

 PCI-5640R

https://www.apexwaves.com/modular-systems/national-instruments/r-series/PCI-5640R?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/r-series/PCI-5640R?aw_referrer=pdf
https://www.apexwaves.com/modular-systems/national-instruments/r-series/PCI-5640R?aw_referrer=pdf

Getting Started with the
NI PCI-5640R IF Transceiver and
the LabVIEW FPGA Module

This guide demonstrates how to develop an NI PCI-5640R application

using the LabVIEW FPGA Module. This document provides step-by-step

instructions for using an NI PCI-5640R hardware module with the

LabVIEW FPGA Module to make a simple spectrum analyzer. While

developing this example solution, you will learn the concepts and

techniques necessary to develop your LabVIEW FPGA NI PCI-5640R

application.

This document assumes you are familiar with the LabVIEW FPGA

graphical programming environment. Refer to the Getting Started with

LabVIEW manual for more information about the basic LabVIEW features

you use to build VIs and projects. For the most current versions of

documentation, visit ni.com/manuals.

Note The NI-5640R software also includes an instrument driver with an easy-to-use

LabVIEW API to create an application for your NI PCI-5640R hardware. NI-5640R

instrument driver VIs are not supported in the LabVIEW FPGA Module. For more

information about using the instrument driver, refer to the NI 5640R Help and the NI 5640R

IF Transceiver Getting Started Guide.

Contents

Conventions .. 3

What You Need to Get Started ... 4

Fundamentals of Reconfigurable Input/Output (RIO) 4

Reconfigurable I/O Concept .. 4

User-Defined I/O Resources .. 4

Device-Embedded Logic and Processing .. 5

Reconfigurable I/O Architecture ... 5

Reconfigurable I/O Applications ... 6

LabVIEW FPGA Module .. 7

Xilinx Virtex II Pro FPGA.. 7

Getting Started with the NI 5640R and LabVIEW FPGA 2 ni.com

Reconfigurable FPGA Resources...7

Clocking Block Diagram ...8

Configuring IQ Clock Rates ..9

I/O Resources ..10

I/O Resources Available using the FPGA VI...................................11

Configuration I/O Resources ...12

Data I/O Resources ..12

Getting Started with FPGA VIs and Host VIs...12

NI-5640R FPGA Examples..14

The LabVIEW Project..14

Exploring an FPGA VI...15

Exploring a Host VI..18

Creating an FPGA Application..19

Overview of the Application ..19

Using the ni5640R Template..20

Configuring the NI PCI-5640R Target...22

Developing the FPGA VI ...23

Compiling the FPGA VI...26

Developing the Host VI..27

What You Have Learned ...34

Using FPGAs for Signal Processing..34

Using Single-Cycle Timed Loops ..34

Understanding Clock Domains...35

Pipelining..35

FPGA Signal Processing References..36

Tips and Troubleshooting ..37

It takes a long time to access controls and indicators

in the Read/Write Control..37

I get a pop-up indicating that an error was detected in

the communication between the host computer and the

FPGA target...37

When I open a Host VI, LabVIEW cannot find a file named

filename.lvbit ...38

When I Run an FPGA VI, a compilation error instantly

occurs...38

Where to Go From Here ..39

© National Instruments Corporation 3 Getting Started with the NI 5640R and LabVIEW FPGA

Conventions

The following conventions are used in this document:

» The » symbol leads you through nested menu items and dialog box options

to a final action. The sequence File»Page Setup»Options directs you to

pull down the File menu, select the Page Setup item, and select Options

from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to

avoid injury, data loss, or a system crash. When this symbol is marked

on the hardware product, refer to the Read Me First: Safety and

Radio-Frequency Interference document, included with the device,

for precautions to take.

bold Bold text denotes items that you must select or click in the software, such

as menu items and dialog box options. Bold text also denotes parameter

names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction

to a key concept. Italic text also denotes text that is a placeholder for a word

or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples.

This font is also used for the proper names of disk drives, paths, directories,

programs, subprograms, subroutines, device names, functions, operations,

variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value

that you must supply.

NI PCI-5640R The NI PCI-5640R IF transceiver hardware module.

NI-5640R The software you use to program the NI PCI-5640R IF transceiver

hardware module.

RIO device A device based on a reconfigurable FPGA core surrounded by fixed

resources. The NI PCI-5640R is a RIO device.

Getting Started with the NI 5640R and LabVIEW FPGA 4 ni.com

What You Need to Get Started

Your system must meet certain requirements to use the NI PCI-5640R with

LabVIEW FPGA. For more information on minimum system requirements

and supported application development environments (ADEs), refer to the

NI-5640R Readme, which is available on the NI-5640R CD.

Note After you install NI-5640R, you can access the NI-5640R Readme at Start»

All Programs»National Instruments»NI-5640R»Documentation.

Fundamentals of Reconfigurable Input/Output (RIO)

This section introduces the concept of Reconfigurable Input/Output (RIO)

and describes how to use the reconfigurable FPGA to build high-level

functions in hardware. Refer to the NI PCI-5640R Hardware Overview

section in the NI 5640R Help for descriptions of the physical

input/output (I/O) resources available on the NI PCI-5640R.

Reconfigurable I/O Concept
The NI PCI-5640R device is based on a reconfigurable FPGA core

surrounded by fixed resources. Unlike traditional IF digitizer/source

devices that use a fixed core with predetermined functionality, you can

configure the behavior of the FPGA core in the NI PCI-5640R to closely

match the requirements of your system. The behavior of this module is

fully user-defined, and can be implemented as a VI, creating an

application-specific I/O device.

Flexible functionality allows a RIO device, such as the NI PCI-5640R, to

match individual application requirements. For example, you can process

the data from the two A/D converters (ADCs) as I and Q components from

a single RF-to-complex-IF demodulator (single antenna-to-bits receive

chain) or as two IF channels representing a two-channel,

multiple-input-multiple-output (MIMO) (two antenna-to-bits receive

chain). Another example is implementing a new modulation/demodulation

scheme that may be difficult to achieve with standard off-the-shelf IF

transceivers.

User-Defined I/O Resources
With the RIO device, you can define both the combination of I/O resources

and the I/O resources themselves. You can also create new building blocks

on top of fixed I/O resources. For example, one application might require

an event counter that increments when a rising edge appears on any of three

© National Instruments Corporation 5 Getting Started with the NI 5640R and LabVIEW FPGA

digital input lines. Another application might require a digital line to be

asserted when an analog input exceeds a programmable threshold. You can

implement these user-defined behaviors in the hardware for fast,

deterministic performance.

Device-Embedded Logic and Processing
You can embed logic and digital signal processing in the FPGA of the RIO

device. Typical logic functions include Boolean operations, comparisons,

and basic mathematical operations. For example, the FPGA can

demodulate and decode a baseband signal. You can implement multiple

functions efficiently in the same design, operating sequentially or in

parallel. You can implement multiple signal processing blocks on the

FPGA, with only the FPGA size to limit the scope of these algorithms.

