COMPREHENSIVE SERVICES

We offer competitive repair and calibration services, as well as easily accessible documentation and free downloadable resources.

SELL YOUR SURPLUS

We buy new, used, decommissioned, and surplus parts from every NI series. We work out the best solution to suit your individual needs. Ally Sell For Cash Ally Get Credit Ally Receive a Trade-In Deal

OBSOLETE NI HARDWARE IN STOCK & READY TO SHIP

We stock New, New Surplus, Refurbished, and Reconditioned NI Hardware.

APEX WAVES

Bridging the gap between the manufacturer and your legacy test system.

1-800-915-6216
www.apexwaves.com
sales@apexwaves.com

 \bigtriangledown

All trademarks, brands, and brand names are the property of their respective owners.

Request a Quote CLICK HERE PCI-5640R

NI PCI-5640R Specifications

Reconfigurable IF Transceiver

このドキュメントには、日本語ページも含まれています。

This document lists the specifications of the NI PCI-5640R IF transceiver. These specifications are warranted at 0 to 40 °C ambient unless otherwise specified and include a 10 minute warm-up time from ambient conditions. Typical values are valid over 25 °C \pm 10 °C. All figures show typical performance at 25 °C. All specifications are subject to change without notice. Visit ni.com/manuals for the most current specifications and product documentation.

Analog Input

Number of channels	2
Resolution	14 bits
Maximum sample rate	100 MSamples/second (MS/s)
Maximum bandwidth	20 MHz (limited by digital downconverter)
Input impedance	50 Ω nominal
Input return loss	<-15 dB
Input coupling	AC-coupled
AC coupling cutoff frequency (-3dB)	50 kHz typical
Full-scale input range	+8.5 dBm peak (1.68 V _{pk-pk} sine) at 10 MHz (± 0.5 dB max calibration data uncertainty; <±1 dB typical without calibration)
Maximum input overload	+24 dBm peak (10 V _{pk-pk} sine, 3.5 V _{RMS})
Passband flatness (referenced at 10 MHz) 250 to 80 MHz	<±0.5 dB (calibration data uncertainty) +0.25 dB, -0.75 dB

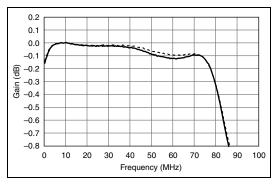
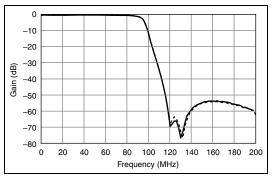
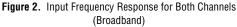




Figure 1. Input Frequency Response for Both Channels (Passband)

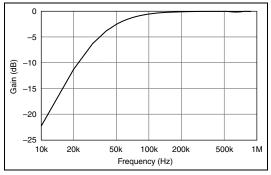


Figure 3. Input Frequency Response (Low Frequency)

Input group delay variation10 ns typical, up to 80 MHz

Stopband rejection>50 dB at 120 MHz typical

Channel-to-channel crosstalk

<40 MHz	<-70 dB typical
\geq 40 to 80 MHz	<=60 dB typical

Spectral Characteristics

Figure 4. Analog Input Two-Tone Intermodulation Distortion (IMD)

Note Phase noise skirts in Figure 4 are due to signal generators and do not represent NI PCI-5640R performance.

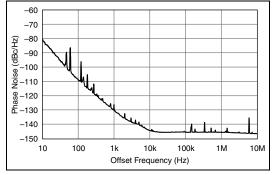
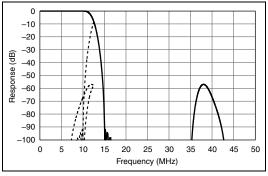


Figure 5. Phase Noise at Carrier Frequency = 68.659 MHz

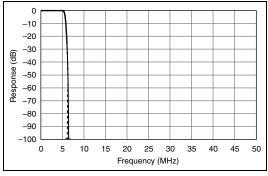
Signal to noise ratio>76 dB typical (-1 dBfs at 68 MHz tone, bandwidth = 5 MHz)

Average noise density (100 kHz to 80 MHz)-143 dBm/Hz typical

Digital Downconverter (DDC)


Number of channels	Up to 6 per ADC
--------------------	-----------------

Bandwidth	. Up to 20 MHz using all
	six processing channels


Decimation

Using NI-5640R driver	48
Using LabVIEW FPGA	768*

 $^{^{*}}$ Decimation rate is referenced to a maximum of 100 MS/s complex (I/Q) data.

