

 NI-9853

https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/c-series/NI-9853?aw_referrer=pdf

CAN

NI-CAN
TM

 Hardware and Software Manual

NI-CAN Hardware and Software Manual

May 2017

370289T-01

Support

Worldwide Technical Support and Product Information

ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information,

support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on National Instruments

documentation, refer to the National Instruments Web site at ni.com/info and enter the Info Code feedback.

© 1996–2017 National Instruments. All rights reserved.

 Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version, refer to
ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS OR IMPLIED
WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY
ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to substantially conform to
the applicable NI published specifications for one (1) year from the date of invoice.

For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially in accordance
with the applicable documentation provided with the software and (ii) the software media will be free from defects in materials and
workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair or replace the affected
product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be warranted for the remainder of the original warranty
period or ninety (90) days, whichever is longer. If NI elects to repair or replace the product, NI may use new or refurbished parts or products that are
equivalent to new in performance and reliability and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for examining and testing
Hardware not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance, installation, repair, or calibration
(performed by a party other than NI); unauthorized modification; improper environment; use of an improper hardware or software key; improper use
or operation outside of the specification for the product; improper voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other
act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL APPLY EVEN IF
SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND AND NI
DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE PRODUCTS, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY
WARRANTIES THAT MAY ARISE FROM USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE OPERATION OF THE
PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the warranty terms in the
separate agreement shall control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

• Notices are located in the <National Instruments>_Legal Information and <National Instruments> directories.

• EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.

• Review <National Instruments>_Legal Information.txt for information on including legal information in installers built with NI
products.

U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication, reproduction, release,
modification, disclosure or transfer of the technical data included in this manual is governed by the Restricted Rights provisions under Federal
Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal Acquisition Regulation Supplement Section 252.227-7014 and
252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.

CANopen® is a registered Community Trademark of CAN in Automation e.V.

DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.

Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology and vernier.com are
trademarks or trade dress.

Xilinx is the registered trademark of Xilinx, Inc.

Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.

FireWire® is the registered trademark of Apple Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered trademarks, and TargetBox™ and
Target Language Compiler™ are trademarks of The MathWorks, Inc.

Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.

The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under license.

The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United
States and other countries.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance
policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND RELIABILITY OF THE
PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR APPLICATION, INCLUDING THE
APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING IN THE OPERATION OF
NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING
SYSTEMS OR SUCH OTHER MEDICAL DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR
SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST FAILURES,
INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES.

 Compliance

Electromagnetic Compatibility Information
This hardware has been tested and found to comply with the applicable regulatory requirements and limits for electromagnetic

compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)1. These requirements and limits are
designed to provide reasonable protection against harmful interference when the hardware is operated in the intended
electromagnetic environment. In special cases, for example when either highly sensitive or noisy hardware is being used in close
proximity, additional mitigation measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee that interference will

not occur in a particular installation. To minimize the potential for the hardware to cause interference to radio and television
reception or to experience unacceptable performance degradation, install and use this hardware in strict accordance with the

instructions in the hardware documentation and the DoC1.

If this hardware does cause interference with licensed radio communications services or other nearby electronics, which can be
determined by turning the hardware off and on, you are encouraged to try to correct the interference by one or more of the
following measures:

• Reorient the antenna of the receiver (the device suffering interference).

• Relocate the transmitter (the device generating interference) with respect to the receiver.

• Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC requirements for
special EMC environments such as, for marine use or in heavy industrial areas. Refer to the hardware’s user documentation and

the DoC1 for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to disturbances or may
cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to correct the
interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to operate the hardware
under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions for the user or
installer. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line,
and click the appropriate link in the Certification column.

© National Instruments vii NI-CAN Hardware and Software Manual

Contents

About This Manual
PCI-CAN ...xvii

PXI-846x ..xvii

PCMCIA-CAN ..xvii

USB-CAN..xviii

USB-LIN..xviii

Related Documentation..xix

Chapter 1
Introduction

CAN Overview ..1-1

Simplified CAN Data Frame ...1-1

LIN Overview ..1-2

NI CAN Hardware Overview ..1-2

About the NI CAN Series 2 Hardware ..1-2

Series 2 Vs. Series 1 ..1-4

PCI and PXI ..1-6

PCMCIA ...1-7

PCMCIA Cables ...1-7

About the USB-847x Hardware...1-8

CAN: USB-8472, USB-8472s, USB-8473, USB-8473s...................1-8

LIN: USB-8476, USB-8476s ..1-9

NI-CAN Software Overview ...1-9

MAX..1-9

Frame API ...1-10

Channel API ..1-10

Chapter 2
Installation and Configuration

Safety Information ...2-1

Measurement & Automation Explorer (MAX) ...2-3

Verify Installation of CAN and LIN Hardware ...2-3

Configure CAN and LIN Ports..2-4

CAN Channels...2-4

LabVIEW Real-Time (RT) Configuration ..2-5

PXI System..2-6

CompactRIO System...2-6

Contents

NI-CAN Hardware and Software Manual viii ni.com

Tools .. 2-7

Using NI-CAN with NI-DNET ... 2-7

Chapter 3
NI CAN and LIN Hardware

Philips SJA1000 CAN Controller ... 3-1

PCI-CAN ... 3-2

High-Speed Physical Layer... 3-2

Transceiver ... 3-2

Bus Power Requirements.. 3-2

VBAT Jumper... 3-2

Low-Speed/Fault-Tolerant Physical Layer ... 3-4

Transceiver ... 3-4

Bus Power Requirements.. 3-5

VBAT Jumper... 3-5

Low-Speed/Fault-Tolerant VBAT Jumper Settings 3-6

Single Wire Physical Layer... 3-7

Transceiver ... 3-7

Bus Power Requirements.. 3-7

VBAT Jumper... 3-8

XS Software Selectable Physical Layer.. 3-8

 RTSI ... 3-9

PXI-846x.. 3-11

High-Speed Physical Layer... 3-11

Transceiver ... 3-11

Bus Power Requirements.. 3-11

VBAT Jumper... 3-11

Low-Speed/Fault-Tolerant Physical Layer ... 3-13

Transceiver ... 3-13

Bus Power Requirements.. 3-13

VBAT Jumper... 3-14

Single Wire Physical Layer... 3-15

Transceiver ... 3-15

Bus Power Requirements.. 3-16

VBAT Jumper... 3-16

XS Software Selectable Physical Layer.. 3-16

 PXI Trigger Bus (RTSI)... 3-18

PCMCIA-CAN.. 3-20

PCMCIA-CAN High-Speed Cables.. 3-20

Transceiver ... 3-20

Bus Power Requirements.. 3-20

Contents

© National Instruments ix NI-CAN Hardware and Software Manual

PCMCIA-CAN Low-Speed/Fault-Tolerant Cables ..3-21

Transceiver..3-21

Bus Power Requirements ..3-21

PCMCIA-CAN Single Wire Cables..3-22

Transceiver..3-22

Bus Power Requirements ..3-22

Synchronization ..3-23

USB-CAN..3-25

USB-8473/USB-8473s: High-Speed Physical Layer3-25

Transceiver..3-26

Bus Power Requirements ..3-26

LED Indicators ..3-26

USB-8472/USB-8472s: Low-Speed/Fault-Tolerant Physical Layer...............3-27

Transceiver..3-27

Bus Power Requirements ..3-27

LED Indicators ..3-28

USB-LIN..3-28

USB-8476/USB-8476s: LIN ...3-28

Transceiver..3-28

Bus Power Requirements ..3-28

LED Indicators ..3-29

Synchronization in USB-CAN/LIN Devices ...3-29

CAN for CompactRIO ...3-32

What is CompactRIO?...3-32

NI 985x ..3-32

Chapter 4
Connectors and Cables

High-Speed CAN Pinout Cable ...4-1

High-Speed PCI, PXI, and USB Connector Pinout...4-1

PCMCIA Connector Pinout ..4-2

Cabling Requirements for High-Speed CAN....................................4-4

Cable Lengths ...4-4

Number of Devices ...4-5

Cable Termination...4-5

Cabling Example...4-6

Low-Speed/Fault-Tolerant CAN Pinout Cable..4-6

Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout4-6

PCMCIA Connector Pinout PCMCIA Connector Pinout.................4-8

Cabling Requirements for Low-Speed/Fault-Tolerant CAN4-9

Number of Devices ...4-10

Termination...4-10

Contents

NI-CAN Hardware and Software Manual x ni.com

Determining the Necessary Termination Resistance for the

Board.. 4-10

Software Selectable Termination (USB-8472s only) 4-13

Replacing the Termination Resistors on Your PCI-CAN/LS

Board.. 4-13

Replacing the Termination Resistors on the PXI-8460 Board 4-15

Replacing the Termination Resistors on the PCMCIA-CAN/LS Cable 4-16

Cabling Example .. 4-17

Single Wire CAN Pinout Cable... 4-17

Single Wire PCI and PXI Connector Pinout ... 4-17

PCMCIA-CAN Connector Pinout .. 4-19

Cabling Requirements for Single Wire CAN ... 4-20

Cable Length... 4-20

Number of Devices ... 4-20

Termination (Bus Loading) .. 4-20

Cabling Example .. 4-21

XS CAN Pinout Cable... 4-21

XS PCI and PXI Connector Pinout ... 4-21

Cabling Requirements for XS CAN.. 4-23

External Transceiver Example.. 4-24

LIN .. 4-24

USB-LIN Connector Pinout.. 4-24

Cabling Requirements for LIN Specifications (LIN) 4-26

Cable Specifications ... 4-26

Cable Lengths ... 4-26

Number of Devices ... 4-26

Termination .. 4-26

Chapter 5
Application Development

Choose the Programming Language ... 5-1

LabVIEW .. 5-1

LabWindows/CVI ... 5-2

Visual C++ 6 ... 5-2

Borland C/C++.. 5-3

Microsoft Visual Basic.. 5-4

Other Programming Languages .. 5-4

Choose Which API To Use ... 5-6

Contents

© National Instruments xi NI-CAN Hardware and Software Manual

Chapter 6
Using the Channel API

Choose Source of Channel Configuration ...6-1

Already Have a CAN Database File?..6-2

Application Uses a Subset of Channels? ...6-2

Import CAN Database into MAX..6-2

Access CAN Database within Application..6-3

User Must Create within Application? ..6-3

Use Create Message Function in Application ...6-3

Create in MAX ..6-4

Channel API Basic Programming Model ..6-4

Init Start ...6-5

Read...6-6

sample rate = 0 ..6-6

sample rate > 0 ..6-7

Read Timestamped ..6-8

Write ..6-8

sample rate = 0 ..6-9

sample rate > 0, Output mode ...6-9

sample rate > 0, Output Recent mode ...6-10

Clear ..6-10

Channel API Additional Programming Topics..6-11

Get Names ...6-11

Synchronization...6-11

Set Property ...6-12

Frame to Channel Conversion ...6-12

When Should I Use Frame to Channel Conversion?.......................................6-13

Logging ...6-13

CompactRIO ...6-14

Development without CAN Hardware..6-15

Database Queries...6-15

Enhance an Existing Frame API Application6-15

USB-847x..6-15

Virtual Bus Timing..6-16

Limitations...6-17

Programming Model for Virtual Bus Timing Disabled6-21

Mode Dependent Channels ..6-23

Mode Dependent Channels in MAX ...6-24

Contents

NI-CAN Hardware and Software Manual xii ni.com

Chapter 7
Channel API for LabVIEW

Section Headings ... 7-1

List of VIs.. 7-1

CAN Clear.vi ... 7-4

CAN Clear with NI-DAQ.vi.. 7-6

CAN Clear with NI-DAQmx.vi .. 7-8

CAN Clear Multiple with NI-DAQ.vi... 7-10

CAN Clear Multiple with NI-DAQmx.vi.. 7-12

CAN Connect Terminals.vi ... 7-14

CAN Create Message.vi .. 7-24

CAN Create MessageEx.vi.. 7-30

CAN Disconnect Terminals.vi .. 7-37

CAN Get Names.vi.. 7-39

CAN Get Property.vi ... 7-42

CAN Initialize.vi ... 7-55

CAN Init Start.vi ... 7-59

CAN Read.vi ... 7-65

CAN Set Property.vi.. 7-73

CAN Start.vi .. 7-88

CAN Stop.vi .. 7-90

CAN Sync Start with NI-DAQ.vi.. 7-92

CAN Sync Start with NI-DAQmx.vi... 7-94

CAN Sync Start Multiple with NI-DAQ.vi... 7-97

CAN Sync Start Multiple with NI-DAQmx.vi.. 7-100

CAN Write.vi .. 7-103

Chapter 8
Channel API for C

Section Headings ... 8-1

Data Types... 8-1

List of Functions.. 8-2

nctClear.. 8-4

nctConnectTerminals... 8-5

nctCreateMessage.. 8-15

nctCreateMessageEx ... 8-20

nctDisconnectTerminals .. 8-26

nctGetNames ... 8-28

nctGetNamesLength .. 8-31

nctGetProperty... 8-33

nctInitialize .. 8-44

nctInitStart ... 8-47

Contents

© National Instruments xiii NI-CAN Hardware and Software Manual

nctRead ..8-53

nctReadTimestamped...8-57

nctSetProperty..8-60

nctStart ...8-75

nctStop ...8-76

nctWrite ...8-77

Chapter 9
Using the Frame API

Choose Which Objects To Use ..9-1

Using CAN Network Interface Objects...9-1

Using LIN Network Interface Objects ..9-2

Using CAN Objects...9-3

Frame API Basic Programming Model for CAN ..9-4

Frame API Basic Programming Model for LIN ..9-7

LIN Interface as Bus Monitor..9-7

LIN Interface as Master...9-10

LIN Interface as Slave Device...9-14

LIN Interface Accesses Single Subscribing Slave Device9-17

LIN Interface Accesses Single Publishing Slave Device9-20

LIN Interface Sleep and Wakeup Behavior...9-23

Frame API Additional Programming Topics...9-25

 RTSI ...9-25

Remote Frames..9-25

Using Queues...9-26

State Transitions ..9-26

Empty Queues ...9-26

Full Queues..9-27

Disabling Queues...9-27

Using the CAN Network Interface Object with CAN Objects........................9-27

Detecting State Changes..9-29

Frame to Channel Conversion ...9-29

Differences between CAN and LIN ..9-30

Chapter 10
Frame API for LabVIEW

Section Headings ...10-1

List of VIs ..10-2

ncAction.vi...10-4

ncClose.vi ..10-8

ncConfigCANNet.vi ..10-10

ncConfigCANNetRTSI.vi..10-15

Contents

NI-CAN Hardware and Software Manual xiv ni.com

ncConfigCANObj.vi.. 10-19

ncConfigCANObjRTSI.vi ... 10-27

ncConnectTerminals.vi.. 10-32

ncDisconnectTerminals.vi ... 10-41

ncGetAttr.vi ... 10-43

ncGetHardwareInfo.vi ... 10-58

ncGetTimer.vi.. 10-63

ncOpen.vi... 10-65

ncReadNet.vi ... 10-68

ncReadNetMult.vi ... 10-79

ncReadObj.vi ... 10-90

ncReadObjMult.vi ... 10-93

ncSetAttr.vi.. 10-96

ncWaitForState.vi .. 10-125

ncWriteNet.vi .. 10-129

ncWriteNetMult.vi... 10-137

ncWriteObj.vi .. 10-149

Chapter 11
Frame API for C

Section Headings ... 11-1

Data Types... 11-2

List of Functions.. 11-3

ncAction .. 11-5

ncCloseObject.. 11-8

ncConfig .. 11-9

ncConnectTerminals.. 11-30

ncCreateNotification.. 11-40

ncDisconnectTerminals ... 11-45

ncGetAttribute ... 11-47

ncGetHardwareInfo ... 11-62

ncOpenObject .. 11-67

ncRead ... 11-69

ncReadMult ... 11-82

ncSetAttribute.. 11-84

ncStatusToString ... 11-113

ncWaitForState .. 11-116

ncWrite .. 11-119

ncWriteMult .. 11-127

Contents

© National Instruments xv NI-CAN Hardware and Software Manual

Appendix A
Troubleshooting and Common Questions

Troubleshooting with the Measurement & Automation Explorer (MAX)A-1

Troubleshooting Self Test Failures..A-2

Common Questions..A-3

Appendix B
Summary of the CAN Standard

History and Use of CAN..B-1

CAN Identifiers and Message Priority...B-2

CAN Frames ..B-3

CAN Error Detection and Confinement ..B-5

Low-Speed CAN..B-8

Appendix C
Summary of the LIN Standard

History and Use of LIN ...C-1

LIN Frame Format ...C-1

LIN Bus Timing...C-4

LIN Topology and Behavior..C-5

LIN Error Detection and Confinement ..C-6

LIN Sleep and Wakeup..C-6

Advanced Frame Types ...C-7

Additional LIN Information...C-8

Appendix D
Frame Types for CAN and LIN Hardware

Appendix E
Specifications

PCI-CAN Series 2..E-1

PXI-846x Series 2 ..E-4

PCMCIA-CAN Series 2...E-7

USB-CAN and USB-LIN ..E-10

Contents

NI-CAN Hardware and Software Manual xvi ni.com

Appendix F
NI-XNET Compatibility for NI-CAN

Overview and Purpose... F-1

Installation and Configuration... F-1

Limitations... F-3

Broken Compatibility .. F-3

Appendix G
NI Services

Glossary

Index

© National Instruments xvii NI-CAN Hardware and Software Manual

About This Manual

Use the NI-CAN Software and Hardware Installation Guide included with

your kit to install and configure the NI-CAN hardware and software. Use

this manual to learn the basics of NI-CAN, as well as how to develop an

application.

This manual contains specific programmer reference information about

each NI-CAN function and VI.

This manual also describes the hardware features. Unless otherwise noted,

this manual applies to the NI CAN Series 2 products, which include the

following.

PCI-CAN

• PCI-CAN Series 2 (High-Speed; 1 port)

• PCI-CAN/2 Series 2 (High-Speed; 2 ports)

• PCI-CAN/LS Series 2 (Low-Speed/Fault-Tolerant; 1 port)

• PCI-CAN/LS2 Series 2 (Low-Speed/Fault-Tolerant; 2 ports)

• PCI-CAN/XS Series 2 (Software Selectable; 1 port)

• PCI-CAN/XS2 Series 2 (Software Selectable; 2 ports)

PXI-846x

• PXI-8461 Series 2 (High-Speed; 1 or 2 ports)

• PXI-8460 Series 2 (Low-Speed/Fault-Tolerant; 1 or 2 ports)

• PXI-8464 Series 2 (Software Selectable; 1 or 2 ports)

PCMCIA-CAN

• PCMCIA-CAN Series 2 (High-Speed; 1 port)

• PCMCIA-CAN/2 Series 2 (High-Speed; 2 ports)

• PCMCIA-CAN/LS Series 2 (Low-Speed/Fault-Tolerant; 1 port)

• PCMCIA-CAN/LS2 Series 2 (Low-Speed/Fault-Tolerant; 2 port)

• PCMCIA-CAN/SW Series 2 (Single Wire; 1 port)

About This Manual

NI-CAN Hardware and Software Manual xviii ni.com

• PCMCIA-CAN/HS/LS Series 2 (1 port High-Speed,

1 port Low-Speed/Fault-Tolerant)

• PCMCIA-CAN/HS/SW Series 2 (1 port High-Speed,

1 port Single Wire)

USB-CAN

• USB-8473 (High-Speed CAN; 1 port)

• USB-8473s (High-Speed CAN; 1 port, with Synchronization)

• USB-8472 (Low-Speed CAN; 1 port)

• USB-8472s (Low-Speed CAN; 1 port, with Synchronization)

USB-LIN

• USB-8476 (LIN; 1 port)

• USB-8476s (LIN; 1 port, with Synchronization)

NI-CAN hardware products that pre-date the Series 2 product line are now

referred to as Series 1. NI CAN Series 2 products contain several

enhancements over Series 1 products, including the Philips SJA1000 CAN

controller, improved RTSI synchronization features, updated CAN

transceivers, and XS Software Selectable hardware for PCI and PXI.

NI-CAN software continues to fully support Series 1 hardware. However,

some advanced features are available only with Series 2 hardware. For

instance, with PCMCIA, both the card and the cable must be Series 2 to use

the advanced features. For a complete description of the differences

between Series 1 and Series 2 NI CAN hardware, refer to the Series 2 Vs.

Series 1 section of Chapter 1, Introduction.

To obtain complete documentation of NI CAN Series 1 hardware, refer to

the previous version of the NI-CAN Hardware and Software Manual,

part number 370289x-01, where x is the letter preceding the one used

in this manual. The previous version of this manual is available at

ni.com/manuals.

About This Manual

© National Instruments xix NI-CAN Hardware and Software Manual

Related Documentation

The following documents contain information that you might find helpful

as you read this manual:

• ANSI/ISO Standard 11898-1993, Road Vehicles—Interchange of

Digital Information—Controller Area Network (CAN) for High-Speed

Communication

• ANSI/ISO Standard 11519-1, 2 Road Vehicles—Low Speed Serial

Data Communications, Part 1 and 2

• CAN Specification Version 2.0, 1991, Robert Bosch GmbH., Postfach

106050, D-70049 Stuttgart 1

• CiA Draft Standard 102, Version 2.0, CAN Physical Layer for

Industrial Applications

• CompactPCI Specification, Revision 2.0, PCI Industrial Computers

Manufacturers Group

• DeviceNet Specification, Version 2.0, Open DeviceNet Vendor

Association

• PXI Hardware Specification, Revision 2.1, National Instruments

Corporation

• PXI Software Specification, Revision 2.1, National Instruments

Corporation

• LabVIEW Online Reference

• Measurement and Automation Explorer (MAX) Online Reference

• Microsoft Win32 Software Development Kit (SDK) Online Help

• SAE J2411, Single Wire CAN Recommended Practices

© National Instruments 1-1 NI-CAN Hardware and Software Manual

1
Introduction

This chapter provides an introduction to the Controller Area Network

(CAN), the Local Interconnect Network (LIN), and the National

Instruments products for CAN and LIN.

CAN Overview

The data frame is the fundamental unit of data transfer on a CAN network.

Figure 1-1 shows a simplified view of the CAN data frame.

Figure 1-1. CAN Data Frame

Simplified CAN Data Frame
When multiple CAN devices transmit a frame at the same time, the

identifier (ID) resolves the collision. The highest priority ID continues, and

the lower priority IDs retry immediately afterward. The ISO 11898 CAN

standard specifies two ID formats: the standard format of 11 bits and the

extended format of 29 bits.

The ID is followed by a length code that specifies the number of data bytes

in the frame. The length ranges from 0 to 8 data bytes. The ID value

determines the meaning of the data bytes.

In addition to the data frame, the CAN standard specifies the remote frame.

The remote frame includes the ID, but no data bytes. A CAN device

transmits the remote frame to request that another device transmit the

associated data frame for the ID. In other words, the remote frame provides

a mechanism to poll for data.

The preceding information provides a simplified description of CAN frames.

The CAN frame format includes many other fields, such as for error checking

and acknowledgement. For more detailed information on the ISO 11898

CAN standard, refer to Appendix B, Summary of the CAN Standard.

Identifier Length Data

Chapter 1 Introduction

NI-CAN Hardware and Software Manual 1-2 ni.com

LIN Overview

The LIN bus uses a Master/Slave approach, comprised of a LIN Master and

one or more LIN Slaves. Figure 1-2 shows a simplified view of the LIN

message frame.

Figure 1-2. LIN Message Frame

The message header consists of a break used to identify the start of the

frame and the sync field used by the slave node for clock synchronization.

The identifier (ID) consists of a 6-bit message ID and a 2-bit parity field.

The ID denotes a specific message address, but not the destination. Upon

reception and interpretation of the ID one slave will begin the message

response. The message response consists of 1–8 bytes of data and an 8-bit

checksum.

The sequencing of message frames is controlled by the master and is fixed

in a schedule. The schedule may be changed as needed.

The proceeding information provides a simplified description of the LIN

message frame. For more details on the LIN message frame and on the LIN

specification, refer to Appendix C, Summary of the LIN Standard.

NI CAN Hardware Overview

This section describes the NI CAN and LIN hardware.

About the NI CAN Series 2 Hardware
NI CAN Series 2 hardware and the NI-CAN software package provide an

easy and powerful way to use a desktop or notebook PC to interface to a

CAN bus. The hardware features the Philips SJA1000 CAN controller,

which is CAN 2.0B compatible and supports a variety of transfer rates up

to 1 Mbps. All NI CAN Series 2 hardware uses the Intel 386EX embedded

processor to implement time-critical features provided by the NI-CAN

software. NI CAN Series 2 hardware supports High-Speed and

Break Sync Identifier Data Checksum

Message ResponseMessage Header

Chapter 1 Introduction

© National Instruments 1-3 NI-CAN Hardware and Software Manual

Low-Speed/Fault-Tolerant physical layers, which fully conform to the

ISO 11898 physical layer specification for CAN. In addition, NI CAN

Series 2 hardware supports Single Wire CAN.

PCI-CAN Series 2 hardware supports the Real-Time System Integration

(RTSI) bus as a way to synchronize multiple interface cards in a system by

sharing common timing and triggering signals.

PXI-846x Series 2 hardware supports the PXI trigger bus as a way to

synchronize multiple interface cards in a system by sharing common timing

and triggering signals.

PCMCIA-CAN Series 2 cards provide a way to synchronize multiple

devices by using the PCMCIA-CAN Synchronization cable to externally

connect to shared timing and triggering signals. For more information

about the synchronization capabilities of the NI CAN Series 2 hardware,

refer to the RTSI section, the PXI Trigger Bus (RTSI) section, or the

Synchronization section of Chapter 3, NI CAN and LIN Hardware, for the

appropriate hardware type.

PCI-CAN Series 2 hardware is software configurable and compliant with

the PCI Local Bus Specification. It features the National Instruments MITE

bus interface chip that connects the card to the PCI I/O bus. With a

PCI-CAN Series 2 card, you can make the PC-compatible computer with

PCI Local Bus slots communicate with and control CAN devices.

PXI-846x Series 2 hardware is software configurable and compliant with

the PXI Specification and the CompactPCI Specification. It features the

National Instruments MITE bus interface chip that connects the card to the

PXI or CompactPCI I/O bus. With a PXI-846x Series 2 card, you can make

the PXI or CompactPCI chassis communicate with and control CAN

devices.

PCMCIA-CAN Series 2 hardware is a 16-bit, Type II PC Card that is

software configurable and compliant with the PCMCIA standards for

16-bit PC Cards. With a PCMCIA-CAN Series 2 card, you can make the

PC-compatible notebook with PCMCIA slots communicate with and

control CAN devices.

Chapter 1 Introduction

NI-CAN Hardware and Software Manual 1-4 ni.com

Series 2 Vs. Series 1
The technical information in this manual applies to the NI CAN Series 2

hardware. You can easily identify the series of the NI CAN hardware by

looking at the label. Use Figure 1-3, Figure 1-4, Figure 1-5, and Figure 1-6

to determine if the hardware is Series 1 or Series 2. If the label does not

indicate Series 2, the hardware is Series 1. For complete documentation of

NI CAN Series 1 hardware, refer to ni.com/manuals and search for the

part number 370289E-01 to access the October 2002 edition of the NI-CAN

Hardware and Software Manual.

Figure 1-3. NI PCI-CAN Hardware Series 1 and 2 Labels

Figure 1-4. NI PXI-CAN Hardware Series 1 and 2 Labels

NI PCI-CAN
Series 2

®

Series 2

Chapter 1 Introduction

© National Instruments 1-5 NI-CAN Hardware and Software Manual

Figure 1-5. NI PCMCIA-CAN Hardware Series 1 and 2 Labels

Figure 1-6. NI PCMCIA-CAN Series 1 and 2 Cables

NI PCMCIA-CAN
Series 2

PCMCIA-CAN
with high & low speed CAN support

J2

J1

CAN (Internal Pwr), PORT 1

V-

C_L
SH

C_H
V+

J2

J1

CAN/HS Series 2, Port 1

V-

SH

C_H

C_L

V+

Chapter 1 Introduction

NI-CAN Hardware and Software Manual 1-6 ni.com

The hardware series is also displayed in MAX, as shown in Figure 1-7.

Figure 1-7. Hardware Series Displayed in MAX

The new and improved features supported only by NI CAN Series 2

hardware include:

PCI and PXI
• Philips SJA1000 CAN controller. Series 1 hardware supported the

Intel 82527 CAN controller. For more specific information about the

SJA1000 CAN controller, refer to the Philips SJA1000 CAN

Controller section of Chapter 3, NI CAN and LIN Hardware.

• Improved RTSI synchronization features. For more information about

the synchronization capabilities of the NI CAN Series 2 hardware,

refer to the RTSI section, the PXI Trigger Bus (RTSI) section, or the

Synchronization section of Chapter 3, NI CAN and LIN Hardware,

for the appropriate hardware type.

• Single Wire CAN support.

• XS Software selectable physical layer hardware. This feature allows

you to easily configure a CAN port in software to be a High-Speed,

Low-Speed/Fault-Tolerant, Single Wire, or external transceiver

interface.

Chapter 1 Introduction

© National Instruments 1-7 NI-CAN Hardware and Software Manual

• Upgraded CAN transceivers. High-speed hardware uses the Philips

TJA1041 transceiver; Low-Speed/Fault-Tolerant hardware uses the

Philips TJA1054A transceiver. Both transceivers have increased

voltage tolerance and improved EMC performance over their NI CAN

Series 1 predecessors.

• Internally powered physical layer with independent jumper option for

controlling the VBAT transceiver input pin either internally or

externally. This means High-Speed and Low-Speed/Fault-Tolerant

hardware is fully functional by default without supplying any bus

power. A jumper option exists to select the source for the VBAT

transceiver pin between internal (default) or external. Note that Single

Wire CAN requires external bus power.

PCMCIA
• Philips SJA1000 CAN controller. Series 1 hardware supported the

Intel 82527 CAN controller. For more specific information about the

SJA1000 CAN controller, refer to the Philips SJA1000 CAN

Controller section of Chapter 3, NI CAN and LIN Hardware.

• Synchronization capability for PCMCIA hardware. For more

information about PCMCIA synchronization, refer to the

Synchronization section of Chapter 3, NI CAN and LIN Hardware.

• Improved performance and reduced power consumption. For more

information, refer to Appendix C, Summary of the LIN Standard.

PCMCIA Cables
• Single Wire CAN support.

• Upgraded CAN transceivers. High-speed hardware uses the Philips

TJA1041 transceiver; Low-Speed/Fault-Tolerant hardware uses the

Philips TJA1054A transceiver. Both transceivers have increased

voltage tolerance and improved EMC performance over their NI CAN

Series 1 predecessors.

• Internally powered physical layer for High-Speed and

Low-Speed/Fault Tolerant. This means High-Speed and

Low-Speed/Fault-Tolerant hardware is fully functional by default

without supplying any bus power. Note that Single Wire CAN requires

external bus power.

Chapter 1 Introduction

NI-CAN Hardware and Software Manual 1-8 ni.com

• NI-CAN 2.2 is required for full functionality of the PCMCIA cables.

Using these cables with any version of NI-CAN prior to 2.2 will

prevent use of the following functions:

– High-speed error reporting

– Transceiver sleep modes

– Single-wire transceivers

About the USB-847x Hardware
NI USB-847x hardware provides a powerful and flexible way to interface

any desktop or notebook PC to a CAN or LIN bus via USB. All CAN

hardware features the Philips SJA1000 CAN controller, which is

CAN 2.0B compatible and supports a variety of transfer rates up to 1 Mbps.

The SJA1000 also includes a number of features well-suited to diagnostic

applications. USB-847x hardware supports High-Speed and

Low-Speed/Fault-Tolerant physical layers, which fully conform to the

ISO 11898 specification for CAN. All LIN devices are LIN 1.3, LIN 2.0

and SAE J2602 compliant and support the full range of LIN baud rates.

NI USB-847x with Sync series hardware is based on a powerful USB 2.0

compatible microcontroller capable of host data transfer rates up to

480 Mbps. The hardware includes onboard buffers to prevent dropped

frames at high CAN data rates. All USB-847x CAN devices are fully

powered from the USB and require no external power supply.

Additionally, USB-847x with Sync series hardware provides a way to

synchronize multiple devices by using an external sync connector to share

common timing and triggering signals. USB-847x with Sync series

hardware can share a timebase with each other or with a variety of data

acquisition products.

CAN: USB-8472, USB-8472s, USB-8473, USB-8473s
• Philips SJA1000 CAN controller. For more specific information about

the SJA1000 CAN controller, refer to the Philips SJA1000 CAN

Controller section of Chapter 3, NI CAN and LIN Hardware.

• Synchronization via RTSI or any 1/10/20 MHz timebase source. For

more information refer to the ncConnectTerminals function within

the Frame API.

• High-Speed hardware uses the Philips TJA1041 transceiver;

Low-Speed/Fault-Tolerant hardware uses the Philips TJA1054A

transceiver. Both transceivers have increased voltage tolerance and

improved EMC performance over NI CAN Series 1 hardware.

Chapter 1 Introduction

© National Instruments 1-9 NI-CAN Hardware and Software Manual

• Low-Speed/Fault-Tolerant CAN support with software selectable bus

termination.

• High performance USB 2.0 connection with data transfer rates up to

480 Mbps.

• Fully powered by the USB. No bus power needed.

LIN: USB-8476, USB-8476s
• Synchronization via RTSI or any 1/10/20 MHz timebase source. For

more information refer to the ncConnectTerminals functions within

the Frame API.

• Software selectable master/slave termination.

• Amtel ATA6625 LIN transceiver with –27V to 40V LIN bus voltage

tolerance.

• High performance USB 2.0 connection with data transfer rates up to

480 Mbps.

• Hardware VBat detection.

NI-CAN Software Overview

The NI-CAN software provides full-featured Application Programming

Interfaces (APIs), plus tools for configuration and analysis within National

Instruments Measurement & Automation Explorer (MAX). The NI-CAN

APIs enable you to develop applications that are customized to the test and

simulation requirements.

MAX
The NI-CAN features within MAX enable you to:

• Verify the installation of the NI CAN hardware.

• Configure software properties for each CAN port.

• Create or import configuration information for the Channel API.

• Interact with the CAN network using various tools.

For more information, refer to Chapter 2, Installation and Configuration.

Chapter 1 Introduction

NI-CAN Hardware and Software Manual 1-10 ni.com

Frame API
As described in the CAN Overview section, the frame is the fundamental

unit of data transfer on a CAN network. The NI-CAN Frame API provides

a set of functions to write and read CAN frames.

Within the Frame API, the data bytes of each frame are not interpreted, but

are transferred in their raw format. For example, you can transmit a data

frame by calling a write function with the ID, length, and array of data

bytes.

For more information, refer to Chapter 9, Using the Frame API.

Channel API
A typical CAN data frame contains multiple values encoded as raw fields.

Figure 1-8 shows an example set of fields for a 6-byte data frame.

Figure 1-8. Example of CruiseControl Message

Chapter 1 Introduction

© National Instruments 1-11 NI-CAN Hardware and Software Manual

Bytes 1 to 2 contain a CruiseCtrlSetSpeed field that represents a vehicle

speed in kilometers per hour (km/h). Most CAN devices do not transmit

values as floating-point units such as 115.6 km/h. Therefore, this field

consists of a 16-bit unsigned integer in which each increment represents

0.0039 km/h. For example, if the field contains the value 25000, that

represents (25000 * 0.0039) = 97.5 km/h.

Bytes 3 to 4 contain another unsigned integer VehicleSpeed that represents

speed in km/h. Bytes 0 and 5 contain various Boolean fields for which 1

indicates “on” and 0 indicates “off.”

When you use the NI-CAN Frame API to read CAN data frames, you must

write code in the application to convert each raw field to physical units such

as km/h. The NI-CAN Channel API enables you to specify this conversion

information at configuration time instead of within the application. This

configuration information can be imported from Vector CANdb files, or

specified directly in MAX.

For each ID you read or write on the CAN network, you specify a number

of fields. For each field, you specify its location in the frame, size in bits,

and a formula to convert to/from floating-point units. In other words, you

specify the meaning of various fields in each CAN data frame. In NI-CAN

terminology, a data frame for which the individual fields are described is

called a message.

In other National Instruments software products such as NI-DAQ,

NI-DAQmx, and FieldPoint, an application reads or writes a floating-point

value using a channel, which is typically converted to/from a raw value in

the measurement hardware. The NI-CAN Channel API also uses the term

channel to refer to floating-point values converted to/from raw fields in

messages. In CAN products of other vendors, this concept is often referred

to as a signal. When a CAN message is received, NI-CAN converts the raw

fields into physical units, which you then obtain using the Channel API

read function. When you call the Channel API write function, you provide

floating-point values in physical units, which NI-CAN converts into raw

fields and transmits as a CAN message.

For more information, refer to Chapter 6, Using the Channel API.

© National Instruments 2-1 NI-CAN Hardware and Software Manual

2
Installation and Configuration

This chapter explains how to install and configure CAN hardware.

Safety Information

The following section contains important safety information that you must

follow when installing and using the module.

Do not operate the module in a manner not specified in this document.

Misuse of the module can result in a hazard. You can compromise the safety

protection built into the module if the module is damaged in any way. If the

module is damaged, return it to National Instruments (NI) for repair.

Do not substitute parts or modify the module except as described in this

document. Use the module only with the chassis, modules, accessories, and

cables specified in the installation instructions. You must have all covers

and filler panels installed during operation of the module.

Do not operate the module in an explosive atmosphere or where there may

be flammable gases or fumes. If you must operate the module in such an

environment, it must be in a suitably rated enclosure.

If you need to clean the module, use a soft, nonmetallic brush. Make sure

that the module is completely dry and free from contaminants before

returning it to service.

Operate the module only at or below Pollution Degree 2. Pollution is

foreign matter in a solid, liquid, or gaseous state that can reduce dielectric

strength or surface resistivity. The following is a description of pollution

degrees:

Pollution Degree 1 means no pollution or only dry, nonconductive pollution

occurs. The pollution has no influence.

Pollution Degree 2 means that only nonconductive pollution occurs in most

cases. Occasionally, however, a temporary conductivity caused by

condensation must be expected.

Chapter 2 Installation and Configuration

NI-CAN Hardware and Software Manual 2-2 ni.com

Pollution Degree 3 means that conductive pollution occurs, or dry,

nonconductive pollution occurs that becomes conductive due to

condensation.

You must insulate signal connections for the maximum voltage for which

the module is rated. Do not exceed the maximum ratings for the module.

Do not install wiring while the module is live with electrical signals.

Do not remove or add connector blocks when power is connected to the

system. Avoid contact between your body and the connector block signal

when hot swapping modules. Remove power from signal lines before

connecting them to or disconnecting them from the module.

Operate the module at or below the installation category1 marked on the

hardware label. Measurement circuits are subjected to working voltages2

and transient stresses (overvoltage) from the circuit to which they are

connected during measurement or test. Installation categories establish

standard impulse withstand voltage levels that commonly occur in

electrical distribution systems. The following is a description of installation

categories:

• Installation Category I is for measurements performed on circuits not

directly connected to the electrical distribution system referred to as

MAINS3 voltage. This category is for measurements of voltages from

specially protected secondary circuits. Such voltage measurements

include signal levels, special equipment, limited-energy parts of

equipment, circuits powered by regulated low-voltage sources, and

electronics.

• Installation Category II is for measurements performed on circuits

directly connected to the electrical distribution system. This category

refers to local-level electrical distribution, such as that provided by a

standard wall outlet (for example, 115 AC voltage for U.S. or 230 AC

voltage for Europe). Examples of Installation Category II are

measurements performed on household appliances, portable tools, and

similar modules.

• Installation Category III is for measurements performed in the building

installation at the distribution level. This category refers to

measurements on hard-wired equipment such as equipment in fixed

installations, distribution boards, and circuit breakers. Other examples

1 Installation categories, also referred to as measurement categories, are defined in electrical safety standard IEC 61010-1.

2 Working voltage is the highest rms value of an AC or DC voltage that can occur across any particular insulation.

3 MAINS is defined as a hazardous live electrical supply system that powers equipment. Suitably rated measuring circuits may
be connected to the MAINS for measuring purposes.

Chapter 2 Installation and Configuration

© National Instruments 2-3 NI-CAN Hardware and Software Manual

are wiring, including cables, bus bars, junction boxes, switches, socket

outlets in the fixed installation, and stationary motors with permanent

connections to fixed installations.

• Installation Category IV is for measurements performed at the primary

electrical supply installation (<1,000 V). Examples include electricity

meters and measurements on primary overcurrent protection devices

and on ripple control units.

Measurement & Automation Explorer (MAX)

Measurement & Automation Explorer (MAX) provides access to all of the

National Instruments products. Like other NI software products, NI-CAN

uses MAX as the centralized location for all configuration and tools.

To launch MAX, select the Measurement & Automation shortcut on

the desktop, or within the Windows Programs menu under National

Instruments»Measurement & Automation.

For information on the NI-CAN software within MAX, consult the online

help within MAX.

A reference is located in the MAX Help menu under Help Topics»

NI-CAN.

View help for items in the MAX Configuration tree by using the built-in

MAX help pane. If this help pane is not shown on the far right, select the

Show/Hide button in the upper right.

View help for a dialog box by selecting the Help button in the window.

Verify Installation of CAN and LIN Hardware

Within the Devices & Interfaces branch of the MAX Configuration tree,

NI CAN and LIN hardware is listed, as shown in Figure 2-1.

Chapter 2 Installation and Configuration

NI-CAN Hardware and Software Manual 2-4 ni.com

Figure 2-1. NI-CAN Cards Listed in MAX

If the CAN or LIN hardware is not listed here, MAX is not configured

to search for new devices on startup. To search for the new hardware,

press <F5>.

To verify installation of the CAN or LIN hardware, right-click the CAN or

LIN device, then select Self-test. If the self-test passes, the card icon shows

a checkmark. If the self-test fails, the card icon shows an X mark, and the

Test Status in the right pane describes the problem. Refer to Appendix A,

Troubleshooting and Common Questions, for information about resolving

hardware installation problems.

Configure CAN and LIN Ports
The physical ports of the CAN and LIN hardware are listed under the name

of the device. To configure software properties for each port, right-click the

port and select Properties.

In the Properties dialog, you assign an interface name to the port, such as

CAN0 or CAN1. The interface name identifies the physical port within

NI-CAN APIs.

The Properties dialog also contains the default baud rate for MAX tools

and the Channel API.

CAN Channels
Within the Data Neighborhood branch of the MAX Configuration tree,

the CAN Channels branch lists information for the NI-CAN Channel API,

as shown in Figure 2-2.

Chapter 2 Installation and Configuration

© National Instruments 2-5 NI-CAN Hardware and Software Manual

Figure 2-2. CAN Channels in MAX

The CAN Channels branch lists CAN messages for use with the Channel

API. A set of channels is specified for each message.

For information about creating information under CAN Channels, refer to

the Choose Source of Channel Configuration section of Chapter 6, Using

the Channel API.

LabVIEW Real-Time (RT) Configuration

LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming

with the power of real-time systems. When you use a National Instruments

PXI Controller you can install a PXI-CAN card and use the NI-CAN API

to develop real-time applications. For example, you can simulate the

behavior of a control algorithm within a CAN device, using data from

received CAN messages to generate outgoing CAN messages with

deterministic response times. This and other real-time applications can also

be developed if you are using CompactRIO as your LabVIEW RT system.

You can install a CompactRIO CAN module and use the NI-CAN software

and the LabVIEW FPGA I/O to develop your applications.

When you install the NI-CAN software, the installer checks for the

presence of the LabVIEW RT module. If LabVIEW RT exists, the NI-CAN

installer copies components for LabVIEW RT to the Windows system.

As with any other NI product for LabVIEW RT, you then download the

Chapter 2 Installation and Configuration

NI-CAN Hardware and Software Manual 2-6 ni.com

NI-CAN software to the LabVIEW RT system using the Remote Systems

branch in MAX. For more information, refer to the LabVIEW RT

documentation.

USB-847x hardware is not supported under LabVIEW RT.

PXI System

After you have installed the PXI CAN cards and downloaded the NI-CAN

software to the LabVIEW RT system, you need to verify the installation.

Within the Tools menu in MAX, select NI-CAN»RT Hardware

Configuration. The RT Hardware Configuration tool provides features

similar to Devices & Interfaces on the local system. Use the RT Hardware

Configuration tool to self-test the CAN cards and assign an interface name

to each physical CAN port.

To use the Channel API on the LabVIEW RT system, you must also

download channel configuration information. Right-click the CAN

Channels heading, then select Send to RT System. This downloads all

information under CAN Channels to the LabVIEW RT system, so you can

execute the same LabVIEW VIs on the LabVIEW RT system as on the

Windows system.

CompactRIO System
After you have installed the CompactRIO CAN modules and downloaded

NI-RIO and NI-CAN software, you need to enable the CompactRIO

Reconfigurable Embedded Chassis for use in LabVIEW. For instructions

on how to enable the CompactRIO Reconfigurable Embedded Chassis for

use in LabVIEW, refer to the MAX help.

To use the Channel API on the LabVIEW RT system, you must download

the channel configuration information. Right-click the CAN Channels

heading, then select Send to RT System. This downloads all the

information under CAN Channels to the LabVIEW RT system. To utilize

the CAN channels on the CompactRIO system, you need to use Frame to

Channel Conversion. For more information, refer to the Frame to Channel

Conversion section of Chapter 6, Using the Channel API.

Chapter 2 Installation and Configuration

© National Instruments 2-7 NI-CAN Hardware and Software Manual

Tools

NI-CAN provides tools that you can launch from MAX.

• Bus Monitor—Displays statistics for CAN or LIN frames. This

provides a basic tool to analyze CAN or LIN network traffic. Launch

this tool by right-clicking a CAN or LIN interface (port).

• Test Panel—Read or write physical units for a CAN channel. This

provides a simple debugging tool to experiment with CAN channels.

Launch this tool by right-clicking a CAN channel.

• NI-Spy—Monitor function calls to the NI-CAN APIs. This tool helps

in debugging programming problems in the application. To launch this

tool, open the Software branch of the MAX Configuration tree,

right-click NI Spy, and select Launch NI Spy.

• FP1300 Configuration—FieldPoint 1300 is the National Instruments

modular I/O product for CAN. If you have installed the software for

the FP1300 product, launch this tool by right-clicking a CAN interface

(port).

Using NI-CAN with NI-DNET

DeviceNet is a higher-level protocol based on CAN, typically used for

industrial automation or machine control applications. NI-DNET is the

National Instruments software for DeviceNet.

NI-CAN uses the same software infrastructure as NI-DNET, so both APIs

can be used with the same CAN card. The general rule is that each CAN

card can only be used for one API at a time.

Use of NI-DNET is restricted to port 1 (top port) of Series 1 CAN cards.

National Instruments hardware kits for CAN ship with Series 2 cards,

which cannot be used with NI-DNET. National Instruments hardware kits

for DeviceNet ship with Series 1 cards, which can be used with both

NI-DNET and NI-CAN. For information on identification of the series,

refer to the NI CAN Hardware Overview section of Chapter 1,

Introduction.

You can view each Series 1 CAN card in MAX with either DeviceNet or

CAN features. To change the view of a CAN card in MAX, right-click the

card and select Protocol. In this dialog you can select either DeviceNet for

NI-DNET, or CAN for NI-CAN. When the CAN protocol is selected, you

can access CAN tools in MAX, such as the Bus Monitor tool.

Chapter 2 Installation and Configuration

NI-CAN Hardware and Software Manual 2-8 ni.com

In order to develop NI-DNET applications, you must install NI-DNET

components such as documentation and examples. The NI-DNET software

components are available within the NI-CAN installer.

Launch the setup.exe program for the NI-CAN installer in the same

manner as the original installation (CD or ni.com download). Within the

installer, select both NI-DNET and NI-CAN components in the feature

tree.

When you right-click a port in MAX and select Properties, the resulting

Interface selection uses the syntax CANx or DNETx based on the protocol

selection. Regardless of which protocol is selected, the number x is the only

relevant identifier with respect to NI-CAN and NI-DNET functions. For

example, if you select DNET0 as an interface in MAX, you can run an

NI-DNET application that uses DNET0, then you can run an NI-CAN

application that uses CAN0. Both applications refer to the same port, and

can run at different times, but not simultaneously.

© National Instruments 3-1 NI-CAN Hardware and Software Manual

3
NI CAN and LIN Hardware

This chapter describes the NI CAN Series 2 and USB-847x hardware.

Philips SJA1000 CAN Controller

All NI CAN Series 2 and USB-847x CAN hardware uses the Philips

SJA1000 controller to implement the CAN protocol. This chip is

CAN 2.0B compatible, and supports both 11-bit and 29-bit identifiers.

Using the NI-CAN software package with the SJA1000 enables features

such as:

• Listen only mode—In this mode, the CAN controller does not provide

an acknowledge signal on the bus, even if a message is received

successfully. This mode is useful for passively monitoring a CAN bus.

This feature is provided as the Listen Only attribute of the Frame API

and the Interface Listen Only property of the Channel API.

• 64-byte receive FIFO—Helps prevent data overrun errors.

• Single/dual acceptance filter—Allows flexible filtering of CAN

messages through programming of acceptance mask and comparator

registers. This feature is provided as the Series 2 Filter Mode attribute

of the Frame API and the Interface Series 2 Filter Mode property of the

Channel API.

• Self-reception request—When enabled, a successfully transmitted

message is received simultaneously. This feature is provided as the

Self Reception attribute of the Frame API and the Interface Self

Reception property of the Channel API.

• Read/Write access to error counters—These counters are provided

as the Receive (and Transmit) Error Counter attribute of the Frame

API, and the Interface Receive (and Transmit) Error Counter property

of the Channel API.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-2 ni.com

PCI-CAN

High-Speed Physical Layer
The CAN physical layer circuitry interfaces the CAN protocol controller to

the physical bus wires. The PCI-CAN High-Speed physical layer is

powered internally (from the card) through a DC-DC converter, and is

optically isolated up to 60 VDC (continuous) channel-to-bus. This isolation

protects the NI CAN hardware and the PC it is installed in from being

damaged by high-voltage spikes on the CAN bus.

Transceiver
PCI-CAN High-Speed hardware uses the Philips TJA1041 High-Speed

CAN transceiver. The TJA1041 is fully compatible with the ISO 11898

standard and supports baud rates up to 1 Mbps. This device also supports

advanced power management through a low-power sleep mode. This

feature is provided as the Transceiver Mode attribute of the Frame API

and the Interface Transceiver Mode property of the Channel API. For

detailed TJA1041 specifications, refer to the Philips TJA1041 data sheet.

Bus Power Requirements
Because the High-Speed physical layer is completely powered internally,

there is no need to supply bus power. The V– signal serves as the reference

ground for the isolated signals. Refer to the High-Speed PCI, PXI, and USB

Connector Pinout section of Chapter 4, Connectors and Cables, for

information about how to connect signals to a High-Speed CAN interface.

VBAT Jumper
The TJA1041 features a battery voltage input pin, VBAT. This signal can

be supplied either internally or externally through the CAN bus V+ signal,

as controlled by the VBAT jumper setting. By default, the jumper is set to

INT, and VBAT is supplied internally. Some applications may require

explicit control of the transceiver VBAT pin; for example, to test the

performance of CAN devices on a network where battery power is lost.

If external control of VBAT is required, you can configure the PCI-CAN

hardware by switching the VBAT jumper from its default INT position to

EXT, as shown in Figure 3-1.

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-3 NI-CAN Hardware and Software Manual

Figure 3-1. High-Speed VBAT Jumper Settings

With the VBAT jumper set to EXT, you must supply power on the CAN V+

signal. The power supply should be a DC power supply with an output of

8 to 27 V, as specified in Table 3-1. You should take these requirements into

account when determining the bus power supply requirements for the

system.

INT

(Default)

EXT

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-4 ni.com

If you are unsure how to configure VBAT, leave the jumper set to its default

value, INT.

Low-Speed/Fault-Tolerant Physical Layer
The PCI-CAN Low-Speed/Fault-Tolerant physical layer is powered

internally (from the card) through a DC-DC converter, and is optically

isolated up to 60 VDC (continuous) channel-to-bus. This isolation protects

the NI CAN hardware and the PC it is installed in from being damaged by

high-voltage spikes on the CAN bus.

Transceiver
PCI-CAN Low-Speed/Fault-Tolerant hardware uses the Philips TJA1054A

Low-Speed/Fault-Tolerant transceiver. The TJA1054A supports baud rates

up to 125 kbps. The transceiver can detect and automatically recover from

the following CAN bus failures:

• CAN_H wire interrupted

• CAN_L wire interrupted

• CAN_H short-circuited to battery

• CAN_L short-circuited to battery

• CAN_H short-circuited to VCC

• CAN_L short-circuited to VCC

• CAN_H short-circuited to ground

• CAN_L short-circuited to ground

• CAN_H and CAN_L mutually short-circuited

The TJA1054A supports advanced power management through a

low-power sleep mode. This feature is provided as the Transceiver Mode

attribute of the Frame API and the Interface Transceiver Mode property

of the Channel API. For detailed specifications about the TJA1054A, refer

to the Philips TJA1054 data sheet.

Table 3-1. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8–27 VDC on V+ connector pin

(referenced to V–)

Current 30 µA typical 40 µA maximum

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-5 NI-CAN Hardware and Software Manual

Bus Power Requirements
Because the Low-Speed/Fault-Tolerant physical layer is completely

powered internally, there is no need to supply bus power. The V– signal

serves as the reference ground for the isolated signals. Refer to the

Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout section

of Chapter 4, Connectors and Cables, for information about how to

connect signals to a Low-Speed/Fault-Tolerant CAN interface.

VBAT Jumper
The TJA1054A features a battery voltage input pin, VBAT. This signal can

be supplied either internally or externally through the CAN bus V+ signal,

as controlled by the VBAT jumper setting. By default, the jumper is set to

INT, and VBAT is supplied internally. Some applications may require

explicit control of the transceiver VBAT pin; for example, to test the

performance of CAN devices on a network where battery power is lost.

If external control of VBAT is required, you can configure the PCI-CAN

hardware by switching the VBAT jumper from its default INT position to

EXT, as shown in Figure 3-2, Low-Speed/Fault-Tolerant VBAT Jumper

Settings.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-6 ni.com

Figure 3-2. Low-Speed/Fault-Tolerant VBAT Jumper Settings

Low-Speed/Fault-Tolerant VBAT Jumper Settings
With the VBAT jumper set to EXT, you must supply power on the CAN

V+ signal. The power supply should be a DC power supply with an output

of 8 to 27 V, as specified in Table 3-2, CAN V+ Signal Power Supply. You

should take these requirements into account when determining the bus

power supply requirements for the system.

INT

(Default)

EXT

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-7 NI-CAN Hardware and Software Manual

If you are unsure how to configure VBAT, leave the jumper set to its default

value, INT.

Single Wire Physical Layer
The Single Wire physical layer is powered internally (from the card)

through a DC-DC converter. However, the Single Wire CAN transceiver

does require bus power. The physical layer is optically isolated up to

60 VDC (continuous) channel-to-bus. This isolation protects the NI CAN

hardware and the PC it is installed in from being damaged by high-voltage

spikes on the CAN bus.

Transceiver
Single Wire hardware uses the Philips AU5790 Single Wire CAN

transceiver. The AU5790 supports baud rates up to 33.3 kbps in normal

transmission mode and 83.3 kbps in High-Speed transmission mode. The

achievable baud rate is primarily a function of the network characteristics

(termination and number of nodes on the bus), and assumes bus loading as

per SAE J2411. Each Single Wire CAN port has a local bus load resistance

of 9.09 kΩ between the CAN_H and RTH pins of the transceiver to provide

protection against the loss of ground. The AU5790 also supports advanced

power management through low-power sleep and wake-up modes. For

detailed AU5790 specifications, refer to the Philips AU5790 data sheet.

Bus Power Requirements
The Single Wire physical layer requires external bus power to provide the

signal levels necessary to fully use all AU5790 operating modes. This is

because some modes require higher signal levels than the internal DC/DC

converter on the PCI-CAN board can provide. You must supply power on

the CAN V+ signal. The power supply should be a DC power supply with

an output of 8 to 18 V, as specified in Table 3-3, CAN V+ Signal Power

Supply. A power supply of 12 VDC is recommended. You should take

these requirements into account when determining requirements of the bus

power supply for the system.

Table 3-2. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8–27 VDC on V+ connector pin

(referenced to V–)

Current 30 µA typical 125 µA maximum

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-8 ni.com

VBAT Jumper
Because the AU5790 requires external bus power, there is no option to

power the VBAT signal internally. For this reason, the VBAT jumper is not

present on Single Wire hardware, and external bus power must be

provided.

XS Software Selectable Physical Layer
PCI-CAN/XS hardware allows you to select each port individually in the

physical layer for one of the following transceivers:

• High-Speed

• Low-Speed/Fault-Tolerant

• Single Wire

• External

When an XS port is selected as High-Speed, it behaves exactly as a

dedicated High-Speed interface with the TJA1041 transceiver.

When an XS port is selected as Low-Speed/Fault-Tolerant, it behaves

exactly as a dedicated Low-Speed/Fault-Tolerant interface with the

TJA1054A transceiver.

When an XS port is selected as Single Wire, it behaves exactly as a

dedicated Single Wire interface with the AU5790 transceiver.

Note that the bus power requirements and VBAT jumper setting for an

XS port depend on the mode selected. Refer to the appropriate High-Speed,

Low-Speed/Fault-Tolerant, or Single Wire physical layer section to

determine the behavior for the mode selected. For example, the bus power

requirements and VBAT jumper operation for an XS port configured for

Single Wire mode are identical to those of a dedicated Single Wire node.

When an XS port is selected as external, all onboard transceivers are

bypassed, and the CAN controller RX, TX, and mode/status control signals

are routed directly to the I/O connector. Refer to the XS PCI and PXI

Table 3-3. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8–18 VDC (12 VDC typical) on V+ connector

pin (referenced to V–)

Current 40 mA typical 90 mA maximum

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-9 NI-CAN Hardware and Software Manual

Connector Pinout section of Chapter 4, Connectors and Cables, for

information about how to connect signals to an XS CAN interface.

External mode is intended for interfacing custom physical layer circuits to

NI CAN hardware. For example, to use a particular CAN transceiver that is

not supported natively by the NI CAN hardware, you can use an XS port

configured for external mode to connect to the custom-built transceiver

circuit and access the bus as usual using NI-CAN software. In addition to

the CAN controller RX and TX signals, you also can control two MODE

output pins and one STATUS input pin on an external mode port. These

MODE and STATUS signals are useful for controlling the operating mode

of the custom physical layer and monitoring for any error conditions on the

bus. These pins are provided in software as the Transceiver External

Outputs (and Inputs) attribute of the Frame API and the Interface

Transceiver External Outputs (and Inputs) property of the Channel API.

Because power is not routed through the connector of an XS port, an

external transceiver circuit requires bus power to be supplied.

You can change the transceiver type within MAX using the Properties

dialog for each port. The transceiver type selected within MAX is used as

the default for NI-CAN applications. The initial transceiver configuration

in MAX is High-Speed for Port 1 and Low-Speed/Fault-Tolerant for Port 2.

You also can change the transceiver type within the application, which

overrides the value in MAX. This feature is provided as the Transceiver

Type attribute of the Frame API, and the Interface Transceiver Type

property of the Channel API.

 RTSI
The RTSI bus gives you the ability to synchronize multiple NI CAN cards

with other National Instruments hardware products such as DAQ, IMAQ,

and Motion. The RTSI bus consists of a flexible interconnect scheme for

sharing timing and triggering signals in a system.

For PCI hardware, the RTSI bus interface is a connector at the top of the

card, and you can synchronize multiple cards by connecting a RTSI ribbon

cable between the cards that need to share timing and triggering signals.

Figure 3-3 shows the RTSI signal interconnect architecture for

NI PCI-CAN hardware.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-10 ni.com

Figure 3-3. RTSI Signal Interconnect Architecture for NI PCI-CAN Hardware

Refer to CAN Connect Terminals.vi for a description of the RTSI signals.

R
T

S
I

B
u

s

Start Trigger

Interface Receive Event

Interface Transceiver Event

10 Hz Resync

Master Timebase

20 MHz Timebase

RTSI Switch

RTSI0–RTSI6
Triggers

7

RTSI7
Clock

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-11 NI-CAN Hardware and Software Manual

PXI-846x

This section describes the PXI-846x hardware.

High-Speed Physical Layer
The CAN physical layer circuitry interfaces the CAN protocol controller to

the physical bus wires. The PXI-8461 physical layer is powered internally

(from the card) through a DC-DC converter, and is optically isolated up to

60 VDC (continuous) channel-to-bus. This isolation protects the NI CAN

hardware and the PC it is installed in from being damaged by high-voltage

spikes on the CAN bus.

Transceiver
PXI-8461 hardware uses the Philips TJA1041 High-Speed CAN

transceiver. The TJA1041 is fully compatible with the ISO 11898 standard

and supports baud rates up to 1 Mbps. This device also supports advanced

power management through a low-power sleep mode. This feature is

provided as the Transceiver Mode attribute of the Frame API and the

Interface Transceiver Mode property of the Channel API. For detailed

TJA1041 specifications, refer to the Philips TJA1041 data sheet.

Bus Power Requirements
Because the High-Speed physical layer is completely powered internally,

there is no need to supply bus power. The V– signal serves as the reference

ground for the isolated signals. Refer to the High-Speed PCI, PXI, and USB

Connector Pinout section of Chapter 4, Connectors and Cables, for

information about how to connect signals to a High-Speed CAN interface.

VBAT Jumper
The TJA1041 features a battery voltage input pin, VBAT. This signal can

be supplied either internally or externally through the CAN bus V+ signal,

as controlled by the VBAT jumper setting. By default, the jumper is set to

INT, and VBAT is supplied internally. Some applications may require

explicit control of the transceiver VBAT pin; for example, to test the

performance of CAN devices on a network where battery power is lost.

If external control of VBAT is required, you can configure the PXI-8461

hardware by switching the VBAT jumper from its default INT position to

EXT, as shown in Figure 3-4, High-Speed VBAT Jumper Settings.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-12 ni.com

Figure 3-4. High-Speed VBAT Jumper Settings

With the VBAT jumper set to EXT, you must supply power on the CAN V+

signal. The power supply should be a DC power supply with an output of

8 to 27 V, as specified in Table 3-4. You should take these requirements into

account when determining requirements of the bus power supply for the

system.

Table 3-4. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8–27 VDC on V+ connector pin

(referenced to V–)

Current 30 µA typical 40 µA maximum

INT

(Default)

EXT

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-13 NI-CAN Hardware and Software Manual

If you are unsure how to configure VBAT, leave the jumper set to its default

value, INT.

Low-Speed/Fault-Tolerant Physical Layer
The PXI-8460 physical layer is powered internally (from the card) through

a DC-DC converter, and is optically isolated up to 60 VDC (continuous)

channel-to-bus. This isolation protects the NI CAN hardware and the PC it

is installed in from being damaged by high-voltage spikes on the CAN bus.

Transceiver
PXI-8460 hardware uses the Philips TJA1054A Low-Speed/Fault-Tolerant

transceiver. The TJA1054A supports baud rates up to 125 kbps. The

transceiver can detect and automatically recover from the following

CAN bus failures:

• CAN_H wire interrupted

• CAN_L wire interrupted

• CAN_H short-circuited to battery

• CAN_L short-circuited to battery

• CAN_H short-circuited to VCC

• CAN_L short-circuited to VCC

• CAN_H short-circuited to ground

• CAN_L short-circuited to ground

• CAN_H and CAN_L mutually short-circuited

The TJA1054A supports advanced power management through a

low-power sleep mode. This feature is provided as the Transceiver Mode

attribute of the Frame API and the Interface Transceiver Mode property

of the Channel API. For detailed TJA1054A specifications, refer to the

Philips TJA1054 data sheet.

Bus Power Requirements
Because the Low-Speed/Fault-Tolerant physical layer is completely

powered internally, there is no need to supply bus power. The V– signal

serves as the reference ground for the isolated signals. Refer to the

Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout section

of Chapter 4, Connectors and Cables, for information about how to

connect signals to a Low-Speed/Fault-Tolerant CAN interface.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-14 ni.com

VBAT Jumper
The TJA1054A features a battery voltage input pin, VBAT. This signal can

be supplied either internally or externally through the CAN bus V+ signal,

as controlled by the VBAT jumper setting. By default, the jumper is set to

INT, and VBAT is supplied internally. Some applications may require

explicit control of the transceiver VBAT pin; for example, to test the

performance of CAN devices on a network where battery power is lost.

If external control of VBAT is required, you can configure the PXI-8460

hardware by switching the VBAT jumper from its default INT position to

EXT, as shown in Figure 3-5.

Figure 3-5. Low-Speed/Fault-Tolerant VBAT Jumper Settings

INT

(Default)

EXT

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-15 NI-CAN Hardware and Software Manual

With the VBAT jumper set to EXT, you must supply power on the CAN V+

signal. The power supply should be a DC power supply with an output of

8 to 27 V, as specified in Table 3-5. You should take these requirements into

account when determining the bus power supply requirements for the

system.

If you are unsure how to configure VBAT, leave the jumper set to its default

value, INT.

Single Wire Physical Layer
The Single Wire physical layer is powered internally (from the card)

through a DC-DC converter. However, the Single Wire CAN transceiver

does require bus power. The physical layer is optically isolated up to

60 VDC (continuous) channel-to-bus. This isolation protects the NI CAN

hardware and the PC it is installed in from being damaged by high-voltage

spikes on the CAN bus.

Transceiver
Single Wire hardware uses the Philips AU5790 Single Wire CAN

transceiver. The AU5790 supports baud rates up to 33.3 kbps in normal

transmission mode and 83.3 kbps in High-Speed transmission mode. The

achievable baud rate is primarily a function of the network characteristics

(termination and number of nodes on the bus), and assumes bus loading as

per SAE J2411. Each Single Wire CAN port has a local bus load resistance

of 9.09 kΩ between the CAN_H and RTH pins of the transceiver to provide

protection against the loss of ground. The AU5790 also supports advanced

power management through low-power sleep and wake-up modes. For

detailed specifications of the AU5790, refer to the Philips AU5790 data

sheet.

Table 3-5. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8–27 VDC on V+ connector pin

(referenced to V–)

Current 30 µA typical 125 µA maximum

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-16 ni.com

Bus Power Requirements
The Single Wire physical layer requires external bus power to provide the

signal levels necessary to fully use all operating modes of the AU5790.

This is because some modes require higher signal levels than the internal

DC-DC converter on the PXI-8463 board can provide. You must supply

power on the CAN V+ signal. The power supply should be a DC power

supply with an output of 8 V to 18 V, as specified in Table 3-6. A power

supply of 12 VDC is recommended. You should take these requirements

into account when determining the bus power supply requirements for the

system.

VBAT Jumper
Because the AU5790 requires external bus power, there is no option to

power the VBAT signal internally. For this reason, the VBAT jumper is not

present on Single Wire hardware, and external bus power must be

provided.

XS Software Selectable Physical Layer
PXI-8464 hardware allows each port in the physical layer to be individually

selected for one of the following transceivers:

• High-Speed

• Low-Speed/Fault-Tolerant

• Single Wire

• External

When an XS port is selected as High-Speed, it behaves exactly as a

dedicated High-Speed interface with the TJA1041 transceiver.

When an XS port is selected as Low-Speed/Fault-Tolerant, it behaves

exactly as a dedicated Low-Speed/Fault-Tolerant interface with the

TJA1054A transceiver.

Table 3-6. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8–18 VDC (12 VDC typical) on V+ connector

pin (referenced to V–)

Current 40 mA typical 90 mA maximum

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-17 NI-CAN Hardware and Software Manual

When an XS port is selected as Single Wire, it behaves exactly as a

dedicated Single Wire interface with the AU5790 transceiver.

The bus power requirements and VBAT jumper setting for an XS port

depend on the mode selected. Refer to the appropriate High-Speed,

Low-Speed/Fault-Tolerant, or Single Wire physical layer section to

determine the behavior for the mode selected. For example, the bus power

requirements and VBAT jumper operation for an XS port configured for

Single Wire mode are identical to those of a dedicated Single Wire node.

When an XS port is selected as external, all onboard transceivers are

bypassed, and the CAN controller RX, TX, and mode/status control signals

are routed directly to the I/O connector. Refer to the XS PCI and PXI

Connector Pinout section of Chapter 4, Connectors and Cables, for

information about how to connect signals to an XS CAN interface.

External mode is intended for interfacing custom physical layer circuits to

NI CAN hardware. For example, to use a particular CAN transceiver that is

not supported natively by the NI CAN hardware, you can use an XS port

configured for external mode to connect to the custom-built transceiver

circuit and access the bus as usual using NI CAN software. In addition to

the CAN controller RX and TX signals, you also can control two MODE

output pins and one STATUS input pin on an external mode port. These

MODE and STATUS signals are useful for controlling the operating mode

of the custom physical layer and monitoring for any error conditions on the

bus. These pins are provided in software as the Transceiver External

Outputs (and Inputs) attribute of the Frame API and the Interface

Transceiver External Outputs (and Inputs) property of the Channel API.

Because power is not routed through the connector of an XS port, an

external transceiver circuit requires bus power to be supplied.

You can change the transceiver type within MAX using the Properties

dialog for each port. The transceiver type selected within MAX is used as

the default for NI-CAN applications. The initial transceiver configuration

in MAX is High-Speed for Port 1 and Low-Speed/Fault-Tolerant for

Port 2.

You also can change the transceiver type within the application, which

overrides the value in MAX. This feature is provided as the Transceiver

Type attribute of the Frame API, and the Interface Transceiver Type

property of the Channel API.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-18 ni.com

 PXI Trigger Bus (RTSI)
The PXI trigger bus provides the ability to synchronize multiple NI CAN

cards with other National Instruments hardware products such as DAQ,

IMAQ, and Motion. The PXI trigger bus consists of a flexible interconnect

scheme for sharing timing and triggering signals in a system. For PXI

hardware, the PXI trigger bus is built into the chassis backplane, so all

devices in the same PXI chassis can share timing and triggering signals.

The functionality of the PXI trigger bus is very similar to the RTSI bus for

PCI hardware, with a few added features. In addition to the bused PXI

triggers, the PXI bus includes an independent PXI_Star trigger for each

slot in a chassis that is oriented in a star configuration from the star trigger

slot (slot 2). The star configuration makes PXI_Star well suited for

applications that require a trigger signal with very low skew between slots.

PXI-846x hardware can route this PXI_Star trigger to its start trigger

signal. The PXI_Clk10 signal is a 10 MHz timebase signal in a PXI

chassis. PXI-846x hardware can use this PXI_CLlk10 signal as its master

timebase for synchronization. Figure 3-6, RTSI Signal Interconnect

Architecture for NI PXI CAN Hardware, shows the RTSI signal

interconnect architecture for NI PXI CAN hardware.

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-19 NI-CAN Hardware and Software Manual

Figure 3-6. RTSI Signal Interconnect Architecture for NI PXI CAN Hardware

Refer to CAN Connect Terminals.vi for a description of the RTSI signals.

P
X

I
T

ri
g

g
e

r
B

u
s

RTSI Switch

Interface Receive Event
RTSI0–RTSI6

Triggers

7

RTSI7
Clock

Start Trigger

Interface Transceiver Event

10 Hz Resync

Master Timebase

20 MHz Timebase

PXI_Clk10

PXI_Star

Master Timebase

Start Trigger

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-20 ni.com

PCMCIA-CAN

For PCMCIA-CAN cards, the physical layer is implemented inside the

cable.

The three types of physical layers available for PCMCIA-CAN cards are:

• High-Speed

• Low-Speed/Fault-Tolerant

• Single Wire

The High-Speed and Low-Speed/Fault Tolerant cables are powered

internally through an onboard DC-DC converter. The Single Wire cables

must be powered externally, through the CAN bus.

PCMCIA-CAN High-Speed Cables
The PCMCIA-CAN High-Speed physical layer is powered internally (from

the card through a DC-DC converter), and is optically isolated up to 60 VDC

(continuous) channel-to-bus. This isolation protects the NI CAN hardware

and the PC it is installed in from being damaged by high-voltage spikes on

the CAN bus.

Transceiver
PCMCIA-CAN High-Speed hardware uses the Philips TJA1041

High-Speed CAN transceiver. The TJA1041 is fully compatible with the

ISO 11898 standard and supports baud rates up to 1 Mbps. This device also

supports advanced power management through a low-power sleep mode.

This feature is provided as the Transceiver Mode attribute of the Frame

API and the Interface Transceiver Mode property of the Channel API.

For detailed TJA1041 specifications, refer to the Philips TJA1041 data

sheet.

Bus Power Requirements
Because the High-Speed physical layer is completely powered internally,

there is no need to supply bus power. The V– signal serves as the reference

ground for the isolated signals. Refer to the PCMCIA Connector Pinout

section of Chapter 4, Connectors and Cables, for information about how to

connect signals to a High-Speed CAN interface.

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-21 NI-CAN Hardware and Software Manual

PCMCIA-CAN Low-Speed/Fault-Tolerant Cables
The PCMCIA-CAN/LS cable physical layer is powered internally (from

the card) through a DC-DC converter, and is optically isolated up to 60 VDC

(continuous) channel-to-bus. This isolation protects the NI CAN hardware

and the PC it is installed in from being damaged by high-voltage spikes on

the CAN bus.

Transceiver
PCMCIA-CAN Low-Speed/Fault-Tolerant hardware uses the Philips

TJA1054A Low-Speed/Fault-Tolerant transceiver. The TJA1054A

supports baud rates up to 125 kbps. The transceiver can detect and

automatically recover from the following CAN bus failures:

• CAN_H wire interrupted

• CAN_L wire interrupted

• CAN_H short-circuited to battery

• CAN_L short-circuited to battery

• CAN_H short-circuited to VCC

• CAN_L short-circuited to VCC

• CAN_H short-circuited to ground

• CAN_L short-circuited to ground

• CAN_H and CAN_L mutually short-circuited

The TJA1054A supports advanced power management through a

low-power sleep mode. This feature is provided as the Transceiver Mode

attribute of the Frame API and the Interface Transceiver Mode property

of the Channel API. For detailed specifications about the TJA1054A, refer

to the Philips TJA1054 data sheet.

Bus Power Requirements
Because the PCMCIA-CAN/LS cable is completely powered internally,

there is no need to supply bus power. The V– signal serves as the reference

ground for the isolated signals. Refer to the PCMCIA Connector Pinout

section of Chapter 4, Connectors and Cables, for information about how to

connect signals to a Low-Speed/Fault-Tolerant CAN interface.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-22 ni.com

PCMCIA-CAN Single Wire Cables
The PCMCIA-CAN Single Wire physical layer is powered externally from

the CAN bus. The physical layer is optically isolated up to 60 VDC

(continuous) channel-to-bus. This isolation protects the NI CAN hardware

and the PC in which it is installed from being damaged by high-voltage

spikes on the CAN bus.

Transceiver
PCMCIA-CAN Single Wire hardware uses the Philips AU5790 Single

Wire CAN transceiver. The AU5790 supports baud rates up to 33.3 kbps in

normal transmission mode and 83.3 kbps in High-Speed transmission

mode. The achievable baud rate is primarily a function of the network

characteristics (termination and number of nodes on the bus), and assumes

bus loading as per SAE J2411. Each Single Wire CAN port has a local bus

load resistance of 9.09 kΩ between the CAN_H and RTH pins of the

transceiver to provide protection against the loss of ground. The AU5790

also supports advanced power management through low-power sleep and

wake-up modes. For detailed AU5790 specifications, refer to the Philips

AU5790 data sheet.

Bus Power Requirements
The Single Wire physical layer requires external bus power to provide the

signal levels necessary to fully use all AU5790 operating modes. You must

supply power on the CAN V+ signal. The power supply should be a DC

power supply with an output of 8 to 18 V, as specified in Table 3-7.

A power supply of 12 VDC is recommended. You should take these

requirements into account when determining requirements of the bus

power supply for the system.

Table 3-7. CAN V+ Signal Power Supply

Characteristic Specification

Voltage 8–18 VDC (12 VDC typical) on V+ connector pin

(referenced to V–)

Current 40 mA typical 90 mA maximum

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-23 NI-CAN Hardware and Software Manual

Synchronization
The PCMCIA-CAN synchronization cable provides the ability to

synchronize a Series 2 PCMCIA-CAN card with other National

Instruments hardware or external devices. The synchronization cable

provides a flexible interconnect scheme for sharing timing and triggering

signals in a system. For example, PCMCIA-CAN synchronization is

specifically designed to integrate well with National Instruments E Series

DAQCard hardware. Timing and triggering signals can be shared by wiring

the synchronization cable signals to the appropriate terminals on a DAQ

terminal block.

The functionality of the PCMCIA-CAN synchronization cable is very

similar to the RTSI bus for PCI hardware, with a few limitations:

• Four general-purpose I/O trigger lines, as opposed to seven for RTSI

• TRIG7_CLK clock line is an input-only signal that can receive a

master timebase; the PCMCIA-CAN card cannot drive a timebase onto

TRIG7_CLK

Figure 3-7, PCMCIA-CAN Synchronization Signal Interconnect

Architecture for NI PCMCIA-CAN Hardware, shows the PCMCIA-CAN

synchronization signal interconnect architecture for NI PCMCIA-CAN

hardware.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-24 ni.com

Figure 3-7. PCMCIA-CAN Synchronization Signal Interconnect Architecture
for NI PCMCIA-CAN Hardware

P
C

M
C

IA
 S

y
n

c
h

ro
n

iz
a

ti
o

n
 B

u
s

Start Trigger

Interface Receive Event

Interface Transceiver Event

10 Hz Resync

RTSI Switch

TRIG0–TRIG3
Triggers

4

TRIG7_CLK
Clock

Master Timebase

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-25 NI-CAN Hardware and Software Manual

Table 3-8, PCMCIA-CAN Trigger Lines and Wire Colors, shows the

function of each trigger line and its corresponding wire color.

To improve the signal integrity of the trigger lines, all GND wires should

be connected to digital logic ground of the system. Unused trigger lines

may also be grounded. Refer to Appendix E, Specifications, for detailed

DC operating characteristics.

USB-CAN

This section describes the hardware characteristics of the USB-CAN

hardware.

USB-8473/USB-8473s: High-Speed Physical Layer
The USB-CAN physical layer circuitry interfaces the CAN protocol

controller to the physical bus wires. The USB-CAN High-Speed physical

layer is powered internally from the USB through a DC-DC converter, and

is optically isolated up to 500 VDC (withstand, 2s max) channel-to-bus. This

isolation protects your NI-CAN hardware and the PC it is connected to

from being damaged by high-voltage spikes on the CAN bus.

Table 3-8. PCMCIA-CAN Trigger Lines and Wire Colors

Signal Function Wire Color

TRIG_0 (RTSI0) General I/O trigger Red

TRIG_1 (RTSI1) General I/O trigger Orange

TRIG_2 (RTSI2) General I/O trigger Yellow

TRIG_3 (RTSI3) General I/O trigger Green

TRIG7_CLK

(RTSI7/RTSI Clock)

Input-only timebase White

GND Ground Black, brown, blue,

purple, gray

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-26 ni.com

Transceiver
USB-CAN High-Speed hardware uses the Philips TJA1041 High-Speed

CAN transceiver. The TJA1041 is fully compatible with the ISO 11898

standard and supports baud rates up to 1 Mbps. This device also supports

advanced power management through a low-power sleep mode. This

feature is provided as the Transceiver Mode attribute of the Frame API. For

detailed TJA1041 specifications, refer to the Philips TJA1041 data sheet.

Bus Power Requirements
Because the High-Speed physical layer is completely internally powered

through USB, there is no need to supply bus power. The V– signal serves

as the reference ground for the isolated signals. Refer to the High-Speed

PCI, PXI, and USB Connector Pinout section of Chapter 4, Connectors and

Cables, for information about how to connect signals to a High-Speed CAN

interface.

LED Indicators
Table 3-9 provides a description of the LEDs on the front panel of the

USB-8473 and USB-8473s.

Table 3-9. LED Indicators for USB-8473/8473s Module

Name Function

USB Indicates connectivity to a USB Host. Green indicates

a USB full speed connection. Amber indicates a USB

high speed connection.

CAN Flashes to indicate the presence of traffic on the

CAN bus.

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-27 NI-CAN Hardware and Software Manual

USB-8472/USB-8472s: Low-Speed/Fault-Tolerant Physical Layer
The USB-CAN Low-Speed/Fault-Tolerant physical layer is powered

internally from the USB through a DC-DC converter, and is optically

isolated up to 500 VDC (withstand, 2s max) channel-to-bus. This isolation

protects your NI CAN hardware and the PC it is connected to from being

damaged by high-voltage spikes on the CAN bus.

Transceiver
USB-CAN Low-Speed/Fault-Tolerant hardware uses the Philips

TJA1054A Low-Speed CAN transceiver. The TJA1054A supports baud

rates up to 125 kbps. The transceiver can detect and automatically recover

from the following CAN bus failures:

• CAN_H wire interrupted

• CAN_L wire interrupted

• CAN_H short-circuited to battery

• CAN_L short-circuited to battery

• CAN_H short-circuited to VCC

• CAN_L short-circuited to VCC

• CAN_H short-circuited to ground

• CAN_L short-circuited to ground

• CAN_H and CAN_L mutually short-circuited

The TJA1054A supports advanced power management through a

low-power sleep mode. This feature is provided as the Transceiver Mode

attribute of the Frame API. For detailed specifications about the

TJA1054A, refer to the Philips TJA1054 data sheet.

Bus Power Requirements
Because the Low-Speed/Fault-Tolerant physical layer is completely

powered internally through USB, there is no need to supply bus power. The

V– signal serves as the reference ground for the isolated signals. Refer to

the Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout

section of Chapter 4, Connectors and Cables, for information about how to

connect signals to a Low-Speed/Fault-Tolerant CAN interface.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-28 ni.com

LED Indicators
Table 3-10 provides a description of the LEDs on the front panel of the

USB-8472 and USB-8472s.

USB-LIN

This section describes the USB-LIN hardware.

USB-8476/USB-8476s: LIN
The USB-LIN physical layer circuitry interfaces the LIN microcontroller to

the physical bus wires. The USB-LIN physical layer is powered externally

from VBat (required for the LIN bus), and is optically isolated up to

500 VDC (withstand, 2s max) channel-to-bus. This isolation protects your

NI-LIN hardware and the PC it is connected to from being damaged by

high-voltage spikes on the LIN bus.

Transceiver
USB-LIN hardware uses the Amtel ATA6625 LIN transceiver. The

ATA6625 is fully compatible with the ISO-9141 standard and supports

baud rates up to 20 kbps. This device also supports advanced power

management through a low-power sleep mode. This feature is provided as

the Transceiver Mode attribute of the Frame API. For detailed ATA6625

specifications, refer to the Amtel ATA6625 data sheet.

Bus Power Requirements
The LIN physical layer is powered through the LIN bus VBat power. The

USB-8476 physical layer requires a DC power supply with an output of

+5 to +27 V (ATA6625) or +8 to +18 V (ATA6620), as specified in

Table 3-11, Bus Power Requirements for USB-8476. You should take these

requirements into account when determining the bus power supply

Table 3-10. LED Indicators for USB-8472/8472s Module

Name Function

USB Indicates connectivity to a USB Host. Green indicates

a USB full speed connection. Amber indicates a USB

high speed connection.

CAN Flashes to indicate the presence of traffic on the

CAN bus.

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-29 NI-CAN Hardware and Software Manual

requirements for the system. The Gnd pin serves as the reference ground

for the isolated signals. Refer to the High-Speed PCI, PXI, and USB

Connector Pinout section of Chapter 4, Connectors and Cables, for

information about how to connect signals to a LIN interface.

LED Indicators
Table 3-12 provides a description of the LEDs on the front panel of the

USB-8476 and USB-8476s.

Synchronization in USB-CAN/LIN Devices

USB-847x with Sync series hardware give you the ability to synchronize

multiple NI-USB-CAN/LIN devices with each other and with a variety of

DAQ, IMAQ and Motion Products. Synchronization occurs through a

3-pin Combicon connection allowing for a shared timestamp clock, start

trigger and ground. USB-847x with Sync series hardware can synchronize

to timestamp clocks of 20 Mhz, 10 Mhz, or 1 Mhz. For 20 MHz

synchronization, ensure that the synchronization cable is shielded and

grounded. Clock frequency is detected automatically by the hardware and

illegal clock frequencies will be reported as an error. USB-847x with Sync

series hardware can also generate a clock of 1MHz, allowing for accurate

CAN-CAN, CAN-LIN, and LIN-LIN synchronization.

Table 3-11. Bus Power Requirements for USB-8476

Characteristic Specification

Voltage +5 to +27 VDC (ATA6625) or

+8 to +18 VDC (ATA6620)

on VBat connector pin

(referenced to Gnd)

Current 55 mA maximum

Table 3-12. LED Indicators for USB-8476/8476s Module

Name Function

USB Indicates connectivity to a USB Host. Green indicates a

USB full speed connection. Amber indicates a USB high

speed connection.

LIN Flashes to indicate the presence of traffic on the LIN bus.

VBAT Indicates the presence of LIN bus power.

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-30 ni.com

Figure 3-8. USB-CAN Connector Cable

For information on the pinout of the USB-CAN D-SUB connector, refer to

the High-Speed PCI, PXI, and USB Connector Pinout section of Chapter 4,

Connectors and Cables.

1 LED indicators
2 USB connector

3 Combicon connector
4 D-SUB connector

Table 3-13. USB-CAN Combicon Connector Pinout

Pin Description

CLK Clock pin

TRG Trigger pin

GND Ground pin

4

2

1

3

Chapter 3 NI CAN and LIN Hardware

© National Instruments 3-31 NI-CAN Hardware and Software Manual

Figure 3-9. USB-LIN Connector Cable

For information on the pinout of the USB-LIN D-SUB connector, refer to

the USB-LIN Connector Pinout section of Chapter 4, Connectors and

Cables.

1 LED indicators
2 USB connector

3 Combicon connector
4 D-SUB connector

Table 3-14. USB-LIN Combicon Connector Pinout

Pin Description

CLK Clock pin

TRG Trigger pin

GND Ground pin

4

2

1

3

Chapter 3 NI CAN and LIN Hardware

NI-CAN Hardware and Software Manual 3-32 ni.com

CAN for CompactRIO

This section describes the use of CompactRIO with CAN.

What is CompactRIO?
National Instruments CompactRIO is an advanced embedded control and

acquisition system powered by NI reconfigurable I/O (RIO) technology.

CompactRIO combines a low-power-consumption, real-time embedded

processor with a high-performance RIO FPGA chipset. The RIO core has

built-in data transfer mechanisms to pass data to the embedded processor

for real-time analysis, post processing, data logging, or communication to

a networked host computer. CompactRIO provides direct hardware access

to the I/O circuitry of each I/O module using LabVIEW FPGA I/O

functions. Each I/O module includes built-in connectivity, signal

conditioning, conversion circuitry (such as ADC or DAC), and an optional

isolation barrier.

NI 985x

The NI 9853 is a CAN High-Speed I/O module for the CompactRIO

platform. For information on the NI 9853 CAN module, refer to the

NI 9853 Operating Instructions.

The NI 9852 is a CAN Low-Speed I/O module for the CompactRIO

platform. For information on the NI 9852 CAN module, refer to the

NI 9852 Operating Instructions.

For information on the software support for the NI 9853 and NI 9852

modules, refer to the LabVIEW FPGA help.

© National Instruments 4-1 NI-CAN Hardware and Software Manual

4
Connectors and Cables

This chapter describes the input and output signal connections to the

NI CAN hardware and the cabling requirements for interfacing to a CAN

network. Cables should be constructed to meet these requirements, as well

as the requirements of the other CAN devices in the network.

High-Speed CAN Pinout Cable

This section describes the High-Speed CAN pinout cable.

High-Speed PCI, PXI, and USB Connector Pinout
PCI-CAN, PXI-8461, USB-8473, and USB-8473s hardware have a 9-pin

male D-SUB (DB9) connector for each port. The 9-pin D-SUB connector

follows the pinout recommended by CiA DS 102. Figure 4-1 shows the

9-pin D-SUB connector pinout.

Figure 4-1. Pinout for 9-Pin D-SUB Connector

1
2

3
4

5

6
7

8
9

No Connection

CAN_L

V–

No Connection

Optional Ground (V–)

CAN_H

No Connection

V+
Shield

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-2 ni.com

CAN_H and CAN_L are signals lines that carry the data on the CAN

network. These signals should be connected using twisted-pair cable.

V– serves as the reference ground for CAN_H and CAN_L.

V+ supplies bus power to the CAN physical layer if external power is

required. All High-Speed Series 2 PCI, PXI, and USB hardware is powered

internally, so it is not necessary to supply V+, unless you have configured

the VBAT jumper for EXT.

Shield is an optional connection when using a shielded CAN cable.

Connecting the optional CAN shield may improve signal integrity in a

noisy environment.

PCMCIA Connector Pinout
PCMCIA-CAN cables have both a 9-pin male D-SUB and Combicon-style

pluggable screw terminal connector for each port. Figure 4-2,

PCMCIA-CAN Cable, shows the end of a PCMCIA-CAN cable. The arrow

points to pin 1 of the 5-pin screw terminal block. All of the signals on the

5-pin screw terminal are connected directly to the corresponding pins on

the 9-pin D-SUB.

Table 4-1. Pinout for 9-Pin D-SUB Connector

D-SUB Pin Signal Description

1 No Connection —

2 CAN_L CAN_L bus line

3 V– CAN reference ground

4 No Connection —

5 (Shield) Optional CAN shield

6 (V–) Optional CAN reference ground

7 CAN_H CAN_H bus line

8 No Connection —

9 (V+) Optional CAN power supply

if bus power or external VBAT

is required

Chapter 4 Connectors and Cables

© National Instruments 4-3 NI-CAN Hardware and Software Manual

Figure 4-2. PCMCIA-CAN Cable

CAN_H and CAN_L are signal lines that carry the data on the CAN

network. These signals should be connected using twisted-pair cable.

V– serves as the reference ground for CAN_H and CAN_L.

Shield is an optional connection when using a shielded CAN cable.

Connecting the optional CAN shield may improve signal integrity in a

noisy environment.

Table 4-2. PCMCIA-CAN Cable Connector Pin Descriptions

D-SUB Pin Combicon Pin Signal Description

1 — No Connection —

2 2 CAN_L CAN_L bus line

3 1 V– CAN reference ground

4 — No Connection —

5 3 (Shield) Optional CAN shield

6 — (V–) Optional CAN reference ground

7 4 CAN_H CAN_H bus line

8 — No Connection —

9 5 No Connection —

J2

J1

CAN (Internal Pwr), PORT 1

V-

C_L
SH

C_H
V+

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-4 ni.com

Cabling Requirements for High-Speed CAN
Cables should meet the physical medium requirements specified in

ISO 11898, shown in Table 4-3.

Belden cable (3084A) meets all of those requirements, and should be

suitable for most applications.

Cable Lengths
The allowable cable length is affected by the characteristics of the cabling

and the desired bit transmission rates. Detailed cable length

recommendations can be found in the ISO 11898, CiA DS 102, and

DeviceNet specifications.

ISO 11898 specifies 40 m total cable length with a maximum stub length

of 0.3 m for a bit rate of 1 Mb/s. The ISO 11898 specification says that

significantly longer cable lengths may be allowed at lower bit rates, but

each node should be analyzed for signal integrity problems.

Table 4-4 lists the DeviceNet cable length specifications.

Table 4-3. ISO 11898 Specifications for Characteristics of a CAN_H and

CAN_L Pair of Wires

Characteristic Value

Impedance 108 Ω minimum, 120 Ω nominal,

132 Ω maximum

Length-related resistance 70 mΩ /m nominal

Specific line delay 5 ns/m nominal

Table 4-4. DeviceNet Cable Length Specifications

Bit Rate Thick Cable Thin Cable

500 kb/s 100 m 100 m

250 kb/s 200 m 100 m

100 kb/s 500 m 100 m

Chapter 4 Connectors and Cables

© National Instruments 4-5 NI-CAN Hardware and Software Manual

Number of Devices
The maximum number of devices depends on the electrical characteristics

of the devices on the network. If all of the devices meet the requirements

of ISO 11898, at least 30 devices may be connected to the bus. Higher

numbers of devices may be connected if the electrical characteristics of the

devices do not degrade signal quality below ISO 11898 signal level

specifications. If all of the devices on the network meet the DeviceNet

specifications, 64 devices may be connected to the network.

Cable Termination
The pair of signal wires (CAN_H and CAN_L) constitutes a transmission

line. If the transmission line is not terminated, each signal change on the

line causes reflections that may cause communication failures.

Because communication flows both ways on the CAN bus, CAN requires

that both ends of the cable be terminated. However, this requirement does

not mean that every device should have a termination resistor. If multiple

devices are placed along the cable, only the devices on the ends of the cable

should have termination resistors. Refer to Figure 4-3 for an example of

where termination resistors should be placed in a system with more than

two devices.

Figure 4-3. Termination Resistor Placement

The termination resistors on a cable should match the nominal impedance

of the cable. ISO 11898 requires a cable with a nominal impedance of

120 Ω, so a 120 Ω resistor should be used at each end of the cable. Each

termination resistor should be capable of dissipating 0.25 W of power.

CAN
Device

CAN
Device

CAN
Device

CAN
Device

CAN_L

CAN_H

120 Ω 120 Ω

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-6 ni.com

Cabling Example
Figure 4-4, Cable Connecting Two CAN Devices, shows an example of a

cable to connect two CAN devices. For the internal power configuration,

no V+ connection is required.

Figure 4-4. Cable Connecting Two CAN Devices

Low-Speed/Fault-Tolerant CAN Pinout Cable

This section describes the Low-Speed/Fault-Tolerant CAN pinout cable.

Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout
PCI-CAN/LS, PXI-8460, USB-8472, and USB-8472s hardware have a

9-pin male D-SUB (DB9) connector for each port. The 9-pin D-SUB

connector follows the pinout recommended by CiA DS 102. Figure 4-5,

Pinout for 9-Pin D-SUB Connector, shows the 9-pin D-SUB connector

pinout.

9-Pin
D-Sub

9-Pin
D-Sub

CAN_H

CAN_L

V+

V+

V–

V–

5-Pin
Combicon

5-Pin
Combicon

Pin 7Pin 4 Pin 7 Pin 4

Pin 2 Pin 2

Pin 5 Pin 3

Pin 9 Pin 5

Pin 3 Pin 1

Pin 2Pin 2

Pin 5Pin 3

Pin 9Pin 5

Pin 3Pin 1

Power
Connector

SHIELD

120 Ω 120 Ω

Chapter 4 Connectors and Cables

© National Instruments 4-7 NI-CAN Hardware and Software Manual

Figure 4-5. Pinout for 9-Pin D-SUB Connector

Table 4-5. 9-Pin D-SUB Connector Pin Descriptions

D-SUB Pin Signal Description

1 No Connection —

2 CAN_L CAN_L bus line

3 V– CAN reference ground

4 No Connection —

5 (Shield) Optional CAN shield

6 (V–) Optional CAN reference

ground

7 CAN_H CAN_H bus line

8 No Connection —

9 (V+) Optional CAN power supply

if bus power or external VBAT

is required

1
2

3
4

5

6
7

8
9

No Connection

CAN_L

V–

No Connection

Optional Ground (V–)

CAN_H

No Connection

V+
Shield

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-8 ni.com

CAN_H and CAN_L are signals lines that carry the data on the CAN

network. These signals should be connected using twisted-pair cable.

V– serves as the reference ground for CAN_H and CAN_L.

V+ supplies bus power to the CAN physical layer if external power is

required. All Low-Speed/Fault-Tolerant Series 2 PCI, PXI and USB

hardware is powered internally, so it is not necessary to supply V+ unless

you have configured the VBAT jumper for EXT.

Shield is an optional connection when using a shielded CAN cable.

Connecting the optional CAN shield may improve signal integrity in a

noisy environment.

PCMCIA Connector Pinout PCMCIA Connector Pinout
PCMCIA-CAN cables have both a 9-pin male D-SUB and Combicon-style

pluggable screw terminal connector for each port. Figure 4-6 shows the end

of a PCMCIA-CAN cable. The arrow points to pin 1 of the 7-pin screw

terminal block. All of the signals on the 7-pin screw terminal, except RTL

and RTH, are connected directly to the corresponding pins on the 9-pin

D-SUB.

Figure 4-6. PCMCIA-CAN/LS Cable

Table 4-6. PCMCIA-CAN/LS Cable Connector Pin Descriptions

D-SUB Pin Combicon Pin Signal Description

1 — No Connection —

2 2 CAN_L CAN_L bus line

J2

J1

CAN/LS Series 2, Port 1

RTL

C_L

V-
SH

V+
C_H

RTH

Chapter 4 Connectors and Cables

© National Instruments 4-9 NI-CAN Hardware and Software Manual

CAN_H and CAN_L are signal lines that carry the data on the CAN

network. These signals should be connected using twisted-pair cable.

V– serves as the reference ground for CAN_H and CAN_L.

Shield is an optional connection when using a shielded CAN cable.

Connecting the optional CAN shield may improve signal integrity in a

noisy environment.

Cabling Requirements for Low-Speed/Fault-Tolerant CAN
Cables should meet the physical medium requirements shown in Table 4-7.

Belden cable (3084A) meets all of those requirements, and should be

suitable for most applications.

3 3 V– CAN reference ground

4 — No Connection —

5 4 (Shield) Optional CAN shield

6 — (V–) Optional CAN reference ground

7 6 CAN_H CAN_H bus line

8 — No Connection —

9 5 No Connection —

Table 4-7. Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires

Characteristic Value

Length-related resistance 90 mΩ /m nominal

Length-related capacitance: CAN_L and

ground, CAN_H and ground, CAN_L and

CAN_H

30 pF/m nominal

Table 4-6. PCMCIA-CAN/LS Cable Connector Pin Descriptions (Continued)

D-SUB Pin Combicon Pin Signal Description

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-10 ni.com

Number of Devices
The maximum number of devices depends on the electrical characteristics

of the devices on the network. If all of the devices meet the requirements of

typical Low-Speed/Fault-Tolerant CAN, up to 32 devices may be

connected to the bus. Higher numbers of devices may be connected if the

electrical characteristics of the devices do not degrade signal quality below

Low-Speed/Fault-Tolerant signal level specifications.

Termination
Every device on the low-speed CAN network requires a termination

resistor for each CAN data line: RRTH for CAN_H and RRTL for CAN_L.

Figure 4-7 shows termination resistor placement in a low-speed CAN

network.

Figure 4-7. Termination Resistor Placement for Low-Speed CAN

The following sections explain how to determine the correct resistor values

for the low-speed CAN card, and how to replace those resistors, if

necessary.

For USB CAN (847x) interfaces, the termination is software selectable.

Refer to the Termination attribute in ncSetAttr.vi of Chapter 10, Frame

API for LabVIEW, for more details.

Determining the Necessary Termination Resistance
for the Board
Unlike High-Speed CAN, low-speed CAN requires termination at the

low-speed CAN transceiver instead of on the cable. The termination

requires two resistors: RTH for CAN_H and RTL for CAN_L. This

configuration allows the Philips fault-tolerant CAN transceiver to detect

and recover from bus faults. You can use the PCI-CAN/LS, PXI-8460, or

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

Low-speed

CAN Device

RTL CAN_L RTH CAN_H

CAN_H

CAN_L

Chapter 4 Connectors and Cables

© National Instruments 4-11 NI-CAN Hardware and Software Manual

PCMCIA-CAN/LS to connect to a low-speed CAN network having from

two to 32 nodes as specified by Philips (including the port on the NI CAN

Low-Speed/Fault-Tolerant interface). You also can use the

Low-Speed/Fault-Tolerant interface to communicate with individual

low-speed CAN devices. It is important to determine the overall

termination of the existing network, or the termination of the individual

device, before connecting it to a Low-Speed/Fault-Tolerant port. Philips

recommends an overall RTH and RTL termination of 100 Ω to 500 Ω

(each) for a properly terminated low-speed network. The overall network

termination may be determined as follows:

Philips also recommends an individual device RTH and RTL termination of

500 to 16 kΩ. The PCI-CAN/LS or PXI-8460 card ships with termination

resistor values of 510 Ω ±5% per port mounted on the PCB. The

PCI-CAN/LS or PXI-8460 kit also includes a pair of 15 kΩ ±5% resistors

for each port. After determining the termination of the existing network or

device, you can use the following formula to indicate which value should

be placed on the PCI-CAN/LS or PXI-8460 card in order to produce the

proper overall RTH and RTL termination of 100 to 500 Ω upon connection

of the card:

where

RRTH overall should be between 100 and 500 Ω

RRTH of low-speed CAN interface = 510 Ω ±5% (mounted) or

15 kΩ ±5% (in kit)

|RRTH = RRTL

As the formula indicates, the 510 Ω ±5% shipped on the card will work

with properly terminated networks having a total RTH and RTL

termination of 125 to 500 Ω, or individual devices having an RTH and RTL

termination of 500 to 16 kΩ. For communication with a network having an

overall RTH and RTL termination of 100 Ω to 125 Ω, you will need to

replace the 510 Ω resistors with the 15 kΩ resistors in the kit. Refer to the

next section of this chapter, Replacing the Termination Resistors on the

PCMCIA-CAN/LS Cable. The PCMCIA-CAN/LS cable ships with

1
RRTHoverall
-------------------------- 1

RRTHnode1
------------------------ 1

RRTHnode2
------------------------ 1

RRTHnode3
------------------------ 1

RRTHnoden
------------------------+ + +=

RRTHoverall
1

1
RRTHoveralloflow speedCANinterface–
-- 1

RRTHofexistingnetworkordevice
--+ 

 
---=

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-12 ni.com

screw-terminal mounted RTH and RTL values of 510 Ω ±5% per port. The

PCMCIA-CAN/LS cable also internally mounts a pair of 15.8 kΩ ±1%

resistors in parallel with the external 510 Ω resistors for each port.

This produces an effective RTH and RTL of 494 Ω per port for the

PCMCIA-CAN/LS cable. After determining the termination of the existing

network or device, you can use the formula below to indicate which

configuration should be used on the PCMCIA-CAN/LS cable to produce

the proper overall RTH and RTL termination of 100 to 500 Ω upon

connection of the cable:

where

RRTH overall should be between 100 Ω and 500 Ω

RRTH of PCMCIA-CAN/LS = 494 Ω (510 Ω ± 5% (external) in parallel

with 15.8 kΩ ± 1% (internal), or 15.8 kΩ ± 1% (internal) only

|RRTH = RRTL

As the formula indicates, the 510 Ω ± 5% in parallel with 15.8 kΩ ± 1%

shipped on the cable will work with properly terminated networks having a

total RTH and RTL termination of 125 Ω to 500 Ω, or individual devices

having an RTH and RTL termination of 500 Ω to 16 KΩ. For

communication with a network having an overall RTH and RTL

termination of 100 Ω to 125 Ω, you will need to disconnect the 510 Ω

resistors from the 7-pin pluggable screw terminal. This will make the RTH

and RTL values of the PCMCIA-CAN/LS cable equal to the internal

resistance of 15.8 kΩ ± 1%. To produce RTH and RTL values between 494

and 15.8 kΩ on the PCMCIA-CAN/LS cable, use the following formula:

where

RInternal RTH of PCMCIA-CAN/LS = 15.8 kΩ ± 1%

|RRTH = RRTL

For information on replacing the external RTH and RTL resistors on the

PCMCIA-CAN/LS cable, refer to the Replacing the Termination Resistors

on the PCMCIA-CAN/LS Cable section of this chapter.

RRTHoverall
1

1
RRTHoflow speedCANinterface–
--- 1

RRTHofexistingnetworkordevice
--+ 

 
--=

RRTHoverall
1

1
RRTHofPCMCIA CANLS–
-- 1

RRTHofexistingnetworkordevice
--+ 

 
--=

Chapter 4 Connectors and Cables

© National Instruments 4-13 NI-CAN Hardware and Software Manual

Software Selectable Termination (USB-8472s only)
The USB-8472 and USB-8472s feature a software selectable bus

termination resistors, allowing the user to adjust the overall network

termination through an API call. In general, if the existing network has an

overall network termination of 125 Ω or less, you should select the 5 KΩ

option. For existing overall network termination above 125 Ω, you should

select the 1 KΩ termination option.

Replacing the Termination Resistors on Your
PCI-CAN/LS Board
Complete these steps to replace the termination resistors on the

PCI-CAN/LS card, after you have determined the correct value in the

Determining the Necessary Termination Resistance for the Board section

of this chapter.

1. Remove the termination resistors on the low-speed CAN card.

Figure 4-8, Location of Termination Resistors on PCI-CAN/LS2 Card,

shows the location of the termination resistor sockets on a

PCI-CAN/LS2 card.

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-14 ni.com

Figure 4-8. Location of Termination Resistors on PCI-CAN/LS2 Card

2. Cut and bend the lead wires of the resistors you want to install. Refer to

Figure 4-9.

Figure 4-9. Preparing Lead Wires of Replacement Resistors

3. Insert the replacement resistors into the empty sockets.

4. Refer to the NI-CAN Software and Hardware Installation Guide in the

jewel case of the program CD to complete the hardware installation.

1 Port 1 Termination Resistors 2 Port 2 Termination Resistors

2

1

0.3 in.
(8 mm)

0.165 in.
(4 mm)

Chapter 4 Connectors and Cables

© National Instruments 4-15 NI-CAN Hardware and Software Manual

Replacing the Termination Resistors on the PXI-8460
Board
Complete these steps to replace the termination resistors, after you have

determined the correct value in the Determining the Necessary Termination

Resistance for the Board section of this chapter.

1. Remove the termination resistors on the PXI-8460. Figure 4-10 shows

the location of the termination resistor sockets on a PXI-8460.

Figure 4-10. Location of Termination Resistors on a PXI-8460

1 Port 1 Termination Resistors 2 Port 2 Termination Resistors

2

1

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-16 ni.com

2. Cut and bend the lead wires of the resistors you want to install. Refer to

Figure 4-11 for an example.

Figure 4-11. Preparing Lead Wires of Replacement Resistors

3. Insert the replacement resistors into the empty sockets.

4. Refer to the NI-CAN Software and Hardware Installation Guide in the

jewel case of the program CD to complete the hardware installation.

Replacing the Termination Resistors on the PCMCIA-CAN/LS Cable
Complete these steps to replace the termination resistors on the

PCMCIA-CAN/LS cable after you have determined the correct value in the

Determining the Necessary Termination Resistance for the Board section

of this chapter.

1. Remove the two termination resistors on the PCMCIA-CAN/LS cable

by loosening the pluggable terminal block mounting screws for pins 1

and 2 (RTL) and pins 6 and 7 (RTH).

2. Bend and cut the lead wires of the two resistors you want to install,

as shown in Figure 4-12.

Figure 4-12. Preparing Lead Wires of PCMCIA-CAN/LS Cable Replacement Resistors

3. Mount RTL by inserting the leads of one resistor into pins 1 and 2 of

the pluggable terminal block and tightening the mounting screws.

0.3 in.
(8 mm)

0.165 in.
(4 mm)

 0.3 in.

 0.138 in.

(7.62 mm)

(3.5 mm)

Chapter 4 Connectors and Cables

© National Instruments 4-17 NI-CAN Hardware and Software Manual

Mount RTH by inserting the leads of the second resistor into pins 6 and

7 of the pluggable terminal block and tightening the mounting screws.

4. Refer to the NI-CAN Software and Hardware Installation Guide in the

jewel case of the program CD to complete the hardware installation.

Cabling Example
Figure 4-13 shows an example of a cable to connect two low-speed CAN

devices. For the PCMCIA-CAN/LS cables, only V–, CAN_L, and CAN_H

are required to be connected to the bus.

Figure 4-13. Cabling Example

Single Wire CAN Pinout Cable

This section describes the Single Wire CAN pinout cable.

Single Wire PCI and PXI Connector Pinout
PCI-CAN/XS and PXI-8464 hardware have a 9-pin male D-SUB (DB9)

connector for each port. The 9-pin D-SUB connector follows the pinout

recommended by CiA DS 102. Figure 4-14, Pinout for 9-Pin D-SUB

Connector, shows the 9-pin D-SUB connector pinout.

9-Pin
D-Sub

9-Pin
D-Sub

CAN_H

CAN_L

V+

V+

V–

V–

7-Pin
Combicon

7-Pin
Combicon

Pin 7Pin 6 Pin 7 Pin 6

Pin 2 Pin 2

Pin 5 Pin 4

Pin 9 Pin 5

Pin 3 Pin 3

Pin 2Pin 2

Pin 5Pin 4

Pin 9Pin 5

Pin 3Pin 3

Power
Connector

SHIELD

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-18 ni.com

Figure 4-14. Pinout for 9-Pin D-SUB Connector

CAN_H and CAN_L are signals lines that carry the data on the CAN

network. These signals should be connected using twisted-pair cable.

V– serves as the reference ground for CAN_H and CAN_L.

Table 4-8. 9-Pin D-SUB Connector Pin Descriptions

D-SUB Pin Signal Description

1 No Connection —

2 CAN_L CAN_L bus line

3 V– CAN reference ground

4 No Connection —

5 (Shield) Optional CAN shield

6 (V–) Optional CAN reference

ground

7 CAN_H CAN_H bus line

8 No Connection —

9 (V+) Optional CAN power supply if

bus power or external VBAT is

required

1
2

3
4

5

6
7

8
9

No Connection

CAN_L

V–

No Connection

Optional Ground (V–)

CAN_H

No Connection

V+
Shield

Chapter 4 Connectors and Cables

© National Instruments 4-19 NI-CAN Hardware and Software Manual

V+ supplies bus power to the CAN physical layer if external power is

required. All Low-Speed/Fault-Tolerant Series 2 PCI and PXI hardware is

powered internally, so it is not necessary to supply V+ unless you have

configured the VBAT jumper for EXT.

Shield is an optional connection when using a shielded CAN cable.

Connecting the optional CAN shield may improve signal integrity in a

noisy environment.

PCMCIA-CAN Connector Pinout
PCMCIA-CAN cables have both a 9-pin male D-SUB and Combicon-style

pluggable screw terminal connector for each port. Figure 4-15 shows the

end of a PCMCIA-CAN cable. The arrow points to pin 1 of the 5-pin screw

terminal block. All of the signals on the 5-pin screw terminal are connected

directly to the corresponding pins on the 9-pin D-SUB.

Figure 4-15. PCMCIA-CAN Cable

Table 4-9. PCMCIA-CAN Cable Connector Pin Descriptions

D-SUB Pin Combicon Pin Signal Description

1 — No Connection —

2 2 No Connection —

3 1 V– CAN reference ground

4 — No Connection —

5 3 (Shield) Optional CAN shield

J2

J1

CAN/SW Series 2, Port 1
(ExtPwr)

V-

SH

C_H

V+

C_L

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-20 ni.com

CAN_H is the signal line that carries the data on the CAN network.

V– serves as the reference ground for CAN_H.

V+ supplies bus power to the Single Wire CAN transceiver.

Shield is an optional connection when using a shielded CAN cable.

Connecting the optional CAN shield may improve signal integrity in a

noisy environment.

Cabling Requirements for Single Wire CAN
The number of nodes on the network, the total cable length of the system,

the bus loading of each node, and the clock tolerance are all interrelated.

It is therefore the responsibility of the system designer to factor in all of the

above parameters when designing a Single Wire CAN network. The SAE

J2411 standard provides some recommended specifications that can help in

making these decisions:

Cable Length
There shall be no more than 60 m between any two network system

ECU nodes.

Number of Devices
As stated previously, the maximum number of Single Wire CAN nodes

allowed on the network depends on the electrical characteristics of the

devices and cable. If all of the devices and cables meet the requirements of

J2411, between 2 and 32 devices may be networked together.

Termination (Bus Loading)
NI Single Wire CAN hardware includes a built-in 9.09 kΩ load resistor as

specified by J2411.

6 — (V–) Optional CAN reference ground

7 4 CAN_H CAN_H bus line

8 — No Connection —

9 5 (V+) CAN power supply

Table 4-9. PCMCIA-CAN Cable Connector Pin Descriptions (Continued)

D-SUB Pin Combicon Pin Signal Description

Chapter 4 Connectors and Cables

© National Instruments 4-21 NI-CAN Hardware and Software Manual

Cabling Example
Figure 4-16 shows an example of a cable to connect two Single Wire CAN

devices.

Figure 4-16. Cabling Example

XS CAN Pinout Cable

This section describes the XS CAN pinout cable.

XS PCI and PXI Connector Pinout
PCI-CAN/XS and PXI-8464 hardware have a 9-pin male D-SUB (DB9)

connector for each port.

When an XS port is selected as High-Speed, its connector pinout is

identical to a dedicated High-Speed interface as described in the

High-Speed PCI, PXI, and USB Connector Pinout section of this chapter.

When an XS port is selected as Low-Speed/Fault-Tolerant, its connector

pinout is identical to a dedicated Low-Speed/Fault-Tolerant interface as

described in the Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector

Pinout section of this chapter.

9-Pin
D-Sub

9-Pin
D-Sub

CAN_H

V+

V+

V–

V–

Pin 7 Pin 7

Pin 5

Pin 9

Pin 3

Pin 5

Pin 9

Pin 3

Power
Connector

SHIELD

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-22 ni.com

When an XS port is selected as Single Wire, its connector pinout is

identical to a dedicated Single Wire interface as described in the Single

Wire PCI and PXI Connector Pinout section of this chapter.

When an XS port has been selected as External, a different set of signals

is routed to the 9-pin D-SUB connector. Figure 4-17 shows the 9-pin

D-SUB connector pinout for an XS port in External mode.

Figure 4-17. Pinout for 9-Pin D-SUB Connector

Table 4-10. 9-Pin D-SUB Connector Pin Descriptions

D-SUB Pin Signal Description

1 MODE0 Digital output signal for external transceiver mode control

(XS port in external mode only)

2 RX RX0 pin from SJA1000 CAN controller

(XS port in external mode only)

3 GND Ground

4 MODE1 Digital output signal for external transceiver mode control

(XS port in external mode only)

5 No Connection Do not connect signals to this pin

6 (GND) Optional ground

7 TX TX0 pin from SJA1000 CAN controller

(XS port in external mode only)

1
2

3
4

5

6
7

8
9

No Connection

CAN_L

V–

No Connection

Optional Ground (V–)

CAN_H

No Connection

V+
Shield

Chapter 4 Connectors and Cables

© National Instruments 4-23 NI-CAN Hardware and Software Manual

RX and TX are the serial receive and transmit signals from the SJA1000

CAN controller. GND serves as the reference ground for RX and TX.

MODE0 and MODE1 are digital output signals for controlling the mode

selection of an external transceiver. For example, the TJA1041 and

TJA1054A have STB and EN input pins to select the transceiver operating

mode.

STATUS is a digital input signal for monitoring the status of an external

transceiver. For example, the TJA1041 and TJA1054A have an ERR output

to report bus fault conditions.

Cabling Requirements for XS CAN
For cabling requirements information, refer to the appropriate section on

cabling requirements for High-Speed, Low-Speed/Fault-Tolerant, or

Single Wire CAN depending on the XS port mode. Note that due to the

different cabling requirements for each physical layer, when switching an

XS port, you may also need to change out the cable to meet the network

cabling requirements.

When designing external transceiver circuits for an XS port in external

mode, keep the signal connections between the 9-pin D-SUB connector and

the transceiver circuit as short as possible. Ideally, the external transceiver

circuit should mount directly to the 9-pin D-SUB connector if possible.

8 STATUS Digital input signal for external transceiver error reporting

(XS port in external mode only)

9 No Connection Do not connect signals to this pin

Table 4-10. 9-Pin D-SUB Connector Pin Descriptions (Continued)

D-SUB Pin Signal Description

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-24 ni.com

External Transceiver Example
Figure 4-18 shows an example of an external transceiver circuit for an

XS port in External mode.

Figure 4-18. External Transceiver Circuit for an XS Port in External Mode

LIN

This section describes the USB-LIN hardware.

USB-LIN Connector Pinout
USB-8476 and USB-8476s hardware has a 9-pin male D-Sub (DB9)

connector for connection to the LIN bus. Figure 4-19, Pinout for 9-Pin

D-SUB Connector, shows the 9-pin D-Sub connector pinout.

9-Pin
D-Sub

CAN_H

V+

V+

V–

V–

Pin 7

Pin 1

Pin 4

Pin 8

Power
Connector

(SHIELD)

Pin 2

CAN_L

RX

MODE1

STATUS

MODE0

TX

External
Transceiver

Circuit

Chapter 4 Connectors and Cables

© National Instruments 4-25 NI-CAN Hardware and Software Manual

Figure 4-19. Pinout for 9-Pin D-SUB Connector

Table 4-11. 9-Pin D-SUB Connector Pin Descriptions

D-SUB Pin Signal Description

1 No Connection —

2 No Connection —

3 Ground LIN reference ground.

4 No Connection —

5 (Shield) Optional LIN shield.

Connecting the optional LIN

shield may improve signal

integrity in a noisy

environment.

6 Ground LIN reference ground.

7 LIN Signal line that carries the data

on the LIN.

1
2

3
4

5

6
7

8
9

No Connection

No Connection

Ground

No Connection

Ground

LIN

No Connection

VBat
Shield

Chapter 4 Connectors and Cables

NI-CAN Hardware and Software Manual 4-26 ni.com

Cabling Requirements for LIN Specifications (LIN)
This section describes cabling requirements for LIN.

Cable Specifications
LIN cables should meet the physical medium requirement of a bus RC time

constant of 5 microseconds. For detailed formulas for calculating this

value, refer to the Line Characteristics section of the LIN specification.

Belden cable (3084A) and other unterminated CAN/Serial quality cables

meet these requirements, and should be suitable for most applications.

Cable Lengths
The maximum allowable cable length is 40 meters, per the LIN

specification.

Number of Devices
The maximum number of devices on a LIN bus is 16, per the LIN

specification.

Termination
LIN cables require no termination, as nodes are terminated at the

transceiver. Slave nodes are typically pulled up from the LIN bus to VBat

with a 30 KΩ resistance and a serial diode. This termination is usually

integrated into the transceiver package. The master node requires a 1 KΩ

resistor and serial diode between the LIN bus and VBat.

On NI USB-LIN products, master termination is software selectable and

can be enabled with the Termination attribute. For more information refer

to the ncSetAttribute function within the Frame API.

8 No Connection —

9 VBat Supplies bus power to the LIN

physical layer, as required by

the LIN spec. All USB-LIN

interfaces require bus power of

8–18 VDC.

Table 4-11. 9-Pin D-SUB Connector Pin Descriptions (Continued)

D-SUB Pin Signal Description

© National Instruments 5-1 NI-CAN Hardware and Software Manual

5
Application Development

This chapter explains how to develop an application using the NI-CAN

APIs.

Choose the Programming Language

The programming language you use for application development

determines how to access the NI-CAN APIs.

LabVIEW
NI-CAN functions and controls are available in the LabVIEW palettes. In

LabVIEW 7.0 or later, the NI-CAN palette is located within the top-level

NI Measurements palette. In earlier LabVIEW versions, the NI-CAN

palette is located at the top-level. The top level of the NI-CAN function

palette contains subpalettes for the Channel API and Frame API. Each

subpalette of an API contains the most commonly used functions, with

subpalettes for advanced functions.

The reference for each NI-CAN Channel API function is in Chapter 7,

Channel API for LabVIEW. The reference for each NI-CAN Frame API

function is in Chapter 10, Channel API for LabVIEW. To access the

reference for a function from within LabVIEW, press <Ctrl-H> to open the

help window, click on the NI-CAN function, and then follow the link.