Reconfigurable I/O Architecture
The following figure illustrates a generic representation of RIO device

consisting of an FPGA connected to fixed I/O resources and a bus interface.

Figure 1. High-Level FPGA Functional Overview

The fixed I/O resources include analog-to-digital converters (ADCs),

digital-to-analog converters (DACs), digital I/O (DIO) lines, and other

input/output resources. Software accesses the RIO device through the bus

interface, and the FPGA provides the connectivity between the bus

interface and the fixed I/O, including any timing, triggering, processing,

and custom I/O required by the application.

Fixed I/O Resource

Fixed I/O Resource

Fixed I/O Resource

Fixed I/O Resource

FPGA

Bus Interface

Getting Started with the NI 5640R and LabVIEW FPGA 6 ni.com

Triggering, processing, and custom I/O is provided by consuming logic in

the FPGA. Each fixed I/O resource used by the application consumes a

small portion of the FPGA logic, which performs basic control of the fixed

I/O resource. The bus interface also consumes a small portion of the FPGA

logic to provide software access to the device. The remaining FPGA logic

is available for higher-level functions such as timing, triggering, and signal

processing. Each of these functions consumes varying amounts of logic.

For example, a typical 32-bit counter consumes 20 times more logic than a

DIO resource, while an 8-bit counter consumes five times more logic than

a DIO resource. The figure below illustrates using the FPGA for an IF

transceiver application in a wireless communication system.

Figure 2. FPGA Logic for an IF Transceiver

Note On the NI PCI-5640R, the FPGA is volatile and does not retain its VI when powered

off. The VI must be reloaded every time the device is powered on. The VI is downloaded

to the FPGA from the host computer over the bus interface.

Reconfigurable I/O Applications
To create new VIs for your application, you use the LabVIEW FPGA

Module. The LabVIEW FPGA Module extends the LabVIEW

development environment to allow you to design and use FPGA

applications. Arbitrary functionality can be defined for the RIO device.

If you are using the LabVIEW FPGA Module, refer to the included

NI PCI-5640R FPGA examples.

RX Signal

Processing

TX Signal

Processing

Bus Interface,

DIO,

Trigger,

RTSI,

AI 0

AI 1

AO 0

AO 1

DDC ADC 0

DDC ADC 1

DUC DAC 0

DUC DAC 1

FPGA

© National Instruments Corporation 7 Getting Started with the NI 5640R and LabVIEW FPGA

LabVIEW FPGA Module
The LabVIEW FPGA Module enables you to use LabVIEW to create VIs

that run on the RIO device. The LabVIEW FPGA Module includes a

function palette with VIs that can control the I/O, timing, and logic of the

RIO device. The LabVIEW FPGA Module synthesizes your custom VI

into a form that can be downloaded to the FPGA on the RIO device. The

LabVIEW FPGA Module also includes a palette of functions for use in

LabVIEW for Windows or when targeting a real-time (RT) target. These

functions create applications that control the FPGA by programmatically

reading and writing to the device.

Xilinx Virtex II Pro FPGA

The Xilinx Virtex II Pro FPGA is used on the NI PCI-5640R to execute

user-developed LabVIEW FPGA programs. This FPGA is connected to

all the resources on the device (ADC, DAC, Clock Distribution Circuit

[CDC], DIO, EXT TRIG) through point-to-point connections.

Reconfigurable FPGA Resources
Table 1 lists the FPGA resources available for user configuration.

Component Datasheets
The information in the following component datasheets may be helpful for

advanced users who are using the LabVIEW FPGA Module to create their

NI PCI-5640R application. Refer to these documents for register maps,

detailed information about functionality and programming, and for

explanations of internal signals used in timing block diagrams.

• Datasheets for the AD 6654 ADC and AD 9857 DAC are available on

the www.analog.com™ Web site

• CDC 7005 Clock Distribution IC Datasheet available on the

www.ti.com™ Web site.

Table 1. User-Configurable FPGA Resources

FPGA Resource Static Reconfigurable

Combinatorial Logic 1% 99%

Memory Elements 2% 98%

Getting Started with the NI 5640R and LabVIEW FPGA 8 ni.com

Clocking Block Diagram

The NI PCI-5640R uses three categories of clocks: reference clocks,

sample clocks, and IQ clocks. Figure 3 depicts the NI PCI-5640R clocking

scheme.

Figure 3. NI PCI-5640R Clocking Scheme

The 20 MHz Configuration_Clk is not synchronized to the VCXO and runs

independently of other clocks. The role of the 20 MHz Configuration_Clk

is to provide a fixed frequency configuration clock that is also used by the

NI-STC2 ASIC for PCI DMA operations.

The Device Reference Clock can be configured as the internal 200 MHz

VCXO or an external clock provided at the device front panel CLK IN

connector. Specify the device reference clock source by calling the

ni5640R Configure Timebase VI.

The valid values for CDC 7005 divisors (N0...N4) is 1, 2, 4, 8, and 16.

M, N, interpolation values, and decimation values must be integers. Refer

to the Configuring IQ Clock Rates section for more information.

LabVIEW

FPGA

VI

÷

Decimation

÷

Decimation

ADC_0_Port_A_Clk

ADC_1_Port_A_Clk

DAC_0_IQ_Clk

DAC_1_IQ_Clk

FPGA

ADC 0CDC

PLL_CLK
M/N

ADC 1

PLL_CLK
M/N

DAC 0

SYSCLK
M

÷

Interpolation

DAC 1

SYSCLK

REFCLK
(0)

ENC
(1)

ENC
(0)

REFCLK
(1)

RTSI_Ref_Clk

M

÷ N0

÷ N1

÷ N2

÷ N3

÷ N4

VCXO
(200 MHz)

CLK IN

Reference Clocks

Sample Clocks

IQ clocks

Device
Reference

Clock

Oscillator
(20 MHz)

Configuration_Clk

÷

Interpolation

© National Instruments Corporation 9 Getting Started with the NI 5640R and LabVIEW FPGA

Configuring IQ Clock Rates

Observe the following guidelines when configuring IQ clock rates.

• DAC_<i>_IQ_Clk = 2 × REFCLKDAC_<i> × Clock multiplierDAC_<i> /

InterpolationDAC_<i>

Where

REFCLKDAC_<i> is the specified device reference clock / N2 or 3 CDC.

Specify the divisor using the ni5640R Configure Timebase VI.

Clock multiplierDAC_<i>(M) is equal to 1 or 4 ≤ M ≤ 20. Configure

the clock multiplier using the ni5640R DAC Program VI.

