, the TJA1041 and
TJA1054A have STB and EN input pins to select the transceiver operating
mode.

STATUS is a digital input signal for monitoring the status of an external
transceiver. For example, the TJA1041 and TJA1054A have an ERR output
to report bus fault conditions.

Cabling Requirements for XS CAN

© National Instruments

For cabling requirements information, refer to the appropriate section on
cabling requirements for High-Speed, Low-Speed/Fault-Tolerant, or
Single Wire CAN depending on the XS port mode. Note that due to the
different cabling requirements for each physical layer, when switching an
XS port, you may also need to change out the cable to meet the network
cabling requirements.

When designing external transceiver circuits for an XS port in external
mode, keep the signal connections between the 9-pin D-SUB connector and
the transceiver circuit as short as possible. Ideally, the external transceiver
circuit should mount directly to the 9-pin D-SUB connector if possible.

4-23 NI-CAN Hardware and Software Manual

Chapter 4 Connectors and Cables

External Transceiver Example

Figure 4-18 shows an example of an external transceiver circuit for an
XS port in External mode.

9-Pin
D-Sub
CAN_L TX
S < Pin7
CAN_H RX
—— Pin2
(SHIELD) External MODEO
>— Transceiver —< Pin 1
Circuit
V+ MODE1
—< Pin 4
V- STATUS
—< Pin 8
Power
Connector
Ve >—r
V- —————

Figure 4-18. External Transceiver Gircuit for an XS Port in External Mode

LIN

This section describes the USB-LIN hardware.

USB-LIN Connector Pinout

USB-8476 and USB-8476s hardware has a 9-pin male D-Sub (DB9Y)
connector for connection to the LIN bus. Figure 4-19, Pinout for 9-Pin
D-SUB Connector, shows the 9-pin D-Sub connector pinout.

NI-CAN Hardware and Software Manual 4-24 ni.com

© National Instruments

Chapter 4 Connectors and Cables

No Connection

Ground

LIN

VBat

No Connection
No Connection
Ground

No Connection

Shield

Figure 4-19. Pinout for 9-Pin D-SUB Connector

Table 4-11. 9-Pin D-SUB Connector Pin Descriptions

D-SUB Pin Signal Description

1 No Connection —

2 No Connection —

3 Ground LIN reference ground.

4 No Connection —

5 (Shield) Optional LIN shield.
Connecting the optional LIN
shield may improve signal
integrity in a noisy
environment.

6 Ground LIN reference ground.

7 LIN Signal line that carries the data
on the LIN.

4-25 NI-CAN Hardware and Software Manual

Chapter 4 Connectors and Cables

Table 4-11. 9-Pin D-SUB Connector Pin Descriptions (Continued)

D-SUB Pin Signal Description
8 No Connection —
9 VBat Supplies bus power to the LIN

physical layer, as required by
the LIN spec. All USB-LIN
interfaces require bus power of
8-18 VDC.

Cabling Requirements for LIN Specifications (LIN)

This section describes cabling requirements for LIN.

Cable Specifications

LIN cables should meet the physical medium requirement of a bus RC time
constant of 5 microseconds. For detailed formulas for calculating this
value, refer to the Line Characteristics section of the LIN specification.

Belden cable (3084A) and other unterminated CAN/Serial quality cables
meet these requirements, and should be suitable for most applications.

Cable Lengths

The maximum allowable cable length is 40 meters, per the LIN
specification.

Number of Devices

The maximum number of devices on a LIN bus is 16, per the LIN
specification.

Termination

LIN cables require no termination, as nodes are terminated at the
transceiver. Slave nodes are typically pulled up from the LIN bus to VBat
with a 30 KQ resistance and a serial diode. This termination is usually
integrated into the transceiver package. The master node requires a 1 KQ
resistor and serial diode between the LIN bus and VBat.

On NI USB-LIN products, master termination is software selectable and
can be enabled with the Termination attribute. For more information refer
to the ncSetAfttribute function within the Frame API.

NI-CAN Hardware and Software Manual 4-26 ni.com

Application Development

This chapter explains how to develop an application using the NI-CAN
APIs.

Choose the Programming Language

LabVIEW

© National Instruments

The programming language you use for application development
determines how to access the NI-CAN APIs.

NI-CAN functions and controls are available in the LabVIEW palettes. In
LabVIEW 7.0 or later, the NI-CAN palette is located within the top-level
NI Measurements palette. In earlier LabVIEW versions, the NI-CAN
palette is located at the top-level. The top level of the NI-CAN function
palette contains subpalettes for the Channel API and Frame API. Each
subpalette of an API contains the most commonly used functions, with
subpalettes for advanced functions.

The reference for each NI-CAN Channel API function is in Chapter 7,
Channel API for LabVIEW. The reference for each NI-CAN Frame API
function is in Chapter 10, Channel API for LabVIEW. To access the
reference for a function from within LabVIEW, press <Ctrl-H> to open the
help window, click on the NI-CAN function, and then follow the link.

The NI-CAN software includes a full set of examples for LabVIEW. These
examples teach basic NI-CAN programming as well as advanced topics.
The example help describes each example and includes a link you can use
to open the VI.

The NI-CAN example help is in Help»Find Examples»Hardware Input
and Output»CAN.

5-1 NI-CAN Hardware and Software Manual

Chapter 5 Application Development

LabWindows/CVI

Visual C++ 6

Within LabWindows"™/CVI"™, the NI-CAN function panel is in Libraries»
NI-CAN. Like other LabWindows/CVI function panels, the NI-CAN
function panel provides help for each function and the ability to generate
code.

The reference for each NI-CAN Channel API function is in Chapter 8,
Channel API for C. The reference for each NI-CAN Frame API function is
in Chapter 11, Frame API for C. You can access the reference for each
function directly from within the function panel.

The header file for both NI-CAN APIs is nican.h. The library for both
NI-CAN APIsis nican.1lib.

The NI-CAN software includes a full set of examples for
LabWindows/CVI. The NI-CAN examples are installed in the
LabWindows/CVI directory under samples\nican.

Each example provides a complete LabWindows/CVI project (.pr3 file).
A description of each example is provided in comments at the top of the
.c file.

The NI-CAN software supports Microsoft Visual C/C++ version 6.

The NIEXTCCOMPILERSUPP environment variable is provided as an alias
to the C language header file and library location. You can use this variable
when compiling and linking an application.

To use either NI-CAN API, include the nican.h header file in the code,
then link with the nicanmsc.1ib library file.

For C applications (files with . c extension), include the header file by
adding a #include to the beginning of the code, such as:

#include "nican.h"

The reference for each NI-CAN Channel API function is in Chapter 8,
Channel API for C. The reference for each NI-CAN Frame API function is
in Chapter 11, Frame API for C.

For linking applications, you must add the nicanmsc. 1ib file and the
following statement to your linker project options to search for the library:

/libpath:"s$ (NIEXTCCOMPILERSUPP) \1ib32\msvc"

NI-CAN Hardware and Software Manual 5-2 ni.com

Borland C/C++

© National Instruments

Chapter 5 Application Development

You can find examples for the C language in the MS visual C subfolder
of the \Users\Public\Documents\National Instruments\
NI-CAN\Examples directory on Windows Vista and the \Documents
and Settings\All Users\Shared Documents\National
Instruments\NI-CAN\Examples directory on Windows XP. Each
example is in a separate folder. A description of each example is in
comments at the top of the . c file.

The NIEXTCCOMPILERSUPP environment variable is provided as an alias
to the C language header file and library location. You can use this variable
when compiling and linking an application.

To use either NI-CAN API, include the nican.h header file in the code,
then link with the nicanbor.1ib library file.

For C applications (files with . ¢ extension), include the header file by
adding a #include to the beginning of the code, such as:

#include "nican.h"

The reference for each NI-CAN Channel API function is in Chapter 8,
Channel API for C. The reference for each NI-CAN Frame API function is
in Chapter 11, Frame API for C.

For linking applications, you must add the nicanbor. 1ib file and the
following statement to your linker project options to search for the library:

/libpath:"$ (NIEXTCCOMPILERSUPP) \1ib32\borland"

You can find examples for the C language in the Borland C subfolder
of the \Users\Public\Documents\National Instruments\
NI-CAN\Examples directory on Windows Vista and the \Documents
and Settings\All Users\Shared Documents\National
Instruments\NI-CAN\Examples directory on Windows XP. Each
example is in a separate folder. A description of each example is in
comments at the top of the . c file.

5-3 NI-CAN Hardware and Software Manual

Chapter 5

Application Development

Microsoft Visual Basic

The NI-CAN software supports Microsoft Visual Basic 6.0 or later.

To create an application in Visual Basic, add the NI-CAN Channel
API.BAS Oor NI-CAN Frame API.BAS file with the wIN32 API.BAS file
to the project. wIN32 API.BAS defines API calls to the Windows system
which are called by functions defined in the NI-CAN Channel API.BAS
and NI-CAN Frame API.BAS files. Adding these files to the project
allows you to call any of the functions declared in them from the code.

The .BAS files are in the MS Visual Basic subfolder of the
\Users\Public\Documents\National Instruments\NI-CAN\
Examples directory on Windows Vista and the \Documents and
Settings\All Users\Shared Documents\National
Instruments\NI-CAN\Examples directory on Windows XP.

The reference for each NI-CAN Channel API function is in Chapter 8,
Channel API for C. The reference for each NI-CAN Frame API function is
in Chapter 11, Frame API for C.

If you plan to use the ReadMult or WriteMult functions, refer to the
examples, which explain how to use the Read Multiple or Write Multiple
functions instead.

You can find examples for Visual Basic in the Channel API examples
and Frame API examples subfolders of the MS Visual Basic folder.
Each example is in a separate folder. A . vbp file with the same name as the
example opens the Visual Basic project. A description of the example is
located in a Help form within the project.

Other Programming Languages

The NI-CAN software does not provide formal support for programming
languages other than those described in the preceding sections.
Nevertheless, you may find libraries and examples for other programming
languages on the National Instruments Web site, ni . com.

If the programming language provides a mechanism to call a Dynamic Link
Library (DLL), you can create code to call NI-CAN functions. All
functions for the Channel API and Frame API are in nican.d11.

NI-CAN Hardware and Software Manual 5-4 ni.com

© National Instruments

Chapter 5 Application Development

If the programming language supports the Microsoft Win32 APIs, you can
load pointers to NI-CAN functions in the application. The following text
demonstrates use of the Win32 functions for C/C++ environments other
than Visual C/C++ 6. For more detailed information, refer to Microsoft
documentation.

The following C language code fragment shows how to call Win32
LoadLibrary to load the DLL for the NI-CAN Channel API:

#include <windows.h>
#include "nican.h"
HINSTANCE NicanLib = NULL;

NicanLib = LoadLibrary("nican.dll");

Next, the application must call the Win32 GetProcaddress function to
obtain a pointer to each NI-CAN function that the application will use. For
each NI-CAN function, you must declare a pointer variable using the
prototype of the function. For the prototypes of each NI-CAN function,
refer to the C language sections of this manual.

static nctTypeStatus (NCT_FUNC * PnctInitStart)
(const str TaskList, 132 Interface, 132 Direction,
f64 SampleRate, nctTypeTaskRef * TaskRef) ;

static nctTypeStatus (NCT_FUNC * PnctRead)

(nctTypeTaskRef TaskRef, u32 NumberOfSamplesToRead,
nctTypeTimestamp * StartTime, nctTypeTimestamp *
DeltaTime, f64 * SampleArray, u32 *
NumberOfSamplesReturned) ;

static nctTypeStatus (NCT_FUNC * PnctClear)
(nctTypeTaskRef TaskRef) ;
PnctInitStart = (nctTypeStatus (NCT_FUNC *)

(const str, 132, i32, f64, nctTypeTaskRef *))
GetProcAddress (NicanLib, (LPCSTR)"nctInitStart");

PnctRead = (nctTypeStatus (NCT_FUNC *)

(nctTypeTaskRef, u32, nctTypeTimestamp *,
nctTypeTimestamp *, £64 *, u32 *))
GetProcAddress (NicanLib, (LPCSTR) "nctRead") ;

PnctClear = (nctTypeStatus (NCT_FUNC *)

(nctTypeTaskRef)) GetProcAddress (NicanLib,
(LPCSTR) "nctClear") ;

5-5 NI-CAN Hardware and Software Manual

Chapter 5

Application Development

The application must de-reference the pointer to call the NI-CAN function,
as shown by the following code:

nctTypeStatus status;

nctTypeTaskRef TaskRef;

status = (*PnctInitStart) ("mychannell, mychannel2", O,
nctModeInput, 1000.0, &TaskRef);

Before exiting the application, you must unload the NI-CAN DLL as
follows:

FreeLibrary (NicanLib) ;

Choose Which API To Use

For a given NI-CAN interface such as CANO, you can use only one API at
a time. Therefore, for new application development, you need to decide
which API to use.

For example, if you have one application that uses the Channel API and
another application that uses the Frame API, you cannot use CANOQ with
both at the same time. As an alternative, you can connect CAN0 and CAN1
to the same network, then use CANO with one application and CAN1 with
the other, if you have a 2-port CAN card. As another alternative, you can
use CANO in both applications, but run each application at a different time
(not simultaneously).

Because the Channel API provides access to the CAN network in
easy-to-use physical units, it is recommended over the Frame API for
customers who are getting started with NI-CAN. You also need to use the
Channel API if you want to utilize CAN messages or channels that are
defined in CAN database files.

Nevertheless, because the Frame API provides lower-level access to the
CAN network, there are a few reasons why you might want to use it over
the Channel API:

* You are continuing with an application developed with NI-CAN
version 1.6 or earlier. The Frame API is compatible with such code.

* You need to implement a command/response protocol in which you
send a command to the device, and then the device replies by sending
a response. Command/response protocols typically use a fixed pair of
IDs for each device, and the ID does not determine the meaning of the
data bytes.

NI-CAN Hardware and Software Manual 5-6 ni.com

© National Instruments

Chapter 5 Application Development

* The devices require use of remote frames. The Channel API does not
provide support for remote frames, but the Frame API has extensive
features to transmit and receive remote frames. For more information,
refer to the Remote Frames section of Chapter 9, Using the Frame
API, in this manual.

e The Frame API provides RTSI features that are lower level than the
synchronization features of the Channel API. If you have advanced
requirements for synchronizing CAN and DAQ cards, you may need to
use the Frame API. For more information, refer to the RTSI section of
Chapter 9, Using the Frame API, in this manual.

e The USB-847x is supported only by the Frame API. In addition, the
USB-847x hardware uses the Network Interface, not CAN objects.

In some cases, applications might require the ability to convert CAN data
between a CAN frame and a CAN channel. For information on frame to
channel conversion, channel to frame conversion, and virtual interfaces,
refer to the Frame to Channel Conversion section of Chapter 6, Using the
Channel API, in this manual.

5-7 NI-CAN Hardware and Software Manual

Using the Channel API

This chapter helps you get started with the Channel API.

Choose Source of Channel Configuration

The first step in using the Channel API is to create the channel
configuration for the applications. This channel configuration describes
how the NI-CAN software converts raw data in messages to or from the
physical units of each channel.

The NI-CAN software provides various methods to create the channel
configuration. Figure 6-1 shows a process you can use to decide the source
of the channel configuration. A description of each step in the decision
process follows the flowchart.

Already have
a CAN database
on file?

Yes No

User must
create within
application?

Application
uses a subset
of channels?

Yes

Import CAN Access CAN Use Create Create
Database Message)
Database - oo in
. Within Function in
into MAX s o MAX
Application Application

© National Instruments

Figure 6-1. Decision Process for Choosing Source of Channel Configuration

NI-CAN Hardware and Software Manual

Chapter 6 Using the Channel AP/

Already Have a CAN Database File?

If you have a CAN database file, the channel configuration has already
been created using a tool such as Vector’s CANdb Editor. You can use each
signal name in the CAN database as a channel name in the NI-CAN
Channel APL.

If you answer yes, refer to the Application Uses a Subset of Channels?
section of this chapter. If you answer no, refer to the User Must Create
within Application? section of this chapter.

Application Uses a Subset of Channels?

If the CAN database file contains a large number of channel descriptions
(1,000 or more), does the application use only a subset of these channels
(100 or less)? Importing the channels into MAX provides many benefits,
but managing the transfer of large amounts of data from CAN databases
can be cumbersome. For example, if the large CAN database file is updated
periodically, you need to ensure that the changes are reflected in MAX after
each update.

If you answer yes, refer to the Import CAN Database into MAX section of
this chapter. If you answer no, refer to the Access CAN Database within
Application section of this chapter.

There are limitations on how NI-CAN uses information from a Vector
CANdb database file. For current information on NI-CAN support for
Vector CANdD files, refer to the NI-CAN readme file.

Import CAN Database into MAX

The benefits of importing channels into MAX include:

* The option of initializing the channel name alone within the Channel
API. No path to the CAN database file is required.

e Using the Test Panel in MAX to read and write the channels.

To import channel configurations from a Vector CANdD file into MAX,
right-click the CAN Channels heading, then select Import from CANdb
File. Use shift-click to select multiple channels, and then select Import.
If you need to select another set, you can select the channels and then
Import again. When you are finished with the import, select Done to return
to MAX.

NI-CAN Hardware and Software Manual 6-2 ni.com

Chapter 6 Using the Channel API

You can download the MAX channel configuration to a LabVIEW RT
system by right-clicking the CAN Channels heading, and selecting
Send to RT System.

Access CAN Database within Application

To access the CAN database within the application, you must initialize the
channel name with the file path as a prefix. For example, if you are using a
channel named EngineRPM in the C: \DBC_Files\Prototype.DBC file,
you pass the following name to the Init Start function:

C:\DBC_Files\Prototype.DBC: :EngineRPM

For more information, refer to the description of the Init Start function in
the Channel API reference sections of this manual.

You can download the channel configuration to a LabVIEW RT system by
right-clicking the CAN Channels heading, and selecting Send to RT
System.

User Must Create within Application?

Are you developing an application that another person will use, and that
person must create the channel configuration using the application itself?

If you answer yes, refer to the Use Create Message Function in Application
section of this chapter.

If you answer no, you create the channel configuration within MAX. You
can save the MAX channel configuration to a file, so this method does not
prevent you from deploying the application for use by others. For more
information, refer to the Create in MAX section of this chapter.

Use Create Message Function in Application

© National Instruments

The Create Message function (CAN Create Message in LabVIEW and
nctCreateMessage in other languages) takes inputs for a single message
configuration, then one or more channel configurations. By using Create
Message to create the channel configurations, the application is entirely
self contained, not depending on MAX or a CAN database file.

The inputs to Create Message are relatively advanced for many users. Use
of MAX or a CAN database helps to isolate the application end user from
the specifics of CAN message encoding.

6-3 NI-CAN Hardware and Software Manual

Chapter 6 Using the Channel AP/

Mode dependent channels are a special kind of CAN message used within
some networks. Refer to the Mode Dependent Channels section of this
chapter for more information. If you must support creation of mode
dependent channel configurations within the application, use the Create
MessageEx function instead of Create Message. The Create MessageEx
function provides extensions for creation of mode dependent as well as
normal channels.

Create in MAX

To create channel configurations within MAX, right-click the CAN
Channels heading, then select Create Message. Enter the message
properties, then select OK. Right-click the message name, then select
Create Channel. Enter the channel properties, then select OK. Select
Create Channel again for each channel contained in the message. Channel
names are case sensitive.

To save channel configurations to a file, right-click the CAN Channels
heading, then select Save Channel Configuration. The resulting NI-CAN
database uses file extension .ncd. You can access the NI-CAN database
using the Init Start function just like any other CAN database. By simply
installing the NI-CAN database file along with the application, you can
deploy the application to a variety of users.

Channel API Basic Programming Model

When you use the Channel API, the first step is to initialize a list of
channels with the same direction, such as input or output. You can then read
or write this list of channels as a unit. The term task refers to a list of
channels you read or write together. A common use of the task concept is
to read/write all channels of a message.

Figure 6-2 shows a diagram describing the basic programming model for
the NI-CAN Channel API. Within the application, you repeat this basic
programming model for each task. The diagram is followed by a
description of each step in the model.

NI-CAN Hardware and Software Manual 6-4 ni.com

Chapter 6 Using the Channel API

Init Start
Mode = Output
Mode = Input or Output Re(F:)ent Mode = Timestamped Input
\ 4 \ 4 \4
. Read
Read Write Timestamped

> Clear

A

Init Start

© National Instruments

Figure 6-2. Basic Programming Model for Channel API

The Init Start function initializes a list of channels as a single task, then
starts communication for that task.