The NI-CAN software includes a full set of examples for LabVIEW. These

examples teach basic NI-CAN programming as well as advanced topics.

The example help describes each example and includes a link you can use

to open the VI.

The NI-CAN example help is in Help»Find Examples»Hardware Input

and Output»CAN.

Chapter 5 Application Development

NI-CAN Hardware and Software Manual 5-2 ni.com

LabWindows/CVI
Within LabWindows™/CVI™, the NI-CAN function panel is in Libraries»

NI-CAN. Like other LabWindows/CVI function panels, the NI-CAN

function panel provides help for each function and the ability to generate

code.

The reference for each NI-CAN Channel API function is in Chapter 8,

Channel API for C. The reference for each NI-CAN Frame API function is

in Chapter 11, Frame API for C. You can access the reference for each

function directly from within the function panel.

The header file for both NI-CAN APIs is nican.h. The library for both

NI-CAN APIs is nican.lib.

The NI-CAN software includes a full set of examples for

LabWindows/CVI. The NI-CAN examples are installed in the

LabWindows/CVI directory under samples\nican.

Each example provides a complete LabWindows/CVI project (.prj file).

A description of each example is provided in comments at the top of the

.c file.

Visual C++ 6
The NI-CAN software supports Microsoft Visual C/C++ version 6.

The NIEXTCCOMPILERSUPP environment variable is provided as an alias

to the C language header file and library location. You can use this variable

when compiling and linking an application.

To use either NI-CAN API, include the nican.h header file in the code,

then link with the nicanmsc.lib library file.

For C applications (files with .c extension), include the header file by

adding a #include to the beginning of the code, such as:

#include "nican.h"

The reference for each NI-CAN Channel API function is in Chapter 8,

Channel API for C. The reference for each NI-CAN Frame API function is

in Chapter 11, Frame API for C.

For linking applications, you must add the nicanmsc.lib file and the

following statement to your linker project options to search for the library:

/libpath:"$(NIEXTCCOMPILERSUPP)\lib32\msvc"

Chapter 5 Application Development

© National Instruments 5-3 NI-CAN Hardware and Software Manual

You can find examples for the C language in the MS Visual C subfolder

of the \Users\Public\Documents\National Instruments\

NI-CAN\Examples directory on Windows Vista and the \Documents

and Settings\All Users\Shared Documents\National

Instruments\NI-CAN\Examples directory on Windows XP. Each

example is in a separate folder. A description of each example is in

comments at the top of the .c file.

Borland C/C++
The NIEXTCCOMPILERSUPP environment variable is provided as an alias

to the C language header file and library location. You can use this variable

when compiling and linking an application.

To use either NI-CAN API, include the nican.h header file in the code,

then link with the nicanbor.lib library file.

For C applications (files with .c extension), include the header file by

adding a #include to the beginning of the code, such as:

#include "nican.h"

The reference for each NI-CAN Channel API function is in Chapter 8,

Channel API for C. The reference for each NI-CAN Frame API function is

in Chapter 11, Frame API for C.

For linking applications, you must add the nicanbor.lib file and the

following statement to your linker project options to search for the library:

/libpath:"$(NIEXTCCOMPILERSUPP)\lib32\borland"

You can find examples for the C language in the Borland C subfolder

of the \Users\Public\Documents\National Instruments\

NI-CAN\Examples directory on Windows Vista and the \Documents

and Settings\All Users\Shared Documents\National

Instruments\NI-CAN\Examples directory on Windows XP. Each

example is in a separate folder. A description of each example is in

comments at the top of the .c file.

Chapter 5 Application Development

NI-CAN Hardware and Software Manual 5-4 ni.com

Microsoft Visual Basic
The NI-CAN software supports Microsoft Visual Basic 6.0 or later.

To create an application in Visual Basic, add the NI-CAN Channel

API.BAS or NI-CAN Frame API.BAS file with the WIN32 API.BAS file

to the project. WIN32 API.BAS defines API calls to the Windows system

which are called by functions defined in the NI-CAN Channel API.BAS

and NI-CAN Frame API.BAS files. Adding these files to the project

allows you to call any of the functions declared in them from the code.

The .BAS files are in the MS Visual Basic subfolder of the

\Users\Public\Documents\National Instruments\NI-CAN\

Examples directory on Windows Vista and the \Documents and

Settings\All Users\Shared Documents\National

Instruments\NI-CAN\Examples directory on Windows XP.

The reference for each NI-CAN Channel API function is in Chapter 8,

Channel API for C. The reference for each NI-CAN Frame API function is

in Chapter 11, Frame API for C.

If you plan to use the ReadMult or WriteMult functions, refer to the

examples, which explain how to use the Read Multiple or Write Multiple

functions instead.

You can find examples for Visual Basic in the Channel API examples

and Frame API examples subfolders of the MS Visual Basic folder.

Each example is in a separate folder. A .vbp file with the same name as the

example opens the Visual Basic project. A description of the example is

located in a Help form within the project.

Other Programming Languages
The NI-CAN software does not provide formal support for programming

languages other than those described in the preceding sections.

Nevertheless, you may find libraries and examples for other programming

languages on the National Instruments Web site, ni.com.

If the programming language provides a mechanism to call a Dynamic Link

Library (DLL), you can create code to call NI-CAN functions. All

functions for the Channel API and Frame API are in nican.dll.

Chapter 5 Application Development

© National Instruments 5-5 NI-CAN Hardware and Software Manual

If the programming language supports the Microsoft Win32 APIs, you can

load pointers to NI-CAN functions in the application. The following text

demonstrates use of the Win32 functions for C/C++ environments other

than Visual C/C++ 6. For more detailed information, refer to Microsoft

documentation.

The following C language code fragment shows how to call Win32

LoadLibrary to load the DLL for the NI-CAN Channel API:

#include <windows.h>

#include "nican.h"

HINSTANCE NicanLib = NULL;

NicanLib = LoadLibrary("nican.dll");

Next, the application must call the Win32 GetProcAddress function to

obtain a pointer to each NI-CAN function that the application will use. For

each NI-CAN function, you must declare a pointer variable using the

prototype of the function. For the prototypes of each NI-CAN function,

refer to the C language sections of this manual.

static nctTypeStatus (NCT_FUNC * PnctInitStart)

(const str TaskList, i32 Interface, i32 Direction,

f64 SampleRate, nctTypeTaskRef * TaskRef);

static nctTypeStatus (NCT_FUNC * PnctRead)

(nctTypeTaskRef TaskRef, u32 NumberOfSamplesToRead,

nctTypeTimestamp * StartTime, nctTypeTimestamp *

DeltaTime, f64 * SampleArray, u32 *

NumberOfSamplesReturned);

static nctTypeStatus (NCT_FUNC * PnctClear)

(nctTypeTaskRef TaskRef);

PnctInitStart = (nctTypeStatus (NCT_FUNC *)

(const str, i32, i32, f64, nctTypeTaskRef *))

GetProcAddress(NicanLib, (LPCSTR)"nctInitStart");

PnctRead = (nctTypeStatus (NCT_FUNC *)

(nctTypeTaskRef, u32, nctTypeTimestamp *,

nctTypeTimestamp *, f64 *, u32 *))

GetProcAddress(NicanLib, (LPCSTR)"nctRead");

PnctClear = (nctTypeStatus (NCT_FUNC *)

(nctTypeTaskRef)) GetProcAddress(NicanLib,

(LPCSTR)"nctClear");

Chapter 5 Application Development

NI-CAN Hardware and Software Manual 5-6 ni.com

The application must de-reference the pointer to call the NI-CAN function,

as shown by the following code:

nctTypeStatus status;

nctTypeTaskRef TaskRef;

status = (*PnctInitStart)("mychannel1, mychannel2", 0,

nctModeInput, 1000.0, &TaskRef);

Before exiting the application, you must unload the NI-CAN DLL as

follows:

FreeLibrary(NicanLib);

Choose Which API To Use

For a given NI-CAN interface such as CAN0, you can use only one API at

a time. Therefore, for new application development, you need to decide

which API to use.

For example, if you have one application that uses the Channel API and

another application that uses the Frame API, you cannot use CAN0 with

both at the same time. As an alternative, you can connect CAN0 and CAN1

to the same network, then use CAN0 with one application and CAN1 with

the other, if you have a 2-port CAN card. As another alternative, you can

use CAN0 in both applications, but run each application at a different time

(not simultaneously).

Because the Channel API provides access to the CAN network in

easy-to-use physical units, it is recommended over the Frame API for

customers who are getting started with NI-CAN. You also need to use the

Channel API if you want to utilize CAN messages or channels that are

defined in CAN database files.

Nevertheless, because the Frame API provides lower-level access to the

CAN network, there are a few reasons why you might want to use it over

the Channel API:

• You are continuing with an application developed with NI-CAN

version 1.6 or earlier. The Frame API is compatible with such code.

• You need to implement a command/response protocol in which you

send a command to the device, and then the device replies by sending

a response. Command/response protocols typically use a fixed pair of

IDs for each device, and the ID does not determine the meaning of the

data bytes.

Chapter 5 Application Development

© National Instruments 5-7 NI-CAN Hardware and Software Manual

• The devices require use of remote frames. The Channel API does not

provide support for remote frames, but the Frame API has extensive

features to transmit and receive remote frames. For more information,

refer to the Remote Frames section of Chapter 9, Using the Frame

API, in this manual.

• The Frame API provides RTSI features that are lower level than the

synchronization features of the Channel API. If you have advanced

requirements for synchronizing CAN and DAQ cards, you may need to

use the Frame API. For more information, refer to the RTSI section of

Chapter 9, Using the Frame API, in this manual.

• The USB-847x is supported only by the Frame API. In addition, the

USB-847x hardware uses the Network Interface, not CAN objects.

In some cases, applications might require the ability to convert CAN data

between a CAN frame and a CAN channel. For information on frame to

channel conversion, channel to frame conversion, and virtual interfaces,

refer to the Frame to Channel Conversion section of Chapter 6, Using the

Channel API, in this manual.

© National Instruments 6-1 NI-CAN Hardware and Software Manual

6
Using the Channel API

This chapter helps you get started with the Channel API.

Choose Source of Channel Configuration

The first step in using the Channel API is to create the channel

configuration for the applications. This channel configuration describes

how the NI-CAN software converts raw data in messages to or from the

physical units of each channel.

The NI-CAN software provides various methods to create the channel

configuration. Figure 6-1 shows a process you can use to decide the source

of the channel configuration. A description of each step in the decision

process follows the flowchart.

Figure 6-1. Decision Process for Choosing Source of Channel Configuration

Import CAN
Database
into MAX

Access CAN
Database

Within
Application

Use Create
Message

Function in
Application

Create
in

MAX

Yes No

YesYes No No

Already have
a CAN database

on file?

Application
uses a subset
of channels?

User must
create within
application?

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-2 ni.com

Already Have a CAN Database File?
If you have a CAN database file, the channel configuration has already

been created using a tool such as Vector’s CANdb Editor. You can use each

signal name in the CAN database as a channel name in the NI-CAN

Channel API.

If you answer yes, refer to the Application Uses a Subset of Channels?

section of this chapter. If you answer no, refer to the User Must Create

within Application? section of this chapter.

Application Uses a Subset of Channels?
If the CAN database file contains a large number of channel descriptions

(1,000 or more), does the application use only a subset of these channels

(100 or less)? Importing the channels into MAX provides many benefits,

but managing the transfer of large amounts of data from CAN databases

can be cumbersome. For example, if the large CAN database file is updated

periodically, you need to ensure that the changes are reflected in MAX after

each update.

If you answer yes, refer to the Import CAN Database into MAX section of

this chapter. If you answer no, refer to the Access CAN Database within

Application section of this chapter.

There are limitations on how NI-CAN uses information from a Vector

CANdb database file. For current information on NI-CAN support for

Vector CANdb files, refer to the NI-CAN readme file.

Import CAN Database into MAX
The benefits of importing channels into MAX include:

• The option of initializing the channel name alone within the Channel

API. No path to the CAN database file is required.

• Using the Test Panel in MAX to read and write the channels.

To import channel configurations from a Vector CANdb file into MAX,

right-click the CAN Channels heading, then select Import from CANdb

File. Use shift-click to select multiple channels, and then select Import.

If you need to select another set, you can select the channels and then

Import again. When you are finished with the import, select Done to return

to MAX.

Chapter 6 Using the Channel API

© National Instruments 6-3 NI-CAN Hardware and Software Manual

You can download the MAX channel configuration to a LabVIEW RT

system by right-clicking the CAN Channels heading, and selecting

Send to RT System.

Access CAN Database within Application
To access the CAN database within the application, you must initialize the

channel name with the file path as a prefix. For example, if you are using a

channel named EngineRPM in the C:\DBC_Files\Prototype.DBC file,

you pass the following name to the Init Start function:

C:\DBC_Files\Prototype.DBC::EngineRPM

For more information, refer to the description of the Init Start function in

the Channel API reference sections of this manual.

You can download the channel configuration to a LabVIEW RT system by

right-clicking the CAN Channels heading, and selecting Send to RT

System.

User Must Create within Application?
Are you developing an application that another person will use, and that

person must create the channel configuration using the application itself?

If you answer yes, refer to the Use Create Message Function in Application

section of this chapter.

If you answer no, you create the channel configuration within MAX. You

can save the MAX channel configuration to a file, so this method does not

prevent you from deploying the application for use by others. For more

information, refer to the Create in MAX section of this chapter.

Use Create Message Function in Application
The Create Message function (CAN Create Message in LabVIEW and

nctCreateMessage in other languages) takes inputs for a single message

configuration, then one or more channel configurations. By using Create

Message to create the channel configurations, the application is entirely

self contained, not depending on MAX or a CAN database file.

The inputs to Create Message are relatively advanced for many users. Use

of MAX or a CAN database helps to isolate the application end user from

the specifics of CAN message encoding.

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-4 ni.com

Mode dependent channels are a special kind of CAN message used within

some networks. Refer to the Mode Dependent Channels section of this

chapter for more information. If you must support creation of mode

dependent channel configurations within the application, use the Create

MessageEx function instead of Create Message. The Create MessageEx

function provides extensions for creation of mode dependent as well as

normal channels.

Create in MAX
To create channel configurations within MAX, right-click the CAN

Channels heading, then select Create Message. Enter the message

properties, then select OK. Right-click the message name, then select

Create Channel. Enter the channel properties, then select OK. Select

Create Channel again for each channel contained in the message. Channel

names are case sensitive.

To save channel configurations to a file, right-click the CAN Channels

heading, then select Save Channel Configuration. The resulting NI-CAN

database uses file extension .ncd. You can access the NI-CAN database

using the Init Start function just like any other CAN database. By simply

installing the NI-CAN database file along with the application, you can

deploy the application to a variety of users.

Channel API Basic Programming Model

When you use the Channel API, the first step is to initialize a list of

channels with the same direction, such as input or output. You can then read

or write this list of channels as a unit. The term task refers to a list of

channels you read or write together. A common use of the task concept is

to read/write all channels of a message.

Figure 6-2 shows a diagram describing the basic programming model for

the NI-CAN Channel API. Within the application, you repeat this basic

programming model for each task. The diagram is followed by a

description of each step in the model.

Chapter 6 Using the Channel API

© National Instruments 6-5 NI-CAN Hardware and Software Manual

Figure 6-2. Basic Programming Model for Channel API

Init Start
The Init Start function initializes a list of channels as a single task, then

starts communication for that task.

The Init Start function uses the following input parameters:

• channel list—Specifies the list of channels for the task, with one string

for each channel.

• interface—Specifies the CAN interface to use for the task. The

interface is an enumeration in which 0 specifies CAN0, 1 specifies

CAN1, and so on. The baud rate is taken from the properties of the

interface in MAX.

• mode—Specifies the I/O mode to use for the task. This determines the

direction of data transfer for the task (that is, Input or Output). It also

determines the type of Read or Write function you use with the task.

For more information, refer to the following sections.

• sample rate—Specifies the rate of sampling for input and output

modes. The sample rate is specified in Hertz (samples per second). For

more information, refer to the Read and Write sections of this chapter.

The Init Start function simply calls the Initialize function followed by the

Start function. This provides an easy way to start a list of channels.

Init Start

Write

Clear

Read
Read

Timestamped

Mode = Input
Mode = Output

or Output Recent Mode = Timestamped Input

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-6 ni.com

There are a few scenarios in which you cannot use Init Start:

• Set Property—If you need to set properties for the task, you must call

Initialize, Set Property, and Start in sequence. For example, use Set

Property if you need to specify the baud rate for the interface within

the application. For more information, refer to the Set Property section

of this chapter.

• Synchronization—If you need to synchronize multiple cards, you

must call Initialize, then the appropriate functions to synchronize and

start the cards. For more information, refer to the Synchronization

section of this chapter.

• Create Message—If you need to create channel configurations within

the application, you must call Create Message and Start in sequence.

For assistance is deciding whether Create Message is appropriate for

the application, refer to the Choose Source of Channel Configuration

section of this chapter.

The Init Start function is CAN Init Start in LabVIEW and nctInitStart

in other languages.

Read
If the mode of Init Start is Input, the application must call the Read function

to obtain floating-point samples. The application typically calls Read in a

loop until done.

The Read function is CAN Read in LabVIEW (all types that don’t end in

Time & Dbl) and nctRead in other languages.

The behavior of Read depends on the initialized sample rate:

sample rate = 0
Read returns a single sample from the most recent message(s) received

from the network. One sample is returned for every channel in the Init Start

list.

Figure 6-3, Example of Read with sample rate = 0, shows an example of

Read with sample rate = 0. A, B, and C represent messages for the

initialized channels. If no message is received since the start of the

application, the Default Value in MAX (def) is returned, along with a

warning.

Chapter 6 Using the Channel API

© National Instruments 6-7 NI-CAN Hardware and Software Manual

Figure 6-3. Example of Read with sample rate = 0

sample rate > 0
Read returns an array of samples for every channel in the Init Start list.

Each time the clock ticks at the specified rate, a sample from the most

recent message(s) is inserted into the arrays. In other words, the samples are

repeated in the array at the specified rate until a new message is received.

By using the same sample rate with NI-DAQ Analog Input channels or

NI-DAQmx Analog Input channels, you can compare CAN and DAQ

samples over time.

Figure 6-4 shows an example of Read with sample rate > 0. A, B, and C

represent messages for the initialized channels. <delta-t> represents the

time between samples as specified by the sample rate. def represents the

Default Value in MAX.

Figure 6-4. Example of Read with sample rate > 0

Start

Read Read Read

def A C

A B C

Start

Read

def A C

A B C

def def def A A A A B B B C C

Δt

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-8 ni.com

Read Timestamped
If the Init Start mode is Timestamped Input, the application must call the

Read Timestamped function to obtain floating-point samples. The

application typically calls Read Timestamped in a loop until done.

The Read Timestamped function returns samples that correspond to

messages received from network. For each message, an associated sample

is returned along with a timestamp that specifies when the message arrived.

An array of timestamped samples is returned for every channel in the Init

Start list.

The Read Timestamped function is CAN Read in LabVIEW (types that

end in Time & Dbl) and nctReadTimestamped in other languages.

Figure 6-5 shows an example of Read Timestamped. A, B, and C represent

messages for the initialized channels. At, Bt, and Ct represent the times

when each message was received.

Figure 6-5. Example of Read Timestamped

Write
If the Init Start mode is Output (or Output Recent), the application must call

the Write function to output floating-point samples. The application

typically calls Write in a loop until done.

The Write function is CAN Write in LabVIEW and nctWrite in other

languages.

Start

Read Timestamped

A C

A B C

B

At Bt Ct

Chapter 6 Using the Channel API

© National Instruments 6-9 NI-CAN Hardware and Software Manual

The behavior of Write depends on the initialized sample rate:

sample rate = 0
Write transmits a message immediately on the network. The samples

provided to write are used to form the data bytes of the message. One

sample must be specified for every channel in the Init Start list. The Init

Start mode must be Output for this behavior (not Output Recent).

Figure 6-6 shows an example of Write with sample rate = 0. A, B, C and D

represent messages for the initialized channels. For each Write, the

associated messages are transmitted as quickly as possible.

Figure 6-6. Example of Write with Sample Rate = 0

sample rate > 0, Output mode
You provide an array of samples for every channel in the Init Start list. Each

time the clock ticks at the specified rate, the next message is transmitted.

Each message uses the next sample from the array(s) to form the data bytes

of the message. In other words, the samples from the array are transmitted

periodically onto the network. By using the same sample rate with NI-DAQ

Analog Output channels or NI-DAQmx Analog Output channels, you can

output synchronized CAN and DAQ samples over time.

Figure 6-7, Example of Write with Sample Rate > 0, Output Mode, shows

an example of Write with sample rate > 0 and Output mode. A, B, C and D

represent messages for the initialized channels. <delta-t> represents the

time between message transmission as specified by the sample rate.

Start

A B C

Write

A B

D

Write

C D

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-10 ni.com

Figure 6-7. Example of Write with Sample Rate > 0, Output Mode

sample rate > 0, Output Recent mode
You provide a single sample for every channel in the Init Start list. Each

time the clock ticks at the specified rate, the next message is transmitted

using the most recent sample that you provided. The Output Recent mode

is useful when you have multiple tasks running at different rates, because

you can write samples for all tasks in a single loop.

Figure 6-8 shows an example of Write with sample rate > 0 and Output

Recent mode.

Figure 6-8. Example of Write with Sample Rate > 0, Output Recent Mode

Clear
The Clear function stops communication for the task, then clears the

configuration.

For every task that you initialize, you must call Clear prior to exiting the

application.

Start

A B C

Write

A B

D

Write

C D

Δt

Start

B B D

Write

A B

D

Write

C D

Δt

Write Write

Chapter 6 Using the Channel API

© National Instruments 6-11 NI-CAN Hardware and Software Manual

The Clear function is CAN Clear in LabVIEW and nctClear in other

languages.

Channel API Additional Programming Topics

The following sections provide information you can use to extend the basic

programming model.

Get Names
If you are developing an application that another person will use, you may

not want to specify a fixed channel list in the application. Ideally, you want

the end-user to select the channels of interest from user interface controls,

such as list boxes.

The Get Names function queries MAX or a CAN database and returns

a list of all channels in that database. You can use this list to populate

user-interface controls. The end-user can then select channels from these

controls, avoiding the need to type each name using the keyboard. Once the

user makes his selections, the application can pass the resulting list to Init

Start.

The Get Names function is CAN Get Names in LabVIEW and

nctGetNames in other languages.

Synchronization
The NI-CAN Channel API uses RTSI to synchronize specific functional

units on each card. For CAN cards, the functional unit is the interface

(port). For DAQ cards, the functional unit is a specific measurement such

as Analog Input or Analog Output. Each function routes two signals over

the RTSI connection:

• timebase—This is a common clock shared by both cards. The shared

timebase ensures that sampling does not drift. The timebase applies to

all functional units on the card.

• start trigger—This signal is sent from one functional unit to the other

functional unit when sampling starts. The shared start trigger ensures

that both units start simultaneously.

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-12 ni.com

Set Property
The Init Start function uses interface and channel configuration as specified

in MAX or the CAN database file. If you need to change this configuration

within the application, you cannot use Init Start, because most properties

cannot be changed while the task is running.

For example, to set the baud rate for the interface within the application, use

the following calling sequence:

• Initialize the task as stopped. The Initialize function is CAN Initialize

in LabVIEW and nctInitialize in other languages.

• Use Set Property to specify the new value for the baud rate property.

The Set Property function is CAN Set Property in LabVIEW and

nctSetProperty in other languages.

• Start the task with the Start function. The Start function is CAN Start

in LabVIEW and nctStart in other languages.

After the task is started, you may need to change properties again. To

change properties within the application, use the Stop function to stop the

task, Set Property to change properties, and then Start the task again.

You also can use the Get Property function to get the value of any property.

The Get Property function returns values whether the task is running or not.

Frame to Channel Conversion

As described in the NI-CAN Software Overview section of Chapter 1,

Introduction, NI-CAN supports two distinct formats for CAN data. The

first format is the CAN frame, which represents a raw frame consisting of

an ID, type, data bytes, and timestamp. The second format is the CAN

channel, which represents a field in the data of a specific ID, scaled to a

floating point value in physical units (such as Volts or

Revolutions-per-minute).

Many applications require the ability to convert CAN data from one format

to another. As one example, consider an application that logs CAN traffic

to a file for an extended period of time. Since CAN frames occur in an event

driven manner, the most efficient means of file storage is to use CAN

frames as the data format. Nevertheless, when displaying the contents of

the log file, you may need to plot the data as waveforms for specific CAN

channels. Therefore, the application must convert the CAN frames in the

file into CAN channels for waveform display.

Chapter 6 Using the Channel API

© National Instruments 6-13 NI-CAN Hardware and Software Manual

Figure 6-9 demonstrates how you can use NI-CAN to display waveforms

of CAN channels using a log file consisting of CAN frames. NI-CAN

provides a virtual CAN card with two interfaces, CAN256 and CAN257.

The two virtual interfaces are connected by a virtual bus. When you write

CAN frames to one virtual interface, those frames are received by the other

virtual interface, and can be read as channels. This feature allows you to

read and write CAN data in the same manner as two real CAN interfaces

connected by a real CAN cable. The conversion does not require real

NI CAN hardware, and your application is not required to check for

specific CAN IDs.

Figure 6-9. Display Waveforms of CAN Channels Using a Log File of CAN Frames

When Should I Use Frame to Channel Conversion?
The following sections outline some applications that use frame to channel

conversion, channel to frame conversion, or other aspects of the virtual

interface concept.

Logging
As explained in the Introduction, logging is one of the primary applications

for frame to channel conversion. Since overall CAN traffic does not occur

at a fixed rate, the most efficient implementation is to store each CAN

frame as it is received. The file of CAN frames can later be displayed as

channels using NI-CAN’s frame to channel conversion.

Log
File

Read frames
from file,
and write
to NI-CAN.

Read CAN
channels
from NI-CAN,
and plot as
waveforms.

Frame API
Network Interface

CAN256

Channel API
Input Task
CAN257

Application

Virtual CAN Bus

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-14 ni.com

In addition to displaying a log file as channels, you can also use NI-CAN

to create a log file using channel data. The process for this channel to frame

conversion is essentially a reversal of the operations shown in Figure 6-9

above. You obtain CAN channel data from front panel controls, and write

that CAN channel data to a Channel API output task on a virtual interface

(CAN257). Next, you read the resulting CAN frames from a Frame API

virtual interface (CAN256), and write those frames to the log file. At a

subsequent date, you can replay this log file to a real CAN interface using

the timestamped transmit feature (Transmit Mode attribute of the Frame

API network interface).

Although NI-CAN examples demonstrate a simple binary log file format,

your logging or replay application can access any file format that you

require. Although there is a wide variety of CAN log file formats available

from other companies, almost all use CAN frames as the fundamental data

type. Once you obtain the specification for a specific CAN log file format,

it is relatively straightforward to convert the file contents to data that is

compatible with the NI-CAN Frame API.

CompactRIO
The rugged enclosure and real-time capabilities of CompactRIO, as

discussed in the CAN for CompactRIO section of Chapter 3, NI CAN and

LIN Hardware, make it an ideal product for testing in the field, such as

drive testing of an automobile. Since the LabVIEW FPGA I/O interface for

CAN provides access to CAN frames only, you must use NI-CAN’s frame

to channel conversion features when access to CAN channels is required.

For logging applications, the LabVIEW application on CompactRIO is

simple: read CAN frames and store them in a file. When the CAN log file

is later transferred from CompactRIO to a lab computer, the application on

that computer can use NI-CAN to read frames from the log file and display

as CAN channels, as shown in Figure 6-1. In addition, if the LabVIEW

application on CompactRIO stores a second log file with analog/digital

samples, that data can be displayed on the lab computer as waveforms

synchronized with the CAN channels.

For applications in which you must execute a control model within

CompactRIO, you typically wire CAN channels as inputs and outputs to the

control model. In order to implement this, you can install NI-CAN on the

LabVIEW RT controller of CompactRIO. Your LabVIEW FPGA VI reads

and writes CAN frames, and transfers those CAN frames to/from

LabVIEW RT as you would any other I/O. Your LabVIEW RT VI uses

NI-CAN’s virtual interfaces to convert the CAN frames to/from CAN

channels. Your NI-CAN Channel API tasks use sample rate 0 and

Chapter 6 Using the Channel API

© National Instruments 6-15 NI-CAN Hardware and Software Manual

single-sample read/write, thus providing immediate single-point values for

the control model.

Development without CAN Hardware
The virtual interface can enable development of an NI-CAN application on

a computer that does not contain NI CAN hardware. Although the NI-CAN

virtual interface does impose some limitations, most functions return

successful status. In addition, the virtual bus feature may enable you to

debug your application by simulating limited CAN traffic. For example, if

your application is intended to test a CAN node, you can run your test on

CAN256, and run a simple simulation of the node on CAN257.

Database Queries
For large test applications that are deployed to several end-users, it is

common to query CAN databases for initial configuration of a test. For

example, you specify a list of channel names, each with parameters for

display in a single waveform graph, then save that test configuration to

a file. The application that queries the CAN database to create a test

configuration file often executes on a system without NI CAN hardware.

By initializing a Channel API task on CAN256, you can use the CAN Get

Property function to obtain detailed information for each message and

channel in a CAN database.

Enhance an Existing Frame API Application
You have a large Frame API application for an older version of NI-CAN

(1.x), and that application can benefit from display of CAN data as

channels. Rather than changing all of the application’s CAN

communication from the Frame API to the Channel API, you can use frame

to channel conversion to enhance the existing code. For example, the bulk

of the application can communicate on a real interface (i.e. CAN0) using

the Frame API, but you can add code that uses virtual interfaces to convert

raw frame data to/from channel data for additional displays.

USB-847x

The USB-847x hardware is supported only by the Frame API. For some

applications with the USB-847x you may want to display CAN data as

channels. In this case you can use frame to channel conversion to convert

the frame data into channel data for display.

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-16 ni.com

Virtual Bus Timing
The NI-CAN virtual interface provides an attribute that does not exist on

real interfaces. Virtual Bus Timing is a boolean attribute that specifies

whether the time between successive CAN frames is simulated by NI-CAN

when the frames transfer across the virtual bus.

When Virtual Bus Timing is true (default), the time between frames is

simulated. Frame timestamps are recalculated as they transfer across the

virtual bus. This mode is useful when you want the virtual bus to behave as

much like a real bus as possible. For example, if you use the technique

shown in Figure 6-1 to display a log file that was captured over 200 seconds

of time, the channel waveforms will scroll slowly to display data for

200 seconds. This is due to the fact that when you write two frames whose

timestamps are a few seconds apart, NI-CAN will delay a few seconds on

the virtual bus, and therefore the Channel API Read of CAN257 will delay

between the two frames. The programming model used to write NI-CAN

applications for real CAN hardware can be used for a majority of

applications with Virtual Bus Timing enabled. Refer to the Channel API

Basic Programming Model of this chapter and the Frame API Basic

Programming Model for CAN section of Chapter 9, Using the Frame API,

for information on programming real CAN hardware.

When Virtual Bus Timing is false, the time between frames is not

simulated. Frame timestamps are unchanged as they transfer across the

virtual bus. This mode is useful when you want to convert CAN data from

frames to channels as quickly as possible. For example, if you use the

technique shown in Figure 6-1 to display a log file that was captured over

200 seconds of time, the channel waveforms will scroll by very quickly.

This is due to the fact that when you write two frames whose timestamps

are a few seconds apart, NI-CAN will not delay the transfer on the virtual

bus, and therefore the Channel API Read of CAN257 will not delay

between the two frames. Although the conversion occurs quickly, you will

presumably use products like LabVIEW or DIAdem to search the

waveforms for specific events. When Virtual Bus Timing is disabled, time

advances only up to the timestamp of the last frame written onto the virtual

bus. As a result, if NI-CAN detects that a frame with a timestamp lesser

than the previous frame timestamp is being written onto the virtual bus, an

error will be returned. Refer to the Programming Model for Virtual Bus

Timing Disabled section of this chapter for information on developing an

application that converts frames to channels or channels to frames without

simulating frame timing.

When you change the Virtual Bus Timing in your application, you must set

the same value on both virtual interfaces, CAN256 and CAN257.

Chapter 6 Using the Channel API

© National Instruments 6-17 NI-CAN Hardware and Software Manual

Limitations
The virtual interface is not designed to support all of the features of a real

interface. This section serves as the primary reference for the limitations of

the virtual interface.

For each NI-CAN feature, the virtual interface will behave in one of

three ways:

• Error—The NI-CAN function returns an error. This occurs for

features that are not supported, and which represent high-level

capabilities that your application would require. For example, the

virtual interface does not support Frame API CAN Objects, so the error

helps to clarify that you cannot execute applications that rely on CAN

Objects.

• Non-operational—The NI-CAN function returns success, but the

feature performs in a fixed, non-operational manner. This occurs for

features that your application typically would not rely on. For example,

the virtual interface always returns zero for the Serial Number

attribute, because your application may display the serial number,

but operate correctly when the number is invalid.

• Operational—The NI-CAN function returns success, and operates as

expected with regard to the virtual bus. For example, if you write a

frame to a virtual network interface using the Frame API, that frame

will transfer across the virtual bus to the other virtual interface.

Table 6-1 lists all Error features for the virtual interface. The VBT column

lists the values (T=true, F=false) of the Virtual Bus Timing attribute for

which the Error behavior applies. If the VBT column lists both T and F,

then Virtual Bus Timing does not affect the Error feature listed.

Table 6-2 lists all Operational features for the virtual interface. The VBT

column lists the values (T=true, F=false) of the Virtual Bus Timing attribute

for which the Operational behavior applies. If the VBT column lists both

T and F, then Virtual Bus Timing does not affect the Operational features

listed.

All features that are not explicitly listed in these tables are

Non-operational. The behavior of Non-operational features is not

documented in this manual. Your application should not make assumptions

regarding the behavior of Non-operational features beyond the fact that

NI-CAN returns success.

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-18 ni.com

Table 6-1. Error Features for the Virtual Interface

Feature VBT Explanation

Channel API: Initialize of Output

(or Output Recent) mode with Sample

Rate greater than 0

T, F The virtual interface does not support

periodic timing for transmit. For channel

to frame conversion, you must set the

Channel API sample rate to 0, and perform

periodic timing within your application.

Channel API: Set Property of Timestamp

Format

F Since timestamps are not changed when

Virtual Bus Timing is false, this attribute

does not apply.

Frame API: Open of CAN Object T, F CAN Objects are not supported. For the

Frame API, the virtual interface is limited

to the Network Interface.

Frame API: Read (or ReadMult) of

Delay frame

F When virtual bus timing is disabled, the

virtual interface does not simulate timing

between frames, so the Delay frame does

not apply. For information on the Delay

frame, refer to ncWriteNetMult.vi

(LabVIEW) or ncWriteMult (C/C++).

Frame API: Set Attribute of Log Comm

Warnings

T, F The special Comm Warnings frame is not

supported on virtual interfaces. If you

write this frame, it will not be received on

the other interface.

Frame API: Set Attribute of Timestamp

Format

F Since timestamps are not changed when

Virtual Bus Timing is false, this attribute

does not apply. The error is returned when

an interface or task is started.

Frame API: Set Attribute of Transmit

Mode

F Since timestamps are not interpreted when

Virtual Bus Timing is false, this attribute

does not apply. The error is returned when

an interface or task is started.

Frame API: Wait (or CreateNotification or

CreateOccurrence) for any state except

Write Multiple

F When virtual bus timing is disabled, the

virtual interface is limited to quick

conversion of frames to/from channels.

The Write Multiple state remains useful

for streaming of frames to channels, but

other states do not apply.

Chapter 6 Using the Channel API

© National Instruments 6-19 NI-CAN Hardware and Software Manual

Table 6-2. Operational Features for the Virtual Interface

Feature VBT Explanation

Channel API: Clear T, F As with a real interface, the Channel API

task for a virtual interface must be cleared.

Channel API: Get Property of Message

or Channel properties

T, F Useful for database queries. You pass the

filepath for the database into the original

Initialize function.

Channel API: Initialize of Input mode

with Sample Rate equal 0

T, F Read most recent value for each channel.

Useful for simulated control models.

Channel API: Initialize of Input mode

with Sample Rate greater than 0

T, F Read periodically sampled values for each

channel. Useful to display frames in

waveform graphs.

Channel API: Initialize of Timestamped

Input mode

T, F Read timestamped samples.

Channel API: Initialize of Output

(or Output Recent) mode with Sample

Rate equal 0

T, F Write channel values to transmit a frame.

Useful for simulated control models, or to

create a log file.

Channel API: Read T, F Read channels that correspond to frames

received from the virtual bus. All Read

types are supported.

Channel API: Set Property of Timestamp

Format

T Determines whether to use absolute or

relative timestamps when reading frames

from the virtual bus.

Channel API: Start or Stop T, F Controls whether frames are transmitted to

or received from the virtual bus. Start

includes the Init Start function.

Channel API: Write T, F Write channels that correspond to frames

transmitted to the virtual bus. All Write

types are supported.

Frame API: Action of Start or Stop T, F Controls whether frames are transmitted to

or received from the virtual bus. Action

opcodes for Reset and RTSI Output are

Non-operational.

Frame API: Close T, F As with a real Network Interface, the

virtual Network Interface must be closed.

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-20 ni.com

Frame API: Config of Network Interface T, F The only valid attribute is Start On Open.

All other attributes are ignored. The only

valid virtual interface names are CAN256

and CAN257.

Frame API: Get Attribute of Read Entries

Pending

T, F Returns the number of frames pending in

virtual Network Interface read queue.

Frame API: Get Attribute of Read Mult

Size for Notification

T Returns the number of frames used as a

threshold for the Read Multiple state.

Frame API: Get Attribute of Write Entries

Free

T Returns the number of frames that can be

accepted to write without causing an

overflow error.

Frame API: Get Attribute of Write Entries

Pending

T, F Returns the number of frames pending in

virtual Network Interface write queue.

Frame API: Open of Network Interface T, F Config of the Network Interface is ignored

(Non-operational). The only valid virtual

interface names are CAN256 and

CAN257.

Frame API: Read or ReadMult T, F Receive frames from the virtual bus. When

Virtual Bus Mode is true (default), Delay

frames are operational. For information

on the Delay frame, refer to

ncWriteNetMult.vi (LabVIEW) or

ncWriteMult (C/C++).

Frame API: Set Attribute of Log Start

Trigger

T, F Determine whether to return a start trigger

frame from ReadMult. Start trigger frames

are useful for logging/replay applications.

Frame API: Set Attribute of Read Mult

Size for Notification

T Sets the number of frames used as a

threshold for the Read Multiple state. For

more information on the Read Multiple

state, refer to ncWaitForState.vi.

Frame API: Set Attribute of Timeline

Recovery

T Determine whether to perform timeline

recovery for simulated bus timing.

Table 6-2. Operational Features for the Virtual Interface (Continued)

Feature VBT Explanation

Chapter 6 Using the Channel API

© National Instruments 6-21 NI-CAN Hardware and Software Manual

Programming Model for Virtual Bus Timing Disabled
There are some key rules to keep in mind while writing an application that

does Frame to Channel Conversion or Channel to Frame Conversion with

Virtual Bus Timing disabled:

• Do the Frame to Channel/ Channel to Frame Conversion within the

same thread/process. In LabVIEW, create a single VI to transmit the

CAN frames using ncWriteNetMult.vi and perform channel read

using CAN Read.vi.

• The Channel API Read task on the first virtual CAN interface requires

a CAN frame to be written into the buffer of the second virtual CAN

interface for it to start. Therefore, ensure that your application is

written such that the first CAN frame is written using

ncWriteNetMult.vi before the Channel API task times out.

The following steps demonstrate how to write a typical Frame to Channel

Conversion application using both the NI-CAN APIs together.

1. Configure and Open the CAN Network Interface Object.

Prior to opening and communicating on a CAN port, you must

configure the CAN Network Interface Object. Configure the CAN

Network Interface Object using ncConfigNet. Set Start on Open to

FALSE. Specify CAN256 as the ObjName.

Frame API: Set Attribute of Timestamp

Format

T Determines whether to use absolute or

relative timestamps when reading frames

from the virtual bus.

Frame API: Set Attribute of Transmit

Mode

T When you submit timestamped frames to

WriteMult, this determines whether to

delay between frames.

Frame API: Wait (or CreateNotification or

CreateOccurrence)

T All states are operational only when

Virtual Bus Timing is true (default).

Frame API: Wait (or CreateNotification or

CreateOccurrence) for Write Multiple

state

T, F The Write Multiple state is useful for

streaming of frames to channels, so it is

supported for both Virtual Bus Timing

values.

Frame API: Write or WriteMult T, F Transmit frames to the virtual bus.

Table 6-2. Operational Features for the Virtual Interface (Continued)

Feature VBT Explanation

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-22 ni.com

Open the CAN Network Interface Object by calling ncOpen.vi.

Specify CAN256 as the ObjName.

2. Initialize the Channel API task.

Initialize the CAN channels in your application using CAN

Initialize.vi. Specify CAN257 as the Interface.

3. Disable Virtual Bus Timing on CAN256.

Turn Virtual Bus Timing off on CAN256 (Frame API Object) by

calling ncSetAttr.vi for Virtual Bus Timing with a value 0.

4. Disable Virtual Bus Timing on CAN257.

Turn Virtual Bus Timing off on CAN257 (Channel API task) by

calling CAN Set Property.vi for Virtual Bus Timing with a value 0.

5. Start Communication on the Virtual Bus (CAN256).

Start communication on the CAN Network Interface Object

(CAN256) by calling ncAction.vi with Start as the opcode.

6. Start Communication on the Virtual Bus (CAN257).

Start communication on the CAN channel task for virtual interface

CAN257 by calling CAN Start.vi.

7. Write CAN frames on to the Virtual Bus (CAN256).

Transmit frames on the virtual bus by calling ncWriteNetMult.vi on

CAN256. If the size of the frames array is greater than 512, call

ncWriteNetMult.vi within a loop and with a subset of the total data

frames each iteration of the loop.

8. Read the CAN frames as Channels (CAN 257).

Read CAN frames as channels by calling CAN Read.vi on the channel

task. You can use any of the Read types (single point read, waveform

read or timestamped read). Refer to the Read section of this chapter for

more information on the different CAN Read types.

9. Stop and Close the communication on the CAN Network Interface

Object (CAN 256).

Close the virtual interface (CAN256) by calling ncClose.vi.

10. Clear the Channel API task (CAN257).

Clear the virtual task on CAN257 by calling CAN Clear.vi.

Chapter 6 Using the Channel API

© National Instruments 6-23 NI-CAN Hardware and Software Manual

Mode Dependent Channels

By definition, CAN supports a limited number of unique identifiers to

transmit data between the nodes of a network. In some cases the number of

available identifiers is too small to transmit all of the data, so an extension

to these identifiers is needed. The concept of mode dependent messages

defines a mode channel that functions like a sub-identifier within a CAN

frame to determine the meaning of the rest of the data transmitted in the

frame.

The mode channel is an implicit channel inside the CAN frame that cannot

be accessed by an application for read or write operations. Each channel

that relies on a mode channel is associated to a certain mode of that mode

channel. This way the mode channel determines the distribution of the data

in a CAN frame to the associated CAN channels in the application. Since a

single CAN frame no longer contains data for all of these mode dependent

channels associated with a CAN message, mode dependent channel data is

buffered inside the NI-CAN driver. If the application reads data from a

channel, the most recent received value will be returned for that channel.

Writing data from mode dependent channels will result in sending one

CAN frame per mode, defined for the appropriate task. If more than one

mode channel is defined for a CAN message, the NI-CAN driver assures

that each mode of each mode channel is sent at least once with every write

operation.

For periodic data transmission the property Message Multiple Frame

Distribution determines the mode for the transmission of the CAN frames

of the appropriate CAN message. If Message Multiple Frame

Distribution is set to Uniform, the CAN frames are sent equally

distributed within the time frame selected for the transmission. If Message

Multiple Frame Distribution is set to Burst, all CAN frames associated

to the CAN message will be transmitted as fast as possible at the beginning

of the time frame selected for the transmission.

As mentioned before, a consequence of using mode dependent channels is

that not every CAN frame received contains data for all channels associated

with the appropriate CAN message. If you are reading data in timestamped

mode for normal CAN channels, you receive data for all of the channels

associated with the CAN message and timestamp information denoting

when the data was received by the CAN interface. In the case of mode

dependent channels, you get valid data only for those channels that were

part of the most recent CAN frame, along with the timestamp denoting

when the frame was received by the CAN interface.

Chapter 6 Using the Channel API

NI-CAN Hardware and Software Manual 6-24 ni.com

The data of any mode dependent channel is invalid if it is not transmitted

with the most recent CAN frame associated with the CAN message. The

invalid data is replaced with a special value. Before you can start a CAN

task that uses mode dependent messages, you have to define the special

value for these cases by setting the property Value for Invalid Data.

Mode Dependent Channels in MAX
Mode dependent channels can be defined interactively in MAX. To create

mode dependent channels in MAX, right-click on a message and create a

multiplexer, as shown in Figure 6-10.

Figure 6-10. Creating a Multiplexer in MAX

Chapter 6 Using the Channel API

© National Instruments 6-25 NI-CAN Hardware and Software Manual

Within the multiplexer dialog box define the properties of the mode

channel. On a multiplexer item create a mode item and define the value of

the mode channel (mode value). On a mode item, create channels which are

only valid when the mode-channel contains the specified mode value. The

channels of different modes in the same multiplexer may overlap each

other, as shown in Figure 6-11, Mode Dependent Channels in the MAX

Configuration Tree.

Figure 6-11. Mode Dependent Channels in the MAX Configuration Tree

© National Instruments 7-1 NI-CAN Hardware and Software Manual

7
Channel API for LabVIEW

This chapter lists the LabVIEW VIs for the NI-CAN Channel API and describes the format,

purpose, and parameters for each VI. The VIs are listed alphabetically.

Unless otherwise stated, each NI-CAN VI suspends execution of the calling thread until it

completes.

Section Headings

The following are section headings found in the Channel API for LabVIEW VIs.

Purpose
Each VI description includes a brief statement of the purpose of the VI.

Format
The format section describes the format of each VI.

Input and Output
The input and output parameters for each VI are listed.

Description
The description section gives details about the purpose and effect of each VI.

List of VIs

Table 7-1 is an alphabetical list of the NI-CAN VIs for the Channel API.

Table 7-1. Channel API for LabVIEW VIs

Function Purpose

CAN Clear.vi Stop communication for the task and then clear

the configuration.

CAN Clear with NI-DAQ.vi Stop and clear the CAN task and the NI-DAQ

task synchronized with CAN Sync Start with

NI-DAQ.vi.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-2 ni.com

CAN Clear with NI-DAQmx.vi Stop and clear the CAN task and the NI-DAQmx

task synchronized with CAN Sync Start with

NI-DAQmx.vi.

CAN Clear Multiple with NI-DAQ.vi Stop and clear the list of CAN tasks and the list

of NI-DAQ tasks synchronized with CAN Sync

Start Multiple with NI-DAQ.vi.

CAN Clear Multiple with NI-DAQmx.vi Stop and clear the list of CAN tasks and the list

of NI-DAQmx tasks synchronized with CAN

Sync Start Multiple with NI-DAQmx.vi.

CAN Connect Terminals.vi Connect a terminal in the CAN hardware.

CAN Create Message.vi Create a message configuration and associated

channel configurations within the LabVIEW

application.

CAN Create MessageEx.vi Create a message configuration and associated

channel configurations within the LabVIEW

application. In addition you can specify mode

dependent channels with CAN Create

MessageEx.vi. For more information about

mode dependent channels, refer to the Mode

Dependent Channels section of Chapter 6,

Using the Channel API.

CAN Disconnect Terminals.vi Disconnect terminals in the CAN hardware.

CAN Get Names.vi Get an array of CAN channel names or message

names from MAX or a CAN database file.

CAN Get Property.vi Get a property for the task, or a single channel

within the task. The poly VI selection

determines the property to get.

CAN Initialize.vi Initialize a task for the specified channel list.

CAN Init Start.vi Initialize a task for the specified channel list,

then start communication.

CAN Read.vi Read samples from a CAN task initialized as

input. Samples are obtained from received CAN

messages. The poly VI selection determines the

data type to read.

Table 7-1. Channel API for LabVIEW VIs (Continued)

Function Purpose

Chapter 7 Channel API for LabVIEW

© National Instruments 7-3 NI-CAN Hardware and Software Manual

CAN Set Property.vi Set a property for the task, or a single channel

within the task. The poly VI selection

determines the property to set.

CAN Start.vi Start communication for the specified task.

CAN Stop.vi Stop communication for the specified task.

CAN Sync Start with NI-DAQ.vi Synchronize and start the specified CAN task

and NI-DAQ task.

CAN Sync Start with NI-DAQmx.vi Synchronize and start the specified CAN task

and NI-DAQmx task.

CAN Sync Start Multiple with NI-DAQ.vi Synchronize and start the specified list of

multiple CAN tasks and NI-DAQ tasks. This is

a more complex implementation of CAN Sync

Start with NI-DAQ.vi that supports multiple

CAN and a single NI-DAQ hardware product.

CAN Sync Start Multiple with NI-DAQmx.vi Synchronize and start the specified list of

multiple CAN tasks and NI-DAQmx tasks. This

is a more complex implementation of CAN

Sync Start with NI-DAQmx.vi that supports

multiple CAN and a single NI-DAQmx

hardware product.

CAN Write.vi Write samples to a CAN task initialized as

Output. (Refer to the mode parameter of CAN

Init Start.vi.) Samples are placed into

transmitted CAN messages. The poly VI

selection determines the data type to write.

Table 7-1. Channel API for LabVIEW VIs (Continued)

Function Purpose

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-4 ni.com

CAN Clear.vi

Purpose
Stop communication for the task and then clear the configuration.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The

task reference is originally returned from CAN Init Start.vi, CAN

Initialize.vi, or CAN Create Message.vi, and then wired through

subsequent VIs.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. Unlike other VIs, this VI will

execute when status is True.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-5 NI-CAN Hardware and Software Manual

Outputs

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN Clear VI must always be the final NI-CAN VI called for each task. If you do not

use the CAN Clear VI, the remaining task configurations can cause problems in execution of

subsequent NI-CAN applications.

If the cleared task is the last running task for the initialized interface (refer to CAN Init

Start.vi), the CAN Clear VI also stops communication on the CAN controller of the interface

and disconnects all terminal connections for that interface.

Unlike other VIs, this VI will execute when status is True in Error in.

Because this VI clears the task, the task reference is not wired as an output. To change

properties of a running task, use CAN Stop.vi to stop the task, CAN Set Property.vi to

change the desired property, and then CAN Start.vi to restart the task.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-6 ni.com

CAN Clear with NI-DAQ.vi

Purpose
Stop and clear the CAN task and the NI-DAQ task synchronized with CAN Sync Start with

NI-DAQ.vi.

Format

Inputs

task reference in is the NI-CAN task reference you passed through the

CAN Sync Start with NI-DAQ VI.

If you wire the same RTSI terminal that you passed into CAN Sync Start

with NI-DAQ.vi, this VI clears the routing in NI-DAQ. If you leave RTSI

terminal unwired, the VI retains the routing in NI-DAQ. This VI always

clears RTSI routing for NI-CAN.

NI-DAQ task ID is the same NI-DAQ task ID you wired into the CAN

Sync Start with NI-DAQ VI.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-7 NI-CAN Hardware and Software Manual

Outputs

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW

diagram is commented so that you can use the VI as a starting point for more complex

synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the

VI for editing.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-8 ni.com

CAN Clear with NI-DAQmx.vi

Purpose
Stop and clear the CAN task and the NI-DAQmx task synchronized with CAN Sync Start

with NI-DAQmx.vi.

Format

Inputs

task reference in is the NI-CAN task reference you passed through the

CAN Sync Start with NI-DAQmx VI.

Synchronization in defines a cluster with information about the signals

that have been routed between the cards and about additional DAQmx tasks

that may have been created for synchronization. This information is needed

to clear the routings in the NI-CAN and the NI-DAQmx devices after the

measurement has been finished.

Counter task in is the task from an NI-DAQmx Create Virtual

Channel VI. This additional NI-DAQmx task is created under

certain circumstances to generate a common timebase clock for

cards that do not support sharing of timebases through RTSI

(like DAQ cards or NI-CAN Series 1 cards).

Routes out is a 1-dimensional array of terminal names of signals

that have been routed between the cards.

Source terminal is the name of the terminal where the

route starts.

Destination terminal is the name of the terminal where

the route ends.

DAQmx task in is the same DAQmx task in you wired into CAN

Sync Start with NI-DAQmx.vi.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-9 NI-CAN Hardware and Software Manual

Outputs

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW

diagram is commented so that you can use the VI as a starting point for more complex

synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the

VI for editing.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-10 ni.com

CAN Clear Multiple with NI-DAQ.vi

Purpose
Stop and clear the list of NI-CAN tasks and the NI-DAQ task synchronized with CAN Sync

Start Multiple with NI-DAQ.vi.

Format

Inputs

CAN task reference list is the same array of NI-CAN task references you

wired into the CAN Sync Start Multiple with NI-DAQ VI.

If you wire the same RTSI terminal that you passed into CAN Sync Start

Multiple with NI-DAQ.vi, this VI clears the routing in NI-DAQ. If you

leave RTSI terminal unwired, the VI retains the routing in NI-DAQ. This

VI always clears RTSI routing for NI-CAN.

NI-DAQ task ID is NI-DAQ task ID you wired into the CAN Sync Start

Multiple with NI-DAQ VI.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-11 NI-CAN Hardware and Software Manual

Outputs

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
All tasks are cleared to their state prior to CAN Sync Start Multiple with NI-DAQ.vi.

For example, this VI clears terminal routing of all NI-DAQ devices to the default state.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW

diagram is commented so you can use the VI as a starting point for more complex

synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of

the VI for editing.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-12 ni.com

CAN Clear Multiple with NI-DAQmx.vi

Purpose
Stop and clear the list of NI-CAN tasks and the NI-DAQmx task synchronized with CAN

Sync Start with NI-DAQmx.vi.

Format

Inputs

CAN task reference list is the same array of NI-CAN task references you

wired into the CAN Sync Start with NI-DAQmx.vi.

Synchronization in defines a cluster with information about the signals

that have been routed between the cards and about additional DAQmx tasks

that may have been created for synchronization. This information is needed

to clear the routings in the NI-CAN and the NI-DAQmx devices after the

measurement has been finished.

Counter task in is the task from an NI-DAQmx Create Virtual Channel

VI. This additional NI-DAQmx task is created under certain circumstances

to generate a common timebase clock for cards that do not support sharing

of timebases through RTSI (like DAQ-Cards or NI-CAN Series 1 cards).

Routes out is a 1-dimensional array of terminal names of signals

that have been routed between the cards.

Source terminal is the name of the terminal where the

route starts.

Destination terminal is the name of the terminal where

the route ends.

NI-DAQ task in is the same NI-DAQ task in you wired into the CAN Sync

Start Multiple with NI-DAQmx VI.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-13 NI-CAN Hardware and Software Manual

Outputs

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
All tasks are cleared to their state prior to CAN Sync Start Multiple with NI-DAQ. For

example, this VI clears terminal routing of all NI-DAQ devices to the default state.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW

diagram is commented so you can use the VI as a starting point for more complex

synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of

the VI for editing.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-14 ni.com

CAN Connect Terminals.vi

Purpose
Connect a terminal in the CAN hardware.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.

The task reference is originally returned from CAN Init Start.vi, CAN

Initialize.vi, or CAN Create Message.vi, and then wired through

subsequent VIs.

source terminal specifies the source of the connection.

Once the connection is successfully created, behavior flows from source

terminal to destination terminal.

For a list of valid source/destination pairs, refer to the Valid Combinations

of Source/Destination section in this function reference.

The following list describes each value of source terminal:

RTSI0... RTSI6

Selects a general-purpose RTSI line as source (input) of the

connection.

RTSI7/RTSI Clock

Selects RTSI line 7 as source (input) of the connection. RTSI7 is

dedicated for routing of a timebase (10 MHz or 20 MHz). RTSI7

is also known as RTSI Clock in some National Instruments

software products, such as NI-DAQ.

The only valid destination terminal for this source is Master

Timebase.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-15 NI-CAN Hardware and Software Manual

For PCI and PXI form factors, this receives a 20 MHz (default)

timebase from another CAN or DAQ card. For example, you can

synchronize a CAN and DAQ E Series MIO card by connecting

the 20 MHz oscillator (board clock) of the DAQ card to

RTSI7/RTSI Clock, and then connecting RTSI7/RTSI Clock

to Master Timebase on the CAN card.

For PCMCIA form factor, a 10 MHz timebase is required on

RTSI7/RTSI Clock. For synchronization with a PCMCIA DAQ

card, this is done by programming FREQOUT signal of the DAQ

card to 10 MHz, then wiring FREQOUT to the RTSI7/RTSI

Clock of the CAN card.

This value applies to Series 2 cards only (returns error for

Series 1).

PXI_Star

PXI_Star selects the PXI star trigger signal.

Within a PXI chassis, some PXI products can source star trigger

from Slot 2 to all higher-numbered slots. PXI_Star enables the

PXI CAN card to receive the star trigger when it is in Slot 3 or

higher.

This value applies to Series 2 PXI CAN cards only. If you are

using a Series 1 CAN card or Series 2 PCI or PCMCIA CAN card,

selecting this value results in an error.

PXI_Clk10

PXI_Clk10 selects the PXI 10 MHz backplane clock.

The only valid destination terminal for this source is Master

Timebase. This routes the 10 MHz PXI backplane clock for use

as the timebase of the CAN card. When you use PXI_Clk10 as the

timebase for the CAN card, you must also use PXI_Clk10 as the

timebase for other PXI cards to perform synchronized

input/output.

This value applies to Series 2 PXI CAN cards only. If you are

using a Series 1 CAN card or Series 2 PCI or PCMCIA CAN card,

selecting this value results in an error.

20 MHz Timebase

20 MHz Timebase selects the local 20 MHz oscillator of the

CAN card.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-16 ni.com

The only valid destination terminal for this source is

RTSI7/RTSI Clock. This routes the local 20 MHz clock of the

CAN card for use as a timebase by other NI cards. For example,

you can synchronize two CAN cards by connecting 20 MHz

Timebase to RTSI7/RTSI Clock on one CAN card and then

connecting RTSI7/RTSI Clock to Master Timebase on the other

CAN card.

20 MHz Timebase applies to the entire CAN card, including both

interfaces of a 2-port CAN card. The CAN card is specified by the

task interface, such as the interface input to CAN Initialize.vi.

This value applies to Series 2 PXI or PCI CAN cards only. If you

are using a Series 1 CAN card or Series 2 PCMCIA CAN card,

selecting this value results in an error.

10 Hz Resync Clock

10 Hz Resync Clock selects a 10 Hz, 50 percent duty cycle clock.

This slow rate is required for resynchronization of Series 1 CAN

cards. On each pulse of the resync clock, the other CAN card

brings its clock into sync.

By selecting RTSI0 to RTSI6 as the destination terminal, you

route the 10 Hz clock to synchronize with other Series 1 CAN

cards. NI-DAQ cards cannot use the 10 Hz resync clock, so this

selection is limited to synchronization of two or more CAN cards.

10 Hz Resync Clock applies to the entire CAN card, including

both interfaces of a 2-port CAN card. The CAN card is specified

by the task interface, such as the interface input to CAN

Initialize.vi.

This value is typically used with Series 1 CAN cards only. If all of

the CAN cards are Series 2, the 20 MHz timebase is preferable due

to the lack of drift. If you are using a mix of Series 1 and Series 2

CAN cards, you must use the 10 Hz Resync Clock.

Interface Receive Event

Interface Receive Event selects the dedicated receive interrupt

output on the Philips SJA1000 CAN controller. When a received

frame successfully passes the acceptance filter, a pulse with the

width of one bit time is output during the last bit of the end of

frame position of the CAN frame. Incoming CAN frames can be

filtered using the Series 2 Filter Mode property.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-17 NI-CAN Hardware and Software Manual

The CAN controller is specified by the task interface, such as the

interface input to CAN Initialize.vi.

The Interface Receive Event can be used as the start trigger for

other NI cards, or for external instruments.

Since this value requires the Philips SJA1000 CAN controller,

it applies to Series 2 CAN cards only. If you are using a Series 1

CAN card, selecting this value results in an error.

Interface Transceiver Event

Interface Transceiver Event selects the NERR signal from the

CAN transceiver. The Low-Speed/Fault-Tolerant transceiver and

the High-Speed transceiver provide the NERR signal. This signal

asserts when the transceiver detects a fault. The default value of

NERR is logic-high, which indicates no error.

The CAN controller is specified by the task interface, such as the

interface input to CAN Initialize.vi.

This value applies to Series 2 CAN cards only. If you are using a

Series 1 CAN card, selecting this value results in an error.

Start Trigger

Start Trigger selects the start trigger, the event that begins

sampling for tasks.

The start trigger is the same for all tasks using a given interface,

such as the interface input to CAN Initialize.vi.

In the default (disconnected) state of the Start Trigger

destination, the start trigger occurs when communication begins

on the interface.

By selecting RTSI0 to RTSI6 as the destination terminal, you

route the start trigger of this CAN card to the start trigger of other

CAN or DAQ cards. This ensures that sampling begins at the same

time on both cards. For example, you can synchronize two CAN

cards by routing Start Trigger as the source terminal on one

CAN card and then routing Start Trigger as the destination

terminal on the other CAN card, with both cards using the same

RTSI line for the connections.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-18 ni.com

destination terminal specifies the destination of the connection.

The following list describes each value of destination terminal:

RTSI0... RTSI6

Selects a general-purpose RTSI line as destination (output) of the

connection.

RTSI7/RTSI Clock

Selects RTSI line 7 as destination (output) of the connection.

RTSI7 is dedicated for routing of a timebase. RTSI7 is also

known as RTSI Clock in some National Instruments software

products, such as NI-DAQ. The only valid source terminal for this

source is 20 MHz Timebase. The CAN card can import a 10 MHz

or 20 MHz timebase, but can export only a 20 MHz timebase.

This value applies to Series 2 CAN cards only. If you are using a

Series 1 CAN card, selecting this value results in an error.

Master Timebase

Master Timebase instructs the CAN card to use the source of the

connection as the master timebase. The CAN card uses this master

timebase for input sampling (including timestamps of received

messages) as well as periodic output sampling.

For PCI and PXI form factors, you can use RTSI7/RTSI Clock as

the source terminal. By default, this receives a 20 MHz timebase

from another CAN or DAQ card. For example, you can

synchronize a CAN and DAQ E Series MIO card by connecting

the 20 MHz oscillator (board clock) of the DAQ card to

RTSI7/RTSI Clock, and then connecting RTSI7/RTSI Clock to

Master Timebase on the CAN card. To change the Master

Timebase Rate to 10 MHz, use CAN Set Property.vi to change

the Hardware Master Timebase Rate.

For PXI form factor, you also can use PXI_Clk10 as the source

terminal. This receives the PXI 10 MHz backplane clock for use

as the master timebase.

For PCMCIA form factor, you can use RTSI7/RTSI Clock as the

source terminal. Unlike PCI and PXI, the PCMCIA CAN card

requires a 10 MHz timebase on RTSI7/RTSI Clock. For

synchronization with a PCMCIA DAQ card, this is done by

programming the FREQOUT signal of the DAQ card to 10 MHz,

Chapter 7 Channel API for LabVIEW

© National Instruments 7-19 NI-CAN Hardware and Software Manual

then wiring FREQOUT to the RTSI7/RTSI Clock of the CAN

card.

Master Timebase applies to the entire CAN card, including both

interfaces of a 2-port CAN card. The CAN card is specified by the

task interface, such as the interface input to CAN Initialize.vi.

The default (disconnected) state of this destination means the

CAN card uses its local 20 MHz timebase as the master timebase.

This value applies to Series 2 CAN cards only. If you are using a

Series 1 CAN card, selecting this value results in an error.

10 Hz Resync Clock

10 Hz Resync Clock instructs the CAN card to use a 10 Hz,

50 percent duty cycle clock to resynchronize its local timebase.

This slow rate is required for resynchronization of CAN cards. On

each low-to-high transition of the resync clock, this CAN card

brings its local timebase into sync.

When synchronizing to an E Series MIO card, a typical use of this

value is to use RTSI0 to RTSI6 as the source terminal, then use

NI-DAQ functions to program the Counter 0 of the MIO card to

generate a 10 Hz 50 percent duty cycle clock on the RTSI line. For

an example, refer to CAN Sync Start with NI-DAQ.vi.

When synchronizing to a CAN card, a typical use of this value is

to use RTSI0 to RTSI6 as the source terminal, then route the

10 Hz Resync Clock of the other CAN card as the source

terminal to the same RTSI line.

10 Hz Resync Clock applies to the entire CAN card, including

both interfaces of a 2-port CAN card. The CAN card is specified

by the task interface, such as the interface input to CAN

Initialize.vi.

The default (disconnected) state of this destination means the

CAN card does not resynchronize its local timebase.

This value is typically used with Series 1 CAN cards only. If all of

the CAN cards are Series 2, the 20 MHz timebase is preferable due

to the lack of drift. If you are using a mix of Series 1 and Series 2

CAN cards, you must use the 10 Hz Resync Clock.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-20 ni.com

Start Trigger

Start Trigger selects the start trigger, the event that begins

sampling for tasks. The start trigger occurs on the first low-to-high

transition of the source terminal.

The start trigger is the same for all tasks using a given interface,

such as the interface input to CAN Initialize.vi.

By selecting RTSI0 to RTSI6, or PXI_Star for PXI hardware, as

the source terminal, you route the start trigger from another CAN

or DAQ card. This ensures that sampling begins at the same time

on both cards. For example, you can synchronize with an E Series

DAQ MIO card by routing the AI start trigger of the MIO card to

a RTSI line and then routing the same RTSI line with Start

Trigger as the destination terminal on the CAN card.

The default (disconnected) state of this destination means the start

trigger occurs when communication begins on the interface.

Because communication begins when the first interface task is

started, this does not synchronize sampling with other NI cards.

modifiers provides optional connection information for certain

source/destination pairs. The current release of NI-CAN does not use this

information for any source/destination pair, so modifiers must be left

unwired.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-21 NI-CAN Hardware and Software Manual

Outputs

task reference out is the same as task reference in. Wire the task reference

to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI connects a specific pair of source/destination terminals. One of the terminals is

typically a RTSI signal, and the other terminal is an internal terminal in the CAN hardware.

By connecting internal terminals to RTSI, you can synchronize the CAN card with another

hardware product such as an NI-DAQ card.

The most common uses of RTSI synchronization are demonstrated by CAN Sync Start with

NI-DAQ.vi, CAN Sync Start with NI-DAQmx.vi, CAN Sync Start Multiple with

NI-DAQ.vi, and CAN Sync Start Multiple with NI-DAQmx.vi. The diagram for each of

these example VIs uses CAN Connect Terminals, and therefore serves as a good starting point

when learning this VI.

When the final task for a given interface is cleared with CAN Clear.vi, NI-CAN disconnects

all terminal connections for that interface. Therefore, CAN Disconnect Terminals.vi is not

required for most applications. NI-DAQ terminals remain connected after the tasks are

cleared, so you must disconnect NI-DAQ terminals manually at the end of the application.

For a list of valid source/destination pairs, refer to the following section.

Valid Combinations of Source/Destination

Table 7-2, Valid Combinations of Source/Destination, lists all valid combinations of source

terminal and destination terminal.

The series of the NI CAN hardware determines what combinations of source terminal to

destination terminal are valid. In Table 7-2, 1 indicates Series 1 hardware, and 2 indicates

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-22 ni.com

Series 2 hardware. You can determine the series of the NI CAN hardware by selecting the

name of the card within the Devices and Interfaces»NI-CAN Devices view in the left pane

of MAX.

Series 1 hardware has the following limitations.

• PXI cards do not support RTSI6.

• Signals received from a RTSI source cannot occur faster than 1 kHz. This prevents the

card from receiving a 10 MHz or 20 MHz timebase, such as NI E Series MIO hardware

provides.

• Signals received from a RTSI source must be at least 100 µs in length to be detected. This

prevents the card from receiving triggers in the nanoseconds range, such as the AI trigger

that E Series MIO hardware provides. Series 2 CAN cards also send RTSI pulses in the

nanoseconds range, so Series 1 CAN cards cannot receive RTSI input from Series 2 CAN

cards.

• For CAN cards with High-Speed (HS) ports only, four RTSI signals are available for

input (source), and four RTSI signals are available for output (destination). This

limitation applies to the number of signals per direction, not the RTSI signal number. For

example, if you connect RTSI0, RTSI1, RTSI3, and RTSI5 as input, connecting RTSI4

as input will return an error.

• For CAN cards with one or more Low-Speed (LS) ports, two RTSI signals are available

for input (source), and three RTSI signals are available for output (destination).

Series 2 hardware has the following limitations.

• For all form factors (PCI, PXI, PCMCIA), the connection of Interface Transceiver

Event to a RTSI destination depends on the physical port location. If the interface is on

Port 1, you can connect to only even-numbered RTSI lines (RTSI0, RTSI2, RTSI4,

RTSI6). If the interface is on Port 2, you can connect to only odd-numbered RTSI lines

(RTSI1, RTSI3, RTSI5). You can determine the location by selecting the name of the

interface in MAX.

• PCI cards do not support the PXI_Star and PXI_Clk10 terminals, as those signals exist

on the PXI backplane.

• PCMCIA cards do not support the 20 MHz Timebase, PXI_Star, and PXI_Clk10

terminals. Because 20 MHz Timebase is not supported, you cannot synchronize the

timebases of two PCMCIA CAN cards.

• On PCMCIA cards, RTSI4, RTSI5 and RTSI6 are not available.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-23 NI-CAN Hardware and Software Manual

1—Valid connection for Series 1 hardware

2—Valid connection for Series 2 hardware

Table 7-2. Valid Combinations of Source/Destination

Source

Destination

RTSI0 to

RTSI6

RTSI_CLO

CK

Master

Timebase

10 Hz

Resync

Clock

Start

Trigger

RTSI0 to

RTSI6

— — — 1,2 1,2

RTSI7/RTSI

Clock

— — 2 — —

PXI_Star — — — — 2

PXI_Clk10 — — 2 — —

20 MHz

Timebase

— 2 — — —

10 Hz Resync

Clock

1,2 — — — 1,2

Interface

Receive

Event

2 — — — 2

Interface

Transceiver

Event

2 — — — —

Start Trigger

Event

1,2 — — — —

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-24 ni.com

CAN Create Message.vi

Purpose
Create a message configuration and associated channel configurations within the LabVIEW

application.

Format

Inputs

interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CAN0,

value 1 selects CAN1, and so on.The interface input is required. Since the

messages and channels are not defined in MAX, you cannot use MAX

default as the interface.

The default baud rate for the interface is defined within MAX, but you can

change it by setting the Interface Baud Rate property with CAN Set

Property.vi.

The special interface values 256 and 257 refer to virtual interfaces. For

more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

mode specifies the I/O mode for the task. For an overview of the I/O modes,

including figures, refer to the Channel API Basic Programming Model

section of Chapter 6, Using the Channel API.

Input

Input channel data from received CAN messages. Use CAN Read.vi

to obtain input samples as single point, array, or waveform.

Use this input mode to read waveforms of timed samples, such as for

comparison with NI-DAQ waveforms. You also can use this input

Chapter 7 Channel API for LabVIEW

© National Instruments 7-25 NI-CAN Hardware and Software Manual

mode to read a single point from the most recent message, such as for

control or simulation.

Output

Output channel data to CAN messages for transmit. Use CAN

Write.vi to write output samples as single-point, array, or waveform.

Each sample value that you write is transmitted in a message on the

network. If you write an array or waveform, the samples are buffered

for subsequent transmit.

Output Recent

Output channel data to CAN messages for transmit. This mode is used

with sample rate greater than zero (periodic transmit). Use CAN

Write.vi to provide a single sample per channel. Each periodic

message uses the sample values from the most recent CAN Write.vi.

For this mode, there are restrictions on using channels in channel list

that are contained in multiple messages. Refer to CAN Read.vi for

more information.

Timestamped Input

Input channel data from received CAN messages. Use CAN Read.vi

to obtain input samples as an array of sample/timestamp pairs (Poly VI

types ending in Timestamped Dbl).

Use this input mode to read samples with timestamps that indicate

when each message is received from the network.

sample rate specifies the timing to use for samples of the task. The sample

rate is specified in Hertz (samples per second). A sample rate of zero means

to sample immediately.

For mode of Input, a sample rate of zero means that CAN Read.vi returns

a single point from the most recent message received, and greater than zero

means that CAN Read.vi returns samples timed at the specified rate.

For mode of Output, a sample rate of zero means that CAN messages

transmit immediately when CAN Write.vi is called, and greater than zero

means that CAN messages are transmitted periodically at the specified rate.

For mode of Timestamped Input, sample rate is ignored.

When the interface specifies a virtual interface (256 or 257), and mode is

Output or Output Recent, this sample rate must be zero (greater than

zero not supported).

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-26 ni.com

message config configures properties for a new message. These properties

are similar to the message properties in MAX. Can Create Message.vi

creates a task for a single message with one or more channels.

message ID

Configures the arbitration ID of the message.

Use the extended ID? Boolean to specify whether the ID is

standard (11-bit) or extended (29-bit).

extended ID?

Configures a Boolean value that indicates whether the arbitration

ID of the message is standard 11-bit format (false) or extended

29-bit format (true).

number of bytes

Configures the number of data bytes in the message. The range is

1 to 8.

channel config list configures a list of channels for the new message. The

channel config list is an array of clusters, with one cluster for each channel.

The properties of each channel entry are similar to the channel properties

in MAX:

start bit

Configures the starting bit position in the message. The range is 0

(lowest bit in first byte) to 63 (highest bit in last byte).

number of bits

Configures the number of bits for the raw data in the message. The

range is 1 to 64.

byte order

Configures the byte order of the channel in the message.

The value of byte order is an enumeration:

0 Intel Bytes are in little-endian order, with

most-significant first.

1 Motorola Bytes are in big-endian order, with

least-significant first.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-27 NI-CAN Hardware and Software Manual

data type

Configures the data type of the channel in the message.

The value of Channel Data Type is an enumeration:

scaling factor

Configures the scaling factor used to convert raw data in the

message to/from scaled floating-point units. The scaling factor is

the A in the linear scaling formula AX+B, where X is the raw data,

and B is the scaling offset.

scaling offset

Configures the scaling offset used to convert raw data in the

message to/from scaled floating-point units. The scaling offset is

the B in the linear scaling formula AX+B, where X is the raw data,

and A is the scaling factor.

min value

Configures the minimum value of the channel in scaled

floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples

when converting to/from CAN messages. You can use this value

with property nodes to set the range of front-panel controls and

indicators.

max value

Configures the maximum value of the channel in scaled

floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples

when converting to/from CAN messages. You can use this value

with property nodes to set the range of front-panel controls and

indicators.

0 Signed Raw data in the message is a signed integer.

1 Unsigned Raw data in the message is an unsigned

integer.

2 IEEE

Float

Raw data in the message is floating-point;

no scaling required.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-28 ni.com

default value

Configures the default value of the channel in scaled

floating-point units.

For information on how the default value is used, refer to CAN

Read.vi and CAN Write.vi.

unit string

Configures the channel unit string. The string is no more than

64 characters in length.

You can use this value to display units (such as volts or RPM)

along with the samples of the channel.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

Outputs

Use task reference out with all subsequent VIs to reference the task. Wire

this task reference to CAN Start.vi before you read or write samples for the

message.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-29 NI-CAN Hardware and Software Manual

source identifies the VI where the error occurred.

Description
To use message and channel configurations from MAX or a CAN database, use CAN Init

Start.vi or CAN Initialize.vi. The CAN Create Message provides an alternative in which

you create the message and channel configurations within the application, without use of

MAX or a CAN database.

CAN Create Message returns a task reference that you wire to CAN Start.vi to start

communication for the message and its channels.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-30 ni.com

CAN Create MessageEx.vi

Purpose
Create a message configuration and associated channel configurations within the application.

Format

Inputs

interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CAN0,

value 1 selects CAN1, and so on.

The interface input is required. Since the messages and channels are not

defined in MAX, you cannot use MAX default as the interface.

The default baud rate for the interface is defined within MAX, but you can

change it by setting the Interface Baud Rate property with CAN Set

Property.vi.

The special interface values 256 and 257 refer to virtual interfaces. For

more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

mode specifies the I/O mode for the task. For an overview of the I/O modes,

including figures, refer to the Channel API Basic Programming Model

section of Chapter 6, Using the Channel API.

Input

Input channel data from received CAN messages. Use CAN Read.vi to

obtain input samples as single point, array, or waveform.

Use this input mode to read waveforms of timed samples, such as for

comparison with NI-DAQ waveforms. You also can use this input mode to

Chapter 7 Channel API for LabVIEW

© National Instruments 7-31 NI-CAN Hardware and Software Manual

read a single point from the most recent message, such as for control or

simulation.

Output

Output channel data to CAN messages for transmit. Use CAN Write.vi to

write output samples as single-point, array, or waveform. Each sample

value that you write is transmitted in a message on the network. If you write

an array or waveform, the samples are buffered for subsequent transmit.

Output Recent

Output channel data to CAN messages for transmit. This mode is used with

sample rate greater than zero (periodic transmit). Use CAN Write.vi to

provide a single sample per channel. Each periodic message uses the

sample values from the most recent CAN Write.vi.

For this mode, there are restrictions on using channels in channel list that

are contained in multiple messages. Refer to CAN Read.vi for more

information.

Timestamped Input

Input channel data from received CAN messages. Use CAN Read.vi to

obtain input samples as an array of sample/timestamp pairs (Poly VI types

ending in Timestamped Dbl).

Use this input mode to read samples with timestamps that indicate when

each message is received from the network.

sample rate specifies the timing to use for samples of the task. The sample

rate is specified in Hertz (samples per second). A sample rate of zero means

to sample immediately.

For mode of Input, a sample rate of zero means that CAN Read.vi returns

a single point from the most recent message received, and greater than zero

means that CAN Read.vi returns samples timed at the specified rate.

For mode of Output, a sample rate of zero means that CAN messages

transmit immediately when CAN Write.vi is called, and greater than zero

means that CAN messages are transmitted periodically at the specified rate.

For mode of Timestamped Input, sample rate is ignored.

When the interface specifies a virtual interface (256 or 257), and mode is

Output or Output Recent, this sample rate must be zero (greater than

zero not supported).

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-32 ni.com

message config configures properties for a new message. These properties

are similar to the message properties in MAX. Can Create Message.vi

creates a task for a single message with one or more channels.

message ID

Configures the arbitration ID of the message.

Use the extended ID? Boolean to specify whether the ID is

standard (11-bit) or extended (29-bit).

extended ID?

Configures a Boolean value that indicates whether the arbitration

ID of the message is standard 11-bit format (false) or extended

29-bit format (true).

number of bytes

Configures the number of data bytes in the message. The range is

1 to 8.

channel config list configures a list of channels for the new message. The

channel config list is an array of clusters, with one cluster for each channel.

The properties of each channel entry are similar to the channel properties

in MAX:

start bit

Configures the starting bit position in the message. The range is 0

(lowest bit in first byte) to 63 (highest bit in last byte).

number of bits

Configures the number of bits for the raw data in the message. The

range is 1 to 64.

byte order

Configures the byte order of the channel in the message.

The value of byte order is an enumeration:

0 Intel Bytes are in little-endian order, with

most-significant first.

1 Motorola Bytes are in big-endian order, with

least-significant first.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-33 NI-CAN Hardware and Software Manual

data type

Configures the data type of channel in the message.

scaling factor

Configures the scaling factor used to convert raw data in the

message to/from scaled floating-point units. The scaling factor is

the A in the linear scaling formula AX+B, where X is the raw data,

and B is the scaling offset.

scaling offset

Configures the scaling offset used to convert raw data in the

message to/from scaled floating-point units. The scaling offset is

the B in the linear scaling formula AX+B, where X is the raw data,

and A is the scaling factor.

min value

Configures the minimum value of the channel in scaled

floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples

when converting to/from CAN messages. You can use this value

with property nodes to set the range of front-panel controls and

indicators.

max value

Configures the maximum value of the channel in scaled

floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples

when converting to/from CAN messages. You can use this value

with property nodes to set the range of front-panel controls and

indicators.

0 Signed Raw data in the message is a signed integer.

1 Unsigned Raw data in the message is an unsigned

integer.

2 IEEE

Float

Raw data in the message is floating-point;

no scaling required.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-34 ni.com

default value

Configures the default value of the channel in scaled

floating-point units.

For information on how the default value is used, refer to CAN

Read.vi and CAN Write.vi.

unit string

Configures the channel unit string. The string is no more than

64 characters in length.

You can use this value to display units (such as volts or RPM)

along with the samples on a channel.

Mode channel config configures a list of the mode channels for this (data)

channel. Currently, only one mode channel is allowed per (data) channel.

Note that the same mode channel can be specified for several channels.

Mode value

Configures the mode channel value for which the data

channel is valid.

Start Bit

Configures the starting bit position in the message. The

range is 0 (lowest bit in first byte) to 63 (highest bit in last

byte).

Num Bits

Configures the number of bits for the raw data in the

message. The range is 1 to 64.

byte order

Configures the byte order of a channel in the message.

The value of byte order is an enumeration:

0 Intel Bytes are in little-endian order,

with most-significant first.

1 Motorola Bytes are in big-endian order,

with least-significant first.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-35 NI-CAN Hardware and Software Manual

Default Value

This field is reserved. Set it to 0.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

Outputs

Use task reference out with all subsequent VIs to reference the task. Wire

this task reference to CAN Start.vi before you read or write samples for the

message.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
To use message and channel configurations from MAX or a CAN database, use the

nctInitStart or nctInitialize. CAN Create MessageEx provides an alternative in

which you create the message and channel configurations within the application, without use

of MAX or a CAN database. In addition, CAN Create MessageEx offers optionally the

possibility to specify mode dependent messages without using MAX or CAN databases.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-36 ni.com

CAN Create MessageEx returns a task reference that you wire to CAN Start.vi to start

communication for the message and its channels.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-37 NI-CAN Hardware and Software Manual

CAN Disconnect Terminals.vi

Purpose
Disconnect terminals in the CAN hardware.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The

task reference is originally returned from CAN Init Start.vi, CAN

Initialize.vi, or CAN Create Message.vi and then wired through

subsequent VIs.

source terminal specifies the connection source. For a description of

values for source terminal, refer to CAN Connect Terminals.vi.

destination terminal specifies the connection destination.

For a description of values for destination terminal, refer to CAN

Connect Terminals.vi.

modifiers provides optional connection information for certain

source/destination pairs. The current release of NI-CAN does not use this

information for any source/destination pair, so modifiers must be left

unwired.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-38 ni.com

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task reference

to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI disconnects a specific pair of source/destination terminals that were previously

connected with CAN Connect Terminals.vi.

When the final task for a given interface is cleared with CAN Clear.vi, NI-CAN disconnects

all terminal connections for that interface. Therefore, the CAN Disconnect Terminals VI is

not required for most applications. This VI is typically used to change RTSI connections

dynamically while an application is running. First, use CAN Stop.vi to stop all tasks for the

interface, then use CAN Disconnect Terminals and CAN Connect Terminals to adjust RTSI

connections, then CAN Start.vi to restart sampling.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-39 NI-CAN Hardware and Software Manual

CAN Get Names.vi

Purpose
Get an array of CAN channel names or message names from MAX or a CAN database file.

Format

Inputs

filepath is an optional path to a CAN database file from which to get

channel names. The file must use either a .DBC or .NCD extension. Files

with extension .DBC use the CANdb database format. Files with extension

.NCD use the NI-CAN database format. You can generate NI-CAN

database files from the Save Channels selection in MAX.

The default (unwired) value of filepath is empty, which means to get the

channel names from MAX. The MAX CAN channels are in the MAX CAN

channels listing within Data Neighborhood.

message name is an optional input that filters the names for a specific

message. The default (unwired) value is an empty string, which means to

return all names in the database. If you wire a nonempty string, the channel

list output is limited to channels of the specified message. This input

applies to mode of channels only. It is ignored for mode of messages.

mode is an optional input that specifies the type of names to return.

The value of mode is an enumeration:

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

0 channels Return list of channel names. You can write

this list to CAN Init Start.vi. This is the

default value.

1 messages Return list of message names.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-40 ni.com

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

channel list returns the array of channel names, one string entry per

channel.

The names in channel list use the minimum syntax required to properly

initialize the channels:

• If a channel name is used within only one message in the database,

CAN Get Names returns only the channel name in the array.

• If a channel name is used within multiple messages, CAN Get Names

prepends the message name to that channel name, with a decimal point

separating the message and channel name. This syntax ensures that the

duplicate channel is associated to a single message in the database.

For more information on the syntax conventions for channel names, refer

to CAN Init Start.vi.

To start a task for all channels returned from CAN Get Names, wire

channel list to CAN Init Start.vi to start a task.

You also can wire channel list to the property nodes of a front panel control

such as a ring or list box. The user of the VI can then select names using

this control, and the selected names can be wired to CAN Init Start.vi.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

Chapter 7 Channel API for LabVIEW

© National Instruments 7-41 NI-CAN Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-42 ni.com

CAN Get Property.vi

Purpose
Get a property for the task, or a single channel within the task. The poly VI selection

determines the property to get.

To select the property, right-click the VI, go to Select Type and select the property by name.

For LabVIEW 7.0 and later, you can right-click the VI and select Visible Items»Poly VI

Selector to select the property from within the diagram.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.

The task reference is originally returned from CAN Init Start.vi, CAN

Initialize.vi, or CAN Create Message.vi, and then wired through

subsequent VIs.

channel name specifies an individual channel within the task. The default

(unwired) value of channel name is empty, which means the property

applies to the entire task, not a specific channel.

Properties that begin with the word Channel or Message do not apply to the

entire task, but an individual channel or message within the task. For these

channel-specific properties, you must wire the name of a channel from

channel list into the channel name input.

For properties that do not begin with the word Channel or Message, you

must leave channel name unwired (empty).

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-43 NI-CAN Hardware and Software Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task reference

to subsequent VIs for this task.

The poly output value returns the property value. You select the property

returned in value by selecting the Poly VI type. The data type of value is

also determined by the Poly VI selection. For information about the

different properties provided by CAN Get Property.vi, refer to the Poly VI

Types section in this function reference.

To select the property, right-click the VI, go to Select Type and select the

property by name.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Poly VI Types

Behavior After Final Output

Returns the Behavior After Final Output property, which is used with

some output task configurations. For more information, refer to the

Behavior After Final Output property in CAN Set Property.vi.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-44 ni.com

Channel Byte Order

Returns the byte order of a channel in the message.

The value of Channel Byte Order is an enumeration:

The value of this property cannot be changed using CAN Set Property.vi.

Channel Data Type

Returns the data type of a channel in the message.

The value of Channel Data Type is an enumeration:

The value of this property cannot be changed using CAN Set Property.vi.

Channel Default Value

Returns the default value of the channel in scaled floating-point units.

For information on how Channel Default Value is used, refer to CAN

Read.vi and CAN Write.vi.

The value of this property is originally set within MAX or CAN Create

Message.vi. If the channel is initialized directly from a CAN database, the

value is 0.0 by default, but it can be changed using CAN Set Property.vi.

Channel Maximum Value

Returns the maximum value of the channel in scaled floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples when

converting to/from CAN messages. You can use this value with CAN

database to set the range of front-panel controls and indicators.

The value of this property cannot be changed using CAN Set Property.vi.

0 Intel Bytes are in little-endian order, with most-significant

first.

1 Motorola Bytes are in big-endian order, with least-significant

first.

0 Signed Raw data in the message is a signed integer.

1 Unsigned Raw data in the message is an unsigned integer.

2 IEEE

Float

Raw data in the message is floating-point; no scaling

required.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-45 NI-CAN Hardware and Software Manual

Channel Minimum Value

Returns the minimum value of the channel in scaled floating-point units.

The CAN Read.vi and CAN Write.vi VIs do not coerce samples when

converting to/from CAN messages. You can use this value with property

nodes to set the range of front-panel controls and indicators.

The value of this property cannot be changed using CAN Set Property.vi.

Channel Mode Value

Returns the value of the mode channel associated to this channel.

This property applies only to mode dependent channels.

Channel Number of Bits

Returns the number of bits in the message. The range is 1 to 64.

The value of this property cannot be changed using CAN Set Property.vi.

Channel Scaling Factor

Returns the scaling factor used to convert raw bits of the message to/from

scaled floating-point units. The scaling factor is the A in the linear scaling

formula AX+B, where X is the raw data, and B is the scaling offset.

CAN messages use the raw data, and the CAN Read.vi and CAN Write.vi

VIs provide access to samples in floating-point units.

The value of this property cannot be changed using CAN Set Property.vi.

Channel Scaling Offset

Returns the scaling offset used to convert raw bits of the message to/from

scaled floating-point units. The scaling offset is the B in the linear scaling

formula AX+B, where X is the raw data, and A is the scaling factor.

CAN messages use the raw data, and the CAN Read.vi and CAN Write.vi

VIs provide access to samples in floating-point units.

The value of this property cannot be changed using CAN Set Property.vi.

Channel Start Bit

Returns the starting bit position in the message. The range is 0 (lowest bit

in first byte) to 63 (highest bit in last byte).

The value of this property cannot be changed using CAN Set Property.vi.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-46 ni.com

Channel Unit String

Returns the unit string of the channel. The string is no more than

80 characters in length.

You can use this value to display units (such as volts or RPM) along with

the samples on a channel.

The value of this property cannot be changed using CAN Set Property.vi.

Hardware Form Factor

Returns the hardware form factor for the NI-CAN hardware that contains

interface.

The value of Hardware Form Factor is an enumeration:

Hardware Master Timebase Rate

Returns the present Hardware Master Timebase Rate in MHz,

programmed into the CAN hardware. For PCMCIA, this property will

always return 10 MHz.

Hardware Serial Number

Returns the hardware serial number for the NI-CAN hardware that contains

interface.

Hardware Series

Returns the hardware series for the NI CAN hardware that contains

Interface.

The value of Hardware Series is an enumeration:

0 PCI

1 PXI

2 PCMCIA

3 AT

0 Series 1 Series 1 hardware uses the Intel 82527 CAN

controller.

1 Series 2 Series 2 hardware uses the Philips SJA1000 CAN

controller and includes improved RTSI features.

4 NI-XNET NI-XNET hardware visible through the NI-XNET

Compatibility Library for NI-CAN.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-47 NI-CAN Hardware and Software Manual

Newer hardware series often have more features, so the application may

need to determine which is installed.

Hardware Timestamp Format

Returns the present Timestamp Format programmed into the CAN

hardware. This property applies to the entire card.

Interface

Returns the interface initialized for the task, such as with the CAN Init

Start VI.

Interface Baud Rate

Returns the baud rate in use by the interface.

Basic baud rates such as 125000 and 500000 are specified as the numeric

rate.

Advanced baud rates are specified as 8000XXYY hex, where YY is the value

of Bit Timing Register 0 (BTR0), and XX is the value of Bit Timing

Register 1 (BTR1) of the CAN controller chip. For more information, refer

to the Interface Properties dialog in MAX.

The value of this property is originally set within MAX, but it can be

changed using CAN Set Property.vi.

Interface Listen Only?

Returns a Boolean value that indicates whether the listen only feature of the

Philips SJA1000 CAN controller is enabled (TRUE) or disabled (FALSE).

For more information, refer to the Interface Listen Only? property in CAN

Set Property.vi.

Since the listen only feature requires the Philips SJA1000 CAN controller,

this property is supported on Series 2 NI CAN hardware only.

Interface Receive Error Counter

Returns the Receive Error Counter as described in the CAN specification.

Since the error counts require the Philips SJA1000 CAN controller, this

property is supported on Series 2 NI CAN hardware only. If you are using

Series 1 NI CAN hardware, this property returns an error.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-48 ni.com

Interface Self Reception?

Returns the Interface Self Reception property as configured in CAN Set

Property.vi.

This property is supported on Series 2 NI CAN hardware only (returns error

for Series 1).

Interface Series 2 Error/Arb Capture

Returns the current values of the Error Code Capture register and

Arbitration Lost Capture register from the Philips SJA1000 CAN controller

chip.

The Error Code Capture register provides information on bus errors that

occur according to the CAN standard. A bus error increments either the

Interface Transmit Error Counter or the Interface Receive Error Counter.

When communication starts on the interface, the first bus error is captured

into the Error Code Capture register and retained until you get this property.

After you get this property, the Error Code Capture register is again enabled

to capture information for the next bus error.

The Arbitration Lost Capture register provides information on a loss of

arbitration during transmit. Loss of arbitration is not considered an error.

When communication starts on the interface, the first arbitration loss is

captured into the Arbitration Lost Capture register, and retained until you

get this property. After you get this property, the Arbitration Lost Capture

register is again enabled to capture information for the next arbitration loss.

For each of the capture registers, a single-bit New flag indicates whether a

new error has occurred since the last Get. If the New flag of a register is set,

the associated fields contain new information. If the New flag of a register

is clear, the associated fields are the same as the previous Get.

This property is commonly used with the Interface Single Shot Transmit

property. When CAN Write.vi is used to transmit the single frame, you can

get this property to determine if the transmit was successful. If the single

shot transmit was not successful, this property provides detailed

information for the failure.

This property is supported for Series 2 hardware only (not Series 1). Since

the information and bit format is very specific to the Philips SJA1000 CAN

controller on Series 2 hardware, National Instruments cannot guarantee

compatibility for this property on future hardware series. When using this

property in the application, it is best to get the Hardware Series to verify

that the CAN hardware is Series 2.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-49 NI-CAN Hardware and Software Manual

For information regarding the format of the bits in this property, refer to

Series 2 Error/Arb Capture attribute in the ncGetAttr.vi function of the

Frame API.

Interface Series 2 Comparator

Returns the value of the Interface Series 2 Comparator property

(refer to CAN Set Property.vi).

Interface Series 2 Filter Mode

Returns the value of the Interface Series 2 Filter Mode property

(refer to CAN Set Property.vi).

Interface Series 2 Mask

Returns the value of the Interface Series 2 Mask property (refer to CAN Set

Property.vi).

Interface Single Shot Transmit?

Returns the value of the Interface Single Shot Transmit property

(refer to CAN Set Property.vi). The single-shot transmit feature is not

available on the Intel 82527 CAN controller used by Series 1 CAN

hardware (Get returns error).

Interface Transceiver External Inputs

Returns the transceiver external inputs for the interface that was initialized

for the task.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this property allows you to determine the input voltage

on the STATUS pin of the CAN port.

For many models of CAN transceiver, an NERR pin is provided for

detection of faults and other status. For such transceivers, you can wire the

NERR pin to the STATUS pin of the CAN port.

This property is supported for Series 2 XS cards only.

This property uses a bit mask. When using the property, use bitwise AND

operations to check for values, not equality checks (equal, greater than, and

so on).

00000001 hex STATUS

This bit is set when 5 V exists on the STATUS pin.

This bit is clear when 0 V exists on the STATUS pin.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-50 ni.com

Interface Transceiver External Outputs

Returns the transceiver external outputs for the interface that was initialized

for the task.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this property allows you to determine the output

voltage on the MODE0 and MODE1 pins of the CAN port, and it allows

you to determine if the CAN controller chip is sleeping.

For more information on the format of the value returned in this property,

refer to the description of Interface Transceiver External Outputs

property in CAN Set Property.vi.

This property is supported for Series 2 XS cards only.

Interface Transceiver Mode

Returns the transceiver mode for the interface that was initialized for the

task.

The transceiver mode changes when you set the mode within the

application, or when a remote wakeup transitions the interface from Sleep

to Normal mode. For more information, refer to CAN Set Property.vi.

This property uses the following values:

Normal

Transceiver is awake in normal communication mode.

Sleep

Transceiver and the CAN controller chip are both in sleep mode.

Single Wire Wakeup

Single Wire transceiver is in Wakeup Transmission mode.

Single Wire High-Speed

Single Wire transceiver is in High-Speed Transmission mode.

Interface Transceiver Type

Returns the type of transceiver for the interface that was initialized for the

task. For hardware other than Series 2 XS cards, the transceiver type is

fixed. For Series 2 XS cards, the transceiver type reflects the most recent

value specified by MAX or CAN Set Property.vi.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-51 NI-CAN Hardware and Software Manual

This property is not supported on the PCMCIA form factor.

This property uses the following values:

High-Speed

Transceiver type is High-Speed (HS).

Low-Speed/Fault-Tolerant

Transceiver type is Low-Speed/Fault-Tolerant (LS).

Single Wire

Transceiver type is Single Wire (SW).

External

Transceiver type is External. This transceiver type is available on Series 2

XS cards only. For more information, refer to CAN Set Property.vi.

Disconnect

Transceiver type is Disconnect. This transceiver type is available on Series

2 XS cards only. For more information, refer to CAN Set Property.vi.

Interface Transmit Error Counter

Returns the Transmit Error Counter as described in the CAN specification.

Since the error counts require the Philips SJA1000 CAN controller, this

property is supported on Series 2 NI CAN hardware only. If you are using

Series 1 NI CAN hardware, this property returns an error.

Interface Virtual Bus Timing

Returns a Boolean value of True or False to indicate whether Virtual Bus

Timing has been set or not for the specified virtual task. This property is

applicable to all tasks opened on the virtual interface.

If this property is selected on real hardware, an error will be returned.

Message ID

Returns the arbitration ID of the channel message.

To determine whether the ID is standard (11-bit) or extended (29-bit),

get the Message ID is Extended? property.

The value of this property cannot be changed using CAN Set Property.vi.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-52 ni.com

Message ID is Extended?

Returns a Boolean value that indicates whether the arbitration ID of the

channel message is standard 11-bit format (FALSE) or extended 29-bit

format (TRUE).

The value of this property cannot be changed using CAN Set Property.vi.

Message Name

Returns the name of the channel message. The string is no more than

80 characters in length.

The value of this property cannot be changed using CAN Set Property.vi.

Message Number of Data Bytes

Returns the number of data bytes in the channel message. The range is

1 to 8.

The value of this property cannot be changed using CAN Set Property.vi.

Mode

Returns the mode initialized for the task, such as with CAN Init Start.vi.

Message Multiple Frame Distribution

Returns the Message Multiple Frame Distribution property which is used

to determine if the CAN frames associated to a group of mode dependent

channels are sent even spaced or in burst mode.

Number of Channels

Returns the number of channels initialized in channel list. This is the

number of array entries required when using CAN Read.vi or CAN

Write.vi.

Channel Mode Dependency

Returns the number of mode dependent channels within a channel. So far a

hierarchy of one mode dependent channel per channel is supported.

This property applies only to mode dependent channels.

0 Channel is not mode dependent.

1 Channel is mode dependent.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-53 NI-CAN Hardware and Software Manual

Number of Samples Pending

Returns the number of samples available to be read using CAN Read.vi. If

you set the number of samples to read input of CAN Read.vi to this value,

CAN Read.vi returns immediately without waiting.

This property applies only to tasks initialized with mode of Input and

sample rate greater than zero. For all other configurations, it returns an

error.

Sample Rate

Returns the SampleRate initialized for the task, such as with CAN Init

Start.vi.

Timeout

Returns the Timeout property, which is used with some task

configurations. For more information, refer to the Timeout property in

CAN Set Property.vi.

Value for invalid data

Returns the value that is returned on time stamped read for mode dependent

channels that have not been received with the most recent CAN frame

associated with the CAN message. This property applies only to mode

dependent channels that are read with the time stamped read operation.

For more information, refer to the Mode Dependent Channels section of

Chapter 6, Using the Channel API.

Version Build

Returns the build number of the NI-CAN software. This number applies to

Development, Alpha, and Beta phase only, and should be ignored for

Release phase.

Version Comment

Returns a comment string for the NI-CAN software. If you received a

custom release of NI-CAN from National Instruments, this comment often

describes special features of the release.

Version Major

Returns the major version of the NI-CAN software, such as the 2 in

version 2.1.5.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-54 ni.com

Version Minor

Returns the minor version of the NI-CAN software, such as the 1 in

version 2.1.5.

Version Phase

Returns the phase of the NI-CAN software.

The value of Version Phase is an enumeration:

Versions of NI-CAN in hardware kits or on ni.com will always be

Release.

Version Update

Returns the update version of the NI-CAN software, such as the 5 in

version 2.1.5.

0 Development

1 Alpha

2 Beta

3 Release

Chapter 7 Channel API for LabVIEW

© National Instruments 7-55 NI-CAN Hardware and Software Manual

CAN Initialize.vi

Purpose
Initialize a task for the specified channel list.

Format

Inputs

filepath is an optional path to a CAN database file from which to import

the channel (signal) configurations.

If filepath is unwired (empty), the channel configuration is obtained from

MAX. The MAX CAN channels are in the MAX CAN channels listing

within Data Neighborhood.

channel list is the array of channel names to initialize as a task. Each

channel name is provided in an array entry.

For more information, refer to the channel list input of CAN Init Start.vi.

interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CAN0,

value 1 selects CAN1, and so on.

The default (unwired) value is MAX default, which means to use the

default interface as defined in the Message/Channel configuration

properties. If the default interface in MAX is All, or if filepath is wired to

use a CAN database (not MAX), the interface is a required input to this VI.

The Channel API and Frame API cannot use the same CAN network

interface simultaneously. If the CAN network interface is already

initialized in the Frame API, this function returns an error.

The special interface values 256 and 257 refer to virtual interfaces. For

more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-56 ni.com

mode specifies the I/O mode for the task. For an overview of the I/O modes,

including figures, refer to the Channel API Basic Programming Model

section of Chapter 6, Using the Channel API.

Input

Input channel data from received CAN messages. Use CAN Read.vi to

obtain input samples as single-point, array, or waveform.

Use this input mode to read waveforms of timed samples, such as for

comparison with NI-DAQ waveforms. You also can use this input mode to

read a single point from the most recent message, such as for control or

simulation.

For this mode, the channels in channel list can be contained in multiple

messages.

Output

Output channel data to CAN messages for transmit. Use CAN Write.vi to

write output samples as single point, array, or waveform. Each sample

value that you write is transmitted in a message on the network. If you write

an array or waveform, the samples are buffered for subsequent transmit.

For this mode, there are restrictions on using channels in channel list that

are contained in multiple messages. Refer to CAN Write.vi for more

information.

Output Recent

Output channel data to CAN messages for transmit. This mode is used with

sample rate greater than zero (periodic transmit). Use CAN Write.vi to

provide a single sample per channel. Each periodic message uses the

sample values from the most recent CAN Write.vi.

For this mode, there are restrictions on using channels in channel list that

are contained in multiple messages. Refer to CAN Read.vi for more

information.

Timestamped Input

Input channel data from received CAN messages. Use CAN Read.vi to

obtain input samples as an array of sample/timestamp pairs (Poly VI types

ending in Timestamped Dbl).

Use this input mode to read samples with timestamps that indicate when

each message is received from the network.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-57 NI-CAN Hardware and Software Manual

For this mode, the channels in channel list must be contained in a single

message.

sample rate specifies the timing to use for samples of the task. The sample

rate is specified in Hertz (samples per second). A sample rate of zero means

to sample immediately.

For mode of Input, sample rate of zero means that CAN Read.vi returns

a single point from the most recent message received, and greater than zero

means that CAN Read.vi returns samples timed at the specified rate.

For mode of Output, sample rate of zero means that CAN messages

transmit immediately when CAN Write.vi is called, and greater than zero

means that CAN messages are transmitted periodically at the specified rate.

For mode of Output Recent, sample rate must be greater than zero

(periodic transmit).

For mode of Timestamped Input, sample rate is ignored.

When the interface specifies a virtual interface (256 or 257), and mode is

Output or Output Recent, this sample rate must be zero (greater than

zero not supported).

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-58 ni.com

Outputs

Use task reference out with all subsequent VIs to reference the task. Wire

this task reference to CAN Start.vi before you read or write samples for the

message.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN Initialize.vi VI does not start communication. This enables you to use CAN Set

Property.vi to change the properties of the task, or CAN Connect Terminals.vi to

synchronize CAN or DAQ cards. After you change properties or connections, use CAN

Start.vi to start communication for the task.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-59 NI-CAN Hardware and Software Manual

CAN Init Start.vi

Purpose
Initialize a task for the specified channel list, then start communication.

Format

Inputs

filepath is an optional path to a CAn database file from which to import the

channel (signal) configurations.

If filepath is unwired (empty), the channel configuration is obtained from

MAX. The MAX CAN channels are in the MAX CAN channels listing

within Data Neighborhood.

channel list is the array of channel names to initialize and start as a task.

Each channel name is provided in an array entry.

You can type in the channel list entries as string constants, or you can obtain

the list from MAX or another CAN database by using CAN Get Names.vi.

Channel names are case sensitive.

You can initialize the same channel list with different interface, mode,

or sample rate, because each task reference is unique.

The following paragraphs describe the syntax of each channel name.

Brackets indicate optional fields.

[message.]channel

• message refers to the message in which the channel is contained.

The message name must be followed by a decimal point.

If the channel name occurs in multiple messages, you must specify the

message name to identify the channel uniquely. Within MAX,

channels with the same name in multiple messages are shown with a

yellow exclamation point.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-60 ni.com

If the channel name is unique across all channels, the message name is

not required.

• channel refers to the channel (signal) name in MAX or the CAN

database (indicated by filepath).

If you are using mode dependent channels, and each channel name is not

unique, you will need to use a special syntax described in the Mode

Dependent Channel Syntax section at the end of the function description.

The following examples demonstrate the channel list syntax:

1. List of channels, each channel name unique across all messages.

myChan1

myChan2

myChan3

If you are using mode dependent channels, and each channel name is

not unique, you will need to use a special syntax described in the Mode

Dependent Channel Syntax section at the end of the function

description.

2. List of channels, with one channel duplicated across two messages.

MyChan2 and MyChan3 must be unique across all messages.

myMessage1.myChan1

myChan2

myMessage2.myChan1

myChan3

interface specifies the CAN interface to use for this task.

The interface input uses a ring typedef in which value 0 selects CAN0,

value 1 selects CAN1, and so on.

The default (unwired) value is MAX default, which means to use the

default interface as defined in the Message/Channel configuration

properties. If the default interface in MAX is All, or if filepath is wired to

use a CAN database (not MAX), the interface is a required input to this VI.

The Channel API and Frame API cannot use the same CAN network

interface simultaneously. If the CAN network interface is already

initialized in the Frame API, this function returns an error.

The special interface values 256 and 257 refer to virtual interfaces. For

more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-61 NI-CAN Hardware and Software Manual

mode specifies the I/O mode for the task. For an overview of the I/O modes,

including figures, refer to the Channel API Basic Programming Model

section of Chapter 6, Using the Channel API.

Input

Input channel data from received CAN messages. Use CAN Read.vi to

obtain input samples as single-point, array, or waveform.

Use this input mode to read waveforms of timed samples, such as for

comparison with NI-DAQ waveforms. You also can use this input mode to

read a single point from the most recent message, such as for control or

simulation.

For this mode, the channels in channel list can be contained in multiple

messages.

Output

Output channel data to CAN messages for transmit. Use CAN Write.vi to

write output samples as single-point, array, or waveform. Each sample

value that you write is transmitted in a message on the network. If you write

an array or waveform, the samples are buffered for subsequent transmit.

For this mode, there are restrictions on using channels in channel list that

are contained in multiple messages. Refer to CAN Write.vi for more

information.

Output Recent

Output channel data to CAN messages for transmit. This mode is used with

sample rate greater than zero (periodic transmit). Use CAN Write.vi to

provide a single sample per channel. Each periodic message uses the

sample values from the most recent CAN Write.vi.

For this mode, there are restrictions on using channels in channel list that

are contained in multiple messages. Refer to CAN Write.vi for more

information.

Timestamped Input

Input channel data from received CAN messages. Use CAN Read.vi to

obtain input samples as an array of sample/timestamp pairs (Poly VI types

ending in Timestamped Dbl).

Use this input mode to read samples with timestamps that indicate when

each message is received from the network.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-62 ni.com

For this mode, the channels in channel list must be contained in a single

message.

sample rate specifies the timing to use for samples of the task. The sample

rate is specified in Hertz (samples per second). A sample rate of zero means

to sample immediately.

For mode of Input, a sample rate of zero means that CAN Read.vi returns

a single point from the most recent message received, and greater than zero

means that CAN Read.vi returns samples timed at the specified rate.

For mode of Output, a sample rate of zero means that CAN messages

transmit immediately when CAN Write.vi is called, and greater than zero

means that CAN messages are transmitted periodically at the specified rate.

For mode of Output Recent, sample rate must be greater than zero

(periodic transmit).

For mode of Timestamped Input, sample rate is ignored.

When the interface specifies a virtual interface (256 or 257), and mode is

Output or Output Recent, this sample rate must be zero (greater than

zero not supported).

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-63 NI-CAN Hardware and Software Manual

Outputs

Use task reference out with all subsequent VIs to reference the running

task. Because CAN Init Start.vi starts communication, you can wire this

task reference to CAN Read.vi or CAN Write.vi.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The diagram for this VI simply calls CAN Initialize.vi followed by CAN Start.vi. This

provides an easy way to start a list of channels.

The following list describes the scenarios for which CAN Init Start.vi cannot be used:

• If you need to set properties for the channels, use CAN Initialize.vi, then CAN Set

Property.vi, then CAN Start.vi. CAN Init Start.vi starts communication, and most

channel properties cannot be changed after the task is started.

• If you need to synchronize tasks for multiple NI-CAN or NI DAQ cards, refer to the VIs

in the CAN/DAQ Synchronization palette, such as CAN Sync Start with NI-DAQ.vi.

• If you need to create channel configurations entirely within LabVIEW, without using

MAX or a CAN database file, use CAN Create Message.vi, then CAN Start.vi. CAN

Init Start.vi accepts only channel names defined in MAX or a CAN database file.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-64 ni.com

Mode Dependent Channel Syntax

If you are using mode dependent channels, and each channel name is not unique, you will

need to use a special syntax described in this section. Within MAX, channels with the same

name are shown with a yellow exclamation point. For channels with unique names, you can

use the simple syntax described previously for channel list. The brackets [] define optional

parameters:

[message name.[[multiplexer.]mode_value.]]channel.

• message name refers to the message in which the channel is contained. The message

name must be followed by a decimal point.

• multiplexer refers to the multiplexer name in MAX or the CAN database. The multiplexer

must be followed by a decimal point.

• mode_value refers to the multiplexer mode in MAX or the CAN database.

The mode_value must be followed by a decimal point.

• channel refers to the channel (signal) name in MAX or the CAN database.

You cannot use the same channel name for a normal CAN channel and a mode dependent

CAN channel within the same CAN message.

For more information on mode dependent channels, refer to the Mode Dependent Channels

section of Chapter 6, Using the Channel API.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-65 NI-CAN Hardware and Software Manual

CAN Read.vi

Purpose
Read samples from a CAN task initialized as input. Samples are obtained from received CAN

messages. The poly VI selection determines the data type to read.

To select the data type, right-click the VI, go to Select Type, and select the type by name. For

LabVIEW 7.0 and later, you can right-click the VI and select Visible Items»Poly VI Selector

to select the data type from within the diagram. For an overview of CAN Read, refer to the

Read and Read Timestamped sections of Chapter 6, Using the Channel API.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.

The task reference is originally returned from CAN Init Start.vi, CAN

Initialize.vi, or CAN Create Message.vi, and then wired through

subsequent VIs.

The mode initialized for the task must be either Input or Timestamped

Input.

number of samples to read specifies the number of samples to read for the

task. For single-sample Poly VI types, CAN Read.vi always returns one

sample, so this input is ignored.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-66 ni.com

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task reference

to subsequent VIs for this task.

number of samples returned indicates the number of samples returned in

the samples output.

The poly output samples returns the samples read from received CAN

messages. The type of the poly output is determined by the Poly VI

selection. For information on the different poly VI types provided by CAN

Read.vi, refer to the Poly VI Types section in this function reference.

To select the data type, right-click the VI, go to Select Type, and select the

type by name.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Poly VI Types
The name of each Poly VI type uses the following conventions:

• The first term is either Single-Chan or Multi-Chan. This indicates whether the type

returns data for a single channel or multiple channels. Multi-Chan types return an array

of analogous Single-Chan types, one entry for each channel initialized in channel list of

CAN Init Start.vi. Single-Chan types are convenient because no array indexing is

required, but you are limited to reading only one CAN channel.

• The second term is either Single-Samp or Multi-Samp. This indicates whether the type

returns a single sample, or an array of multiple samples. Single-Samp types are often

used for single point control applications, such as within LabVIEW RT.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-67 NI-CAN Hardware and Software Manual

• The third term indicates the data type used for each sample. The word Dbl indicates

double-precision (64-bit) floating point. The word Wfm indicates the waveform data type.

The words 1D and 2D indicate one and two-dimensional arrays, respectively. The words

Time & Dbl indicate a cluster of a LabVIEW timestamp and a double-precision sample.

Single-Chan Single-Samp Dbl

Returns a single sample for the first channel initialized in channel list.

If the initialized sample rate is greater than zero, this poly VI type waits for the next sample

time, then returns a single sample. This enables you to execute a control loop at a specific rate.

If the initialized sample rate is zero, this poly VI immediately returns a single sample.

The samples output returns a single sample from the most recent message received. If no

message has been received since you started the task, the Default Value of the channel is

returned in samples.

You can use error out to determine whether a new message has been received since the

previous call to CAN Read.vi (or CAN Start.vi). If no message has been received, the

warning code 3FF62009 hex is returned in error out. If a new message has been received,

the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, number of samples returned is one.

Multi-Chan Single-Samp 1D Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists of

a single sample.

The order of channel entries in samples is the same as the order in the original channel list.

If the initialized sample rate is greater than zero, this poly VI type waits for the next sample

time, then returns a single sample for each channel. This enables you to execute a control loop

at a specific rate.

If the initialized sample rate is zero, this poly VI immediately returns a single sample for

each channel.

The samples output returns a single sample for each channel from the most recent message

received. If no message has been received for a channel since you started the task, the Default

Value of the channel is returned in samples.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-68 ni.com

You can specify channels in channel list that span multiple messages. A sample from the

most recent message is returned for all channels.

You can use error out to determine whether a new message has been received since the

previous call to CAN Read.vi (or CAN Start.vi). If no message has been received for one or

more channels, the warning code 3FF62009 hex is returned in error out. If a new message

has been received for all channels, the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, number of samples returned is one. The samples array is indexed

by channel, and the entry for each channel contains a single sample.

If you need to determine the number of channels in the task after initialization, get the

Number of Channels property for the task reference.

Single-Chan Multi-Samp 1D Dbl

Returns an array of samples for the first channel initialized in channel list.

The initialized sample rate must be greater than zero for this poly VI, because each sample in

the array indicates the value of the CAN channel at a specific point in time. In other words,

the sample rate specifies a virtual clock that copies the most recent value from CAN

messages for each sample time. The changes in sample values from message to message

enable you to view the CAN channel over time, such as for comparison with other CAN or

DAQ input channels.

This VI waits until all samples arrive in time before returning. To avoid internal waiting

within the VI, you can use CAN Get Property.vi to obtain the Number Of Samples

Pending, and pass that as the number of samples to read.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to

read the most recent sample for a task, use the Single-Chan Single-Samp Dbl type.

If no message has been received since you started the task, the Default Value of the channel

is returned in all entries of the samples array.

You can use error out to determine whether a new message has been received since the

previous call to CAN Read.vi (or CAN Start.vi). If no message has been received, the

warning code 3FF62009 hex is returned in error out. If a new message has been received,

the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples to

read.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-69 NI-CAN Hardware and Software Manual

Multi-Chan Multi-Samp 2D Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists of

an array of samples.

The order of channel entries in samples is the same as the order in the original channel list.

The initialized sample rate must be greater than zero for this poly VI, because each sample in

the array indicates the value of each CAN channel at a specific point in time. In other words,

the sample rate specifies a virtual clock that copies the most recent value from CAN

messages for each sample time. The changes in sample values from message to message

enable you to view the CAN channels over time, such as for comparison with other CAN

or DAQ input channels.

This VI waits until all samples arrive in time before returning. To avoid internal waiting

within the VI, you can use CAN Get Property.vi to obtain the Number Of Samples

Pending, and pass that as the number of samples to read.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to

read the most recent samples for a task, use the Multi-Chan Single-Samp 1D Dbl type.

If no message has been received for a channel since you started the task, the Default Value of

the channel is returned in samples.

You can specify channels in channel list that span multiple messages. At each point in time,

a sample from the most recent message is returned for all channels.

You can use error out to determine whether a new message has been received since the

previous call to CAN Read.vi (or CAN Start.vi). If no message has been received for one or

more channels, the warning code 3FF62009 hex is returned in error out. If a new message

has been received for all channels, the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples to

read.

If you need to determine the number of channels in the task after initialization, get the

Number of Channels property for the task reference.

Single-Chan Multi-Samp Wfm

Returns a single waveform for the first channel initialized in channel list.

The initialized sample rate must be greater than zero for this poly VI, because each sample in

the array indicates the value of the CAN channel at a specific point in time. In other words,

the sample rate specifies a virtual clock that copies the most recent value from CAN

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-70 ni.com

messages for each sample time. The changes in sample values from message to message

enable you to view the CAN channel over time, such as for comparison with other CAN or

DAQ input channels.

This VI waits until all samples arrive in time before returning. To avoid internal waiting

within the VI, you can use CAN Get Property.vi to obtain the Number Of Samples

Pending, and pass that as the number of samples to read.

The start time of a waveform indicates the time of the first CAN sample in the array. The delta

time of the waveform indicates the time between each sample in the array, as determined by

the original sample rate.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is to simply

read the most recent sample for a task, use the Single-Chan Single-Samp Dbl type.

If no message has been received since you started the task, the Default Value of the channel

is returned in all entries of the samples waveform.

You can use error out to determine whether a new message has been received since the

previous call to CAN Read.vi (or CAN Start.vi). If no message has been received, the

warning code 3FF62009 hex is returned in error out. If a new message has been received,

the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples to

read.

Multi-Chan Multi-Samp 1D Wfm

Returns an array, one entry for each channel initialized in channel list. Each entry consists of

a single waveform.

The order of channel entries in samples is the same as the order in the original channel list.

The initialized sample rate must be greater than zero for this poly VI, because each sample in

the array of a waveform indicates the value of the CAN channel at a specific point in time. In

other words, the sample rate specifies a virtual clock that copies the most recent value from

CAN messages for each sample time. The changes in sample values from message to message

enable you to view the CAN channel over time, such as for comparison with other CAN or

DAQ input channels.

This VI waits until all samples arrive in time before returning. To avoid internal waiting

within the VI, you can use CAN Get Property.vi to obtain the Number Of Samples

Pending, and pass that as the number of samples to read.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-71 NI-CAN Hardware and Software Manual

The start time of a waveform indicates the time of the first CAN sample in the array. The delta

time of a waveform indicates the time between each sample in the array, as determined by the

original sample rate.

If the initialized sample rate is zero, this poly VI returns an error. If the intent is simply to

read the most recent samples for a task, use the Multi-Chan Single-Samp 1D Dbl type.

If no message has been received for a channel since you started the task, the Default Value of

the channel is returned in samples.

You can specify channels in channel list that span multiple messages. At each point in time,

a sample from the most recent message is returned for all channels.