InterpolationDAC_<i> is the hardware interpolation rate determined

by the DAC fixed 4× interpolator times a programmable 2× to 63×

CIC interpolating filter. The programmable CIC interpolator can

be configured using the ni5640R DAC Profile VI.

• ADC_<i>_Port_A_Clk = ENCADC_<i> × Clock multiplierADC_<i> /

(Predivide FactorADC_<i> × DecimationADC_<i>)

Where

ENCADC_<i> is the device reference clock / N0 or 1 CDC. Specify the

divisor using the ni5640R Configure Timebase VI.

Clock multiplierADC_<i>(M) is equal to 1 or 4 ≤ M ≤ 20. Configure

the clock multiplier using the ni5640R Input Port VI.

Predivide FactorADC_<i> (N) is equal to 1, 2, 4, or 8. Configure the

predivide factor using the ni5640R Input Port VI.

DecimationADC_<i> is the decimation factor for a particular

channel in the ADC. Decimation is performed in various filters

throughout the processing channel. Each channel includes one

CIC filter (decimates by 1 to 32), two FIR-HB filters (each

decimates by 2), one DRC filter (decimates by 1 to 16) and

one CRCF filter (decimates by 1 to 16). Configure all these filters

using the ni5640R ADC Configure DDC VI.

You can have different clock-division ratios on the ADC and DAC clocks

using the CDC 7005 clock distribution chip. For example, in internal

clocking mode, the ADCs are normally clocked at 100 MHz (VCXO clock

rate/2), and the DACs are normally clocked at 200 MHz (VCXO clock

rate/1). Refer to the I/O Resources section for more details.

Refer to the Timebase Block Diagram section in the NI 5640R Help for a

depiction of the NI PCI-5640R clocking scheme.

Getting Started with the NI 5640R and LabVIEW FPGA 10 ni.com

I/O Resources

I/O resources consist of both onboard ADCs, both DACs, the NI-STC2

ASIC, the RTSI bus, DIO lines, the clock distribution chip (CDC), trigger

lines, and timing circuitry.

I/O resources are configured in one of the two following ways, as shown in

Table 2.

• Using the host computer—these resources are mostly configuration

resources that are not intended to be changed during the execution of

the application.

• Using the FPGA VI—these resources can be made accessible to the

host computer by wiring them to controls and indicators.

Note The NI-5640R example host VIs can be used to appropriately configure all I/O

resources.

Table 2. Configuring I/O Resources

Resource Configuration Method

CDC and other timing circuitry Host only

RTSI configuration Host only

Analog input FPGA VI

Analog output FPGA VI

DIO FPGA VI

Trigger FPGA VI

RTSI FPGA VI

© National Instruments Corporation 11 Getting Started with the NI 5640R and LabVIEW FPGA

I/O Resources Available using the FPGA VI
Figure 4 depicts the I/O resources available using the FPGA VI.

Figure 4. I/O Resources Available using FPGA VI

Configuration_Clk

RTSI_Ref_Clk

DAC_<i>_IQ_Clk

ADC_<i>_Port_A_Clk

ADC_<i>_Port_A_I

ADC_<i>_Port_A_Q

ADC_<i>_Port_A_RSSI

DIO

Analog

Input

Resources

ADC_<i>_Microport_Ready

DAC_<i>_Data

DAC_<i>_TxEnable

LED

ADC_<i>_Microport_Clk

ADC_<i>_Microport_Cs_n

ADC_<i>_Microport_Write_n

ADC_<i>_Microport_Read_n

ADC_<i>_Microport_Mode

ADC_<i>_Microport_Addr

ADC_<i>_Microport_Data

DAC_<i>_SPI_Clk

DAC_<i>_SPI_ ChipSel_n

DAC_<i>_SPI_ DataIn

DAC_<i>_SPI_ SynclO

DAC_<i>_SPI_ ProfileSel0

DAC_<i>_SPI_ ProfileSel1

DAC_<i>_SPI_ DataOut

7

16

14

16

7

7

16

16

8FPGA

VI

ADC

Configuration

Resources

Analog

Output

Resources

DAC

Configuration

Resources

i = 0, 1

R
T

S
I

C
o

n
n

e
c
to

r

ADC_<i>_Port_A_AGC
3

ADC_<i>_Reset

DAC_<i>_Reset

TRIG

Getting Started with the NI 5640R and LabVIEW FPGA 12 ni.com

Configuration I/O Resources

Configuration I/O resources consist of the configuration ports on ADCs

and DACs. You must interface with configuration I/O resources to

configure the ADCs and DACs from the FPGA VI.

To configure an ADC you must use its Microport Interface configured as an

8-bit port. To configure a DAC, use its Serial Interface configured as a

3-wire interface.

Note The NI-5640R example host VIs appropriately configure all I/O resources, so

low-level direct access to ADC configuration resources and DAC configuration resources

is not needed for most applications.

Data I/O Resources

Data I/O resources consist of AI, AO, DIO lines, RTSI signals, and trigger

signals as follows.

• AI—ADCs provide IQ data after downconversion. An IQ sample is

supplied on the rising edge of every ADC IQ clock cycle

• AO—DACs require interleaved I and Q data on every DAC IQ clock

cycle

• DIO lines—provide general-purpose I/O through seven lines

configurable by pin as input or output. Refer to Connecting Digital

Input/Output (DIO) Signals in the NI 5640R IF Transceiver Getting

Started Guide for more information

• RTSI lines—can provide general-purpose digital I/O after appropriate

host configuration

• Trigger lines—can be sent or received on DIO lines, RTSI lines, or the

module front panel TRIG connector after appropriate host

configuration

Getting Started with FPGA VIs and Host VIs

Use the LabVIEW FPGA Module and NI-5640R examples to learn about

building FPGA VIs and host VIs, communicating between VIs running on

the FPGA target and on the host computer, and programming hardware

functionality in the FPGA VI.

In this section you will learn about FPGA application components.

• An FPGA target is the NI hardware that includes a reconfigurable

field-programmable gate array (FPGA) and on which you can run

FPGA VIs you develop in LabVIEW with the LabVIEW FPGA

© National Instruments Corporation 13 Getting Started with the NI 5640R and LabVIEW FPGA

Module. In this case the FPGA target is the NI PCI-5640R IF

transceiver.

• An FPGA VI is an NI-5640R VI that you download to an FPGA target

that determines the functionality of the hardware using the FPGA I/O

Nodes and VIs.

• A host VI is an NI-5640R VI that runs in software on the host computer

and uses the FPGA Interface VIs to control and monitor the FPGA VI

on the FPGA target.

Note ni5640R example host VIs are not the same as the NI-5640R instrument driver.

Instrument driver VIs do not work if you are developing an application with the

LabVIEW FPGA Module.