The Init Start function uses the following input parameters:

channel list—Specifies the list of channels for the task, with one string
for each channel.

interface—Specifies the CAN interface to use for the task. The
interface is an enumeration in which 0 specifies CANO, 1 specifies
CANI1, and so on. The baud rate is taken from the properties of the
interface in MAX.

mode—Specifies the I/O mode to use for the task. This determines the
direction of data transfer for the task (that is, Input or Output). It also
determines the type of Read or Write function you use with the task.
For more information, refer to the following sections.

sample rate—Specifies the rate of sampling for input and output
modes. The sample rate is specified in Hertz (samples per second). For
more information, refer to the Read and Write sections of this chapter.

The Init Start function simply calls the Initialize function followed by the
Start function. This provides an easy way to start a list of channels.

6-5 NI-CAN Hardware and Software Manual

Chapter 6

Read

Using the Channel AP/

There are a few scenarios in which you cannot use Init Start:

e Set Property—If you need to set properties for the task, you must call
Initialize, Set Property, and Start in sequence. For example, use Set
Property if you need to specify the baud rate for the interface within
the application. For more information, refer to the Set Property section
of this chapter.

* Synchronization—If you need to synchronize multiple cards, you
must call Initialize, then the appropriate functions to synchronize and
start the cards. For more information, refer to the Synchronization
section of this chapter.

¢ Create Message—If you need to create channel configurations within
the application, you must call Create Message and Start in sequence.
For assistance is deciding whether Create Message is appropriate for
the application, refer to the Choose Source of Channel Configuration
section of this chapter.

The Init Start function is CAN Init Startin LabVIEW andnctInitStart
in other languages.

If the mode of Init Start is Input, the application must call the Read function
to obtain floating-point samples. The application typically calls Read in a
loop until done.

The Read function is CAN Read in LabVIEW (all types that don’t end in
Time & Dbl) and nctRead in other languages.

The behavior of Read depends on the initialized sample rate:

sample rate =0

Read returns a single sample from the most recent message(s) received
from the network. One sample is returned for every channel in the Init Start
list.

Figure 6-3, Example of Read with sample rate = 0, shows an example of
Read with sample rate = 0. A, B, and C represent messages for the
initialized channels. If no message is received since the start of the
application, the Default Value in MAX (def) is returned, along with a
warning.

NI-CAN Hardware and Software Manual 6-6 ni.com

© National Instruments

Chapter 6 Using the Channel API

Start
A B C
\ 4 4 \ 4
def A C
Read Read Read

Figure 6-3. Example of Read with sample rate = 0

sample rate >0

Read returns an array of samples for every channel in the Init Start list.
Each time the clock ticks at the specified rate, a sample from the most
recent message(s) is inserted into the arrays. In other words, the samples are
repeated in the array at the specified rate until a new message is received.
By using the same sample rate with NI-DAQ Analog Input channels or
NI-DAQmx Analog Input channels, you can compare CAN and DAQ
samples over time.

Figure 6-4 shows an example of Read with sample rate > 0. A, B, and C
represent messages for the initialized channels. <delta-t> represents the
time between samples as specified by the sample rate. def represents the
Default Value in MAX.

Start
A B C
At
——
YV V V VYYYY VY VY VY Y‘Y‘<&VvYYy
def |def |def |def | A|A|A|A|A|B|B|B|C|C]|C
Read

Figure 6-4. Example of Read with sample rate > 0

6-7 NI-CAN Hardware and Software Manual

Chapter 6

Using the Channel AP/

Read Timestamped

Write

If the Init Start mode is Timestamped Input, the application must call the
Read Timestamped function to obtain floating-point samples. The
application typically calls Read Timestamped in a loop until done.

The Read Timestamped function returns samples that correspond to
messages received from network. For each message, an associated sample
is returned along with a timestamp that specifies when the message arrived.
An array of timestamped samples is returned for every channel in the Init
Start list.

The Read Timestamped function is CAN Read in LabVIEW (types that
end in Time & Dbl) and nctReadTimestamped in other languages.

Figure 6-5 shows an example of Read Timestamped. A, B, and C represent
messages for the initialized channels. Az, Bz, and Ct represent the times
when each message was received.

Start
A B C
\ 4 \4 \ 4
A B C
At Bt Ct

Read Timestamped

Figure 6-5. Example of Read Timestamped

If the Init Start mode is Output (or Output Recent), the application must call
the Write function to output floating-point samples. The application
typically calls Write in a loop until done.

The Write function is CAN Write in LabVIEW and nctWrite in other
languages.

NI-CAN Hardware and Software Manual 6-8 ni.com

© National Instruments

Chapter 6 Using the Channel API

The behavior of Write depends on the initialized sample rate:

sample rate =0

Write transmits a message immediately on the network. The samples
provided to write are used to form the data bytes of the message. One
sample must be specified for every channel in the Init Start list. The Init
Start mode must be Output for this behavior (not Output Recent).

Figure 6-6 shows an example of Write with sample rate = 0. A, B, C and D
represent messages for the initialized channels. For each Write, the
associated messages are transmitted as quickly as possible.

Start

A| B C| D

Write Write

Figure 6-6. Example of Write with Sample Rate =0

sample rate > 0, Output mode

You provide an array of samples for every channel in the Init Start list. Each
time the clock ticks at the specified rate, the next message is transmitted.
Each message uses the next sample from the array(s) to form the data bytes
of the message. In other words, the samples from the array are transmitted
periodically onto the network. By using the same sample rate with NI-DAQ
Analog Output channels or NI-DAQmx Analog Output channels, you can
output synchronized CAN and DAQ samples over time.

Figure 6-7, Example of Write with Sample Rate > 0, Output Mode, shows
an example of Write with sample rate > 0 and Output mode. A, B, C and D
represent messages for the initialized channels. <delta-t> represents the
time between message transmission as specified by the sample rate.

6-9 NI-CAN Hardware and Software Manual

Chapter 6 Using the Channel AP/

Start

At

Write

cC| D
Write

Figure 6-7. Example of Write with Sample Rate > 0, Output Mode

sample rate > 0, Output Recent mode

You provide a single sample for every channel in the Init Start list. Each
time the clock ticks at the specified rate, the next message is transmitted
using the most recent sample that you provided. The Output Recent mode
is useful when you have multiple tasks running at different rates, because
you can write samples for all tasks in a single loop.

Figure 6-8 shows an example of Write with sample rate > 0 and Output
Recent mode.

Start

At

A

B

Write Write

C D
Write Write

Clear

Figure 6-8. Example of Write with Sample Rate > 0, Output Recent Mode

The Clear function stops communication for the task, then clears the
configuration.

For every task that you initialize, you must call Clear prior to exiting the
application.

NI-CAN Hardware and Software Manual 6-10 ni.com

Chapter 6 Using the Channel API

The Clear function is CAN Clear in LabVIEW and nctClear in other
languages.

Channel API Additional Programming Topics

The following sections provide information you can use to extend the basic
programming model.

Get Names

If you are developing an application that another person will use, you may
not want to specify a fixed channel list in the application. Ideally, you want
the end-user to select the channels of interest from user interface controls,
such as list boxes.

The Get Names function queries MAX or a CAN database and returns

a list of all channels in that database. You can use this list to populate
user-interface controls. The end-user can then select channels from these
controls, avoiding the need to type each name using the keyboard. Once the
user makes his selections, the application can pass the resulting list to Init
Start.

The Get Names function is CAN Get Names in LabVIEW and
nctGetNames in other languages.

Synchronization

The NI-CAN Channel API uses RTSI to synchronize specific functional
units on each card. For CAN cards, the functional unit is the interface
(port). For DAQ cards, the functional unit is a specific measurement such
as Analog Input or Analog Output. Each function routes two signals over
the RTSI connection:

» timebase—This is a common clock shared by both cards. The shared
timebase ensures that sampling does not drift. The timebase applies to
all functional units on the card.

e start trigger—This signal is sent from one functional unit to the other
functional unit when sampling starts. The shared start trigger ensures
that both units start simultaneously.

© National Instruments 6-11 NI-CAN Hardware and Software Manual

Chapter 6 Using the Channel AP/

Set Property

The Init Start function uses interface and channel configuration as specified
in MAX or the CAN database file. If you need to change this configuration
within the application, you cannot use Init Start, because most properties
cannot be changed while the task is running.

For example, to set the baud rate for the interface within the application, use
the following calling sequence:

» Initialize the task as stopped. The Initialize function is CAN Initialize
in LabVIEW and nctInitialize in other languages.

e Use Set Property to specify the new value for the baud rate property.
The Set Property function is CAN Set Property in LabVIEW and
nctSetProperty in other languages.

e Start the task with the Start function. The Start function is CAN Start
in LabVIEW and nctStart in other languages.

After the task is started, you may need to change properties again. To
change properties within the application, use the Stop function to stop the
task, Set Property to change properties, and then Start the task again.

You also can use the Get Property function to get the value of any property.
The Get Property function returns values whether the task is running or not.

Frame to Channel Conversion

As described in the NI-CAN Software Overview section of Chapter 1,
Introduction, NI-CAN supports two distinct formats for CAN data. The
first format is the CAN frame, which represents a raw frame consisting of
an ID, type, data bytes, and timestamp. The second format is the CAN
channel, which represents a field in the data of a specific ID, scaled to a
floating point value in physical units (such as Volts or
Revolutions-per-minute).

Many applications require the ability to convert CAN data from one format
to another. As one example, consider an application that logs CAN traffic
to a file for an extended period of time. Since CAN frames occur in an event
driven manner, the most efficient means of file storage is to use CAN
frames as the data format. Nevertheless, when displaying the contents of
the log file, you may need to plot the data as waveforms for specific CAN
channels. Therefore, the application must convert the CAN frames in the
file into CAN channels for waveform display.

NI-CAN Hardware and Software Manual 6-12 ni.com

Chapter 6 Using the Channel API

Figure 6-9 demonstrates how you can use NI-CAN to display waveforms
of CAN channels using a log file consisting of CAN frames. NI-CAN
provides a virtual CAN card with two interfaces, CAN256 and CAN257.
The two virtual interfaces are connected by a virtual bus. When you write
CAN frames to one virtual interface, those frames are received by the other
virtual interface, and can be read as channels. This feature allows you to
read and write CAN data in the same manner as two real CAN interfaces
connected by a real CAN cable. The conversion does not require real

NI CAN hardware, and your application is not required to check for
specific CAN IDs.

Application
Log
File ¢
D A
Read frames
channels
D to NI-CAN. from NI-CAN,
; and plot as
: waveforms.
Frame API Channel API
Network Interface Input Task
CAN256 CAN257
A
Virtual CAN Bus

Figure 6-9. Display Waveforms of CAN Channels Using a Log File of CAN Frames

When Should | Use Frame to Channel Conversion?

© National Instruments

The following sections outline some applications that use frame to channel
conversion, channel to frame conversion, or other aspects of the virtual
interface concept.

Logging

As explained in the Introduction, logging is one of the primary applications
for frame to channel conversion. Since overall CAN traffic does not occur
at a fixed rate, the most efficient implementation is to store each CAN
frame as it is received. The file of CAN frames can later be displayed as
channels using NI-CAN’s frame to channel conversion.

6-13 NI-CAN Hardware and Software Manual

Chapter 6

Using the Channel AP/

In addition to displaying a log file as channels, you can also use NI-CAN
to create a log file using channel data. The process for this channel to frame
conversion is essentially a reversal of the operations shown in Figure 6-9
above. You obtain CAN channel data from front panel controls, and write
that CAN channel data to a Channel API output task on a virtual interface
(CAN257). Next, you read the resulting CAN frames from a Frame API
virtual interface (CAN256), and write those frames to the log file. Ata
subsequent date, you can replay this log file to a real CAN interface using
the timestamped transmit feature (Transmit Mode attribute of the Frame
API network interface).

Although NI-CAN examples demonstrate a simple binary log file format,
your logging or replay application can access any file format that you
require. Although there is a wide variety of CAN log file formats available
from other companies, almost all use CAN frames as the fundamental data
type. Once you obtain the specification for a specific CAN log file format,
it is relatively straightforward to convert the file contents to data that is
compatible with the NI-CAN Frame APIL.

CompactRIO

The rugged enclosure and real-time capabilities of CompactRIO, as
discussed in the CAN for CompactRIO section of Chapter 3, NI CAN and
LIN Hardware, make it an ideal product for testing in the field, such as
drive testing of an automobile. Since the LabVIEW FPGA I/O interface for
CAN provides access to CAN frames only, you must use NI-CAN’s frame
to channel conversion features when access to CAN channels is required.

For logging applications, the LabVIEW application on CompactRIO is
simple: read CAN frames and store them in a file. When the CAN log file
is later transferred from CompactRIO to a lab computer, the application on
that computer can use NI-CAN to read frames from the log file and display
as CAN channels, as shown in Figure 6-1. In addition, if the LabVIEW
application on CompactRIO stores a second log file with analog/digital
samples, that data can be displayed on the lab computer as waveforms
synchronized with the CAN channels.

For applications in which you must execute a control model within
CompactRIO, you typically wire CAN channels as inputs and outputs to the
control model. In order to implement this, you can install NI-CAN on the
LabVIEW RT controller of CompactRIO. Your LabVIEW FPGA VI reads
and writes CAN frames, and transfers those CAN frames to/from
LabVIEW RT as you would any other I/O. Your LabVIEW RT VI uses
NI-CAN’s virtual interfaces to convert the CAN frames to/from CAN
channels. Your NI-CAN Channel API tasks use sample rate 0 and

NI-CAN Hardware and Software Manual 6-14 ni.com

© National Instruments

Chapter 6 Using the Channel API

single-sample read/write, thus providing immediate single-point values for
the control model.

Development without CAN Hardware

The virtual interface can enable development of an NI-CAN application on
a computer that does not contain NI CAN hardware. Although the NI-CAN
virtual interface does impose some limitations, most functions return
successful status. In addition, the virtual bus feature may enable you to
debug your application by simulating limited CAN traffic. For example, if
your application is intended to test a CAN node, you can run your test on
CAN256, and run a simple simulation of the node on CAN257.

Database Queries

For large test applications that are deployed to several end-users, it is
common to query CAN databases for initial configuration of a test. For
example, you specify a list of channel names, each with parameters for
display in a single waveform graph, then save that test configuration to
a file. The application that queries the CAN database to create a test
configuration file often executes on a system without NI CAN hardware.

By initializing a Channel API task on CAN256, you can use the CAN Get
Property function to obtain detailed information for each message and
channel in a CAN database.

Enhance an Existing Frame API Application

You have a large Frame API application for an older version of NI-CAN
(1.x), and that application can benefit from display of CAN data as
channels. Rather than changing all of the application’s CAN
communication from the Frame API to the Channel API, you can use frame
to channel conversion to enhance the existing code. For example, the bulk
of the application can communicate on a real interface (i.e. CANO) using
the Frame API, but you can add code that uses virtual interfaces to convert
raw frame data to/from channel data for additional displays.

USB-847x

The USB-847x hardware is supported only by the Frame API. For some
applications with the USB-847x you may want to display CAN data as
channels. In this case you can use frame to channel conversion to convert
the frame data into channel data for display.

6-15 NI-CAN Hardware and Software Manual

Chapter 6 Using the Channel AP/

Virtual Bus Timing

The NI-CAN virtual interface provides an attribute that does not exist on
real interfaces. Virtual Bus Timing is a boolean attribute that specifies
whether the time between successive CAN frames is simulated by NI-CAN
when the frames transfer across the virtual bus.

When Virtual Bus Timing is true (default), the time between frames is
simulated. Frame timestamps are recalculated as they transfer across the
virtual bus. This mode is useful when you want the virtual bus to behave as
much like a real bus as possible. For example, if you use the technique
shown in Figure 6-1 to display a log file that was captured over 200 seconds
of time, the channel waveforms will scroll slowly to display data for

200 seconds. This is due to the fact that when you write two frames whose
timestamps are a few seconds apart, NI-CAN will delay a few seconds on
the virtual bus, and therefore the Channel API Read of CAN257 will delay
between the two frames. The programming model used to write NI-CAN
applications for real CAN hardware can be used for a majority of
applications with Virtual Bus Timing enabled. Refer to the Channel API
Basic Programming Model of this chapter and the Frame API Basic
Programming Model for CAN section of Chapter 9, Using the Frame API,
for information on programming real CAN hardware.

When Virtual Bus Timing is false, the time between frames is not
simulated. Frame timestamps are unchanged as they transfer across the
virtual bus. This mode is useful when you want to convert CAN data from
frames to channels as quickly as possible. For example, if you use the
technique shown in Figure 6-1 to display a log file that was captured over
200 seconds of time, the channel waveforms will scroll by very quickly.
This is due to the fact that when you write two frames whose timestamps
are a few seconds apart, NI-CAN will not delay the transfer on the virtual
bus, and therefore the Channel API Read of CAN257 will not delay
between the two frames. Although the conversion occurs quickly, you will
presumably use products like LabVIEW or DIAdem to search the
waveforms for specific events. When Virtual Bus Timing is disabled, time
advances only up to the timestamp of the last frame written onto the virtual
bus. As a result, if NI-CAN detects that a frame with a timestamp lesser
than the previous frame timestamp is being written onto the virtual bus, an
error will be returned. Refer to the Programming Model for Virtual Bus
Timing Disabled section of this chapter for information on developing an
application that converts frames to channels or channels to frames without
simulating frame timing.

When you change the Virtual Bus Timing in your application, you must set
the same value on both virtual interfaces, CAN256 and CAN257.

NI-CAN Hardware and Software Manual 6-16 ni.com

Limitations

© National Instruments

Chapter 6 Using the Channel API

The virtual interface is not designed to support all of the features of a real
interface. This section serves as the primary reference for the limitations of
the virtual interface.

For each NI-CAN feature, the virtual interface will behave in one of
three ways:

* Error—The NI-CAN function returns an error. This occurs for
features that are not supported, and which represent high-level
capabilities that your application would require. For example, the
virtual interface does not support Frame API CAN Objects, so the error
helps to clarify that you cannot execute applications that rely on CAN
Objects.

¢ Non-operational—The NI-CAN function returns success, but the
feature performs in a fixed, non-operational manner. This occurs for
features that your application typically would not rely on. For example,
the virtual interface always returns zero for the Serial Number
attribute, because your application may display the serial number,
but operate correctly when the number is invalid.

* Operational—The NI-CAN function returns success, and operates as
expected with regard to the virtual bus. For example, if you write a
frame to a virtual network interface using the Frame API, that frame
will transfer across the virtual bus to the other virtual interface.

Table 6-1 lists all Error features for the virtual interface. The VBT column
lists the values (T=true, F=false) of the Virtual Bus Timing attribute for
which the Error behavior applies. If the VBT column lists both T and F,
then Virtual Bus Timing does not affect the Error feature listed.

Table 6-2 lists all Operational features for the virtual interface. The VBT
column lists the values (T=true, F=false) of the Virtual Bus Timing attribute
for which the Operational behavior applies. If the VBT column lists both
T and F, then Virtual Bus Timing does not affect the Operational features
listed.

All features that are not explicitly listed in these tables are
Non-operational. The behavior of Non-operational features is not
documented in this manual. Your application should not make assumptions
regarding the behavior of Non-operational features beyond the fact that
NI-CAN returns success.

6-17 NI-CAN Hardware and Software Manual

Chapter 6 Using the Channel AP/

Table 6-1. Error Features for the Virtual Interface

Feature VBT Explanation

Channel API: Initialize of Output T,F The virtual interface does not support

(or Output Recent) mode with Sample periodic timing for transmit. For channel

Rate greater than 0 to frame conversion, you must set the
Channel API sample rate to 0, and perform
periodic timing within your application.

Channel API: Set Property of Timestamp F Since timestamps are not changed when

Format Virtual Bus Timing is false, this attribute
does not apply.

Frame API: Open of CAN Object T,F CAN Objects are not supported. For the
Frame API, the virtual interface is limited
to the Network Interface.

Frame API: Read (or ReadMult) of F When virtual bus timing is disabled, the

Delay frame virtual interface does not simulate timing
between frames, so the Delay frame does
not apply. For information on the Delay
frame, refer to ncWriteNetMult.vi
(LabVIEW) or ncuiriteMult (C/C++).

Frame API: Set Attribute of Log Comm T,F The special Comm Warnings frame is not

Warnings supported on virtual interfaces. If you
write this frame, it will not be received on
the other interface.

Frame API: Set Attribute of Timestamp F Since timestamps are not changed when

Format Virtual Bus Timing is false, this attribute
does not apply. The error is returned when
an interface or task is started.