You can use error out to determine whether a new message has been received since the

previous call to CAN Read.vi (or CAN Start.vi). If no message has been received for one or

more channels, the warning code 3FF62009 hex is returned in error out. If a new message

has been received for all channels, the success code 0 is returned in error out.

To use this type, you must set the initialized mode to Input (not Timestamped Input).

Unless an error occurs, the number of samples returned is equal to number of samples

to read.

If you need to determine the number of channels in the task after initialization, get the

Number of Channels property for the task reference.

Single-Chan Multi-Samp 1D Time & Dbl

Returns an array of clusters. Each cluster corresponds to a received message for the first

channel initialized in channel list. Each cluster contains the sample value, and a timestamp

that indicates when the message was received.

To use this type, you must set the initialized mode to Timestamped Input (not Input).

The Timeout property determines whether this VI will wait for the number of samples to

read messages to arrive from the network. The default value of Timeout is zero, but you can

change it using CAN Set Property.vi.

If Timeout is greater than zero, the VI will wait for number of samples to read messages to

arrive. If number of samples to read messages are not received before the Timeout expires,

an error is returned. Timeout is specified as milliseconds.

If Timeout is zero, the VI will not wait for messages, but instead returns samples from the

messages received since the previous call to CAN Read.vi. The number of samples returned

is indicated in the number of samples returned output, up to a maximum of number of

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-72 ni.com

samples to read messages. If no new message has been received, number of samples

returned is 0, and error out indicates success.

Because the timing of values in samples is determined by when the message is received,

the sample rate input is not used with this poly VI type.

Multi-Chan Multi-Samp 2D Time & Dbl

Returns an array, one entry for each channel initialized in channel list. Each entry consists of

an array of clusters. Each cluster corresponds to a received message for the channels

initialized in channel list. Each cluster contains the sample value, and a timestamp that

indicates when the message was received.

The order of channel entries in samples is the same as the order in the original channel list.

To use this type, you must set the initialized mode to Timestamped Input (not Input).

You cannot specify channels in channel list that span multiple messages.

The Timeout property determines whether this VI waits for the number of samples to read

messages to arrive from the network. The default value of Timeout is zero, but you can

change it using CAN Set Property.vi.

If Timeout is greater than zero, the VI will wait for number of samples to read messages to

arrive. If number of samples to read messages are not received before the Timeout expires,

an error is returned. Timeout is specified as milliseconds.

If Timeout is zero, the VI will not wait for messages, but instead returns samples from the

messages received since the previous call to CAN Read.vi. The number of samples returned

is indicated in the number of samples returned output, up to a maximum of number of

samples to read messages. If no new message has been received, number of samples

returned is 0, and error out indicates success.

Because the timing of values in samples is determined by when the message is received,

the sample rate input is not used with this poly VI type.

If you need to determine the number of channels in the task after initialization, get the

Number of Channels property for the task reference.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-73 NI-CAN Hardware and Software Manual

CAN Set Property.vi

Purpose
Set a property for the task, or a single channel within the task. The poly VI selection

determines the property to set.

To select the property, right-click the VI, go to Select Type and select the property by name.

For LabVIEW 7.0 and later, you can right-click the VI and select Visible Items»Poly VI

Selector to select the property from within the diagram.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The

task reference is originally returned from VIs such as CAN Initialize.vi or

CAN Create Message.vi, and then wired through subsequent VIs.

channel name specifies an individual channel within the task. The default

(unwired) value of channel name is empty, which means that the property

applies to the entire task, not a specific channel.

Properties that begin with the word Channel or Message do not apply to the

entire task, but an individual channel or message within the task. For these

channel-specific properties, you must wire the name of a channel from

channel list into the channel name input.

For properties that do not begin with the word Channel or Message,

you must leave channel name unwired (empty).

The poly input value specifies the property value. You select the property

to set as value by selecting the Poly VI type. The data type of value is also

determined by the Poly VI selection. For information on the different

properties provided by CAN Get Property.vi, refer to the Poly VI Types

section in this function reference.

To select the property, right-click the VI, go to Select Type and select the

property by name.Error in describes error conditions occurring before the

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-74 ni.com

VI executes. If an error has already occurred, the VI returns the value of the

Error in cluster in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task reference

to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
You cannot set a property while the task is running. If you need to change a property prior to

starting the task, you cannot use CAN Init Start.vi. First, call CAN Initialize.vi, followed by

CAN Set Property.vi and then CAN Start.vi. After you start the task, you also can change

a property by calling CAN Stop.vi, followed by CAN Set Property.vi, and then CAN

Start.vi again.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-75 NI-CAN Hardware and Software Manual

Poly VI Types

Behavior After Final Output

The Behavior After Final Output property applies only to tasks initialized

with mode of Output, and sample rate greater than zero. The value

specifies the behavior to perform after the final periodic sample is

transmitted.

Behavior After Final Output uses the following values:

Repeat Final Sample

Transmit messages for the final sample(s) repeatedly. The final messages

are transmitted periodically as specified by sample rate.

If there is significant delay between subsequent calls to CAN Write.vi, this

value means that periodic messages continue between CAN Write.vi calls,

and messages with the data of the final sample will be repeated on the

network.

Repeat Final Sample is the default value of the Behavior After Final

Output property.

Cease Transmit

Cease transmit of messages until the next call to CAN Write.vi.

If there is significant delay between subsequent calls to CAN Write.vi, this

value means that periodic messages cease between CAN Write.vi calls,

and the data of the final sample will not be repeated on the network.

Channel Default Value

Sets the default value of the channel in scaled floating-point units.

For information on how the Channel Default Value is used, refer to CAN

Read.vi and CAN Write.vi.

The value of this property is originally set within MAX. If the channel is

initialized directly from a CAN database, the value is 0.0 by default, but it

can be changed using CAN Set Property.vi.

Hardware Master Timebase Rate

Sets the rate (in MHz) of the external clock that is exported to the CAN

card.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-76 ni.com

The values for this property are:

If your CAN-DAQ application does not use the 2 DAQ counters then, you

can leave the timebase rate set to 20 MHz (default).

This property can be set either before or after calling CAN Connect

Terminals.vi to connect the RTSI_CLK to Master Timebase. However,

this property must always be called prior to starting the task.

This property is applicable only to PCI and PXI Series 2 cards. For

PCMCIA cards, setting this attribute will return an error. On PXI cards, if

PXI_CLK10 is routed to the Master Timebase, then the rate is fixed at

10 MHz (it over-rides any previous setting of this property). Setting this

property for Series 1 cards will also result in a NI-CAN error.

Hardware Timestamp Format

Sets the format of the timestamps reported by the on-board timer on the

CAN card. The default value for this property is Absolute.

The values for this property are:

20 MHz (20

decimal)

When synchronizing 2 CAN cards or synchronizing a

CAN card with an E-Series DAQ card, the 20 MHz

master timebase rate is to be used. By default, this

property is set to 20 MHz.

Transmit messages for the final sample(s) repeatedly.

The final messages are transmitted periodically as

specified by sample rate.

10 MHz (10

decimal)

The master timebase rate should be set to 10 MHz when

synchronizing a CAN card with an M-Series DAQ card.

The M-Series DAQ card can export a 20 MHz clock but

it does this by using one of its two counters.

0 (Absolute) Sets the timestamp format to absolute. In the absolute

format, the timestamp returned by NI-CAN read

functions is the LabVIEW date/time format (DBL

representing the number of seconds elapsed since

12:00 a.m., Friday, January 1, 1904).

1 (Relative) Sets the timestamp format to relative. In the relative

format, the timestamp returned by the NI-CAN read

functions will be zero based (DBL representing the

number of seconds since the CAN controller for that

task was started).

Chapter 7 Channel API for LabVIEW

© National Instruments 7-77 NI-CAN Hardware and Software Manual

A typical use case for this property would be if data received from two

RTSI synchronized CAN cards is to be correlated. For that use case, this

property must be set to 1 for all of the CAN cards being synchronized.

Setting this property on one port of a 2-port card will also reset the

timestamp of the second port, since resetting the timestamp on the CAN

port involves resetting the on-board timer.

This property should be set prior to starting any tasks on the CAN card.

Interface Baud RateSets the baud rate in use by the interface.

This property applies to all tasks initialized with the Interface.

You can specify the following basic baud rates as the numeric rate: 33333,

83333, 100000, 125000, 200000, 250000, 400000, 500000, 800000, and

1000000.You can specify advanced baud rates as 8000XXYY hex, where YY

is the value of Bit Timing Register 0 (BTR0), and XX is the value of Bit

Timing Register 1 (BTR1) of the CAN controller. For more information,

refer to the Interface Properties dialog in MAX.

The value of this property is originally set within MAX.

Interface Listen Only?

Sets a Boolean value that indicates whether the listen only feature of the

Philips SJA1000 CAN controller is enabled (TRUE) or disabled (FALSE).

This property applies to all tasks initialized with the Interface.

If Interface Listen Only? is False, the Interface can transmit CAN

messages; therefore, CAN Write.vi operates normally. When CAN

messages are received by the Interface, those messages are acknowledged.

Because False is the behavior specified in the CAN specification, it is the

default value of Interface Listen Only?.

If Interface Listen Only? is True, the Interface cannot transmit CAN

messages; therefore, CAN Write.vi returns an error. When CAN messages

are received by the Interface, those messages are not acknowledged. The

Philips SJA1000 CAN controller enters the error passive state when listen

only is enabled (but no error-passive warning is returned). The True value

of Interface Listen Only? enables passive monitoring of network traffic,

which can be useful for debugging scenarios in which only one device

exists on the network.

Since the listen only feature requires the Philips SJA1000 CAN controller,

this property is supported on Series 2 NI CAN hardware only. If you are

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-78 ni.com

using Series 1 NI CAN hardware, an attempt to set this property returns

error nctErrRequiresNewSeries (code BFF6210D hex, status T).

Interface Self Reception?

Specifies whether to echo successfully transmitted CAN frames as received

frames. Each reception occurs just as if the frame were received from

another CAN device. This enables you to initialize the same channels for

both input and output.

For self reception to operate properly, another CAN node must receive and

acknowledge each transmit.

FALSE disables self reception mode (default), and TRUE enables self

reception mode.

The self reception mode is not available on the Intel 82527 CAN controller

used by Series 1 CAN hardware. For Series 1 hardware, this property must

be left at its default (FALSE).

Interface Series 2 Comparator

Specifies the filter comparator for the Philips SJA1000 CAN controller on

all Series 2 CAN hardware. This property is not supported for Series 1

hardware (returns error).

This property specifies a comparator value that is checked against the ID,

RTR, and data bits. The Interface Series 2 Mask determines the applicable

bits for comparison.

The default value of this property is zero.

The mapping of bits in this property to the ID, RTR, and data bits of

incoming frames is determined by the value of the Interface Series 2 Filter

Mode property. The Series 2 filter mode determines the format of this

property as well as the Series 2 mask.

Interface Series 2 Filter Mode

All Series 2 hardware uses the Philips SJA1000 CAN controller. The

Philips SJA1000 CAN controller provides sophisticated filtering of

received frames. This property specifies the filtering mode, which is used

in conjunction with the Interface Series 2 Mask and Interface Series 2

Comparator properties.

This property is not supported for Series 1 hardware (returns error).

Chapter 7 Channel API for LabVIEW

© National Instruments 7-79 NI-CAN Hardware and Software Manual

Since the format of the Series 2 filters is very specific to the Philips

SJA1000 CAN controller, National Instruments cannot guarantee

compatibility for this property on future hardware series. When using this

property in the application, it is best to get the Hardware Series property

to verify that the CAN hardware is Series 2.

The filtering specified by the Series 2 filter properties applies to all input

tasks for that interface. For example, if you specify filters that discard ID 5,

then open an Input task to receive channels of ID 5, the task will not receive

data.

The default value for this property is Single Standard.

The values for this property are summarized below. For detailed

information on each value, including the format of the Interface Series 2

Mask and Interface Series 2 Comparator properties for each mode, refer to

the Series 2 Filter Mode attribute in the ncSetAttr.vi function of the

Frame API.

Single Standard

Filter all standard (11-bit) frames using a single mask/comparator filter.

Single Extended

Filter all extended (29-bit) frames using a single mask/comparator filter.

Dual Standard

Filter all standard (11-bit) frames using a two separate mask/comparator

filters. If either filter matches the frame, it is received. The frame is

discarded only when neither filter detects a match.

Dual Extended

Filter all extended (29-bit) frames using a two separate mask/comparator

filters. If either filter matches the frame, it is received. The frame is

discarded only when neither filter detects a match.

Interface Series 2 Mask

Specifies the filter mask for the Philips SJA1000 CAN controller on all

Series 2 CAN hardware. This property is not supported for Series 1

hardware (returns error).

This property specifies a bit mask that determines the ID, RTR, and data

bits that are compared. If a bit is clear in the mask, the corresponding bit in

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-80 ni.com

the Interface Series 2 Comparator is checked. If a bit in the mask is set,

that bit is ignored for the purpose of filtering (don’t care).

The default value of this property is hex FFFFFFFF, which means that all

messages are received.

The mapping of bits in this property to the ID, RTR, and data bits of

incoming frames is determined by the value of the Interface Series 2 Filter

Mode property. The Series 2 filter mode determines the format of this

property as well as the Series 2 comparator.

Interface Single Shot Transmit?

Specifies whether to retry failed CAN frame transmissions (Series 2 only).

If Interface Single Shot Transmit? is False (default), failed transmissions

retry as defined in the CAN specification. If a CAN frame is not transmitted

successfully, the CAN controller will immediately retry.

If Interface Single Shot Transmit? is True, all transmissions are single

shot. If a CAN frame is not transmitted successfully, the CAN controller

will not retry.

The single-shot transmit feature is not available on the Intel 82527 CAN

controller used by Series 1 CAN hardware (set returns error).

Interface Transceiver External Outputs

Sets the transceiver external outputs for the interface that was initialized for

the task.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this property allows you to set the output voltage on

the MODE0 and MODE1 pins of the CAN port, and it allows you control

the sleep mode of the on-board CAN controller chip.

For many models of CAN transceiver, EN and NSTB pins control the

transceiver mode, such as whether the transceiver is sleeping or

communicating normally. For such transceivers, you can wire the EN and

NSTB pins to the MODE0 and MODE1 pins of the CAN port.

The default value of this property is 00000003 hex. For many models of

transceiver, this specifies normal communication mode for the transceiver

and CAN controller chip. If the transceiver requires a different

MODE0/MODE1 combination for normal mode, you can use external

inverters to change the default 5 V to 0 V.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-81 NI-CAN Hardware and Software Manual

This property is supported for Series 2 XS cards only. This property is not

supported when the Interface Transceiver Type is any value other than

External. To control the mode of an internal transceiver, use the Interface

Transceiver Mode property.

This property uses a bit mask. Use bitwise OR operations to set multiple

values.

00000001 hex MODE0

Set this bit to drive 5 V on the MODE0 pin. This is the default

value. This bit is set automatically when a remote wakeup is

detected.

Clear this bit to drive 0 V on the MODE0 pin.

00000002 hex MODE1

Set this bit to drive 5 V on the MODE1 pin. This is the default

value. This bit is set automatically when a remote wakeup is

detected.

Clear this bit to drive 0 V on the MODE1 pin.

00000100 hex Sleep CAN controller chip

Set this bit to place the CAN controller chip into sleep mode. This

bit controls the mode of the CAN controller chip (sleep or

normal), and the independent MODE0/MODE1 bits control the

mode of the external transceiver. When you set this bit to place the

CAN controller into sleep mode, you typically specify

MODE0/MODE1 bits that place the external transceiver into sleep

mode as well.

When the CAN controller is asleep, a remote wakeup will

automatically place the CAN controller into its normal mode of

communication. In addition, the MODE0/MODE1 pins are

restored to their default values of 5 V. Therefore, a remote wakeup

causes this property to change from the value that you set for sleep

mode, back to its default 00000003 hex. You can determine when

this has occurred by getting Interface Transceiver External

Outputs using CAN Get Property.vi. For more information on

remote wakeup, refer to the Interface Transceiver Mode

property for internal transceivers.

Clear this bit to place the CAN controller chip into normal

communication mode. If the CAN controller was previously in

sleep mode, this performs a local wakeup to restore

communication.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-82 ni.com

Interface Transceiver Mode

Sets the transceiver mode for the interface that was initialized for the task.

The transceiver mode controls whether the transceiver is asleep or

communicating, as well as other special modes.

This property is supported on Series 2 cards only.

For Series 2 cards for the PCMCIA form factor, this property requires a

corresponding Series 2 cable (dongle). For information on how to identify

the series of the PCMCIA cable, refer to the Series 2 Vs. Series 1 section of

Chapter 1, Introduction.

For Series 2 XS cards, this property is not supported when the Interface

Transceiver Type is External. To control the mode of an external

transceiver, use the Interface Transceiver External Outputs property.

The default value for this property is Normal.

This property uses the following values:

Normal

Set transceiver to normal communication mode. If you set Sleep mode

previously, this performs a local wakeup of the transceiver and CAN

controller chip.

Sleep

Set transceiver and the CAN controller chip to sleep (or standby) mode.

If the transceiver supports multiple sleep/standby modes, the NI CAN

hardware implementation ensures that all of those modes are equivalent

with regard to the behavior of the transceiver on the network. For more

information on the physical specifications for normal and sleep modes for

each transceiver, refer to Chapter 3, NI CAN and LIN Hardware.

You can set Sleep mode only while the interface is communicating. If at

least one task for the interface has not been started (such as with CAN

Start.vi), setting the transceiver mode to Sleep will return an error.

When the interface enters sleep mode, communication is not possible until

a wakeup occurs. All pending frame transmissions are deferred until the

wakeup occurs. The transceiver and CAN controller wake from sleep mode

when either a local wakeup or remote wakeup occurs.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-83 NI-CAN Hardware and Software Manual

If you set Sleep mode when the CAN controller is actively transmitting a

frame (that is, won arbitration), the interface will not enter Sleep mode until

the frame is transmitted successfully (acknowledgement detected).

A local wakeup occurs when the application sets the transceiver mode to

Normal (or some other communication mode).

A remote wakeup occurs when a remote node transmits a CAN frame

(referred to as the wakeup frame). The wakeup frame wakes up the

transceiver and CAN controller chip of the NI CAN interface. The wakeup

frame is not received or acknowledged by the CAN controller chip. When

the wakeup frame ends, the NI CAN interface enters Normal mode, and

again receives and transmits CAN frames. If the node that transmitted the

wakeup frame did not detect an acknowledgement (such as if other nodes

were also waking), it will retry the transmission, and the retry will be

received by the NI CAN interface.

For a remote wakeup to occur for Single Wire transceivers, the node that

transmits the wakeup frame must first place the network into the Single

Wire Wakeup Transmission mode by asserting a higher voltage

(typically 12 V). For more information, refer to the Single Wire Wakeup

mode.

When the local or remote wakeup occurs, frame transmissions resume from

the point at which the original Sleep was set.

You can detect when a remote wakeup occurs by using CAN Get

Property.vi with the Interface Transceiver Mode property.

Single Wire Wakeup

Set Single Wire transceiver to Wakeup Transmission mode.

This mode is supported on Single Wire (SW) ports only.

The Single Wire Wakeup Transmission mode drives a higher voltage

level on the network to wake up all sleeping nodes. Other than this

higher voltage, this mode is similar to Normal mode. CAN frames can

be received and transmitted normally.

Since you use the Single Wire Wakeup mode to wake up other nodes

on the network, it is not typically used in combination with Sleep mode

for a given interface.

The timing of how long the wakeup voltage is driven is controlled

entirely by the application. Your application will typically change to

Single Wire Wakeup mode, transmit a wakeup frame, then return to

Normal mode.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-84 ni.com

The following sequence demonstrates a typical sequence of steps for

sleep and wakeup between two Single Wire NI CAN interfaces. The

sequence assumes that CAN0 is the sleeping node, and CAN1

originates the wakeup.

1. Start both CAN0 and CAN1. Both use the default Normal mode.

2. Set Interface Transceiver Mode of CAN0 to Sleep.

3. Set Interface Transceiver Mode of CAN1 to Single Wire Wakeup.

4. Write data to CAN1 to transmit a wakeup frame to CAN0.

5. Set Interface Transceiver Mode of CAN1 to Normal.

6. Now both CAN0 and CAN1 are in Normal mode again.

Single Wire High-Speed

Set Single Wire transceiver to High-Speed Transmission mode.

This mode is supported on Single Wire (SW) ports only.

The Single Wire High-Speed Transmission mode disables the internal

waveshaping function of the transceiver, which allows baud rates up to

100 kbytes/s to be used. The disadvantage versus Normal (which allows up

to 40 kbytes/s baud) is degraded EMC performance. Other than the

disabled waveshaping, this mode is similar to Normal mode. CAN frames

can be received and transmitted normally.

This mode has no relationship to High-Speed (HS) transceivers. It is merely

a higher speed mode of the Single Wire (SW) transceiver, typically used for

downloading large amounts of data to a node.

The Single Wire transceiver does not support use of this mode in

conjunction with Sleep mode. For example, a remote wakeup cannot

transition from Sleep to this Single Wire High-Speed mode.

Interface Transceiver Type

For XS software selectable physical layer cards that provide a

software-switchable transceiver, the Interface Transceiver Type property

sets the type of transceiver. When the transceiver is switched from one type

to another, NI-CAN ensures that the switch is undetectable from the

perspective of other nodes on the network.

The default value for this property is specified within MAX. If you change

the transceiver type in MAX to correspond to the network in use, you can

avoid setting this property within the application.

This property applies to all tasks initialized with the same interface.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-85 NI-CAN Hardware and Software Manual

You cannot set this property for Series 1 hardware, or for Series 2 hardware

other than XS (fixed HS, LS, or SW cards).

This property uses the following values:

High-Speed

Switch the transceiver to High-Speed (HS).

Low-Speed/Fault-Tolerant

Switch the transceiver to Low-Speed/Fault-Tolerant (LS).

Single Wire

Switch the transceiver to Single Wire (SW).

External

Switch the transceiver to External. The External type allows you to

connect a transceiver externally to the interface. For more information on

connecting transceivers externally, refer to Chapter 3, NI CAN and LIN

Hardware.

When this transceiver type is selected, you can use the Transceiver

External Outputs and Transceiver External Inputs properties to access

the external mode and status pins of the connector.

Disconnect

Disconnect the CAN controller chip from the connector. This value is used

when you physically switch an external transceiver. You first set Interface

Transceiver Type to Disconnect, then switch from one external

transceiver to another, then set Interface Transceiver Type to External.

For more information on connecting transceivers externally, refer to

Chapter 3, NI CAN and LIN Hardware.

Interface Virtual Bus Timing

Sets the Virtual Bus Timing of the virtual device.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-86 ni.com

Interface Virtual Bus Timing uses the following values:

If this property is set on real hardware, an error will be returned.

Virtual Bus Timing has to be set to the same value on both virtual

interfaces. This property must be set prior to starting the virtual interface.

Refer to the Frame to Channel Conversion section of Chapter 6, Using the

Channel API for more information.

Message Multiple Frame Distribution

Sets the Message Multiple Frame Distribution property which is used to

determine if the CAN frames associated to a group of mode dependent

channels are sent even spaced or in burst mode.

Message Multiple Frame Distribution uses the following values:

0 (False) Virtual Bus Timing is turned off. By turning Virtual

Bus Timing off, the CAN bus simulation is disabled

and CAN frames are copied from the write queue of

one virtual interface to the read queue of the second

virtual interface. This setting is useful if you desire to

only convert frames to channels or vice versa and not

simulate actual CAN bus communication.

1 (True) Virtual Bus Timing is turned on (default). By turning

Virtual Bus Timing on, frame timestamps are

recalculated as they transfer across the virtual bus. This

mode is useful when you want the virtual bus to behave

as much like a real bus as possible.

0 Uniform Uniform distribution transmits mode dependent

messages uniformly (evenly spaced) on the network.

1 Burst Burst distribution transmits mode dependent

messages back to back on the network.This property

applies only to mode dependent channels that are

transmitted periodically. For more information, refer

to the Mode Dependent Channels section of

Chapter 6, Using the Channel API.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-87 NI-CAN Hardware and Software Manual

Timeout

Sets a time in milliseconds to wait for samples. The default value is zero.

For all task configurations, the Timeout specifies the time that Read will

wait for the start trigger. If the application does not use CAN Connect

Terminals, the start trigger occurs when the task starts (CAN Start). If you

connect a start trigger from a RTSI line or other source, Timeout specifies

the number of milliseconds to wait. Timeout of zero means to wait up to

10 seconds for the start trigger.

Use of the Timeout property depends on the initialized mode of the task:

• Output— For each Output task, NI-CAN uses a buffer to store

samples for transmit. If the number of samples that you provide to

CAN Write.vi exceeds the size of the underlying buffer, NI-CAN

waits for sufficient space to become available (due to successful

transmits). The Timeout specifies the number of milliseconds to wait

for available buffer space. Timeout of zero means to wait up to

10 seconds.

• Input— The timeout value does not apply. For Input tasks initialized

with sample rate greater than zero, the number of samples to read

input to CAN Read.vi implicitly specifies the time to wait. For Input

tasks initialized with sample rate equal to zero, the CAN Read.vi VI

always returns available samples immediately, without waiting.

• Timestamped Input— A timeout of zero means to return available

samples immediately. A timeout greater than zero means that CAN

Read.vi will wait a maximum of Timeout milliseconds for number of

samples to read samples to become available before returning.

• Output Recent— The timeout value does not apply.

Value for invalid data

Sets the value that is returned on time stamped read for mode dependent

channels that have not been received with the most recent CAN frame

associated with the CAN message. This property applies only to mode

dependent channels that are read with the time stamped read operation.

For more information, refer to the Mode Dependent Channels section of

Chapter 6, Using the Channel API.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-88 ni.com

CAN Start.vi

Purpose
Start communication for the specified task.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The

task reference is originally returned from VIs such as CAN Initialize.vi or

CAN Create Message.vi, and then wired through subsequent VIs.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task reference

to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-89 NI-CAN Hardware and Software Manual

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
You must start communication for a task to use CAN Read.vi or CAN Write.vi. After you

start communication, you can no longer change the configuration of the task with CAN Set

Property.vi or CAN Connect Terminals.vi.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-90 ni.com

CAN Stop.vi

Purpose
Stop communication for the specified task.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The

task reference is originally returned from CAN Init Start.vi, CAN

Initialize.vi, or CAN Create Message.vi, and then wired through

subsequent VIs.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task reference

to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-91 NI-CAN Hardware and Software Manual

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI stops communication so that you can change the configuration of the task, such as by

using CAN Set Property.vi or CAN Connect Terminals.vi. After you change the

configuration, use CAN Start.vi to start again.

This VI does not clear the configuration for the task; therefore, do not use it as the last

NI-CAN VI in the application. CAN Clear.vi must always be the last NI-CAN VI for each

task.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-92 ni.com

CAN Sync Start with NI-DAQ.vi

Purpose
Synchronize and start the specified CAN task and NI-DAQ task.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The

task reference is originally returned from VIs such as CAN Initialize.vi or

CAN Create Message.vi.

NI-DAQ task ID is the task ID from an NI-DAQ configuration VI, such as

AI Config or AO Config.

When this VI returns, do not call an NI-DAQ start VI for the task. The

LabVIEW diagram of this VI starts the NI-DAQ task ID for you, so you

can immediately call NI-DAQ read or write VIs.

RTSI terminal specifies the RTSI terminal number to use for the shared

start trigger. This input uses a ring typedef to select terminals from RTSI0

to RTSI6.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-93 NI-CAN Hardware and Software Manual

Outputs
task reference out is the same as task reference in. Wire the task reference

to subsequent NI-CAN VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN and NI-DAQ task execute on different NI hardware products. To use the

input/output samples of these tasks together in the application, the NI hardware products must

be synchronized with RTSI terminal connections. Both NI hardware products must use a

common timebase to avoid clock drift, and a common start trigger to start input/output at the

same time.

This VI uses NI-CAN and NI-DAQ RTSI functions to synchronize the NI hardware products

to a common timebase and start trigger, and then it starts sampling on both tasks. The function

used to connect RTSI terminals on the CAN card is CAN Connect Terminals.vi.

When you use this VI to start the tasks, you must use CAN Clear with NI-DAQ.vi to clear

the tasks.

This VI synchronizes a single CAN hardware product to a single NI-DAQ hardware product.

To synchronize multiple CAN cards and/or multiple NI-DAQ cards, refer to CAN Sync Start

Multiple with NI-DAQ.vi.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW

diagram is commented so that you can use the VI as a starting point for more complex

synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the

VI for editing.

The diagram of this VI assumes that the NI-DAQ product is an E Series MIO device. If you

are using a different NI hardware product, refer to the diagram as a starting point.

The diagram of this VI issues the start trigger immediately. To implement more complex

triggering, such as using an AI trigger to start, refer to the diagram as a starting point.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-94 ni.com

CAN Sync Start with NI-DAQmx.vi

Purpose
Synchronize and start the specified CAN task and NI-DAQmx task.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI. The

task reference is originally returned from VIs such as CAN Initialize.vi or

CAN Create Message.vi.

NI-DAQmx task in is the task ID from an NI-DAQmx configuration VI,

such as DAQmx Create Virtual Channel.When this VI returns, do not call

an NI-DAQmx Start Task VI for the task. The LabVIEW diagram of this

VI starts the NI-DAQmx task for you, so you can immediately call

NI-DAQmx read or write VIs.

RTSI terminal specifies the RTSI terminal number to use for the shared

start trigger. This input uses a ring typedef to select terminals from RTSI0

to RTSI6.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-95 NI-CAN Hardware and Software Manual

Outputs

task reference out is the same as task reference in. Wire the task reference

to subsequent NI-CAN VIs for this task.

Synchronization out defines a cluster with information about the signals

that have been routed between the cards and about additional DAQmx tasks

that may have been created for synchronization.

Counter task out is the task from an NI-DAQmx Create Virtual

Channel VI. This additional NI-DAQmx task is created under

certain circumstances to generate a common timebase clock for

cards that do not support sharing of timebases through RTSI

(like DAQ cards or NI-CAN Series 1 cards).

Routes out is a 1-dimensional array of terminal names of signals

that have been routed between the cards.

Source terminal is the name of the terminal where the

route starts.

Destination terminal is the name of the terminal where

the route ends.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-96 ni.com

Description
The CAN and NI-DAQmx tasks execute on different NI hardware products. To use the

input/output samples of these tasks together in the application, the NI hardware products must

be synchronized with RTSI terminal connections. Both NI hardware products must use a

common timebase to avoid clock drift, and a common start trigger to start input/output at the

same time.

This VI uses NI-CAN and NI-DAQmx RTSI functions to synchronize the NI hardware

products to a common timebase and start trigger, and then it starts sampling on both tasks.

The function used to connect RTSI terminals on the CAN card is CAN Connect

Terminals.vi.

When you use this VI to start the tasks, you must use CAN Clear with NI-DAQmx.vi to clear

the tasks.

This VI synchronizes a single CAN hardware product to a single NI-DAQ hardware product.

To synchronize multiple CAN cards and/or multiple NI-DAQ cards, refer to CAN Sync Start

with NI-DAQmx.vi.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW

diagram is commented so that you can use the VI as a starting point for more complex

synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the

VI for editing.

This VI is designed to support most E Series MIO devices and M Series MIO devices through

NI-DAQmx. If you are using a different NI hardware product, refer to the diagram as a starting

point.

The diagram of this VI issues the start trigger immediately. To implement more complex

triggering, such as using an AI trigger to start, refer to the diagram as a starting point.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-97 NI-CAN Hardware and Software Manual

CAN Sync Start Multiple with NI-DAQ.vi

Purpose
Synchronize and start the specified list of multiple CAN tasks and a single NI-DAQ task.

This is a more complex implementation of CAN Sync Start with NI-DAQ.vi that supports

multiple CAN hardware products.

Format

Inputs

CAN task reference list in is an array of NI-CAN task references. Each

task reference is originally returned from VIs such as CAN Initialize.vi or

CAN Create Message.vi. You can build the task references into an array

using the LabVIEW Build Array VI.

NI-DAQ task ID list is a task ID originally returned from an NI-DAQ

configuration VI, such as AI Config or AO Config.When this VI returns,

do not call an NI-DAQ start VI. The LabVIEW diagram of this VI starts

NI-DAQ task ID list for you, so you can immediately call NI-DAQ read or

write VIs.

RTSI terminal specifies the RTSI terminal number to use for the shared

start trigger. This input uses a ring typedef to select terminals from RTSI0

to RTSI6.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-98 ni.com

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

CAN task reference list out is the same as CAN task reference list in.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN and NI-DAQ tasks execute on different NI hardware products. To use the

input/output samples of these tasks together in the application, the NI hardware products must

be synchronized with RTSI terminal connections. Both NI hardware products must use a

common timebase to avoid clock drift, and a common start trigger to start input/output at the

same time.

This VI uses NI-CAN and NI-DAQ RTSI functions to synchronize the NI hardware products

to a common timebase and start trigger, and then it starts sampling on all tasks. The function

used to connect RTSI terminals on the CAN card is CAN Connect Terminals.vi.

When you use this VI to start the tasks, you must use CAN Clear Multiple with NI-DAQ.vi

to clear the tasks.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW

diagram is commented so that you can use the VI as a starting point for more complex

synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the

VI for editing.

This VI does not demonstrate synchronization of multiple NI-DAQ hardware products. Refer

to NI-DAQ for examples of synchronizing the timebase and trigger of multiple DAQ cards.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-99 NI-CAN Hardware and Software Manual

The diagram of this VI assumes that all NI-DAQ products are E Series MIO devices. If you

are using a different NI hardware product, refer to the diagram as a starting point.

The diagram of this VI issues the start trigger immediately. To implement more complex

triggering, such as using an AI trigger to start, refer to the diagram as a starting point.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-100 ni.com

CAN Sync Start Multiple with NI-DAQmx.vi

Purpose
Synchronize and start the specified list of multiple CAN tasks and a single NI-DAQmx task.

This is a more complex implementation of CAN Sync Start with NI-DAQmx.vi that

supports multiple CAN hardware products.

Format

Inputs

CAN task reference list in is an array of NI-CAN task references. Each

task reference is originally returned from VIs such as CAN Initialize.vi or

CAN Create Message.vi. You can build the task references into an array

using the LabVIEW Build Array VI.

DAQmx task in is the task from an NI-DAQmx configuration VI, such as

DAQmx Create Virtual Channel. When this VI returns, do not call an

NI-DAQmx Start Task VI. The LabVIEW diagram of this VI starts the

NI-DAQmx task for you, so you can immediately call NI-DAQmx read or

write VIs.

RTSI terminal specifies the RTSI terminal number to use for the shared

start trigger. This input uses a ring typedef to select terminals from RTSI0

to RTSI6.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

Chapter 7 Channel API for LabVIEW

© National Instruments 7-101 NI-CAN Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

CAN task reference list out is the same as CAN task reference list in.

Synchronization out defines a cluster with information about the signals

that have been routed between the cards and about additional DAQmx tasks

that may have been created for synchronization.

Counter task out is the task from an NI-DAQmx Create Virtual

Channel VI. This additional NI-DAQmx task is created under

certain circumstances to generate a common timebase clock for

cards that do not support sharing of timebases through RTSI (like

DAQ cards or NI-CAN Series 1 cards).

Routes out is a 1-dimensional array of terminal names of signals

that have been routed between the cards.

Source terminal is the name of the terminal where the

route starts.

Destination terminal is the name of the terminal where

the route ends.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-102 ni.com

Description
The CAN and NI-DAQmx tasks execute on different NI hardware products. To use the

input/output samples of these tasks together in the application, the NI hardware products must

be synchronized with RTSI terminal connections. Both NI hardware products must use a

common timebase to avoid clock drift, and a common start trigger to start input/output at the

same time.

This VI uses NI-CAN and NI-DAQmx RTSI functions to synchronize the NI hardware

products to a common timebase and start trigger, and then it starts sampling on all tasks. The

function used to connect RTSI terminals on the CAN card is CAN Connect Terminals.vi.

When you use this VI to start the tasks, you must use CAN Clear Multiple with

NI-DAQmx.vi to clear the tasks.

This VI is intended to serve as an example. You can use the VI as is, but the LabVIEW

diagram is commented so that you can use the VI as a starting point for more complex

synchronization scenarios. Before you customize the LabVIEW diagram, save a copy of the

VI for editing.

This VI does not demonstrate synchronization of multiple NI-DAQmx hardware products.

Refer to NI-DAQ for examples of synchronizing the timebase and trigger of multiple DAQ

cards.

This VI is designed to support most E Series MIO devices and M Series MIO devices through

NI-DAQmx. If you are using a different NI hardware product, refer to the diagram as a starting

point.

The diagram of this VI issues the start trigger immediately. To implement more complex

triggering, such as using an AI trigger to start, refer to the diagram as a starting point.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-103 NI-CAN Hardware and Software Manual

CAN Write.vi

Purpose
Write samples to a CAN task initialized as Output (refer to the mode parameter of CAN Init

Start.vi). Samples are placed into transmitted CAN messages. The poly VI selection

determines the data type to write.

To select the data type, right-click the VI, go to Select Type, and select the type by name.

For LabVIEW 7.0 and later, you can right-click the VI and select Visible Items»Poly VI

Selector to select the data type from within the diagram.

For an overview of CAN Write, refer to the Write section of Chapter 6, Using the Channel

API.

Format

Inputs

task reference in is the task reference from the previous NI-CAN VI.

The task reference is originally returned from CAN Init Start.vi, CAN

Initialize.vi, or CAN Create Message.vi, and then wired through

subsequent VIs.

The mode initialized for the task must be Output.

number of samples to write specifies the number of samples to write for

the task. For single-sample Poly VI types, CAN Write.vi always accepts

one sample, so this input is ignored.

The poly input samples specifies the samples to transmit in CAN

messages. The poly input type is determined by the Poly VI selection.

For information on the different poly VI types provided by CAN Write.vi,

refer to the Poly VI Types section in this function reference.

To select the data type, right-click the VI, go to Select Type, and select the

type by name.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-104 ni.com

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Outputs

task reference out is the same as task reference in. Wire the task reference

to subsequent VIs for this task.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Poly VI Types
The name of each Poly VI type uses the following conventions:

• The first term is either Single-Chan or Multi-Chan. This indicates whether the type

specifies data for a single channel or multiple channels. Multi-Chan types specify an

array of analogous Single-Chan types, one entry for each channel initialized in channel

list of CAN Init Start.vi. Single-Chan types are convenient because no array indexing

is required, but you are limited to writing only one CAN channel.

• The second term is either Single-Samp or Multi-Samp. This indicates whether the type

specifies a single sample, or an array of multiple samples. Single-Samp types are often

Chapter 7 Channel API for LabVIEW

© National Instruments 7-105 NI-CAN Hardware and Software Manual

used for single-point control applications, such as within LabVIEW RT. Single-Samp

types are required for the Output Recent mode.

• The third term indicates the data type used for each sample. The word Dbl indicates

double-precision (64-bit) floating point. The word Wfm indicates the waveform data type.

The words 1D and 2D indicate one and two-dimensional arrays, respectively.

Single-Chan Single-Samp Dbl

Writes a single sample for the first channel initialized in channel list.

You can use this type with Output mode or Output Recent mode.

If the initialized sample rate is greater than zero, the task transmits a CAN message

periodically at the specified rate. The first CAN Write.vi transmits a message immediately,

and then begins a periodic timer at the specified rate. In Output mode, samples are queued

and each subsequent message transmission uses the next available sample. When there are no

more samples, the last sample is retransmitted until a new sample is provided or the task is

stopped. In Output Recent mode, only the last provided sample is transmitted periodically,

based on the timer.

If the initialized sample rate is zero, the message is transmitted immediately each time you

call CAN Write.vi.

Because all channels of a message are transmitted on the network as a unit, CAN Write.vi

enforces the following rules:

• You cannot write the same message in more than one Output task.

• You can write more than one message in a single Output task.

• You can write a subset of channels for a message in a single Output task. For channels

that are not included in the task, the Default Value is transmitted in the CAN message.

Because this Poly VI writes only one channel, the Default Value will always be used for

any remaining channels in the associated message.

For many applications, the most straightforward technique is to assign a single task for each

message you want to transmit. In each task, include all channels of that message in the

channel list. This ensures that you can provide new samples for the entire message with each

CAN Write.vi.

Multi-Chan Single-Samp 1D Dbl

Writes an array, one entry for each channel initialized in channel list. Each entry consists of

a single sample.

You can use this type with Output mode or Output Recent mode.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-106 ni.com

The messages transmitted by CAN Write.vi are determined by the associated channel list.

If all channels are contained in a single message, only that message is transmitted. If a few

channels are contained in one message, and the remaining channels are contained in a second

message, two messages are transmitted.

If the initialized sample rate is greater than zero, the task transmits associated CAN messages

periodically at the specified rate. The first CAN Write.vi transmits messages immediately,

and then begins a periodic timer at the specified rate. In Output mode, samples are queued

and each subsequent message transmission uses the next available sample. When there are no

more samples, the last sample is retransmitted until a new sample is provided or the task is

stopped. In Output Recent mode, only the last provided sample is transmitted periodically,

based on the timer.

If the initialized sample rate is zero, the messages are transmitted immediately each time you

call CAN Write.vi.

Because all channels of a message are transmitted on the network as a unit, CAN Write.vi

enforces the following rules:

• You cannot write the same message in more than one task.

• You can write more than one message in a single task.

• You can write a subset of channels for a message in a single task. For channels that are

not included in the task, the Default Value is transmitted in the CAN message.

For many applications, the most straightforward technique is to assign a single task for each

message that you want to transmit. In each task, include all channels of that message in the

channel list. This ensures that you can provide new samples for the entire message with each

CAN Write.vi.

Single-Chan Multi-Samp 1D Dbl

Writes an array of samples for the first channel initialized in channel list.

You can use this type with Output mode only (not Output Recent mode).

If the initialized sample rate is greater than zero, the task transmits a CAN message

periodically at the specified rate. This Poly VI is used to transmit a sequence of messages

periodically, with a unique sample value in each message. The first CAN Write.vi transmits

a message immediately using the first sample in the array, and then begins a periodic timer at

the specified rate. Each subsequent message transmission is based on the timer, and uses the

next sample in the array. After the final sample in the array has been transmitted, subsequent

behavior is determined by the Behavior After Final Output property. The default Behavior

After Final Output is to retransmit the final sample each period until CAN Write.vi is called

again.

Chapter 7 Channel API for LabVIEW

© National Instruments 7-107 NI-CAN Hardware and Software Manual

If the initialized sample rate is zero, a message is transmitted immediately for each entry in

the array, with as little delay as possible between messages. After the message for the final

sample is transmitted, no further transmissions occur until CAN Write.vi is called again,

regardless of the Behavior After Final Output property.

Because all channels of a message are transmitted on the network as a unit, CAN Write.vi

enforces the following rules:

• You cannot write the same message in more than one task.

• You can write more than one message in a single task.

• You can write a subset of channels for a message in a single task. For channels that are

not included in the task, the Default Value is transmitted in the CAN message. Because

this Poly VI writes only one channel, the Default Value will always be used for any

remaining channels in the associated message.

For many applications, the most straightforward technique is to assign a single task for each

message that you want to transmit. In each task, include all channels of that message in the

channel list. This ensures that you can provide new samples for the entire message with each

CAN Write.vi.

Multi-Chan Multi-Samp 2D Dbl

Writes an array, one entry for each channel initialized in channel list. Each entry consists of

an array of samples.

You can use this type with Output mode only (not Output Recent mode).

The messages transmitted by CAN Write.vi are determined by the associated channel list.

If all channels are contained in a single message, only that message is transmitted. If a few

channels are contained in one message, and the remaining channels are contained in a second

message, two messages are transmitted.

If the initialized sample rate is greater than zero, the task transmits associated CAN messages

periodically at the specified rate. This Poly VI is used to transmit a sequence of messages

periodically, with unique sample values in each set of messages. The first CAN Write.vi

transmits associated messages immediately using the first sample in the array of each channel,

and then begins a periodic timer at the specified rate. Each subsequent transmission of

messages is based on the timer, and uses the next sample in the array of each channel. After

the final sample in the array of each channel has been transmitted, subsequent behavior is

determined by the Behavior After Final Output property. The default Behavior After Final

Output is to retransmit the final sample each period until CAN Write.vi is called again.

If the initialized sample rate is zero, the task transmits associated messages immediately for

each entry in the array of each channel, with as little delay as possible between messages.

Chapter 7 Channel API for LabVIEW

NI-CAN Hardware and Software Manual 7-108 ni.com

After the message for the final sample is transmitted, no further transmissions occur until

CAN Write.vi is called again, regardless of the Behavior After Final Output property.

Because all channels of a message are transmitted on the network as a unit, CAN Write.vi

enforces the following rules:

• You cannot write the same message in more than one task.

• You can write more than one message in a single task.

• You can write a subset of channels for a message in a single task. For channels that are

not included in the task, the Default Value is transmitted in the CAN message.

For many applications, the most straightforward technique is to assign a single task for each

message that you want to transmit. In each task, include all channels of that message in the

channel list. This ensures that you can provide new samples for the entire message with each

CAN Write.vi.

Single-Chan Multi-Samp Wfm

Writes a single waveform for the first channel initialized in channel list.

The start time and delta time of the waveform does not affect the beginning of message

transmission. Therefore, this Poly VI type is equivalent to the Single-Chan Multi-Samp 1D

Dbl Poly VI type.

Multi-Chan Multi-Samp 1D Wfm

Writes an array, one entry for each channel initialized in channel list. Each entry consists of

a single waveform.

The start time and delta time of each waveform does not affect the beginning of message

transmission. Therefore, this Poly VI type is equivalent to the Multi-Chan Multi-Samp 2D

Dbl Poly VI type.

© National Instruments 8-1 NI-CAN Hardware and Software Manual

8
Channel API for C

This chapter lists the NI-CAN functions and describes the format, purpose and parameters.

Unless otherwise stated, each NI-CAN function suspends execution of the calling thread until

it completes. The functions in this chapter are listed alphabetically.

Section Headings

The following are section headings found in the Channel API for C functions.

Purpose
Each function description includes a brief statement of the purpose of the function.

Format
The format section describes the format of each function for the C programming language.

Input and Output
The input and output parameters for each function are listed.

Description
The description section gives details about the purpose and effect of each function.

Data Types

The following data types are used with functions of the NI-CAN Channel API for C.

Table 8-1. NI-CAN Channel API for C Data Types

Data Type Purpose

i8 8-bit signed integer.

i16 16-bit signed integer.

i32 32-bit signed integer.

u8 8-bit unsigned integer.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-2 ni.com

List of Functions

Table 8-1 contains an alphabetical list of the NI-CAN Channel API for C functions.

u16 16-bit unsigned integer.

u32 32-bit unsigned integer.

f32 32-bit floating-point number.

f64 64-bit floating-point number.

str ASCII string represented as an array of characters

terminated by null character ('\0'). This type is used

with output strings.

cstr ASCII string represented as an array of characters

terminated by null character ('\0'). This type is used

with input strings.

nctTypeTaskRef Reference to an initialized task. Refer to

nctInitStart for more information.

nctTypeStatus Status returned from NI-CAN functions. Refer to

ncStatusToString in the Frame API for more

information.

nctTypeTimestamp Timestamp. Refer to nctReadTimestamped for more

information.

Table 8-2. NI-CAN Channel API for C Functions

Function Purpose

nctClear Stops communication for the task and then clears the

configuration.

nctConnectTerminals Connects terminals in the CAN hardware.

nctCreateMessage Creates a message configuration and associated

channel configurations within the application.

Table 8-1. NI-CAN Channel API for C Data Types (Continued)

Data Type Purpose

Chapter 8 Channel API for C

© National Instruments 8-3 NI-CAN Hardware and Software Manual

nctCreateMessageEx Creates a message configuration and associated

channel configurations within the application.

nctCreateMessageEx allows you to create normal

CAN channels and mode dependent channels. For more

information about mode dependent channels, refer to

the Mode Dependent Channels section of Chapter 6,

Using the Channel API.

nctDisconnectTerminals Disconnects terminals in the CAN hardware.

nctGetNames Gets an array of CAN channel names or message names

from MAX or a CAN database file.

nctGetNamesLength Gets the required size for a specified list of channels to

allocate an array for the ChannelList input of

nctGetNames.

nctGetProperty Gets a property for the task, or a single channel within

the task.

nctInitialize Initializes a task for the specified channel list.

nctInitStart Initializes a task for the specified channel list, then start

communication.

nctRead Reads samples from a CAN task initialized with a Mode

of nctModeInput. Samples are obtained from

received CAN messages.

nctReadTimestamped Reads samples from a CAN task initialized with a Mode

of nctModeTimestampedInput.

nctSetProperty Sets a property for the task, or a single channel within

the task.

nctStart Starts communication for the specified task.

nctStop Stops communication for the specified task.

nctWrite Writes samples to a CAN task initialized as

nctModeOutput. Samples are placed into transmitted

CAN messages.

Table 8-2. NI-CAN Channel API for C Functions (Continued)

Function Purpose

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-4 ni.com

nctClear

Purpose
Stops communication for the task and then clears the configuration.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from nctInitStart, nctInitialize, or

nctCreateMessage.

Outputs

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
The nctClear function must always be the final NI-CAN function called for each task.

If you do not use the nctClear function, the remaining task configurations can cause

problems in execution of subsequent NI-CAN applications.

If the cleared task is the last running task for the initialized Interface (refer to

nctInitStart for more information), the nctClear function also stops communication on

the CAN controller of the interface and disconnects all terminal connections for that interface.

Because this function clears the task, TaskRef cannot be used with subsequent functions.

To change the properties of a running task, use nctStop to stop the task, nctSetProperty

to change the desired property, and then nctStart to restart the task.

nctTypeStatus nctClear(nctTypeTaskRef TaskRef);

Chapter 8 Channel API for C

© National Instruments 8-5 NI-CAN Hardware and Software Manual

nctConnectTerminals

Purpose
Connects terminals in the CAN hardware.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from nctInitStart, nctInitialize, or

nctCreateMessage.

SourceTerminal

Specifies the connection source.

Once the connection is successfully created, behavior flows from

SourceTerminal to DestinationTerminal.

For a list of valid source/destination pairs, refer to the Valid

Combinations of Source/Destination section in this function reference.

The following list describes each value of SourceTerminal:

nctSrcTermRTSI0... nctSrcTermRTSI6

Selects a general-purpose RTSI line as source (input) of the

connection.

nctSrcTermRTSI_Clock

Selects the RTSI clock line as source (input) of the

connection. This terminal is also RTSI line 7. RTSI7 is

dedicated for routing of a timebase (10 MHz or 20 MHz)

The only valid DestinationTerminal for this source is

nctDestTermMasterTimebase.

nctTypeStatus nctConnectTerminals(

nctTypeTaskRef TaskRef,

u32 SourceTerminal,

u32 DestinationTerminal,

u32 Modifiers);

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-6 ni.com

For PCI and PXI form factors, this receives a 20 MHz

(default) timebase from another CAN or DAQ card. For

example, you can synchronize a CAN and DAQ E Series MIO

card by connecting the 20 MHz oscillator (board clock) of the

DAQ card to nctSrcTermRTSI_Clock, and then connecting

nctSrcTermRTSI_Clock to

nctDestTermMasterTimebase on the CAN card.

For PCMCIA form factor, a 10 MHz timebase is required on

nctSrcTermRTSI_Clock. For synchronization with a

PCMCIA DAQ card, this is done by programming the

FREQOUT signal of the DAQ card to 10 MHz, then wiring

FREQOUT to the nctSrcTermRTSI_Clock of the CAN

card.

This value applies to Series 2 cards only (returns error for

Series 1).

nctSrcTermPXI_Star

nctSrcTermPXI_Star selects the PXI star trigger signal.

Within a PXI chassis, some PXI products can source star

trigger from Slot 2 to all higher-numbered slots.

PXI_Star enables the PXI CAN card to receive the star

trigger when it is in Slot 3 or higher.

This value applies to Series 2 PXI CAN cards only. If you are

using a Series 1 CAN card or Series 2 PCI or PCMCIA CAN

card, selecting this value results in an error.

nctSrcTermPXI_Clk10

nctSrcTermPXI_Clk10 selects the PXI 10 MHz backplane

clock.

The only valid DestinationTerminal for this source is

nctDestTermMasterTimebase. This routes the 10 MHz

PXI backplane clock for use as the timebase for the CAN

card. When you use PXI_Clk10 as the timebase for the CAN

card, you must also use PXI_Clk10 as the timebase for other

PXI cards to perform synchronized input/output.

This value applies to Series 2 PXI CAN cards only. If you are

using a Series 1 CAN card or Series 2 PCI or PCMCIA CAN

card, selecting this value results in an error.

nctSrcTerm20MHzTimebase

nctSrcTerm20MHzTimebase selects the 20 MHz oscillator

of the CAN card.

Chapter 8 Channel API for C

© National Instruments 8-7 NI-CAN Hardware and Software Manual

The only valid DestinationTerminal for this source is

nctDestTermRTSI_Clock. This routes the 20 MHz clock

of the CAN card for use as a timebase by other NI cards. For

example, you can synchronize two CAN cards by connecting

nctSrcTerm20MHzTimebase to

nctDestTermRTSI_CLOCK on one CAN card, and then

connecting nctSrcTermRTSI_CLOCK to

nctDestTermMasterTimebase on the other CAN card.

nctSrcTerm20MHzTimebase applies to the entire CAN

card, including both interfaces of a 2-port CAN card. The

CAN card is specified by the task interface, such as the

Interface input to nctInitialize.

This value applies to Series 2 PXI or PCI CAN cards only.

If you are using a Series 1 CAN card or Series 2 PCMCIA

CAN card, selecting this value results in an error.

nctSrcTerm10HzResyncClock

nctSrcTerm10HzResyncClock selects a 10 Hz, 50 percent

duty cycle clock. This slow rate is required for

resynchronization of CAN cards. On each pulse of the resync

clock, the other CAN card brings its clock into sync.

By selecting RTSI0-RTSI6 as the DestinationTerminal,

you route the 10 Hz clock to synchronize with other CAN

cards. NI DAQ cards cannot use the 10 Hz resync clock, so

this selection is limited to synchronization of two or more

CAN cards.

nctSrcTerm10HzResyncClock applies to the entire CAN

card, including both interfaces of a 2-port CAN card. The

CAN card is specified by the task interface, such as the

Interface input to nctInitialize.

This value is typically used with Series 1 CAN cards only.

If all of the CAN cards are Series 2, the 20 MHz timebase is

preferable due to the lack of drift. If you are using a mix of

Series 1 and Series 2 CAN cards, you must use

nctSrcTerm10HzResyncClock.

nctSrcTermIntfReceiveEvent

nctSrcTermIntfReceiveEvent selects the dedicated

receive interrupt output on the Philips SJA1000 CAN

controller. When a received frame successfully passes the

acceptance filter, a pulse with the width of one bit time is

output during the last bit of the end of frame position of the

CAN frame. Incoming CAN frames can be filtered using the

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-8 ni.com

nctPropIntfSeries2FilterMode property. The CAN

controller is specified by the task interface, such as the

Interface input to nctInitialize.

nctSrcTermIntfReceiveEvent can be used as the start

trigger for other NI cards, or for external instruments.

Since this value requires the Philips SJA1000 CAN

controller, it applies to Series 2 CAN cards only. If you are

using a Series 1 CAN card, selecting this value results in an

error.

nctSrcTermIntfTransceiverEvent

nctSrcTermIntfTransceiverEvent selects the NERR

signal from the CAN transceiver. The

Low-Speed/Fault-Tolerant transceiver and the High-Speed

transceiver provide the NERR signal. This signal asserts

when a fault is detected by the transceiver. The default value

of NERR is logic-high, which indicates no error.

The CAN controller is specified by the task interface, such as

the Interface input to nctInitialize.

This value applies to Series 2 CAN cards only. If you are

using a Series 1 CAN card, selecting this value results in an

error.

nctSrcTermStartTrigger

nctSrcTermStartTrigger selects the start trigger,

the event that begins sampling for tasks.

The start trigger is the same for all tasks using a given

interface, such as the Interface input to nctInitialize.

In the default (disconnected) state of the

nctDestTermStartTrigger destination, the start trigger

occurs when communication begins on the interface.

By selecting RTSI0-RTSI6 as the DestinationTerminal,

you route the start trigger of this CAN card to the start trigger

of other CAN or DAQ cards. This ensures that sampling

begins at the same time on both cards. For example,

you can synchronize two CAN cards by routing

nctSrcTermStartTrigger as the SourceTerminal

on one CAN card, and then routing

nctDestTermStartTrigger as the

DestinationTerminal on the other CAN card, with both

cards using the same RTSI line for the connections.

Chapter 8 Channel API for C

© National Instruments 8-9 NI-CAN Hardware and Software Manual

DestinationTerminal

Specifies the destination of the connection.

The following list describes each value of DestinationTerminal:

nctDestTermRTSI0... nctDestTermRTSI6

Selects a general-purpose RTSI line as destination (output) of

the connection.

nctDestTermRTSI_Clock

Selects the RTSI clock line as destination (output) of the

connection. This terminal is also RTSI line 7. RTSI7 is

dedicated for routing of a timebase. The CAN card can import

a 10 MHz or 20 MHz timebase, but can only export a 20 MHz

timebase. The only valid SourceTerminal for this source is

nctSrcTerm20MHzTimebase.

This value applies to Series 2 CAN cards only. If you are

using a Series 1 CAN card, selecting this value results in an

error.

nctDestTermMasterTimebase

nctDestTermMasterTimebase instructs the CAN card to

use the source of the connection as the master timebase.

The CAN card uses this master timebase for input sampling

(including timestamps of received messages) as well as

periodic output sampling.

For PCI and PXI form factors, you can use

nctSrcTermRTSI_Clock as the SourceTerminal. By

default this receives a 20 MHz timebase from another CAN

or DAQ card. For example, you can synchronize a CAN and

DAQ E Series MIO card by connecting the 20 MHz oscillator

(board clock) of the DAQ card to RTSI Clock (RTSI7),

and then connecting nctSrcTermRTSI_Clock to

nctDestTermMasterTimebase on the CAN card. To

change the Master Timebase Rate to 10 MHz, use

nctSetProperty to change the

nctPropHwMasterTimebaseRate.

For PXI form factor, you also can use

nctSrcTermPXI_Clk10 as the SourceTerminal. This

receives the PXI 10 MHz backplane clock for use as the

master timebase.

For PCMCIA form factor, you can use

nctSrcTermRTSI_Clock as the SourceTerminal. Unlike

PCI and PXI, the PCMCIA CAN card requires a 10 MHz

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-10 ni.com

timebase on nctSrcTermRTSI_Clock (TRIG7_CLK). For

synchronization with a PCMCIA DAQ card, this is done by

programming the FREQOUT signal of the DAQ card to

10 MHz, then wiring FREQOUT to the

nctSrcTermRTSI_Clock of the CAN card.

nctDestTermMasterTimebase applies to the entire CAN

card, including both interfaces of a 2-port CAN card. The

CAN card is specified by the task interface, such as the

Interface input to nctInitialize.

The default (disconnected) state of this destination means the

CAN card uses its local 20 MHz timebase as the master

timebase.

This value applies to Series 2 CAN cards only. If you are

using a Series 1 CAN card, selecting this value results in an

error.

nctDestTerm10HzResyncClock

nctDestTerm10HzResyncClock instructs the CAN card to

use a 10 Hz, 50 percent duty cycle clock to resynchronize its

local timebase. This slow rate is required for

resynchronization of CAN cards. On each low-to-high

transition of the resync clock, this CAN card brings its local

timebase into sync.

When synchronizing to an E Series MIO card, a typical use of

this value is to use RTSI0-RTSI6 as the SourceTerminal,

then use NI-DAQ functions to program Counter 0 of the MIO

card to generate a 10 Hz 50 percent duty cycle clock on the

RTSI line.

When synchronizing to a CAN card, a typical use of this

value is to use RTSI0-RTSI6 as the SourceTerminal, then

route the nctSrcTerm10HzResyncClock of the other CAN

card as the SourceTerminal to the same RTSI line.

nctDestTerm10HzResyncClock applies to the entire CAN

card, including both interfaces of a 2-port CAN card. The

CAN card is specified by the task interface, such as the

Interface input to nctInitialize.

The default (disconnected) state of this destination means the

CAN card does not resynchronize its local timebase.

This value is typically used with Series 1 CAN cards only.

If all of the CAN cards are Series 2, the 20 MHz timebase is

preferable due to the lack of drift. If you are using a mix of

Chapter 8 Channel API for C

© National Instruments 8-11 NI-CAN Hardware and Software Manual

Series 1 and Series 2 CAN cards, you must use

nctSrcTerm10HzResyncClock.

nctDestTermStartTrigger

nctDestTermStartTrigger selects the start trigger, the

event that begins sampling for tasks. The start trigger occurs

on the first low-to-high transition of the source terminal.

The start trigger is the same for all tasks using a given

interface, such as the Interface input to nctInitialize.

By selecting RTSI0-RTSI6, or nctSrcTermPXI_Star for

PXI hardware, as the SourceTerminal, you route the start

trigger from another CAN or DAQ card. This ensures that

sampling begins at the same time on both cards. For example,

you can synchronize with an E Series DAQ MIO card by

routing the AI start trigger of the MIO card to a RTSI line and

then routing the same RTSI line with

nctDestTermStartTrigger as the

DestinationTerminal on the CAN card.

The default (disconnected) state of this destination means the

start trigger occurs when communication begins on the

interface. Because communication begins when the first task

of the interface is started, this does not synchronize sampling

with other NI cards.

Modifiers

Provides optional connection information for certain

source/destination pairs. The current release of NI-CAN does not use

this information for any source/destination pair, so you must pass

Modifiers as zero.

Outputs

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-12 ni.com

Description
This VI connects a specific pair of source/destination terminals. One of the terminals is

typically a RTSI signal, and the other terminal is an internal terminal in the CAN hardware.

By connecting internal terminals to RTSI, you can synchronize the CAN card with another

hardware product such as an NI-DAQ or NI-DAQmx card.

The most common uses of RTSI synchronization are demonstrated by the CAN/DAQ

programming examples.

When the final task for a given interface is cleared with nctClear, NI-CAN disconnects all

terminal connections for that interface. Therefore, the nctDisconnectTerminals function

is not required for most applications. NI-DAQ and NI-DAQmx terminals remain connected

after the tasks are cleared, so you must disconnect NI-DAQ/NI-DAQmx terminals manually

at the end of the application.

For a list of valid source/destination pairs, refer to the following section.

Valid Combinations of Source/Destination
Table 8-3, Valid combinations of Source/Destination, lists all valid combinations of

SourceTerminal and DestinationTerminal.

The series of the NI CAN hardware determines what combinations of SourceTerminal to

DestinationTerminal are valid. Within the table, 1 indicates Series 1 hardware, and

2 indicates Series 2 hardware. You can determine the series of the NI CAN hardware by

selecting the name of the card within the Devices and Interfaces»NI-CAN Devices view in

the left pane of MAX.

Series 1 hardware has the following limitations:

• PXI cards do not support RTSI 6.

• Signals received from a RTSI source cannot occur faster than 1 kHz. This prevents the

card from receiving a 10 MHz or 20 MHz timebase, such as provided by NI E Series MIO

hardware.

• Signals received from a RTSI source must be at least 100 µs in length to be detected. This

prevents the card from receiving triggers in the nanoseconds range, such as the AI trigger

provided by NI E Series MIO hardware. Series 2 CAN cards also send RTSI pulses in the

nanoseconds range, so Series 1 CAN cards cannot receive RTSI input from Series 2

CAN cards.

• For CAN cards with High-Speed (HS) ports only, four RTSI signals are available for

input (source), and four RTSI signals are available for output (destination). This

limitation applies to the number of signals per direction, not the RTSI signal number.

For example, if you connect RTSI0, RTSI1, RTSI3, and RTSI5 as input, connecting

RTSI4 as input will return an error.

Chapter 8 Channel API for C

© National Instruments 8-13 NI-CAN Hardware and Software Manual

• For CAN cards with one or more Low-Speed (LS) ports, two RTSI signals are available

for input (source), and three RTSI signals are available for output (destination).

Series 2 hardware has the following limitations:

• For all form factors (PCI, PXI, PCMCIA), the connection of Interface Transceiver Event

to a RTSI destination is dependent on the physical port location. If the interface is located

on Port 1, you can connect to even-numbered RTSI lines only (RTSI0, RTSI2, RTSI4,

RTSI6). If the interface is located on Port 2, you can connect to odd-numbered RTSI lines

only (RTSI1, RTSI3, RTSI5). You can determine the location by selecting the name of

the interface in MAX.

• PCI cards do not support the PXI_Star and PXI_Clk10 terminals, as those signals exist

on the PXI backplane.

• PCMCIA cards do not support the 20 MHz Timebase, PXI_Star, and PXI_Clk10

terminals. Because 20 MHz Timebase is not supported, you cannot synchronize the

timebases of two PCMCIA CAN cards.

• On PCMCIA cards, RTSI4, RTSI5 and RTSI6 are not available.

Table 8-3. Valid combinations of Source/Destination

Source

Destination

RTSI0 to

RTSI6 RTSI_Clock

Master

Timebase

10 Hz

Resync

Clock

Start

Trigger

RTSI0 to

RTSI6

— — — 1, 2 1, 2

RTSI_Clock — — 2 — —

PXI_Star — — — — 2

PXI_Clk10 — — 2 — —

20 MHz

Timebase

— 2 — — —

10 Hz Resync

Clock

1, 2 — — — 1, 2

Interface

Receive

Event

2 — — — 2

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-14 ni.com

1—Valid connection for Series 1 hardware

2—Valid connection for Series 2 hardware

Interface

Transceiver

Event

2 — — — —

Start Trigger 1, 2 — — — —

Table 8-3. Valid combinations of Source/Destination (Continued)

Source

Destination

RTSI0 to

RTSI6 RTSI_Clock

Master

Timebase

10 Hz

Resync

Clock

Start

Trigger

Chapter 8 Channel API for C

© National Instruments 8-15 NI-CAN Hardware and Software Manual

nctCreateMessage

Purpose
Creates a message configuration and associated channel configurations within the

application.

Format

Inputs

MessageConfig

Configures properties for a new message. This function creates a task

for a single message with one or more channels. You provide the

properties in a C struct.

The properties are similar to the message properties in MAX:

u32 MsgArbitrationID

Configures the arbitration ID of the message.

Use the Extended Boolean to specify whether the ID is

standard (11-bit) or extended (29-bit).

u32 Extended

Configures a Boolean value that indicates whether the

message arbitration ID is standard 11-bit format (0) or

extended 29-bit format (1).

u32 MsgDataBytes

Configures the number of data bytes in the message.

The range is 0 to 8.

nctTypeStatus nctCreateMessage(

nctTypeMessageConfig MessageConfig,

u32 NumberOfChannels,

nctTypeChannelConfig *ChannelConfigList,

i32 Interface,

i32 Mode,

f64 SampleRate,

nctTypeTaskRef *TaskRef)

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-16 ni.com

NumberOfChannels

Specifies the number of channel configurations you provide in

ChannelConfigList.

ChannelConfigList

Configures the list of channels for the new message.

ChannelConfigList is an array of a C struct, with one C struct

for each channel.

The properties of each channel are similar to the channel properties in

MAX:

u32 StartBit

Configures the starting bit position in the message. The range

is 0 (lowest bit in first byte), to 63 (highest bit in last byte).

u32 NumBits

Configures the number of bits in the message. The range

is 1 to 64.

u32 DataType

Configures the data type of the channel in the message.

Values are nctDataSigned, nctDataUnsigned, and

nctDataFloat.

u32 ByteOrder

Configures the byte order of the channel in the message.

Values are nctOrderIntel (little-endian), and

nctOrderMotorola (big-endian).

f64 ScalingFactor

Configures the scaling factor used to convert raw bits of the

message to/from scaled floating-point units. The scaling

factor is the A in the linear scaling formula AX+B, where X is

the raw data, and B is the scaling offset.

f64 ScalingOffset

Configures the scaling offset used to convert raw bits of the

message to/from scaled floating-point units. The scaling

offset is the B in the linear scaling formula AX+B, where X is

the raw data, and A is the scaling factor.

f64 MaxValue

Configures the maximum value of the channel in scaled

floating-point units.

The nctRead and nctWrite functions do not coerce

samples when converting to/from CAN messages. You can

Chapter 8 Channel API for C

© National Instruments 8-17 NI-CAN Hardware and Software Manual

use this value with the user-interface functions of the

development environment to set the range of front-panel

controls and indicators.

f64 MinValue

Configures the minimum value of the channel in scaled

floating-point units.

The nctRead and nctWrite functions do not coerce

samples when converting to/from CAN messages. You can

use this value with the user-interface functions of the

development environment to set the range of front-panel

controls and indicators.

f64 DefaultValue

Configures the default value of the channel in scaled

floating-point units.

For information on how the DefaultValue is used, refer to

the nctRead and nctWrite functions.

const str Unit

Configures the unit string of the channel. The string is no

more than 64 characters in length.

You can use this value to display units (such as volts or RPM)

along with the samples of the channel.

Interface

Specifies the CAN interface to use for this task.

The interface input uses an enumeration in which value 0 selects CAN0,

value 1 selects CAN1, and so on.

The default baud rate for the Interface is defined within MAX, but

you can change it by setting the nctPropIntfBaudRate property

with nctSetProperty.

The special interface values 256 and 257 refer to virtual interfaces. For

more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

Mode

Specifies the I/O mode for the task. For an overview of the I/O modes,

including figures, refer to the Channel API Basic Programming Model

section of Chapter 6, Using the Channel API.

nctModeInput

Input channel data from received CAN messages. Use the

nctRead function to obtain input samples as single-point, array,

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-18 ni.com

or waveform. Each sample value that you write is transmitted in a

message on the network. If you write an array or waveform, the

samples are buffered for subsequent transmit.

Use this input mode to read waveforms of timed samples, such as

for comparison with NI-DAQ or NI-DAQmx waveforms. You also

can use this input mode to read a single point from the most recent

message, such as for control or simulation.

nctModeOutput

Output channel data to CAN messages for transmit. Use the

nctWrite function to write output samples as single-point, array,

or waveform.

nctModeOutputRecent

Output channel data to CAN messages for transmit. This mode is

used with sample rate greater than zero (periodic transmit). Use

nctWrite to provide a single sample per channel. Each periodic

message uses the sample values from the most recent nctWrite.

For this mode, there are restrictions on using channels in channel

list that are contained in multiple messages. Refer to nctWrite

for more information.

nctModeTimestampedInput

Input channel data from received CAN messages. Use the

nctRead function to obtain input samples as an array of

sample/timestamp pairs (refer to nctReadTimestamped for

more information).

Use this input mode to read samples with timestamps that indicate

when each message is received from the network.

SampleRate

Specifies the timing to use for samples of the task. The sample rate is

specified in Hertz (samples per second). A sample rate of zero means

to sample immediately.

For Mode of NctModeInput, SampleRate of zero means nctRead

returns a single point from the most recent message received, and

greater than zero means nctRead returns samples timed at the

specified rate.

For Mode of NctModeOutput, SampleRate of zero means CAN

messages transmit immediately when nctWrite is called, and greater

than zero means CAN messages are transmitted periodically at the

specified rate.

Chapter 8 Channel API for C

© National Instruments 8-19 NI-CAN Hardware and Software Manual

For mode of nctModeOutputRecent, SampleRate must be greater

than zero (periodic transmit).

For Mode of NctModeTimestampedInput, SampleRate is ignored.

When the Interface specifies a virtual interface (256 or 257), and

Mode is nctModeOutput or nctModeOutputRecent, this

SampleRate must be zero (greater than zero not supported).

Outputs

TaskRef

Use TaskRef with all subsequent functions to reference the task. Pass

this task reference to nctStart before you read or write samples for

the message.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
To use message and channel configurations from MAX or a CAN database, use the

nctInitStart or nctInitialize functions. The nctCreateMessage function provides

an alternative in which you create the message and channel configurations within the

application, without use of MAX or a CAN database.

nctCreateMessage returns a task reference you wire to nctStart to start communication

for the message and its channels.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-20 ni.com

nctCreateMessageEx

Purpose
Create a mode dependent message configuration and associated channel configurations

within the application.

Format

Inputs

ConfigID

Specifies the type of structures you provide in MessageConfig and

ChannelConfigList. The properties are similar to the message

properties in MAX. Currently, the following values are supported.

1

In this case, the MessageConfig and ChannelConfigList

parameters behave exactly as those described for the

nctCreateMessage function. This mode is provided for

compatibility.

2

This value allows you to define mode dependent channels. The

MessageConfig parameter behaves the same way as for

ConfigId = 1. The ChannelConfigList parameter must be

passed an array of structures described below. For more

nctTypeStat

us

nctCreateMessageEx(

u32 ConfigID,

void *MessageConfig,

u32 NumberOfChannels,

void *ChannelConfigList,

i32 Interface,

i32 Mode,

f64 SampleRate,

nctTypeTaskRef *TaskRef)

Chapter 8 Channel API for C

© National Instruments 8-21 NI-CAN Hardware and Software Manual

information, refer to the Mode Dependent Channels section of

Chapter 6, Using the Channel API.

3

This value is reserved for internal purposes. Do not use.

All other values for this parameter return an error.

MessageConfig

Configures properties for a new message. For both ConfigId = 1 and

ConfigId = 2, you provide the properties as a pointer to a C struct.

The properties are similar to the message properties in MAX:

u32 MsgArbitrationID

Configures the arbitration ID of the message.

Use the Extended property to specify whether the ID is

standard (11-bit) or extended (29-bit).

u32 Extended

Configures a Boolean value that indicates whether the

message arbitration ID is standard 11-bit format (0) or

extended 29-bit format (1).

u32 MsgDataBytes

Configures the number of data bytes in the message.

The range is 0 to 8.

NumberOfChannels

Specifies the number of channel configurations you provide in

ChannelConfigList.

ChannelConfigList

Configures the list of channels for the new message.

ChannelConfigList is an array of a C struct, with one C struct

for each channel. The properties of each channel are similar to the

channel properties in MAX. For ConfigId = 1, refer to the

ChannelConfigList parameter of the nctCreateMessage

function. For ConfigId = 2 use this structure:

u32 StartBit

Configures the starting bit position in the message. The range

is 0 (lowest bit in first byte), to 63 (highest bit in last byte).

u32 NumBits

Configures the number of bits in the message. The range

is 1 to 64.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-22 ni.com

u32 DataType

Configures the data type of the channel in the message.

Values are nctDataSigned, nctDataUnsigned, and

nctDataFloat.

u32 ByteOrder

Configures the byte order of the channel in the message.

Values are nctOrderIntel (little-endian), and

nctOrderMotorola (big-endian).

f64 ScalingFactor

Configures the scaling factor used to convert raw bits of the

message to/from scaled floating-point units. The scaling

factor is the A in the linear scaling formula AX+B, where X is

the raw data, and B is the scaling offset.

f64 ScalingOffset

Configures the scaling offset used to convert raw bits of the

message to/from scaled floating-point units. The scaling

offset is the B in the linear scaling formula AX+B, where X is

the raw data, and A is the scaling factor.

f64 MaxValue

Configures the maximum value of the channel in scaled

floating-point units.

The nctRead and nctWrite functions do not coerce

samples when converting to/from CAN messages. You can

use this value with the user-interface functions of the

development environment to set the range of front-panel

controls and indicators.

f64 MinValue

Configures the minimum value of the channel in scaled

floating-point units.

The nctRead and nctWrite functions do not coerce

samples when converting to/from CAN messages. You can

use this value with the user-interface functions of the

development environment to set the range of front-panel

controls and indicators.

f64 DefaultValue

Configures the default value of the channel in scaled

floating-point units.

For information on how the DefaultValue is used, refer to

the nctRead and nctWrite functions.

Chapter 8 Channel API for C

© National Instruments 8-23 NI-CAN Hardware and Software Manual

const str Unit

Configures the unit string of the channel. The string is no

more than 64 characters in length.

You can use this value to display units (such as volts or RPM)

along with the samples of the channel.

u32 NumModeChannels

Configures whether to use a mode channel for this channel.

The range is 0 to 1. For 0, this channel is valid in each frame

(mode independent channel). For 1, this channel is valid only

if the mode channel described in the ModeChannel struct

applies (mode dependent channel). For more information,

refer to the Mode Dependent Channels section of Chapter 6,

Using the Channel API.

struct ModeChannel

Configures the mode channel for this (data) channel. Note

that the same mode channel can be specified for several

channels. The structure contains following fields:

Interface

Specifies the CAN interface to use for this task.

The interface input uses an enumeration in which value 0 selects

CAN0, value 1 selects CAN1, and so on.

The special interface values 256 and 257 refer to virtual interfaces. For

more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

Mode

Specifies the I/O mode for the task. For an overview of the I/O modes,

including figures, refer to the Channel API Basic Programming Model

section of Chapter 6, Using the Channel API.

nctModeInput

Input channel data from received CAN messages. Use the

nctRead function to obtain input samples as single-point, array,

or waveform. Each sample value that you write is transmitted in a

message on the network. If you write an array or waveform, the

samples are buffered for subsequent transmit.

Use this input mode to read waveforms of timed samples, such as

for comparison with NI-DAQ or NI-DAQmx waveforms. You also

can use this input mode to read a single point from the most recent

message, such as for control or simulation.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-24 ni.com

For this mode, the channels in ChannelList can be contained in

multiple messages.

nctModeOutput

Output channel data to CAN messages for transmit. Use the

nctWrite function to write output samples as single-point, array,

or waveform.

For this mode, there are restrictions on using channels in

ChannelList that are contained in multiple messages. Refer to

the nctWrite function for more information.

nctModeOutputRecent

Output channel data to CAN messages for transmit. This mode is

used with sample rate greater than zero (periodic transmit). Use

nctWrite to provide a single sample per channel. Each periodic

message uses the sample values from the most recent nctWrite.

For this mode, there are restrictions on using channels in channel

list that are contained in multiple messages. Refer to the

nctWrite function for more information.

nctModeTimestampedInput

Input channel data from received CAN messages. Use the

nctReadTimestamped function to obtain input samples

as an array of sample/timestamp pairs (refer to the

nctReadTimestamped function for more information).

For this mode, the channels in ChannelList must be contained

in a single message.

Use this input mode to read samples with timestamps that indicate

when each message is received from the network.

SampleRate

Specifies the timing to use for samples of the task. The sample rate is

specified in Hertz (samples per second). A sample rate of zero means

to sample immediately.

For Mode of NctModeInput, SampleRate of zero means nctRead

returns a single point from the most recent message received, and

greater than zero means nctRead returns samples timed at the

specified rate.

For Mode of nctModeOutput, SampleRate of zero means CAN

messages transmit immediately when nctWrite is called, and greater

than zero means CAN messages are transmitted periodically at the

specified rate.

For Mode of NctModeTimestampedInput, SampleRate is ignored.

Chapter 8 Channel API for C

© National Instruments 8-25 NI-CAN Hardware and Software Manual

When the Interface specifies a virtual interface (256 or 257),

and Mode is nctModeOutput or nctModeOutputRecent, this

SampleRate must be zero (greater than zero not supported).

Outputs

TaskRef

Use TaskRef with all subsequent functions to reference the task. Pass

this task reference to nctStart before you read or write samples for

the message.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
To use message and channel configurations from MAX or a CAN database, use the

nctInitStart or nctInitialize functions. The nctCreateMessage function provides

an alternative in which you create the message and channel configurations within the

application, without use of MAX or a CAN database.

nctCreateMessage returns a task reference you wire to nctStart to start communication

for the message and its channels.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-26 ni.com

nctDisconnectTerminals

Purpose
Disconnect terminals in the CAN hardware.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from nctInitStart, nctInitialize, or

nctCreateMessage.

SourceTerminal

Specifies the source of the connection.

For a description of values for SourceTerminal, refer to

nctConnectTerminals.

DestinationTerminal

Specifies the destination of the connection.

For a description of values for DestinationTerminal, refer to

nctConnectTerminals.

Modifiers

Provides optional connection information for certain

source/destination pairs. The current release of NI-CAN does not use

this information for any source/destination pair, so you must pass

Modifiers as zero.

nctTypeStatus nctDisconnectTerminals(

nctTypeTaskRef TaskRef,

u32 SourceTerminal,

u32 DestinationTerminal,

u32 Modifiers);

Chapter 8 Channel API for C

© National Instruments 8-27 NI-CAN Hardware and Software Manual

Outputs

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
This function disconnects a specific pair of source/destination terminals you previously

connected with nctConnectTerminals.

When the final task for a given interface is cleared with nctClear, NI-CAN disconnects all

terminal connections for that interface. Therefore, the nctDisconnectTerminals function

is not required for most applications. You typically use this function to change RTSI

connections dynamically while the application is running. First use nctStop to stop all tasks

for the interface, then use nctDisconnectTerminals and nctConnectTerminals to

adjust RTSI connections, then nctStart to restart sampling.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-28 ni.com

nctGetNames

Purpose
Get an array of CAN channel names or message names from MAX or a CAN database file.

Format

Inputs

FilePath

FilePath is an optional path to a CAN database file from which to

get channel names. The file must use either .DBC or .NCD extension.

Files with extension .DBC use the CANdb database format. Files with

extension .NCD use the NI-CAN database format. You can generate

NI-CAN database files from the Save Channels selection in MAX.

If you pass NULL or empty-string to FilePath, this function gets the

channel names from MAX. The MAX CAN channels are in the MAX

CAN channels listing within Data Neighborhood.

Mode

Specifies the type of names to return.

nctGetNamesModeChannels

Return list of channel names. You can pass the returned

ChannelList to nctInitStart.

nctGetNamesModeMessages

Return list of message names.

MessageName

MessageName is an optional input that filters the names for a specific

message. If you pass NULL or empty-string to MessageName, this

nctTypeStatus nctGetNames(

cstr FilePath,

u32 Mode,

cstr MessageName,

u32 SizeofChannelList,

str ChannelList);

Chapter 8 Channel API for C

© National Instruments 8-29 NI-CAN Hardware and Software Manual

function returns all names in the database. If you pass a non empty

string, the ChannelList output is limited to channels of the specified

message.

This input applies to Mode of nctGetNamesModeChannels only. It is

ignored for Mode of nctGetNamesModeMessages.

SizeofChannelList

Number of bytes allocated for the ChannelList output.

If all of the channel names do not fit in the allocated ChannelList,

this function returns as much as possible with an error.

Use the nctGetNamesLength function to determine the proper

SizeofChannelList.

Outputs

ChannelList

Returns the comma-separated list of channel names.

Each name in ChannelList uses the minimum syntax required to

properly initialize:

• If a channel name is used within only one message in the database,

nctGetNames returns only the channel name in the list. If a channel

name is used within multiple messages, nctGetNames prepends the

message name to that channel name, with a decimal point separating

the message and channel name. This syntax ensures that the duplicate

channel is associated to a single message in the database.

For more information on the syntax conventions for channel names,

refer to the nctInitStart function.

To start a task for all channels returned from nctGetNames, pass

ChannelList to the nctInitStart function to start a task.

You also can use ChannelList with a user-interface control such as a

ring or list box. The user of the application can then select names using

this control, and the selected names can be passed to nctInitStart.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-30 ni.com

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Note The function nctGetNames returns the string results as an array of char (*char).

VB is not able to convert this array to a string automatically. Therefore, VB users should

call the wrapper function nct_GetNames.

Chapter 8 Channel API for C

© National Instruments 8-31 NI-CAN Hardware and Software Manual

nctGetNamesLength

Purpose
Get the required size for a specified list of channels to allocate an array for the ChannelList

input of nctGetNames.

Format

Inputs

FilePath

FilePath is an optional path to a CAN database file from which to

get channel names. The file must use either the .DBC or .NCD

extension.

If you pass NULL or empty-string to FilePath, this function examines

the channel names from MAX.

For more information on FilePath, refer to the nctGetNames

function.

Mode

Specifies the type of names to examine.

nctGetNamesModeChannels

Examine the list of channel names.

nctGetNamesModeMessages

Examine the list of message names.

MessageName

MessageName is an optional input that filters the names for a specific

message. If you pass NULL or empty-string to MessageName, this

function returns all names in the database. If you pass a nonempty

string, the SizeofChannelList output is limited to channels of the

specified message.

nctTypeStatus nctGetNamesLength(

cstr FilePath,

u32 Mode,

cstr MessageName,

u32 *SizeofChannelList);

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-32 ni.com

This input applies to Mode of nctGetNamesModeChannels only. It is

ignored for Mode of nctGetNamesModeMessages.

Outputs

SizeofChannelList

Number of bytes required for nctGetNames to return all names for the

specified FilePath, Mode, and MessageName. After calling

nctGetNamesLength, you can allocate an array of size

SizeofChannelList, then pass that array to nctGetNames using

the same input parameters. This ensures that nctGetNames will return

all names without error.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Chapter 8 Channel API for C

© National Instruments 8-33 NI-CAN Hardware and Software Manual

nctGetProperty

Purpose
Get a property for the task, or a single channel within the task.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from nctInitStart, nctInitialize, or

nctCreateMessage.

ChannelName

Specifies an individual channel within the task. If you pass

empty-string to ChannelName, this means the property applies to the

entire task, not a specific channel.

Properties that begin with the word Channel or Message do not apply

to the entire task, but an individual channel or message within the task.

For these channel-specific properties, you must pass the name of a

channel from a channel list into the ChannelName input.

For properties that do not begin with the word Channel or Message,

you must pass empty-string ("") into ChannelName. You must not

pass NULL into ChannelName.

PropertyId

Selects the property to get.

For a description of each property, including its data type and

PropertyId, refer to the Properties section of this function reference.

nctTypeStatus nctGetProperty(

nctTypeTaskRef TaskRef,

cstr ChannelName,

u32 PropertyId,

u32 SizeofValue,

void *Value);

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-34 ni.com

SizeofValue

Number of bytes allocated for the Value output. This size normally

depends on the data type listed in the description of the property.

Outputs

Value

Returns the property value. PropertyId determines the data type of

the returned value.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Properties

u32 nctPropBehavAfterFinalOut

Returns the nctPropBehavAfterFinalOut property, which is used

with some output task configurations. For more information, refer to

the nctPropBehavAfterFinalOut property in nctSetProperty.

u32 nctPropChanByteOrder

Returns the byte order of the channel in the message. Values are

nctOrderIntel (little-endian), and nctOrderMotorola

(big-endian).

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

u32 nctPropChanDataType

Returns the data type of the channel in the message. Values are

nctDataSigned, nctDataUnsigned, and nctDataFloat.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

Chapter 8 Channel API for C

© National Instruments 8-35 NI-CAN Hardware and Software Manual

f64 nctPropChanDefaultValue

Returns the default value of the channel in scaled floating-point units.

For information on how nctPropChanDefaultValue is used, refer

to the nctRead and nctWrite functions.

The value of this property is originally set within MAX. If the channel

is initialized directly from a CAN database, the value is 0.0 by default,

but it can be changed using nctSetProperty

u32 nctPropChanIsModeDependent

Returns if a channel is mode dependent (1) or not (0).

f64 nctPropChanMaxValue

Returns the maximum value of the channel in scaled floating-point

units.

The nctRead and nctWrite functions do not coerce samples when

converting to/from CAN messages. You can use this value with the

user-interface functions of the development environment to set the

range of front-panel controls and indicators.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

f64 nctPropChanMinValue

Returns the minimum value of the channel in scaled floating-point

units.

The nctRead and nctWrite functions do not coerce samples when

converting to/from CAN messages. You can use this value with the

user-interface functions of the development environment to set the

range of front-panel controls and indicators.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

u32 nctPropChanModeValue

Returns the value of the mode channel associated to this channel.

This property applies only to mode dependent channels. For more

information, refer to the Mode Dependent Channels section of

Chapter 6, Using the Channel API.

u32 nctPropChanNumBits

Returns the number of bits in the channel. The range is 0 to 64.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-36 ni.com

f64 nctPropChanScalFactor

Returns the scaling factor used to convert raw bits of the message

to/from scaled floating-point units. The scaling factor is the A in the

linear scaling formula AX+B, where X is the raw data, and B is the

scaling offset.

CAN messages use the raw data, and the nctRead and nctWrite

functions provide access to samples in floating-point units.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

f64 nctPropChanScalOffset

Returns the scaling offset used to convert raw bits of the message

to/from scaled floating-point units. The scaling offset is the B in the

linear scaling formula AX+B, where X is the raw data, and A is the

scaling factor.

CAN messages use the raw data, and the nctRead and nctWrite

functions provide access to samples in floating-point units.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

u32 nctPropChanStartBit

Returns the starting bit position in the message. The range is 0

(lowest bit in first byte), to 63 (highest bit in last byte).

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

str nctPropChanUnitString

Returns the unit string of the channel. The string is no more than

80 characters in length.

You can use this value to display units (such as volts or RPM) along

with the samples of the channel.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

u32 nctPropHwFormFactor

Returns the hardware form factor for the NI-CAN hardware that

contains interface. Values are nctHwFormFactorPCI,

nctHwFormFactorPXI, nctHwFormFactorPCMCIA, and

nctHwFormFactorAT.

Chapter 8 Channel API for C

© National Instruments 8-37 NI-CAN Hardware and Software Manual

u32 nctPropHwMasterTimebaseRate

Returns the present Hardware Master Timebase Rate in MHz,

programmed into the CAN hardware. For PCMCIA, this property will

always return 10 MHz.

u32 nctPropHwSerialNum

Returns the hardware serial number for the NI-CAN hardware that

contains Interface.

u32 nctPropHwSeries

Returns the hardware series for the NI CAN hardware that contains

Interface. Values are nctHwSeries1, nctHwSeries2, and

nctHwSeriesNIXNET.

Newer hardware series are often capable of more features, so the

application may need to determine which is installed.

u32 nctPropHwTimestampFormat

Returns the present Timestamp Format programmed into the CAN

hardware. This property applies to the entire card.

u32 nctPropInterface

Returns the Interface initialized for the task, such as with the

nctInitStart function.

u32 nctPropIntfBaudRate

Returns the baud rate in use by the Interface.

Basic baud rates such as 125000 and 500000 are specified as the

numeric rate.

Advanced baud rates are specified as 8000XXYY hex, where YY is the

value of Bit Timing Register 0 (BTR0), and XX is the value of Bit

Timing Register 1 (BTR1). For more information, refer to the Port

Properties dialog in MAX.

The value of this property is originally set within MAX, but it can be

changed using nctSetProperty.

u32 nctPropIntfListenOnly

Returns a Boolean value that indicates whether the listen only feature

of the Philips SJA1000 CAN controller is enabled (true) or disabled

(false). For more information, refer to the nctPropIntfListenOnly

property in nctSetProperty.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-38 ni.com

Since the listen only feature requires the Philips SJA1000 CAN

controller, this property is supported on Series 2 NI CAN hardware

only.

u32 nctPropIntfRxErrorCounter

Returns the Receive Error Counter as described in the CAN

specification.

Since the error count requires the Philips SJA1000 CAN controller,

this property is supported on Series 2 NI CAN hardware only. If you

are using Series 1 NI CAN hardware, this property returns an error.

u32 nctPropIntfSelfReception

Returns the nctPropIntfSelfReception property as configured

with nctSetProperty. This property is supported on Series 2

NI CAN hardware only (returns error for Series 1).

u32 nctPropIntfSeries2ErrArbCapture

Returns the current values of the Error Code Capture register and

Arbitration Lost Capture register from the Philips SJA1000 CAN

controller chip.

The Error Code Capture register provides information on bus errors

that occur according to the CAN standard. A bus error increments

either the Transmit Error Counter or the Receive Error Counter. When

communication starts on the interface, the first bus error is captured

into the Error Code Capture register, and retained until you get this

property. After you get this property, the Error Code Capture register

is again enabled to capture information for the next bus error.

The Arbitration Lost Capture register provides information on a loss of

arbitration during transmits. Loss of arbitration is not considered an

error. When communication starts on the interface, the first arbitration

loss is captured into the Arbitration Lost Capture register, and retained

until you get this property. After you get this property, the Arbitration

Lost Capture register is again enabled to capture information for the

next arbitration loss.

For each of the capture registers, a single-bit New flag indicates

whether a new error has occurred since the last Get. If the New flag of

a register is set, the associated fields contain new information. If the

New flag of a register is clear, the associated fields are the same as the

previous Get.

This property is commonly used with the

nctPropIntfSingleShotTx property. When nctWrite is used to

transmit the single frame, you can get this property to determine if the

Chapter 8 Channel API for C

© National Instruments 8-39 NI-CAN Hardware and Software Manual

transmit was successful. If the single shot transmit was not successful,

this property provides detailed information for the failure.

This property is supported for Series 2 hardware only (Series 1 returns

error). Since the information and bit format is very specific to the

Philips SJA1000 CAN controller on Series 2 hardware, National

Instruments cannot guarantee compatibility for this property on future

hardware series. When using this property in the application, it is best

to get the nctPropHwSeries property to verify that the CAN

hardware is Series 2.

For information regarding the format of the bits in this property,

refer to the NC_ATTR_SERIES2_ERR_ARB_CAPTURE attribute in the

ncGetAttribute function of the Frame API.

u32 nctPropIntfSeries2Comp

Returns the value of the nctPropIntfSeries2Comp property

(refer to nctSetProperty).

u32 nctPropIntfSeries2FilterMode

Returns the value of the nctPropIntfSeries2FilterMode

property (refer to nctSetProperty).

u32 nctPropIntfSeries2Mask

Returns the value of the nctPropIntfSeries2Mask property

(refer to nctSetProperty.html).

u32 nctPropIntfSingleShotTx

Returns the value of the nctPropIntfSingleShotTx property

(refer to nctSetProperty).

u32 nctPropIntfTransceiverExternalIn

Returns the transceiver external inputs for the interface that was

initialized for the task.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this property allows you to determine the input

voltage on the STATUS pin of the CAN port.

For many models of CAN transceiver, an NERR pin is provided for

detection of faults and other status. For such transceivers, you can wire

the NERR pin to the STATUS pin of the CAN port.

This property is supported for Series 2 XS cards only.

This property uses a bit mask. When using the property, use bitwise

AND operations to check for values, not equality checks (equal,

greater than, and so on).

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-40 ni.com

nctTransceiverInStatus (00000001 hex, STATUS pin)

This bit is set when 5 V exists on the STATUS pin.

This bit is clear when 0 V exists on the STATUS pin.

u32 nctPropIntfTransceiverExternalOut

Returns the transceiver external outputs for the interface that was

initialized for the task.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this property allows you to determine the output

voltage on the MODE0 and MODE1 pins of the CAN port, and it

allows you to determine if the CAN controller chip is sleeping.

For more information on the format of the value returned in this

property, refer to the description of

nctPropIntfTransceiverExternalOut in nctSetProperty.

This property is supported for Series 2 XS cards only.

u32 nctPropIntfTransceiverMode

Returns the transceiver mode for the interface that was initialized for

the task. The transceiver mode changes when you set the mode within

the application, or when a remote wakeup transitions the interface

from Sleep to Normal mode. For more information, refer to

nctSetProperty.

This property is supported for Series 2 cards only.

This property uses the following values:

nctTransceiverModeNormal

Transceiver is awake in Normal communication mode.

nctTransceiverModeSleep

Transceiver and the CAN controller chip are both in Sleep mode.

nctTransceiverModeSWWakeup

Single Wire transceiver is in Wakeup Transmission mode.

nctTransceiverModeSWHighSpeed

Single Wire transceiver is in High-Speed Transmission mode.

u32 nctPropIntfTransceiverType

Returns the type of transceiver for the interface that was initialized for

the task. For hardware other than Series 2 XS cards, the transceiver

type is fixed. For Series 2 XS cards, the transceiver type reflects the

most recent value specified by MAX or nctSetProperty.

This property is not supported on the PCMCIA form factor.

Chapter 8 Channel API for C

© National Instruments 8-41 NI-CAN Hardware and Software Manual

This property uses the following values:

nctTransceiverTypeHS

Transceiver type is High-Speed (HS).

nctTransceiverTypeLS

Transceiver type is Low-Speed/Fault-Tolerant (LS).

nctTransceiverTypeSW

Transceiver type is Single Wire (SW).

nctTransceiverTypeExternal

Transceiver type is External. This transceiver type is available on

Series 2 XS cards only. For more information, refer to

nctSetProperty.

nctTransceiverTypeDisconnect

Transceiver type is Disconnect. This transceiver type is available

on Series 2 XS cards only. For more information, refer to

nctSetProperty.

u32 nctPropIntfTxErrorCounter

Returns the Transmit Error Counter as described in the CAN

specification.

Since the error count requires the Philips SJA1000 CAN controller,

this property is supported on Series 2 NI CAN hardware only. If you

are using Series 1 NI CAN hardware, this property returns an error.

u32 nctPropIntfVirtualBusTiming

Returns a Boolean value of True or False to indicate whether Virtual

Bus Timing has been set or not for the specified virtual task. This

property is applicable to all tasks opened on the virtual interface.

If this property is selected on real hardware, an error will be returned.

u32 nctPropMode

Returns the mode initialized for the task, such as with the

nctInitStart function.

u32 nctPropMsgArbitrationId

Returns the arbitration ID of the channel message.

To determine whether the ID is standard (11-bit) or extended (29-bit),

get the nctPropMsgIsExtended property.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-42 ni.com

u32 nctPropMsgByteLength

Returns the number of data bytes in the channel message. The range is

0 to 8.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

u32 nctPropMsgIsExtended

Returns a Boolean value that indicates whether the arbitrationID of the

channel message is standard 11-bit format (0) or extended 29-bit

format (1).

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

str nctPropMsgName

Returns the name of the channel message. The string is no more than

80 characters in length.

The value of this property is originally set within MAX or the CAN

database and cannot be changed using nctSetProperty.

u32 nctPropMsgDistribution

Returns the nctPropMsgDistribution which is used to determine

if the CAN frames associated to a group of mode dependent channels

are sent even spaced or in burst mode. This property applies only for

mode dependent channels that are transmitted periodically. For more

information, refer to the Mode Dependent Channels section of

Chapter 6, Using the Channel API.

f64 nctPropNoValue

Returns the value that is returned on timestamped read for mode

dependent channels that have not been received with the most recent

CAN frame associated with the CAN message. This Property applies

only to mode dependent channels that are read with the timestamped

read operation. For more information, refer to the Mode Dependent

Channels section of Chapter 6, Using the Channel API.

u32 nctPropNumChannels

Returns the number of channels initialized in channel list. This is the

number of array entries required when using nctRead or nctWrite.

f64 nctPropSampleRate

Returns the sample rate initialized for the task, such as with the

nctInitStart function.

Chapter 8 Channel API for C

© National Instruments 8-43 NI-CAN Hardware and Software Manual

u32 nctPropSamplesPending

Returns the number of samples available to be read using nctRead.

If you set the NumberOfSamplesToRead input of nctRead to this

value, nctRead returns immediately without waiting.

This property applies only to tasks initialized with Mode of

NctModeInput, and SampleRate greater than zero. For all other

configurations, it returns an error.

f64 nctPropTimeout

Returns the nctPropTimeout property, which is used with some task

configurations. For more information, refer to the nctPropTimeout

property in nctSetProperty.

u32 nctPropVersionBuild

Returns the build number of the NI-CAN software. This number

applies to nctPhaseDevelopment, nctPhaseAlpha, and

nctPhaseBeta phase only, and should be ignored for

nctPhaseRelease phase.

str nctPropVersionComment

Returns a comment string for the NI-CAN software. If you received a

custom release of NI-CAN from National Instruments, this comment

often describes special features of the release.

u32 nctPropVersionMajor

Returns the major version of the NI-CAN software, such as the 2 in

version 2.1.5.

u32 nctPropVersionMinor

Returns the minor version of the NI-CAN software, such as the 1 in

version 2.1.5.

u32 nctPropVersionPhase

Returns the phase of the NI-CAN software. Values are

nctPhaseDevelopment, nctPhaseAlpha, nctPhaseBeta, and

nctPhaseRelease. Versions of NI-CAN in hardware kits or on

ni.com will always be nctPhaseRelease.

u32 nctPropVersionUpdate

Returns the update version of the NI-CAN software, such as the 5 in

version 2.1.5.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-44 ni.com

nctInitialize

Purpose
Initialize a task for the specified channel list.

Format

Inputs

ChannelList

Comma-separated list of channel names to initialize as a task.

For more information, refer to the channel list input of

nctInitStart.

Interface

Specifies the CAN interface to use for this task.

The interface input uses an enumeration in which value 0 selects

CAN0, value 1 selects CAN1, and so on.

If you pass the special value -1 to Interface, this function uses the

default interface as defined in the Message/Channel configuration

properties. If the default interface in MAX is All, or if one or more

channels in ChannelList specifies a filepath, the Interface is a

required input to this function.

The Channel API and Frame API cannot use the same CAN network

interface simultaneously. If the CAN network interface is already

initialized in the Frame API, this function returns an error.

The special interface values 256 and 257 refer to virtual interfaces. For

more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

nctTypeStatus nctInitialize(

cstr ChannelList,

i32 Interface,

i32 Mode,

f64 SampleRate,

nctTypeTaskRef *TaskRef);

Chapter 8 Channel API for C

© National Instruments 8-45 NI-CAN Hardware and Software Manual

Mode

Specifies the I/O mode for the task. For an overview of the I/O modes,

including figures, refer to the Channel API Basic Programming Model

section of Chapter 6, Using the Channel API.

nctModeInput

Input channel data from received CAN messages. Use the

nctRead function to obtain input samples as single-point, array,

or waveform. Each sample value that you write is transmitted in a

message on the network. If you write an array or waveform, the

samples are buffered for subsequent transmit.

Use this input mode to read waveforms of timed samples, such as

for comparison with NI-DAQ or NI-DAQmx waveforms. You also

can use this input mode to read a single point from the most recent

message, such as for control or simulation.

For this mode, the channels in ChannelList can be contained in

multiple messages.

nctModeOutput

Output channel data to CAN messages for transmit. Use the

nctWrite function to write output samples as single-point, array,

or waveform.

For this mode, there are restrictions on using channels in

ChannelList that are contained in multiple messages. Refer to

nctWrite for more information.

nctModeOutputRecent

Output channel data to CAN messages for transmit. This mode is

used with sample rate greater than zero (periodic transmit). Use

nctWrite to provide a single sample per channel. Each periodic

message uses the sample values from the most recent nctWrite.

For this mode, there are restrictions on using channels in channel

list that are contained in multiple messages. Refer to nctWrite

for more information.

nctModeTimestampedInput

Input channel data from received CAN messages. Use the

nctRead function to obtain input samples as an array of

sample/timestamp pairs (refer to nctReadTimestamped).

Use this input mode to read samples with timestamps that indicate

when each message is received from the network.

For this mode, the channels in ChannelList must be contained

in a single message.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-46 ni.com

SampleRate

Specifies the timing to use for samples of the task. The sample rate is

specified in Hertz (samples per second). A sample rate of zero means

to sample immediately.

For Mode of NctModeInput, SampleRate of zero means nctRead

returns a single point from the most recent message received, and

greater than zero means nctRead returns samples timed at the

specified rate.

For Mode of NctModeOutput, SampleRate of zero means CAN

messages transmit immediately when nctWrite is called, and greater

than zero means CAN messages are transmitted periodically at the

specified rate.

For Mode of NctModeTimestampedInput, SampleRate is ignored.

When the Interface specifies a virtual interface (256 or 257), and

Mode is nctModeOutput or nctModeOutputRecent, this

SampleRate must be zero (greater than zero not supported).

Outputs

TaskRef

Use TaskRef with all subsequent functions to reference the task. Pass

this task reference to nctStart before you read or write samples for

the message.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
The nctInitialize function does not start communication. This enables you to use

nctSetProperty to change the properties of the task, or nctConnectTerminals to

synchronize CAN or DAQ cards. After you change properties or connections, use nctStart

to start communication for the task.

Chapter 8 Channel API for C

© National Instruments 8-47 NI-CAN Hardware and Software Manual

nctInitStart

Purpose
Initialize a task for the specified channel list, then start communication.

Format

Inputs

ChannelList

Comma-separated list of channel names to initialize as a task.

You can type in the channel list as a string constant, or you can obtain

the list from MAX or another CAN database by using the

nctGetNames function. Channel names are case sensitive.

You can initialize the same ChannelList with different Interface,

Mode, or SampleRate, because each task reference is unique.

If you are using mode dependent channels, and each channel name is

not unique, you will need to use a special syntax described in the Mode

Dependent Channel Syntax section at the end of the function

description.

The following paragraphs describe the syntax of each channel name.

Brackets indicate optional fields.

[filepath::][message.]channel

• filepath is the path to a CAN database file from which to import the

channel (signal) configurations. The filepath must use Windows

directory syntax, and must be followed by a double-colon.

If filepath is not included, the channel configuration is obtained

from MAX. The MAX CAN channels are in the MAX CAN

Channels listing within Data Neighborhood.

nctTypeStatus nctInitStart(

cstr ChannelList,

i32 Interface,

i32 Mode,

f64 SampleRate,

nctTypeTaskRef *TaskRef);

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-48 ni.com

Once you specify a filepath, it will continue to be applied to

subsequent names in the channel list until you specify a new

filepath. After using filepath for a CAN database file, you can

revert to using MAX by specifying an empty filepath (double

colon only).

If you are using mode dependent channels, and each channel name is

not unique, you will need to use a special syntax described in the Mode

Dependent Channel Syntax section at the end of the function

description.

• message refers to the message in which the channel is contained. The

message name must be followed by a decimal point.

If the channel name occurs in multiple messages, you must

specify the message name to identify the channel uniquely. Within

MAX, channels with the same name in multiple messages are

shown with a yellow exclamation point.

If the channel name is unique across all channels, the message

name is not required.

• channel refers to the channel (signal) name in MAX or the filepath

CAN database.

The following examples demonstrate the channel list syntax:

• List of channels from MAX, each channel name unique across all

messages.

myChan1,myChan2,myChan3

• List of channels from a CANdb file, each channel name unique across

all messages.

C:\MyCandb\MyChannels.DBC::myChan1

myChan2,myChan3

• List of channels from MAX, with one channel duplicated across

two messages. MyChan2 andMyChan3 must be unique across all

messages.

myMessage1.myChan1,myChan2,

myMessage2.myChan1,myChan3

• List of two channels from a CANdb file, then two channels from

MAX.

C:\MyCandb\MoreChannels.DBC::myChan1,

myChan2,::myChan3,myChan4

Chapter 8 Channel API for C

© National Instruments 8-49 NI-CAN Hardware and Software Manual

Interface

Specifies the CAN interface to use for this task.

The interface input uses an enumeration in which value 0 selects CAN0,

value 1 selects CAN1, and so on.

If you pass the special value -1 to Interface, this function uses the

default interface as defined in the Message/Channel configuration

properties. If the default interface in MAX is All, or if one or more

channels in ChannelList specifies a filepath, the Interface is a

required input to this function.

The Channel API and Frame API cannot use the same CAN network

interface simultaneously. If the CAN network interface is already

initialized in the Frame API, this function returns an error.

The special interface values 256 and 257 refer to virtual interfaces. For

more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

Mode

Specifies the I/O mode for the task. For an overview of the I/O modes,

including figures, refer to the Channel API Basic Programming Model

section of Chapter 6, Using the Channel API.

nctModeInput

Input channel data from received CAN messages. Use the

nctRead function to obtain input samples as single-point, array,

or waveform. Each periodic message uses the sample values from

the most recent nctWrite.

Use this input mode to read waveforms of timed samples, such as

for comparison with NI-DAQ or NI-DAQmx waveforms. You also

can use this input mode to read a single point from the most recent

message, such as for control or simulation.

For this mode, the channels in ChannelList can be contained in

multiple messages.

nctModeOutput

Output channel data to CAN messages for transmit. Use the

nctWrite function to write output samples as single-point, array,

or waveform.

For this mode, there are restrictions on using channels in

ChannelList that are contained in multiple messages. Refer to

nctWrite for more information.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-50 ni.com

nctModeOutputRecent

Output channel data to CAN messages for transmit. This mode is

used with sample rate greater than zero (periodic transmit). Use

nctWrite to provide a single sample per channel. Each periodic

message uses the sample values from the most recent nctWrite.

For this mode, there are restrictions on using channels in channel

list that are contained in multiple messages. Refer to nctWrite

for more information.

nctModeTimestampedInput

Input channel data from received CAN messages. Use the

nctRead function to obtain input samples as an array of

sample/timestamp pairs (refer to nctReadTimestamped).

For this mode, the channels in ChannelList must be contained

in a single message.

Use this input mode to read samples with timestamps that indicate

when each message is received from the network.

If nctModeTimestampedInput mode is used, the task cannot be

started with nctInitStart because the Value for invalid

data must be set up through nctSetProperty before calling

nctStart. Use the sequence nctInitialize,

nctSetProperty (nctPropNoValue), and nctStart instead.

SampleRate

Specifies the timing to use for samples of the task. The sample rate is

specified in Hertz (samples per second). A sample rate of zero means

to sample immediately.

For Mode of NctModeInput, SampleRate of zero means nctRead

returns a single point from the most recent message received, and

greater than zero means nctRead returns samples timed at the

specified rate.

For Mode of NctModeOutput, SampleRate of zero means CAN

messages transmit immediately when nctWrite is called, and greater

than zero means CAN messages are transmitted periodically at the

specified rate.

For Mode of NctModeTimestampedInput, SampleRate is ignored.

When the Interface specifies a virtual interface (256 or 257), and

Mode is nctModeOutput or nctModeOutputRecent, this

SampleRate must be zero (greater than zero not supported).

Chapter 8 Channel API for C

© National Instruments 8-51 NI-CAN Hardware and Software Manual

Outputs

TaskRef

Use TaskRef with all subsequent functions to reference the running

task. Because nctInitStart starts communication, you can pass this

task reference to nctRead or nctWrite.

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
The code for this function simply calls nctInitialize followed by nctStart. This

provides an easy way to start a list of channels.

The following list describes the scenarios for which nctInitStart cannot be used:

• If you need to set properties for the channels, use nctInitialize, then

nctSetProperty, then nctStart. The nctInitStart function starts

communication, and most channel properties cannot be changed after the task is started.

• If you need to synchronize tasks for multiple NI-CAN, NI-DAQ, or NI-DAQmx cards,

use nctInitialize, then nctConnectTerminals to synchronize, the nctStart to

start communication.

• If you need to create channel configurations entirely within the application, without using

MAX or a CAN database file, use nctCreateMessage, then nctStart. The

nctInitStart function accepts only channel names defined in MAX or a CAN

database file.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-52 ni.com

Mode Dependent Channel Syntax

If you are using mode dependent channels, and each channel name is not unique, you will

need to use a special syntax described in this section. For the large majority of channels, you

can use the simple syntax described previously for channel list. The brackets [] define

optional parameters:

[message name.[[multiplexer.]mode_value.]]channel.

• message refers to the message in which the channel is contained. The message name must

be followed by a decimal point. If the channel name is not unique within MAX or the

database file, you must specify the message name to identify the channel uniquely.

Within MAX, channels with the same name are shown with a yellow exclamation point. This

feature can be changed in the CAN Channels»Options dialog box.

If the channel name is unique across all channels, the message name is not required.

• multiplexer refers to the multiplexer name in MAX or the CAN database. The message

name must be followed by a decimal point. It applies only to mode dependent messages

and must be omitted for normal CAN channels. If more than one multiplexer is defined

for the message and the channel name is not unique within the CAN message, you must

specify the multiplexer name to identify the channel uniquely.

• mode_value refers to the multiplexer mode in MAX or the CAN database. The message

name must be followed by a decimal point. It applies only to mode dependent messages

and must be omitted for normal CAN channels. If the channel name is not unique within

the multiplexer, you must specify the mode to identify the channel uniquely.

• channel refers to the channel (signal) name in MAX or the CAN database.

You cannot use the same channel name for a normal CAN channel and a mode dependent

CAN channel within the same CAN message.

If the name of a channel is unique within MAX or the database, it can be referenced by the

channel API using its channel name.

For more information on mode dependent channels, refer to the Mode Dependent Channels

section of Chapter 6, Using the Channel API.

Chapter 8 Channel API for C

© National Instruments 8-53 NI-CAN Hardware and Software Manual

nctRead

Purpose
Read samples from a CAN task initialized with Mode of nctModeInput. Samples are

obtained from received CAN messages. For an overview of nctRead, refer to the Read

section of Chapter 6, Using the Channel API.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from nctInitStart, nctInitialize, or

nctCreateMessage.

The Mode initialized for the task must be NctModeInput.

NumberOfSamplesToRead

Specifies the number of samples to read for the task. For single-sample

input, pass 1 to this parameter.

If the initialized sample rate is zero, you must pass

NumberOfSamplesToRead no greater than 1. SampleRate of zero

means nctRead immediately returns a single sample from the most

recent message(s) received.

nctTypeStatus nctRead(

nctTypeTaskRef TaskRef,

u32 NumberOfSamplesToRead,

nctTypeTimestamp *StartTime,

nctTypeTimestamp *DeltaTime,

f64 *SampleArray,

u32 *NumberOfSamplesReturned);

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-54 ni.com

Outputs
StartTime

Returns the time of the first CAN sample in SampleArray.

This parameter is optional. If you pass NULL for the StartTime

parameter, the nctRead function proceeds normally.

If the initialized SampleRate is greater than zero, the StartTime is

determined by the sample timing.

If the initialized sample rate is zero, the StartTime is zero, because

the most recent sample is returned regardless of timing.

StartTime uses the nctTypeTimestamp data type. The

nctTypeTimestamp data type is a 64-bit unsigned integer compatible

with the Microsoft Win32 FILETIME type. This absolute time is kept

in a Coordinated Universal Time (UTC) format. UTC time is loosely

defined as the current date and time of day in Greenwich, England.

Microsoft defines its UTC time (FILETIME) as a 64-bit counter of

100 ns intervals that have elapsed since 12:00 a.m., January 1, 1601.

Because nctTypeTimestamp is compatible with Win32 FILETIME,

you can pass it into the Win32 FileTimeToLocalFileTime function

to convert it to the local time zone, and then pass the resulting local

time to the Win32 FileTimeToSystemTime function to convert to

the Win32 SYSTEMTIME type. SYSTEMTIME is a struct with fields for

year, month, day, and so on. For more information on Win32 time

types and functions, refer to the Microsoft Win32 documentation.

DeltaTime

Returns the time between each sample in SampleArray.

This parameter is optional. If you pass NULL for the DeltaTime

parameter, the nctRead function proceeds normally.

If the initialized sample rate is greater than zero, the DeltaTime is

determined by the sample timing.

If the initialized sample rate is zero, the DeltaTime is zero, because

the most recent sample is returned regardless of timing.

DeltaTime uses the nctTypeTimestamp data type. The delta time is

a relative 64-bit counter of 100 ns intervals, not an absolute UTC time.

Nevertheless, you can use functions like the Win32

FileTimeToSystemTime function to convert to the Win32

SYSTEMTIME type. In addition, you can use the 32-bit LowPart of

DeltaTime to obtain a simple 100 ns count, because SampleRate s

as slow as 0.4 Hz are still limited to a 32-bit 100 ns count.

Chapter 8 Channel API for C

© National Instruments 8-55 NI-CAN Hardware and Software Manual

SampleArray

Returns an array of arrays (2D array), one array for each channel

initialized in the task. The array of each channel must have

NumberOfSamplesToRead entries allocated.

For example, if you call nctInitStart with ChannelList of

mych1,mych2,mych3, then call nctRead with

NumberOfSamplesToRead of 10, SampleArray must be

allocated as:

f64 SampleArray[3][10];

The order of channel entries in SampleArray is the same as the order

in the original channel list.

If you need to determine the number of channels in the task after

initialization, get the nctPropNumChannels property for the task

reference.

If no message has been received since you started the task, the default

value of the channel (nctPropChanDefaultValue) is returned in all

entries of SampleArray.

NumberOfSamplesReturned

Indicates the number of samples returned for each channel in

SampleArray. The remaining entries are left unchanged (zero).

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
When using Mode of nctModeInput, you can specify channels in ChannelList that span

multiple messages.

If the initialized SampleRate is greater than zero, this function returns an array of samples,

each of which indicates the value of the CAN channel at a specific point in time. The

nctRead function waits for these samples to arrive in time before returning. In other words,

the SampleRate specifies a virtual clock that copies the most recent value from CAN

messages for each sample time. The changes in sample values from message to message

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-56 ni.com

enable you to view the CAN channel over time, such as for comparison with other CAN or

DAQ input channels. To avoid internal waiting, you can use nctGetProperty to obtain the

nctPropSamplesPending property, and pass that as the NumberOfSamplesToRead

parameter to nctRead.

If the initialized SampleRate is zero, nctRead immediately returns a single sample from the

most recent message(s) received. For this single-point read, you must pass the

NumberOfSamplesToRead parameter as 1.

You can use the return value of nctRead to determine whether a new message has been

received since the previous call to nctRead (or nctStart). If no message has been received,

the warning code CanWarnOldData is returned. If a new message has been received, the

success code 0 is returned.

If no message has been received since you started the task, the default value of the channel

(nctPropChanDefaultValue) is returned in all entries of SampleArray.

Chapter 8 Channel API for C

© National Instruments 8-57 NI-CAN Hardware and Software Manual

nctReadTimestamped

Purpose
Read samples from a CAN task initialized with Mode of nctModeTimestampedInput. For

an overview of nctReadTimestamped, refer to the Read Timestamped section of Chapter 6,

Using the Channel API.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from nctInitStart, nctInitialize, or

nctCreateMessage.

The Mode initialized for the task must be

NctModeTimestampedInput.

NumberOfSamplesToRead

Specifies the number of samples to read for the task.

Outputs

TimestampArray

Returns the time at which each corresponding sample in

SampleArray was received in a CAN message.

The timestamps are returned as an array of arrays (2D array), one array

for each channel initialized in the task. The array of each channel must

have NumberOfSamplesToRead entries allocated.

For example, if you call nctInitStart with ChannelList of

mych1,mych2, then call nctReadTimestamped with

nctTypeStatus nctReadTimestamped(

nctTypeTaskRef TaskRef,

u32 NumberOfSamplesToRead,

nctTypeTimestamp *TimestampArray,

f64 *SampleArray,

u32 *NumberOfSamplesReturned);

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-58 ni.com

NumberOfSamplesToRead of 20, both TimestampArray and

SampleArray must be allocated as:

nctTypeTimestamp TimestampArray[2][20];

f64 SampleArray[2][20];

The order of channel entries in TimestampArray is the same as the

order in the original channel list.

If you need to determine the number of channels in the task after

initialization, get the nctPropNumChannels property for the task

reference.

Each timestamp in TimestampArray uses the nctTypeTimestamp

data type. The nctTypeTimestamp data type is a 64-bit unsigned

integer compatible with the Microsoft Win32 FILETIME type. This

absolute time is kept in a Coordinated Universal Time (UTC) format.

UTC time is loosely defined as the current date and time of day in

Greenwich, England. Microsoft defines its UTC time (FILETIME) as

a 64-bit counter of 100 ns intervals that have elapsed since 12:00 a.m.,

January 1, 1601. Because nctTypeTimestamp is compatible

with Win32 FILETIME, you can pass it into the Win32

FileTimeToLocalFileTime function to convert it to the local

time zone, and then pass the resulting local time to the Win32

FileTimeToSystemTime function to convert to the Win32

SYSTEMTIME type. SYSTEMTIME is a struct with fields for year, month,

day, and so on. For more information on Win32 time types and

functions, refer to the Microsoft Win32 documentation.

SampleArray

Returns the sample value(s) for each received CAN message.