Figure 5. Programmatic FPGA Interface Communication

Host VI

Host Computer FPGA Device

FPGA VI

Getting Started with the NI 5640R and LabVIEW FPGA 14 ni.com

In this section, you will learn to download and run an FPGA VI and to

communicate with an NI-5640R FPGA VI from a NI-5640R host VI.

NI-5640R FPGA Examples
You can use NI-5640R FPGA examples to learn various concepts and

programming techniques in LabVIEW. The NI-5640R examples

demonstrate a variety of tasks and concepts:

• Using the NI PCI-5640R with the LabVIEW FPGA Module

• Performing basic I/O

• Performing basic processing in the FPGA

• Performing analog input

• Performing analog output

• Communicating between the FPGA VI running on the NI PCI-5640R

and the host VI running on a host computer

• Using new and advanced features, including timed loops, multiple

clock domains, and direct memory access (DMA).

Note ni5640R example host VIs are not the same as the NI-5640R instrument driver.

Instrument driver VIs do not work if you are developing an application with the

LabVIEW FPGA Module.

You can find more information about these topics in the LabVIEW Help,

available within LabVIEW by selecting Help»Search the LabVIEW

Help. Refer to the NI 5640R Help, available from the Start menu at All

Programs»National Instruments»NI-5640R»Documentation, for

information specific to the NI PCI-5640R.

The LabVIEW Project
A LabVIEW project is a file that allows you to manage VIs and targets on

the development computer. You must configure the FPGA target to appear

in the Project Explorer window. Complete the following steps to open a

project in the Project Explorer window and add an FPGA target to the

project.

1. Launch LabVIEW.

2. Access the NI-5640R FPGA examples directory by navigating to the

Start menu and selecting All Programs»National Instruments»

NI-5640R»Examples.

3. Open the Fpga folder to view the LabVIEW FPGA examples.

4. Open the ni5640R Single Tone Output folder.

© National Instruments Corporation 15 Getting Started with the NI 5640R and LabVIEW FPGA

5. Double-click the ni5640R Single Tone Output.lvproj to open

the project in LabVIEW.

Notice that the NI PCI-5640R target appears in the Project Explorer

window. Also notice that some I/O resources and the FPGA VI appear

in the Project Explorer window below the NI PCI-5640R target,

as shown in Figure 6.

Figure 6. The Project Explorer Window

You now can open and explore an FPGA VI example in the Project

Explorer window.

Exploring an FPGA VI
The FPGA VI is the VI that runs on the FPGA target. Complete the

following steps to view an example FPGA VI for the NI PCI-5640R:

1. Open the ni5640R Single Tone Output (FPGA) VI from the Project

Explorer window. The target on which the VI runs (My Computer or

FPGA Target), appears in the lower left corner of the VI as shown in

Figure 7.

NI PCI-5640R Target

FPGA VI

LabVIEW Library

Getting Started with the NI 5640R and LabVIEW FPGA 16 ni.com

2. Open the block diagram and locate the Configuration Timed Loop. As

shown in Figure 7, there are two subVIs inside this timed loop: the

ni5640R Template Config ADC (FPGA) VI and the ni5640R Template

Config DAC (FPGA) VI.

Figure 7. ni5640R Single Tone Output (FPGA) VI Block Diagram

© National Instruments Corporation 17 Getting Started with the NI 5640R and LabVIEW FPGA

3. Open these subVIs and open their block diagrams. Notice the

I/O Nodes—these are required to configure the ADCs and DACs. You

can read from and write to registers in the ADCs and DACs using these

nodes. The I/O Nodes are wired to controls and indicators that are

written to or read from the calling VI. The ni5640R Template Config

DAC (FPGA) VI block diagram is shown in Figure 8.

Figure 8. ni5640R Template Config DAC (FPGA) VI Block Diagram

4. Close the subVIs. Notice there are controls and indicators wired to the

subVIs. These controls and indicators are accessed by the provided

ni5640R example host VIs in order to configure the ADCs and DACs.

You must specify settings such as the decimation/interpolation factor,

filters, and modes of operation to configure the ADCs and DACs

before the VI can write any to or read any data from them. You will not

need to write data directly to these controls and indicators because the

ni5640R example host VIs provide a high-level interface to them.

Note ni5640R example host VIs are not the same as the NI-5640R instrument driver.

Instrument driver VIs do not work if you are developing an application with the

LabVIEW FPGA Module.

Notice that the Configuration Timed Loop is clocked by the

Configuration_Clk (shown in the upper left corner of the loop in

Figure 7). The Configuration_Clk is an onboard 20 MHz free-running

oscillator that is not synchronized to the VCXO and runs

independently of other clocks. Refer to the Clocking Block Diagram

section for more information about the Configuration_Clk.

Getting Started with the NI 5640R and LabVIEW FPGA 18 ni.com

The Configuration Timed Loop is always running (because there is a

FALSE constant wired to the Loop Condition terminal of the loop).

This continuous operation allows the ni5640R host VIs to configure

the ADCs and DACs at any point during runtime.

No specific code generates a sine tone because the DACs can internally

generate tones at the specified frequency. To configure this feature, use

the provided ni5640R example VIs to specify the frequency and

configure the DAC for single-tone mode.

Note The Configuration Timed Loop is required by the ni5640R host VIs to be present

and running.

Exploring a Host VI
The host VI runs in software on the host computer and communicates with

the FPGA VI on the NI PCI-5640R. You can place the host VI in the same

project as the FPGA target and the FPGA VI. Complete the following steps

to open a host VI:

1. Open the ni5640 Single Tone Output (HOST) VI from the Project

Explorer window. Notice that the host VI appears above the FPGA

target in the Project Explorer window; the host VI appears under My

Computer because it runs on the Windows computer. As shown in

Figure 9, the target on which the VI runs (in this case, My Computer),

appears in the lower left corner of the VI.

Figure 9. ni5640R Single Tone Output (HOST) VI Block Diagram

© National Instruments Corporation 19 Getting Started with the NI 5640R and LabVIEW FPGA

2. The following four VIs appear on the block diagram:

• Open FPGA VI Reference—This VI downloads an FPGA VI to

the FPGA (if it has not been previously downloaded) and opens a

reference to it.

• pni5640R Configure Timebase—This VI configures the device

timebase. If all inputs are unconnected, this VI configures the

hardware to use the internal VCXO (200 MHz), a divide factor of

2 for the ADCs to set their reference clock to 100 MHz, and a

divide factor of 1 for the DACs to set their reference clock to

200 MHz.

• ni5640R DAC Configure for Single-Tone Mode—This VI

configures the specified DAC to operate in single-tone mode,

configures the DAC frequency, and configures the DAC’s output

scale factor.

• ni5640R DAQ Reset—This VI stops the generation.

• Close FPGA VI Reference—Stops and resets the FPGA VI

running on the FPGA target and closes the reference to the VI.