Frame API: Set Attribute of Transmit F Since timestamps are not interpreted when

Mode Virtual Bus Timing is false, this attribute
does not apply. The error is returned when
an interface or task is started.

Frame API: Wait (or CreateNotification or F When virtual bus timing is disabled, the

CreateOccurrence) for any state except virtual interface is limited to quick

Write Multiple conversion of frames to/from channels.
The Write Multiple state remains useful
for streaming of frames to channels, but
other states do not apply.

NI-CAN Hardware and Software Manual 6-18 ni.com

Chapter 6 Using the Channel API
Table 6-2. Operational Features for the Virtual Interface
Feature VBT Explanation

Channel API: Clear T,F As with a real interface, the Channel API
task for a virtual interface must be cleared.

Channel API: Get Property of Message T, F Useful for database queries. You pass the

or Channel properties filepath for the database into the original
Initialize function.

Channel API: Initialize of Input mode T,F Read most recent value for each channel.

with Sample Rate equal 0 Useful for simulated control models.

Channel API: Initialize of Input mode T,F Read periodically sampled values for each

with Sample Rate greater than 0 channel. Useful to display frames in
waveform graphs.

Channel API: Initialize of Timestamped T, F Read timestamped samples.

Input mode

Channel API: Initialize of Output T, F Write channel values to transmit a frame.

(or Output Recent) mode with Sample Useful for simulated control models, or to

Rate equal 0 create a log file.

Channel API: Read T,F Read channels that correspond to frames
received from the virtual bus. All Read
types are supported.

Channel API: Set Property of Timestamp T Determines whether to use absolute or

Format relative timestamps when reading frames
from the virtual bus.

Channel API: Start or Stop T, F Controls whether frames are transmitted to
or received from the virtual bus. Start
includes the Init Start function.

Channel API: Write T, F Write channels that correspond to frames
transmitted to the virtual bus. All Write
types are supported.

Frame API: Action of Start or Stop T,F Controls whether frames are transmitted to
or received from the virtual bus. Action
opcodes for Reset and RTSI Output are
Non-operational.

Frame API: Close T,F As with a real Network Interface, the
virtual Network Interface must be closed.

© National Instruments 6-19 NI-CAN Hardware and Software Manual

Chapter 6 Using the Channel AP/

Table 6-2. Operational Features for the Virtual Interface (Continued)

Feature VBT Explanation

Frame API: Config of Network Interface T,F The only valid attribute is Start On Open.
All other attributes are ignored. The only
valid virtual interface names are CAN256
and CAN257.

Frame API: Get Attribute of Read Entries T, F Returns the number of frames pending in

Pending virtual Network Interface read queue.

Frame API: Get Attribute of Read Mult T Returns the number of frames used as a

Size for Notification threshold for the Read Multiple state.

Frame API: Get Attribute of Write Entries T Returns the number of frames that can be

Free accepted to write without causing an
overflow error.

Frame API: Get Attribute of Write Entries T,F Returns the number of frames pending in

Pending virtual Network Interface write queue.

Frame API: Open of Network Interface T,F Config of the Network Interface is ignored
(Non-operational). The only valid virtual
interface names are CAN256 and
CAN257.

Frame API: Read or ReadMult T,F Receive frames from the virtual bus. When
Virtual Bus Mode is true (default), Delay
frames are operational. For information
on the Delay frame, refer to
ncWriteNetMult.vi (LabVIEW) or
ncWriteMult (C/C++).

Frame API: Set Attribute of Log Start T, F Determine whether to return a start trigger

Trigger frame from ReadMult. Start trigger frames
are useful for logging/replay applications.

Frame API: Set Attribute of Read Mult T Sets the number of frames used as a

Size for Notification threshold for the Read Multiple state. For
more information on the Read Multiple
state, refer to ncWaitForState.vi.

Frame API: Set Attribute of Timeline T Determine whether to perform timeline

Recovery recovery for simulated bus timing.

NI-CAN Hardware and Software Manual 6-20 ni.com

Chapter 6 Using the Channel API
Table 6-2. Operational Features for the Virtual Interface (Continued)
Feature VBT Explanation
Frame API: Set Attribute of Timestamp T Determines whether to use absolute or
Format relative timestamps when reading frames
from the virtual bus.
Frame API: Set Attribute of Transmit T When you submit timestamped frames to
Mode WriteMult, this determines whether to
delay between frames.
Frame API: Wait (or CreateNotification or T All states are operational only when
CreateOccurrence) Virtual Bus Timing is true (default).
Frame API: Wait (or CreateNotification or T, F The Write Multiple state is useful for
CreateOccurrence) for Write Multiple streaming of frames to channels, so it is
state supported for both Virtual Bus Timing
values.
Frame API: Write or WriteMult T,F Transmit frames to the virtual bus.

Programming Model for Virtual Bus Timing Disabled

There are some key rules to keep in mind while writing an application that
does Frame to Channel Conversion or Channel to Frame Conversion with

Virtual Bus Timing disabled:

* Do the Frame to Channel/ Channel to Frame Conversion within the
same thread/process. In LabVIEW, create a single VI to transmit the
CAN frames using ncWriteNetMult.vi and perform channel read
using CAN Read.vi.

¢ The Channel API Read task on the first virtual CAN interface requires
a CAN frame to be written into the buffer of the second virtual CAN
interface for it to start. Therefore, ensure that your application is
written such that the first CAN frame is written using
ncWriteNetMult.vi before the Channel API task times out.

The following steps demonstrate how to write a typical Frame to Channel
Conversion application using both the NI-CAN APIs together.

1. Configure and Open the CAN Network Interface Object.

Prior to opening and communicating on a CAN port, you must
configure the CAN Network Interface Object. Configure the CAN

© National Instruments

Network Interface Object using ncConfigNet. Set Start on Open to
FALSE. Specify CAN256 as the ObjName.

6-21 NI-CAN Hardware and Software Manual

Chapter 6 Using the Channel AP/

Open the CAN Network Interface Object by calling ncOpen.vi.
Specify CAN256 as the ObjName.

2. Initialize the Channel API task.

Initialize the CAN channels in your application using CAN
Initialize.vi. Specify CAN257 as the Interface.

3. Disable Virtual Bus Timing on CAN256.

Turn Virtual Bus Timing off on CAN256 (Frame API Object) by
calling ncSetAttr.vi for Virtual Bus Timing with a value 0.

4. Disable Virtual Bus Timing on CAN257.

Turn Virtual Bus Timing off on CAN257 (Channel API task) by
calling CAN Set Property.vi for Virtual Bus Timing with a value 0.

5. Start Communication on the Virtual Bus (CAN256).

Start communication on the CAN Network Interface Object
(CAN256) by calling ncAction.vi with Start as the opcode.

6. Start Communication on the Virtual Bus (CAN257).

Start communication on the CAN channel task for virtual interface
CAN257 by calling CAN Start.vi.

7. Write CAN frames on to the Virtual Bus (CAN256).

Transmit frames on the virtual bus by calling ncWriteNetMult.vi on
CAN256. If the size of the frames array is greater than 512, call
ncWriteNetMult.vi within a loop and with a subset of the total data
frames each iteration of the loop.

8. Read the CAN frames as Channels (CAN 257).

Read CAN frames as channels by calling CAN Read.vi on the channel
task. You can use any of the Read types (single point read, waveform
read or timestamped read). Refer to the Read section of this chapter for
more information on the different CAN Read types.

9. Stop and Close the communication on the CAN Network Interface
Object (CAN 256).

Close the virtual interface (CAN256) by calling ncClose.vi.
10. Clear the Channel API task (CAN257).
Clear the virtual task on CAN257 by calling CAN Clear.vi.

NI-CAN Hardware and Software Manual 6-22 ni.com

Chapter 6 Using the Channel API

Mode Dependent Channels

© National Instruments

By definition, CAN supports a limited number of unique identifiers to
transmit data between the nodes of a network. In some cases the number of
available identifiers is too small to transmit all of the data, so an extension
to these identifiers is needed. The concept of mode dependent messages
defines a mode channel that functions like a sub-identifier within a CAN
frame to determine the meaning of the rest of the data transmitted in the
frame.

The mode channel is an implicit channel inside the CAN frame that cannot
be accessed by an application for read or write operations. Each channel
that relies on a mode channel is associated to a certain mode of that mode
channel. This way the mode channel determines the distribution of the data
in a CAN frame to the associated CAN channels in the application. Since a
single CAN frame no longer contains data for all of these mode dependent
channels associated with a CAN message, mode dependent channel data is
buffered inside the NI-CAN driver. If the application reads data from a
channel, the most recent received value will be returned for that channel.
Writing data from mode dependent channels will result in sending one
CAN frame per mode, defined for the appropriate task. If more than one
mode channel is defined for a CAN message, the NI-CAN driver assures
that each mode of each mode channel is sent at least once with every write
operation.

For periodic data transmission the property Message Multiple Frame
Distribution determines the mode for the transmission of the CAN frames
of the appropriate CAN message. If Message Multiple Frame
Distribution is set to Uniform, the CAN frames are sent equally
distributed within the time frame selected for the transmission. If Message
Multiple Frame Distribution is set to Burst, all CAN frames associated
to the CAN message will be transmitted as fast as possible at the beginning
of the time frame selected for the transmission.

As mentioned before, a consequence of using mode dependent channels is
that not every CAN frame received contains data for all channels associated
with the appropriate CAN message. If you are reading data in timestamped
mode for normal CAN channels, you receive data for all of the channels
associated with the CAN message and timestamp information denoting
when the data was received by the CAN interface. In the case of mode
dependent channels, you get valid data only for those channels that were
part of the most recent CAN frame, along with the timestamp denoting
when the frame was received by the CAN interface.

6-23 NI-CAN Hardware and Software Manual

Chapter 6 Using the Channel AP/

The data of any mode dependent channel is invalid if it is not transmitted
with the most recent CAN frame associated with the CAN message. The
invalid data is replaced with a special value. Before you can start a CAN
task that uses mode dependent messages, you have to define the special
value for these cases by setting the property Value for Invalid Data.

Mode Dependent Channels in MAX

Mode dependent channels can be defined interactively in MAX. To create
mode dependent channels in MAX, right-click on a message and create a
multiplexer, as shown in Figure 6-10.

¥ Test (0x12) - Measurement & Automation Exploren

File Edit Wiew Tools Help

#E Create Channel Cuplicate @ Delete | Ei'Properties
= &4 My System Attribute | value | Description
= Data Weighbarhaod B Message Mame Test Message name assign
=@ CAN Channels B Datahase Mame of the file the
+- [TransmissionFluids (0:52) | | @ [rkerface CAND DeFault NI-CAM interf
¥ InstrumentPanel (0xE5) B Arbitration ID 0xiz Arbitration 10
Test (0x13g === Format Standard {11 Bit) Frame Format {ength

+ Devices and Inter| 3 F#ate Channel

+ (A scales
+ Software
+ @ Remake Systems

Bvtes] Mumber of data bytes

ent

Duplicate

Dielete
Propetties

Figure 6-10. Creating a Multiplexer in MAX

NI-CAN Hardware and Software Manual 6-24 ni.com

© National Instruments

Chapter 6 Using the Channel API

Within the multiplexer dialog box define the properties of the mode
channel. On a multiplexer item create a mode item and define the value of
the mode channel (mode value). On a mode item, create channels which are
only valid when the mode-channel contains the specified mode value. The
channels of different modes in the same multiplexer may overlap each

other, as shown in Figure 6-11, Mode Dependent Channels in the MAX
Configuration Tree.

=@ AN Channels
= Example (0x14)
- B MURD
= @ Mode 0
FE Yelocity
= [Mode 1
B Pressure

FB Temperature
B Tirne

Figure 6-11. Mode Dependent Channels in the MAX Configuration Tree

6-25 NI-CAN Hardware and Software Manual

Channel API for LabVIEW

This chapter lists the LabVIEW VIs for the NI-CAN Channel API and describes the format,
purpose, and parameters for each VI. The VIs are listed alphabetically.

Unless otherwise stated, each NI-CAN VI suspends execution of the calling thread until it
completes.

Section Headings

The following are section headings found in the Channel API for LabVIEW VIs.

Purpose
Each VI description includes a brief statement of the purpose of the VI.

Format
The format section describes the format of each VI.

Input and Output

The input and output parameters for each VI are listed.

Description
The description section gives details about the purpose and effect of each VI.

List of Vis

Table 7-1 is an alphabetical list of the NI-CAN VIs for the Channel APIL.

Table 7-1. Channel API for LabVIEW VIs

Function Purpose

CAN Clear.vi Stop communication for the task and then clear
the configuration.

CAN Clear with NI-DAQ.vi Stop and clear the CAN task and the NI-DAQ
task synchronized with CAN Sync Start with
NI-DAQ.vi.

© National Instruments 7-1 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Table 7-1. Channel API for LabVIEW VIs (Continued)

Function

Purpose

CAN Clear with NI-DAQmx.vi

Stop and clear the CAN task and the NI-DAQmx
task synchronized with CAN Sync Start with
NI-DAQmx.vi.

CAN Clear Multiple with NI-DAQ.vi

Stop and clear the list of CAN tasks and the list
of NI-DAQ tasks synchronized with CAN Sync
Start Multiple with NI-DAQ.vi.

CAN Clear Multiple with NI-DAQmx.vi

Stop and clear the list of CAN tasks and the list
of NI-DAQmx tasks synchronized with CAN
Sync Start Multiple with NI-DA Qmx.vi.

CAN Connect Terminals.vi

Connect a terminal in the CAN hardware.

CAN Create Message.vi

Create a message configuration and associated
channel configurations within the LabVIEW
application.

CAN Create MessageEx.vi

Create a message configuration and associated
channel configurations within the LabVIEW
application. In addition you can specify mode
dependent channels with CAN Create
MessageEx.vi. For more information about
mode dependent channels, refer to the Mode
Dependent Channels section of Chapter 6,
Using the Channel API.

CAN Disconnect Terminals.vi

Disconnect terminals in the CAN hardware.

CAN Get Names.vi Get an array of CAN channel names or message
names from MAX or a CAN database file.

CAN Get Property.vi Get a property for the task, or a single channel
within the task. The poly VI selection
determines the property to get.

CAN Initialize.vi Initialize a task for the specified channel list.

CAN Init Start.vi Initialize a task for the specified channel list,
then start communication.

CAN Read.vi Read samples from a CAN task initialized as

input. Samples are obtained from received CAN
messages. The poly VI selection determines the
data type to read.

NI-CAN Hardware and Software Manual

7-2 ni.com

Chapter 7

Table 7-1. Channel API for LabVIEW VIs (Continued)

Function

Purpose

CAN Set Property.vi

Set a property for the task, or a single channel
within the task. The poly VI selection
determines the property to set.

CAN Start.vi

Start communication for the specified task.

CAN Stop.vi

Stop communication for the specified task.

CAN Sync Start with NI-DAQ.vi

Synchronize and start the specified CAN task
and NI-DAQ task.

CAN Sync Start with NI-DAQmx.vi

Synchronize and start the specified CAN task
and NI-DAQmx task.

CAN Sync Start Multiple with NI-DAQ.vi

Synchronize and start the specified list of
multiple CAN tasks and NI-DAQ tasks. This is
a more complex implementation of CAN Sync
Start with NI-DAQ.vi that supports multiple
CAN and a single NI-DAQ hardware product.

CAN Sync Start Multiple with NI-DAQmx.vi

Synchronize and start the specified list of
multiple CAN tasks and NI-DAQmx tasks. This
is a more complex implementation of CAN
Sync Start with NI-DAQmx.vi that supports
multiple CAN and a single NI-DAQmx
hardware product.

CAN Write.vi

Write samples to a CAN task initialized as
Output. (Refer to the mode parameter of CAN
Init Start.vi.) Samples are placed into
transmitted CAN messages. The poly VI
selection determines the data type to write.

© National Instruments

7-3

Channel API for LabVIEW

NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

CAN Clear.vi

Purpose

Stop communication for the task and then clear the configuration.
Format

task reference in 4‘%
CLERF
&rrar in (no error) error auk

Inputs

task reference in is the task reference from the previous NI-CAN VI. The

task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through

subsequent VIs.

Ea Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. Unlike other VIs, this VI will
execute when status is True.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

NI-CAN Hardware and Software Manual 7-4

ni.com

Chapter 7 Channel API for LabVIEW

Outputs

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

The CAN Clear VI must always be the final NI-CAN VI called for each task. If you do not
use the CAN Clear VI, the remaining task configurations can cause problems in execution of
subsequent NI-CAN applications.

If the cleared task is the last running task for the initialized interface (refer to CAN Init
Start.vi), the CAN Clear VI also stops communication on the CAN controller of the interface
and disconnects all terminal connections for that interface.

Unlike other Vs, this VI will execute when status is True in Error in.

Because this VI clears the task, the task reference is not wired as an output. To change
properties of a running task, use CAN Stop.vi to stop the task, CAN Set Property.vi to
change the desired property, and then CAN Start.vi to restart the task.

© National Instruments 7-5 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

CAN Clear with NI-DAQ.vi

Purpose
Stop and clear the CAN task and the NI-DAQ task synchronized with CAN Sync Start with
NI-DAQ.vi.
Format
task reference in
RTAI tetrinal
EFFar in (N0 error) premmemmm grror out
MI-DAQ task ID
Inputs

task reference in is the NI-CAN task reference you passed through the
CAN Sync Start with NI-DAQ VI

If you wire the same RTSI terminal that you passed into CAN Sync Start
with NI-DAQ.vi, this VI clears the routing in NI-DAQ. If you leave RTSI
terminal unwired, the VI retains the routing in NI-DAQ. This VI always
clears RTSI routing for NI-CAN.

4 E

NI-DAQ task ID is the same NI-DAQ task ID you wired into the CAN
Sync Start with NI-DAQ VI.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

1 [

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

NI-CAN Hardware and Software Manual 7-6 ni.com

Chapter 7 Channel API for LabVIEW

Outputs

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW
diagram is commented so that you can use the VI as a starting point for more complex
synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the
VI for editing.

© National Instruments 7-7 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

CAN Clear with NI-DAQmx.vi

Purpose

Stop and clear the CAN task and the NI-DAQmx task synchronized with CAN Sync Start

with NI-DAQmx.vi.

Format

task reference in
Synchronisation in
Error in (no error)
DAQmMx task in

CLEAF: LI
NIDADL

S

errar ouk

Inputs

task reference in is the NI-CAN task reference you passed through the
CAN Sync Start with NI-DAQmx VI.

o Synchronization in defines a cluster with information about the signals
that have been routed between the cards and about additional DAQmx tasks
that may have been created for synchronization. This information is needed
to clear the routings in the NI-CAN and the NI-DAQmx devices after the
measurement has been finished.

1.0 Counter task in is the task from an NI-DAQmx Create Virtual
Channel VI. This additional NI-DAQmx task is created under
certain circumstances to generate a common timebase clock for
cards that do not support sharing of timebases through RTSI

(like DAQ cards or NI-CAN Series 1 cards).

= Routes out is a 1-dimensional array of terminal names of signals

that have been routed between the cards.

Source terminal is the name of the terminal where the

route starts.

Destination terminal is the name of the terminal where
the route ends.

170 DAQmx task in is the same DAQmx task in you wired into CAN
Sync Start with NI-DAQmx.vi.

NI-CAN Hardware and Software Manual 7-8

ni.com

Chapter 7 Channel API for LabVIEW

Outputs

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW
diagram is commented so that you can use the VI as a starting point for more complex
synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the
VI for editing.

© National Instruments 7-9 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

CAN Clear Multiple with NI-DAQ.vi

Purpose
Stop and clear the list of NI-CAN tasks and the NI-DAQ task synchronized with CAN Sync
Start Multiple with NI-DAQ.vi.

Format

Inputs

4 E

1 [

CAM task reference lisk
RTSI terminal

Error in (no error)
MI-DAG bask ID

== e out

CAN task reference list is the same array of NI-CAN task references you
wired into the CAN Sync Start Multiple with NI-DAQ VI.

If you wire the same RTSI terminal that you passed into CAN Sync Start
Multiple with NI-DAQ.vi, this VI clears the routing in NI-DAQ. If you
leave RTSI terminal unwired, the VI retains the routing in NI-DAQ. This
VI always clears RTSI routing for NI-CAN.

NI-DAQ task ID is NI-DAQ task ID you wired into the CAN Sync Start
Multiple with NI-DAQ VI.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

NI-CAN Hardware and Software Manual 7-10 ni.com

Chapter 7 Channel API for LabVIEW

Outputs

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

All tasks are cleared to their state prior to CAN Sync Start Multiple with NI-DAQ.vi.
For example, this VI clears terminal routing of all NI-DAQ devices to the default state.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW
diagram is commented so you can use the VI as a starting point for more complex
synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of
the VI for editing.