The samples are returned as an array of arrays (2D array), one array

for each channel initialized in the task. The array of each channel

must have NumberOfSamplesToRead entries allocated.

You must allocate SampleArray exactly as TimestampArray,

and the order of channel entries is the same for both.

NumberOfSamplesReturned

Indicates the number of samples returned for each channel in

SampleArray, and the number of timestamps returned for each

channel in TimestampArray. The remaining entries are left

unchanged (zero).

Chapter 8 Channel API for C

© National Instruments 8-59 NI-CAN Hardware and Software Manual

Return Value

The return value indicates the function call status as a signed 32-bit integer. Zero means the

function executed successfully. A negative value specifies an error, which means the function

did not perform the expected behavior. A positive value specifies a warning, which means the

function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
Each returned sample corresponds to a received CAN message for the channels initialized in

channel list. For each sample, nctReadTimestamped returns the sample value and a

timestamp that indicates when the message was received.

When using Mode of nctModeTimestampedInput, you cannot specify channels in

ChannelList that span multiple messages.

Because the timing of samples returned by nctReadTimestamped is determined by when

the message is received, the initialized sample rate is not used.

The nctPropTimeout property determines whether this function waits for the

NumberOfSamplesToRead messages to arrive from the network. The default value of

nctPropTimeout is zero, but you can change it using the nctSetProperty function.

If nctPropTimeout is greater than zero, the function will wait for

NumberOfSamplesToRead messages to arrive. If NumberOfSamplesToRead messages are

not received before thenctPropTimeout expires, an error is returned.

If nctPropTimeout is zero, the function does not wait for messages, but instead returns

samples from the messages received since the previous call to nctReadTimestamped. The

number of samples returned is indicated in the NumberOfSamplesReturned output, up to a

maximum of NumberOfSamplesToRead messages. If no new message has been received,

NumberOfSamplesReturned is 0, and the return value indicates success.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-60 ni.com

nctSetProperty

Purpose
Set a property for the task, or a single channel within the task.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from nctInitStart, nctInitialize, or

nctCreateMessage.

ChannelName

Specifies an individual channel within the task. If you pass NULL or

empty-string to ChannelName, this means the property applies to the

entire task, not a specific channel.

Properties that begin with the word Channel or Message do not apply

to the entire task, but an individual channel or message within the task.

For these channel-specific properties, you must pass the name of a

channel from the channel list into the ChannelName input.

For properties that do not begin with the word Channel or Message,

you must pass empty-string ("") into ChannelName. You must not

pass NULL into ChannelName.

PropertyId

Selects the property to set.

For a description of each property, including its data type and

PropertyId, refer to the Properties section in this function reference.

nctTypeStatus nctSetProperty

(

nctTypeTaskRef TaskRef,

cstr ChannelName,

u32 PropertyId,

u32 SizeofValue,

void *Value);

Chapter 8 Channel API for C

© National Instruments 8-61 NI-CAN Hardware and Software Manual

SizeofValue

Number of bytes provided for the Value output. This size will

normally depend on the data type listed in the description of the

property.

Value

Provides the property value. PropertyId determines the data type of

the value.

Outputs

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
You cannot set a property while the task is running. If you need to change a property prior to

starting the task, you cannot use nctInitStart. First call nctInitialize, followed by

nctSetProperty, and then nctStart. After you start the task, you also can change a

property by calling nctStop, followed by nctSetProperty, and then nctStart again.

Properties

u32 nctPropBehavAfterFinalOut

The nctPropBehavAfterFinalOut property applies only to tasks

initialized with mode of NctModeOutput, and sample rate greater

than zero. The value specifies the behavior to perform after the final

periodic sample is transmitted.

nctPropBehavAfterFinalOut uses the following values:

nctOutBehavRepeatFinalSample

Transmit messages for the final sample(s) repeatedly. The

final messages are transmitted periodically as specified by

SampleRate.

If there is significant delay between subsequent calls to

nctWrite, this value means periodic messages continue

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-62 ni.com

between nctWrite calls, and messages with the data of the

final sample are repeated on the network.

nctOutBehavRepeatFinalSample is the default value of

the nctPropBehavAfterFinalOut property.

nctOutBehavCeaseTransmit

Cease transmit of messages until the next call to nctWrite.

If there is significant delay between subsequent calls to

nctWrite, this value means periodic messages cease

between nctWrite calls, and the data of the final sample is

not repeated on the network.

f64 nctPropChanDefaultValue

Sets the default value of the channel in scaled floating-point units.

For information on how the nctPropChanDefaultValue is used,

refer to the nctRead and nctWrite functions.

The value of this property is originally set within MAX. If the channel

is initialized directly from a CAN database, the value is 0.0 by default,

but it can be changed using nctSetProperty.

u32 nctPropHwMasterTimebaseRate

Sets the rate (in MHz) of the external clock that is exported to the CAN

card.

The decimal values for this property are:

20

When synchronizing 2 CAN cards or synchronizing a CAN card

with an E-Series DAQ card, the 20 MHz master timebase rate is to

be used. By default, this property is set to 20 MHz.

10

The master timebase rate should be set to 10 MHz when

synchronizing a CAN card with an M-Series DAQ card. The

M-Series DAQ card can export a 20 MHz clock but it does this by

using one of its two counters.

If your CAN-DAQ application does not use the 2 DAQ counters then,

you can leave the timebase rate set to 20 MHz (default).

This property can be set either before or after calling

nctConnectTerminals to connect the RTSI_CLK to Master

Timebase. However, this property must always be called prior to

starting the task.

This property is applicable only to PCI and PXI Series 2 cards. For

PCMCIA cards, setting this attribute will return an error. On PXI cards,

Chapter 8 Channel API for C

© National Instruments 8-63 NI-CAN Hardware and Software Manual

if PXI_CLK10 is routed to the Master Timebase, then the rate is

fixed at 10 MHz (it over rides any previous setting of this property).

Setting this property for Series 1 cards will also result in an NI-CAN

error.

u32 nctPropHwTimestampFormat

Sets the format of the timestamps reported by the on-board timer on the

CAN card. The default value for this property is Absolute.

The values for this property are:

0 (Absolute)

Sets the timestamp format to absolute. In the absolute format, the

timestamp returned by NI-CAN read functions is the LabVIEW

date/time format (DBL representing the number of seconds

elapsed since 12:00 a.m., Friday, January 1, 1904).

1 (Relative)

Sets the timestamp format to relative. In the relative format,

the timestamp returned by the NI-CAN read functions will be

zero based (DBL representing the number of seconds since the

CAN controller for that task was started).

A typical use case for this property would be if data received from

two RTSI synchronized CAN cards is to be correlated. For that use

case, this property must be set to 1 for all of the CAN cards being

synchronized. Setting this property on one port of a 2-port card will

also reset the timestamp of the second port, since resetting the

timestamp on the CAN port involves resets the on-board timer.

This property should be set prior to starting any tasks on the CAN card.

u32 nctPropIntfBaudRate

Sets the baud rate in use by the Interface.

This property applies to all tasks initialized with the interface.

You can specify the following basic baud rates as the numeric rate:

33333, 83333, 100000, 125000, 200000, 250000, 400000, 500000,

800000, and 1000000.

You can specify advanced baud rates as 8000XXYY hex, where YY is

the value of Bit Timing Register 0 (BTR0), and XX is the value of Bit

Timing Register 1 (BTR1). For more information, refer to the Port

Properties dialog in MAX.

The value of this property is originally set within MAX, but it can be

changed using nctSetProperty.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-64 ni.com

u32 nctPropIntfListenOnly

Sets a Boolean value that indicates whether the listen only feature of

the Philips SJA1000 CAN controller is enabled (1) or disabled (0).

This property applies to all tasks initialized with the Interface.

If nctPropIntfListenOnly is 0, the Interface can transmit CAN

messages; therefore the nctWrite function operates normally. When

CAN messages are received by the Interface, those messages are

acknowledged. Because disabled (0) is the behavior specified in the

CAN specification, it is the default value of

nctPropIntfListenOnly.

If nctPropIntfListenOnly is 1, the Interface cannot transmit

CAN messages; therefore the nctWrite function returns an error.

When CAN messages are received by the Interface, those messages are

not acknowledged. The Philips SJA1000 CAN controller enters error

passive state when listen only is enabled (but no error-passive warning

is returned). The enabled (1) value of nctPropIntfListenOnly

enables passive monitoring of network traffic, which can be useful for

debugging scenarios in which only one device exists on the network.

Since the listen only feature requires the Philips STA1000 CAN

controller, this property is supported on Series 2 NI CAN hardware

only. If you are using Series 1 NI CAN hardware, an attempt to set this

property returns error code CanErrRequiresSeries2.

u32 nctPropIntfSelfReception

Specifies whether to echo successfully transmitted CAN frames as

received frames. Each reception occurs just as if the frame were

received from another CAN device. This enables you to initialize the

same channels for both input and output.

For self reception to operate properly, another CAN node must receive

and acknowledge each transmit.

False disables self reception mode (default), and True enables self

reception mode.

The self reception mode is not available on the Intel 82527 CAN

controller used by Series 1 CAN hardware. For Series 1 hardware,

this property must be left at its default (False).

u32 nctPropIntfSeries2Comp

Specifies the filter comparator for the Philips SJA1000 CAN controller

on all Series 2 CAN hardware. This property is not supported for

Series 1 hardware (returns error).

Chapter 8 Channel API for C

© National Instruments 8-65 NI-CAN Hardware and Software Manual

This property specifies a comparator value that is checked against the

ID, RTR, and data bits. The nctPropIntfSeries2Mask determines

the applicable bits for comparison.

The default value of this property is zero.

The mapping of bits in this property to the ID, RTR, and data bits of

incoming frames is determined by the value of the

nctPropIntfSeries2FilterMode property. The Series 2 filter

mode determines the format of this property as well as the Series 2

mask.

u32 nctPropIntfSeries2FilterMode

All Series 2 hardware uses the Philips SJA1000 CAN controller. The

Philips SJA1000 CAN controller provides sophisticated filtering of

received frames. This property specifies the filtering mode, which is

used in conjunction with the nctPropIntfSeries2Mask and

nctPropIntfSeries2Comp properties.

This property is not supported for Series 1 hardware (returns error).

Since the format of the Series 2 filters is very specific to the Philips

SJA1000 CAN controller, National Instruments cannot guarantee

compatibility for this property on future hardware series. When using

this property in the application, it is best to get the nctPropHwSeries

property to verify that the CAN hardware is Series 2.

The filtering specified by the Series 2 filter properties applies to all

input tasks for that interface. For example, if you specify filters that

discard ID 5, then open an Input task to receive channels of ID 5,

the task will not receive data. The default value for this property is

nctFilterSingleStandard.

The values for this property are summarized below. For detailed

information on each value, including the format of the

nctPropIntfSeries2Mask and nctPropIntfSeries2Comp

properties for each mode, refer to the

NC_ATTR_SERIES2_FILTER_MODE attribute in the ncConfig

function of the Frame API.

nctFilterSingleStandard (Single Standard)

Filter all standard (11-bit) frames using a single mask/comparator

filter.

nctFilterSingleExtended (Single Extended)

Filter all extended (29-bit) frames using a single mask/comparator

filter.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-66 ni.com

nctFilterDualStandard (Dual Standard)

Filter all standard (11-bit) frames using a two separate

mask/comparator filters. If either filter matches the frame, it is

received. The frame is discarded only when neither filter detects a

match.

nctFilterDualExtended (Dual Extended)

Filter all extended (29-bit) frames using a two separate

mask/comparator filters. If either filter matches the frame, it is

received. The frame is discarded only when neither filter detects a

match.

u32 nctPropIntfSeries2Mask

Specifies the filter mask for the Philips SJA1000 CAN controller on all

Series 2 CAN hardware. This property is not supported for Series 1

hardware (returns error).

This property specifies a bit mask that determines the ID, RTR, and

data bits that are compared. If a bit is clear in the mask, the

corresponding bit in the nctPropIntfSeries2Comp is checked. If a

bit in the mask is set, that bit is ignored for the purpose of filtering

(don’t care).

The default value of this property is hex FFFFFFFF, which means that

all messages are received.

The mapping of bits in this property to the ID, RTR, and data bits of

incoming frames is determined by the value of the

nctPropIntfSeries2FilterMode property. The Series 2 filter

mode determines the format of this property as well as the Series 2

comparator.

u32 nctPropIntfSingleShotTx

Specifies whether to retry failed CAN frame transmissions (Series 2

only).

If nctPropIntfSingleShotTx is 0 (default), failed transmissions

retry as defined in the CAN specification. If a CAN frame is not

transmitted successfully, the CAN controller will immediately retry.

If nctPropIntfSingleShotTx is 1, all transmissions are single

shot. If a CAN frame is not transmitted successfully, the CAN

controller will not retry.

The single-shot transmit feature is not available on the Intel 82527

CAN controller used by Series 1 CAN hardware (returns error).

Chapter 8 Channel API for C

© National Instruments 8-67 NI-CAN Hardware and Software Manual

u32 nctPropIntfTransceiverExternalOut

Sets the transceiver external outputs for the interface that was

initialized for the task.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this property allows you to set the output voltage

on the MODE0 and MODE1 pins of the CAN port, and it allows you

control the sleep mode of the on-board CAN controller chip.

For many models of CAN transceiver, EN and NSTB pins control the

transceiver mode, such as whether the transceiver is sleeping, or

communicating normally. For such transceivers, you can wire the EN

and NSTB pins to the MODE0 and MODE1 pins of the CAN port.

The default value of this property is 00000003 hex. For many models

of transceiver, this specifies normal communication mode for the

transceiver and CAN controller chip. If the transceiver requires a

different MODE0/MODE1 combination for normal mode, you can use

external inverters to change the default 5 V to 0 V.

This property is supported for Series 2 XS cards only. This property is

not supported when the nctPropIntfTransceiverType property is

any value other than External. To control the mode of an internal

transceiver, use the nctPropIntfTransceiverMode property.

This property uses a bit mask. Use bitwise OR operations to set

multiple values.

nctTransceiverOutMode0 (00000001 hex, MODEO pin)

Set this bit to drive 5 V on the MODE0 pin. This is the default

value. This bit is set automatically when a remote wakeup is

detected.

Clear this bit to drive 0 V on the MODE0 pin.

nctTransceiverOutMode1 (00000001 hex, MODE1 pin)

Set this bit to drive 5 V on the MODE1 pin. This is the default

value. This bit is set automatically when a remote wakeup is

detected.

Clear this bit to drive 0 V on the MODE1 pin.

nctTransceiverOutSleep (00000100 hex, Sleep CAN

controller chip)

Set this bit to place the CAN controller chip into sleep mode.

This bit controls the mode of the CAN controller chip (sleep

or normal), and the independent MODE0/MODE1 bits

control the mode of the external transceiver. When you set

this bit to place the CAN controller into sleep mode, you

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-68 ni.com

typically specify MODE0/MODE1 bits that place the

external transceiver into sleep mode as well.

When the CAN controller is asleep, a remote wakeup will

automatically place the CAN controller into its normal mode

of communication. In addition, the MODE0/MODE1 pins are

restored to their default values of 5 V. Therefore, a remote

wakeup causes this property to change from the value that

you set for sleep mode, back to its default 00000003 hex. You

can determine when this has occurred by getting

nctPropIntfTransceiverExternalOut using

nctGetProperty. For more information on remote wakeup,

refer to the nctPropIntfTransceiverMode property for

internal transceivers.

Clear this bit to place the CAN controller chip into normal

communication mode. If the CAN controller was previously

in sleep mode, this performs a local wakeup to restore

communication.

u32 nctPropIntfTransceiverMode

Sets the transceiver mode for the interface that was initialized for the

task. The transceiver mode controls whether the transceiver is asleep

or communicating, as well as other special modes.

This property is supported on Series 2 cards only.

For Series 2 cards for the PCMCIA form factor, this property requires

a corresponding Series 2 cable (dongle). For information on how to

identify the series of the PCMCIA cable, refer to the Series 2 Vs.

Series 1 section of Chapter 1, Introduction.

For Series 2 XS cards, this property is not supported when the

nctPropIntfTransceiverType property is External. To control

the mode of an external transceiver, use the

nctPropIntfTransceiverExternalOut property.

The default value for this property is Normal.

This property uses the following values:

nctTransceiverModeNormal

Set transceiver to normal communication mode. If you set Sleep

mode previously, this performs a local wakeup of the transceiver

and CAN controller chip.

nctTransceiverModeSleep

Set transceiver and the CAN controller chip to sleep (or standby)

mode.

Chapter 8 Channel API for C

© National Instruments 8-69 NI-CAN Hardware and Software Manual

If the transceiver supports multiple sleep/standby modes, the

NI CAN hardware implementation ensures that all of those modes

are equivalent with regard to the behavior of the transceiver on the

network. For more information on the physical specifications for

the normal and sleep modes of each transceiver, refer to Chapter 3,

NI CAN and LIN Hardware.

You can set Sleep mode only while the interface is

communicating. If at least one task for the interface has not been

started (such as with nctStart), setting the transceiver mode to

Sleep will return an error.

When the interface enters sleep mode, communication is not

possible until a wakeup occurs. All pending frame transmissions

are deferred until the wakeup occurs. The transceiver and CAN

controller wake from sleep mode when either a local wakeup or

remote wakeup occurs.

If you set Sleep mode when the CAN controller is actively

transmitting a frame (that is, won arbitration), the interface will

not enter Sleep mode until the frame is transmitted successfully

(acknowledgement detected).

A local wakeup occurs when the application sets the transceiver

mode to Normal (or some other communication mode).

A remote wakeup occurs when a remote node transmits a CAN

frame (referred to as the wakeup frame). The wakeup frame wakes

up the transceiver and CAN controller chip of the NI CAN

interface. The wakeup frame is not received or acknowledged by

the CAN controller chip. When the wakeup frame ends, the

NI CAN interface enters Normal mode, and again receives and

transmits CAN frames. If the node that transmitted the wakeup

frame did not detect an acknowledgement (such as if other nodes

were also waking), it will retry the transmission, and the retry will

be received by the NI CAN interface.

For a remote wakeup to occur for Single Wire transceivers, the

node that transmits the wakeup frame must first place the network

into the Single Wire Wakeup Transmission mode by asserting a

higher voltage (typically 12 V). For more information, refer to the

nctTransceiverModeSWWakeup mode.

When the local or remote wakeup occurs, frame transmissions

resume from the point at which the original Sleep was set.

You can detect when a remote wakeup occurs by using

nctGetProperty with the nctPropIntfTransceiverMode

property.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-70 ni.com

nctTransceiverModeSWWakeup

Set Single Wire transceiver to Wakeup Transmission mode.

This mode is supported on Single Wire (SW) ports only.

The Single Wire Wakeup Transmission mode drives a higher

voltage level on the network to wakeup all sleeping nodes. Other

than this higher voltage, this mode is similar to Normal mode.

CAN frames can be received and transmitted normally.

Since you use the Single Wire Wakeup mode to wakeup other

nodes on the network, it is not typically used in combination with

Sleep mode for a given interface.

The timing of how long the wakeup voltage is driven is controlled

entirely by the application. The application will typically change

to Single Wire Wakeup mode, transmit a wakeup frame, then

return to Normal mode.

The following sequence demonstrates a typical sequence of steps

for sleep and wakeup between two Single Wire NI CAN

interfaces. The sequence assumes that CAN0 is the sleeping node,

and CAN1 originates the wakeup.

1. Start both CAN0 and CAN1. Both use the default Normal mode.

2. Set nctPropIntfTransceiverMode of CAN0 to Sleep.

3. Set nctPropIntfTransceiverMode of CAN1 to Single Wire

Wakeup.

4. Write data to CAN1 to transmit a wakeup frame to CAN0.

5. Set nctPropIntfTransceiverMode of CAN1 to Normal.

6. Now both CAN0 and CAN1 are in Normal mode again.

nctTransceiverModeSWHighSpeed

Set Single Wire transceiver to High-Speed Transmission mode.

This mode is supported on Single Wire (SW) ports only.

The Single Wire High-Speed Transmission mode disables the

internal waveshaping function of the transceiver, which allows

baud rates up to 100 kbytes/s to be used. The disadvantage versus

Normal (which allows up to 40 kbytes/s baud) is degraded EMC

performance. Other than the disabled waveshaping, this mode is

similar to Normal mode. CAN frames can be received and

transmitted normally.

Chapter 8 Channel API for C

© National Instruments 8-71 NI-CAN Hardware and Software Manual

This mode has no relationship to High-Speed (HS) transceivers.

It is merely a higher speed mode of the Single Wire (SW)

transceiver, typically used for downloading large amounts of data

to a node.

The Single Wire transceiver does not support use of this mode in

conjunction with Sleep mode. For example, a remote wakeup

cannot transition from Sleep to this Single Wire High-Speed

mode.

u32 nctPropIntfTransceiverType

For XS software selectable physical layer cards that provide a

software-switchable transceiver, the

nctPropIntfTransceiverType property sets the type of

transceiver. When the transceiver is switched from one type to another,

NI-CAN ensures that the switch is undetectable from the perspective

of other nodes on the network.

The default value for this property is specified within MAX. If you

change the transceiver type in MAX to correspond to the network in

use, you can avoid setting this property within the application.

This property applies to all tasks initialized with the same interface.

You cannot set this property for Series 1 hardware, or for Series 2

hardware other than XS (fixed HS, LS, or SW cards).

This property uses the following values:

nctTransceiverTypeHS

Switch the transceiver to High-Speed (HS).

nctTransceiverTypeLS

Switch the transceiver to Low-Speed/Fault-Tolerant (LS).

nctTransceiverTypeSW

Switch the transceiver to Single Wire (SW).

nctTransceiverTypeExternal

Switch the transceiver to External. The External type allows you

to connect a transceiver externally to the interface. For more

information on connecting transceivers externally, refer to

Chapter 3, NI CAN and LIN Hardware.

When this transceiver type is selected, you can use the

nctPropIntfTransceiverExternalOut and

nctPropIntfTransceiverExternalIn properties to access

the external mode and status pins of the connector.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-72 ni.com

nctTransceiverTypeDisconnect

Disconnect the CAN controller chip from the connector. This

value is used when you physically switch an external transceiver.

You first set nctPropIntfTransceiverType to

nctTransceiverTypeDisconnect, then switch from one

external transceiver to another, then set

nctPropIntfTransceiverType to

nctTransceiverTypeExternal. For more information on

connecting transceivers externally, refer to Chapter 3, NI CAN

and LIN Hardware.

u32 nctPropIntfVirtualBusTiming

Sets the Virtual Bus Timing of the virtual device.

The values for this property are:

FALSE (0)

Virtual Bus Timing is turned off. By turning Virtual Bus Timing

off, the CAN bus simulation is disabled and CAN frames are

copied from the write queue of one virtual interface to the read

queue of the second virtual interface. This setting is useful if you

desire to only convert frames to channels or vice versa and not

simulate actual CAN bus communication.

TRUE (1)

Virtual Bus Timing is turned on (default). By turning Virtual Bus

Timing on, frame timestamps are recalculated as they transfer

across the virtual bus. This mode is useful when you want the

virtual bus to behave as much like a real bus as possible.

If this property is set on real hardware, an error will be returned.

The Virtual Bus Timing has to be set to the same value on both

virtual interfaces. This property must be set prior to starting the

virtual interface.

Refer to the Frame to Channel Conversion section of Chapter 6,

Using the Channel API for more information.

u32 nctPropMsgDistribution

Sets the nctPropMsgDistribution property which is used to

determine if the CAN frames associated with a group of mode

dependent channels are sent even-spaced or in burst mode.

nctDistrUniform

Transmits mode dependent messages uniformly (evenly spaced)

on the network.

Chapter 8 Channel API for C

© National Instruments 8-73 NI-CAN Hardware and Software Manual

nctDistrBurst

Transmits mode dependent messages back to back on the network.

This property applies only to mode dependent channels that are

transmitted periodically. For more information, refer to the Mode

Dependent Channels section of Chapter 6, Using the Channel API.

f64 nctPropNoValue

Sets the value that is returned on timestamped read for mode

dependent channels that have not been received with the most recent

CAN frame associated with the CAN message. This property applies

only to mode dependent channels that are read with the timestamped

read operation. For more information, refer to the Mode Dependent

Channels section of Chapter 6, Using the Channel API.

f64 nctPropTimeout

Sets a time in milliseconds to wait for samples. The default value is

zero.

For all task configurations, nctPropTimeout specifies the time that

Read will wait for the start trigger. If the application does not use

nctConnectTerminals, the start trigger occurs when the task starts

(nctStart). If you connect a start trigger from a RTSI line or other

source, nctPropTimeout specifies the number of milliseconds to

wait. nctPropTimeout of zero means to wait up to 10 seconds for the

start trigger.

Usage of the nctPropTimeout property depends on the initialized

mode of the task:

• NctModeOutput: For each NctModeOutput task, NI-CAN uses a

buffer to store samples for transmit. If the number of samples you

provide to nctWrite exceeds the size of the underlying buffer,

NI-CAN waits for sufficient space to become available (due to

successful transmits). The nctPropTimeout specifies the number of

milliseconds to wait for available buffer space. Timeout of zero means

to wait up to 10 seconds.

• NctModeInput: The timeout value does not apply. For

NctModeInput tasks initialized with SampleRate greater than zero,

the NumberOfSamplesToRead input to nctRead implicitly specifies

the time to wait. For NctModeInput tasks initialized with

SampleRate equal to zero, the nctRead function always returns

available samples immediately, without waiting.

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-74 ni.com

• NctModeTimestampedInput: A timeout of zero means to return

available samples immediately. A timeout greater than zero means

nctRead will wait a maximum of nctPropTimeout milliseconds for

NumberOfSamplesToRead samples to become available before

returning.

• NctModeOutputRecent: The timeout value does not apply.

Chapter 8 Channel API for C

© National Instruments 8-75 NI-CAN Hardware and Software Manual

nctStart

Purpose
Start communication for the specified task.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from functions such as nctInitialize or

nctCreateMessage.

Outputs

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
You must start communication for a task to use nctRead or nctWrite. After you start

communication, you can no longer change the configuration of the task with

nctSetProperty or nctConnectTerminals.

nctTypeStatus nctStart(

nctTypeTaskRef TaskRef,

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-76 ni.com

nctStop

Purpose
Stop communication for the specified task.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from nctInitStart, nctInitialize, or

nctCreateMessage.

Outputs

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
This function stops communication so you can change the configuration of the task, such as

by using nctSetProperty or nctConnectTerminals. After you change the

configuration, use nctStart to start again.

This function does not clear the configuration for the task; therefore, do not use it as the last

NI-CAN function in the application. The nctClear function must always be used as the last

NI-CAN function for each task.

nctTypeStatus nctStop(

nctTypeTaskRef TaskRef,

Chapter 8 Channel API for C

© National Instruments 8-77 NI-CAN Hardware and Software Manual

nctWrite

Purpose
Write samples to a CAN task initialized as NctModeOutput. Samples are placed into

transmitted CAN messages. For an overview of nctWrite, refer to the Write section of

Chapter 6, Using the Channel API.

Format

Inputs

TaskRef

Task reference from the previous NI-CAN function. The task reference

is originally returned from nctInitStart, nctInitialize, or

nctCreateMessage.

The Mode initialized for the task must be NctModeOutput.

NumberOfSamplesToWrite

Specifies the number of samples to write for the task.

For single-sample output, pass 1 to this parameter.

SampleArray

Provides an array of arrays (2D array), one array for each channel

initialized in the task. The array of each channel must have

NumberOfSamplesToWrite samples.

For example, if you call nctInitStart with ChannelList of

mych1,mych2,mych3, then call nctWrite with

NumberOfSamplesToWrite of 10, SampleArray must be allocated

as:

f64 SampleArray[3][10];

You must provide a valid sample value in each entry of the arrays.

The order of channel entries in SampleArray is the same as the order

in the original channel list.

nctTypeStatus nctWrite(

nctTypeTaskRef TaskRef,

u32 NumberOfSamplesToWrite,

f64 *SampleArray);

Chapter 8 Channel API for C

NI-CAN Hardware and Software Manual 8-78 ni.com

To determine the number of channels in the task after initialization, get

the nctPropNumChannels property for the task reference.

Outputs

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value. The ncStatusToString and ncGetHardwareInfo functions are the only

Frame API functions that can be called within a Channel API application.

Description
The associated ChannelList determines the messages transmitted by nctWrite. If all

channels are contained in a single message, only that message is transmitted. If a few channels

are contained in one message, and the remaining channels are contained in a second message,

then two messages are transmitted.

If the initialized sample rate is greater than zero, the task transmits associated CAN messages

periodically at the specified rate. The first nctWrite transmits associated messages

immediately using the first sample in the array of each channel, and then begins a periodic

timer at the specified rate. Each subsequent transmission of messages is based on the timer,

and uses the next sample in the array of each channel. After the final sample in the array of

each channel has been transmitted, subsequent behavior is determined by the

nctPropBehavAfterFinalOut property. The default nctPropBehavAfterFinalOut

behavior is to retransmit the final sample each period until nctWrite is called again.

If the initialized SampleRate is zero, the task transmits associated messages immediately for

each entry in the array of each channel, with as little delay as possible between messages.

After the message for the final sample is transmitted, no further transmissions occur until

nctWrite is called again, regardless of the nctPropBehavAfterFinalOut property.

Because all channels of a message are transmitted on the network as a unit, nctWrite

enforces the following rules:

• You cannot write the same message in more than one NctModeOutput task.

• You can write more than one message in a single NctModeOutput task.

• You can write a subset of channels for a message in a single NctModeOutput task.

For channels that are not included in the task, the channel default value

(nctPropChanDefaultValue) is transmitted in the CAN message.

Chapter 8 Channel API for C

© National Instruments 8-79 NI-CAN Hardware and Software Manual

For many applications, the most straightforward technique is to assign a single

NctModeOutput task for each message you want to transmit. In each task, include all

channels of that message in the ChannelList. This ensures you can provide new samples

for the entire message with each nctWrite.

© National Instruments 9-1 NI-CAN Hardware and Software Manual

9
Using the Frame API

This chapter provides information to help you get started with the Frame

API.

Choose Which Objects To Use

An application written for the NI-CAN Frame API communicates on the

network by using various objects. Which Frame API objects to use depends

largely on the needs of the application. The following sections discuss the

objects provided by the Frame API, and reasons why you might use each

class of object.

Using CAN Network Interface Objects
The CAN Network Interface Object encapsulates a physical interface to a

CAN network, usually a CAN port on an AT, PCI, PCMCIA, PXI, or USB

card.

You use the CAN Network Interface Object to read and write complete

CAN frames. As a CAN frame arrives from over the network, it can be

placed into the read queue of the CAN Network Interface Object. You can

retrieve CAN frames from this read queue using the ncRead or

ncReadMult function. The read functions provide a timestamp of when

the frame was received, the arbitration ID of the frame, the type of frame

(data, remote, or RTSI), the data length, and the data bytes. You also can

use the CAN Network Interface Object to write CAN frames using the

ncWrite function.

Some possible uses for the CAN Network Interface Object include the

following:

• You can use the read queue to log all CAN frames transferred across

the network. This log is useful when you need to view CAN traffic to

verify that all CAN devices are functioning properly.

• You can use the write queue to transmit a sequence of CAN frames in

quick succession.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-2 ni.com

• You can read and write CAN frames for access to configuration

settings within a device. Because such settings generally are not

accessed during normal device operation, a dedicated CAN Object is

not appropriate.

• For higher level protocols based on CAN, you can use sequences of

write/read transactions to initialize communication with a device. In

these protocols, specific sequences of CAN frames often need to be

exchanged before you can access the data from a device. In such cases,

you can use the CAN Network Interface Object to set up

communication, then use CAN Objects for actual data transfer with the

device.

• The USB-847x hardware uses only the Network Interface Objects for

communication.

In general, you use CAN Network Interface Objects for situations in which

you need to transfer arbitrary CAN frames.

Using LIN Network Interface Objects
The LIN Network Interface Object encapsulates a physical interface to a

LIN network, such as a LIN port on a USB-LIN device. You use the LIN

Network Interface Object to read and write NI LIN frame types. As a LIN

frame arrives from over the network, it can be placed into the read queue of

the LIN Network Interface Object.

You can retrieve LIN frames from this read queue using the ncRead or

ncReadMult function. The read functions provide a timestamp of when

the frame was received, the arbitration ID of the frame, the type of frame

(full, bus inactive, wakeup received, or bus error), the data length, and the

data bytes. You also can use the LIN Network Interface Object to write any

of three NI LIN frame types (response entry, header, or full), using the

ncWrite or ncWriteMult function.

Some possible uses for the LIN Network Interface Object include the

following:

• You can use the read queue and the LIN device in slave mode, to log

all LIN frames transferred across the network. This log is useful when

you need to view LIN traffic to verify that all LIN devices are

functioning properly.

• You can use the write and read queues and the LIN device in slave

mode, to emulate one or more slave nodes.

• You can use the write queue and the LIN device in master mode,

to transmit a sequence of LIN frames in quick succession.

Chapter 9 Using the Frame API

© National Instruments 9-3 NI-CAN Hardware and Software Manual

• You can loop individual writes with a variable delay between each, and

the LIN device in master mode, to emulate LIN descriptor file (LDF)

control of scheduling of LIN traffic.

Using CAN Objects
The CAN Object encapsulates a specific CAN arbitration ID and its

associated data.

Every CAN Object is always associated with a specific CAN Network

Interface Object, used to identify the physical interface on which the CAN

Object is located. The application can use multiple CAN Objects in

conjunction with their associated CAN Network Interface Object.

The CAN Object provides high-level access to a specific arbitration ID.

You can configure each CAN Object for different forms of background

access. For example, you can configure a CAN Object to transmit a data

frame every 100 milliseconds, or to periodically poll for data by

transmitting a remote frame and receiving the data frame response. The

arbitration ID, direction of data transfer, data length, and when data transfer

occurs (periodic or unsolicited) are all preconfigured for the CAN Object.

When you have configured and opened the CAN Object, data transfer is

handled in the background using read and write queues. For example, if the

CAN Object periodically polls for data, the NI-CAN driver automatically

handles the periodic transmission of remote frames, and stores incoming

data in the read queue of the CAN Object for later retrieval by the ncRead

function. For CAN Objects that receive data frames, the ncRead function

provides a timestamp of when the data frame arrived, and the data bytes of

the frame. For CAN Objects that transmit data frames, the ncWrite

function provides the outgoing data bytes.

Some possible uses for CAN Objects include the following:

• You can configure a CAN Object to periodically transmit a data frame

for a specific arbitration ID. The CAN Object transmits the same data

bytes repetitively until different data is provided using ncWrite.

• You can configure a CAN Object to watch for unsolicited data frames

received for its arbitration ID, then store that data in the read queue

of the CAN Object. A watchdog timeout is provided to ensure that

incoming data is received periodically. This configuration is useful

when you want to apply a timeout to data received for a specific

arbitration ID and store that data in a dedicated queue. If you do not

need to apply a timeout for a given arbitration ID, it is preferable to use

the CAN Network Interface Object to receive that data.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-4 ni.com

• You can configure a CAN Object to periodically poll for data by

transmitting a remote frame and receiving the data frame response.

This configuration is useful for communication with devices that

require a remote frame to transmit their data.

• You can configure a CAN Object to transmit a data frame whenever it

receives a remote frame for its arbitration ID. You can use this

configuration to simulate a device which responds to remote frames.

In general, you use CAN Objects for data transfer for a specific arbitration

ID, especially when that data transfer needs to occur periodically.

Frame API Basic Programming Model for CAN

The following steps demonstrate how to use the Frame API functions in an

application. The steps are shown in Figure 9-1, Programming Model for

NI-CAN Frame API.

Chapter 9 Using the Frame API

© National Instruments 9-5 NI-CAN Hardware and Software Manual

Figure 9-1. Programming Model for NI-CAN Frame API

Yes

No

Yes

No

No

Yes

Yes

No

START

END

Communicate Using Objects

• Wait for Data Available

 (ncWaitForState,

 ncCreateNotification)

• Read Data (ncRead)

• Write Data (ncwrite)

and so on

Configure Object

Open Object (ncOpenObject)

Start Communication (ncAction)

Close Object (ncCloseObject)

Are All

Objects Configured?

Are All

Objects Open?

Finished

CAN Programming?

Are All

Objects Closed?

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-6 ni.com

1. Configure Objects.

Prior to opening the objects used in the application, you must configure

the objects with their initial attribute settings. Each object is

configured within the application by calling the ncConfig function.

This function takes the name of the object to configure, along with a

list of configuration attribute settings.

2. Open Objects.

You must call the ncOpen function to open each object you use within

the application.

The ncOpen function returns a handle for use in all subsequent Frame

API calls for that object. When you are using the LabVIEW function

library, this handle is passed through the upper left and right terminals

of each Frame API function used after the open.

3. Start Communication.

You must start communication on the CAN network before you can

use the objects to transfer data.

If you configured the CAN Network Interface Object to start on open,

that object and all of its higher level CAN Objects are started

automatically by the ncOpen function, so nothing special is required

for this step.

If you disabled the start-on-open attribute, when the application is

ready to start communication, use the CAN Network Interface Object

to call the ncAction function with the Opcode parameter set to

NC_OP_START. This call is often useful when you want to use

ncWrite to place outgoing data in write queues prior to starting

communication. This call is also useful in high bus load situations,

because it is more efficient to start communication after all objects

have been opened.

4. Communicate Using Objects

After you open the objects and start communication, you are ready to

transfer data on the CAN network. The manner in which data is

transferred depends on the configuration of the objects you are using.

For this example, assume that you are communicating with a CAN

device that periodically transmits a data frame. To receive this data,

assume that a CAN Object is configured to watch for data frames

received for its arbitration ID and store that data in its read queue.

4a. Wait for Available Data

To wait for the arrival of a data frame from the device, you can call

ncWaitForState with the DesiredState parameter set to

NC_ST_READ_AVAIL. The NC_ST_READ_AVAIL state tells you that

Chapter 9 Using the Frame API

© National Instruments 9-7 NI-CAN Hardware and Software Manual

data for the CAN Object has been received from the network and

placed into the read queue of the object.

When receiving data from the device, if the only requirement is to

obtain the most recent data, you are not required to wait for the

NC_ST_READ_AVAIL state. If this is the case, you can set the read

queue length of the CAN Object to zero during configuration, so that

it only holds the most recent data bytes. Then you can use the ncRead

function as needed to obtain the most recent data bytes received.

4b. Read Data

Read the data bytes using ncRead. For CAN Objects that receive data

frames, ncRead returns a timestamp of when the data was received,

followed by the actual data bytes (the number of which you configured

in step 1).

Steps 4a and 4b should be repeated for each data value you want to

read from the CAN device.

5. Close Objects.

When you are finished accessing the CAN devices, close all objects

using the ncClose function before you exit the application.

Frame API Basic Programming Model for LIN

This section describes the Frame API programming model for LIN.

LIN Interface as Bus Monitor
The following steps demonstrate how to use the Frame API functions with

a LIN application in which the LIN interface is acting as a bus monitor.

The steps are shown in the flowchart in Figure 9-2, Frame API with LIN

Interface as Bus Monitor.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-8 ni.com

Figure 9-2. Frame API with LIN Interface as Bus Monitor

Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Log Bus Errors = 1 (Bus errors will be

 reported as bus error frames in the

 read queue)

Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Log Bus Errors = 1 (Bus errors will be

 reported as bus error frames in the

 read queue)

No

Yes

Are all

attributes

set?

No

Yes

Finished LIN

Programming?

Open Network Interface Object (ncOpen)

Start Communication (ncAction)

Stop Communication (ncAction)

Read from the slave task using the Network

Interface Object

• Wait for reception of a full LIN frame

(ncWaitForState – Read Available)

• Read NI LIN full frame types (ncReadNet,

 ncReadNetMult)

Close Network Interface Object (ncClose)

Start

End

Chapter 9 Using the Frame API

© National Instruments 9-9 NI-CAN Hardware and Software Manual

1. Open a Network Interface Object.

You must call the ncOpenObject function to open the Network

Interface Object used in this example.

The ncOpenObject function returns a handle for use in all subsequent

Frame API calls for that object. When you are using the LabVIEW

function library, this handle is passed through the upper left and right

terminals of each Frame API function used after the open.

2. Set attribute(s) for the Network Interface Object.

Prior to starting the Network Interface Object, you must configure it

with its initial attribute settings. These are configured by calling the

ncSetAttribute function with each desired attribute ID and value.

This function takes the name of the object to configure, along with the

attribute ID and value.

For this example, the baud rate and checksum type should be

configured to match those of the LIN. Logging of bus errors is useful

for troubleshooting, in the event any of the devices attached to the LIN

do not behave as expected.

3. Start communication.

You must start communication on the LIN bus before you can use the

Network Interface Object to transfer data.

4. Read from the slave task using the Network Interface Object.

By default, the NI LIN interface will subscribe to data in response to

all headers received from the bus. Upon successful reception of

response data and checksum for a header, the slave task will combine

the header and response data into a single full frame and load it into the

read queue. If log bus errors is enabled, then the first bus error that

occurs within the header or response portion of each LIN frame will be

placed into a bus error frame and loaded into the read queue. The LIN

interface slave task will ignore the remainder of the frame transaction

on the bus and prepare for the reception of the next header. The loading

of the full or bus error frame into the read queue will set a read

available flag in the interface. ncWaitForState should be used to

wait for read available before executing the ncRead or ncReadMult

function. Step 4 should be repeated for monitoring situations, as the

read queue is being continuously filled with LIN frame data resulting

from bus transactions initiated by an external master.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-10 ni.com

5. Stop communication.

Stop communication on the LIN bus before closing the Network

Interface Object.

6. Close the Network Interface Object.

When you are finished accessing the LIN bus, close the Network

Interface Object using the ncCloseObject function before you exit

the application.

LIN Interface as Master
The following steps demonstrate how to use the Frame API functions in a

LIN application in which the LIN interface is emulating a master device

executing the behavior specified in an LDF. The steps are shown in

Figure 9-3, Frame API – LIN interface emulating a master executing the

behavior specified in an LDF.

Chapter 9 Using the Frame API

© National Instruments 9-11 NI-CAN Hardware and Software Manual

Figure 9-3. Frame API – LIN interface emulating a master executing the

behavior specified in an LDF

Open Network Interface Object (ncOpen)

Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Log Bus Errors = 1 (Bus errors will be

 reported as bus error frames in the

 read queue)

 Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Self-Reception = 1 (A full frame will be loaded into the read

 queue for each bus frame in which the LIN interface slave task

 publishes data in response to a header)

• Log Bus Errors = 1 (Bus errors will be reported as bus error

 frames in the read queue)

• Termination = 1 (Master device provides termination for the bus)

No

Yes

Are all

attributes

set?

Yes

Yes

Finished LIN

Programming?

No

Update

response

entry(s)?

Start Communication (ncAction)

Stop Communication (ncAction)

Close Network Interface Object (ncClose)

Start

End

Write to the master task and read from the slave task using the

Network Interface Object

• Write NI LIN header frame type (ncWriteNet)

• Wait for reception of a full LIN Frame

 (ncWaitForState--Read Available)

• Read resulting NI LIN full frame type (cnReadNet)

• Insert delay for this ID as specified in the LDF

Write to the slave task using the Network Interface Object

• Write NI LIN response entry frame type(s) (ncWriteNet or

 ncWriteNetMult) to load LIN interface response queue

 with slave task responses

• Wait for write completion of the response entry frame

 type(s) (ncWaitForState--Write Success)

No

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-12 ni.com

1. Open a Network Interface Object.

You must call the ncOpenObject function to open the Network

Interface Object used in this example.

The ncOpenObject function returns a handle for use in all subsequent

Frame API calls for that object. When you are using the LabVIEW

function library, this handle is passed through the upper left and right

terminals of each Frame API function used after the open.

2. Set attributes for the Network Interface Object.

Prior to starting the Network Interface Object, you must configure it

with its initial attribute settings. These are configured by calling the

ncSetAttribute function with each desired attribute ID and value.

This function takes the name of the object to configure, along with the

attribute ID and value.

For this example, the baud rate and checksum type should be

configured to match those of the LIN being accessed. Self-reception is

shown as enabled but it is optional. When the slave task publishes data,

the resulting full frame is logged into the read queue only if

self-reception is enabled. In other words, if the response queue is

loaded with three entries that publish in response and two entries that

subscribe in response, then only the resulting full frames for the IDs of

the two subscribing entries will be logged if self-reception is disabled.

If self-reception is enabled, then the resulting full frames for the IDs of

all five entries will be logged. Logging of bus errors is useful for

troubleshooting, in the event the slave device does not behave as

expected. Since the LIN interface is emulating the master device,

termination should be enabled.

3. Start Communication.

You must start communication on the LIN bus before you can use the

Network Interface Object to transfer data.

4. Write to the slave task using the Network Interface Object.

Write response entry frames to the LIN interface slave task in order to

configure how it will respond to the ID in each header transmitted by

the master task. If it should subscribe to data in response to a header

ID, then the DLC should be set to 0 and the data bytes are don’t care.

If it should publish in response to a header ID, then the DLC should be

in the range of one to eight with the data bytes containing the actual

data to publish. If you are using an LDF, then it will define the behavior

of each slave task (including the slave task in the master node),

regarding its response to each header. Write completion of the

response entry frame types will set a write success flag in the interface.

Chapter 9 Using the Frame API

© National Instruments 9-13 NI-CAN Hardware and Software Manual

ncWaitForState should be used to wait for write success following

the write.

5. Write to the master task and read from the slave task using the Network

Interface Object.

In this example, the NI LIN interface is acting as a master node. Thus,

after the initial response entries have been loaded into the slave task

response queue (step 4), you can issue the first header on the bus

by writing a header frame type to the LIN interface. Per the LIN 2.0

Specification, the LIN interface master task handles processing of the

header frame type and subsequent transmission of the header onto

the LIN.

As a result of the LIN interface master task transmitting a header, the

LIN interface slave task will either subscribe to data or publish data in

response. Each time the slave task subscribes to data in response, it will

combine the header and response into a single full frame type which is

placed into the read queue. If self-reception is enabled, then each time

the slave task publishes data in response, it will combine the header

and response into a single full frame type which is placed into the read

queue. If log bus errors is enabled, then the first bus error that occurs

within the header or response portion of each LIN frame will be placed

into a bus error frame and loaded into the read queue. The LIN

interface slave task will ignore the remainder of the frame transaction

on the bus and prepare for the reception of the next header. The loading

of the full or bus error frame into the read queue will set a read

available flag in the interface. ncWaitForState should be used to

wait for read available before executing the ncRead or ncReadMult

function. You may choose to insert a time delay after processing one

complete frame. The LDF will specify the delay for each ID.

Typically, data that is published by a slave task (including the slave

task in a master node, as is the case in this example), is updated as a

result of a change in one or more inputs. Response entries within the

LIN interface slave task response queue may be updated at any point

to emulate this behavior. Steps 4 and 5 should be repeated as necessary

to create the desired master behavior.

6. Stop communication.

Stop communication on the LIN bus before closing the Network

Interface Object.

7. Close the Network Interface Object.

When you are finished accessing the LIN bus, close the Network

Interface Object using the ncCloseObject function before you exit

the application.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-14 ni.com

LIN Interface as Slave Device
The following steps demonstrate how to use the Frame API functions in a

LIN application in which the LIN interface is acting as a slave device. The

steps are shown in the Figure 9-4, Frame API – LIN interface acting as

slave.

Chapter 9 Using the Frame API

© National Instruments 9-15 NI-CAN Hardware and Software Manual

Figure 9-4. Frame API – LIN interface acting as slave

Open Network Interface Object (ncOpen)

Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Log Bus Errors = 1 (Bus errors will be

 reported as bus error frames in the

 read queue)

Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Self-Reception = 1 (A full frame will be loaded into the read

 queue for each bus frame in which the LIN interface slave task

 publishes data in response to a header.)

• Log Bus Errors = 1 (Bus errors will be reported as bus error

 frames in the read queue)

No

Yes

Are all

attributes

set?

Yes

Yes

Finished LIN

Programming?

No

Update

response

entry(s)?

Start Communication (ncAction)

Stop Communication (ncAction)

Close Network Interface Object (ncClose)

Start

End

Read from the slave task using the Network Interface Object

• Wait for reception of a full LIN frame

 (ncWaitForState--Read Available)

• Read NI LIN full frame type(s) (ncWriteNet or ncWriteNetMult)

 resulting from reception of master headers

Write to the slave task using the Network Interface Object

• Write NI LIN response entry frame type(s) (ncWriteNet or

 ncWriteNetMult) to load LIN interface response queue with

 slave task response(s)

• Wait for write completion of the response entry frame type(s)

 (ncWaitForState--Write Success)

No

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-16 ni.com

1. Open a Network Interface Object

You must call the ncOpenObject function to open the Network

Interface Object used in this example.

The ncOpenObject function returns a handle for use in all subsequent

Frame API calls for that object. When you are using the LabVIEW

function library, this handle is passed through the upper left and right

terminals of each Frame API function used after the open.

2. Set attributes for the Network Interface Object.

Prior to starting the Network Interface Object, you must configure it

with its initial attribute settings. These are configured by calling the

ncSetAttribute function with each desired attribute ID and value.

This function takes the name of the object to configure, along with the

attribute ID and value.

For this example, the baud rate and checksum type should be

configured to match those of the LIN being accessed. Self-reception is

shown as enabled but it is optional. When the slave task publishes data,

the resulting full frame is logged into the read queue only if

self-reception is enabled. In other words, if the response queue is

loaded with three entries that publish in response and two entries that

subscribe in response, then only the resulting full frames for the IDs of

the two subscribing entries will be logged, if self-reception is disabled.

If self-reception is enabled, then the resulting full frames for the IDs of

all five entries will be logged. Logging of bus errors is useful for

troubleshooting, in the event the slave device does not behave as

expected.

3. Start Communication.

You must start communication on the LIN bus before you can use the

Network Interface Object to transfer data.

4. Write to the slave task using the Network Interface Object.

Write response entry frames to the LIN interface slave task in order to

configure how it will respond to the ID in each header received by the

master. If it should subscribe to data in response to a header ID, then

the DLC should be set to 0 and the data bytes are don’t care. If it should

publish in response to a header ID, then the DLC should be in the range

of one to eight with the data bytes containing the actual data to publish.

Write completion of the response entry frame types will set a write

success flag in the interface. ncWaitForState should be used to wait

for write success following the write.

Chapter 9 Using the Frame API

© National Instruments 9-17 NI-CAN Hardware and Software Manual

5. Read from the slave task using the Network Interface Object

As the external master issues headers, the LIN interface slave task will

either subscribe to data or publish data in response to each. Each time

the slave task subscribes to data in response, it will combine the header

and response into a single full frame type which is placed into the read

queue. If self-reception is enabled, then each time the slave task

publishes data in response, it will combine the header and response

into a single full frame type which is placed into the read queue. If log

bus errors is enabled, then the first bus error that occurs within the

header or response portion of each LIN frame will be placed into a bus

error frame and loaded into the read queue. The LIN interface slave

task will ignore the remainder of the frame transaction on the bus and

prepare for the reception of the next header. The loading of the full or

bus error frame into the read queue will set a read available flag in the

interface. ncWaitForState should be used to wait for read available

before executing the ncRead or ncReadMult function.

Typically, slave devices that publish data update it as a result of a

change in one or more inputs. Response entries within the LIN

interface slave task response queue may be updated at any point to

emulate this behavior. Steps 4 and 5 should be repeated as necessary to

create the desired slave behavior.

6. Stop communication.

Stop communication on the LIN bus before closing the Network

Interface Object.

7. Close the Network Interface Object.

When you are finished accessing the LIN bus, close the Network

Interface Object using the ncCloseObject function before you exit

the application.

LIN Interface Accesses Single Subscribing Slave Device
The following steps demonstrate how to use the Frame API functions in a

LIN application in which the LIN interface is to provide simple access to a

single slave device that subscribes to data. The steps are shown in

Figure 9-5, Frame API – LIN interface provides simple access to a

single slave device that subscribes to data.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-18 ni.com

Figure 9-5. Frame API – LIN interface provides simple access to a
single slave device that subscribes to data

Open Network Interface Object (ncOpen)

Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Log Bus Errors = 1 (Bus errors will be

 reported as bus error frames in the

 read queue)

Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Self-Reception = 1 (A full frame will be loaded into the read

 queue for each bus frame in which the LIN interface slave task

 publishes data in response to a header.)

• Log Bus Errors = 1 (Bus errors will be reported as bus error

 frames in the read queue)

• Termination = 1 (Master device provides termination for

 the bus)

No

Yes

Are all

attributes

set?

No

Yes

Stop Communication (ncAction)

Read from the slave task using the Network Interface Object

• Read resulting NI LIN full frame type (ncReadNet)

Write to the master and slave tasks using the Network

Interface Object

• Write NI LIN full frame type (ncWriteNet), to update response

 queue, issue header, and publish response in a single step

• Wait for write completion of the full frame type

 (ncWaitForState--Write Success)

Start

End

Finished LIN

Programming?

Start Communication (ncAction)

Close Network Interface Object (ncClose)

Chapter 9 Using the Frame API

© National Instruments 9-19 NI-CAN Hardware and Software Manual

1. Open a Network Interface Object.

You must call the ncOpenObject function to open the Network

Interface Object used in this example.

The ncOpenObject function returns a handle for use in all subsequent

Frame API calls for that object. When you are using the LabVIEW

function library, this handle is passed through the upper left and right

terminals of each Frame API function used after the open.

2. Set attributes for the Network Interface Object.

Prior to starting the Network Interface Object, you must configure it

with its initial attribute settings. These are configured by calling the

ncSetAttribute function with each desired attribute ID and value.

This function takes the name of the object to configure, along with the

attribute ID and value.

For this example, the baud rate and checksum type should be

configured to match those of the slave device. Self-reception is shown

as enabled but it is optional. In this example the NI LIN interface slave

task is publishing data in response to a master task header. When the

slave task publishes data, the resulting full frame is logged into the read

queue only if self-reception is enabled. Logging of bus errors is useful

for troubleshooting, in the event the slave device does not behave as

expected.

3. Start Communication.

You must start communication on the LIN bus before you can use the

Network Interface Object to transfer data.

4. Write to the master and slave tasks using the Network Interface Object

Writing a full frame type containing the ID of the slave device to the

LIN interface combines three tasks into a single step. First, the LIN

interface slave task response queue is updated with the ID and data

transferred in the full frame, and the response type is set to publish.

Second, the LIN interface master task transmits a header containing

the ID onto the bus.

Finally, the LIN interface slave task publishes the data in response to

the header (because its response queue has been updated to publish

data in response to a header containing this ID). The net effect is that

the LIN interface writes data to the slave device (the LIN interface

slave task publishes data in response to the header ID while the slave

device subscribes to data in response to the header ID). Write

completion of the full frame type will set a write success flag in the

interface. ncWaitForState should be used to wait for write success

following the write.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-20 ni.com

5. Read from the slave task using the Network Interface Object.

If the slave device is working as expected, it will subscribe to data in

response to the header transmitted in step 4. The NI LIN interface slave

task will publish data in response and, if self-reception is enabled,

combine the header and response data into a full frame type to be

logged in the read queue. If the slave device is not working as expected

(perhaps it publishes in response to the header, in which case there is a

collision on the LIN), the resulting bus error frame will be placed into

the read queue, since logging of bus errors has been enabled. Steps 4

and 5 should be repeated for each data set you want to write to the slave

device.

6. Stop communication.

Stop communication on the LIN bus before closing the Network

Interface Object.

7. Close the Network Interface Object.

When you are finished accessing the LIN bus, close the Network

Interface Object using the ncCloseObject function before you exit

the application.

LIN Interface Accesses Single Publishing Slave Device
The following steps demonstrate how to use the Frame API functions in a

LIN application in which the LIN interface is to provide simple access to a

single slave device that publishes data. The steps are shown in Figure 9-6,

Frame API – LIN interface provides simple access to a

single slave device that publishes data.

Chapter 9 Using the Frame API

© National Instruments 9-21 NI-CAN Hardware and Software Manual

Figure 9-6. Frame API – LIN interface provides simple access to a

single slave device that publishes data

Open Network Interface Object (ncOpen)

Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Log Bus Errors = 1 (Bus errors will be

Set Attribute (ncSetAttribute)

• Baud Rate

• Checksum Type

• Log Bus Errors = 1 (Bus errors will be reported as bus error

 frames in the read queue)

• Termination = 1 (Master device provides termination for

 the bus)

No

Yes

Are all

attributes

set?

No

Yes

Finished LIN

Programming?

Start Communication (ncAction)

Stop Communication (ncAction)

Read from the slave task using the Network Interface Object

• Wait for reception of a full LIN frame

 (ncWaitForState--Read Available)

• Read resulting NI LIN full frame type (ncReadNet)

Write to the master task using the Network Interface Object

• Write NI LIN header frame type (ncWriteNet)

Close Network Interface Object (ncClose)

Start

End

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-22 ni.com

1. Open a Network Interface Object.

You must call the ncOpenObject function to open the Network

Interface Object used in this example.

The ncOpenObject function returns a handle for use in all subsequent

Frame API calls for that object. When you are using the LabVIEW

function library, this handle is passed through the upper left and right

terminals of each Frame API function used after the open.

2. Set attributes for the Network Interface Object.

Prior to starting the Network Interface Object, you must configure it

with its initial attribute settings. These are configured by calling the

ncSetAttribute function with each desired attribute ID and value.

This function takes the name of the object to configure, along with the

attribute ID and value.

For this example, the baud rate and checksum type should be

configured to match those of the slave device. Logging of bus errors is

useful for troubleshooting, in the event the device does not behave as

expected.

3. Start Communication.

You must start communication on the LIN bus before you can use the

Network Interface Object to transfer data.

4. Write to the master task using the Network Interface Object.

Writing a header frame type containing the ID of the slave device to

the LIN interface causes a break-sync-id sequence to be transmitted on

the LIN.

5. Read from the slave task using the Network Interface Object.

If the slave device is working as expected, it will publish data in

response to the header transmitted in step 4. The NI LIN interface slave

task will subscribe to this data by default and consequently log it and

the header as a full frame type in the read queue. If the slave device is

not working as expected, the resulting bus error frame will be placed

into the read queue, since logging of bus errors has been enabled. The

loading of the full or bus error frame into the read queue will set a read

available flag in the interface. ncWaitForState should be used to

wait for read available before executing the ncRead or ncReadMult

function. Steps 4 and 5 should be repeated for each data set you want

to read from the slave device.

Chapter 9 Using the Frame API

© National Instruments 9-23 NI-CAN Hardware and Software Manual

6. Stop communication.

Stop communication on the LIN bus before closing the Network

Interface Object.

7. Close the Network Interface Object.

When you are finished accessing the LIN bus, close the Network

Interface Object using the ncCloseObject function before you exit

the application.

LIN Interface Sleep and Wakeup Behavior
Regardless of whether the LIN interface is acting as a master or slave

device, a bus inactive frame will always be loaded into the read queue after

four seconds of bus inactivity. An external device may also request that the

bus go to sleep, which the LIN interface will return as a full frame

containing the sleep request message. The NI-CAN Frame API for LIN

provides the option of ignoring the bus inactive frame or sleep request, or

placing the interface into sleep mode by setting the sleep attribute to true.

Keep in mind that if the bus inactive frame or sleep request is ignored and

the other devices on the bus go to sleep, then the interface will ignore all

bus activity (wakeup breaks) until a valid break-sync sequence is received.

This behavior may be desirable in instances where you simply want to log

complete frames transmitted over the bus or act as a slave device. If the

interface is placed into sleep mode upon receiving the bus inactive frame

or sleep request, it may either wake or be awakened by, the bus.

Figure 9-7, Frame API – LIN interface sleep and wakeup behavior, shows

how to implement sleep and wakeup behavior when the interface is acting

as either a master or slave device. The flowchart assumes that an interface

has been opened, the desired attribute values have been initialized, it has

been started, and ncWaitForState (to check for read available) combined

with ncReadNet or ncReadNetMult, are being used to read frames from

the bus.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-24 ni.com

Figure 9-7. Frame API – LIN interface sleep and wakeup behavior

Set the sleep attribute to TRUE (ncSetAttribute).

Start

Enable logging of

wakeup received frames

(ncSetAttribute).

Wait for reception of

wakeup break reported

via wakeup received

frame (ncWaitForState).

Is the interface acting

as a master device (have header or

fullframe types been written to

the interface)?

Bus inactive

frame or full frame containing

sleep request message received

(ncReadNet,

ncReadNetMult)?

Do you

want the LIN interface to

go to sleep?

Do you want

the LIN interface to

wake the LIN?

Is the interface acting

as a master device (have header

or full frame types been written

to the interface)?

Wakeup received

frame received (ncReadNet,

ncReadNetMult)?

The interface internally sets the

sleep attribute to FALSE. The

interface is ready to resume

slave device (awake) functionality

No Yes

Yes

No

No

No

Yes

No

No

Yes

Write a header

or full frame

type. This will

cause a wakeup

break to be

transmitted on

the bus followed

by a 100 ms

delay to allow

all slaves to

wake up, then

transmission of

the header for

the header or

full frame type.

The interface

internally sets

the sleep

attribute to

FALSE after the

100 ms delay.

The interface is

now ready to

resume master

device (awake)

functionality.

Write a response

entry frame type

(DLC = 0 for

subscriber, or

DLC = data length for

publisher). This will

cause a wakeup

break to be

transmitted on the

bus. If a master does

not wake up following

the wakeup break,

then wakeup breaks

will be reissued per

the LIN 2.0 spec. The

interface internally

sets the sleep

attribute to FALSE

when the master

wakes up and issues

its first header. The

interface is now ready

to resume slave

device (awake)

functionality.

Yes

Yes

Write a header

or full frame

type. The

interface will

ensure that the

header for the

frame type is

transmitted

100 ms after the

most recent

wakeup break

has been

received. The

interface

internally sets

the sleep

attribute to

FALSE after the

100 ms delay.

The interface is

now ready to

resume master

device (awake)

functionality.

Chapter 9 Using the Frame API

© National Instruments 9-25 NI-CAN Hardware and Software Manual

Frame API Additional Programming Topics

The following sections include information you can use to extend the basic

programming model.

 RTSI
The Frame API provides RTSI features that are lower level than the

synchronization features of the Channel API. The following list describes

some of the more commonly used RTSI features in the Frame API.

• You can configure the CAN Network Interface Object to log a special

RTSI frame into the read queue when a RTSI input transitions from

low to high. This RTSI frame is timestamped, so you can use it to

analyze the time of the RTSI pulse relative to the CAN frames on the

network.

• You can configure the CAN Object to generate a RTSI output pulse

when its ID is received. This allows you to trigger other products based

on the reception of a specific CAN frame.

• You can configure the CAN Object to transmit a CAN frame when a

RTSI input transitions from low to high. This allows you to transmit

based on a functional unit in another product, such as a counter in an

NI-DAQ or NI-DAQmx E Series MIO product.

• You can use ncConnectTerminals and the Timestamp Format

attribute to synchronize multiple CAN cards by connecting timebases

and start triggers. The ncConnectTerminals function provides

additional RTSI features that can be used in conjunction with the

object-based RTSI features described above.

For more information on RTSI configuration, refer to the ncConfig and

ncConnectTerminals functions in this manual.

Remote Frames
The Frame API has extensive features to transmit and receive remote

frames. The following list describes some of the more commonly used

remote frame features in the Frame API.

• The CAN Network Interface Object can transmit arbitrary remote

frames.

• If you are using Series 2 hardware or later, the CAN Network Interface

Object can receive remote frames, such as to monitor bus traffic.

Series 1 hardware uses the Intel 82527 CAN controller, which cannot

receive arbitrary remote frames.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-26 ni.com

• You can configure a CAN Object to transmit a remote frame and

receive the corresponding data frame. The remote frame can be

transmitted periodically, based on a RTSI input, or each time you call

ncWrite.

• You can configure a CAN Object to transmit a data frame in response

to reception of the corresponding remote frame.

Using Queues
To maintain an ordered history of data transfers, NI-CAN supports the use

of queues, also known as FIFO (first-in-first-out) buffers. The basic

behavior of such queues is common to all NI-CAN objects.

There are two basic types of NI-CAN queues: the read queue and the write

queue. NI-CAN uses the read queue to store incoming network data items

in the order they arrive. You access the read queue using ncRead to obtain

the data. NI-CAN uses the write queue to transmit network frames one at a

time using the network interface hardware. You access the write queue

using ncWrite to store network data items for transmission.

State Transitions
The NC_ST_READ_AVAIL state transitions from false to true when NI-CAN

places a new data item into an empty read queue, and remains true until you

read the last data item from the queue and the queue is empty.

The NC_ST_READ_MULT state transitions from false to true when the

number of items in a queue exceeds a threshold. The threshold is set using

the NC_ATTR_NOTIFY_MULT_LEN attribute. The NC_ST_READ_MULT state

and ncReadMult function are useful in high-traffic networks in which data

items arrive quickly.

The NC_ST_WRITE_SUCCESS state transitions from false to true when the

write queue is empty and NI-CAN has successfully transmitted the last data

item onto the network. The NC_ST_WRITE_SUCCESS state remains true

until you write another data item into the write queue. When

communication starts, the NC_ST_WRITE_SUCCESS state is true by default.

Empty Queues
For both read and write queues, the behavior for reading an empty queue is

similar. When you read an empty queue, the previous data item is returned

again. For example, if you call ncRead when NC_ST_READ_AVAIL is false,

the data from the previous call to ncRead is returned again, along with the

Chapter 9 Using the Frame API

© National Instruments 9-27 NI-CAN Hardware and Software Manual

CanWarnOldData warning. If no data item has yet arrived for the read

queue, a default data item is returned, which consists of all zeros. You

should generally wait for NC_ST_READ_AVAIL prior to the first call to

ncRead.

Full Queues
For both read and write queues, the behavior for writing a full queue

is similar. When you write a full queue, NI-CAN returns the

CanErrOverflowWrite error code. For example, if you write too many

data items to a write queue, the ncWrite function eventually returns the

overflow error.

Disabling Queues
If you do not need a complete history of all data items, you can disable the

read queue and/or write queue by setting its length to zero. Zero length

queues are typically used only with CAN objects, not the CAN Network

Interface Object. Using zero length queues generally saves memory, and

often results in better performance. When a new data item arrives for a zero

length queue, it overwrites the previous item without indicating an

overflow. The NC_ST_READ_AVAIL and NC_ST_WRITE_SUCCESS states

still behave as usual, but you can ignore them if you want only the most

recent data. For example, when NI-CAN writes a new data item to the read

buffer, the NC_ST_READ_AVAIL state becomes true until the data item is

read. If you only want the most recent data, you can ignore the

NC_ST_READ_AVAIL state, as well as the CanWarnOldData warning

returned by ncRead.

Using the CAN Network Interface Object with CAN Objects
For many applications, it is desirable to use a CAN Network Interface

Object in conjunction with higher level CAN Objects. For example, you

can use CAN objects to transmit data or remote frames periodically, and

use the CAN Network Interface Object to receive all incoming frames.

When one or more CAN Objects are open, the CAN Network Interface

Object cannot receive frames which would normally be handled by the

CAN Objects. The following flowchart shows the steps performed by the

Frame API when a CAN frame is received.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-28 ni.com

Figure 9-8. Flowchart for CAN Frame Reception

The decisions outlined in Figure 9-8 are generally performed by the

onboard CAN communications controller chip. Nevertheless, if you intend

to use CAN Objects as the sole means of accessing the CAN bus, it is best

to disable all frame reception in the CAN Network Interface Object

by setting the comparator attributes to NC_CAN_ARBID_NONE

(hex CFFFFFFF). By doing this, the CAN communications controller chip

is best able to filter out all incoming frames except those handled by CAN

Objects.

Yes

No

Standard Extended

No No

Yes

Yes

Yes

Place Frame Into Read Queue of

CAN Network Interface Object

CAN Object Uses Frame

CAN Network Interface Object

Apply Standard Mask

NoNo

Frame Ignored

Arbitration ID

Handled by an Open

CAN Object?

Frame Received

Standard or

Extended Frame?

Standard

Comparator Disabled?

(NC_CAN_ARBID_NONE)

Extended

Comparator Disabled?

(NC_CAN_ARBID_NONE)

Frame Ignored

Frame Ignored

Frame Ignored

Apply Extended Mask

Masked

Arbitration ID

Equal to Standard

Comparator?

Masked

Arbitration ID

Equal to Extended

Comparator?
Yes

Chapter 9 Using the Frame API

© National Instruments 9-29 NI-CAN Hardware and Software Manual

Detecting State Changes
You can detect state changes for an object using one of the following

schemes:

• Call ncWaitForState to wait for one or more states to occur.

• Use ncCreateNotification in C/C++ to register a callback for

one or more states.

• Use ncCreateOccurrence in LabVIEW to create an occurrence for

one or more states. The ncCreateOccurrence function is not

supported by the 847x and 847x with Sync series CAN and LIN

interfaces.

• Call ncGetAttribute to get the NC_ATTR_STATE attribute.

Use the ncWaitForState function when the application must wait for a

specific state before proceeding. For example, if you call ncWrite to write

a frame, and the application cannot proceed until the frame is successfully

transmitted, you can call ncWaitForState to wait for

NC_ST_WRITE_SUCCESS.

Use the ncCreateNotification function in C/C++ when the

application must handle a specific state, but can perform other processing

while waiting for that state to occur. The ncCreateNotification

function registers a callback function, which is invoked when the desired

state occurs. For example, a callback function for NC_ST_READ_AVAIL can

call ncRead and place the resulting data in a buffer. The application can

then perform any tasks desired, and process the CAN data only as needed.

Use the ncCreateOccurrence function in LabVIEW when the

application must handle a specific state, but can perform other processing

while waiting for that state to occur. The ncCreateOccurrence function

creates a LabVIEW occurrence, which is set when the desired state occurs.

Occurrences are the mechanism used in LabVIEW to provide

multithreaded execution.

Use the ncGetAttribute function when you need to determine the

current state of an object.

Frame to Channel Conversion
Many applications require the ability to convert CAN data between a

CAN frame and a CAN channel. For information on frame to channel

conversion, channel to frame conversion, and virtual interfaces, refer to the

Frame to Channel Conversion section of Chapter 6, Using the Channel

API.

Chapter 9 Using the Frame API

NI-CAN Hardware and Software Manual 9-30 ni.com

Differences between CAN and LIN
When transitioning from CAN to LIN programming, it is helpful to note

some differences between the two networks. Unlike CAN, there is no

prioritization of LIN frames based on ID. Since LIN is a polled bus with

the master initiating all frame transfers, there is no need for frame

prioritization. Also unlike CAN, the number of data bytes in a LIN frame

may not be zero, but is limited to the range of one to eight bytes. A LIN

frame contains neither a data length code nor an end-of-frame delimiter.

This means that when a slave task is receiving response data, it has either

been configured with the number of bytes expected to be received for the

current ID, or has no knowledge of how many bytes it will receive, which

means it must use frame slot timeout or reception of next break to

determine end-of-current-frame. Although CAN may operate somewhat

similarly to a polled bus when using remote frames, its normal operational

behavior does not fit that mode.

There is no concept of master and slave in CAN. Any device may transmit

data or remote frames at any time. Collisions are acceptable and resolved

by ID prioritization. When a data or remote frame is transmitted, the full

frame is transmitted by the sender. In contrast, a single LIN master task is

responsible for initiating all frame transfers. The master task only sends the

first part of the frame (the header) with the expectation that a slave task will

complete the frame (by publishing a response). CAN provides advanced

mechanisms for reporting multiple errors within a single frame,

incrementing or decrementing error counters, and entering various error

states (bus off, for example). In contrast, LIN error handling is a single-shot

process. Upon encountering the first error in a frame, the LIN slave device

reports the error, ignores the remainder of the frame, and prepares for

reception of the next header from the master task.

© National Instruments 10-1 NI-CAN Hardware and Software Manual

10
Frame API for LabVIEW

This chapter lists the LabVIEW VIs for the NI-CAN Frame API and describes the format,

purpose, and parameters for each VI. The VIs in this chapter are listed alphabetically.

Unless otherwise stated, each NI-CAN VI suspends execution of the calling thread until it

completes.

Section Headings

The following are section headings found in the Frame API for LabVIEW VIs.

Purpose
Each VI description includes a brief statement of the purpose of the VI.

Format
The format section describes the format of each VI.

Input and Output
The input and output parameters for each VI are listed.

Description
The description section gives details about the purpose and effect of each VI.

Network Interface Object
The Network Interface Object section gives details about using the VI with the Network

Interface Object.

CAN Object
The CAN Object section gives details about using the VI with the CAN Object.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-2 ni.com

List of VIs

Table 10-1 is an alphabetical list of the NI-CAN VIs for the Frame API.

Table 10-1. Frame API for LabVIEW VIs

Function Purpose

ncAction.vi Perform an action on an object.

ncClose.vi Close an object.

ncConfigCANNet.vi Configure a CAN Network Interface Object before

opening it.

ncConfigCANNetRTSI.vi Configure a CAN Network Interface Object with

RTSI features.

ncConfigCANObj.vi Configure a CAN Object before using it.

ncConfigCANObjRTSI.vi Configure a CAN Object with RTSI features.

ncConnectTerminals.vi Connect terminals in the CAN or LIN hardware.

ncDisconnectTerminals.vi Disconnect terminals in the CAN or LIN hardware.

ncGetAttr.vi Get the value of an object attribute.

ncGetHardwareInfo.vi Get NI-CAN hardware information.

ncGetTimer.vi Get the absolute timestamp attribute.

ncOpen.vi Open an object.

ncReadNet.vi Read single frame from a CAN or LIN Network

Interface Object.

ncReadNetMult.vi Read multiple frames from a CAN or LIN Network

Interface Object.

ncReadObj.vi Read single frame from a CAN Object.

ncReadObjMult.vi Read multiple frames from a CAN Object.

ncSetAttr.vi Set the value of an object attribute.

ncWaitForState.vi Wait for one or more states to occur in an object.

ncWriteNet.vi Write a single frame to a CAN or LIN Network

Interface Object.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-3 NI-CAN Hardware and Software Manual

ncWriteNetMult.vi Write multiple frames to a CAN or LIN Network

Interface Object.

ncWriteObj.vi Write a single frame to a CAN Object.

Table 10-1. Frame API for LabVIEW VIs (Continued)

Function Purpose

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-4 ni.com

ncAction.vi

Purpose
Perform an action on an object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.

The handle originates from ncOpen.vi.

Opcode is the operation code indicating which action to perform. Refer to

Table 10-2, Actions Supported By A CAN or LIN Network Interface Object,

and Table 10-3, Actions Supported By A CAN Object.

Param is an optional parameter whose meaning is defined by Opcode.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-5 NI-CAN Hardware and Software Manual

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncAction.vi is a general purpose VI you can use to perform an action on the object specified

by ObjHandle in. Its normal use is to start and stop network communication on a CAN

Network Interface Object.

NI-CAN provides VIs such as ncOpen.vi and ncReadNet.vi for the most frequently used

and/or complex actions. ncAction.vi provides an easy, general purpose way to perform

actions that are used less frequently or are relatively simple.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-6 ni.com

Network Interface Object
NI-CAN propagates all actions on the CAN Network Interface Object up to all open Objects

when CAN Objects are supported.

Table 10-2, Actions Supported By A CAN or LIN Network Interface Object, describes the

actions supported by the CAN or LIN Network Interface Object.

Table 10-2. Actions Supported By A CAN or LIN Network Interface Object

Opcode Param Description

Start N/A (ignored) Transitions network interface from stopped (idle) state to

started (running) state. If network interface is already

started, this operation has no effect. When a network

interface is started, it is communicating on the network.

When you execute the Start action on a stopped CAN

Network Interface Object, NI-CAN propagates it upward

to all open higher-level CAN Objects. Thus, you can use

it to start all higher-level network communication

simultaneously.

Stop N/A (ignored) Transitions network interface from started state to stopped

state. If network interface is already stopped, this

operation has no effect. When a network interface is

stopped, it is not communicating on the network. The Stop

action clears all entries from the read queue of the

Network Interface. When you execute the Stop action on

a running CAN Network Interface Object, NI-CAN

propagates it upward to all open higher-level CAN

Objects.

Reset N/A (ignored) Resets network interface. The Reset action first issues the

Stop action, then clears all entries from the write queue,

then resets the CAN or LIN hardware. Resetting the CAN

hardware sets the CAN error counters to zero, returning

the CAN controller to error active state. Resetting the LIN

hardware returns the interface to slave mode and resets all

slave task response queue entries so that the slave task

subscribes to all LIN IDs. The reset action is propagated

up to all open higher-level CAN Objects.

Output on RTSI line N/A (ignored) Output a pulse or toggle on the RTSI line depending upon

the RTSI Behavior attribute. The Output on RTSI line

action is not supported on the 847x or 847x with Sync

series hardware.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-7 NI-CAN Hardware and Software Manual

CAN Object
All actions performed on a CAN Object affect that CAN Object alone, and do not affect other

CAN Objects or communication as a whole. Table 10-3, Actions Supported By A CAN Object,

describes the actions supported by the CAN Object.

Table 10-3. Actions Supported By A CAN Object

Opcode Param Description

Start N/A (ignored) Transitions the CAN object from stopped (idle) state to

started (running) state. If the CAN object is already

started, this operation has no effect.

Stop N/A (ignored) Stops the CAN Object. For example, if the CAN Object is

configured to transmit data frames periodically, this action

stops the periodic transmissions. This action will also

clear all entries from the read queue.

Reset N/A (ignored) Resets the CAN Object. Stops the CAN Object, then

clears all entries from read and write queues.

Output on RTSI line N/A (ignored) Output a pulse or toggle on the RTSI line depending upon

the RTSI Behavior attribute.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-8 ni.com

ncClose.vi

Purpose
Close an object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. Unlike other NI-CAN VIs, this

VI always closes the object, regardless of the value of status.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

Chapter 10 Frame API for LabVIEW

© National Instruments 10-9 NI-CAN Hardware and Software Manual

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncClose.vi closes an object when it no longer needs to be in use, such as when the application

is about to exit. When an object is closed, NI-CAN stops all pending operations and clears all

configuration for the object (including RTSI). The application can no longer use that specific

ObjHandle in.

Unlike other NI-CAN VIs, this VI always closes the object, regardless of the Status in

Error In.

Network Interface Object
ObjHandle in refers to an open CAN or LIN Network Interface Object.

CAN Object
ObjHandle in refers to an open CAN Object.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-10 ni.com

ncConfigCANNet.vi

Purpose
Configure a CAN Network Interface Object before opening it.

Format

Input

ObjName is the name of the CAN Network Interface Object to configure.

This name uses the syntax “CANx”, where x is a decimal number starting

at zero that indicates the CAN network interface (CAN0, CAN1, up to

CAN63). CAN network interface names are associated with physical CAN

ports using the Measurement and Automation Explorer (MAX).

The Frame API and Channel API cannot use the same CAN network

interface simultaneously. If the CAN network interface is already

initialized in the Channel API, this function returns an error.

The special interface values 256 and 257 refer to virtual interfaces. For

virtual interfaces, the only valid attribute is Start On Open. All other

attributes in the config cluster are ignored. The mask and comparator

attributes are always zero for virtual interfaces (receive all frames).

For more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

The 847x and 847x with Sync series LIN interfaces do not support

ncConfigCANNet.vi.

CAN Network Interface Config provides the core configuration attributes

of the CAN Network Interface Object. This cluster uses the typedef

ncNetAttr.ctl. You can wire in the cluster by first placing it on the front

panel from the NI-CAN Controls palette, or you can right-click the VI input

and select Create Constant or Create Control.

For the 847x and 847x with Sync series CAN interfaces, only Start on

Open and Baud Rate are valid configuration attributes. All other

configuration attributes are ignored.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-11 NI-CAN Hardware and Software Manual

Start On Open indicates whether communication starts for the

CAN Network Interface Object (and all applicable CAN Objects)

immediately upon opening the object with ncOpen.vi. The default

is True, which starts communication when ncOpen.vi is called.

If you set Start On Open to False, you can call ncSetAttr.vi after

opening the interface, then ncAction.vi to start communication.

ncSetAttr.vi can be used to set attributes that are not contained

within ncConfigCANNet.vi.

Baud Rate is the baud rate to use for communication. Basic baud

rates are supported, including 33333, 83333, 100000, 125000,

250000, 500000, and 1000000. If you are familiar with the

Bit Timing registers used in CAN controllers, you can use a

special hexadecimal baud rate of 0x8000zzyy, where yy is the

desired value for register 0 (BTR0), and zz is the desired value for

register 1 (BTR1) of the CAN controller.

For the Frame API, the Baud Rate has no relationship with the

baud rate property in MAX. You must always configure the Baud

Rate with ncConfigCANNet.vi.

Read Queue Length is the maximum number of unread frames

for the read queue of the CAN Network Interface Object.

A typical value is 100. For more information, refer to

ncReadNetMult.vi.

The internal read queue exists between the CAN hardware and the

NI-CAN device driver. This internal read queue holds frames

temporarily prior to transfer a larger queue in the NI-CAN device

driver. The larger NI-CAN device driver queue grows as needed in

order to accommodate high bus loads.

For more information on reading from the CAN Network

Interface Object, refer to ncReadNetMult.vi.

Write Queue Length is the maximum number of frames for the

internal write queue of the CAN Network Interface Object

awaiting transmission. A typical value is 10.

The internal write queue exists between the CAN hardware and

the NI-CAN driver. This internal write queue holds frames

temporarily prior to transfer to CAN hardware from a larger queue

in the NI-CAN device driver.

For more information on writing to the CAN Network Interface

object, refer to ncWriteNetMult.vi.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-12 ni.com

Standard Comparator is the CAN arbitration ID for the standard

(11-bit) frame comparator. For information on how this attribute

is used to filter received frames for the Network Interface, refer to

the following Standard Comparator attribute.

If you intend to open the Network Interface, most applications can

set this attribute and the Standard Comparator to 0 in order to

receive all standard frames.

If you intend to use CAN Objects as the sole means of receiving

standard frames from the network, you should disable all standard

frame reception in the Network Interface by setting this attribute

to the special value CFFFFFFF hex. With this setting, the Network

Interface is best able to filter out incoming standard frames except

those handled by CAN Objects.

Standard Mask is the bit mask used in conjunction with the

Standard Comparator attribute for filtration of incoming

standard (11-bit) CAN frames. For each bit set in the mask,

NI-CAN compares the corresponding bit in the Standard

Comparator to the arbitration ID of the received frame. If the

mask/comparator matches, the frame is stored in the Network

Interface queue, otherwise it is discarded. Bits in the mask that are

clear are treated as don’t-cares. For example, hex 00000700

means to compare only the three upper bits of the 11-bit standard

ID.

If you set the Standard Comparator to CFFFFFFF hex, this

attribute is ignored, because all standard frame reception is

disabled for the Network Interface.

Most applications can set this attribute and the Standard

Comparator to 0 to receive all standard frames. This is

particularly advisable for Series 2 hardware, because the Philips

SJA1000 CAN controller does not support distinct filters for

standard and extended IDs. For Series 2, nonzero values for this

attribute are implemented in software, as an additional filter

applied after the Series 2 Filter Mode. When you set this attribute

to zero for Series 2, filtering is optimized to use only the Series 2

Filter Mode attribute for the SJA1000.

Extended Comparator is the CAN arbitration ID for the

extended (29-bit) frame comparator. For information on how this

attribute is used to filter extended frames for the Network

Interface, refer to the following Extended Mask attribute.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-13 NI-CAN Hardware and Software Manual

If you intend to open the Network Interface, most applications can

set this attribute and the Extended Mask to 0 in order to receive all

extended frames.

If you intend to use CAN Objects as the sole means of receiving

extended frames from the network, you should disable all

extended frame reception in the Network Interface by setting this

attribute to the special value CFFFFFFF hex. With this setting, the

Network Interface is best able to filter out incoming extended

frames except those handled by CAN Objects.

Extended Mask is the bit mask used in conjunction with the

Extended Comparator attribute for filtration of incoming

extended (29-bit) CAN frames. For each bit set in the mask,

NI-CAN compares the corresponding bit in the Extended

Comparator to the arbitration ID of the received frame. If the

mask/comparator matches, the frame is stored in the Network

Interface queue, otherwise it is discarded. Bits in the mask that are

clear are treated as don’t-cares. For example, hex 1F000000

means to compare only the five upper bits of the 29-bit extended

ID.

If you set the Extended Comparator to CFFFFFFF hex, this

attribute is ignored, because all extended frame reception is

disabled for the Network Interface.

Most applications can set this attribute and the Extended

Comparator to 0 to receive all extended frames. This is

particularly advisable for Series 2 hardware, because the Philips

SJA1000 CAN controller does not support distinct filters for

standard and extended IDs. For Series 2, nonzero values for this

attribute are implemented in software, as an additional filter

applied after the Series 2 Filter Mode. When you set this attribute

to zero for Series 2, filtering is optimized to use only the Series 2

Filter Mode attribute for the SJA1000.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-14 ni.com

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The Network Interface provides read/write access to all IDs on the network.

If you intend to use RTSI features to synchronize the Network Interface with other National

Instruments cards, refer to ncConfigCANNetRTSI.vi.

If you need to log transceiver fault indications to the Network Interface read queue, refer to

the Log Comm Warnings attribute of ncSetAttr.vi

The first NI-CAN VI in the application will normally be ncConfigCANNet.vi.

For the 847x and 847x with Sync series CAN interfaces, only Start On Open and Baud Rate

are valid configuration attributes.

The 847x and 847x with Sync series LIN interfaces do not support ncConfigCANNet.vi.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-15 NI-CAN Hardware and Software Manual

ncConfigCANNetRTSI.vi

Purpose
Configure a CAN Network Interface Object with RTSI features.

Format

Input

ObjName is the name of the CAN Network Interface Object to configure.

This name uses the syntax “CANx”, where x is a decimal number starting

at zero that indicates the CAN network interface (CAN0, CAN1, up to

CAN63). CAN network interface names are associated with physical CAN

ports using the Measurement and Automation Explorer (MAX).

The 847x and 847x with Sync series CAN and LIN interfaces do not

support ncConfigCANNetRTSI.vi.

CAN Network Interface Config provides the core configuration attributes

of the CAN Network Interface Object. This cluster uses the typedef

ncNetAttr.ctl. You can wire in the cluster by first placing it on the front

panel from the NI-CAN Controls palette, or you can right-click the VI input

and select Create Constant or Create Control. (For more information,

refer to ncConfigCANNet.vi.)

CAN RTSI Config provides RTSI configuration attributes for the

CAN Network Interface Object. This cluster uses the typedef

ncCANRtsiAttr.ctl. You can wire in the cluster by first placing it

on the front panel from the NI-CAN Controls palette, or you can

right-click the VI input and select Create Constant or Create Control.

RTSI Mode specifies the behavior of the Network Interface with

respect to RTSI, including whether the RTSI signal is an input or

output.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-16 ni.com

Disable RTSI

Disables RTSI behavior for the Network Interface. All other RTSI

attributes are ignored. Using this mode is equivalent to calling

ncConfigCANNet.vi.

On RTSI Input - Transmit CAN Frame

The Network Interface will transmit a frame from its write queue

when the RTSI input transitions from low to high. To begin

transmission, at least one data frame must be written using

ncWriteNet.vi. If the write queue becomes empty due to frame

transmissions, the last frame will be transmitted on each RTSI

pulse until another frame is provided using ncWriteNet.vi.

On RTSI Input - Timestamp RTSI event

When the RTSI input transitions from low to high, a timestamp is

measured and stored in the read queue of the Network Interface.

The special RTSI frame uses the following format:

When calling ncReadNet.vi or ncReadNetMult.vi to read frames

from the Network Interface, you typically use the IsRemote field

to differentiate RTSI timestamps from CAN frames. Refer to

ncReadNetMult.vi for more information.

Note When you configure a DAQ card to pulse the RTSI signal periodically, do not exceed

1000 Hertz (pulse every millisecond). If the RTSI input is pulsed faster than 1kHz on a

consistent basis, CAN performance will be adversely affected (for example, lost data

frames).

RTSI Output on Receiving CAN Frame

The Network Interface will output the RTSI signal whenever a

CAN frame is stored in the read queue.

If the hardware is Series 2, NI-CAN connects a special pin of the

Philips SJA1000 CAN controller to the RTSI output. This

hardware connection provides jitter in the nanoseconds range,

enabling triggering of external oscilloscopes and so on.

Arbitration ID: 40000001 hex

Timestamp: Time when RTSI input transitioned from low

to high

IsRemote: 3

DataLength: RTSI signal detected (RTSI Signal)

Data: N/A (ignore)

Chapter 10 Frame API for LabVIEW

© National Instruments 10-17 NI-CAN Hardware and Software Manual

RTSI Output on Transmitting CAN Frame

The Network Interface will output the RTSI signal whenever a

CAN frame is successfully transmitted from the write queue.

RTSI Output on ncAction call

The Network Interface will output the RTSI signal whenever

ncAction.vi is called with Opcode Output on RTSI line. This

RTSI mode can be used to manually toggle/pulse a RTSI output

within the application.

RTSI Signal defines the RTSI signal associated with the RTSI

Mode. Valid values are 0 to 6, corresponding to RTSI 0 to RTSI 6

on other National Instruments cards.

Series 1 and 2 CAN cards each have limitations regarding RTSI.

For information on these limitations, refer to the Valid

Combinations of Source/Destination section in the

ncConnectTerminals.vi function reference.

RTSI Behavior specifies whether to pulse or toggle a RTSI

output. This attribute is ignored when RTSI Mode specifies input

(which are always detected low to high):

RTSI Skip specifies the number of RTSI inputs (low-to-high

transitions) to skip for RTSI Mode On RTSI Input - Timestamp

RTSI event, and On RTSI Input - Transmit CAN Frame. It is

ignored for all other RTSI Mode values. For example, if the RTSI

input transitions every 1 ms, RTSI Skip of 9 means that a

timestamp will be stored in the read queue every 10 ms.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

Output RTSI

Pulse:

Pulse the RTSI output. For Series 1 CAN

cards, the pulse is at least 100 µs. For Series

2 CAN cards, the pulse is at least 100 ns.

Toggle RTSI

Line:

If the previous state was high, the output

toggles low, then vice-versa.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-18 ni.com

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
RTSI is a bus that interconnects National Instruments DAQ, IMAQ, Motion, and CAN boards.

This feature allows synchronization of DAQ, IMAQ, Motion, and CAN boards by allowing

exchange of timing signals. Using RTSI, a device (board) can control one or more slave

devices.

If you are not using RTSI features to synchronize the Network Interface with other National

Instruments cards, refer to ncConfigCANNet.vi.

The 847x and 847x with Sync series LIN interfaces do not support

ncConfigCANNetRTSI.vi.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-19 NI-CAN Hardware and Software Manual

ncConfigCANObj.vi

Purpose
Configure a CAN Object before using it.

Format

Input

ObjName is the name of the CAN Object to configure. This name uses the

syntax “CANx::STDy” or “CANx::XTDy”. CANx is the name of the CAN

network interface that you used for the preceding ncConfigCANNet.vi.

STD indicates that the CAN Object uses a standard (11-bit) arbitration ID.

XTD indicates that the CAN Object uses an extended (29-bit) arbitration

ID. The number y specifies the actual arbitration ID of the CAN Object.

The number y is decimal by default, but you also can use hexadecimal by

adding 0x to the beginning of the number. For example, “CAN0::STD25”

indicates standard ID 25 decimal on CAN0, and

“CAN1::XTD0x0000F652” indicates extended ID F652 hexadecimal on

CAN1.

The special virtual interface names “CAN256” and “CAN257” are not

supported for CAN Objects.

The 847x and 847x with Sync series CAN and LIN interfaces do not

support ncConfigCANObj.vi.

CAN Object Config provides the core configuration attributes of the CAN

Object. This cluster uses the typedef ncObjAttr.ctl. You can wire in the

cluster by first placing it on the front panel from the NI-CAN Controls

palette, or you can right-click the VI input and select Create Constant or

Create Control.

Period specifies the rate of periodic behavior in milliseconds.

The behavior depends on the Communication Type as follows:

Transmit Data Periodically, Transmit Periodic Waveform,

Receive Periodic Using Remote

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-20 ni.com

Period specifies the time between subsequent transmissions, and

must be set greater than zero.

Receive Unsolicited, Transmit by Response Only

Period specifies a watchdog timeout. If a frame is not received at

least once every period, a timeout error is returned. Setting Period

to zero disables the watchdog timer.

Transmit Data by Call, Receive by Call Using Remote

Period specifies a minimum interval between subsequent

transmissions. Even if ncWriteObj.vi is called very frequently,

frames are transmitted on the network at a rate no more than

Period. Setting Period to zero disables the minimum interval

timer.

Read Queue Length is the maximum number of unread frames

for the read queue of the CAN Object. For more information, refer

to ncReadObj.vi.

If Communication Type is set to receive data, a typical value is

10. If Communication Type is set to transmit data, a typical value

is 0.

Write Queue Length is the maximum number of frames for the

write queue of the CAN Object awaiting transmission. For more

information, refer to ncWriteObj.vi.

If Communication Type is set to receive data, a typical value is

0. If Communication Type is set to transmit data, a typical value

is 10.

Receive Changes Only applies only to Communication Type

selections in which the CAN Object receives data frames (ignored

for other types). For those configurations, Receive Changes Only

specifies whether duplicated data should be placed in the read

queue. When set to False (default), all data frames for the CAN

Object ID are placed in the read queue. When set to True, data

frames are placed into the read queue only if the data bytes differ

from the previously received data bytes in the read queue.

This attribute has no effect on the usage of a watchdog timeout for

the CAN Object. For example, if this attribute is True and you also

specify a watchdog timeout, NI-CAN restarts the watchdog timer

every time it receives a data frame for the ID of the CAN Object,

regardless of whether the data differs from the previous frame.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-21 NI-CAN Hardware and Software Manual

Communication Type specifies the behavior of the CAN Object

with respect to its ID, including the direction of data transfer:

Receive Unsolicited

Receive data frames for a specific ID.

This type is useful for receiving a few IDs (1-10) into dedicated

read queues. For high performance applications (more IDs, fast

frame rates), the Network Interface is recommended to receive

all IDs.

Period specifies a watchdog timeout, and Receive Changes Only

specifies whether to place duplicate data frames into the read

queue. Transmit by Response is ignored.

Receive Periodic Using Remote

Periodically transmit remote frame for a specific ID in order to

receive the associated data frame. Every Period, the CAN Object

transmits a remote frame, and then places the resulting data frame

response in the read queue.

If the data frame is not received in response to the transmit remote

frame, the periodic transmission is put on hold.

Period specifies the periodic rate, and Receive Changes Only

specifies whether to place duplicate data frames into the read

queue. Transmit by Response is ignored.

Receive by Call Using Remote

Transmit remote frame for a specific ID by calling

ncWriteObj.vi. The CAN Object places the resulting data frame

response in the read queue.

Period specifies a minimum interval, and Receive Changes Only

specifies whether to place duplicate data frames into the read

queue. Transmit by Response is ignored.

Transmit Data Periodically

Periodically transmit data frame for a specific ID. When the CAN

Object transmits the last entry from the write queue, that entry is

used every period until you provide a new data frame using

ncWriteObj.vi. If you keep the write queue filled with unique

data, this behavior allows you to ensure that each period transmits

a unique data frame.

If the write queue is empty when communication starts, the first

periodic transmit does not occur until you provide the first data

frame with ncWriteObj.vi.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-22 ni.com

Period specifies the periodic rate, and Transmit by Response

specifies whether to transmit the data of the previous period in

response to a remote frame. If Transmit by Response is true, the

data from the previous (periodic) transmit will be retransmitted in

case a remote frame is received, even if there are frames pending

in the write buffer. Receive Changes Only is ignored.

Transmit by Response Only

Transmit data frame for a specific ID only in response to a

received remote frame. When you call ncWriteObj.vi, the data is

placed in the write queue, and remains there until a remote frame

is received. The number of objects for the communication type

usable at the same time is limited to 12.

Period specifies a watchdog timeout. Transmit by Response is

assumed as True regardless of the attribute setting. Receive

Changes Only is ignored.

Transmit Data by Call

Transmit data frame when ncWriteObj.vi is called. When

ncWriteObj.vi is called quickly, data frames are placed in the

write queue for back to back transmit.

Period specifies a minimum interval, and Transmit by Response

specifies whether to transmit the previous data frame in response

to a remote frame. Receive Changes Only is ignored.

Transmit Periodic Waveform

Transmit a fixed sequence of data frames over and over, one data

frame every Period.

The following steps describe typical usage of this type.

1. Configure CAN Network Interface Object with Start On Open False,

then open the Network Interface.

2. Configure the CAN Object as Transmit Periodic Waveform and a

nonzero Write Queue Length, then open the CAN Object.

3. Call ncWriteObj.vi for the CAN Object, once for every entry

specified for the Write Queue Length.

4. Use ncAction.vi to start the Network Interface (not the CAN Object).

The CAN Object transmits the first frame in the write queue, then waits

the specified period, then transmits the second frame, and so on. After

the last frame is transmitted, the CAN Objects waits the specified

period, then transmits the first frame again.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-23 NI-CAN Hardware and Software Manual

If you need to change the waveform contents at runtime, or if you

need to transmit very large waveforms (more than 100 frames),

we recommend using the Transmit Data Periodically type. Using

that type, you can write frames to the Write Queue until full

(overflow error), then wait some time for a few frames to transmit,

then continue writing new frames.

This communication type has the following limitations:

• Write Queue Length must be greater than zero.

• You must write exactly Write Queue Length values before starting

communication (no less).

• Once communication is started, you cannot write additional values.

Period specifies the periodic rate. Transmit by Response and

Receive Changes Only are ignored.

Transmit By Response applies only to Communication Type of

Transmit Data by Call and Transmit Data Periodically (ignored for

other types). For those configurations, Transmit By Response

specifies whether the CAN Object should automatically respond

with the previously transmitted data frame when it receives a

remote frame. When set to False (default), the CAN Object

transmits data frames only as configured, and ignores all remote

frames for its ID. When set to True, the CAN Object responds to

incoming remote frames.

Data Length specifies the number of bytes in the data frames for

the ID of the CAN Object. This number is placed in the Data

Length Code (DLC) of all transmitted data frames and remote

frames for the CAN Object. This is also the number of data bytes

returned from ncReadObj.vi when the communication type

indicates receive.

Examples of Different Communication Types
Figure 10-1, Figure 10-2, and Figure 10-3, demonstrate how you can use the Communication

Type attribute for actual network data transfer. Each figure shows two separate NI-CAN

applications that are physically connected across a CAN network.

Figure 10-1 shows a CAN Object that periodically transmits data to another CAN Object.

The receiving CAN Object can queue up to five data values.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-24 ni.com

Figure 10-1. Example of Periodic Transmission

Example of Periodic Transmission

Figure 10-2 shows a CAN Object that polls data from another CAN Object. NI-CAN

transmits the CAN remote frame when you call ncWriteObj.vi.

Figure 10-2. Example of Polling Remote Data Using ncWriteObj.vi

Periodic Timer
(Obtains Data to
Transmit Every

Period)

Receive Unsolicited

Read Queue

Transmit Data Periodically

ncWriteObj.vincReadObj.vi

NI-CAN Driver NI-CAN DriverCAN
Network

Your
Application

Your
Application

Response Uses

Most Recent

Write Data

Receive Data by

Call Using Remote

Transmit by

Response Only

NI-CAN Driver NI-CAN DriverCAN

Network

ncWriteObj.vi

ncReadObj.vi

ncWriteObj.vi

Your

Application

Your

Application

Chapter 10 Frame API for LabVIEW

© National Instruments 10-25 NI-CAN Hardware and Software Manual

Figure 10-3 shows a CAN Object that polls data from another CAN Object. NI-CAN

transmits the remote frame periodically and places only changed data into the read queue.

Figure 10-3. Example of Periodic Polling of Remote Data

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

Response Uses

Most Recent

Write Data

Receive Periodically

Using Remote

Transmit by

Response Only

Check For

Different Value

Periodic Timer

NI-CAN Driver NI-CAN DriverCAN

Network

ncReadObj.vi ncWriteObj.vi

Your

Application

Your

Application

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-26 ni.com

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The CAN Object provides read/write access to a specific ID on the network.

You normally call ncConfigCANNet.vi before this VI in order to configure the Network

Interface attributes, then call ncConfigCANObj.vi for each CAN Object desired.

If you intend to use RTSI features to synchronize the CAN Object with other National

Instruments cards, refer to ncConfigCANObjRTSI.vi.

When a network frame is transmitted on a CAN-based network, it always begins with the

arbitration ID. This arbitration ID is primarily used for collision resolution when more than

one frame is transmitted simultaneously, but often is also used as a simple mechanism to

identify data. The CAN arbitration ID, along with its associated data, is referred to as a CAN

Object.

The NI-CAN implementation of CAN provides high-level access to CAN Objects on an

individual basis. You can configure each CAN Object for different forms of communication

(such as periodic polling, receiving unsolicited CAN data frames, and so on). After you

configure a CAN Object and open it for communication, use the ncReadObj.vi and

ncWriteObj.vi VIs to access the data of the CAN Object. The NI-CAN driver performs all

other details regarding the object.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-27 NI-CAN Hardware and Software Manual

ncConfigCANObjRTSI.vi

Purpose
Configure a CAN Object with RTSI features.

Format

Input

ObjName is the name of the CAN Object to configure. This name uses the

syntax “CANx::STDy” or “CANx::XTDy”. CANx is the name of the CAN

network interface that you used for the preceding ncConfigCANNet.vi VI.

STD indicates that the CAN Object uses a standard (11-bit) arbitration ID.

XTD indicates that the CAN Object uses an extended (29-bit) arbitration

ID. The number y specifies the actual arbitration ID of the CAN Object.

The number y is decimal by default, but you also can use hexadecimal

by adding “0x” to the beginning of the number. For example,

“CAN0::STD25” indicates standard ID 25 decimal on CAN0, and

“CAN1::XTD0x0000F652” indicates extended ID F652 hexadecimal

on CAN1.

The 847x and 847x with Sync series CAN and LIN interfaces do not

support ncConfigCANObjRTSI.vi.

CAN Object Config provides the core configuration attributes of the CAN

Object. This cluster uses the typedef ncObjAttr.ctl. You can wire in the

cluster by first placing it on the front panel from the NI-CAN Controls

palette, or you can right-click the VI input and select Create Constant or

Create Control. (For more information, refer to ncConfigCANObj.vi.)

CAN RTSI Config provides RTSI configuration attributes for the CAN

Object. This cluster uses the typedef ncCANRtsiAttr.ctl. You can wire in

the cluster by first placing it on the front panel from the NI-CAN Controls

palette, or you can right-click the VI input and select Create Constant or

Create Control.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-28 ni.com

RTSI Mode specifies the behavior of the CAN Object with

respect to RTSI, including whether the RTSI signal is an input

or output.

Disable RTSI

Disables RTSI behavior for the CAN Object. All other RTSI

attributes are ignored. Using this mode is equivalent to calling

ncConfigCANObj.vi.

On RTSI Input - Transmit CAN Frame

The CAN Object will transmit a frame from its write queue when

the RTSI input transitions from low to high. To begin

transmission, at least one data frame must be written using

ncWriteObj.vi. If the write queue becomes empty due to frame

transmissions, the last frame will be transmitted on each RTSI

pulse until another frame is provided using ncWriteObj.vi.

In order to use this RTSI Mode, you must configure the

Communication Type of the CAN Object to either Transmit Data

by Call, Transmit Data Periodically, or Transmit Periodic

Waveform. The Period attribute is ignored when this RTSI mode

is selected.

On RTSI Input - Timestamp RTSI event

When the RTSI input transitions from low to high, a timestamp is

measured and stored in the read queue of the CAN Object. The

special RTSI frame uses the following format:

Note When you configure a DAQ card to pulse the RTSI signal periodically, do not exceed

1000 Hertz (pulse every millisecond). If the RTSI input is pulsed faster than 1kHz on a

consistent basis, CAN performance will be adversely affected (for example, lost data

frames).

RTSI Output on Receiving CAN Frame

The CAN Object will output the RTSI signal whenever a CAN

frame is stored in the read queue.

Timestamp: Time when RTSI input transitioned from low

to high

Data: User-defined 4 byte data pattern (refer to

UserRTSIFrame for details)

Chapter 10 Frame API for LabVIEW

© National Instruments 10-29 NI-CAN Hardware and Software Manual

In order to use this RTSI Mode, you must configure the

Communication Type of the CAN Object to Receive

Unsolicited.

RTSI Output on Transmitting CAN Frame

The CAN Object will output the RTSI signal whenever a CAN

frame is successfully transmitted.

In order to use this RTSI Mode, you must configure the

Communication Type of the CAN Object to either Transmit Data

by Call, Transmit Data Periodically, or Transmit Periodic

Waveform.

RTSI Output on ncAction.vi call

The CAN Object will output the RTSI signal whenever

ncAction.vi is called with Opcode Output on RTSI line. This

RTSI mode can be used to manually toggle/pulse a RTSI output

within the application.

RTSI Signal defines the RTSI signal associated with the RTSI

Mode. Valid values are 0 to 6, corresponding to RTSI 0 to RTSI 6

on other National Instruments cards.

Series 1 and 2 CAN cards each have limitations regarding RTSI.

For information on these limitations, refer to the Valid

Combinations of Source/Destination section in the

ncConnectTerminals.vi function reference.

RTSI Behavior specifies whether to pulse or toggle a RTSI

output. This attribute is ignored when RTSI Mode specifies input

(always detected low to high):

Output RTSI Pulse: Pulse the RTSI output. For Series 1

CAN cards, the pulse is at least 100 µs. For Series 2 CAN

cards, the pulse is at least 100 ns.

Toggle RTSI Line: If the previous state was high, the output

toggles low, then vice-versa.

RTSI Skip specifies the number of RTSI inputs (low-to-high

transitions) to skip for RTSI Mode On RTSI Input - Timestamp

RTSI event, and On RTSI Input - Transmit CAN Frame. It is

ignored for all other RTSI Mode values. For example, if the RTSI

input transitions from low to high every 1 ms, RTSI Skip of 9

means that a timestamp will be stored in the read queue every

10 ms.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-30 ni.com

UserRTSIFrame specifies a 4-byte pattern used to differentiate

RTSI timestamps from CAN data frames. It is provided as a U32,

and the high byte is stored as byte 0 from ncReadObj.vi. For

example, AABBCCDD hexadecimal is returned as AA in byte 0,

BB in byte 1, and so on.

This attribute is used only for RTSI Mode On RTSI Input -

Timestamp RTSI event. It is ignored for all other RTSI Mode

values.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-31 NI-CAN Hardware and Software Manual

Description
RTSI is a bus that interconnects National Instruments DAQ, IMAQ, Motion, and CAN boards.

This feature allows synchronization of DAQ, IMAQ, Motion, and CAN boards by allowing

exchange of timing signals. Using RTSI, a device (board) can control one or more slave

devices.

If you are not using RTSI features to synchronize the CAN Object with other National

Instruments cards, refer to ncConfigCANObj.vi.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-32 ni.com

ncConnectTerminals.vi

Purpose
Connect a terminal in the CAN or LIN hardware.

Format

Inputs

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle reference originated from ncOpen.vi.

source terminal specifies the source of the connection. Once the

connection is successfully created, behavior flows from source terminal to

destination terminal.

For a list of valid source/destination pairs, refer to the Valid Combinations

of Source/Destination section at the end of this function.

The following list describes each value of source terminal:

RTSI0 ... RTSI6

Selects a general-purpose RTSI line as source (input) of the

connection.

RTSI7/RTSI Clock

Selects RTSI line 7 as source (input) of the connection. RTSI7 is

dedicated for routing of a timebase. RTSI7 is also known as RTSI

Clock in some National Instruments software products, such as

NI-DAQ.

For PCI and PXI form factors, this receives a 20 MHz (default)

timebase from another CAN or DAQ card. For example, you can

synchronize a CAN and DAQ E Series MIO card by connecting the

20 MHz oscillator (board clock) of the DAQ card to RTSI7/RTSI

Chapter 10 Frame API for LabVIEW

© National Instruments 10-33 NI-CAN Hardware and Software Manual

Clock, and then connecting RTSI7/RTSI Clock to Master Timebase

on the CAN card.

For PCMCIA form factor, a 10 MHz timebase is required on

RTSI7/RTSI Clock. For synchronization with a PCMCIA DAQ card,

this is done by programming FREQOUT signal of the DAQ card to

10 MHz, then wiring FREQOUT to the RTSI7/RTSI Clock of the

CAN card.

For the 847x with Sync series CAN and LIN interfaces, 1 MHz,

10 MHz, and 20 MHz are valid timebases. Refer to Appendix E,

Specifications, for details on synchronization triggers.

This value does not apply to Series 1.

PXI_Star

PXI_Star selects the PXI star trigger signal.

Within a PXI chassis, some PXI products can source a star trigger from

Slot 2 to all higher-numbered slots. PXI_Star enables the PXI CAN

card to receive the star trigger when it is in Slot 3 or higher.

This value applies to Series 2 PXI CAN cards only.

PXI_Clk10

PXI_Clk10 selects the PXI 10 MHz backplane clock.

This routes the 10 MHz PXI backplane clock for use as the timebase

of the CAN card. When you use PXI_Clk10 as the timebase for the

CAN card, you must also use PXI_Clk10 as the timebase for other

PXI cards to perform synchronized input/output.

This value applies to Series 2 PXI CAN cards only.

20 MHz Timebase

20 MHz Timebase selects the local oscillator of the CAN or LIN

hardware.

The only valid destination terminal for this source is RTSI7/RTSI

Clock. This routes the local clock of the hardware for use as a timebase

by other NI cards. For example, you can synchronize two CAN cards

by connecting 20 MHz Timebase to RTSI7/RTSI Clock on one CAN

card and then connecting RTSI7/RTSI Clock to Master Timebase on

the other CAN card.

20 MHz Timebase applies to the entire CAN or LIN hardware,

including both interfaces of a 2-port CAN card.

This value applies to Series 2 PXI or PCI CAN cards and 847x with

Sync interfaces only.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-34 ni.com

For 847x with Sync series CAN and LIN interfaces the internal

oscillator runs at 1 MHz.

10 Hz Resync Clock

10 Hz Resync Clock selects a 10 Hz, 50 percent duty cycle clock. This

slow rate is required for resynchronization of Series 1 CAN cards. On

each pulse of the resync clock, the other CAN card brings its clock into

sync.

By selecting RTSI0 to RTSI6 as the destination terminal, you route

the 10 Hz clock to synchronize with other Series 1 CAN cards.

NI-DAQ or NI-DAQmx cards cannot use the 10 Hz resync clock, so

this selection is limited to synchronization of two or more CAN cards.

10 Hz Resync Clock applies to the entire CAN card, including both

interfaces of a 2-port CAN card.

This value applies to Series 1 and Series 2 CAN cards, but is typically

used with Series 1 CAN cards only. If all of the CAN cards are Series

2, the 20 MHz timebase is preferable due to the lack of drift. If you are

using a mix of Series 1 and Series 2 CAN cards, you must use the

10 Hz Resync Clock.

Interface Receive Event

Interface Receive Event selects the dedicated receive interrupt output

on the Philips SJA1000 CAN controller. When a received frame

successfully passes the acceptance filter, a pulse with the width of one

bit time is output during the last bit of the end of frame position of the

CAN frame. Incoming CAN frames can be filtered using the Series 2

Filter Mode attribute.

The CAN controller is specified by the ObjName input to ncOpen.vi.

The Interface Receive Event can be used as the start trigger for other

NI cards, or for external instruments.

This value applies to Series 2 cards only.

Interface Transceiver Event

Interface Transceiver Event selects the NERR signal from the CAN

transceiver. The Low-Speed/Fault-Tolerant transceiver and the

High-Speed transceiver provide the NERR signal. This signal asserts

when the transceiver detects a fault. The default value of NERR is

logic-high, which indicates no error.

The CAN controller is specified by the ObjName input to ncOpen.vi.

This value applies to Series 2 CAN cards only.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-35 NI-CAN Hardware and Software Manual

Start Trigger

Start Trigger selects the start trigger, the event that starts objects.

The start trigger is the same for all tasks using a given interface,

as specified by the ObjName input to ncOpen.vi.

In the default (disconnected) state of the Start Trigger destination, the

start trigger occurs when communication begins on the interface.

By selecting RTSI0 to RTSI6 as the destination terminal, you route

the start trigger of this CAN or LIN hardware to the start trigger of

other CAN, LIN, or DAQ hardware. This ensures that sampling begins

at the same time on both cards. For example, you can synchronize

two CAN cards by routing Start Trigger as the source terminal on

one CAN card and then routing Start Trigger as the destination

terminal on the other CAN card, with both cards using the same

RTSI line for the connections.

destination terminal specifies the destination of the connection.

The following list describes each value of destination terminal:

RTSI0 ... RTSI6

Selects a general-purpose RTSI line as destination (output) of the

connection.

RTSI7/RTSI Clock

Selects RTSI line 7 as destination (output) of the connection. RTSI7 is

dedicated for routing of a timebase. RTSI7 is also known as RTSI

Clock in some National Instruments software products, such as

NI-DAQ or NI-DAQmx. Series 2 CAN cards can import a 10 MHz or

20 MHz timebase, but can export only a 20 MHz timebase. 847x with

Sync cards can import 1 MHz, 10 MHz, or 20 MHz timebases, but can

export only a 1 MHz timebase.

Master Timebase

Master Timebase instructs the CAN or LIN hardware to use the

source of the connection as the master timebase. The CAN or LIN

hardware uses this master timebase for input sampling (including

timestamps of received messages) as well as periodic output sampling.

For PCI and PXI form factors, you can use RTSI7/RTSI Clock as the

source terminal. By default this receives a 20 MHz timebase from

another CAN or DAQ card. For example, you can synchronize a CAN

and DAQ E Series MIO card by connecting the 20 MHz oscillator

(board clock) of the DAQ card to RTSI7/RTSI Clock, and then

connecting RTSI7/RTSI Clock to Master Timebase on the CAN

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-36 ni.com

card. To change the Master Timebase Rate to 10 MHz, use

ncSetAttr.vi to change the Master Timebase Rate attribute.

For PXI form factor, you also can use PXI_Clk10 as the source

terminal. This receives the PXI 10 MHz backplane clock for use as

the master timebase.

For PCMCIA form factor, you can use RTSI7/RTSI Clock as the

source terminal. Unlike PCI and PXI, the PCMCIA CAN card

requires a 10 MHz timebase on RTSI7/RTSI Clock. For

synchronization with a PCMCIA DAQ card, this is done by

programming the FREQOUT signal of the DAQ card to 10 MHz, then

wiring FREQOUT to the RTSI7/RTSI Clock of the CAN card.

For the USB form factor, you can use RTSI7/RTSI Clock as the

source terminal. The USB hardware automatically senses the incoming

clock rate of 1 MHz, 10 MHz, or 20 MHz, so no further configuration

is required.

Master Timebase applies to the entire CAN or LIN hardware,

including both interfaces of a 2-port CAN card.

The default (disconnected) state of this destination means the CAN or

LIN hardware uses its local timebase as the master timebase.

10 Hz Resync Clock

10 Hz Resync Clock instructs the CAN card to use a 10 Hz, 50 percent

duty cycle clock to resynchronize its local timebase. This slow rate is

required for resynchronization of CAN cards. On each low-to-high

transition of the resync clock, this CAN card brings its local timebase

into sync.

When synchronizing to an E Series MIO card, a typical use of this

value is to use RTSI0 to RTSI6 as the source terminal, then use

NI-DAQ or NI-DAQmx functions to program the Counter 0 of the

MIO card to generate a 10 Hz 50 percent duty cycle clock on the

RTSI line.

When synchronizing to a CAN card, a typical use of this value is to use

RTSI0 to RTSI6 as the source terminal, then route the 10 Hz Resync

Clock of the other CAN card as the source terminal to the same

RTSI line.

10 Hz Resync Clock applies to the entire CAN card, including both

interfaces of a 2-port CAN card. The CAN card is specified by the

ObjName input to ncOpen.vi.

The default (disconnected) state of this destination means the

CAN card does not resynchronize its local timebase.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-37 NI-CAN Hardware and Software Manual

This value applies to Series 1 and Series 2 CAN cards, but is typically

used with Series 1 CAN cards only. If all of the CAN cards are

Series 2, the 20 MHz timebase is preferable due to the lack of drift.

If you are using a mix of Series 1 and Series 2 CAN cards, you must

use the 10 Hz Resync Clock.

Start Trigger

Start Trigger selects the start trigger, the event that starts

communication for all CAN objects on the same port. The start trigger

occurs on the first low-to-high transition of the source terminal.

The start trigger is the same for all CAN Objects using a given

interface, as specified by the ObjName input to ncOpen.vi.

By selecting RTSI0 to RTSI6, or PXI_Star for PXI hardware, as the

source terminal, you route the start trigger from another CAN, LIN,

or DAQ card. This ensures that sampling begins at the same time on

both cards. For example, you can synchronize with an E Series DAQ

MIO card by routing the AI start trigger of the MIO card to a RTSI line

and then routing the same RTSI line with Start Trigger as the

destination terminal on the CAN card.

The default (disconnected) state of this destination means the start

trigger occurs when communication begins on the interface.

modifiers provides optional connection information for certain

source/destination pairs. The current release of NI-CAN does not use this

information for any source/destination pair, so modifiers must be left

unwired.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-38 ni.com

Outputs

ObjHandle out is the object handle for the next VI.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI connects a specific pair of source/destination terminals. One of the terminals is

typically a RTSI signal, and the other terminal is an internal terminal in the CAN or LIN

hardware. By connecting internal terminals to RTSI, you can synchronize the CAN or LIN

hardware with another hardware product such as an NI-DAQ or NI-DAQmx card.

When the final CAN object for a given port is cleared with ncClose.vi, NI-CAN disconnects

all terminal connections for that port. Therefore, ncDisconnectTerminals.vi is not required

for most applications. NI-DAQ and NI-DAQmx terminals remain connected after the CAN

objects are cleared, so you must disconnect NI-DAQ and NI-DAQmx terminals manually at

the end of the application.

For a list of valid source/destination pairs, refer to the following section.

Valid Combinations of Source/Destination

The series of the NI CAN hardware determines what combinations of source terminal to

destination terminal are valid. Within the table, 1 indicates Series 1 hardware, 2 indicates

Series 2 hardware, and 3 indicates 847x with Sync hardware. You can determine the series of

the NI CAN hardware by selecting the name of the card within the Devices and Interfaces»

NI-CAN Devices view in the left pane of MAX.

Series 1 hardware has the following limitations.

• PXI cards do not support RTSI6.

• Signals received from a RTSI source cannot occur faster than 1 kHz. This prevents the

card from receiving a 10 MHz or 20 MHz timebase, such as NI E Series MIO hardware

provides.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-39 NI-CAN Hardware and Software Manual

• Signals received from a RTSI source must be at least 100 µs in length to be detected. This

prevents the card from receiving triggers in the nanoseconds range, such as the AI trigger

that E Series MIO hardware provides. Series 2 CAN cards also send RTSI pulses in the

nanoseconds range, so Series 1 CAN cards cannot receive RTSI input from Series 2 CAN

cards.

• For CAN cards with High-Speed (HS) ports only, four RTSI signals are available for

input (source), and four RTSI signals are available for output (destination). This

limitation applies to the number of signals per direction, not the RTSI signal number.

For example, if you connect RTSI0, RTSI1, RTSI3, and RTSI5 as input, connecting

RTSI4 as input will return an error.

• For CAN cards with one or more Low-Speed (LS) ports, two RTSI signals are available

for input (source), and three RTSI signals are available for output (destination).