Sample DDC filter performance plots using NI-5640R 1.0 library example filter designs: Figure 6 depicts a 20 MHz span; Figure 7 depicts a 10 MHz span. The dark lines show the true response of the digital filter in the DDC. The dashed lines show the effect of aliasing after decimation. Notice that for a 10 MHz span, the DDC filter aliasing artifacts have virtually no impact; whereas for a full 20 MHz span, signals at frequency offsets near ±40 MHz can alias back up to -66 dBc within the ± 10 MHz passband near the band edges.

Analog Output

Number of channels	. 2
Resolution	. 14 bits
Maximum update rate	. 200 MS/s
Output impedance	. 50 Ω nominal
Output return loss	.<-15 dB
Output coupling	. AC-coupled

AC coupling cutoff frequency

(-3dB)50	kHz typical
----------	-------------

Full

Full-scale output range
Using NI-5640R driver4 dBm peak
Using LabVIEW FPGA+2 dBm peak (0.8 V_{pk-pk}) nominal into 50 Ω , -1.5 dBm with sinc and total interpolation factor = 4 at 10 MHz (\pm 0.5 dB max calibration data uncertainty, $<\pm$ 1 dB typical without calibration)*
Tuning speed1 ms
Output protectionIndefinite duration short to ground
Reverse power protection+24 dBm peak (10 V_{pk-pk} , 3.5 V_{RMS})
Passband flatness
(referenced at 10 MHz) <±1 dB typical, 250 kHz to 80 MHz (With CIC and sinc compensation filter engaged)
0.3 0.2 0.1 0.0 -0.1 $\widehat{\blacksquare}$ -0.2

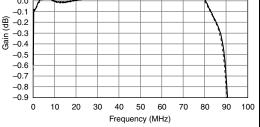


Figure 8. Analog Output Passband Flatness (Referenced to 10 MHz)

Channel-to-channel crosstalk

<40 MHz	<-70 dB typical
≥40 to 80 MHz	<-60 dB typical

CIC compensation filter lowers the level by 0.59 dB when the total interpolation factor equals 8 and by 0.79 when the total interpolation factor >8.

Spectral Characteristics

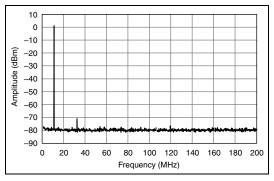


Figure 9. Analog Output Single-Tone Distortion

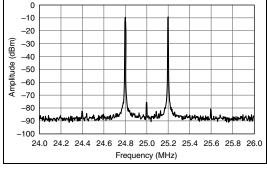


Figure 10. Analog Output Two-Tone IMD

Note Phase noise skirts and noise floor in Figure 10 are a limitation of the spectrum analyzer used for measurement.

Digital Upconverter

Number of channels.....1 per DAC

Modulation bandwidth

Using NI-5640R driver	Up to 20 MHz
Using LabVIEW FPGA	Up to 40 MHz

System Level Performance

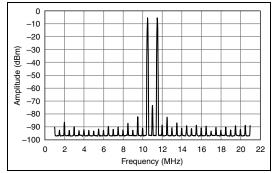


Figure 11. System-level Two-Tone IMD, Center Frequency = 11 MHz

Figure 12. System-Level Two-Tone IMD, Center Frequency = 71 MHz

Note Figures 11 and 12 depict analog output signals routed to analog input terminals at various center frequencies.

System Level Modulation Quality

Analog output connected to analog input

Conditions	QAM 256,
	Carrier = 25 MHz,
	Symbol Rate =
	12.5 MS/s,
	Filter alpha $= 0.5$,
	raised cosine filter

Modulation Error Ratio	>43 dB typical
Error Vector Magnitude	<0.4% typical

Timebase System

Timebase options

Using NI-5640R driver	Internal,
	External reference
	clock input (CLK IN)
Using LabVIEW FPGA	Internal,
	External (CLK IN),
	External reference
	clock input (CLK IN)

Internal

Timebase frequency	200 MHz with division
	by <i>N</i> , where $N = 1, 2, 4$,
	8, or 16

Note ADC is clocked at 100 MHz max (200 MHz ÷ 2). ADC data output is further decimated by the DDC. DAC is clocked at 200 MHz maximum. DAC data is interpolated in the digital upconverter.