3. Run the Single Tone Output (HOST) VI and notice that it generates a

sine tone at the specified frequency.

In the host VI, the ni5640R DAC Configure for Single-Tone Mode VI

configures the DAC to generate a sine tone at a particular frequency with a

specific power level. The ni5640R DAC Configure for Single-Tone Mode

VI writes the controls within the FPGA VI Configuration Timed Loop to

access the DAC registers. The sole purpose of the FPGA VI in this example

is to provide an interface that the NI 5640R VIs use to access the DAC

registers.

Creating an FPGA Application

Now that you have explored a project, an FPGA VI, and a host VI, you will

develop an application that includes all three components.

Overview of the Application
To develop and use an FPGA VI with the NI PCI-5640R, you must perform

the following steps.

1. Create the LabVIEW project

2. Add the NI PCI-5640R hardware target

Getting Started with the NI 5640R and LabVIEW FPGA 20 ni.com

3. Develop and compile the FPGA VI

4. Create the host VI to communicate with the target

In this case, you will develop a simple spectrum analyzer using one of the

analog input channels on the NI PCI-5640R. You will be able to configure

the center frequency and the bandwidth to analyze. The application also

generates a sine tone that can be used as the signal to analyze.

Using the ni5640R Template
The ni5640R Template contains all the elements needed to develop an

application using the NI PCI-5640R. It contains a LabVIEW project that

has been preconfigured to target the NI PCI-5640R. It also contains a

Template FPGA VI and a Template Host VI. Complete the following steps

to use the ni5640R Template:

1. From Windows Explorer, copy the folder named ni5640R Template

(installed at <LabVIEW>\Examples\instr\ni5640R\Fpga) to a

new location.

2. Rename the folder My Simple Spectrum Analyzer.

3. Open the My Simple Spectrum Analyzer folder and rename the

ni5640R Template.lvproj file to My Simple Spectrum

Analyzer.lvproj.

4. Double-click My Simple Spectrum Analyzer.lvproj to open the

project in LabVIEW.

Figure 10. My Simple Spectrum Analyzer Project

5. Double-click ni5640R Template (HOST).VI to open the VI.

Caution In later steps, you will update some components of this VI. It is important to keep

this VI open during updates to automatically propagate changes to affected components. If

the VI is closed while updating, it cannot propagate changes properly and might be unable

to find updates upon reopening.

Host VI

VI Library

NI PCI-5640R Target

© National Instruments Corporation 21 Getting Started with the NI 5640R and LabVIEW FPGA

6. Return to the Project Explorer window. Right-click ni5640R

Template.lvlib and select Rename from the shortcut menu to

launch the Save As dialog box.

7. Select Rename and then Continue from the dialog box.

8. Rename the library to My Simple Spectrum Analyzer.lvlib and

click OK.

Note The .lvlib file contains all the high-level VIs required to configure the

NI PCI-5640R.

9. Right-click My Simple Spectrum Analyzer.lvlib, and select

Save All from the shortcut menu.

10. Right-click the ni5640R Template (HOST) VI, and select Save As.

11. Save the ni5640R Template (HOST) VI with a new name: My Simple

Spectrum Analyzer (HOST).vi.

12. At the LabVIEW File dialog box, select Save All. Your LabVIEW

project should now look like Figure 11.

Figure 11. My Simple Spectrum Analyzer Project

Getting Started with the NI 5640R and LabVIEW FPGA 22 ni.com

Configuring the NI PCI-5640R Target
All resources used by the FPGA VI must first be added to the project.

In this section, you will add FPGA I/O, a DMA FIFO, and an FPGA

base clock.

Adding FPGA I/O for Analog Input

1. From the Project Explorer window, right-click FPGA Target

(PCI-5640R) and select New»FPGA I/O from the shortcut menu,

as shown in Figure 12. The New FPGA I/O dialog box appears,

displaying the I/O resources available on the NI PCI-5640R.

Figure 12. Adding New FPGA I/O Resources

2. Under the Analog Input folder, select ADC_0_Port_A_I and

ADC_0_Port_A_Q.

3. Click Add to add these resources to the New FPGA I/O table.

4. Click OK. The FPGA I/O items you configured appear in the Project

Explorer window in a folder below the NI PCI-5640R FPGA target.

© National Instruments Corporation 23 Getting Started with the NI 5640R and LabVIEW FPGA

Adding DMA FIFO

5. Right-click the NI PCI-5640R FPGA target in the Project Explorer

window and select New»FIFO. You will use this FIFO to transfer the

acquired data to the host computer.

6. On the FPGA FIFO Properties dialog box, select Target to Host –

DMA as the Type and set Depth to 32767 elements.

7. Click OK.

Adding a Base Clock for Analog Input

8. Right-click the NI PCI-5640R FPGA target in the Project Explorer

window and select New»FPGA Base Clock.

9. From the FPGA Base Clock Properties dialog box, select the

Resource named ADC_0_Port_A_Clk. The ADC_0_Port_A_Clk

ticks every time the ADC has a new IQ sample.

10. Click OK.

Developing the FPGA VI
FPGA VIs run on FPGA targets and define the functionality and features

of the targets on which they run. In this case, you will use an included

template VI to build an FPGA VI that acquires data using one of the analog

input channels and then sends packets of data to the host VI using DMA.

1. From the Project Explorer window, right-click the ni5460R Template

(FPGA) VI, and select Save As from the shortcut menu.

2. Select Rename and then Continue from the dialog box.

3. Rename the VI to My Simple Spectrum Analyzer (FPGA).VI.

4. Open the block diagram for My Simple Spectrum

Analyzer(FPGA).VI. Create a new Timed loop beneath the

Configuration Timed Loop. The Timed loop is located on the

Functions palette under Programming»Structures»Timed

Structures.

5. Wire a FALSE constant to the Loop Condition terminal, so that the

new loop is always running.

Getting Started with the NI 5640R and LabVIEW FPGA 24 ni.com

6. Select both Analog Input FPGA I/O items in the Project Explorer

window and drag them onto the block diagram inside the timed loop

you created. Two FPGA I/O Nodes appear on the block diagram

configured with the specific FPGA I/O item. Your block diagram

should now look like Figure 13.

Figure 13. Adding I/O Nodes to the FPGA VI

© National Instruments Corporation 25 Getting Started with the NI 5640R and LabVIEW FPGA

7. Select the FIFO item in the Project Explorer window and drag it onto

the block diagram inside the timed loop, to the right of the FPGA I/O

Nodes.

8. Place a Join Numbers VI between the FPGA I/O Nodes and the FIFO.

The Join Numbers VI is located on the Functions palette under

Programming»Numeric»Data Manipulation.

9. Wire the outputs of the FPGA I/O Nodes to the input of the Join

Numbers VI. Then wire the output of the Join Numbers VI to the input

of the FIFO.