Series 2 hardware has the following limitations.

• For all form factors (PCI, PXI, PCMCIA), the connection of Interface Transceiver

Event to a RTSI destination depends on the physical port location. If the interface is on

Port 1, you can connect to only even-numbered RTSI lines (RTSI0, RTSI2, RTSI4,

RTSI6). If the interface is on Port 2, you can connect to only odd-numbered RTSI lines

(RTSI1, RTSI3, RTSI5). You can determine the location by selecting the name of the

interface in MAX.

• PCI cards do not support the PXI_Star and PXI_Clk10 terminals, as those signals exist

on the PXI backplane.

• PCMCIA cards do not support the 20 MHz Timebase, PXI_Star, and PXI_Clk10

terminals. Because 20 MHz Timebase is not supported, you cannot synchronize the

timebases of two PCMCIA CAN cards.

• On PCMCIA cards, RTSI4 , RTSI5 and RTSI6 are not available.

847x with Sync series hardware has the following limitations:

• No support for RTSI1–RTSI6.

• Because 20 MHz timebase only outputs a 1 MHz signal, you cannot source a timebase to

a PCI-CAN device. It can, however, receive a 20 MHz signal from a PCI-CAN device.

• RTSI0 must be connected to the TRIG terminal and RTSI7 must be connected to the CLK

terminal. Refer to the USB-LIN section of Chapter 3, NI CAN and LIN Hardware,

for more information on the pinout of the USB-847x with Sync series hardware.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-40 ni.com

Table 10-4 lists all valid combinations of source terminal and destination terminal.

1—Valid connection for Series 1 hardware

2—Valid connection for Series 2 hardware

3—Valid connection for 847x with Sync series hardware

Table 10-4. Valid Combinations of Source/Destination

Source

Destination

RTSI0 to

RTSI6

RTSI_CLO

CK

Master

Timebase

10 Hz

Resync

Clock

Start

Trigger

RTSI0 to

RTSI6

— — — 1,2 1,2,3

RTSI7/RTSI

Clock

— — 2,3 — —

PXI_Star — — — — 2

PXI_Clk10 — — 2 — —

20 MHz

Timebase

— 2,3 — — —

10 Hz Resync

Clock

1,2 — — — 1,2

Interface

Receive

Event

2 — — — 2

Interface

Transceiver

Event

2 — — — —

Start Trigger

Event

1,2,3 — — — —

Chapter 10 Frame API for LabVIEW

© National Instruments 10-41 NI-CAN Hardware and Software Manual

ncDisconnectTerminals.vi

Purpose
Disconnect terminals in the CAN or LIN hardware.

Format

Inputs

ObjHandle in is the object handle from the previous NI-CAN VI.

The handle reference originated from ncOpen.vi.

source terminal specifies the connection source. For a description of

values for source terminal, refer to ncConnectTerminals.vi.

destination terminal specifies the connection destination.

For a description of values for destination terminal, refer to

ncConnectTerminals.vi.

modifiers provides optional connection information for certain

source/destination pairs. The current release of NI-CAN does not use this

information for any source/destination pair, so modifiers must be left

unwired.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-42 ni.com

source identifies the VI where the error occurred.

Outputs

ObjHandle out is the object handle for the next VI.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI disconnects a specific pair of source/destination terminals that were previously

connected with ncConnectTerminals.vi.

When the final task for a given interface is cleared with ncClose.vi, NI-CAN disconnects all

terminal connections for that interface. Therefore, ncDisconnectTerminals.vi is not required

for most applications. This VI is typically used to change RTSI connections dynamically

while an application is running. First, use ncAction.vi to stop all tasks for the interface, then

use ncDisconnectTerminals.vi and ncConnectTerminals.vi to adjust RTSI connections.

Then use ncAction.vi with the opcode to start the network interface and higher-level CAN

Objects to restart communication.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-43 NI-CAN Hardware and Software Manual

ncGetAttr.vi

Purpose
Get the value of an object attribute.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.

The handle originates from ncOpen.vi.

AttrId specifies the attribute to get.

Baud Rate

Returns the value of the Baud Rate as configured with ncSetAttr.vi.

Form Factor

Returns the form factor of the card on which the Network Interface or

CAN Object is located.

The returned Form Factor is an enumeration.

Interface Number

Returns the Interface Number of the port on which the Network

Interface or CAN Object is located.

This is the same number that you used in the ObjName string of the

previous Config and Open VIs.

0 PCI

1 PXI

2 PCMCIA

3 AT

4 USB

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-44 ni.com

LIN Checksum Type

Returns the value of the LIN Checksum Type attribute as configured

with ncSetAttr.vi.

LIN Enable DLC Check

Returns the value of the LIN Enable DLC Check as configured with

ncSetAttr.vi.

LIN Log Wakeup

Returns the value of the LIN Log Wakeup attribute as configured

with ncSetAttr.vi.

LIN Response Timeout

Returns the value of the LIN Response Timeout attribute as

configured with ncSetAttr.vi.

LIN Sleep

Returns the value of the LIN Sleep attribute. This attribute may be

updated by the user with ncSetAttr.vi or by the reception of a wakeup

signal on the LIN bus.

Listen Only?

Returns the Listen Only? attribute as configured with ncSetAttr.vi.

Log Bus Errors?

Returns the value of the Log Bus Errors? attribute as configured with

ncSetAttr.vi.

Log Comm Warnings

Returns TRUE or FALSE depending on whether communication

warnings (including transceiver faults) were logged to the Network

Interface read queue. For more information, refer to this attribute in

ncSetAttr.vi.

Log Start Trigger?

Returns the value of the Log Start Trigger? attribute as configured

with ncSetAttr.vi.

0 FALSE (default)

1 TRUE

Chapter 10 Frame API for LabVIEW

© National Instruments 10-45 NI-CAN Hardware and Software Manual

Log Transceiver Faults?

Returns the value of the Log Transceiver Faults? attribute as

configured with ncSetAttr.vi.

Master Timebase Rate

Returns the present Master Timebase Rate in MHz, programmed into

the CAN Series 1 or Series 2 hardware. For PCMCIA, this attribute

will always return 10 MHz.

For the 847x with Sync series CAN and LIN interfaces, this attribute

returns the value that was automatically detected.

Object State

Returns the current state bit mask of the object. Polling with

ncGetAttr.vi provides an alternative method of state detection than

ncWaitForState.vi. For more information on the states returned from

this attribute, refer to the DesiredState input of ncWaitForState.vi.

Protocol Version

For NI-CAN, this returns 02000200 hex, which corresponds to

version 2.0B of the Bosch CAN specification and 2.0 of the LIN

specification. For more information on the encoding of the version,

refer to the Software Version attribute.

This attribute is available only from the Network Interface, not CAN

Objects.

Read Entries Pending

Returns the number of frames available in the read queue. Polling the

available frames with this attribute can be used as an alternative to

ncWaitForState.

ReadMult Size for Notification

Returns the number of frames used as a threshold for the Read Multiple

state. For more information, refer to this attribute in ncSetAttr.vi.

Receive Error Counter

Returns the Receive Error Counter from the SJA1000 CAN

controller. This Receive Error Counter is specified in the Bosch CAN

standard as well as ISO CAN standards.

This attribute is unsupported for Series 1 hardware (returns error).

This attribute is available only from the Network Interface, not CAN

Objects.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-46 ni.com

Self Reception?

Returns the Self Reception attribute as configured with ncSetAttr.vi.

Serial Number

Returns the Serial Number of the card on which the Network

Interface or CAN Object is located.

Series

Returns the Series of the card on which the Network Interface or CAN

Object is located.

Series 1 hardware products use the Intel 82527 CAN controller.

Series 2 hardware products use the Philips SJA1000 CAN controller,

plus improved RTSI synchronization features.

The 847x and 847x with Sync series CAN hardware products use the

Philips SJA1000 CAN controller. The 847x and 847x with Sync series

LIN hardware products use the AMTEL ATA6625 LIN controller.

The 847x with Sync series hardware products add synchronization

features to the 847x hardware products.

The returned Series is an enumeration.

Series 2 Comparator

Returns the Series 2 Comparator attribute as configured with

ncSetAttr.vi.

This attribute is available only from the Network Interface, not CAN

Objects.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

Series 2 Error/Arb Capture

Returns the current values of the Error Code Capture register and

Arbitration Lost Capture register from the Philips SJA1000 CAN

controller chip.

The Error Code Capture register provides information on bus errors

that occur according to the CAN standard. A bus error increments

0 Series 1

1 Series 2

2 847x

3 847x with Sync

Chapter 10 Frame API for LabVIEW

© National Instruments 10-47 NI-CAN Hardware and Software Manual

either the Transmit Error Counter or the Receive Error Counter.

When communication starts on the interface, the first bus error is

captured into the Error Code Capture register, and retained until you

get this attribute. After you get this attribute, the Error Code Capture

register is again enabled to capture information for the next bus error.

The Arbitration Lost Capture register provides information on a loss of

arbitration during transmits. Loss of arbitration is not considered an

error. When communication starts on the interface, the first arbitration

loss is captured into the Arbitration Lost Capture register, and retained

until you get this attribute. After you get this attribute, the Arbitration

Lost Capture register is again enabled to capture information for the

next arbitration loss.

For each of the capture registers, a single-bit New flag indicates

whether a new error has occurred since the last Get. If the New flag of

a register is set, the associated fields contain new information. If the

New flag of a register is clear, the associated fields are the same as the

previous Get.

This attribute is commonly used with the Single Shot Transmit?

attribute. When a Write function is used to transmit the single frame,

you can get this attribute to determine if the transmit was successful.

If the single shot transmit was not successful, this attribute provides

detailed information for the failure.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error). Since the information and bit

format is very specific to the Philips SJA1000 CAN controller on

Series 2 and 847x CAN hardware, National Instruments cannot

guarantee compatibility for this attribute on future hardware series.

When using this attribute in the application, it is best to get the Series

to verify that the hardware is Series 2, 847x, or 847x with Sync.

Figure 10-4 and Table 10-5, Table 10-6, Table 10-7, Table 10-8,

Table 10-9, and Table 10-10, describe the format of bit fields in this

attribute. The lowest byte (bits 0–7) corresponds to the Error Code

Capture register. The next byte (bits 8–15) corresponds to the

Arbitration Lost Capture register. Bit 16 (00010000 hex) is the New

flag for the Error Code Capture fields. Bit 17 (00020000 hex) is the

New flag for the Arbitration Lost Capture field. Bits marked as X are

reserved, and should be ignored by the application.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-48 ni.com

Figure 10-4. Series 2 Error/Arb Capture Format

Table 10-5. SEG Field of the Error Code Capture Register

Value in

SEG Field Meaning

0 No error (ignore DIR and ERRC as well)

2 ID.28 to ID.21 (most significant bits of identifier)

3 Start of frame

4 Bit SRTR (RTR for standard frames)

5 Bit IDE

6 ID.20 to ID.18

7 ID.17 to ID.13

8 CRC sequence

9 Reserved bit 0

10 Data field

11 Data length code

12 Bit RTR (RTR for extended frames)

13 Reserved bit 1

14 ID.4 to ID.0

15 ID.12 to ID.5

17 Active error flag

18 Intermission

19 Tolerate dominant bits

22 Passive error flag

23 Error delimiter

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

xx x x x x x x x x x x x x x x x ALC SEG

12 11 10 9 8 7 6 5 4 3 2 1 0

NEWALC ERCC

NEWECC DIR

Bit

Chapter 10 Frame API for LabVIEW

© National Instruments 10-49 NI-CAN Hardware and Software Manual

24 CRC delimiter

25 Acknowledge slot

26 End of frame

27 Acknowledge delimiter

28 Overload flag

Table 10-6. DIR Field of the Error Code Capture Register

Value in

DIR Field Meaning

0 TX; error occurred during transmission

1 RX; error occurred during reception

Table 10-7. ERRC Field of the Error Code Capture Register

Value in

ERRC Field Meaning

0 Bit error

1 Form error

2 Stuff error

3 Other type of error

Table 10-8. ALC Field Contains the Arbitration Lost Capture Register

Value in

ALC Field Meaning

0 ID.28 (most significant bit of identifier;

first ID bit in frame)

1 ID.27

2 ID.26

Table 10-5. SEG Field of the Error Code Capture Register (Continued)

Value in

SEG Field Meaning

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-50 ni.com

3 ID.25

4 ID.24

5 ID.23

6 ID.22

7 ID.21

8 ID.20

9 ID.19

10 ID.18

11 SRTR (RTR for standard frames)

12 IDE

13 ID.17 (extended frames only)

14 ID.16 (extended frames only)

15 ID.15 (extended frames only)

16 ID.14 (extended frames only)

17 ID.13 (extended frames only)

18 ID.12 (extended frames only)

19 ID.11 (extended frames only)

20 ID.10 (extended frames only)

21 ID.9 (extended frames only)

22 ID.8 (extended frames only)

23 ID.7 (extended frames only)

24 ID.6 (extended frames only)

25 ID.5 (extended frames only)

26 ID.4 (extended frames only)

27 ID.3 (extended frames only)

Table 10-8. ALC Field Contains the Arbitration Lost Capture Register (Continued)

Value in

ALC Field Meaning

Chapter 10 Frame API for LabVIEW

© National Instruments 10-51 NI-CAN Hardware and Software Manual

Series 2 Filter Mode

Returns the Series 2 Filter Mode attribute as configured with

ncSetAttr.vi.

This attribute is available only from the Network Interface, not CAN

Objects.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

28 ID.2 (extended frames only)

29 ID.1 (extended frames only)

30 ID.0 (extended frames only)

31 SRTR (RTR for extended frames)

Table 10-9. NEWECC Field is the New Flag for the Error Code Capture Register

Value in

NEWECC

Field Meaning

0 SEG, DIR, and ERRC fields contain the same value as

the last Get of this attribute. If no error has occurred

since the start of communication, all fields are zero.

1 SEG, DIR, and ERRC fields contain information for a

new bus error.

Table 10-10. NEWALC Field is the New Flag for the Arbitration Lost Capture Register

Value in

NEWALC

Field Meaning

0 ALC field contains the same value as the last Get of

this attribute.

1 ALC field contains information for a new arbitration

loss.

Table 10-8. ALC Field Contains the Arbitration Lost Capture Register (Continued)

Value in

ALC Field Meaning

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-52 ni.com

Series 2 Mask

Returns the Series 2 Mask attribute as configured with ncSetAttr.vi.

This attribute is available only from the Network Interface, not CAN

Objects.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

Single Shot Transmit?

Returns the Single Shot Transmit attribute as configured with

ncSetAttr.vi.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

Software Version

Version of the NI-CAN software, with major, minor, update, and beta

build numbers encoded in the U32 from high to low bytes. For

example, 2.0.1 would be 02000100 hex, and 2.1beta5 would be

02010005 hex.

This attribute is provided for backward compatibility.

ncGetHardwareInfo.vi provides more complete version information.

Termination

Returns the value of the Termination attribute as configured with

ncSetAttr.vi.

Timeline Recovery

Returns the Timeline Recovery attribute for the CAN Network

Interface Object.

Timestamp Format

Returns the present Timestamp Format programmed into the CAN or

LIN hardware. This attribute applies to the entire card.

Transceiver External Inputs

Returns the Transceiver External Inputs for the Network Interface.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this attribute allows you to determine the input

voltage on the STATUS pin of the CAN port.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-53 NI-CAN Hardware and Software Manual

For many models of CAN transceiver, an NERR pin is provided for

detection of faults and other status. For such transceivers, you can wire

the NERR pin to the STATUS pin of the CAN port.

This attribute is supported for Series 2 XS cards only (returns error for

non-XS cards).

This attribute uses a bit mask. When using the attribute, use bitwise

AND operations to check for values, not equality checks (equal,

greater than, and so on).

00000001 hex STATUS

This bit is set when 5 V exists on the STATUS pin.

This bit is clear when 0 V exists on the STATUS pin.

Transceiver External Outputs

Returns the Transceiver External Outputs for the Network Interface.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this attribute allows you to determine the output

voltage on the MODE0 and MODE1 pins of the CAN port, and it

allows you to determine if the CAN controller chip is sleeping.

For more information on the format of the value returned in this

attribute, refer to the description of Transceiver External Outputs in

ncSetAttr.vi.

This attribute is supported for Series 2 XS cards only (returns error for

non-XS cards).

Transceiver Mode

Returns the Transceiver Mode for the Network Interface.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

For Series 2 cards for the PCMCIA form factor, this property requires

a corresponding Series 2 cable (dongle). For information on how to

identify the series of the PCMCIA cable, refer to the Series 2 Vs.

Series 1 section of Chapter 1, Introduction.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-54 ni.com

The Transceiver Mode changes when you set the mode within the

application, or when a remote wakeup transitions the interface from

Sleep to Normal mode. For more information, refer to ncSetAttr.vi.

This attribute uses the following values:

Transceiver Type

Returns the type of transceiver for the Network Interface. For hardware

other than Series 2 XS cards, the Transceiver Type is fixed. For Series

2 XS cards, the Transceiver Type reflects the most recent value

specified by MAX or ncSetAttr.vi.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

This attribute is not supported on the PCMCIA form factor.

This attribute uses the following values:

0 Normal

Transceiver is awake in normal communication mode.

1 Sleep

Transceiver and the CAN controller chip are both in sleep

mode.

2 Single Wire Wakeup

Single Wire transceiver is in Wakeup Transmission mode.

3 Single Wire High-Speed

Single Wire transceiver is in High-Speed Transmission

mode.

0 High-Speed

Transceiver type is High-Speed (HS).

1 Low-Speed/Fault-Tolerant

Transceiver type is Low-Speed/Fault-Tolerant (LS).

2 Single Wire

Transceiver type is Single Wire (SW).

Chapter 10 Frame API for LabVIEW

© National Instruments 10-55 NI-CAN Hardware and Software Manual

Transmit Error Counter

Returns the Transmit Error Counter from the Philips SJA1000 CAN

controller. This Transmit Error Counter is specified in the Bosch

CAN standard as well as ISO CAN standards.

This attribute is unsupported for Series 1 hardware (returns error). This

attribute is available only from the Network Interface, not CAN

Objects.

Transmit Mode

Returns the Transmit Mode the CAN Network Interface Object is

presently configured for.

The returned Transmit Mode is an enumeration.

User RTSI Frame

Returns the User RTSI Frame attribute as configured with

ncSetAttr.vi.

Virtual Bus Timing

Returns a Boolean value of True or False to indicate whether Virtual

Bus Timing has been set or not for the specified virtual interface. This

attribute is applicable to all CAN Objects opened on the virtual

interface.

3 External

Transceiver type is External. This transceiver type is

available on Series 2 XS cards only. For more

information, refer to ncSetAttr.vi.

4 Disconnect

Transceiver type is Disconnect. This transceiver type is

available on Series 2 XS cards only. For more

information, refer to ncSetAttr.vi.

5 LIN

Transceiver type is LIN.

0 Immediate Transmit

1 Timestamped Transmit

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-56 ni.com

Write Entries Free

Returns the number of frames that can be accepted for a CAN or LIN

Network Interface Object or CAN Object to write without causing

overflow error.

Write Entries Pending

Returns the number of frames pending transmission in the write queue.

If the intent is to verify that all pending frames have been transmitted

successfully, waiting for the Write Success state is preferable to this

attribute.

The Write Entries Pending attribute for 847x and 847x with Sync

series CAN and LIN interfaces does not return the number of frames

pending transmission in the write queue because the number does not

take into account the frames in transit over the USB or waiting to be

transmitted to the interface over the USB.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

AttrValue returns the attribute value specified by AttrId.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

Chapter 10 Frame API for LabVIEW

© National Instruments 10-57 NI-CAN Hardware and Software Manual

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncGetAttr.vi gets the value of the attribute specified by AttrId from the object specified by

ObjHandle. Within NI-CAN objects, you use attributes to access configuration settings,

status, and other information about the object, but not data.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-58 ni.com

ncGetHardwareInfo.vi

Purpose
Get CAN or LIN hardware information.

Format

Input

card number specifies the CAN or LIN card number from 1 to

Number of Cards, where Number of Cards is the number of CAN and

LIN cards in the system. You can determine the number of cards in the

system by using this VI with card number = 1, port number = 1, and

attribute ID = Number of Cards.

port number specifies the CAN or LIN port number from 1 to Number of

Ports, where Number of Ports is the number of ports on this card. You can

determine the number of ports on this card by using this VI with port

number = 1, and attribute ID = Number of Ports.

attribute ID specifies the attribute to get.

Version Major

Returns the major version of the NI-CAN software in the number

output. Use card number 1 and port number 1 as inputs.

The major version is the 'X' in X.Y.Z.

Version Minor

Returns the minor version of the NI-CAN software in the number

output. Use card number 1 and port number 1 as inputs.

The minor version is the 'Y' in X.Y.Z.

Version Update

Returns the update version of the NI-CAN software in the number

output. Use card number 1 and port number 1 as inputs.

The update version is the 'Z' in X.Y.Z.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-59 NI-CAN Hardware and Software Manual

Version Phase

Returns the phase of the NI-CAN software in the number output.

Use card number 1 and port number 1 as inputs.

Phase 1 specifies Alpha, phase 2 specifies Beta, and phase 3 specifies

Final release. Unless you are participating in an NI-CAN beta

program, you will always see 3.

Version Build

Returns the build of the NI-CAN software in the number output. Use

card number 1 and port number 1 as inputs.

With each software development phase, subsequent NI-CAN builds

are numbered sequentially. A given Final release version always uses

the same build number, so unless you are participating in an NI-CAN

beta program, this build number is not relevant.

Version Comment

Returns any special comment on the NI-CAN software in the string

output. Use card number 1 and port number 1 as inputs.

This string is normally empty for a Final release. In rare circumstances,

an NI-CAN prototype or patch may be released to a specific customer.

For these special releases, the version comment describes the special

features of the release.

Number of Cards

Returns the number of CAN and LIN cards in the system in the

number output. Use card number 1 and port number 1 as inputs.

If you are displaying all hardware information, you get this attribute

first, then iterate through all cards with a For loop. Inside the For loop,

you get all card-wide attributes including Number Of Ports, then use

another For loop to get port-wide attributes.

Serial Number

Card-wide attribute that returns the serial number of the card in the

number output. Use the desired card number, and port number 1

as inputs.

Form Factor

Card-wide attribute that returns the form factor of the card in the

number output. Use the desired card number, and port number 1

as inputs.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-60 ni.com

The returned Form Factor is an enumeration.

Series

Card-wide attribute that returns the series of the card in the number

output. Use the desired card number, and port number 1 as inputs.

Series 1 hardware products use the Intel 82527 CAN controller.

Series 2 hardware products use the Philips SJA1000 CAN controller,

plus improved RTSI synchronization features.

The returned Series is an enumeration.

Number of Ports

Card-wide attribute that returns the number of ports on the card in the

number output. Use the desired card number, and port number 1 as

inputs.

If you are displaying all hardware information, you get this attribute

within the For loop for all cards, then iterate through all CAN ports to

get port-wide attributes.

Transceiver Type

This port-wide attribute returns the type of transceiver in the number

output. Use the desired card number and port number as inputs.

For hardware other than Series 2 XS cards, the transceiver type is

fixed. For Series 2 XS cards, the transceiver type reflects the most

recent value specified by MAX or ncSetAttr.vi.

This attribute is not supported on the PCMCIA form factor.

0 PCI

1 PXI

2 PCMCIA

3 AT

4 USB

0 Series 1

1 Series 2

2 847x

3 847x with Sync

4 NI-XNET

Chapter 10 Frame API for LabVIEW

© National Instruments 10-61 NI-CAN Hardware and Software Manual

This attribute uses the following values:

0 (High-Speed)

Transceiver type is High-Speed (HS).

1 (Low-Speed/Fault-Tolerant)

Transceiver type is Low-Speed/Fault-Tolerant (LS).

2 (Single Wire)

Transceiver type is Single Wire (SW).

3 (External)

Transceiver type is External. This transceiver type is available on

Series 2 XS cards only. For more information, refer to

ncSetAttr.vi.

4 (Disconnect)

Transceiver type is Disconnect. This transceiver type is available

on Series 2 XS cards only. For more information, refer to

ncSetAttr.vi.

5 (LIN)

Transceiver type is LIN.

Interface Number

Port-wide attribute that returns the interface number of the port in the

number output. Use the desired card number and port number as

inputs.

The interface number is assigned to a physical port using the

Measurement and Automation Explorer (MAX). The interface number

is used as a string in the Frame API (for example, “CAN0”). The

interface number is used for the interface input in the Channel API.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-62 ni.com

source identifies the VI where the error occurred.

Output

If the attribute is a number, the value is returned in this output terminal.

If the attribute is a string, the value is returned in this output terminal.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI provides information about available CAN and LIN cards, but does not require you

to open/start sessions. First get Number of Cards, then loop for each card. For each card, you

can get card-wide attributes (such as Form Factor), and you also can get the Number of

Ports. For each port, you can get port-wide attributes such as the Transceiver.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-63 NI-CAN Hardware and Software Manual

ncGetTimer.vi

Purpose
Get the absolute timestamp attribute.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Timestamp returns the absolute timestamp value. The value matches the

absolute timestamp format used within LabVIEW itself. LabVIEW time

is a DBL representing the number of seconds elapsed since 12:00 a.m.,

Friday, January 1, 1904, Coordinated Universal Time (UTC). You can

wire this Timestamp to LabVIEW time functions such as Seconds To

Date/Time. You also can display the time in a numeric indicator of type

DBL by using Format & Precision to select Time & Date format.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-64 ni.com

Note If you use Time & Date format, LabVIEW limits the Seconds Precision to 3, which

shows only milliseconds. The NI-CAN timestamp provides microsecond precision. If you

need to view microsecond precision, change the timestamp to decimal format, with

six digits of precision.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
This VI can be used only with the CAN or LIN Network Interface, and not with CAN Objects.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-65 NI-CAN Hardware and Software Manual

ncOpen.vi

Purpose
Open an object.

Format

Input

ObjName is the name of the object to open. For CAN interfaces, you must

have already wired this name into a previous config VI.

CAN Network Interface Object

This name uses the syntax “CANx”, where x is a decimal number starting

at zero that indicates the CAN network interface (CAN0, CAN1, up to

CAN63). CAN network interface names are associated with physical CAN

ports using the Measurement and Automation Explorer (MAX).

The special interface values 256 and 257 refer to virtual interfaces. For

more information on usage of virtual interfaces, refer to the Frame to

Channel Conversion section of Chapter 6, Using the Channel API.

LIN Network Interface Object

This name uses the syntax LINx, where x is a decimal number starting at

zero that indicates the LIN network interface (LIN0, LIN1, up to LIN63),

where CAN and LIN share the same range. LIN network interface names

are associated with physical LIN ports using the Measurement and

Automation Explorer (MAX).

CAN Object

This name uses the syntax “CANx::STDy” or “CANx::XTDy”. CANx is

the name of the CAN network interface that you used for the preceding

ncConfigCANNet.vi. STD indicates that the CAN Object uses a standard

(11-bit) arbitration ID. XTD indicates that the CAN Object uses an

extended (29-bit) arbitration ID. The number y specifies the actual

arbitration ID of the CAN Object. The number y is decimal by default, but

you also can use hexadecimal by adding 0x to the beginning of the number.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-66 ni.com

For example, “CAN0::STD25” indicates standard ID 25 decimal on CAN0,

and “CAN1::XTD0x0000F652” indicates extended ID F652 hexadecimal

on CAN1.

The special virtual interface names “CAN256” and “CAN257” are not

supported for CAN Objects.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for all subsequent NI-CAN VIs for this

object, including the final call to ncClose.vi.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-67 NI-CAN Hardware and Software Manual

Description
ncOpen.vi takes the name of an object to open and returns a handle to that object that you use

with subsequent NI-CAN function calls.

The Frame API and Channel API cannot use the same CAN network interface

simultaneously. If the CAN network interface is already initialized in the Channel API,

this function returns an error.

If ncOpen.vi is successful, a handle to the newly opened object is returned. You use this

object handle for all subsequent function calls for the object.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-68 ni.com

ncReadNet.vi

Purpose
Read single frame from a CAN or LIN Network Interface Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Note The description of the output terminals is specified by the frame type. The value of

IsRemote indicates the frame type. For a description of each frame type, refer to the Frame

Types section in this function reference.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-69 NI-CAN Hardware and Software Manual

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
The ncReadNet.vi VI is useful when you need to process one frame at a time, because it

returns separate outputs for ArbitrationId, Timestamp, and so on. In order to read multiple

frames at a time, such as for high-bandwidth networks, use ncReadNetMult.vi.

Since NI-CAN handles the read queue in the background, this VI does not wait for new

frames to arrive. To ensure that a new frame is available before calling ncReadNet.vi, first

wait for the Read Available state using ncWaitForState.vi.

When you call ncReadNet.vi for an empty read queue (Read Available state false), the frame

from the previous call to ncReadNet.vi is returned again, along with the CanWarnOldData

warning (status=F, code=3FF62009 hex).

When a frame arrives for a full read queue, NI-CAN discards the new frame, and the next call

to ncReadNet.vi returns the error CanErrOverflowRead (status=T, code= BFF62028

hex). If you detect this overflow, switch to using ncReadNetMult.vi to read in a relatively

tight loop (few milliseconds each read).

Although the Network Interface allows Read Queue Length of zero, this is not

recommended, because every new frame will always overwrite the previous frame.

You can use the Network Interface and CAN Objects simultaneously. When a CAN frame

arrives from the network, NI-CAN first checks the ArbitrationId for an open CAN Object.

If no CAN Object applies, NI-CAN checks the comparators and masks of the Network

Interface (including the Series 2 Filter Mode attributes). If the frame passes that filter,

NI-CAN places the frame into the read queue of the Network Interface.

Error Active, Error Passive, and Bus Off States

When the CAN communication controller transfers into the error passive state, NI-CAN

returns the warning CanCommWarning (Status=F, code=3ff6200B hex) from read VIs.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-70 ni.com

When the transmit error counter of the CAN communication controller increments above 255,

the network interface transfers into the bus off state as dictated by the CAN protocol. The

network interface stops communication so that you can correct the defect in the network, such

as a malfunctioning cable or device. When bus off occurs, NI-CAN returns the error

CanCommError (status=T, code=BFF6200B hex) from read VIs.

If no CAN devices are connected to the network interface port, and you attempt to transmit a

frame, the CanWarnComm warning is returned. This warning occurs because the missing

acknowledgment bit increments the transmit error counter until the network interface reaches

the error passive state, but bus off state is never reached.

For more information about low-speed communication error handling, refer to the Log

Comm Warnings attribute in ncSetAttr.vi.

Frame Types

IsRemote indicates the frame type. The frame type determines the interpretation of the

remaining fields. Table 10-11, IsRemote Value 0: CAN Data Frame, Table 10-12, IsRemote

Value 1: CAN Remote Frame, Table 10-13, IsRemote Value 2: Communication Warning or

Error Frame, Table 10-14, IsRemote Value 3: RTSI Frame, Table 10-15, IsRemote Value 4:

Start Trigger Frame, Table 10-16, IsRemote Value 6: CAN Bus Error Frame, Table 10-17,

IsRemote Value 7: Transceiver Fault Frame, Table 10-18, IsRemote Value 18: LIN Full

Frame, Table 10-19, IsRemote Value 19: LIN Wakeup Received Frame, Table 10-20,

IsRemote Value 20: LIN Bus Inactive Frame, and Table 10-21, IsRemote Value 21: LIN Bus

Error Frame, describe the fields of the cluster for each value of IsRemote.

To determine if your hardware supports one of the following frame types for this function,

refer to Appendix D, Frame Types for CAN and LIN Hardware.

Table 10-11. IsRemote Value 0: CAN Data Frame

Field Name

Data

Type Description

IsRemote Value 0 represents a CAN data frame. The CAN data frame contains

data from the network.

ArbitrationId Specifies the arbitration ID to transmit in the CAN data frame.

A standard ID (11-bit) is specified by default.

DataLength Indicates the number of data bytes in the Data array.

Data The received data bytes (8 maximum).

Chapter 10 Frame API for LabVIEW

© National Instruments 10-71 NI-CAN Hardware and Software Manual

Table 10-12. IsRemote Value 1: CAN Remote Frame

Field Name

Data

Type Description

IsRemote Value 1 represents a CAN remote frame.

Only Series 2, 847x CAN, or 847x with Sync CAN interfaces can

receive remote frames using the Network Interface. For Series 1

hardware, you must handle incoming remote frames with CAN

Object only.

ArbitrationId Specifies the arbitration ID to transmit in the CAN data frame.

DataLength Returns the Data Length Code in the remote frame, but with no data.

Data Ignored. No data bytes are contained in a CAN remote frame.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-72 ni.com

Table 10-13. IsRemote Value 2: Communication Warning or Error Frame

Field Name

Data

Type Description

IsRemote Value 2 represents a communication warning or error frame.

This indicates a communication problem reported by the CAN

controller or the low-speed CAN transceiver. This frame type

occurs only when you set the Log Comm Warnings attribute to

TRUE and the CAN controller is in the error passive state. For more

information on communication problems, refer to the Description

section of this function reference.

ArbitrationId 8000000B hex—Comm. error: General

4000000B hex—Comm. warning: General

8001000B hex—Comm. error: Stuffing

4001000B hex—Comm. warning: Stuffing

8002000B hex—Comm. error: Format

4002000B hex—Comm. warning: Format

8003000B hex—Comm. error: No Ack

4003000B hex—Comm. warning: No Ack

8004000B hex—Comm. error: Tx 1 Rx 0

4004000B hex—Comm. warning: Tx 1 Rx 0

8005000B hex—Comm. error: Tx 0 Rx 1

4005000B hex—Comm. warning: Tx 0 Rx 1

8006000B hex—Comm. error: Bad CRC

4006000B hex—Comm. warning: Bad CRC

0000000B hex—Comm. Error/warnings cleared

8000000C hex—Transceiver fault warning

0000000C hex—Transceiver fault cleared

DataLength Ignored.

Data Ignored.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-73 NI-CAN Hardware and Software Manual

Table 10-14. IsRemote Value 3: RTSI Frame

Field Name

Data

Type Description

IsRemote Value 3 represents a RTSI frame.

This indicates when a RTSI input pulse occurred relative to

incoming CAN frames. This frame type occurs only when you set

the RTSI Mode attribute to On RTSI Input–Timestamp event

(refer to ncConfigCANNetRTSI.vi for details).

ArbitrationId Is the special value 40000001 hex.

DataLength The RTSI signal detected.

Data Ignored.

Table 10-15. IsRemote Value 4: Start Trigger Frame

Field Name

Data

Type Description

IsRemote Value 4 represents the start trigger frame.

When the Log Start Trigger? attribute is enabled, this frame

indicates the time when the start trigger occurs. For example, if you

use ncConnectTerminals.vi to connect a RTSI input to the start

trigger, this frame occurs when the RTSI input pulses for the first

time. Another use case for logging the start trigger would be for

logging the received CAN frames in a file. This ensures that the first

frame in a logfile is a start trigger frame, which specifies the

absolute time (date/time) at which CAN communication started.

ArbitrationId Zero.

DataLength One.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-74 ni.com

Data The Data array contains a single byte that specifies the timestamp

format used for all the subsequent frames. The value is 0 for

absolute timestamps, and 1 for relative timestamps.

Timestamp This indicates the time of the start trigger in the absolute format.

Within a logfile, this timestamp indicates the date and time at which

communication started.

The timestamp is a LabVIEW numeric double with Format and

Precision of Absolute time (date/time). The format of this

timestamp is always absolute, even when Data byte 0 specifies

relative timestamp format. This absolute timestamp provides

date/time information even when the frames use the relative format.

Table 10-16. IsRemote Value 6: CAN Bus Error Frame

Field Name

Data

Type Description

IsRemote Value 6 represents a CAN bus error frame. Refer to the Log Bus

Errors? attribute description for more information on CAN Bus

Error frames.

ArbitrationId Zero.

DataLength Four.

Table 10-15. IsRemote Value 4: Start Trigger Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

© National Instruments 10-75 NI-CAN Hardware and Software Manual

Data 0—Comm State (See description below)

1—Transmit Error Counter

2—Receive Error Counter

3—ECC Register

4—X

5—X

6—X

7—X

Note: X means Reserved or Don’t Care.

The first data byte (Comm State) indicates the current

communication state of the CAN controller. The states are:

0—Error Active

1—Error Passive

2—Bus Off

Timestamp Time when the bus error was detected.

Table 10-17. IsRemote Value 7: Transceiver Fault Frame

Field Name

Data

Type Description

IsRemote Value 7 represents a transceiver fault frame. Refer to the Log

Transceiver Faults? attribute description for more information

on Transceiver Fault frames.

ArbitrationId Zero.

DataLength One.

Table 10-16. IsRemote Value 6: CAN Bus Error Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-76 ni.com

Data 0—Transceiver fault (0=fault cleared, 1=fault present)

1—X

2—X

3—X

4—X

5—X

6—X

7—X

Timestamp Time when the transceiver fault was detected.

Table 10-18. IsRemote Value 18: LIN Full Frame

Field Name

Data

Type Description

IsRemote Value 18 represents a full frame for LIN communication. A full

frame is reported when the LIN interface slave task has received one

complete LIN frame. All frames for which the LIN interface slave

task is a subscriber will be reported. Frames for which the LIN

interface slave task is a publisher will be reported only if the Self

Reception attribute is set to TRUE.

ArbitrationId Zero to sixty-three.

DataLength One to eight.

Data LIN frame data.

Timestamp Time at point of reception of LIN frame checksum.

Table 10-17. IsRemote Value 7: Transceiver Fault Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

© National Instruments 10-77 NI-CAN Hardware and Software Manual

Table 10-19. IsRemote Value 19: LIN Wakeup Received Frame

Field Name

Data

Type Description

IsRemote Value 19 represents a wakeup received frame for LIN

communication. A wakeup received frame is reported when the LIN

interface is asleep, the LIN Log Wakeup attribute is set to TRUE,

and a wakeup event is detected.

ArbitrationId Zero.

DataLength Zero.

Data Ignored.

Timestamp Time at point of wakeup event detection.

Table 10-20. IsRemote Value 20: LIN Bus Inactive Frame

Field Name

Data

Type Description

IsRemote Value 20 represents a bus inactive frame for LIN communication.

Bus inactive detection begins when the LIN interface senses the first

activity on the bus. When activity ceases, a bus inactive frame is

reported if the inactivity lasts for more than four seconds.

ArbitrationId Zero.

DataLength Zero.

Data Ignored.

Timestamp Time at point of four second timeout.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-78 ni.com

Note If you use Time & Date format, LabVIEW limits the Seconds Precision to 3,

which shows only milliseconds. The NI-CAN timestamp provides microsecond precision.

If you need to view microsecond precision, change the timestamp to decimal format,

with six digits of precision.

Table 10-21. IsRemote Value 21: LIN Bus Error Frame

Field Name

Data

Type Description

IsRemote Value 21 represents a LIN bus error frame for LIN communication.

A LIN bus error frame is reported when the Log Bus Errors?

attribute is set to TRUE, and a bus error occurs.

ArbitrationId Zero.

DataLength Varies depending on the error. Refer to Table 10-33, LIN Bus Error

Codes and Descriptions, in ncSetAttr.vi for information.

Data Error frame information.

Timestamp Time at point of bus error detection.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-79 NI-CAN Hardware and Software Manual

ncReadNetMult.vi

Purpose
Read multiple frames from a CAN or LIN Network Interface Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

RequestedDataBufSize specifies the maximum number of frames desired.

To empty the read queue, call ncGetAttr.vi for the Read Entries Pending

attribute to get the actual number of frames in the read queue and use that

number as the RequestedDataBufSize.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

ActualDataSize (Frames) specifies the number of frames returned in

Data. This number is less than or equal to RequestedDataBufSize.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-80 ni.com

Data returns an array of clusters. Each cluster in the array uses the typedef

CanFrameTimed.ctl, with the following elements.

Note Within each cluster, IsRemote indicates the frame type. The frame type determines

the interpretation of the remaining fields. For a description of each frame type, refer to the

Frame Types section of this function reference.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Since NI-CAN handles the read queue in the background, this VI does not wait for new

frames to arrive. To ensure that new frames are available before calling ncReadNetMult.vi,

first wait for the Read Available state or Read Multiple state using ncWaitForState.vi.

When you call ncReadNetMult.vi for an empty read queue (Read Available state false),

Error out returns success (status=F, code=0), and ActualDataSize (Frames) returns 0.

When a frame arrives for a full read queue, NI-CAN discards the new frame, and the next call

to ncReadNetMult.vi returns the error CanErrOverflowRead (status=T, code= BFF62028

hex). If you detect this overflow, try to read in a relatively tight loop (few milliseconds each

read).

Although the Network Interface allows Read Queue Length of zero, this is not

recommended, because every new frame will always overwrite the previous frame.

You can use the Network Interface and CAN Objects simultaneously. When a CAN frame

arrives from the network, NI-CAN first checks the ArbitrationId for an open CAN Object.

If no CAN Object applies, NI-CAN checks the comparators and masks of the Network

Interface (including the Series 2 Filter Mode attributes). If the frame passes that filter,

NI-CAN places the frame into the read queue of the Network Interface.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-81 NI-CAN Hardware and Software Manual

Error Active, Error Passive, and Bus Off States

When the CAN communication controller transfers into the error passive state, NI-CAN

returns the warning CanCommWarning (Status=F, code=3ff6200B hex) from read VIs.

When the transmit error counter of the CAN communication controller increments above 255,

the network interface transfers into the bus off state as dictated by the CAN protocol. The

network interface stops communication so that you can correct the defect in the network, such

as a malfunctioning cable or device. When bus off occurs, NI-CAN returns the error

CanCommError (status=T, code=BFF6200B hex) from read VIs.

If no CAN devices are connected to the network interface port, and you attempt to transmit a

frame, the warning CanWarnComm is returned. This warning occurs because the missing

acknowledgment bit increments the transmit error counter until the network interface reaches

the error passive state, but bus off state is never reached.

For more information about low-speed communication error handling, refer to the Log

Comm Warnings attribute in ncSetAttr.vi.

Frame Types

IsRemote indicates the frame type. The frame type determines the interpretation of the

remaining fields. Table 10-22, IsRemote Value 0: CAN Data Frame, Table 10-23, IsRemote

Value 1: CAN Remote Frame, Table 10-24, IsRemote Value 2: Communication Warning or

Error Frame, Table 10-25, IsRemote Value 3: RTSI Frame, Table 10-26, IsRemote Value 4:

Start Trigger Frame, Table 10-27, IsRemote Value 6: CAN Bus Error Frame, Table 10-28,

IsRemote Value 7: Transceiver Fault Frame, Table 10-29, IsRemote Value 18: LIN Full

Frame, Table 10-30, IsRemote Value 19: LIN Wakeup Received Frame, Table 10-31,

IsRemote Value 20: LIN Bus Inactive Frame, and Table 10-32, IsRemote Value 21: LIN Bus

Error Frame, describe the fields of the cluster for each value of IsRemote.

To determine if your hardware supports one of the following frame types for this function,

refer to Appendix D, Frame Types for CAN and LIN Hardware.

Table 10-22. IsRemote Value 0: CAN Data Frame

Field Name

Data

Type Description

IsRemote Value 0 represents a CAN data frame. The CAN data frame contains

data from the network.

ArbitrationId Specifies the arbitration ID to transmit in the CAN data frame.

A standard ID (11-bit) is specified by default.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-82 ni.com

DataLength Indicates the number of data bytes in the Data array.

Data The received data bytes (8 maximum).

Table 10-23. IsRemote Value 1: CAN Remote Frame

Field Name

Data

Type Description

IsRemote Value 1 represents a CAN remote frame. Only Series 2 or later can

receive remote frames using the Network Interface. For Series 1

hardware, you must handle incoming remote frames with CAN

Object only.

ArbitrationId Specifies the arbitration ID to transmit in the CAN data frame.

DataLength Returns the Data Length Code in the remote frame, but with no data.

Data Ignored. No data bytes are contained in a CAN remote frame.

Table 10-22. IsRemote Value 0: CAN Data Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

© National Instruments 10-83 NI-CAN Hardware and Software Manual

Table 10-24. IsRemote Value 2: Communication Warning or Error Frame

Field Name

Data

Type Description

IsRemote Value 2 represents a communication warning or error frame.

This indicates a communication problem reported by the CAN

controller or the low-speed CAN transceiver. This frame type

occurs only when you set the Log Comm Warnings attribute to

TRUE and the CAN controller is in the error passive state. For more

information on communication problems, refer to the Description

section of this function reference.

ArbitrationId 8000000B hex—Comm. error: General

4000000B hex—Comm. warning: General

8001000B hex—Comm. error: Stuffing

4001000B hex—Comm. warning: Stuffing

8002000B hex—Comm. error: Format

4002000B hex—Comm. warning: Format

8003000B hex—Comm. error: No Ack

4003000B hex—Comm. warning: No Ack

8004000B hex—Comm. error: Tx 1 Rx 0

4004000B hex—Comm. warning: Tx 1 Rx 0

8005000B hex—Comm. error: Tx 0 Rx 1

4005000B hex—Comm. warning: Tx 0 Rx 1

8006000B hex—Comm. error: Bad CRC

4006000B hex—Comm. warning: Bad CRC

0000000B hex—Comm. Error/warnings cleared

8000000C hex—Transceiver fault warning

0000000C hex—Transceiver fault cleared

DataLength Ignored.

Data Ignored.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-84 ni.com

Table 10-25. IsRemote Value 3: RTSI Frame

Field Name

Data

Type Description

IsRemote Value 3 represents a RTSI frame.

This indicates when a RTSI input pulse occurred relative to

incoming frames. This frame type occurs only when you set the

RTSI Mode attribute to On RTSI Input–Timestamp event (refer

to ncConfigCANNetRTSI.vi for details).

ArbitrationId Is the special value 40000001 hex.

DataLength The RTSI signal detected.

Data Ignored.

Table 10-26. IsRemote Value 4: Start Trigger Frame

Field Name

Data

Type Description

IsRemote Value 4 represents the start trigger frame.

When the Log Start Trigger? attribute is enabled, this frame

indicates the time when the start trigger occurs. For example, if you

use ncConnectTerminals.vi to connect a RTSI input to the start

trigger, this frame occurs when the RTSI input pulses for the first

time. Another use case for logging the start trigger would be for

logging the received CAN frames in a file. This ensures that the

first frame in a logfile is a start trigger frame, which specifies the

absolute time (date/time) at which CAN communication started.

ArbitrationId Zero.

DataLength One.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-85 NI-CAN Hardware and Software Manual

Data The Data array contains a single byte that specifies the timestamp

format used for all the subsequent CAN frames. The value is 0 for

absolute timestamps, and 1 for relative timestamps.

Timestamp This indicates the time of the start trigger in the absolute format.

Within a logfile, this timestamp indicates the date and time at which

communication started.

The timestamp is a LabVIEW numeric double with Format and

Precision of Absolute time (date/time). The format of this

timestamp is always absolute, even when Data byte 0 specifies

relative timestamp format. This absolute timestamp provides

date/time information even when the CAN frames use the relative

format.

Table 10-27. IsRemote Value 6: CAN Bus Error Frame

Field Name

Data

Type Description

IsRemote Value 6 represents a CAN bus error frame. Refer to the Log Bus

Errors? attribute description for more information on CAN Bus

Error frames.

ArbitrationId Zero.

DataLength Four.

Table 10-26. IsRemote Value 4: Start Trigger Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-86 ni.com

Data 0—Comm State (See description below)

1—Transmit Error Counter

2—Receive Error Counter

3—ECC Register

4—X

5—X

6—X

7—X

Note: X means Reserved or Don’t Care.

The first data byte (Comm State) indicates the current

communication state of the CAN controller. The states are:

0—Error Active

1—Error Passive

2—Bus Off

Timestamp Time when the bus error was detected.

Table 10-28. IsRemote Value 7: Transceiver Fault Frame

Field Name

Data

Type Description

IsRemote Value 7 represents a transceiver fault frame. Refer to the Log

Transceiver Faults? attribute description for more information on

Transceiver Fault frames.

ArbitrationId Zero.

DataLength One.

Table 10-27. IsRemote Value 6: CAN Bus Error Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

© National Instruments 10-87 NI-CAN Hardware and Software Manual

Data 0—Transceiver fault (0=fault cleared, 1=fault present)

1—X

2—X

3—X

4—X

5—X

6—X

7—X

Timestamp Time when the transceiver fault was detected.

Table 10-29. IsRemote Value 18: LIN Full Frame

Field Name

Data

Type Description

IsRemote Value 18 represents a full frame for LIN communication. A full

frame is reported when the LIN interface slave task has received one

complete LIN frame. All frames for which the LIN interface slave

task is a subscriber will be reported. Frames for which the LIN

interface slave task is a publisher will be reported only if the Self

Reception attribute is set to TRUE.

ArbitrationId Zero to sixty-three.

DataLength One to eight.

Data LIN frame data.

Timestamp Time at point of reception of LIN frame checksum.

Table 10-28. IsRemote Value 7: Transceiver Fault Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-88 ni.com

Table 10-30. IsRemote Value 19: LIN Wakeup Received Frame

Field Name

Data

Type Description

IsRemote Value 19 represents a wakeup received frame for LIN

communication. A wakeup received frame is reported when the LIN

interface is asleep, the LIN Log Wakeup attribute is set to TRUE,

and a wakeup event is detected.

ArbitrationId Zero.

DataLength Zero.

Data Ignored.

Timestamp Time at point of wakeup event detection.

Table 10-31. IsRemote Value 20: LIN Bus Inactive Frame

Field Name

Data

Type Description

IsRemote Value 20 represents a bus inactive frame for LIN communication.

Bus inactive detection begins when the LIN interface senses the first

activity on the bus. When activity ceases, a bus inactive frame is

reported if the inactivity lasts for more than four seconds.

ArbitrationId Zero.

DataLength Zero.

Data Ignored.

Timestamp Time at point of four second timeout.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-89 NI-CAN Hardware and Software Manual

Note If you use Time & Date format, LabVIEW limits the Seconds Precision to 3, which

shows only milliseconds. The NI-CAN timestamp provides microsecond precision. If you

need to view microsecond precision, change the timestamp to decimal format, with

six digits of precision.

Table 10-32. IsRemote Value 21: LIN Bus Error Frame

Field Name

Data

Type Description

IsRemote Value 21 represents a LIN bus error frame for LIN communication.

A LIN bus error frame is reported when the Log Bus Errors?

attribute is set to TRUE, and a bus error occurs.

ArbitrationId Zero.

DataLength Varies depending on the error. Refer to Table 10-33, LIN Bus Error

Codes and Descriptions, in ncSetAttr.vi for information.

Data Error frame information.

Timestamp Time at point of bus error detection.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-90 ni.com

ncReadObj.vi

Purpose
Read single frame from a CAN Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Data array returns 8 data bytes. The actual number of valid data bytes

depends on the CAN Object configuration specified in

ncConfigCANObj.vi.

If the CAN Object Communication Type specifies Transmit, data frames

are transmitted, not received, so the ncReadObj.vi VI has no effect.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-91 NI-CAN Hardware and Software Manual

If the CAN Object Communication Type specifies Receive, Data always

contains Data Length valid bytes, where Data Length was configured

using ncConfigCANObj.vi.

Timestamp returns the absolute timestamp when the frame was placed into

the read queue. The value matches the absolute timestamp format used

within LabVIEW itself. LabVIEW time is a DBL representing the number

of seconds elapsed since 12:00 a.m., Friday, January 1, 1904, Coordinated

Universal Time (UTC). You can wire this Timestamp to LabVIEW time

functions such as Seconds To Date/Time. You also can display the time in

a numeric indicator of type DBL by using Format & Precision to select

Time & Date format.

Note If you use Time & Date format, LabVIEW limits the Seconds Precision to 3,

which shows only milliseconds. The NI-CAN timestamp provides microsecond precision.

If you need to view microsecond precision, change the timestamp to decimal format,

with six digits of precision.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
ncReadObj.vi is useful when you need to process one frame at a time. In order to read

multiple frames at a time, such as for high-bandwidth networks, use ncReadObjMult.vi.

Since NI-CAN handles the read queue in the background, this VI does not wait for a new

frame to arrive. To ensure that a new frame is available before calling ncReadObj.vi,

first wait for the Read Available state using ncWaitForState.vi.

When you call ncReadObj.vi for an empty read queue (Read Available state false), the frame

from the previous call to ncReadObj.vi is returned again, along with the warning

CanWarnOldData (status=F, code=3FF62009 hex).

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-92 ni.com

When a frame arrives for a full read queue, NI-CAN discards the new frame, and the next call

to ncReadObj.vi returns the error CanErrOverflowRead (status=T, code= BFF62028 hex).

If you detect this overflow, switch to using ncReadObjMult.vi to read in a relatively tight

loop (few milliseconds each read).

If you only need to obtain the most recent frame received for the CAN Object, you can set

Read Queue Length to zero. When the read queue uses a zero length, only the most recent

frame is stored, and overflow errors do not occur.

You can use the Network Interface and CAN Objects simultaneously. When a CAN frame

arrives from the network, NI-CAN first checks the ArbitrationId for an open CAN Object.

If no CAN Object applies, NI-CAN checks the comparators and masks of the Network

Interface (including the Series 2 Filter Mode attributes). If the frame passes that filter,

NI-CAN places the frame into the read queue of the Network Interface.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-93 NI-CAN Hardware and Software Manual

ncReadObjMult.vi

Purpose
Read multiple frames from a CAN Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI.

The handle originates from ncOpen.vi.

RequestedDataBufSize specifies the maximum number of frames desired.

For most applications, this will be the same as the configured Read Queue

Length in order to empty the read queue with each call to

ncReadObjMult.vi.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

ActualDataSize (Frames) specifies the number of frames returned in

Data. This number is less than or equal to RequestedDataBufSize.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-94 ni.com

Data returns an array of clusters. Each cluster in the array uses the typedef

CanDataTimed.ctl with the following elements:

Data array returns 8 data bytes. The actual number of valid data

bytes depends on the CAN Object configuration specified in

ncConfigCANObj.vi.

If the CAN Object Communication Type specifies Transmit,

data frames are transmitted, not received, so Data is ignored. For

this Communication Type, ncReadObjMult.vi has no effect.

If the CAN Object Communication Type specifies Receive, Data

always contains Data Length valid bytes, where Data Length

was configured using ncConfigCANObj.vi.

Timestamp returns the absolute timestamp when the frame was

placed into the read queue. The value matches the absolute

timestamp format used within LabVIEW itself. LabVIEW time

is a DBL representing the number of seconds elapsed since

12:00 a.m., Friday, January 1, 1904, Coordinated Universal Time

(UTC). You can wire this Timestamp to LabVIEW time functions

such as Seconds To Date/Time. You also can display the time in

a numeric indicator of type DBL by using Format & Precision to

select Time & Date format.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-95 NI-CAN Hardware and Software Manual

Description
Since NI-CAN handles the read queue in the background, this VI does not wait for new

frames to arrive. To ensure that new frames are available before calling ncReadObjMult.vi,

first wait for the Read Available state or Read Multiple state using ncWaitForState.vi.

When you call ncReadObjMult.vi for an empty read queue (Read Available state false),

Error out returns success (status=F, code=0), and ActualDataSize (Frames) returns 0.

When a frame arrives for a full read queue, NI-CAN discards the new frame, and the next

call to ncReadObjMult.vi returns the error CanErrOverflowRead (status=T,

code=BFF62028 hex). If you detect this overflow, try to read in a relatively tight loop

(few milliseconds each read).

You can use the Network Interface and CAN Objects simultaneously. When a CAN frame

arrives from the network, NI-CAN first checks the ArbitrationId for an open CAN Object.

If no CAN Object applies, NI-CAN checks the comparators and masks of the Network

Interface (including the Series 2 Filter Mode attributes). If the frame passes that filter,

NI-CAN places the frame into the read queue of the Network Interface.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-96 ni.com

ncSetAttr.vi

Purpose
Set the value of an object attribute. The attributes provided in this VI allow for additional

configuration beyond the attributes of ncConfig VIs.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

AttrId specifies the attribute to set.

Baud Rate

For NI CAN hardware you can specify the following basic baud rates

as the numeric rate: 5000, 6150, 7813, 8000, 10000, 12500, 15625,

16000, 20000, 25000, 31250, 33333, 40000, 50000, 62500, 80000,

83333, 100000, 125000, 160000, 200000, 250000, 400000, 500000,

800000, and 1000000.

You can specify advanced baud rates as 8000XXYY hex, where YY is

the value of Bit Timing Register 0 (BTR0), and XX is the value of

Bit Timing Register 1 (BTR1) of the SJA1000 CAN controller.

For NI LIN hardware you can specify any baud rate from 2400 to

20000 baud. If the baud rate you select varies more than .5% from the

calculated baud rate, you will receive a warning message. The

calculation for the baud rate is as follows:

Calculated Baud Rate = 1,500,000/x

where x = (1,500,000/Input Baud Rate), rounded to the nearest

integer.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-97 NI-CAN Hardware and Software Manual

LIN Checksum Type

Specifies the method the LIN interface should use when calculating

checksums for published data, or verifying received checksums for

subscribed-to data. The values for this attribute are:

Setting the LIN Checksum Type to Classic indicates that the

LIN-specified checksum calculation algorithm should be applied only

to the data bytes. Setting the LIN Checksum Type to Enhanced

indicates that the checksum calculation algorithm should be applied to

the ID and data bytes.

LIN Enable DLC Check

Specifies the manner in which the LIN interface detects

end-of-response when writing a header IsRemote type. This attribute

does not affect the LIN interface processing of the full and response

IsRemote types. The values for this attribute are:

When the LIN interface transmits a header, it expects an external slave

to publish data in response. When writing headers, the LIN interface

detects end-of-response using either the LIN-specified response

timeout for a response containing the maximum number (8) of data

bytes (LIN Enable DLC Check=FALSE), or reception of a response

containing DLC number of data bytes (LIN Enable DLC

Check=TRUE). If LIN Enable DLC Check=FALSE, then the

minimum time separation between the transmission of headers will be

header time + time to subscribe to eight data bytes (DLC is ignored)

and checksum + LIN interface inter-frame delay. If LIN Enable DLC

Check=TRUE, then the minimum time separation between the

transmission of headers will be header time + time to subscribe to DLC

number of data bytes and checksum + LIN interface inter-frame delay.

If you want to transmit header frames, each separated by a unique

schedule table amount of delay with maximum timing accuracy, set

LIN Enable DLC Check to TRUE. Note that if LIN Enable DLC

Check=TRUE, the LIN interface will verify that a DLC in the range of

one to eight is in the header IsRemote type written by the host. If LIN

Enable DLC Check=FALSE, the LIN interface will ignore the DLC

in the header IsRemote type written by the host.

0 Classic (default)

1 Enhanced

0 FALSE (default)

1 TRUE

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-98 ni.com

LIN Log Wakeup

Specifies whether the LIN interface should report wakeup events as

frames (TRUE) or not (FALSE). Wakeup events are always reported as

states. The values for this attribute are:

LIN Response Timeout

Specifies an amount of response timeout, in 50 µs increments, to add

to the LIN-specified response timeout the LIN interface uses to detect

certain bus errors and end-of-response. The values for this attribute

are:

LIN Sleep

Sets the sleep state of the LIN interface. The values for this attribute

are:

The LIN interface powers up in the awake state (LIN Sleep=FALSE).

When the LIN Sleep attribute is set to FALSE, the user may set it to

TRUE at any time: upon reception of a sleep frame (four second period

of bus inactivity has passed), upon reception of a full frame containing

go-to-sleep command data, or when it is desired to simply put the

interface to sleep. When the LIN Sleep attribute is set to TRUE, either

the user or the state machines within the LIN interface may set the

attribute to FALSE, depending upon whether the interface is acting as

master or slave, and whether or not it is issuing or receiving the wakeup

request.

0 FALSE (default)

1 TRUE

0 (default)

1 1 to 65535 (50 µs increments to add to

LIN-specified response timeout)

0 FALSE (default)

1 TRUE

Chapter 10 Frame API for LabVIEW

© National Instruments 10-99 NI-CAN Hardware and Software Manual

Listen Only?

Specifies whether to use the listen only feature of the Philips SJA1000

CAN controller.

Communication must be stopped to set this attribute. Use Start On

Open False with ncConfigCANNet.vi, set the attribute, then use

ncAction.vi to start communication.

0 FALSE (default)

When set to FALSE, listen only mode is disabled

(default).

Received frames are ACKnowledged, and frames can

be transmitted using ncWriteNet.vi and

ncWriteObj.vi.

1 TRUE

When set to TRUE, listen only mode is enabled.

The Network Interface and CAN Objects can only

receive frames. The interface does not transmit on the

network: no ACKnowledgements are transmitted for

received frames, and ncWriteNet.vi and

ncWriteObj.vi will return an error. The Philips

SJA1000 CAN controller enters error passive state

when listen only is enabled.

The listen only mode is not available on the Intel 82527

CAN controller used by Series 1 CAN hardware

(returns error).

This attribute is available only for the Network

Interface, not CAN Objects.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-100 ni.com

Log Bus Errors?

Specifies whether to log bus errors when the interface detects a bus

error. For CAN interfaces, the bus error frame is logged when a bus

error is detected. The Log Bus Error? attribute is not supported by

Series 1 CAN interfaces. This attribute has to be set prior to starting the

Network Interface. The values for this attribute are:

The CAN bus error frame has the following format:

0 FALSE (default)

When set to FALSE, bus errors will not be logged and

cannot be read (default).

1 TRUE

When set to TRUE, the Network Interface reports bus

errors as a special frame in the read queue. For CAN, if

the Log Comm Warnings? attribute is set to 1 (TRUE),

the Log Bus Errors? attribute must be set to 0 (FALSE).

Timestamp Time when the bus error was detected.

Arbitration ID 0

IsRemote 6

DataLength 4

Chapter 10 Frame API for LabVIEW

© National Instruments 10-101 NI-CAN Hardware and Software Manual

For LIN interfaces, the bus error frame is logged into the read queue

when a timeout or bus errors such as Bit Framing or Checksum

occurs. This attribute must be set prior to starting the Network

Interface.

The LIN bus error frame has the following format:

Data Bytes

0—Comm State (see description below)

1—Transmit Error Counter

2—Receive Error Counter

3—ECC Register

4—X

5—X

6—X

7—X

Note: X means Reserved or Don’t Care.

The first data byte (Comm State) indicates the

current communication state of the CAN

controller. The states are:

0—Error Active

1—Error Passive

2—Bus Off

Timestamp Time when the bus error was detected.

Arbitration ID 0

IsRemote 21

DataLength 4-7 (depends on Error code)

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-102 ni.com

Data bytes zero and one (Error code) indicate the type of LIN bus error.

Refer to Table 10-33 for a list of LIN bus error codes and descriptions.

Data bytes two and three are reserved for internal use. For errors in

which a received byte did not match the expected value, data byte four

indicates the received value and data byte 5 indicates the expected

value. For a bus error occurring at a point in the LIN frame after which

the break, sync, and ID fields have been processed, data byte six

indicates the LIN ID.

Note In Table 10-33, X means Reserved.

Data Bytes

0—Error code (most significant byte)

1—Error code (least significant byte)

2—X

3—X

4—Received byte (for applicable error code)

5—Expected byte (for applicable error code)

6—LIN ID (for applicable error code)

7—X

Note: X means Reserved or Don’t Care.

Table 10-33. LIN Bus Error Codes and Descriptions

Error Name

Error

Code

(hex) Description

Frame Contents

DLC B(0) B(1) B(2) B(3) B(4) B(5) B(6)

LinBusErrorNoResponse 8400 The LIN interface slave task

received a header but no response.

7 84 00 X X 0 0 ID

LinBusErrorResponseTooShort 8401 The LIN interface slave task

received a header and only one

byte of a response.

7 84 01 X X 0 0 ID

LinBusErrorRxChecksumBit C008 The LIN interface slave task

received a checksum byte with a

bit error.

7 C0 08 X X Received

Checksum

Byte

Expected

Checksum

Byte

ID

LinBusErrorRxChecksumFraming A008 The LIN interface slave task

received a checksum byte with a

framing error.

7 A0 08 X X 0 0 ID

LinBusErrorRxData0Framing A010 The LIN interface slave task

received data byte 0 with a

framing error.

7 A0 10 X X 0 0 ID

LinBusErrorRxData1Framing A011 The LIN interface slave task

received data byte 1 with a

framing error.

7 A0 11 X X 0 0 ID

Chapter 10 Frame API for LabVIEW

© National Instruments 10-103 NI-CAN Hardware and Software Manual

LinBusErrorRxData2Framing A012 The LIN interface slave task

received data byte 2 with a

framing error.

7 A0 12 X X 0 0 ID

LinBusErrorRxData3Framing A013 The LIN interface slave task

received data byte 3 with a

framing error.

7 A0 13 X X 0 0 ID

LinBusErrorRxData4Framing A014 The LIN interface slave task

received data byte 4 with a

framing error.

7 A0 14 X X 0 0 ID

LinBusErrorRxData5Framing A015 The LIN interface slave task

received data byte 5 with a

framing error.

7 A0 15 X X 0 0 ID

LinBusErrorRxData6Framing A016 The LIN interface slave task

received data byte 6 with a

framing error.

7 A0 16 X X 0 0 ID

LinBusErrorRxData7Framing A017 The LIN interface slave task

received data byte 7 with a

framing error.

7 A0 17 X X 0 0 ID

LinBusErrorRxIdFraming A020 The LIN interface slave task

received an ID byte with a framing

error.

6 A0 20 X X Received

ID Byte

Expected

ID Byte

N/A

LinBusErrorRxIdParity C020 The LIN interface slave task

received an ID byte with a parity

error.

6 C0 20 X X Received

ID Byte

Expected

ID Byte

N/A

LinBusErrorRxIdTimeout 9020 The LIN interface slave task did

not receive an ID byte within the

header timeout period.

4 90 20 X X N/A N/A N/A

LinBusErrorRxSyncBit C040 The LIN interface slave task

received a sync byte with a bit

error.

6 C0 40 X X Received

Sync Byte

Expected

Sync Byte

N/A

LinBusErrorRxSyncFraming A040 The LIN interface slave task

received a sync byte with a

framing error.

4 A0 40 X X N/A N/A N/A

LinBusErrorRxSyncTimeout 9040 The LIN interface slave task did

not receive a sync byte within the

header timeout period.

4 90 40 X X N/A N/A N/A

LinBusErrorTxData0Bit 4010 The LIN interface slave task

transmitted data byte 0 and

self-received it with a bit error.

7 40 10 X X Received

Data Byte

Expected

Data Byte

ID

LinBusErrorTxData1Bit 4011 The LIN interface slave task

transmitted data byte 1 and

self-received it with a bit error.

7 40 11 X X Received

Data Byte

Expected

Data Byte

ID

LinBusErrorTxData2Bit 4012 The LIN interface slave task

transmitted data byte 2 and

self-received it with a bit error.

7 40 12 X X Received

Data Byte

Expected

Data Byte

ID

LinBusErrorTxData3Bit 4013 The LIN interface slave task

transmitted data byte 3 and

self-received it with a bit error.

7 40 13 X X Received

Data Byte

Expected

Data Byte

ID

LinBusErrorTxData4Bit 4014 The LIN interface slave task

transmitted data byte 4 and

self-received it with a bit error.

7 40 14 X X Received

Data Byte

Expected

Data Byte

ID

LinBusErrorTxData5Bit 4015 The LIN interface slave task

transmitted data byte 5 and

self-received it with a bit error.

7 40 15 X X Received

Data Byte

Expected

Data Byte

ID

Table 10-33. LIN Bus Error Codes and Descriptions (Continued)

Error Name

Error

Code

(hex) Description

Frame Contents

DLC B(0) B(1) B(2) B(3) B(4) B(5) B(6)

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-104 ni.com

LinBusErrorTxData6Bit 4016 The LIN interface slave task

transmitted data byte 6 and

self-received it with a bit error.

7 40 16 X X Received

Data Byte

Expected

Data Byte

ID

LinBusErrorTxData7Bit 4017 The LIN interface slave task

transmitted data byte 7 and

self-received it with a bit error.

7 40 17 X X Received

Data Byte

Expected

Data Byte

ID

LinBusErrorTxData0Framing 2010 The LIN interface slave task

transmitted data byte 0 and

self-received it with a framing

error.

7 20 10 X X 0 0 ID

LinBusErrorTxData1Framing 2011 The LIN interface slave task

transmitted data byte 1 and

self-received it with a framing

error.

7 20 11 X X 0 0 ID

LinBusErrorTxData2Framing 2012 The LIN interface slave task

transmitted data byte 2 and

self-received it with a framing

error.

7 20 12 X X 0 0 ID

LinBusErrorTxData3Framing 2013 The LIN interface slave task

transmitted data byte 3 and

self-received it with a framing

error.

7 20 13 X X 0 0 ID

LinBusErrorTxData4Framing 2014 The LIN interface slave task

transmitted data byte 4 and

self-received it with a framing

error.

7 20 14 X X 0 0 ID

LinBusErrorTxData5Framing 2015 The LIN interface slave task

transmitted data byte 5 and

self-received it with a framing

error.

7 20 15 X X 0 0 ID

LinBusErrorTxData6Framing 2016 The LIN interface slave task

transmitted data byte 6 and

self-received it with a framing

error.

7 20 16 X X 0 0 ID

LinBusErrorTxData7Framing 2017 The LIN interface slave task

transmitted data byte 7 and

self-received it with a framing

error.

7 20 17 X X 0 0 ID

LinBusErrorTxChecksumBit 4008 The LIN interface slave task

transmitted a checksum and

self-received it with a bit error.

7 40 08 X X Received

Checksum

Byte

Expected

Checksum

Byte

ID

LinBusErrorTxChecksumFraming 2008 The LIN interface slave task

transmitted a checksum and

self-received it with a framing

error.

7 20 08 X X 0 0 ID

LinBusErrorErrorWhenMaster

ReceivesWakeup

8A00 The LIN interface as a master,

failed to respond to reception of a

wakeup on the LIN.

4 8A 00 X X N/A N/A N/A

LinBusErrorWhenMasterIssues

Wakeup

0A00 The LIN interface failed to issue a

wakeup on the LIN as a master.

4 0A 00 X X N/A N/A N/A

LinBusErrorWhenSlaveIssues

Wakeup

900 The LIN interface failed to issue a

wakeup on the LIN as a slave.

4 09 00 X X N/A N/A N/A

Table 10-33. LIN Bus Error Codes and Descriptions (Continued)

Error Name

Error

Code

(hex) Description

Frame Contents

DLC B(0) B(1) B(2) B(3) B(4) B(5) B(6)

Chapter 10 Frame API for LabVIEW

© National Instruments 10-105 NI-CAN Hardware and Software Manual

Log Comm Warnings

Specifies whether to log communication warnings (including

transceiver faults) to the Network Interface read queue.

The values for this attribute are:

When calling ncReadNet.vi or ncReadNetMult.vi to read frames

from the Network Interface, you typically use the IsRemote field to

differentiate communications warnings from CAN frames. Refer to

ncReadNetMult.vi for more information.

This attribute applies only to Series 1 and Series 2 hardware.

This attribute is available only from the Network Interface, not CAN

Objects.

0 FALSE

When set to FALSE, the Network Interface reports CAN

communication warnings (including transceiver faults)

in Error out of the read VIs. For more information, refer

to ncReadNetMult.vi.

1 TRUE

When set to TRUE, the Network Interface reports CAN

communication warnings (including transceiver faults)

by storing a special frame in the read queue. The

communication warnings are not reported in Error out.

For more information on communication warnings and

errors, refer to ncReadNetMult.vi. The special

communication warning frame uses the following

format:

Timestamp Time when error/warning occurred

Arbitration ID Error/warning ID (refer to ncReadNetMult.vi)

IsRemote 2

DataLength 0

Data N/A (ignore)

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-106 ni.com

Log Start Trigger?

Set this attribute to true if you wish to log the start trigger into the read

queue of the CAN or LIN Network Interface Object.

The values for this attribute are:

This attribute should be set prior to starting the Network Interface

Object. This attribute is applicable only to the Network Interface

Object and setting this attribute on CAN Objects will result in a

NI-CAN error.

Note Setting this attribute to true in applications that only transmit CAN frames has

no effect.

Log Transceiver Faults?

Specifies whether to enable the logging of transceiver faults as frames

in the read queue of the Network Interface Object. The values for this

attribute are:

0 FALSE

Disables the logging of the start trigger (default) in the

read queue of the Network Interface Object.

1 TRUE

Enables the logging of the start trigger in the read queue of

the Network Interface Object. The start trigger is logged

when the hardware starts communication.

0 FALSE

When set to FALSE, transceiver faults will not be logged

as frames (default).

1 TRUE

When set to TRUE, the transceiver faults are logged as

special frames in the read queue of the Network Interface

Object. For CAN, if the Log Comm Warnings? attribute

is set to 1 (TRUE), Log Transceiver Faults must be set

to 0 (FALSE).

Chapter 10 Frame API for LabVIEW

© National Instruments 10-107 NI-CAN Hardware and Software Manual

This attribute is supported only on High Speed and Low Speed CAN

transceivers.

This attribute can be set before or after starting the CAN Network

Interface Object. The frame will be logged each time the transceiver’s

NERR signal changes state. In order to filter out noise on this signal,

the logging can occur up to 10ms apart. The transceiver fault frame as

the following format:

Master Timebase Rate

Sets the rate (in MHz) of the external clock that is exported to the CAN

card.

The values for this attribute are:

20 (20 MHz)

When synchronizing 2 CAN cards or synchronizing a CAN card

with an E-Series DAQ card, the 20 MHz Master Timebase Rate

is to be used. By default, this attribute is set to 20 MHz.

Timestamp Time when the transceiver fault was detected

Arbitration ID 0

IsRemote 7

DataLength 1

Data Bytes

0—Transceiver fault (0=fault cleared, 1=fault

present)

1—X

2—X

3—X

4—X

5—X

6—X

7—X

Note: X means Reserved or Don’t Care.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-108 ni.com

10 (10 MHz)

The Master Timebase Rate should be set to 10 MHz when

synchronizing a CAN card with an M-Series DAQ card. The

M-Series DAQ card can export a 20 MHz clock but it does this by

using one of its two counters.

If your CAN-DAQ application does not use the 2 DAQ counters then,

you can leave the timebase rate set to 20 MHz (default).

This attribute can be set either before or after calling

ncConnectTerminals.vi to connect the RTSI_CLK to Master

Timebase. However, this attribute must always be called prior to

starting the Network Interface Object.

This attribute is applicable only to PCI and PXI Series 2 cards. For

PCMCIA cards, setting this attribute will return an error. On PXI cards,

if PXI_CLK10 is routed to the Master Timebase, then the rate is

fixed at 10 MHz (it over rides any previous setting of this attribute).

Setting this attribute for Series 1 cards will also result in a NI-CAN

error.

For the 847x and 847x with Sync series CAN and LIN interfaces,

setting this attribute has no effect. The 847x and 847x with Sync series

CAN and LIN interfaces automatically synchronize to a Master

Timebase Rate of 1 MHz, 10 MHz, or 20 MHz. Refer to Appendix E,

Specifications, for details on synchronization triggers.

ReadMult Size for Notification

Sets the number of frames used as a threshold for the Read Multiple

state. For more information on the Read Multiple state, refer to

ncWaitForState.vi.

The default value is one half of Read Queue Length.

This attribute applies only to Series 1 and Series 2 hardware.

Self Reception?

For CAN, this specifies whether to echo successfully transmitted CAN

frames into the read queue of the CAN Network Interface and/or CAN

Objects. Each reception occurs just as if the frame were received from

another CAN device.

For self reception to operate properly, another CAN device must

receive and acknowledge each transmit. If a transmitted frame is not

successfully acknowledged, it is not echoed into the read queue.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-109 NI-CAN Hardware and Software Manual

Communication must be stopped to set this attribute. Use Start On

Open False with ncConfigCANNet.vi, set the attribute, then use

ncAction.vi to start communication.

The Self Reception mode is not available on the Intel 82527 CAN

controller used by Series 1 CAN hardware. For Series 1 interfaces, this

attribute must be left at its default (zero).

For LIN, this specifies whether or not to load frames for which the LIN

interface slave task is the publisher of the response into the read queue.

This attribute is available only for the Network Interface Objects, not

CAN Objects.

Series 2 Comparator

Specifies the filter comparator for the Philips SJA1000 CAN

controller. This attribute is not supported for Series 1 CAN, 847x LIN,

or 847x with Sync LIN interfaces (returns error).

This attribute specifies a comparator value that is checked against the

ID, RTR, and data bits. The Series 2 Mask determines the applicable

bits for comparison.

The default value of this attribute is zero.

The mapping of bits in this attribute to the ID, RTR, and data bits of

incoming frames is determined by the value of the Series 2 Filter

0 FALSE

Disables Self Reception mode (default). Transmitted

frames do not appear in read queues.

1 TRUE

Enables Self Reception mode. Transmitted frames appear

in read queues as if they were received from another CAN

device.

0 FALSE

Disables Self Reception mode (default). Frames for

which the LIN interface slave task is the publisher of the

response do not appear in read queues.

1 TRUE

Enables Self Reception mode. Frames for which the LIN

interface slave task is the publisher of the response appear

in read queues as if they were the result of an external

slave task publishing the response.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-110 ni.com

Mode attribute. Refer to the Series 2 Filter Mode attribute to

understand the format of this attribute as well as the Series 2 Mask.

Communication must be stopped to set this attribute. Use Start On

Open False with ncConfigCANNet.vi, set the desired attributes, then

use ncAction.vi to start communication.

Series 2 Mask

Specifies the filter mask for the Philips SJA1000 CAN controller. This

attribute is not supported for Series 1 CAN, 847x LIN, or 847x with

Sync LIN interfaces (returns error).

This attribute specifies a bit mask that determines the ID, RTR, and

data bits that are compared. If a bit is clear in the mask, the

corresponding bit in the Series 2 Comparator is checked. If a bit

in the mask is set, that bit is ignored for the purpose of filtering

(don’t care). This interpretation is the opposite of the legacy

Standard/Extended Mask attributes.

The default value of this attribute is hex FFFFFFFF, which means that

all frames are received.

The mapping of bits in this attribute to the ID, RTR, and data bits of

incoming frames is determined by the value of the Series 2 Filter

Mode attribute. Refer to Series 2 Filter Mode to understand the

format of this attribute as well as the Series 2 Comparator.

Communication must be stopped to set this attribute. Use Start On

Open False with ncConfigCANNet.vi, set the desired attributes, then

use ncAction.vi to start communication.

Series 2 Filter Mode

The Philips SJA1000 CAN controller provides sophisticated filtering

of received frames. This attribute specifies the filtering mode, which is

used in conjunction with the Series 2 Mask and Series 2 Comparator

attributes.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error). For Series 1 interfaces, the

Standard Mask/Comparator and Extended Mask/Comparator

attributes are programmed directly into the Intel 82527 CAN

controller. Use those attributes to specify filtering of received frames

on Series 1 interfaces.

The Philips SJA1000 does not support distinct standard and extended

masking. Therefore, on Series 2 interfaces the Standard

Mask/Comparator and Extended Mask/Comparator attributes are

implemented in software (for backward compatibility). Since software

Chapter 10 Frame API for LabVIEW

© National Instruments 10-111 NI-CAN Hardware and Software Manual

masking can have an adverse impact on receive performance, National

Instruments recommends that you disable software masking for

Series 2 interfaces. Disable software masking by specifying don’t-care

(0) for all four mask/comparator attributes of ncConfigCANNet.vi.

Communication must be stopped to set this attribute. Use Start On

Open False with ncConfigCANNet.vi, set the desired attributes, then

use ncAction.vi to start communication.

Since the format of the filters is very specific to the Philips SJA1000

CAN controller, National Instruments cannot guarantee compatibility

for this attribute on future hardware series. When using this attribute in

the application, it is best to get the Series attribute to verify that the

CAN hardware is Series 2, 847x, or 847x with Sync.

The filtering specified by this attribute and the Series 2

Mask/Comparator applies to the CAN Network Interface Object and

all CAN Objects for that interface. For example, if you specify filters

that discard ID 5, then open a CAN Object to receive ID 5, the CAN

Object will not receive data.

The default value for this attribute is Single Standard.

This attribute uses the following values:

0 (Single Standard)

Filter all standard (11-bit) frames using a single mask/comparator

filter.

Figure 10-5 describes the format of the Series 2 Mask and Series 2

Comparator attributes for this filter mode.

Figure 10-5. Mask/Comparator for Single-Standard Filter Mode

The 11 Bit ID compares all 11 bits of standard IDs. The RTR bit

determines whether the filter compares remote (1) or data (0)

frames. Bits marked as X are reserved, and should be cleared to

zero by the application. Data 0 compares the first data byte in the

frame, and Data 1 compares the second data byte.

1 (Single Extended)

Filter all extended (29-bit) frames using a single mask/comparator

filter.

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

x x x x Data 011 Bit ID Data 1

12 11 10 9 8 7 6 5 4 3 2 1 0

RTR

Bit

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-112 ni.com

Figure 10-6 describes the format of the Series 2 Mask and Series 2

Comparator attributes for this filter mode.

Figure 10-6. Mask/Comparator for Single-Extended Filter Mode

The 29 Bit ID compares all 29 bits of extended IDs. The RTR bit

determines whether the filter compares remote (1) or data (0)

frames. Bits marked as X are reserved, and should be cleared to

zero by the application.

2 (Dual Standard)

Filter all standard (11-bit) frames using a two separate

mask/comparator filters. If either filter matches the frame, it is

received. The frame is discarded only when neither filter detects a

match.

Figure 10-7 describes the format of the Series 2 Mask and Series 2

Comparator attributes for this filter mode.

Figure 10-7. Mask/Comparator for Dual-Standard Filter Mode

Filter 1 includes the 11 Bit ID, the RTR bit, and the first data byte

in the frame. Filter 2 includes the 11 bit ID, and the RTR bit

(no data).

3 (Dual Extended)

Filter all extended (29-bit) frames using a two separate

mask/comparator filters. If either filter matches the frame, it is

received. The frame is discarded only when neither filter detects a

match.

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

x x29 Bit ID

12 11 10 9 8 7 6 5 4 3 2 1 0

RTR

Bit

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

Data 011 Bit ID 11 Bit ID

12 11 10 9 8 7 6 5 4 3 2 1 0

RTR RTR

Bit

Filter 1 Filter 2

Chapter 10 Frame API for LabVIEW

© National Instruments 10-113 NI-CAN Hardware and Software Manual

Figure 10-8 describes the format of the Series 2 Mask and Series 2

Comparator attributes for this filter mode.

Figure 10-8. Mask/Comparator for Dual-Extended Filter Mode

Each Upper 16 ID filter compares the 16 most significant bits of

the 29-bit extended ID.

Single Shot Transmit?

Specifies whether to retry failed CAN frame transmissions (Series 2,

847x CAN, and 847x with Sync CAN interfaces only).

Communication must be stopped to set this attribute. Use Start On

Open False with ncConfigCANNet.vi, set the attribute, then use

ncAction.vi to start communication.

For Series 1, 847x LIN, and 847x with Sync LIN interfaces, this

attribute must be left at its default (zero).

This attribute is available only for the Network Interface, not CAN

Objects.

Termination

Specifies the termination setting for your hardware. This attribute is

not supported on Series 1, Series 2, USB-8473, or USB-8473s

hardware. The values for this attribute are:

0 Zero

Enables retry as defined in the CAN specification

(default). If a CAN frame is not transmitted

successfully, the CAN controller will immediately retry.

1 One

Single shot transmit. If a CAN frame is not transmitted

successfully, the CAN controller will not retry.

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

Upper 16 ID Upper 16 ID

12 11 10 9 8 7 6 5 4 3 2 1 0Bit

Filter 1 Filter 2

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-114 ni.com

LS CAN

LIN

Timeline Recovery

Specifies whether to configure the CAN Network Interface Object to

recover the original timeline when a timestamped transmit is late.

This attribute is applicable only when the Transmit Mode attribute is

set to Timestamped Transmit (1).

Due to factors such as CAN bus arbitration, the time that a frame

transmits successfully may be later than the original time specified.

When a timestamped transmit is late, this attribute determines how

NI-CAN will adjust transmit times for subsequent frames.

The values for this attribute are:

0 (FALSE)

Do not recover the original timeline.

Frames always transmit with the original gap or greater. This

behavior is useful when you need to maintain a minimum gap

between frames. Figure 10-9 shows an original timeline of three

frames with a 10 ms gap. When frame B transmits 3 ms late, frame

C continues to transmit 10 ms later, so the actual timeline slips.

Figure 10-9. Example with Time Recovery Disabled

0 (1.11 kΩ) When set to 0 on USB-8472 or USB-8472s

hardware, the termination is set to 1.11 kΩ.

1 (4.99 kΩ) When set to 1 on USB-8472 or USB-8472s

hardware, the termination is set to 4.99 kΩ.

0 (Disabled) When set to 0 on USB-8476 or USB-8476s

hardware, the termination is disabled.

1 (Enabled) When set to 1 on USB-8476 or USB-8476s

hardware, the termination is enabled.

Original Timeline

Actual Timeline

Frame A

10 ms

Frame A

10 ms

Frame B

20 ms

Frame B

23 ms

Frame C

30 ms

Frame C

33 ms

Chapter 10 Frame API for LabVIEW

© National Instruments 10-115 NI-CAN Hardware and Software Manual

1 (TRUE)

Recover the original timeline.

When a timestamped transmit is late, the subsequent frame will

transmit with a reduced gap. This behavior is useful when you

need to maintain a timeline, such as when synchronizing CAN

output with analog or digital output. Figure 10-10 shows an

original timeline of three frames with a 10 ms gap. When frame B

transmits 3 ms late, frame C transmits 7 ms later in order to

recover the timeline.

The default value for this attribute is FALSE.

This attribute has to be set prior to starting the CAN Network

Interface Object.

This attribute applies only to Series 1 and Series 2 hardware.

Figure 10-10. Example with Time Recovery Enabled

Timestamp Format

Sets the format of the timestamps reported by the on-board timer on the

CAN or LIN hardware.

The default value for this attribute is Absolute.

The values for this attribute are:

0 (Absolute)

Sets the timestamp format to absolute. In the absolute format, the

timestamp returned by NI-CAN read functions is the LabVIEW

date/time format (DBL representing the number of seconds

elapsed since 12:00 a.m., Friday, January 1, 1904).

1 (Relative)

Sets the timestamp format to relative. In the relative format, the

timestamp returned by the NI-CAN read functions will be zero

based (DBL representing the number of seconds since the start

trigger occurred).

Original Timeline

Actual Timeline

Frame A

10 ms

Frame A

10 ms

Frame B

20 ms

Frame B

23 ms

Frame C

30 ms

Frame C

30 ms

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-116 ni.com

A typical use case for this attribute would be if data received from two

RTSI synchronized CAN or LIN cards is to be correlated. For that use

case, this attribute must be set to 1 for all of the CAN or LIN cards

being synchronized. Setting this attribute on one port of a 2-port card

will also reset the timestamp of the second port, since resetting the

timestamp on the port resets the on-board timer.

This attribute should be set prior to starting any communication on the

CAN or LIN hardware.

Transceiver External Outputs

Sets the transceiver external outputs for the Network Interface.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this attribute allows you to set the output voltage

on the MODE0 and MODE1 pins of the CAN port, and it allows you

control the sleep mode of the on-board CAN controller chip.

For many models of CAN transceiver, EN and NSTB pins control the

transceiver mode, such as whether the transceiver is sleeping, or

communicating normally. For such transceivers, you can wire the EN

and NSTB pins to the MODE0 and MODE1 pins of the CAN port.

The default value of this attribute is 00000003 hex. For many models

of transceiver, this specifies normal communication mode for the

transceiver and CAN controller chip. If the transceiver requires a

different MODE0/MODE1 combination for normal mode, you can use

external inverters to change the default 5 V to 0 V.

This attribute is supported for Series 2 XS cards only. This attribute is

not supported when the Transceiver Type is any value other than

External. To control the mode of an internal transceiver, use the

Transceiver Mode attribute.

This attribute uses a bit mask. Use bitwise OR operations to set

multiple values.

00000001 hex (MODE0)

Set this bit to drive 5 V on the MODE0 pin. This is the default

value. This bit is set automatically when a remote wakeup is

detected.

Clear this bit to drive 0 V on the MODE0 pin.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-117 NI-CAN Hardware and Software Manual

00000002 hex (MODE1)

Set this bit to drive 5 V on the MODE1 pin. This is the default

value. This bit is set automatically when a remote wakeup is

detected.

Clear this bit to drive 0 V on the MODE1 pin.

00000100 hex (Sleep CAN controller chip)

Set this bit to place the CAN controller chip into sleep mode. This

bit controls the mode of the CAN controller chip (sleep or

normal), and the independent MODE0/MODE1 bits control the

mode of the external transceiver. When you set this bit to place the

CAN controller into sleep mode, you typically specify

MODE0/MODE1 bits that place the external transceiver into sleep

mode as well.

When the CAN controller is asleep, a remote wakeup will

automatically place the CAN controller into its normal mode of

communication. In addition, the MODE0/MODE1 pins are

restored to their default values of 5 V. Therefore, a remote wakeup

causes this attribute to change from the value that you set for sleep

mode, back to its default 00000003 hex. You can determine when

this has occurred by getting Transceiver External Outputs using

ncGetAttr.vi. For more information on remote wakeup, refer to

the Transceiver Mode attribute for internal transceivers.

Clear this bit to place the CAN controller chip into normal

communication mode. If the CAN controller was previously in

sleep mode, this performs a local wakeup to restore

communication.

Transceiver Mode

Sets the transceiver mode for the Network Interface. The transceiver

mode controls whether the transceiver is asleep or communicating,

as well as other special modes.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

This attribute is supported on Series 2, 847x CAN, and 847x with Sync

CAN interfaces only.

For Series 2 cards for the PCMCIA form factor, this property requires

a corresponding Series 2 cable (dongle). For information on how to

identify the series of the PCMCIA cable, refer to the Series 2 Vs.

Series 1 section of Chapter 1, Introduction.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-118 ni.com

For Series 2 XS cards, this attribute is not supported when the

Transceiver Type is External. To control the mode of an external

transceiver, use the Transceiver External Outputs attribute.

The default value for this attribute is Normal.

This attribute uses the following values:

0 (Normal)

Set transceiver to normal communication mode. If you set Sleep

mode previously, this performs a local wakeup of the transceiver

and CAN controller chip.

1 (Sleep)

Set transceiver and the CAN controller chip to sleep (or standby)

mode.

If the transceiver supports multiple sleep/standby modes, the

NI CAN hardware implementation ensures that all of those modes

are equivalent with regard to the transceiver’s behavior on the

network. For more information on the physical specifications of

each transceiver’s normal and sleep modes, refer to Chapter 3,

NI CAN and LIN Hardware.

You can set Sleep mode only while the interface is

communicating. If the Network Interface has not been started,

setting the transceiver mode to Sleep will return an error.

When the interface enters sleep mode, communication is not

possible until a wakeup occurs. All pending frame transmissions

are deferred until the wakeup occurs. The transceiver and CAN

controller wake from sleep mode when either a local wakeup or

remote wakeup occurs.

A local wakeup occurs when the application sets the transceiver

mode to Normal (or some other communication mode).

A remote wakeup occurs when a remote node transmits a CAN

frame (referred to as the wakeup frame). The wakeup frame wakes

up the transceiver and CAN controller chip of the NI CAN

interface. The wakeup frame is not received or acknowledged by

the CAN controller chip. When the wakeup frame ends, the

NI CAN interface enters Normal mode, and again receives and

transmits CAN frames. If the node that transmitted the wakeup

frame did not detect an acknowledgement (such as if other nodes

were also waking), it will retry the transmission, and the retry will

be received by the NI CAN interface.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-119 NI-CAN Hardware and Software Manual

For a remote wakeup to occur for Single Wire transceivers, the

node that transmits the wakeup frame must first place the network

into the Single Wire Wakeup Transmission mode by asserting a

higher voltage (typically 12 V). For more information, refer to

mode 2 (Single Wire Wakeup).

When the local or remote wakeup occurs, frame transmissions

resume from the point at which the original Sleep was set.

You can detect when a remote wakeup occurs by using

ncGetAttr.vi with the Transceiver Mode attribute. If you need to

suspend the application while waiting for the remote wakeup, use

the Remote Wakeup state of ncWaitForState.vi.

2 (Single Wire Wakeup)

Set Single Wire transceiver to Wakeup Transmission mode.

This mode is supported on Single Wire (SW) ports only.

The Single Wire Wakeup Transmission mode drives a higher

voltage level on the network to wakeup all sleeping nodes. Other

than this higher voltage, this mode is similar to Normal mode.

CAN frames can be received and transmitted normally.

Since you use the Single Wire Wakeup mode to wakeup other

nodes on the network, it is not typically used in combination with

Sleep mode for a given interface.

The timing of how long the wakeup voltage is driven is controlled

entirely by the application. The application will typically change

to Single Wire Wakeup mode, transmit a wakeup frame, then

return to Normal mode.

The following sequence demonstrates a typical sequence of steps

for sleep and wakeup between two Single Wire NI CAN

interfaces. The sequence assumes that CAN0 is the sleeping node,

and CAN1 originates the wakeup.

1. Start both CAN0 and CAN1. Both use the default Normal mode.

2. Set Transceiver Mode of CAN0 to Sleep.

3. Set Transceiver Mode of CAN1 to Single Wire Wakeup.

4. Write data to CAN1 to transmit a wakeup frame to CAN0.

5. Set Transceiver Mode of CAN1 to Normal.

6. Now both CAN0 and CAN1 are in Normal mode again.

3 (Single Wire High-Speed)

Set Single Wire transceiver to High-Speed Transmission mode.

This mode is supported on Single Wire (SW) ports only.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-120 ni.com

The Single Wire High-Speed Transmission mode disables the

internal waveshaping function of the transceiver, which allows

baud rates up to 100 kbytes/s to be used. The disadvantage versus

Normal (which allows up to 40 kbytes/s baud) is degraded EMC

performance. Other than the disabled waveshaping, this mode is

similar to Normal mode. CAN frames can be received and

transmitted normally.

This mode has no relationship to High-Speed (HS) transceivers.

It is merely a higher speed mode of the Single Wire (SW)

transceiver, typically used for downloading large amounts of data

to a node.

The Single Wire transceiver does not support use of this mode in

conjunction with Sleep mode. For example, a remote wakeup

cannot transition from Sleep to this Single Wire High-Speed

mode.

Transceiver Type

For XS software selectable physical layer cards that provide a

software-switchable transceiver, the Transceiver Type attribute sets

the type of transceiver. When the transceiver is switched from one type

to another, NI-CAN ensures that the switch is undetectable from the

perspective of other nodes on the network.

The default value for this attribute is specified within MAX. If you

change the transceiver type in MAX to correspond to the network in

use, you can avoid setting this attribute within the application.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

Communication for all objects on the Network Interface must be

stopped prior to setting this attribute. You typically do this by

calling ncConfigCANNet.vi with Start On Open set to false, then

ncOpen.vi of the Network Interface, then ncSetAttr.vi to set

Transceiver Type, then ncAction.vi to start communication. Prior to

changing the Transceiver Type again, you must use ncAction.vi to

stop communication.

You can only set this attribute for Series 2 XS interfaces.

This attribute uses the following values:

0 (High-Speed)

Switch the transceiver to High-Speed (HS).

Chapter 10 Frame API for LabVIEW

© National Instruments 10-121 NI-CAN Hardware and Software Manual

1 (Low-Speed/Fault-Tolerant)

Switch the transceiver to Low-Speed/Fault-Tolerant (LS).

2 (Single Wire)

Switch the transceiver to Single Wire (SW).

3 (External)

Switch the transceiver to External. The External type allows you

to connect a transceiver externally to the interface. For more

information on connecting transceivers externally, refer to

Chapter 3, NI CAN and LIN Hardware.

When this transceiver type is selected, you can use the

Transceiver External Outputs and Transceiver External

Inputs attributes to access the external mode and status pins of the

connector.

4 (Disconnect)

Disconnect the CAN controller chip from the connector. This

value is used when you physically switch an external transceiver.

You first set Transceiver Type to Disconnect, then switch from

one external transceiver to another, then set Transceiver Type to

External. For more information on connecting transceivers

externally, refer to Chapter 3, NI CAN and LIN Hardware.

Transmit Mode

Specifies whether to configure the CAN Network Interface Object to

Immediate Transmit mode or Timestamped Transmit mode.

The default value for this attribute is zero (Immediate Transmit).

The values for this attribute are:

0 (Immediate Transmit)

Configures the Network Interface Object in the Immediate

Transmit mode. In the Immediate Transmit mode, the CAN

frames are transmitted as soon as they are written into the Network

Interface Object’s write queue. CAN frames can be written into

the Network Interface Objects write queue by either using

ncWriteNet.vi or ncWriteNetMult.vi. Timestamps are ignored

by NI-CAN when the Network Interface Object is configured in

this mode.

1 (Timestamped Transmit)

Configures the Network Interface Object in the Timestamped

Transmit mode. In this mode, NI-CAN spaces the frame

transmission according to the difference in timestamps between

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-122 ni.com

consecutive frames. For example, if every frame provided to

ncWriteNetMult.vi increments by 10 milliseconds, the frames

will be transmitted with a 10 millisecond gap.

If the timestamp of the CAN frame to be transmitted is less than

the timestamp of the previous CAN frame, Timestamped

Transmit is reset and the CAN frame will be transmitted

immediately on the bus without adding any delay. For example,

if you write a frame with a relative timestamp 30 ms followed by

a frame with a timestamp 15 ms, the two frames will be

transmitted back to back.

Use ncWriteNetMult.vi to write CAN frames with timestamps

into the write queue of the Network Interface Object.

To use the ncWriteNet.vi in Timestamped Transmit mode,

refer to the description of ncWriteNet.vi.

This attribute has to be set prior to starting the CAN Network Interface

Object.

This attribute applies only to Series 1 and Series 2 interfaces.

User RTSI Frame

Sets the user RTSI frame. This attribute is normally configured using

the UserRTSIFrame input of ncConfigCANObjRTSI.vi. This

attribute allows that value to be changed while running. For more

information, refer to ncConfigCANObjRTSI.vi.

This attribute is available only for CAN Objects, not the Network

Interface.

Virtual Bus Timing

Sets the Virtual Bus Timing of the virtual device.

The values for this attribute are:

0 (FALSE)

Virtual Bus Timing is turned off. By turning Virtual Bus Timing

off, the CAN bus simulation is disabled and CAN frames are

copied from the write queue of one virtual interface to the read

queue of the second virtual interface. This setting is useful if you

desire to only convert frames to channels or vice versa and not

simulate actual CAN bus communication.

1 (TRUE)

Virtual Bus Timing is turned on (default). By turning Virtual Bus

Timing on, frame timestamps are recalculated as they transfer

Chapter 10 Frame API for LabVIEW

© National Instruments 10-123 NI-CAN Hardware and Software Manual

across the virtual bus. This mode is useful when you want the

virtual bus to behave as much like a real bus as possible.

If this attribute is set on real hardware, an error will be returned.

The Virtual Bus Timing has to be set to the same value on both virtual

interfaces.

This attribute must be set prior to starting the virtual interface.

Refer to the Frame to Channel Conversion section of Chapter 6, Using

the Channel API for more information.

AttrValue provides the attribute value for AttrId.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-124 ni.com

Description
ncSetAttr.vi sets the value of the attribute specified by AttrId in the object specified by

ObjHandle in.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-125 NI-CAN Hardware and Software Manual

ncWaitForState.vi

Purpose
Wait for one or more states to occur in an object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

DesiredState specifies a bit mask of states for which notification is desired.

You can use a single state alone, or you can OR them together:

00000001 hex Read Available

At least one frame is available, which you can obtain using an

appropriate read VI.

The state is set whenever a frame arrives for the object. The state is

cleared when the read queue is empty.

00000002 hex Write Success

All frames provided through write VIs have been successfully

transmitted onto the network. Successful transmit means that the frame

won arbitration, and was acknowledged by a remote device.

The state is set when the last frame in the write queue is transmitted

successfully. The state is cleared when a write VI is called.

When communication starts, the Write Success state is true by default.

For CAN, write success means that the frame won arbitration, and was

acknowledged by a remote device. For LIN, write success means that

the frame was successfully processed by the LIN interface.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-126 ni.com

00000008 hex Read Multiple

A specified number of frames are available, which you can obtain

using either ncReadNetMult.vi or ncReadObjMult.vi. The number

of frames is configured using the ReadMult Size for Notification

attribute of ncSetAttr.vi.

The state is set whenever the specified number of frames are stored

in the read queue of the object. The state is cleared when you call the

read VI, and less than the specified number of frames exist in the read

queue.

This state applies only to Series 1 and Series 2 interfaces.

00000040 hex Remote Wakeup

A Remote Wakeup event occurred and the Transceiver Mode for your

CAN hardware has changed from Sleep to Normal. For more

information on remote wakeup, refer to Transceiver Mode.

This state is set when a Remote Wakeup event occurs (end of wakeup

frame). This state is not set when the application changes Transceiver

Mode from Sleep to Normal (local wakeup).

This state is cleared when:

• You open the Network Interface, such as when the application begins.

• You stop the Network Interface.

• You set the Transceiver Mode, such as each time you set Sleep mode.

For as long as this state is true, the Transceiver Mode is Normal. The

Transceiver Mode also can be Normal when this state is false, such

as when you perform a local wakeup.

00000080 hex Write Multiple

The state is set whenever there is free space in the write queue to accept

at least 512 frames to write. The state is cleared when you call

ncWriteNet.vi or ncWriteNetMult.vi and less than 512 frames can be

accepted to write in the write queue.

This state is valid only on the Network Interface.

Timeout specifies the maximum number of milliseconds to wait for one of

the states in DesiredState. If the Timeout expires before a state occurs,

the error CanErrFunctionTimeout is returned in Error out (status=T,

code= BFF62001 hex). If Timeout is unwired, the default value of 0 will

cause the wait to return the current status immediately. Thus, it will behave

like calling ncGetAttr.vi for the Object State attribute.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-127 NI-CAN Hardware and Software Manual

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

DetectedState is the current state of object when desired states occur. If an

error caused the wait to abort, DetectedState is zero.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use ncWaitForState.vi to wait for one or more states to occur in the object specified by

ObjHandle. If an error occurs in the object, wait aborts and returns the error in Error out.

While waiting for the desired states, ncWaitForState.vi suspends execution of the current

LabVIEW thread. VIs assigned to other threads can still execute. The thread of a VI can be

changed in the Priority control in the Execution category of VI properties.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-128 ni.com

You cannot invoke ncWaitForState.vi twice from different VIs for the same object.

For different object handles, these functions can overlap in execution.

Note The ncWaitForState.vi function was formerly ncWait.vi.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-129 NI-CAN Hardware and Software Manual

ncWriteNet.vi

Purpose
Write a single frame to a CAN or LIN Network Interface Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

Note The description of the input terminals is specified by the frame type. The value of

IsRemote indicates the frame type. For a description of each frame type, refer to the Frame

Types section of this function reference.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-130 ni.com

Output

ObjHandle out is the object handle for the next NI-CAN VI.Error out

describes error conditions. If the Error in cluster indicated an error, the

Error out cluster contains the same information. Otherwise, Error out

describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
You use ncWriteNet.vi to place a frame into the Network Interface write queue. Since

NI-CAN handles the write queue in the background, this VI does not wait for the frame to be

transmitted on the network.

To transmit a set of frames as quickly as possible, simply call ncWriteNet.vi once per frame,

without using ncWaitForState.vi after each write. This technique makes good use of the

write queue to optimize frame transmission.

Once you have written frames, if you need to wait for the final ncWriteNet.vi to be

transmitted successfully, use ncWaitForState.vi with the Write Success state. The Write

Success state sets when all frames of the write queue have been successfully transmitted. The

Write Success state clears whenever you call ncWriteNet.vi.

The ncWriteNet.vi and ncWriteNetMult.vi functions share a common write queue in the

Network Interface. Therefore, when you set the Transmit Mode attribute to Timestamped

Transmit, ncWriteNetMult.vi places timestamped frames into the queue, and ncWriteNet.vi

places non-timestamped frames into the queue. If you write timestamped frames followed by

a non-timestamped frame, the timestamped frames will transmit first, followed immediately

by the non-timestamped frame. For example, assume you write 3 frames A, B, and C with

ncWriteNetMult.vi, followed by frame D with ncWriteNet.vi, and frame E with

ncWriteNetMult.vi. Frames A, B, and C will transmit in their timed sequence. Frame D

immediately follows frame C. Frame E transmits with the expected time distance from frame

C, because the non-timestamped frame does not affect ncWriteNetMult.vi timing.

Sporadic, recoverable errors on the network are handled automatically by the CAN protocol.

As such, after ncWriteNet.vi returns successfully, NI-CAN eventually transmits the frame on

the network unless there is a serious network problem. Network problems such as missing or

Chapter 10 Frame API for LabVIEW

© National Instruments 10-131 NI-CAN Hardware and Software Manual

malfunctioning devices are often reported as the warning CanWarmComm (status=F,

code=3FF6200B hex).

If the write queue is full, a call to ncWriteNet.vi returns the error CanErrOverflowWrite

(status=T, code= BFF62008 hex). In many cases, this error is recoverable, so you should not

exit the application when it occurs. For example, if you want to transmit thousands of frames

in succession (for example, downloading code), the application can check for the error

CanErrOverflowWrite, and when detected, simply wait a few milliseconds for some of the

frames to transmit, then call ncWriteNet.vi again. If the second call to ncWriteNet.vi returns

an error, that can be treated as an unrecoverable error (no other device is ACKing the frames).

Although the Network Interface allows Write Queue Length of zero, this is not

recommended, because every new frame will always overwrite the previous frame.

Frame Types

IsRemote indicates the frame type. The frame type determines the interpretation of the

remaining fields. Table 10-34, IsRemote value 0: CAN Data Frame, Table 10-35, IsRemote

value 1: CAN Remote Frame, Table 10-36, IsRemote Value 16: LIN Response Entry Frame,

Table 10-37, IsRemote Value 17: LIN Header Frame, and Table 10-38, IsRemote Value 18:

LIN Full Frame, describe the fields of the cluster for each value of IsRemote.

To determine if your hardware supports one of the following frame types for this function,

refer to Appendix D, Frame Types for CAN and LIN Hardware.

Table 10-34. IsRemote value 0: CAN Data Frame

Field Name

Data

Type Description

IsRemote Value 0 represents a CAN data frame. The CAN data frame contains

data from the network.

ArbitrationId Specifies the arbitration ID to transmit in the CAN data frame.

A standard ID (11-bit) is specified by default. In order to specify an

extended ID (29-bit), OR in the bit mask 20000000 hex.

DataLength Indicates the number of data bytes in the Data array. If left unwired,

a value of zero is assumed.

Data Specifies the data bytes (8 maximum).

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-132 ni.com

Table 10-35. IsRemote value 1: CAN Remote Frame

Field Name

Data

Type Description

IsRemote Value 1 represents a CAN remote frame.

ArbitrationId Specifies the arbitration ID of the remote frame to transmit.

DataLength Specifies the number of bytes requested. The value is transmitted in

the CAN remote frame, but with no data.

Data Ignored. No data bytes are contained in a CAN remote frame.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-133 NI-CAN Hardware and Software Manual

Table 10-36. IsRemote Value 16: LIN Response Entry Frame

Field Name

Data

Type Description

IsRemote Value 16 represents a response entry frame for LIN

communication.The behavior resulting from writing a response type

to the LIN interface depends upon whether the LIN Sleep attribute is

set to TRUE or FALSE (the LIN interface is asleep or awake,

respectively).

If the LIN Sleep attribute is set to FALSE:

A response entry frame is issued when it is desired to configure the

LIN interface slave task to subscribe to or publish data, in response to

a particular header ID received from a master task. Each response

entry frame indicates the ID of the header for which it is to respond,

whether the response is to publish data or subscribe to data, and if it is

to publish data, the data length code (DLC) and data values. The DLC

determines whether the response will be to subscribe (DLC = 0), or

publish (DLC = data length), in response to a header containing the ID

of the response frame. Sixty-four response entry frames (one for each

of the sixty-four LIN IDs) may be written to the response queue in the

LIN interface. When the Network Interface is created or reset, the

interface is reset to act as a slave and to respond as subscriber to data

for all LIN IDs.

If the LIN Sleep attribute is set to TRUE:

A response entry frame is issued when the LIN interface has been

acting as a slave (processing master headers), has been put asleep, and

is desired to be used to wake the bus and initiate the transmission of

headers by the master. When the response entry type is written to the

LIN interface, two things occur. First, the response queue is loaded

with the ID, DLC, and data (if DLC is non-zero meaning the response

is to publish), of the response entry frame. Next the interface transmits

a wakeup break on the bus. Per the LIN specification, it either waits

until the master acknowledges the wakeup break by writing a header

within the specified time, or re-transmits the wakeup break if it does

not. When the master responds with a header, the LIN interface sets

the LIN Sleep attribute to FALSE, and responds to the ID contained

in the header in the manner (publish or subscribe) specified for that ID

in the response queue.

ArbitrationId Zero to sixty-three.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-134 ni.com

DataLength Zero if the response is to subscribe to data. Actual length of Data if

the response is to publish data.

Data Ignored if DataLength is zero. Data to publish if DataLength is

non-zero.

Table 10-37. IsRemote Value 17: LIN Header Frame

Field Name

Data

Type Description

IsRemote Value 17 represents a header frame for LIN communication. The

behavior resulting from writing a header type to the LIN interface

depends upon whether the LIN Sleep attribute is set to TRUE or

FALSE (the LIN interface is asleep or awake, respectively).

If the LIN Sleep attribute is set to FALSE:

A header frame is issued when it is desired to use the LIN interface

as a master, querying a slave task to publish data. Issuing a header

frame causes the LIN interface to write a break-sync-id sequence to

the LIN bus, with the expectation that a slave task will publish data.

Once a header frame is issued, the LIN interface will behave as a

master until the next time it is started.

If the LIN Sleep attribute is set to TRUE:

A header frame is issued when the LIN interface has been acting as

a master (transmitting header and full IsResponse types), has been

put asleep, and is desired to be used to wake the LIN bus and query

a slave task to publish data. Issuing a header frame causes the LIN

interface to write a wakeup break followed by break-sync-id

sequence to the LIN bus, with the expectation that all slaves will

wake up and a slave task will publish data in response. The LIN

interface also sets the LIN Sleep attribute to FALSE.

ArbitrationId Zero to sixty-three.

Table 10-36. IsRemote Value 16: LIN Response Entry Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

© National Instruments 10-135 NI-CAN Hardware and Software Manual

DataLength One to eight if the Enable DLC Check attribute is set to 1 (TRUE).

If the Enable DLC Check attribute is set to 0 (FALSE), the data

length is ignored.

Data Ignored.

Table 10-38. IsRemote Value 18: LIN Full Frame

Field Name

Data

Type Description

IsRemote Value 18 represents a full frame for LIN communication. The

behavior resulting from writing a full type to the LIN interface

depends upon whether the LIN Sleep attribute is set to TRUE or

FALSE (the LIN interface is asleep or awake, respectively).

If the LIN Sleep attribute is set to FALSE:

A full frame is issued when it is desired to use the LIN interface as

a master, publishing data to an external slave. Issuing a full frame

causes the LIN interface slave task response queue to be updated,

the master task to write a header to the LIN bus, then the LIN

interface slave task to publish a response, with the expectation that

one or more external slaves will subscribe to the data. Once a full

frame is issued, the LIN interface will behave as a master until the

next time it is started.

If the LIN Sleep attribute is set to TRUE:

A full frame is issued when the LIN interface has been acting as a

master (transmitting header and full IsResponse types), has been

put asleep, and is desired to be used to wake the LIN bus and publish

data to one or more external slaves. Issuing a full frame causes the

LIN interface slave task response queue to be updated, the master

task to write a wakeup break followed by a header to the LIN bus,

then the LIN interface slave task to publish a response, with the

expectation that all slaves will wake up and one or more external

slaves will subscribe to the published data. The LIN interface also

sets the LIN Sleep attribute to FALSE.

Table 10-37. IsRemote Value 17: LIN Header Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-136 ni.com

ArbitrationId Zero to sixty-three.

DataLength One to eight.

Data Data to publish.

Table 10-38. IsRemote Value 18: LIN Full Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

© National Instruments 10-137 NI-CAN Hardware and Software Manual

ncWriteNetMult.vi

Purpose
Write multiple frames to a CAN or LIN Network Interface Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

Number To Write indicates the number of frames in the Data array to

write to the Network Interface.

This input is optional. When this input is unwired, the function will write

all valid frames listed in the Data array. The NumberToWrite input is

most useful when you have a large array of frames, and you only want to

transmit a subset of that array.

Data is an array of clusters. Each cluster represents a CAN frame to write.

The cluster uses the typedef CanFrameTimed.ctl, the same typedef as

ncReadNetMult.vi. Within each cluster, IsRemote indicates the frame

type. The frame type determines the interpretation of the remaining fields.

For a description of each frame type, refer to Frame Types section of this

function reference.

The maximum number of clusters you can provide to each

ncWriteNetMult.vi is 512. For more information, refer to the Writing

Large Numbers of Frames section of this function reference.

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-138 ni.com

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use ncWriteNetMult.vi to place one or more frames into the Network Interface write queue.

This function does not wait for the frames to be transmitted on the network.

Timestamped Transmit

In addition to supporting multiple frames, this function is preferable to ncWriteNet.vi in that

it supports timestamped frames. To enable timestamped transmit, use ncSetAttr.vi to set the

Transmit Mode attribute to Timestamped Transmit mode (1).

In Timestamped Transmit mode, NI-CAN times the transmission according to the difference

in timestamps between consecutive frames. For example, if every frame provided to

ncWriteNetMult.vi increments by 10 milliseconds, the frames will be transmitted with a

10 millisecond gap.

If the timestamp of one frame is less than the timestamp of the preceding frame, the timeline

is reset, and both frames transmit back to back. For example, if you write a frame with relative

timestamp 30 ms followed by a frame with timestamp 15 ms, the two frames will be

transmitted back to back. This sort of behavior can occur when you transmit a logfile of

Chapter 10 Frame API for LabVIEW

© National Instruments 10-139 NI-CAN Hardware and Software Manual

timestamped frames repeatedly, because on the second traversal of the logfile, the timestamp

of the first frame will be less than the timestamp of the last frame.

The first frame that you provide to ncWriteNetMult.vi always transmits immediately,

regardless of its timestamp. If you need to delay transmission of first frame after start, you can

write a Delay frame or Start Trigger frame as described in the Frame Types section of this

function reference.

Timestamped Transmit applies only to Series 1 and Series 2 interfaces.

847x CAN and LIN products do not support timestamped transmit. These products ignore the

timestamp provided in the cluster for ncWriteNetMult.vi. If you use ncWriteNetMult.vi to

write header and full frame types out of the USB LIN acting as master, then the frames will

be transmitted together as closely as possible. If you use ncWriteNetMult.vi to write

response frame types to the LIN interface acting as slave, then the frames will be loaded into

the response table as quickly as possible.

Immediate Transmit

The default value for the Transmit Mode attribute is Immediate Transmit mode (0).

In Immediate Transmit mode, NI-CAN ignores the timestamp in each frame, and transmits

the frames as fast as possible. This behavior is equivalent to the ncWriteNet.vi function,

except that you can write multiple frames for transmission in quick succession.

Writing Large Numbers of Frames

Although NI-CAN provides a large write queue to store frames pending transmission, writing

timestamped frames from a logfile with thousands of frames can eventually fill this queue.

When the Network Interface write queue cannot hold all frames provided,

ncWriteNetMult.vi returns an overflow error. When this overflow error is returned, none of

the frames provided in the Data array have been written. This enables your application to try

the same Data array again at a later time.

To determine when adequate space is available in the write queue to retry ncWaitForState.vi

with the Write Multiple state. The Write Multiple state will transition from false to true

when space is available for at least 512 frames. Since you must limit the Data input of

ncWriteNetMult.vi to 512 frames or less, the Write Multiple state indicates that a retry will

succeed.

Another technique to recover from a write queue overflow is to use ncGetAttr.vi with the

Write Entries Free attribute. Although this technique requires you to call ncGetAttr.vi

periodically until the desired number of frame entries is available, it avoids the need to

determine a proper Timeout for ncWaitForState.vi. When the time difference between

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-140 ni.com

frames varies from milliseconds to seconds, it may be difficult to determine how long to wait

for entries to become available.

After writing a sequence of timestamped frames with ncWriteNetMult.vi, you cannot close

the Network Interface, because you must wait for the last timestamped frame to transmit onto

the network. You can wait for the final transmit to complete using ncWaitForState.vi with

the Write Success state. You can also use ncGetAttr.vi with the Write Entries Pending

attribute to query periodically, which provides the option of aborting the timestamped

transmission by closing the Network Interface.

Frame Types

Within each cluster of the Data array, IsRemote indicates the frame type. The frame type

determines the interpretation of the remaining fields. Table 10-39, Cluster with IsRemote

value 0: CAN Data Frame, Table 10-40, Cluster with IsRemote value 1: CAN Remote Frame,

Table 10-41, Cluster with IsRemote value 4: Start Trigger Frame, Table 10-42, Cluster with

IsRemote value 5: Delay Frame, Table 10-43, IsRemote Value 16: LIN Response Entry

Frame, Table 10-44, IsRemote Value 17: LIN Header Frame, and Table 10-45, IsRemote

Value 18: LIN Full Frame, describe the fields of the cluster for each value of IsRemote.

To determine if your hardware supports one of the following frame types for this function,

refer to Appendix D, Frame Types for CAN and LIN Hardware.

Table 10-39. Cluster with IsRemote value 0: CAN Data Frame

Field Name

Data

Type Description

IsRemote Value 0 specifies a CAN data frame.

The CAN data frame transfers data on the network.

ArbitrationId Specifies the arbitration ID to transmit in the CAN data frame. A

standard ID (11-bit) is specified by default. In order to specify an

extended ID (29-bit), OR in the bit mask 20000000 hex.

DataLength Specifies the number of bytes in the Data array to transmit in the

CAN data frame.

Data Data bytes to transmit in the CAN data frame.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-141 NI-CAN Hardware and Software Manual

Timestamp If the Transmit Mode attribute is Immediate Transmit (default),

this field is ignored, and CAN frames transmit as quickly as

possible.

If the Transmit Mode attribute is Timestamped Transmit, this field

specifies a timestamp. The timestamp is used to time transmission

of CAN frames as described in the Timestamped Transmit section

of this function reference.

The timestamp is a LabVIEW numeric DBL with Format and

Precision of Absolute time (time and date) or Relative time

(zero based). The integer part contains seconds, and the fractional

part contains milliseconds and microseconds.

Table 10-40. Cluster with IsRemote value 1: CAN Remote Frame

Field Name

Data

Type Description

IsRemote Value 1 specifies a CAN remote frame.

The CAN remote frame requests data for its arbitration ID.

ArbitrationId Specifies the arbitration ID of the remote frame to transmit.

DataLength Specifies the number of bytes requested. The value is transmitted

in the CAN remote frame, but with no data.

Data Ignored. No data bytes are contained in a CAN remote frame.

Table 10-39. Cluster with IsRemote value 0: CAN Data Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-142 ni.com

Timestamp If the Transmit Mode attribute is Immediate Transmit (default),

this field is ignored, and CAN frames transmit as quickly as

possible.

If the Transmit Mode attribute is Timestamped Transmit, this field

specifies a timestamp. The timestamp is used to time transmission

of CAN frames as described in the Timestamped Transmit section

of this function reference.