© National Instruments 7-11 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

CAN Clear Multiple with NI-DAQmXx.vi

Purpose

Stop and clear the list of NI-CAN tasks and the NI-DAQmx task synchronized with CAN
Sync Start with NI-DAQmx.vi.

Format
CAM task reference lisk ;m
Synchronisation in F"L{JI;LEL“
error in (no errar) :................T Efrar out
DA kask in
Inputs

CAN task reference list is the same array of NI-CAN task references you
wired into the CAN Sync Start with NI-DAQmx.vi.

Synchronization in defines a cluster with information about the signals
that have been routed between the cards and about additional DAQmx tasks
that may have been created for synchronization. This information is needed
to clear the routings in the NI-CAN and the NI-DAQmzx devices after the
measurement has been finished.

o E

10 Counter task in is the task from an NI-DAQmx Create Virtual Channel
VI. This additional NI-DAQmx task is created under certain circumstances
to generate a common timebase clock for cards that do not support sharing
of timebases through RTSI (like DAQ-Cards or NI-CAN Series 1 cards).

Routes out is a 1-dimensional array of terminal names of signals
that have been routed between the cards.

Source terminal is the name of the terminal where the
route starts.

Destination terminal is the name of the terminal where
the route ends.

170 NI-DAQ task in is the same NI-DAQ task in you wired into the CAN Sync
Start Multiple with NI-DAQmx VI.

NI-CAN Hardware and Software Manual 7-12 ni.com

Chapter 7 Channel API for LabVIEW

Outputs

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

All tasks are cleared to their state prior to CAN Sync Start Multiple with NI-DAQ. For
example, this VI clears terminal routing of all NI-DAQ devices to the default state.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW
diagram is commented so you can use the VI as a starting point for more complex
synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of
the VI for editing.

© National Instruments 7-13 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

CAN Connect Terminals.vi

Purpos

Format

e

Connect a terminal in the CAN hardware.

rnodifiers

task reference in i TesE kask reference out
source terminal e
destination terminal P gprar Uk
Errar in (no error)

task reference in is the task reference from the previous NI-CAN VL.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

source terminal specifies the source of the connection.

Once the connection is successfully created, behavior flows from source
terminal to destination terminal.

For a list of valid source/destination pairs, refer to the Valid Combinations
of Source/Destination section in this function reference.

The following list describes each value of source terminal:
RTSIO0... RTSI6

Selects a general-purpose RTSI line as source (input) of the
connection.

RTSI7/RTSI Clock

Selects RTSI line 7 as source (input) of the connection. RTSI7 is
dedicated for routing of a timebase (10 MHz or 20 MHz). RTSI7
is also known as RTSI Clock in some National Instruments
software products, such as NI-DAQ.

The only valid destination terminal for this source is Master
Timebase.

NI-CAN Hardware and Software Manual 7-14 ni.com

Chapter 7 Channel API for LabVIEW

For PCI and PXI form factors, this receives a 20 MHz (default)
timebase from another CAN or DAQ card. For example, you can
synchronize a CAN and DAQ E Series MIO card by connecting
the 20 MHz oscillator (board clock) of the DAQ card to
RTSI7/RTSI Clock, and then connecting RTSI7/RTSI Clock
to Master Timebase on the CAN card.

For PCMCIA form factor, a 10 MHz timebase is required on
RTSI7/RTSI Clock. For synchronization with a PCMCIA DAQ
card, this is done by programming FREQOUT signal of the DAQ
card to 10 MHz, then wiring FREQOUT to the RTSI7/RTSI
Clock of the CAN card.

This value applies to Series 2 cards only (returns error for
Series 1).

PXI_Star
PXI_Star selects the PXI star trigger signal.

Within a PXI chassis, some PXI products can source star trigger
from Slot 2 to all higher-numbered slots. PXI_Star enables the
PXI CAN card to receive the star trigger when it is in Slot 3 or
higher.

This value applies to Series 2 PXI CAN cards only. If you are
using a Series 1 CAN card or Series 2 PCI or PCMCIA CAN card,
selecting this value results in an error.

PXI_CIk10
PXI_CIk10 selects the PXI 10 MHz backplane clock.

The only valid destination terminal for this source is Master
Timebase. This routes the 10 MHz PXI backplane clock for use
as the timebase of the CAN card. When you use PXI_Clk10 as the
timebase for the CAN card, you must also use PXI_CIk10 as the
timebase for other PXI cards to perform synchronized
input/output.

This value applies to Series 2 PXI CAN cards only. If you are
using a Series 1 CAN card or Series 2 PCI or PCMCIA CAN card,
selecting this value results in an error.

20 MHz Timebase

20 MHz Timebase selects the local 20 MHz oscillator of the
CAN card.

© National Instruments 7-15 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

The only valid destination terminal for this source is
RTSI7/RTSI Clock. This routes the local 20 MHz clock of the
CAN card for use as a timebase by other NI cards. For example,
you can synchronize two CAN cards by connecting 20 MHz
Timebase to RTSI7/RTSI Clock on one CAN card and then
connecting RTSI7/RTSI Clock to Master Timebase on the other
CAN card.

20 MHz Timebase applies to the entire CAN card, including both
interfaces of a 2-port CAN card. The CAN card is specified by the
task interface, such as the interface input to CAN Initialize.vi.

This value applies to Series 2 PXI or PCI CAN cards only. If you
are using a Series 1 CAN card or Series 2 PCMCIA CAN card,
selecting this value results in an error.

10 Hz Resync Clock

10 Hz Resync Clock selects a 10 Hz, 50 percent duty cycle clock.
This slow rate is required for resynchronization of Series 1 CAN
cards. On each pulse of the resync clock, the other CAN card
brings its clock into sync.

By selecting RTSIO to RTSIG6 as the destination terminal, you
route the 10 Hz clock to synchronize with other Series 1 CAN
cards. NI-DAQ cards cannot use the 10 Hz resync clock, so this
selection is limited to synchronization of two or more CAN cards.

10 Hz Resync Clock applies to the entire CAN card, including
both interfaces of a 2-port CAN card. The CAN card is specified
by the task interface, such as the interface input to CAN
Initialize.vi.

This value is typically used with Series 1 CAN cards only. If all of
the CAN cards are Series 2, the 20 MHz timebase is preferable due
to the lack of drift. If you are using a mix of Series 1 and Series 2
CAN cards, you must use the 10 Hz Resync Clock.

Interface Receive Event

NI-CAN Hardware and Software Manual

Interface Receive Event selects the dedicated receive interrupt
output on the Philips SJA1000 CAN controller. When a received
frame successfully passes the acceptance filter, a pulse with the
width of one bit time is output during the last bit of the end of
frame position of the CAN frame. Incoming CAN frames can be
filtered using the Series 2 Filter Mode property.

7-16 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

The CAN controller is specified by the task interface, such as the
interface input to CAN Initialize.vi.

The Interface Receive Event can be used as the start trigger for
other NI cards, or for external instruments.

Since this value requires the Philips SJA1000 CAN controller,
it applies to Series 2 CAN cards only. If you are using a Series 1
CAN card, selecting this value results in an error.

Interface Transceiver Event

Interface Transceiver Event selects the NERR signal from the
CAN transceiver. The Low-Speed/Fault-Tolerant transceiver and
the High-Speed transceiver provide the NERR signal. This signal
asserts when the transceiver detects a fault. The default value of
NERR is logic-high, which indicates no error.

The CAN controller is specified by the task interface, such as the
interface input to CAN Initialize.vi.

This value applies to Series 2 CAN cards only. If you are using a
Series 1 CAN card, selecting this value results in an error.

Start Trigger

Start Trigger selects the start trigger, the event that begins
sampling for tasks.

The start trigger is the same for all tasks using a given interface,
such as the interface input to CAN Initialize.vi.

In the default (disconnected) state of the Start Trigger
destination, the start trigger occurs when communication begins
on the interface.

By selecting RTSIO to RTSI6 as the destination terminal, you
route the start trigger of this CAN card to the start trigger of other
CAN or DAQ cards. This ensures that sampling begins at the same
time on both cards. For example, you can synchronize two CAN
cards by routing Start Trigger as the source terminal on one
CAN card and then routing Start Trigger as the destination
terminal on the other CAN card, with both cards using the same
RTSI line for the connections.

7-17 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

destination terminal specifies the destination of the connection.
The following list describes each value of destination terminal:

RTSIO... RTSI6

Selects a general-purpose RTSI line as destination (output) of the
connection.

RTSI7/RTSI Clock

Selects RTSI line 7 as destination (output) of the connection.
RTSI7 is dedicated for routing of a timebase. RTSI7 is also
known as RTSI Clock in some National Instruments software
products, such as NI-DAQ. The only valid source terminal for this
source is 20 MHz Timebase. The CAN card can import a 10 MHz
or 20 MHz timebase, but can export only a 20 MHz timebase.

This value applies to Series 2 CAN cards only. If you are using a
Series 1 CAN card, selecting this value results in an error.

Master Timebase

NI-CAN Hardware and Software Manual

Master Timebase instructs the CAN card to use the source of the
connection as the master timebase. The CAN card uses this master
timebase for input sampling (including timestamps of received
messages) as well as periodic output sampling.

For PCI and PXI form factors, you can use RTSI7/RTSI Clock as
the source terminal. By default, this receives a 20 MHz timebase
from another CAN or DAQ card. For example, you can
synchronize a CAN and DAQ E Series MIO card by connecting
the 20 MHz oscillator (board clock) of the DAQ card to
RTSI7/RTSI Clock, and then connecting RTSI7/RTSI Clock to
Master Timebase on the CAN card. To change the Master
Timebase Rate to 10 MHz, use CAN Set Property.vi to change
the Hardware Master Timebase Rate.

For PXI form factor, you also can use PXI_CIk10 as the source
terminal. This receives the PXI 10 MHz backplane clock for use
as the master timebase.

For PCMCIA form factor, you can use RTSI7/RTSI Clock as the
source terminal. Unlike PCI and PXI, the PCMCIA CAN card
requires a 10 MHz timebase on RTSI7/RTSI Clock. For
synchronization with a PCMCIA DAQ card, this is done by
programming the FREQOUT signal of the DAQ card to 10 MHz,

7-18 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

then wiring FREQOUT to the RTSI7/RTSI Clock of the CAN
card.

Master Timebase applies to the entire CAN card, including both
interfaces of a 2-port CAN card. The CAN card is specified by the
task interface, such as the interface input to CAN Initialize.vi.

The default (disconnected) state of this destination means the
CAN card uses its local 20 MHz timebase as the master timebase.

This value applies to Series 2 CAN cards only. If you are using a
Series 1 CAN card, selecting this value results in an error.

10 Hz Resync Clock

10 Hz Resync Clock instructs the CAN card to use a 10 Hz,

50 percent duty cycle clock to resynchronize its local timebase.
This slow rate is required for resynchronization of CAN cards. On
each low-to-high transition of the resync clock, this CAN card
brings its local timebase into sync.

When synchronizing to an E Series MIO card, a typical use of this
value is to use RTSIO to RTSI6 as the source terminal, then use
NI-DAQ functions to program the Counter 0 of the MIO card to
generate a 10 Hz 50 percent duty cycle clock on the RTSI line. For
an example, refer to CAN Sync Start with NI-DAQ.vi.

When synchronizing to a CAN card, a typical use of this value is
to use RTSIO to RTSI6 as the source terminal, then route the
10 Hz Resync Clock of the other CAN card as the source
terminal to the same RTSI line.

10 Hz Resync Clock applies to the entire CAN card, including
both interfaces of a 2-port CAN card. The CAN card is specified
by the task interface, such as the interface input to CAN
Initialize.vi.

The default (disconnected) state of this destination means the
CAN card does not resynchronize its local timebase.

This value is typically used with Series 1 CAN cards only. If all of
the CAN cards are Series 2, the 20 MHz timebase is preferable due
to the lack of drift. If you are using a mix of Series 1 and Series 2
CAN cards, you must use the 10 Hz Resync Clock.

7-19 NI-CAN Hardware and Software Manual

Chapter 7

NI-CAN Hardware and Software Manual

Channel API for LabVIEW

Start Trigger

Start Trigger selects the start trigger, the event that begins
sampling for tasks. The start trigger occurs on the first low-to-high
transition of the source terminal.

The start trigger is the same for all tasks using a given interface,
such as the interface input to CAN Initialize.vi.

By selecting RTSIO to RTSI6, or PXI_Star for PXI hardware, as
the source terminal, you route the start trigger from another CAN
or DAQ card. This ensures that sampling begins at the same time
on both cards. For example, you can synchronize with an E Series
DAQ MIO card by routing the Al start trigger of the MIO card to
a RTSI line and then routing the same RTSI line with Start
Trigger as the destination terminal on the CAN card.

The default (disconnected) state of this destination means the start
trigger occurs when communication begins on the interface.
Because communication begins when the first interface task is
started, this does not synchronize sampling with other NI cards.

modifiers provides optional connection information for certain
source/destination pairs. The current release of NI-CAN does not use this
information for any source/destination pair, so modifiers must be left

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

7-20 ni.com

Chapter 7 Channel API for LabVIEW

Outputs
task reference out is the same as task reference in. Wire the task reference
to subsequent VIs for this task.
Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

This VI connects a specific pair of source/destination terminals. One of the terminals is
typically a RTSI signal, and the other terminal is an internal terminal in the CAN hardware.
By connecting internal terminals to RTSI, you can synchronize the CAN card with another
hardware product such as an NI-DAQ card.

The most common uses of RTSI synchronization are demonstrated by CAN Sync Start with
NI-DAQ.vi, CAN Sync Start with NI-DAQmzx.vi, CAN Sync Start Multiple with
NI-DAQ.vi, and CAN Sync Start Multiple with NI-DAQmx.vi. The diagram for each of
these example VIs uses CAN Connect Terminals, and therefore serves as a good starting point
when learning this VI.

When the final task for a given interface is cleared with CAN Clear.vi, NI-CAN disconnects
all terminal connections for that interface. Therefore, CAN Disconnect Terminals.vi is not
required for most applications. NI-DAQ terminals remain connected after the tasks are
cleared, so you must disconnect NI-DAQ terminals manually at the end of the application.

For a list of valid source/destination pairs, refer to the following section.

Valid Combinations of Source/Destination

Table 7-2, Valid Combinations of Source/Destination, lists all valid combinations of source
terminal and destination terminal.

The series of the NI CAN hardware determines what combinations of source terminal to
destination terminal are valid. In Table 7-2, I indicates Series 1 hardware, and 2 indicates

© National Instruments 7-21 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

Series 2 hardware. You can determine the series of the NI CAN hardware by selecting the
name of the card within the Devices and Interfaces»NI-CAN Devices view in the left pane
of MAX.

Series 1 hardware has the following limitations.

PXI cards do not support RTSI6.

Signals received from a RTSI source cannot occur faster than 1 kHz. This prevents the
card from receiving a 10 MHz or 20 MHz timebase, such as NI E Series MIO hardware
provides.

Signals received from a RTSI source must be at least 100 ps in length to be detected. This
prevents the card from receiving triggers in the nanoseconds range, such as the Al trigger
that E Series MIO hardware provides. Series 2 CAN cards also send RTSI pulses in the
nanoseconds range, so Series 1 CAN cards cannot receive RTSI input from Series 2 CAN
cards.

For CAN cards with High-Speed (HS) ports only, four RTSI signals are available for
input (source), and four RTSI signals are available for output (destination). This
limitation applies to the number of signals per direction, not the RTSI signal number. For
example, if you connect RTSI0, RTSI1, RTSI3, and RTSIS as input, connecting RTSI4
as input will return an error.

For CAN cards with one or more Low-Speed (LS) ports, two RTSI signals are available
for input (source), and three RTSI signals are available for output (destination).

Series 2 hardware has the following limitations.

For all form factors (PCI, PXI, PCMCIA), the connection of Interface Transceiver
Event to a RTSI destination depends on the physical port location. If the interface is on
Port 1, you can connect to only even-numbered RTSI lines (RTSI0, RTSI2, RTSI4,
RTSI6). If the interface is on Port 2, you can connect to only odd-numbered RTSI lines
(RTSI1, RTSI3, RTSIS). You can determine the location by selecting the name of the
interface in MAX.

PCI cards do not support the PXI_Star and PXI_CIk10 terminals, as those signals exist
on the PXI backplane.

PCMCIA cards do not support the 20 MHz Timebase, PXI_Star, and PXI_CIk10
terminals. Because 20 MHz Timebase is not supported, you cannot synchronize the
timebases of two PCMCIA CAN cards.

On PCMCIA cards, RTSI4, RTSI5 and RTSI6 are not available.

NI-CAN Hardware and Software Manual 7-22 ni.com

Chapter 7 Channel API for LabVIEW

Table 7-2. Valid Combinations of Source/Destination

Destination

10 Hz
RTSIO to RTSI_CLO Master Resync Start
Source RTSI6 CK Timebase Clock Trigger

RTSIO to — — — 1,2 1,2
RTSI6

RTSI7/RTSI — — 2 — —
Clock

PXI_Star — — — — 2

PXI_CIk10 — — 2 — —

20 MHz — 2 — — —
Timebase

10HzResync | 1,2 — — — 1,2
Clock

Interface 2 — — — 2
Receive
Event

Interface 2 — — — —
Transceiver
Event

Start Trigger | 1,2 — — — —
Event

1—Valid connection for Series 1 hardware

2—Valid connection for Series 2 hardware

© National Instruments 7-23 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

CAN Create Message.vi

Purpose
Create a message configuration and associated channel configurations within the LabVIEW
application.

Format

channel config list s

message config ===y

interface

rode

sample rate

error in (no error)

task reference out

errar out

Inputs
interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CANO,
value 1 selects CAN]1, and so on.The interface input is required. Since the
messages and channels are not defined in MAX, you cannot use MAX
default as the interface.

The default baud rate for the interface is defined within MAX, but you can
change it by setting the Interface Baud Rate property with CAN Set
Property.vi.

The special interface values 256 and 257 refer to virtual interfaces. For
more information on usage of virtual interfaces, refer to the Frame to
Channel Conversion section of Chapter 6, Using the Channel API.

mode specifies the I/O mode for the task. For an overview of the I/O modes,
including figures, refer to the Channel API Basic Programming Model
section of Chapter 6, Using the Channel API.
Input

Input channel data from received CAN messages. Use CAN Read.vi
to obtain input samples as single point, array, or waveform.

Use this input mode to read waveforms of timed samples, such as for
comparison with NI-DAQ waveforms. You also can use this input

NI-CAN Hardware and Software Manual 7-24 ni.com

Chapter 7 Channel API for LabVIEW

mode to read a single point from the most recent message, such as for
control or simulation.

Output

Output channel data to CAN messages for transmit. Use CAN
Werite.vi to write output samples as single-point, array, or waveform.
Each sample value that you write is transmitted in a message on the
network. If you write an array or waveform, the samples are buffered
for subsequent transmit.

Output Recent

Output channel data to CAN messages for transmit. This mode is used
with sample rate greater than zero (periodic transmit). Use CAN
Write.vi to provide a single sample per channel. Each periodic
message uses the sample values from the most recent CAN Write.vi.

For this mode, there are restrictions on using channels in channel list
that are contained in multiple messages. Refer to CAN Read.vi for
more information.

Timestamped Input

Input channel data from received CAN messages. Use CAN Read.vi
to obtain input samples as an array of sample/timestamp pairs (Poly VI
types ending in Timestamped Dbl).

Use this input mode to read samples with timestamps that indicate
when each message is received from the network.

sample rate specifies the timing to use for samples of the task. The sample
rate is specified in Hertz (samples per second). A sample rate of zero means
to sample immediately.

For mode of Input, a sample rate of zero means that CAN Read.vi returns
a single point from the most recent message received, and greater than zero
means that CAN Read.vi returns samples timed at the specified rate.

For mode of Output, a sample rate of zero means that CAN messages
transmit immediately when CAN Write.vi is called, and greater than zero
means that CAN messages are transmitted periodically at the specified rate.

For mode of Timestamped Input, sample rate is ignored.

When the interface specifies a virtual interface (256 or 257), and mode is
Output or Output Recent, this sample rate must be zero (greater than
zero not supported).

© National Instruments 7-25 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

message config configures properties for a new message. These properties
are similar to the message properties in MAX. Can Create Message.vi
creates a task for a single message with one or more channels.

message ID
Configures the arbitration ID of the message.