10. Create a numeric constant of zero and wire it to the Timeout input of

the FIFO.

11. Create a Boolean indicator and wire it to the Full output of the FIFO.

12. Create a case structure around the code as shown in Figure 14. This

image does not show the Configuration Timed Loop.

13. Create a Boolean control called Acquire and wire it to the case

structure. Your VI block diagram should now look like Figure 14.

Figure 14. Timed Loop Setup

The acquired I and Q data, which are 16-bit values, are packed into a 32-bit

value by the Join Numbers VI. The packed value is then sent to the FIFO,

which transfers the data to the host computer using DMA. The only

remaining task is specifying how often to acquire I and Q samples.

14. On the FPGA VI block diagram, double-click the input node (top left

corner of the loop) on the Timed loop to view the Configure Timed

Loop dialog box. This dialog box allows you to configure which clock

runs the Timed Loop. Notice that only those clocks that have been

added to the project appear in the list of Available Timing Sources.

Getting Started with the NI 5640R and LabVIEW FPGA 26 ni.com

15. In the Configure Timed Loop dialog, click Select Timing Source

and select ADC_0_Port_A_Clk. Your FPGA VI is now complete.

16. Save the VI and the project.

Compiling the FPGA VI
You now can compile the FPGA VI. In the Project Explorer window,

right-click the FPGA VI and select Compile from the shortcut menu.

When the compilation process is complete, the LabVIEW FPGA Compile

Server displays a report indicating that the compilation was successful.

Click the OK button on the dialog box shown in Figure 15.

Figure 15. FPGA Download Complete Dialog

Note Compilation might take up to 30 minutes, depending on your system and VI

complexity.

© National Instruments Corporation 27 Getting Started with the NI 5640R and LabVIEW FPGA

Developing the Host VI
To communicate programmatically with the FPGA VI, you must develop a

host VI that runs on a Windows PC. Complete the following steps to create

a host VI that communicates with the FPGA VI running on the

NI PCI-5640R hardware module.

Opening a Reference to the FPGA VI

1. Open the block diagram for the My Simple Spectrum

Analyzer (HOST) VI. Right-click the Open FPGA VI Reference VI

and choose Select VI to launch the Select VI dialog box.

2. Select the My Simple Spectrum Analyzer (FPGA) VI you created in

the Developing the FPGA VI section.

3. Click OK.

Getting Started with the NI 5640R and LabVIEW FPGA 28 ni.com

Adding NI-5640R VIs

4. In the Project Explorer window, expand the My Simple Spectrum

Analyzer library and double-click the ni5640R VI Tree.VI to

open it. Navigate to the ni5640R VI Tree VI block diagram.

Figure 16. ni5640R VI Tree Block Diagram

5. Copy the following VIs from the ni5640R VI Tree VI block diagram

to the block diagram of My Simple Spectrum Analyzer (HOST) VI.

• ni5640R ADC Default.VI—configures analog input

• ni5640R ADC Configure DDC.VI—configures analog input

• ni5640R ADC Configure NCO.VI—configures analog input

• ni5640R DAC Configure for Single-Tone

Mode.VI—generates sine tone stimulus

© National Instruments Corporation 29 Getting Started with the NI 5640R and LabVIEW FPGA

6. Connect the preceding VIs as shown in Figure 17.

Note Delete any existing VIs or data structures, such as loops, that do not appear in

Figure 17 from the block diagram.

Figure 17. Host VI Block Diagram Connections

Acquiring Data From the FPGA VI

7. Place an Invoke Method Node, available on the Functions»FPGA

Interface palette, on the block diagram.

8. Wire the Invoke Method Node to the ni5640R DAC Config for Single

Tone VI.

9. Left-click the Invoke Method Node and select Method»FIFO»

Configure. This method configures the size of the software FIFO.

It limits the maximum number of elements that your VI can read.

10. Place another Invoke Method Node, available on the Functions»

FPGA Interface palette, on the block diagram.

11. Left-click the Invoke Method Node and select Method»FIFO»Start.

This method starts DMA transfer from the DMA FIFO that you created

in the FPGA VI to a software DMA FIFO.

12. Place a Read/Write Node, available from located on the Functions

palette under FPGA Interface palette, on the block diagram.

13. Left-click the Read/Write Node and select Acquire.

14. Place another Invoke Method Node on the block diagram.

15. Left-click the Invoke Method Node and select Method»FIFO»Read.

This method reads the contents of the software DMA FIFO.

16. Create a control named Number of Elements and wire it to the Depth

parameter in the FIFO»Configure method and to the Number of

Elements parameter in the FIFO»Read method, as shown in

Figure 18.

Getting Started with the NI 5640R and LabVIEW FPGA 30 ni.com

17. Wire your block diagram as shown in Figure 18.

Figure 18. Wiring the FPGA VI for Data Acquisition

Analyzing the Data

18. Place a Split Number VI on the block diagram. The Split Number VI

is located on the Functions palette under Programming»Numeric»

Data Manipulation.

19. Wire the Data output from the Method»FIFO»Read to the input of

the Split Number VI.

20. Place two To Word Integer functions on the block diagram to convert

the outputs of the Split Number VI to I16 format. The To Word Integer

function is located on the Functions palette under Programming»

Numeric»Conversion

21. Place a Real-Imaginary to Complex Number VI on the block diagram.

The Real-Imaginary to Complex Number VI is located on the

Functions palette under Programming»Numeric»Complex.

22. Place a Build Waveform VI on the block diagram. The Build

Waveform VI is located on the Functions palette under

Programming»Waveforms.

23. Place an FFT Power Spectrum VI on the block diagram. The FFT

Power Spectrum VI is located on the Functions palette under Signal

Processing»Waveform Measurements.

24. Wire a TRUE constant to the dB On parameter of the FFT Power

Spectrum VI.

25. Drop a Waveform Graph indicator, located on the Waveform palette,

on the front panel.

© National Instruments Corporation 31 Getting Started with the NI 5640R and LabVIEW FPGA

26. Ensure that your block diagram is wired as shown in Figure 19.

Figure 19. Analyzing the Data

Adding Controls and Indicators

27. Add the following controls and indicators, as shown in Figure 20:

• Decimation—specifies how much decimation is performed on the

analog input signal. This value determines the maximum

bandwidth of your signal.

• NCO frequency—specifies the center frequency for the analog

input waveform.

• Frequency—specifies the frequency at which to generate a sine

tone. This tone can serve as a test signal for the simple spectrum

analyzer.

Figure 20. Host VI Block Diagram With Controls and Indicators

28. Divide the decimation rate value by 100M and wire the output to the

dt input of the Build Waveform VI.

Getting Started with the NI 5640R and LabVIEW FPGA 32 ni.com

Closing the Reference to the FPGA VI

29. Close the reference to the FPGA VI running on the FPGA target

by placing the Close FPGA VI Reference VI, available on the

Functions palette under FPGA Interface, on the block diagram as

shown in Figure 21.