The timestamp is a LabVIEW numeric DBL with Format and

Precision of Absolute time (time and date) or Relative time

(zero based). The integer part contains seconds, and the fractional

part contains milliseconds and microseconds. You can use either

absolute or relative time, because the timing is determined solely on

the difference in the timestamps of sequential frames.

Table 10-41. Cluster with IsRemote value 4: Start Trigger Frame

Field Name

Data

Type Description

IsRemote Value 4 specifies a start trigger frame.

When you use ncWriteNetMult.vi to write frames from a logfile

for timestamped transmit, you can write the start trigger frame as

the first frame. The start trigger frame reproduces the delay from

start of communication to the first CAN frame. For example, if you

write a start trigger frame followed by a CAN data frame with

relative timestamp 20 ms, NI-CAN will delay 20 ms before

transmitting the CAN data frame. If you write the CAN data frame

without the start trigger frame, NI-CAN will transmit the CAN data

frame immediately.

ArbitrationId Value 0 is required.

DataLength Value 1 is required.

Table 10-40. Cluster with IsRemote value 1: CAN Remote Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

© National Instruments 10-143 NI-CAN Hardware and Software Manual

Data The single data byte in the array specifies the Timestamp Format

(defined by ncSetAttr.vi) used for all subsequent CAN frames. The

value is 0 for absolute timestamps, and 1 for relative timestamps. In

order for NI-CAN to delay the proper time for the start trigger, this

timestamp format must match the format used in all subsequent

frames provided to ncWriteNetMult.vi.

Timestamp Absolute timestamp of the start trigger. Within a logfile, this

timestamp indicates the date and time at which CAN

communication started.

The timestamp is a LabVIEW numeric DBL with Format and

Precision of Absolute time (date/time). The format of this

timestamp is always absolute, even when Data byte 0 specifies

relative timestamp format. This absolute timestamp provides

data/time information even when the CAN frames of a logfile use

the relative format.

When Data byte 0 specifies absolute format (0), the difference

between this timestamp and the absolute timestamp of the

subsequent CAN frame is used as the delay for transmit of that CAN

frame. When Data byte 0 specifies relative format (1), this

timestamp is ignored by NI-CAN, and the relative timestamp of the

subsequent CAN frame is used as the transmit delay.

Table 10-42. Cluster with IsRemote value 5: Delay Frame

Field Name

Data

Type Description

IsRemote Value 5 specifies a delay frame.

Use the delay frame to insert an additional delay between any

two timestamped frames. For example, if you write a CAN frame

with relative timestamp 20 ms, followed by a delay frame of 30 ms,

followed by a CAN frame with timestamp 55 ms, NI-CAN will

transmit the CAN frames 65 ms apart.

ArbitrationId Value 0 is required.

Table 10-41. Cluster with IsRemote value 4: Start Trigger Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-144 ni.com

DataLength Value 0 is required.

Data Ignored.

Timestamp Specifies the delay to insert (not a timestamp).

The delay is a LabVIEW numeric DBL with Format and Precision

of Relative time. The integer part contains seconds, and the

fractional part contains milliseconds and microseconds.

The maximum delay supported is 180.0 seconds (3 minutes).

Table 10-42. Cluster with IsRemote value 5: Delay Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

© National Instruments 10-145 NI-CAN Hardware and Software Manual

Table 10-43. IsRemote Value 16: LIN Response Entry Frame

Field Name

Data

Type Description

IsRemote Value 16 represents a response entry frame for LIN communication.The

behavior resulting from writing a response type to the LIN interface

depends upon whether the LIN Sleep attribute is set to TRUE or FALSE

(the LIN interface is asleep or awake, respectively).

If the LIN Sleep attribute is set to FALSE:

A response entry frame is issued when it is desired to configure the LIN

interface slave task to subscribe to or publish data, in response to a

particular header ID received from a master task. Each response entry

frame indicates the ID of the header for which it is to respond, whether

the response is to publish data or subscribe to data, and if it is to publish

data, the data length code (DLC) and data values. The DLC determines

whether the response will be to subscribe (DLC = 0), or publish (DLC =

data length), in response to a header containing the ID of the response

frame. Sixty-four response entry frames (one for each of the sixty-four

LIN IDs) may be written to the response queue in the LIN interface.

When the Network Interface is created or reset, the interface is reset to

act as a slave and to respond as subscriber to data for all LIN IDs.

If the LIN Sleep attribute is set to TRUE:

A response entry frame is issued when the LIN interface has been acting

as a slave (processing master headers), has been put asleep, and is

desired to be used to wake the bus and initiate the transmission of

headers by the master. When the response entry type is written to the

LIN interface, two things occur. First, the response queue is loaded with

the ID, DLC, and data (if DLC is non-zero meaning the response is to

publish), of the response entry frame. Next the interface transmits a

wakeup break on the bus. Per the LIN specification, it either waits until

the master acknowledges the wakeup break by writing a header within

the specified time, or re-transmits the wakeup break if it does not. When

the master responds with a header, the LIN interface sets the LIN Sleep

attribute to FALSE, and responds to the ID contained in the header in the

manner (publish or subscribe) specified for that ID in the response

queue.

ArbitrationId Zero to sixty-three.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-146 ni.com

DataLength Zero if the response is to subscribe to data. Actual length of Data if the

response is to publish data.

Data Ignored if DataLength is zero. Data to publish if DataLength is

non-zero.

Timestamp Ignored.

Table 10-43. IsRemote Value 16: LIN Response Entry Frame (Continued)

Field Name

Data

Type Description

Chapter 10 Frame API for LabVIEW

© National Instruments 10-147 NI-CAN Hardware and Software Manual

Table 10-44. IsRemote Value 17: LIN Header Frame

Field Name

Data

Type Description

IsRemote Value 17 represents a header frame for LIN communication. The

behavior resulting from writing a header type to the LIN interface

depends upon whether the LIN Sleep attribute is set to TRUE or

FALSE (the LIN interface is asleep or awake, respectively).

If the LIN Sleep attribute is set to FALSE:

A header frame is issued when it is desired to use the LIN interface

as a master, querying a slave task to publish data. Issuing a header

frame causes the LIN interface to write a break-sync-id sequence to

the LIN bus, with the expectation that a slave task will publish data.

Once a header frame is issued, the LIN interface will behave as a

master until the next time it is started.

If the LIN Sleep attribute is set to TRUE:

A header frame is issued when the LIN interface has been acting as

a master (transmitting header and full IsResponse types), has been

put asleep, and is desired to be used to wake the LIN bus and query

a slave task to publish data. Issuing a header frame causes the LIN

interface to write a wakeup break followed by break-sync-id

sequence to the LIN bus, with the expectation that all slaves will

wake up and a slave task will publish data in response. The LIN

interface also sets the LIN Sleep attribute to FALSE.

ArbitrationId Zero to sixty-three.

DataLength One to eight if the Enable DLC Check attribute is set to 1 (TRUE).

If the Enable DLC Check attribute is set to 0 (FALSE), the data

length is ignored.

Data Ignored.

Timestamp Ignored.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-148 ni.com

Table 10-45. IsRemote Value 18: LIN Full Frame

Field Name

Data

Type Description

IsRemote Value 18 represents a full frame for LIN communication. The

behavior resulting from writing a full type to the LIN interface

depends upon whether the LIN Sleep attribute is set to TRUE or

FALSE (the LIN interface is asleep or awake, respectively).

If the LIN Sleep attribute is set to FALSE:

A full frame is issued when it is desired to use the LIN interface as

a master, publishing data to an external slave. Issuing a full frame

causes the LIN interface slave task response queue to be updated,

the master task to write a header to the LIN bus, then the LIN

interface slave task to publish a response, with the expectation that

one or more external slaves will subscribe to the data. Once a full

frame is issued, the LIN interface will behave as a master until the

next time it is started.

If the LIN Sleep attribute is set to TRUE:

A full frame is issued when the LIN interface has been acting as a

master (transmitting header and full IsResponse types), has been

put asleep, and is desired to be used to wake the LIN bus and publish

data to one or more external slaves. Issuing a full frame causes the

LIN interface slave task response queue to be updated, the master

task to write a wakeup break followed by a header to the LIN bus,

then the LIN interface slave task to publish a response, with the

expectation that all slaves will wake up and one or more external

slaves will subscribe to the published data. The LIN interface also

sets the LIN Sleep attribute to FALSE.

ArbitrationId Zero to sixty-three.

DataLength One to eight.

Data Data to publish.

Timestamp Ignored.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-149 NI-CAN Hardware and Software Manual

ncWriteObj.vi

Purpose
Write a single frame to a CAN Object.

Format

Input

ObjHandle in is the object handle from the previous NI-CAN VI. The

handle originates from ncOpen.vi.

Data array specifies the data bytes (8 maximum).

Error in describes error conditions occurring before the VI executes. If an

error has already occurred, the VI returns the value of the Error in cluster

in Error out.

status is True if an error occurred. If status is True, the VI does

not perform any operations.

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Output

ObjHandle out is the object handle for the next NI-CAN VI.

Error out describes error conditions. If the Error in cluster indicated an

error, the Error out cluster contains the same information. Otherwise,

Error out describes the error status of this VI.

status is True if an error occurred.

Chapter 10 Frame API for LabVIEW

NI-CAN Hardware and Software Manual 10-150 ni.com

code is the error code number identifying an error. A value of 0

means success. A negative value means error: VI did not execute

the intended operation. A positive value means warning: VI

executed intended operation, but an informational warning is

returned. For a description of the code, wire the error cluster to a

LabVIEW error-handling VI, such as the Simple Error Handler.

source identifies the VI where the error occurred.

Description
Use ncWriteObj.vi to place a frame into the CAN Object write queue. Since NI-CAN

handles the write queue in the background, this VI does not wait for the frame to be

transmitted on the network.

Once you have written frames, if you need to wait for the final ncWriteObj.vi to be

transmitted successfully, use ncWaitForState.vi with the Write Success state. The Write

Success state sets when all frames of the write queue have been successfully transmitted. The

Write Success state clears whenever you call ncWriteObj.vi.

The Write Success state does not necessarily mean that all transmission has stopped for the

CAN Object. For example, when the CAN Object Communication Type is Transmit Data

Periodically, the Write Success state sets when the final frame in the write queue is

transmitted, but the previous frame will be transmitted again once the Period expires.

Sporadic, recoverable errors on the network are handled automatically by the CAN protocol.

As such, after ncWriteObj.vi returns successfully, NI-CAN eventually transmits the frame

on the network unless there is a serious network problem. Network problems such as missing

or malfunctioning devices are often reported as the warning CanWarmComm (status=F,

code=3FF6200B hex).

If the write queue is full, a call to ncWriteObj.vi returns the error CanErrOverflowWrite

(status=T, code= BFF62008 hex). In many cases, this error is recoverable, so you should not

exit the application when it occurs. For example, if you want to transmit thousands of frames

in succession (for example, large waveform transmitted periodically), the application can

check for the error CanErrOverflowWrite, and when detected, simply wait a few

milliseconds for some of the frames to transmit, then call ncWriteObj.vi again. If the second

call to ncWriteObj.vi returns an error, that can be treated as an unrecoverable error (for

example, no other device is ACKing the frames).

If you need to write a sequence of frames to the CAN Object, and ensure that each frame is

transmitted, configure the Write Queue Length of the CAN Object to greater than zero. If

you only need to transmit the most recent frame provided with ncWriteObj.vi, you can set

the Write Queue Length to zero.

Chapter 10 Frame API for LabVIEW

© National Instruments 10-151 NI-CAN Hardware and Software Manual

If the CAN Object Communication Type specifies Receive behavior, the ncWriteObj.vi VI

can be used to transmit a remote frame. When using ncWriteObj.vi to transmit a remote

frame, the Data input can be left unwired.

© National Instruments 11-1 NI-CAN Hardware and Software Manual

11
Frame API for C

This chapter lists the NI-CAN functions and describes the format, purpose and parameters.

Unless otherwise stated, each NI-CAN function suspends execution of the calling thread until

it completes. The functions in this chapter are listed alphabetically.

Section Headings

The following are section headings found in the Frame API for C functions.

Purpose
Each function description includes a brief statement of the purpose of the function.

Format
The format section describes the format of each function for the C programming language.

Input and Output
The input and output parameters for each function are listed.

Description
The description section gives details about the purpose and effect of each function.

Network Interface Object
The Network Interface Object section gives details about using the function with the Network

Interface Object.

CAN Object
The CAN Object section gives details about using the function with the CAN Object.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-2 ni.com

Data Types

The following data types are used with functions of the NI-CAN Frame API for C.

Table 11-1. Data Types for NI-CAN Frame API for C

Data Type Purpose

NCTYPE_INT8 8-bit signed integer

NCTYPE_INT16 16-bit signed integer

NCTYPE_INT32 32-bit signed integer

NCTYPE_UINT8 8-bit unsigned integer

NCTYPE_UINT16 16-bit unsigned integer

NCTYPE_UINT32 32-bit unsigned integer

NCTYPE_BOOL Boolean value. Constants NC_True (1) and

NC_False (0) are used for comparisons.

NCTYPE_STRING ASCII string represented as an array of

characters terminated by null character (`\0').

NCTYPE_type_P Pointer to a variable of type.

NCTYPE_ANY_P Pointer to a variable of any type, used in cases

where actual data type can vary depending on

the object in use.

NCTYPE_OBJH 32-bit unsigned integer used to reference an

open object in the Frame API.

NCTYPE_ATTRID Attribute identifier. Uses constants with prefix

NC_ATTR_.

NCTYPE_OPCODE Operation code for ncAction function. Uses

constants with prefix NC_OP_.

NCTYPE_STATE Object states, encoded as a 32-bit mask, one bit

for each state. Refer to ncWaitForState for

more information.

Chapter 11 Frame API for C

© National Instruments 11-3 NI-CAN Hardware and Software Manual

List of Functions

Table 11-2 contains an alphabetical list of the NI-CAN Frame API for C functions.

NCTYPE_STATUS Status returned from NI-CAN functions. Refer

to ncStatusToString for more information.

NCTYPE_CAN_ARBID CAN arbitration ID. The 30h bit is accessed

using bitmask NC_FL_CAN_ARBID_XTD

(2000000 hex). If this bit is clear, the CAN

arbitration ID is standard (11-bit). If this bit is

set, the CAN arbitration ID is extended (29-bit).

Special constant NC_CAN_ARBID_NONE

(CFFFFFFF hex) indicates no CAN arbitration

ID, and is used to set the comparator attribute of

the CAN Network Interface. Refer to ncConfig

for more information.

Table 11-2. NI-CAN Frame API for C Functions

Function Purpose

ncAction Perform an action on an object.

ncCloseObject Close an object.

ncConfig Configure an object before using it.

ncConnectTerminals Connect terminals in the CAN or LIN hardware.

ncCreateNotification Create a notification call back for an object.

ncDisconnectTerminals Disconnect terminals in the CAN or LIN

hardware.

ncGetAttribute Get the value of an object attribute.

ncGetHardwareInfo Get CAN and LIN hardware information.

ncOpenObject Open an object.

ncRead Read the data value of an object.

ncReadMult Read multiple data values from the queue of an

object.

Table 11-1. Data Types for NI-CAN Frame API for C (Continued)

Data Type Purpose

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-4 ni.com

ncSetAttribute Set the value of an object attribute.

ncStatusToString Convert status code into a descriptive string.

ncWaitForState Wait for one or more states to occur in an object.

ncWrite Write the data value of an object.

ncWriteMult Write multiple frames to a CAN or LIN

Network Interface Object.

Table 11-2. NI-CAN Frame API for C Functions (Continued)

Function Purpose

Chapter 11 Frame API for C

© National Instruments 11-5 NI-CAN Hardware and Software Manual

ncAction

Purpose
Perform an action on an object.

Format

Input

ObjHandle

Object handle from ncOpenObject.

Opcode

Operation code indicating which action to perform.

Param

Parameter whose meaning is defined by Opcode.

Output

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

Description
ncAction is a general purpose function you can use to perform an action on the object

specified by ObjHandle. Its normal use is to start and stop network communication on a

CAN Network Interface Object.

For the most frequently used and/or complex actions, NI-CAN provides functions such as

ncOpenObject and ncRead. ncAction provides an easy, general purpose way to perform

actions that are used less frequently or are relatively simple.

NCTYPE_STATUS ncAction(

NCTYPE_OBJH ObjHandle,

NCTYPE_OPCODE Opcode,

NCTYPE_UINT32 Param);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-6 ni.com

CAN Network Interface Object
NI-CAN propagates all actions on the CAN Network Interface Object up to all open CAN

Objects. Table 11-3 describes the actions supported by the CAN Network Interface Object.

Table 11-3. Actions Supported by the CAN or LIN Network Interface Object

Opcode Param Description

NC_OP_START

(80000001 hex)

N/A (ignored) Transitions network interface from stopped (idle) state

to started (running) state. If network interface is

already started, this operation has no effect. When a

network interface is started, it is communicating on

the network. When you execute NC_OP_START on a

stopped CAN Network Interface Object, NI-CAN

propagates it upward to all open higher-level CAN

Objects. Thus, you can use it to start all higher-level

network communication simultaneously.

NC_OP_STOP

(80000002 hex)

N/A (ignored) Transitions network interface from started state to

stopped state. If network interface is already stopped,

this operation has no effect. When a network interface

is stopped, it is not communicating on the network. The

stop action clears all entries from the read queue of the

Network Interface Object. When you execute

NC_OP_STOP on a running CAN Network Interface

Object, NI-CAN propagates it upward to all open

higher-level CAN Objects.

NC_OP_RESET

(80000003 hex)

N/A (ignored) Resets network interface. Stops network interface,

then clears all entries from read and write queues.

NC_OP_RESET is propagated up to all open

higher-level CAN Objects.

NC_OP_RTSI_OUT

(80000004 hex)

N/A (ignored) Output a pulse or toggle on the RTSI line depending

upon the NC_ATTR_RTSI_SIG_BEHAV. The

NC_OP_RTSI_OUT action is not supported on the 847x

or 847x with Sync series hardware.

Chapter 11 Frame API for C

© National Instruments 11-7 NI-CAN Hardware and Software Manual

CAN Object

All actions performed on a CAN Object affect that CAN Object alone, and do not affect other

CAN Objects or communication as a whole.

Table 11-4 describes the actions supported by the CAN Object.

Table 11-4. Actions Supported by the CAN Object

Opcode Param Description

NC_OP_START

(80000001 hex)

N/A (ignored) Transitions the CAN Object from stopped (idle) state

to started (running) state. If the CAN Object is already

started, this operation has no effect.

NC_OP_STOP

(80000002 hex)

N/A (ignored) Stops the CAN Object. For example, if the CAN

Object is configured to transmit data frames

periodically, this action stops the periodic

transmissions. This action will also clear all entries

from the read queue.

NC_OP_RESET

(80000003 hex)

N/A (ignored) Resets the CAN Object. Stops the CAN Object, then

clears all entries from read and write queues.

NC_OP_RTSI_OUT

(80000004 hex)

N/A (ignored) Output a pulse or toggle on the RTSI line depending

upon the NC_ATTR_RTSI_SIG_BEHAV attribute.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-8 ni.com

ncCloseObject

Purpose
Close an object.

Format

Input

ObjHandle

Object handle.

Output

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

Description
ncCloseObject closes an object when it no longer needs to be in use, such as when the

application is about to exit. When an object is closed, NI-CAN stops all pending operations

and clears RTSI configuration for the object, and you can no longer use the ObjHandle in the

application.

Network Interface Object
ObjHandle refers to an open CAN or LIN Network Interface Object.

CAN Object
ObjHandle refers to an open CAN Object.

NCTYPE_STATUS ncCloseObject

(

NCTYPE_OBJH ObjHandle);

Chapter 11 Frame API for C

© National Instruments 11-9 NI-CAN Hardware and Software Manual

ncConfig

Purpose
Configure an object before using it.

Format

Input

ObjName

ASCII name of the object to configure.

The 847x and 847x with Sync series LIN interfaces do not support

ncConfig.

NumAttrs

Number of configuration attributes.

AttrIdList

List of configuration attribute identifiers.

AttrValueList

List of configuration attribute values.

Output

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

NCTYPE_STATUS ncConfig(

NCTYPE_STRING ObjName,

NCTYPE_UINT32 NumAttrs,

NCTYPE_ATTRID_P AttrIdList,

NCTYPE_UINT32_P AttrValueList);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-10 ni.com

Description
ncConfig initializes the configuration attributes of an object before opening it. The first

NI-CAN function in the application will normally be ncConfig of the CAN Network

Interface Object.

NumAttr indicates the number of configuration attributes in AttrIdList and

AttrValueList. AttrIdList is an array of attribute IDs, and AttrValueList is an array

of values. The host data type for each value in AttrValueList is NCTYPE_UINT32, which

all configuration attributes can use.

The Frame API and Channel API cannot use the same CAN network interface

simultaneously. If the CAN network interface is already initialized in the Channel API,

this function returns an error.

The following sections describe how to use ncConfig with the Network Interface and CAN

Object. The description for each object specifies the syntax for ObjName, plus a description

of the commonly used attributes for AttrIdList.

CAN Network Interface Object
ObjName is the name of the CAN Network Interface Object to configure. This string uses the

syntax “CANx “, where x is a decimal number starting at zero that indicates the CAN network

interface (CAN0, CAN1, up to CAN63). CAN network interface names are associated with

physical CAN ports using the Measurement & Automation Explorer (MAX).

The special ObjName values “CAN256” and “CAN257” refer to virtual interfaces. For virtual

interfaces, the only valid attribute is NC_ATTR_START_ON_OPEN. All other attributes in the

AttrIdList are ignored. The mask and comparator attributes are always zero for virtual

interfaces (receive all frames).

For more information on usage of virtual interfaces, refer to the Frame to Channel

Conversion section of Chapter 6, Using the Channel API.

The following attribute IDs are commonly used for CAN Network Interface Object

configuration.

For the 847x and 847x with Sync series CAN interfaces, only

NC_ATTR_START_ON_OPEN and NC_ATTR_BAUD_RATE are valid

configuration attributes. All other configuration attributes are ignored.

NC_ATTR_BAUD_RATE (Baud Rate)

Baud Rate is the baud rate to use for communication. Common baud

rates are supported, including 33333, 83333, 100000, 125000, 250000,

500000, and 1000000. If you are familiar with the Bit Timing registers

used in CAN controllers, you can use a special hexadecimal baud rate

Chapter 11 Frame API for C

© National Instruments 11-11 NI-CAN Hardware and Software Manual

of 0x8000zzyy, where yy is the desired value for register 0 (BTR0), and

zz is the desired value for register 1 (BTR1) of the CAN controller.

NC_ATTR_CAN_COMP_STD (Standard Comparator)

Standard Comparator is the CAN arbitration ID for the standard

(11-bit) frame comparator. For information on how this attribute is

used to filter received frames for the Network Interface, refer to the

NC_ATTR_CAN_MASK_STD (Standard Mask) attribute.

If you intend to open the Network Interface, most applications can set

this attribute and the Standard Mask to 0 in order to receive all

standard frames.

If you intend to use CAN Objects as the sole means of receiving

standard frames from the network, you should disable all standard

frame reception in the Network Interface by setting this attribute to the

special value CFFFFFFF hex. With this setting, the Network Interface

is best able to filter out incoming standard frames except those handled

by CAN Objects.

NC_ATTR_CAN_COMP_XTD (Extended Comparator)

Extended Comparator is the CAN arbitration ID for the extended

(29-bit) frame comparator. For information on how this attribute is

used to filter extended frames for the Network Interface, refer to the

NC_ATTR_CAN_MASK_XTD (Extended Mask) attribute.

If you intend to open the Network Interface, most applications can set

this attribute and the Extended Mask to 0 in order to receive all

extended frames.

If you intend to use CAN Objects as the sole means of receiving

extended frames from the network, you should disable all extended

frame reception in the Network Interface by setting this attribute to the

special value CFFFFFFF hex. With this setting, the Network Interface

is best able to filter out incoming extended frames except those

handled by CAN Objects.

NC_ATTR_CAN_MASK_STD (Standard Mask)

Standard Mask is the bitmask used in conjunction with the

Standard Comparator attribute for filtration of incoming standard

(11-bit) CAN frames. For each bit set in the mask, NI-CAN compares

the corresponding bit in the Standard Comparator to the arbitration

ID of the received frame. If the mask/comparator matches, the frame is

stored in the Network Interface queue, otherwise it is discarded. Bits

in the mask that are clear are treated as don’t-cares. For example, hex

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-12 ni.com

00000700 means to compare only the upper 3 bits of the 11-bit

standard ID.

If you set the Standard Comparator to CFFFFFFF hex, this

attribute is ignored, because all standard frame reception is disabled

for the Network Interface.

Most applications can set this attribute and the Standard Comparator to

0 to receive all standard frames. This is particularly advisable for

Series 2 hardware, because the Philips SJA1000 CAN controller does

not support distinct filters for standard and extended IDs. For Series 2,

nonzero values for this attribute are implemented in software, as an

additional filter applied after the Series 2 Filter Mode. When you set

this attribute to zero for Series 2, filtering is optimized to use only the

Series 2 Filter Mode attribute for the SJA1000.

NC_ATTR_CAN_MASK_XTD (Extended Mask)

Extended Mask is the bitmask used in conjunction with the

Extended Comparator attribute for filtration of incoming extended

(29-bit) CAN frames. For each bit set in the mask, NI-CAN compares

the corresponding bit in the Extended Comparator to the arbitration

ID of the received frame. If the mask/comparator matches, the frame is

stored in the Network Interface queue, otherwise it is discarded. Bits

in the mask that are clear are treated as don’t-cares. For example, hex

1F000000 means to compare only the upper 5 bits of the 29-bit

extended ID.

If you set the Extended Comparator to CFFFFFFF hex, this

attribute is ignored, because all extended frame reception is disabled

for the Network Interface.

Most applications can set this attribute and the Extended Comparator

to 0 to receive all extended frames. This is particularly advisable for

Series 2 hardware, because the Philips SJA1000 CAN controller does

not support distinct filters for standard and extended IDs. For Series 2,

nonzero values for this attribute are implemented in software, as an

additional filter applied after the Series 2 Filter Mode. When you set

this attribute to zero for Series 2, filtering is optimized to use only the

Series 2 Filter Mode attribute for the SJA1000.

NC_ATTR_LISTEN_ONLY (Listen Only)

Listen Only specifies whether to use the listen only feature of the

Philips SJA1000 CAN controller.

NC_False disables listen only mode (default). Received frames are

ACKnowledged, and frames can be transmitted using ncWrite.

Chapter 11 Frame API for C

© National Instruments 11-13 NI-CAN Hardware and Software Manual

NC_True enables listen only mode. The Network Interface and CAN

Objects can only receive frames. The interface does not transmit on the

network: no ACKnowledgements are transmitted for received frames,

and ncWrite will return an error. The Philips SJA1000 CAN

controller enters the request/response state when listen only is enabled.

The listen only mode is not available on the Intel 82527 CAN

controller used by Series 1 CAN hardware. For Series 1 hardware,

this attribute must be left out of the AttrIdList.

NC_ATTR_NOTIFY_MULT_LEN (ReadMult Size for Notification)

Sets the number of frames used as a threshold for the Read Multiple

state. For more information on the Read Multiple state, refer to

ncWaitForState.

The default value is one half of Read Queue Length.

This attribute applies only to Series 1 and Series 2 interfaces.

NC_ATTR_READ_Q_LEN (Read Queue Length)

Read Queue Length is the maximum number of unread frames for

the internal read queue of the CAN Network Interface Object. The

recommended value is 100.

The internal read queue exists between the CAN hardware and the

NI-CAN device driver. This internal read queue holds frames

temporarily prior to transfer a larger queue in the NI-CAN device

driver. The larger NI-CAN device driver queue grows as needed in

order to accommodate high bus loads.

NC_ATTR_SELF_RECEPTION (Self Reception)

Specifies whether to echo successfully transmitted CAN or LIN

frames into the read queue of the Network Interface and/or CAN

Objects. Each reception occurs just as if the frame were received from

another CAN or LIN device.

For self reception to operate properly, another CAN or LIN device

node must receive and acknowledge each transmit. If a transmitted

frame is not successfully acknowledged, it is not echoed into the read

queue.

NC_False disables Self Reception mode (default). Transmitted

frames do not appear in read queues.

NC_True enables Self Reception mode. Transmitted frames appear in

read queues as if they were received from another CAN or LIN device.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-14 ni.com

The Self Reception mode is not available on the Intel 82527 CAN

controller used by Series 1 CAN hardware. For Series 1 hardware,

this attribute must be left out of the AttrIdList.

NC_ATTR_SERIES2_FILTER_MODE (Series 2 Filter Mode)

The Philips SJA1000 CAN controller provides sophisticated filtering

of received frames. This attribute specifies the filtering mode, which is

used in conjunction with the Series 2 Mask and Series 2 Comparator

attributes.

This attribute is not supported for Series 1, 847x LIN, or 847x with

Sync LIN interfaces (returns error). For Series 1, the Standard

Mask/Comparator and Extended Mask/Comparator attributes are

programmed directly into the Intel 82527 CAN controller. Use those

attributes to specify filtering of received frames on Series 1 hardware.

The Philips SJA1000 does not support distinct standard and extended

masking. Therefore, on Series 2 interfaces the Standard

Mask/Comparator and Extended Mask/Comparator attributes are

implemented in software (for backward compatibility). Since software

masking can have an adverse impact on receive performance, National

Instruments recommends that you disable software masking for

Series 2 interfaces. Disable software masking by specifying don’t-care

(0) for all four mask/comparator attributes of ncConfig.

Since the format of the Series 2 filters is very specific to the Philips

SJA1000 CAN controller, National Instruments cannot guarantee

compatibility for this attribute on future hardware series. When

using this attribute in the application, it is best to get the

NC_ATTR_HW_SERIES (Series) attribute to verify that the CAN

hardware is Series 2, 847x, or 847x with Sync.

The filtering specified by this attribute and the Series 2

Mask/Comparator applies to the CAN Network Interface Object and

all CAN Objects for that interface. For example, if you specify filters

that discard ID 5, then open a CAN Object to receive ID 5, the CAN

Object will not receive data.

The default value for this attribute is

NC_FILTER_SINGLE_STANDARD.

This attribute uses the following values:

NC_FILTER_DUAL_EXTENDED (Dual Extended)

Filter all extended (29-bit) frames using a two separate

mask/comparator filters. If either filter matches the frame, it is

received. The frame is discarded only when neither filter detects

a match.

Chapter 11 Frame API for C

© National Instruments 11-15 NI-CAN Hardware and Software Manual

Figure 11-1 describes the format of the Series 2 Mask and Series 2

Comparator attributes for this filter mode.

Figure 11-1. Mask/Comparator for Dual-Extended Filter Mode

Each Upper 16 ID filter compares the 16 most significant bits of

the 29-bit extended ID.

NC_FILTER_DUAL_STANDARD (Dual Standard)

Filter all standard (11-bit) frames using a two separate

mask/comparator filters. If either filter matches the frame, it is

received. The frame is discarded only when neither filter detects

a match.

Figure 11-2 describes the format of the Series 2 Mask and Series 2

Comparator attributes for this filter mode.

Figure 11-2. Mask/Comparator for Dual-Standard Filter Mode

Filter 1 includes the 11 Bit ID, the RTR bit, and the first data byte

in the frame. Filter 2 includes the 11 bit ID, and the RTR bit

(no data).

NC_FILTER_SINGLE_EXTENDED (Single Extended)

Filter all extended (29-bit) frames using a single mask/comparator

filter.

Figure 11-3 describes the format of the Series 2 Mask and Series 2

Comparator attributes for this filter mode.

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

Upper 16 ID Upper 16 ID

12 11 10 9 8 7 6 5 4 3 2 1 0Bit

Filter 1 Filter 2

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

Data 011 Bit ID 11 Bit ID

12 11 10 9 8 7 6 5 4 3 2 1 0

RTR RTR

Bit

Filter 1 Filter 2

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-16 ni.com

Figure 11-3. Mask/Comparator for Single-Extended Filter Mode

The 29 Bit ID compares all 29 bits of extended IDs. The RTR bit

determines whether the filter compares remote (1) or data (0)

frames. Bits marked as X are reserved, and should be cleared to

zero by the application.

NC_FILTER_SINGLE_STANDARD (Single Standard)

Filter all standard (11-bit) frames using a single mask/comparator

filter.

Figure 11-4 describes the format of the Series 2 Mask and Series 2

Comparator attributes for this filter mode.

Figure 11-4. Mask/Comparator for Single-Standard Filter Mode

The 11 Bit ID compares all 11 bits of standard IDs. The RTR bit

determines whether the filter compares remote (1) or data (0)

frames. Bits marked as X are reserved, and should be cleared to

zero by the application. Data 0 compares the first data byte in the

frame, and Data 1 compares the second data byte.

NC_ATTR_SERIES2_COMP (Series 2 Comparator)

Specifies the filter comparator for the Philips SJA1000 CAN

controller. This attribute is not supported for Series 1, 847x LIN,

or 847x with Sync LIN interfaces (returns error).

This attribute specifies a comparator value that is checked against the

ID, RTR, and data bits. The NC_ATTR_SERIES2_MASK (Series 2

Mask) determines the applicable bits for comparison. The default

value of this attribute is zero.

The mapping of bits in this attribute to the ID, RTR, and data

bits of incoming frames is determined by the value of the

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

x x29 Bit ID

12 11 10 9 8 7 6 5 4 3 2 1 0

RTR

Bit

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

x x x x Data 011 Bit ID Data 1

12 11 10 9 8 7 6 5 4 3 2 1 0

RTR

Bit

Chapter 11 Frame API for C

© National Instruments 11-17 NI-CAN Hardware and Software Manual

NC_ATTR_SERIES2_FILTER_MODE (Series 2 Filter Mode) attribute.

Refer to the NC_ATTR_SERIES2_FILTER_MODE (Series 2 Filter

Mode) attribute to understand the format of this attribute as well as the

Series 2 Mask.

NC_ATTR_SERIES2_MASK (Series 2 Mask)

Specifies the filter mask for the Philips SJA1000 CAN controller. This

attribute is not supported for Series 1, 847x LIN, or 847x with Sync

LIN interfaces (returns error).

This attribute specifies a bit mask that determines the ID, RTR,

and data bits that are compared. If a bit is clear in the mask, the

corresponding bit in the NC_ATTR_SERIES2_COMP (Series 2

Comparator) is checked. If a bit in the mask is set, that bit is ignored

for the purpose of filtering (don’t care). This interpretation is the

opposite of the legacy Standard/Extended Mask attributes.

The default value of this attribute is hex FFFFFFFF, which means that

all frames are received.

The mapping of bits in this attribute to the ID, RTR, and data

bits of incoming frames is determined by the value of the

NC_ATTR_SERIES2_FILTER_MODE (Series 2 Filter Mode) attribute.

Refer to NC_ATTR_SERIES2_FILTER_MODE (Series 2 Filter Mode)

to understand the format of this attribute as well as the Series 2

Comparator.

NC_ATTR_SINGLE_SHOT_TX (Single Shot Transmit)

Specifies whether to retry failed CAN frame transmissions (Series 2,

847x CAN, and 847x with Sync CAN interfaces only).

NC_False enables retry as defined in the CAN specification (default).

If a CAN frame is not transmitted successfully, the CAN controller will

immediately retry.

NC_True enables single-shot transmit behavior (no retry). If a CAN

frame is not transmitted successfully, the CAN controller will not retry.

For Series 1, 847x LIN, and 847x with Sync interfaces, this attribute

must be left out of the AttrIdList.

NC_ATTR_START_ON_OPEN (Start On Open)

Start On Open indicates whether communication starts for the CAN

Network Interface Object (and all applicable CAN Objects)

immediately upon opening the object with ncOpenObject.

For Series 1 and Series 2 interfaces, the default is NC_True (1), which

starts communication when ncOpenObject is called. If you set

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-18 ni.com

Start On Open to NC_False (0), you can call ncSetAttribute

after opening the interface, then ncAction to start communication.

You can use the ncSetAttribute function to set attributes that are

not contained within the ncConfig function.

For 847x interfaces, the default is NC_False (0).

NC_ATTR_WRITE_Q_LEN (Write Queue Length)

Write Queue Length is the maximum number of frames for the

internal write queue of the CAN Network Interface Object awaiting

transmission. The recommended value is 10.

The internal write queue exists between the CAN hardware and the

NI-CAN driver. This internal write queue holds frames temporarily

prior to transfer to CAN hardware from a larger queue in the NI-CAN

device driver.

For more information on writing to the CAN Network Interface object,

refer to ncWriteMult.

The following attribute ID is used to enable logging of transceiver faults.

NC_ATTR_LOG_COMM_ERRS (Log Come Warnings)

Log Comm Warnings specifies whether to log communication

warnings (including transceiver faults) to the Network Interface read

queue.

When set to NC_False (default), the Network Interface reports CAN

communication warnings (including transceiver faults) in the return

status of read functions. For more information, refer to ncReadMult.

When set to NC_True, the Network Interface reports CAN

communication warnings (including transceiver faults) by storing a

special frame in the read queue. The communication warnings are not

reported in the return status. For more information on communication

warnings and errors, refer to ncReadMult. The special

communication warning frame uses the following format:

Arbitration ID: Error/warning ID (refer to ncReadMult)

Timestamp: Time when error/warning occurred

IsRemote: 2

DataLength: 0

Data: N/A (ignore)

When calling ncRead or ncReadMult to read frames from the

Network Interface, you typically use the IsRemote field to

Chapter 11 Frame API for C

© National Instruments 11-19 NI-CAN Hardware and Software Manual

differentiate communications warnings from CAN frames. Refer to

ncReadMult for more information.

RTSI is a bus that interconnects National Instruments DAQ, IMAQ,

Motion, and CAN boards. This feature allows synchronization of DAQ,

IMAQ, Motion, and CAN boards by allowing exchange of timing signals.

Using RTSI, a device (board) can control one or more slave devices.

The following attribute IDs are used to enable RTSI synchronization

between two or more National Instruments cards:

NC_ATTR_RTSI_MODE (RTSIMode)

RTSI Mode specifies the behavior of the Network Interface with

respect to RTSI, including whether the RTSI signal is an input or

output:

NC_RTSI_NONE

Disables RTSI behavior for the Network Interface (default).

All other RTSI attributes are ignored.

NC_RTSI_OUT_ACTION_ONLY

The Network Interface will output the RTSI signal whenever the

ncAction function is called with the Opcode value set to

NC_OP_RTSI_OUT. This RTSI mode can be used to manually

toggle/pulse a RTSI output within the application.

NC_RTSI_OUT_ON_RX

The Network Interface will output the RTSI signal whenever a

CAN frame is stored in the read queue.

If the interface is Series 2, NI-CAN connects a terminal of the

Philips SJA1000 CAN controller to the RTSI output. This

hardware connection provides jitter in the nanoseconds range,

enabling triggering of external oscilloscopes and so on.

NC_RTSI_OUT_ON_TX

The Network Interface will output the RTSI signal whenever a

CAN frame is successfully transmitted from the write queue.

NC_RTSI_TIME_ON_IN

When the RTSI input transitions from low to high, a timestamp is

measured and stored in the read queue of the Network Interface.

The special RTSI frame uses the following format:

Arbitration ID: 40000001 hex

Timestamp: Time when RTSI input transitioned from low to high

IsRemote: 3 (NC_FRMTYPE_RTSI)

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-20 ni.com

DataLength: RTSI signal detected (RTSI Signal)

Data: N/A (ignore)

When calling ncRead or ncReadMult to read frames from the

Network Interface, use the IsRemote field to differentiate RTSI

timestamps from CAN frames. Refer to ncReadMult for more

information.

NC_RTSI_TX_ON_IN

The Network Interface will transmit a frame from its write queue

when the RTSI input transitions from low to high. To begin

transmission, at least one data frame must be written using

ncWrite. If the write queue becomes empty due to frame

transmissions, the last frame will be retransmitted on each RTSI

pulse until another frame is provided using ncWrite.

NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)

RTSI Behavior specifies whether to pulse or toggle a RTSI

output. This attribute is ignored when RTSI Mode specifies input

(detected low to high):

RTSI_SIG_PULSE

Pulse the RTSI output. For Series 1 CAN cards, the pulse is at least

100 µs. For Series 2 CAN interfaces, the pulse is at least 100 ns.

RTSI_SIG_TOGGLE

If the previous state was high, the output toggles low, then

vice-versa.

NC_ATTR_RTSI_SIGNAL (RTSI Signal)

RTSI Signal defines the RTSI signal associated with the RTSI

Mode. Valid values are 0 to 6, corresponding to RTSI 0 to RTSI 6

on other National Instruments cards.

Series 1 and 2 CAN interfaces each have limitations regarding

RTSI. For information on these limitations, refer to the Valid

Combinations of Source/Destination section in the CAN Connect

Terminals.vi function of the Channel API for LabVIEW.

NC_ATTR_RTSI_SKIP (RTSI Skip)

RTSI Skip specifies the number of RTSI inputs (low-to-high

transitions) to skip for RTSI input modes. It is ignored for RTSI

output modes. For example, for RTSI Mode

NC_RTSI_TIME_ON_IN, if the RTSI input transitions from low to

high every 1 ms, RTSI Skip of 9 means that a timestamp will be

stored in the read queue every 10 ms.

Chapter 11 Frame API for C

© National Instruments 11-21 NI-CAN Hardware and Software Manual

CAN Object
ObjName is the name of the CAN Object to configure. This string uses the syntax

“CANx::STDy” or “CANx::XTDy”. CANx is the name of the CAN network interface that you

used for the preceding ncConfig function. STD indicates that the CAN Object uses a

standard (11-bit) arbitration ID. XTD indicates that the CAN Object uses an extended (29-bit)

arbitration ID. The number y specifies the actual arbitration ID of the CAN Object. The

number y is decimal by default, but you also can use hexadecimal by adding “0x” to the

beginning of the number. For example, “CAN0::STD25” indicates standard ID 25 decimal on

CAN0, and “CAN1::XTD0x0000F652” indicates extended ID F652 hexadecimal on CAN1.

In order to configure one or more CAN Objects, you must configure the CAN Network

Interface Object first.

The special virtual interface names CAN256 and CAN257 are not supported for CAN

Objects.

The following attribute IDs are commonly used for CAN Object configuration:

NC_ATTR_COMM_TYPE (Communication Type)

Communication Type specifies the behavior of the CAN Object with

respect to its ID, including the direction of data transfer:

NC_CAN_COMM_RX_BY_CALL (Receive By Call Using Remote)

Transmit remote frame for a specific ID by calling ncWrite. The

CAN Object places the resulting data frame response in the read

queue.

Period specifies a minimum interval, and Receive Changes

Only specifies whether to place duplicate data frames into the

read queue. Transmit by Response is ignored.

NC_CAN_COMM_RX_PERIODIC (Receive Periodic Using Remote)

Periodically transmit a remote frame for a specific ID in order to

receive the associated data frame. Every Period, the CAN Object

transmits a remote frame, and then places the resulting data frame

response in the read queue. If the data frame is not received in

response to the transmit remote frame, the periodic transmission

is put on hold.

Period specifies the periodic rate, and Receive Changes Only

specifies whether to place duplicate data frames into the read

queue. Transmit by Response is ignored.

NC_CAN_COMM_RX_UNSOL (Receive Unsolicited)

Receive data frames for a specific ID.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-22 ni.com

This type is useful for receiving a few IDs (1-10) into dedicated

read queues. For high performance applications (more IDs, fast

frame rates), the Network Interface is recommended to receive

all IDs.

Period specifies a watchdog timeout, and Receive Changes

Only specifies whether to place duplicate data frames into the

read queue. Transmit by Response is ignored.

NC_CAN_COMM_TX_BY_CALL (Transmit Data By Call)

Transmit data frame when ncWrite is called. When ncWrite is

called quickly, data frames are placed in the write queue for back

to back transmit.

Period specifies a minimum interval, and Transmit by

Response specifies whether to retransmit the previous data frame

in response to a remote frame. Receive Changes Only is

ignored.

NC_CAN_COMM_TX_PERIODIC (Transmit Data Periodically)

Periodically transmit data frame for a specific ID. When the CAN

Object transmits the last entry from the write queue, that entry is

used every period until you provide a new data frame using

ncWrite. If you keep the write queue filled with unique data, this

behavior allows you to ensure that each period transmits a unique

data frame.

If the write queue is empty when communication starts, the first

periodic transmit does not occur until you provide the first data

frame with ncWrite.

Period specifies the periodic rate, and Transmit by Response

specifies whether to transmit the previous period data in response

to a remote frame. If Transmit by Response is true, the data

from the previous (periodic) transmit will be retransmitted in case

a remote frame is received, even if there are frames pending in the

write buffer. Receive Changes Only is ignored.

NC_CAN_COMM_TX_RESP_ONLY (Transmit By Response Only)

Transmit data frame for a specific ID only in response to a

received remote frame. When you call ncWrite, the data is placed

in the write queue, and remains there until a remote frame is

received. The number of objects for the communication type

usable at the same time is limited to 12.

Period specifies a watchdog timeout. Transmit by Response

is assumed as True regardless of the attribute setting. Receive

Changes Only is ignored.

Chapter 11 Frame API for C

© National Instruments 11-23 NI-CAN Hardware and Software Manual

NC_CAN_COMM_TX_WAVEFORM (Transmit Periodic Waveform)

Transmit a fixed sequence of data frames over and over, one data

frame every Period.

The following steps describe typical usage of this type:

1. Configure CAN Network Interface Object with Start On Open

False, then open the Network Interface.

2. Configure the CAN Object as Transmit Periodic Waveform and a

nonzero Write Queue Length, then open the CAN Object.

3. Call ncWrite for the CAN Object, once for every entry specified for

the Write Queue Length.

4. Use ncAction to start the Network Interface (not the CAN Object).

The CAN Object transmits the first frame in the write queue, then waits

the specified period, then transmits the second frame, and so on. After

the last frame is transmitted, the CAN Objects waits the specified

period, then transmits the first frame again.

If you need to change the waveform contents at runtime, or if you

need to transmit very large waveforms (more than 100 frames),

we recommend using the NC_CAN_COMM_TX_PERIODIC

type. Using that type, you can write frames to the Write Queue

until full (overflow error), then wait some time for a few frames to

transmit, then continue writing new frames.

This communication type has the following limitations:

• Write Queue Length must be greater than zero.

• You must write exactly Write Queue Length values before starting

communication (no less).

• Once communication is started, you cannot write additional values.

Period specifies the periodic rate. Transmit by Response

and Receive Changes Only are ignored.

NC_ATTR_DATA_LEN (DataLength)

Data Length specifies the number of bytes in the data frames for this

CAN Object ID. This number is placed in the Data Length Code

(DLC) of all transmitted data frames and remote frames for the CAN

Object. This is also the number of data bytes returned from ncRead

when the communication type indicates receive.

NC_ATTR_NOTIFY_MULT_LEN (ReadMult Size for Notification)

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-24 ni.com

Sets the number of frames used as a threshold for the Read Multiple

state. For more information on the Read Multiple state, refer to

ncWaitForState.

The default value is one half of Read Queue Length.

NC_ATTR_PERIOD (Period)

Period specifies the rate of periodic behavior in milliseconds.

The behavior depends on the Communication Type as follows:

NC_CAN_COMM_RX_BY_CALL

Period specifies a minimum interval between subsequent

transmissions. Even if ncWrite is called very frequently, frames

are transmitted on the network at a rate no more than Period.

Setting Period to zero disables the minimum interval timer.

NC_CAN_COMM_RX_PERIODIC

NC_CAN_COMM_RX_UNSOL

Period specifies the time between subsequent transmissions,

and must be set greater than zero.

NC_CAN_COMM_TX_BY_CALL

NC_CAN_COMM_TX_PERIODIC

NC_CAN_COMM_TX_RESP_ONLY

Period specifies a watchdog timeout. If a frame is not received

at least once every period, a timeout error is returned. Setting

Period to zero disables the watchdog timer.

NC_CAN_COMM_TX_WAVEFORM

NC_ATTR_READ_Q_LEN (Read Queue Length)

Read Queue Length is the maximum number of unread frames for

the read queue of the CAN Object. For more information, refer to

ncRead.

If Communication Type is set to receive data, a typical value is 10.

If Communication Type is set to transmit data, a typical value is 0.

NC_ATTR_RX_CHANGES_ONLY (Receive Changes Only)

Receive Changes Only applies only to Communication Type

selections in which the CAN Object receives data frames (ignored for

other types). For those configurations, Receive Changes Only

specifies whether duplicated data should be placed in the read queue.

When set to NC_False (default), all data frames for the CAN Object

ID are placed in the read queue. When set to NC_True, data frames are

Chapter 11 Frame API for C

© National Instruments 11-25 NI-CAN Hardware and Software Manual

placed into the read queue only if the data bytes differ from the

previously received data bytes.

This attribute has no effect on the usage of a watchdog timeout for the

CAN Object. For example, if this attribute is NC_True and you also

specify a watchdog timeout, NI-CAN restarts the watchdog timer

every time it receives a data frame for the CAN Object ID, regardless

of whether the data differs from the previous frame in the read queue.

NC_ATTR_TX_RESPONSE (Transmit By Response)

Transmit By Response applies only to Communication Type of

Transmit Data by Call and Transmit Data Periodically

(ignored for other types). For those configurations, Transmit By

Response specifies whether the CAN Object should automatically

respond with the previously transmitted data frame when it receives

a remote frame. When set to NC_False (default), the CAN Object

transmits data frames only as configured, and ignores all remote

frames for its ID. When set to NC_True, the CAN Object responds to

incoming remote frames.

NC_ATTR_WRITE_Q_LEN (Write Queue Length)

Write Queue Length is the maximum number of frames for the

write queue of the CAN Object awaiting transmission. For more

information, refer to ncWrite.

If Communication Type is set to receive data, a typical value is 0.

If Communication Type is set to transmit data, a typical value is 10.

RTSI is a bus that interconnects National Instruments DAQ, IMAQ,

Motion, and CAN boards. This feature allows synchronization of

DAQ, IMAQ, Motion, and CAN boards by allowing exchange of

timing signals. Using RTSI, a device (board) can control one or more

slave devices.

The following attribute IDs are used to enable RTSI synchronization

between two or more National Instruments cards:

NC_ATTR_RTSI_FRAME (RTSI Frame)

RTSI Frame specifies a 4-byte pattern used to differentiate RTSI

timestamps from CAN data frames. It is provided as a U32, and the

high byte is stored as byte 0 from ncRead. For example, AABBCCDD

hex is returned as AA in byte 0, BB in byte 1, and so on.

This attribute is used only for RTSI Mode NC_RTSI_TIME_ON_IN.

It is ignored for all other RTSI Mode values.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-26 ni.com

NC_ATTR_RTSI_MODE (RTSIMode)

RTSI Mode specifies the behavior of the CAN Object with respect to

RTSI, including whether the RTSI signal is an input or output:

NC_RTSI_NONE

Disables RTSI behavior for the CAN Object (default). All other

RTSI attributes are ignored.

NC_RTSI_OUT_ACTION_ONLY

The CAN Object will output the RTSI signal whenever the

ncAction function is called with Opcode NC_OP_RTSI_OUT.

This RTSI mode can be used to manually toggle/pulse a RTSI

output within the application.

NC_RTSI_OUT_ON_RX

The CAN Object will output the RTSI signal whenever a CAN

frame is stored in its read queue.

In order to use this RTSI Mode, you must configure the CAN

Object Communication Type to Receive Unsolicited.

NC_RTSI_OUT_ON_TX

The CAN Object will output the RTSI signal whenever a CAN

frame is successfully transmitted.

In order to use this RTSI Mode, you must configure the CAN

Object Communication Type to either Transmit Data by

Call, Transmit Data Periodically, or Transmit

Periodic Waveform.

NC_RTSI_TIME_ON_IN

When the RTSI input transitions from low to high, a timestamp is

measured and stored in the read queue of the CAN Object. The

special RTSI frame uses the following format:

Timestamp: Time when RTSI input transitioned from low to high.

Data: User-defined 4 byte data pattern (refer to the

NC_ATTR_RTSI_FRAME (RTSI Frame) attribute for details).

NC_RTSI_TX_ON_IN

The CAN Object will transmit a frame from its write queue

when the RTSI input transitions from low to high. To begin

transmission, at least one data frame must be written using

ncWrite. If the write queue becomes empty due to frame

transmissions, the last frame will be retransmitted on each RTSI

pulse until another frame is provided using ncWrite.

Chapter 11 Frame API for C

© National Instruments 11-27 NI-CAN Hardware and Software Manual

In order to use this RTSI Mode, you must configure the CAN

Object Communication Type to either Transmit Data by

Call, Transmit Data Periodically, or Transmit

Periodic Waveform. The Period attribute is ignored when

this RTSI mode is selected.

NC_ATTR_RTSI_SIG_BEHAV (RTSI Behavior)

RTSI Behavior specifies whether to pulse or toggle a RTSI output.

This attribute is ignored when RTSI Mode specifies input (detected

low to high):

RTSI_SIG_PULSE

Pulse the RTSI output. For Series 1 CAN cards, the pulse is at least

100 µs. For Series 2 CAN cards, the pulse is at least 100 ns.

RTSI_SIG_TOGGLE

If the previous state was high, the output toggles low,

then vice-versa.

NC_ATTR_RTSI_SIGNAL (RTSI Signal)

RTSI Signal defines the RTSI signal associated with the RTSI

Mode. Valid values are 0 to 6, corresponding to RTSI0 to RTSI6 on

other National Instruments cards.

Series 1 and 2 CAN cards each have limitations regarding RTSI. For

information on these limitations, refer to Valid Combinations of

Source/Destination in the CAN Connect Terminals.vi function of

Chapter 7, Channel API for LabVIEW.

NC_ATTR_RTSI_SKIP (RTSI Skip)

RTSI Skip specifies the number of RTSI inputs (low-to-high

transitions) to skip for RTSI input modes. It is ignored for RTSI output

modes. For example, for RTSI Mode NC_RTSI_TIME_ON_IN, if the

RTSI input transitions from low to high every 1 ms, RTSI Skip of 9

means that a timestamp will be stored in the read queue every 10 ms.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-28 ni.com

Examples of Different Communication Types
Figure 11-5, Figure 11-6, and Figure 11-7 demonstrate how you can use the

Communication Type attribute for actual network data transfer. Each figure shows

two separate NI-CAN applications that are physically connected across a CAN network.

Figure 11-5 shows a CAN Object that periodically transmits data to another CAN Object.

The receiving CAN Object can queue up to five data values.

Figure 11-5. Example of Periodic Transmission

Figure 11-6 shows a CAN Object that polls data from another CAN Object. NI-CAN

transmits the CAN remote frame when you call ncWrite.

Figure 11-6. Example of Polling Remote Data Using ncWrite

Periodic Timer
(Obtains Data to
Transmit Every

Period)

Receive Unsolicited
NC_ATTR_READ_Q_LEN=5

NC_ATTR_RX_CHANGES_ONLY=NC_FALSE

Read Queue

Transmit Data Periodically
NC_ATTR_WRITE_Q_LEN=0

ncWritencRead

NI-CAN Driver NI-CAN DriverCAN
Network

Your
Application

Your
Application

Response Uses
Most Recent
Write Data

Receive Data by
Call Using Remote
NC_ATTR_READ_Q_LEN=0

Transmit by Response Only
NC_ATTR_WRITE_Q_LEN=0

NI-CAN Driver NI-CAN DriverCAN
Network

ncWrite

ncRead

ncWrite

Your
Application

Your
Application

Chapter 11 Frame API for C

© National Instruments 11-29 NI-CAN Hardware and Software Manual

Figure 11-7 shows a CAN Object that polls data from another CAN Object. NI-CAN

transmits the remote frame periodically and places only changed data into the read queue.

Figure 11-7. Example of Periodic Polling of Remote Data

Example of Periodic Polling of Remote Data

ncConfig is not supported for 847x LIN. This function is supported for 847x CAN,

but the only two attributes in the CAN Network Interface Config cluster supported are

NC_ATTR_START_ON_OPEN and NC_ATTR_BAUD_RATE.

Response Uses
Most Recent
Write Data

Receive Periodically
Using Remote

NC_ATTR_READ_Q_LEN=3

NC_ATTR_RX_CHANGES_ONLY=NC_TRUE

Transmit by Response Only
NC_ATTR_WRITE_Q_LEN=0

Check For
Different Value

Periodic Timer

NI-CAN Driver NI-CAN DriverCAN
Network

ncRead ncWrite

Your
Application

Your
Application

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-30 ni.com

ncConnectTerminals

Purpose
Connect terminals in the CAN or LIN hardware.

Format

Inputs

ObjHandle

The object handle from the previous NI-CAN function. The

ObjHandle is originally returned from ncOpenObject.

SourceTerminal

Specifies the connection source.

Once the connection is successfully created, behavior flows from

SourceTerminal to DestinationTerminal.

For a list of valid source/destination pairs, refer to the Valid

Combinations of Source/Destination section of this function reference.

The following list describes each value of SourceTerminal:

NC_SRC_TERM_RTSI0... NC_SRC_TERM_RTSI6

Selects a general-purpose RTSI line as source (input) of the

connection.

NC_SRC_TERM_RTSI_CLOCK

Selects the RTSI clock line as source (input) of the

connection. This terminal is also RTSI line 7. RTSI7 is

dedicated for routing of a timebase (10 MHz or 20 MHz)

The only valid DestinationTerminal for this source is

NC_DEST_TERM_MASTER_TIMEBASE.

For PCI and PXI form factors, this receives a 20 MHz

(default) timebase from another CAN or DAQ card. For

NCTYPE_STATUS ncConnectTerminals(

NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 SourceTerminal,

NCTYPE_UINT32 DestinationTerminal,

NCTYPE_UINT32 Modifiers);

Chapter 11 Frame API for C

© National Instruments 11-31 NI-CAN Hardware and Software Manual

example, you can synchronize a CAN and DAQ E Series MIO

card by connecting the 20 MHz oscillator (board clock) of the

DAQ card to NC_SRC_TERM_RTSI_CLOCK, and then

connecting NC_SRC_TERM_RTSI_CLOCK to

NC_DEST_TERM_MASTER_TIMEBASE on the CAN card.

For PCMCIA form factor, a 10 MHz timebase is required on

NC_SRC_TERM_RTSI_CLOCK. For synchronization with a

PCMCIA DAQ card, this is done by programming the

FREQOUT signal of the DAQ card to 10 MHz, then wiring

FREQOUT to the NC_SRC_TERM_RTSI_CLOCK of the CAN

card.

For the 847x with Sync series CAN and LIN interfaces,

1 MHz, 10 MHz, and 20 MHz are valid timebases. Refer to

Appendix E, Specifications, for details on synchronization

triggers.

This value does not apply to Series 1.

NC_SRC_TERM_PXI_STAR

NC_SRC_TERM_PXI_STAR selects the PXI star trigger signal.

Within a PXI chassis, some PXI products can source star

trigger from Slot 2 to all higher-numbered slots.

PXI_Star enables the PXI CAN card to receive the star

trigger when it is in Slot 3 or higher.

This value applies to Series 2 PXI CAN cards only.

NC_SRC_TERM_PXI_CLK10

NC_SRC_TERM_PXI_CLK10 selects the 10 MHz backplane

clock.

This routes the 10 MHz PXI backplane clock for use as the

timebase for the CAN card. When you use PXI_Clk10 as the

timebase for the CAN card, you must also use PXI_Clk10 as

the timebase for other PXI cards to perform synchronized

input/output.

This value applies to Series 2 PXI CAN cards only.

NC_SRC_TERM_20MHZ_TIMEBASE

NC_SRC_TERM_20MHZ_TIMEBASE selects the 20 MHz

oscillator of the CAN card.

The only valid DestinationTerminal for this source is

NC_DEST_TERM_RTSI_CLOCK. This routes the 20 MHz

clock of the CAN card for use as a timebase by other NI cards.

For example, you can synchronize two CAN cards by

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-32 ni.com

connecting NC_SRC_TERM_20MHZ_TIMEBASE to

NC_DEST_TERM_RTSI_CLOCK on one CAN card, and then

connecting NC_SRC_TERM_RTSI_CLOCK to

NC_DEST_TERM_MASTER_TIMEBASE on the other CAN

card.

NC_SRC_TERM_20MHZ_TIMEBASE applies to the entire CAN

or LIN card, including both interfaces of a 2-port CAN card.

The CAN card is specified by the ObjName input to

ncOpenObject.

This value applies to Series 2 PXI or PCI CAN cards only.

This value applies to Series 2 PXI or PCI CAN cards and

847x with Sync interfaces only.

For 847x with Sync series CAN and LIN interfaces the

internal oscillator runs at 1 MHz.

NC_SRC_TERM_10HZ_RESYNC_CLOCK

NC_SRC_TERM_10HZ_RESYNC_CLOCK selects a 10 Hz,

50 percent duty cycle clock. This slow rate is required for

resynchronization of Series 1 CAN cards. On each pulse of

the resync clock, the other CAN card brings its clock into

sync.

By selecting RTSI0-RTSI6 as the DestinationTerminal,

you route the 10 Hz clock to synchronize with other Series 1

CAN cards. NI-DAQ or NI-DAQmx cards cannot use the

10 Hz resync clock, so this selection is limited to

synchronization of two or more CAN cards.

NC_SRC_TERM_10HZ_RESYNC_CLOCK applies to the entire

CAN card, including both interfaces of a 2-port CAN card.

The CAN card is specified by the ObjName input to

ncOpenObject.

This value applies to Series 1 and Series 2 CAN cards, but is

typically used with Series 1 CAN cards only. If all of the

CAN cards are Series 2, the 20 MHz timebase is preferable

due to the lack of drift. If you are using a mix of Series 1 and

Series 2 CAN cards, you must use

NC_SRC_TERM_10HZ_RESYNC_CLOCK.

NC_SRC_TERM_INTF_RECEIVE_EVENT

NC_SRC_TERM_INTF_RECEIVE_EVENT selects the

dedicated receive interrupt output on the Philips SJA1000

CAN controller. When a received frame successfully passes

the acceptance filter, a pulse with the width of one bit time is

Chapter 11 Frame API for C

© National Instruments 11-33 NI-CAN Hardware and Software Manual

output during the last bit of the end of frame position of the

CAN frame. Incoming CAN frames can be filtered using the

NC_ATTR_SERIES2_FILTER_MODE attribute. The CAN

controller is specified by the ObjName input to

ncOpenObject.

NC_SRC_TERM_INTF_RECEIVE_EVENT can be used as the

start trigger for other NI cards, or for external instruments.

This value applies to Series 2 cards only.

NC_SRC_TERM_INTF_TRANSCEIVER_EVENT

NC_SRC_TERM_INTF_TRANSCEIVER_EVENT selects

the NERR signal from the CAN transceiver. The

Low-Speed/Fault-Tolerant transceiver and the High-Speed

transceiver provide the NERR signal. This signal asserts

when a fault is detected by the transceiver. The default value

of NERR is logic-high, which indicates no error.

The CAN card is specified by the ObjName input to

ncOpenObject.

This value applies to Series 2 CAN cards only.

NC_SRC_TERM_START_TRIGGER

NC_SRC_TERM_START_TRIGGER selects the start trigger,

the event that starts objects.

The start trigger is the same for all CAN Objects using a given

interface, such as the ObjName input to ncOpenObject.

In the default (disconnected) state of the

NC_DEST_TERM_START_TRIGGER destination, the start

trigger occurs when communication begins on the interface.

By selecting RTSI0-RTSI6 as the DestinationTerminal,

you route the start trigger of this CAN or LIN card to the start

trigger of other CAN, LIN, or DAQ cards. This ensures that

sampling begins at the same time on both cards. For example,

you can synchronize two CAN cards by routing

NC_SRC_TERM_START_TRIGGER as the SourceTerminal

on one CAN card, and then routing

NC_DEST_TERM_START_TRIGGER as the

DestinationTerminal on the other CAN card, with both

cards using the same RTSI line for the connections.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-34 ni.com

DestinationTerminal

Specifies the destination of the connection.

The following list describes each value of DestinationTerminal:

NC_DEST_TERM_RTSI0... NC_DEST_TERM_RTSI6

Selects a general-purpose RTSI line as destination (output) of

the connection.

NC_DEST_TERM_RTSI_CLOCK

Selects the RTSI clock line as destination (output) of the

connection. This terminal is also RTSI line 7. RTSI7 is

dedicated for routing of a timebase. The CAN card can import

a 10 MHz or 20 MHz timebase, but can only export a 20 MHz

timebase.

 847x with Sync cards can import 1 MHz, 10 MHz, or

20 MHz timebases, but can export only a 1 MHz timebase.

NC_DEST_TERM_MASTER_TIMEBASE

NC_DEST_TERM_MASTER_TIMEBASE instructs the CAN or

LIN card to use the source of the connection as the master

timebase. The CAN or LIN card uses this master timebase for

input sampling (including timestamps of received messages)

as well as periodic output sampling.

For PCI and PXI form factors, you can use

NC_SRC_TERM_RTSI_CLOCK as the SourceTerminal. By

default this receives a 20 MHz timebase from another CAN

or DAQ card. For example, you can synchronize a CAN and

DAQ E Series MIO card by connecting the 20 MHz oscillator

(board clock) of the DAQ card to RTSI Clock (RTSI7),

and then connecting NC_SRC_TERM_RTSI_CLOCK to

NC_DEST_TERM_MASTER_TIMEBASE on the CAN card.

To change the Master Timebase Rate to 10 MHz, use

ncSetAttribute to change the

NC_ATTR_MASTER_TIMEBASE_RATE attribute.

For PXI form factor, you also can use

NC_SRC_TERM_PXI_CLK10 as the SourceTerminal. This

receives the PXI 10 MHz backplane clock for use as the

master timebase.

For PCMCIA form factor, you can use

NC_SRC_TERM_RTSI_CLOCK as the SourceTerminal.

Unlike PCI and PXI, the PCMCIA CAN card requires a

10 MHz timebase on NC_SRC_TERM_RTSI_CLOCK. For

synchronization with a PCMCIA DAQ card, this is done

Chapter 11 Frame API for C

© National Instruments 11-35 NI-CAN Hardware and Software Manual

by programming the FREQOUT signal of the DAQ card to

10 MHz, then wiring FREQOUT to the

NC_SRC_TERM_RTSI_CLOCK of the CAN card.

For the USB form factor, you can use RTSI7/RTSI Clock as

the source terminal. The USB hardware automatically senses

the incoming clock rate of 1 MHz, 10 MHz, or 20 MHz,

so no further configuration is required.

NC_DEST_TERM_MASTER_TIMEBASE applies to the entire

CAN or LIN card, including both interfaces of a 2-port CAN

card. The CAN card is specified by the ObjName input to

ncOpenObject.

The default (disconnected) state of this destination means the

CAN or LIN card uses its local 20 MHz timebase as the

master timebase.

NC_DEST_TERM_10HZ_RESYNC_CLOCK

NC_DEST_TERM_10HZ_RESYNC_CLOCK instructs the CAN

card to use a 10 Hz, 50 percent duty cycle clock to

resynchronize its local timebase. This slow rate is required

for resynchronization of CAN cards. On each low-to-high

transition of the resync clock, this CAN card brings its local

timebase into sync.

When synchronizing to an E Series MIO card, a typical use of

this value is to use RTSI0-RTSI6 as the SourceTerminal,

then use NI-DAQ or NI-DAQmx functions to program

Counter 0 of the MIO card to generate a 10 Hz 50 percent

duty cycle clock on the RTSI line.

When synchronizing to a CAN card, a typical use of this

value is to use RTSI0-RTSI6 as the SourceTerminal, then

route the NC_SRC_TERM_10HZ_RESYNC_CLOCK of the other

CAN card as the SourceTerminal to the same RTSI line.

NC_DEST_TERM_10HZ_RESYNC_CLOCK applies to the entire

CAN card, including both interfaces of a 2-port CAN card.

The CAN card is specified by the ObjName input to

ncOpenObject.

The default (disconnected) state of this destination means the

CAN card does not resynchronize its local timebase.

This value applies to Series 1 and Series 2 CAN cards, but is

typically used with Series 1 CAN cards only. If all of the

CAN cards are Series 2, the 20 MHz timebase is preferable

due to the lack of drift. If you are using a mix of Series 1 and

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-36 ni.com

Series 2 CAN cards, you must use

NC_DEST_TERM_10HZ_RESYNC_CLOCK.

NC_DEST_TERM_START_TRIGGER

NC_DEST_TERM_START_TRIGGER selects the start trigger,

the event that begins sampling for tasks. The start trigger

occurs on the first low-to-high transition of the source

terminal.

The start trigger is the same for all tasks using a given

interface, such as the ObjName input to ncOpenObject.

By selecting RTSI0-RTSI6, or NC_SRC_TERM_PXI_STAR for

PXI hardware, as the SourceTerminal, you route the start

trigger from another CAN, LIN, or DAQ card. This ensures

that sampling begins at the same time on both cards. For

example, you can synchronize with an E Series DAQ MIO

card by routing the AI start trigger of the MIO card to a

RTSI line and then routing the same RTSI line with

NC_DEST_TERM_START_TRIGGER as the

DestinationTerminal on the CAN card.

The default (disconnected) state of this destination means the

start trigger occurs when communication begins on the

interface.

Modifiers

Provides optional connection information for certain

source/destination pairs. The current release of NI-CAN does not use

this information for any source/destination pair, so you must pass

Modifiers as zero.

Outputs

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value.

Chapter 11 Frame API for C

© National Instruments 11-37 NI-CAN Hardware and Software Manual

Description
This VI connects a specific pair of source/destination terminals. One of the terminals is

typically a RTSI signal, and the other terminal is an internal terminal in the CAN or LIN

hardware. By connecting internal terminals to RTSI, you can synchronize the CAN or LIN

hardware with another hardware product such as an NI-DAQ or NI-DAQmx card.

When the final CAN Object for a given port is cleared with ncCloseObject, NI-CAN

disconnects all terminal connections for that port. Therefore, the ncDisconnectTerminals

function is not required for most applications. NI-DAQ and NI-DAQmx terminals remain

connected after the tasks are cleared, so you must disconnect NI-DAQ/NI-DAQmx terminals

manually at the end of the application.

For a list of valid source/destination pairs, refer to the following section.

Valid Combinations of Source/Destination
The series of the NI CAN hardware determines what combinations of SourceTerminal to

DestinationTerminal are valid. Within Table 11-5, 1 indicates Series 1 hardware, and

2 indicates Series 2 hardware. You can determine the series of the NI CAN hardware by

selecting the name of the card within the Devices and Interfaces»NI-CAN Devices view in

the left pane of MAX.

Series 1 hardware has the following limitations:

• PXI cards do not support RTSI6.

• Signals received from a RTSI source cannot occur faster than 1 kHz. This prevents the

card from receiving a 10 MHz or 20 MHz timebase, such as provided by NI E Series MIO

hardware.

• Signals received from a RTSI source must be at least 100 µs in length to be detected. This

prevents the card from receiving triggers in the nanoseconds range, such as the AI trigger

provided by NI E Series MIO hardware. Series 2 CAN cards also send RTSI pulses in the

nanoseconds range, so Series 1 CAN cards cannot receive RTSI input from Series 2 CAN

cards.

• For CAN cards with High-Speed (HS) ports only, four RTSI signals are available for

input (source), and four RTSI signals are available for output (destination). This

limitation applies to the number of signals per direction, not the RTSI signal number.

For example, if you connect RTSI0, RTSI1, RTSI3, and RTSI5 as input, connecting

RTSI4 as input will return an error.

• For CAN cards with one or more Low-Speed (LS) ports, two RTSI signals are available

for input (source), and three RTSI signals are available for output (destination).

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-38 ni.com

Series 2 hardware has the following limitations:

• For all form factors (PCI, PXI, PCMCIA), the connection of Interface Transceiver Event

to a RTSI destination is dependent on the physical port location. If the interface is located

on Port 1, you can connect to even-numbered RTSI lines only (RTSI0, RTSI2, RTSI4,

RTSI6). If the interface is located on Port 2, you can connect to odd-numbered RTSI lines

only (RTSI1, RTSI3, RTSI5). You can determine the location by selecting the name of

the interface in MAX.

• PCI cards do not support the PXI_Star and PXI_Clk10 terminals, as those signals exist

on the PXI backplane.

• PCMCIA cards do not support the 20 MHz Timebase, PXI_Star, and PXI_Clk10

terminals. Because 20 MHz Timebase is not supported, you cannot synchronize the

timebases of two PCMCIA CAN cards.

• On PCMCIA cards, RTSI4, RTSI5 and RTSI6 are not available.

847x with Sync series hardware has the following limitations:

• No support for RTSI1–RTSI6.

• Because 20 MHz timebase only outputs a 1 MHz signal, you cannot source a timebase to

a PCI-CAN device. It can, however, receive a 20 MHz signal from a PCI-CAN device.

• RTSI0 must be connected to the TRIG terminal and RTSI7 must be connected to the CLK

terminal. Refer to the USB-LIN section of Chapter 3, NI CAN and LIN Hardware,

for more information on the pinout of the USB-847x with Sync series hardware.

Table 11-5 lists all valid combinations of SourceTerminal and DestinationTerminal.

Table 11-5. Valid combinations of Source/Destination

Source

Destination

RTSI0 to

RTSI6 RTSI_Clock

Master

Timebase

10 Hz

Resync

Clock

Start

Trigger

RTSI0 to

RTSI6

— — — 1, 2 1, 2, 3

RTSI7/RTSI_

Clock

— — 2, 3 — —

PXI_Star — — — — 2

PXI_Clk10 — — 2 — —

20 MHz

Timebase

— 2, 3 — — —

Chapter 11 Frame API for C

© National Instruments 11-39 NI-CAN Hardware and Software Manual

1—Valid connection for Series 1 hardware

2—Valid connection for Series 2 hardware

3—Valid connection for 847x with Sync series hardware

10 Hz Resync

Clock

1, 2 — — — 1, 2

Interface

Receive

Event

2 — — — 2

Interface

Transceiver

Event

2 — — — —

Start Trigger

Event

1, 2, 3 — — — —

Table 11-5. Valid combinations of Source/Destination (Continued)

Source

Destination

RTSI0 to

RTSI6 RTSI_Clock

Master

Timebase

10 Hz

Resync

Clock

Start

Trigger

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-40 ni.com

ncCreateNotification

Purpose
Create a notification call back for an object.

Format

Input

ObjHandle

Object handle. The ncCreateNotification function is not

supported by the 847x and 847x with Sync series CAN and LIN

interfaces.

DesiredState

States for which notification is sent.

Timeout

Length of time to wait in milliseconds.

RefData

Pointer to user-specified reference data.

Callback

Address of the callback function.

Output

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

NCTYPE_STATUS ncCreateNotification(

NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,

NCTYPE_UINT32 Timeout,

NCTYPE_ANY_P RefData,

NCTYPE_NOTIFY_CALLBACK Callback);

Chapter 11 Frame API for C

© National Instruments 11-41 NI-CAN Hardware and Software Manual

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

Description
ncCreateNotification creates a notification callback for the object specified by

ObjHandle. The NI-CAN driver uses the notification callback to communicate state changes

to the application.

This function is normally used when you want to allow other code to execute while waiting

for NI-CAN states, especially when the other code does not call NI-CAN functions. If such

background execution is not needed, the ncWaitForState function offers better overall

performance. The ncWaitForState function cannot be used at the same time as

ncCreateNotification.

The functions ncWaitForState and ncCreateNotification use the same underlying

implementation. Therefore, for each object handle, only one of these functions can be pending

at a time. For example, you cannot invoke ncWaitForState or ncCreateNotification

twice from different threads for the same object. For different object handles, these functions

can overlap in execution.

This function is not supported for Visual Basic 6.

Upon successful return from ncCreateNotification, the notification callback is invoked

whenever one of the states specified by DesiredState occurs in the object, or if an error

occurs in the object. If DesiredState is zero, notifications are disabled for the object

specified by ObjHandle. DesiredState specifies a bit mask for which notification is

desired. You can use a single state alone, or you can OR them together.

NC_ST_READ_AVAIL (00000001 hex)

At least one frame is available, which you can obtain using an

appropriate read function.

The state is set whenever a frame arrives for the object. The state

is cleared when the read queue is empty.

NC_ST_READ_MULT (00000008 hex)

A specified number of frames are available, which you can obtain

using ncReadMult. The number of frames is one half the Read

Queue Length by default, but you can change it using the

ReadMult Size for Notification attribute of

ncSetAttribute.

The state is set whenever the specified number of frames are

stored in the read queue of the object. The state is cleared when

you call the read function, and less than the specified number of

frames exist in the read queue.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-42 ni.com

NC_ST_REMOTE_WAKEUP (00000040 hex, Remote Wakeup)

Remote wakeup occurred, and Transceiver Mode

(NC_ATTR_TRANSCEIVER_MODE) has changed from Sleep to

Normal. For more information on remote wakeup, refer to

NC_ATTR_TRANSCEIVER_MODE (Transceiver Mode).

This state is set when a remote wakeup occurs (end of wakeup

frame). This state is not set when the application changes

Transceiver Mode from Sleep to Normal (local wakeup).

This state is cleared when:

• You open the Network Interface, such as when the application begins.

• You stop the Network Interface.

• You set the Transceiver Mode, such as each time you set Sleep mode.

For as long as this state is true, the transceiver mode is Normal.

The transceiver mode also can be Normal when this state is false,

such as when you perform a local wakeup.

NC_ST_WRITE_MULT (00000080 hex)

The state is set whenever there is free space in the write queue to

accept at least 512 frames to write. The state is cleared when you

call the ncWrite or ncWriteMult function, and less than

512 frames can be accepted to write in the write queue.

This state is valid only on the Network Interface.

NC_ST_WRITE_SUCCESS (00000002 hex)

All frames provided with a write function have been successfully

transmitted onto the network. Successful transmit means that the

frame won arbitration, and was acknowledged by a remote device.

The state is set when the last frame in the write queue is

transmitted successfully. The state is cleared when a write

function is called.

When communication starts, the NC_ST_WRITE_SUCCESS state is

true by default.

For CAN Objects, Write Success does not always mean that

transmission has stopped. For example, if a CAN Object is

configured for Transmit Data Periodically, Write Success occurs

when the write queue has been emptied, but periodic transmit of

the last frame continues.

The NI-CAN driver waits up to Timeout for one of the bits set in

DesiredState to become set in the attribute NC_ATTR_STATE. You can

Chapter 11 Frame API for C

© National Instruments 11-43 NI-CAN Hardware and Software Manual

use the special Timeout value NC_DURATION_INFINITE to wait

indefinitely.

The Callback parameter provides the address of a callback function in the

application. Within the Callback function, you can call any of the

NI-CAN functions except ncCreateNotification and

ncWaitForState.

With the RefData parameter, you provide a pointer that is sent to all

notifications for the given object. This pointer normally provides reference

data for use within the Callback function. For example, when you create

a notification for the NC_ST_READ_AVAIL state, RefData is often the data

pointer that you pass to ncRead to read available data. If the callback

function does not need reference data, you can set RefData to NULL.

Callback Prototype

Callback Parameters

ObjHandle

Object handle.

State

Current state of object.

Status

Object status.

RefData

Pointer to the reference data.

NCTYPE_STATE _NCFUNC_ Callback (NCTYPE_OBJH ObjHandle,

NCTYPE_STATE State,

NCTYPE_STATUS Status,

NCTYPE_ANY_P RefData);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-44 ni.com

Callback Return Value
The value you return from the callback indicates the desired states to re-enable for

notification. If you no longer want to receive notifications for the callback, return a value of

zero.

If you return a state from the callback, and that state is still set in the NC_ATTR_STATE

attribute, the callback is invoked again immediately after it returns. For example, if you return

NC_ST_READ_AVAIL when the read queue has not been emptied, the callback is invoked

again.

Callback Description
In the prototype for Callback, _NCFUNC_ ensures a proper calling scheme between the

NI-CAN driver and the callback.

The Callback function executes in a separate thread in the process. Therefore, it has access

to any process global data, but not to thread local data. If the callback needs to access global

data, you must protect that access using synchronization primitives (such as semaphores),

because the callback is running in a different thread context. Alternatively, you can avoid the

issue of data protection entirely if the callback simply posts a message to the application using

the Win32 PostMessage function. For complete information on multithreading issues, refer

to the Win32 Software Development Kit (SDK) online help.

In LabWindows/CVI, you cannot access User Interface library functions within the callback

thread. To defer a callback for User Interface interaction, use the CVI PostDeferredCall

function. For more information, refer to the LabWindows/CVI documentation.

The ObjHandle is the same object handle passed to ncCreateNotification. It identifies

the object generating the notification, which is useful when you use the same callback

function for notifications from multiple objects.

The State parameter holds the current state(s) of the object that generated the notification

(NC_ATTR_STATE attribute). If the Timeout passed to ncCreateNotification expires

before the desired states occur, or if any other error occurs in the object, the NI-CAN driver

invokes the callback with State equal to zero.

The Status parameter holds the current status of the object. If an error occurs, State is zero

and Status holds the error status. The most common notification error occurs when the

Timeout passed to ncCreateNotification expires before the desired states occur

(CanErrFunctionTimeout status code). If no error is reported, Status is CanSuccess.

The RefData parameter is the same pointer passed to ncCreateNotification, and it

accesses reference data for the Callback function.

Chapter 11 Frame API for C

© National Instruments 11-45 NI-CAN Hardware and Software Manual

ncDisconnectTerminals

Purpose
Disconnect terminals in the CAN or LIN hardware.

Format

Inputs

ObjectHandle

The object handle from the previous NI-CAN function. The

ObjectHandle is originally returned from ncOpenObject.

SourceTerminal

Specifies the source of the connection.

For a description of values for SourceTerminal, refer to

ncConnectTerminals.

DestinationTerminal

Specifies the destination of the connection.

For a description of values for DestinationTerminal, refer to

ncConnectTerminals.

Modifiers

Provides optional connection information for certain

source/destination pairs. The current release of NI-CAN does not use

this information for any source/destination pair, so you must pass

Modifiers as zero.

NCTYPE_STATUS ncDisconnectTerminals(

NCTYPE_OBJH ObjectHandle,

NCTYPE_UINT32 SourceTerminal,

NCTYPE_UINT32 DestinationTerminal,

NCTYPE_UINT32 Modifiers);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-46 ni.com

Outputs

Return Value

The return value indicates the status of the function call as a signed 32-bit integer. Zero means

the function executed successfully. A negative value specifies an error, which means the

function did not perform the expected behavior. A positive value specifies a warning, which

means the function performed as expected, but a condition arose that may require attention.

Use the ncStatusToString function of the Frame API to obtain a descriptive string for the

return value.

Description
This function disconnects a specific pair of source/destination terminals you previously

connected with ncConnectTerminals.

When the final CAN Object for a given port is cleared with ncCloseObject, NI-CAN

disconnects all terminal connections for that port. Therefore, the ncDisconnectTerminals

function is not required for most applications. You typically use this function to change

RTSI connections dynamically while the application is running. First use ncAction

with the NC_OP_STOP opcode to stop all CAN Objects for the port, then use

ncDisconnectTerminals and ncConnectTerminals to adjust RTSI connections,

then use ncAction with the NC_OP_START opcode to start the network interface and

restart sampling.

Chapter 11 Frame API for C

© National Instruments 11-47 NI-CAN Hardware and Software Manual

ncGetAttribute

Purpose
Get the value of an object attribute.

Format

Input

ObjHandle

Object handle.

AttrId

Identifier of the attribute to get.

AttrSize

Size of the attribute in bytes.

Output

AttrPtr

Pointer used to return an attribute value.

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

NCTYPE_STATUS ncGetAttribute(

NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,

NCTYPE_UINT32 AttrSize,

NCTYPE_ANY_P AttrPtr);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-48 ni.com

Description
ncGetAttribute gets the value of the attribute specified by AttrId from the object

specified by ObjHandle. Within NI-CAN Objects, you use attributes to access configuration

settings, status, and other information about the object, but not data.

AttrPtr points to the variable used to receive the attribute value. Its type is undefined so that

you can use the appropriate host data type for AttrId. AttrSize indicates the size of the

variable that AttrPtr points to. AttrSize is typically 4, and AttrPtr references a 32-bit

unsigned integer.

You can get any value of AttrId mentioned in ncConfig using ncGetAttribute. The

following list describes other AttrId you can get using ncGetAttribute:

NC_ATTR_ABS_TIME (Absolute Timestamp)

Returns the absolute timestamp value. The timestamp format is a

64-bit unsigned integer compatible with the Win32 FILETIME type

(NCTYPE_ABS_TIME). This absolute time is kept in a Coordinated

Universal Time (UTC) format. UTC time is loosely defined as the

current date and time of day in Greenwich, England. Microsoft defines

its UTC time (FILETIME) as a 64-bit counter of 100 ns intervals that

have elapsed since 12:00 a.m., January 1, 1601.

Since the timestamp returned by ncRead (and this attribute) is

compatible with Win32 FILETIME, you can pass it into the Win32

FileTimeToLocalFileTime function to convert it to the local time

zone, then pass the resulting local time to the

Win32FileTimeToSystemTime function to convert to the Win32

SYSTEMTIME type. SYSTEMTIME is a struct with fields for year,

month, day, and so on. For more information on Win32 time types and

functions, refer to the Microsoft Win32 documentation.

Since the absolute timestamp type is 64 bits (NCTYPE_ABS_TIME),

you must use AttrSize of 8.

NC_ATTR_BAUD_RATE (Baud Rate)

Returns the value of NC_ATTR_BAUD_RATE as configured with

ncConfig or ncSetAttribute.

NC_ATTR_HW_FORMFACTOR (Form Factor)

Returns the form factor of the card on which the Network Interface or

CAN Object is located.

Chapter 11 Frame API for C

© National Instruments 11-49 NI-CAN Hardware and Software Manual

The returned Form Factor is an enumeration.

NC_ATTR_HW_SERIAL_NUM (Serial Number)

Returns the serial number of the card on which the Network Interface

or CAN Object is located.

NC_ATTR_HW_SERIES (Series)

Returns the series of the card on which the Network Interface or CAN

Object is located.

Series 1 hardware products use the Intel 82527 CAN controller.

Series 2 hardware products use the Philips SJA1000 CAN controller,

plus improved RTSI synchronization features.

The 847x and 847x with Sync series CAN hardware products use the

Philips SJA1000 CAN controller. The 847x and 847x with Sync series

LIN hardware products use the AMTEL ATA6625 LIN controller.

The 847x with Sync series hardware products add synchronization

features to the 847x hardware products.

The returned Series is an enumeration.

NC_ATTR_INTERFACE_NUM (Interface Number)

Returns the interface number of the port on which the Network

Interface or CAN Object is located.

This is the same number that you used in the ObjName string of the

previous ncConfig and ncOpenObject functions.

NC_HW_FORMFACTOR_PCI PCI

NC_HW_FORMFACTOR_PXI PXI

NC_HW_FORMFACTOR_PCMCIA PCMCIA

NC_HW_FORMFACTOR_AT AT

NC_HW_FORMFACTOR_USB USB

NC_HW_SERIES_1 Series 1

NC_HW_SERIES_2 Series 2

NC_HW_SERIES_847x 847x

NC_HW_SERIES 847x_with_Sync 847x with Sync

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-50 ni.com

NC_ATTR_LIN_CHECKSUM_TYPE (LIN Checksum Type)

Returns the value of the NC_ATTR_LIN_CHECKSUM_TYPE attribute as

configured with ncSetAttribute.

NC_ATTR_LIN_ENABLE_DLC_CHECK (LIN Enable DLC Check)

Returns the value of the NC_ATTR_LIN_ENABLE_DLC_CHECK as

configured with ncSetAttribute.

NC_ATTR_LIN_LOG_WAKEUP (LIN Log Wakeup)

Returns the value of the NC_ATTR_LIN_LOG_WAKEUP attribute as

configured with ncSetAttribute.

NC_ATTR_LIN_RESPONSE_TIMEOUT (LIN Response Timeout)

Returns the value of the NC_ATTR_LIN_RESPONSE_TIMEOUT

attribute as configured with ncSetAttribute.

NC_ATTR_LIN_SLEEP (LIN Sleep)

Returns the value of the NC_ATTR_LIN_SLEEP attribute. This attribute

may be updated by the user with ncSetAttribute or by the reception

of a wakeup signal on the LIN bus.

NC_ATTR_LISTEN_ONLY (Listen Only)

Returns the NC_ATTR_LISTEN_ONLY attribute as configured with

ncConfig.

NC_ATTR_LOG_BUS_ERRORS (Log Bus Errors?)

Returns the value of the NC_ATTR_LOG_BUS_ERRORS attribute as

configured with ncSetAttribute.

NC_ATTR_LOG_COMM_ERRS (Log Comm Warnings)

Returns TRUE or FALSE depending on whether communication

warnings (including transceiver faults) were logged to the Network

Interface read queue. For more information, refer to this attribute in

ncConfig.

NC_ATTR_LOG_START_TRIGGER (Log Start Trigger)

Returns the NC_ATTR_LOG_START_TRIGGER attribute as configured

with ncSetAttribute.

NC_ATTR_LOG_TRANSCEIVER_FAULTS (Log Transceiver Faults?)

Returns the value of the NC_ATTR_LOG_TRANSCEIVER_FAULTS

attribute as configured with ncSetAttribute.

Chapter 11 Frame API for C

© National Instruments 11-51 NI-CAN Hardware and Software Manual

NC_ATTR_MASTER_TIMEBASE_RATE (Master Timebase Rate)

Returns the present Master Timebase Rate in MHz, programmed into

the CAN Series 1 or Series 2 hardware. For PCMCIA, this attribute

will always return 10 MHz.

For the 847x with Sync series CAN and LIN hardware, this attribute

returns the value that was automatically detected.

NC_ATTR_NOTIFY_MULT_LEN (ReadMult Size for Notification)

Returns the number of frames used as a threshold for the Read Multiple

state. For more information, refer to this attribute in

ncSetAttribute.

NC_ATTR_PROTOCOL_VERSION (Protocol Version)

For NI-CAN, this returns 02000200 hex, which corresponds to version

2.0B of the Bosch CAN specifications. For more information on the

encoding of the version, refer to the NC_ATTR_SOFTWARE_VERSION

(Software Version) attribute.

This attribute is available only from the Network Interface, not CAN

Objects.

NC_ATTR_READ_PENDING (Read Entries Pending)

Returns the number of frames available in the read queue. Polling the

available frames with this attribute can be used as an alternative to the

ncWaitForState and ncCreateNotification functions.

NC_ATTR_RTSI_FRAME (RTSI Frame)

Returns the RTSI Frame attribute as configured with ncConfig.

NC_ATTR_RX_ERROR_COUNTER (Receive Error Counter)

Returns the Receive Error Counter from the Philips SJA1000 CAN

controller. This Receive Error Counter is specified in the Bosch CAN

standard as well as ISO CAN standards.

This attribute is unsupported for Series 1 CAN interfaces (returns

error).

This attribute is available only from the Network Interface, not CAN

Objects.

NC_ATTR_SELF_RECEPTION (Self Reception)

Returns the NC_ATTR_SELF_RECEPTION attribute as configured with

ncConfig.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-52 ni.com

NC_ATTR_SERIES2_COMP (Series 2 Comparator)

Returns the NC_ATTR_SERIES2_COMP attribute as configured with

ncConfig.

This attribute is available only from the Network Interface, not CAN

Objects.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

NC_ATTR_SERIES2_ERR_ARB_CAPTURE (Series 2 Error/Arb Capture)

Returns the current values of the Error Code Capture register and

Arbitration Lost Capture register from the Philips SJA1000 CAN

controller chip.

The Error Code Capture register provides information on bus errors

that occur according to the CAN standard. A bus error increments

either the Transmit Error Counter or the Receive Error Counter. When

communication starts on the interface, the first bus error is captured

into the Error Code Capture register, and retained until you get this

attribute. After you get this attribute, the Error Code Capture register

is again enabled to capture information for the next bus error.

The Arbitration Lost Capture register provides information on a loss of

arbitration during transmits. Loss of arbitration is not considered an

error. When communication starts on the interface, the first arbitration

loss is captured into the Arbitration Lost Capture register, and retained

until you get this attribute. After you get this attribute, the Arbitration

Lost Capture register is again enabled to capture information for the

next arbitration loss.

For each of the capture registers, a single-bit New flag indicates

whether a new error has occurred since the last Get. If the New flag of

a register is set, the associated fields contain new information. If the

New flag of a register is clear, the associated fields are the same as the

previous Get.

This attribute is commonly used with the

NC_ATTR_SINGLE_SHOT_TX (Single Shot Transmit) attribute. When

a Write function is used to transmit the single frame, you can get this

attribute to determine if the transmit was successful. If the single shot

transmit was not successful, this attribute provides detailed

information regarding the failure.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error). Since the information and bit

format is very specific to the Philips SJA1000 CAN controller on

Series 2 hardware, National Instruments cannot guarantee

Chapter 11 Frame API for C

© National Instruments 11-53 NI-CAN Hardware and Software Manual

compatibility for this attribute on future hardware series. When

using this attribute in the application, it is best to get the

NC_ATTR_HW_SERIES (Series) attribute to verify that the CAN

hardware is Series 2, 847x, or 847x with Sync.

Figure 11-8 and Table 11-6, Table 11-7, Table 11-8, Table 11-9, and

Table 11-10 describe the format of bit fields in this attribute. The

lowest byte (bits 0-7) corresponds to the Error Code Capture register.

The next byte (bits 8-15) corresponds to the Arbitration Lost Capture

register. Bit 16 (00010000 hex) is the New flag for the Error Code

Capture fields. Bit 17 (00020000 hex) is the New flag for the

Arbitration Lost Capture field. Bits marked as X are reserved, and

should be ignored by the application.

The C/C++ header file nican.h provides the following macros to

accept the attribute value as input and return a value as listed in the

tables:

• NC_GET_ERRARB_SEG(value)

• NC_GET_ERRARB_DIR(value)

• NC_GET_ERRARB_ERRC(value)

• NC_GET_ERRARB_ALC(value)

• NC_GET_ERRARB_NEWECC(value)

• NC_GET_ERRARB_NEWALC(value)

Figure 11-8. Series 2 Error/Arb Capture Format

Table 11-6. SEG Field of the Error Code Capture Register

Value in

SEG Field Meaning

0 No error (ignore DIR and ERRC as well)

2 ID.28 to ID.21 (most significant bits of identifier)

3 Start of frame

4 Bit SRTR (RTR for standard frames)

5 Bit IDE

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

xx x x x x x x x x x x x x x x x ALC SEG

12 11 10 9 8 7 6 5 4 3 2 1 0

NEWALC ERCC

NEWECC DIR

Bit

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-54 ni.com

6 ID.20 to ID.18

7 ID.17 to ID.13

8 CRC sequence

9 Reserved bit 0

10 Data field

11 Data length code

12 Bit RTR (RTR for extended frames)

13 Reserved bit 1

14 ID.4 to ID.0

15 ID.12 to ID.5

17 Active error flag

18 Intermission

19 Tolerate dominant bits

22 Passive error flag

23 Error delimiter

24 CRC delimiter

25 Acknowledge slot

26 End of frame

27 Acknowledge delimiter

28 Overload flag

Table 11-7. DIR Field of the Error Code Capture Register

Value in

DIR Field Meaning

0 TX; error occurred during transmission

1 RX; error occurred during reception

Table 11-6. SEG Field of the Error Code Capture Register (Continued)

Value in

SEG Field Meaning

Chapter 11 Frame API for C

© National Instruments 11-55 NI-CAN Hardware and Software Manual

Table 11-8. ERRC Field of the Error Code Capture Register

Value in

ERRC Field Meaning

0 Bit error

1 Form error

2 Stuff error

3 Other type of error

Table 11-9. ALC Field Contains the Arbitration Lost Capture Register

Value in

ALC Field Meaning

0 ID.28 (most significant bit of identifier; first ID

bit in frame)

1 ID.27

2 ID.26

3 ID.25

4 ID.24

5 ID.23

6 ID.22

7 ID.21

8 ID.20

9 ID.19

10 ID.18

11 SRTR (RTR for standard frames)

12 IDE

13 ID.17 (extended frames only)

14 ID.16 (extended frames only)

15 ID.15 (extended frames only)

16 ID.14 (extended frames only)

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-56 ni.com

17 ID.13 (extended frames only)

18 ID.12 (extended frames only)

19 ID.11 (extended frames only)

20 ID.10 (extended frames only)

21 ID.9 (extended frames only)

22 ID.8 (extended frames only)

23 ID.7 (extended frames only)

24 ID.6 (extended frames only)

25 ID.5 (extended frames only)

26 ID.4 (extended frames only)

27 ID.3 (extended frames only)

28 ID.2 (extended frames only)

29 ID.1 (extended frames only)

30 ID.0 (extended frames only)

31 SRTR (RTR for extended frames)

Table 11-10. NEWECC Field is the New Flag for the Error Code Capture Register

Value in

NEWECC Field Meaning

0 SEG, DIR, and ERRC fields contain the same

value as the last Get of this attribute. If no error

has occurred since the start of communication,

all fields are zero.

1 SEG, DIR, and ERRC fields contain

information for a new bus error.

Table 11-9. ALC Field Contains the Arbitration Lost Capture Register (Continued)

Value in

ALC Field Meaning

Chapter 11 Frame API for C

© National Instruments 11-57 NI-CAN Hardware and Software Manual

NC_ATTR_SERIES2_FILTER_MODE (Series 2 Filter Mode)

Returns the NC_ATTR_SERIES2_FILTER_MODE attribute as

configured with ncConfig.

This attribute is available only from the Network Interface, not CAN

Objects.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

NC_ATTR_SERIES2_MASK (Series 2 Mask)

Returns the NC_ATTR_SERIES2_MASK attribute as configured with

ncConfig.

This attribute is available only from the Network Interface, not CAN

Objects.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

NC_ATTR_SINGLE_SHOT_TX (Single Shot Transmit)

Returns the NC_ATTR_SINGLE_SHOT_TX attribute as configured with

ncConfig.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

NC_ATTR_SOFTWARE_VERSION (Software Version)

Version of the NI-CAN software, with major, minor, update, and beta

build numbers encoded in the U32 from high to low bytes. For

example, 2.0.1 would be 02000100 hex, and 2.1 beta5 would be

02010005 hex.

This attribute is provided for backward compatibility.

ncGetHardwareInfo provides more complete version information.

Table 11-11. NEWALC Field is the New Flag for the Arbitration Lost Capture Register

Value in

NEWALC Field Meaning

0 ALC field contains the same value as the last Get

of this attribute.

1 ALC field contains information for a new

arbitration loss.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-58 ni.com

NC_ATTR_STATE (Object State)

Returns the current state bit mask of the object. Polling with

ncGetAttribute provides an alternative method of state detection

than ncWaitForState or ncCreateNotification. For more

information on the states returned from this attribute, refer to the

DesiredState input of ncWaitForState.

NC_ATTR_TERMINATION (Termination)

Returns the value of the Termination attribute as configured with

ncSetAttribute.

NC_ATTR_TIMELINE_RECOVERY (Timeline Recovery)

Returns the Timeline Recovery attribute for the CAN Network

Interface Object.

NC_ATTR_TIMESTAMP_FORMAT (Timestamp Format)

Returns the present Timestamp Format programmed into the CAN or

LIN hardware. This property applies to the entire card.

NC_ATTR_TRANSCEIVER_EXTERNAL_IN (Transceiver External Inputs)

Returns the transceiver external inputs for the Network Interface.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this attribute allows you to determine the input

voltage on the STATUS pin of the CAN port.

For many models of CAN transceiver, an NERR pin is provided for

detection of faults and other status. For such transceivers, you can wire

the NERR pin to the STATUS pin of the CAN port.

This attribute is supported for Series 2 XS cards only (returns error

for non-XS).

This attribute uses a bit mask. When using the attribute, use bitwise

AND operations to check for values, not equality checks (equal,

greater than, and so on).

NC_TRANSCEIVER_IN_STATUS (00000001 hex, STATUS pin)

This bit is set when 5 V exists on the STATUS pin.

This bit is clear when 0 V exists on the STATUS pin.

Chapter 11 Frame API for C

© National Instruments 11-59 NI-CAN Hardware and Software Manual

NC_ATTR_TRANSCEIVER_EXTERNAL_OUT (Transceiver External Outputs)

Returns the transceiver external outputs for the Network Interface.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

Series 2 XS cards enable connection of an external transceiver. For an

external transceiver, this attribute allows you to determine the output

voltage on the MODE0 and MODE1 pins of the CAN port, and it

allows you to determine if the CAN controller chip is sleeping.

For more information on the format of the value returned in this

attribute, refer to the description of

NC_ATTR_TRANSCEIVER_EXTERNAL_OUT (Transceiver External

Outputs) in ncSetAttribute.

This attribute is supported for Series 2 XS cards only (returns error for

non-XS).

NC_ATTR_TRANSCEIVER_MODE (Transceiver Mode)

Returns the transceiver mode for the Network Interface.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

This attribute is not supported for Series 1 CAN, 847x LIN, or 847x

with Sync LIN interfaces (returns error).

For Series 2 cards for the PCMCIA form factor, this property requires

a corresponding Series 2 cable (dongle). For information on how to

identify the series of the PCMCIA cable, refer to the Series 2 Vs.

Series 1 section of Chapter 1, Introduction.

The transceiver mode changes when you set the mode within the

application, or when a remote wakeup transitions the interface from

Sleep to Normal mode. For more information, refer to

ncSetAttribute.

This property uses the following values:

NC_TRANSCEIVER_MODE_NORMAL (Normal)

Transceiver is awake in normal communication mode.

NC_TRANSCEIVER_MODE_SLEEP (Sleep)

Transceiver and the CAN controller chip are both in sleep mode.

NC_TRANSCEIVER_MODE_SW_WAKEUP (Single Wire Wakeup)

Single Wire transceiver is in Wakeup Transmission mode.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-60 ni.com

NC_TRANSCEIVER_MODE_SW_HIGHSPEED (Single Wire High-Speed)

Single Wire transceiver is in High-Speed Transmission mode.

NC_ATTR_TRANSCEIVER_TYPE (Transceiver Type)

Returns the type of transceiver for the Network Interface. For hardware

other than Series 2 XS cards, the transceiver type is fixed. For Series 2

XS cards, the transceiver type reflects the most recent value specified

by MAX or ncSetAttribute.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by CAN

Objects as well as the associated Network Interface.

This attribute is not supported on the PCMCIA form factor.

This attribute uses the following values:

NC_TRANSCEIVER_TYPE_DISC (Disconnect)

Transceiver type is Disconnect. This transceiver type is available

on Series 2 XS cards only. For more information, refer to

ncSetAttribute.

NC_TRANSCEIVER_TYPE_EXT (External)

Transceiver type is External. This transceiver type is available on

Series 2 XS cards only. For more information, refer to

ncSetAttribute.

NC_TRANSCEIVER_TYPE_HS (High-Speed)

Transceiver type is High-Speed (HS).

NC_TRANSCEIVER_TYPE_LIN (LIN)

Transceiver type is LIN.

NC_TRANSCEIVER_TYPE_LS (Low-Speed/Fault-Tolerant)

Transceiver type is Low-Speed/Fault-Tolerant (LS).

NC_TRANSCEIVER_TYPE_SW (Single Wire)

Transceiver type is Single Wire (SW).

NC_ATTR_TRANSMIT_MODE (Transmit Mode)

Returns the Transmit Mode for which the CAN Network Interface

Object is presently configured.

Chapter 11 Frame API for C

© National Instruments 11-61 NI-CAN Hardware and Software Manual

The returned Transmit Mode is a Boolean value.

NC_ATTR_TX_ERROR_COUNTER (Transmit Error Counter)

Returns the Transmit Error Counter from the Philips SJA1000 CAN

controller. This Transmit Error Counter is specified in the Bosch CAN

standard as well as ISO CAN standards.

This attribute is unsupported for Series 1 hardware (returns error).

This attribute is available only from the Network Interface, not CAN

Objects.

NC_ATTR_VIRTUAL_BUS_TIMING (Virtual Bus Timing)

Returns a Boolean value of TRUE or FALSE to indicate whether

Virtual Bus Timing has been set or not for the specified virtual

interface. This attribute is applicable to all CAN Objects opened on the

virtual interface.

NC_ATTR_WRITE_ENTRIES_FREE (Write Entries Free)

Returns the number of frames that can be accepted for a CAN or LIN

Network Interface Object or CAN Object to write without causing

overflow error.

NC_ATTR_WRITE_PENDING (Write Entries Pending)

Returns the number of frames pending transmission in the write queue.

If the intent is to verify that all pending frames have been transmitted

successfully, waiting for the Write Success state is preferable to this

attribute.

The Write Entries Pending attribute for 847x and 847x with Sync series

CAN and LIN interfaces does not return the number of frames pending

transmission in the write queue because the number does not take into

account the frames in transit over the USB or waiting to be transmitted

to the interface over the USB.

Description
ncGetAttribute gets the value of the attribute specified by AttrId from the object specified

by ObjHandle. Within NI-CAN Objects, you use attributes to access configuration settings,

status, and other information about the object, but not data.

0 Immediate Transmit

1 Timestamped Transmit

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-62 ni.com

ncGetHardwareInfo

Purpose
Get CAN or LIN hardware information.

Format

Input

CardNumber

Specifies the CAN or LIN card number from 1 to Number of Cards,

where Number of Cards is the number of CAN and LIN cards in the

system. You can obtain Number of Cards using this function with

CardNumber=1, PortNumber=1, and AttrID=Number of Cards.

PortNumber

Specifies the CAN or LIN port number from 1 to Number of Ports,

where Number of Ports is the number of ports on the card. You can

obtain Number of Ports using this function with PortNumber=1,

and AttrID=Number of Ports.

AttrID

Specifies the attribute to get:

NC_ATTR_VERSION_MAJOR (Version Major)

Returns the major version of the NI-CAN software. Use

CardNumber 1 and PortNumber 1 as inputs.

The major version is the 'X' in X.Y.Z.

NC_ATTR_VERSION_MINOR (Version Minor)

Returns the minor version of the NI-CAN software. Use

CardNumber 1 and PortNumber 1 as inputs.

NCTYPE_STATUS _NCFUNC_ ncGetHardwareInfo(

NCTYPE_UINT32 CardNumber,

NCTYPE_UINT32 PortNumber,

NCTYPE_ATTRID AttrId,

NCTYPE_UINT32 AttrSize,

NCTYPE_ANY_P AttrPtr);

Chapter 11 Frame API for C

© National Instruments 11-63 NI-CAN Hardware and Software Manual

The minor version is the 'Y' in X.Y.Z.

NC_ATTR_VERSION_UPDATE (Version Update)

Returns the update version of the NI-CAN software. Use

CardNumber 1 and PortNumber 1 as inputs.

The update version is the 'Z' in X.Y.Z.

NC_ATTR_VERSION_PHASE (Version Phase)

Returns the phase of the NI-CAN software. Use CardNumber 1

and PortNumber 1 as inputs.

Phase 1 specifies Alpha, phase 2 specifies Beta, and phase 3

specifies Final release. Unless you are participating in an NI-CAN

beta program, you will always see 3.

NC_ATTR_VERSION_BUILD (Version Build)

Returns the build of the NI-CAN software. Use CardNumber 1

and PortNumber 1 as inputs.

With each software development phase, subsequent NI-CAN

builds are numbered sequentially. A given Final release version

always uses the same build number, so unless you are participating

in an NI-CAN beta program, this build number is not relevant.

NC_ATTR_VERSION_COMMENT (Version Comment)

Returns any special comment on the NI-CAN software. AttrPtr

must point to a buffer for the string, and AttrSize specifies the

number of characters in that buffer. Use CardNumber 1 and

PortNumber 1 as inputs.

This string is normally empty for a Final release. In rare

circumstances, an NI-CAN prototype or patch may be released to

a specific customer. For these special releases, the version

comment describes the special features of the release.

NC_ATTR_NUM_CARDS (Number of Cards)

Returns the number of CAN and LIN cards in the system. Use

CardNumber 1 and PortNumber 1 as inputs.

If you are displaying all hardware information, you get this

attribute first, then iterate through all cards with a For loop. Inside

the For loop, get all card-wide attributes including Number Of

Ports, then use another For loop to get port-wide attributes.

NC_ATTR_HW_SERIAL_NUM (Serial Number)

Card-wide attribute that returns the serial number of the card. Use

the desired CardNumber, and PortNumber 1 as inputs.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-64 ni.com

NC_ATTR_HW_FORMFACTOR (Form Factor)

Card-wide attribute that returns the form factor of the card. Use

the desired CardNumber, and PortNumber 1 as inputs.

The returned Form Factor is an enumeration.

NC_ATTR_HW_SERIES (Series)

Card-wide attribute that returns the series of the card. Use the

desired CardNumber, and PortNumber 1 as inputs.

Series 1 hardware products use the Intel 82527 CAN controller.

Series 2 hardware products use the Philips SJA1000 CAN

controller, plus improved RTSI synchronization features.

The returned Series is an enumeration.

NC_ATTR_NUM_PORTS (Number of Ports)

Card-wide attribute that returns the number of ports on the card.

Use the desired CardNumber, and PortNumber 1 as inputs.

If you are displaying all hardware information, you get this

attribute within the For loop for all cards, then iterate through all

CAN ports to get port-wide attributes.

NC_ATTR_TRANSCEIVER_TYPE (Transceiver Type)

This port-wide attribute returns the type of transceiver. Use the

desired CardNumber and PortNumber as inputs.

NC_HW_FORMFACTOR_PCI PCI

NC_HW_FORMFACTOR_PXI PXI

NC_HW_FORMFACTOR_PCMCIA PCMCIA

NC_HW_FORMFACTOR_AT AT

NC_HW_FORMFACTOR_USB USB

NC_HW_SERIES_1 Series 1

NC_HW_SERIES_2 Series 2

NC_HW_SERIES_847x 847x

NC_HW_SERIES_847x_SYNC 847x with Sync

NC_HW_SERIES_NIXNET NI-XNET hardware

Chapter 11 Frame API for C

© National Instruments 11-65 NI-CAN Hardware and Software Manual

For hardware other than Series 2 XS cards, the transceiver type is

fixed. For Series 2 XS cards, the transceiver type reflects the most

recent value specified by MAX or ncSetAttribute.

This attribute is not supported on the PCMCIA form factor.

This attribute uses the following values:

NC_TRANSCEIVER_TYPE_HS (High-Speed)

Transceiver type is High-Speed (HS).

NC_TRANSCEIVER_TYPE_LS (Low-Speed/Fault-Tolerant)

Transceiver type is Low-Speed/Fault-Tolerant (LS).

NC_TRANSCEIVER_TYPE_SW (Single Wire)

Transceiver type is Single Wire (SW).

NC_TRANSCEIVER_TYPE_EXT (External)

Transceiver type is External. This transceiver type is

available on Series 2 XS cards only. For more information,

refer to ncSetAttribute.

NC_TRANSCEIVER_TYPE_DISC (Disconnect)

Transceiver type is Disconnect. This transceiver type is

available on Series 2 XS cards only. For more information,

refer to ncSetAttribute.

NC_TRANSCEIVER_TYPE_LIN (LIN)

Transceiver type is LIN.

NC_ATTR_INTERFACE_NUM (Interface Number)

Port-wide attribute that returns the interface number of the port.

Use the desired CardNumber and PortNumber as inputs.

The interface number is assigned to a physical port using the

Measurement & Automation Explorer (MAX). The interface

number is used as a string in the Frame API (for example,

“CAN0”). The interface number is used for the Interface input

in the Channel API.

AttrSize

Size of the attribute in bytes. Unless stated otherwise, AttrSize must

be 4.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-66 ni.com

Output

AttrPtr

Pointer used to return attribute value. Unless stated otherwise,

AttrPtr must point to NCTYPE_UINT32.

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

Description
This function provides information about available CAN and LIN cards, but does not require

you to open/start sessions. First get Number of Cards, then loop for each card. For each

card, you can get card-wide attributes (such as Form Factor), and you also can get the Number

of Ports. For each port, you can get port-wide attributes such as the Transceiver.

Chapter 11 Frame API for C

© National Instruments 11-67 NI-CAN Hardware and Software Manual

ncOpenObject

Purpose
Open an object.

Format

Input

ObjName

ASCII name of the object to open.

Output

ObjHandlePtr

Pointer used to return the Object handle. Used with all subsequent

NI-CAN function calls.

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

Description
ncOpenObject takes the name of an object to open and returns a handle to that object that

you use with subsequent NI-CAN function calls.

The Frame API and Channel API cannot use the same CAN network interface

simultaneously. If the CAN network interface is already initialized in the Channel API,

this function returns an error.

If ncOpenObject is successful, a handle to the newly opened object is returned. You use this

object handle for all subsequent function calls for the object.

NCTYPE_STATUS ncOpenObject(

NCTYPE_STRING ObjName,

NCTYPE_OBJH_P ObjHandlePtr);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-68 ni.com

The following sections describe how to use ncOpenObject with the CAN or LIN Network

Interface and CAN Object.

CAN Network Interface
ObjName is the name of the CAN Network Interface Object to configure. This string uses the

syntax CANx, where x is a decimal number starting at zero that indicates the CAN network

interface (CAN0, CAN1, up to CAN63). CAN network interface names are associated with

physical CAN ports using the Measurement & Automation Explorer (MAX).

The special interface values 256 and 257 refer to virtual interfaces. For more information on

usage of virtual interfaces, refer to the Frame to Channel Conversion section of Chapter 6,

Using the Channel API.

LIN Network Interface Object
This name uses the syntax LINx, where x is a decimal number starting at zero that indicates

the LIN network interface (LIN0, LIN1, up to LIN63), where CAN and LIN share the same

range. LIN network interface names are associated with physical LIN ports using the

Measurement and Automation Explorer (MAX).

CAN Object
ObjName is the name of the CAN Object to configure. This string uses the syntax

CANx::STDy or CANx::XTDy. CANx is the name of the CAN network interface that you

used for the preceding ncConfig function. STD indicates that the CAN Object uses a

standard (11-bit) arbitration ID. XTD indicates that the CAN Object uses an extended (29-bit)

arbitration ID. The number y specifies the actual arbitration ID of the CAN Object. The

number y is decimal by default, but you also can use hexadecimal by adding 0x to the

beginning of the number. For example, CAN0::STD25 indicates standard ID 25 decimal on

CAN0, and CAN1::XTD0x0000F652 indicates extended ID F652 hexadecimal on CAN1.

The special virtual interface names CAN256 and CAN257 are not supported for CAN

Objects.

Chapter 11 Frame API for C

© National Instruments 11-69 NI-CAN Hardware and Software Manual

ncRead

Purpose
Read single frame from a CAN or LIN Object.

Format

Input

ObjHandle

Object handle.

DataSize

Size of the data in bytes.

Output

DataPtr

Pointer used to return the frame.

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

Description
ncRead reads a single frame from the object specified by ObjHandle.

DataPtr points to the variable that holds the data. Its type is undefined so that you can use

the appropriate host data type. DataSize indicates the size of variable pointed to by

DataPtr, and is used to verify that the size you have available is compatible with the

configured read size for the object.

NCTYPE_STATUS ncRead(

NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 DataSize,

NCTYPE_ANY_P DataPtr);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-70 ni.com

For information on the data type to use with DataPtr, refer to the following Network

Interface and CAN Object descriptions.

You use ncRead to obtain data from the read queue of an object. Because NI-CAN handles

the read queue in the background, this function does not wait for new data to arrive. To ensure

that new data is available before calling ncRead, first wait for the NC_ST_READ_AVAIL state.

The NC_ST_READ_AVAIL state transitions from false to true when NI-CAN places a new data

item into an empty read queue, and remains true until you read the last data item from the

queue.

The ncRead function is useful when you need to process one frame at a time. In order to read

multiple frames, such as for bus analyzer applications, use the ncReadMult function.

When you call ncRead for an empty read queue (NC_ST_READ_AVAIL false), the data from

the previous call to ncRead is returned to you again, along with the CanWarnOldData

warning. If no data item has yet arrived for the read queue, a default data item is returned,

which consists of all zeros.

When a new data item arrives for a full queue, NI-CAN discards the item, and the next call to

ncRead returns the CanErrOverflowRead error. You can avoid this overflow behavior by

setting the read queue length to zero. When a new data item arrives for a zero length queue,

it simply overwrites the previous item without indicating an overflow. The

NC_ST_READ_AVAIL state and CanWarnOldData warning still behave as usual, but you can

ignore them if you only want the most recent data. You can use the NC_ATTR_READ_Q_LEN

attribute to configure the read queue length.

Network Interface Object
The data type that you use with ncRead of the Network Interface is NCTYPE_CAN_STRUCT.

When calling ncRead, you should pass size of (NCTYPE_CAN_STRUCT) for the DataSize

parameter.

Within the NCTYPE_CAN_STRUCT structure, the FrameType field determines the meaning of

all other fields. The following tables in this manual describe the fields of

NCTYPE_CAN_STRUCT for each value of FrameType:

• Table 11-12, NCTYPE_CAN_STRUCT Fields for FrameType

NC_FRMTYPE_DATA (0)

• Table 11-13, NCTYPE_FRAME_STRUCT Fields for FrameType

NC_FRMTYPE_REMOTE (1)

• Table 11-14, NCTYPE_CAN_STRUCT Fields for FrameType

NC_FRMTYPE_COMM_ERR (2)

• Table 11-15, NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_RTSI (3)

• Table 11-16, NCTYPE_CAN_STRUCT Fields for FrameType

NC_FRMTYPE_TRIG_START (4)

Chapter 11 Frame API for C

© National Instruments 11-71 NI-CAN Hardware and Software Manual

• Table 11-17, NCTYPE_CAN_STRUCT Fields for FrameType

NC_FRMTYPE_CAN_BUS_ERROR_FRAME (6)

• Table 11-18, NCTYPE_CAN_STRUCT Fields for FrameType

NC_FRMTYPE_TRANSCEIVER FAULT_FRAME (7)

• Table 11-19, NCTYPE_CAN_STRUCT Fields for FrameType

NC_FRMTYPE_LIN_FULL_FRAME (18)

• Table 11-20, NCTYPE_CAN_STRUCT Fields for FrameType

NC_FRMTYPE_LIN_WAKEUP_RECEIVED_FRAME (19)

• Table 11-21, NCTYPE_CAN_STRUCT Fields for FrameType

NC_FRMTYPE_LIN_BUS_INACTIVE_FRAME (20)

• Table 11-22, NCTYPE_CAN_STRUCT Fields for FrameType

NC_FRMTYPE_LIN_BUS_ERROR_FRAME (21)

To determine if your hardware supports one of the following frame types for this function,

refer to Appendix D, Frame Types for CAN and LIN Hardware.

Table 11-12. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_DATA (0)

Field Name Data Type Description

FrameType NCTYPE_UINT8 NC_FRMTYPE_DATA (0)

This value indicates a CAN data frame.

ArbitrationId NCTYPE_CAN_ARBID Returns the arbitration ID of the received data

frame.

The NCTYPE_CAN_ARBID type is an unsigned

32-bit integer that uses the bit mask

NC_FL_CAN_ARBID_XTD (0x20000000) to

indicate an extended ID. A standard ID (11-bit) is

specified by default.The Network Interface

receives data frames based on the comparators and

masks configured in ncConfig (including the

Series 2 Filter Mode attributes).

Data Array of 8

NCTYPE_UINT8

Returns the data bytes of the frame.

DataLength NCTYPE_UINT8 Returns the number of data bytes received in the

frame. This specifies the number of valid data bytes

in Data.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-72 ni.com

Timestamp NCTYPE_ABS_TIME Returns the absolute timestamp when the data

frame was received from the CAN network.

