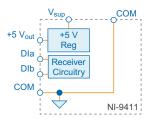
NI-9411 Getting Started

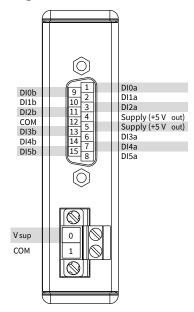
Contents


NI-9411 Getting Started	~
ΝΙ-94ΙΙ (-ριτίης Νταιτρή	
NI JTII OCUING JUICU	

NI-9411 Getting Started

NI-9411 Block Diagram

The NI-9411 channels share a common ground isolated from other modules in the system.


Figure 1. NI-9411 Input Circuitry

NI-9411 Pinout

The NI-9411 provides connections for 6 digital input channels.

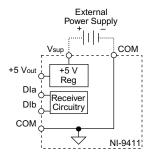
Figure 2. NI-9411 Pinout

Note You must use 2-wire ferrules to create a secure connection when connecting more than one wire to a single terminal on the NI-9411 screw-terminal connector.

NI-9411 Signals

Table 1. DSUB Connector Signal Descriptions

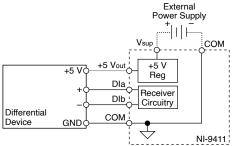
Signal	Description
СОМ	Common reference connection to isolated ground
DIa and DIb	Digital input signal connections
Supply (+5 V _{out})	5 V power output connection for external devices


Table 2. Screw-Terminal Connector Signal Descriptions

Signal	Description
СОМ	Common reference connection to isolated ground
V_{sup}	Voltage supply connection

Connecting an External Power Supply to the NI-9411

You can connect an external power supply to the NI-9411. The external power supply provides power for external devices through the NI-9411 +5 Vout terminal. Connecting an external power supply to the NI-9411 is optional, depending on your application.

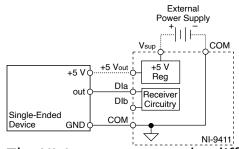

Figure 3. Connecting an External Power Supply

Connecting a Differential Device to the NI-9411

You can connect differential devices to the NI-9411.

Figure 4. Connecting a Differential Device to the NI-9411

The NI-9411 compares the difference between DIa and DIb to the digital logic levels to determine if the signal is in the high range or low range.



Tip Refer to the device datasheet at <u>ni.com/manuals</u> for the digital logic

Connecting a Single-Ended Device to the NI-9411

You can connect single-ended (TTL) devices to the NI-9411.

Figure 5. Connecting a Single-Ended Device to the NI-9411

The NI-9411 compares the difference between DIa and COM to the digital logic levels to determine if the signal is in the high range or low range.

 Tip Refer to the device datasheet at <code>ni.com/manuals</code> for the digital logic

Connecting an Encoder to the NI-9411

An encoder has phase A, phase B, and index signals. Use the phase A signals to measure rotational speed. Use the phase B signals to measure direction. Use the index signals to measure the number of rotations. You can connect differential and single-ended encoders to the NI-9411.

Figure 6. Connecting a Differential Encoder to the NI-9411

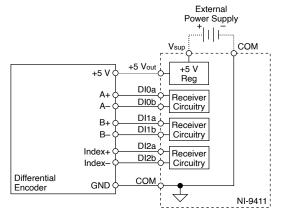
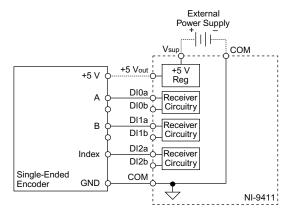



Figure 7. Connecting a Single-Ended Encoder to the NI-9411

High-Vibration Application Connections

If your application is subject to high vibration, NI recommends that you follow these guidelines to protect connections to the NI-9411:

- Use ferrules to terminate wires to the detachable connector.
- Use the NI-9948 connector backshell kit.