30. Place a Simple Error Handler VI, found on the Programming»Dialog

& User Interface palette, on your block diagram.

31. Save the VI. Your host VI block diagram and front panel should now

look like Figures 21 and 22, respectively.

Figure 21. Host VI Block Diagram

© National Instruments Corporation 33 Getting Started with the NI 5640R and LabVIEW FPGA

Figure 22. Host VI Front Panel

32. Populate your application with the control values shown in Figure 22.

33. On the NI PCI-5640R front panel, connect the AO 0 connector to the

AI 0 connector.

34. Click the Run button to run the host VI. The host VI programmatically

downloads and runs the FPGA VI on the NI PCI-5640R.

The spectrum of the generated tone appears on the host VI front panel

waveform graph. The tone appears at 500 kHz because the generated tone

frequency and the analyzer center frequency are 500 kHz apart.

Getting Started with the NI 5640R and LabVIEW FPGA 34 ni.com

What You Have Learned

This document demonstrates the following key points about developing a

NI PCI-5640R solution in LabVIEW:

• A typical NI PCI-5640R solution consists of a LabVIEW project, at

least one FPGA VI, and at least one host VI.

• The FPGA VI runs on the FPGA on the NI PCI-5640R. The host VI

can run on a Windows PC.

– Use the LabVIEW project to organize VIs, configure settings

for the VIs, configure the NI PCI-5640R, and configure the

FPGA I/O.

– Use the FPGA VI to read and write to the NI PCI-5640R I/O

Nodes and to implement logical operations in the FPGA.

– Use a DMA FIFO to transfer data to the host computer.

– Use the host VI to communicate with the FPGA VI.

– Use Timed Loops for time-critical operations.

Using FPGAs for Signal Processing

This section provides more information about using FPGAs for signal

processing applications.

Using Single-Cycle Timed Loops
Single-Cycle Timed Loops are While loops in which every cycle is

guaranteed to execute in a single clock cycle. The clock that drives the

Single-Cycle Timed Loop is configurable. This type of structure is critical

for analog input (AI) and analog output (AO) operations. After a DAC has

been configured, it expects a new sample on every rising edge of its IQ

clock (DAC_<i>_IQ_Clk). Similarly, an ADC provides a new sample on

every rising edge of its IQ clock (ADC_<i>_Port_A_Clk). Therefore, you

must always write data to a DAC inside a Single-Cycle Timed Loop that is

clocked by the DAC IQ clock. Similarly, you must always read data from

the ADC inside a Single-Cycle Timed Loop that is clocked by the ADC IQ

clock.

Some LabVIEW FPGA primitives cannot be placed inside a Single-Cycle

Timed Loop without eliciting a code generation error. Refer to the

Executing Code in a Single FPGA Target Clock Cycle section of the

LabVIEW Help for more information about the Single-Cycle Timed Loop

and the VIs you can use in the Single-Cycle Timed Loop.

© National Instruments Corporation 35 Getting Started with the NI 5640R and LabVIEW FPGA

Understanding Clock Domains
A clock domain refers to all the components that use a particular clock

to run. All the code inside a Single-Cycle Timed Loop is timed with the

selected clock, making that loop a clock domain. The LabVIEW FPGA

Module automatically adds the necessary infrastructure to transfer data

safely between clock domains. Nevertheless, there is some latency when

transferring data from one clock domain to another.

Note Different signals that cross clock domains are not guaranteed to arrive at the same

time. Bundle your signals in a cluster to ensure that they arrive simultaneously.

Pipelining
Pipelining is an implementation technique that allows using Single-Cycle

Timed Loops to accomplish operations requiring multiple clock cycles.

Most applications require some signal processing before writing to the

AO or after reading from the AI. If the signal processing is inside a

Single-Cycle Timed Loop, a single clock cycle may not provide enough

time for the FPGA to perform all necessary computations.

To resolve this problem you can pipeline your signal processing. Pipelining

divides the Single-Cycle Timed Loop into segments separated by registers,

which can be implemented using shift registers, feedback nodes, or local

variables. Each segment executes a portion of the computation that can be

completed within a single clock cycle. At each clock cycle, every segment

executes and writes its results to a feedback node. On the next iteration of

the loop, the stored result is fed to the next segment. The multiple segments

overlap in execution, so each segment processes new data at every clock

cycle.

Getting Started with the NI 5640R and LabVIEW FPGA 36 ni.com

Refer to Figure 23 for an example of pipelining. Additionally, the

LabVIEW FPGA examples illustrate this technique.

Figure 23. Four-Stage Pipeline

Each output value is processed using four substeps. The Logic 0, Logic 1,

Logic 2, and Logic 3 blocks run concurrently.

Note Refer to the Executing Code in a Single FPGA Target Clock Cycle topic of the

LabVIEW Help for more information about the Single-Cycle Timed Loop and the VIs you

can use in the Single-Cycle Timed Loop.

You can also refer to the Using the Timed Loop to Write Multirate

Applications in LabVIEW application note on the NI Developer Zone Web

site. This application note describes the features of the Timed loop and how

to use the Timed loop to develop multirate applications.

FPGA Signal Processing References
The following texts are recommended for in-depth information on FPGA

signal processing.

For detailed discussions of signal processing theory, discrete-time artifacts,

and the Nyquist Theorem:

• Oppenheim, Alan V., and Schafer, Ronald W., and Buck, John R.

Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

1999.

For high-level introductory material presented in intuitive ways with

real-world examples:

• Smith, Steven W. Digital Signal Processing: A Practical Guide for

Engineers and Scientists. Oxford: Newnes, 2002.

Logic 0

Output

Logic 1

Output

Logic 2

Output
Logic

0

Logic

1

Logic

2

Logic

3

VI OutputVI Input

Feedback Nodes

Clock Domain

Selected Here

 Code Between Pipeline Stages

Must Execute Within One Clock Cycle

© National Instruments Corporation 37 Getting Started with the NI 5640R and LabVIEW FPGA

For very detailed, analytical discussions of various communication signal

processing operations:

• Gitlin, Richard D., and Hayes, Jeremiah F., and Weinstein, Stephen B.

Data Communications Principles. London: Plenum Publishers, 1992.

• Proakis, John G., and Salehi, Masoud. Communications Systems

Engineering. Englewood Cliffs, NJ: Prentice Hall, 1994.

Tips and Troubleshooting

This section reviews some tips and troubleshooting options that may be

helpful when you use the NI PCI-5640R module and NI-5640R software.

It takes a long time to access controls and indicators in the
Read/Write Control

When you click on the Read/Write Control, LabVIEW must locate the

corresponding controls and indicators in your FPGA VI. If your FPGA VI

is not loaded into memory when you click the Read/Write Control, then

LabVIEW loads it at this point and unloads it when the operation is

complete. Avoid LabVIEW loading and unloading the FPGA VI by

keeping the FPGA VI open while you work on your Host VI.