The timestamp data type NCTYPE_ABS_TIME is a

64-bit unsigned integer compatible with the Win32

FILETIME type. This absolute time is kept in a

Coordinated Universal Time (UTC) format. UTC

time is loosely defined as the current date and time

of day in Greenwich, England. Microsoft defines

its UTC time (FILETIME) as a 64-bit counter of

100 ns intervals that have elapsed since 12:00 a.m.,

January 1, 1601.Since Timestamp is compatible

with Win32 FILETIME, you can pass it into the

Win32 FileTimeToLocalFileTime function

to convert it to the local time zone, then

pass the resulting local time to the Win32

FileTimeToSystemTime function to convert to

the Win32 SYSTEMTIME type.SYSTEMTIME is

a struct with fields for year, month, day, and so on.

For more information on Win32 time types and

functions, refer to the Microsoft Win32

documentation.

Table 11-12. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_DATA (0) (Continued)

Field Name Data Type Description

Chapter 11 Frame API for C

© National Instruments 11-73 NI-CAN Hardware and Software Manual

Table 11-13. NCTYPE_FRAME_STRUCT Fields for FrameType NC_FRMTYPE_REMOTE (1)

Field Name Data Type Description

FrameType NCTYPE_UINT8 NC_FRMTYPE_REMOTE (1)

This value indicates a CAN remote frame. Only

Series 2 hardware, 847x CAN, or 847x with Sync

CAN can receive remote frames using the Network

Interface. For Series 1 hardware, you must handle

incoming remote frames with CAN Objects only.

ArbitrationId NCTYPE_CAN_ARBID Returns the arbitration ID of the received remote

frame.

The NCTYPE_CAN_ARBID type is an unsigned

32-bit integer that uses the bit mask

NC_FL_CAN_ARBID_XTD (0x20000000) to

indicate an extended ID. A standard ID (11-bit) is

specified by default.The Network Interface

receives remote frames based on the comparators

and masks configured in ncConfig (including the

Series 2 Filter Mode attributes).

Data Array of 8

NCTYPE_UINT8

Remote frames do not contain data, so this array is

empty.

DataLength NCTYPE_UINT8 Returns the Data Length Code in the remote frame.

Timestamp NCTYPE_ABS_TIME Returns the absolute timestamp when the remote

frame was received from the CAN network.

For information on the timestamp data type,

refer to Table 11-12.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-74 ni.com

Table 11-14. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_COMM_ERR (2)

Field Name Data Type Description

FrameType NCTYPE_UINT8 NC_FRMTYPE_COMM_ERR (2)

This value indicates a logged communication

warning or error as reported by the CAN

hardware.This frame type occurs only when you set

the Log Comm Warnings attribute to TRUE and

the CAN controller is in the error passive state.

Refer to ncConfig for details. For more

information on CAN error handling, refer to the

CAN Error Detection and Confinement section of

Appendix B, Summary of the CAN Standard.

ArbitrationId NCTYPE_CAN_ARBID Indicates the type of communication problem:

8000000B hex:Comm. error: General

4000000B hex:Comm. warning: General

8001000B hex:Comm. error: Stuff

4001000B hex:Comm. warning: Stuff

8002000B hex:Comm. error: Format

4002000B hex:Comm. warning: Format

8003000B hex:Comm. error: No Ack

4003000B hex:Comm. warning: No Ack

8004000B hex:Comm. error: Tx 1 Rx 0

4004000B hex:Comm. warning: Tx 1 Rx 0

8005000B hex:Comm. error: Tx 0 Rx 1

4005000B hex:Comm. warning: Tx 0 Rx 1

8006000B hex:Comm. error: Bad CRC

4006000B hex:Comm. warning: Bad CRC

0000000B hex:Comm. errors/warnings cleared

8000000C hex:Transceiver fault warning

0000000C hex:Transceiver fault cleared

Data Array of 8

NCTYPE_UINT8

This field is not applicable to this frame type, and

should be ignored.

Chapter 11 Frame API for C

© National Instruments 11-75 NI-CAN Hardware and Software Manual

DataLength NCTYPE_UINT8 This field is not applicable to this frame type, and

should be ignored.

Timestamp NCTYPE_ABS_TIME Returns the absolute timestamp when the

communications problem occurred.

For information on the timestamp data type,

refer to Table 11-12.

Table 11-15. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_RTSI (3)

Field Name Data Type Description

FrameType NCTYPE_UINT8 NC_FRMTYPE_RTSI (3)

Indicates when a RTSI input pulse occurred relative to

incoming CAN frames.This frame type occurs only

when you set the RTSI Mode attribute to

NC_RTSI_TIME_ON_IN (refer to ncConfig for

details).

ArbitrationId NCTYPE_CAN_ARBID Returns the special value 40000001 hex.

Data Array of 8

NCTYPE_UINT8

This field is not applicable to this frame type, and

should be ignored.

DataLength NCTYPE_UINT8 Returns the RTSI signal number detected.

Timestamp NCTYPE_ABS_TIME Returns the absolute timestamp when the RTSI input

occurred.

For information on the timestamp data type, refer to

Table 11-12.

Table 11-14. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_COMM_ERR (2) (Continued)

Field Name Data Type Description

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-76 ni.com

Table 11-16. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_TRIG_START (4)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 4 specifies a start trigger frame.

When the Log Start Trigger attribute is set to

1 (True), this frame indicates the time when the

start trigger occurs. For example, if you use

ncConnectTerminals to connect a RTSI

input to the start trigger, this frame occurs

when the RTSI input pulse for the first time.

Another use case for logging the start trigger

would be for logging the received CAN frames

in a file. This ensures that the first frame in the

logfile is a start trigger frame, which specifies

the absolute time (date/time) at which CAN

communication started.

ArbitrationId NCTYPE_CAN_ARBID Value 0 is required.

Data Array of 8

NCTYPE_UINT8

The single data byte in the array specifies

the Timestamp Format (defined in

ncSetAttribute) used for all subsequent

CAN frames. The value is 0 for absolute

timestamps, and 1 for relative timestamps.

DataLength NCTYPE_UINT8 Value 1 is required.

Timestamp NCTYPE_ABS_TIME Absolute timestamp of the start trigger. Within

a logfile, this timestamp indicates the date and

time at which CAN communication started.

The format of this timestamp is always

absolute, even when Data byte 0 specifies

relative timestamp format. This absolute

timestamp provides data/time information

even when the CAN frames use the relative

format.

Chapter 11 Frame API for C

© National Instruments 11-77 NI-CAN Hardware and Software Manual

Table 11-17. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_CAN_BUS_ERROR_FRAME (6)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 6 represents a CAN bus error frame. Refer to the

NC_ATTR_LOG_BUS_ERRORS (Log Bus Errors?)

attribute description for more information on CAN

Bus Error frames.

ArbitrationId NCTYPE_CAN_ARBID Zero.

DataLength NCTYPE_UINT8 Four.

Data Array of 8

NCTYPE_UINT8

0—Comm State (See description below)

1—Transmit Error Counter

2—Receive Error Counter

3—ECC Register

4—X

5—X

6—X

7—X

Note: X means Reserved or Don’t Care.

The first data byte (Comm State) indicates the current

communication state of the CAN controller. The states

are:

0—Error Active

1—Error Passive

2—Bus Off

Timestamp NCTYPE_ABS_TIME Time when the bus error was detected.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-78 ni.com

Table 11-18. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_TRANSCEIVER FAULT_FRAME (7)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 7 represents a transceiver fault frame. Refer to

the NC_ATTR_LOG_TRANSCEIVER_FAULTS (Log

Transceiver Faults?) attribute description for

more information on Transceiver Fault frames.

ArbitrationId NCTYPE_CAN_ARBID Zero.

DataLength NCTYPE_UINT8 One.

Data Array of 8

NCTYPE_UINT8

0—Transceiver fault (0=fault cleared, 1=fault

present)

1—X

2—X

3—X

4—X

5—X

6—X

7—X

Timestamp NCTYPE_ABS_TIME Time when the transceiver fault was detected.

Table 11-19. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_LIN_FULL_FRAME (18)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 18 represents a full frame for LIN

communication. A full frame is reported when the LIN

interface slave task has received one complete LIN

frame. All frames for which the LIN interface slave

task is a subscriber will be reported. Frames for which

the LIN interface slave task is a publisher will be

reported only if the NC_ATTR_SELF_RECEPTION

(Self Reception) attribute is set to TRUE.

ArbitrationId NCTYPE_CAN_ARBID Zero to sixty-three.

DataLength NCTYPE_UINT8 One to eight.

Chapter 11 Frame API for C

© National Instruments 11-79 NI-CAN Hardware and Software Manual

Data Array of 8

NCTYPE_UINT8

LIN frame data.

Timestamp NCTYPE_ABS_TIME Time at point of reception of LIN frame checksum.

Table 11-20. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_LIN_WAKEUP_RECEIVED_FRAME (19)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 19 represents a wakeup received frame for LIN

communication. A wakeup received frame is reported

when the LIN interface is asleep, the

NC_ATTR_LIN_LOG_WAKEUP (LIN Log Wakeup)

attribute is set to TRUE, and a wakeup event is

detected.

ArbitrationId NCTYPE_CAN_ARBID Zero.

DataLength NCTYPE_UINT8 Zero.

Data Array of 8

NCTYPE_UINT8

Ignored.

Timestamp NCTYPE_ABS_TIME Time at point of wakeup event detection.

Table 11-21. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_LIN_BUS_INACTIVE_FRAME (20)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 20 represents a bus inactive frame for LIN

communication. Bus inactive detection begins when

the LIN interface senses the first activity on the bus.

When activity ceases, a bus inactive frame is reported

if the inactivity lasts for more than four seconds.

ArbitrationId NCTYPE_CAN_ARBID Zero.

DataLength NCTYPE_UINT8 Zero.

Data Array of 8

NCTYPE_UINT8

Ignored.

Timestamp NCTYPE_ABS_TIME Time at point of four second timeout.

Table 11-19. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_LIN_FULL_FRAME (18) (Continued)

Field Name Data Type Description

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-80 ni.com

Error Active, Error Passive, and Bus Off States
When the CAN communication controller transfers into the error passive state, NI-CAN

returns the warning CanCommWarning from read functions.

When the transmit error counter of the CAN communication controller increments above 255,

the network interface transfers into the bus off state as dictated by the CAN protocol. The

network interface stops communication so that you can correct the defect in the network, such

as a malfunctioning cable or device. When bus off occurs, NI-CAN returns the CanErrComm

error code.

If no CAN devices are connected to the network interface port, and you attempt to transmit

a frame, the CanWarnComm status occurs. This warning occurs because the missing

acknowledgment bit increments the transmit error counter until the network interface reaches

the error passive state, but bus off state is never reached.

For more information about transceiver fault handling, refer to the description of the

NC_ATTR_LOG_COMM_ERRS attribute ID in the ncConfig function description.

Table 11-22. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_LIN_BUS_ERROR_FRAME (21)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 21 represents a LIN bus error frame for LIN

communication. A LIN bus error frame is reported when

the NC_ATTR_LOG_BUS_ERRORS (Log Bus

Errors?) attribute is set to TRUE, and a bus error

occurs.

ArbitrationId NCTYPE_CAN_ARBID Zero.

DataLength NCTYPE_UINT8 Varies depending on the error. Refer to Table 11-24, LIN

Bus Errors and Descriptions, in ncSetAttribute for

information.

Data Array of 8

NCTYPE_UINT8

Error frame information.

Timestamp NCTYPE_ABS_TIME Time at point of bus error detection.

Chapter 11 Frame API for C

© National Instruments 11-81 NI-CAN Hardware and Software Manual

CAN Object
The data type that you use with ncRead of the CAN Object is NCTYPE_CAN_DATA_TIMED.

When calling ncRead, you should pass size of (NCTYPE_CAN_DATA_TIMED) for the

DataSize parameter. Table 11-23, NCTYPE_CAN_DATA_TIMED Field Names, describes

the fields of NCTYPE_CAN_DATA_TIMED.

Table 11-23. NCTYPE_CAN_DATA_TIMED Field Names

Field Name Data Type Description

Data Array of 8

NCTYPE_UINT

Data array returns 8 data bytes. The actual number

of valid data bytes depends on the CAN Object

configuration specified in ncConfig.

If the CAN Object Communication Type

specifies Transmit, data frames are transmitted, not

received, so Data is ignored. For this

Communication Type, the ncRead function has

no effect.If the CAN Object Communication

Type specifies Receive, Data always contains Data

Length valid bytes, where Data Length was

configured using ncConfig.

Timestamp NCTYPE_ABS_TIME Returns the absolute timestamp value. The

timestamp data type NCTYPE_ABS_TIME is a 64-bit

unsigned integer compatible with the Win32

FILETIME type. This absolute time is kept in a

Coordinated Universal Time (UTC) format. UTC

time is loosely defined as the current date and time

of day in Greenwich, England. Microsoft defines its

UTC time (FILETIME) as a 64-bit counter of 100 ns

intervals that have elapsed since 12:00 a.m.,

January 1, 1601.

Since Timestamp is compatible with Win32

FILETIME, you can pass it into the Win32

FileTimeToLocalFileTime function to convert

it to the local time zone, then pass the resulting local

time to the Win32 FileTimeToSystemTime

function to convert to the Win32 SYSTEMTIME

type. SYSTEMTIME is a struct with fields for year,

month, day, and so on. For more information on

Win32 time types and functions, refer to the

Microsoft Win32 documentation.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-82 ni.com

ncReadMult

Purpose
Read multiple frames from a CAN or LIN Object.

Format

Input

ObjHandle

Object handle.

DataSize

The size of the data buffer in bytes.

DataPtr

Points to data buffer in which the data returned.

Output

ActualDataSize

The number of bytes actually returned.

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

NCTYPE_STATUS ncReadMult(

NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 DataSize,

NCTYPE_ANY_P DataPtr,

NCTYPE_UINT32_P ActualDataSize);

Chapter 11 Frame API for C

© National Instruments 11-83 NI-CAN Hardware and Software Manual

Description
This function returns multiple frames from the read queue of the object specified by

ObjHandle. When used with the Network Interface, ncReadMult is useful in analyzer

applications where data frames need to be acquired at a High-Speed and stored for analysis

in the future. For single frame and most recent data frame acquisition, you should use

ncRead.

DataPtr points to an array of either NCTYPE_CAN_STRUCT or NCTYPE_CAN_DATA_TIMED.

DataSize indicates the size of the array pointed to by DataPtr (in bytes). This size is

specified in bytes in order to verify that the proper data type and alignment is used. When

ncReadMult returns, the number of bytes copied into DataPtr is provided in

ActualDataSize.

Because NI-CAN handles the read queue in the background, this function does not wait for

new data to arrive. To ensure that new data is available before calling ncReadMult, first wait

for the NC_ST_READ_MULT state. Refer to NC_ST_READ_MULT (00000008 hex) in the

ncCreateNotification function description for more information on this state.

Unlike the ncRead function, the ncReadMult function does not return the

CanWarnOldData warning to indicate zero frames. If there is no new data, the function

returns with an ActualDataSize of zero.

The description for CanErrOverflowRead and the host data types is identical to that of

ncRead with the exception of CanWarnOldData, described above.

Refer to the ncRead function description for more details on the structures used with

ncReadMult.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-84 ni.com

ncSetAttribute

Purpose
Set the value of an object attribute.

Format

Input

ObjHandle

Object handle.

AttrId

Identifier of the attribute to set.

AttrSize

Size of the attribute in bytes.

AttrPtr

New attribute value. You provide the attribute value using the pointer

AttrPtr.

Output

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

NCTYPE_STATUS ncSetAttribute(

NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,

NCTYPE_UINT32 AttrSize,

NCTYPE_ANY_P AttrPtr);

Chapter 11 Frame API for C

© National Instruments 11-85 NI-CAN Hardware and Software Manual

Description
ncSetAttribute sets the value of the attribute specified by AttrId in the object specified

by ObjHandle.

AttrPtr points to the variable that holds the attribute value. Its type is undefined so that you

can use the appropriate host data type for AttrId. AttrSize indicates the size of variable

pointed to by AttrPtr. AttrSize is typically 4, and AttrPtr references a 32-bit unsigned

integer.

The ncSetAttribute function allows for additional configuration beyond the original

attributes used with ncConfig. For a listing of other attributes for the Network Interface and

CAN Object, refer to ncConfig. Unless stated otherwise, communication must be stopped

prior to changing an attribute with ncSetAttribute. While the Network Interface and all

CAN Objects are stopped, you can set any of the AttrId mentioned in ncConfig using

ncSetAttribute.

Network Interface Object
The following attributes are available only for the Network Interface, not CAN Objects.

Nevertheless, the attributes apply to communication by CAN Objects as well as the associated

Network Interface.

NC_ATTR_BAUD_RATE (Baud Rate)

For NI CAN hardware the common baud rates supported include

5000, 6150, 7813, 8000, 10000, 12500, 15625, 16000, 20000,

25000, 31250, 33333, 40000, 50000, 62500, 80000, 83333,

100000, 125000, 160000, 200000, 250000, 400000, 500000,

800000, and 1000000. If you are familiar with the Bit Timing

registers used in CAN controllers, you can use a special

hexadecimal baud rate of 0x8000zzyy, where yy is the desired

value for register 0 (BTR0), and zz is the desired value for register

1 (BTR1) of the CAN controller.

For NI LIN hardware you can specify any baud rate from 2400 to

20000 baud. If the baud rate you select varies more than .5% from

the calculated baud rate, you will receive a warning message. The

calculation for the baud rate is documented as follows:

Calculated Baud Rate = 1,500,000/x

where x = (1,500,000/Input Baud Rate), rounded to the

nearest integer.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-86 ni.com

NC_ATTR_LIN_CHECKSUM_TYPE (LIN Checksum Type)

Specifies the method the LIN interface should use when

calculating checksums for published data, or verifying received

checksums for subscribed-to data. The values for this attribute are:

Setting the NC_ATTR_LIN_CHECKSUM_TYPE to Classic indicates

that the LIN-specified checksum calculation algorithm should be

applied only to the data bytes. Setting the

NC_ATTR_LIN_CHECKSUM_TYPE to Enhanced indicates that the

checksum calculation algorithm should be applied to the ID and

data bytes.

NC_ATTR_LIN_ENABLE_DLC_CHECK (LIN Enable DLC Check)

Specifies the manner in which the LIN interface detects

end-of-response when writing a header IsRemote type. This

attribute does not affect the LIN interface processing of the full

and response IsRemote types. The values for this attribute are:

When the LIN interface transmits a header, it expects an external

slave to publish data in response. When writing headers, the LIN

interface detects end-of-response using either the LIN-specified

response timeout for a response containing the maximum number

(8) of data bytes (NC_ATTR_LIN_ENABLE_DLC_CHECK=FALSE),

or reception of a response containing DLC number of data bytes

(NC_ATTR_LIN_ENABLE_DLC_CHECK=TRUE). If

NC_ATTR_LIN_ENABLE_DLC_CHECK=FALSE, then the

minimum time separation between the transmission of headers

will be header time + time to subscribe to eight data bytes (DLC is

ignored) and checksum + LIN interface inter-frame delay.

If NC_ATTR_LIN_ENABLE_DLC_CHECK=TRUE, then the

minimum time separation between the transmission of headers

will be header time + time to subscribe to DLC number of data

bytes and checksum + LIN interface inter-frame delay.

If you want to transmit header frames, each separated by a unique

schedule table amount of delay with maximum timing accuracy,

set NC_ATTR_LIN_ENABLE_DLC_CHECK to TRUE. Note that if

NC_ATTR_LIN_ENABLE_DLC_CHECK=TRUE, the LIN interface

will verify that a DLC in the range of one to eight is in the header

0 Classic (default)

1 Enhanced

0 FALSE (default)

1 TRUE

Chapter 11 Frame API for C

© National Instruments 11-87 NI-CAN Hardware and Software Manual

IsRemote type written by the host. If

NC_ATTR_LIN_ENABLE_DLC_CHECK=FALSE, the LIN interface

will ignore the DLC in the header IsRemote type written by the

host.

NC_ATTR_LIN_LOG_WAKEUP (LIN Log Wakeup)

Specifies whether the LIN interface should report wakeup events

as frames (TRUE) or not (FALSE). Wakeup events are always

reported as states. The values for this attribute are:

NC_ATTR_LIN_RESPONSE_TIMEOUT (LIN Response Timeout)

Specifies an amount of response timeout, in 50 µs increments,

to add to the LIN-specified response timeout the LIN interface

uses to detect certain bus errors and end-of-response. The values

for this attribute are:

NC_ATTR_LIN_SLEEP (LIN Sleep)

Sets the sleep state of the LIN interface. The values for this

attribute are:

The LIN interface powers up in the awake state

(NC_ATTR_LIN_SLEEP=FALSE). When the

NC_ATTR_LIN_SLEEP attribute is set to FALSE, the user may

set it to TRUE at any time: Upon reception of a sleep frame

(four second period of bus inactivity has passed), upon reception

of a full frame containing go-to-sleep command data, or when

it is desired to simply put the interface to sleep. When the

NC_ATTR_LIN_SLEEP attribute is set to TRUE, either the user or

the state machines within the LIN interface may set the attribute

to FALSE, depending upon whether the interface is acting as

master or slave, and whether or not it is issuing or receiving the

wakeup request.

0 FALSE (default)

1 TRUE

0 (default)

1 1 to 65535 (50 µs increments to

add to LIN-specified response

timeout)

0 FALSE (default)

1 TRUE

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-88 ni.com

NC_ATTR_LISTEN_ONLY (Listen Only?)

Specifies whether to use the listen only feature of the Philips

SJA1000 CAN controller.

Communication must be stopped to set this attribute. Use Start

On Open False with ncConfig, set the attribute, then use

ncAction to start communication.

NC_ATTR_LOG_BUS_ERRORS (Log Bus Errors?)

Specifies whether to log bus errors when the interface detects a

bus error. For CAN interfaces, the bus error frame is logged when

a bus error is detected. The NC_ATTR_LOG_BUS_ERRORS attribute

is not supported by Series 1 CAN interfaces. This attribute has to

be set prior to starting the Network Interface. The values for this

attribute are:

0 FALSE (default)

When set to FALSE, listen only mode is disabled

(default).

Received frames are ACKnowledged, and frames can

be transmitted using ncWrite.

1 TRUE

When set to TRUE, listen only mode is enabled.

The Network Interface and CAN Objects can only

receive frames. The interface does not transmit on the

network: no ACKnowledgements are transmitted for

received frames, and ncWrite will return an error.

The Philips SJA1000 CAN controller enters error

passive state when listen only is enabled.

The listen only mode is not available on the Intel

82527 CAN controller used by Series 1 CAN

hardware (returns error).

This attribute is available only for the Network

Interface, not CAN Objects.

0 FALSE (default)

When set to FALSE, bus errors will not be logged

and cannot be read (default).

Chapter 11 Frame API for C

© National Instruments 11-89 NI-CAN Hardware and Software Manual

The CAN bus error frame has the following format:

For LIN interfaces, the bus error frame is logged into the read

queue when a timeout or bus errors such as Bit Framing or

Checksum occurs. This attribute must be set prior to starting the

Network Interface.

1 TRUE

When set to TRUE, the Network Interface reports

bus errors as a special frame in the read queue. For

CAN, if the NC_ATTR_LOG_COMM_WARNINGS

attribute is set to 1 (TRUE), the

NC_ATTR_LOG_BUS_ERRORS attribute must be set

to 0 (FALSE).

Timestamp Time when the bus error was detected.

Arbitration ID 0

IsRemote 6

DataLength 4

Data Bytes

0—Comm State (see description below)

1—Transmit Error Counter

2—Receive Error Counter

3—ECC Register

4—X

5—X

6—X

7—X

Note: X means Reserved or Don’t Care.

The first data byte (Comm State) indicates

the current communication state of the CAN

controller. The states are:

0—Error Active

1—Error Passive

2—Bus Off

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-90 ni.com

The LIN bus error frame has the following format:

Data bytes zero and one (Error code) indicate the type of LIN bus

error. Refer to Table 11-24 for a list of LIN bus error codes and

descriptions. Data bytes two and three are reserved for internal

use. For errors in which a received byte did not match the expected

value, data byte four indicates the received value and data byte 5

indicates the expected value. For a bus error occurring at a point

in the LIN frame after which the break, sync, and ID fields have

been processed, data byte six indicates the LIN ID.

Note In Table 11-24, X means Reserved.

Timestamp Time when the bus error was detected.

Arbitration ID 0

IsRemote 21

DataLength 4-7 (depends on Error code)

Data Bytes

0—Error code (most significant byte)

1—Error code (least significant byte)

2—X

3—X

4—Received byte (for applicable error code)

5—Expected byte (for applicable error

code)

6—LIN ID (for applicable error code)

7—X

Note: X means Reserved or Don’t Care.

Table 11-24. LIN Bus Errors and Descriptions

Error Name

Error

Code

(hex) Description

Frame Contents

DLC B(0) B(1) B(2) B(3) B(4) B(5) B(6)

LinBusErrorNoResponse 8400 The LIN interface slave task

received a header but no response.

7 84 00 X X 0 0 ID

LinBusErrorResponseTooShort 8401 The LIN interface slave task

received a header and only one

byte of a response.

7 84 01 X X 0 0 ID

Chapter 11 Frame API for C

© National Instruments 11-91 NI-CAN Hardware and Software Manual

LinBusErrorRxChecksumBit C008 The LIN interface slave task

received a checksum byte with a bit

error.

7 C0 08 X X Received

Checksum

Byte

Expected

Checksum

Byte

ID

LinBusErrorRxChecksumFraming A008 The LIN interface slave task

received a checksum byte with a

framing error.

7 A0 08 X X 0 0 ID

LinBusErrorRxData0Framing A010 The LIN interface slave task

received data byte 0 with a framing

error.

7 A0 10 X X 0 0 ID

LinBusErrorRxData1Framing A011 The LIN interface slave task

received data byte 1 with a framing

error.

7 A0 11 X X 0 0 ID

LinBusErrorRxData2Framing A012 The LIN interface slave task

received data byte 2 with a framing

error.

7 A0 12 X X 0 0 ID

LinBusErrorRxData3Framing A013 The LIN interface slave task

received data byte 3 with a framing

error.

7 A0 13 X X 0 0 ID

LinBusErrorRxData4Framing A014 The LIN interface slave task

received data byte 4 with a framing

error.

7 A0 14 X X 0 0 ID

LinBusErrorRxData5Framing A015 The LIN interface slave task

received data byte 5 with a framing

error.

7 A0 15 X X 0 0 ID

LinBusErrorRxData6Framing A016 The LIN interface slave task

received data byte 6 with a framing

error.

7 A0 16 X X 0 0 ID

LinBusErrorRxData7Framing A017 The LIN interface slave task

received data byte 7 with a framing

error.

7 A0 17 X X 0 0 ID

LinBusErrorRxIdFraming A020 The LIN interface slave task

received an ID byte with a framing

error.

6 A0 20 X X Received

ID Byte

Expected

ID Byte

N/A

LinBusErrorRxIdParity C020 The LIN interface slave task

received an ID byte with a parity

error.

6 C0 20 X X Received

ID Byte

Expected

ID Byte

N/A

LinBusErrorRxIdTimeout 9020 The LIN interface slave task did

not receive an ID byte within the

header timeout period.

4 90 20 X X N/A N/A N/A

LinBusErrorRxSyncBit C040 The LIN interface slave task

received a sync byte with a bit

error.

6 C0 40 X X Received

Sync

Byte

Expected

Sync Byte

N/A

LinBusErrorRxSyncFraming A040 The LIN interface slave task

received a sync byte with a framing

error.

4 A0 40 X X N/A N/A N/A

LinBusErrorRxSyncTimeout 9040 The LIN interface slave task did

not receive a sync byte within the

header timeout period.

4 90 40 X X N/A N/A N/A

LinBusErrorTxData0Bit 4010 The LIN interface slave task

transmitted data byte 0 and

self-received it with a bit error.

7 40 10 X X Received

Data

Byte

Expected

Data Byte

ID

LinBusErrorTxData1Bit 4011 The LIN interface slave task

transmitted data byte 1 and

self-received it with a bit error.

7 40 11 X X Received

Data

Byte

Expected

Data Byte

ID

Table 11-24. LIN Bus Errors and Descriptions (Continued)

Error Name

Error

Code

(hex) Description

Frame Contents

DLC B(0) B(1) B(2) B(3) B(4) B(5) B(6)

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-92 ni.com

LinBusErrorTxData2Bit 4012 The LIN interface slave task

transmitted data byte 2 and

self-received it with a bit error.

7 40 12 X X Received

Data

Byte

Expected

Data Byte

ID

LinBusErrorTxData3Bit 4013 The LIN interface slave task

transmitted data byte 3 and

self-received it with a bit error.

7 40 13 X X Received

Data

Byte

Expected

Data Byte

ID

LinBusErrorTxData4Bit 4014 The LIN interface slave task

transmitted data byte 4 and

self-received it with a bit error.

7 40 14 X X Received

Data

Byte

Expected

Data Byte

ID

LinBusErrorTxData5Bit 4015 The LIN interface slave task

transmitted data byte 5 and

self-received it with a bit error.

7 40 15 X X Received

Data

Byte

Expected

Data Byte

ID

LinBusErrorTxData6Bit 4016 The LIN interface slave task

transmitted data byte 6 and

self-received it with a bit error.

7 40 16 X X Received

Data

Byte

Expected

Data Byte

ID

LinBusErrorTxData7Bit 4017 The LIN interface slave task

transmitted data byte 7 and

self-received it with a bit error.

7 40 17 X X Received

Data

Byte

Expected

Data Byte

ID

LinBusErrorTxData0Framing 2010 The LIN interface slave task

transmitted data byte 0 and

self-received it with a framing

error.

7 20 10 X X 0 0 ID

LinBusErrorTxData1Framing 2011 The LIN interface slave task

transmitted data byte 1 and

self-received it with a framing

error.

7 20 11 X X 0 0 ID

LinBusErrorTxData2Framing 2012 The LIN interface slave task

transmitted data byte 2 and

self-received it with a framing

error.

7 20 12 X X 0 0 ID

LinBusErrorTxData3Framing 2013 The LIN interface slave task

transmitted data byte 3 and

self-received it with a framing

error.

7 20 13 X X 0 0 ID

LinBusErrorTxData4Framing 2014 The LIN interface slave task

transmitted data byte 4 and

self-received it with a framing

error.

7 20 14 X X 0 0 ID

LinBusErrorTxData5Framing 2015 The LIN interface slave task

transmitted data byte 5 and

self-received it with a framing

error.

7 20 15 X X 0 0 ID

LinBusErrorTxData6Framing 2016 The LIN interface slave task

transmitted data byte 6 and

self-received it with a framing

error.

7 20 16 X X 0 0 ID

LinBusErrorTxData7Framing 2017 The LIN interface slave task

transmitted data byte 7 and

self-received it with a framing

error.

7 20 17 X X 0 0 ID

LinBusErrorTxChecksumBit 4008 The LIN interface slave task

transmitted a checksum and

self-received it with a bit error.

7 40 08 X X Received

Checksum

Byte

Expected

Checksum

Byte

ID

LinBusErrorTxChecksumFraming 2008 The LIN interface slave task

transmitted a checksum and

self-received it with a framing

error.

7 20 08 X X 0 0 ID

Table 11-24. LIN Bus Errors and Descriptions (Continued)

Error Name

Error

Code

(hex) Description

Frame Contents

DLC B(0) B(1) B(2) B(3) B(4) B(5) B(6)

Chapter 11 Frame API for C

© National Instruments 11-93 NI-CAN Hardware and Software Manual

NC_ATTR_LOG_COMM_WARNINGS (Log Comm Warnings)

Specifies whether to log communication warnings (including

transceiver faults) to the Network Interface read queue.

The values for this attribute are:

LinBusErrorErrorWhenMaster

ReceivesWakeup

8A00 The LIN interface as a master,

failed to respond to reception of a

wakeup on the LIN.

4 8A 00 X X N/A N/A N/A

LinBusErrorWhenMasterIssues

Wakeup

0A00 The LIN interface failed to issue a

wakeup on the LIN as a master.

4 0A 00 X X N/A N/A N/A

LinBusErrorWhenSlaveIssues

Wakeup

900 The LIN interface failed to issue a

wakeup on the LIN as a slave.

4 09 00 X X N/A N/A N/A

0 FALSE

When set to FALSE, the Network Interface reports

CAN communication warnings (including

transceiver faults). For more information, refer to

ncReadMult.

1 TRUE

When set to TRUE, the Network Interface reports

CAN communication warnings (including

transceiver faults) by storing a special frame in the

read queue. The communication warnings are not

reported the return value. For more information on

communication warnings and errors, refer to

ncReadMult. The special communication warning

frame uses the following format:

Timestamp Time when error/warning occurred

Arbitration ID Error/warning ID (refer to ncReadMult)

IsRemote 2

DataLength 0

Data N/A (ignore)

Table 11-24. LIN Bus Errors and Descriptions (Continued)

Error Name

Error

Code

(hex) Description

Frame Contents

DLC B(0) B(1) B(2) B(3) B(4) B(5) B(6)

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-94 ni.com

When calling ncRead or ncReadMult to read frames from the

Network Interface, you typically use the IsRemote field to

differentiate communications warnings from CAN frames.

Refer to ncReadMult for more information.

This attribute applies only to Series 1 and Series 2 hardware.

This attribute is available only from the Network Interface, not

CAN Objects.

NC_ATTR_LOG_START_TRIGGER (Log Start Trigger)

Set this attribute to true if you wish to log the start trigger into the

read queue of the CAN or LIN Network Interface Object.

The values for this attribute are:

NC_FALSE

Disables the logging of the start trigger (default) in the read

queue of the Network Interface Object.

NC_TRUE

Enables the logging of the start trigger in the read queue of the

Network Interface Object. The start trigger is logged when

the hardware starts communication.

This attribute should be set prior to starting the Network Interface

Object. This attribute is applicable only to the Network Interface

Object and setting this attribute on CAN Objects will result in a

NI-CAN error.

Note Setting this attribute to true in applications that only transmit CAN frames has no

effect.

NC_ATTR_LOG_TRANSCEIVER_FAULT (Log Transceiver Faults?)

Specifies whether to enable the logging of transceiver faults as frames

in the read queue of the Network Interface Object. The values for this

attribute are:

0 FALSE

When set to FALSE, transceiver faults will not be logged

as frames (default).

Chapter 11 Frame API for C

© National Instruments 11-95 NI-CAN Hardware and Software Manual

This attribute is supported only on High Speed and Low Speed CAN

transceivers.

This attribute can be set before or after starting the CAN Network

Interface Object. The frame will be logged each time the transceiver’s

NERR signal changes state. In order to filter out noise on this signal,

the logging can occur up to 10ms apart. The transceiver fault frame as

the following format:

NC_ATTR_MASTER_TIMEBASE_RATE (Master Timebase Rate)

Sets the rate (in MHz) of the external clock that is exported to the

CAN card.

1 TRUE

When set to TRUE, the transceiver faults are logged as

special frames in the read queue of the Network Interface

Object. For CAN, if the NC_ATTR_LOG_COMM_WARNINGS

attribute is set to 1 (TRUE),

NC_ATTR_LOG_TRANSCEIVER_FAULTS must be set to 0

(FALSE).

Timestamp Time when the transceiver fault was detected

Arbitration ID 0

IsRemote 7

DataLength 1

Data Bytes

0—Transceiver fault (0=fault cleared, 1=fault

present)

1—X

2—X

3—X

4—X

5—X

6—X

7—X

Note: X means Reserved or Don’t Care.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-96 ni.com

The values for this attribute are:

NC_TIMEBASE_RATE_20 (20)

When synchronizing 2 CAN cards or synchronizing a CAN

card with an E-Series DAQ card, the 20 Mhz master timebase

rate is to be used. By default, this attribute is set to 20 Mhz.

NC_TIMEBASE_RATE_10 (10)

The master timebase rate should be set to 10 Mhz when

synchronizing a CAN card with an M-Series DAQ card. The

M-Series DAQ card can export a 20 Mhz clock but it does this

by using one of its two counters.

If your CAN-DAQ application does not use the 2 DAQ counters

then, you can leave the timebase rate set to 20 Mhz (default).

This attribute can be set either before or after calling

ncConnectTerminals to connect the RTSI_CLK to Master

Timebase. However, this attribute must always be called prior to

starting the task.

This attribute is applicable only to PCI and PXI Series 2 cards. For

PCMCIA cards, setting this attribute will return an error. On PXI

cards, if PXI_CLK10 is routed to the Master Timebase, then the

rate is fixed at 10 MHz (it over rides any previous setting of this

attribute). Setting this attribute for Series 1 cards will also result in

a NI-CAN error.

For the 847x series CAN and LIN hardware, setting this attribute

has no effect. The 847x series CAN and LIN hardware

automatically synchronize to a Master Timebase Rate of 1 MHz,

10 MHz, or 20 MHz. Refer to Appendix E, Specifications, for

details on synchronization triggers.

NC_ATTR_READMULT_SIZE_FOR_NOTIFICATION (ReadMult Size

for Notification)

Sets the number of frames used as a threshold for the Read

Multiple state. For more information on the Read Multiple state,

refer to ncWaitForState.

The default value is one half of Read Queue Length.

This attribute applies only to Series 1 and Series 2 hardware.

NC_ATTR_SELF_RECEPTION (Self Reception?)

For CAN, this specifies whether to echo successfully transmitted

CAN or LIN frames into the read queue of the CAN or LIN

Network Interface and/or CAN Objects. Each reception occurs

Chapter 11 Frame API for C

© National Instruments 11-97 NI-CAN Hardware and Software Manual

just as if the frame were received from another CAN or LIN

device.

For self reception to operate properly, another CAN or LIN device

must receive and acknowledge each transmit. If a transmitted

frame is not successfully acknowledged, it is not echoed into the

read queue.

Communication must be stopped to set this attribute. Use Start

On Open False with ncConfig, set the attribute, then use

ncAction to start communication.

The Self Reception mode is not available on the Intel 82527 CAN

controller used by Series 1 CAN hardware. For Series 1 interfaces,

this attribute must be left at its default (zero).

This attribute is available only for the Network Interface Objects,

not CAN Objects.

For LIN, this specifies whether or not to load frames for which the LIN

interface slave task is the publisher of the response into the read queue.

NC_ATTR_SERIES_2_COMPARATOR (Series 2 Comparator)

Specifies the filter comparator for the Philips SJA1000 CAN

controller. This attribute is not supported for Series 1 CAN,

847x LIN, or 847x with Sync LIN interfaces (returns error).

0 FALSE

Disables Self Reception mode (default).

Transmitted frames do not appear in read

queues.

1 TRUE

Enables Self Reception mode. Transmitted

frames appear in read queues as if they were

received from another CAN or LIN device.

0 FALSE

Disables Self Reception mode (default). Frames for

which the LIN interface slave task is the publisher of the

response do not appear in read queues.

1 TRUE

Enables Self Reception mode. Frames for which the LIN

interface slave task is the publisher of the response appear

in read queues as if they were the result of an external

slave task publishing the response.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-98 ni.com

This attribute specifies a comparator value that is checked against

the ID, RTR, and data bits. The NC_ATTR_SERIES_2_MASK

(Series 2 Mask) determines the applicable bits for comparison.

The default value of this attribute is zero.

The mapping of bits in this attribute to the ID, RTR, and data bits

of incoming frames is determined by the value of the

NC_ATTR_SERIES_2_FILTER_MODE attribute. Refer to the

NC_ATTR_SERIES_2_FILTER_MODE (Series 2 Filter Mode)

attribute to understand the format of this attribute as well as the

NC_ATTR_SERIES_2_MASK.

Communication must be stopped to set this attribute. Use Start On

Open False with ncConfig, set the desired attributes, then use

ncAction to start communication.

NC_ATTR_SERIES_2_MASK (Series 2 Mask)

Specifies the filter mask for the Philips SJA1000 CAN controller.

This attribute is not supported for Series 1 CAN, 847x LIN, or

847x with Sync LIN interfaces (returns error).

This attribute specifies a bit mask that determines the ID, RTR,

and data bits that are compared. If a bit is clear in the mask, the

corresponding bit in the NC_ATTR_SERIES_2_COMPARATOR

(Series 2 Comparator) is checked. If a bit in the mask is set, that

bit is ignored for the purpose of filtering (don’t care). This

interpretation is the opposite of the legacy Standard/Extended

Mask attributes.

The default value of this attribute is hex FFFFFFFF, which means

that all frames are received.

The mapping of bits in this attribute to the ID, RTR, and data bits

of incoming frames is determined by the value of the

NC_ATTR_SERIES_2_FILTER_MODE (Series 2 Filter Mode)

attribute. Refer to NC_ATTR_SERIES_2_FILTER_MODE to

understand the format of this attribute as well as the

NC_ATTR_SERIES_2_COMPARATOR.

Communication must be stopped to set this attribute. Use Start

On Open False with ncConfig, set the desired attributes, then

use ncAction to start communication.

NC_ATTR_SERIES_2_FILTER_MODE (Series 2 Filter Mode)

The Philips SJA1000 CAN controller provides sophisticated

filtering of received frames. This attribute specifies the filtering

mode, which is used in conjunction with the

Chapter 11 Frame API for C

© National Instruments 11-99 NI-CAN Hardware and Software Manual

NC_ATTR_SERIES_2_MASK and

NC_ATTR_SERIES_2_COMPARATOR attributes.

This attribute is not supported for Series 1 CAN, 847x LIN, or

847x with Sync LIN interfaces (returns error). For Series 1, the

Standard Mask/Comparator and Extended Mask/Comparator

attributes are programmed directly into the Intel 82527 CAN

controller. Use those attributes to specify filtering of received

frames on Series 1 interfaces.

The Philips SJA1000 does not support distinct standard and

extended masking. Therefore, on Series 2 interfaces the Standard

Mask/Comparator and Extended Mask/Comparator attributes are

implemented in software (for backward compatibility). Since

software masking can have an adverse impact on receive

performance, National Instruments recommends that you disable

software masking for Series 2 interfaces. Disable software

masking by specifying don’t-care (0) for all four mask/comparator

attributes of ncConfig.

Communication must be stopped to set this attribute. Use Start

On Open False with ncConfig, set the desired attributes, then

use ncAction to start communication.

Since the format of the filters is very specific to the Philips

SJA1000 CAN controller, National Instruments cannot guarantee

compatibility for this attribute on future hardware series. When

using this attribute in the application, it is best to get the

NC_ATTR_HW_SERIES (Series) attribute to verify that the CAN

hardware is Series 2, 847x, or 847x with Sync.

The filtering specified by this attribute and the Series 2

Mask/Comparator applies to the CAN Network Interface Object

and all CAN Objects for that interface. For example, if you specify

filters that discard ID 5, then open a CAN Object to receive ID 5,

the CAN Object will not receive data.

The default value for this attribute is

NC_FILTER_SINGLE_STANDARD.

This attribute uses the following values:

NC_FILTER_SINGLE_STANDARD (Single Standard)

Filter all standard (11-bit) frames using a single

mask/comparator filter.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-100 ni.com

Figure 11-9 describes the format of the Series 2 Mask and

Series 2 Comparator attributes for this filter mode.

Figure 11-9. Mask/Comparator for Single-Standard Filter Mode

The 11 Bit ID compares all 11 bits of standard IDs. The RTR

bit determines whether the filter compares remote (1) or data

(0) frames. Bits marked as X are reserved, and should be

cleared to zero by the application. Data 0 compares the first

data byte in the frame, and Data 1 compares the second data

byte.

NC_FILTER_SINGLE_Extended (Single Extended)

Filter all extended (29-bit) frames using a single

mask/comparator filter.

Figure 11-10 describes the format of the Series 2 Mask and

Series 2 Comparator attributes for this filter mode.

Figure 11-10. Mask/Comparator for Single-Extended Filter Mode

The 29 Bit ID compares all 29 bits of extended IDs. The RTR

bit determines whether the filter compares remote (1) or data

(0) frames. Bits marked as X are reserved, and should be

cleared to zero by the application.

NC_FILTER_DUAL_STANDARD (Dual Standard)

Filter all standard (11-bit) frames using a two separate

mask/comparator filters. If either filter matches the frame, it

is received. The frame is discarded only when neither filter

detects a match.

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

x x x x Data 011 Bit ID Data 1

12 11 10 9 8 7 6 5 4 3 2 1 0

RTR

Bit

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

x x29 Bit ID

12 11 10 9 8 7 6 5 4 3 2 1 0

RTR

Bit

Chapter 11 Frame API for C

© National Instruments 11-101 NI-CAN Hardware and Software Manual

Figure 11-11 describes the format of the Series 2 Mask and

Series 2 Comparator attributes for this filter mode.

Figure 11-11. Mask/Comparator for Dual-Standard Filter Mode

Filter 1 includes the 11 Bit ID, the RTR bit, and the first data

byte in the frame. Filter 2 includes the 11 bit ID, and the RTR

bit (no data).

NC_FILTER_DUAL_EXTENDED (Dual Extended)

Filter all extended (29-bit) frames using a two separate

mask/comparator filters. If either filter matches the frame, it

is received. The frame is discarded only when neither filter

detects a match.

Figure 11-12 describes the format of the Series 2 Mask and

Series 2 Comparator attributes for this filter mode.

Figure 11-12. Mask/Comparator for Dual-Extended Filter Mode

Each Upper 16 ID filter compares the 16 most significant bits

of the 29-bit extended ID.

NC_ATTR_SINGLE_SHOT_TRANSMIT (Single Shot Transmit?)

Specifies whether to retry failed CAN frame transmissions

(Series 2, 847x CAN, and 847x with Sync CAN interfaces only).

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

Data 011 Bit ID 11 Bit ID

12 11 10 9 8 7 6 5 4 3 2 1 0

RTR RTR

Bit

Filter 1 Filter 2

20 1731 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13

Upper 16 ID Upper 16 ID

12 11 10 9 8 7 6 5 4 3 2 1 0Bit

Filter 1 Filter 2

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-102 ni.com

Communication must be stopped to set this attribute. Use Start

On Open False with ncConfig, set the attribute, then use

ncAction to start communication.

For Series 1, 847x LIN, and 847x with Sync LIN interfaces,

this attribute must be left at its default (zero).

This attribute is available only for the Network Interface, not CAN

Objects.

NC_ATTR_TERMINATION (Termination)

Specifies the termination setting for your hardware. This attribute

is not supported on Series 1, Series 2, USB-8473, or USB-8473s

hardware. The values for this attribute are:

LS CAN

LIN

NC_ATTR_TIMELINE_RECOVERY (Timeline Recovery)

Specifies whether to configure the CAN Network Interface Object

to recover the original timeline when a timestamped transmit is

late.

0 FALSE

Enables retry as defined in the CAN

specification (default). If a CAN frame is not

transmitted successfully, the CAN controller

will immediately retry.

1 TRUE

Enables single shot transmit. If a CAN frame

is not transmitted successfully, the CAN

controller will not retry.

0 (1.11 kΩ) When set to 0 on USB-8472 or

USB-8472s hardware, the

termination is set to 1.11 kΩ.

1 (4.99 kΩ) When set to 1 on USB-8472 or

USB-8472s hardware, the

termination is set to 4.99 kΩ.

0 (Disabled) When set to 0 on USB-8476 or

USB-8476s hardware, the

termination is disabled.

1 (Enabled) When set to 1 for USB-8476 or

USB-8476s hardware, the

termination is enabled.

Chapter 11 Frame API for C

© National Instruments 11-103 NI-CAN Hardware and Software Manual

This attribute is applicable only when the Transmit Mode attribute

(NC_ATTR_TRANSMIT_MODE) is set to Timestamped Transmit (1).

Due to factors such as CAN bus arbitration, the time that a frame

transmits successfully may be later than the original time

specified. When a timestamped transmit is late, this attribute

determines how NI-CAN will adjust transmit times for subsequent

frames.

The values for this attribute are:

NC_FALSE

Do not recover the original timeline. Frames always transmit

with the original gap or greater. This behavior is useful when

you need to maintain a minimum gap between frames.

Figure 11-13 shows an original timeline of three frames with

a 10 ms gap. When frame B transmits 3 ms late, frame C

continues to transmit 10 ms later, so the actual timeline slips.

Figure 11-13. Example with Time Recovery Disabled

NC_TRUE

Recover the original timeline. When a timestamped transmit

is late, the subsequent frame will transmit with a reduced gap.

This behavior is useful when you need to maintain a timeline,

such as when synchronizing CAN output with analog or

digital output. Figure 11-14 shows an original timeline of

three frames with a 10 ms gap. When frame B transmits 3 ms

late, frame C transmit 7 ms later in order to recover the

timeline.

Original Timeline

Actual Timeline

Frame A

10 ms

Frame A

10 ms

Frame B

20 ms

Frame B

23 ms

Frame C

30 ms

Frame C

33 ms

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-104 ni.com

Figure 11-14. Example with Time Recovery Enabled

The default value for this attribute is zero (disable).

This attribute has to be set prior to starting the CAN Network

Interface Object.

This attribute applies only to Series 1 and Series 2 hardware.

NC_ATTR_TIMESTAMP_FORMAT (Timestamp Format)

Sets the format of the timestamps reported by the on-board timer

on the CAN or LIN hardware.

The default value for this attribute is Absolute.

The values for this attribute are:

NC_TIME_FORMAT_ABSOLUTE (0)

Sets the timestamp format to absolute. In the absolute format,

the timestamp returned by NI-CAN read functions is the

LabVIEW date/time format (DBL representing the number of

seconds elapsed since 12:00 a.m., Friday, January 1, 1904).

NC_TIME_FORMAT_RELATIVE (1)

Sets the timestamp format to relative. In the relative format,

the timestamp returned by the NI-CAN read functions will be

zero based (DBL representing the number of seconds since

the starting the task).

A typical use case for this attribute would be if data received from

two RTSI synchronized CAN or LIN cards is to be correlated. For

that use case, this attribute must be set to 1 for all of the CAN or

LIN cards being synchronized. Setting this attribute on one port of

a 2-port card will also reset the timestamp of the second port, since

resetting the timestamp on the port involves resets the on-board

timer.

This attribute should be set prior to starting any communication on

the CAN or LIN hardware.

Original Timeline

Actual Timeline

Frame A

10 ms

Frame A

10 ms

Frame B

20 ms

Frame B

23 ms

Frame C

30 ms

Frame C

30 ms

Chapter 11 Frame API for C

© National Instruments 11-105 NI-CAN Hardware and Software Manual

NC_ATTR_TRANSCEIVER_EXTERNAL_OUT (Transceiver External

Outputs)

Sets the transceiver external outputs for the Network Interface.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by

CAN Objects as well as the associated Network Interface.

Series 2 XS cards enable connection of an external transceiver. For

an external transceiver, this attribute allows you to set the output

voltage on the MODE0 and MODE1 pins of the CAN port, and it

allows you control the sleep mode of the on-board CAN controller

chip.

For many models of CAN transceiver, EN and NSTB pins control

the transceiver mode, such as whether the transceiver is sleeping,

or communicating normally. For such transceivers, you can wire

the EN and NSTB pins to the MODE0 and MODE1 pins of the

CAN port.

The default value of this attribute is 00000003 hex. For many

models of transceiver, this specifies normal communication mode

for the transceiver and CAN controller chip. If the transceiver

requires a different MODE0/MODE1 combination for normal

mode, you can use external inverters to change the default 5 V to

0 V.

This attribute is supported for Series 2 XS cards only. This

attribute is not supported when the

NC_ATTR_TRANSCEIVER_TYPE (Transceiver Type) is any value

other than External. To control the mode of an internal transceiver,

use the NC_ATTR_TRANSCEIVER_MODE (Transceiver Mode)

attribute.

This attribute uses a bit mask. Use bitwise OR operations to set

multiple values.

NC_TRANSCEIVER_OUT_MODE0 (00000001 hex, MODE0 pin)

Set this bit to drive 5 V on the MODE0 pin. This is the default

value. This bit is set automatically when a remote wakeup is

detected.

Clear this bit to drive 0 V on the MODE0 pin.

NC_TRANSCEIVER_OUT_MODE1 (00000002 hex, MODE1 pin)

Set this bit to drive 5 V on the MODE1 pin. This is the default

value. This bit is set automatically when a remote wakeup is

detected.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-106 ni.com

Clear this bit to drive 0 V on the MODE1 pin.

NC_TRANSCEIVER_OUT_SLEEP (00000100 hex, Sleep CAN

controller chip)

Set this bit to place the CAN controller chip into sleep mode.

This bit controls the mode of the CAN controller chip

(sleep or normal), and the independent MODE0/MODE1 bits

control the mode of the external transceiver. When you set

this bit to place the CAN controller into sleep mode, you

typically specify MODE0/MODE1 bits that place the

external transceiver into sleep mode as well.

When the CAN controller is asleep, a remote wakeup will

automatically place the CAN controller into its normal mode

of communication. In addition, the MODE0/MODE1 pins are

restored to their default values of 5 V. Therefore, a remote

wakeup causes this attribute to change from the value that you

set for sleep mode, back to its default 00000003 hex. You can

determine when this has occurred by getting

NC_ATTR_TRANSCEIVER_EXTERNAL_OUT (Transceiver

External Outputs) using ncGetAttribute. For more

information on remote wakeup, refer to the

NC_ATTR_TRANSCEIVER_MODE (Transceiver Mode)

attribute for internal transceivers.

Clear this bit to place the CAN controller chip into normal

communication mode. If the CAN controller was previously

in sleep mode, this performs a local wakeup to restore

communication.

NC_ATTR_TRANSCEIVER_MODE (Transceiver Mode)

Sets the transceiver mode for the Network Interface. The

transceiver mode controls whether the transceiver is asleep or

communicating, as well as other special modes.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by

CAN Objects as well as the associated Network Interface.

This attribute is supported on Series 2, 847x CAN, and 847x with

Sync CAN interfaces only.

For Series 2 cards for the PCMCIA form factor, this property

requires a corresponding Series 2 cable (dongle). For information

on how to identify the series of the PCMCIA cable, refer to

Series 2 Vs. Series 1 section of Chapter 1, Introduction.

Chapter 11 Frame API for C

© National Instruments 11-107 NI-CAN Hardware and Software Manual

For Series 2 XS cards, this attribute is not supported when the

NC_ATTR_TRANSCEIVER_TYPE (Transceiver Type) is External.

To control the mode of an external transceiver, use the

NC_ATTR_TRANSCEIVER_EXTERNAL_OUT (Transceiver External

Outputs) attribute.

The default value for this attribute is Normal.

This attribute uses the following values:

NC_TRANSCEIVER_MODE_NORMAL (Normal)

Set transceiver to normal communication mode. If you set

Sleep mode previously, this performs a local wakeup of the

transceiver and CAN controller chip.

NC_TRANSCEIVER_MODE_SLEEP (Sleep)

Set transceiver and the CAN controller chip to sleep (or

standby) mode.

If the transceiver supports multiple sleep/standby modes, the

NI CAN hardware implementation ensures that all of those

modes are equivalent with regard to the behavior of the

transceiver on the network. For more information on the

physical specifications of normal and sleep modes of each

transceiver, refer to Chapter 3, NI CAN and LIN Hardware.

You can set Sleep mode only while the interface is

communicating. If the Network Interface has not been started,

setting the transceiver mode to Sleep will return an error.

When the interface enters sleep mode, communication is not

possible until a wakeup occurs. All pending frame

transmissions are deferred until the wakeup occurs. The

transceiver and CAN controller wake from sleep mode when

either a local wakeup or remote wakeup occurs.

A local wakeup occurs when the application sets the

transceiver mode to Normal (or some other communication

mode).

A remote wakeup occurs when a remote node transmits a

CAN frame (referred to as the wakeup frame). The wakeup

frame wakes up the transceiver and CAN controller chip of

the NI CAN interface. The wakeup frame is not received or

acknowledged by the CAN controller chip. When the wakeup

frame ends, the NI CAN interface enters Normal mode, and

again receives and transmits CAN frames. If the node that

transmitted the wakeup frame did not detect an

acknowledgement (such as if other nodes were also waking),

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-108 ni.com

it will retry the transmission, and the retry will be received by

the NI CAN interface.

For a remote wakeup to occur for Single Wire transceivers,

the node that transmits the wakeup frame must first place the

network into the Single Wire Wakeup Transmission mode

by asserting a higher voltage (typically 12 V). For more

information, refer to NC_TRANSCEIVER_MODE_SW_WAKEUP

(Single Wire Wakeup) mode.

When the local or remote wakeup occurs, frame

transmissions resume from the point at which the original

Sleep was set.

You can detect when a remote wakeup occurs by using

ncGetAttribute with the Transceiver Mode attribute.

If you need to suspend the application while waiting for the

remote wakeup, use the Remote Wakeup state of

ncWaitForState or ncCreateNotification.

NC_TRANSCEIVER_MODE_SW_HIGHSPEED (Single Wire

High-Speed)

Set Single Wire transceiver to High-Speed Transmission

mode.

This mode is supported on Single Wire (SW) ports only.

The Single Wire High-Speed Transmission mode disables the

internal waveshaping function of the transceiver, which

allows baud rates up to 100 kbytes/s to be used. The

disadvantage versus Normal (which allows up to 40 kbytes/s

baud) is degraded EMC performance. Other than the disabled

waveshaping, this mode is similar to Normal mode. CAN

frames can be received and transmitted normally.

This mode has no relationship to High-Speed (HS)

transceivers. It is merely a higher speed mode of the Single

Wire (SW) transceiver, typically used for downloading large

amounts of data to a node.

The Single Wire transceiver does not support use of this mode

in conjunction with Sleep mode. For example, a remote

wakeup cannot transition from Sleep to this Single Wire

High-Speed mode.

NC_TRANSCEIVER_MODE_SW_WAKEUP (Single Wire Wakeup)

Set Single Wire transceiver to Wakeup Transmission mode.

This mode is supported on Single Wire (SW) ports only.

Chapter 11 Frame API for C

© National Instruments 11-109 NI-CAN Hardware and Software Manual

The Single Wire Wakeup Transmission mode drives a higher

voltage level on the network to wakeup all sleeping nodes.

Other than this higher voltage, this mode is similar to Normal

mode. CAN frames can be received and transmitted normally.

Since you use the Single Wire Wakeup mode to wakeup other

nodes on the network, it is not typically used in combination

with Sleep mode for a given interface.

The timing of how long the wakeup voltage is driven is

controlled entirely by the application. The application will

typically change to Single Wire Wakeup mode, transmit a

wakeup frame, then return to Normal mode.

The following sequence demonstrates a typical sequence of

steps for sleep and wakeup between two Single Wire NI CAN

interfaces. The sequence assumes that CAN0 is the sleeping

node, and CAN1 originates the wakeup.

1. Start both CAN0 and CAN1. Both use the default Normal

mode.

2. Set Transceiver Mode of CAN0 to Sleep.

3. Set Transceiver Mode of CAN1 to Single Wire Wakeup.

4. Write data to CAN1 to transmit a wakeup frame to CAN0.

5. Set Transceiver Mode of CAN1 to Normal.

6. Now both CAN0 and CAN1 are in Normal mode again.

NC_ATTR_TRANSCEIVER_TYPE (Transceiver Type)

For XS software selectable physical layer cards that provide a

software-switchable transceiver, the Transceiver Type attribute

sets the type of transceiver. When the transceiver is switched from

one type to another, NI-CAN ensures that the switch is

undetectable from the perspective of other nodes on the network.

The value of this attribute can be changed using the

ncSetAttribute function only. You cannot use this attribute

in the ncConfig function.

The default value for this attribute is specified within MAX. If you

change the transceiver type in MAX to correspond to the network

in use, you can avoid setting this attribute within the application.

This attribute is available only for the Network Interface, not CAN

Objects. Nevertheless, the attribute applies to communication by

CAN Objects as well as the associated Network Interface.

Communication for all objects on the Network Interface must be

stopped prior to setting this attribute. You typically do this by

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-110 ni.com

calling ncConfig with Start On Open set to false, then

ncOpenObject, then ncSetAttribute to set Transceiver Type,

then ncAction to start communication. Prior to changing the

Transceiver Type again, you must use ncAction to stop

communication.

You can only set this attribute for Series 2 XS interfaces.

This attribute uses the following values:

NC_TRANSCEIVER_TYPE_HS (High-Speed)

Switch the transceiver to High-Speed (HS).

NC_TRANSCEIVER_TYPE_LS (Low-Speed/Fault-Tolerant)

Switch the transceiver to Low-Speed/Fault-Tolerant (LS).

NC_TRANSCEIVER_TYPE_SW (Single Wire)

Switch the transceiver to Single Wire (SW).

NC_TRANSCEIVER_TYPE_EXT (External)

Switch the transceiver to External. The External type allows

you to connect a transceiver externally to the interface. For

more information on connecting transceivers externally, refer

to Chapter 3, NI CAN and LIN Hardware.

When this transceiver type is selected, you can use the

Transceiver External Outputs and Transceiver External Inputs

attributes to access the external mode and status pins of the

connector.

NC_TRANSCEIVER_TYPE_DISC (Disconnect)

Disconnect the CAN controller chip from the connector.

This value is used when you physically switch an external

transceiver. You first set Transceiver Type to Disconnect,

then switch from one external transceiver to another, then set

Transceiver Type to External. For more information on

connecting transceivers externally, refer to Chapter 3,

NI CAN and LIN Hardware.

NC_ATTR_TRANSMIT_MODE (Transmit Mode)

Specifies whether to configure the CAN Network Interface Object

to Immediate Transmit mode or Timestamped Transmit mode.

The default value for this attribute is zero (Immediate Transmit).

Chapter 11 Frame API for C

© National Instruments 11-111 NI-CAN Hardware and Software Manual

The values for this attribute are:

NC_TX_IMMEDIATE (0)

Configures the Network Interface Object in the Immediate

Transmit mode. In the Immediate Transmit mode, the CAN

frames are transmitted as and when frames are written into the

Network Interface Object’s write queue. CAN frames can be

written into the Network Interface Objects write queue by

either using ncWrite or ncWriteMult. Timestamps are

ignored by NI-CAN when the Network Interface Object is

configured in this mode.

NC_TX_TIMESTAMPED (1)

Configures the Network Interface Object in the Timestamped

Transmit mode. In this mode, NI-CAN spaces the frame

transmission according to the difference in timestamps

between consecutive frames. For example, if every frame

provided to ncWrite increments by 10 milliseconds, the

frames will be transmitted with a 10 millisecond gap.

If the timestamp of the CAN frame to be transmitted is less than

the timestamp of the previous CAN frame, Timestamped

Transmit is reset and the CAN frame will be transmitted

immediately on the bus without adding any delay. For example,

if you write a frame with a relative timestamp 30 ms followed by

a frame with a timestamp 15 ms, the two frames will be

transmitted back to back.

Use ncWriteMult to write CAN frames with timestamps into the

write queue of the Network Interface Object.

To use the ncWrite in Timestamped Transmit mode, refer to the

description of ncWrite.

This attribute has to be set prior to starting the CAN Network

Interface Object.

This attribute applies only to Series 1 and Series 2 hardware.

NC_ATTR_VIRTUAL_BUS_TIMING (Virtual Bus Timing)

Sets the Virtual Bus Timing of the virtual device.

NC_TRUE

Enables Virtual Bus Timing. By turning Virtual Bus Timing

on, frame timestamps are recalculated as they transfer across

the virtual bus. This mode is useful when you want the virtual

bus to behave as much like a real bus as possible.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-112 ni.com

NC_FALSE

Disables Virtual Bus Timing. By turning Virtual Bus Timing

off, the CAN bus simulation is disabled and CAN frames are

copied from the write queue of one virtual interface to the

read queue of the second virtual interface. This setting is

useful if you desire to only convert frames to channels or vice

versa and not simulate actual CAN bus communication.

If this attribute is set on real hardware, an error will be returned.

The Virtual Bus Timing has to be set to the same value on both

virtual interfaces.

This attribute must be set prior to starting the virtual interface.

Refer to the Frame to Channel Conversion section of Chapter 6,

Using the Channel API for more information.

Chapter 11 Frame API for C

© National Instruments 11-113 NI-CAN Hardware and Software Manual

ncStatusToString

Purpose
Convert status code into a descriptive string.

Format

Input

Status

Nonzero status code returned from NI-CAN function.

SizeofString

Size of String buffer (in bytes).

Output

String

ASCII string that describes Status.

Description
When the status code returned from an NI-CAN function is nonzero, an error or warning is

indicated. This function is used to obtain a description of the error/warning for debugging

purposes.

If you want to avoid displaying error messages while debugging the application, you can use

the Explain.exe utility. This console application is located in the Utilities subfolder

of the NI-CAN installation folder, which is typically \Program Files\National

Instruments\NI-CAN\Utilities. You enter an NI-CAN status code in the command

line, Explain 0XBFF62201 for example, and the utility displays the description.

The return code is passed into the Status parameter. The SizeofString parameter

indicates the number of bytes available in String for the description. The description will be

truncated to size SizeofString if needed, but a size of 2048 characters is large enough to

void ncStatusToString(

NCTYPE_STATUS Status,

NCTYPE_UINT32 SizeofString,

NCTYPE_STRING String);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-114 ni.com

hold any description. The text returned in String is null-terminated, so it can be used with

ANSI C functions such as printf.

For applications written in C or C++, each NI-CAN function returns a status code as a signed

32-bit integer. Table 11-24 summarizes the NI-CAN use of this status.

The application code should check the status returned from every NI-CAN function. If an

error is detected, you should close all NI-CAN handles, then exit the application. If a warning

is detected, you can display a message for debugging purposes, or simply ignore the warning.

The following piece of code shows an example of handling NI-CAN status during application

debugging.

status= ncOpenObject ("CAN0", &MyObjHandle);

PrintStat (status, "ncOpenObject CAN0");

where the function PrintStat has been defined at the top of the program as:

void PrintStat(NCTYPE_STATUS status,char *source)

{

char statusString[2048];

if(status !=0)

{

ncStatusToString(status, size of (statusString), statusString);

printf("\n%s\nSource = %s\n", statusString, source);

if (status < 0)

{

ncCloseObject(MyObjHandle); exit(1);

}

}

}

Table 11-25. NI-CAN Status Codes

Status Code Meaning

Negative Error—Function did not perform expected behavior.

Positive Warning—Function performed as expected, but a condition

arose that may require attention.

Zero Success—Function completed successfully.

Chapter 11 Frame API for C

© National Instruments 11-115 NI-CAN Hardware and Software Manual

In some situations, you may want to check for specific errors in the code. For example, when

ncWaitForState times out, you may want to continue communication, rather than exit the

application. To check for specific errors, use the constants defined in nican.h. These

constants have the same names as described in this manual. For example, to check for a

function timeout:

if (status ==CanErrFunctionTimeout)

The function ncStatusToString returns the string results as an array of char (* char).

VB is not able to convert this array to a string automatically. Therefore, VB users should call

the wrapper function ncStatToStr.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-116 ni.com

ncWaitForState

Purpose
Wait for one or more states to occur in an object.

Format

Input

ObjHandle

Object handle.

DesiredState

States for which to wait.

Timeout

Length of time to wait in milliseconds.

Output

StatePtr

Current state of object when desired states occur. The state is returned

to you using the pointer StatePtr.

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

NCTYPE_STATUS ncWaitForState(

NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,

NCTYPE_UINT32 Timeout,

NCTYPE_STATE_P StatePtr);

Chapter 11 Frame API for C

© National Instruments 11-117 NI-CAN Hardware and Software Manual

Description
You use ncWaitForState to wait for one or more states to occur in the object specified by

ObjHandle.

This function waits up to Timeout for one of the bits set in DesiredState to become set in

the attribute NC_ATTR_STATE. You can use the special Timeout value

NC_DURATION_INFINITE (FFFFFFFF hex) to wait indefinitely.

DesiredState specifies a bit mask of states for which the wait should return. You can use a

single state alone, or you can OR them together.

NC_ST_READ_AVAIL (00000001 hex)

At least one frame is available, which you can obtain using an

appropriate read function.

The state is set whenever a frame arrives for the object. The state is

cleared when the read queue is empty.

NC_ST_READ_MULT (00000008 hex)

A specified number of frames are available, which you can obtain

using ncReadMult. The number of frames is one half the Read

Queue Length by default, but you can change it using the ReadMult

Size for Notification attribute of ncSetAttribute.

The state is set whenever the specified number of frames are stored in

the read queue of the object. The state is cleared when you call the read

function, and less than the specified number of frames exist in the read

queue.

This state applies only to Series 1 and Series 2 hardware.

NC_ST_REMOTE_WAKEUP (00000040 hex)

Remote wakeup occurred, and Transceiver Mode

(NC_ATTR_TRANSCEIVER_MODE) has changed from Sleep to Normal.

For more information on remote wakeup, refer to the

NC_ATTR_TRANSCEIVER_MODE (Transceiver Mode) attribute.

This state is set when a remote wakeup occurs (end of wakeup frame).

This state is not set when the application changes Transceiver Mode

from Sleep to Normal (local wakeup).

This state is cleared when:

• You open the Network Interface, such as when the application begins.

• You stop the Network Interface.

• You set the Transceiver Mode, such as each time you set Sleep mode.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-118 ni.com

For as long as this state is true, the transceiver mode is Normal. The

transceiver mode also can be Normal when this state is false, such as

when you perform a local wakeup.

NC_ST_WRITE_MULT (00000080 hex)

The state is set whenever there is free space in the write queue to accept

at least 512 frames to write. The state is cleared when you call the

ncWrite or ncWriteMult function, and less than 512 frames can be

accepted to write in the write queue.

This state is valid only on the Network Interface.

NC_ST_WRITE_SUCCESS (00000002 hex)

All frames provided through write function have been successfully

transmitted onto the network. Successful transmit means that the frame

won arbitration, and was acknowledged by a remote device.

The state is set when the last frame in the write queue is transmitted

successfully. The state is cleared when a write function is called.

When communication starts, the NC_ST_WRITE_SUCCESS state is true

by default.

For CAN, write success means that the frame won arbitration, and was

acknowledged by a remote device. For LIN, write success means that

the frame was successfully processed by the LIN interface.

When the states in DesiredState are detected, the function returns

the current value of the NC_ATTR_STATE attribute. If an error occurs,

the function returns immediately, and the state returned is zero.

While waiting for the desired states, ncWaitForState suspends the

current thread execution. Other Win32 threads in the application can still

execute.

If you want to allow other code in the application to execute while waiting

for NI-CAN states, refer to the ncCreateNotification function.

The functions ncWaitForState and ncCreateNotification use the

same underlying implementation. Therefore, for each object handle, only

one of these functions can be pending at a time. For example, you cannot

invoke ncWaitForState twice from different threads for the same object.

For different object handles, these functions can overlap in execution.

Chapter 11 Frame API for C

© National Instruments 11-119 NI-CAN Hardware and Software Manual

ncWrite

Purpose
Write a single frame to a CAN or LIN Network Interface Object.

Format

Input

ObjHandle

Object handle.

DataSize

Size of the data in bytes.

DataPtr

Data written to the object. You provide the data using the pointer

DataPtr.

Output

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

Description
ncWrite writes a single frame to the object specified by ObjHandle.

DataPtr points to the variable from which the data is written. Its type is undefined so that

you can use the appropriate host data type. DataSize indicates the size of variable pointed

to by DataPtr, and is used to verify that the size you provide is compatible with the

configured write size for the object.

NCTYPE_STATUS ncWrite(

NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 DataSize,

NCTYPE_ANY_P DataPtr);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-120 ni.com

You use ncWrite to place data into the write queue of an object. Because NI-CAN handles

the write queue in the background, this function does not wait for data to be transmitted on

the network. To make sure that the data is transmitted successfully after calling ncWrite,

wait for the NC_ST_WRITE_SUCCESS state. The NC_ST_WRITE_SUCCESS state transitions

from false to true when the write queue is empty, and NI-CAN has successfully transmitted

the last data item onto the network. The NC_ST_WRITE_SUCCESS state remains true until you

write another data item into the write queue.

When communication starts, the NC_ST_WRITE_SUCCESS state is true by default.

When you configure an object to transmit data onto the network periodically, it obtains data

from the object write queue each period. If the write queue is empty, NI-CAN transmits the

data of the previous period again. NI-CAN transmits this data repetitively until the next call

to ncWrite.

If an object write queue is full, a call to ncWrite returns the CanErrOverflowWrite error

and NI-CAN discards the data you provide. One way to avoid this overflow error is to set the

write queue length to zero. When ncWrite is called for a zero length queue, the data item

you provide with ncWrite simply overwrites the previous data item without indicating an

overflow. A zero length write queue is often useful when an object is configured to transmit

data onto the network periodically, and you simply want to transmit the most recent data value

each period. It is also useful when you plan to always wait for NC_ST_WRITE_SUCCESS after

every call to ncWrite. You can use the NC_ATTR_WRITE_Q_LEN attribute to configure the

write queue length.

For information on the proper data type to use with DataPtr, refer to the CAN Network

Interface Object and CAN Object descriptions below.

Network Interface Object
The data type that you use with ncWrite of the Network Interface is NCTYPE_CAN_FRAME.

When calling ncWrite, you should pass size of (NCTYPE_CAN_FRAME) for the DataSize

parameter.

Within the NCTYPE_CAN_FRAME structure, the IsRemote (frame type) field determines the

meaning of all other fields. Table 11-26, NCTYPE_CAN_FRAME Fields for IsRemote

NC_FRMTYPE_DATA (0), Table 11-27, NCTYPE_CAN_FRAME fields for IsRemote

NC_FRMTYPE_REMOTE (1), Table 11-28, NCTYPE_CAN_FRAME fields for IsRemote

NC_FRMTYPE_RESPONSE_ENTRY_FRAME (16), Table 11-29, NCTYPE_CAN_FRAME

fields for IsRemote NC_FRMTYPE_LIN_HEADER_FRAME (17), and Table 11-30,

NCTYPE_CAN_FRAME fields for IsRemote NC_FRMTYPE_LIN_FULL_FRAME (18),

describe the fields of NCTYPE_CAN_FRAME for each value of IsRemote.

To determine if your hardware supports one of the following frame types for this function,

refer to Appendix D, Frame Types for CAN and LIN Hardware.

Chapter 11 Frame API for C

© National Instruments 11-121 NI-CAN Hardware and Software Manual

Table 11-26. NCTYPE_CAN_FRAME Fields for IsRemote NC_FRMTYPE_DATA (0)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 NC_FRMTYPE_DATA (0)

Transmit a CAN data frame.

ArbitrationId NCTYPE_CAN_ARBID Specifies the arbitration ID of the frame to transmit.

The NCTYPE_CAN_ARBID type is an unsigned 32-bit

integer that uses the bit mask NC_FL_CAN_ARBID_XTD

(0x20000000) to indicate an extended ID. A standard

ID (11-bit) is specified by default. In order to specify

an extended ID (29-bit), OR in the bit mask

NC_FL_CAN_ARBID_XTD.

Data Array of 8

NCTYPE_UINT8

Specifies the data bytes of the frame.

DataLength NCTYPE_UINT8 Specifies the number of data bytes to transmit. This

number of valid data bytes must be provided in Data.

Table 11-27. NCTYPE_CAN_FRAME fields for IsRemote NC_FRMTYPE_REMOTE (1)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 NC_FRMTYPE_REMOTE (1)

Transmit a CAN remote frame. Both Series 1 and

Series 2 hardware can transmit remote frames using the

Network Interface.

ArbitrationId NCTYPE_CAN_ARBID Specifies the arbitration ID of the frame to transmit.

The NCTYPE_CAN_ARBID type is an unsigned 32-bit

integer that uses the bit mask NC_FL_CAN_ARBID_XTD

(0x20000000) to indicate an extended ID. A standard

ID (11-bit) is specified by default. In order to specify

an extended ID (29-bit), OR in the bit mask

NC_FL_CAN_ARBID_XTD.

Data Array of 8

NCTYPE_UINT8

Remote frames do not contain data, so this array is

empty.

DataLength NCTYPE_UINT8 Specifies the Data Length Code to transmit in the

remote frame.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-122 ni.com

Table 11-28. NCTYPE_CAN_FRAME fields for IsRemote
NC_FRMTYPE_RESPONSE_ENTRY_FRAME (16)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 16 represents a response entry frame for LIN

communication.The behavior resulting from writing a

response type to the LIN interface depends upon whether the

LIN Sleep attribute is set to TRUE or FALSE (the LIN

interface is asleep or awake, respectively).

If the LIN Sleep attribute is set to FALSE:

A response entry frame is issued when it is desired to configure

the LIN interface slave task to subscribe to or publish data, in

response to a particular header ID received from a master task.

Each response entry frame indicates the ID of the header for

which it is to respond, whether the response is to publish data

or subscribe to data, and if it is to publish data, the data length

code (DLC) and data values. The DLC determines whether the

response will be to subscribe (DLC = 0), or publish (DLC =

data length), in response to a header containing the ID of the

response frame. Sixty-four response entry frames (one for each

of the sixty-four LIN IDs) may be written to the response

queue in the LIN interface. When the Network Interface is

created or reset, the interface is reset to act as a slave and to

respond as subscriber to data for all LIN IDs.

If the LIN Sleep attribute is set to TRUE:

A response entry frame is issued when the LIN interface has

been acting as a slave (processing master headers), has been

put asleep, and is desired to be used to wake the bus and initiate

the transmission of headers by the master. When the response

entry type is written to the LIN interface, two things occur.

First, the response queue is loaded with the ID, DLC, and data

(if DLC is non-zero meaning the response is to publish), of the

response entry frame. Next the interface transmits a wakeup

break on the bus. Per the LIN specification, it either waits until

the master acknowledges the wakeup break by writing a header

within the specified time, or re-transmits the wakeup break if

it does not. When the master responds with a header, the LIN

interface sets the LIN Sleep attribute to FALSE, and responds

to the ID contained in the header in the manner (publish or

subscribe) specified for that ID in the response queue.

ArbitrationId NCTYPE_CAN_ARBID Zero to sixty-three.

Chapter 11 Frame API for C

© National Instruments 11-123 NI-CAN Hardware and Software Manual

DataLength Array of 8

NCTYPE_UINT8

Zero if the response is to subscribe to data. Actual length of

Data if the response is to publish data.

Data NCTYPE_UINT8 Ignored if DataLength is zero. Data to publish if DataLength

is non-zero.

Table 11-29. NCTYPE_CAN_FRAME fields for IsRemote NC_FRMTYPE_LIN_HEADER_FRAME (17)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 17 represents a header frame for LIN

communication. The behavior resulting from writing a

header type to the LIN interface depends upon whether

the LIN Sleep attribute is set to TRUE or FALSE

(the LIN interface is asleep or awake, respectively).

If the LIN Sleep attribute is set to FALSE:

A header frame is issued when it is desired to use the

LIN interface as a master, querying a slave task to

publish data. Issuing a header frame causes the LIN

interface to write a break-sync-id sequence to the LIN

bus, with the expectation that a slave task will publish

data in response. Once a header frame is issued, the

LIN interface will behave as a master until the next

time it is started.

If the LIN Sleep attribute is set to TRUE:

A header frame is issued when the LIN interface has

been acting as a master (transmitting header and full

IsResponse types), has been put asleep, and is desired

to be used to wake the LIN bus and query a slave task

to publish data. Issuing a header frame causes the LIN

interface to write a wakeup break followed by

break-sync-id sequence to the LIN bus, with the

expectation that all slaves will wake up and a slave task

will publish data in response. The LIN interface also

sets the LIN Sleep attribute to FALSE.

Table 11-28. NCTYPE_CAN_FRAME fields for IsRemote

NC_FRMTYPE_RESPONSE_ENTRY_FRAME (16) (Continued)

Field Name Data Type Description

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-124 ni.com

ArbitrationId NCTYPE_CAN_ARBID Zero to sixty-three.

DataLength Array of 8

NCTYPE_UINT8

One to eight if the Enable DLC Check attribute is set

to 1 (TRUE). If the Enable DLC Check attribute is set

to 0 (FALSE), the data length is ignored.

Data NCTYPE_UINT8 Ignored.

Table 11-29. NCTYPE_CAN_FRAME fields for IsRemote NC_FRMTYPE_LIN_HEADER_FRAME (17) (Continued)

Field Name Data Type Description

Chapter 11 Frame API for C

© National Instruments 11-125 NI-CAN Hardware and Software Manual

Table 11-30. NCTYPE_CAN_FRAME fields for IsRemote NC_FRMTYPE_LIN_FULL_FRAME (18)

Field Name Data Type Description

IsRemote NCTYPE_UINT8 Value 18 represents a full frame for LIN

communication. The behavior resulting from writing a

full type to the LIN interface depends upon whether the

LIN Sleep attribute is set to TRUE or FALSE (the LIN

interface is asleep or awake, respectively).

If the LIN Sleep attribute is set to FALSE:

A full frame is issued when it is desired to use the LIN

interface as a master, publishing data to an external

slave. Issuing a full frame causes the LIN interface

slave task response queue to be updated, the master

task to write a header to the LIN bus, then the LIN

interface slave task to publish a response, with the

expectation that one or more external slaves will

subscribe to the data. Once a full frame is issued, the

LIN interface will behave as a master until the next

time it is started.

If the LIN Sleep attribute is set to TRUE:

A full frame is issued when the LIN interface has been

acting as a master (transmitting header and full

IsResponse types), has been put asleep, and is desired

to be used to wake the LIN bus and publish data to one

or more external slaves. Issuing a full frame causes the

LIN interface slave task response queue to be updated,

the master task to write a wakeup break followed by a

header to the LIN bus, then the LIN interface slave task

to publish a response, with the expectation that all

slaves will wake up and one or more external slaves

will subscribe to the published data. The LIN interface

also sets the LIN Sleep attribute to FALSE.

ArbitrationId NCTYPE_CAN_ARBID Zero to sixty-three.

DataLength Array of 8

NCTYPE_UINT8

One to eight.

Data NCTYPE_UINT8 Data to publish.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-126 ni.com

CAN Object
The data type that you use with ncWrite of the CAN Object is NCTYPE_CAN_DATA. When

calling ncWrite, you should pass size of (NCTYPE_CAN_DATA) for the DataSize parameter.

Table 11-31 describes the fields of NCTYPE_CAN_DATA.

Table 11-31. NCTYPE_CAN_DATA Field Name

Field Name Data Type Description

Data Array of 8

NCTYPE_UINT8

The Data array specifies the data bytes (8 maximum).

The actual number of valid data bytes depends on the

CAN Object configuration specified in ncConfig.

If the Communication Type of the CAN Object

specifies Receive, data frames are received, not

transmitted, so Data is ignored. For this

Communication Type, the ncWrite function is used

solely for transmission of a remote frame.If the

Communication Type of the CAN Object specifies

Transmit, Data must always contain Data Length

valid bytes, where Data Length was configured using

ncConfig.

Chapter 11 Frame API for C

© National Instruments 11-127 NI-CAN Hardware and Software Manual

ncWriteMult

Purpose
Write multiple frames to a CAN or LIN Network Interface Object.

Format

Input

ObjHandle

Object handle.

DataSize

Size of the data in bytes.

DataPtr

Pointer to the data to be written to the CAN Network Interface The data

consists of an array of structures, each of type NCTYPE_CAN_STRUCT.

Within each structure, FrameType indicates the frame type. The frame

type determines the interpretation of the remaining fields. For a

description of each frame type, refer to the Frame Types section of this

function reference.

The maximum number of structures you can provide to each

ncWriteMult is 512. For more information, refer to the Writing

Large Numbers of Frames section of this function reference.

Output

Return Value

Status of the function call, returned as a signed 32-bit integer. Zero means the function

executed successfully. Negative specifies an error, meaning the function did not perform

expected behavior. Positive specifies a warning, meaning the function performed as expected,

but a condition arose that might require attention. For more information, refer to

ncStatusToString.

NCTYPE_STATUS ncWriteMult(

NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 DataSize,

NCTYPE_ANY_P DataPtr);

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-128 ni.com

Description
You use ncWriteMult to place one or more frames into the Network Interface write queue.

This function does not wait for the frames to be transmitted on the network. This function is

not supported for CAN Objects.

Timestamped Transmit

In addition to supporting multiple frames, this function is preferable to ncWrite in that it

supports timestamped frames. To enable timestamped transmit, use ncSetAttribute to

set the NC_ATTR_TRANSMIT_MODE (Transmit Mode) attribute to Timestamped Transmit

mode (1).

In Timestamped Transmit mode, NI-CAN times the transmission according to the difference

in timestamps between consecutive frames. For example, if every frame provided to

ncWriteMult increments by 10 milliseconds, the frames will be transmitted with a

10 millisecond gap.

If the timestamp of one frame is less than the timestamp of the preceding frame, the timeline

is reset, and both frames transmit back to back. For example, if you write a frame with relative

timestamp 30 ms followed by a frame with timestamp 15 ms, the two frames will be

transmitted back to back. This sort of behavior can occur when you transmit a logfile of

timestamped frames repeatedly, because on the second traversal of the logfile, the timestamp

of the first frame will be less than the timestamp of the last frame.

The first frame that you provide to ncWriteMult always transmits immediately, regardless

of its timestamp. If you need to delay transmission of first frame after start, you can write a

Delay frame or Start Trigger frame as described in the Frame Types section of this function

reference.

Timestamped Transmit applies only to Series 1 and Series 2 interfaces.

847x CAN and LIN products do not support timestamped transmit. These products ignore

the timestamp provided in the cluster for ncWriteMult. If you use ncWriteMult to write

header and full frame types out of the USB LIN acting as master, then the frames will be

transmitted together as closely as possible. If you use ncWriteMult to write response frame

types to the LIN interface acting as slave, then the frames will be loaded into the response

table as quickly as possible.

Immediate Transmit

The default value for the NC_ATTR_TRANSMIT_MODE (Transmit Mode) attribute is

Immediate Transmit mode (0). You can also use ncSetAttribute to set the

NC_ATTR_TRANSMIT_MODE attribute to Immediate Transmit mode.

Chapter 11 Frame API for C

© National Instruments 11-129 NI-CAN Hardware and Software Manual

In Immediate Transmit mode, NI-CAN ignores the timestamp in each frame, and transmits

the frames as fast as possible. This behavior is equivalent to the ncWrite function, except

that you can write multiple frames for transmission in quick succession.

Writing Large Numbers of Frames

Although NI-CAN provides a large write queue to store frames pending transmission, writing

timestamped frames from a logfile with thousands of frames can eventually fill this queue.

When the Network Interface write queue cannot hold all frames provided, ncWriteMult

returns an overflow error. When this overflow error is returned, none of the frames provided

in the array referenced by DataPtr have been written. This enables your application to try

the same array again at a later time.

To determine when adequate space is available in the write queue to retry ncWriteMult after

an overflow, you can use ncWaitForState with the NC_ST_WRITE_MULT (Write Multiple)

state. The NC_ST_WRITE_MULT state will transition from false to true when space is available

for at least 512 frames. Since you must limit the array passed to ncWriteMult to 512 frames

or less, the NC_ST_WRITE_MULT state indicates that a retry will succeed.

Another technique to recover from a write queue overflow is to use ncGetAttribute

with the NC_ATTR_WRITE_ENTRIES_FREE (Write Entries Free) attribute. Although this

technique requires you to call ncGetAttribute periodically until the desired number

of frame entries is available, it avoids the need to determine a proper Timeout for

ncWaitForState. When the time difference between frames varies from milliseconds to

seconds, it may be difficult to determine how long to wait for entries to become available.

After writing a sequence of timestamped frames with ncWriteMult, you cannot close the

Network Interface, because you must wait for the last timestamped frame to transmit onto the

network. You can wait for the final transmit to complete using ncWaitForState with the

NC_ST_WRITE_SUCCESS (Write Success) state. You can also use ncGetAttribute with the

NC_ATTR_WRITE_PENDING (Write Entries Pending) attribute to query periodically, which

provides the option of aborting the timestamped transmission by closing the Network

Interface.

Frame Types

Within each structure (type NCTYPE_CAN_STRUCT) of the array referenced by DataPtr,

FrameType indicates the frame type. The frame type determines the interpretation of the

remaining fields. Table 11-32, Structure with FrameType value NC_FRMTYPE_DATA (0):

CAN Data Frame, Table 11-33, Structure with FrameType value NC_FRMTYPE_REMOTE

(1): CAN Remote Frame, Table 11-34, Structure with FrameType value

NC_FRMTYPE_START_TRIG (4): Start Trigger Frame, Table 11-35, Structure with

FrameType value NC_FRMTYPE_DELAY (5): Delay Frame, Table 11-36, FrameType Value

NC_FRMTYPE_LIN_RESPONSE_ENTRY (16): LIN Response Entry Frame, Table 11-37,

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-130 ni.com

FrameType Value NC_FRMTYPE_LIN_HEADER (17): LIN Header Frame, and

Table 11-38, FrameType Value NC_FRMTYPE_LIN_FULL (18): LIN Full Frame,

describe the fields of the structure for each value of FrameType.

To determine if your hardware supports one of the following frame types for this function,

refer to Appendix D, Frame Types for CAN and LIN Hardware.

Table 11-32. Structure with FrameType value NC_FRMTYPE_DATA (0): CAN Data Frame

Field Name Data Type Description

FrameType NCTYPE_UINT8 Value NC_FRMTYPE_DATA (0) specifies a CAN

data frame.

The CAN data frame transfers data on the

network.

ArbitrationId NCTYPE_CAN_ARBID Specifies the arbitration ID to transmit in the CAN

data frame. A standard ID (11-bit) is specified by

default. In order to specify an extended ID

(29-bit), OR in the bit mask

NC_FL_CAN_ARBID_XTD (20000000 hex).

DataLength NCTYPE_UINT8 Specifies the number of bytes in the Data array to

transmit in the CAN data frame.

Data Array of 8,

NCTYPE_UINT8

Data bytes to transmit in the CAN data frame.

Timestamp NCTYPE_ABS_TIME If the NC_ATTR_TRANSMIT_MODE (Transmit

Mode) attribute is Immediate Transmit

(default), this field is ignored, and CAN frames

transmit as quickly as possible.

If the NC_ATTR_TRANSMIT_MODE attribute is

Timestamped Transmit (1), this field specifies a

timestamp. The timestamp is used to time

transmission of CAN frames as described in

the Timestamped Transmit section of this

function reference. The timestamp data type

NCTYPE_ABS_TIME is a 64-bit unsigned integer

in 100 nanosecond increments. The format

of the time is absolute (time and date) or

relative (zero based) depending on the

NC_ATTR_TIMESTAMP_FORMAT (Timestamp

Format) attribute. Refer to ncSetAttribute

for more information on timestamps.

Chapter 11 Frame API for C

© National Instruments 11-131 NI-CAN Hardware and Software Manual

Table 11-33. Structure with FrameType value NC_FRMTYPE_REMOTE (1): CAN Remote Frame

Field Name Data Type Description

FrameType NCTYPE_UINT8 Value NC_FRMTYPE_REMOTE (1) specifies a CAN

remote frame.

The CAN remote frame requests data for its

arbitration ID.

ArbitrationId NCTYPE_CAN_ARBID Specifies the arbitration ID to transmit in the CAN

data frame. A standard ID (11-bit) is specified by

default. In order to specify an extended ID

(29-bit), OR in the bit mask

NC_FL_CAN_ARBID_XTD (20000000 hex).

DataLength NCTYPE_UINT8 Specifies the number of bytes requested. The

value is transmitted in the CAN remote frame,

but with no data.

Data Array of 8,

NCTYPE_UINT8

Ignored. No data bytes are contained in a CAN

remote frame.

Timestamp NCTYPE_ABS_TIME If the NC_ATTR_TRANSMIT_MODE (Transmit

Mode) attribute is Immediate Transmit

(default), this field is ignored, and CAN frames

transmit as quickly as possible.

If the NC_ATTR_TRANSMIT_MODE attribute is

Timestamped Transmit (1), this field specifies a

timestamp. The timestamp is used to time

transmission of CAN frames as described in the

Timestamped Transmit section of this function

reference. The timestamp data type

NCTYPE_ABS_TIME is a 64-bit unsigned integer

in 100 nanosecond increments. The format

of the time is absolute (time and date) or

relative (zero based) depending on the

NC_ATTR_TIMESTAMP_FORMAT (Timestamp

Format) attribute. Refer to ncSetAttribute for

more information on timestamps.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-132 ni.com

Table 11-34. Structure with FrameType value NC_FRMTYPE_START_TRIG (4): Start Trigger Frame

Field Name Data Type Description

FrameType NCTYPE_UINT8 Value NC_FRMTYPE_START_TRIG (4) specifies a

start trigger frame.

When you use ncWriteMult to write frames

from a logfile for timestamped transmit, you can

write the start trigger frame as the first frame. The

start trigger frame reproduces the delay from start

of communication to the first CAN frame.

For example, if you write a start trigger frame

followed by a CAN data frame with relative

timestamp 20 ms, NI-CAN will delay 20 ms

before transmitting the CAN data frame. If you

write the CAN data frame without the start trigger

frame, NI-CAN will transmit the CAN data frame

immediately.

ArbitrationId NCTYPE_CAN_ARBID Value 0 is required.

DataLength NCTYPE_UINT8 Value 1 is required.

Chapter 11 Frame API for C

© National Instruments 11-133 NI-CAN Hardware and Software Manual

Data Array of 8,

NCTYPE_UINT8

The single data byte in the array

specifies the Timestamp Format

NC_ATTR_TIMESTAMP_FORMAT (defined in

ncSetAttribute) to be used for all subsequent

CAN frames. The value is 0 for absolute

timestamps, and 1 for relative timestamps. In

order for NI-CAN to delay the proper time for the

start trigger, this timestamp format must match the

format used in all subsequent frames provided to

ncWriteMult.

Timestamp NCTYPE_ABS_TIME Absolute timestamp of the start trigger. Within a

logfile, this timestamp indicates the date and time

at which CAN communication started.

The timestamp data type NCTYPE_ABS_TIME is

a 64-bit unsigned integer in 100 nanosecond

increments. The format of this timestamp is

always absolute, even when Data byte 0 specifies

relative timestamp format. This absolute

timestamp provides data/time information even

when the CAN frames of a logfile use the relative

format. When Data byte 0 specifies absolute

format (0), the difference between this timestamp

and the absolute timestamp of the subsequent

CAN frame is used as the delay for transmit of that

CAN frame. When Data byte 0 specifies relative

format (1), this timestamp is ignored by NI-CAN,

and the relative timestamp of the subsequent CAN

frame is used as the transmit delay.

Table 11-34. Structure with FrameType value NC_FRMTYPE_START_TRIG (4): Start Trigger Frame (Continued)

Field Name Data Type Description

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-134 ni.com

Table 11-35. Structure with FrameType value NC_FRMTYPE_DELAY (5): Delay Frame

Field Name Data Type Description

FrameType NCTYPE_UINT8 Value NC_FRMTYPE_DELAY (5) specifies a delay

frame.

Use the delay frame to insert an additional delay

between any two timestamped frames. For

example, if you write a CAN frame with relative

timestamp 20 ms, followed by a delay frame of

30 ms, followed by a CAN frame with timestamp

55 ms, NI-CAN will transmit the CAN frames

65 ms apart.

ArbitrationId NCTYPE_CAN_ARBID Value 0 is required.

DataLength NCTYPE_UINT8 Value 0 is required.

Data Array of 8,

NCTYPE_UINT8

Ignored.

Timestamp NCTYPE_ABS_TIME Specifies the delay to insert (not a timestamp).

The delay is a 64-bit unsigned integer in

100 nanosecond increments. For example,

a delay of 10 ms would be specified as the

number 100000 in the low 32 bits of

Timestamp.The maximum delay supported is

180.0 seconds (3 minutes).

Chapter 11 Frame API for C

© National Instruments 11-135 NI-CAN Hardware and Software Manual

Table 11-36. FrameType Value NC_FRMTYPE_LIN_RESPONSE_ENTRY (16): LIN Response Entry Frame

Field Name Data Type Description

FrameType NCTYPE_UINT8 Value 16 represents a response entry frame for LIN

communication.The behavior resulting from writing a

response type to the LIN interface depends upon whether the

LIN Sleep attribute is set to TRUE or FALSE (the LIN

interface is asleep or awake, respectively).

If the NC_ATTR_LIN_SLEEP attribute is set to FALSE:

A response entry frame is issued when it is desired to

configure the LIN interface slave task to subscribe to or

publish data, in response to a particular header ID received

from a master task. Each response entry frame indicates the

ID of the header for which it is to respond, whether the

response is to publish data or subscribe to data, and if it is to

publish data, the data length code (DLC) and data values. The

DLC determines whether the response will be to subscribe

(DLC = 0), or publish (DLC = data length), in response to a

header containing the ID of the response frame. Sixty-four

response entry frames (one for each of the sixty-four LIN IDs)

may be written to the response queue in the LIN interface.

When the Network Interface is created or reset, the interface

is reset to act as a slave and to respond as subscriber to data

for all LIN IDs.

If the NC_ATTR_LIN_SLEEP attribute is set to TRUE:

A response entry frame is issued when the LIN interface has

been acting as a slave (processing master headers), has been

put asleep, and is desired to be used to wake the bus and

initiate the transmission of headers by the master. When the

response entry type is written to the LIN interface, two things

occur. First, the response queue is loaded with the ID, DLC,

and data (if DLC is non-zero meaning the response is to

publish), of the response entry frame. Next the interface

transmits a wakeup break on the bus. Per the LIN

specification, it either waits until the master acknowledges the

wakeup break by writing a header within the specified time,

or re-transmits the wakeup break if it does not. When the

master responds with a header, the LIN interface sets the LIN

Sleep attribute to FALSE, and responds to the ID contained in

the header in the manner (publish or subscribe) specified for

that ID in the response queue.

ArbitrationId NCTYPE_CAN_ARBID Zero to sixty-three.

DataLength NCTYPE_UINT8 Zero if the response is to subscribe to data. Actual length of

Data if the response is to publish data.

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-136 ni.com

Data Array of 8,

NCTYPE_UINT8

Ignored if DataLength is zero. Data to publish if

DataLength is non-zero.

Timestamp NCTYPE_ABS_TIME Ignored.

Table 11-37. FrameType Value NC_FRMTYPE_LIN_HEADER (17): LIN Header Frame

Field Name Data Type Description

FrameType NCTYPE_UINT8 Value 17 represents a header frame for LIN

communication. The behavior resulting from writing a

header type to the LIN interface depends upon whether

the NC_ATTR_LIN_SLEEP attribute is set to TRUE

or FALSE (the LIN interface is asleep or awake,

respectively).

If the NC_ATTR_LIN_SLEEP attribute is set to FALSE:

A header frame is issued when it is desired to use the

LIN interface as a master, querying a slave task to

publish data. Issuing a header frame causes the LIN

interface to write a break-sync-id sequence to the LIN

bus, with the expectation that a slave task will publish

data in response. Once a header frame is issued, the LIN

interface will behave as a master until the next time it is

started.

If the NC_ATTR_LIN_SLEEP attribute is set to TRUE:

A header frame is issued when the LIN interface has

been acting as a master (transmitting header and full

IsResponse types), has been put asleep, and is desired

to be used to wake the LIN bus and query a slave task to

publish data. Issuing a header frame causes the LIN

interface to write a wakeup break followed by

break-sync-id sequence to the LIN bus, with the

expectation that all slaves will wake up and a slave task

will publish data in response. The LIN interface also

sets the NC_ATTR_LIN_SLEEP attribute to FALSE.

ArbitrationId NCTYPE_CAN_ARBID Zero to sixty-three.

Table 11-36. FrameType Value NC_FRMTYPE_LIN_RESPONSE_ENTRY (16): LIN Response Entry Frame

Field Name Data Type Description

Chapter 11 Frame API for C

© National Instruments 11-137 NI-CAN Hardware and Software Manual

DataLength NCTYPE_UINT8 One to eight if the NC_ATTR_ENABLE_DLC_CHECK

attribute is set to 1 (TRUE). If the

NC_ATTR_ENABLE_DLC_CHECK attribute is set to 0

(FALSE), the data length is ignored.

Data Array of 8,

NCTYPE_UINT8

Ignored.

Timestamp NCTYPE_ABS_TIME Ignored.

Table 11-37. FrameType Value NC_FRMTYPE_LIN_HEADER (17): LIN Header Frame (Continued)

Field Name Data Type Description

Chapter 11 Frame API for C

NI-CAN Hardware and Software Manual 11-138 ni.com

Table 11-38. FrameType Value NC_FRMTYPE_LIN_FULL (18): LIN Full Frame

Field Name Data Type Description

FrameType NCTYPE_UINT8 Value 18 represents a full frame for LIN

communication. The behavior resulting from writing a

full type to the LIN interface depends upon whether

the NC_ATTR_LIN_SLEEP attribute is set to TRUE or

FALSE (the LIN interface is asleep or awake,

respectively).

If the NC_ATTR_LIN_SLEEP attribute is set to FALSE:

A full frame is issued when it is desired to use the LIN

interface as a master, publishing data to an external

slave. Issuing a full frame causes the LIN interface

slave task response queue to be updated, the master

task to write a header to the LIN bus, then the LIN

interface slave task to publish a response, with the

expectation that one or more external slaves will

subscribe to the data. Once a full frame is issued, the

LIN interface will behave as a master until the next

time it is started.

If the NC_ATTR_LIN_SLEEP attribute is set to TRUE:

A full frame is issued when the LIN interface has been

acting as a master (transmitting header and full

IsResponse types), has been put asleep, and is desired

to be used to wake the LIN bus and publish data to one

or more external slaves. Issuing a full frame causes the

LIN interface slave task response queue to be updated,

the master task to write a wakeup break followed by a

header to the LIN bus, then the LIN interface slave task

to publish a response, with the expectation that all

slaves will wake up and one or more external slaves

will subscribe to the published data. The LIN interface

also sets the NC_ATTR_LIN_SLEEP attribute to

FALSE.

ArbitrationId NCTYPE_CAN_ARBID Zero to sixty-three.

DataLength NCTYPE_UINT8 One to eight.

Data Array of 8,

NCTYPE_UINT8

Data to publish.

Timestamp NCTYPE_ABS_TIME Ignored.

© National Instruments A-1 NI-CAN Hardware and Software Manual

A
Troubleshooting and Common
Questions

This appendix describes how to troubleshoot problems with the NI-CAN

software and answers some common questions.

Troubleshooting with the Measurement & Automation
Explorer (MAX)

MAX contains configuration information for all CAN and LIN hardware

installed on the system. To start MAX, double-click on the Measurement

& Automation icon on the desktop. Your NI-CAN cards are listed in the

left pane (Configuration) under Devices and Interfaces.

You can test the CAN and LIN interfaces by choosing Tools»NI-CAN»

Test All Local Cards from the menu, or you can right-click on a CAN or

LIN interface and choose Self Test. If the Self Test fails, refer to the

Troubleshooting Self Test Failures section of this appendix.

If there is no National Instruments CAN Interfaces item, and you have

an NI-CAN card installed, refer to the Missing CAN or LIN Interface

section of this appendix.

Missing CAN or LIN Interface
If you have a CAN or LIN interface installed, but no interface appears in

the configuration section of MAX under Devices and Interfaces, you need

to search for hardware changes by pressing the <F5> key or choosing the

Refresh option from the View menu in MAX.

If the interface still doesn’t show up, you may have a resource conflict

in the Windows Device Manager. Refer to the documentation for the

Windows operating system for instructions on how to resolve the problem

using the Device Manager.

Appendix A Troubleshooting and Common Questions

NI-CAN Hardware and Software Manual A-2 ni.com

Troubleshooting Self Test Failures

The following sections explain common error messages generated by the

NI-CAN Self Test.

Note All references to NI-CAN hardware include CAN and LIN.

Application In Use
This error occurs if you are running an application that is already using the

NI-CAN card. The self test aborts in order to avoid adversely affecting the

application. Before running the self test, exit all applications that use

NI-CAN. If you are using LabVIEW, you may need to exit LabVIEW in

order to unload the NI-CAN driver.

Memory Resource Conflict
This error occurs if the memory resource assigned to an NI-CAN card

conflicts with the memory resources being used by other devices in the

system. Resource conflicts typically occur when the system contains legacy

boards that use resources not properly reserved with the Device Manager.

If a resource conflict exists, write down the memory resource that caused

the conflict and refer to the documentation for the Windows operating

system for instructions on how to use the Device Manager to reserve

memory resources for legacy boards. After the conflict has been resolved,

run the NI-CAN Self Test again.

Interrupt Resource Conflict
This error occurs if the interrupt resource assigned to an NI-CAN card

conflicts with the interrupt resources being used by other devices in the

system. Resource conflicts typically occur when the system contains legacy

boards that use resources not properly reserved with the Device Manager.

If a resource conflict exists, write down the interrupt resource that caused

the conflict and refer to the documentation for the Windows operating

system for instructions on how to use the Device Manager to reserve

interrupt resources for legacy boards. After the conflict has been resolved,

run the NI-CAN Self Test again.

Appendix A Troubleshooting and Common Questions

© National Instruments A-3 NI-CAN Hardware and Software Manual

NI-CAN Software Problem Encountered
This error occurs if the NI-CAN Self Test detects that it is unable to

communicate correctly with the NI-CAN hardware using the installed

NI-CAN software. If you get this error, shut down the computer, restart it,

and run the NI-CAN Self Test again.

If the error continues after restart, uninstall NI-CAN and then reinstall.

NI-CAN Hardware Problem Encountered
This error occurs if the NI-CAN Self Test detects a defect in the NI-CAN

hardware. If you get this error, write down the numeric code shown with the

error, and contact National Instruments.

Common Questions

How can I determine which version of the NI-CAN software is installed

on my system?

Within MAX, select My System»Software»NI-CAN within the

configuration window. The version is displayed at the right side next to the

configuration window.

How many CAN cards can I configure for use with my NI-CAN

software?

The NI-CAN software can be configured to communicate with up to

32 NI-CAN cards on all supported operating systems.

Are interrupts required for the NI-CAN cards?

Yes, one interrupt per card is required. However, PCI and PXI CAN cards

can share interrupts with other devices in the system.

How do I use a baud rate that is not listed by NI-CAN?

Within MAX, you select the baud rate in the Properties of each CAN port.

Select the Advanced button to specify an unlisted rate. Within the

application, you can use the hexadecimal baud rate of 0x8000zzyy, where

yy is the desired value for Bit Timing Register 0 (BTR0), and zz is the

desired value for Bit Timing Register 1 (BTR1) of the CAN controller. For

assistance with creating BTR values, use the advanced dialog referenced

for MAX.

Appendix A Troubleshooting and Common Questions

NI-CAN Hardware and Software Manual A-4 ni.com

Can I use the Channel API and the Frame API at the same time?

Yes, you can use the Channel API and the Frame API at the same time, but

only on different ports. For example, you can use the Frame API on port 1

of a 2-port NI-CAN card and the Channel API on port 2 of that card.

Can High-Speed NI-CAN cards and low-speed NI-CAN cards be used

on the same network?

No. This is not possible due to different termination requirements of

High-Speed and low-speed CAN devices. Refer to the High-Speed CAN

Pinout Cable and Low-Speed/Fault-Tolerant CAN Pinout Cable sections

of Chapter 4, Connectors and Cables, for more information.

Do NI-CAN cards support a listen-only mode?

Yes, Series 2, 847x, and 847x with Sync CAN interfaces support a

listen-only mode, where the CAN card does not interact with the CAN bus,

(that is, does not acknowledge incoming CAN frames).

Does the NI-CAN card provide power to the CAN bus?

No. To provide power to the CAN bus, you need an external power supply.

Why can’t I communicate with other devices on the CAN bus, even

though the self test in MAX passed?

If you have a Series 1 card, check the settings for the power source jumper.

The EXT position is required for low-speed cards; High-Speed cards

should have the power source jumper set to INT. For more information,

refer to Chapter 4, Connectors and Cables. If the jumper settings are

correct, or you are using Series 2 CAN cards, the network may have a

cabling or termination problem. Refer to Chapter 3, NI CAN and LIN

Hardware, for more information. In addition, consult the documentation

for the CAN nodes to ensure that the baud rate is exactly the same as you

specify in MAX and/or the application code.

Why are components left after the NI-CAN software is uninstalled?

The uninstall program removes only items that the installation program

installed. If you add anything to a directory that the installation program

created, the uninstall program does not delete that directory, because the

directory is not empty after the uninstallation. You must remove any

remaining components yourself.

Appendix A Troubleshooting and Common Questions

© National Instruments A-5 NI-CAN Hardware and Software Manual

Why do I not see the new feature properties in LabVIEW when I

upgrade to a newer NI-CAN driver version?

NI-CAN 2.4 (or newer) includes several new Frame API attributes. If you

have a LabVIEW VI written for an earlier version of NI-CAN, upgrading

to NI-CAN 2.4 (or newer) will not automatically update constants or

controls for the AttrId input. To use the new attributes, replace your older

constants and controls using the AttrId input of the updated NI-CAN VIs.

If you do not want to use new Frame API attributes, you can continue to use

the older constants and controls for compatibility. This issue does not apply

to the Channel API for LabVIEW. Because the Get/Set Property functions

are provided as polymorphic VIs, they are automatically updated.

What is special to NI USB 847x devices?

For USB-LIN interfaces, the LIN bus must be terminated. This is typically

done at the master node. For information about how to enable or disable

termination on the USB-LIN, refer to the ncSetAttribute function with

the Frame API.

The USB-LIN interfaces require external power of 8–18 V. For more

details on the power requirements, refer to the USB-LIN specifications

sections.

The USB LED quickly switches between green and amber when the

hardware is first detected.

If you are using the USB CAN or LIN products with a USB hub, the hub

must be powered.

Due to the inherent latencies of the Universal Serial Bus (USB), data or

states received by the NI USB 847x Series devices might be processed by

the driver on the host side later than data from a plug-in (PCI, PXI, or

PCMCIA) interface. This does not affect the timestamps, as those are

generated on the hardware, but could cause timeout failures with the

NI USB 847x Series devices that will not happen on plug-in hardware. To

avoid these failures, increase the timeout value for functions that perform a

wait for a certain state.

NI USB-847x devices do not support the NI-CAN Channel API.

NI USB-847x devices do not support the CAN Object-related subset of the

NI-CAN Frame API functions.

The following overview describes the subset of the Frame API features you

can use with USB CAN and USB LIN products. The overview applies to

LabVIEW, C/C++ and VB.

Appendix A Troubleshooting and Common Questions

NI-CAN Hardware and Software Manual A-6 ni.com

Supported functions:

• ncAction (refer to the limitations listed below)

• ncClose

• ncConnectTerminals/ncDisconnectTerminals (refer to the

limitations listed below)

• ncGetAttr/ncSetAttr (refer to the limitations listed below)

• ncOpen

• ncConfigCANNet (refer to the limitations listed below)

• ncReadNet/ncReadNetMult

• ncWaitForState (refer to the limitations listed below)

• ncWriteNet/ncWriteNetMult (refer to the limitations listed below)

Limitations:

• ncAction: The Output On RTSI Line action is not supported.

• ncConnectTerminals/ncDisconnectTerminals: For the devices

with synchronization, the following source/destination terminals are

supported:

– RTSI0: Used to import/export a start trigger from another device.

– RTSI7/RTSI Clock: Used to import/export a timebase from

another device.

– 20 MHz Timebase/Master Timebase: Used to export/import a

timebase to another device.

– Start Trigger: Used to export/import a start trigger to another

device.

• ncGetAttr/ncSetAttr: All CAN Object or RTSI-related properties

are not supported.

• ncConfigCANNet: Only the Baudrate and StartOnOpen attributes

are used; other values are ignored.

• ncWaitForState: The Read Multiple and Write Multiple states are

not supported.

• ncWriteNetMult: Timestamped transmit is not supported, so the

timestamp provided in the cluster is always ignored for USB products.

© National Instruments B-1 NI-CAN Hardware and Software Manual

B
Summary of the CAN Standard

This appendix provides a summary of the CAN standard.

History and Use of CAN

In the past few decades, advances in automotive technology have led to

increased use of electronic control systems for engine timing, anti-lock

brake systems, and distributorless ignition. With conventional wiring,

data is exchanged in these systems using dedicated signal lines. As the

complexity and number of devices has increased, using dedicated signal

lines becomes increasingly difficult and expensive.

To overcome the limitations of conventional automotive wiring, Bosch

developed the Controller Area Network (CAN) in the mid-1980s. Using

CAN, devices (controllers, sensors, and actuators) are connected on a

common serial bus. This network of devices can be thought of as a

scaled-down, real-time, low-cost version of networks used to connect

personal computers. Any device on a CAN network can communicate with

any other device using a common pair of wires.

As CAN implementations increased in the automotive industry, CAN was

standardized internationally as ISO 11898. CAN chips were created by

major semiconductor manufacturers such as Intel, Motorola, and Philips.

With these developments, manufacturers of industrial automation

equipment began to consider CAN for use in industrial applications.

Comparison of the requirements for automotive and industrial device

networks showed numerous similarities, including the transition away from

dedicated signal lines, low cost, resistance to harsh environments, and high

real-time capabilities.

Because of these similarities, CAN became widely used in photoelectric

sensors and motion controllers for textile machinery, packaging machines,

and production line equipment. By the mid-1990s, CAN was specified as

the basis of many industrial device networking protocols, including

DeviceNet, and CANopen.

Appendix B Summary of the CAN Standard

NI-CAN Hardware and Software Manual B-2 ni.com

With its growing popularity in automotive and industrial applications, CAN

has been increasingly used in a wide variety of diverse applications.

Use in agricultural equipment, nautical machinery, medical apparatus,

semiconductor manufacturing equipment, and machine tools testify to the

versatility of CAN.

CAN Identifiers and Message Priority

When a CAN device transmits data onto the network, an identifier that is

unique throughout the network precedes the data. The identifier defines not

only the content of the data, but also the priority.

When a device transmits a message onto the CAN network, all other

devices on the network receive that message. Each receiving device

performs an acceptance test on the identifier to determine if the message is

relevant to it. If the received identifier is not relevant to the device (such as

RPM received by an air conditioning controller), the device ignores the

message.

When more than one CAN device transmits a message simultaneously, the

identifier is used as a priority to determine which device gains access to the

network. The lower the numerical value of the identifier, the higher its

priority.

Figure B-1 shows two CAN devices attempting to transmit messages, one

using identifier 647 hex, and the other using identifier 6FF hex. As each

device transmits the 11 bits of its identifier, it examines the network to

determine if a higher-priority identifier is being transmitted simultaneously.

If an identifier collision is detected, the losing device(s) immediately stop

transmission, and wait for the higher-priority message to complete before

automatically retrying. Because the highest priority identifier continues

its transmission without interruption, this scheme is referred to as

nondestructive bitwise arbitration, and CAN’s identifier is often referred to

as an arbitration ID. This ability to resolve collisions and continue with

high-priority transmissions is one feature that makes CAN ideal for

real-time applications.

Appendix B Summary of the CAN Standard

© National Instruments B-3 NI-CAN Hardware and Software Manual

Figure B-1. Example of CAN Arbitration

CAN Frames

In a CAN network, the messages transferred across the network are called

frames. The CAN protocol supports two frame formats as defined in the

Bosch version 2.0 specifications, the essential difference being in the length

of the arbitration ID. In the standard frame format (also known as 2.0A),

the length of the ID is 11 bits. In the extended frame format (also known

as 2.0B), the length of the ID is 29 bits. Figure B-2 shows the essential

fields of the standard and extended frame formats, and the following

sections describe each field.

Figure B-2. Standard and Extended Frame Formats

1 Device A: ID = 11001000111 (647 hex)
2 Device B: ID = 11011111111 (6FF hex)
3 Device B Loses Arbitration; Device A Wins Arbitration and Proceeds
S = Start Frame B

S

S

Device B Loses Arbitration

Device A Wins Arbitration and Proceeds

Device A

ID = 11001000111 (647 hex)

Device B

ID = 11011111111 (6FF hex)

S = Start Frame Bit

Standard Frame Format

Extended Frame Format

S

O

F

R

T

R

I

D

E

A

C

K

11-Bit

Arbitration ID DLC 0–8 Data bytes 15-Bit CRC End of Frame

S

O

F

I

D

E

R

T

R

High 11 Bits

of Arbitration ID

Low 18 Bits

of Arbitration ID DLC 0–8 Data bytes

A

C

K
15-Bit CRC End of Frame

Appendix B Summary of the CAN Standard

NI-CAN Hardware and Software Manual B-4 ni.com

Start of Frame (SOF)
Start of Frame is a single bit (0) that marks the beginning of a CAN frame.

Arbitration ID
The arbitration ID fields contain the identifier for a CAN frame. The

standard format has one 11-bit field, and the extended format has two

fields, which are 11 and 18 bits in length. In both formats, bits of the

arbitration ID are transmitted from high to low order.

Remote Transmit Request (RTR)
The Remote Transmit Request bit is dominant (0) for data frames, and

recessive (1) for remote frames. Data frames are the fundamental means of

data transfer on a CAN network, and are used to transmit data from one

device to one or more receivers. A device transmits a remote frame to

request transmission of a data frame for the given arbitration ID. The

remote frame is used to request data from its source device, rather than

waiting for the data source to transmit the data on its own.

Identifier Extension (IDE)
The Identifier Extension bit differentiates standard frames from extended

frames. Because the IDE bit is dominant (0) for standard frames and

recessive (1) for extended frames, standard frames are always higher

priority than extended frames.

Data Length Code (DLC)
The Data Length Code is a 4-bit field that indicates the number of data

bytes in a data frame. In a remote frame, the Data Length Code indicates

the number of data bytes in the requested data frame. Valid Data Length

Codes range from zero to eight.

Data Bytes
For data frames, this field contains from 0 to 8 data bytes. Remote CAN

frames always contain zero data bytes.

Cyclic Redundancy Check (CRC)
The 15-bit Cyclic Redundancy Check detects bit errors in frames. The

transmitter calculates the CRC based on the preceding bits of the frame,

and all receivers recalculate it for comparison. If the CRC calculated by a

receiver differs from the CRC in the frame, the receiver detects an error.

Appendix B Summary of the CAN Standard

© National Instruments B-5 NI-CAN Hardware and Software Manual

Acknowledgment Bit (ACK)
All receivers use the Acknowledgment Bit to acknowledge successful

reception of the frame. The ACK bit is transmitted recessive (1), and

is overwritten as dominant (0) by all devices that receive the frame

successfully. The receivers acknowledge correct frames regardless of the

acceptance test performed on the arbitration ID. If the transmitter of the

frame detects no acknowledgment, it could mean that the receivers detected

an error (such as a CRC error), the ACK bit was corrupted, or there are no

receivers (for example, only one device on the network). In such cases, the

transmitter automatically retransmits the frame.

End of Frame
Each frame ends with a sequence of recessive bits. After the required

number of recessive bits, the CAN bus is idle, and the next frame

transmission can begin.

CAN Error Detection and Confinement

One of the most important and useful features of CAN is its high reliability,

even in extremely noisy environments. CAN provides a variety of

mechanisms to detect errors in frames. This error detection is used to

retransmit the frame until it is received successfully. CAN also provides an

error confinement mechanism used to remove a malfunctioning device

from the CAN network when a high percentage of its frames result in

errors. This error confinement prevents malfunctioning devices from

disturbing the overall network traffic.

Error Detection
Whenever any CAN device detects an error in a frame, that device transmits

a special sequence of bits called an error flag. This error flag is normally

detected by the device transmitting the invalid frame, which then

retransmits to correct the error. The retransmission starts over from the start

of frame, and thus arbitration with other devices can occur again.