Use the extended ID? Boolean to specify whether the ID is
standard (11-bit) or extended (29-bit).

extended ID?

Configures a Boolean value that indicates whether the arbitration
ID of the message is standard 11-bit format (false) or extended
29-bit format (true).

number of bytes

Configures the number of data bytes in the message. The range is
1 to 8.

Ea channel config list configures a list of channels for the new message. The
channel config list is an array of clusters, with one cluster for each channel.
The properties of each channel entry are similar to the channel properties
in MAX:

start bit

Configures the starting bit position in the message. The range is 0
(lowest bit in first byte) to 63 (highest bit in last byte).

number of bits

Configures the number of bits for the raw data in the message. The
range is 1 to 64.

byte order
Configures the byte order of the channel in the message.
The value of byte order is an enumeration:

0 Intel Bytes are in little-endian order, with
most-significant first.

1 Motorola Bytes are in big-endian order, with
least-significant first.

NI-CAN Hardware and Software Manual 7-26 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

data type
Configures the data type of the channel in the message.
The value of Channel Data Type is an enumeration:
0 Signed Raw data in the message is a signed integer.

1 Unsigned Raw data in the message is an unsigned

integer.
2 IEEE Raw data in the message is floating-point;
Float no scaling required.

scaling factor

Configures the scaling factor used to convert raw data in the
message to/from scaled floating-point units. The scaling factor is
the A in the linear scaling formula AX+B, where X is the raw data,
and B is the scaling offset.

scaling offset

Configures the scaling offset used to convert raw data in the
message to/from scaled floating-point units. The scaling offset is
the B in the linear scaling formula AX+B, where X is the raw data,
and A is the scaling factor.

min value

Configures the minimum value of the channel in scaled
floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples
when converting to/from CAN messages. You can use this value
with property nodes to set the range of front-panel controls and
indicators.

max value

Configures the maximum value of the channel in scaled
floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples
when converting to/from CAN messages. You can use this value
with property nodes to set the range of front-panel controls and
indicators.

7-27 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

default value

Configures the default value of the channel in scaled
floating-point units.

For information on how the default value is used, refer to CAN
Read.vi and CAN Write.vi.

unit string

Configures the channel unit string. The string is no more than
64 characters in length.

You can use this value to display units (such as volts or RPM)
along with the samples of the channel.

e Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

Outputs

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

Use task reference out with all subsequent VIs to reference the task. Wire
this task reference to CAN Start.vi before you read or write samples for the

message.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

NI-CAN Hardware and Software Manual

status is True if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

7-28 ni.com

Chapter 7 Channel API for LabVIEW

source identifies the VI where the error occurred.

Description
To use message and channel configurations from MAX or a CAN database, use CAN Init
Start.vi or CAN Initialize.vi. The CAN Create Message provides an alternative in which

you create the message and channel configurations within the application, without use of
MAX or a CAN database.

CAN Create Message returns a task reference that you wire to CAN Start.vi to start
communication for the message and its channels.

© National Instruments 7-29 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

CAN Create MessageEx.vi

Purpose
Create a message configuration and associated channel configurations within the application.

Format

Inputs

channel config lisk
message config

. kask reference oot
inkerface

rmode
sample rake H
error in (no error)

errar out

interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CANO,
value 1 selects CAN1, and so on.

The interface input is required. Since the messages and channels are not
defined in MAX, you cannot use MAX default as the interface.

The default baud rate for the interface is defined within MAX, but you can
change it by setting the Interface Baud Rate property with CAN Set
Property.vi.

The special interface values 256 and 257 refer to virtual interfaces. For
more information on usage of virtual interfaces, refer to the Frame to
Channel Conversion section of Chapter 6, Using the Channel API.

mode specifies the I/O mode for the task. For an overview of the I/O modes,
including figures, refer to the Channel API Basic Programming Model
section of Chapter 6, Using the Channel API.

Input

Input channel data from received CAN messages. Use CAN Read.vi to
obtain input samples as single point, array, or waveform.

Use this input mode to read waveforms of timed samples, such as for
comparison with NI-DAQ waveforms. You also can use this input mode to

NI-CAN Hardware and Software Manual 7-30 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

read a single point from the most recent message, such as for control or
simulation.

Output

Output channel data to CAN messages for transmit. Use CAN Write.vi to
write output samples as single-point, array, or waveform. Each sample
value that you write is transmitted in a message on the network. If you write
an array or waveform, the samples are buffered for subsequent transmit.

Output Recent

Output channel data to CAN messages for transmit. This mode is used with
sample rate greater than zero (periodic transmit). Use CAN Write.vi to
provide a single sample per channel. Each periodic message uses the
sample values from the most recent CAN Write.vi.

For this mode, there are restrictions on using channels in channel list that
are contained in multiple messages. Refer to CAN Read.vi for more
information.

Timestamped Input

Input channel data from received CAN messages. Use CAN Read.vi to
obtain input samples as an array of sample/timestamp pairs (Poly VI types
ending in Timestamped DbI).

Use this input mode to read samples with timestamps that indicate when
each message is received from the network.

sample rate specifies the timing to use for samples of the task. The sample
rate is specified in Hertz (samples per second). A sample rate of zero means
to sample immediately.

For mode of Input, a sample rate of zero means that CAN Read.vi returns
a single point from the most recent message received, and greater than zero
means that CAN Read.vi returns samples timed at the specified rate.

For mode of Output, a sample rate of zero means that CAN messages
transmit immediately when CAN Write.vi is called, and greater than zero
means that CAN messages are transmitted periodically at the specified rate.

For mode of Timestamped Input, sample rate is ignored.

When the interface specifies a virtual interface (256 or 257), and mode is
Output or Output Recent, this sample rate must be zero (greater than
zero not supported).

7-31 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

message config configures properties for a new message. These properties
are similar to the message properties in MAX. Can Create Message.vi
creates a task for a single message with one or more channels.

message ID
Configures the arbitration ID of the message.

Use the extended ID? Boolean to specify whether the ID is
standard (11-bit) or extended (29-bit).

extended ID?

Configures a Boolean value that indicates whether the arbitration
ID of the message is standard 11-bit format (false) or extended
29-bit format (true).

number of bytes

Configures the number of data bytes in the message. The range is
1 to 8.

Ea channel config list configures a list of channels for the new message. The
channel config list is an array of clusters, with one cluster for each channel.
The properties of each channel entry are similar to the channel properties
in MAX:

start bit

Configures the starting bit position in the message. The range is 0
(lowest bit in first byte) to 63 (highest bit in last byte).

number of bits

Configures the number of bits for the raw data in the message. The
range is 1 to 64.

byte order
Configures the byte order of the channel in the message.
The value of byte order is an enumeration:

0 Intel Bytes are in little-endian order, with
most-significant first.

1 Motorola Bytes are in big-endian order, with
least-significant first.

NI-CAN Hardware and Software Manual 7-32 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

data type
Configures the data type of channel in the message.
0 Signed Raw data in the message is a signed integer.

1 Unsigned Raw data in the message is an unsigned

integer.
2 IEEE Raw data in the message is floating-point;
Float no scaling required.

scaling factor

Configures the scaling factor used to convert raw data in the
message to/from scaled floating-point units. The scaling factor is
the A in the linear scaling formula AX+B, where X is the raw data,
and B is the scaling offset.

scaling offset

Configures the scaling offset used to convert raw data in the
message to/from scaled floating-point units. The scaling offset is
the B in the linear scaling formula AX+B, where X is the raw data,
and A is the scaling factor.

min value

Configures the minimum value of the channel in scaled
floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples
when converting to/from CAN messages. You can use this value
with property nodes to set the range of front-panel controls and
indicators.

max value

Configures the maximum value of the channel in scaled
floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples
when converting to/from CAN messages. You can use this value
with property nodes to set the range of front-panel controls and
indicators.

7-33 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

default value

Configures the default value of the channel in scaled
floating-point units.

For information on how the default value is used, refer to CAN
Read.vi and CAN Write.vi.

unit string

Configures the channel unit string. The string is no more than
64 characters in length.

You can use this value to display units (such as volts or RPM)
along with the samples on a channel.

Oe Mode channel config configures a list of the mode channels for this (data)
channel. Currently, only one mode channel is allowed per (data) channel.
Note that the same mode channel can be specified for several channels.

£

g

g

g

NI-CAN Hardware and Software Manual

Mode value

Configures the mode channel value for which the data
channel is valid.

Start Bit

Configures the starting bit position in the message. The
range is O (lowest bit in first byte) to 63 (highest bit in last
byte).

Num Bits

Configures the number of bits for the raw data in the
message. The range is 1 to 64.

byte order
Configures the byte order of a channel in the message.
The value of byte order is an enumeration:

0 Intel Bytes are in little-endian order,
with most-significant first.

1 Motorola ~ Bytes are in big-endian order,
with least-significant first.

7-34 ni.com

Outputs

Description

Chapter 7 Channel API for LabVIEW

Default Value

This field is reserved. Set it to 0.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

Use task reference out with all subsequent VIs to reference the task. Wire
this task reference to CAN Start.vi before you read or write samples for the
message.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

To use message and channel configurations from MAX or a CAN database, use the
nctInitStart ornctInitialize. CAN Create MessageEx provides an alternative in
which you create the message and channel configurations within the application, without use
of MAX or a CAN database. In addition, CAN Create MessageEx offers optionally the
possibility to specify mode dependent messages without using MAX or CAN databases.

© National Instruments

7-35 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

CAN Create MessageEx returns a task reference that you wire to CAN Start.vi to start
communication for the message and its channels.

NI-CAN Hardware and Software Manual 7-36 ni.com

Chapter 7 Channel API for LabVIEW

CAN Disconnect Terminals.vi

Purpose

Disconnect terminals in the CAN hardware.

Format

Inputs

E

d [

8

© National Instruments

rodifiers

task reference in i Tese kask referance out
source terminal e
destinatian terminal Ewmermr auk
Errar in (no error)

task reference in is the task reference from the previous NI-CAN VI. The
task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi and then wired through
subsequent VIs.

source terminal specifies the connection source. For a description of
values for source terminal, refer to CAN Connect Terminals.vi.

destination terminal specifies the connection destination.

For a description of values for destination terminal, refer to CAN
Connect Terminals.vi.

modifiers provides optional connection information for certain
source/destination pairs. The current release of NI-CAN does not use this
information for any source/destination pair, so modifiers must be left
unwired.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

7-37 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.
Outputs
task reference out is the same as task reference in. Wire the task reference
to subsequent VIs for this task.
e Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

This VI disconnects a specific pair of source/destination terminals that were previously
connected with CAN Connect Terminals.vi.

When the final task for a given interface is cleared with CAN Clear.vi, NI-CAN disconnects
all terminal connections for that interface. Therefore, the CAN Disconnect Terminals VI is
not required for most applications. This VI is typically used to change RTSI connections
dynamically while an application is running. First, use CAN Stop.vi to stop all tasks for the
interface, then use CAN Disconnect Terminals and CAN Connect Terminals to adjust RTSI
connections, then CAN Start.vi to restart sampling.

NI-CAN Hardware and Software Manual 7-38 ni.com

CAN Get Names.vi

Chapter 7 Channel API for LabVIEW

Purpose

Get an array of CAN channel names or message names from MAX or a CAN database file.

Format

Inputs

=mo

© National Instruments

mode

filepath
MEessage name
Error in {no error)

fraesesse channel lisk

e gy or Uk

filepath is an optional path to a CAN database file from which to get
channel names. The file must use either a . DBC or .NCD extension. Files
with extension . DBC use the CANdb database format. Files with extension
.NCD use the NI-CAN database format. You can generate NI-CAN
database files from the Save Channels selection in MAX.

The default (unwired) value of filepath is empty, which means to get the
channel names from MAX. The MAX CAN channels are in the MAX CAN
channels listing within Data Neighborhood.

message name is an optional input that filters the names for a specific
message. The default (unwired) value is an empty string, which means to
return all names in the database. If you wire a nonempty string, the channel
list output is limited to channels of the specified message. This input
applies to mode of channels only. It is ignored for mode of messages.

mode is an optional input that specifies the type of names to return.
The value of mode is an enumeration:

0 channels Return list of channel names. You can write
this list to CAN Init Start.vi. This is the
default value.

1 messages Return list of message names.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

7-39 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Outputs

[abc]

=mn

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

channel list returns the array of channel names, one string entry per
channel.

The names in channel list use the minimum syntax required to properly
initialize the channels:

e If a channel name is used within only one message in the database,
CAN Get Names returns only the channel name in the array.

e Ifachannel name is used within multiple messages, CAN Get Names
prepends the message name to that channel name, with a decimal point
separating the message and channel name. This syntax ensures that the
duplicate channel is associated to a single message in the database.

For more information on the syntax conventions for channel names, refer
to CAN Init Start.vi.

To start a task for all channels returned from CAN Get Names, wire
channel list to CAN Init Start.vi to start a task.

You also can wire channel list to the property nodes of a front panel control
such as a ring or list box. The user of the VI can then select names using
this control, and the selected names can be wired to CAN Init Start.vi.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

NI-CAN Hardware and Software Manual 7-40 ni.com

Chapter 7 Channel API for LabVIEW

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

© National Instruments 7-41 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

CAN Get Property.vi

Purpose

Get a property for the task, or a single channel within the task. The poly VI selection
determines the property to get.

To select the property, right-click the VI, go to Select Type and select the property by name.
For LabVIEW 7.0 and later, you can right-click the VI and select Visible Items»Poly VI
Selector to select the property from within the diagram.

Format

channel name

task reference in i Thsr kask reference out
EET value
i PROPRTY
error in (no error) S P

task reference in is the task reference from the previous NI-CAN VI.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

channel name specifies an individual channel within the task. The default
(unwired) value of channel name is empty, which means the property
applies to the entire task, not a specific channel.

Properties that begin with the word Channel or Message do not apply to the
entire task, but an individual channel or message within the task. For these
channel-specific properties, you must wire the name of a channel from
channel list into the channel name input.

For properties that do not begin with the word Channel or Message, you
must leave channel name unwired (empty).

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

NI-CAN Hardware and Software Manual 7-42 ni.com

Outputs

Poly VI Types

© National Instruments

Chapter 7 Channel API for LabVIEW

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

task reference out is the same as task reference in. Wire the task reference
to subsequent VIs for this task.

The poly output value returns the property value. You select the property
returned in value by selecting the Poly VI type. The data type of value is
also determined by the Poly VI selection. For information about the
different properties provided by CAN Get Property.vi, refer to the Poly VI
Types section in this function reference.

To select the property, right-click the VI, go to Select Type and select the
property by name.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of O
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Behavior After Final Output

Returns the Behavior After Final Output property, which is used with
some output task configurations. For more information, refer to the
Behavior After Final Output property in CAN Set Property.vi.

7-43 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Channel Byte Order
Returns the byte order of a channel in the message.
The value of Channel Byte Order is an enumeration:

0 Intel Bytes are in little-endian order, with most-significant
first.

1 Motorola ~ Bytes are in big-endian order, with least-significant
first.

The value of this property cannot be changed using CAN Set Property.vi.
Channel Data Type
Returns the data type of a channel in the message.
The value of Channel Data Type is an enumeration:
0 Signed Raw data in the message is a signed integer.
1 Unsigned Raw data in the message is an unsigned integer.

2 IEEE Raw data in the message is floating-point; no scaling
Float required.

The value of this property cannot be changed using CAN Set Property.vi.
Channel Default Value
Returns the default value of the channel in scaled floating-point units.

For information on how Channel Default Value is used, refer to CAN
Read.vi and CAN Write.vi.

The value of this property is originally set within MAX or CAN Create
Message.vi. If the channel is initialized directly from a CAN database, the
value is 0.0 by default, but it can be changed using CAN Set Property.vi.

Channel Maximum Value
Returns the maximum value of the channel in scaled floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples when
converting to/from CAN messages. You can use this value with CAN
database to set the range of front-panel controls and indicators.

The value of this property cannot be changed using CAN Set Property.vi.

NI-CAN Hardware and Software Manual 7-44 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

Channel Minimum Value
Returns the minimum value of the channel in scaled floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples when
converting to/from CAN messages. You can use this value with property
nodes to set the range of front-panel controls and indicators.

The value of this property cannot be changed using CAN Set Property.vi.
Channel Mode Value

Returns the value of the mode channel associated to this channel.
This property applies only to mode dependent channels.

Channel Number of Bits

Returns the number of bits in the message. The range is 1 to 64.

The value of this property cannot be changed using CAN Set Property.vi.
Channel Scaling Factor

Returns the scaling factor used to convert raw bits of the message to/from
scaled floating-point units. The scaling factor is the A in the linear scaling
formula AX+B, where X is the raw data, and B is the scaling offset.

CAN messages use the raw data, and the CAN Read.vi and CAN Write.vi
VIs provide access to samples in floating-point units.

The value of this property cannot be changed using CAN Set Property.vi.
Channel Scaling Offset

Returns the scaling offset used to convert raw bits of the message to/from
scaled floating-point units. The scaling offset is the B in the linear scaling
formula AX+B, where X is the raw data, and A is the scaling factor.

CAN messages use the raw data, and the CAN Read.vi and CAN Write.vi
VIs provide access to samples in floating-point units.

The value of this property cannot be changed using CAN Set Property.vi.
Channel Start Bit

Returns the starting bit position in the message. The range is O (lowest bit
in first byte) to 63 (highest bit in last byte).

The value of this property cannot be changed using CAN Set Property.vi.

7-45 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Channel Unit String

Returns the unit string of the channel. The string is no more than
80 characters in length.

You can use this value to display units (such as volts or RPM) along with
the samples on a channel.

The value of this property cannot be changed using CAN Set Property.vi.
Hardware Form Factor

Returns the hardware form factor for the NI-CAN hardware that contains
interface.

The value of Hardware Form Factor is an enumeration:

0 PCI

1 PXI

2 PCMCIA
3 AT

Hardware Master Timebase Rate

Returns the present Hardware Master Timebase Rate in MHz,
programmed into the CAN hardware. For PCMCIA, this property will
always return 10 MHz.

Hardware Serial Number

Returns the hardware serial number for the NI-CAN hardware that contains
interface.

Hardware Series

Returns the hardware series for the NI CAN hardware that contains
Interface.

The value of Hardware Series is an enumeration:

0 Series 1 Series 1 hardware uses the Intel 82527 CAN
controller.

1 Series 2 Series 2 hardware uses the Philips SJA1000 CAN
controller and includes improved RTSI features.

4 NI-XNET NI-XNET hardware visible through the NI-XNET
Compeatibility Library for NI-CAN.

NI-CAN Hardware and Software Manual 7-46 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

Newer hardware series often have more features, so the application may
need to determine which is installed.

Hardware Timestamp Format

Returns the present Timestamp Format programmed into the CAN
hardware. This property applies to the entire card.

Interface

Returns the interface initialized for the task, such as with the CAN Init
Start VI.

Interface Baud Rate
Returns the baud rate in use by the interface.

Basic baud rates such as 125000 and 500000 are specified as the numeric
rate.

Advanced baud rates are specified as 8000XXYY hex, where YY is the value
of Bit Timing Register 0 (BTRO), and XX is the value of Bit Timing
Register 1 (BTR1) of the CAN controller chip. For more information, refer
to the Interface Properties dialog in MAX.

The value of this property is originally set within MAX, but it can be
changed using CAN Set Property.vi.

Interface Listen Only?

Returns a Boolean value that indicates whether the listen only feature of the
Philips SJA1000 CAN controller is enabled (TRUE) or disabled (FALSE).
For more information, refer to the Interface Listen Only? property in CAN
Set Property.vi.

Since the listen only feature requires the Philips SJA1000 CAN controller,
this property is supported on Series 2 NI CAN hardware only.

Interface Receive Error Counter
Returns the Receive Error Counter as described in the CAN specification.

Since the error counts require the Philips SJA1000 CAN controller, this
property is supported on Series 2 NI CAN hardware only. If you are using
Series 1 NI CAN hardware, this property returns an error.

7-47 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

Interface Self Reception?

Returns the Interface Self Reception property as configured in CAN Set
Property.vi.

This property is supported on Series 2 NI CAN hardware only (returns error
for Series 1).

Interface Series 2 Error/Arb Capture

Returns the current values of the Error Code Capture register and
Arbitration Lost Capture register from the Philips SJA1000 CAN controller
chip.

The Error Code Capture register provides information on bus errors that
occur according to the CAN standard. A bus error increments either the
Interface Transmit Error Counter or the Interface Receive Error Counter.
When communication starts on the interface, the first bus error is captured
into the Error Code Capture register and retained until you get this property.
After you get this property, the Error Code Capture register is again enabled
to capture information for the next bus error.