I get a pop-up indicating that an error was detected in the
communication between the host computer and the FPGA target

Error -61046 may occur when your application tries to read or write

controls or indicators that are in a slow clock domain. For example, you

may see this error if you have a control/indicator inside a single-cycle timed

loop that is clocked by the ADC_0_Port_A_Clk and have configured the

ADC 0 to decimate by a large value (larger than 128). Such a setup can

cause this problem because the control or indicator is being updated very

slowly and the communication times out while trying to access it. This

configuration is shown in Figure 24.

Figure 24. Controls in a Slow Clock Domain

Getting Started with the NI 5640R and LabVIEW FPGA 38 ni.com

To solve this problem, place the control or indicator in a clock domain that

is faster (like the default Top-Level Clock). You can then use local variables

to transfer the value to a slower clock domain, as shown in Figure 25.

Figure 25. Using Local Variables to Transfer the Value

When I open a Host VI, LabVIEW cannot find a file named filename.lvbit
In this situation, click Cancel and the VI should load properly. This

situation can occur if some of your subVIs have been saved with the

typedef control pointing to another FPGA VI. In this case, when your

subVI loads, it attempts to locate the original FPGA VI. However, when the

VI is finished loading, if the “bind to typedef” option is selected on the

“Open FPGA Reference” VI, the typedef is updated to point to the right

FPGA VI.

When I Run an FPGA VI, a compilation error instantly occurs
The following suggestions may help to address this problem:

• The problem could be related to timing constraints in the FPGA.

Check the compilation report and make sure your FPGA VI is not

violating any timing constraints.

• The problem could be that the compilation process aborted abnormally

at some point without being detected by LabVIEW. In this case,

LabVIEW caches the error report and, because LabVIEW detects that

your FPGA VI has not changed, it simply returns the cached result for

every compilation request. You can force a compilation by

right-clicking on the FPGA VI on the Project Explorer window and

selecting Compile.

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation.
Refer to the Terms of Use section on ni.com/legal for more information about National
Instruments trademarks. Virtex-II Pro is a trademark of Xilinx, Inc. Other product and company names
mentioned herein are trademarks or trade names of their respective companies. For patents covering
National Instruments products, refer to the appropriate location: Help»Patents in your software, the
patents.txt file on your CD, or ni.com/patents.

© 2006–2007 National Instruments Corporation. All rights reserved 371621B-01 Apr07

Where to Go From Here

Refer to the FPGA Module book in the LabVIEW Help for more

information about the LabVIEW FPGA Module, including conceptual

topics about the features available with the LabVIEW FPGA Module,

procedures to complete common tasks with the LabVIEW FPGA Module,

and reference information about VIs and functions available with the

LabVIEW FPGA Module.

Refer to the FPGA Interface book in the LabVIEW Help for more

information about programming host VIs to communicate with FPGA VIs.

Refer to the NI 5640R Help, available from the Start menu at All

Programs»National Instruments»NI-5640R»Documentation, for more

information about the NI PCI-5640R and NI-5640R programming.

Note These help files are available within LabVIEW from the Help pull-down menu.

	Getting Started with the NI PCI-5640R IF Transceiver and the LabVIEW FPGA Module
	Contents
	Conventions
	What You Need to Get Started
	Fundamentals of Reconfigurable Input/Output (RIO)
	Reconfigurable I/O Concept
	User-Defined I/O Resources
	Device-Embedded Logic and Processing
	Reconfigurable I/O Architecture
	Figure 1. High-Level FPGA Functional Overview
	Figure 2. FPGA Logic for an IF Transceiver

	Reconfigurable I/O Applications
	LabVIEW FPGA Module

	Xilinx Virtex II Pro FPGA
	Reconfigurable FPGA Resources
	Table 1. User-Configurable FPGA Resources
	Component Datasheets

	Clocking Block Diagram
	Figure 3. NI PCI-5640R Clocking Scheme

	Configuring IQ Clock Rates
	I/O Resources
	Table 2. Configuring I/O Resources
	I/O Resources Available using the FPGA VI
	Figure 4. I/O Resources Available using FPGA VI

	Configuration I/O Resources
	Data I/O Resources
	Getting Started with FPGA VIs and Host VIs
	Figure 5. Programmatic FPGA Interface Communication
	NI-5640R FPGA Examples
	The LabVIEW Project
	Figure 6. The Project Explorer Window

	Exploring an FPGA VI
	Figure 7. ni5640R Single Tone Output (FPGA) VI Block Diagram
	Figure 8. ni5640R Template Config DAC (FPGA) VI Block Diagram

	Exploring a Host VI
	Figure 9. ni5640R Single Tone Output (HOST) VI Block Diagram

	Creating an FPGA Application
	Overview of the Application
	Using the ni5640R Template
	Figure 10. My Simple Spectrum Analyzer Project
	Figure 11. My Simple Spectrum Analyzer Project

	Configuring the NI PCI-5640R Target
	Adding FPGA I/O for Analog Input
	Figure 12. Adding New FPGA I/O Resources
	Adding DMA FIFO
	Adding a Base Clock for Analog Input

	Developing the FPGA VI
	Figure 13. Adding I/O Nodes to the FPGA VI
	Figure 14. Timed Loop Setup

	Compiling the FPGA VI
	Figure 15. FPGA Download Complete Dialog

	Developing the Host VI
	Opening a Reference to the FPGA VI
	Adding NI-5640R VIs
	Figure 16. ni5640R VI Tree Block Diagram
	Figure 17. Host VI Block Diagram Connections
	Acquiring Data From the FPGA VI
	Figure 18. Wiring the FPGA VI for Data Acquisition
	Analyzing the Data
	Figure 19. Analyzing the Data
	Adding Controls and Indicators
	Figure 20. Host VI Block Diagram With Controls and Indicators
	Closing the Reference to the FPGA VI
	Figure 21. Host VI Block Diagram
	Figure 22. Host VI Front Panel

	What You Have Learned
	Using FPGAs for Signal Processing
	Using Single-Cycle Timed Loops
	Understanding Clock Domains
	Pipelining
	Figure 23. Four-Stage Pipeline

	FPGA Signal Processing References

	Tips and Troubleshooting
	It takes a long time to access controls and indicators in the Read/Write Control
	I get a pop-up indicating that an error was detected in the communication between the host computer and the FPGA target
	Figure 24. Controls in a Slow Clock Domain
	Figure 25. Using Local Variables to Transfer the Value

	When I open a Host VI, LabVIEW cannot find a file named filename.lvbit
	When I Run an FPGA VI, a compilation error instantly occurs

	Where to Go From Here