CAN devices detect the following errors, which are described in the

following sections:

• Bit error

• Stuff error

• CRC error

• Form error

• Acknowledgment error

Appendix B Summary of the CAN Standard

NI-CAN Hardware and Software Manual B-6 ni.com

Bit Error
During frame transmissions, a CAN device monitors the bus on a bit-by-bit

basis. If the bit level monitored is different from the transmitted bit, a bit

error is detected. This bit error check applies only to the Data Length Code,

Data Bytes, and Cyclic Redundancy Check fields of the transmitted frame.

Stuff Error
Whenever a transmitting device detects five consecutive bits of equal value,

it automatically inserts a complemented bit into the transmitted bit stream.

This stuff bit is automatically removed by all receiving devices. The bit

stuffing scheme is used to guarantee enough edges in the bit stream to

maintain synchronization within a frame.

A stuff error occurs whenever six consecutive bits of equal value are

detected on the bus.

CRC Error
A CRC error is detected by a receiving device whenever the calculated

CRC differs from the actual CRC in the frame.

Form Error
A form error occurs when a violation of the fundamental CAN frame

encoding is detected. For example, if a CAN device begins transmitting the

Start Of Frame bit for a new frame before the End Of Frame sequence

completes for a previous frame (does not wait for bus idle), a form error is

detected.

Acknowledgment Error
An acknowledgment error is detected by a transmitting device whenever it

does not detect a dominant Acknowledgment Bit (ACK).

Error Confinement
To provide for error confinement, each CAN device must implement a

transmit error counter and a receive error counter. The transmit error

counter is incremented when errors are detected for transmitted frames, and

decremented when a frame is transmitted successfully. The receive error

counter is used for received frames in much the same way. The error

counters are increased more for errors than they are decreased for

successful reception/transmission. This ensures that the error counters will

generally increase when a certain ratio of frames (roughly 1/8) encounter

Appendix B Summary of the CAN Standard

© National Instruments B-7 NI-CAN Hardware and Software Manual

errors. By maintaining the error counters in this manner, the CAN protocol

can generally distinguish temporary errors (such as those caused by

external noise) from permanent failures (such as a broken cable). For

complete information on the rules used to increment/decrement the error

counters, refer to the CAN specification (ISO 11898).

With regard to error confinement, each CAN device may be in one of three

states: error active, error passive, and bus off.

Error Active State
When a CAN device is powered on, it begins in the error active state.

A device in error active state can normally take part in communication, and

transmits an active error flag when an error is detected. This active error

flag (sequence of dominant 0 bits) causes the current frame transmission to

abort, resulting in a subsequent retransmission. A CAN device remains in

the error active state as long as the transmit and receive error counters are

both below 128. In a normally functioning network of CAN devices,

all devices are in the error active state.

Error Passive State
If either the transmit error counter or the receive error counter increments

above 127, the CAN device transitions into the error passive state. A device

in error passive state can still take part in communication, but transmits

a passive error flag when an error is detected. This passive error flag

(sequence of recessive 1 bits) generally does not abort frames transmitted

by other devices. Since passive error flags cannot prevail over any activity

on the bus line, they are noticed only when the error passive device is

transmitting a frame. Thus, if an error passive device detects a receive error

on a frame which is received successfully by other devices, the frame is not

retransmitted.

One special rule to keep in mind: When an error passive device detects an

acknowledgment error, it does not increment its transmit error counter.

Thus, if a CAN network consists of only one device (for example, if you do

not connect a cable to the National Instruments CAN interface), and that

device attempts to transmit a frame, it retransmits continuously but never

goes into bus off state (although it eventually reaches error passive state).

Appendix B Summary of the CAN Standard

NI-CAN Hardware and Software Manual B-8 ni.com

Bus Off State
If the transmit error counter increments above 255, the CAN device

transitions into the bus off state. A device in the bus off state does not

transmit or receive any frames, and thus cannot have any influence on the

bus. The bus off state is used to disable a malfunctioning CAN device

which frequently transmits invalid frames, so that the device does not

adversely affect other devices on the network. When a CAN device

transitions to bus off, it can be placed back into error active state (with both

counters reset to zero) only by manual intervention. For sensor/actuator

types of devices, this often involves powering the device off then on. For

NI-CAN network interfaces, communication can be started again using an

API function.

Low-Speed CAN

Low-speed CAN is commonly used to control “comfort” devices in an

automobile, such as seat adjustment, mirror adjustment, and door locking.

It differs from “High-Speed” CAN in that the maximum baud rate is 125K

and it utilizes CAN transceivers that offer fault-tolerant capability. This

enables the CAN bus to keep operating even if one of the wires is cut or

short-circuited because it operates on relative changes in voltage, and thus

provides a much higher level of safety. The transceiver solves many

common and frequent wiring problems such as poor connectors, and also

overcomes short circuits of either transmission wire to ground or battery

voltage, or the other transmission wire. The transceiver resolves the fault

situation without involvement of external hardware or software. On the

detection of a fault, the transceiver switches to a one wire transmission

mode and automatically switches back to differential mode if the fault is

removed.

Special resistors are added to the circuitry for the proper operation of the

fault-tolerant transceiver. The values of the resistors depend on the number

of nodes and the resistance values per node. For guidelines on selecting the

resistor, refer to the Low-Speed/Fault-Tolerant CAN Pinout Cable section

of Chapter 4, Connectors and Cables.

Because the low-speed transceiver switches to a fault tolerant mode on fault

detection and continues to maintain communications, NI-CAN provides a

special attribute, Log Comm Warnings, which when set to true enables the

reporting of such warnings in the Read queue of the Network Interface

rather than in the status returned from a function call. The default value of

this attribute is false, which enables the reporting of low-speed transceiver

warnings in the status returned from a function call.

© National Instruments C-1 NI-CAN Hardware and Software Manual

C
Summary of the LIN Standard

This appendix provides a summary of the LIN standard.

History and Use of LIN

LIN (Local Interconnect Network) was developed to create a standard for

low-cost, low-end multiplexed communication in automotive networks.

Whereas CAN addressed the need for high bandwidth, advanced

error-handling networks, the hardware and software costs of CAN

implementation became prohibitive for lower performance devices like

power window and seat controllers. LIN provides cost efficient

communication in applications where the bandwidth and versatility of

CAN are not required. LIN can be implemented relatively inexpensively

using the standard serial UART embedded into most modern low-cost 8-bit

microcontrollers.

LIN Frame Format

LIN is a polled bus with a single master device and one or more slave

devices. The master device contains both a master task and a slave task.

Each slave device contains only a slave task. Communication over the LIN

is controlled entirely by the master task in the master device.

The basic unit of transfer on the LIN bus is the frame, which is divided into

a header and a response. The header is always transmitted by the master

node and consists of three distinct fields: the Break, the Synchronization

Field (Sync), and Identifier Field (ID). The response is transmitted by a

slave task (which can reside in either the master node or a slave node) and

consists of a data payload and a checksum.

Normally, the master task polls each slave task in a loop by transmitting a

header, which consists of a Break-Sync-ID sequence. Prior to starting the

LIN, each slave task is configured to either publish data to the bus or

subscribe to data in response to each received header ID. Upon receiving

the header, each slave task verifies ID parity and then checks the ID to

determine whether it needs to publish or subscribe. If the slave task needs

to publish a response, it transmits 1–8 data bytes to the bus followed by a

Appendix C Summary of the LIN Standard

NI-CAN Hardware and Software Manual C-2 ni.com

checksum byte. If the slave task needs to subscribe, it reads the data payload

and checksum byte from the bus and takes appropriate internal action. For

standard slave-to-master communication, the master will broadcast the

identifier to the network, and one and only one slave will respond with a

data payload.

Master-to-slave communication is accomplished by a separate slave task

which exists in the master node. This task self-receives all data published

to the bus and responds as if it were an independent slave node. To transmit

data bytes, the master must first update its internal slave task’s response

with the data values it wants to transmit. The master would then publish the

appropriate frame header and the internal slave task would transmit its data

payload to the bus.

Break
Every LIN frame begins with the Break, comprised of 13 dominant bits

(nominal) followed by a break delimiter of one bit (nominal) recessive.

This serves as a start-of-frame notice to all nodes on the bus.

Sync
The Sync field is the second field transmitted by the master task in the

header. Sync is defined as the character x55. The Sync field allows slave

devices that perform automatic baud rate detection to measure the period of

the baud rate and adjust their internal baud rate to synchronize with the bus.

ID
The ID field is the final field transmitted by the master task in the header.

This field provides identification for each message on the network and

ultimately determines which nodes in the network receive or respond to

each transmission. All slave tasks continually listen for Identifier Fields,

verify their parity and determine if they are publishers or subscribers for

this particular identifier. LIN provides a total of 64 IDs. IDs 0–59 are used

for signal-carrying (data) frames, 60–61 are used to carry diagnostic data,

62 is reserved for user-defined extensions, and 63 is reserved for future

protocol enhancements. The ID is transmitted over the bus as one protected

ID byte, with the lower 6 bits containing the raw ID and the upper two bits

containing the parity.

Appendix C Summary of the LIN Standard

© National Instruments C-3 NI-CAN Hardware and Software Manual

Figure C-1 shows how parity is calculated using the raw ID, and how the

protected ID is formed from the combination of the parity bits and raw ID.

Figure C-1. Parity Calculation Method

Data Bytes
The Data Bytes field is transmitted by the slave task in the response.

This field contains from 1 to 8 bytes of payload data bytes.

Checksum
The Checksum field is transmitted by the slave task in the response. LIN

defines the use of one of two checksum algorithms to calculate the value in

the 8-bit checksum field. Classic checksum is calculated by summing the

data bytes alone, while Enhanced checksum is calculated by summing the

data bytes and the protected ID.

The LIN 2.0 specification defines the checksum calculation process as the

summing of all values and subtraction of 255 every time the sum is greater

than or equal to 256 (unlike modulo-255 or modulo-256). Per the LIN 2.0

specification, classic checksum is for use with LIN 1.3 slave nodes and

enhanced checksum with LIN 2.0 slave nodes. It further specifies that IDs

60–63 shall always use classic checksum. The NI LIN interface provides an

attribute to set the checksum type to classic or enhanced. The default setting

is classic. Per the LIN 2.0 specification, IDs 60–63 always use classic

checksum, regardless of the setting of the checksum attribute.

Protected ID(7:6) Protected

ID(5:0)

P(1) P(0) ID(5:0)

¬ (ID(1) ⊕ ID(3) ⊕ ID(4) ⊕ ID(5)) ID(0) ⊕ ID(1) ⊕ ID(2) ⊕ ID(4) 0–63

Appendix C Summary of the LIN Standard

NI-CAN Hardware and Software Manual C-4 ni.com

Figure C-2 illustrates how a master task header and a slave task response

combine to create a LIN full frame.

Figure C-2. Creation of LIN Full Frames

LIN Bus Timing

As LIN is a polled bus, processing of each frame is allocated a nominal time

slot as follows:

THeader_Nominal = 34 * TBit

TResponse_Nominal = 10 * (NData + 1) * TBit

TFrame_Nominal = THeader_Nominal + TResponse_Nominal

Processing of each frame is allocated a maximum time slot as follows:

THeader_Maximum = 14 * THeader_Nominal

TResponse_Maximum = 1.4 * TResponse_Nominal

TFrame_Maximum = THeader_Maximum + TResponse_Maximum

Break Sync ID=0

Break Sync ID=1

Break Sync ID=0 Data Bytes Checksum

Break Sync ID=1 Data Bytes Checksum

Data Bytes Checksum

Data Bytes Checksum

T1 : Master task transmits header for ID 0;

T2 : Upon receiving the header, the

 slave task configured to publish

 data for ID 0 transmits a response.

T3 : Master task transmits header for ID 1;

T4 : Upon receiving the header, the

 slave task configured to publish

 data for ID 1 transmits a response.
The inter-frame delay for each ID

is specified in the schedule table.

Resulting full LIN frame:

Appendix C Summary of the LIN Standard

© National Instruments C-5 NI-CAN Hardware and Software Manual

LIN Topology and Behavior

The LIN bus connects a single master device (node) and one or more slave

devices (nodes) together in what is called a LIN cluster. The behavior of

each node is described by its own node capability file. The node capability

files are inputs to a system defining tool, which generates a LIN description

file (LDF) that describes the behavior of the entire cluster. The LDF is

parsed by a System Generator to automatically generate the specified

behavior in the desired nodes. At this point, the master node master task

starts transmitting headers on the bus, and all the slave tasks in the cluster

(including the master node’s own slave task) respond, as specified in

the LDF.

In general terms, the LDF is used to configure and create the scheduling

behavior of the LIN cluster. For example, it defines the baud rate, the

ordering and time delays for the master task’s transmission of headers, and

the behavior of each slave task in response. The NI-CAN Frame API for

LIN and NI LIN hardware do not natively provide full support for LDFs,

meaning that scheduling behavior cannot be downloaded into the hardware.

However, the low-level support of accessing the bus (writing headers and

publishing or subscribing to responses) is provided such that the user may

create this scheduling behavior at the application level. As mentioned in the

description for the NI LIN response entry frame type, the NI LIN hardware

does provide a response queue for storing slave task responses. The

response queue holds 64 responses, one for each of the maximum number

of 64 IDs specified for LIN. This ensures that the LIN interface slave task

can respond to headers within the response time defined by the LIN

specification.

The NI-CAN Frame API for LIN provides a robust means of complete,

low-level interaction with the LIN bus. This provides the end user with the

basic functionality from which to develop complex applications involving

the analysis and prototyping of LIN networks. The NI-CAN Frame API for

LIN does not natively support LIN diagnostics or configuration, LIN

Description Files or schedule tables. However, these tasks may be

implemented in applications making use of the NI-CAN Frame API

for LIN.

Appendix C Summary of the LIN Standard

NI-CAN Hardware and Software Manual C-6 ni.com

LIN Error Detection and Confinement

The LIN 2.0 specification specifies that error detection should be handled

by the slave tasks and that monitoring of errors by the master task is not

required. The LIN 2.0 specification does not require handling of multiple

errors within one LIN frame or the use of error counters. Upon

encountering the first error in a frame, the slave task aborts processing of

the frame until the detection of the next Break-Sync sequence (in the next

header transmitted by the master). If the log bus errors attribute is set true,

a bus error frame is logged into the read queue. If the log bus errors attribute

is set false, an error is returned by ncWriteNet or ncWriteNetMult.

LIN also provides for error reporting to the network. The LIN 2.0

specification defines a Response_Error status bit, which the slave is

required to report to the master in one of its transmitted frames. This bit is

set whenever a frame received or transmitted by a slave node contains an

error in the response field. The bit is cleared after it is transmitted in one of

the slaves published responses. The NI-CAN Frame API for LIN does not

natively support the Response_Error status bit, but provides the end user

with a means to easily implement this functionality at the application level.

The procedure is to set the log bus errors attribute equal to one, to enable

logging of bus error frames in the read queue. The application can then

monitor for a read of a bus error frame with the error code indicating an

error in the response. Upon this condition, the application can set a

Response_Error status bit in a local variable. The application can then use

the NI LIN response entry frame type to update the slave response queue

with data containing the Response_Error status bit and then clear the bit in

the local variable.

LIN Sleep and Wakeup

LIN provides a mechanism for devices to enter sleep state and potentially

conserve power. Per the LIN 2.0 specification, all slaves may be forced into

sleep mode by the master sending a diagnostic master request frame

(ID=60) with the first data byte equal to zero. This special frame is called

the go-to-sleep command. Slaves shall also automatically enter sleep mode

if the LIN is inactive for more than 4 seconds.

The NI-CAN Frame API for LIN provides great flexibility by allowing the

user to put the LIN interface to sleep as desired at the application level.

Upon receiving a full frame containing a sleep request message, or a bus

inactive frame indicating 4 seconds of bus inactivity, the user may choose

Appendix C Summary of the LIN Standard

© National Instruments C-7 NI-CAN Hardware and Software Manual

to put the LIN interface to sleep by setting the LIN Sleep attribute to

TRUE.

LIN also provides a mechanism for waking devices on the bus. Wakeup is

one task that may be initiated by any node on the bus (a slave as well as the

master). Per the LIN 2.0 specification, the wakeup request is issued by

forcing the bus dominant for 250 microseconds to 5 milliseconds. Each

slave should detect the wakeup request and be ready to process headers

within 100 milliseconds. The master should also detect the wakeup request

and start sending headers when the slave nodes are ready (within 100 to

150 milliseconds after receiving the wakeup request). If the master does not

issue headers within 150 milliseconds after receiving the first wakeup

request, then the slave requesting wakeup may try issuing a second wakeup

request (and waiting for another 150 milliseconds). If the master still

does not respond, the slave may issue the wakeup request and wait

150 milliseconds a third time. If there is still no response, the slave must

wait for 1.5 seconds before issuing a forth wakeup request. The NI-CAN

Frame API for LIN allows wakeup to be performed according to the LIN

2.0 specification regardless of whether the LIN interface is operating as a

master or slave.

Advanced Frame Types

The LIN 2.0 specification further classifies LIN frames into six types

(unconditional, event triggered, sporadic, diagnostic, user-defined, and

reserved). It is important to note that the differences in these frame types

are due to either the timing of how they are transmitted or the content of the

data bytes. Regardless of frame classification, a full LIN frame always

consists of a header transmitted by the master task and a response

transmitted by a slave task. The NI-CAN Frame API for LIN can address

the needs of handling each of these LIN-specified frame types.

The unconditional frame type is most commonly used. Unconditional

frames carry signals (data) and their identifiers are in the range of 0–59.

The event triggered frame type attempts to conserve bus bandwidth by

requesting an unconditional frame response from multiple slaves within

one frame slot time.

The event triggered frame may have an ID in the range of 0–59. Each slave

that could potentially respond to the event triggered header ID has its first

data byte loaded with the protected ID it would respond to if the master was

querying it for an unconditional frame. The event triggered frame works as

follows. The master writes an event triggered ID in a header. The slaves

may only respond to the event triggered ID if their data has been updated.

Appendix C Summary of the LIN Standard

NI-CAN Hardware and Software Manual C-8 ni.com

If only one slave publishes a response, then the master receives it and

looking at the first data byte, knows from which slave (through the

protected ID), it was received. If multiple slaves publish a response then a

collision will occur, which the master device slave task will report as a bus

error. The master device will then query a response from each slave using

unconditional frames.

Sporadic frames attempt to provide some dynamic behavior to the LIN.

Sporadic frames always carry signals (data) and their IDs are in the range

of 0–59. The header of a sporadic frame should only be sent in it frame slot

when the master task know that a data value (signal) within the frame has

been updated. This requirement makes the master device slave task the

normal publisher of sporadic frame responses.

Diagnostic frames are always eight data bytes in length, and always carry

diagnostic or configuration data. Their ID is either 60 for a master request

frame, or 61 for a slave response frame. User defined frames have an ID of

62 and may carry any type of information. Reserved frames have an ID of

63 and must not be used in a LIN 2.0 cluster.

Additional LIN Information

For further details of the LIN specification, visit the LIN consortium

website at www.lin-subbus.org.

© National Instruments D-1 NI-CAN Hardware and Software Manual

D
Frame Types for CAN and
LIN Hardware

Table D-1. Frame Types for CAN Hardware

Value

Frame

Type ncReadNet ncReadNetMult ncWriteNet ncWriteNetMult

0 CAN Data

Frame

Series 1, Series

2, 847x, 847x

with Sync

Series 1, Series 2,

847x, 847x with

Sync

Series 1, Series 2,

847x, 847x with

Sync

Series 1, Series 2,

847x, 847x with

Sync

1 CAN

Remote

Frame

Series 2, 847x,

847x with Sync

Series 2, 847x,

847x with Sync

Series 1, Series 2,

847x, 847x with

Sync

Series 1, Series 2,

847x, 847x with

Sync

2 Comm

Warning

Series 1,

Series 2

Series 1,

Series 2

— —

3 RTSI

Frame

Series 1,

Series 2

Series 1,

Series 2

— —

4 Start

Trigger

Frame

Series 1,

Series 2, 847x,

847x with Sync

Series 1, Series 2,

847x, 847x with

Sync

— Series 1,

Series 2

5 Delay

Frame

— — — Series 1,

Series 2

6 Bus Error

Frame

Series 2, 847x,

847x with Sync

Series 2, 847x,

847x with Sync

— —

7 Transceiver

Faults

Series 1,

Series 2, 847x,

847x with Sync

Series 1, Series 2,

847x, 847x with

Sync

— —

1—The hardware is listed by Series.

Appendix D Frame Types for CAN and LIN Hardware

NI-CAN Hardware and Software Manual D-2 ni.com

Table D-2. Frame Types for LIN Hardware

Value

Frame

Type ncReadNet ncReadNetMult ncWriteNet ncWriteNetMult

4 Start

Trigger

Frame

847x, 847x

with Sync

(Master/Slave)

847x, 847x

with Sync

(Master/Slave)

— —

16 LIN

Response

Entry

Frame

— — 847x, 847x with

Sync (Slave)

847x, 847x with

Sync (Slave)

17 LIN Header

Frame

— — 847x, 847x with

Sync (Master)

847x, 847x with

Sync (Master)

18 LIN Full

Frame

847x, 847x with

Sync (Slave)

847x, 847x with

Sync (Slave)

847x, 847x with

Sync

(Master/Slave)

847x, 847x with

Sync

(Master/Slave)

19 LIN

Wakeup

Received

Frame

847x, 847x

with Sync

(Master/Slave)

847x, 847x

with Sync

(Master/Slave)

— —

20 LIN Bus

Inactive

Frame

847x, 847x with

Sync (Slave)

847x, 847x with

Sync (Slave)

— —

21 LIN Bus

Error Frame

847x, 847x

with Sync

(Master/Slave)

847x, 847x

with Sync

(Master/Slave)

— —

1—The hardware is listed by Series.

2—Master and Slave refer to the Master and Slave tasks of the hardware.

© National Instruments E-1 NI-CAN Hardware and Software Manual

E
Specifications

This appendix describes the physical characteristics of the CAN hardware,

along with the recommended operating conditions.

PCI-CAN Series 2

This section lists specifications for PCI-CAN Series 2 hardware.

Power Requirement
+5 VDC (±5%)

PCI-CAN .. 800 mA typical

PCI-CAN/2 850 mA typical

PCI-CAN/LS................................... 800 mA typical

PCI-CAN/LS2................................. 850 mA typical

PCI-CAN/SW 750 mA typical

PCI-CAN/SW2 800 mA typical

PCI-CAN/XS 800 mA typical

PCI-CAN/XS2 900 mA typical

Physical
Dimensions... 20.70 cm × 11.18 cm

(8.150 in. × 4.4 in.)

I/O connector.. 9-pin male D-SUB for each port

Operating Environment
Ambient temperature.............................. 0 to 55 °C

Relative humidity 10 to 90%, noncondensing

Appendix E Specifications

NI-CAN Hardware and Software Manual E-2 ni.com

Storage Environment
Ambient temperature–20 to 70 °C

Relative humidity5 to 95%, noncondensing

Optical Isolation
Isolation up to 60 VDC (continuous) channel-to-bus, port-to-port (two-port

devices only).

This isolation is intended to prevent ground loops.

RTSI
Trigger lines..7 input/output

Clock lines ..1 input/output

I/O compatibility.....................................TTL

Power-on state ..Input (High-Z)

Response ...Rising Edge Triggers

High-Speed CAN
Transceiver ...Philips TJA1041

Max baud rate ...1 Mbps

Min baud rate..40 kbps

CAN_H, CAN_L bus lines–27 to +40 VDC

VBAT power requirement

(jumper set to EXT)+8 to +27 VDC

on V+ connector pin

(referenced to V–)

Low-Speed/Fault-Tolerant CAN
Transceiver ..Philips TJA1054A

Max baud rate ...125 kbps

Appendix E Specifications

© National Instruments E-3 NI-CAN Hardware and Software Manual

Min baud rate ... 5 kbps,

10 kbps min for all error modes

CAN_H, CAN_L bus lines –27 to +40 VDC

VBAT power requirement

(jumper set to EXT) +8 to +27 VDC

on V+ connector pin

(referenced to V–)

Single Wire CAN
Transceiver... Philips AU5790

Max baud rate... 33.3 kbps

(normal transmission mode),

83.3 kbps

(High-Speed transmission mode)

Min baud rate ... 5 kbps,

10 kbps min for all error modes

CAH_H bus line..................................... –10 to +18 VDC

VBAT power requirement

(always required).................................... +8 to +18 VDC

(12 VDC recommended)

on V+ connector pin

(referenced to V–)

XS Software Selectable
Relay service life

Mechanical...................................... 50,000,000 operations min.

(at 36,000 operations per hour)

External mode digital I/O characteristics

MODE0, MODE1—digital outputs

STATUS—digital input

Level Min Max

VIL 0.0 V 0.8 V

VIH 2.0 V (typ) 5.0 V

Appendix E Specifications

NI-CAN Hardware and Software Manual E-4 ni.com

PXI-846x Series 2

This section lists specifications for PXI-846x Series 2 hardware.

Power Requirement
+5 VDC (±5%)

PXI-8461 (1 port)800 mA typical

PXI-8461 (2 ports)...........................850 mA typical

PXI-8460 (1 port)800 mA typical

PXI-8460 (2 ports)...........................850 mA typical

PXI-8464 (1 port)850 mA typical

PXI-8464 (2 ports)...........................900 mA typical

Physical
Dimensions ...16.0 cm × 10.0 cm

(6.3 in. × 3.9 in.)

I/O connector ..9-pin male D-SUB for each port

Operating Environment
Ambient temperature0 to 55 °C

Relative humidity10 to 90%, noncondensing

(Tested in accordance with IEC-60068-2-1, IEC-60068-2-2,

IEC-60068-2-56.)

Storage Environment
Ambient temperature–20 to 70 °C

Relative humidity5 to 95%, noncondensing

(Tested in accordance with IEC-60068-2-1, IEC-60068-2-2,

IEC-60068-2-56.)

VOL (IOL = 32 mA) — 0.55 V

VOH (IOH = –32 mA) 3.8 V —

Level Min Max

Appendix E Specifications

© National Instruments E-5 NI-CAN Hardware and Software Manual

Functional Shock
30 g peak, half-sine, 11 ms pulse

(Tested in accordance with IEC-60068-2-27. Test profile developed in

accordance with MIL-T-28800E.)

Random Vibration
Operating.. 5 to 500 Hz, 0.3 grms

Nonoperating.. 5 to 500 Hz, 2.4 grms

(Tested in accordance with IEC-60068-2-64. Nonoperating test profile

developed in accordance with MIL-T-28800E and MIL-STD-810E

Method 514.)

Optical Isolation
Isolation up to 60 VDC (continuous) channel-to-bus, port-to-port (two-port

devices only).

This isolation is intended to prevent ground loops.

PXI Trigger Bus
Trigger lines ... 7 input/output

PXI_Star trigger 1 input

Clock lines.. 1 input/output

PXI_Clk10 ... 1 input

I/O compatibility TTL

Power-on state.. Input (High-Z)

Response .. Rising Edge Triggers

High-Speed CAN
Transceiver... Philips TJA1041

Max baud rate... 1 Mbps

Min baud rate ... 40 kbps

Appendix E Specifications

NI-CAN Hardware and Software Manual E-6 ni.com

CAN_H, CAN_L bus lines–27 to +40 VDC

VBAT power requirement

(jumper set to EXT)+8 to +27 VDC

on V+ connector pin

(referenced to V–)

Low-Speed/Fault-Tolerant CAN
Transceiver ...Philips TJA1054A

Max baud rate ...125 kbps

Min baud rate..5 kbps,

10 kbps min for all error modes

CAN_H, CAN_L bus lines–27 to +40 VDC

VBAT power requirement

(jumper set to EXT)+8 to +27 VDC

on V+ connector pin

(referenced to V–)

Single Wire CAN
Transceiver ..Philips AU5790

Max baud rate ...33.3 kbps

(normal transmission mode),

83.3 kbps

(High-Speed transmission mode)

Min baud rate..5 kbps,

10 kbps min for all error modes

CAH_H bus line–10 to +18 VDC

VBAT power requirement

(always required)+8 to +18 VDC (12 VDC typical)

on V+ connector pin

(referenced to V–)

Appendix E Specifications

© National Instruments E-7 NI-CAN Hardware and Software Manual

XS Software Selectable
Relay service life

Mechanical...................................... 50,000,000 operations min.

(at 36,000 operations per hour)

External mode digital I/O characteristics

MODE0, MODE1—digital outputs

STATUS—digital input

PCMCIA-CAN Series 2

This section lists specifications for PCMCIA-CAN Series 2 hardware.

Power Requirement
+5 VDC (±5%)

PCMCIA-CAN 350 mA typical; active

1-port PCMCIA-CAN

internal power cable........................ +55 mA typical

PCMCIA-CAN/2 350 mA typical; active

2-port PCMCIA-CAN

internal power cable........................ +115 mA typical

Physical
Dimensions... 8.56 cm × 5.40 cm × 0.5 cm

(3.4 in. × 2.1 in. × 0.2 in.)

I/O connector.. PCMCIA-CAN cable with 9-pin

male D-SUB and pluggable screw

terminal for each port

Level Min Max

VIL 0.0 V 0.8 V

VIH 2.0 V (typ) 5.0 V

VOL (IOL = 32 mA) — 0.55 V

VOH (IOH = –32 mA) 3.8 V —

Appendix E Specifications

NI-CAN Hardware and Software Manual E-8 ni.com

Operating Environment
Ambient temperature0 to 55 °C

Relative humidity10 to 90%, noncondensing

(Tested in accordance with IEC-60068-2-1, IEC-60068-2-2,

EC-60068-2-56.)

Storage Environment
Ambient temperature–20 to 70 °C

Relative humidity5 to 95%, noncondensing

(Tested in accordance with IEC-60068-2-1, IEC-60068-2-2,

EC-60068-2-56.)

Optical Isolation
Isolation up to 60 VDC (continuous) channel-to-bus, port-to-port (two-port

devices only) in PCMCIA-CAN cables.

This isolation is intended to prevent ground loops.

Synchronization Triggers
Trigger lines..4 input/output (TRIG_0-TRIG_3)

Clock lines ..1 input (TRIG7_CLK)

I/O compatibility.....................................TTL

Power-on state ..Input (High-Z)

Response ...Rising Edge Triggers

Level Min Max

VIL –0.5 V 0.8 V

VIH 1.7 V 5.75 V

VOL (IOL = 8 mA) — 0.45 V

VOH (IOH = 8 mA) 2.4 V —

Appendix E Specifications

© National Instruments E-9 NI-CAN Hardware and Software Manual

High-Speed Transceiver Cable
Transceiver... Philips TJA1041

Max baud rate... 1 Mbps

Min baud rate ... 40 kbps

CAN_H, CAN_L bus lines –27 to +40 VDC

Power requirements................................ Internally powered

Low-Speed/Fault-Tolerant Transceiver Cable
Transceiver... Philips TJA1054A

Max baud rate... 125 kbps

Min baud rate ... 5 kbps,

10 kbps min for all error modes

CAN_H, CAN_L bus lines –27 to +40 VDC

Power requirements................................ Internally powered

Single-Wire Cable
Transceiver... Philips AU5790

Max baud rate... 33.3 Kbps

(normal transmission mode),

83.3 Kbps

(High-Speed transmission mode)

Min baud rate ... 5 kbps,

10 kbps min for all error modes

CAN_H bus line..................................... –10 to +18 VDC

Power requirement

(always required).................................... +8 to +18 VDC

(12 VDC recommended)

on V+ connector pin

(referenced to V–)

Appendix E Specifications

NI-CAN Hardware and Software Manual E-10 ni.com

USB-CAN and USB-LIN

This section lists specifications for USB-CAN and USB-LIN hardware.

Power Requirement
+5 VDC (±5%)

USB-CAN..250 mA typical

USB-LIN ...200 mA typical

Physical
Dimensions

Non-Sync...7.87 cm × 6.35 cm × 2.54 cm

(3.1 in. × 2.5 in.×y 1.0 in.)

Sync ...7.87 cm × 7.11 cm × 2.54 cm

(3.1 in. × 2.8 in. × 1.0 in.)

Cable length ..2 m

I/O connector ..9-pin male D-SUB,

Optional 3-pin Combicon

for synchronization

Operating Environment
Ambient temperature0 to 55 °C

Relative humidity10 to 90%, noncondensing

(Tested in accordance with IEC-60068-2-1, IEC-60068-2-2,

IEC-60068-2-56.)

Storage Environment
Ambient temperature–20 to 70 °C

Relative humidity5 to 95%, noncondensing

(Tested in accordance with IEC-60068-2-1, IEC-60068-2-2,

IEC-60068-2-56.)

Appendix E Specifications

© National Instruments E-11 NI-CAN Hardware and Software Manual

Optical Isolation
Isolation up to 500 VDC (withstand, 2 s max) channel-to-bus, port-to-port

(two-port devices only)

Synchronization Triggers (USB-8472s, USB-8473s,
and USB-8476s only)

Trigger lines ... 1 input/output

Clock lines.. 1 input/output

Input clock tolerance

1 MHz ... Frequency: ±1%

Duty Cycle: 25% to 75%

10 MHz ... Frequency: ±1%

Duty Cycle: 25% to 75%

20 MHz ... Frequency: ±1%

Duty Cycle: 40% to 53%

I/O compatibility TTL

Power-on state.. Input (High-Z)

Response .. Rising Edge Triggers

High-Speed CAN
Transceiver... Philips TJA1041

Max baud rate... 1 Mbps

Min baud rate ... 40 kbps

CAN_H, CAN_L bus lines –27 to +40 VDC

Low-Speed/Fault-Tolerant CAN
Transceiver... Philips TJA1054A

Max baud rate... 125 kbps

Min baud rate ... 5 kbps,

10 kbps min for all error modes

CAN_H, CAN_L bus lines –27 to +40 VDC

Appendix E Specifications

NI-CAN Hardware and Software Manual E-12 ni.com

LIN
Transceiver ..AMTEL ATA6625

Max baud rate ...20 kbps

Min baud rate..2.4 kbps

VBAT power requirement

(always required)+5 to +27 VDC (ATA6625),

+8 to +18 VDC (ATA6620)

(12 VDC typical)

on V+ connector pin

(referenced to V–)

Safety
This product is designed to meet the requirements of the following

standards of safety for electrical equipment for measurement, control,

and laboratory use:

• IEC 60950-1, EN 60950-1

• UL 60950-1, CSA 60950-1

Note For UL and other safety certifications, refer to the product label or the Online

Product Certification section.

Pollution Degree.....................................2

Maximum altitude...................................2,000 m

Indoor use only.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for

electrical equipment for measurement, control, and laboratory use:

• EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity

• EN 55011 (CISPR 11): Group 1, Class A emissions

• AS/NZS CISPR 11: Group 1, Class A emissions

• FCC 47 CFR Part 15B: Class A emissions

• ICES-001: Class A emissions

Appendix E Specifications

© National Instruments E-13 NI-CAN Hardware and Software Manual

Caution When operating this product, use shielded cables and accessories.

Note For EMC declarations and certifications, refer to the Online Product Certification

section.

CE Compliance
This product meets the essential requirements of applicable European

Directives as follows:

• 2006/95/EC; Low-Voltage Directive (safety)

• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification
To obtain product certifications and the DoC for this product, visit

ni.com/certification, search by model number or product line, and

click the appropriate link in the Certification column.

Environmental Management
NI is committed to designing and manufacturing products in an

environmentally responsible manner. NI recognizes that eliminating

certain hazardous substances from our products is beneficial to the

environment and to NI customers.

For additional environmental information, refer to the Minimize Our

Environmental Impact web page at ni.com/environment. This page

contains the environmental regulations and directives with which NI

complies, as well as other environmental information not included in this

document.

Waste Electrical and Electronic Equipment (WEEE)
EU Customers At the end of the product life cycle, all products must be sent to a WEEE

recycling center. For more information about WEEE recycling centers, National

Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on

Waste and Electronic Equipment, visit ni.com/environment/weee.

RoHS

National Instruments (RoHS)
National Instruments RoHS ni.com/environment/rohs_china

(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

© National Instruments F-1 NI-CAN Hardware and Software Manual

F
NI-XNET Compatibility for
NI-CAN

Overview and Purpose

NI-XNET is the new series of National Instruments CAN/LIN and

FlexRay-capable hardware, with significantly increased performance and

additional capabilities over the previous NI-CAN hardware. The new

hardware includes a new NI-XNET API that can use the new features

directly. As a result, a native NI-XNET application provides optimal

performance and can be significantly faster than the same application on

Series 2. This also means that existing software that uses the NI-CAN APIs

is not compatible with the new NI-XNET API.

The NI-XNET Compatibility Library for NI-CAN is a software layer added

as part of NI-XNET. This software layer enables code that uses Frame or

Channel APIs to work with NI-XNET CAN (not LIN or FlexRay) PCI and

PXI and NI-XNET CAN and LIN USB hardware, where compatibility

between the older APIs and the new driver and hardware is possible. As a

result, you can use the new NI-XNET hardware under the more limited

capabilities of the previous APIs, while you can develop NI-XNET native

versions to take advantage of greater native performance. Even without

native NI-XNET code, the side-by-side performance of the same NI-CAN

code using NI-XNET hardware under compatibility can provide an upgrade

over older hardware.

Installation and Configuration

To use NI-XNET devices as NI-CAN-compatible devices, install NI-CAN

2.7 or higher and NI-XNET 1.0 or higher with the NI-XNET Compatibility

Library for NI-CAN feature enabled. The NI-XNET Compatibility Library

for NI-CAN feature is part of NI-XNET, and you can install it as an option

during NI-XNET installation. The NI-XNET Compatibility Library for

NI-CAN is supported for the set of operating systems that both NI-CAN

and NI-XNET support. You can install and use both NI-CAN and

NI-XNET independently.

Appendix F NI-XNET Compatibility for NI-CAN

NI-CAN Hardware and Software Manual F-2 ni.com

When NI-CAN and NI-XNET with the NI-XNET Compatibility Library

for NI-CAN are installed, some additional features are available to

configure and use NI-XNET hardware under NI-CAN. In particular, new

NI-CAN-style devices appear for each compatible NI-XNET device in

Measurement & Automation Explorer (MAX).

Measurement & Automation Explorer (MAX)
NI-CAN hardware displays in MAX under Devices and Interfaces. For

example, the Series 2 CAN hardware appears as PCI-CAN or PXI-CAN

devices. However, NI-XNET devices for use with its native API appear

under the NI-XNET Devices folder. Selecting an NI-XNET interface in

that location displays various statistics and options, including serial

numbers and assigned interface numbers to its port(s). This information

is similar to that visible for an NI-CAN device.

When the NI-XNET Compatibility Library for NI-CAN is installed,

NI-XNET hardware also appears as NI PCI or PXI-815x devices (their

board series number) under Devices and Interfaces along with actual

NI-CAN devices. These device entries are effectively NI-CAN devices

usable only in NI-CAN through the new compatibility functionality,

actually referring to corresponding NI-XNET devices.

Selecting these compatibility devices shows the standard set of information

about the device; notice that their series is reported as “NI-XNET” to

identify them properly. The compatibility device serial number uniquely

relates it to the corresponding NI-XNET device. The compatibility devices

also have the familiar child entries for their various ports; baud rate and

various configuration options are accessible here, just as with the native

NI-CAN hardware devices.

One of the visible differences between NI-XNET and NI-CAN is that

NI-CAN interface names start at CAN0 while NI-XNET interface names

start at CAN1.

As the MAX information indicates, you can identify in the API whether

a device is actually an NI-XNET device by querying its series.

A compatibility device returns its series as NI-XNET.

Appendix F NI-XNET Compatibility for NI-CAN

© National Instruments F-3 NI-CAN Hardware and Software Manual

Limitations

NI-XNET devices used under compatibility through NI-CAN are accessed

through the same NI-CAN APIs as native NI-CAN devices. These

compatibility devices are not visible or usable through their native

NI-XNET API. This means that the device with a CANx port name has a

different meaning depending on whether this port is under the NI-CAN or

NI-XNET API; each numbering scheme is independent. As a result, you

can have an NI-CAN port CAN1 and NI-XNET port CAN1 at the same

time without referring to the same hardware.

You also should do configuration in MAX on the appropriate node. For

example, baud rates are not configurable for NI-XNET device entries

in MAX; to configure the hardware for compatibility, modify this setting in

the compatibility entry for that device, which has the appropriate interface

to match the NI-CAN functionality.

Due to the differences between NI-CAN and NI-XNET, the NI-XNET

Compatibility Library for NI-CAN does not provide 100 percent

compatibility coverage. The tables in Broken Compatibility list specific

limitations for each NI-CAN API. For code that cannot work with

compatibility devices, or for developers wanting to take full advantage of

the better performance, ease of use, protocols, or other benefits of native

NI-XNET API, a set of guidelines for porting NI-CAN code to NI-XNET

are available as KnowledgeBase articles.

Broken Compatibility

While the NI-XNET Compatibility Library for NI-CAN is designed to

ensure basic functionality, it cannot always be completely mapped from

NI-CAN to NI-XNET due to hardware-specific features, pending

functionality from NI-XNET, or flaws in the original design of NI-CAN.

The following tables describe the differences between the available

attributes/functions/virtual instruments in NI-CAN and the NI-XNET

Compatibility Library for NI-CAN.

Appendix F NI-XNET Compatibility for NI-CAN

NI-CAN Hardware and Software Manual F-4 ni.com

Reading the Tables
The table features can be two types of broken compatibility: missing

features or compatibility errors.

A missing feature means the feature may be available in a later release of

NI-XNET, but not at the time of this writing. In many of these cases, the

feature will be added to the NI-XNET Compatibility Library for NI-CAN

when it becomes available in NI-XNET. However, this is not always a

guarantee of future availability; contact National Instruments if you rely on

one of these features and require the functionality.

If a feature is marked as a compatibility error, there currently is no

appropriate functionality in NI-XNET, usually due to hardware-specific

features or error-prone design flaws in the original NI-CAN. Contact

National Instruments if a feature marked as a compatibility error is required

for your application, and no suitable workaround exists.

Channel API for LabVIEW

Feature Specific Feature Reason

CAN Initialize.vi,

CAN Init Start.vi

Loading from multiple databases Compatibility error

CAN Initialize.vi,

CAN Init Start.vi

Output with > 1 multiplexer values Compatibility error

CAN Get Property.vi Behavior after final output Missing feature

CAN Get Property.vi Interface transceiver external outputs Missing feature

CAN Get Property.vi Interface transceiver external inputs Missing feature

CAN Get Property.vi Message multiple frame distribution Compatibility error

CAN Get Property.vi Interface Series 2 error/arb capture Compatibility error

CAN Get Property.vi Hardware master timebase rate Compatibility error

CAN Get Property.vi Hardware timestamp format Compatibility error

CAN Set Property.vi Behavior after final output Missing feature

CAN Set Property.vi Interface Series 2 comparator Compatibility error

CAN Set Property.vi Interface Series 2 mask Compatibility error

CAN Set Property.vi Interface Series 2 filter mode Compatibility error

Appendix F NI-XNET Compatibility for NI-CAN

© National Instruments F-5 NI-CAN Hardware and Software Manual

Frame API for LabVIEW

CAN Set Property.vi Interface transceiver external outputs Missing feature

CAN Set Property.vi Interface transceiver external inputs Missing feature

CAN Set Property.vi Message multiple frame distribution Compatibility error

CAN Set Property.vi Interface Series 2 error/arb capture Compatibility error

CAN Set Property.vi Hardware master timebase rate Compatibility error

CAN Set Property.vi Hardware timestamp format Compatibility error

CAN Set Property.vi Channel default value Compatibility error

CAN Connect Terminals.vi Source terminal: interface receive event Missing feature

CAN Connect Terminals.vi Source terminal: interface transceiver

event, 20 MHz timebase, 10 Hz resync

clock

Compatibility error

CAN Connect Terminals.vi Destination terminal: 10 Hz resync clock Compatibility error

CAN Disconnect

Terminals.vi

Source terminal: interface receive event Missing feature

CAN Disconnect

Terminals.vi

Source terminal: interface transceiver

event, 20 MHz timebase, 10 Hz resync

clock

Compatibility error

CAN Disconnect

Terminals.vi

Destination terminal: 10 Hz resync clock Compatibility error

nctRead When using a task configured for

timestamped input, the VI or function

always waits for the full timeout duration

Missing feature

Feature Specific Feature Reason

ncConfigCANObj.vi,

ncConfigCANObjRTSI.vi

Communication type: transmit periodic

waveform

Compatibility error

ncConfigCANObj.vi,

ncConfigCANObjRTSI.vi

Receive changes only: TRUE Compatibility error

Feature Specific Feature Reason

Appendix F NI-XNET Compatibility for NI-CAN

NI-CAN Hardware and Software Manual F-6 ni.com

ncConfigCANObj.vi,

ncConfigCANObjRTSI.vi

Transmit by response: TRUE Compatibility error

ncConfigCANObjRTSI.vi RTSI mode:

on RTSI input—transmit CAN frame,

on RTSI input—timestamp RTSI event,

RTSI output on receiving CAN frame,

RTSI output on transmitting CAN frame,

RTSI output on ncAction call

Missing feature

ncConfigCANObjRTSI.vi RTSI signal Missing feature

ncConfigCANObjRTSI.vi RTSI behavior Missing feature

ncConfigCANObjRTSI.vi RTSI skip Missing feature

ncConfigCANObjRTSI.vi User RTSI frame Compatibility error

ncGetAttr.vi Object state: 00000040 hex remote wakeup Compatibility error

ncGetAttr.vi Master timebase rate Missing feature

ncGetAttr.vi Log comm warnings Compatibility error

ncGetAttr.vi Log bus errors? Missing feature

ncGetAttr.vi Log start trigger? Missing feature

ncGetAttr.vi Start trigger behavior Missing feature

ncGetAttr.vi Transceiver external outputs Missing feature

ncGetAttr.vi Transceiver external inputs Missing feature

ncGetAttr.vi Series 2 error/arb capture Compatibility error

ncSetAttr.vi Timestamp format: (1) relative Compatibility error

ncSetAttr.vi Log comm warnings Compatibility error

ncSetAttr.vi Log bus error? Missing feature

ncSetAttr.vi Log transceiver fault? Missing feature

ncSetAttr.vi Transceiver external outputs Missing feature

ncWaitForState.vi 00000040 hex remote wakeup Missing feature

ncReadNet.vi,

ncReadNetMult.vi

IsRemote: communication warning or error

frame, start trigger frame

Missing feature

Feature Specific Feature Reason

Appendix F NI-XNET Compatibility for NI-CAN

© National Instruments F-7 NI-CAN Hardware and Software Manual

Channel API for C

ncReadNet.vi,

ncReadNetMult.vi

IsRemote: RTSI frame, CAN bus error

frame, transceiver fault frame

Compatibility error

ncAction.vi Output on RTSI line Compatibility error

ncConnectTerminals.vi Source terminal: interface receive event Missing feature

ncConnectTerminals.vi Source terminal: interface transceiver

event, 20 MHz timebase, 10 Hz resync

clock

Compatibility error

ncConnectTerminals.vi Destination terminal: 10 Hz resync clock Compatibility error

ncDisconnectTerminals.vi Source terminal: interface receive event Missing feature

ncDisconnectTerminals.vi Source terminal: interface transceiver

event, 20 MHz timebase, 10 Hz resync

clock

Compatibility error

ncDisconnectTerminals.vi Destination terminal: 10 Hz resync clock Compatibility error

Feature Specific Feature Reason

nctInitialize Loading from multiple databases Compatibility error

nctInitialize Output with > 1 multiplexer values Compatibility error

nctGetProperty nctPropBehavAfterFinalOut Missing feature

nctGetProperty nctPropIntfTransceiverExternalOut Missing feature

nctGetProperty nctPropIntfTransceiverExternalIn Missing feature

nctGetProperty nctPropMsgDistribution Compatibility error

nctGetProperty nctPropIntfSeries2ErrArbCapture Compatibility error

nctGetProperty nctPropHwMasterTimebaseRate Compatibility error

nctGetProperty nctPropHwTimestampFormat Compatibility error

nctSetProperty nctPropBehavAfterFinalOut Missing feature

nctSetProperty nctPropIntfSeries2Comp Compatibility error

nctSetProperty nctPropIntfSeries2Mask Compatibility error

Feature Specific Feature Reason

Appendix F NI-XNET Compatibility for NI-CAN

NI-CAN Hardware and Software Manual F-8 ni.com

nctSetProperty nctPropIntfSeries2FilterMode Compatibility error

nctSetProperty nctPropIntfTransceiverExternalOut Missing feature

nctSetProperty nctPropIntfTransceiverExternalIn Missing feature

nctSetProperty nctPropMsgDistribution Compatibility error

nctSetProperty nctPropIntfSeries2ErrArbCapture Compatibility error

nctSetProperty nctPropHwMasterTimebaseRate Compatibility error

nctSetProperty nctPropHwTimestampFormat Compatibility error

nctSetProperty nctPropChanDefaultValue Compatibility error

nctConnectTerminals nctSrcTermIntfReceiveEvent Missing feature

nctConnectTerminals nctSrcTermIntfTransceiverEvent Compatibility error

nctConnectTerminals nctSrcTerm20MHzTimebase Compatibility error

nctConnectTerminals nctSrcTerm10HzResyncClock Compatibility error

nctConnectTerminals nctDestTerm10HzResyncClock Compatibility error

nctDisconnectTerminals nctSrcTermIntfReceiveEvent Missing feature

nctDisconnectTerminals nctSrcTermIntfTransceiverEvent Compatibility error

nctDisconnectTerminals nctSrcTerm20MHzTimebase Compatibility error

nctDisconnectTerminals nctSrcTerm10HzResyncClock Compatibility error

nctDisconnectTerminals nctDestTerm10HzResyncClock Compatibility error

nctRead When using a task configured for

timestamped input, the VI or function

always waits for the full timeout duration

Missing feature

Feature Specific Feature Reason

Appendix F NI-XNET Compatibility for NI-CAN

© National Instruments F-9 NI-CAN Hardware and Software Manual

Frame API for C

Feature Specific Feature Reason

ncConfig (CAN object) NC_ATTR_COMM_TYPE:

NC_CAN_COMM_TX_WAVEFORM

Compatibility error

ncConfig (CAN object) NC_ATTR_RX_CHANGES_ONLY:

NC_TRUE

Compatibility error

ncConfig (CAN object) NC_ATTR_TX_RESPONSE: NC_TRUE Compatibility error

ncConfig (network interface

object)

NC_ATTR_LOG_START_TRIGGER Missing feature

ncConfig (network interface

object)

NC_ATTR_BEHAV_FINAL_OUT Missing feature

ncConfig (network interface

object)

NC_ATTR_TRANSCEIVER_TYPE:

NC_TRANSCEIVER_TYPE_EXT,

NC_TRANSCEIVER_TYPE_DISC

Missing feature

ncConfig (network interface

object)

NC_ATTR_MASTER_TIMEBASE_RATE Compatibility error

ncConfig (network interface

object)

NC_ATTR_TIMELINE_RECOVERY Compatibility error

ncConfig (network interface

object)

NC_ATTR_RTSI_MODE Missing feature

ncConfig (network interface

object)

NC_ATTR_RTSI_SIGNAL Missing feature

ncConfig (network interface

object)

NC_ATTR_RTSI_SIG_BEHAV Missing feature

ncConfig (network interface

object)

NC_ATTR_RTSI_SKIP Missing feature

ncConfig (network interface

object)

NC_ATTR_RTSI_FRAME Compatibility error

ncGetAttribute NC_ATTR_STATE:

NC_ST_REMOTE_WAKEUP

Compatibility error

ncGetAttribute (network

interface object)

NC_ATTR_MASTER_TIMEBASE_RATE Missing feature

Appendix F NI-XNET Compatibility for NI-CAN

NI-CAN Hardware and Software Manual F-10 ni.com

ncGetAttribute (network

interface object)

NC_ATTR_SERIES2_MASK Compatibility error

ncGetAttribute (network

interface object)

NC_ATTR_LOG_COMM_ERRS Compatibility error

ncGetAttribute (network

interface object)

NC_ATTR_LOG_BUS_ERROR Missing feature

ncGetAttribute (network

interface object)

NC_ATTR_LOG_TRANSCEIVER_

FAULT

Missing feature

ncGetAttribute (network

interface object)

NC_ATTR_LOG_START_TRIGGER Missing feature

ncGetAttribute (network

interface object)

NC_ATTR_BEHAV_FINAL_OUT Missing feature

ncGetAttribute (network

interface object)

NC_ATTR_START_TRIG_BEHAVIOR Missing feature

ncGetAttribute (network

interface object)

NC_ATTR_TRANSCEIVER_

EXTERNAL_OUT

Missing feature

ncGetAttribute (network

interface object)

NC_ATTR_TRANSCEIVER_

EXTERNAL_IN

Missing feature

ncGetAttribute (network

interface object)

NC_ATTR_SERIES2_ERR_ARB_

CAPTURE

Compatibility error

ncSetAttribute NC_ATTR_START_TRIG_BEHAVIOR Missing feature

ncSetAttribute (network

interface object)

NC_ATTR_LOG_COMM_ERRS Compatibility error

ncSetAttribute (network

interface object)

NC_ATTR_LOG_BUS_ERROR Missing feature

ncSetAttribute (network

interface object)

NC_ATTR_LOG_TRANSCEIVER_

FAULT

Missing feature

ncSetAttribute (network

interface object)

NC_ATTR_TRANSCEIVER_

EXTERNAL_OUT

Missing feature

ncSetAttribute (network

interface object)

NC_ATTR_ABS_TIME Compatibility error

Feature Specific Feature Reason

Appendix F NI-XNET Compatibility for NI-CAN

© National Instruments F-11 NI-CAN Hardware and Software Manual

ncSetAttribute (network

interface object)

NC_ATTR_RX_Q_LEN Compatibility error

ncWaitForState NC_ST_REMOTE_WAKEUP Missing feature

ncWrite (network interface

object)

NCTYPE_CAN_FRAME.IsRemote:

NC_FRMTYPE_RTSI,

NC_FRMTYPE_DELAY

Compatibility error

ncRead, ncReadMult

(network interface object)

NCTYPE_CAN_FRAME.IsRemote:

NC_FRMTYPE_COMM_ERR,

NC_FRMTYPE_TRIG_START

Missing feature

ncRead, ncReadMult

(network interface object)

NCTYPE_CAN_FRAME.IsRemote:

NC_FRMTYPE_RTSI,

NC_FRMTYPE_BUS_ERR,

NC_FRMTYPE_TRANSCEIVER_ERR

Compatibility error

ncAction NC_OP_RTSI_OUT Compatibility error

ncConnectTerminals NC_SRC_TERM_INTF_RECEIVE_

EVENT

Missing feature

ncConnectTerminals NC_SRC_TERM_INTF_

TRANSCEIVER_EVENT

Compatibility error

ncConnectTerminals NC_SRC_TERM_20MHZ_TIMEBASE Compatibility error

ncConnectTerminals NC_SRC_TERM_10HZ_RESYNC_

CLOCK

Compatibility error

ncConnectTerminals NC_DEST_TERM_10HZ_RESYNC_

CLOCK

Compatibility error

ncDisconnectTerminals NC_SRC_TERM_INTF_RECEIVE_

EVENT

Missing feature

ncDisconnectTerminals NC_SRC_TERM_INTF_

TRANSCEIVER_EVENT

Compatibility error

ncDisconnectTerminals NC_SRC_TERM_20MHZ_TIMEBASE Compatibility error

ncDisconnectTerminals NC_SRC_TERM_10HZ_RESYNC_

CLOCK

Compatibility error

ncDisconnectTerminals NC_DEST_TERM_10HZ_RESYNC_

CLOCK

Compatibility error

Feature Specific Feature Reason

© National Instruments G-1 NI-CAN Hardware and Software Manual

G
NI Services

National Instruments provides global services and support as part of our

commitment to your success. Take advantage of product services in

addition to training and certification programs that meet your needs during

each phase of the application life cycle; from planning and development

through deployment and ongoing maintenance.

To get started, register your product at ni.com/myproducts.

As a registered NI product user, you are entitled to the following benefits:

• Access to applicable product services.

• Easier product management with an online account.

• Receive critical part notifications, software updates, and service

expirations.

Log in to your National Instruments ni.com User Profile to get

personalized access to your services.

Services and Resources

• Maintenance and Hardware Services—NI helps you identify your

systems’ accuracy and reliability requirements and provides warranty,

sparing, and calibration services to help you maintain accuracy and

minimize downtime over the life of your system. Visit ni.com/

services for more information.

– Warranty and Repair—All NI hardware features a one-year

standard warranty that is extendable up to five years. NI offers

repair services performed in a timely manner by highly trained

factory technicians using only original parts at a National

Instruments service center.

– Calibration—Through regular calibration, you can quantify and

improve the measurement performance of an instrument. NI

provides state-of-the-art calibration services. If your product

supports calibration, you can obtain the calibration certificate for

your product at ni.com/calibration.

http://www.ni.com/myproducts
http://www.ni.com
http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/calibration

Appendix G NI Services

NI-CAN Hardware and Software Manual G-2 ni.com

• System Integration—If you have time constraints, limited in-house

technical resources, or other project challenges, National Instruments

Alliance Partner members can help. To learn more, call your local NI

office or visit ni.com/alliance.

• Training and Certification—The NI training and certification

program is the most effective way to increase application development

proficiency and productivity. Visit ni.com/training for more

information.

– The Skills Guide assists you in identifying the proficiency

requirements of your current application and gives you options for

obtaining those skills consistent with your time and budget

constraints and personal learning preferences. Visit ni.com/

skills-guide to see these custom paths.

– NI offers courses in several languages and formats including

instructor-led classes at facilities worldwide, courses on-site at

your facility, and online courses to serve your individual needs.

• Technical Support—Support at ni.com/support includes the

following resources:

– Self-Help Technical Resources—Visit ni.com/support for

software drivers and updates, a searchable KnowledgeBase,

product manuals, step-by-step troubleshooting wizards, thousands

of example programs, tutorials, application notes, instrument

drivers, and so on. Registered users also receive access to the NI

Discussion Forums at ni.com/forums. NI Applications

Engineers make sure every question submitted online receives an

answer.

– Software Support Service Membership—The Standard Service

Program (SSP) is a renewable one-year subscription included with

almost every NI software product, including NI Developer Suite.

This program entitles members to direct access to NI Applications

Engineers through phone and email for one-to-one technical

support, as well as exclusive access to online training modules at

ni.com/self-paced-training. NI also offers flexible

extended contract options that guarantee your SSP benefits are

available without interruption for as long as you need them. Visit

ni.com/ssp for more information.

• Declaration of Conformity (DoC)—A DoC is our claim of

compliance with the Council of the European Communities using the

manufacturer’s declaration of conformity. This system affords the user

protection for electromagnetic compatibility (EMC) and product

http://www.ni.com/alliance
http://www.ni.com/training
http://www.ni.com/skills-guide
http://www.ni.com/skills-guide
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/ssp

Appendix G NI Services

© National Instruments G-3 NI-CAN Hardware and Software Manual

safety. You can obtain the DoC for your product by visiting

ni.com/certification.

For information about other technical support options in your area, visit

ni.com/services, or contact your local office at ni.com/contact.

You also can visit the Worldwide Offices section of ni.com/niglobal to

access the branch office websites, which provide up-to-date contact

information, support phone numbers, email addresses, and current events.

http://www.ni.com/certification
http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/niglobal

© National Instruments Glossary-1 NI-CAN Hardware and Software Manual

Glossary

Symbol Prefix Value

m milli 10–3

k kilo 103

M mega 106

A

action See method.

actuator A device that uses electrical, mechanical, or other signals to change the

value of an external, real-world variable. In the context of device networks,

actuators are devices that receive their primary data value from over the

network; examples include valves and motor starters. Also known as final

control element.

Application

Programming Interface

(API)

A collection of functions used by a user application to access hardware.

Within NI-CAN, you use API functions to make calls into the NI-CAN

driver. NI-CAN provides two different APIs: the Frame API and

Channel API.

arbitration ID An 11- or 29-bit ID transmitted as the first field of a CAN frame. The

arbitration ID determines the priority of the frame, and is normally used to

identify the data transmitted in the frame.

attribute The Frame API provides attributes to access configuration settings or other

information. In the Channel API, the term property is used for similar

settings.

B

b Bits.

Behavior After

Final Output

Property in the Channel API that specifies the behavior to perform after the

final periodic output sample is transmitted. For more information, refer to

CAN Set Property.vi for LabVIEW, or nctSetProperty for C.

Glossary

NI-CAN Hardware and Software Manual Glossary-2 ni.com

bus off A CAN node goes into the bus off state when its transmit error counter

increments above 255. The node does not participate in network traffic,

because it assumes that a defect exists that must be corrected.

C

CAN Controller Area Network.

CAN/LS See Low-speed CAN.

CAN Channels See channel.

CAN controller Communications ship used to transmit and receive frames on a CAN

network. The majority of the CAN specification is implemented within the

CAN controller. Examples of CAN controllers include the Intel 82527

(used by Series 1 NI CAN hardware), and the Philips SJA1000 (used by

Series 2 NI CAN hardware).

CANdb CAN database format defined by Vector Informatik. CANdb files use the

.dbc file extension.

CAN database Database file that describes channels and associated messages for a

collection of CAN nodes. NI-CAN supports two CAN database formats:

CANdb, and the NI-CAN database.

CAN data frame Frame used to transmit the actual data of a CAN Object. The RTR bit is

clear, and the data length indicates the number of data bytes in the frame.

CAN frame In addition to fields used for error detection/correction, a CAN frame

consists of an arbitration ID, the RTR bit, a four-bit data length, and zero to

eight bytes of data.

CAN Network

Interface Object

Within the NI-CAN Frame API, an object that encapsulates a CAN

interface on the host computer.

CAN Object Within the NI-CAN Frame API, an object that encapsulates a specific CAN

arbitration ID along with its raw data bytes.

CAN remote frame Frame used to request data for a CAN Object from a remote node; the RTR

bit is set, and the data length indicates the amount of data desired (but no

data bytes are included).

Glossary

© National Instruments Glossary-3 NI-CAN Hardware and Software Manual

channel Floating-point value in physical units (such as Volts, rpm, km/h, °C, and so

on) that is converted to/from a raw value in measurement hardware. The

Read and Write functions of the NI-CAN Channel API provide access to

CAN channels. When a CAN message is received, NI-CAN converts raw

fields in the message into physical units, which you then obtain using the

Channel API Read function. When you call a Channel API Write function,

you provide floating-point values in physical units, which NI-CAN

converts into raw fields and transmits as a CAN message. For an example

usage of the channel concept, refer to the Channel API section in

Introduction.

Channel API NI-CAN API that you use to read and write channels.

channel list Input parameter of the CAN Init Start function. The channel list specifies

the list of channels to read or write. For more information, refer to CAN Init

Start.vi for LabVIEW, or nctInitStart for C.

ChannelList See channel list.

class A set of objects that share a common structure and a common behavior.

clock drift When two or more hardware products are used to measure a common

system, you typically need to compare data from the hardware products

simultaneously. Since each hardware product contains its own local

oscillator to perform measurements, and all oscillators differ slightly in

speed and tolerances, measurements on different hardware products can

drift relative to one another. For example, if you measure the same sine

wave on two different analog-input products, the measured sine waves

typically drift out of phase after a few minutes. National Instruments

products use RTSI to share timebases among different hardware products.

Since the products share the same oscillator, clock drift is eliminated.

connection With respect to networking, this term refers to an association between

two or more nodes on a network that describes when and how data is

transferred. With respect to RTSI, this term refers to a connection between

two or more terminals.

controller With respect to CAN, this term often refers to a CAN controller. With

respect to real-time systems, this term refers to a device that receives input

data and sends output data in order to hold one or more external, real-world

variables at a certain level or condition. A thermostat is a simple example

of a controller.

Glossary

NI-CAN Hardware and Software Manual Glossary-4 ni.com

D

Default Value Property in the Channel API that specifies the default value for a channel.

For more information, refer to CAN Get Property.vi for LabVIEW,

or nctSetProperty for C.

device See node.

device network Multi-drop digital communication network for sensors, actuators,

and controllers.

DLL Dynamic link library.

DMA Direct memory access.

E

error active A CAN node is in error active state when both the receive and transmit error

counters are below 128.

error counters Every CAN node keeps a count of how many receive and transmit errors

have occurred. The rules for how these counters are incremented and

decremented are defined by the CAN protocol specification.

error passive A CAN node is in error passive state when one or both of its error counters

increment above 127. This state is a warning that a communication problem

exists, but the node is still participating in network traffic.

extended

arbitration ID

A 29-bit arbitration ID. Frames that use extended IDs are often referred to

as CAN 2.0 Part B (the specification that defines them).

F

FCC Federal Communications Commission.

filepath Complete path to a filename using Windows conventions, such as:

C:\Program Files\National Instruments\NI-CAN\MyDatabase.ncd

frame A unit of information transferred across a network from one node to

another. From an OSI perspective, NI-CAN’s usage of the term frame refers

to a Data Link Layer unit, because individual fields are not specified.

Frame API NI-CAN API that you use to read and write frames.

Glossary

© National Instruments Glossary-5 NI-CAN Hardware and Software Manual

H

hex Hexadecimal.

Hz Hertz; cycles per second.

I

instance An abstraction of a specific real-world thing; for example, John is an

instance of the class Human. Also known as object.

interface Reference to a specific CAN port in the NI-CAN software. NI-CAN

interface names are assigned within MAX, and can range from CAN0 to

CAN63. In the Channel API, the interface is specified during initialization

of the task. For more information, refer to CAN Init Start.vi for LabVIEW,

or nctInitStart for C. In the Frame API, the interface is specified during

configuration of the CAN Network Interface Object. For more information,

refer to ncConfigCANNet.vi for LabVIEW, or ncConfig for C.

Interface Baud Rate Property in the Channel API that specifies the baud rate of the interface.

For more information, refer to CAN Set Property.vi for LabVIEW, or

nctSetProperty for C.

Interface Receive

Error Counter

Every CAN node keeps a count of how many receive errors have occurred.

The rules for how this counter is incremented and decremented are defined

by the CAN protocol specification. This property in the Channel API

returns the receive error counter. For more information, refer to CAN Get

Property.vi for LabVIEW or nctGetProperty for C.

Interface Single Shot

Transmit

Property in the Channel API that determines whether to retry failed frame

transmissions or transmit as a single-shot. For more information, refer to

CAN Set Property.vi for LabVIEW, or nctSetProperty for C.

Interface Transmit

Error Counter

Every CAN node keeps a count of how many transmit errors have occurred.

The rules for how this counter is incremented and decremented are defined

by the CAN protocol specification. This property in the Channel API

returns the transmit error counter. For more information, refer to CAN Get

Property.vi for LabVIEW, or nctGetProperty for C.

ISO International Standards Organization.

Glossary

NI-CAN Hardware and Software Manual Glossary-6 ni.com

K

KB Kilobytes of memory.

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench.

local Within NI-CAN, anything that exists on the same host (personal computer)

as the NI-CAN driver.

local wakeup Wakeup of the CAN transceiver from sleep mode caused by the call to an

NI-CAN function, such as setting Transceiver Mode to Normal.

Low-speed CAN Fault-tolerant CAN transceiver specification as defined in ISO 11898.

M

MAX Measurement & Automation Explorer provides a centralized location for

configuration of National Instruments hardware products. MAX also

provides many useful tools for interaction with hardware.

MB Megabytes of memory.

message CAN data frame for which the individual fields are described. From an OSI

perspective, NI-CAN usage of the term frame refers to a User Layer unit,

because the Application Layer is assumed (simple peer-to-peer protocol),

and the channel configurations specify User Layer meaning.

method An action performed on an instance to affect its behavior; the externally

visible code of an object. Within NI-CAN, you use NI-CAN functions to

execute methods for objects. Also known as service, operation, and action.

minimum interval For a given connection, the minimum amount of time between subsequent

attempts to transmit frames on the connection. Some protocols use

minimum intervals to guarantee a certain level of overall network

performance.

mode Input parameter of the CAN Init Start function. The mode specifies the

direction of data transfer (input or output), and the type of information

provided (input or timestamped input). For more information, refer to CAN

Init Start.vi for LabVIEW, or nctInitStart for C.

Glossary

© National Instruments Glossary-7 NI-CAN Hardware and Software Manual

Mode See mode.

multi-drop A physical connection in which multiple devices communicate with

one another along a single cable.

N

network interface A physical connection of a node onto a network.

NI-CAN database CAN database format defined by National Instruments. NI-CAN database

files use the .ncd file extension.

NI-CAN driver Device driver and/or firmware that implement all the specifics of a CAN

network interface. Within NI-CAN, this software implements the CAN

Network Interface Object as well as all objects above it in the object

hierarchy.

node A physical assembly, linked to a communication line (cable), capable of

communicating across the network according to a protocol specification.

Also known as device.

notification Within NI-CAN, an operating system mechanism that the NI-CAN driver

uses to communicate events to the application. You can think of a

notification of as an API function, but in the opposite direction.

O

object See instance.

object-oriented A software design methodology in which classes, instances, attributes, and

methods are used to hide all of the details of a software entity that do not

contribute to its essential characteristics.

OSI Open Systems Interconnection (OSI) is a collection of ISO standards for

communication protocols. Most people reference OSI in the context of the

layers that it specifies for all communication protocols. The Physical Layer

refers to physical connectors, cabling, and signal characteristics. The Data

Link Layer refers to the fundamental frame format. The Application Layer

refers to connection establishment and other higher-level transactions

between nodes. The User Layer is an informal term that refer to the

definition of specific fields in Application Layer messages that define how

an application uses the protocol.

Glossary

NI-CAN Hardware and Software Manual Glossary-8 ni.com

P

peer-to-peer Network connection in which data is transmitted from the source to its

destination(s) without need for an explicit request. Although data transfer

is generally unidirectional, the protocol often uses low level

acknowledgments and error detection to ensure successful delivery.

periodic Connections that transfer data on the network at a specific rate.

polled Request/response connection in which a request for data is sent to a device,

and the device sends back a response with the desired value.

poly VI LabVIEW VI that accepts different data types for a single input or output

terminal. In some cases, the data type can be selected based on the value

that you wire to the poly input or output. To select a specific poly VI type,

right-click the VI, go to Select Type, and select the desired type. For more

information, refer to the LabVIEW documentation. Like many other

National Instruments APIs, the NI-CAN Channel API implements Read

and Write as poly VIs in order to support a variety of data types.

polymorphic VI See poly VI.

port The physical CAN connector on the NI-CAN hardware product. You assign

an interface name to each port using MAX.

property The Channel API provides properties to access configuration settings or

other information. LabVIEW also uses the term property for settings of

front panel controls and indicators. In the Frame API, the term attribute is

used for similar settings.

property nodes In LabVIEW, you can use property nodes to change the appearance or

behavior of front panel controls and indicators. For example, you can

change the label, minimum value, and maximum value of an indicator.

For more information, refer to the LabVIEW documentation.

protocol A formal set of conventions or rules for the exchange of information among

nodes of a given network.

Glossary

© National Instruments Glossary-9 NI-CAN Hardware and Software Manual

R

RAM Random-access memory.

remote Within NI-CAN, anything that exists in another node of the device network

(not on the same host as the NI-CAN driver).

Remote Transmission

Request (RTR) bit

This bit follows the arbitration ID in a frame, and indicates whether the

frame is the actual data of the CAN Object (CAN data frame), or whether

the frame is a request for the data (CAN remote frame).

remote wakeup Wakeup of the CAN transceiver from sleep mode caused from an event on

the network. A remote wakeup occurs when a remote node transmits a

CAN frame (referred to as the wakeup frame). The wakeup frame wakes up

the transceiver and CAN controller chip of the NI CAN interface. The

wakeup frame is not received or acknowledged by the CAN controller chip.

When the wakeup frame ends, the NI CAN interface enters Normal mode,

and again receives and transmits CAN frames. If the node that transmitted

the wakeup frame did not detect an acknowledgement (such as if other

nodes were also waking), it will retry the transmission, and the retry will be

received by the NI CAN interface.For a remote wakeup to occur for Single

Wire transceivers, the node that transmits the wakeup frame must first place

the network into the Single Wire Wakeup Transmission mode by asserting

a higher voltage (typically 12 V).

request/response Network connection in which a request is transmitted to one or more

destination nodes, and those nodes send a response back to the requesting

node. In industrial applications, the responding (slave) device is usually a

sensor or actuator, and the requesting (master) device is usually a controller.

Also known as master/slave.

resource Hardware settings used by National Instruments CAN hardware, including

an interrupt request level (IRQ) and an 8 KB physical memory range (such

as D0000 to D1FFF hex).

RTSI Real Time System Integration bus. National Instruments technology that

can be used to synchronize multiple hardware products. For PCI products,

this refers to the ribbon cable that is used to route signals between cards.

For PXI products, the RTSI signals are provided on the backplane. For

PCMCIA products, RTSI signals can be connected between the sync cable

of a CAN card and the terminal block of a DAQ card.

Glossary

NI-CAN Hardware and Software Manual Glossary-10 ni.com

S

s Seconds.

sample A floating-point value that represents physical units. In the NI-CAN

Channel API, you Read and Write samples using channels.

sample rate Input parameter of the CAN Init Start function. The sample rate specifies

whether to transfer data in a periodic or event-driven manner. For periodic

behavior, the rate specifies the number of read/write samples to perform per

second. For more information, refer to CAN Init Start.vi for LabVIEW,

or nctInitStart for C.

SampleRate See sample rate.

sensor A device that measures electrical, mechanical, or other signals from an

external, real-world variable; in the context of device networks, sensors are

devices that send their primary data value onto the network; examples

include temperature sensors and presence sensors. Also known as

transmitter.

Series 1 National Instruments hardware for CAN that shipped prior to NI-CAN 2.0.

NI-CAN supports this hardware series, but some new features require

Series 2 hardware.

Series 2 National Instruments hardware for CAN that shipped after NI-CAN 2.0.

Improvements relative to Series 1 include a superior CAN controller

(Philips SJA1000), and improved RTSI features.

signal Term used by other vendors of CAN products to refer to a CAN channel.

For National Instruments products, this term usually refers to a physical

voltage that represents a predefined behavior. For example, RTSI

connections are used to exchange signals.

standard arbitration

ID

An 11-bit arbitration ID. Frames that use standard IDs are often referred to

as CAN 2.0 Part A; standard IDs are by far the most commonly used.

Glossary

© National Instruments Glossary-11 NI-CAN Hardware and Software Manual

start trigger When two or more hardware products are used to measure a common

system, you typically need to compare data from the hardware products

simultaneously. Since each hardware product starts its measurement

independently, measurements on different hardware products can often be

skewed in time relative to one another. For example, if you measure the

same sine wave on two different analog-input products, the measured sine

waves start off out of phase. National Instruments products use RTSI to

share start triggers among different hardware products. Since the products

share the same start trigger, measurements begin at the same time.

synchronize Connection of two or more hardware products in order to measure a

common system. For National Instruments products, RTSI connections are

used to synchronize. Although there are a variety of ways to synchronize

National Instruments products, a common technique is to share a timebase

and start trigger over RTSI in order to eliminate clock drift and startup

skew.

T

task A collection of channels that you can read or write. The task is returned

as an output parameter of the CAN Init Start function, and is used for

all subsequent Channel API calls such as Read or Write. For more

information, refer to CAN Init Start.vi for LabVIEW, or nctInitStart for C.

terminal A physical pin on a hardware component. RTSI signals are one type of

terminal. Internal connections within hardware products are another type of

terminal.

timebase The fundamental clock used to perform measurement. National

Instruments synchronization features allow the timebase of one product

to be shared with another in order to eliminate clock drift.

Timeout Property in the Channel API that specifies the behavior the timeout in

milliseconds for Read and Write functions. For more information, refer

to CAN Set Property.vi for LabVIEW, or nctSetProperty for C.

U

unsolicited Connections that transmit data on the network sporadically based on an

external event. Also known as nonperiodic, sporadic, and event driven.

Glossary

NI-CAN Hardware and Software Manual Glossary-12 ni.com

V

VI Virtual Instrument.

W

watchdog timeout A timeout associated with a connection that expects to receive network data

at a specific rate. If data is not received before the watchdog timeout

expires, the connection is normally stopped. You can use watchdog

timeouts to verify that the remote node is still operational.

waveform data type LabVIEW data type that represents a sequential list of samples in time. The

data type includes the array of samples (each a DBL), a start time that

specifies when the first sample was measured, and a delay time that

specifies the time between samples (sample rate) or more information, refer

to the LabVIEW documentation. The Read and Write functions of the

Channel API support the LabVIEW waveform data type.

© National Instruments Index-1 NI-CAN Hardware and Software Manual

Index

Numerics
9-pin D-SUB connector pinout, High-Speed

(figure), 4-1, 4-7, 4-18, 4-22

A
additional information, LIN, C-8

advanced frame types, LIN, C-7

API (Application Programming Interface)

Channel API

additional programming topics, 6-11

Get Names, 6-11

Set Property, 6-12

Synchronization, 6-11

basic programming model, 6-4

Clear, 6-10

Init Start, 6-5

Read, 6-6

Read Timestamped, 6-8

Read Timestamped (figure), 6-8

Write, 6-8

choose source of Channel

configuration, 6-1

decision process (figure), 6-1

using, 6-1

choose which API to use, 5-6

Frame API

choose which objects to use, 9-1

using CAN network interface

objects, 9-1

using CAN objects, 9-3

application development, 5-1

choose the programming language, 5-1

choose which API to use, 5-6

choose your programming language

Borland C++, 5-3

LabVIEW, 5-1

LabWindows/CVI, 5-2

Microsoft Visual Basic, 5-4

other programming languages, 5-4

Visual C++ 6, 5-2

B
Borland C++, 5-3

bus timing, LIN, C-4

C
cable length, Single Wire CAN, 4-20

cable lengths, High-Speed CAN, 4-4

cable termination, low-speed CAN, 4-10

cabling example

High-Speed CAN (figure), 4-6

Low-Speed/Fault-Tolerant CAN

(figure), 4-17

Single Wire CAN (figure), 4-21

cabling requirements

LIN

lengths, 4-26

number of devices, 4-26

specifications, 4-26

termination, 4-26

Single Wire CAN, 4-20

XS CAN, 4-23

CAN

error detection and confinement, B-5

frame types, D-1

frames, B-3

history and use, B-1

identifiers and message priority, B-2

low-speed, B-8

summary of standard, B-1

CAN and LIN hardware installation, 2-3

Index

NI-CAN Hardware and Software Manual Index-2 ni.com

CAN Channels

example in MAX (figure), 2-5

overview, 2-4

CAN Clear Multiple with NI-DAQ.vi, 7-10

CAN Clear Multiple with NI-DAQmx.vi, 7-12

CAN Clear with NI-DAQ.vi, 7-6

CAN Clear with NI-DAQmx.vi, 7-8

CAN Clear.vi, 7-4

CAN Connect Terminals.vi, 7-14

CAN Create Message.vi, 7-24

CAN Create MessageEx.vi, 7-30

CAN data frame fields example (figure), 1-10

CAN Disconnect Terminals.vi, 7-37

CAN for CompactRIO, 3-32

CAN Get Names.vi, 7-39

CAN Get Property.vi, 7-42

CAN hardware

SJA1000 CAN controller, 3-1

CAN identifiers and message priority, B-2

CAN Init Start.vi, 7-59

CAN Initialize.vi, 7-55

CAN interface cables

cable lengths, 4-4

cable termination, low-speed CAN, 4-10

cabling example

High-Speed CAN (figure), 4-6

Low-Speed/Fault-Tolerant CAN

(figure), 4-17

PCI-CAN cable (figure), 4-19

PCMCIA-CAN cable (figure), 4-3

PCMCIA-CAN/LS cable

figure, 4-8

termination resistors, 4-16

pinout for 9-pin D-SUB connector,

High-Speed (figure), 4-1, 4-7, 4-18,

4-22

termination resistor placement

figure, 4-5

low-speed CAN, 4-10

CAN Network Interface Objects, possible

uses, 9-1

CAN Objects

choosing NI-CAN Objects

CAN Network interface Objects, 9-1

CAN Objects, 9-3

using, 9-3

CAN overview, 1-1

CAN ports, configuring, 2-4

CAN Read.vi, 7-65

CAN Set Property.vi, 7-73

CAN Start.vi, 7-88

CAN Stop.vi, 7-90

CAN Sync Start Multiple with

NI-DAQ.vi, 7-97

CAN Sync Start Multiple with

NI-DAQmx.vi, 7-100

CAN Sync Start with NI-DAQ.vi, 7-92

CAN Sync Start with NI-DAQmx.vi, 7-94

CAN Write.vi, 7-103

CE compliance specifications, E-13

CE compliance, specifications, E-13

Channel API

additional programming topics, 6-11

Get Names, 6-11

Set Property, 6-12

Synchronization, 6-11

basic programming model, 6-4

Clear, 6-10

Init Start, 6-5

Read, 6-6

Read Timestamped, 6-8

Read Timestamped (figure), 6-8

Write, 6-8

choose source of Channel

configuration, 6-1

decision process (figure), 6-1

overview, 1-10

using, 6-1

checksum

CRC, 10-44, 10-97, 11-50, 11-86

common questions, A-3

Index

© National Instruments Index-3 NI-CAN Hardware and Software Manual

configuration of LabVIEW RT

CompactRIO system, 2-6

overview, 2-5

PXI system, 2-6

configure CAN and LIN ports, 2-4

connector pinout

PCI and PXI

Single Wire CAN, 4-17

XS CAN, 4-21

PCI, PXI, and USB

High-Speed CAN, 4-1

Low-Speed/Fault-Tolerant CAN, 4-6

PCMCIA

High-Speed CAN, 4-2

Low-Speed/Fault-Tolerant CAN, 4-8

PCMCIA-CAN

High-Speed CAN, 4-19

USB-LIN

LIN, 4-24

connectors and cables

LIN, 4-24

Low-Speed/Fault-Tolerant CAN, 4-6

Single Wire CAN, 4-17

XS CAN, 4-21

cyclic redundancy check (CRC), B-4

D
data length code (DLC), B-4

data types for Channel API for C, 8-1

differences between CAN and LIN, 9-30

documentation

NI resources, G-1

related documentation, xix

E
electromagnetic compatibility, E-12

electromagnetic compatibility

specifications, E-12

environmental management

specifications, E-13

error detection and confinement

CAN, B-5

LIN, C-6

example of CAN data frame fields

(figure), 1-10

F
Frame API

additional programming topics, 9-25

basic programming model for CAN, 9-4,

9-7

choose which objects to use, 9-1

overview, 1-10

using, 9-1

using CAN network interface objects, 9-1

using CAN objects, 9-3

frame format, LIN, C-1

frame to channel conversion, 6-12

frame types for CAN and LIN hardware, D-1

frames, CAN, B-3

H
help, technical support, G-1

High-Speed CAN

cabling requirements, 4-4

PCI, PXI, and USB connector pinout, 4-1

PCMCIA connector pinout, 4-2

PCMCIA-CAN connector pinout, 4-19

history and use of

CAN, B-1

LIN, C-1

I
installation and configuration

safety instructions, 2-1

tools, 2-7

using NI-CAN with NI-DNET, 2-7

Index

NI-CAN Hardware and Software Manual Index-4 ni.com

L
LabVIEW, 5-1

LabVIEW real-time (RT) configuration

CompactRIO system, 2-6

overview, 2-5

PXI system, 2-6

LabWindows/CVI, 5-2

LIN

additional information, C-8

advanced frame types, C-7

bus timing, C-4

cabling requirements, 4-26

lengths, 4-26

number of devices, 4-26

specifications, 4-26

termination, 4-26

connectors and cables, 4-24

error detection and confinement, C-6

frame format, C-1

frame types, D-1

history and use, C-1

overview, 1-2

sleep and wakeup, C-6

summary of standard, C-1

topology and behavior, C-5

USB-LIN connector pinout, 4-24

LIN Checksum Type, 10-44, 10-97, 11-50,

11-86

LIN ports, configuring, 2-4

list of C Channel functions, 8-2

list of C Frame functions, 11-3

list of LabVIEW VIs, 7-1, 10-2

low-speed CAN, B-8

preparing lead wires of, (figure), 4-16

replacing termination resistors, 4-15

termination resistors, 4-10

termination resistors, location of

(figure), 4-15

Low-Speed/Fault-Tolerant CAN

cabling requirements, 4-9

connectors and cables, 4-6

PCI, PXI, and USB connector pinout, 4-6

PCMCIA connector pinout, 4-8

M
master task, C-1

MAX overview, 1-9, 2-3

mode dependent channels, definition, 6-23

N
ncAction, 11-5

ncAction.vi, 10-4

ncClose.vi, 10-8

ncCloseObject, 11-8

ncConfig, 11-9

ncConfigCANNet.vi, 10-10

ncConfigCANNetRTSI.vi, 10-15

ncConfigCANObj.vi, 10-19

ncConfigCANObjRTSI.vi, 10-27

ncConnectTerminals, 11-30

ncConnectTerminals.vi, 10-32

ncCreateNotification, 11-40

ncDisconnectTerminals, 11-45

ncDisconnectTerminals.vi, 10-41

ncGetAttr.vi, 10-43

ncGetAttribute, 11-47

ncGetHardwareInfo, 11-62

ncGetHardwareInfo.vi, 10-58

ncGetTimer.vi, 10-63

ncOpen.vi, 10-65

ncOpenObject, 11-67

ncRead, 11-69

ncReadMult, 11-82

ncReadNet.vi, 10-68

Index

© National Instruments Index-5 NI-CAN Hardware and Software Manual

ncReadNetMult.vi, 10-79

ncReadObj.vi, 10-90

ncReadObjMult.vi, 10-93

ncSetAttr.vi, 10-96

ncSetAttribute, 11-84

ncStatusToString, 11-113

nctClear, 8-4

nctConnectTerminals, 8-5

nctCreateMessage, 8-15

nctCreateMessageEx, 8-20

nctDisconnectTerminals, 8-26

nctGetNames, 8-28

nctGetNamesLength, 8-31

nctGetProperty, 8-33

nctInitialize, 8-44

nctInitStart, 8-47

nctRead, 8-53

nctReadTimestamped, 8-57

nctSetProperty, 8-60

nctStart, 8-75

nctStop, 8-76

nctWrite, 8-77

ncWaitForState, 11-116

ncWaitForState.vi, 10-125

ncWrite, 11-119

ncWriteMult, 11-127

ncWriteNet.vi, 10-129

ncWriteNetMult.vi, 10-137

ncWriteObj.vi, 10-149

NI CAN hardware overview, 1-2

NI-CAN hardware, compatibility with

NI-XNET, F-1

NI-CAN software

Channel API, 1-10

Frame API, 1-10

MAX, 1-9

overview, 1-9

tools, 2-7

NI-XNET Compatibility Library for NI-CAN

broken compatibility tables, F-3

Channel API for C, F-7

Channel API for LabVIEW, F-4

Frame API for C, F-9

Frame API for LabVIEW, F-5

installation and configuration, F-1

limitations, F-3

overview and purpose, F-1

number of devices

Low-Speed/Fault-Tolerant CAN, 4-10

Single Wire CAN, 4-20

O
online product certification

specifications, E-13

optical isolation, E-5

overview of

CAN, 1-1

LIN, 1-2

NI-CAN software, 1-9

P
PCI-CAN

bus power requirements, 3-2

high-speed physical layer, 3-2

list of hardware, xvii

low-speed/fault-tolerant physical

layer, 3-4

bus power requirements, 3-5

transceiver, 3-4

VBAT jumper, 3-5

VBAT jumper settings, 3-6

VBAT jumper settings (figure), 3-6

overview, 3-2

RTSI, 3-9

architecture (figure), 3-10

single wire physical layer, 3-7

bus power requirements, 3-7

transceiver, 3-7

VBAT jumper, 3-8

specifications, E-1

Index

NI-CAN Hardware and Software Manual Index-6 ni.com

transceiver, 3-2

VBAT jumper, 3-2

VBAT jumper settings (figure), 3-3

XS software selectable physical layer, 3-8

PCI-CAN series card

PCI-CAN cable (figure), 4-19

PCMCIA-CAN

high-speed cables, 3-20

bus power requirements, 3-20

transceiver, 3-20

list of hardware, xvii

low-speed/fault-tolerant cables, 3-21

bus power requirements, 3-21

transceiver, 3-21

overview, 3-20

single wire cables, 3-22

bus power requirements, 3-22

synchronization, 3-23

architecture (Figure), 3-24

transceiver, 3-22

specifications, E-7

PCMCIA-CAN series card

PCMCIA-CAN cable (figure), 4-3

PCMCIA-CAN/LS series card

PCMCIA-CAN/LS cable

figure, 4-8

replacing termination resistors, 4-16

pinout for 9-pin D-SUB connector

High-Speed (figure), 4-1, 4-7, 4-18, 4-22

programming

choosing NI-CAN Objects

CAN Network Interface Objects, 9-1

CAN Objects, 9-3

languages, other (applications

development), 5-4

PXI-8460

replacing termination resistors, 4-15

termination resistors

location of, (figure), 4-15

preparing lead wires of, (figure), 4-16

PXI-846x

list of hardware, xvii

specifications, E-4

PXI-847x

high-speed physical layer, 3-11

bus power requirements, 3-11

transceiver, 3-11

VBAT jumper, 3-11

VBAT jumper settings (Figure), 3-12

low-speed/fault-tolerant physical

layer, 3-13

bus power requirements, 3-13

transceiver, 3-13

VBAT jumper, 3-14

VBAT jumper settings (Figure), 3-14

overview, 3-11

PXI trigger bus (RTSI), 3-18

figure, 3-19

single wire physical layer, 3-15

bus power requirements, 3-16

transceiver, 3-15

VBAT jumper, 3-16

XS software selectable physical

layer, 3-16

R
related documentation, xix

resistance, determining termination, 4-10

resistor

termination

High-Speed CAN (figure), 4-5

location on PCI-CAN/LS2 board

(figure), 4-14

low-speed CAN (figure), 4-10

preparing lead wires of replacement

PCI-CAN/LS2 (figure), 4-14

PCMCIA-CAN/LS cable

(figure), 4-16

Index

© National Instruments Index-7 NI-CAN Hardware and Software Manual

replacing

low-speed CAN, 4-15

PCI-CAN/LS board, 4-13

PCMCIA-CAN/LS cable, 4-16

software selectable, 4-13

RT configuration

CompactRIO system, 2-6

overview, 2-5

PXI system, 2-6

S
safety

information, 2-1

safety specifications, E-12

section headings for Channel API for C, 8-1

Series 2 and Series 1

differences, 1-4

hardware series displayed in MAX

(figure), 1-6

PCI and PXI, 1-6

PCI-CAN labels (figure), 1-4

PCMCIA cables, 1-7

PCMCIA hardware, 1-7

PCMCIA-CAN cables (figure), 1-5

PCMCIA-CAN labels (figure), 1-5

PXI-CAN labels (figure), 1-4

Series 2 hardware overview, 1-2

simplified CAN data frame, 1-1

Single Wire CAN

cable length, 4-20

cabling example (figure), 4-21

cabling requirements, 4-20

connectors and cables, 4-17

number of devices, 4-20

PCI and PXI connector pinout, 4-17

termination, 4-20

SJA1000 CAN controller overview, 3-1

slave task, C-1

sleep and wakeup, LIN, C-6

software

application development, 5-1

choose the programming language, 5-1

choose which API to use, 5-6

choose your programming language

Borland C++, 5-3

LabVIEW, 5-1

LabWindows/CVI, 5-2

Microsoft Visual Basic, 5-4

other programming languages, 5-4

Visual C++ 6, 5-2

specifications

CE compliance, E-13

electromagnetic compatibility, E-12

environmental management, E-13

online product certification, E-13

PCI-CAN, E-1

PCI-CAN Series 2

High-Speed CAN, E-2

Low-Speed/Fault-Tolerant CAN, E-2

operating environment, E-1

optical isolation, E-2

physical, E-1

power requirement, E-1

RTSI, E-2

Single Wire CAN, E-3

storage environment, E-2

XS Software Selectable, E-3

PCMCIA-CAN Series 2

High-Speed transceiver cable, E-9

Low-Speed/Fault-Tolerant

transceiver cable, E-9

operating environment, E-8

optical isolation, E-8

physical, E-7

power requirement, E-7

single-wire cable, E-9

storage environment, E-8

synchronization triggers, E-8

Index

NI-CAN Hardware and Software Manual Index-8 ni.com

PXI-846x Series 2

functional shock, E-5

High-Speed CAN, E-5

Low-Speed/Fault-Tolerant CAN, E-6

operating environment, E-4

physical, E-4

power requirement, E-4

PXI trigger bus, E-5

random vibration, E-5

Single Wire CAN, E-6

storage environment, E-4

XS Software Selectable, E-7

safety, E-12

USB-CAN, E-10

High-Speed CAN, E-11

LIN, E-12

Low-Speed/Fault-Tolerant

CAN, E-11

operating environment, E-10

optical isolation, E-11

physical, E-10

power requirement, E-10

storage environment, E-10

synchronization triggers, E-11

USB-LIN, E-10

High-Speed CAN, E-11

LIN, E-12

Low-Speed/Fault-Tolerant

CAN, E-11

operating environment, E-10

optical isolation, E-11

physical, E-10

power requirement, E-10

storage environment, E-10

synchronization triggers, E-11

Waste Electrical and Electronic

Equipment (WEEE), E-13

summary of the CAN standard, B-1

summary of the LIN standard, C-1

support, technical, G-1

T
technical support, G-1

termination resistance, determining, 4-10

termination resistor

location of, low-speed CAN (figure), 4-15

location on PCI-CAN/LS2 board

(figure), 4-14

placement figure, 4-5

placement for low-speed CAN

(figure), 4-10

preparing lead wires

PCMCIA-CAN/LS cable

replacement (figure), 4-16

preparing lead wires of replacement

PCI-CAN/LS (figure), 4-14

preparing lead wires of, low-speed CAN

(figure), 4-16

replacing

PCI-CAN/LS board, 4-13

PCMCIA-CAN/LS cable, 4-16

software selectable, 4-13

termination, Single Wire CAN, 4-20

tools for installation and configuration, 2-7

topology and behavior, LIN, C-5

troubleshooting

test failures, A-2

with MAX, A-1

U
USB-847x

CAN hardware, 1-8

LIN hardware, 1-9

overview, 1-8

USB-CAN

high-speed physical layer, 3-25

bus power requirements, 3-26

LED indicators, 3-26, 3-28, 3-29

transceiver, 3-26

list of hardware, xviii

Index

© National Instruments Index-9 NI-CAN Hardware and Software Manual

low-speed/fault-tolerant physical

layer, 3-27

bus power requirements, 3-27

transceiver, 3-27

overview, 3-25

specifications, E-10

High-Speed CAN, E-11

LIN, E-12

Low-Speed/Fault-Tolerant

CAN, E-11

operating environment, E-10

optical isolation, E-11

physical, E-10

power requirement, E-10

storage environment, E-10

synchronization triggers, E-11

USB-LIN, 3-28

bus power requirements, 3-28

list of hardware, xviii

overview, 3-28

specifications, E-10

High-Speed CAN, E-11

LIN, E-12

Low-Speed/Fault-Tolerant

CAN, E-11

operating environment, E-10

optical isolation, E-11

physical, E-10

power requirement, E-10

storage environment, E-10

synchronization triggers, E-11

synchronization in USB-CAN/LIN

devices, 3-29

transceiver, 3-28

using NI-CAN with NI-DNET, 2-7

using NI-CAN with NI-DNET software

tools, 2-7

V
verifying installation of CAN and LIN

hardware, 2-3

virtual bus timing, 6-16

Visual C++ 6, 5-2

W
Waste Electrical and Electronic Equipment

(WEEE) specifications, E-13

Web resources, G-1

X
XS CAN

cabling requirements, 4-23

connectors and cables, 4-21

external transceiver example

(figure), 4-24

PCI and PXI connector pinout, 4-21

	NI-CANTM Hardware and Software Manual
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Legal Information
	Limited Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	U.S. Government Restricted Rights
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Contents
	About This Manual
	PCI-CAN
	PXI-846x
	PCMCIA-CAN
	USB-CAN
	USB-LIN
	Related Documentation

	Chapter 1 Introduction
	CAN Overview
	Figure 1-1. CAN Data Frame
	Simplified CAN Data Frame

	LIN Overview
	Figure 1-2. LIN Message Frame

	NI CAN Hardware Overview
	About the NI CAN Series 2 Hardware
	Series 2 Vs. Series 1
	Figure 1-3. NI PCI-CAN Hardware Series 1 and 2 Labels
	Figure 1-4. NI PXI-CAN Hardware Series 1 and 2 Labels
	Figure 1-5. NI PCMCIA-CAN Hardware Series 1 and 2 Labels
	Figure 1-6. NI PCMCIA-CAN Series 1 and 2 Cables
	Figure 1-7. Hardware Series Displayed in MAX
	PCI and PXI
	PCMCIA
	PCMCIA Cables

	About the USB-847x Hardware
	CAN: USB-8472, USB-8472s, USB-8473, USB-8473s
	LIN: USB-8476, USB-8476s

	NI-CAN Software Overview
	MAX
	Frame API
	Channel API
	Figure 1-8. Example of CruiseControl Message

	Chapter 2 Installation and Configuration
	Safety Information
	Measurement & Automation Explorer (MAX)
	Verify Installation of CAN and LIN Hardware
	Figure 2-1. NI-CAN Cards Listed in MAX
	Configure CAN and LIN Ports
	CAN Channels
	Figure 2-2. CAN Channels in MAX

	LabVIEW Real-Time (RT) Configuration
	PXI System
	CompactRIO System

	Tools
	Using NI-CAN with NI-DNET

	Chapter 3 NI CAN and LIN Hardware
	Philips SJA1000 CAN Controller
	PCI-CAN
	High-Speed Physical Layer
	Transceiver
	Bus Power Requirements
	VBAT Jumper
	Figure 3-1. High-Speed VBAT Jumper Settings
	Table 3-1. CAN V+ Signal Power Supply

	Low-Speed/Fault-Tolerant Physical Layer
	Transceiver
	Bus Power Requirements
	VBAT Jumper
	Figure 3-2. Low-Speed/Fault-Tolerant VBAT Jumper Settings
	Low-Speed/Fault-Tolerant VBAT Jumper Settings
	Table 3-2. CAN V+ Signal Power Supply

	Single Wire Physical Layer
	Transceiver
	Bus Power Requirements
	Table 3-3. CAN V+ Signal Power Supply
	VBAT Jumper

	XS Software Selectable Physical Layer
	RTSI
	Figure 3-3. RTSI Signal Interconnect Architecture for NI PCI-CAN Hardware

	PXI-846x
	High-Speed Physical Layer
	Transceiver
	Bus Power Requirements
	VBAT Jumper
	Figure 3-4. High-Speed VBAT Jumper Settings
	Table 3-4. CAN V+ Signal Power Supply

	Low-Speed/Fault-Tolerant Physical Layer
	Transceiver
	Bus Power Requirements
	VBAT Jumper
	Figure 3-5. Low-Speed/Fault-Tolerant VBAT Jumper Settings
	Table 3-5. CAN V+ Signal Power Supply

	Single Wire Physical Layer
	Transceiver
	Bus Power Requirements
	Table 3-6. CAN V+ Signal Power Supply
	VBAT Jumper

	XS Software Selectable Physical Layer
	PXI Trigger Bus (RTSI)
	Figure 3-6. RTSI Signal Interconnect Architecture for NI PXI CAN Hardware

	PCMCIA-CAN
	PCMCIA-CAN High-Speed Cables
	Transceiver
	Bus Power Requirements

	PCMCIA-CAN Low-Speed/Fault-Tolerant Cables
	Transceiver
	Bus Power Requirements

	PCMCIA-CAN Single Wire Cables
	Transceiver
	Bus Power Requirements
	Table 3-7. CAN V+ Signal Power Supply
	Synchronization
	Figure 3-7. PCMCIA-CAN Synchronization Signal Interconnect Architecture for NI PCMCIA-CAN Hardware
	Table 3-8. PCMCIA-CAN Trigger Lines and Wire Colors

	USB-CAN
	USB-8473/USB-8473s: High-Speed Physical Layer
	Transceiver
	Bus Power Requirements
	LED Indicators
	Table 3-9. LED Indicators for USB-8473/8473s Module

	USB-8472/USB-8472s: Low-Speed/Fault-Tolerant Physical Layer
	Transceiver
	Bus Power Requirements
	LED Indicators
	Table 3-10. LED Indicators for USB-8472/8472s Module

	USB-LIN
	USB-8476/USB-8476s: LIN
	Transceiver
	Bus Power Requirements
	Table 3-11. Bus Power Requirements for USB-8476
	LED Indicators
	Table 3-12. LED Indicators for USB-8476/8476s Module

	Synchronization in USB-CAN/LIN Devices
	Figure 3-8. USB-CAN Connector Cable
	Table 3-13. USB-CAN Combicon Connector Pinout
	Figure 3-9. USB-LIN Connector Cable
	Table 3-14. USB-LIN Combicon Connector Pinout

	CAN for CompactRIO
	What is CompactRIO?
	NI 985x

	Chapter 4 Connectors and Cables
	High-Speed CAN Pinout Cable
	High-Speed PCI, PXI, and USB Connector Pinout
	Figure 4-1. Pinout for 9-Pin D-SUB Connector
	Table 4-1. Pinout for 9-Pin D-SUB Connector
	PCMCIA Connector Pinout
	Figure 4-2. PCMCIA-CAN Cable
	Table 4-2. PCMCIA-CAN Cable Connector Pin Descriptions
	Cabling Requirements for High-Speed CAN
	Table 4-3. ISO 11898 Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires
	Cable Lengths
	Table 4-4. DeviceNet Cable Length Specifications
	Number of Devices
	Cable Termination
	Figure 4-3. Termination Resistor Placement
	Cabling Example
	Figure 4-4. Cable Connecting Two CAN Devices

	Low-Speed/Fault-Tolerant CAN Pinout Cable
	Low-Speed/Fault-Tolerant PCI, PXI, and USB Connector Pinout
	Figure 4-5. Pinout for 9-Pin D-SUB Connector
	Table 4-5. 9-Pin D-SUB Connector Pin Descriptions
	PCMCIA Connector Pinout PCMCIA Connector Pinout
	Figure 4-6. PCMCIA-CAN/LS Cable
	Table 4-6. PCMCIA-CAN/LS Cable Connector Pin Descriptions

	Cabling Requirements for Low-Speed/Fault-Tolerant CAN
	Table 4-7. Specifications for Characteristics of a CAN_H and CAN_L Pair of Wires
	Number of Devices
	Termination
	Figure 4-7. Termination Resistor Placement for Low-Speed CAN
	Determining the Necessary Termination Resistance for the Board
	Software Selectable Termination (USB-8472s only)
	Replacing the Termination Resistors on Your PCI-CAN/LS Board
	Figure 4-8. Location of Termination Resistors on PCI-CAN/LS2 Card
	Figure 4-9. Preparing Lead Wires of Replacement Resistors
	Replacing the Termination Resistors on the PXI-8460 Board
	Figure 4-10. Location of Termination Resistors on a PXI-8460
	Figure 4-11. Preparing Lead Wires of Replacement Resistors

	Replacing the Termination Resistors on the PCMCIA-CAN/LS Cable
	Figure 4-12. Preparing Lead Wires of PCMCIA-CAN/LS Cable Replacement Resistors
	Cabling Example
	Figure 4-13. Cabling Example

	Single Wire CAN Pinout Cable
	Single Wire PCI and PXI Connector Pinout
	Figure 4-14. Pinout for 9-Pin D-SUB Connector
	Table 4-8. 9-Pin D-SUB Connector Pin Descriptions
	PCMCIA-CAN Connector Pinout
	Figure 4-15. PCMCIA-CAN Cable
	Table 4-9. PCMCIA-CAN Cable Connector Pin Descriptions

	Cabling Requirements for Single Wire CAN
	Cable Length
	Number of Devices
	Termination (Bus Loading)
	Cabling Example
	Figure 4-16. Cabling Example

	XS CAN Pinout Cable
	XS PCI and PXI Connector Pinout
	Figure 4-17. Pinout for 9-Pin D-SUB Connector
	Table 4-10. 9-Pin D-SUB Connector Pin Descriptions

	Cabling Requirements for XS CAN
	External Transceiver Example
	Figure 4-18. External Transceiver Circuit for an XS Port in External Mode

	LIN
	USB-LIN Connector Pinout
	Figure 4-19. Pinout for 9-Pin D-SUB Connector
	Table 4-11. 9-Pin D-SUB Connector Pin Descriptions

	Cabling Requirements for LIN Specifications (LIN)
	Cable Specifications
	Cable Lengths
	Number of Devices
	Termination

	Chapter 5 Application Development
	Choose the Programming Language
	LabVIEW
	LabWindows/CVI
	Visual C++ 6
	Borland C/C++
	Microsoft Visual Basic
	Other Programming Languages

	Choose Which API To Use

	Chapter 6 Using the Channel API
	Choose Source of Channel Configuration
	Figure 6-1. Decision Process for Choosing Source of Channel Configuration
	Already Have a CAN Database File?
	Application Uses a Subset of Channels?
	Import CAN Database into MAX
	Access CAN Database within Application
	User Must Create within Application?
	Use Create Message Function in Application
	Create in MAX

	Channel API Basic Programming Model
	Figure 6-2. Basic Programming Model for Channel API
	Init Start
	Read
	sample rate = 0
	Figure 6-3. Example of Read with sample rate = 0
	sample rate > 0
	Figure 6-4. Example of Read with sample rate > 0

	Read Timestamped
	Figure 6-5. Example of Read Timestamped

	Write
	sample rate = 0
	Figure 6-6. Example of Write with Sample Rate = 0
	sample rate > 0, Output mode
	Figure 6-7. Example of Write with Sample Rate > 0, Output Mode
	sample rate > 0, Output Recent mode
	Figure 6-8. Example of Write with Sample Rate > 0, Output Recent Mode

	Clear

	Channel API Additional Programming Topics
	Get Names
	Synchronization
	Set Property

	Frame to Channel Conversion
	Figure 6-9. Display Waveforms of CAN Channels Using a Log File of CAN Frames
	When Should I Use Frame to Channel Conversion?
	Logging
	CompactRIO
	Development without CAN Hardware
	Database Queries
	Enhance an Existing Frame API Application
	USB-847x

	Virtual Bus Timing
	Limitations
	Table 6-1. Error Features for the Virtual Interface
	Table 6-2. Operational Features for the Virtual Interface

	Programming Model for Virtual Bus Timing Disabled

	Mode Dependent Channels
	Mode Dependent Channels in MAX
	Figure 6-10. Creating a Multiplexer in MAX
	Figure 6-11. Mode Dependent Channels in the MAX Configuration Tree

	Chapter 7 Channel API for LabVIEW
	Section Headings
	List of VIs
	Table 7-1. Channel API for LabVIEW VIs

	CAN Clear.vi
	CAN Clear with NI-DAQ.vi
	CAN Clear with NI-DAQmx.vi
	CAN Clear Multiple with NI-DAQ.vi
	CAN Clear Multiple with NI-DAQmx.vi
	CAN Connect Terminals.vi
	Table 7-2. Valid Combinations of Source/Destination

	CAN Create Message.vi
	CAN Create MessageEx.vi
	CAN Disconnect Terminals.vi
	CAN Get Names.vi
	CAN Get Property.vi
	CAN Initialize.vi
	CAN Init Start.vi
	CAN Read.vi
	CAN Set Property.vi
	CAN Start.vi
	CAN Stop.vi
	CAN Sync Start with NI-DAQ.vi
	CAN Sync Start with NI-DAQmx.vi
	CAN Sync Start Multiple with NI-DAQ.vi
	CAN Sync Start Multiple with NI-DAQmx.vi
	CAN Write.vi

	Chapter 8 Channel API for C
	Section Headings
	Data Types
	Table 8-1. NI-CAN Channel API for C Data Types

	List of Functions
	Table 8-2. NI-CAN Channel API for C Functions

	nctClear
	nctConnectTerminals
	Table 8-3. Valid combinations of Source/Destination

	nctCreateMessage
	nctCreateMessageEx
	nctDisconnectTerminals
	nctGetNames
	nctGetNamesLength
	nctGetProperty
	nctInitialize
	nctInitStart
	nctRead
	nctReadTimestamped
	nctSetProperty
	nctStart
	nctStop
	nctWrite

	Chapter 9 Using the Frame API
	Choose Which Objects To Use
	Using CAN Network Interface Objects
	Using LIN Network Interface Objects
	Using CAN Objects

	Frame API Basic Programming Model for CAN
	Figure 9-1. Programming Model for NI-CAN Frame API

	Frame API Basic Programming Model for LIN
	LIN Interface as Bus Monitor
	Figure 9-2. Frame API with LIN Interface as Bus Monitor

	LIN Interface as Master
	Figure 9-3. Frame API – LIN interface emulating a master executing the behavior specified in an LDF

	LIN Interface as Slave Device
	Figure 9-4. Frame API – LIN interface acting as slave

	LIN Interface Accesses Single Subscribing Slave Device
	Figure 9-5. Frame API – LIN interface provides simple access to a single slave device that subscribes to data

	LIN Interface Accesses Single Publishing Slave Device
	Figure 9-6. Frame API – LIN interface provides simple access to a single slave device that publishes data

	LIN Interface Sleep and Wakeup Behavior
	Figure 9-7. Frame API – LIN interface sleep and wakeup behavior

	Frame API Additional Programming Topics
	RTSI
	Remote Frames
	Using Queues
	State Transitions
	Empty Queues
	Full Queues
	Disabling Queues
	Using the CAN Network Interface Object with CAN Objects
	Figure 9-8. Flowchart for CAN Frame Reception

	Detecting State Changes
	Frame to Channel Conversion
	Differences between CAN and LIN

	Chapter 10 Frame API for LabVIEW
	Section Headings
	List of VIs
	Table 10-1. Frame API for LabVIEW VIs

	ncAction.vi
	Table 10-2. Actions Supported By A CAN or LIN Network Interface Object
	Table 10-3. Actions Supported By A CAN Object

	ncClose.vi
	ncConfigCANNet.vi
	ncConfigCANNetRTSI.vi
	ncConfigCANObj.vi
	Figure 10-1. Example of Periodic Transmission
	Figure 10-2. Example of Polling Remote Data Using ncWriteObj.vi
	Figure 10-3. Example of Periodic Polling of Remote Data

	ncConfigCANObjRTSI.vi
	ncConnectTerminals.vi
	Table 10-4. Valid Combinations of Source/Destination

	ncDisconnectTerminals.vi
	ncGetAttr.vi
	Figure 10-4. Series 2 Error/Arb Capture Format
	Table 10-5. SEG Field of the Error Code Capture Register
	Table 10-6. DIR Field of the Error Code Capture Register
	Table 10-7. ERRC Field of the Error Code Capture Register
	Table 10-8. ALC Field Contains the Arbitration Lost Capture Register
	Table 10-9. NEWECC Field is the New Flag for the Error Code Capture Register
	Table 10-10. NEWALC Field is the New Flag for the Arbitration Lost Capture Register

	ncGetHardwareInfo.vi
	ncGetTimer.vi
	ncOpen.vi
	ncReadNet.vi
	Table 10-11. IsRemote Value 0: CAN Data Frame
	Table 10-12. IsRemote Value 1: CAN Remote Frame
	Table 10-13. IsRemote Value 2: Communication Warning or Error Frame
	Table 10-14. IsRemote Value 3: RTSI Frame
	Table 10-15. IsRemote Value 4: Start Trigger Frame
	Table 10-16. IsRemote Value 6: CAN Bus Error Frame
	Table 10-17. IsRemote Value 7: Transceiver Fault Frame
	Table 10-18. IsRemote Value 18: LIN Full Frame
	Table 10-19. IsRemote Value 19: LIN Wakeup Received Frame
	Table 10-20. IsRemote Value 20: LIN Bus Inactive Frame
	Table 10-21. IsRemote Value 21: LIN Bus Error Frame

	ncReadNetMult.vi
	Table 10-22. IsRemote Value 0: CAN Data Frame
	Table 10-23. IsRemote Value 1: CAN Remote Frame
	Table 10-24. IsRemote Value 2: Communication Warning or Error Frame
	Table 10-25. IsRemote Value 3: RTSI Frame
	Table 10-26. IsRemote Value 4: Start Trigger Frame
	Table 10-27. IsRemote Value 6: CAN Bus Error Frame
	Table 10-28. IsRemote Value 7: Transceiver Fault Frame
	Table 10-29. IsRemote Value 18: LIN Full Frame
	Table 10-30. IsRemote Value 19: LIN Wakeup Received Frame
	Table 10-31. IsRemote Value 20: LIN Bus Inactive Frame
	Table 10-32. IsRemote Value 21: LIN Bus Error Frame

	ncReadObj.vi
	ncReadObjMult.vi
	ncSetAttr.vi
	Table 10-33. LIN Bus Error Codes and Descriptions
	Figure 10-5. Mask/Comparator for Single-Standard Filter Mode
	Figure 10-6. Mask/Comparator for Single-Extended Filter Mode
	Figure 10-7. Mask/Comparator for Dual-Standard Filter Mode
	Figure 10-8. Mask/Comparator for Dual-Extended Filter Mode
	Figure 10-9. Example with Time Recovery Disabled
	Figure 10-10. Example with Time Recovery Enabled

	ncWaitForState.vi
	ncWriteNet.vi
	Table 10-34. IsRemote value 0: CAN Data Frame
	Table 10-35. IsRemote value 1: CAN Remote Frame
	Table 10-36. IsRemote Value 16: LIN Response Entry Frame
	Table 10-37. IsRemote Value 17: LIN Header Frame
	Table 10-38. IsRemote Value 18: LIN Full Frame

	ncWriteNetMult.vi
	Table 10-39. Cluster with IsRemote value 0: CAN Data Frame
	Table 10-40. Cluster with IsRemote value 1: CAN Remote Frame
	Table 10-41. Cluster with IsRemote value 4: Start Trigger Frame
	Table 10-42. Cluster with IsRemote value 5: Delay Frame
	Table 10-43. IsRemote Value 16: LIN Response Entry Frame
	Table 10-44. IsRemote Value 17: LIN Header Frame
	Table 10-45. IsRemote Value 18: LIN Full Frame

	ncWriteObj.vi

	Chapter 11 Frame API for C
	Section Headings
	Data Types
	Table 11-1. Data Types for NI-CAN Frame API for C

	List of Functions
	Table 11-2. NI-CAN Frame API for C Functions

	ncAction
	Table 11-3. Actions Supported by the CAN or LIN Network Interface Object
	Table 11-4. Actions Supported by the CAN Object

	ncCloseObject
	ncConfig
	Figure 11-1. Mask/Comparator for Dual-Extended Filter Mode
	Figure 11-2. Mask/Comparator for Dual-Standard Filter Mode
	Figure 11-3. Mask/Comparator for Single-Extended Filter Mode
	Figure 11-4. Mask/Comparator for Single-Standard Filter Mode
	Figure 11-5. Example of Periodic Transmission
	Figure 11-6. Example of Polling Remote Data Using ncWrite
	Figure 11-7. Example of Periodic Polling of Remote Data

	ncConnectTerminals
	Table 11-5. Valid combinations of Source/Destination

	ncCreateNotification
	ncDisconnectTerminals
	ncGetAttribute
	Figure 11-8. Series 2 Error/Arb Capture Format
	Table 11-6. SEG Field of the Error Code Capture Register
	Table 11-7. DIR Field of the Error Code Capture Register
	Table 11-8. ERRC Field of the Error Code Capture Register
	Table 11-9. ALC Field Contains the Arbitration Lost Capture Register
	Table 11-10. NEWECC Field is the New Flag for the Error Code Capture Register
	Table 11-11. NEWALC Field is the New Flag for the Arbitration Lost Capture Register

	ncGetHardwareInfo
	ncOpenObject
	ncRead
	Table 11-12. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_DATA (0)
	Table 11-13. NCTYPE_FRAME_STRUCT Fields for FrameType NC_FRMTYPE_REMOTE (1)
	Table 11-14. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_COMM_ERR (2)
	Table 11-15. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_RTSI (3)
	Table 11-16. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_TRIG_START (4)
	Table 11-17. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_CAN_BUS_ERROR_FRAME (6)
	Table 11-18. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_TRANSCEIVER FAULT_FRAME (7)
	Table 11-19. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_LIN_FULL_FRAME (18)
	Table 11-20. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_LIN_WAKEUP_RECEIVED_FRAME (19)
	Table 11-21. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_LIN_BUS_INACTIVE_FRAME (20)
	Table 11-22. NCTYPE_CAN_STRUCT Fields for FrameType NC_FRMTYPE_LIN_BUS_ERROR_FRAME (21)
	Table 11-23. NCTYPE_CAN_DATA_TIMED Field Names

	ncReadMult
	ncSetAttribute
	Table 11-24. LIN Bus Errors and Descriptions
	Figure 11-9. Mask/Comparator for Single-Standard Filter Mode
	Figure 11-10. Mask/Comparator for Single-Extended Filter Mode
	Figure 11-11. Mask/Comparator for Dual-Standard Filter Mode
	Figure 11-12. Mask/Comparator for Dual-Extended Filter Mode
	Figure 11-13. Example with Time Recovery Disabled
	Figure 11-14. Example with Time Recovery Enabled

	ncStatusToString
	Table 11-25. NI-CAN Status Codes

	ncWaitForState
	ncWrite
	Table 11-26. NCTYPE_CAN_FRAME Fields for IsRemote NC_FRMTYPE_DATA (0)
	Table 11-27. NCTYPE_CAN_FRAME fields for IsRemote NC_FRMTYPE_REMOTE (1)
	Table 11-28. NCTYPE_CAN_FRAME fields for IsRemote NC_FRMTYPE_RESPONSE_ENTRY_FRAME (16)
	Table 11-29. NCTYPE_CAN_FRAME fields for IsRemote NC_FRMTYPE_LIN_HEADER_FRAME (17)
	Table 11-30. NCTYPE_CAN_FRAME fields for IsRemote NC_FRMTYPE_LIN_FULL_FRAME (18)
	Table 11-31. NCTYPE_CAN_DATA Field Name

	ncWriteMult
	Table 11-32. Structure with FrameType value NC_FRMTYPE_DATA (0): CAN Data Frame
	Table 11-33. Structure with FrameType value NC_FRMTYPE_REMOTE (1): CAN Remote Frame
	Table 11-34. Structure with FrameType value NC_FRMTYPE_START_TRIG (4): Start Trigger Frame
	Table 11-35. Structure with FrameType value NC_FRMTYPE_DELAY (5): Delay Frame
	Table 11-36. FrameType Value NC_FRMTYPE_LIN_RESPONSE_ENTRY (16): LIN Response Entry Frame
	Table 11-37. FrameType Value NC_FRMTYPE_LIN_HEADER (17): LIN Header Frame
	Table 11-38. FrameType Value NC_FRMTYPE_LIN_FULL (18): LIN Full Frame

	Appendix A Troubleshooting and Common Questions
	Appendix B Summary of the CAN Standard
	Figure B-1. Example of CAN Arbitration
	Figure B-2. Standard and Extended Frame Formats

	Appendix C Summary of the LIN Standard
	Figure C-1. Parity Calculation Method
	Figure C-2. Creation of LIN Full Frames

	Appendix D Frame Types for CAN and LIN Hardware
	Table D-1. Frame Types for CAN Hardware
	Table D-2. Frame Types for LIN Hardware

	Appendix E Specifications
	Appendix F NI-XNET Compatibility for NI-CAN
	Appendix G NI Services
	Glossary
	A-B
	C
	D-F
	H-I
	K-M
	N-O
	P
	R
	S
	T-U
	V-W

	Index
	Numerics
	A-C
	D-I
	L-N
	O-P
	R
	S
	T-U
	V-X