The Arbitration Lost Capture register provides information on a loss of
arbitration during transmit. Loss of arbitration is not considered an error.
When communication starts on the interface, the first arbitration loss is
captured into the Arbitration Lost Capture register, and retained until you
get this property. After you get this property, the Arbitration Lost Capture
register is again enabled to capture information for the next arbitration loss.

For each of the capture registers, a single-bit New flag indicates whether a
new error has occurred since the last Get. If the New flag of a register is set,
the associated fields contain new information. If the New flag of a register
is clear, the associated fields are the same as the previous Get.

This property is commonly used with the Interface Single Shot Transmit
property. When CAN Write.vi is used to transmit the single frame, you can
get this property to determine if the transmit was successful. If the single
shot transmit was not successful, this property provides detailed
information for the failure.

This property is supported for Series 2 hardware only (not Series 1). Since
the information and bit format is very specific to the Philips SJA1000 CAN
controller on Series 2 hardware, National Instruments cannot guarantee
compatibility for this property on future hardware series. When using this
property in the application, it is best to get the Hardware Series to verify
that the CAN hardware is Series 2.

NI-CAN Hardware and Software Manual 7-48 ni.com

E

il

g

TF

g

© National Instruments

Chapter 7 Channel API for LabVIEW

For information regarding the format of the bits in this property, refer to
Series 2 Error/Arb Capture attribute in the ncGetAttr.vi function of the
Frame APL

Interface Series 2 Comparator

Returns the value of the Interface Series 2 Comparator property
(refer to CAN Set Property.vi).

Interface Series 2 Filter Mode

Returns the value of the Interface Series 2 Filter Mode property
(refer to CAN Set Property.vi).

Interface Series 2 Mask

Returns the value of the Interface Series 2 Mask property (refer to CAN Set
Property.vi).

Interface Single Shot Transmit?

Returns the value of the Interface Single Shot Transmit property

(refer to CAN Set Property.vi). The single-shot transmit feature is not
available on the Intel 82527 CAN controller used by Series 1 CAN
hardware (Get returns error).

Interface Transceiver External Inputs

Returns the transceiver external inputs for the interface that was initialized
for the task.

Series 2 XS cards enable connection of an external transceiver. For an
external transceiver, this property allows you to determine the input voltage
on the STATUS pin of the CAN port.

For many models of CAN transceiver, an NERR pin is provided for
detection of faults and other status. For such transceivers, you can wire the
NERR pin to the STATUS pin of the CAN port.

This property is supported for Series 2 XS cards only.

This property uses a bit mask. When using the property, use bitwise AND
operations to check for values, not equality checks (equal, greater than, and
SO on).

00000001 hex STATUS
This bit is set when 5 V exists on the STATUS pin.
This bit is clear when 0 V exists on the STATUS pin.

7-49 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

Interface Transceiver External Qutputs

Returns the transceiver external outputs for the interface that was initialized
for the task.

Series 2 XS cards enable connection of an external transceiver. For an
external transceiver, this property allows you to determine the output
voltage on the MODEQ and MODEI] pins of the CAN port, and it allows
you to determine if the CAN controller chip is sleeping.

For more information on the format of the value returned in this property,
refer to the description of Interface Transceiver External Outputs
property in CAN Set Property.vi.

This property is supported for Series 2 XS cards only.
Interface Transceiver Mode

Returns the transceiver mode for the interface that was initialized for the
task.

The transceiver mode changes when you set the mode within the
application, or when a remote wakeup transitions the interface from Sleep
to Normal mode. For more information, refer to CAN Set Property.vi.

This property uses the following values:

Normal

Transceiver is awake in normal communication mode.

Sleep

Transceiver and the CAN controller chip are both in sleep mode.
Single Wire Wakeup

Single Wire transceiver is in Wakeup Transmission mode.
Single Wire High-Speed

Single Wire transceiver is in High-Speed Transmission mode.
Interface Transceiver Type

Returns the type of transceiver for the interface that was initialized for the
task. For hardware other than Series 2 XS cards, the transceiver type is
fixed. For Series 2 XS cards, the transceiver type reflects the most recent
value specified by MAX or CAN Set Property.vi.

NI-CAN Hardware and Software Manual 7-50 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

This property is not supported on the PCMCIA form factor.
This property uses the following values:

High-Speed

Transceiver type is High-Speed (HS).
Low-Speed/Fault-Tolerant

Transceiver type is Low-Speed/Fault-Tolerant (LS).

Single Wire

Transceiver type is Single Wire (SW).

External

Transceiver type is External. This transceiver type is available on Series 2
XS cards only. For more information, refer to CAN Set Property.vi.

Disconnect

Transceiver type is Disconnect. This transceiver type is available on Series
2 XS cards only. For more information, refer to CAN Set Property.vi.

Interface Transmit Error Counter
Returns the Transmit Error Counter as described in the CAN specification.

Since the error counts require the Philips SJA1000 CAN controller, this
property is supported on Series 2 NI CAN hardware only. If you are using
Series 1 NI CAN hardware, this property returns an error.

Interface Virtual Bus Timing

Returns a Boolean value of True or False to indicate whether Virtual Bus
Timing has been set or not for the specified virtual task. This property is
applicable to all tasks opened on the virtual interface.

If this property is selected on real hardware, an error will be returned.
Message ID
Returns the arbitration ID of the channel message.

To determine whether the ID is standard (11-bit) or extended (29-bit),
get the Message ID is Extended? property.

The value of this property cannot be changed using CAN Set Property.vi.

7-51 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

i ?
Message ID is Extended?

Returns a Boolean value that indicates whether the arbitration ID of the
channel message is standard 11-bit format (FALSE) or extended 29-bit
format (TRUE).

The value of this property cannot be changed using CAN Set Property.vi.

Message Name

Returns the name of the channel message. The string is no more than
80 characters in length.

The value of this property cannot be changed using CAN Set Property.vi.

Message Number of Data Bytes

g

Returns the number of data bytes in the channel message. The range is
1 to 8.

The value of this property cannot be changed using CAN Set Property.vi.
Mode
Returns the mode initialized for the task, such as with CAN Init Start.vi.

Message Multiple Frame Distribution

El

Returns the Message Multiple Frame Distribution property which is used
to determine if the CAN frames associated to a group of mode dependent
channels are sent even spaced or in burst mode.

Number of Channels

g

Returns the number of channels initialized in channel list. This is the
number of array entries required when using CAN Read.vi or CAN
Write.vi.

Channel Mode Dependency

g

Returns the number of mode dependent channels within a channel. So far a
hierarchy of one mode dependent channel per channel is supported.

0 Channel is not mode dependent.
1 Channel is mode dependent.

This property applies only to mode dependent channels.

NI-CAN Hardware and Software Manual 7-52 ni.com

g

g

© National Instruments

Chapter 7 Channel API for LabVIEW

Number of Samples Pending

Returns the number of samples available to be read using CAN Read.vi. If
you set the number of samples to read input of CAN Read.vi to this value,
CAN Read.vi returns immediately without waiting.

This property applies only to tasks initialized with mode of Input and
sample rate greater than zero. For all other configurations, it returns an
error.

Sample Rate

Returns the SampleRate initialized for the task, such as with CAN Init
Start.vi.

Timeout

Returns the Timeout property, which is used with some task
configurations. For more information, refer to the Timeout property in
CAN Set Property.vi.

Value for invalid data

Returns the value that is returned on time stamped read for mode dependent
channels that have not been received with the most recent CAN frame
associated with the CAN message. This property applies only to mode
dependent channels that are read with the time stamped read operation.
For more information, refer to the Mode Dependent Channels section of
Chapter 6, Using the Channel API.

Version Build

Returns the build number of the NI-CAN software. This number applies to
Development, Alpha, and Beta phase only, and should be ignored for
Release phase.

Version Comment

Returns a comment string for the NI-CAN software. If you received a
custom release of NI-CAN from National Instruments, this comment often
describes special features of the release.

Version Major

Returns the major version of the NI-CAN software, such as the 2 in
version 2.1.5.

7-53 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Version Minor
ron

Returns the minor version of the NI-CAN software, such as the / in
version 2.1.5.

Version Phase
Returns the phase of the NI-CAN software.

The value of Version Phase is an enumeration:

0 Development
1 Alpha
2 Beta
3 Release
Versions of NI-CAN in hardware Kkits or on ni . com will always be
Release.
Version Update

Returns the update version of the NI-CAN software, such as the 5 in
version 2.1.5.

NI-CAN Hardware and Software Manual 7-54 ni.com

Chapter 7 Channel API for LabVIEW

CAN Initialize.vi

Purpose
Initialize a task for the specified channel list.
Format
filepath R
channel list e kask reference out
interface -
mode e gpror Uk
sample rate
Errar in {no error)
Inputs
filepath is an optional path to a CAN database file from which to import
the channel (signal) configurations.
If filepath is unwired (empty), the channel configuration is obtained from
MAX. The MAX CAN channels are in the MAX CAN channels listing
within Data Neighborhood.
[ak<] channel list is the array of channel names to initialize as a task. Each
channel name is provided in an array entry.
For more information, refer to the channel list input of CAN Init Start.vi.
interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CANO,
value 1 selects CAN1, and so on.

The default (unwired) value is MAX default, which means to use the
default interface as defined in the Message/Channel configuration
properties. If the default interface in MAX is All, or if filepath is wired to
use a CAN database (not MAX), the interface is a required input to this VI.

The Channel API and Frame API cannot use the same CAN network
interface simultaneously. If the CAN network interface is already
initialized in the Frame API, this function returns an error.

The special interface values 256 and 257 refer to virtual interfaces. For
more information on usage of virtual interfaces, refer to the Frame to
Channel Conversion section of Chapter 6, Using the Channel API.

© National Instruments 7-55 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

mode specifies the I/O mode for the task. For an overview of the I/O modes,
including figures, refer to the Channel API Basic Programming Model
section of Chapter 6, Using the Channel API.

Input

Input channel data from received CAN messages. Use CAN Read.vi to
obtain input samples as single-point, array, or waveform.

Use this input mode to read waveforms of timed samples, such as for
comparison with NI-DAQ waveforms. You also can use this input mode to
read a single point from the most recent message, such as for control or
simulation.

For this mode, the channels in channel list can be contained in multiple
messages.

Qutput

Output channel data to CAN messages for transmit. Use CAN Write.vi to
write output samples as single point, array, or waveform. Each sample
value that you write is transmitted in a message on the network. If you write
an array or waveform, the samples are buffered for subsequent transmit.

For this mode, there are restrictions on using channels in channel list that
are contained in multiple messages. Refer to CAN Write.vi for more
information.

Output Recent

Output channel data to CAN messages for transmit. This mode is used with
sample rate greater than zero (periodic transmit). Use CAN Write.vi to
provide a single sample per channel. Each periodic message uses the
sample values from the most recent CAN Write.vi.

For this mode, there are restrictions on using channels in channel list that
are contained in multiple messages. Refer to CAN Read.vi for more
information.

Timestamped Input

Input channel data from received CAN messages. Use CAN Read.vi to
obtain input samples as an array of sample/timestamp pairs (Poly VI types
ending in Timestamped Dbl).

Use this input mode to read samples with timestamps that indicate when
each message is received from the network.

NI-CAN Hardware and Software Manual 7-56 ni.com

Chapter 7 Channel API for LabVIEW

For this mode, the channels in channel list must be contained in a single
message.

sample rate specifies the timing to use for samples of the task. The sample
rate is specified in Hertz (samples per second). A sample rate of zero means
to sample immediately.

For mode of Input, sample rate of zero means that CAN Read.vi returns
a single point from the most recent message received, and greater than zero
means that CAN Read.vi returns samples timed at the specified rate.

For mode of Output, sample rate of zero means that CAN messages
transmit immediately when CAN Write.vi is called, and greater than zero
means that CAN messages are transmitted periodically at the specified rate.

For mode of Output Recent, sample rate must be greater than zero
(periodic transmit).

For mode of Timestamped Input, sample rate is ignored.

When the interface specifies a virtual interface (256 or 257), and mode is
Output or Output Recent, this sample rate must be zero (greater than
zero not supported).

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

© National Instruments 7-57 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Outputs
Use task reference out with all subsequent VIs to reference the task. Wire
this task reference to CAN Start.vi before you read or write samples for the
message.
Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN Initialize.vi VI does not start communication. This enables you to use CAN Set
Property.vi to change the properties of the task, or CAN Connect Terminals.vi to
synchronize CAN or DAQ cards. After you change properties or connections, use CAN
Start.vi to start communication for the task.

NI-CAN Hardware and Software Manual 7-58 ni.com

CAN Init Start.vi

Chapter 7 Channel API for LabVIEW

Purpose

Initialize a task for the specified channel list, then start communication.

Format

Inputs

[ab<]

© National Instruments

filepath R
channel list kask reference out
interface
mode e appOr Uk
sample rate

Errar in {no error)

filepath is an optional path to a CAn database file from which to import the
channel (signal) configurations.

If filepath is unwired (empty), the channel configuration is obtained from
MAX. The MAX CAN channels are in the MAX CAN channels listing
within Data Neighborhood.

channel list is the array of channel names to initialize and start as a task.
Each channel name is provided in an array entry.

You can type in the channel list entries as string constants, or you can obtain
the list from MAX or another CAN database by using CAN Get Names.vi.
Channel names are case sensitive.

You can initialize the same channel list with different interface, mode,
or sample rate, because each task reference is unique.

The following paragraphs describe the syntax of each channel name.
Brackets indicate optional fields.

[message.]channel

e message refers to the message in which the channel is contained.
The message name must be followed by a decimal point.

If the channel name occurs in multiple messages, you must specify the
message name to identify the channel uniquely. Within MAX,
channels with the same name in multiple messages are shown with a
yellow exclamation point.

7-59 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

If the channel name is unique across all channels, the message name is
not required.

e channel refers to the channel (signal) name in MAX or the CAN
database (indicated by filepath).

If you are using mode dependent channels, and each channel name is not
unique, you will need to use a special syntax described in the Mode
Dependent Channel Syntax section at the end of the function description.

The following examples demonstrate the channel list syntax:

1. List of channels, each channel name unique across all messages.
myChanl
myChan2
myChan3

If you are using mode dependent channels, and each channel name is
not unique, you will need to use a special syntax described in the Mode
Dependent Channel Syntax section at the end of the function
description.

2. List of channels, with one channel duplicated across two messages.
MyChan?2 and MyChan3 must be unique across all messages.

myMessagel.myChanl
myChan2
myMessage2.myChanl
myChan3

interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CANO,
value 1 selects CAN1, and so on.

The default (unwired) value is MAX default, which means to use the
default interface as defined in the Message/Channel configuration
properties. If the default interface in MAX is All, or if filepath is wired to
use a CAN database (not MAX), the interface is a required input to this VI.

The Channel API and Frame API cannot use the same CAN network
interface simultaneously. If the CAN network interface is already
initialized in the Frame API, this function returns an error.

The special interface values 256 and 257 refer to virtual interfaces. For
more information on usage of virtual interfaces, refer to the Frame to
Channel Conversion section of Chapter 6, Using the Channel API.

NI-CAN Hardware and Software Manual 7-60 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

mode specifies the I/O mode for the task. For an overview of the I/O modes,
including figures, refer to the Channel API Basic Programming Model
section of Chapter 6, Using the Channel API.

Input

Input channel data from received CAN messages. Use CAN Read.vi to
obtain input samples as single-point, array, or waveform.

Use this input mode to read waveforms of timed samples, such as for
comparison with NI-DAQ waveforms. You also can use this input mode to
read a single point from the most recent message, such as for control or
simulation.

For this mode, the channels in channel list can be contained in multiple
messages.

Output

Output channel data to CAN messages for transmit. Use CAN Write.vi to
write output samples as single-point, array, or waveform. Each sample
value that you write is transmitted in a message on the network. If you write
an array or waveform, the samples are buffered for subsequent transmit.

For this mode, there are restrictions on using channels in channel list that
are contained in multiple messages. Refer to CAN Write.vi for more
information.

Output Recent

Output channel data to CAN messages for transmit. This mode is used with
sample rate greater than zero (periodic transmit). Use CAN Write.vi to
provide a single sample per channel. Each periodic message uses the
sample values from the most recent CAN Write.vi.

For this mode, there are restrictions on using channels in channel list that
are contained in multiple messages. Refer to CAN Write.vi for more
information.

Timestamped Input

Input channel data from received CAN messages. Use CAN Read.vi to
obtain input samples as an array of sample/timestamp pairs (Poly VI types
ending in Timestamped DDbI).

Use this input mode to read samples with timestamps that indicate when
each message is received from the network.

7-61 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

For this mode, the channels in channel list must be contained in a single
message.

sample rate specifies the timing to use for samples of the task. The sample
rate is specified in Hertz (samples per second). A sample rate of zero means
to sample immediately.

For mode of Input, a sample rate of zero means that CAN Read.vi returns
a single point from the most recent message received, and greater than zero
means that CAN Read.vi returns samples timed at the specified rate.

For mode of Output, a sample rate of zero means that CAN messages
transmit immediately when CAN Write.vi is called, and greater than zero
means that CAN messages are transmitted periodically at the specified rate.

For mode of Output Recent, sample rate must be greater than zero
(periodic transmit).

For mode of Timestamped Input, sample rate is ignored.

When the interface specifies a virtual interface (256 or 257), and mode is
Output or Output Recent, this sample rate must be zero (greater than
zero not supported).

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

NI-CAN Hardware and Software Manual 7-62 ni.com

Chapter 7 Channel API for LabVIEW

Outputs
Use task reference out with all subsequent VIs to reference the running
task. Because CAN Init Start.vi starts communication, you can wire this
task reference to CAN Read.vi or CAN Write.vi.
Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

The diagram for this VI simply calls CAN Initialize.vi followed by CAN Start.vi. This
provides an easy way to start a list of channels.

The following list describes the scenarios for which CAN Init Start.vi cannot be used:

* If you need to set properties for the channels, use CAN Initialize.vi, then CAN Set
Property.vi, then CAN Start.vi. CAN Init Start.vi starts communication, and most
channel properties cannot be changed after the task is started.

e If you need to synchronize tasks for multiple NI-CAN or NI DAQ cards, refer to the VIs
in the CAN/DAQ Synchronization palette, such as CAN Sync Start with NI-DAQ.vi.

* If you need to create channel configurations entirely within LabVIEW, without using
MAX or a CAN database file, use CAN Create Message.vi, then CAN Start.vi. CAN
Init Start.vi accepts only channel names defined in MAX or a CAN database file.

© National Instruments 7-63 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Mode Dependent Channel Syntax

If you are using mode dependent channels, and each channel name is not unique, you will
need to use a special syntax described in this section. Within MAX, channels with the same
name are shown with a yellow exclamation point. For channels with unique names, you can
use the simple syntax described previously for channel list. The brackets [] define optional
parameters:

[message name.[[multiplexer.mode_value.]]channel.

e message name refers to the message in which the channel is contained. The message
name must be followed by a decimal point.

o multiplexer refers to the multiplexer name in MAX or the CAN database. The multiplexer
must be followed by a decimal point.

* mode_value refers to the multiplexer mode in MAX or the CAN database.
The mode_value must be followed by a decimal point.

e channel refers to the channel (signal) name in MAX or the CAN database.

You cannot use the same channel name for a normal CAN channel and a mode dependent
CAN channel within the same CAN message.

For more information on mode dependent channels, refer to the Mode Dependent Channels
section of Chapter 6, Using the Channel API.

NI-CAN Hardware and Software Manual 7-64 ni.com

CAN Read.vi

Chapter 7 Channel API for LabVIEW

Purpose

Read samples from a CAN task initialized as input. Samples are obtained from received CAN
messages. The poly VI selection determines the data type to read.

To select the data type, right-click the VI, go to Select Type, and select the type by name. For
LabVIEW 7.0 and later, you can right-click the VI and select Visible Items»Poly VI Selector
to select the data type from within the diagram. For an overview of CAN Read, refer to the
Read and Read Timestamped sections of Chapter 6, Using the Channel API.

Format

Inputs

© National Instruments

kask reference in i mesk | kask reference out
number of samples to read ;‘ e L number of samples returned
error in (no error) “‘&msamples
errar ouk

task reference in is the task reference from the previous NI-CAN VI.
The task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

The mode initialized for the task must be either Input or Timestamped
Input.

number of samples to read specifies the number of samples to read for the
task. For single-sample Poly VI types, CAN Read.vi always returns one
sample, so this input is ignored.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is

7-65 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Outputs

=mn

Poly VI Types

returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

task reference out is the same as task reference in. Wire the task reference
to subsequent VIs for this task.

number of samples returned indicates the number of samples returned in
the samples output.