Timebase frequency accuracy...... ±25 ppm

External

External sample clock sources CLK IN (SMB connector)

External sample clock range 30 to 200 MHz

Note Set programmable clock divider (N = 1, 2, 4, 8, or 16) appropriately to ensure ADC sample rate $\leq 100 \text{ MS/s}$, and DAC update rate $\leq 200 \text{ MS/s}$.

External reference clock sources

Using NI-5640R driver	CLK IN (SMB connector)
Using LabVIEW FPGA	CLK IN (SMB
	connector), RTSI

External reference clock range......1 to 100 MHz in 1 MHz increments, ± 100 ppm (RTSI limited to 20 MHz)

PLL lock time < 250 ms

External clock input amplitude

Sine wave	0.63 to 2.8 V _{pk-pk}
	(0 to 13 dBm)
Square wave	$\ldots 0.25$ to 2.8 $\mathrm{V}_{\mathrm{pk-pk}}$

External clock input impedance...... 50 Ω nominal, AC-coupled

Trigger System

ModesDigital input, software

Sources

Using NI-5640R driverTRIG, software Using LabVIEW FPGATRIG, RTSI <0..6>, software

Slope

Using NI-5640R driver	Rising
Using LabVIEW FPGA	Rising or falling

External Trigger Channel (TRIG)

Impedance	
	DC-coupled
Range	0 to 5 V, TTL-compatible
Overvoltage protection	3.5 to + 8 V continuous

Digital I/O Connector (AUX I/O)

Number of digital lines	0
I/O direction	Pin-configurable
Input voltage range	0 to 5 V, TTL-compatible
Overvoltage protection	–0.5 to +5.5 V
Output type	3.3 V CMOS
Output current	±24 mA

FPGA

Model	.Xilinx Virtex-II Pro P30 (XC2VP30)
Logic cells	.30,816 (~ 3 million system gates)
Multipliers (18x18)	.136
Block RAM	.2,448 Kbits

Power Requirements

Typical

+3.3	+5	+12	Total Power
VDC	VDC	VDC	
1.8 to 3.5 A	2.3 A	200 mA	20 to 25.5 W, depending on FPGA configuration

Calibration

Self-calibration parameters	Analog input gain,
	Analog output gain,
	VCXO

External calibration interval2 years

Physical Dimensions

NI PCI-5640R module	
	$(13.4 \times 0.8 \times 4.4 \text{ in.})$

Environment

Maximum altitude2,000 m (at 25 °C ambient temperature)

Pollution Degree2

 Note The NI PCI-5640R is intended for indoor use only.

Operating Environment

.0 to 40 °C (Tested
in accordance with
IEC 60068-2-1 and
IEC 60068-2-2.)
.10 to 90%, noncondensing

(Tested in accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature range	40 to 70 °C (Tested
	in accordance with
	IEC 60068-2-1 and
	IEC 60068-2-2.)
Relative humidity range	5 to 95%, noncondensing (Tested in accordance

with IEC 60068-2-56.)

Safety

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1
- CAN/CSA-C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label, or visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column.

Electromagnetic Compatibility

Emissions	EN 55011 Class A at
	10 m. FCC Part 15A
	above 1 GHz

Immunity	EN 61326:1997 +
	A2:2001, Table 1

CE, C-Tick, and FCC Part 15 (Class A) Compliant

Note For EMC compliance, operate this device with shielded cabling.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

Low-Voltage Directive	
(safety)	73/23/EEC

Electromagnetic Compatibility Directive (EMC) 89/336/EEC

Note Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of their life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the *Terms of Use* section on ni.com/legal for more information about National Instruments trademarks. Virtex-II Pro is a trademark of Xilinx, Inc. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products, refer to the appropriate location: **Help»Patents** in your software, the patents.txt file on your CD, or ni.com/patents.