The poly output samples returns the samples read from received CAN
messages. The type of the poly output is determined by the Poly VI
selection. For information on the different poly VI types provided by CAN
Read.vi, refer to the Poly VI Types section in this function reference.

To select the data type, right-click the VI, go to Select Type, and select the
type by name.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

The name of each Poly VI type uses the following conventions:

e The first term is either Single-Chan or Multi-Chan. This indicates whether the type
returns data for a single channel or multiple channels. Multi-Chan types return an array
of analogous Single-Chan types, one entry for each channel initialized in channel list of
CAN Init Start.vi. Single-Chan types are convenient because no array indexing is
required, but you are limited to reading only one CAN channel.

e The second term is either Single-Samp or Multi-Samp. This indicates whether the type
returns a single sample, or an array of multiple samples. Single-Samp types are often
used for single point control applications, such as within LabVIEW RT.

NI-CAN Hardware and Software Manual 7-66 ni.com

Chapter 7 Channel API for LabVIEW

e The third term indicates the data type used for each sample. The word Dbl indicates
double-precision (64-bit) floating point. The word Wfim indicates the waveform data type.
The words 1D and 2D indicate one and two-dimensional arrays, respectively. The words
Time & Dbl indicate a cluster of a LabVIEW timestamp and a double-precision sample.

Single-Chan Single-Samp Dbl
Returns a single sample for the first channel initialized in channel list.

If the initialized sample rate is greater than zero, this poly VI type waits for the next sample
time, then returns a single sample. This enables you to execute a control loop at a specific rate.

If the initialized sample rate is zero, this poly VI immediately returns a single sample.

The samples output returns a single sample from the most recent message received. If no
message has been received since you started the task, the Default Value of the channel is
returned in samples.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read.vi (or CAN Start.vi). If no message has been received, the
warning code 3FF62009 hex is returned in error out. If a new message has been received,
the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).
Unless an error occurs, number of samples returned is one.

Multi-Chan Single-Samp 1D Dbl
Returns an array, one entry for each channel initialized in channel list. Each entry consists of
a single sample.

The order of channel entries in samples is the same as the order in the original channel list.

If the initialized sample rate is greater than zero, this poly VI type waits for the next sample
time, then returns a single sample for each channel. This enables you to execute a control loop
at a specific rate.

If the initialized sample rate is zero, this poly VI immediately returns a single sample for
each channel.

The samples output returns a single sample for each channel from the most recent message
received. If no message has been received for a channel since you started the task, the Default
Value of the channel is returned in samples.

© National Instruments 7-67 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

You can specify channels in channel list that span multiple messages. A sample from the
most recent message is returned for all channels.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read.vi (or CAN Start.vi). If no message has been received for one or
more channels, the warning code 3FF62009 hex is returned in error out. If a new message
has been received for all channels, the success code O is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, number of samples returned is one. The samples array is indexed
by channel, and the entry for each channel contains a single sample.

If you need to determine the number of channels in the task after initialization, get the
Number of Channels property for the task reference.

Single-Chan Multi-Samp 1D Dbl

Returns an array of samples for the first channel initialized in channel list.

The initialized sample rate must be greater than zero for this poly VI, because each sample in
the array indicates the value of the CAN channel at a specific point in time. In other words,
the sample rate specifies a virtual clock that copies the most recent value from CAN
messages for each sample time. The changes in sample values from message to message
enable you to view the CAN channel over time, such as for comparison with other CAN or
DAQ input channels.

This VI waits until all samples arrive in time before returning. To avoid internal waiting
within the VI, you can use CAN Get Property.vi to obtain the Number Of Samples
Pending, and pass that as the number of samples to read.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to
read the most recent sample for a task, use the Single-Chan Single-Samp Dbl type.

If no message has been received since you started the task, the Default Value of the channel
is returned in all entries of the samples array.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read.vi (or CAN Start.vi). If no message has been received, the
warning code 3FF62009 hex is returned in error out. If a new message has been received,
the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples to
read.

NI-CAN Hardware and Software Manual 7-68 ni.com

Chapter 7 Channel API for LabVIEW

Multi-Chan Multi-Samp 2D Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists of
an array of samples.

The order of channel entries in samples is the same as the order in the original channel list.

The initialized sample rate must be greater than zero for this poly VI, because each sample in
the array indicates the value of each CAN channel at a specific point in time. In other words,
the sample rate specifies a virtual clock that copies the most recent value from CAN
messages for each sample time. The changes in sample values from message to message
enable you to view the CAN channels over time, such as for comparison with other CAN
or DAQ input channels.

This VI waits until all samples arrive in time before returning. To avoid internal waiting
within the VI, you can use CAN Get Property.vi to obtain the Number Of Samples
Pending, and pass that as the number of samples to read.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to
read the most recent samples for a task, use the Multi-Chan Single-Samp 1D Dbl type.

If no message has been received for a channel since you started the task, the Default Value of
the channel is returned in samples.

You can specify channels in channel list that span multiple messages. At each point in time,
a sample from the most recent message is returned for all channels.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read.vi (or CAN Start.vi). If no message has been received for one or
more channels, the warning code 3FF62009 hex is returned in error out. If a new message
has been received for all channels, the success code O is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples to
read.

If you need to determine the number of channels in the task after initialization, get the
Number of Channels property for the task reference.

Single-Chan Multi-Samp Wfm
Returns a single waveform for the first channel initialized in channel list.

The initialized sample rate must be greater than zero for this poly VI, because each sample in
the array indicates the value of the CAN channel at a specific point in time. In other words,
the sample rate specifies a virtual clock that copies the most recent value from CAN

© National Instruments 7-69 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

messages for each sample time. The changes in sample values from message to message
enable you to view the CAN channel over time, such as for comparison with other CAN or
DAQ input channels.

This VI waits until all samples arrive in time before returning. To avoid internal waiting
within the VI, you can use CAN Get Property.vi to obtain the Number Of Samples
Pending, and pass that as the number of samples to read.

The start time of a waveform indicates the time of the first CAN sample in the array. The delta
time of the waveform indicates the time between each sample in the array, as determined by
the original sample rate.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is to simply
read the most recent sample for a task, use the Single-Chan Single-Samp Dbl type.

If no message has been received since you started the task, the Default Value of the channel
is returned in all entries of the samples waveform.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read.vi (or CAN Start.vi). If no message has been received, the
warning code 3FF62009 hex is returned in error out. If a new message has been received,
the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples to
read.

Multi-Chan Multi-Samp 1D Wfm

Returns an array, one entry for each channel initialized in channel list. Each entry consists of
a single waveform.

The order of channel entries in samples is the same as the order in the original channel list.

The initialized sample rate must be greater than zero for this poly VI, because each sample in
the array of a waveform indicates the value of the CAN channel at a specific point in time. In
other words, the sample rate specifies a virtual clock that copies the most recent value from
CAN messages for each sample time. The changes in sample values from message to message
enable you to view the CAN channel over time, such as for comparison with other CAN or
DAQ input channels.

This VI waits until all samples arrive in time before returning. To avoid internal waiting
within the VI, you can use CAN Get Property.vi to obtain the Number Of Samples
Pending, and pass that as the number of samples to read.

NI-CAN Hardware and Software Manual 7-70 ni.com

Chapter 7 Channel API for LabVIEW

The start time of a waveform indicates the time of the first CAN sample in the array. The delta
time of a waveform indicates the time between each sample in the array, as determined by the
original sample rate.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to
read the most recent samples for a task, use the Multi-Chan Single-Samp 1D Dbl type.

If no message has been received for a channel since you started the task, the Default Value of
the channel is returned in samples.

You can specify channels in channel list that span multiple messages. At each point in time,
a sample from the most recent message is returned for all channels.

You can use error out to determine whether a new message has been received since the
previous call to CAN Read.vi (or CAN Start.vi). If no message has been received for one or
more channels, the warning code 3FF62009 hex is returned in error out. If a new message
has been received for all channels, the success code O is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples
to read.

If you need to determine the number of channels in the task after initialization, get the
Number of Channels property for the task reference.

Single-Chan Multi-Samp 1D Time & Dbl

Returns an array of clusters. Each cluster corresponds to a received message for the first
channel initialized in channel list. Each cluster contains the sample value, and a timestamp
that indicates when the message was received.

To use this type, you must set the initialized mode to Timestamped Input (not Input).

The Timeout property determines whether this VI will wait for the number of samples to
read messages to arrive from the network. The default value of Timeout is zero, but you can
change it using CAN Set Property.vi.

If Timeout is greater than zero, the VI will wait for number of samples to read messages to
arrive. If number of samples to read messages are not received before the Timeout expires,
an error is returned. Timeout is specified as milliseconds.

If Timeout is zero, the VI will not wait for messages, but instead returns samples from the
messages received since the previous call to CAN Read.vi. The number of samples returned
is indicated in the number of samples returned output, up to a maximum of number of

© National Instruments 7-71 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

samples to read messages. If no new message has been received, number of samples
returned is 0, and error out indicates success.

Because the timing of values in samples is determined by when the message is received,
the sample rate input is not used with this poly VI type.

Multi-Chan Multi-Samp 2D Time & Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists of
an array of clusters. Each cluster corresponds to a received message for the channels
initialized in channel list. Each cluster contains the sample value, and a timestamp that
indicates when the message was received.

The order of channel entries in samples is the same as the order in the original channel list.
To use this type, you must set the initialized mode to Timestamped Input (not Input).
You cannot specify channels in channel list that span multiple messages.

The Timeout property determines whether this VI waits for the number of samples to read
messages to arrive from the network. The default value of Timeout is zero, but you can
change it using CAN Set Property.vi.

If Timeout is greater than zero, the VI will wait for number of samples to read messages to
arrive. If number of samples to read messages are not received before the Timeout expires,
an error is returned. Timeout is specified as milliseconds.

If Timeout is zero, the VI will not wait for messages, but instead returns samples from the
messages received since the previous call to CAN Read.vi. The number of samples returned
is indicated in the number of samples returned output, up to a maximum of number of
samples to read messages. If no new message has been received, number of samples
returned is 0, and error out indicates success.

Because the timing of values in samples is determined by when the message is received,
the sample rate input is not used with this poly VI type.

If you need to determine the number of channels in the task after initialization, get the
Number of Channels property for the task reference.

NI-CAN Hardware and Software Manual 7-72 ni.com

Chapter 7 Channel API for LabVIEW

CAN Set Property.vi

Purpose

Set a property for the task, or a single channel within the task. The poly VI selection
determines the property to set.

To select the property, right-click the VI, go to Select Type and select the property by name.
For LabVIEW 7.0 and later, you can right-click the VI and select Visible Items»Poly VI
Selector to select the property from within the diagram.

Format

Inputs

© National Instruments

channel narme

task reference in i TesE kask reference oot
value SET
. PROPETY oo,
errar in (no error) error out

task reference in is the task reference from the previous NI-CAN VI. The
task reference is originally returned from VIs such as CAN Initialize.vi or
CAN Create Message.vi, and then wired through subsequent VIs.

channel name specifies an individual channel within the task. The default
(unwired) value of channel name is empty, which means that the property
applies to the entire task, not a specific channel.

Properties that begin with the word Channel or Message do not apply to the
entire task, but an individual channel or message within the task. For these
channel-specific properties, you must wire the name of a channel from
channel list into the channel name input.

For properties that do not begin with the word Channel or Message,
you must leave channel name unwired (empty).

The poly input value specifies the property value. You select the property
to set as value by selecting the Poly VI type. The data type of value is also
determined by the Poly VI selection. For information on the different
properties provided by CAN Get Property.vi, refer to the Poly VI Types
section in this function reference.

To select the property, right-click the VI, go to Select Type and select the
property by name.Error in describes error conditions occurring before the

7-73 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Outputs

Description

Vlexecutes. If an error has already occurred, the VI returns the value of the
Error in cluster in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

task reference out is the same as task reference in. Wire the task reference
to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

You cannot set a property while the task is running. If you need to change a property prior to
starting the task, you cannot use CAN Init Start.vi. First, call CAN Initialize.vi, followed by
CAN Set Property.vi and then CAN Start.vi. After you start the task, you also can change
a property by calling CAN Stop.vi, followed by CAN Set Property.vi, and then CAN

Start.vi again.

NI-CAN Hardware and Software Manual

7-74 ni.com

Poly VI Types

© National Instruments

Chapter 7 Channel API for LabVIEW

Behavior After Final Output

The Behavior After Final Output property applies only to tasks initialized
with mode of Output, and sample rate greater than zero. The value
specifies the behavior to perform after the final periodic sample is
transmitted.

Behavior After Final Output uses the following values:
Repeat Final Sample

Transmit messages for the final sample(s) repeatedly. The final messages
are transmitted periodically as specified by sample rate.

If there is significant delay between subsequent calls to CAN Write.vi, this
value means that periodic messages continue between CAN Write.vi calls,
and messages with the data of the final sample will be repeated on the
network.

Repeat Final Sample is the default value of the Behavior After Final
Output property.

Cease Transmit
Cease transmit of messages until the next call to CAN Write.vi.

If there is significant delay between subsequent calls to CAN Write.vi, this
value means that periodic messages cease between CAN Write.vi calls,
and the data of the final sample will not be repeated on the network.

Channel Default Value
Sets the default value of the channel in scaled floating-point units.

For information on how the Channel Default Value is used, refer to CAN
Read.vi and CAN Write.vi.

The value of this property is originally set within MAX. If the channel is
initialized directly from a CAN database, the value is 0.0 by default, but it
can be changed using CAN Set Property.vi.

Hardware Master Timebase Rate

Sets the rate (in MHz) of the external clock that is exported to the CAN
card.

7-75 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

The values for this property are:

20 MHz (20 When synchronizing 2 CAN cards or synchronizing a

decimal) CAN card with an E-Series DAQ card, the 20 MHz
master timebase rate is to be used. By default, this
property is set to 20 MHz.

Transmit messages for the final sample(s) repeatedly.
The final messages are transmitted periodically as
specified by sample rate.

10 MHz (10 The master timebase rate should be set to 10 MHz when

decimal) synchronizing a CAN card with an M-Series DAQ card.
The M-Series DAQ card can export a 20 MHz clock but
it does this by using one of its two counters.

If your CAN-DAQ application does not use the 2 DAQ counters then, you
can leave the timebase rate set to 20 MHz (default).

This property can be set either before or after calling CAN Connect
Terminals.vi to connect the RTSI_CLK to Master Timebase. However,
this property must always be called prior to starting the task.

This property is applicable only to PCI and PXI Series 2 cards. For
PCMCIA cards, setting this attribute will return an error. On PXI cards, if
PXI_CLK10 is routed to the Master Timebase, then the rate is fixed at
10 MHz (it over-rides any previous setting of this property). Setting this
property for Series 1 cards will also result in a NI-CAN error.

Hardware Timestamp Format

Sets the format of the timestamps reported by the on-board timer on the
CAN card. The default value for this property is Absolute.

The values for this property are:

0 (Absolute) Sets the timestamp format to absolute. In the absolute
format, the timestamp returned by NI-CAN read
functions is the LabVIEW date/time format (DBL
representing the number of seconds elapsed since
12:00 a.m., Friday, January 1, 1904).

1 (Relative) Sets the timestamp format to relative. In the relative
format, the timestamp returned by the NI-CAN read
functions will be zero based (DBL representing the
number of seconds since the CAN controller for that
task was started).

NI-CAN Hardware and Software Manual 7-76 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

A typical use case for this property would be if data received from two
RTSI synchronized CAN cards is to be correlated. For that use case, this
property must be set to 1 for all of the CAN cards being synchronized.
Setting this property on one port of a 2-port card will also reset the
timestamp of the second port, since resetting the timestamp on the CAN
port involves resetting the on-board timer.

This property should be set prior to starting any tasks on the CAN card.
Interface Baud RateSets the baud rate in use by the interface.
This property applies to all tasks initialized with the Interface.

You can specify the following basic baud rates as the numeric rate: 33333,
83333, 100000, 125000, 200000, 250000, 400000, 500000, 800000, and
1000000.You can specify advanced baud rates as 8000XXYY hex, where YY
is the value of Bit Timing Register 0 (BTRO), and XX is the value of Bit
Timing Register 1 (BTR1) of the CAN controller. For more information,
refer to the Interface Properties dialog in MAX.

The value of this property is originally set within MAX.
Interface Listen Only?

Sets a Boolean value that indicates whether the listen only feature of the
Philips SJA1000 CAN controller is enabled (TRUE) or disabled (FALSE).

This property applies to all tasks initialized with the Interface.

If Interface Listen Only? is False, the Interface can transmit CAN
messages; therefore, CAN Write.vi operates normally. When CAN
messages are received by the Interface, those messages are acknowledged.
Because False is the behavior specified in the CAN specification, it is the
default value of Interface Listen Only?.

If Interface Listen Only? is True, the Interface cannot transmit CAN
messages; therefore, CAN Write.vi returns an error. When CAN messages
are received by the Interface, those messages are not acknowledged. The
Philips SJA1000 CAN controller enters the error passive state when listen
only is enabled (but no error-passive warning is returned). The True value
of Interface Listen Only? enables passive monitoring of network traffic,
which can be useful for debugging scenarios in which only one device
exists on the network.

Since the listen only feature requires the Philips SJA1000 CAN controller,
this property is supported on Series 2 NI CAN hardware only. If you are

7-77 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

using Series 1 NI CAN hardware, an attempt to set this property returns
error nctErrRequiresNewSeries (code BFF6210D hex, status T).

Interface Self Reception?

Specifies whether to echo successfully transmitted CAN frames as received
frames. Each reception occurs just as if the frame were received from
another CAN device. This enables you to initialize the same channels for
both input and output.

For self reception to operate properly, another CAN node must receive and
acknowledge each transmit.

FALSE disables self reception mode (default), and TRUE enables self
reception mode.

The self reception mode is not available on the Intel 82527 CAN controller
used by Series 1 CAN hardware. For Series 1 hardware, this property must
be left at its default (FALSE).

Interface Series 2 Comparator

Specifies the filter comparator for the Philips SJA1000 CAN controller on
all Series 2 CAN hardware. This property is not supported for Series 1
hardware (returns error).

This property specifies a comparator value that is checked against the ID,
RTR, and data bits. The Interface Series 2 Mask determines the applicable
bits for comparison.

The default value of this property is zero.

The mapping of bits in this property to the ID, RTR, and data bits of
incoming frames is determined by the value of the Interface Series 2 Filter
Mode property. The Series 2 filter mode determines the format of this
property as well as the Series 2 mask.

Interface Series 2 Filter Mode

All Series 2 hardware uses the Philips SJA1000 CAN controller. The
Philips SJA1000 CAN controller provides sophisticated filtering of
received frames. This property specifies the filtering mode, which is used
in conjunction with the Interface Series 2 Mask and Interface Series 2
Comparator properties.

This property is not supported for Series 1 hardware (returns error).

NI-CAN Hardware and Software Manual 7-78 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

Since the format of the Series 2 filters is very specific to the Philips
SJA1000 CAN controller, National Instruments cannot guarantee
compatibility for this property on future hardware series. When using this
property in the application, it is best to get the Hardware Series property
to verify that the CAN hardware is Series 2.

The filtering specified by the Series 2 filter properties applies to all input
tasks for that interface. For example, if you specify filters that discard ID 5,
then open an Input task to receive channels of ID 5, the task will not receive
data.

The default value for this property is Single Standard.

The values for this property are summarized below. For detailed
information on each value, including the format of the Interface Series 2
Mask and Interface Series 2 Comparator properties for each mode, refer to
the Series 2 Filter Mode attribute in the ncSetAttr.vi function of the
Frame API.

Single Standard

Filter all standard (11-bit) frames using a single mask/comparator filter.
Single Extended

Filter all extended (29-bit) frames using a single mask/comparator filter.
Dual Standard

Filter all standard (11-bit) frames using a two separate mask/comparator
filters. If either filter matches the frame, it is received. The frame is
discarded only when neither filter detects a match.

Dual Extended

Filter all extended (29-bit) frames using a two separate mask/comparator
filters. If either filter matches the frame, it is received. The frame is
discarded only when neither filter detects a match.

Interface Series 2 Mask

Specifies the filter mask for the Philips SJA1000 CAN controller on all
Series 2 CAN hardware. This property is not supported for Series 1
hardware (returns error).

This property specifies a bit mask that determines the ID, RTR, and data
bits that are compared. If a bit is clear in the mask, the corresponding bit in

7-79 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

the Interface Series 2 Comparator is checked. If a bit in the mask is set,
that bit is ignored for the purpose of filtering (don’t care).

The default value of this property is hex FFFFFFFF, which means that all
messages are received.

The mapping of bits in this property to the ID, RTR, and data bits of
incoming frames is determined by the value of the Interface Series 2 Filter
Mode property. The Series 2 filter mode determines the format of this
property as well as the Series 2 comparator.

Interface Single Shot Transmit?
Specifies whether to retry failed CAN frame transmissions (Series 2 only).

If Interface Single Shot Transmit? is False (default), failed transmissions
retry as defined in the CAN specification. If a CAN frame is not transmitted
successfully, the CAN controller will immediately retry.

If Interface Single Shot Transmit? is True, all transmissions are single
shot. If a CAN frame is not transmitted successfully, the CAN controller
will not retry.

The single-shot transmit feature is not available on the Intel 82527 CAN
controller used by Series 1 CAN hardware (set returns error).

Interface Transceiver External Qutputs

Sets the transceiver external outputs for the interface that was initialized for
the task.

Series 2 XS cards enable connection of an external transceiver. For an
external transceiver, this property allows you to set the output voltage on
the MODEO and MODEI pins of the CAN port, and it allows you control
the sleep mode of the on-board CAN controller chip.

For many models of CAN transceiver, EN and NSTB pins control the
transceiver mode, such as whether the transceiver is sleeping or
communicating normally. For such transceivers, you can wire the EN and
NSTB pins to the MODEQ and MODEI pins of the CAN port.

The default value of this property is 00000003 hex. For many models of
transceiver, this specifies normal communication mode for the transceiver
and CAN controller chip. If the transceiver requires a different
MODEO/MODEI combination for normal mode, you can use external
inverters to change the default S Vto O V.

NI-CAN Hardware and Software Manual 7-80 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

This property is supported for Series 2 XS cards only. This property is not
supported when the Interface Transceiver Type is any value other than
External. To control the mode of an internal transceiver, use the Interface
Transceiver Mode property.

This property uses a bit mask. Use bitwise OR operations to set multiple
values.

00000001 hex MODEQ

Set this bit to drive 5 V on the MODEQO pin. This is the default
value. This bit is set automatically when a remote wakeup is
detected.

Clear this bit to drive 0 V on the MODEQO pin.
00000002 hex MODEI1

Set this bit to drive 5 V on the MODEI pin. This is the default
value. This bit is set automatically when a remote wakeup is
detected.

Clear this bit to drive 0 V on the MODEI pin.
00000100 hex Sleep CAN controller chip

Set this bit to place the CAN controller chip into sleep mode. This
bit controls the mode of the CAN controller chip (sleep or
normal), and the independent MODEO/MODEI bits control the
mode of the external transceiver. When you set this bit to place the
CAN controller into sleep mode, you typically specify
MODEO/MODE] bits that place the external transceiver into sleep
mode as well.

When the CAN controller is asleep, a remote wakeup will
automatically place the CAN controller into its normal mode of
communication. In addition, the MODEO/MODEI] pins are
restored to their default values of 5 V. Therefore, a remote wakeup
causes this property to change from the value that you set for sleep
mode, back to its default 00000003 hex. You can determine when
this has occurred by getting Interface Transceiver External
Outputs using CAN Get Property.vi. For more information on
remote wakeup, refer to the Interface Transceiver Mode
property for internal transceivers.

Clear this bit to place the CAN controller chip into normal
communication mode. If the CAN controller was previously in
sleep mode, this performs a local wakeup to restore
communication.

7-81 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

Interface Transceiver Mode

Sets the transceiver mode for the interface that was initialized for the task.
The transceiver mode controls whether the transceiver is asleep or
communicating, as well as other special modes.

This property is supported on Series 2 cards only.

For Series 2 cards for the PCMCIA form factor, this property requires a
corresponding Series 2 cable (dongle). For information on how to identify
the series of the PCMCIA cable, refer to the Series 2 Vs. Series I section of
Chapter 1, Introduction.

For Series 2 XS cards, this property is not supported when the Interface
Transceiver Type is External. To control the mode of an external
transceiver, use the Interface Transceiver External Outputs property.

The default value for this property is Normal.
This property uses the following values:
Normal

Set transceiver to normal communication mode. If you set Sleep mode
previously, this performs a local wakeup of the transceiver and CAN
controller chip.

Sleep
Set transceiver and the CAN controller chip to sleep (or standby) mode.

If the transceiver supports multiple sleep/standby modes, the NI CAN
hardware implementation ensures that all of those modes are equivalent
with regard to the behavior of the transceiver on the network. For more
information on the physical specifications for normal and sleep modes for
each transceiver, refer to Chapter 3, NI CAN and LIN Hardware.

You can set Sleep mode only while the interface is communicating. If at
least one task for the interface has not been started (such as with CAN
Start.vi), setting the transceiver mode to Sleep will return an error.

When the interface enters sleep mode, communication is not possible until
a wakeup occurs. All pending frame transmissions are deferred until the
wakeup occurs. The transceiver and CAN controller wake from sleep mode
when either a local wakeup or remote wakeup occurs.

NI-CAN Hardware and Software Manual 7-82 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

If you set Sleep mode when the CAN controller is actively transmitting a
frame (that is, won arbitration), the interface will not enter Sleep mode until
the frame is transmitted successfully (acknowledgement detected).

A local wakeup occurs when the application sets the transceiver mode to
Normal (or some other communication mode).

A remote wakeup occurs when a remote node transmits a CAN frame
(referred to as the wakeup frame). The wakeup frame wakes up the
transceiver and CAN controller chip of the NI CAN interface. The wakeup
frame is not received or acknowledged by the CAN controller chip. When
the wakeup frame ends, the NI CAN interface enters Normal mode, and
again receives and transmits CAN frames. If the node that transmitted the
wakeup frame did not detect an acknowledgement (such as if other nodes
were also waking), it will retry the transmission, and the retry will be
received by the NI CAN interface.

For a remote wakeup to occur for Single Wire transceivers, the node that
transmits the wakeup frame must first place the network into the Single
Wire Wakeup Transmission mode by asserting a higher voltage

(typically 12 V). For more information, refer to the Single Wire Wakeup
mode.

When the local or remote wakeup occurs, frame transmissions resume from
the point at which the original Sleep was set.

You can detect when a remote wakeup occurs by using CAN Get
Property.vi with the Interface Transceiver Mode property.

Single Wire Wakeup
Set Single Wire transceiver to Wakeup Transmission mode.
This mode is supported on Single Wire (SW) ports only.

The Single Wire Wakeup Transmission mode drives a higher voltage
level on the network to wake up all sleeping nodes. Other than this
higher voltage, this mode is similar to Normal mode. CAN frames can
be received and transmitted normally.

Since you use the Single Wire Wakeup mode to wake up other nodes
on the network, it is not typically used in combination with Sleep mode
for a given interface.

The timing of how long the wakeup voltage is driven is controlled
entirely by the application. Your application will typically change to
Single Wire Wakeup mode, transmit a wakeup frame, then return to
Normal mode.

7-83 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

The following sequence demonstrates a typical sequence of steps for
sleep and wakeup between two Single Wire NI CAN interfaces. The
sequence assumes that CANO is the sleeping node, and CAN1
originates the wakeup.

1. Start both CANO and CANI1. Both use the default Normal mode.

2. Set Interface Transceiver Mode of CANO to Sleep.

3. Set Interface Transceiver Mode of CANI to Single Wire Wakeup.
4. Write data to CANI1 to transmit a wakeup frame to CANO.

5. Set Interface Transceiver Mode of CAN1 to Normal.

6. Now both CANO and CAN1 are in Normal mode again.

Single Wire High-Speed
Set Single Wire transceiver to High-Speed Transmission mode.
This mode is supported on Single Wire (SW) ports only.

The Single Wire High-Speed Transmission mode disables the internal
waveshaping function of the transceiver, which allows baud rates up to
100 kbytes/s to be used. The disadvantage versus Normal (which allows up
to 40 kbytes/s baud) is degraded EMC performance. Other than the
disabled waveshaping, this mode is similar to Normal mode. CAN frames
can be received and transmitted normally.

This mode has no relationship to High-Speed (HS) transceivers. It is merely
a higher speed mode of the Single Wire (SW) transceiver, typically used for
downloading large amounts of data to a node.

The Single Wire transceiver does not support use of this mode in
conjunction with Sleep mode. For example, a remote wakeup cannot
transition from Sleep to this Single Wire High-Speed mode.

Interface Transceiver Type

For XS software selectable physical layer cards that provide a
software-switchable transceiver, the Interface Transceiver Type property
sets the type of transceiver. When the transceiver is switched from one type
to another, NI-CAN ensures that the switch is undetectable from the
perspective of other nodes on the network.

The default value for this property is specified within MAX. If you change
the transceiver type in MAX to correspond to the network in use, you can
avoid setting this property within the application.

This property applies to all tasks initialized with the same interface.

NI-CAN Hardware and Software Manual 7-84 ni.com

Chapter 7 Channel API for LabVIEW

You cannot set this property for Series 1 hardware, or for Series 2 hardware
other than XS (fixed HS, LS, or SW cards).

This property uses the following values:

High-Speed

Switch the transceiver to High-Speed (HS).
Low-Speed/Fault-Tolerant

Switch the transceiver to Low-Speed/Fault-Tolerant (LS).
Single Wire

Switch the transceiver to Single Wire (SW).

External

Switch the transceiver to External. The External type allows you to
connect a transceiver externally to the interface. For more information on
connecting transceivers externally, refer to Chapter 3, NI CAN and LIN
Hardware.

When this transceiver type is selected, you can use the Transceiver
External Outputs and Transceiver External Inputs properties to access
the external mode and status pins of the connector.

Disconnect

Disconnect the CAN controller chip from the connector. This value is used
when you physically switch an external transceiver. You first set Interface
Transceiver Type to Disconnect, then switch from one external
transceiver to another, then set Interface Transceiver Type to External.
For more information on connecting transceivers externally, refer to
Chapter 3, NI CAN and LIN Hardware.

Interface Virtual Bus Timing

Sets the Virtual Bus Timing of the virtual device.

© National Instruments 7-85 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

Interface Virtual Bus Timing uses the following values:

0 (False) Virtual Bus Timing is turned off. By turning Virtual
Bus Timing off, the CAN bus simulation is disabled
and CAN frames are copied from the write queue of
one virtual interface to the read queue of the second
virtual interface. This setting is useful if you desire to
only convert frames to channels or vice versa and not
simulate actual CAN bus communication.

1 (True) Virtual Bus Timing is turned on (default). By turning
Virtual Bus Timing on, frame timestamps are
recalculated as they transfer across the virtual bus. This
mode is useful when you want the virtual bus to behave
as much like a real bus as possible.

If this property is set on real hardware, an error will be returned.

Virtual Bus Timing has to be set to the same value on both virtual
interfaces. This property must be set prior to starting the virtual interface.
Refer to the Frame to Channel Conversion section of Chapter 6, Using the
Channel API for more information.

Message Multiple Frame Distribution

Sets the Message Multiple Frame Distribution property which is used to
determine if the CAN frames associated to a group of mode dependent
channels are sent even spaced or in burst mode.

Message Multiple Frame Distribution uses the following values:

0 Uniform Uniform distribution transmits mode dependent
messages uniformly (evenly spaced) on the network.

1 Burst Burst distribution transmits mode dependent
messages back to back on the network.This property
applies only to mode dependent channels that are
transmitted periodically. For more information, refer
to the Mode Dependent Channels section of
Chapter 6, Using the Channel API.

NI-CAN Hardware and Software Manual 7-86 ni.com

Chapter 7 Channel API for LabVIEW

Timeout

Sets a time in milliseconds to wait for samples. The default value is zero.

For all task configurations, the Timeout specifies the time that Read will
wait for the start trigger. If the application does not use CAN Connect
Terminals, the start trigger occurs when the task starts (CAN Start). If you
connect a start trigger from a RTSI line or other source, Timeout specifies
the number of milliseconds to wait. Timeout of zero means to wait up to
10 seconds for the start trigger.

Use of the Timeout property depends on the initialized mode of the task:

¢ Output— For each Output task, NI-CAN uses a buffer to store
samples for transmit. If the number of samples that you provide to
CAN Write.vi exceeds the size of the underlying buffer, NI-CAN
waits for sufficient space to become available (due to successful
transmits). The Timeout specifies the number of milliseconds to wait
for available buffer space. Timeout of zero means to wait up to
10 seconds.

e Input— The timeout value does not apply. For Input tasks initialized
with sample rate greater than zero, the number of samples to read
input to CAN Read.vi implicitly specifies the time to wait. For Input
tasks initialized with sample rate equal to zero, the CAN Read.vi VI
always returns available samples immediately, without waiting.

¢ Timestamped Input— A timeout of zero means to return available
samples immediately. A timeout greater than zero means that CAN
Read.vi will wait a maximum of Timeout milliseconds for number of
samples to read samples to become available before returning.

* Output Recent— The timeout value does not apply.

Value for invalid data

Sets the value that is returned on time stamped read for mode dependent
channels that have not been received with the most recent CAN frame
associated with the CAN message. This property applies only to mode
dependent channels that are read with the time stamped read operation.
For more information, refer to the Mode Dependent Channels section of
Chapter 6, Using the Channel API.

© National Instruments 7-87 NI-CAN Hardware and Software Manual

Chapter 7

CAN Start.vi

Channel API for LabVIEW

Purpose

Start communication for the specified task.

Format

Outputs

task reference gl Thsr kask reference aut

. START
errar in (no errar) error auk

CAN Start.vi

task reference in is the task reference from the previous NI-CAN VI. The
task reference is originally returned from VIs such as CAN Initialize.vi or
CAN Create Message.vi, and then wired through subsequent VlIs.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

task reference out is the same as task reference in. Wire the task reference
to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

NI-CAN Hardware and Software Manual 7-88 ni.com

Chapter 7 Channel API for LabVIEW

status is True if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

You must start communication for a task to use CAN Read.vi or CAN Write.vi. After you
start communication, you can no longer change the configuration of the task with CAN Set
Property.vi or CAN Connect Terminals.vi.

© National Instruments 7-89 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

CAN Stop.vi

Purpose

Stop communication for the specified task.

Format

Inputs

Outputs

task reference in i TesE kask referance out

. GTOR
Error in (no error) error ouk

task reference in is the task reference from the previous NI-CAN VI. The
task reference is originally returned from CAN Init Start.vi, CAN
Initialize.vi, or CAN Create Message.vi, and then wired through
subsequent VIs.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

task reference out is the same as task reference in. Wire the task reference
to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.

NI-CAN Hardware and Software Manual 7-90 ni.com

Chapter 7 Channel API for LabVIEW

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description

This VI stops communication so that you can change the configuration of the task, such as by
using CAN Set Property.vi or CAN Connect Terminals.vi. After you change the
configuration, use CAN Start.vi to start again.

This VI does not clear the configuration for the task; therefore, do not use it as the last
NI-CAN VI in the application. CAN Clear.vi must always be the last NI-CAN VI for each
task.

© National Instruments 7-91 NI-CAN Hardware and Software Manual

Chapter 7 Channel API for LabVIEW

CAN Sync Start with NI-DAQ.vi

Purpose

Synchronize and start the specified CAN task and NI-DAQ task.

Format

Inputs

=mo

kask reference in i Thsn kask reference out
RTAI kerminal ginc
error in (no error) Lo errar ouk

MI-Ce) bask ID

task reference in is the task reference from the previous NI-CAN VI. The
task reference is originally returned from VIs such as CAN Initialize.vi or
CAN Create Message.vi.

NI-DAQ task ID is the task ID from an NI-DAQ configuration VI, such as
Al Config or AO Config.

When this VI returns, do not call an NI-DAQ start VI for the task. The
LabVIEW diagram of this VI starts the NI-DAQ task ID for you, so you
can immediately call NI-DAQ read or write VIs.

RTSI terminal specifies the RTSI terminal number to use for the shared
start trigger. This input uses a ring typedef to select terminals from RTSI0
to RTSI6.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

NI-CAN Hardware and Software Manual 7-92 ni.com

Chapter 7 Channel API for LabVIEW

Outputs
task reference out is the same as task reference in. Wire the task reference
to subsequent NI-CAN VIs for this task.
Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.
code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN and NI-DAQ task execute on different NI hardware products. To use the
input/output samples of these tasks together in the application, the NI hardware products must
be synchronized with RTSI terminal connections. Both NI hardware products must use a
common timebase to avoid clock drift, and a common start trigger to start input/output at the
same time.

This VI uses NI-CAN and NI-DAQ RTSI functions to synchronize the NI hardware products
to a common timebase and start trigger, and then it starts sampling on both tasks. The function
used to connect RTSI terminals on the CAN card is CAN Connect Terminals.vi.

When you use this VI to start the tasks, you must use CAN Clear with NI-DAQ.vi to clear
the tasks.

This VI synchronizes a single CAN hardware product to a single NI-DAQ hardware product.
To synchronize multiple CAN cards and/or multiple NI-DAQ cards, refer to CAN Sync Start
Multiple with NI-DAQ.vi.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW
diagram is commented so that you can use the VI as a starting point for more complex
synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the
VI for editing.

The diagram of this VI assumes that the NI-DAQ product is an E Series MIO device. If you
are using a different NI hardware product, refer to the diagram as a starting point.

The diagram of this VI issues the start trigger immediately. To implement more complex
triggering, such as using an Al trigger to start, refer to the diagram as a starting point.

© National Instruments 7-93 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

CAN Sync Start with NI-DAQmXx.vi

Purpose
Synchronize and start the specified CAN task and NI-DAQmx task.

Format

Inputs

] B

g

kask reference oot
Synchronizakion ouk
E=grror ouk

DADQMx bask oot

task reference in
RTSI kerminal

Errar in (no error)
DA kask in

task reference in is the task reference from the previous NI-CAN VI. The
task reference is originally returned from VIs such as CAN Initialize.vi or
CAN Create Message.vi.

NI-DAQmx task in is the task ID from an NI-DAQmzx configuration VI,
such as DAQmx Create Virtual Channel. When this VI returns, do not call
an NI-DAQmx Start Task VI for the task. The LabVIEW diagram of this
VI starts the NI-DAQmx task for you, so you can immediately call
NI-DAQmx read or write VIs.

RTSI terminal specifies the RTSI terminal number to use for the shared
start trigger. This input uses a ring typedef to select terminals from RTSI0
to RTSI6.

Error in describes error conditions occurring before the VI executes. If an
error has already occurred, the VI returns the value of the Error in cluster
in Error out.

status is True if an error occurred. If status is True, the VI does
not perform any operations.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

NI-CAN Hardware and Software Manual 7-94 ni.com

© National Instruments

Chapter 7 Channel API for LabVIEW

task reference out is the same as task reference in. Wire the task reference
to subsequent NI-CAN VIs for this task.

Synchronization out defines a cluster with information about the signals
that have been routed between the cards and about additional DAQmx tasks
that may have been created for synchronization.

Counter task out is the task from an NI-DAQmx Create Virtual
Channel VI. This additional NI-DAQmx task is created under
certain circumstances to generate a common timebase clock for
cards that do not support sharing of timebases through RTSI
(like DAQ cards or NI-CAN Series 1 cards).

Routes out is a 1-dimensional array of terminal names of signals
that have been routed between the cards.

Source terminal is the name of the terminal where the
route starts.

Destination terminal is the name of the terminal where
the route ends.

Error out describes error conditions. If the Error in cluster indicated an
error, the Error out cluster contains the same information. Otherwise,
Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0
means success. A negative value means error: VI did not execute
the intended operation. A positive value means warning: VI
executed intended operation, but an informational warning is
returned. For a description of the code, wire the error cluster to a
LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

7-95 NI-CAN Hardware and Software Manual

Chapter 7

Channel API for LabVIEW

Description

The CAN and NI-DAQmx tasks execute on different NI hardware products. To use the
input/output samples of these tasks together in the application, the NI hardware products must
be synchronized with RTSI terminal connections. Both NI hardware products must use a
common timebase to avoid clock drift, and a common start trigger to start input/output at the
same time.

This VI uses NI-CAN and NI-DAQmx RTSI functions to synchronize the NI hardware
products to a common timebase and start trigger, and then it starts sampling on both tasks.
The function used to connect RTSI terminals on the CAN card is CAN Connect
Terminals.vi.

When you use this VI to start the tasks, you must use CAN Clear with NI-DAQmx.vi to clear
the tasks.

This VI synchronizes a single CAN hardware product to a single NI-DAQ